Science.gov

Sample records for reaction-generated probes derived

  1. Identification of human rotavirus serotype by hybridization to polymerase chain reaction-generated probes derived from a hyperdivergent region of the gene encoding outer capsid protein VP7

    SciTech Connect

    Flores, J.; Sears, J.; Schael, I.P.; White, L.; Garcia, D.; Lanata, C.; Kapikian, A.Z. )

    1990-08-01

    We have synthesized {sup 32}P-labeled hybridization probes from a hyperdivergent region (nucleotides 51 to 392) of the rotavirus gene encoding the VP7 glycoprotein by using the polymerase chain reaction method. Both RNA (after an initial reverse transcription step) and cloned cDNA from human rotavirus serotypes 1 through 4 could be used as templates to amplify this region. High-stringency hybridization of each of the four probes to rotavirus RNAs dotted on nylon membranes allowed the specific detection of corresponding sequences and thus permitted identification of the serotype of the strains dotted. The procedure was useful when applied to rotaviruses isolated from field studies.

  2. Benzothiadiazole Derivatives as Fluorescence Imaging Probes: Beyond Classical Scaffolds.

    PubMed

    Neto, Brenno A D; Carvalho, Pedro H P R; Correa, Jose R

    2015-06-16

    This Account describes the origins, features, importance, and trends of the use of fluorescent small-molecule 2,1,3-benzothiadiazole (BTD) derivatives as a new class of bioprobes applied to bioimaging analyses of several (live and fixed) cell types. BTDs have been successfully used as probes for a plethora of biological analyses for only a few years, and the impressive responses obtained by using this important class of heterocycle are fostering the development of new fluorescent BTDs and expanding the biological applications of such derivatives. The first use of a fluorescent small-molecule BTD derivative as a selective cellular probe dates back to 2010, and since then impressive advances have been described by us and others. The well-known limitations of classical scaffolds urged the development of new classes of bioprobes. Although great developments have been achieved by using classical scaffolds such as coumarins, BODIPYs, fluoresceins, rhodamines, cyanines, and phenoxazines, there is still much to be done, and BTDs aim to succeed where these dyes have shown their limitations. Important organelles and cell components such as nuclear DNA, mitochondria, lipid droplets, and others have already been successfully labeled by fluorescent small-molecule BTD derivatives. New technological systems that use BTDs as the fluorophores for bioimaging experiments have been described in recent scientific literature. The successful application of BTDs as selective bioprobes has led some groups to explore their potential for use in studying membrane pores or tumor cells under hypoxic conditions. Finally, BTDs have also been used as fluorescent tags to investigate the action mechanism of some antitumor compounds. The attractive photophysical data typically observed for π-extended BTD derivatives is fostering interest in the use of this new class of bioprobes. Large Stokes shifts, large molar extinction coefficients, high quantum yields, high stability when stored in solution or

  3. Unmanned Multiple Exploratory Probe System (MEPS) for Mars observation. Volume 2: Calculations and derivations

    NASA Technical Reports Server (NTRS)

    Adams, Daniel E.; Crumbly, Christopher M.; Delp, Steve E.; Guidry, Michelle A.; Lisano, Michael E.; Packard, James D.; Striepe, Scott A.

    1988-01-01

    This volume of the final report on the unmanned Multiple Exploratory Probe System (MEPS) details all calculations, derivations, and computer programs that support the information presented in the first volume.

  4. Location of TEMPO derivatives in micelles: subtle effect of the probe orientation.

    PubMed

    Aliaga, Carolina; Bravo-Moraga, Felipe; Gonzalez-Nilo, Danilo; Márquez, Sebastián; Lühr, Susan; Mena, Geraldine; Rezende, Marcos Caroli

    2016-02-01

    Partition coefficients for six 4-substituted derivatives of the 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) derivatives in aqueous solutions of reduced Triton X-100 (RTX-100) were determined by measurements of the probe EPR g-factor and of the fluorescence quenching of pyrene by the radical in the micelle. The partition constant attained a maximum value and then decreased with increasing probe hydrophobicity. Simulation of the probes inside the micelle showed that this trend could be rationalized by a change in the orientation of the 4-substituted TEMPO derivatives with the increasing substituent chain-length. The use of the EPR g-factor for the determination of partition constants of radicals in micellar systems was thus validated as a reliable and sensitive method, capable of describing the probe orientation in its microenvironment. PMID:26304365

  5. Fluorescence probes to detect lipid-derived radicals.

    PubMed

    Yamada, Ken-Ichi; Mito, Fumiya; Matsuoka, Yuta; Ide, Satsuki; Shikimachi, Kazushige; Fujiki, Ayano; Kusakabe, Daiki; Ishida, Yuma; Enoki, Masataka; Tada, Arisa; Ariyoshi, Miyuki; Yamasaki, Toshihide; Yamato, Mayumi

    2016-08-01

    Lipids and their metabolites are easily oxidized in chain reactions initiated by lipid radicals, forming lipid peroxidation products that include the electrophiles 4-hydroxynonenal and malondialdehyde. These markers can bind cellular macromolecules, causing inflammation, apoptosis and other damage. Methods to detect and neutralize the initiating radicals would provide insights into disease mechanisms and new therapeutic approaches. We describe the first high-sensitivity, specific fluorescence probe for lipid radicals, 2,2,6-trimethyl-4-(4-nitrobenzo[1,2,5]oxadiazol-7-ylamino)-6-pentylpiperidine-1-oxyl (NBD-Pen). NBD-Pen directly detected lipid radicals in living cells by turn-on fluorescence. In a rat model of hepatic carcinoma induced by diethylnitrosamine (DEN), NBD-Pen detected lipid radical generation within 1 h of DEN administration. The lipid radical scavenging moiety of NBD-Pen decreased inflammation, apoptosis and oxidative stress markers at 24 h after DEN, and liver tumor development at 12 weeks. Thus, we have developed a novel fluorescence probe that provides imaging information about lipid radical generation and potential therapeutic benefits in vivo. PMID:27294322

  6. Perichromism: a powerful tool for probing the properties of cellulose and its derivatives.

    PubMed

    Fidale, Ludmila C; Heinze, Thomas; El Seoud, Omar A

    2013-03-01

    This overview is concerned with the use of certain dyes (perichromic indicators, hereafter designated as "probes") in order to determine the properties of cellulose, its solutions and solid derivatives. It is arranged as follows: (i) the properties of cellulose and its derivatives that are relevant to their applications are listed; (ii) a general discussion is presented on how perichromism can be employed in order to gain information on the medium where the probe is present; (iii) the results of perichromism, as applied to cellulose, cellulose solutions, and derivative films are discussed. PMID:23465911

  7. Fluorescence depolarization studies of sol-gel-derived glasses using a rigidochromic probe

    NASA Astrophysics Data System (ADS)

    McKiernan, John; Zink, Jeffrey I.; Dunn, Bruce S.

    1992-12-01

    The rigidochromic molecule rhenium(I)chlorotricarbonyl-2,2'-bipyridine was used in fluorescence depolarization experiments to probe the gelation, aging, and drying of silica and aluminosilicate sol-gel derived materials. These studies indicate that the local environment of the probe is fluid until well after gelation has occurred. Aluminosilicate gels show an increase in local viscosity after gelation while silica gels show no increase until the drying stage is begun. These results are compared to previous studies in which the shift of the emission band was used to indicate the rigidity in the local environment of the probe.

  8. Theoretical derivation and calibration technique of a hemispherical-tipped, five-hole probe

    NASA Technical Reports Server (NTRS)

    Kjelgaard, Scott O.

    1988-01-01

    A technique is presented for the calibration of a hemispherical tipped 0.125 inch diameter 5-hole probe. The derivation of equations from the potential flow over a sphere relating the flow angle and velocity to pressure differentials measured by the probe is presented. The technique for acquiring the calibration data and the technique used to calculate the calibration coefficients are presented. The accuracy of the probe in both the uniform calibration flow field and the nonuniform flow field over a 75 degree swept delta wing is discussed.

  9. Effective Radius of Ice Cloud Particle Populations Derived from Aircraft Probes

    NASA Technical Reports Server (NTRS)

    Heymsfield, Andrew J.; Schmitt, Carl; Bansemer, Aaron; vanZadelhoff, Gerd-Jan; McGill, Matthew J.; Twohy, Cynthia

    2005-01-01

    The effective radius(r(sub e)) is a crucial variable in representing the radiative properties of cloud layers in general circulation models. This parameter is proportional to the condensed water content (CWC) divided by the extinction (sigma). For ice cloud layers, parameterizations for r(sub e), have been developed from aircraft in-situ measurements 1) indirectly, using data obtained from particle spectrometer probes and assumptions or observations about particle shape and mass to get the ice water content (IWC) and area to get sigma, and recently 2) from probes that measure IWC and sigma directly. This study compares [IWC/sigma] derived from the two methods using data sets acquired from comparable instruments on two aircraft, one sampling clouds at mid-levels and the other at upper-levels during the CRYSTAL-FACE field program in Florida in 2002. The sigma and IWC derived by each method are compared and evaluated in different ways for each aircraft data set. Direct measurements of sigma exceed those derived indirectly by a factor of two to two and a half. The IWC probes, relying on ice sublimation, appear to measure accurately except when the IWC is high or the particles too large to sublimate completely during the short transit time through the probe. The IWC estimated from the particle probes are accurate when direct measurements are available to provide constraints and useful information in high IWC/large particle situations. Because of the discrepancy in sigma estimates between the direct and indirect approaches, there is a factor of 2 to 3 difference in [IWC/sigma] between them. Although there are significant uncertainties involved in its use, comparisons with several independent data sources suggest that the indirect method is the more accurate of the two approaches. However, experiments are needed to resolve the source of the discrepancy in sigma.

  10. Evaluation of the derivates of phosphorescent Pt-coproporphyrin as intracellular oxygen-sensitive probes.

    PubMed

    Fercher, Andreas; Ponomarev, Gelii V; Yashunski, Dmitri; Papkovsky, Dmitri

    2010-03-01

    Several new derivatives of the phosphorescent Pt(II)-coproporphyrin (PtCP) were evaluated with respect to the sensing of intracellular oxygen by phosphorescence quenching. Despite the more favorable molecular charge compared to PtCP, self-loading into mammalian cells was rather inefficient for all the dyes, while cell loading by facilitated transport using transfection reagents produced promising results. The PtCP-NH(2) derivative, which gave best loading efficiency and S/N ratio, was investigated in detail including the optimisation of loading conditions, studies of sub-cellular localization, cytotoxicity, oxygen sensitivity and long-term signal stability. Being spectrally similar to the macromolecular MitoXpress™ probe currently used in this application, the PtCP-NH(2) demonstrated higher loading efficiency and phosphorescent signals, suitability for several problematic cell lines and a slightly increased lifetime scale for the physiological range (0-200 μM O(2)). In physiological experiments with different cell types, mitochondrial uncouplers and inhibitors performed on a time-resolved fluorescence plate reader, this probe produced the anticipated profiles of intracellular oxygen concentration and responses to cell stimulation. Therefore, PtCP-NH(2) represents a convenient probe for the experiments and applications in which monitoring of cellular oxygen levels is required. PMID:20063150

  11. Bis-pyridinium quadrupolar derivatives. High Stokes shift selective probes for bio-imaging

    NASA Astrophysics Data System (ADS)

    Salice, Patrizio; Versari, Silvia; Bradamante, Silvia; Meinardi, Francesco; Macchi, Giorgio; Pagani, Giorgio A.; Beverina, Luca

    2013-11-01

    We describe the design, synthesis and characterization of five high Stokes shift quadrupolar heteroaryl compounds suitable as fluorescent probes in bio-imaging. In particular, we characterize the photophysical properties and the intracellular localization in Human Umbilical Vein Endothelial Cells (HUVEC) and Human Mesenchymal Stem Cells (HMSCs) for each dye. We show that, amongst all of the investigated derivatives, the 2,5-bis[1-(4-N-methylpyridinium)ethen-2-yl)]- N-methylpyrrole salt is the best candidates as selective mitochondrial tracker. Finally, we recorded the full emission spectrum of the most performing - exclusively mitochondrial selective - fluorescent probe directly from HUVEC stained cells. The emission spectrum collected from the stained mitochondria shows a remarkably more pronounced vibronic structure with respect to the emission of the free fluorophore in solution.

  12. [Derivative fluorescence probe recognition results of the light physical mechanism of metal ions].

    PubMed

    Dai, Yu-mei; Hu, Xiao-jun; Li, Fu-jun; Xie, Yu-meng; Zhao, Yang-yang; Zhou, Qiao

    2015-02-01

    As people deeply study the electronic spectra of fluorescent compounds and photophysical behavior, enormous progress has been made in the aspect of changes and states of different systems in the use of fluorescent molecules as probes. PTC-DA is a kind of typical fluorescent molecular probe that is highly sensitive and selective in water environment. This paper makes a research on the physical mechanism of light of PTCDA by TDF (Density Functional Theory), calculates the optimal configuration the charge population and excitation spectra of PTCDA molecules under ideal condition and acquires PTCDA fluorescence emission spectra then analyses that PTCDA is a kind of quenching and dual colorimetric signal probe response. Its optical signal response mechanism belongs to ICT (Intramolecular Charge Transfer) mechanism. According to the results, this perylene derivatives is fitted with Cu2+ excited state absorption spectra. Before and after the combination with Cu2+, the peak shape of absorption spectrum is similar. When copper is added, the overall absorption peak position occurred redshift, quenching discoloration happens. By comparing with experimental values, the calculated molecular configuration is reasonable and effective and the peak of excitation spectra is realistic. Analysis shows that: PTCDA molecules divalent copper ions have better fluorescence detection activity, the optical signal response mechanisms are intramolecular charge transfer (ICT) mechanisms. When a molecule receives divalent copper ions, the absorption spectrum peak position redshifts, intramolecular charge transfer direction and intensity changes. There occur both quenching signal and discoloration signal. It is a kind of fluorescent probe material with double quenching and discoloration fluorescent signal, which has great potential for development. This paper makes an early-stage exploration of the physical mechanism of light response mechanism analysis in molecular fluorescent probe field and

  13. Thermal Structure of Jupiter's Upper Atmosphere Derived from the Galileo Probe

    PubMed

    Seiff; Kirk; Knight; Young; Milos; Venkatapathy; Mihalov; Blanchard; Young; Schubert

    1997-04-01

    Temperatures in Jupiter's atmosphere derived from Galileo Probe deceleration data increase from 109 kelvin at the 175-millibar level to 900 ± 40 kelvin at 1 nanobar, consistent with Voyager remote sensing data. Wavelike oscillations are present at all levels. Vertical wavelengths are 10 to 25 kilometers in the deep isothermal layer, which extends from 12 to 0.003 millibars. Above the 0.003-millibar level, only 90- to 270- kilometer vertical wavelengths survive, suggesting dissipation of wave energy as the probable source of upper atmosphere heating. PMID:9082977

  14. Derivation of DNA probes for enumeration of a specific strain of Lactobacillus acidophilus in piglet digestive tract samples.

    PubMed Central

    Rodtong, S; Dobbinson, S; Thode-Andersen, S; McConnell, M A; Tannock, G W

    1993-01-01

    Four DNA probes were derived that hybridized specifically to DNA from Lactobacillus acidophilus O. The probes were constructed by randomly cloning lactobacillus DNA in plasmid vector pBR322. Two of the probes (pSR1 and pSR2) were composed of vector and plasmid DNA inserts (3.6 and 1.6 kb, respectively); the others (pSR3 and pSR4) were composed of vector and chromosomally derived inserts (6.9 and 1.4 kb, respectively). The probes were used to enumerate, by colony hybridization, strain O in digestive tract samples collected from piglets inoculated 24 hours previously with a culture of the strain. The probes did not hybridize to DNA from lactobacilli inhabiting the digestive tract of uninoculated piglets. Strain O made up about 10% of the total lactobacillus population of the pars esophagea and about 20% of the population in other digestive tract samples. Images PMID:8285690

  15. Synthesis and characterization of arylamine derivatives of rauwolscine as molecular probes for alpha 2-adrenergic receptors

    SciTech Connect

    Lanier, S.M.; Graham, R.M.; Hess, H.J.; Grodski, A.; Repaske, M.G.; Nunnari, J.M.; Limbird, L.E.; Homcy, C.J.

    1987-06-01

    The selective alpha 2-adrenergic receptor antagonist rauwolscine was structurally modified to yield a series of arylamine carboxamide derivatives, which were investigated as potential molecular probes for the localization and structural characterization of alpha 2-adrenergic receptors. The arylamine carboxamides differ in the number of carbon atoms separating the reactive phenyl moiety from the fused ring structure of the parent compound, rauwolscine carboxylate. Competitive inhibition studies with (/sup 3/H)rauwolscine in rat kidney membranes indicate that the affinity for the carboxamide derivatives is inversely related to the length of the carbon spacer arm with rauwolscine 4-aminophenyl carboxamide exhibiting the highest affinity (Kd = 2.3 +/- 0.2 nM). Radioiodination of rau-AMPC yields a ligand, /sup 125/I-rau-AMPC, which binds to rat kidney alpha 2-adrenergic receptors with high affinity, as determined by both kinetic analysis (Kd = k2/k1 = 0.016 min-1/2.1 X 10(7) M-1 min-1 = 0.76 nM) and equilibrium binding studies (Kd = 0.78 +/- 0.16 nM). /sup 125/I-rau-AMPC was quantitatively converted to the photolabile arylazide derivative 17 alpha-hydroxy-20 alpha-yohimban-16 beta-(N-4-azido-3-(/sup 125/I)iodophenyl) carboxamide (/sup 125/I-rau-AZPC). In a partially purified receptor preparation from porcine brain, this compound photolabels a major (Mr = 62,000) peptide. The labeling of this peptide is inhibited by adrenergic agonists and antagonists with a rank order of potency consistent with an alpha 2-adrenergic receptor binding site. Both /sup 125/I-rau-AMPC and the photolabile arylazide derivative, /sup 125/I-rau-AZPC, should prove useful as molecular probes for the structural and biochemical characterization of alpha 2-adrenergic receptors.

  16. Deriving large electron temperatures and small electron densities with the Cassini Langmuir probe at Saturn

    NASA Astrophysics Data System (ADS)

    Garnier, Philippe; Wahlund, Jan-Erik; Holmberg, Mika; Lewis, Geraint; Schippers, Patricia; Rochel Grimald, Sandrine; Gurnett, Donald; Coates, Andrew; Dandouras, Iannis; Waite, Hunter

    2014-05-01

    The Langmuir Probes (LPs) are commonly used to investigate the cold plasma characteristics in planetary ionospheres/magnetospheres. The LPs performances are limited to low temperatures (i.e. below 5-10 eV at Saturn) and large densities (above several particles/cm3). A strong sensitivity of the Cassini LP measurements to energetic electrons (hundreds eV) may however be observed at Saturn in the L Shell range L=6-10 RS. These electrons impact the surface of the probe and generate a detectable current of secondary electrons. We investigate the influence of such electrons on the current-voltage (I-V) characteristics (for negative potentials), and manage to reproduce the observations with a reasonable precision through empirical and theoretical methods. Conversely, the modelling allows us to derive useful information about the energetic electrons from the LP observations : some information about their pitch angle anisotropy (if combined with the data from a single CAPS ELS anode), as well as an estimate of the electron temperature (in the range 100-300 eV) and of the electron density (above 0.1 particles/cm3). This enlarges the LP measurements capabilities when the influence of the energetic electrons is large (essentially near L=6-10 RS at Saturn). We finally show that a significant influence of the energetic electrons (larger than the contribution of thermal ions) is also expected in various plasma environments of the Solar System, such as at Jupiter (i.e near Ganymede, Europa, Callisto and Io), or even at Earth (in the plasmasheet, the magnetosheath or in plasma cavities). Large electron temperatures and small electron densities could potentially be derived in these environments, which may be of interest for Langmuir Probes in the Earth magnetosphere or onboard the future JUICE mission at Jupiter.

  17. Detection of polymolecular associations in hydrophobized chitosan derivatives using fluorescent probes.

    PubMed

    Rodrigues, Máira R; Lima, Adriana; Codognoto, Lúcia; Villaverde, Antonio Balbin; Tavares Pacheco, Marcos Tadeu; Moisés de Oliveira, Hueder P

    2008-09-01

    The microenvironment formed by lauroyl and stearoyl derivatives of chitosan in solution has been studied using two fluorescent probes, pyrene and nabumetone. Existence or not of microdomains formed by polymolecular associations, the inherent hydrophobicity of them in aqueous solution, and the influence of degree of substitution (DS) of derivatives were investigated by emission properties of pyrene and strengthened by the photophysical behavior of nabumetone. Additionally, the ratio between the fluorescence intensities of first (approximately 372 nm) to the third (approximately 384 nm) bands of the emission spectrum of pyrene was used to determine the critical aggregation concentration (CAC). In a previous work, it was already reported the characterization of chitosan derivatives by three spectroscopic techniques ((13)C-NMR, (1)H-NMR and infrared), as well as data on the solubility and swelling-index of them. In addition of that, the new results show that the investigated lauroyl and stearoyl derivatives of chitosan are expected to be potential models for applications in the medical field. PMID:18335302

  18. Fluorescence in complexes based on quinolines-derivatives: a search for better fluorescent probes.

    PubMed

    Mecca, Carolina Z P; Fonseca, Fernando L A; Bagatin, Izilda A

    2016-11-01

    Quinoline-derived fluorescent complexes were designed; synthesized by the reaction of 5-nitro-8-hydroxyquinoline and 5-chloro-8-hydroxyquinoline with Al(3+), Mg(2+), Zn(2+), and Cd(2+) salts (1-8); and characterized. The (1)H NMR spectra of complexes 1 and 5, containing Al(3+), were consistent with an octahedral structure having approximate D3 symmetry, and the results supported the favored facial isomer (fac). Data for complexes 2-4 and 6-8 supported the formation of tetrahedral structures. Intense luminescence was detected for complexes 5-8, even with the naked eye, as indicated by quantum yield values of 0.087, 0.094, 0.051, and 0.021, respectively. Furthermore, in contrast to 5-nitro-8-hydroxyquinoline, the 5-chloro-8-hydroxyquinoline ligand exhibited bands at different energies depending on the coordinated metal, which supported its potential application in ionic and biological probes, as well as in cell imaging. PMID:27288961

  19. Spectroscopic study one thiosemicarbazone derivative with ctDNA using ethidium bromide as a fluorescence probe.

    PubMed

    Geng, Shaoguang; Wu, Qing; Shi, Lei; Cui, Fengling

    2013-09-01

    In this study, a thiosemicarbazone derivative (E)-2-((1,4-dihydroxy-9,10-anthraquinone-2-yl)methylene)-N-(4-fluorophenyl)hydrazinecarbothioamide (DAFPT) was synthesized, and the interaction of DAFPT with calf thymus DNA (ctDNA) was explored using ethidium bromide (EB) as a fluorescence probe. The binding mode between DAFPT and ctDNA was investigated by UV absorption spectroscopy, fluorescence spectroscopy and molecular docking. The fluorescence quenching mechanism of EB-ctDNA by DAFPT might be a combined quenching type. Thermodynamic parameters showed that the reaction was spontaneous. According to ionic strength, fluorescence polarization and melting temperature (T(m)) curve results, DAFPT-ctDNA interaction was groove binding. The molecular modeling results indicated that DAFPT could slide into the A-T rich region of ctDNA. PMID:23769721

  20. Fluorescence in complexes based on quinolines-derivatives: a search for better fluorescent probes

    NASA Astrophysics Data System (ADS)

    Mecca, Carolina Z. P.; Fonseca, Fernando L. A.; Bagatin, Izilda A.

    2016-11-01

    Quinoline-derived fluorescent complexes were designed; synthesized by the reaction of 5-nitro-8-hydroxyquinoline and 5-chloro-8-hydroxyquinoline with Al3+, Mg2+, Zn2+, and Cd2+ salts (1-8); and characterized. The 1H NMR spectra of complexes 1 and 5, containing Al3+, were consistent with an octahedral structure having approximate D3 symmetry, and the results supported the favored facial isomer (fac). Data for complexes 2-4 and 6-8 supported the formation of tetrahedral structures. Intense luminescence was detected for complexes 5-8, even with the naked eye, as indicated by quantum yield values of 0.087, 0.094, 0.051, and 0.021, respectively. Furthermore, in contrast to 5-nitro-8-hydroxyquinoline, the 5-chloro-8-hydroxyquinoline ligand exhibited bands at different energies depending on the coordinated metal, which supported its potential application in ionic and biological probes, as well as in cell imaging.

  1. Total Ozone Mapping Spectrometer (TOMS) Derived Data, Global Earth Coverage (GEC) from NASA's Earth Probe Satellite

    DOE Data Explorer

    This is data from an external datastream processed through the ARM External Data Center (XDC) at Brookhaven National Laboratory. The XDC identifies sources and acquires data, called "external data", to augment the data being generated within the ARM program. The external data acquired are usually converted from native format to either netCDF or HDF formats. The GEC collection contains global data derived from the Total Ozone Mapping Spectrometer (TOMS) instrument on the Earth Probe satellite, consisting of daily values of aerosol index, ozone and reflectivity remapped into a regular 1x1.25 deg grid. Data are available from July 25, 1996 - December 31, 2005, but have been updated or replaced as of September 2007. See the explanation on the ARM web site at http://www.arm.gov/xds/static/toms.stm and the information at the NASA/TOMS web site: http://toms.gsfc.nasa.gov/ (Registration required)

  2. Synthesis of coumarin derivatives as fluorescent probes for membrane and cell dynamics studies.

    PubMed

    García-Beltrán, Olimpo; Yañez, Osvaldo; Caballero, Julio; Galdámez, Antonio; Mena, Natalia; Nuñez, Marco T; Cassels, Bruce K

    2014-04-01

    Three coumarin-derived fluorescent probes, 3-acetyl-7-[(6-bromohexyl)oxy]-2H-chromen-2-one (FM1), 7-[(6-bromohexyl)oxy]-4-methyl-2H-chromen-2-one (FM2) and ethyl 2-{7-[(6-bromohexyl)oxy]-2-oxo-2H-chromen-4-yl}acetate (FM3), are described, with their photophysical constants. The compounds were tested in preliminary studies employing epifluorescence microscopy demonstrating that they allow the imaging of human neuroblastoma SH-SY5Y cell membranes. The structure of FM3 was confirmed by X-ray crystallographic analysis. Molecular dynamics (MD) simulations were used to characterize the localization and interactions of the studied compounds with a lipid bilayer model of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). PMID:24576613

  3. Electron density and electron temperature measurement in a bi-Maxwellian electron distribution using a derivative method of Langmuir probes

    SciTech Connect

    Choi, Ikjin; Chung, ChinWook; Youn Moon, Se

    2013-08-15

    In plasma diagnostics with a single Langmuir probe, the electron temperature T{sub e} is usually obtained from the slope of the logarithm of the electron current or from the electron energy probability functions of current (I)-voltage (V) curve. Recently, Chen [F. F. Chen, Phys. Plasmas 8, 3029 (2001)] suggested a derivative analysis method to obtain T{sub e} by the ratio between the probe current and the derivative of the probe current at a plasma potential where the ion current becomes zero. Based on this method, electron temperatures and electron densities were measured and compared with those from the electron energy distribution function (EEDF) measurement in Maxwellian and bi-Maxwellian electron distribution conditions. In a bi-Maxwellian electron distribution, we found the electron temperature T{sub e} obtained from the method is always lower than the effective temperatures T{sub eff} derived from EEDFs. The theoretical analysis for this is presented.

  4. Synthesis and biological evaluation of indole-chalcone derivatives as β-amyloid imaging probe.

    PubMed

    Cui, Mengchao; Ono, Masahiro; Kimura, Hiroyuki; Liu, Bo Li; Saji, Hideo

    2011-02-01

    A series of chaclone derivatives containing an indole moiety were evaluated in competitive binding assays with Aβ(1-42) aggregates versus [(125)I]IMPY. The affinity of these compounds ranged from 4.46 to >1008 nM, depending on the substitution on the phenyl ring. Fluorescent staining in vitro showed that one compound with a N,N-dimethylamino group intensely stained Aβ plaques within brain sections of AD transgenic mice. The radioiodinated probe [(125)I]-(E)-3-(1H-indol-5-yl)-1-(4-iodophenyl)prop-2-en-1-one, [(125)I]4, was prepared and autoradiography in sections of brain tissue from an animal model of AD showed that it labeled Aβ plaques specifically. However, experiments with normal mice indicated that [(125)I]4 exhibited a low uptake into the brain in vivo (0.41% ID/g at 2 min). Additional chemical modifications of this indole-chalcone structure may lead to more useful imaging agents for detecting β-amyloid plaques in the brains of AD patients. PMID:21216142

  5. Monoclonal Antibodies as Probes for the Detection of Porcine Blood-Derived Food Ingredients.

    PubMed

    Ofori, Jack A; Hsieh, Yun-Hwa P

    2016-05-11

    The lack of effective methods to monitor the use of porcine blood-derived food ingredients (PBFIs) is a concern for the billions of individuals who avoid consuming blood. We therefore sought to develop a panel of porcine blood-specific monoclonal antibodies (mAbs) for use as probes in immunoassays for the detection of PBFIs. Ten selected mAbs were identified that react with either a 60 or 90 kDa protein in the plasma fraction or a 12 kDa protein in the red blood cell fraction of porcine blood. Western blot analysis of commercially produced PBFIs revealed that these antigenic proteins are not affected by various manufacturing processes. The utility of these mAbs was demonstrated in a prototype sandwich ELISA developed for this study using mAbs 19C5-E10 and 16F9-C11. The new assay is porcine blood-specific and capable of detecting ≤0.03% (v/v) of PBFIs in cooked (100 °C for 15 min) ground meats or fish. PMID:27135860

  6. Erythrocyte-derived nano-probes functionalized with antibodies for targeted near infrared fluorescence imaging of cancer cells

    PubMed Central

    Mac, Jenny T.; Nuñez, Vicente; Burns, Joshua M.; Guerrero, Yadir A.; Vullev, Valentine I.; Anvari, Bahman

    2016-01-01

    Constructs derived from mammalian cells are emerging as a new generation of nano-scale platforms for clinical imaging applications. Herein, we report successful engineering of hybrid nano-structures composed of erythrocyte-derived membranes doped with FDA-approved near infrared (NIR) chromophore, indocyanine green (ICG), and surface-functionalized with antibodies to achieve molecular targeting. We demonstrate that these constructs can be used for targeted imaging of cancer cells in vitro. These erythrocyte-derived optical nano-probes may provide a potential platform for clinical translation, and enable molecular imaging of cancer biomarkers. PMID:27446657

  7. Two-photon fluorescent probe derived from naphthalimide for cysteine detection and imaging in living cells.

    PubMed

    Liu, Yanbin; Liu, Yuwen; Liu, Wei; Liang, Shucai

    2015-02-25

    A maleimide coupling naphthalimide was reported as new two-photon fluorescent (TPF) probe for cysteine (Cys). The probe was weakly fluorescent itself due to the donor-excited photoinduced electron transfer (d-PET). After reaction with Cys, d-PET process was blocked and fluorescence enhancement of the probe was observed at 470 nm. The d-PET principle was rationalized by theoretical calculations with density functional theory and time-dependent density functional theory. Thiol-maleimide addition between the probe and Cys was confirmed by (1)H NMR and mass spectrum measurements. TPF analysis demonstrated a 24.7-fold emission increase of the probe induced by Cys upon excitation at 760 nm. The two-photon action cross-section of probe-Cys adduct at 760 nm reached 42 GM compared to 1.7 GM for free probe. The probe showed high sensitivity and selectivity to Cys over other potential interferences; especially it had the capability to discriminate Cys from glutathione and homocysteine. Through TPF imaging, the probe was successfully applied in the detection of Cys in living cells. PMID:25240143

  8. Two-photon fluorescent probe derived from naphthalimide for cysteine detection and imaging in living cells

    NASA Astrophysics Data System (ADS)

    Liu, Yanbin; Liu, Yuwen; Liu, Wei; Liang, Shucai

    2015-02-01

    A maleimide coupling naphthalimide was reported as new two-photon fluorescent (TPF) probe for cysteine (Cys). The probe was weakly fluorescent itself due to the donor-excited photoinduced electron transfer (d-PET). After reaction with Cys, d-PET process was blocked and fluorescence enhancement of the probe was observed at 470 nm. The d-PET principle was rationalized by theoretical calculations with density functional theory and time-dependent density functional theory. Thiol-maleimide addition between the probe and Cys was confirmed by 1H NMR and mass spectrum measurements. TPF analysis demonstrated a 24.7-fold emission increase of the probe induced by Cys upon excitation at 760 nm. The two-photon action cross-section of probe-Cys adduct at 760 nm reached 42 GM compared to 1.7 GM for free probe. The probe showed high sensitivity and selectivity to Cys over other potential interferences; especially it had the capability to discriminate Cys from glutathione and homocysteine. Through TPF imaging, the probe was successfully applied in the detection of Cys in living cells.

  9. Design and synthesis of an activity-based protein profiling probe derived from cinnamic hydroxamic acid.

    PubMed

    Ai, Teng; Qiu, Li; Xie, Jiashu; Geraghty, Robert J; Chen, Liqiang

    2016-02-15

    In our continued effort to discover new anti-hepatitis C virus (HCV) agents, we validated the anti-replicon activity of compound 1, a potent and selective anti-HCV hydroxamic acid recently reported by us. Generally favorable physicochemical and in vitro absorption, distribution, metabolism, and excretion (ADME) properties exhibited by 1 made it an ideal parent compound from which activity-based protein profiling (ABPP) probe 3 was designed and synthesized. Evaluation of probe 3 revealed that it possessed necessary anti-HCV activity and selectivity. Therefore, we have successfully obtained compound 3 as a suitable ABPP probe to identify potential molecular targets of compound 1. Probe 3 and its improved analogs are expected to join a growing list of ABPP probes that have made important contributions to not only the studies of biochemical and cellular functions but also discovery of selective inhibitors of protein targets. PMID:26753813

  10. A highly sensitive and selective fluorescent probe for trivalent aluminum ion based on rhodamine derivative in living cells.

    PubMed

    Tang, Jia-Liang; Li, Chun-Yan; Li, Yong-Fei; Lu, Xi; Qi, Hong-Rui

    2015-08-12

    A rhodamine spirolactam derivative (1) is developed as a colormetric and fluorescent probe for trivalent aluminum ions (Al(3+)). It exhibits a highly sensitive "turn-on" fluorescent response toward Al(3+) with a 70-fold fluorescence intensity enhancement under 2 equiv. of Al(3+) added. The probe can be applied to the quantification of Al(3+) with a linear range covering from 5.0 × 10(-7) to 2.0 × 10(-5) M and a detection limit of 4.0 × 10(-8) M. Most importantly, the fluorescence changes of the probe are remarkably specific for Al(3+) in the presence of other metal ions, which meet the selective requirements for practical application. Moreover, the experiment results show that the response behavior of 1 towards Al(3+) is pH independent in neutral condition (pH 6.0-8.0) and the response of the probe is fast (response time less than 3 min). In addition, the proposed probe has been used to detect Al(3+) in water samples and image Al(3+) in living cells with satisfying results. PMID:26320971

  11. A two-photon fluorescent turn-on probe for imaging of SO2 derivatives in living cells and tissues.

    PubMed

    Zhu, Xiaoyan; Zhu, Longming; Liu, Hong-Wen; Hu, Xiaoxiao; Peng, Rui-Zi; Zhang, Jing; Zhang, Xiao-Bing; Tan, Weihong

    2016-09-21

    SO2 and its derivatives (bisulfite/sulfite) play crucial roles in several physiological processes. Therefore, development of reliable analytical methods for monitoring SO2 and its derivatives in biological systems is very significant. In this paper, a FRET-based two-photon fluorescent turn-on probe, A-HCy, was proposed for specific detection of SO2 derivatives through the bisulfite/sulfite-promoted Michael addition reaction. In this FRET system, an acedan (2-acetyl-6-dialkylaminonaphthalene) moiety was selected as a two-photon donor and a hemicyanine derivative served as both the quencher and the recognition unit for bisulfite/sulfite. A-HCy exhibited excellent selectivity and rapid response to HSO3(-) with a detection limit of 0.24 μM. More importantly, probe A-HCy was first successfully applied in two-photon fluorescence imaging of biological SO2 derivatives in living cells and tissues, suggesting its great potential for practical application in biological systems. PMID:27590555

  12. A new hydroxynaphthyl benzothiazole derived fluorescent probe for highly selective and sensitive Cu(2+) detection.

    PubMed

    Tang, Lijun; He, Ping; Zhong, Keli; Hou, Shuhua; Bian, Yanjiang

    2016-12-01

    A new reactive probe, 1-(benzo[d]thiazol-2-yl)naphthalen-2-yl-picolinate (BTNP), was designed and synthesized. BTNP acts as a highly selective probe to Cu(2+) in DMSO/H2O (7/3, v/v, Tris-HCl 10mM, pH=7.4) solution based on Cu(2+) catalyzed hydrolysis of the picolinate ester moiety in BTNP, which leads to the formation of an ESIPT active product with dual wavelength emission enhancement. The probe also possesses the advantages of simple synthesis, rapid response and high sensitivity. The pseudo-first-order reaction rate constant was calculated to be 0.205min(-1). Moreover, application of BTNP to Cu(2+) detection in living cells and real water samples was also explored. PMID:27391231

  13. A new hydroxynaphthyl benzothiazole derived fluorescent probe for highly selective and sensitive Cu2 + detection

    NASA Astrophysics Data System (ADS)

    Tang, Lijun; He, Ping; Zhong, Keli; Hou, Shuhua; Bian, Yanjiang

    2016-12-01

    A new reactive probe, 1-(benzo[d]thiazol-2-yl)naphthalen-2-yl-picolinate (BTNP), was designed and synthesized. BTNP acts as a highly selective probe to Cu2 + in DMSO/H2O (7/3, v/v, Tris-HCl 10 mM, pH = 7.4) solution based on Cu2 + catalyzed hydrolysis of the picolinate ester moiety in BTNP, which leads to the formation of an ESIPT active product with dual wavelength emission enhancement. The probe also possesses the advantages of simple synthesis, rapid response and high sensitivity. The pseudo-first-order reaction rate constant was calculated to be 0.205 min- 1. Moreover, application of BTNP to Cu2 + detection in living cells and real water samples was also explored.

  14. Pyrenyl Derivative with a Four-Atom Linker That Can Probe the Local Polarity of Pyrene-Labeled Macromolecules.

    PubMed

    Farhangi, Shiva; Duhamel, Jean

    2016-02-01

    The fluorescent probe 1-pyrenemethoxyethanol (PyMeEGOH) was designed to replace commercially available 1-pyrenebutanol (PyButOH) as an alternative fluorescent label to probe the internal dynamics and interior polarity of macromolecules by steady-state and time-resolved fluorescence. While excimer formation and sensitivity to solvent polarity are two well-recognized properties of pyrene, much less known is that these properties are often mutually exclusive when a 1-pyrenebutyl derivative is used to prepare pyrene-labeled macromolecules (PyLMs). As the sensitivity of pyrene to solvent polarity is a result of its symmetry, attaching a butyl group to pyrene breaks the symmetry of pyrene, so that the 1-pyrenebutyl derivatives are much less sensitive to the polarity of their environment compared to unmodified pyrene. This report demonstrates that replacement of a methylene group in the β-position of PyButOH by an oxygen atom, such as in PyMeEGOH, restores the sensitivity of this pyrene derivative to the polarity of its local environment to the same level as that of molecular pyrene without impeding pyrene excimer formation upon incorporation into PyLMs. PMID:26734846

  15. Comparisons of subsonic drag estimates derived from Pioneer Venus probes flight data with wind-tunnel results

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Phillips, W. P.; Kelly, G. M.; Findlay, J. T.

    1980-01-01

    Subsonic drag coefficients have been obtained from flight data for the Pioneer Venus multiprobes. The technique used to extract the information from the data consisted of utilizing in situ pressure and temperature measurements. Analysis of the major model parameter error sources indicates overall error levels of five percent or less in the flight values of the drag coefficient. Comparisons of the flight coefficients with preflight wind-tunnel test data showed generally good agreement except for the Sounder descent probe configuration. To preclude atmospheric phenomena as a possible explanation of this difference, additional wind-tunnel tests were performed on the Sounder descent probe. Special attempts were made to duplicate the probe geometry for tests in a high Reynolds number environment in order to achieve as realistic model and flight conditions as practical. Preliminary results from this testing in the NASA LaRC Low Turbulence Pressure Tunnel produced a drag coefficient of 0.68 at 0 deg angle of attack which is within the expected accuracy limits of the flight derived drag coefficient value of 0.72 + or - 0.04, thus eliminating atmospheric phenomena as the explanation for the initial difference.

  16. Characterization of full-length and polymerase chain reaction-derived partial-length Gottfried and OSU gene 4 probes for serotypic differentiation of porcine rotaviruses.

    PubMed

    Rosen, B I; Parwani, A V; Gorziglia, M; Larralde, G; Saif, L J

    1992-10-01

    To determine the VP4 (P type) specificity of porcine rotaviruses, full- and partial-length gene 4 probes were produced from cloned Gottfried and OSU porcine rotavirus genomic segment 4 cDNAs. The gene 4 segments from the prototype Gottfried (VP7 serotype 4) and OSU (VP7 serotype 5) porcine rotavirus strains were selected for study because of their distinct P types and the occurrence of rotaviruses with similar serotypes among swine. Partial-length gene 4 cDNAs were produced and amplified by the polymerase chain reaction (PCR) and encompassed portions of the variable region (nucleotides 211 to 612) of VP8 encoded by genomic segment 4. The hybridization stringency conditions necessary for optimal probe specificity and sensitivity were determined by dot or Northern (RNA) blot hybridizations against a diverse group of human and animal rotaviruses of heterologous group A serotypes and against representative group B and C porcine rotaviruses. The PCR-derived gene 4 probes were more specific than the full-length gene 4 probes but demonstrated equivalent sensitivity. The Gottfried PCR-derived probe hybridized with Gottfried, SB2, SB3, and SB5 G serotype 4 porcine rotaviruses. The OSU PCR-derived probe hybridized with OSU, EE, A580, and SB-1A porcine rotaviruses and equine H1 rotavirus. Results of the hybridization reactions of the PCR-derived gene 4 probes with selected porcine rotavirus strains agreed with previous serological or genetic analyses, indicating their suitability as diagnostic reagents. PMID:1328281

  17. The Influence of Energetic Electrons on the Cassini Langmuir Probe at Saturn : Deriving Large Electron Temperatures and Small Electron Densities

    NASA Astrophysics Data System (ADS)

    Garnier, P.; Wahlund, J.; Holmberg, M.; Lewis, G.; Schippers, P.; Thomsen, M. F.; Rochel Grimald, S.; Gurnett, D. A.; Coates, A. J.; Dandouras, I. S.; Waite, J. H.

    2013-12-01

    The Langmuir probes (LPs) are commonly used to investigate the cold plasma characteristics in planetary ionospheres/magnetospheres. The LPs performances are limited to low temperatures (i.e. below 5-10 eV at Saturn) and large densities (above several particles/cm3). A strong sensitivity of the Cassini LP measurements to energetic electrons (hundreds eV) may however be observed at Saturn in the L Shell range L=6-10 RS. These electrons impact the surface of the probe and generate a detectable current of secondary electrons. We investigated the influence of such electrons on the current-voltage (I-V) characteristics (for negative potentials), showing that both the DC level and slope of the I-V curve are modified. The influence of energetic electrons may be interpreted in terms of the critical and anticritical temperatures concept that is important for spacecraft charging studies. Estimations of the maximum secondary yield value for the LP surface are obtained without using laboratory measurements. Empirical and theoretical methods were developed to reproduce the influence of the energetic electrons with a reasonable precision. Conversely, this modelling allows us to derive useful information about the energetic electrons from the LP observations : some information about their pitch angle anisotropy (if combined with the data from a single CAPS ELS anode), as well as an estimate of the electron temperature (in the range 100-300 eV) and of the electron density (above 0.1 particles/cm3). This enlarges the LP measurements capabilities when the influence of the energetic electrons is large (essentially near L=6-10 RS at Saturn). The understanding of this influence may be used for other missions using Langmuir probes, such as the future missions JUICE at Jupiter, BepiColombo at Mercury, or even the probes in the Earth magnetosphere.

  18. A TP-FRET-based two-photon fluorescent probe for ratiometric visualization of endogenous sulfur dioxide derivatives in mitochondria of living cells and tissues.

    PubMed

    Yang, Xiaoguang; Zhou, Yibo; Zhang, Xiufang; Yang, Sheng; Chen, Yun; Guo, Jingru; Li, Xiaoxuan; Qing, Zhihe; Yang, Ronghua

    2016-08-11

    A ratiometric two-photon fluorescent probe for SO2 derivatives was first proposed based on acedan-merocyanine dyads via a TP-FRET strategy. It was successfully applied to visualization of the fluctuations of enzymatically generated SO2 derivatives in the mitochondria of HepG2 cells and rat liver tissues using two-photon fluorescence microscopy imaging. PMID:27469474

  19. Probing the oxidation reduction properties of terrestrially and microbially derived dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Fimmen, Ryan L.; Cory, Rose M.; Chin, Yu-Ping; Trouts, Tamara D.; McKnight, Diane M.

    2007-06-01

    Dissolved organic matter (DOM) has been shown to be an integral component in biogeochemical electron transfer reactions due to its demonstrated ability to facilitate redox reactions. While the role of DOM as a facilitator of electron transfer processes has been demonstrated, greater knowledge would lead to better understanding of the structural components responsible for redox behavior, such as quinones and nitrogen and sulfur (N/S) functional groups. This investigation uses direct scan voltammetry (DSV) coupled with fluorescence and NMR spectroscopy as well as thermochemolysis gas chromatography mass spectrometry (GC-MS) and X-ray photoelectron spectroscopy (XPS) to elucidate the organic moieties responsible for facilitating electron transfer reactions. We contrast electrochemical properties and structural details of three organic matter isolates from diverse sources; Great Dismal Swamp DOM (terrestrially derived, highly aromatic), Pony Lake DOM (microbially derived, highly aliphatic) and Toolik Lake (terrestrially derived, photochemically and microbially altered) with juglone (a redox-active model quinone). Aromatic and phenolic constituents were detected (by 13C NMR) and recovered (by thermochemolysis GC-MS) from all three fulvic acid samples, highlighting the ubiquity of these compounds and suggesting that the quinone-phenol redox couple is not limited to DOM derived from lignin precursors. The range of hydroxy-benzene and benzoic acid derivatives may explain the lack of a single pair of well-defined oxidation and reduction peaks in the DSV scans. The presence of a wide-range of hydroxylated benzoic acid isomers and other redox-active aromatic residues implies that native DOM possesses overlapping redox potentials analogous to their characteristic range of p Ka values.

  20. Sulfonamide derivative targeting carbonic anhydrase IX as a nuclear imaging probe for colorectal cancer detection in vivo

    PubMed Central

    Guan, Siao-Syun; Cheng, Chun-Chia; Ho, Ai-Sheng; Wang, Chia-Chi; Luo, Tsai-Yueh; Liao, Tse-Zung; Chang, Jungshan; Wu, Cheng-Tien; Liu, Shing-Hwa

    2015-01-01

    Hypoxic microenvironment is a common situation in solid tumors. Carbonic anhydrase IX (CA9) is one of the reliable cellular biomarkers of hypoxia. The role of CA9 in colorectal cancer (CRC) remains to be clarified. CA9 inhibitor such as sulfonamides is known to block CA9 activation and reduce tumor growth consequently. Here, we aimed to investigate the CA9 expression in serum and tumor from different stages of CRC patients and utilize sulfonamide derivative with indium-111 labeling as a probe for CRC nuclear imaging detection in vivo. The serum CA9 was correlated with the tumor CA9 levels in different stages of CRC patients. Hypoxia increased cell viability and CA9 expression in colorectal cancer HCT-15 cells. Sulfonamide derivative 5-(2-aminoethyl)thiophene-2-sulfonamide (ATS) could bind with CA9 in vitro under hypoxia. Moreover, tumor tissues in HCT-15-induced xenograft mice possessed higher hypoxic fluorescence signal as compared with other organs. We also found that the radioisotope signal of indium-111 labeled ATS, which was utilized for CRC detection in HCT-15-induced xenograft mice, was markedly enhanced in tumors as compared with non-ATS control. Taken together, these findings suggest that CA9 is a potential hypoxic CRC biomarker and measurement of serum CA9 can be as a potential tool for diagnosing CA9 expressions in CRC clinical practice. The radioisotope-labeled sulfonamide derivative (ATS) may be useful to apply in CRC patients for nuclear medicine imaging. PMID:26447758

  1. Generic affinities among crocodilians as revealed by DNA fingerprinting with a Bkm-derived probe.

    PubMed Central

    Aggarwal, R K; Majumdar, K C; Lang, J W; Singh, L

    1994-01-01

    Genetic fingerprint profiles have been successfully used for establishing biological relationships, in linkage analysis, and in studies of population structure but have not so far been used for ascertaining phylogenetic relationships among related groups of species and genera. This is largely because these profiles are thought to evolve too rapidly to be informative over large time intervals. However, we show here that among the Crocodilia, whose phylogeny is a debated issue, these profiles can provide phylogenetically useful information. By using the probe Bkm-2(8), DNA fingerprints with distinct bands distributed in the size range 0.5-23.0 kb were obtained for individuals of 18 species belonging to seven of the eight genera of crocodilians. These genetic profiles showed individual-, species-, and restriction enzyme-specific patterns. In addition, striking differences were observed in the copy number of Bkm-related sequences in genomes of different crocodilian species. The qualitative data from DNA fingerprint profiles, and quantitative data on copy number variation in Bkm-related sequences, suggest that these genera belong to two distinct groups, one of which includes Alligator, Paleosuchus, and Caiman; the other includes Crocodylus, Osteolaemus, Tomistoma, and Gavialis. A close relationship between Tomistoma and Gavialis is also suggested by these results. Images PMID:7937999

  2. Hierarchy of Electronic Properties of Chemically Derived and Pristine Graphene Probed by Microwave Imaging

    SciTech Connect

    Kundhikanjana, W.

    2010-06-02

    Local electrical imaging using microwave impedance microscope is performed on graphene in different modalities, yielding a rich hierarchy of the local conductivity. The low-conductivity graphite oxide and its derivatives show significant electronic inhomogeneity. For the conductive chemical graphene, the residual defects lead to a systematic reduction of the microwave signals. In contrast, the signals on pristine graphene agree well with a lumped-element circuit model. The local impedance information can also be used to verify the electrical contact between overlapped graphene pieces.

  3. Synthesis of 4'-aminopantetheine and derivatives to probe aminoglycoside N-6'-acetyltransferase.

    PubMed

    Yan, Xuxu; Akinnusi, T Olukayode; Larsen, Aaron T; Auclair, Karine

    2011-03-01

    A convenient synthesis of 4'-aminopantetheine from commercial D-pantethine is reported. The amino group was introduced by reductive amination in order to avoid substitution at a sterically congested position. Derivatives of 4'-aminopantetheine were also prepared to evaluate the effect of O-to-N substitution on inhibitors of the resistance-causing enzyme aminoglycoside N-6'-acetyltransferase. The biological results combined with docking studies indicate that in spite of its reported unusual flexibility and ability to adopt different folds, this enzyme is highly specific for AcCoA. PMID:21225062

  4. Synthesis of 4′-aminopantetheine and derivatives to probe aminoglycoside N-6′-acetyltransferase

    PubMed Central

    Yan, Xuxu; Akinnusi, T. Olukayode; Larsen, Aaron T.; Auclair, Karine

    2011-01-01

    Summary A convenient synthesis of 4′-aminopantetheine from commercial D-pantethine is reported. The amino group was introduced by reductive amination in order to avoid substitution at a sterically congested position. Derivatives of 4′-aminopantetheine were also prepared to evaluate the effect of O-to-N substitution on inhibitors of the resistance-causing enzyme aminoglycoside N-6′-acetyltransferase. The biological results combined with docking studies indicate that in spite of its reported unusual flexibility and ability to adopt different folds, this enzyme is highly specific for AcCoA. PMID:21225062

  5. Solid Phase Synthesis and Application of Labeled Peptide Derivatives: Probes of Receptor-Opioid Peptide Interactions

    PubMed Central

    Aldrich, Jane V.; Kumar, Vivek; Dattachowdhury, Bhaswati; Peck, Angela M.; Wang, Xin; Murray, Thomas F.

    2009-01-01

    Solid phase synthetic methodology has been developed in our laboratory to incorporate an affinity label (a reactive functionality such as isothiocyanate or bromoacetamide) into peptides (Leelasvatanakij, L. and Aldrich, J. V. (2000) J. Peptide Res. 56, 80), and we have used this synthetic strategy to prepare affinity label derivatives of a variety of opioid peptides. To date side reactions have been detected only in two cases, both involving intramolecular cyclization. We have identified several peptide-based affinity labels for δ opioid receptors that exhibit wash-resistant inhibition of binding to these receptors and are valuable pharmacological tools to study opioid receptors. Even in cases where the peptide derivatives do not bind covalently to their target receptor, studying their binding has revealed subtle differences in receptor interactions with particular opioid peptide residues, especially Phe residues in the N-terminal “message” sequences. Solid phase synthetic methodology for the incorporation of other labels (e.g. biotin) into the C-terminus of peptides has also been developed in our laboratory (Kumar, V. and Aldrich, J. V. (2003) Org. Lett. 5, 613). These two synthetic approaches have been combined to prepare peptides containing multiple labels that can be used as tools to study peptide ligand-receptor interactions. These solid phase synthetic methodologies are versatile strategies that are applicable to the preparation of labeled peptides for a variety of targets in addition to opioid receptors. PMID:19956785

  6. Fluorescent carbon nanoparticles derived from natural materials of mango fruit for bio-imaging probes

    NASA Astrophysics Data System (ADS)

    Jeong, Chan Jin; Roy, Arup Kumer; Kim, Sung Han; Lee, Jung-Eun; Jeong, Ji Hoon; Insik; Park, Sung Young

    2014-11-01

    Water soluble fluorescent carbon nanoparticles (FCP) obtained from a single natural source, mango fruit, were developed as unique materials for non-toxic bio-imaging with different colors and particle sizes. The prepared FCPs showed blue (FCP-B), green (FCP-G) and yellow (FCP-Y) fluorescence, derived by the controlled carbonization method. The FCPs demonstrated hydrodynamic diameters of 5-15 nm, holding great promise for clinical applications. The biocompatible FCPs demonstrated great potential in biological fields through the results of in vitro imaging and in vivo biodistribution. Using intravenously administered FCPs with different colored particles, we precisely defined the clearance and biodistribution, showing rapid and efficient urinary excretion for safe elimination from the body. These findings therefore suggest the promising possibility of using natural sources for producing fluorescent materials.Water soluble fluorescent carbon nanoparticles (FCP) obtained from a single natural source, mango fruit, were developed as unique materials for non-toxic bio-imaging with different colors and particle sizes. The prepared FCPs showed blue (FCP-B), green (FCP-G) and yellow (FCP-Y) fluorescence, derived by the controlled carbonization method. The FCPs demonstrated hydrodynamic diameters of 5-15 nm, holding great promise for clinical applications. The biocompatible FCPs demonstrated great potential in biological fields through the results of in vitro imaging and in vivo biodistribution. Using intravenously administered FCPs with different colored particles, we precisely defined the clearance and biodistribution, showing rapid and efficient urinary excretion for safe elimination from the body. These findings therefore suggest the promising possibility of using natural sources for producing fluorescent materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04805a

  7. Li dynamics in carbon-rich polymer-derived SiCN ceramics probed by NMR

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Ho; Reinold, Lukas; Graczyk-Zajac, Magdalena; Riedel, Ralf; Hammerath, Franziska; Buechner, Bernd; Grafe, Hajo

    2014-03-01

    We report 7Li, 29Si, and 13C NMR studies of two different carbon-rich SiCN ceramics SiCN-1 and SiCN-3 derived from the preceramic polymers polyphenylvinylsilylcarbodiimide and polyphenylvinylsilazane, respectively. From the spectral analysis of the three nuclei at room temperature, we find that only the 13C spectrum is strongly influenced by Li insertion/extraction, suggesting that carbon phases are the major electrochemically active sites for Li storage. Temperature and Larmor frequency (ωL) dependences of the 7Li linewidth and spin-lattice relaxation rates T1-1 are described by an activated law with the activation energy EA of 0.31 eV and the correlation time τ0 in the high temperature limit of 1.3 ps. The 3 / 2 power law dependence of T1-1 on ωL which deviates from the standard Bloembergen, Purcell, and Pound (BPP) model implies that the Li motion on the μs timescale is governed by continuum diffusion mechanism rather than jump diffusion. On the other hand, the rotating frame relaxation rate T1ρ-1 results suggest that the slow motion of Li on the ms timescale may be affected by complex diffusion and/or non-diffusion processes.

  8. Chemical Synthesis of a Glycopeptide Derived from Skp1 for Probing Protein Specific Glycosylation.

    PubMed

    Chinoy, Zoeisha S; Schafer, Christopher M; West, Christopher M; Boons, Geert-Jan

    2015-08-10

    Skp1 is a cytoplasmic and nuclear protein, best known as an adaptor of the SCF family of E3-ubiquitin ligases that label proteins for their degradation. Skp1 in Dictyostelium is posttranslationally modified on a specific hydroxyproline (Hyp) residue by a pentasaccharide, which consists of a Fucα1,2-Galβ-1,3-GlcNAcα core, decorated with two α-linked Gal residues. A glycopeptide derived form Skp1 was prepared to characterize the α-galactosyltransferase (AgtA) that mediates the addition of the α-Gal moieties, and to develop antibodies suitable for tracking the trisaccharide isoform of Skp1 in cells. A strategy was developed for the synthesis of the core trisaccharide-Hyp based on the use of 2-naphthylmethyl (Nap) ethers as permanent protecting groups to allow late stage installation of the Hyp moiety. Tuning of glycosyl donor and acceptor reactivities was critical for achieving high yields and anomeric selectivities of glycosylations. The trisaccharide-Hyp moiety was employed for the preparation of the glycopeptide using microwave-assisted solid phase peptide synthesis. Enzyme kinetic studies revealed that trisaccharide-Hyp and trisaccharide-peptide are poorly recognized by AgtA, indicating the importance of context provided by the native Skp1 protein for engagement with the active site. The trisaccharide-peptide was a potent immunogen capable of generating a rabbit antiserum that was highly selective toward the trisaccharide isoform of full-length Skp1. PMID:26179871

  9. High-throughput drug profiling with voltage- and calcium-sensitive fluorescent probes in human iPSC-derived cardiomyocytes.

    PubMed

    Bedut, Stephane; Seminatore-Nole, Christine; Lamamy, Veronique; Caignard, Sarah; Boutin, Jean A; Nosjean, Olivier; Stephan, Jean-Philippe; Coge, Francis

    2016-07-01

    Cardiomyocytes derived from human embryonic stem cells (hESCs) or induced pluripotent stem cells (hiPSCs) are increasingly used for in vitro assays and represent an interesting opportunity to increase the data throughput for drug development. In this work, we describe a 96-well recording of synchronous electrical activities from spontaneously beating hiPSC-derived cardiomyocyte monolayers. The signal was obtained with a fast-imaging plate reader using a submillisecond-responding membrane potential recording assay, FluoVolt, based on a newly derived voltage-sensitive fluorescent dye. In our conditions, the toxicity of the dye was moderate and compatible with episodic recordings for >3 h. We show that the waveforms recorded from a whole well or from a single cell-sized zone are equivalent and make available critical functional parameters that are usually accessible only with gold standard techniques like intracellular microelectrode recording. This approach allows accurate identification of the electrophysiological effects of reference drugs on the different phases of the cardiac action potential as follows: fast depolarization (lidocaine), early repolarization (nifedipine, Bay K8644, and veratridine), late repolarization (dofetilide), and diastolic slow depolarization (ivabradine). Furthermore, the data generated with the FluoVolt dye can be pertinently complemented with a calcium-sensitive dye for deeper characterization of the pharmacological responses. In a semiautomated plate reader, the two probes used simultaneously in 96-well plates provide an easy and powerful multiparametric assay to rapidly and precisely evaluate the cardiotropic profile of compounds for drug discovery or cardiac safety. PMID:27199128

  10. Probing the fate of soil-derived core and intact polar GDGTs in aquatic environments

    NASA Astrophysics Data System (ADS)

    Peterse, F.; Moy, C. M.; Eglinton, T. I.

    2014-07-01

    We have performed incubation experiments in order to examine the fate of branched glycerol dialkyl glycerol tetraether (brGDGT) membrane lipids upon entering an aquatic environment and to asses the suitability of brGDGTs as tracers for fluvial land-sea transport of soil organic carbon. We incubated a soil from the Rakaia River catchment on the South Island of New Zealand using Rakaia River water and ocean water collected near the river mouth as inocula for a period of up to 152 days. The concentrations of brGDGTs derived from intact polar ("living"; IPL) lipids and core ("fossil"; CL) lipids remained stable over the course of the experiment, suggesting an absence of significant brGDGT production or degradation. Moreover, the lack of change in brGDGT distribution during the experiment implies that the initial soil signature remains unaltered during transport through the aquatic environment, at least over the time frame of the experiment. In contrast, the total pool of isoprenoid GDGTs (isoGDGTs), currently attributed to soil Thaumachaeota, increased substantially (27-72%) in all incubation setups by the end of the experiment. As a consequence, a decrease in Branched and Isoprenoid Tetraether (BIT) index values - a proxy for the relative input of fluvially discharged soil material into a marine system - became evident after an incubation period of 30 days, with a maximum final decrease of 0.88 to 0.74 in the experiment with river water. The relative distribution within the isoGDGT pool shows changes with time, suggesting different membrane adaptation rates to the aquatic environment, or a shift in source organism(s). While the stability of soil brGDGTs in aquatic environments reinforces their potential as tracers for land-sea transport of soil organic carbon and their use in paleoclimate reconstructions, the distributional differences between GDGTs in river water and nearby soil indicate that further research is needed to pinpoint the sources of GDGTs that are

  11. Probing the Structure-Relaxivity Relationship of Bishydrated Gd(DOTAla) Derivatives

    PubMed Central

    Boros, Eszter; Caravan., Peter

    2016-01-01

    Two structural isomers of the heptadentate chelator DO3Ala were synthesized, with carboxymethyl groups at either the 1,4- or 1,7-positions of the cyclen macrocycle. To interrogate the relaxivity under different rotatational dynamics regimes, the pendant primary amine was coupled to ibuprofen to enable binding to serum albumin. These chelators 6a and 6b form bis(aqua) ternary complexes with Gd(III) or Tb(III) as estimated from relaxivity measurements or luminescence lifetime measurements in water. The relaxivity of [Gd(6a)(H2O)2] and [Gd(6b)(H2O)2] was measured in the presence and absence of coordinating anions prevalent in vivo such as phosphate, lactate, and bicarbonate and compared with data attained for the q=2 complex [Gd(DO3A)(H2O)2]. We found that relaxivity was reduced through formation of ternary complexes with lactate and bicarbonate, albeit to a lesser degree then the relaxivity of Gd(DO3A). In presence of 100 fold excess phosphate, relaxivity was slightly increased and typical for q=2 complexes of this size (8.3 mM-1s -1 and 9.5 mM-1s -1 respectively at 37 °C, 60 MHz). Relaxivity for the complexes in presence of HSA corresponded well to relaxivity obtained for complexes with reduced access for inner-sphere water (13.5 and 12.7 mM-1s-1 at 37 °C, 60 MHz). Mean water residency time at 37 °C was determined using temperature dependent 17O-T2 measurements at 11.7T and calculated to be 310τM = 23 ± 1 ns for both structural isomers. Kinetic inertness under forcing conditions (pH 3, competing DTPA ligand) was found to be comparable to [Gd(DO3A)(H2O)]. Over all, we found that replacement of one of the acetate arms of DO3A with an amino-propionate arm does not significantly alter the relaxometric and kinetic inertness properties of the corresponding Gd complexes, however it does provide access to easily functionalizable q=2 derivatives. PMID:25693053

  12. Naphthalimide derived fluorescent probes with turn-on response for Au(3+) and the application for biological visualization.

    PubMed

    Li, Yan; Qiu, Yanxin; Zhang, Jianjian; Zhu, Xinyue; Zhu, Bin; Liu, Xiaoyan; Zhang, Xiaoyu; Zhang, Haixia

    2016-09-15

    The 4-N,N-dimethyl-1,8-naphthalimide based fluorescent probes have been explored for selective detection of Au(3+). Both probes show a pronounced fluorescence enhancement response to Au(3+). Hydroxy is introduced as ligand of Au(3+) for Probe 1 and the newly designed Probe 2 contains an alkyne moiety to recognize Au(3+) through an irreversible C≡C bond hydrolysis reaction. Probe 1 exhibits higher performance such as faster response, lower detection limit of 0.050μM and the better responsive effect in 99.5% water system compared with most of probes published. The Probe 2 displays high stability to pH, suitable water solubility, wider linear range (0-100μM) to Au(3+), and live-cells imaging with low cytotoxicity. PMID:27135938

  13. A highly specific and sensitive DNA probe derived from chromosomal DNA of Helicobacter pylori is useful for typing H. pylori isolates.

    PubMed Central

    Li, C; Ferguson, D A; Ha, T; Chi, D S; Thomas, E

    1993-01-01

    HindIII-digested DNA fragments derived from an EcoRI-digested 6.5-kb fragment of chromosomal DNA prepared from Helicobacter pylori ATCC 43629 (type strain) were cloned into the pUC19 vector. A 0.86-kb insert was identified as a potential chromosomal DNA probe. The specificity of the probe was evaluated by testing 166 non-H. pylori bacterial strains representing 38 genera and 91 species which included aerobic, anaerobic, and microaerophilic flora of the upper and lower gastrointestinal tracts. None of the 166 non-H. pylori strains hybridized with this probe (100% specificity), and the sensitivity of this probe was also 100% when H. pylori isolates from 72 patients with gastritis and with the homologous ATCC type strain were tested by dot blot hybridization. The capability of this probe for differentiating between strains of H. pylori was evaluated by Southern blot hybridization of HaeIII-digested chromosomal DNA from 68 clinical isolates and the homologous ATCC type strain of H. pylori. Fifty-one unique hybridization patterns were seen among the 69 strains tested, demonstrating considerable genotypic variation among H. pylori clinical isolates. We propose that this probe would be of significant value for conducting epidemiologic studies. Images PMID:8370744

  14. [Detection of bcr/abl fusion gene and its derivative chromosome 9 deletions in CML by using home-made bcr/abl extra-signal probe].

    PubMed

    Lai, Yue-Yun; Feng, Lin; Wang, Zheng; Lü, Shan; Dang, Hui; Shi, Yan; He, Qi; Huang, Xiao-Jun

    2010-02-01

    This study was aimed to verify the efficacy of home-made LSI bcr/abl ES probe for detection of bcr/abl fusion gene and derivative chromosome 9 deletions in chronic myeloid leukemia (CML). Fluorescence in situ hybridization (FISH) was carried out with dual color bcr/abl extra signal (ES) probe in 97 cases of CML based on morphology and cytogenetic karyotype and 129 cases of non-hematological malignancies/non-myeloproliferative diseases with normal cytogenetic karyotype. For the patients with signals of 1R1G1F indicating der(9) deletions, FISH were done using ASS DNA probe. The results showed that 91 cases with standard t(9;22) and 6 cases with variant translocation of t(9;22) were detected by conventional G banding technique. All of the 97 patients displayed bcr/abl fusion gene by ES-FISH, including 16 cases with signal patterns of 1R1G1F showing der(9) deletions. Among the 16 cases with der(9) deletions, 13 cases were detected to have deletions of ASS gene. Meanwhile, none of the 129 cases of negative control showed bcr/abl fusion gene by ES-FISH. It is concluded that home-made LSI bcr/abl ES probe is effective to identify the bcr/abl fusion gene and der(9) deletions in CML, and the ES-FISH results are consistent with conventional cytogenetic karyotype. PMID:20137147

  15. Improved prediction of RNA secondary structure by integrating the free energy model with restraints derived from experimental probing data

    PubMed Central

    Wu, Yang; Shi, Binbin; Ding, Xinqiang; Liu, Tong; Hu, Xihao; Yip, Kevin Y.; Yang, Zheng Rong; Mathews, David H.; Lu, Zhi John

    2015-01-01

    Recently, several experimental techniques have emerged for probing RNA structures based on high-throughput sequencing. However, most secondary structure prediction tools that incorporate probing data are designed and optimized for particular types of experiments. For example, RNAstructure-Fold is optimized for SHAPE data, while SeqFold is optimized for PARS data. Here, we report a new RNA secondary structure prediction method, restrained MaxExpect (RME), which can incorporate multiple types of experimental probing data and is based on a free energy model and an MEA (maximizing expected accuracy) algorithm. We first demonstrated that RME substantially improved secondary structure prediction with perfect restraints (base pair information of known structures). Next, we collected structure-probing data from diverse experiments (e.g. SHAPE, PARS and DMS-seq) and transformed them into a unified set of pairing probabilities with a posterior probabilistic model. By using the probability scores as restraints in RME, we compared its secondary structure prediction performance with two other well-known tools, RNAstructure-Fold (based on a free energy minimization algorithm) and SeqFold (based on a sampling algorithm). For SHAPE data, RME and RNAstructure-Fold performed better than SeqFold, because they markedly altered the energy model with the experimental restraints. For high-throughput data (e.g. PARS and DMS-seq) with lower probing efficiency, the secondary structure prediction performances of the tested tools were comparable, with performance improvements for only a portion of the tested RNAs. However, when the effects of tertiary structure and protein interactions were removed, RME showed the highest prediction accuracy in the DMS-accessible regions by incorporating in vivo DMS-seq data. PMID:26170232

  16. Fenton Reaction-Generated Advanced Oxidation Protein Products Induces Inflammation in Human Embryonic Kidney Cells.

    PubMed

    Bochi, Guilherme Vargas; Torbitz, Vanessa Dorneles; Santos, Roberto Christ Vianna; Cubillos-Rojas, Monica; López, José Luis Rosa; Siebel, Anna Maria; Gomes, Patrícia; de Oliveira, Jarbas Rodrigues; Moresco, Rafael Noal

    2016-08-01

    Fenton reaction is a new mechanism able to generate advanced oxidation protein products (AOPPs) by exposing the human serum albumin to the Fenton system. Here, we characterized the effects of Fenton reaction-generated advanced oxidation protein products (AOPP-FR) on the gene transcription of the nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), and interleukin-6 (IL-6) in human embryonic kidney cells (HEK 293). To investigate the effects of AOPP-FR and AOPP-HOCl on transcription of inflammatory genes, the NF-κB, COX-2, and IL-6 luciferase promoter activities were analyzed. AOPP-FR and AOPP-HOCl were able to induce the activation of the gene transcription of NF-κB, COX-2, and IL-6 in HEK 293 cells. However, the effects of AOPP-FR were significantly higher than the effects of AOPP-HOCl in relation to COX-2 and IL-6. AOPP-FR induces the activation of the gene transcription of NF-κB, COX-2, and IL-6 and may represent a novel pathogenic mediator of inflammation in kidney. PMID:27145783

  17. Effective Cellular Morphology Analysis for Differentiation Processes by a Fluorescent 1,3a,6a-Triazapentalene Derivative Probe in Live Cells

    PubMed Central

    Kamada, Rui; Tano, Fumi; Kudoh, Fuki; Kimura, Nozomi; Chuman, Yoshiro; Osawa, Ayumi; Namba, Kosuke; Tanino, Keiji; Sakaguchi, Kazuyasu

    2016-01-01

    Nuclear and cytoplasmic morphological changes provide important information about cell differentiation processes, cell functions, and signal responses. There is a strong desire to develop a rapid and simple method for visualizing cytoplasmic and nuclear morphology. Here, we developed a novel and rapid method for probing cellular morphological changes of live cell differentiation process by a fluorescent probe, TAP-4PH, a 1,3a,6a-triazapentalene derivative. TAP-4PH showed high fluorescence in cytoplasmic area, and visualized cytoplasmic and nuclear morphological changes of live cells during differentiation. We demonstrated that TAP-4PH visualized dendritic axon and spine formation in neuronal differentiation, and nuclear structural changes during neutrophilic differentiation. We also showed that the utility of TAP-4PH for visualization of cytoplasmic and nuclear morphologies of various type of live cells. Our visualizing method has no toxicity and no influence on the cellular differentiation and function. The cell morphology can be rapidly observed after addition of TAP-4PH and can continue to be observed in the presence of TAP-4PH in cell culture medium. Moreover, TAP-4PH can be easily removed after observation by washing for subsequent biological assay. Taken together, these results demonstrate that our visualization method is a powerful tool to probe differentiation processes before subsequent biological assay in live cells. PMID:27490470

  18. Surface potential measurement of fullerene derivative/copper phthalocyanine on indium tin oxide electrode by Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Satoh, Nobuo; Yamaki, Michio; Noda, Kei; Katori, Shigetaka; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2015-08-01

    We have investigated the organic semiconductor thin films deposited by vacuum evaporation deposition using intersecting metal shadow masks on indium tin oxide (ITO) electrode/glass substrates to simulate organic solar cells by simultaneous observation with dynamic force microscopy (DFM)/Kelvin-probe force microscopy (KFM). The energy band diagram was depicted by simultaneously obtaining topographic and surface potential images of the same area using DFM/KFM. We considered the charge behavior at the interface having band bending in the phenyl-C61-butyric acid methyl ester (PCBM) film.

  19. Photoactive ligands probing the sweet taste receptor. Design and synthesis of highly potent diazirinyl D-phenylalanine derivatives.

    PubMed

    Masuda, Katsuyoshi; Koizumi, Ayako; Misaka, Takumi; Hatanaka, Yasumaru; Abe, Keiko; Tanaka, Takaharu; Ishiguro, Masaji; Hashimoto, Makoto

    2010-02-01

    Some D-amino acids such as d-tryptophan and D-phenylalanine are well known as naturally-occurring sweeteners. Photoreactive D-phenylalanine derivatives containing trifluoromethyldiazirinyl moiety at 3- or 4-position of phenylalanine, were designed as sweeteners for functional analysis with photoaffinity labeling. The trifluoromethyldiazirinyl D-phenylalanine derivatives were prepared effectively with chemo-enzymatic methods using L-amino acid oxidase and were found to have potent activity toward the human sweet taste receptor. PMID:20031409

  20. Deriving the characteristics of warm electrons (100-500 eV) in the magnetosphere of Saturn with the Cassini Langmuir probe

    NASA Astrophysics Data System (ADS)

    Garnier, P.; Holmberg, M. K. G.; Wahlund, J.-E.; Lewis, G. R.; Schippers, P.; Coates, A.; Gurnett, D. A.; Waite, J. H.; Dandouras, I.

    2014-12-01

    Though Langmuir probes (LP) are designed to investigate cold plasma regions (e.g. ionospheres), a recent analysis revealed a strong sensitivity of the Cassini LP measurements to hundreds of eV electrons. These warm electrons impact the surface of the probe and generate a significant current of secondary electrons, that impacts both the DC level and the slope of the current-voltage curve of the LP (for negative potentials) through energetic contributions that may be modeled with a reasonable precision. We show here how to derive information about the incident warm electrons from the analysis of these energetic contributions, in the regions where the cold plasma component is small with an average temperature in the range ~ [ 100 - 500 ] eV. First, modeling the energetic contributions (based on the incident electron flux given by a single anode of the CAPS spectrometer) allows us to provide information about the pitch angle anisotropies of the incident hundreds of eV electrons. The modeling reveals indeed sometimes a large variability of the estimated maximum secondary electron yield (which is a constant for a surface material) needed to reproduce the observations. Such dispersions give evidence for strong pitch angle anisotropies of the incident electrons, and using a functional form of the pitch angle distribution even allows us to derive the real peak angle of the distribution. Second, rough estimates of the total electron temperature may be derived in the regions where the warm electrons are dominant and thus strongly influence the LP observations, i.e. when the average electron temperature is in the range ~ [ 100 - 500 ] eV. These regions may be identified from the LP observations through large positive values of the current-voltage slope at negative potentials. The estimated temperature may then be used to derive the electron density in the same region, with estimated densities between ~ 0.1 and a few particles /cm3 (cc). The derived densities are in better

  1. Fluorinated Amino-Derivatives of the Sesquiterpene Lactone, Parthenolide, as 19F NMR Probes in Deuterium-Free Environments

    PubMed Central

    Woods, James R.; Mo, Huaping; Bieberich, Andrew A.; Alavanja, Tanja; Colby, David A.

    2011-01-01

    The design, synthesis, and biological activity of fluorinated amino-derivatives of the sesquiterpene lactone, parthenolide, are described. A fluorinated aminoparthenolide analogue with biological activity similar to the parent natural product was discovered, and its X-ray structure was obtained. This lead compound was then studied using 19F NMR in the presence and absence of glutathione to obtain additional mechanism of action data, and it was found that the aminoparthenolide eliminates amine faster in the presence of glutathione than in the absence of glutathione. The exact changes in concentrations of fluorinated compound and amine were quantified by a concentration-reference method using 19F NMR; a major benefit of applying this strategy is that no deuterated solvents or internal standards are required to obtain accurate concentrations. These mechanistic data with glutathione may contribute to the conversion of the amino-derivative to parthenolide, the active pharmacological agent, in glutathione-rich cancer cells. PMID:22029741

  2. Statistical properties of plasmaspheric hiss derived from Van Allen Probes data and their effects on radiation belt electron dynamics

    NASA Astrophysics Data System (ADS)

    Li, W.; Ma, Q.; Thorne, R. M.; Bortnik, J.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Nishimura, Y.

    2015-05-01

    Plasmaspheric hiss is known to play an important role in controlling the overall structure and dynamics of radiation belt electrons inside the plasmasphere. Using newly available Van Allen Probes wave data, which provide excellent coverage in the entire inner magnetosphere, we evaluate the global distribution of the hiss wave frequency spectrum and wave intensity for different levels of substorm activity. Our statistical results show that observed hiss peak frequencies are generally lower than the commonly adopted value (~550 Hz), which was in frequent use, and that the hiss wave power frequently extends below 100 Hz, particularly at larger L shells (> ~3) on the dayside during enhanced levels of substorm activity. We also compare electron pitch angle scattering rates caused by hiss using the new statistical frequency spectrum and the previously adopted Gaussian spectrum and find that the differences are up to a factor of ~5 and are dependent on energy and L shell. Moreover, the new statistical hiss wave frequency spectrum including wave power below 100 Hz leads to increased pitch angle scattering rates by a factor of ~1.5 for electrons above ~100 keV at L~5, although their effect is negligible at L ≤ 3. Consequently, we suggest that the new realistic hiss wave frequency spectrum should be incorporated into future modeling of radiation belt electron dynamics.

  3. Analysis of photoaffinity label derivatives to probe thyroid hormone receptor in human fibroblasts, GH1 cells, and soluble receptor preparations

    SciTech Connect

    Horowitz, Z.D.; Sahnoun, H.; Pascual, A.; Casanova, J.; Samuels, H.H.

    1988-05-15

    The regulation of growth hormone gene expression by thyroid hormone in cultured GH1 cells is mediated by a chromatin-associated receptor. We have previously described a photoaffinity label derivative of 3,5,3'-triiodo-L-thyronine (L-T3) in which the alanine side chain was modified to form N-2-diazo-3,3,3-trifluoropropionyl-L-T3 (L-(125I)T3-PAL). On exposure to 254 nm UV light, L-(125I)T3-PAL generates a carbene which covalently modifies two thyroid hormone receptor forms in intact GH1 cells; an abundant 47,000 Mr species and a less abundant 57,000 Mr form. We have now synthesized similar photoaffinity label derivatives of 3,5,3',5'-tetraiodo-L-thyronine (L-T4) and 3,3',5'-triiodo-L-thyronine (L-rT3). Both compounds identify the same receptor forms in intact cells and in nuclear extracts in vitro as L-(125I)T3-PAL. Labeling by L-(125I)rT3-PAL was low and consistent with the very low occupancy of receptor by L-rT3. Underivatized L-(125I)T3 and L-(125I)T4 labeled the same receptor forms at 254 nm but at a markedly lower efficiency than their PAL derivatives. In contrast, N-bromoacetyl-L-(125I)T3, a chemical affinity labeling agent, did not derivatize either receptor form in vitro. The relative efficiency of coupling to receptor at 254 nm was L-(125I)T4-PAL greater than L-(125I)T3-PAL greater than L-(125I)T4 greater than L-(125I)T3. Although L-(125I)T4-PAL has a lower affinity for receptor than L-(125I)T3-PAL, its coupling efficiency was 5-10-fold higher. This suggests that the alanine side chain of L-(125I)T4-PAL is positioned in the ligand binding region near a residue which is efficiently modified by photoactivation. With L-(125I)T4-PAL we were able to identify three different molecular weight receptor species in human fibroblast nuclei.

  4. Glycolaldehyde as a Probe Molecule for Biomass Derivatives: Reaction of C-OH and C=O Functional Groups on Monolayer Ni Surfaces

    SciTech Connect

    Yu, Weiting; Barteau, Mark A.; Chen, Jingguang G.

    2011-12-21

    Controlling the activity and selectivity of converting biomass derivatives to syngas (H₂ and CO) is critical for the utilization of biomass feedstocks as renewable sources for chemicals and fuels. One key chemistry in the conversion is the selective bond scission of the C—OH and C=O functionalities, which are present in many biomass derivatives. Because of the high molecular weight and low vapor pressure, it is relatively difficult to perform fundamental surface science studies of C6 sugars, such as glucose and fructose, using ultrahigh vacuum techniques. Glycolaldehyde (HOCH₂CH=O) is the smallest molecule that contains both the C—OH and C=O functional groups, as well as the same C/O ratio as C6 sugars, and thus is selected as a probe molecule in the current study to determine how the presence of the C=O bond affects the reaction mechanism. Using a combination of density functional theory calculations and experimental measurements, our results indicate that the reaction pathway of glycolaldehyde to produce syngas can be enhanced by supporting monolayer Ni on a Pt substrate, which shows higher activity than either of the parent metals. Furthermore, the Pt substrate can be replaced by tungsten monocarbide to achieve similar activity and selectivity, indicating the possibility of using Ni/WC to replace Ni/Pt as active and selective catalysts with higher stability and lower cost.

  5. Glycolaldehyde as a probe molecule for biomass derivatives: reaction of C-OH and C═O functional groups on monolayer Ni surfaces.

    PubMed

    Yu, Weiting; Barteau, Mark A; Chen, Jingguang G

    2011-12-21

    Controlling the activity and selectivity of converting biomass derivatives to syngas (H(2) and CO) is critical for the utilization of biomass feedstocks as renewable sources for chemicals and fuels. One key chemistry in the conversion is the selective bond scission of the C-OH and C═O functionalities, which are present in many biomass derivatives. Because of the high molecular weight and low vapor pressure, it is relatively difficult to perform fundamental surface science studies of C6 sugars, such as glucose and fructose, using ultrahigh vacuum techniques. Glycolaldehyde (HOCH(2)CH═O) is the smallest molecule that contains both the C-OH and C═O functional groups, as well as the same C/O ratio as C6 sugars, and thus is selected as a probe molecule in the current study to determine how the presence of the C═O bond affects the reaction mechanism. Using a combination of density functional theory calculations and experimental measurements, our results indicate that the reaction pathway of glycolaldehyde to produce syngas can be enhanced by supporting monolayer Ni on a Pt substrate, which shows higher activity than either of the parent metals. Furthermore, the Pt substrate can be replaced by tungsten monocarbide to achieve similar activity and selectivity, indicating the possibility of using Ni/WC to replace Ni/Pt as active and selective catalysts with higher stability and lower cost. PMID:22066750

  6. Comparative mapping of DNA probes derived from the V{sub k} immunoglobulin gene regions on human and great ape chromosomes by fluorescence in situ hybridization

    SciTech Connect

    Arnold, N.; Wienberg, J.; Ermert, K.

    1995-03-01

    Fluorescence in situ hybridization (FISH) of cosmid clones of human V{sub K} gene regions to human and primate chromosomes contributed to the dating of chromosome reorganizations in evolution. A clone from the K locus at 2p11-p12 (cos 106) hybridized to the assumed homologous chromosome bands in the chimpanzees Pan troglodytes (PTR) and P. paniscus (PPA), the Gorilla gorilla (GGO), and the orangutan Pongo Pygmaeus (PPY). Human and both chimpanzees differed from gorilla and orangutan by the mapping of cos 170, a clone derived from chromosome 2cen-q11.2; the transposition of this orphon to the other side of the centromere can, therefore, be dated after the human/chimpanzee and gorilla divergence. Hybridization to homologous bands was also found with a cosmid clone containing a V{sub K}I orphon located on chromosome 1 (cos 115, main signal at 1q31-q32), although the probe is not fully unique. Also, a clone derived from the orphon V{sub K} region on chromosome 22q11 (cos 121) hybridized to the homologous bands in the great apes. This indicates that the orphons on human chromosomes 1 and 22 had been translocated early in primate evolution. 18 refs., 2 figs.

  7. A Novel Sandwich Electrochemical Immunosensor Based on the DNA-Derived Magnetic Nanochain Probes for Alpha-Fetoprotein

    PubMed Central

    Gan, Ning; Jia, Liyong; Zheng, Lei

    2011-01-01

    One novel electrochemical immunosensor was constructed by immobilizing capture antibody of alpha-fetoprotein (AFP Ab1) on a nafion/nanogold-particle modified glassy carbon electrode. With a sandwich immunoassay, one DNA-derived magnetic nanoprobe, simplified as DNA/(ZMPs—HRP-AFP Ab2)n, was employed for the detection of AFP. The fabricated procedure of the proposed biosensor was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The performance and factors influencing the performance of the biosensor were also evaluated. Under optimal conditions, the developed biosensor exhibited a well-defined electrochemical behavior toward the reduction of AFP ranging from 0.01 to 200 ng/mL with a detection limit of 4 pg/mL (S/N = 3). The biosensor was applied to the determination of AFP in serum with satisfactory results. It is important to note that the sandwich nanochainmodified electro-immunosensor provided an alternative substrate for the immobilization of other tumor markers. PMID:22013390

  8. Di- and triarylmethylium ions as probes for the ambident reactivities of carbanions derived from 5-benzylated Meldrum's acid.

    PubMed

    Chen, Xi; Tan, Yue; Berionni, Guillaume; Ofial, Armin R; Mayr, Herbert

    2014-08-25

    The kinetics of the reactions of carbocations with carbanions 1 derived from 5-benzyl-substituted Meldrum's acids 1-H (Meldrum's acid = 2,2-dimethyl-1,3-dioxane-4,6-dione) were investigated by UV/Vis spectroscopic methods. Benzhydryl cations Ar2CH(+) added exclusively to C-5 of the Meldrum's acid moiety. As the second-order rate constants (kC) of these reactions in DMSO followed the linear free-energy relationship lg k = sN (N+E), the nucleophile-specific reactivity parameters N and sN for the carbanions 1 could be determined. In contrast, trityl cations Ar3C(+) reacted differently. While tritylium ions of low electrophilicity (E<-2) reacted with 1 through rate-determining β-hydride abstraction, more Lewis acidic tritylium ions initially reacted at the carbonyl oxygen of 1 to form trityl enolates, which subsequently reionized and eventually yielded triarylmethanes and 5-benzylidene Meldrum's acids by hydride transfer. PMID:25099696

  9. Probing the effects of Lorentz-symmetry violating Chern-Simons and Ricci-Cotton terms in higher derivative gravity

    SciTech Connect

    Pereira-Dias, B.; Hernaski, C. A.; Helayeel-Neto, J. A.

    2011-04-15

    The combined effects of the Lorentz-symmetry violating Chern-Simons and Ricci-Cotton actions are investigated for the Einstein-Hilbert gravity in the second-order formalism modified by higher derivative terms, and their consequences on the spectrum of excitations are analyzed. We follow the lines of previous works and build up an orthonormal basis of projector-like operators for the degrees of freedom, rather than for the spin modes of the fields. With this new basis, the attainment of the propagators is remarkably simplified and the identification of the physical and unphysical modes becomes more immediate. Our conclusion is that the only tachyon- and ghost-free model is the Einstein-Hilbert action added up by the Chern-Simons term with a timelike vector of the type v{sup {mu}=}({mu},0-vector). Spectral consistency imposes that the Ricci-Cotton term must be switched off. We then infer that gravity with Lorentz-symmetry violation imposes a drastically different constraint on the background if compared to ordinary gauge theories whenever conditions for the suppression of tachyons and ghosts are imposed.

  10. Probing metal ion complexation with salicylic acid and its derivatives with excited state proton transfer and luminescence anisotropy

    SciTech Connect

    Wang, Z.; Friedrich, D.M.; Ainsworth, C.C.

    1996-10-01

    Salicylic acid and its derivatives in which the phenolic proton is preserved show a characteristic dual fluorescence: one band in the UV, due to a {open_quotes}normal{close_quotes} excited state emission, and the other in the visible range, is assigned to excited state intramolecular proton transfer (ESIPT). The transition energy, quantum yield and fluorescence lifetime as well as fluorescence anisotropy are sensitive to the solvent environment, temperature and properties of the substituents (complexation) at the phenolic and carboxylic oxygens. The ESIPT band disappears in molecules in which the intramolecular hydrogen bond between phenolic hydrogen and the carbonyl oxygen is prohibited. In this work, the complexation of Na(I), Ca(II), Al(III) and La(III) with salicylic acid, 3-hydroxybenzoic acid, methylsalicylate and anisic acid in both aqueous and non-aqueous solvents has been studied by absorption and steady state luminescence spectroscopy, picosecond to nanosecond luminescence lifetimes and luminescence anisotropy measurements in a range of solvent and in ethanol at 77 K. Speciation in these complex systems, binding characteristics between the metal ion and the ligand, and ligand-centered energetics are discussed in terms of the spectroscopic properties, luminescence and anisotropy decay kinetics.

  11. Lithium dynamics in carbon-rich polymer-derived SiCN ceramics probed by nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Ho; Reinold, Lukas Mirko; Graczyk-Zajac, Magdalena; Riedel, Ralf; Hammerath, Franziska; Büchner, Bernd; Grafe, Hans-Joachim

    2014-05-01

    We report 7Li, 29Si, and 13C NMR studies of two different carbon-rich SiCN ceramics SiCN-1 and SiCN-3 derived from the preceramic polymers polyphenylvinylsilylcarbodiimide and polyphenylvinylsilazane, respectively. From the spectral analysis of the three nuclei, we find that only the 13C spectrum is strongly influenced by Li insertion/extraction, suggesting that carbon phases are the major electrochemically active sites for Li storage. Temperature (T) and Larmor frequency (ωL) dependences of the 7Li linewidth and spin-lattice relaxation rates T1-1 are described by an activated law with the activation energy EA of 0.31 eV and the correlation time τ0 in the high temperature limit of 1.3 ps. The 3 / 2 power law dependence of T1-1 on ωL which deviates from the standard Bloembergen, Purcell, and Pound (BPP) model implies that the Li motion on the μs timescale is governed by continuum diffusion mechanism rather than jump diffusion. On the other hand, the rotating frame relaxation rate T1ρ-1 results suggest that the slow motion of Li on the ms timescale may be affected by complex diffusion and/or non-diffusion processes.

  12. Probing a 3,4'-bis-guanidinium diaryl derivative as an allosteric inhibitor of the Ras pathway.

    PubMed

    Diez-Cecilia, Elena; Carson, Robert; Kelly, Brendan; van Schaeybroeck, Sandra; Murray, James T; Rozas, Isabel

    2015-10-01

    Mutations in the Ras-pathway occur in 40-45% of colorectal cancer patients and these are refractory to treatment with anti-EGFR-targeted therapies. With this in mind, we have studied novel guanidinium-based compounds with demonstrated ability to inhibit protein kinases. We have performed docking studies with several proteins involved in the Ras-pathway and evaluated 3,4'-bis-guanidinium derivatives as inhibitors of B-Raf. Compound 3, the most potent in this series, demonstrated strong cytotoxicity in (WT)B-Raf colorectal cancer cells and also cells with (V600E)B-Raf mutations. Cell death was induced by apoptosis, detected by cleavage of PARP. Compound 3 also potently inhibited ERK1/2 signalling, inhibited EGFR activation, as well as Src, STAT3 and AKT phosphorylation. Mechanistically, compound 3 did not inhibit ATP binding to B-Raf, but direct assay of B-Raf activity was inhibited in vitro. Summarizing, we have identified a novel B-Raf type-III inhibitor that exhibits potent cellular cytotoxicity. PMID:26318998

  13. Synthesis and evaluation of a radioiodinated 4,6-diaryl-3-cyano-2-pyridinone derivative as a survivin targeting SPECT probe for tumor imaging.

    PubMed

    Fuchigami, Takeshi; Mizoguchi, Tatsuya; Ishikawa, Natsumi; Haratake, Mamoru; Yoshida, Sakura; Magata, Yasuhiro; Nakayama, Morio

    2016-02-01

    Survivin is overexpressed in most of the cancerous tissues but not in terminally differentiated normal tissues, making it an attractive target for diagnosis and therapy of various types of cancers. In this study, we aimed to develop 4,6-diaryl-3-cyano-2-pyridinone (DCP) derivatives, as novel cancer imaging probes that target survivin. Chloro and iodo analogs of DCP (CDCP and IDCP, respectively) were successfully synthesized by using a previously unreported carbon monoxide-free procedure. IDCP exhibited a slightly higher binding affinity for recombinant human survivin (Kd=34 nM) than that of CDCP (Kd=44 nM). Fluorescence staining indicated that both CDCP and IDCP showed high signals in MDA-MB-231 cells with high levels of survivin expression. Significantly low fluorescent signals were observed in MCF-10A cells, which showed low levels of survivin expression. [(125)I]IDCP was synthesized for the application of IDCP to single photon emission computed tomography (SPECT) imaging. Quantitative in vitro binding of [(125)I]IDCP in cell cultures showed results consistent to those observed after fluorescent staining. In vivo biodistribution studies in tumor-bearing mice demonstrated that the tumor uptake of [(125)I]IDCP increased gradually with time and was 0.65% injected dose per gram (% ID/g) at 180 min. The maximum tumor/blood and tumor/muscle ratio at 60 min were 0.87 and 2.27, respectively, indicating inadequate [(125)I]IDCP accumulation in tumors necessary for in vivo imaging. Although further structural modifications are necessary to improve pharmacokinetic properties of IDCP, this study demonstrates the feasibility of using the DCP backbone as a scaffold for the development of survivin-targeting tumor imaging probes. PMID:26733475

  14. Methylation at the PW71 locus on chromosome 15 in DNA derived from CVS and from amniocytes; implications for the use of the PW71 probe in prenatal diagnosis of the Prader-Willi and Angleman syndromes

    SciTech Connect

    Telleria, P.; Yu, C.C.; Brown, S.

    1994-09-01

    The probe PW71 spans a HpaII site in the Prader-Willi/Angleman Syndrome critical region on chromosome 15. A single Southern blot with this probe can be used to detect deletion and uniparental disomy. We attempted to determine the methylation state of the PW71 locus in DNA derived from prenatal sources. Southern blots of HindIII and HindIII/HpaII double digests of DNA from cultured amniocytes and CVS specimens were prepared and probed with the PW71 probe. The results from 6 cultured CVS specimens indicate that several HPAII sites recognized by the PW71 probe are not methylated in trophoblast. Four amniotic fluid cultures gave results which were not different from lymphocyte-derived DNA; however, in several cases, amniotic fluid cultures resulted in Southern blots identical to those from CVS. Since we did not have verified prenatal cases of chromosome 15 uniparental disomy, we were unable to determine whether the parent-of-origin specific methylation present in lymphocyte DNA is also present in amniocyte DNA. We conclude that prenatal determination of chromosome 15 uniparental disomy with this probe will be unreliable.

  15. Probe assembly

    SciTech Connect

    Avera, C.J.

    1981-01-06

    A hand-held probe assembly, suitable for monitoring a radioactive fibrinogen tracer, is disclosed comprising a substantially cylindrically shaped probe handle having an open end. The probe handle is adapted to be interconnected with electrical circuitry for monitoring radioactivity that is sensed or detected by the probe assembly. Mounted within the probe handle is a probe body assembly that includes a cylindrically shaped probe body inserted through the open end of the probe handle. The probe body includes a photomultiplier tube that is electrically connected with a male connector positioned at the rearward end of the probe body. Mounted at the opposite end of the probe body is a probe head which supports an optical coupler therewithin. The probe head is interconnected with a probe cap which supports a detecting crystal. The probe body assembly, which consists of the probe body, the probe head, and the probe cap is supported within the probe handle by means of a pair of compressible o-rings which permit the probe assembly to be freely rotatable, preferably through 360*, within the probe handle and removable therefrom without requiring any disassembly.

  16. Structure-Function Analysis of Mammalian CYP2B Enzymes Using 7-Substituted Coumarin Derivatives as Probes: Utility of Crystal Structures and Molecular Modeling in Understanding Xenobiotic Metabolism.

    PubMed

    Shah, Manish B; Liu, Jingbao; Huo, Lu; Zhang, Qinghai; Dearing, M Denise; Wilderman, P Ross; Szklarz, Grazyna D; Stout, C David; Halpert, James R

    2016-04-01

    Crystal structures of CYP2B35 and CYP2B37 from the desert woodrat were solved in complex with 4-(4-chlorophenyl)imidazole (4-CPI). The closed conformation of CYP2B35 contained two molecules of 4-CPI within the active site, whereas the CYP2B37 structure demonstrated an open conformation with three 4-CPI molecules, one within the active site and the other two in the substrate access channel. To probe structure-function relationships of CYP2B35, CYP2B37, and the related CYP2B36, we tested the O-dealkylation of three series of related substrates-namely, 7-alkoxycoumarins, 7-alkoxy-4-(trifluoromethyl)coumarins, and 7-alkoxy-4-methylcoumarins-with a C1-C7 side chain. CYP2B35 showed the highest catalytic efficiency (kcat/KM) with 7-heptoxycoumarin as a substrate, followed by 7-hexoxycoumarin. In contrast, CYP2B37 showed the highest catalytic efficiency with 7-ethoxy-4-(trifluoromethyl)coumarin (7-EFC), followed by 7-methoxy-4-(trifluoromethyl)coumarin (7-MFC). CYP2B35 had no dealkylation activity with 7-MFC or 7-EFC. Furthermore, the new CYP2B-4-CPI-bound structures were used as templates for docking the 7-substituted coumarin derivatives, which revealed orientations consistent with the functional studies. In addition, the observation of multiple -Cl and -NH-π interactions of 4-CPI with the aromatic side chains in the CYP2B35 and CYP2B37 structures provides insight into the influence of such functional groups on CYP2B ligand binding affinity and specificity. To conclude, structural, computational, and functional analysis revealed striking differences between the active sites of CYP2B35 and CYP2B37 that will aid in the elucidation of new structure-activity relationships. PMID:26826176

  17. Small molecular probes for G-protein-coupled C5a receptors: conformationally constrained antagonists derived from the C terminus of the human plasma protein C5a.

    PubMed

    Wong, A K; Finch, A M; Pierens, G K; Craik, D J; Taylor, S M; Fairlie, D P

    1998-08-27

    Activation of the human complement system of plasma proteins in response to infection or injury produces a 4-helix bundle glycoprotein (74 amino acids) known as C5a. C5a binds to G-protein-coupled receptors on cell surfaces triggering receptor-ligand internalization, signal transduction, and powerful inflammatory responses. Since excessive levels of C5a are associated with autoimmune and chronic inflammatory disorders, inhibitors of receptor activation may have therapeutic potential. We now report solution structures and receptor-binding and antagonist activities for some of the first small molecule antagonists of C5a derived from its hexapeptide C terminus. The antagonist NMe-Phe-Lys-Pro-D-Cha-Trp-D-Arg-CO2H (1) surprisingly shows an unusually well-defined solution structure as determined by 1H NMR spectroscopy. This is one of the smallest acyclic peptides found to possess a defined solution conformation, which can be explained by the constraining role of intramolecular hydrogen bonding. NOE and coupling constant data, slow deuterium exchange, and a low dependence on temperature for the chemical shift of the D-Cha-NH strongly indicate an inverse gamma turn stabilized by a D-Cha-NH. OC-Lys hydrogen bond. Smaller conformational populations are associated with a hydrogen bond between Trp-NH.OC-Lys, defining a type II beta turn distorted by the inverse gamma turn incorporated within it. An excellent correlation between receptor-affinity and antagonist activity is indicated for a limited set of synthetic peptides. Conversion of the C-terminal carboxylate of 1 to an amide decreases antagonist potency 5-fold, but potency is increased up to 10-fold over 1 if the amide bond is made between the C-terminal carboxylate and a Lys/Orn side chain to form a cyclic analogue. The solution structure of cycle 6 also shows gamma and beta turns; however, the latter occurs in a different position, and there are clear conformational changes in 6 vs 1 that result in enhanced activity

  18. Spectrophotometric probe

    DOEpatents

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  19. Spectrophotometric probe

    DOEpatents

    Prather, William S.; O'Rourke, Patrick E.

    1994-01-01

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  20. The Relationship Between Soil Moisture Observed By in Situ Probes and Satellite Derived Surface Wetness in Northern Kazakhstan (Calibrating the Satellite on In Situ Measurements for Near Real Time Monitoring of Spring Wheat Yields)

    NASA Astrophysics Data System (ADS)

    Basist, A. N.; Kauazov, A.; Dolgih, S.; Thomas, N.

    2014-12-01

    Soil moisture is the critical factor effecting the production of wheat across northern Kazazhstan, and food security and inter-national stability in central Asia is strongly related to the wheat yield in Kazakhstan. In an effort to understand and monitor how soil moisture effects yields, we used probe data to detect these fluctuations, and relate this variability to satellite derived wetness values. The soil moisture observations provided by probes measurements serve as calibration points to the satellite measurements. The regression equations derived from these relationships, identify the covariance between the quantities. Many of the relationships between the probe data and wetness index were meaningful, and can be used to effectively identify how upper level moisture fluctuates in Northern Kazakhstan during the important period of wheat production. The slope and intercepts of the equations determine the ratio between the two measurements, and the intercept identifies when the soil is effectively dry, relative to the satellite observation. Generally, there were two unique relationships, one for the summer season (June, July and August) and one for May, when there was nominal vegetation covering the surface. Findings from this study were highly significant and can be applied in near real time, in order to monitor the distribution of upper level soil moisture across the northern oblasts of Kazakhstan, where the production of wheat is critical to food security in central Asia.

  1. In Situ Proteome Profiling and Bioimaging Applications of Small-Molecule Affinity-Based Probes Derived From DOT1L Inhibitors.

    PubMed

    Zhu, Biwei; Zhang, Hailong; Pan, Sijun; Wang, Chenyu; Ge, Jingyan; Lee, Jun-Seok; Yao, Shao Q

    2016-06-01

    DOT1L is the sole protein methyltransferase that methylates histone H3 on lysine 79 (H3K79), and is a promising drug target against cancers. Small-molecule inhibitors of DOT1L such as FED1 are potential anti-cancer agents and useful tools to investigate the biological roles of DOT1L in human diseases. FED1 showed excellent in vitro inhibitory activity against DOT1L, but its cellular effect was relatively poor. In this study, we designed and synthesized photo-reactive and "clickable" affinity-based probes (AfBPs), P1 and P2, which were cell-permeable and structural mimics of FED1. The binding and inhibitory effects of these two probes against DOT1L protein were extensively investigated in vitro and in live mammalian cells (in situ). The cellular uptake and sub-cellular localization properties of the probes were subsequently studied in live-cell imaging experiments, and our results revealed that, whereas both P1 and P2 readily entered mammalian cells, most of them were not able to reach the cell nucleus where functional DOT1L resides. This offers a plausible explanation for the poor cellular activity of FED1. Finally with P1/P2, large-scale cell-based proteome profiling, followed by quantitative LC-MS/MS, was carried out to identify potential cellular off-targets of FED1. Amongst the more than 100 candidate off-targets identified, NOP2 (a putative ribosomal RNA methyltransferase) was further confirmed to be likely a genuine off-target of FED1 by preliminary validation experiments including pull-down/Western blotting (PD/WB) and cellular thermal shift assay (CETSA). PMID:27115831

  2. Optical probe

    DOEpatents

    Hencken, Kenneth; Flower, William L.

    1999-01-01

    A compact optical probe is disclosed particularly useful for analysis of emissions in industrial environments. The instant invention provides a geometry for optically-based measurements that allows all optical components (source, detector, rely optics, etc.) to be located in proximity to one another. The geometry of the probe disclosed herein provides a means for making optical measurements in environments where it is difficult and/or expensive to gain access to the vicinity of a flow stream to be measured. Significantly, the lens geometry of the optical probe allows the analysis location within a flow stream being monitored to be moved while maintaining optical alignment of all components even when the optical probe is focused on a plurality of different analysis points within the flow stream.

  3. Probing the role of tryptophan-derived secondary metabolism in defense responses against Bipolaris oryzae infection in rice leaves by a suicide substrate of tryptophan decarboxylase.

    PubMed

    Ishihara, Atsushi; Nakao, Takahito; Mashimo, Yuko; Murai, Masatoshi; Ichimaru, Naoya; Tanaka, Chihiro; Nakajima, Hiromitsu; Wakasa, Kyo; Miyagawa, Hisashi

    2011-01-01

    Tryptophan-derived secondary metabolites, including serotonin and its hydroxycinnamic acid amides, markedly accumulate in rice leaves in response to pathogen attack. These compounds have been implicated in the physical defense system against pathogen invasion by being deposited in cell walls. Serotonin is biosynthesized from tryptophan via tryptamine, and tryptophan decarboxylase (TDC) catalyzes the first committed reaction. In this study, (S)-α-(fluoromethyl)tryptophan (S-αFMT) was utilized to investigate the effects of the inhibition of TDC on the defense responses of rice leaves. S-αFMT, enantiospecifically synthesized from L-tryptophan, effectively inhibited TDC activity extracted from rice leaves infected by Bipolaris oryzae. The inhibition rate increased dependently on the incubation time, indicating that S-αFMT served as a suicide substrate. Treatment of rice seedlings with S-αFMT suppressed accumulation of serotonin, tryptamine, and hydroxycinnamic acid amides of serotonin in a dose-dependent manner in B. oryzae-inoculated leaves. The lesions formed on seedlings treated with S-αFMT lacked deposition of brown materials, and those leaves were severely damaged in comparison with leaves without S-αFMT treatment. Administrating tryptamine to S-αFMT-treated leaves restored accumulation of tryptophan-derived secondary metabolites as well as deposition of brown material. In addition, tryptamine administration reduced damage caused by fungal infection. Accordingly, the accumulation of tryptophan-derived secondary metabolites was suggested to be part of the effective defense mechanism of rice. PMID:21112065

  4. Probing the binding of two 19-nortestosterone derivatives to human serum albumin: insights into the interactions of steroid hormone drugs with functional biomacromolecule.

    PubMed

    He, Jiawei; Wang, Qing; Ma, Xiangling; Yang, Hongqin; Li, Shanshan; Xu, Kailin; Li, Hui

    2016-09-01

    Norethindrone acetate (NETA) is a fatty acid ester of norethindrone (NET) that can convert to its more active parent compound NET when orally administered. To study the interactions of NETA and NET with human serum albumin (HSA), we applied fluorescence spectroscopy, circular dichroism (CD), and molecular docking. The effects of metal ions on the HSA-NETA/NET system were also explored. Fluorescence data showed that the quenching mechanism of HSA by NETA and NET was consistent with a static model and that the binding constant of NETA was higher than that of NET. Thermodynamic parameters indicated that hydrogen bonds and van der Waals forces were the main forces maintaining the stability of the HSA-NETA/NET complex. Molecular modeling studies revealed that NETA and NET were bound within subdomain IIA of HSA, in accordance with the site probe results. Synchronous fluorescence spectroscopy, CD, and three-dimensional fluorescence spectroscopy further confirmed that the binding of NETA/NET to HSA changed the secondary structure of the protein. All other metal ions, except for Ca(2+) , decreased the K value of the HSA-NETA/NET system with enhancement of the maximum effectiveness of NETA/NET. Three commercially available steroid hormone drugs influenced the binding ability of NETA on HSA to different extents. This study provides novel insights into the interactions between HSA and NETA/NET, as well as a solid foundation for future research on drug pharmacokinetics and pharmacodynamics. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26940023

  5. Synthesis and preliminary characterization of radioiodinated benzofuran-3-yl-(indol-3-yl)maleimide derivatives as potential SPECT imaging probes for the detection of glycogen synthase kinase-3β (GSK-3β) in the brain.

    PubMed

    Ono, Masahiro; Kitada, Ayane; Watanabe, Hiroyuki; Miyazaki, Anna; Kimura, Hiroyuki; Saji, Hideo

    2016-06-30

    We report on the synthesis and preliminary characterization of two radioiodinated benzofuran-3-yl-(indol-3-yl)maleimides, 3-(benzofuran-3-yl)-4-(5-[(125) I]iodo-1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione ([(125) I]5), and 3-(5-[(125) I]iodo-1-methyl-1H-indol-3-yl)-4-(6-methoxybenzofuran-3-yl)-1H-pyrrole-2,5-dione ([(125) I]6), as the first potential SPECT imaging probes targeting glycogen synthase kinase-3β (GSK-3β). In this study, we used (125) I as a surrogate of (123) I because of its ease of use. The radioiodinated ligands were prepared from the corresponding tributyltin precursors through an iododestannylation reaction using hydrogen peroxide as an oxidant with a radiochemical yield of 10-30%. In vitro binding experiments suggested that both compounds show high affinity for GSK-3β at a level similar to a known GSK-3β inhibitor. Biodistribution studies with normal mice revealed that the radioiodinated compounds display sufficient uptake into (1.8%ID/g at 10 min postinjection) and clearance from the brain (1.0%ID/g at 60 min postinjection). These preliminary results suggest that the further optimization of radioiodinated benzofuran-3-yl-(indol-3-yl)maleimide derivatives may facilitate the development of clinically useful SPECT imaging probes for the in vivo detection of GSK-3β. PMID:27126914

  6. Synthesis and characterization of a copper(II) complex of a ONN donor Schiff base ligand derived from pyridoxal and 2-(pyrid-2-yl)ethylamine - A novel pyridoxal based fluorescent probe

    NASA Astrophysics Data System (ADS)

    Mandal, Senjuti; Modak, Ritwik; Goswami, Sanchita

    2013-04-01

    The title complex, Cu(LH)Cl2 is the first copper(II) complex with a Schiff base derived from pyridoxal and 2-(pyrid-2-yl)ethylamine. The central metal lies in a distorted square pyramidal environment with basal plane occupied by the tridentate ONN donor ligand and a Cl atom. The apical position is occupied by another Cl atom. The existence of two different kinds of H-bonds stabilize the network that propagates as parallel layers along crystallographic b axis. The compound exhibits an irreversible CuII/CuI couple in DMF. As pyridoxal containing moieties are fluorescent in nature, its potential as a fluorescent probe is cultivated. Copper(II) ion effectively quenches the fluorescence of HL and the association constant for Cu(II) was estimated to be 10.8 × 104 M-1 in methanol by the linear Benesi-Hildebrand equation.

  7. LAT1 targeted delivery of methionine based imaging probe derived from M(III) metal ions for early diagnosis of proliferating tumours using molecular imaging modalities.

    PubMed

    Hazari, Puja Panwar; Prakash, Surbhi; Meena, Virendra K; Jaswal, Ambika; Khurana, Harleen; Mishra, Surabhi Kirti; Bhonsle, Hemanth Kumar; Singh, Lokendra; Mishra, Anil K

    2015-01-01

    We investigated the potential of DTPA-bis(Methionine), a target specific amino acid based probe for detection of L-type amino acid transporters (LAT1) known to over express in proliferating tumours using multimodality imaging. The ligand, DTPA-bis(Met) was readily converted to lanthanide complexes and was found capable of targeting cancer cells using multimodality imaging. DTPA-bis(Met) complexes were synthesized and characterized by mass spectroscopy. MR longitudinal relaxivity, r₁ = 4.067 ± 0.31 mM⁻¹s⁻¹ and transverse relaxivity, r₂ = 8.61 ± 0.07 mM⁻¹s⁻¹ of Gd(III)-DTPA-bis(Met) were observed at pH 7.4 at 7 T. Bright, localized fluorescence of Eu(III)-DTPA-bis(Met) was observed with standard microscopy and displacement studies indicated ligand functionality. K(D) value determined for Eu(III)-DTPA-bis(Met) on U-87 MG cells was found to be 17.3 pM and showed appreciable fluorescence within the cells. Radio HPLC showed a radiochemical purity more than 95% (specific activity = 400-500 MBq/μmol, labelling efficiency 78 %) for ⁶⁸Ga(III)-DTPA-bis(Met). Pre-treatment of xenografted U-87 MG athymic mice with ⁶⁸Ga(III)-DTPA-bis(Met) following unlabelled L-methionine administration reduced tumour uptake by 10-folds in Micro PET. These data support the specific binding of ⁶⁸Ga(III)-DTPA-bis(Met) to the LAT1 transporter. To summarize, this agent possesses high stability in biological environment and exhibits effective interaction with its LAT1 transporters giving high accumulation in tumour area, excellent tumour/non-tumour ratio and low non-specific retention in vivo. PMID:25329672

  8. Construction of a promoter probe vector autonomously maintained in Aspergillus and characterization of promoter regions derived from A. niger and A. oryzae genomes.

    PubMed

    Ozeki, K; Kanda, A; Hamachi, M; Nunokawa, Y

    1996-03-01

    We used a plasmid carrying a sequence for autonomous maintenance in Aspergillus (AMA1) and the E. coli uidA gene as a reporter gene to search the A. oryzae and A. niger genomes for DNA fragments having strong promoter activity. Beta-glucuronidase (GUS)-producing A. oryzae transformants containing the No. 8AN derived from A. niger, or the No. 9AO derived from A. oryzae, were constitutive for the expression of the uidA gene when cultivated in the presence of a variety of carbon and nitrogen sources. When the GUS-producing transformants were grown in liquid culture, the No. 8AN showed an increase of approximately 3-fold in GUS activity compared to the amyB (alpha-amylase encoding gene) promoter. There was also a corresponding increase in the amount of GUS gene-specific mRNA. When these transformants were grown as rice-koji, the No. 8AN showed an increase of approximately 6-fold compared to the amyB promoter, and the amount of GUS protein produced also increased. These strong promoter regions might be applicable to the production of other heterologous proteins in Aspergillus species. PMID:8901095

  9. Conformational change of Sos-derived proline-rich peptide upon binding Grb2 N-terminal SH3 domain probed by NMR

    NASA Astrophysics Data System (ADS)

    Ogura, Kenji; Okamura, Hideyasu

    2013-10-01

    Growth factor receptor-bound protein 2 (Grb2) is a small adapter protein composed of a single SH2 domain flanked by two SH3 domains. The N-terminal SH3 (nSH3) domain of Grb2 binds a proline-rich region present in the guanine nucleotide releasing factor, son of sevenless (Sos). Using NMR relaxation dispersion and chemical shift analysis methods, we investigated the conformational change of the Sos-derived proline-rich peptide during the transition between the free and Grb2 nSH3-bound states. The chemical shift analysis revealed that the peptide does not present a fully random conformation but has a relatively rigid structure. The relaxation dispersion analysis detected conformational exchange of several residues of the peptide upon binding to Grb2 nSH3.

  10. Conformational change of Sos-derived proline-rich peptide upon binding Grb2 N-terminal SH3 domain probed by NMR.

    PubMed

    Ogura, Kenji; Okamura, Hideyasu

    2013-01-01

    Growth factor receptor-bound protein 2 (Grb2) is a small adapter protein composed of a single SH2 domain flanked by two SH3 domains. The N-terminal SH3 (nSH3) domain of Grb2 binds a proline-rich region present in the guanine nucleotide releasing factor, son of sevenless (Sos). Using NMR relaxation dispersion and chemical shift analysis methods, we investigated the conformational change of the Sos-derived proline-rich peptide during the transition between the free and Grb2 nSH3-bound states. The chemical shift analysis revealed that the peptide does not present a fully random conformation but has a relatively rigid structure. The relaxation dispersion analysis detected conformational exchange of several residues of the peptide upon binding to Grb2 nSH3. PMID:24105423

  11. Conductivity Probe

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Thermal and Electrical Conductivity Probe (TECP) for NASA's Phoenix Mars Lander took measurements in Martian soil and in the air.

    The needles on the end of the instrument were inserted into the Martian soil, allowing TECP to measure the propagation of both thermal and electrical energy. TECP also measured the humidity in the surrounding air.

    The needles on the probe are 15 millimeters (0.6 inch) long.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. Pollution Probe.

    ERIC Educational Resources Information Center

    Chant, Donald A.

    This book is written as a statement of concern about pollution by members of Pollution Probe, a citizens' anti-pollution group in Canada. Its purpose is to create public awareness and pressure for the eventual solution to pollution problems. The need for effective government policies to control the population explosion, conserve natural resources,…

  13. Probing the interaction forces of prostate cancer cells with collagen I and bone marrow derived stem cells on the single cell level.

    PubMed

    Sariisik, Ediz; Docheva, Denitsa; Padula, Daniela; Popov, Cvetan; Opfer, Jan; Schieker, Matthias; Clausen-Schaumann, Hauke; Benoit, Martin

    2013-01-01

    Adhesion of metastasizing prostate carcinoma cells was quantified for two carcinoma model cell lines LNCaP (lymph node-specific) and PC3 (bone marrow-specific). By time-lapse microscopy and force spectroscopy we found PC3 cells to preferentially adhere to bone marrow-derived mesenchymal stem cells (SCP1 cell line). Using atomic force microscopy (AFM) based force spectroscopy, the mechanical pattern of the adhesion to SCP1 cells was characterized for both prostate cancer cell lines and compared to a substrate consisting of pure collagen type I. PC3 cells dissipated more energy (27.6 aJ) during the forced de-adhesion AFM experiments and showed significantly more adhesive and stronger bonds compared to LNCaP cells (20.1 aJ). The characteristic signatures of the detachment force traces revealed that, in contrast to the LNCaP cells, PC3 cells seem to utilize their filopodia in addition to establish adhesive bonds. Taken together, our study clearly demonstrates that PC3 cells have a superior adhesive affinity to bone marrow mesenchymal stem cells, compared to LNCaP. Semi-quantitative PCR on both prostate carcinoma cell lines revealed the expression of two Col-I binding integrin receptors, α1β1 and α2β1 in PC3 cells, suggesting their possible involvement in the specific interaction to the substrates. Further understanding of the exact mechanisms behind this phenomenon might lead to optimized therapeutic applications targeting the metastatic behavior of certain prostate cancer cells towards bone tissue. PMID:23472100

  14. Probing the Interaction Forces of Prostate Cancer Cells with Collagen I and Bone Marrow Derived Stem Cells on the Single Cell Level

    PubMed Central

    Sariisik, Ediz; Docheva, Denitsa; Padula, Daniela; Popov, Cvetan; Opfer, Jan; Schieker, Matthias; Clausen-Schaumann, Hauke; Benoit, Martin

    2013-01-01

    Adhesion of metastasizing prostate carcinoma cells was quantified for two carcinoma model cell lines LNCaP (lymph node-specific) and PC3 (bone marrow-specific). By time-lapse microscopy and force spectroscopy we found PC3 cells to preferentially adhere to bone marrow-derived mesenchymal stem cells (SCP1 cell line). Using atomic force microscopy (AFM) based force spectroscopy, the mechanical pattern of the adhesion to SCP1 cells was characterized for both prostate cancer cell lines and compared to a substrate consisting of pure collagen type I. PC3 cells dissipated more energy (27.6 aJ) during the forced de-adhesion AFM experiments and showed significantly more adhesive and stronger bonds compared to LNCaP cells (20.1 aJ). The characteristic signatures of the detachment force traces revealed that, in contrast to the LNCaP cells, PC3 cells seem to utilize their filopodia in addition to establish adhesive bonds. Taken together, our study clearly demonstrates that PC3 cells have a superior adhesive affinity to bone marrow mesenchymal stem cells, compared to LNCaP. Semi-quantitative PCR on both prostate carcinoma cell lines revealed the expression of two Col-I binding integrin receptors, α1β1 and α2β1 in PC3 cells, suggesting their possible involvement in the specific interaction to the substrates. Further understanding of the exact mechanisms behind this phenomenon might lead to optimized therapeutic applications targeting the metastatic behavior of certain prostate cancer cells towards bone tissue. PMID:23472100

  15. Phosphorescent cellular probes and uptake indicators derived from cyclometalated iridium(III) bipyridine complexes appended with a glucose or galactose entity.

    PubMed

    Law, Wendell Ho-Tin; Lee, Lawrence Cho-Cheung; Louie, Man-Wai; Liu, Hua-Wei; Ang, Tim Wai-Hung; Lo, Kenneth Kam-Wing

    2013-11-18

    A series of phosphorescent cyclometalated iridium(III) polypyridine complexes appended with a β-D-glucose moiety [Ir(N^C)2(bpy-TEG-ONCH3-β-D-glc)](PF6) [bpy-TEG-ONCH3-β-D-glc = 4-(10-N-methyl-N-(β-D-glucopyranosyl)-amino-oxy-2,5,8-trioxa-dec-1-yl)-4'-methyl-2,2'-bipyridine; HN^C = 2-((1,1'-biphenyl)-4-yl)benzothiazole) (Hbt) (1a), 2-phenylpyridine (Hppy) (2a), 2-phenylquinoline (Hpq) (3a), 7,8-benzoquinoline (Hbzq) (4a)] has been synthesized and characterized. The D-galactose counterparts [Ir(N^C)2(bpy-TEG-ONCH3-β-D-gal)](PF6) [bpy-TEG-ONCH3-β-D-gal = 4-(10-N-methyl-N-(β-D-galactopyranosyl)-amino-oxy-2,5,8-trioxa-dec-1-yl)-4'-methyl-2,2'-bipyridine; HN^C = Hbt (1b), Hppy (2b), Hpq (3b), Hbzq (4b)] and a sugar-free bt complex [Ir(bt)2(bpy-TEG-OMe)](PF6) [bpy-TEG-OMe = 4-(2,5,8,11-tetraoxa-dodec-1-yl)-4'-methyl-2,2'-bipyridine] (1c) have also been prepared. Upon photoexcitation, all the complexes displayed intense and long-lived triplet metal-to-ligand charge-transfer ((3)MLCT) [dπ(Ir) → π*(N^N)] or triplet intraligand ((3)IL) (π → π*) (N^C and N^N) emission. The lipophilicity, the cellular uptake efficiency, and cytotoxicity of the complexes toward human cervix epithelioid carcinoma cells (HeLa) have been examined. Temperature dependence and chemical inhibition experiments indicated that the transport of bt-glucose complex 1a across the cell membrane occurred through an energy-requiring process such as endocytosis, in additional to a pathway that was mediated by glucose transporters (GLUTs). Importantly, the cellular uptake efficiency of this complex was found to be strongly dependent on hormonal stimulation and inhibition, rendering it a new phosphorescent metabolic indicator. Additionally, laser-scanning confocal microscopy revealed that the complex was localized in the mitochondria and highly resistant to photobleaching compared to a fluorescent organic glucose derivative 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxy-d-glucose (2-NBDG

  16. Molecular imaging probes derived from natural peptides.

    PubMed

    Charron, C L; Hickey, J L; Nsiama, T K; Cruickshank, D R; Turnbull, W L; Luyt, L G

    2016-06-01

    Covering: up to the end of 2015.Peptides are naturally occurring compounds that play an important role in all living systems and are responsible for a range of essential functions. Peptide receptors have been implicated in disease states such as oncology, metabolic disorders and cardiovascular disease. Therefore, natural peptides have been exploited as diagnostic and therapeutic agents due to the unique target specificity for their endogenous receptors. This review discusses a variety of natural peptides highlighting their discovery, endogenous receptors, as well as their derivatization to create molecular imaging agents, with an emphasis on the design of radiolabelled peptides. This review also highlights methods for discovering new and novel peptides when knowledge of specific targets and endogenous ligands are not available. PMID:26911790

  17. Einstein Inflationary Probe (EIP)

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary

    2004-01-01

    I will discuss plans to develop a concept for the Einstein Inflation Probe: a mission to detect gravity waves from inflation via the unique signature they impart to the cosmic microwave background (CMB) polarization. A sensitive CMB polarization satellite may be the only way to probe physics at the grand-unified theory (GUT) scale, exceeding by 12 orders of magnitude the energies studied at the Large Hadron Collider. A detection of gravity waves would represent a remarkable confirmation of the inflationary paradigm and set the energy scale at which inflation occurred when the universe was a fraction of a second old. Even a strong upper limit to the gravity wave amplitude would be significant, ruling out many common models of inflation, and pointing to inflation occurring at much lower energy, if at all. Measuring gravity waves via the CMB polarization will be challenging. We will undertake a comprehensive study to identify the critical scientific requirements for the mission and their derived instrumental performance requirements. At the core of the study will be an assessment of what is scientifically and experimentally optimal within the scope and purpose of the Einstein Inflation Probe.

  18. Probe: Problem-based Teacher Education.

    ERIC Educational Resources Information Center

    Kraft, Richard J.; Hass, John D.

    1988-01-01

    An inquiry-oriented teacher education program entitled PROBE (Problem-Based Teacher Education) is described. The fundamental concept of PROBE is based on John Dewey's philosophy that learning is rooted in experience and knowledge derives from a process of inquiry. (JD)

  19. Hydrodynamic ultrasonic probe

    DOEpatents

    Day, Robert A.; Conti, Armond E.

    1980-01-01

    An improved probe for in-service ultrasonic inspection of long lengths of a workpiece, such as small diameter tubing from the interior. The improved probe utilizes a conventional transducer or transducers configured to inspect the tubing for flaws and/or wall thickness variations. The probe utilizes a hydraulic technique, in place of the conventional mechanical guides or bushings, which allows the probe to move rectilinearly or rotationally while preventing cocking thereof in the tube and provides damping vibration of the probe. The probe thus has lower friction and higher inspection speed than presently known probes.

  20. Improved Process for Fabricating Carbon Nanotube Probes

    NASA Technical Reports Server (NTRS)

    Stevens, R.; Nguyen, C.; Cassell, A.; Delzeit, L.; Meyyappan, M.; Han, Jie

    2003-01-01

    An improved process has been developed for the efficient fabrication of carbon nanotube probes for use in atomic-force microscopes (AFMs) and nanomanipulators. Relative to prior nanotube tip production processes, this process offers advantages in alignment of the nanotube on the cantilever and stability of the nanotube's attachment. A procedure has also been developed at Ames that effectively sharpens the multiwalled nanotube, which improves the resolution of the multiwalled nanotube probes and, combined with the greater stability of multiwalled nanotube probes, increases the effective resolution of these probes, making them comparable in resolution to single-walled carbon nanotube probes. The robust attachment derived from this improved fabrication method and the natural strength and resiliency of the nanotube itself produces an AFM probe with an extremely long imaging lifetime. In a longevity test, a nanotube tip imaged a silicon nitride surface for 15 hours without measurable loss of resolution. In contrast, the resolution of conventional silicon probes noticeably begins to degrade within minutes. These carbon nanotube probes have many possible applications in the semiconductor industry, particularly as devices are approaching the nanometer scale and new atomic layer deposition techniques necessitate a higher resolution characterization technique. Previously at Ames, the use of nanotube probes has been demonstrated for imaging photoresist patterns with high aspect ratio. In addition, these tips have been used to analyze Mars simulant dust grains, extremophile protein crystals, and DNA structure.

  1. Comparative analyses of plasma probe diagnostics techniques

    SciTech Connect

    Godyak, V. A.; Alexandrovich, B. M.

    2015-12-21

    The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe characteristic. We concluded that the plasma parameters inferred from the classical Langmuir procedure can be subjected to significant inaccuracy due to the non-Maxwellian EEDF, uncertainty of locating the plasma potential, and the arbitrariness of the ion current approximation. The plasma densities derived from the ion part of the probe characteristics diverge by as much as an order of magnitude from the density calculated according to Langmuir procedure or calculated as corresponding integral of the measured EEDF. The electron temperature extracted from the ion part is always subjected to uncertainty. Such inaccuracy is attributed to modification of the EEDF for fast electrons due to inelastic electron collisions, and to deficiencies in the existing ion current theories; i.e., unrealistic assumptions about Maxwellian EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and discounting deformation of the one-dimensional structure of the region perturbed by the probe. We concluded that EEDF measurement is the single reliable probe diagnostics for the basic research and industrial applications of highly non-equilibrium gas discharge plasmas. Examples of EEDF measurements point up importance of examining the probe current derivatives in real time and reiterate significance of the equipment technical characteristics, such as high energy resolution and wide dynamic range.

  2. A modular approach to the synthesis of new reagents useful in the chemical synthesis of modified DNA probes: derivatives of 3-(tert-butyldimethylsiloxy)glutaric anhydride as versatile building blocks in the synthesis of new phosphoramidites and modified solid supports.

    PubMed

    Skrzypczynski, Zbigniew; Wayland, Sarah

    2004-01-01

    We present a flexible and cost-efficient synthetic strategy for the preparation of a new family of phosphoramidite and solid-support reagents that can introduce a broad range of modifications into DNA probes. The key intermediate material 3 is synthesized using the inexpensive and commercially available 3-(tert-butyldimethylsiloxy)glutaric anhydride 1 and can be used as common starting material for the preparation of new labeling reagents. PMID:15149187

  3. Galileo Probe Battery System

    NASA Technical Reports Server (NTRS)

    Dagarin, B. P.; Taenaka, R. K.; Stofel, E. J.

    1997-01-01

    The conclusions of the Galileo probe battery system are: the battery performance met mission requirements with margin; extensive ground-based and flight tests of batteries prior to probe separation from orbiter provided good prediction of actual entry performance at Jupiter; and the Li-SO2 battery was an important choice for the probe's main power.

  4. Heat pipe cooled probe

    NASA Technical Reports Server (NTRS)

    Camarda, C. J. (Inventor); Couch, L. M.

    1984-01-01

    The basic heat pipe principle is employed to provide a self-contained passively cooled probe that may be placed into a high temperature environment. The probe consists of an evaporator region of a heat pipe and a sensing instrument. Heat is absorbed as the working fluid evaporates in the probe. The vapor is transported to the vapor space of the condenser region. Heat is dissipated from the condenser region and fins causing condensation of the working fluid, which returns to the probe by gravity and the capillary action of the wick. Working fluid, wick and condenser configurations and structure materials can be selected to maintain the probe within an acceptable temperature range.

  5. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, Shimon; Chemla, Daniel S.; Ogletree, D. Frank; Botkin, David

    1995-01-01

    An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

  6. Traversing probe system

    DOEpatents

    Mashburn, Douglas N.; Stevens, Richard H.; Woodall, Harold C.

    1977-01-01

    This invention comprises a rotatable annular probe-positioner which carries at least one radially disposed sensing probe, such as a Pitot tube having a right-angled tip. The positioner can be coaxially and rotatably mounted within a compressor casing or the like and then actuated to orient the sensing probe as required to make measurements at selected stations in the annulus between the positioner and compressor casing. The positioner can be actuated to (a) selectively move the probe along its own axis, (b) adjust the yaw angle of the right-angled probe tip, and (c) revolve the probe about the axis common to the positioner and casing. A cam plate engages a cam-follower portion of the probe and normally rotates with the positioner. The positioner includes a first-motor-driven ring gear which effects slidable movement of the probe by rotating the positioner at a time when an external pneumatic cylinder is actuated to engage the cam plate and hold it stationary. When the pneumatic cylinder is not actuated, this ring gear can be driven to revolve the positioner and thus the probe to a desired circumferential location about the above-mentioned common axis. A second motor-driven ring gear included in the positioner can be driven to rotate the probe about its axis, thus adjusting the yaw angle of the probe tip. The positioner can be used in highly corrosive atmosphere, such as gaseous uranium hexafluoride.

  7. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

    1995-05-16

    An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

  8. Electrical resistivity probes

    DOEpatents

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  9. Functional probes for scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yukio; Akiyama, Kotone; Hamada, Masayuki; Eguchi, Toyoaki; An, Toshu; Fujikawa, Yasunori; Sakurai, Toshio

    2008-03-01

    Inspite of importance of the probe in scanning probe microscopy (SPM), little attention was paid for the SPM probes for most of the measurements of SPM. We developed sharp metal-tip cantilevers with a typical curvature radius better than 5nm using focused ion beam (FIB) suitable for Kelvin probe force microscopy (KFM)^1. We obtained atomically resolved KFM images with an energy resolution less than 3meV with the probe^2. We also developed a glass-coated tungsten tip for synchrotron radiation-scanning tunneling microscopy with the FIB method^3 and obtained elementally resolved images in a resolution less than 20nm^4. We are now developing a precise atomic force microscope (AFM) lithography^5 with the FIB-milled tip attached to a quartz tuning fork controlled by noncontact AFM. We will present recent results of our AFM lithography, such as an Au line with a width of 20˜30 nm and characters drawn with Au nano dots on a Si surface. 1 K. Akiyama et al., RSI 76, 033705 (2005) 2 T. Eguchi, K. Akiyama et al., PRL 93, 266102 (2004) 3 K. Akiyama et al., RSI 76, 083711 (2005) 4 T. Eguchi, K. Akiyama et al., APL 89, 243119 (2006) 5 K. Akiyama et al., JP 61, 22 (2007).

  10. Periodontal probing: a review.

    PubMed

    Al Shayeb, Kwthar Nassar A; Turner, Wendy; Gillam, David G

    2014-08-01

    Periodontal probes are the main instruments that are used to assess the status of the periodontium, either for screening purposes or to evaluate periodontal changes throughout the treatment process. With increased knowledge and understanding of periodontal disease, the probes have evolved from a unidimensional manual shape into a more sophisticated computerised instrument. This is due to the need to increase the accuracy and reproducibility of readings and to improve efficiency (time, effort, money). Each probe has characteristic features that makes it unique and, in some cases, specific and limited to use. The aim of this paper is to present a brief introduction to periodontal disease and the methodology of measuring it, followed by probing limitations. The paper will also discuss the methodology of reducing probing error, examiner calibration and probing reproducibility. PMID:25198634

  11. High temperature probe

    DOEpatents

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  12. Study of new systems concepts for a Titan atmospheric probe

    NASA Technical Reports Server (NTRS)

    Bernard, Doug; Citron, Todd; Drean, Robert; Lewis, Scott; Lo, Martin; Mccarthy, John; Soderblom, Robert; Steffy, Dave; Vargas, Tina; Wolff, Marty

    1986-01-01

    Results of a systems concepts study for a Titan Probe were examined. The key tradeoffs performed are described in detail. Mass breakdown of each Probe subsystem or major element were given. The mission analysis performed to determine compliance with the high altitude sampling and descent time requirements are described. The baseline Descent Module design was derived. The element of the Probe System left on the Carrier after separation were described.

  13. Titan Probe navigation analysis

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, A.; Wood, L. J.

    1986-01-01

    In the proposed Cassini mission, a combined Saturn Orbiter/Titan Probe spacecraft will be launched from the Space Shuttle to arrive at Saturn around 2002, by means of a delta-VEGA trajectory. After Saturn-orbit insertion and a pericrone raise maneuver, the probe will be released to enter the Titan atmosphere and impact onto its surface. During its descent phase and impact onto Titan, the probe will maintain radio contact with the orbiter. Since the Titan-probe experimental phase lasts for only about four hours, probe-orbiter geometry and probe-delivery accuracy are critical to successful completion of this part of the mission. From a preliminary navigation analysis for probe delivery accuracy, it seems feasible to deliver the probe within 50 km (1-sigma value) of the desired aim-point in the Titan B-plane. The covariance study, however, clearly indicates the need for optical data, in addition to radio metric data. A Monte Carlo study indicates that a Delta-V capability of 98 m/sec for trajectory correction maneuvers will be sufficient to cover 99 percent of all contingencies during the segment from Saturn-orbit insertion to Titan-probe release.

  14. Hydrophobic pocket targeting probes for enteroviruses

    NASA Astrophysics Data System (ADS)

    Martikainen, Mari; Salorinne, Kirsi; Lahtinen, Tanja; Malola, Sami; Permi, Perttu; Häkkinen, Hannu; Marjomäki, Varpu

    2015-10-01

    Visualization and tracking of viruses without compromising their functionality is crucial in order to understand virus targeting to cells and tissues, and to understand the subsequent subcellular steps leading to virus uncoating and replication. Enteroviruses are important human pathogens causing a vast number of acute infections, and are also suggested to contribute to the development of chronic diseases like type I diabetes. Here, we demonstrate a novel method to target site-specifically the hydrophobic pocket of enteroviruses. A probe, a derivative of Pleconaril, was developed and conjugated to various labels that enabled the visualization of enteroviruses under light and electron microscopes. The probe mildly stabilized the virus particle by increasing the melting temperature by 1-3 degrees, and caused a delay in the uncoating of the virus in the cellular endosomes, but could not however inhibit the receptor binding, cellular entry or infectivity of the virus. The hydrophobic pocket binding moiety of the probe was shown to bind to echovirus 1 particle by STD and tr-NOESY NMR methods. Furthermore, binding to echovirus 1 and Coxsackievirus A9, and to a lesser extent to Coxsackie virus B3 was verified by using a gold nanocluster labeled probe by TEM analysis. Molecular modelling suggested that the probe fits the hydrophobic pockets of EV1 and CVA9, but not of CVB3 as expected, correlating well with the variations in the infectivity and stability of the virus particles. EV1 conjugated to the fluorescent dye labeled probe was efficiently internalized into the cells. The virus-fluorescent probe conjugate accumulated in the cytoplasmic endosomes and caused infection starting from 6 hours onwards. Remarkably, before and during the time of replication, the fluorescent probe was seen to leak from the virus-positive endosomes and thus separate from the capsid proteins that were left in the endosomes. These results suggest that, like the physiological hydrophobic content

  15. Capacitance and effective area of flush monopole probes.

    SciTech Connect

    Warne, Larry Kevin; Johnson, William Arthur; Morris, Marvin E.; Basilio, Lorena I.; Lehr, Jane Marie; Higgins, Matthew B.

    2004-08-01

    Approximate formulas are constructed and numerical simulations are carried out for electric field derivative probes that have the form of flush mounted monopoles. Effects such as rounded edges are included. A method is introduced to make results from two-dimensional conformal mapping analyses accurately apply to the three-dimensional axisymmetric probe geometry

  16. Radio frequency-compensated Langmuir probe with auxiliary double probes

    SciTech Connect

    Oh, Se-Jin; Oh, Seung-Ju; Chung, Chin-Wook

    2010-09-15

    A radio frequency (rf) compensation design using auxiliary double probes connected in parallel with a main measurement probe was developed for Langmuir probe diagnostics. This probe structure can reduce the sheath impedance of the main probe. In our probe design, the sheath capacitance of the probe can be increased and its sheath resistance can be decreased with increasing dc bias differential voltage between the auxiliary double probes. The I-V characteristic curve and electron energy distribution functions measured by our probe system had sufficient rf compensation performance in inductively coupled plasmas.

  17. Radio frequency-compensated Langmuir probe with auxiliary double probes.

    PubMed

    Oh, Se-Jin; Oh, Seung-Ju; Chung, Chin-Wook

    2010-09-01

    A radio frequency (rf) compensation design using auxiliary double probes connected in parallel with a main measurement probe was developed for Langmuir probe diagnostics. This probe structure can reduce the sheath impedance of the main probe. In our probe design, the sheath capacitance of the probe can be increased and its sheath resistance can be decreased with increasing dc bias differential voltage between the auxiliary double probes. The I-V characteristic curve and electron energy distribution functions measured by our probe system had sufficient rf compensation performance in inductively coupled plasmas. PMID:20886976

  18. Formative Assessment Probes

    ERIC Educational Resources Information Center

    Eberle, Francis; Keeley, Page

    2008-01-01

    Formative assessment probes can be effective tools to help teachers build a bridge between students' initial ideas and scientific ones. In this article, the authors describe how using two formative assessment probes can help teachers determine the extent to which students make similar connections between developing a concept of matter and a…

  19. Magnetically driven filament probe.

    PubMed

    Schmid, A; Herrmann, A; Rohde, V; Maraschek, M; Müller, H W

    2007-05-01

    A radially movable probe has been developed for studies of filamentary transport in ASDEX Upgrade during edge localized modes (ELMs) by means of Langmuir tips and magnetic pickup coils. The probe is permanently installed at the low field side in the ASDEX Upgrade vacuum vessel and is not subject to limitations in probe size, as, for example, probes on a shared manipulator are. The probe is moved by a magnetic drive, which allows for easy installation in the vessel, and has moderate machine requirements, as it will only require an electric feedthrough and an external power supply. The drive gives a linear motion with a radial range of 5 cm within 50 ms, where range and velocity can be largely scaled according to experimental requirements. The probe has been installed in the outer midplane of the ASDEX Upgrade vessel, where ELM filaments are expected to have their maximum amplitude. Filaments are coherent substructures within an ELM, carrying a fraction of the ELM released energy towards the wall. The new probe allows to measure the structure of these filaments, in particular, parameters such as filament rotation (by time delay measurements) and size (by peak width analysis). Activating the drive moves the probe from a safe position behind the limiter to a position in front of the limiters, i.e., exposes the Langmuir pins to the scrape-off layer plasma. PMID:17552815

  20. Homoeologous chromosome pairing in the distant hybrid Alstroemeria aurea x A. inodora and the genome composition of its backcross derivatives determined by fluorescence in situ hybridization with species-specific probes.

    PubMed

    Kamstra, S A; Ramanna, M S; de Jeu, M J; Kuipers, A G; Jacobsen, E

    1999-01-01

    A distant hybrid between two diploid species (2n = 2x = 16), Alstroemeria aurea and A. inodora, was investigated for homoeologous chromosome pairing, crossability with A. inodora and chromosome transmission to its BC1 offspring. Fluorescence in situ hybridization (FISH) with two species-specific probes, A001-I (A. aurea specific) and D32-13 (A. inodora specific), was used to analyse chromosome pairing in the hybrid and the genome constitution of its BC1 progeny plants. High frequencies of associated chromosomes were observed in both genotypes of the F1 hybrid, A1P2-2 and A1P4. In the former, both univalents and bivalents were found at metaphase I, whereas the latter plant also showed tri- and quadrivalents. Based on the hybridization sites of DNA probes on the chromosomes of both parental species, it was established that hybrid A1P4 contains a reciprocal translocation between the short arm of chromosome 1 and the long arm of chromosome 8 of A. inodora. Despite regular homoeologous chromosome pairing in 30% of the pollen mother cells, both hybrids were highly sterile. They were backcrossed reciprocally with one of the parental species, A. inodora. Two days after pollination, embryo rescue was applied and, eventually, six BC1 progeny plants were obtained. Among these, two were aneuploids (2n = 2x + 1 = 17) and four were triploids (2n = 3x = 24). The aneuploid plants had originated when the interspecific hybrid was used as a female parent, indicating that n eggs were functional in the hybrid. In addition, 2n gametes were also functional in the hybrid, resulting in the four triploid BC1 plants. Of these four plants, three had received 2n pollen grains from the hybrid and one a 2n egg. Using FISH, homoeologous crossing over between the chromosomes of the two parental species in the hybrid was clearly detected in all BC1 plants. The relevance of these results for the process of introgression and the origin of n and 2n gametes are discussed. PMID:10087627

  1. PDV Probe Alignment Technique

    SciTech Connect

    Whitworth, T L; May, C M; Strand, O T

    2007-10-26

    This alignment technique was developed while performing heterodyne velocimetry measurements at LLNL. There are a few minor items needed, such as a white card with aperture in center, visible alignment laser, IR back reflection meter, and a microscope to view the bridge surface. The work was performed on KCP flyers that were 6 and 8 mils wide. The probes used were Oz Optics manufactured with focal distances of 42mm and 26mm. Both probes provide a spot size of approximately 80?m at 1550nm. The 42mm probes were specified to provide an internal back reflection of -35 to -40dB, and the probe back reflections were measured to be -37dB and -33dB. The 26mm probes were specified as -30dB and both measured -30.5dB. The probe is initially aligned normal to the flyer/bridge surface. This provides a very high return signal, up to -2dB, due to the bridge reflectivity. A white card with a hole in the center as an aperture can be used to check the reflected beam position relative to the probe and launch beam, and the alignment laser spot centered on the bridge, see Figure 1 and Figure 2. The IR back reflection meter is used to measure the dB return from the probe and surface, and a white card or similar object is inserted between the probe and surface to block surface reflection. It may take several iterations between the visible alignment laser and the IR back reflection meter to complete this alignment procedure. Once aligned normal to the surface, the probe should be tilted to position the visible alignment beam as shown in Figure 3, and the flyer should be translated in the X and Y axis to reposition the alignment beam onto the flyer as shown in Figure 4. This tilting of the probe minimizes the amount of light from the bridge reflection into the fiber within the probe while maintaining the alignment as near normal to the flyer surface as possible. When the back reflection is measured after the tilt adjustment, the level should be about -3dB to -6dB higher than the probes

  2. Circumferential pressure probe

    NASA Technical Reports Server (NTRS)

    Holmes, Harlan K. (Inventor); Moore, Thomas C. (Inventor); Fantl, Andrew J. (Inventor)

    1989-01-01

    A probe for measuring circumferential pressure inside a body cavity is disclosed. In the preferred embodiment, a urodynamic pressure measurement probe for evaluating human urinary sphincter function is disclosed. Along the length of the probe are disposed a multiplicity of deformable wall sensors which typically comprise support tube sections with flexible side wall areas. These are arranged along the length of the probe in two areas, one just proximal to the tip for the sensing of fluid pressure inside the bladder, and five in the sensing section which is positioned within the urethra at the point at which the urinary sphincter constricts to control the flow of urine. The remainder of the length of the probe comprises multiple rigid support tube sections interspersed with flexible support tube sections in the form of bellows to provide flexibility.

  3. Pioneer Jupiter orbiter probe mission 1980, probe description

    NASA Technical Reports Server (NTRS)

    Defrees, R. E.

    1974-01-01

    The adaptation of the Saturn-Uranus Atmospheric Entry Probe (SUAEP) to a Jupiter entry probe is summarized. This report is extracted from a comprehensive study of Jovian missions, atmospheric model definitions and probe subsystem alternatives.

  4. Focus: DNA probes

    SciTech Connect

    Not Available

    1986-11-01

    Progress in the development of DNA probes for the identification and quantitation of specific genetic sequences in biological samples is reviewed. Current research efforts in the development of DNA probes for the diagnosis of a wide variety of bacterial, viral, and other infectious diseases, such as herpes simplex and cytomegalovirus, and inherited genetic diseases such as cystic fibrosis and sickle cell anemia are discussed. Progress in development of DNA probe assays for cancer diagnosis, detection of Salmonella food poisoning, tissue typing (detection of histocompatibility antigens), mutagen screening, and animal diseases, among other applications is included.

  5. ALEX neutral beam probe

    SciTech Connect

    Pourrezaei, K.

    1982-01-01

    A neutral beam probe capable of measuring plasma space potential in a fully 3-dimensional magnetic field geometry has been developed. This neutral beam was successfully used to measure an arc target plasma contained within the ALEX baseball magnetic coil. A computer simulation of the experiment was performed to refine the experimental design and to develop a numerical model for scaling the ALEX neutral beam probe to other cases of fully 3-dimensional magnetic field. Based on this scaling a 30 to 50 keV neutral cesium beam probe capable of measuring space potential in the thermal barrier region of TMX Upgrade was designed.

  6. Foldable polymers as probes

    DOEpatents

    Li, Alexander D. Q.; Wang, Wei

    2007-07-03

    Disclosed herein are novel probes, which can be used to detect and identify target molecules of interest in a sample. The disclosed probes can be used to monitor conformational changes induced by molecular recognition events in addition to providing signaling the presence and/or identity of a target molecule. Methods, including solid phase synthesis techniques, for making probe molecules that exhibit changes in their optical properties upon target molecule binding are described in the disclosure. Also disclosed herein are novel chromophore moieties, which have tailored fluorescent emission spectra.

  7. Foldable polymers as probes

    DOEpatents

    Li, Alexander D. Q.; Wang, Wei

    2009-07-07

    Disclosed herein are novel probes, which can be used to detect and identify target molecules of interest in a sample. The disclosed probes can be used to monitor conformational changes induced by molecular recognition events in addition to providing signaling the presence and/or identity of a target molecule. Methods, including solid phase synthesis techniques, for making probe molecules that exhibit changes in their optical properties upon target molecule binding are described in the disclosure. Also disclosed herein are novel chromophore moieties, which have tailored fluorescent emission spectra.

  8. Chemical sensing flow probe

    DOEpatents

    Laguna, George R.; Peter, Frank J.; Butler, Michael A.

    1999-01-01

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir.

  9. Chemical sensing flow probe

    DOEpatents

    Laguna, G.R.; Peter, F.J.; Butler, M.A.

    1999-02-16

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir. 7 figs.

  10. BEAM CONTROL PROBE

    DOEpatents

    Chesterman, A.W.

    1959-03-17

    A probe is described for intercepting a desired portion of a beam of charged particles and for indicating the spatial disposition of the beam. The disclosed probe assembly includes a pair of pivotally mounted vanes moveable into a single plane with adjacent edges joining and a calibrated mechanical arrangement for pivoting the vancs apart. When the probe is disposed in the path of a charged particle beam, the vanes may be adjusted according to the beam current received in each vane to ascertain the dimension of the beam.

  11. Functional Probes for Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Akiyama, Kotone; Eguchi, Toyoaki; An, Toshu; Fujikawa, Yasunori; Hasegawa, Yukio; Sakurai, Toshio

    2007-03-01

    For superior performance of scanning probe microscopy, we are working to fabricate functional probes. For Kelvin probe force microscopy, we fabricated a metal-tip cantilever by attaching a thin metal wire to a regular Si cantilever and milling it by focused ion beam (FIB)^1. By using the W tip with a curvature radius of 3.5 nm, we obtained the potential profile of Ge/Si(105) surface in atomic resolution with the energy resolution better than 3 meV^2. For synchrotron-radiation-light-irradiated scanning tunneling microscopy which aims at atomically resolved elemental analysis, we fabricated a glass-coated W tip using FIB^3. It is found that the glass coating blocks the unwanted secondary electrons, which come from large area of the sample, by a factor of 40 with respect to the case no coating. Using the tip to detect the electrons emitted just below the tip, we obtained element specific images with a spatial resolution better than 20 nm under the photo irradiation whose energy is just above the adsorption edge of the element^4. 1 K. Akiyama et al., RSI 76, 033705 (2005) 2 T. Eguchi, K. Akiyama et al., PRL 93, 266102 (2004) 3 K. Akiyama et al., RSI 76, 083711 (2005) 4 T. Eguchi, K. Akiyama et al., APL, in press

  12. Technology for Entry Probes

    NASA Technical Reports Server (NTRS)

    Cutts, James A.; Arnold, James; Venkatapathy, Ethiraj; Kolawa, Elizabeth; Munk, Michelle; Wercinski, Paul; Laub, Bernard

    2005-01-01

    A viewgraph describing technologies for entry probes is presented. The topics include: 1) Entry Phase; 2) Descent Phase; 3) Long duration atmospheric observations; 4) Survivability at high temperatures; and 5) Summary.

  13. An Ultrasonographic Periodontal Probe

    NASA Astrophysics Data System (ADS)

    Bertoncini, C. A.; Hinders, M. K.

    2010-02-01

    Periodontal disease, commonly known as gum disease, affects millions of people. The current method of detecting periodontal pocket depth is painful, invasive, and inaccurate. As an alternative to manual probing, an ultrasonographic periodontal probe is being developed to use ultrasound echo waveforms to measure periodontal pocket depth, which is the main measure of periodontal disease. Wavelet transforms and pattern classification techniques are implemented in artificial intelligence routines that can automatically detect pocket depth. The main pattern classification technique used here, called a binary classification algorithm, compares test objects with only two possible pocket depth measurements at a time and relies on dimensionality reduction for the final determination. This method correctly identifies up to 90% of the ultrasonographic probe measurements within the manual probe's tolerance.

  14. Reflections on Electric Probes

    NASA Astrophysics Data System (ADS)

    Braithwaite, Nicholas

    2007-10-01

    One of the more immediate temptations for an experimental plasma physicist is to insert some kind of refractory, conducting material into a plasma, as a simple means of probing its charge composition. Irvine Langmuir tried it in the 1920s and was one of the first to develop an electrical probe method in his early work on electrical discharge plasmas. There are now numerous variations on the theme including planar, cylindrical and spherical geometry with single, double and triple probes. There are also probes that resonate, propagate and reciprocate. Some probes are electrostatic and others are electromagnetic; some are effectively wireless; most absorb but some emit. All types can be used in steady and transient plasmas, while special schemes have been devised for RF plasmas, using passive and active compensation. Magnetised plasmas pose further challenges. Each configuration is accompanied by assumptions that constrain both their applicability and the analytical methods that translate the measured currents and voltages variously into charge densities, space potentials, particle fluxes, energy distributions and measures of collisionality. This talk will take a broad look at the options and opportunities for electric probes, principally in the environment of non-equilibrium plasma.

  15. Hydrophobic pocket targeting probes for enteroviruses

    NASA Astrophysics Data System (ADS)

    Martikainen, Mari; Salorinne, Kirsi; Lahtinen, Tanja; Malola, Sami; Permi, Perttu; Häkkinen, Hannu; Marjomäki, Varpu

    2015-10-01

    Visualization and tracking of viruses without compromising their functionality is crucial in order to understand virus targeting to cells and tissues, and to understand the subsequent subcellular steps leading to virus uncoating and replication. Enteroviruses are important human pathogens causing a vast number of acute infections, and are also suggested to contribute to the development of chronic diseases like type I diabetes. Here, we demonstrate a novel method to target site-specifically the hydrophobic pocket of enteroviruses. A probe, a derivative of Pleconaril, was developed and conjugated to various labels that enabled the visualization of enteroviruses under light and electron microscopes. The probe mildly stabilized the virus particle by increasing the melting temperature by 1-3 degrees, and caused a delay in the uncoating of the virus in the cellular endosomes, but could not however inhibit the receptor binding, cellular entry or infectivity of the virus. The hydrophobic pocket binding moiety of the probe was shown to bind to echovirus 1 particle by STD and tr-NOESY NMR methods. Furthermore, binding to echovirus 1 and Coxsackievirus A9, and to a lesser extent to Coxsackie virus B3 was verified by using a gold nanocluster labeled probe by TEM analysis. Molecular modelling suggested that the probe fits the hydrophobic pockets of EV1 and CVA9, but not of CVB3 as expected, correlating well with the variations in the infectivity and stability of the virus particles. EV1 conjugated to the fluorescent dye labeled probe was efficiently internalized into the cells. The virus-fluorescent probe conjugate accumulated in the cytoplasmic endosomes and caused infection starting from 6 hours onwards. Remarkably, before and during the time of replication, the fluorescent probe was seen to leak from the virus-positive endosomes and thus separate from the capsid proteins that were left in the endosomes. These results suggest that, like the physiological hydrophobic content

  16. Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: derivation of mass-loss rate formulae

    NASA Astrophysics Data System (ADS)

    De Beck, E.; Decin, L.; de Koter, A.; Justtanont, K.; Verhoelst, T.; Kemper, F.; Menten, K. M.

    2010-11-01

    Context. The evolution of intermediate and low-mass stars on the asymptotic giant branch is dominated by their strong dust-driven winds. More massive stars evolve into red supergiants with a similar envelope structure and strong wind. These stellar winds are a prime source for the chemical enrichment of the interstellar medium. Aims: We aim to (1) set up simple and general analytical expressions to estimate mass-loss rates of evolved stars, and (2) from those calculate estimates for the mass-loss rates of the asymptotic giant branch, red supergiant, and yellow hypergiant stars in our galactic sample. Methods: The rotationally excited lines of carbon monoxide (CO) are a classic and very robust diagnostic in the study of circumstellar envelopes. When sampling different layers of the circumstellar envelope, observations of these molecular lines lead to detailed profiles of kinetic temperature, expansion velocity, and density. A state-of-the-art, nonlocal thermal equilibrium, and co-moving frame radiative transfer code that predicts CO line intensities in the circumstellar envelopes of late-type stars is used in deriving relations between stellar and molecular-line parameters, on the one hand, and mass-loss rate, on the other. These expressions are applied to our extensive CO data set to estimate the mass-loss rates of 47 sample stars. Results: We present analytical expressions for estimating the mass-loss rates of evolved stellar objects for 8 rotational transitions of the CO molecule and thencompare our results to those of previous studies. Our expressions account for line saturation and resolving of the envelope, thereby allowing accurate determination of very high mass-loss rates. We argue that, for estimates based on a single rotational line, the CO(2-1) transition provides the most reliable mass-loss rate. The mass-loss rates calculated for the asympotic giant branch stars range from 4 × 10-8 M⊙ yr-1 up to 8 × 10-5 M⊙ yr-1. For red supergiants they reach

  17. Nuclear magnetic resonance studies of hemoproteins. IV. Hindered rotation of heme side methyl group as a probe for studying van der Waals contacts in the heme side environments of myoglobin derivatives.

    PubMed

    Morishima, I; Iizuka, T

    1975-04-29

    220 MHz roton NMR spectral evidence for restricted rotation of one methyl group in the heme side chain of ferric horse cyanomyoglobin is reported here. Temperature dependence of this methyl proton signal was computer-simulated, yielding 14,8 kcal/mol for the methyl hindered rotation. Ionic additives such as NaCl and (NH4) 2 minus SO4 caused a slackening of this restriction of methyl rotation, evidenced from collapse of methyl signal doubling by the addition of these ionic substances. This is discussed in terms of breaking of the salt bridge formed between one of the propionate COO minus group of heme and a part of the apoprotein which might lead to constraint of one of the heme side methyl groups. The peculiarity of hyperfine-shifted methyl proton signals for other myoglobin complexes such as azide and imidazole derivatives is also discussed briefly in terms of constraint of heme side methyl group buried in a hydrophobic cleft. PMID:1169971

  18. Natural Products as Chemical Probes

    PubMed Central

    Carlson, Erin E.

    2010-01-01

    Natural products have evolved to encompass a broad spectrum of chemical and functional diversity. It is this diversity, along with their structural complexity, that enables nature’s small molecules to target a nearly limitless number of biological macromolecules and to often do so in a highly selective fashion. Because of these characteristics, natural products have seen great success as therapeutic agents. However, this vast pool of compounds holds much promise beyond the development of future drugs. These features also make them ideal tools for the study of biological systems. Recent examples of the use of natural products and their derivatives as chemical probes to explore biological phenomena and assemble biochemical pathways are presented here. PMID:20509672

  19. Gravity Probe B orbit determination

    NASA Astrophysics Data System (ADS)

    Shestople, P.; Ndili, A.; Hanuschak, G.; Parkinson, B. W.; Small, H.

    2015-11-01

    The Gravity Probe B (GP-B) satellite was equipped with a pair of redundant Global Positioning System (GPS) receivers used to provide navigation solutions for real-time and post-processed orbit determination (OD), as well as to establish the relation between vehicle time and coordinated universal time. The receivers performed better than the real-time position requirement of 100 m rms per axis. Post-processed solutions indicated an rms position error of 2.5 m and an rms velocity error of 2.2 mm s-1. Satellite laser ranging measurements provided independent verification of the GPS-derived GP-B orbit. We discuss the modifications and performance of the Trimble Advance Navigation System Vector III GPS receivers. We describe the GP-B precision orbit and detail the OD methodology, including ephemeris errors and the laser ranging measurements.

  20. Model for resonant plasma probe.

    SciTech Connect

    Warne, Larry Kevin; Johnson, William Arthur; Hebner, Gregory Albert; Jorgenson, Roy E.; Coats, Rebecca Sue

    2007-04-01

    This report constructs simple circuit models for a hairpin shaped resonant plasma probe. Effects of the plasma sheath region surrounding the wires making up the probe are determined. Electromagnetic simulations of the probe are compared to the circuit model results. The perturbing effects of the disc cavity in which the probe operates are also found.

  1. Probing the Adsorption Behavior of 4,5-Diazafluoren-9-one and Its Schiff Base Derivatives on SIlver and Gold Nanosurfaces Using Raman Spectroscopy, Density Functional Theory and Potential Energy Distribution Calculations

    NASA Astrophysics Data System (ADS)

    McCoy, Rhonda Patrice

    from the center ring was shortened because of metal-ligand coordination. These observations are correlated to the shifts in Raman frequencies; a decrease in bond length resulted in a shift to a higher vibrational energy. The surface-enhanced Raman spectrum of DAFO was obtained on silver colloids and gold nanorods. The resulting SER spectra were compared to their corresponding normal Raman spectra, there were changes in relative band intensities and there were bands shifted because of adsorption; these observations were used to probe orientation. Orientation is determined by applying surface selections rules developed by both Creighton and Moskovits. The rules indicate, when the vibrational modes assigned to out-of-plane modes are observed as enhanced in the SER spectrum, the ligand is considered parallel relative to the metal surface, and when the vibrational modes assigned to in-plane modes are observed as enhanced, the ligand is not parallel relative to the metal surface. The relative surface enhancement factors were calculated by normalizing the spectra and then by taking the ratio of ISERS/INR. Based on the enhancement factors, the bands assigned to in-plane modes exhibited the highest enhancement factors on the Au and Ag SER spectra. This observation suggests that DAFO is not parallel to the metal nano-surfaces. In the Ag SERS spectrum the bands with the highest enhancement factors were assigned to quadrant ring stretching and cyclopentone bending. Analysis of the carbonyl stretching frequency on the Ag spectrum revealed the frequency shifted to a lower vibrational energy. This shift has been ascribed to the carbonyl bond losing double bond character, which permits the interaction between the metal and the carbonyl oxygen. It was proposed the DAFO ligand is sandwiched between the silver hydrosol. The TER spectrum of DAFO was obtained; analysis of the spectrum revealed similarities to the Ag SERS spectrum. The carbonyl stretching frequency was lowered, the bands

  2. Convective heat flow probe

    DOEpatents

    Dunn, J.C.; Hardee, H.C.; Striker, R.P.

    1984-01-09

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

  3. Convective heat flow probe

    DOEpatents

    Dunn, James C.; Hardee, Harry C.; Striker, Richard P.

    1985-01-01

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packer-type seals are provided along the probe above and below the heater pads.

  4. Surgical force detection probe

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Roberts, Paul; Scott, Charles; Prass, Richard

    1991-01-01

    The development progress of a precision electro-mechanical instrument which allows the detection and documentation of the forces and moment applied to human tissue during surgery (under actual operation room conditions), is reported. The pen-shaped prototype probe which measures 1/2 inch in diameter and 7 inches in length was fabricated using an aerodynamic balance. The aerodynamic balance, a standard wind tunnel force and moment sensing transducer, measures the forces and the moments transmitted through the surgeon's hand to the human tissue during surgery. The prototype probe which was fabricated as a development tool was tested successfully. The final version of the surgical force detection probe will be designed based on additional laboratory tests in order to establish the full scale loads. It is expected that the final product will require a simplified aerodynamic balance with two or three force components and one moment component with lighter full scale loads. A signal conditioner was fabricated to process and display the outputs from the prototype probe. This unit will be interfaced with a PC-based data system to provide automatic data acquisition, data processing, and graphics display. The expected overall accuracy of the probe is better than one percent full scale.

  5. Probing QCD at high energy via correlations

    SciTech Connect

    Jalilian-Marian, Jamal

    2011-04-26

    A hadron or nucleus at high energy or small x{sub Bj} contains many gluons and may be described as a Color Glass Condensate. Angular and rapidity correlations of two particles produced in high energy hadron-hadron collisions is a sensitive probe of high gluon density regime of QCD. Evolution equations which describe rapidity dependence of these correlation functions are derived from a QCD effective action.

  6. Pressure measuring probe

    NASA Technical Reports Server (NTRS)

    Ashby, George C., Jr. (Inventor)

    1988-01-01

    The invention is a probe for measuring changes in pressure in a high velocity fluid stream over and adjacent to the surface of an object. The probe is formed of an exterior housing having a closed pressure chamber in which a piezoelectric pressure transducer is mounted. An open connector tube having a probe tip passes a portion of the fluid stream into the closed pressure chamber; any change of pressure within, which requires a settling-time to appear in the closed pressure chamber, is inversely proportional to the cross-sectional area of the connector tube. A cooling chamber formed around the pressure chamber is connected to a source of cooling fluid by means of inlet and outlet tubes.

  7. Multispectral imaging probe

    SciTech Connect

    Sandison, David R.; Platzbecker, Mark R.; Descour, Michael R.; Armour, David L.; Craig, Marcus J.; Richards-Kortum, Rebecca

    1999-01-01

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector.

  8. Multispectral imaging probe

    DOEpatents

    Sandison, D.R.; Platzbecker, M.R.; Descour, M.R.; Armour, D.L.; Craig, M.J.; Richards-Kortum, R.

    1999-07-27

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector. 8 figs.

  9. Pioneer III Probe

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Looking more like surgeons, these technicians wearing 'cleanroom' attire inspect the Pioneer III probe before shipping it to Cape Canaveral, Florida. Pioneer III was launched on December 6, 1958 aboard a Juno II rocket at the Atlantic Missile Range, Cape Canaveral, Florida. The mission objectives were to measure the radiation intensity of the Van Allen radiation belt, test long range communication systems, the launch vehicle and other subsystems. The Juno II failed to reach proper orbital escape velocity. The probe re-entered the Earth's atmosphere on December 7th ending its brief mission.

  10. Experts' understanding of partial derivatives using the partial derivative machine

    NASA Astrophysics Data System (ADS)

    Roundy, David; Weber, Eric; Dray, Tevian; Bajracharya, Rabindra R.; Dorko, Allison; Smith, Emily M.; Manogue, Corinne A.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] Partial derivatives are used in a variety of different ways within physics. Thermodynamics, in particular, uses partial derivatives in ways that students often find especially confusing. We are at the beginning of a study of the teaching of partial derivatives, with a goal of better aligning the teaching of multivariable calculus with the needs of students in STEM disciplines. In this paper, we report on an initial study of expert understanding of partial derivatives across three disciplines: physics, engineering, and mathematics. We report on the central research question of how disciplinary experts understand partial derivatives, and how their concept images of partial derivatives differ, with a focus on experimentally measured quantities. Using the partial derivative machine (PDM), we probed expert understanding of partial derivatives in an experimental context without a known functional form. In particular, we investigated which representations were cued by the experts' interactions with the PDM. Whereas the physicists and engineers were quick to use measurements to find a numeric approximation for a derivative, the mathematicians repeatedly returned to speculation as to the functional form; although they were comfortable drawing qualitative conclusions about the system from measurements, they were reluctant to approximate the derivative through measurement. On a theoretical front, we found ways in which existing frameworks for the concept of derivative could be expanded to include numerical approximation.

  11. Identification of when a Langmuir probe is in the sheath of a spacecraft: The effects of secondary electron emission from the probe

    NASA Astrophysics Data System (ADS)

    Wang, X.; Hsu, H.-W.; Horányi, M.

    2015-04-01

    Langmuir probes on spacecraft have been used for characterizing the ambient plasma parameters in space. When their boom is short compared to the Debye length, the probes remain immersed in the spacecraft sheath, causing the current-voltage (I-V) characteristics to deviate from that of a probe far away from the spacecraft. We present identification of when a Langmuir probe is in a sheath, based on the secondary electron (SE) emission from the probe itself. The I-V characteristics of a spherical probe are investigated in a plasma sheath above a conducting plate. Plasmas with cold and hot electrons (1 eV and 10 eV), as well as monoenergetic electrons (50-100 eV), are created. The derivative (dI/dV) of the probe I-V curves shows that in addition to a "knee" at a potential more positive than the plasma potential, an additional knee appears at a sheath potential at the probe location. This additional knee is created due to the SE emission from the probe and is identified as an indication of the probe being immersed in the sheath. Our experimental results reproduced the aspects of the Cassini Langmuir probe I-V characteristics, suggesting that at times, the probe may have been immersed in the sheath of the spacecraft in Saturn's magnetosphere, and SE emission from the probe itself may have significantly altered its I-V characteristics.

  12. Modeling Formamide Denaturation of Probe-Target Hybrids for Improved Microarray Probe Design in Microbial Diagnostics

    PubMed Central

    Yilmaz, L. Safak; Loy, Alexander; Wright, Erik S.; Wagner, Michael; Noguera, Daniel R.

    2012-01-01

    Application of high-density microarrays to the diagnostic analysis of microbial communities is challenged by the optimization of oligonucleotide probe sensitivity and specificity, as it is generally unfeasible to experimentally test thousands of probes. This study investigated the adjustment of hybridization stringency using formamide with the idea that sensitivity and specificity can be optimized during probe design if the hybridization efficiency of oligonucleotides with target and non-target molecules can be predicted as a function of formamide concentration. Sigmoidal denaturation profiles were obtained using fluorescently labeled and fragmented 16S rRNA gene amplicon of Escherichia coli as the target with increasing concentrations of formamide in the hybridization buffer. A linear free energy model (LFEM) was developed and microarray-specific nearest neighbor rules were derived. The model simulated formamide melting with a denaturant m-value that increased hybridization free energy (ΔG°) by 0.173 kcal/mol per percent of formamide added (v/v). Using the LFEM and specific probe sets, free energy rules were systematically established to predict the stability of single and double mismatches, including bulged and tandem mismatches. The absolute error in predicting the position of experimental denaturation profiles was less than 5% formamide for more than 90 percent of probes, enabling a practical level of accuracy in probe design. The potential of the modeling approach for probe design and optimization is demonstrated using a dataset including the 16S rRNA gene of Rhodobacter sphaeroides as an additional target molecule. The LFEM and thermodynamic databases were incorporated into a computational tool (ProbeMelt) that is freely available at http://DECIPHER.cee.wisc.edu. PMID:22952791

  13. Cervical Neoplasia Probe Control

    Energy Science and Technology Software Center (ESTSC)

    1997-01-24

    This software, which consists of a main executive and several subroutines, performs control of the optics, image acquisition, and Digital Signal Processing (DSP) of this image, of an optical based medical instrument that performs fluoresence detection of precancerous lesions (neoplasia) of the human cervix. The hardware portion of this medical instrument is known by the same name Cervical Neoplasia Probe (CNP)

  14. Endocavity Ultrasound Probe Manipulators.

    PubMed

    Stoianovici, Dan; Kim, Chunwoo; Schäfer, Felix; Huang, Chien-Ming; Zuo, Yihe; Petrisor, Doru; Han, Misop

    2013-06-01

    We developed two similar structure manipulators for medical endocavity ultrasound probes with 3 and 4 degrees of freedom (DoF). These robots allow scanning with ultrasound for 3-D imaging and enable robot-assisted image-guided procedures. Both robots use remote center of motion kinematics, characteristic of medical robots. The 4-DoF robot provides unrestricted manipulation of the endocavity probe. With the 3-DoF robot the insertion motion of the probe must be adjusted manually, but the device is simpler and may also be used to manipulate external-body probes. The robots enabled a novel surgical approach of using intraoperative image-based navigation during robot-assisted laparoscopic prostatectomy (RALP), performed with concurrent use of two robotic systems (Tandem, T-RALP). Thus far, a clinical trial for evaluation of safety and feasibility has been performed successfully on 46 patients. This paper describes the architecture and design of the robots, the two prototypes, control features related to safety, preclinical experiments, and the T-RALP procedure. PMID:24795525

  15. Ultrasonic search wheel probe

    DOEpatents

    Mikesell, Charles R.

    1978-01-01

    A device is provided for reducing internal reflections from the tire of an ultrasonic search wheel probe or from within the material being examined. The device includes a liner with an anechoic chamber within which is an ultrasonic transducer. The liner is positioned within the wheel and includes an aperture through which the ultrasonic sound from the transducer is directed.

  16. The Phoenix Pluto Probe

    NASA Technical Reports Server (NTRS)

    Gunning, George R.; Spapperi, Jeff; Wilkinson, Jeffrey P.; Eldred, Jim; Labij, Dennis; Strinni, Meredith

    1990-01-01

    A design proposal for an unmanned probe to Pluto is presented. The topics covered include: (1) scientific instrumentation; (2) mission management, planning, and costing; (3) power and propulsion system; (4) structural subsystem; (5) command, control, and communication; and (6) attitude and articulation control.

  17. Laboratory plasma probe studies

    NASA Technical Reports Server (NTRS)

    Heikkila, W. J.

    1975-01-01

    Diagnostic experiments performed in a collisionless plasma using CO2 as the working gas are described. In particular, simultaneous measurements that have been performed by means of Langmuir- and RF-probes are presented. A resonance occurring above the parallel resonance in the frequency characteristic of a two electrode system is interpreted as being due to the resonant excitation of electroacoustic waves.

  18. Probing the Solar System

    ERIC Educational Resources Information Center

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  19. Experimenting with Temperature Probes.

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael

    1989-01-01

    Presented are four activities which are designed to familiarize children with the multiple uses of computers and help them learn about heat and temperature using temperature probes. Included are the tempering effect of water, heat capacity, caloric content of foods, and weather. Hardware and software are discussed. (CW)

  20. Endocavity Ultrasound Probe Manipulators

    PubMed Central

    Stoianovici, Dan; Kim, Chunwoo; Schäfer, Felix; Huang, Chien-Ming; Zuo, Yihe; Petrisor, Doru; Han, Misop

    2014-01-01

    We developed two similar structure manipulators for medical endocavity ultrasound probes with 3 and 4 degrees of freedom (DoF). These robots allow scanning with ultrasound for 3-D imaging and enable robot-assisted image-guided procedures. Both robots use remote center of motion kinematics, characteristic of medical robots. The 4-DoF robot provides unrestricted manipulation of the endocavity probe. With the 3-DoF robot the insertion motion of the probe must be adjusted manually, but the device is simpler and may also be used to manipulate external-body probes. The robots enabled a novel surgical approach of using intraoperative image-based navigation during robot-assisted laparoscopic prostatectomy (RALP), performed with concurrent use of two robotic systems (Tandem, T-RALP). Thus far, a clinical trial for evaluation of safety and feasibility has been performed successfully on 46 patients. This paper describes the architecture and design of the robots, the two prototypes, control features related to safety, preclinical experiments, and the T-RALP procedure. PMID:24795525

  1. Mechanosensitive membrane probes.

    PubMed

    Dal Molin, Marta; Verolet, Quentin; Soleimanpour, Saeideh; Matile, Stefan

    2015-04-13

    This article assembles pertinent insights behind the concept of planarizable push-pull probes. As a response to the planarization of their polarized ground state, a red shift of their excitation maximum is expected to report on either the disorder, the tension, or the potential of biomembranes. The combination of chromophore planarization and polarization contributes to various, usually more complex processes in nature. Examples include the color change of crabs or lobsters during cooking or the chemistry of vision, particularly color vision. The summary of lessons from nature is followed by an overview of mechanosensitive organic materials. Although often twisted and sometimes also polarized, their change of color under pressure usually originates from changes in their crystal packing. Intriguing exceptions include the planarization of several elegantly twisted phenylethynyl oligomers and polymers. Also mechanosensitive probes in plastics usually respond to stretching by disassembly. True ground-state planarization in response to molecular recognition is best exemplified with the binding of thoughtfully twisted cationic polythiophenes to single- and double-stranded oligonucleotides. Molecular rotors, en vogue as viscosity sensors in cells, operate by deplanarization of the first excited state. Pertinent recent examples are described, focusing on λ-ratiometry and intracellular targeting. Complementary to planarization of the ground state with twisted push-pull probes, molecular rotors report on environmental changes with quenching or shifts in emission rather than absorption. The labeling of mechanosensitive channels is discussed as a bioengineering approach to bypass the challenge to create molecular mechanosensitivity and use biological systems instead to sense membrane tension. With planarizable push-pull probes, this challenge is met not with twistome screening, but with "fluorescent flippers," a new concept to insert large and bright monomers into oligomeric

  2. Handheld, giant magnetoresistive-sensor-based eddy current probes

    NASA Astrophysics Data System (ADS)

    Brady, S. K.; Palmer, D. D.

    2012-05-01

    The minimum crack length detectable with conventional eddy current probes increases dramatically as the thickness of metal through which the inspection is performed increases. The skin depth phenomenon is unavoidable, and demands low frequency inspection, hindering sensitivity. However, one time derivative introduced by Faraday's Law can be avoided by using giant magnetoresistive sensors to detect eddy currents instead of conventional coils, improving sensitivity. The theory will be explained, along with some probe designs and the observed benefits in sensitivity.

  3. EDITORIAL: Probing the nanoworld Probing the nanoworld

    NASA Astrophysics Data System (ADS)

    Miles, Mervyn

    2009-10-01

    In nanotechnology, it is the unique properties arising from nanometre-scale structures that lead not only to their technological importance but also to a better understanding of the underlying science. Over the last twenty years, material properties at the nanoscale have been dominated by the properties of carbon in the form of the C60 molecule, single- and multi-wall carbon nanotubes, nanodiamonds, and recently graphene. During this period, research published in the journal Nanotechnology has revealed the amazing mechanical properties of such materials as well as their remarkable electronic properties with the promise of new devices. Furthermore, nanoparticles, nanotubes, nanorods, and nanowires from metals and dielectrics have been characterized for their electronic, mechanical, optical, chemical and catalytic properties. Scanning probe microscopy (SPM) has become the main characterization technique and atomic force microscopy (AFM) the most frequently used SPM. Over the past twenty years, SPM techniques that were previously experimental in nature have become routine. At the same time, investigations using AFM continue to yield impressive results that demonstrate the great potential of this powerful imaging tool, particularly in close to physiological conditions. In this special issue a collaboration of researchers in Europe report the use of AFM to provide high-resolution topographical images of individual carbon nanotubes immobilized on various biological membranes, including a nuclear membrane for the first time (Lamprecht C et al 2009 Nanotechnology 20 434001). Other SPM developments such as high-speed AFM appear to be making a transition from specialist laboratories to the mainstream, and perhaps the same may be said for non-contact AFM. Looking to the future, characterisation techniques involving SPM and spectroscopy, such as tip-enhanced Raman spectroscopy, could emerge as everyday methods. In all these advanced techniques, routinely available probes will

  4. Laser heterodyne photothermal nondestructive method: extension to transparent probe

    NASA Astrophysics Data System (ADS)

    Pencheva, V.; Penchev, S.; Naboko, V.; Toyoda, K.; Donchev, T.

    2007-03-01

    We present a contribution to the development of the laser heterodyne method of nondestructive material analysis employing photothermal displacement (PTD) probe. PTD is a dominant factor of the photothermal effect in metals and semiconductors, where the derived linear dependence on absorbed energy exhibits a fingerprint of their physical properties. Theoretical consideration of the case of transparent probe is accomplished extending thermal diffusion model. Laser double heterodyne detection is verified for opaque and transparent probes, and in the exclusive case of silicon. The achieved resolution of photothermal displacement is less than 10 -12 m well above the limits of heterodyne measurement.

  5. Ice-Borehole Probe

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Carsey, Frank; Lane, Arthur; Engelhardt, Herman

    2006-01-01

    An instrumentation system has been developed for studying interactions between a glacier or ice sheet and the underlying rock and/or soil. Prior borehole imaging systems have been used in well-drilling and mineral-exploration applications and for studying relatively thin valley glaciers, but have not been used for studying thick ice sheets like those of Antarctica. The system includes a cylindrical imaging probe that is lowered into a hole that has been bored through the ice to the ice/bedrock interface by use of an established hot-water-jet technique. The images acquired by the cameras yield information on the movement of the ice relative to the bedrock and on visible features of the lower structure of the ice sheet, including ice layers formed at different times, bubbles, and mineralogical inclusions. At the time of reporting the information for this article, the system was just deployed in two boreholes on the Amery ice shelf in East Antarctica and after successful 2000 2001 deployments in 4 boreholes at Ice Stream C, West Antarctica, and in 2002 at Black Rapids Glacier, Alaska. The probe is designed to operate at temperatures from 40 to +40 C and to withstand the cold, wet, high-pressure [130-atm (13.20-MPa)] environment at the bottom of a water-filled borehole in ice as deep as 1.6 km. A current version is being outfitted to service 2.4-km-deep boreholes at the Rutford Ice Stream in West Antarctica. The probe (see figure) contains a sidelooking charge-coupled-device (CCD) camera that generates both a real-time analog video signal and a sequence of still-image data, and contains a digital videotape recorder. The probe also contains a downward-looking CCD analog video camera, plus halogen lamps to illuminate the fields of view of both cameras. The analog video outputs of the cameras are converted to optical signals that are transmitted to a surface station via optical fibers in a cable. Electric power is supplied to the probe through wires in the cable at a

  6. Molecular probes for cardiovascular imaging.

    PubMed

    Liang, Grace; Nguyen, Patricia K

    2016-08-01

    Molecular probes provide imaging signal and contrast for the visualization, characterization, and measurement of biological processes at the molecular level. These probes can be designed to target the cell or tissue of interest and must be retained at the imaging site until they can be detected by the appropriate imaging modality. In this article, we will discuss the basic design of molecular probes, differences among the various types of probes, and general strategies for their evaluation of cardiovascular disease. PMID:27189171

  7. Heavy ion beam probing

    SciTech Connect

    Hickok, R L

    1980-07-01

    This report consists of the notes distributed to the participants at the IEEE Mini-Course on Modern Plasma Diagnostics that was held in Madison, Wisconsin in May 1980. It presents an overview of Heavy Ion Beam Probing that briefly describes the principles and discuss the types of measurements that can be made. The problems associated with implementing beam probes are noted, possible variations are described, estimated costs of present day systems, and the scaling requirements for large plasma devices are presented. The final chapter illustrates typical results that have been obtained on a variety of plasma devices. No detailed calculations are included in the report, but a list of references that will provide more detailed information is included.

  8. Molecular inversion probe assay.

    PubMed

    Absalan, Farnaz; Ronaghi, Mostafa

    2007-01-01

    We have described molecular inversion probe technologies for large-scale genetic analyses. This technique provides a comprehensive and powerful tool for the analysis of genetic variation and enables affordable, large-scale studies that will help uncover the genetic basis of complex disease and explain the individual variation in response to therapeutics. Major applications of the molecular inversion probes (MIP) technologies include targeted genotyping from focused regions to whole-genome studies, and allele quantification of genomic rearrangements. The MIP technology (used in the HapMap project) provides an efficient, scalable, and affordable way to score polymorphisms in case/control populations for genetic studies. The MIP technology provides the highest commercially available multiplexing levels and assay conversion rates for targeted genotyping. This enables more informative, genome-wide studies with either the functional (direct detection) approach or the indirect detection approach. PMID:18025701

  9. Fast Langmuir probe sweeping circuit

    SciTech Connect

    Milnes, K.A.; Ehlers, K.W.; Leung, K.N.; Owren, H.M.; Williams, M.D.

    1980-06-01

    An inexpensive, simple, and fast Langmuir probe sweeping circuit is presented. This sweeper completes a probe trace in 1.4 ms and has a maximum probe current capability of 5 A. It is suitable for pulsemode plasma operation with density greater than 10/sup 12/ ions/cm/sup 3/.

  10. Scanning Probe Microscopy and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wiesendanger, Roland

    1994-09-01

    Preface; List of acronyms; Introduction; Part I. Experimental Methods and Theoretical Background of Scanning Probe Microscopy and Spectroscopy: 1. Scanning tunnelling microscopy; 2. Scanning force microscopy; 3. Related scanning probe techniques; Part II. Applications of Scanning Probe Microscopy and Spectroscopy: 4. Condensed matter physics; 5. Chemistry; 6. Organic materials; 7. Metrology and standards; 8. Nanotechnology; References; Index.

  11. Properties of Broezel static probe

    NASA Astrophysics Data System (ADS)

    Gašparovič, Peter; Semrád, Karol; Cúttová, Miroslava

    2016-03-01

    The properties of flat static probe designed by Broezel and used in sailplanes are investigated for its planned use in low speed tunnel. Both the numerical CFD model and experiment in low speed wind tunnel confirm yaw insensitivity of the static pressure measured by the probe. The results indicate that the probe is sufficiently accurate for its planned use in wind tunnel measurements.

  12. Droplet monitoring probe

    NASA Technical Reports Server (NTRS)

    Baughman, J. R.; Thys, P. C.

    1973-01-01

    A droplet monitoring system is disclosed for analysis of mixed-phase fluid flow in development of gas turbines. The system uses a probe comprising two electrical wires spaced a known distance apart and connected at one end to means for establishing a dc potential between the wires. A drop in the fluid stream momentarily contacting both wires simultaneously causes and electrical signal which is amplified, detected and counted.

  13. Space Probe Launch

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Managed by Marshall Space Flight Center, the Space Tug was a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug was capable of numerous space applications. This 1970 artist's concept depicts the Tug's propulsion module launching a space probe into lunar orbit.

  14. Cosmological probes of gravity

    NASA Astrophysics Data System (ADS)

    Rassat, Anais Marie Melanie

    This Thesis is concerned with two cosmological probes of linear gravity. The first relates to Large Scale Structure (LSS) in the Universe, probed by galaxy surveys. The second to temperature anisotropics of the Cosmic Microwave Background (CMB), probed by the Wilkinson Microwave Anisotropy Map (WMAP). Both probe the matter and dark energy distributions in the Universe and can be used to test general relativity. The first part of this Thesis (Chapters 2 to 4) is concerned with the analysis of galaxy clustering in redshift space. The second part (Chapters 5 to 7) is concerned with the Integrated Sachs-Wolfe (ISW) effect using LSS-CMB cross-correlations. Chapter 1 introduces the cosmological theory and overviews the subsequent chapters. Chapter 2 gives a review of recent results from the 2 Micron All-Sky Survey (2MASS) and its Redshift Survey (2MRS). It includes work published in Erdogdu (a) et al. (2006) and Erdogdu (b) et al. (2006). Chapter 3 quantifies the clustering of 2MRS galaxies in redshift space. Chapter 4 uses results from Chapter 3 to constrain cosmological parameters. A selection of work from Chapters 3 and 4 will shortly become available in Rassat et al. (2008), entitled 'Redshift Space Analysis of 2MRS'. Chapter 5 overviews the late-time Integrated Sachs-Wolfe effect (ISW) and cross- correlations between the LSS and the CMB. Chapter 6 is also published in Rassat et al. (2007), entitled "Cross-correlation of 2MASS and WMAP3: Implications for the Integrated Sachs-Wolfe effect". It investigates a detection of the ISW effect and correlations which may affect statistical isotropy in the CMB ('Axis of Evil'). Chapter 7 uses the ISW effect to forecast constraints on dark energy parameters and general modifications of general relativity for the next generation of galaxy surveys, particularly the Dark UNiverse Explorer (DUNE) and the Dark Energy Survey (DES). Chapter 8 presents the overall conclusions of this Thesis. Chapter 9 discusses possible extensions to

  15. Ultrafast scanning probe microscopy

    SciTech Connect

    Botkin, D.; Weiss, S.; Ogletree, D.F.; Salmeron, M.; Chemla, D.S.

    1994-01-01

    The authors have developed a general technique which combines the temporal resolution of ultrafast laser spectroscopy with the spatial resolution of scanned probe microscopy (SPM). Using this technique with scanning tunneling microscopy (STM), they have obtained simultaneous 2 ps time resolution and 50 {angstrom} spatial resolution. This improves the time resolution currently attainable with STM by nine orders of magnitude. The potential of this powerful technique for studying ultrafast dynamical phenomena on surfaces with atomic resolution is discussed.

  16. Gravity Probe B Inspection

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)

  17. Phoenix Conductivity Probe

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image taken by the Surface Stereo Imager on Sol 49, or the 49th Martian day of the mission (July 14, 2008), shows thermal and electrical conductivity probe on NASA's Phoenix Mars Lander's Robotic Arm.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. Galileo probe relay receiver

    NASA Technical Reports Server (NTRS)

    Prouty, D. A.; Von Der Embse, U. A.

    1982-01-01

    For the Jovian mission, the data link from the Galileo probe to the orbiter uses suppressed-carrier Manchester encoded BPSK modulation and is protected with R = 1/2, K = 7 convolutional coding. The receiver closes the link by acquiring, tracking, and demodulating the data. It has to operate in a highly stressed environment with severe frequency offset, frequency rate, wind gust, and antenna spin conditions. Salient features are described and breadboard test data presented.

  19. Analytical investigation into the resonance frequencies of a curling probe

    NASA Astrophysics Data System (ADS)

    Arshadi, Ali; Brinkmann, Ralf Peter

    2016-08-01

    The term ‘active plasma resonance spectroscopy’ (APRS) denotes a class of closely related plasma diagnostic methods which utilize the natural ability of plasmas to resonate on or near the electron plasma frequency {ω\\text{pe}} ; an electrical radio frequency signal (in the GHz range) is coupled into the plasma via an antenna or a probe, the spectral response is recorded and a mathematical model is employed to determine plasma parameters such as the plasma density and the electron temperature. The curling probe, recently invented by Liang et al (2011 Appl. Phys. Express 4 066101), is a novel realization of the APRS concept which has many practical advantages. In particular, it can be miniaturized and flatly embedded into the chamber wall, thus allowing the monitoring of plasma processes without contamination nor disturbance. Physically, the curling probe can be understood as a ‘coiled’ form of the hairpin probe (Stenzel 1976 Rev. Sci. Instrum. 47 603). Assuming that the spiralization of the probe has little electrical effect, this paper investigates the characteristcs of a ‘straightened’ curling probe by modeling it as an infinite slot-type resonator that is in direct contact with the plasma. The diffraction of an incident plane wave at the slot is calculated by solving the cold plasma model and Maxwell’s equations simultaneously. The resonance frequencies of the probe are derived and are found to be in good agreement with the numerical results of the probe inventors.

  20. Three-dimensional broadband intensity probe for measuring acoustical parameters

    NASA Astrophysics Data System (ADS)

    Miah, Khalid Hossain

    Measuring different acoustical properties have been the key in reducing noise and improving the sound quality from various sources. In this report, a broadband (200 Hz -- 6.5 kHz) three-dimensional seven-microphone intensity probe system is developed to measure the sound intensity, and total energy density in different acoustical environments. Limitations of most commercial intensity probes in measuring the three-dimensional intensity for a broadband sound field was the main motivation in developing this probe. The finite-difference error and the phase mismatch error which are the two main errors associated with the intensity measurements are addressed in this report. As for the physical design, seven microphones were arranged in a two-concentric arrays with one microphone located at the center of the probe. The outer array is for low-frequencies (200 Hz -- 1.0 kHz), and the inner one is for high-frequencies (1.0 kHz -- 6.5 kHz). The screw adjustable center microphone is used for the microphone calibration, and as the reference microphone of the probe. The simultaneous calibrations of all the microphones in the probe were done in the anechoic room. Theories for the intensity and the energy densities calculations for the probe were derived from the existing four-microphone probe configuration. Reflection and diffraction effects on the intensity measurements due to the presence of the microphones, and the supporting structures were also investigated in this report. Directivity patterns of the calculated intensity showed the omnidirectional nature of the probe. The intensity, and total energy density were calculated and compared with the ideal values in the anechoic room environment. Characterization of sound fields in a reverberant enclosed space, and sound source identification are some applications that were investigated using this probe. Results of different measurements showed effectiveness of the probe as a tool to measure key acoustical properties in many

  1. Icing Sensor Probe

    NASA Technical Reports Server (NTRS)

    Emery, Edward; Kok, Gregory L.

    2002-01-01

    Aircraft icing is a serious safety problem for the general aviation and some commuter transport airplanes. There has been tremendous growth in the commuter aviation industry in the last few years, Since these type of aircraft generally operate at lower altitudes they consequently spend a far greater proportion of their time operating in icing conditions. For the past thirty years airborne and ground based facilities have relied primarily on two types of cloud physics instrumentation to measure the characteristics of icing clouds: hot wire liquid water content probes and laser based particle sizing probes for the measurement of water droplet size. The instrumentation is severely limited by the technology that was developed during the 1970's and is quite large in size. The goal of this research is to develop one instrument with a wide bandwidth, better response time, higher resolution, user selectability, and small and lightweight. NASA Glenn Research Center, Droplet Measurement Technology, and Meteorology Society of Canada have developed a collaborative effort to develop such an instrument. This paper describes the development and test results of the prototype Icing Sensor Probe.

  2. Nanoscale thermal probing

    PubMed Central

    Yue, Yanan; Wang, Xinwei

    2012-01-01

    Nanoscale novel devices have raised the demand for nanoscale thermal characterization that is critical for evaluating the device performance and durability. Achieving nanoscale spatial resolution and high accuracy in temperature measurement is very challenging due to the limitation of measurement pathways. In this review, we discuss four methodologies currently developed in nanoscale surface imaging and temperature measurement. To overcome the restriction of the conventional methods, the scanning thermal microscopy technique is widely used. From the perspective of measuring target, the optical feature size method can be applied by using either Raman or fluorescence thermometry. The near-field optical method that measures nanoscale temperature by focusing the optical field to a nano-sized region provides a non-contact and non-destructive way for nanoscale thermal probing. Although the resistance thermometry based on nano-sized thermal sensors is possible for nanoscale thermal probing, significant effort is still needed to reduce the size of the current sensors by using advanced fabrication techniques. At the same time, the development of nanoscale imaging techniques, such as fluorescence imaging, provides a great potential solution to resolve the nanoscale thermal probing problem. PMID:22419968

  3. Molecular dynamics as observed with probes of different dimensions in thin polymer films

    NASA Astrophysics Data System (ADS)

    Zhao, Jiang; Zhang, Hao; Yang, Jingfa; Wang, Fuyi; Liu, Di

    Rotational motion of individual fluorescence molecules doped in thin films of poly vinylacetate (PVAc) was monitored by single molecule fluorescence de-focus microscopy. Perylendiimide and its derivatives of different dimension were chosen as probes for local dynamics. The results demonstrate that the local vibration mode detected by different molecules probe depends on dimension of the probes - the larger probes the lower frequency. The population of rotating probes is found to increase with temperature elevation, depending on the molecular dimension as well. The comparison of the results with thermo-dynamic measurements helps to shed new light on the physical picture of glass transition. Supported by MoST of China.

  4. Langmuir Probe Distortions and Probe Compensation in an Inductively Coupled Plasma

    NASA Technical Reports Server (NTRS)

    Ji, J. S.; Cappelli, M. A.; Kim, J. S.; Rao, M. V. V. S.; Sharma, S. P.

    1999-01-01

    In many RF discharges, Langmuir probe measurements are usually made against a background of sinusoidal (and not so sinusoidal) fluctuations in the plasma parameters such as the plasma potential (Vp), the electron number density (ne), and the electron temperature (Te). The compensation of sinusoidal fluctuations in Vp has been extensively studied and is relatively well understood. Less attention has been paid to the possible distortions introduced by small fluctuations in plasma density and/or plasma temperature, which may arise in the sheath and pre-sheath regions of RF discharges. Here, we present the results of a model simulation of probe characteristics subject to fluctuations in both Vp and ne. The modeling of probe distortion due to possible fluctuations in Te is less straightforward. A comparison is presented of calculations with experimental measurements using a compensated and uncompensated Langmuir probe in an inductively coupled GEC reference cell plasma, operating on Ar and Ar/CF4 mixtures. The plasma parameters determined from the compensated probe characteristics are compared to previous measurements of others made in similar discharges, and to our own measurements of the average electron density derived from electrical impedance measurements.

  5. Comparative evaluation of probing depth and clinical attachment level using a manual probe and Florida probe

    PubMed Central

    Kour, Amandeep; Kumar, Ashish; Puri, Komal; Khatri, Manish; Bansal, Mansi; Gupta, Geeti

    2016-01-01

    Background: To compare and evaluate the intra- and inter-examiner efficacy and reproducibility of the first-generation manual (Williams) probe and the third-generation Florida probe in terms of measuring pocket probing depth (PD) and clinical attachment level (CAL). Materials and Methods: Forty subjects/4000 sites were included in this comparative, cross-sectional study. Group- and site-wise categorizations were done. Based on gingival index, PD, and CAL, patients were divided into four groups, i.e., periodontally healthy, gingivitis, mild to moderate periodontitis, and severe periodontitis. Further, based on these parameters, a total of 4000 sites, with 1000 sites in each category randomly selected from these 40 patients, were taken. Full mouth PD and CAL measurements were recorded with two probes, by Examiner 1 and on Ramfjord teeth by Examiner 2. Results: Full mouth and Ramfjord teeth group- and site-wise PD obtained with the manual probe by both the examiners were statistically significantly deeper than that obtained with the Florida probe. The full mouth and Ramfjord teeth mean CAL measurement by Florida probe was higher as compared to manual probe in mild to moderate periodontitis group and sites, whereas in severe periodontitis group and sites, manual probe recorded higher CAL as compared to Florida probe. Conclusion: Mean PD and CAL measurements were deeper with the manual probe as compared to the Florida probe in all the groups and sites, except for the mild-moderate periodontitis group and sites where the CAL measurements with the manual probe were less than the Florida probe. Manual probe was more reproducible and showed less interexaminer variability as compared to the Florida probe. PMID:27563204

  6. Insight into Amyloid Structure Using Chemical Probes

    PubMed Central

    Reinke, Ashley A.; Gestwicki, Jason E.

    2011-01-01

    Alzheimer’s disease (AD) is a common neurodegenerative disorder characterized by the deposition of amyloids in the brain. One prominent form of amyloid is composed of repeating units of the amyloid-β (Aβ) peptide. Over the past decade, it has become clear that these Aβ amyloids are not homogeneous; rather, they are composed of a series of structures varying in their overall size and shape and the number of Aβ peptides they contain. Recent theories suggest that these different amyloid conformations may play distinct roles in disease, although their relative contributions are still being discovered. Here, we review how chemical probes, such as congo red, thioflavin T and their derivatives, have been powerful tools for better understanding amyloid structure and function. Moreover, we discuss how design and deployment of conformationally selective probes might be used to test emerging models of AD. PMID:21457473

  7. Langmuir probe analysis in electronegative plasmas

    SciTech Connect

    Bredin, Jerome Chabert, Pascal; Aanesland, Ane

    2014-12-15

    This paper compares two methods to analyze Langmuir probe data obtained in electronegative plasmas. The techniques are developed to allow investigations in plasmas, where the electronegativity α{sub 0} = n{sub –}/n{sub e} (the ratio between the negative ion and electron densities) varies strongly. The first technique uses an analytical model to express the Langmuir probe current-voltage (I-V) characteristic and its second derivative as a function of the electron and ion densities (n{sub e}, n{sub +}, n{sub –}), temperatures (T{sub e}, T{sub +}, T{sub –}), and masses (m{sub e}, m{sub +}, m{sub –}). The analytical curves are fitted to the experimental data by adjusting these variables and parameters. To reduce the number of fitted parameters, the ion masses are assumed constant within the source volume, and quasi-neutrality is assumed everywhere. In this theory, Maxwellian distributions are assumed for all charged species. We show that this data analysis can predict the various plasma parameters within 5–10%, including the ion temperatures when α{sub 0} > 100. However, the method is tedious, time consuming, and requires a precise measurement of the energy distribution function. A second technique is therefore developed for easier access to the electron and ion densities, but does not give access to the ion temperatures. Here, only the measured I-V characteristic is needed. The electron density, temperature, and ion saturation current for positive ions are determined by classical probe techniques. The electronegativity α{sub 0} and the ion densities are deduced via an iterative method since these variables are coupled via the modified Bohm velocity. For both techniques, a Child-Law sheath model for cylindrical probes has been developed and is presented to emphasize the importance of this model for small cylindrical Langmuir probes.

  8. Langmuir probe analysis in electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Bredin, Jerome; Chabert, Pascal; Aanesland, Ane

    2014-12-01

    This paper compares two methods to analyze Langmuir probe data obtained in electronegative plasmas. The techniques are developed to allow investigations in plasmas, where the electronegativity α0 = n-/ne (the ratio between the negative ion and electron densities) varies strongly. The first technique uses an analytical model to express the Langmuir probe current-voltage (I-V) characteristic and its second derivative as a function of the electron and ion densities (ne, n+, n-), temperatures (Te, T+, T-), and masses (me, m+, m-). The analytical curves are fitted to the experimental data by adjusting these variables and parameters. To reduce the number of fitted parameters, the ion masses are assumed constant within the source volume, and quasi-neutrality is assumed everywhere. In this theory, Maxwellian distributions are assumed for all charged species. We show that this data analysis can predict the various plasma parameters within 5-10%, including the ion temperatures when α0 > 100. However, the method is tedious, time consuming, and requires a precise measurement of the energy distribution function. A second technique is therefore developed for easier access to the electron and ion densities, but does not give access to the ion temperatures. Here, only the measured I-V characteristic is needed. The electron density, temperature, and ion saturation current for positive ions are determined by classical probe techniques. The electronegativity α0 and the ion densities are deduced via an iterative method since these variables are coupled via the modified Bohm velocity. For both techniques, a Child-Law sheath model for cylindrical probes has been developed and is presented to emphasize the importance of this model for small cylindrical Langmuir probes.

  9. Kinetic Description of the Impedance Probe

    NASA Astrophysics Data System (ADS)

    Oberrath, Jens; Lapke, Martin; Mussenbrock, Thomas; Brinkmann, Ralf

    2011-10-01

    Active plasma resonance spectroscopy is a well known diagnostic method. Many concepts of this method are theoretically investigated and realized as a diagnostic tool, one of which is the impedance probe (IP). The application of such a probe in plasmas with pressures of a few Pa raises the question whether kinetic effects have to be taken into account or not. To address this question a kinetic model is necessary. A general kinetic model for an electrostatic concept of active plasma spectroscopy was presented by R.P. Brinkmann and can be used to describe the multipole resonance probe (MRP). In principle the IP is interpretable as a special case of the MRP in lower order. Thus, we are able to describe the IP by the kinetic model of the MRP. Based on this model we derive a solution to investigate the influence of kinetic effects to the resonance behavior of the IP. Active plasma resonance spectroscopy is a well known diagnostic method. Many concepts of this method are theoretically investigated and realized as a diagnostic tool, one of which is the impedance probe (IP). The application of such a probe in plasmas with pressures of a few Pa raises the question whether kinetic effects have to be taken into account or not. To address this question a kinetic model is necessary. A general kinetic model for an electrostatic concept of active plasma spectroscopy was presented by R.P. Brinkmann and can be used to describe the multipole resonance probe (MRP). In principle the IP is interpretable as a special case of the MRP in lower order. Thus, we are able to describe the IP by the kinetic model of the MRP. Based on this model we derive a solution to investigate the influence of kinetic effects to the resonance behavior of the IP. The authors acknowledge the support by the Deutsche Forschungsgemeinschaft (DFG) via the Ruhr University Research School and the Federal Ministry of Education and Research in frame of the PluTO project.

  10. The MVACS Soil Temperature Probe

    NASA Astrophysics Data System (ADS)

    Wood, S. E.; Paige, D. A.; Nguyen, A.; Crisp, D.; Alleruzzo, R.; Labaw, C.; Mahoney, C.; Vargas, R.; Gunderson, H.; Braun, D.; Slostad, J.; Manvi, R.; Brown, K.; Oakes, E.

    1999-09-01

    As part of the Mars Volatiles and Climate Surveyor (MVACS) payload on Mars Polar Lander, currently on its way to a Dec. 3, 1999 landing on the south polar layered deposits, the Soil Temperature Probe (STP) will make direct measurements of the temperatures and thermophysical properties of soils and/or ices accessible by the Robotic Arm (RA). The STP consists of a thin, rigid fiberglass tube 15 cm long containing 2 platinum resistance temperature sensors; one in the metal tip which can be heated (PRT-1), and another inside the tube (PRT-2). It is mounted on the side of the scoop at the end of the RA. To make measurements, the RA places the STP in the desired location on or beneath the surface, and Robotic Arm Camera (RAC) image(s) are taken to verify its position, using ruler markings on the STP to measure its depth. The temperatures of both PRT's are recorded every 3 seconds. Data and commanding are handled through the meteorology instruments (MET) electronics package. Measurement of thermophysical properties can be done actively or passively. In active mode, PRT-1 is heated at a constant rate ( 10 mW). The thermal conductivity of the surrounding soil can be derived from the asymptotic temperature rise. The thermal diffusivity (alpha ) can be derived from the transient response. In passive mode alpha can also be determined by measuring the change in the amplitude and phase of the diurnal thermal wave at different depths. The temperature and thermophysical property measurements obtained with the STP will be very useful for interpreting other MVACS observations including air temperature and humidity, the presence or absence of subsurface ice, the identity of any surface frosts (CO_2 or H_2O), and Thermal Evolved Gas Analyzer soil sample analysis. These STP measurements will also provide invaluable "ground truth" for comparison with data from orbiting spacecraft such as Mars Global Surveyor and Mars Climate Orbiter.

  11. PROcess Based Diagnostics PROBE

    NASA Technical Reports Server (NTRS)

    Clune, T.; Schmidt, G.; Kuo, K.; Bauer, M.; Oloso, H.

    2013-01-01

    Many of the aspects of the climate system that are of the greatest interest (e.g., the sensitivity of the system to external forcings) are emergent properties that arise via the complex interplay between disparate processes. This is also true for climate models most diagnostics are not a function of an isolated portion of source code, but rather are affected by multiple components and procedures. Thus any model-observation mismatch is hard to attribute to any specific piece of code or imperfection in a specific model assumption. An alternative approach is to identify diagnostics that are more closely tied to specific processes -- implying that if a mismatch is found, it should be much easier to identify and address specific algorithmic choices that will improve the simulation. However, this approach requires looking at model output and observational data in a more sophisticated way than the more traditional production of monthly or annual mean quantities. The data must instead be filtered in time and space for examples of the specific process being targeted.We are developing a data analysis environment called PROcess-Based Explorer (PROBE) that seeks to enable efficient and systematic computation of process-based diagnostics on very large sets of data. In this environment, investigators can define arbitrarily complex filters and then seamlessly perform computations in parallel on the filtered output from their model. The same analysis can be performed on additional related data sets (e.g., reanalyses) thereby enabling routine comparisons between model and observational data. PROBE also incorporates workflow technology to automatically update computed diagnostics for subsequent executions of a model. In this presentation, we will discuss the design and current status of PROBE as well as share results from some preliminary use cases.

  12. A highly selective fluorogenic probe for the detection and in vivo imaging of Cu/Zn superoxide dismutase† †Electronic supplementary information (ESI) available: Structures and characterisation for all MK compounds. Full characterisation data (NMR, HR-MS) for all SODO derivatives. See DOI: 10.1039/c6cc00095a Click here for additional data file.

    PubMed Central

    Er, Jun Cheng; Jiang, Hao; Li, Xin; Luo, Zhaofeng; Ramezani, Thomas; Feng, Yi; Tang, Mui Kee; Chang, Young-Tae

    2016-01-01

    Copper/zinc superoxide dismutase (Cu/Zn SOD) is an essential enzyme that protects tissue from oxidative damage. Herein we report the first fluorogenic probe (SODO) for the detection and in vivo imaging of Cu/Zn SOD. SODO represents a unique chemical probe for translational imaging studies of Cu/Zn SOD in inflammatory disorders. PMID:26940443

  13. Experimental probes of axions

    SciTech Connect

    Chou, Aaron S.; /Fermilab

    2009-10-01

    Experimental searches for axions or axion-like particles rely on semiclassical phenomena resulting from the postulated coupling of the axion to two photons. Sensitive probes of the extremely small coupling constant can be made by exploiting familiar, coherent electromagnetic laboratory techniques, including resonant enhancement of transitions using microwave and optical cavities, Bragg scattering, and coherent photon-axion oscillations. The axion beam may either be astrophysical in origin as in the case of dark matter axion searches and solar axion searches, or created in the laboratory from laser interactions with magnetic fields. This note is meant to be a sampling of recent experimental results.

  14. Vacuum probe surface sampler

    NASA Technical Reports Server (NTRS)

    Zahlava, B. A. (Inventor)

    1973-01-01

    A vacuum probe surface sampler is described for rapidly sampling relatively large surface areas which possess relatively light loading densities of micro-organism, drug particles or the like. A vacuum head with a hollow handle connected to a suitable vacuum source is frictionally attached to a cone assembly terminating in a flared tip adapted to be passed over the surface to be sampled. A fine mesh screen carried by the vacuum head provides support for a membrane filter which collects the microorganisms or other particles. The head assembly is easily removed from the cone assembly without contacting the cone assembly with human hands.

  15. Assessing expected accuracy of probe vehicle travel time reports

    SciTech Connect

    Hellinga, B.; Fu, L.

    1999-12-01

    The use of probe vehicles to provide estimates of link travel times has been suggested as a means of obtaining travel times within signalized networks for use in advanced travel information systems. Past research in the literature has proved contradictory conclusions regarding the expected accuracy of these probe-based estimates, and consequently has estimated different levels of market penetration of probe vehicles required to sustain accurate data within an advanced traveler information system. This paper examines the effect of sampling bias on the accuracy of the probe estimates. An analytical expression is derived on the basis of queuing theory to prove that bias in arrival time distributions and/or in the proportion of probes associated with each link departure turning movement will lead to a systematic bias in the sample estimate of the mean delay. Subsequently, the potential for and impact of sampling bias on a signalized link is examined by simulating an arterial corridor. The analytical derivation and the simulation analysis show that the reliability of probe-based average link travel times is highly affected by sampling bias. Furthermore, this analysis shows that the contradictory conclusions of previous research are directly related to the presence of absence of sample bias.

  16. Method and means for a spatial and temporal probe for laser-generated plumes based on density gradients

    DOEpatents

    Yeung, E.S.; Chen, G.

    1990-05-01

    A method and means are disclosed for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived. 15 figs.

  17. Method and means for a spatial and temporal probe for laser-generated plumes based on density gradients

    DOEpatents

    Yeung, Edward S.; Chen, Guoying

    1990-05-01

    A method and means for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived.

  18. Probing magnons with RIXS

    NASA Astrophysics Data System (ADS)

    Ament, Lucas; Ghiringhelli, Giacomo; Moretti Sala, Marco; Braicovich, Lucio; van den Brink, Jeroen

    2010-03-01

    Resonant Inelastic X-ray Scattering (RIXS) at the copper L and M edge can probe single spin-flips, which makes it possible to probe the dispersion of magnetic excitations (for instance magnons) of cuprates such as the high Tc superconductors [1]. The cross section factors into a local, atomic spin flip scattering amplitude and a momentum dependent factor describing the final state excitation. Recently, the single magnon dispersion has been measured and found to coincide with earlier neutron measurements [2]. For the cuprates, these results put RIXS as a technique on the same footing as neutron scattering, opening a new window for experiments on this class of materials. [1] L.J.P. Ament, G. Ghiringhelli, M. Moretti Sala, L. Braicovich, and J. van den Brink, PRL 103, 117003 (2009) [2] L. Braicovich, J. van den Brink, V. Bisogni, M. Moretti Sala, L.J.P. Ament, N.B. Brookes, G.M. De Luca, M. Salluzzo, T. Schmitt, and G. Ghiringhelli, arXiv:0911.0621

  19. Modeling the Insertion Mechanics of Flexible Neural Probes Coated with Sacrificial Polymers for Optimizing Probe Design.

    PubMed

    Singh, Sagar; Lo, Meng-Chen; Damodaran, Vinod B; Kaplan, Hilton M; Kohn, Joachim; Zahn, Jeffrey D; Shreiber, David I

    2016-01-01

    -designed to ensure successful insertion. Probability color maps were generated to visually compare the influence of design parameters. Statistical metrics derived from the color maps and multi-variable regression analysis confirmed that coating thickness and probe length were the most important features in influencing insertion potential. The model also revealed the effects of manufacturing flaws on insertion potential. PMID:26959021

  20. Modeling the Insertion Mechanics of Flexible Neural Probes Coated with Sacrificial Polymers for Optimizing Probe Design

    PubMed Central

    Singh, Sagar; Lo, Meng-Chen; Damodaran, Vinod B.; Kaplan, Hilton M.; Kohn, Joachim; Zahn, Jeffrey D.; Shreiber, David I.

    2016-01-01

    -designed to ensure successful insertion. Probability color maps were generated to visually compare the influence of design parameters. Statistical metrics derived from the color maps and multi-variable regression analysis confirmed that coating thickness and probe length were the most important features in influencing insertion potential. The model also revealed the effects of manufacturing flaws on insertion potential. PMID:26959021

  1. Langmuir probe analysis of highly electronegative plasmas

    SciTech Connect

    Bredin, Jerome; Chabert, Pascal; Aanesland, Ane

    2013-04-15

    A Langmuir probe analysis of highly electronegative plasmas is proposed. Analytical models are used to fit the IV-characteristics and their second derivatives above and below the plasma potential. Ion and electron densities are obtained for {alpha} (negative ion to electron density ratio) up to 3000, and the temperature of negative and positive ions is obtained for {alpha} ranging from 100 to 3000. The transport across a localized magnetic barrier is studied using this technique. It is shown that an ion-ion (electron free) plasma is formed downstream from the barrier at the highest magnetic field.

  2. Current perspectives on RNA secondary structure probing.

    PubMed

    Kenyon, Julia; Prestwood, Liam; Lever, Andrew

    2014-08-01

    The range of roles played by structured RNAs in biological systems is vast. At the same time as we are learning more about the importance of RNA structure, recent advances in reagents, methods and technology mean that RNA secondary structural probing has become faster and more accurate. As a result, the capabilities of laboratories that already perform this type of structural analysis have increased greatly, and it has also become more widely accessible. The present review summarizes established and recently developed techniques. The information we can derive from secondary structural analysis is assessed, together with the areas in which we are likely to see exciting developments in the near future. PMID:25110033

  3. Effect of filament supports on emissive probe measurements

    NASA Astrophysics Data System (ADS)

    Wang, X.; Howes, C. T.; Horányi, M.; Robertson, S.

    2013-01-01

    We have constructed an emissive probe with a thin tungsten filament spot-welded across two nickel wires insulated with ceramic paint. We show that the ceramic supports covering the nickel wires have a large effect on the potential measurements in low-density plasmas. It is found that the potential measured by the emissive probe is more negative than the potential derived from a Langmuir probe current-voltage (I-V) characteristic curve when the plasma density is so low that the emitting filament remains immersed in the sheaths of the ceramic supports. The length of the filament L needs to be larger than about 2 Debye lengths (L > 2λDe) in order to avoid the influence of the ceramic supports and to achieve reliable plasma potential measurements using emissive probes.

  4. Effect of filament supports on emissive probe measurements

    SciTech Connect

    Wang, X.; Howes, C. T.; Horanyi, M.; Robertson, S.

    2013-01-15

    We have constructed an emissive probe with a thin tungsten filament spot-welded across two nickel wires insulated with ceramic paint. We show that the ceramic supports covering the nickel wires have a large effect on the potential measurements in low-density plasmas. It is found that the potential measured by the emissive probe is more negative than the potential derived from a Langmuir probe current-voltage (I-V) characteristic curve when the plasma density is so low that the emitting filament remains immersed in the sheaths of the ceramic supports. The length of the filament L needs to be larger than about 2 Debye lengths (L > 2{lambda}{sub De}) in order to avoid the influence of the ceramic supports and to achieve reliable plasma potential measurements using emissive probes.

  5. Calibration of a cylindrical RF capacitance probe. [for ionospheric plasma effects on Radio Astronomy Explorer 1 antenna

    NASA Technical Reports Server (NTRS)

    Mosier, S. R.; Kaiser, M. L.

    1975-01-01

    Ambient electron concentrations derived from observations with the Radio Astronomy Explorer 1 antenna capacitance probe have been compared with upper hybrid resonance measurements from the same spacecraft. From this comparison an empirical correction factor for the capacitance probe measurements has been derived. The differences between the two types of measurements is attributed to sheath effects.

  6. Development and Application of Multiple-Probe Scanning Probe Microscopes

    SciTech Connect

    Nakayama, T.; Kubo, O.; Shingaya, Y.; Higuchi, S.; Hasegawa, T.; Jiang, C. S.; Okuda, T.; Kuwahara, Y.; Takami, K.; Aono, M.

    2012-04-03

    the research of advanced materials based on nanoscience and nanotechnology, it is often desirable to measure nanoscale local electrical conductivity at a designated position of a given sample. For this purpose, multiple-probe scanning probe microscopes (MP-SPMs), in which two, three or four scanning tunneling microscope (STM) or atomic force microscope (AFM) probes are operated independently, have been developed. Each probe in an MP-SPM is used not only for observing high-resolution STM or AFM images but also for forming an electrical contact enabling nanoscale local electrical conductivity measurement. The world's first double-probe STM (DP-STM) developed by the authors, which was subsequently modified to a triple-probe STM (TP-STM), has been used to measure the conductivities of one-dimensional metal nanowires and carbon nanotubes and also two-dimensional molecular films. A quadruple-probe STM (QP-STM) has also been developed and used to measure the conductivity of two-dimensional molecular films without the ambiguity of contact resistance between the probe and sample. Moreover, a quadruple-probe AFM (QP-AFM) with four conductive tuning-fork-type self-detection force sensing probes has been developed to measure the conductivity of a nanostructure on an insulating substrate. A general-purpose computer software to control four probes at the same time has also been developed and used in the operation of the QP-AFM. These developments and applications of MP-SPMs are reviewed in this paper.

  7. Complex derivatives

    NASA Astrophysics Data System (ADS)

    Battiston, Stefano; Caldarelli, Guido; Georg, Co-Pierre; May, Robert; Stiglitz, Joseph

    2013-03-01

    The intrinsic complexity of the financial derivatives market has emerged as both an incentive to engage in it, and a key source of its inherent instability. Regulators now faced with the challenge of taming this beast may find inspiration in the budding science of complex systems.

  8. Variable path length spectrophotometric probe

    DOEpatents

    O'Rourke, Patrick E.; McCarty, Jerry E.; Haggard, Ricky A.

    1992-01-01

    A compact, variable pathlength, fiber optic probe for spectrophotometric measurements of fluids in situ. The probe comprises a probe body with a shaft having a polished end penetrating one side of the probe, a pair of optic fibers, parallel and coterminous, entering the probe opposite the reflecting shaft, and a collimating lens to direct light from one of the fibers to the reflecting surface of the shaft and to direct the reflected light to the second optic fiber. The probe body has an inlet and an outlet port to allow the liquid to enter the probe body and pass between the lens and the reflecting surface of the shaft. A linear stepper motor is connected to the shaft to cause the shaft to advance toward or away from the lens in increments so that absorption measurements can be made at each of the incremental steps. The shaft is sealed to the probe body by a bellows seal to allow freedom of movement of the shaft and yet avoid leakage from the interior of the probe.

  9. Chemically modified nucleic acids as immunodetectable probes in hybridization experiments.

    PubMed Central

    Tchen, P; Fuchs, R P; Sage, E; Leng, M

    1984-01-01

    Guanine residues in nucleic acids can be modified by treatment with N-acetoxy-N-2-acetylaminofluorene and its 7-iodo derivative in an in vitro nonenzymatic reaction. The modified nucleic acids (ribo or deoxyribo, single or double stranded) are recognized by specific antibodies. They can be immunoprecipitated or used as probes in hybridization experiments and detected by immunochemical techniques. Images PMID:6374657

  10. Heat transfer probe

    DOEpatents

    Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

    2006-10-10

    Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

  11. Solar Probe Plus

    NASA Technical Reports Server (NTRS)

    Szabo, Adam

    2011-01-01

    The NASA Solar Probe Plus mission is planned to be launched in 2018 to study the upper solar corona with both.in-situ and remote sensing instrumentation. The mission will utilize 6 Venus gravity assist maneuver to gradually lower its perihelion to 9.5 Rs below the expected Alfven pOint to study the sub-alfvenic solar wind that is still at least partially co-rotates with the Sun. The detailed science objectives of this mission will be discussed. SPP will have a strong synergy with The ESA/NASA Solar orbiter mission to be launched a year ahead. Both missions will focus on the inner heliosphere and will have complimentary instrumentations. Strategies to exploit this synergy will be also presented.

  12. New probe of naturalness.

    PubMed

    Craig, Nathaniel; Englert, Christoph; McCullough, Matthew

    2013-09-20

    Any new scalar fields that perturbatively solve the hierarchy problem by stabilizing the Higgs boson mass also generate new contributions to the Higgs boson field-strength renormalization, irrespective of their gauge representation. These new contributions are physical, and in explicit models their magnitude can be inferred from the requirement of quadratic divergence cancellation; hence, they are directly related to the resolution of the hierarchy problem. Upon canonically normalizing the Higgs field, these new contributions lead to modifications of Higgs couplings that are typically great enough that the hierarchy problem and the concept of electroweak naturalness can be probed thoroughly within a precision Higgs boson program. Specifically, at a lepton collider this can be achieved through precision measurements of the Higgs boson associated production cross section. This would lead to indirect constraints on perturbative solutions to the hierarchy problem in the broadest sense, even if the relevant new fields are gauge singlets. PMID:24093250

  13. Trapping and Probing Antihydrogen

    SciTech Connect

    Wurtele, Jonathan

    2013-03-27

    Precision spectroscopy of antihydrogen is a promising path to sensitive tests of CPT symmetry. The most direct route to achieve this goal is to create and probe antihydrogen in a magnetic minimum trap. Antihydrogen has been synthesized and trapped for 1000s at CERN by the ALPHA Collaboration. Some of the challenges associated with achieving these milestones will be discussed, including mixing cryogenic positron and antiproton plasmas to synthesize antihydrogen with kinetic energy less than the trap potential of .5K. Recent experiments in which hyperfine transitions were resonantly induced with microwaves will be presented. The opportunity for gravitational measurements in traps based on detailed studies of antihydrogen dynamics will be described. The talk will conclude with a discussion future antihydrogen research that will use a new experimental apparatus, ALPHA-I.

  14. Nondestructive Test Probe

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under the Aircraft Structural Integrity program, Langley Research Center invented a device to detect fatigue cracks in aluminum alloy plates. Krautkramer Branson obtained an exclusive license and commercialized a hand-held device, the "CrackFinder," an electromagnetic probe for nondestructive evaluation, used to scan aircraft skins for surface breaks. The technology involves an eddy current, which is an electrical current induced by an alternating magnetic field. The CrackFinder also employs an innovative self-nulling feature, where the device automatically recalibrates to zero so that each flaw detected produces a reading. Compared to conventional testing systems, the CrackFinder is affordable, small, simple to use, and needs no calibration.

  15. Advanced Langmuir Probe (LP)

    NASA Technical Reports Server (NTRS)

    Voronka, N. R.; Block, B. P.; Carignan, G. R.

    1991-01-01

    The dynamic response of the MK-2 version of the Langmuir probe amplifier was studied. The settling time of the step response is increased by: (1) stray node-to-ground capacitance at series connections between high value feedback resistors; and (2) input capacitance due to the input cable, FET switches, and input source follower. The stray node-to-ground capacitances can be reduced to tolerable levels by elevating the string of feedback resistors above the printing board. A new feedback network was considered, with promising results. The design uses resistances having much lower nominal values, thereby minimizing the effect of stray capacitances. Faster settling times can be achieved by using an operational amplifier having a higher gain-bandwidth product.

  16. Single Probes, Double Probes, and the Structure of Memory Traces.

    ERIC Educational Resources Information Center

    Bruce, Darryl

    1980-01-01

    Memory for names was queried by single probes consisting of conceptual information about the persons or by double probes combining two single cues. Results were viewed as consistent with Jones's fragmentation hypothesis and with the general class of associative theories of memory. (Author/RD)

  17. Small rocket tornado probe

    SciTech Connect

    Colgate, S.A.

    1982-01-01

    A (less than 1 lb.) paper rock tornado probe was developed and deployed in an attempt to measure the pressure, temperature, ionization, and electric field variations along a trajectory penetrating a tornado funnel. The requirements of weight and materials were set by federal regulations and a one-meter resolution at a penetration velocity of close to Mach 1 was desired. These requirements were achieved by telemetering a strain gage transducer for pressure, micro size thermister and electric field, and ionization sensors via a pulse time telemetry to a receiver on board an aircraft that digitizes a signal and presents it to a Z80 microcomputer for recording on mini-floppy disk. Recording rate was 2 ms for 8 channels of information that also includes telemetry rf field strength, magnetic field for orientation on the rocket, zero reference voltage for the sensor op amps as well as the previously mentioned items also. The absolute pressure was recorded. Tactically, over 120 h were flown in a Cessna 210 in April and May 1981, and one tornado was encountered. Four rockets were fired at this tornado, missed, and there were many equipment problems. The equipment needs to be hardened and engineered to a significant degree, but it is believed that the feasibility of the probe, tactics, and launch platform for future tornado work has been proven. The logistics of thunderstorm chasing from a remote base in New Mexico is a major difficulty and reliability of the equipment another. Over 50 dummy rockets have been fired to prove trajectories, stability, and photographic capability. Over 25 electronically equipped rockets have been fired to prove sensors transmission, breakaway connections, etc. The pressure recovery factor was calibrated in the Air Force Academy blow-down tunnel. There is a need for more refined engineering and more logistic support.

  18. Adaptive scanning probe microscopies

    SciTech Connect

    Swartzentruber, B.S.; Bouchard, A.M.; Osbourn, G.C.

    1997-02-01

    This work is comprised of two major sections. In the first section the authors develop multivariate image classification techniques to distinguish and identify surface electronic species directly from multiple-bias scanning tunneling microscope (STM) images. Multiple measurements at each site are used to distinguish and categorize inequivalent electronic or atomic species on the surface via a computerized classification algorithm. Then, comparison with theory or other suitably chosen experimental data enables the identification of each class. They demonstrate the technique by analyzing dual-polarity constant-current topographs of the Ge(111) surface. Just two measurements, negative- and positive-bias topography height, permit pixels to be separated into seven different classes. Labeling four of the classes as adatoms, first-layer atoms, and two inequivalent rest-atom sites, they find excellent agreement with the c(2 x 8) structure. The remaining classes are associated with structural defects and contaminants. This work represents a first step toward developing a general electronic/chemical classification and identification tool for multivariate scanning probe microscopy imagery. In the second section they report measurements of the diffusion of Si dimers on the Si(001) surface at temperatures between room temperature and 128 C using a novel atom-tracking technique that can resolve every diffusion event. The atom tracker employs lateral-positioning feedback to lock the STM probe tip into position above selected atoms with sub-Angstrom precision. Once locked the STM tracks the position of the atoms as they migrate over the crystal surface. By tracking individual atoms directly, the ability of the instrument to measure dynamic events is increased by a factor of {approximately} 1,000 over conventional STM imaging techniques.

  19. Further analysis of focusing performance of an ultra-small gradient-index fiber probe

    NASA Astrophysics Data System (ADS)

    Wang, Chi; Bi, Shubo; Xia, Xueqin; Yu, Yingjie

    2014-01-01

    In order to optimize ultra-small gradient-index (GRIN) fiber probes and provide a theoretical prediction for the fabrication of such probes with high performance, focusing performance of the GRIN fiber probe is further analyzed based on the optical characteristic parameters. According to the optical model of the GRIN fiber probe and its mathematical expressions of characteristic parameters, the three-dimensional (3-D) function diagram is used for analyzing the impact of the lengths of probe components on the characteristic parameters. Partial derivatives of the mathematical expressions of characteristics are derived to analyze the mutation of focusing performance caused by the different lengths of probe components. According to the analytical results, our predictions suggest that focusing performance could be reflected through the 3-D function diagram between the characteristic parameters and the continuous change of the lengths of probe components. In addition, mutation occurs in the focusing performance of the GRIN fiber probe when the length of probe components changes. The research results are of practical guiding significance for the fabrication of GRIN fiber probes requiring specific optical focusing performance.

  20. Magnetic circuitry mutual coupling probe

    NASA Technical Reports Server (NTRS)

    Anthony, P. L.

    1972-01-01

    Development of magnetic probe for nondestructive testing of multilayer printed circuit boards to determine existence of opens or shorts is reported. Components of probe are described and procedures for operation are discussed. Two illustrations are provided to show magnetic circuits and principles of operation.

  1. Synergy Between probes and Orbiter

    NASA Technical Reports Server (NTRS)

    Young, Richard E.

    2005-01-01

    There are many ways in which the science return from a planetary mission is considerably enhanced by interactions between entry probes and a mission orbiter. Mission configuration aspects that are desirable include delivery of entry probes by the orbiter, and communication between probe and orbiter. Both of these mission aspects could greatly enhance access to key scientific sites that might not otherwise be accessible using delivery from say, a flyby, or employing direct communication from probes to Earth. Examples for Venus and Jupiter will be discussed. A second class of orbiter-probe interaction could better be termed direct probe-orbiter science collaboration. That would include, determining the global context of the entry probe sites from the orbiter, obtaining ground truth from the probe for remote sensing observations from the orbiter, observing the global and vertical distribution of key atmospheric trace species, and measuring the global and vertical distribution of clouds and winds. The importance of each of these items will be illustrated by particular examples.

  2. Probing Jupiter and Saturn: The prospects

    NASA Astrophysics Data System (ADS)

    Guillot, T.

    2015-10-01

    In 2016 and 2017, the interiors of Jupiter and Saturn will be probed by the Juno and Cassini missions, respectively. Both will measure the planetary gravity and magnetic fields with unprecedented accuracy. In addition, Juno will probe Jupiter's deep atmosphere by radiometry in search of its elusive water. Altogether, the observational constraints used to construct interiors models will be improved extremely significantly. In parallel, the complexity of these models has been increasing steadily, due to the realization that their central core could erode over time, that double diffusive convection could set in and that the region in which helium separates from hydrogen is probably extended. Deriving much better constraints on the central core masses and global compositions of these planets will therefore require efforts to better examine the interplay between thermal cooling, mixing of elements, interior rotation, equations of state and dynamo generation. I will review the work in this direction. I will also show how seismology can ideally complement the constraints derived from the gravity field measurements.

  3. Cobra Probes Containing Replaceable Thermocouples

    NASA Technical Reports Server (NTRS)

    Jones, John; Redding, Adam

    2007-01-01

    A modification of the basic design of cobra probes provides for relatively easy replacement of broken thermocouples. Cobra probes are standard tube-type pressure probes that may also contain thermocouples and that are routinely used in wind tunnels and aeronautical hardware. They are so named because in side views, they resemble a cobra poised to attack. Heretofore, there has been no easy way to replace a broken thermocouple in a cobra probe: instead, it has been necessary to break the probe apart and then rebuild it, typically at a cost between $2,000 and $4,000 (2004 prices). The modified design makes it possible to replace the thermocouple, in minimal time and at relatively low cost, by inserting new thermocouple wire in a tube.

  4. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, B.D.; Fought, E.R.

    1987-11-10

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface. 8 figs.

  5. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, Brian D.; Fought, Eric R.

    1987-01-01

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface.

  6. Water cooled static pressure probe

    NASA Technical Reports Server (NTRS)

    Lagen, Nicholas T. (Inventor); Eves, John W. (Inventor); Reece, Garland D. (Inventor); Geissinger, Steve L. (Inventor)

    1991-01-01

    An improved static pressure probe containing a water cooling mechanism is disclosed. This probe has a hollow interior containing a central coolant tube and multiple individual pressure measurement tubes connected to holes placed on the exterior. Coolant from the central tube symmetrically immerses the interior of the probe, allowing it to sustain high temperature (in the region of 2500 F) supersonic jet flow indefinitely, while still recording accurate pressure data. The coolant exits the probe body by way of a reservoir attached to the aft of the probe. The pressure measurement tubes are joined to a single, larger manifold in the reservoir. This manifold is attached to a pressure transducer that records the average static pressure.

  7. Thiol Reactive Probes and Chemosensors

    PubMed Central

    Peng, Hanjing; Chen, Weixuan; Cheng, Yunfeng; Hakuna, Lovemore; Strongin, Robert; Wang, Binghe

    2012-01-01

    Thiols are important molecules in the environment and in biological processes. Cysteine (Cys), homocysteine (Hcy), glutathione (GSH) and hydrogen sulfide (H2S) play critical roles in a variety of physiological and pathological processes. The selective detection of thiols using reaction-based probes and sensors is very important in basic research and in disease diagnosis. This review focuses on the design of fluorescent and colorimetric probes and sensors for thiol detection. Thiol detection methods include probes and labeling agents based on nucleophilic addition and substitution, Michael addition, disulfide bond or Se-N bond cleavage, metal-sulfur interactions and more. Probes for H2S are based on nucleophilic cyclization, reduction and metal sulfide formation. Thiol probe and chemosensor design strategies and mechanism of action are discussed in this review. PMID:23202239

  8. Rotating concave eddy current probe

    DOEpatents

    Roach, Dennis P.; Walkington, Phil; Rackow, Kirk A.; Hohman, Ed

    2008-04-01

    A rotating concave eddy current probe for detecting fatigue cracks hidden from view underneath the head of a raised head fastener, such as a buttonhead-type rivet, used to join together structural skins, such as aluminum aircraft skins. The probe has a recessed concave dimple in its bottom surface that closely conforms to the shape of the raised head. The concave dimple holds the probe in good alignment on top of the rivet while the probe is rotated around the rivet's centerline. One or more magnetic coils are rigidly embedded within the probe's cylindrical body, which is made of a non-conducting material. This design overcomes the inspection impediment associated with widely varying conductivity in fastened joints.

  9. Long duration ash probe

    DOEpatents

    Hurley, John P.; McCollor, Don P.; Selle, Stanley J.

    1994-01-01

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during sootblowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon.

  10. Active Dynamic Frictional Probes

    NASA Astrophysics Data System (ADS)

    Steimel, Joshua; Aragones, Juan; Alexander-Katz, Alfredo

    2015-03-01

    In biological systems there are a myriad of interactions occurring instantaneously and these interactions can vary drastically in the strength of the interaction, the speed at which this interaction occurs, and the duration of the interaction. When multiple interactions occur any of these factors can determine which particular interaction is dominant. However, currently it is extremely difficult to measure binding affinity, Kon, and Koff rates in a relatively high throughput manner. Here we propose a novel and versatile system that will be able to detect differences in binding affinity of wide range of transient interactions and will be able to extract the relevant time scales of these interactions. Our system will utilize ferromagnetic particles that can be easily functionalized with a receptor of interest and the substrate will be coated in the corresponding ligand. A rotating magnetic field will cause particles, henceforth referred to as rollers, to rotate and this rotational motion will be converted into translational motion via the effective frictional force induced by interaction that is being probed. By measuring the translation of the rollers to a baseline, where only hydrodynamic friction occurs, we can measure the relative strength of the interactions. We can also potentially measure kinetic information by changing the frequency at which the magnetic field rotates, since changing the frequency at which the bead rotates is akin to changing the time allowed for bond formation. We will measure a wide range of interaction including ionic, metal-ion coordination, IgG-Protein A complex, and biotin-streptavidin complex.

  11. Gravity Probe B Encapsulated

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In this photo, the Gravity Probe B (GP-B) space vehicle is being encapsulated atop the Delta II launch vehicle. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).

  12. Long duration ash probe

    DOEpatents

    Hurley, J.P.; McCollor, D.P.; Selle, S.J.

    1994-07-26

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during soot blowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon. 8 figs.

  13. Scanning probe nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Dinelli, F.; Menozzi, C.; Baschieri, P.; Facci, P.; Pingue, P.

    2010-02-01

    The present paper reports on a novel lithographic approach at the nanoscale level, which is based on scanning probe microscopy (SPM) and nanoimprint lithography (NIL). The experimental set-up consists of an atomic force microscope (AFM) operated via software specifically developed for the purpose. In particular, this software allows one to apply a predefined external load for a given lapse of time while monitoring in real-time the relative distance between the tip and the sample as well as the normal and lateral force during the embossing process. Additionally, we have employed AFM tips sculptured by means of focused ion beam in order to create indenting tools of the desired shape. Anti-sticking layers can also be used to functionalize the tips if one needs to investigate the effects of different treatments on the indentation and de-molding processes. The lithographic capabilities of this set-up are demonstrated on a polystyrene NIL-patterned sample, where imprinted features have been obtained upon using different normal load values for increasing time intervals, and on a thermoplastic polymer film, where the imprint process has been monitored in real-time.

  14. Electrostatic and Electromagnetic Resonances of the Curling probe

    NASA Astrophysics Data System (ADS)

    Arshadi, Ali; Valadbeigi, Leila; Brinkmann, Ralf Peter

    2015-09-01

    The term Active Plasma Resonance Spectroscopy denotes a class of plasma diagnostic techniques utilizing the natural ability of plasma to resonate on or near the electron plasma frequency: An electric signal in the GHz range is coupled into the plasma via a probe. The spectral response of the plasma is recorded and a mathematical model is used to find plasma parameters such as the electron density. The curling probe, recently invented by Liang et al., is a novel realization of this concept which has many practical advantages. In particular, it can be miniaturized, and flatly embedded into the chamber wall, enabling monitoring of plasma processes without perturbing them. Physically, the curling probe can be seen as a ``curled'' form of the hairpin probe. Assuming that the effect of the spiralization is negligible, this work investigates the features of a ``straightened'' curling probe by modeling it as a slot-type resonator which is in contact with the plasma. The diffraction of an incident plane wave at the slot is calculated by solving Maxwell's equations and the cold plasma model simultaneously. Electrostatic and Electromagnetic resonances are derived. Good agreement of the analytically computed resonance frequencies with the numerical results of the probe inventors is shown.

  15. Non-adaptive fault diagnosis for low-degree networks via lightpath probing method

    NASA Astrophysics Data System (ADS)

    Zhang, Hang; Li, Yanhe; Guo, Yili; Zhang, Hanyi; Zheng, Xiaoping

    2008-11-01

    This paper considers the fault-diagnosis problem for low-degree all-optical networks. Failure-detection schemes which subject to topological constraints are proposed. Optical probe signals are sent in parallel along a set of designed lightpaths. The network health state is derived from the results of this end-to-end test (i.e., probe syndromes). The design objectives are to minimize the diagnosis cost which is represented by the number of probes. We obtain a lower bound of the number of the probes to identify any single link failure and implement this scheme in several networks as well.

  16. Resonance oscillation damping of a scanning microscope probe by a near-surface viscous liquid layer

    NASA Astrophysics Data System (ADS)

    Maslenikov, I. I.; Reshetov, N. V.

    2016-05-01

    Viscous liquid layer motion between a probe with a tip shaped as a paraboloid of revolution and a surface is considered for semicontact-mode operation of a scanning probe microscope. The presence of a viscous liquid layer leads to energy dissipation and is one of the factors responsible for the decrease in the probe oscillation amplitude. The Reynolds equation for viscous liquid motion is used to obtain an analytic solution to the problem. The formula derived for the loss is compared with experimental data obtained for probes and layers with various curvature radii and viscosities.

  17. Generalized gravitational entropy of probe branes: flavor entanglement holographically

    NASA Astrophysics Data System (ADS)

    Karch, Andreas; Uhlemann, Christoph F.

    2014-05-01

    The notion of generalized gravitational entropy introduced by Lewkowycz and Maldacena allows, via the AdS/CFT correspondence, to calculate CFT entanglement entropies. We adapt the method to the case where flavor branes are present and treated in the probe approximation. This allows to calculate the leading flavor correction to the CFT entanglement entropy from the on-shell action of the probe, while dealing with the backreaction is avoided entirely and from the outset. As an application we give concise derivations for the contribution of massless and massive flavor degrees of freedom to the entanglement entropy in = 4 SYM theory.

  18. Saturn Uranus atmospheric entry probe mission spacecraft system definition study

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The modifications required of the Pioneer F/G spacecraft design for it to deliver an atmospheric entry probe to the planets Saturn and Uranus are investigated. It is concluded that it is feasible to conduct such a mission within the constraints and interfaces defined. The spacecraft required to perform the mission is derived from the Pioneer F/G design, and the modifications required are generally routinely conceived and executed. The entry probe is necessarily a new design, although it draws on the technology of past, present, and imminent programs of planetary atmospheric investigations.

  19. Activity-Based Proteome Profiling Probes Based on Woodward's Reagent K with Distinct Target Selectivity.

    PubMed

    Qian, Yong; Schürmann, Marc; Janning, Petra; Hedberg, Christian; Waldmann, Herbert

    2016-06-27

    Woodward's reagent K (WRK) is a reactive heterocyclic compound that has been employed in protein chemistry to covalently and unspecifically label proteins at nucleophilic amino acids, notably at histidine and cysteine. We have developed a panel of WRK-derived activity-based probes and show that surprisingly and unexpectedly, these probes are fairly selective for a few proteins in the human proteome. The WRK-derived probes show unique reactivity towards the catalytic N-terminal proline in the macrophage migration inhibitory factor (MIF) and can be used to label and, if equipped with a fluorophore, to image MIF activities in living cells. PMID:27159346

  20. Calibration of Langmuir probes against microwaves and plasma oscillation probes

    NASA Astrophysics Data System (ADS)

    Chen, Francis F.; Evans, John D.; Zawalski, Wade

    2012-10-01

    The use of Langmuir probes for measuring plasma density is subject to uncertainty because the theories commonly used to interpret the data give widely differing results. This is especially troublesome in partially ionized plasmas used, for instance, in the semiconductor industry, since no existing theory adequately treats the case when there are a few collisions between ions and neutral atoms. In this work, plasma densities measured by microwave interferometry and plasma-oscillation probes are compared with those from probe data analyzed with Langmuir's orbital motion limited (OML) theory, the Allen-Boyd-Reynolds (ABR) theory and the Bernstein-Rabinowitz-Laframboise (BRL) theory. It is found that ABR underestimates and BRL overestimates the density, the problems being the neglect of ion orbiting in ABR and the effect of ion-neutral collisions in BRL. The best theory is either OML or the geometric mean between the ABR and BRL results. For thicker probes, other methods are suggested.

  1. Optic probe for semiconductor characterization

    DOEpatents

    Sopori, Bhushan L.; Hambarian, Artak

    2008-09-02

    Described herein is an optical probe (120) for use in characterizing surface defects in wafers, such as semiconductor wafers. The optical probe (120) detects laser light reflected from the surface (124) of the wafer (106) within various ranges of angles. Characteristics of defects in the surface (124) of the wafer (106) are determined based on the amount of reflected laser light detected in each of the ranges of angles. Additionally, a wafer characterization system (100) is described that includes the described optical probe (120).

  2. Saturn orbiter dual probe mission

    NASA Technical Reports Server (NTRS)

    Rudd, R. P.

    1978-01-01

    The described Saturn orbiter dual probe mission and spacecraft combines three systems into a multi-purpose Saturn exploration package. The spacecraft consists of: (1) Saturn orbiter; (2) Saturn probe; and (3) Titan probe or lander. This single spacecraft provides the capability to conduct in situ measurements of the Saturn and Titan atmospheres, and, possibly the Titan surface, as well as a variety of remote sensing measurements. The remote sensing capabilities will be used to study the surfaces, interiors and environments of Saturn's satellites, the rings of Saturn, Saturn's magnetosphere, and synoptic properties of Saturn's atmosphere.

  3. ESA Venus Entry Probe Study

    NASA Technical Reports Server (NTRS)

    vandenBerg, M. L.; Falkner, P.; Phipps, A.; Underwood, J. C.; Lingard, J. S.; Moorhouse, J.; Kraft, S.; Peacock, A.

    2005-01-01

    The Venus Entry Probe is one of ESA s Technology Reference Studies (TRS). The purpose of the Technology Reference Studies is to provide a focus for the development of strategically important technologies that are of likely relevance for future scientific missions. The aim of the Venus Entry Probe TRS is to study approaches for low cost in-situ exploration of Venus and other planetary bodies with a significant atmosphere. In this paper, the mission objectives and an outline of the mission concept of the Venus Entry Probe TRS are presented.

  4. Atmospheric probes: needs and prospects

    NASA Astrophysics Data System (ADS)

    Owen, Tobias

    2004-02-01

    There is only one Rosetta Stone in the Solar System; it's in the British Museum. We cannot understand the inner planets by simply studying the Earth, nor can we apprehend the giants by examining only Jupiter. Despite the stunning successes of previous probes to Venus and the Galileo probe to Jupiter, our knowledge of the atmospheres of even these two planets remains tantalizingly incomplete. We must therefore return to Venus and consider the challenge of exploring all of the outer planets with a family of identical probes, a project that could commemorater the vision of multiple worlds championed by Giordano Bruno.

  5. Floating Potential Probe Langmuir Probe Data Reduction Results

    NASA Technical Reports Server (NTRS)

    Morton, Thomas L.; Minow, Joseph I.

    2002-01-01

    During its first five months of operations, the Langmuir Probe on the Floating Potential Probe (FPP) obtained data on ionospheric electron densities and temperatures in the ISS orbit. In this paper, the algorithms for data reduction are presented, and comparisons are made of FPP data with ground-based ionosonde and Incoherent Scattering Radar (ISR) results. Implications for ISS operations are detailed, and the need for a permanent FPP on ISS is examined.

  6. Fiberoptic probe and system for spectral measurements

    DOEpatents

    Dai, S.; Young, J.P.

    1998-10-13

    A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 12 figs.

  7. Fiberoptic probe and system for spectral measurements

    DOEpatents

    Dai, Sheng; Young, Jack P.

    1998-01-01

    A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferrably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0.degree., an inverted cone-shaped probe tip, and a lens head.

  8. Integrated microfluidic probe station.

    PubMed

    Perrault, C M; Qasaimeh, M A; Brastaviceanu, T; Anderson, K; Kabakibo, Y; Juncker, D

    2010-11-01

    The microfluidic probe (MFP) consists of a flat, blunt tip with two apertures for the injection and reaspiration of a microjet into a solution--thus hydrodynamically confining the microjet--and is operated atop an inverted microscope that enables live imaging. By scanning across a surface, the microjet can be used for surface processing with the capability of both depositing and removing material; as it operates under immersed conditions, sensitive biological materials and living cells can be processed. During scanning, the MFP is kept immobile and centered over the objective of the inverted microscope, a few micrometers above a substrate that is displaced by moving the microscope stage and that is flushed continuously with the microjet. For consistent and reproducible surface processing, the gap between the MFP and the substrate, the MFP's alignment, the scanning speed, the injection and aspiration flow rates, and the image capture need all to be controlled and synchronized. Here, we present an automated MFP station that integrates all of these functionalities and automates the key operational parameters. A custom software program is used to control an independent motorized Z stage for adjusting the gap, a motorized microscope stage for scanning the substrate, up to 16 syringe pumps for injecting and aspirating fluids, and an inverted fluorescence microscope equipped with a charge-coupled device camera. The parallelism between the MFP and the substrate is adjusted using manual goniometer at the beginning of the experiment. The alignment of the injection and aspiration apertures along the scanning axis is performed using a newly designed MFP screw holder. We illustrate the integrated MFP station by the programmed, automated patterning of fluorescently labeled biotin on a streptavidin-coated surface. PMID:21133501

  9. Integrated microfluidic probe station

    NASA Astrophysics Data System (ADS)

    Perrault, C. M.; Qasaimeh, M. A.; Brastaviceanu, T.; Anderson, K.; Kabakibo, Y.; Juncker, D.

    2010-11-01

    The microfluidic probe (MFP) consists of a flat, blunt tip with two apertures for the injection and reaspiration of a microjet into a solution—thus hydrodynamically confining the microjet—and is operated atop an inverted microscope that enables live imaging. By scanning across a surface, the microjet can be used for surface processing with the capability of both depositing and removing material; as it operates under immersed conditions, sensitive biological materials and living cells can be processed. During scanning, the MFP is kept immobile and centered over the objective of the inverted microscope, a few micrometers above a substrate that is displaced by moving the microscope stage and that is flushed continuously with the microjet. For consistent and reproducible surface processing, the gap between the MFP and the substrate, the MFP's alignment, the scanning speed, the injection and aspiration flow rates, and the image capture need all to be controlled and synchronized. Here, we present an automated MFP station that integrates all of these functionalities and automates the key operational parameters. A custom software program is used to control an independent motorized Z stage for adjusting the gap, a motorized microscope stage for scanning the substrate, up to 16 syringe pumps for injecting and aspirating fluids, and an inverted fluorescence microscope equipped with a charge-coupled device camera. The parallelism between the MFP and the substrate is adjusted using manual goniometer at the beginning of the experiment. The alignment of the injection and aspiration apertures along the scanning axis is performed using a newly designed MFP screw holder. We illustrate the integrated MFP station by the programmed, automated patterning of fluorescently labeled biotin on a streptavidin-coated surface.

  10. Gravity Probe B Assembled

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In this photo, the Gravity Probe B (GP-B) space vehicle is being assembled at the Sunnyvale, California location of the Lockheed Martin Corporation. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).

  11. Preparation and Characterization of Fluorescent Derivatives of Lysozyme

    NASA Technical Reports Server (NTRS)

    Smith, Lori; Pusey, Marc

    1998-01-01

    Fluorescence is one of the most versatile and powerful tools for the study of macromolecules. However, its use in macromolecular crystal growth studies is hampered by the necessity of preparing fluorescent derivatives where the probe does not markedly affect the crystal packing. Alternatively, one can prepare derivatives of limited utility if it is known that they will not affect the specific goals of a given study. We have prepared a number of fluorescent derivatives of chicken egg white lysozyme, covalently attaching fluorescent probes to two different sites on the protein molecule. The first site is the side chain carboxyl group of ASP 101. Amine containing probes such as lucifer yellow, cascade blue, and 5- (2-aminoethyl) aminonapthalene-l-sulfonic acid (EDANS) have been attached using a carbodiimide coupling procedure. ASP 101 lies within the active site cleft, and it is believed that the probes are "buried" within that cleft. This is supported by the fact that all such derivatives have been found to crystallize, with the crystals being fluorescent. Tetragonal crystals of the lucifer yellow derivative have been found to diffract to at least 1.9 A resolution. X-ray diffraction data has been acquired and we are now working on the structure of this derivative. The second group of derivatives is to the N-terminal amine group. The derivatization reaction is performed by using a succinimidyl ester of the probe to be attached. Fluorescent probes such as pyrene acetic acid, 5-carboxyfluorescein, and Oregon green have been attached to this site. We have had little success in crystallizing these derivatives, probably because this site is part of the contact region between the 43 helix chains. However, these sites do not interfere with formation of the 43 helices and the derivatives are suitable for study of their formation in solution. The derivatives are being characterized by steady state and lifetime fluorescence methods, and the presentation will discuss these

  12. A simple levulinate-based ratiometric fluorescent probe for sulfite with a large emission shift.

    PubMed

    Liu, Caiyun; Wu, Huifang; Yang, Wen; Zhang, Xiaoling

    2014-01-01

    A simple 4-hydroxynaphthalimide-derived colorimetric and ratiometric fluorescent probe (1) containing a receptor of levulinate moiety was designed and synthesized to monitor sulfite. Probe 1 could quantificationally detect sulfite by a ratiometric fluorescence spectroscopy method with high selectivity and sensitivity. Specially, probe 1 exhibited a 100 nm red-shifted absorption spectrum along with the color changes from colorless to yellow, and 103 nm red-shifted emission spectra upon the addition of sulfite. Thus, 1 can serve as a "naked-eye" probe for sulfite. Further, the recognition mechanism of probe 1 for sulfite was confirmed using nuclear magnetic resonance and electrospray ionization mass spectrometry. Also, the preliminary practical application demonstrated that our proposed probe provided a promising method for the determination of sulfite. PMID:24813958

  13. Modelling of surface waves on a THz antenna detected by a near-field probe.

    PubMed

    Natrella, Michele; Mitrofanov, Oleg; Mueckstein, Raimund; Graham, Chris; Renaud, Cyril C; Seeds, Alwyn J

    2012-07-01

    We have modelled the experimental system based on the sub-wavelength aperture probe employed in our previous work for terahertz (THz) surface plasmon wave imaging on a bowtie antenna. For the first time we demonstrate the accuracy of the proposed interpretation of the images mapped by the probe. The very good agreement between numerical and experimental results proves that the physical quantity detected by the probe is the spatial derivative of the electric field normal component. The achieved understanding of the near-field probe response allows now a correct interpretation of the images and the distribution of the electric field to be extracted. We have also carried out the first assessment of the probe invasiveness and found that the pattern of the surface plasmon wave on the antenna is not modified significantly by the proximity of the probe. This makes the experimental system an effective tool for near-field imaging of THz antennas and other metallic structures. PMID:22772292

  14. Study of alternative probe technologies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A number of implied technologies for a deep probe mission was examined; i.e., one that would provide the capability to scientifically examine planetary atmospheres at the 1000 bar level. Conditions imposed by current Jupiter, Saturn, and Uranus atmospheric models were considered. The major thrust of the measurements was to determine lower atmosphere composition, even to trace constituents of one part per billion. Two types of instruments having the necessary accuracy to meet the science objectives were considered and integrated into a deep probe configuration. One deep probe option that resulted was identified as a Minimum Technology Development approach. The significant feature of this option is that only three technology developments are required to enable the mission, i.e., (1) science instrument development, (2) advanced data processing, and (3) external high pressure/thermal insulation. It is concluded that a probe designed for a Jupiter mission could, with minor changes, be used for a Saturn or Uranus mission.

  15. The Radiation Belt Storm Probes

    NASA Video Gallery

    The Radiation Belt Storm Probe mission (RBSP) will explore the Van Allen Radiation Belts in the Earth's magnetosphere. The charge particles in these regions can be hazardous to both spacecraft and ...

  16. A three dimensional probe positioner

    SciTech Connect

    Intrator, T.; Sun, X.; Furno, I.; Dorf, L.; Lapenta, G.

    2008-10-15

    In order to sort out the physics that is important in many plasma experiments, data in three dimensions (3D) are becoming necessary. Access to the usual cylindrical vacuum vessel is typically restricted to radially or axially insertable probes that can pivot. The space that can be explored usually has significant restrictions either because probe travel must be along a travel path, or a 'wobbly' probe positioner requires one to map between a moveable coordinate system and a preferred laboratory coordinate system. This could for example introduce errors in measurements of vector quantities such as magnetic field or flow. We describe the design and implementation of a 3D probe positioner that slides in two dimensions on a double O-ring seal and radially inserts along the third dimension. The net result is that a 3D space can be explored in a laboratory Cartesian reference frame.

  17. Monitoring probe for groundwater flow

    DOEpatents

    Looney, B.B.; Ballard, S.

    1994-08-23

    A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.

  18. Monitoring probe for groundwater flow

    DOEpatents

    Looney, Brian B.; Ballard, Sanford

    1994-01-01

    A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.

  19. The navigation of space probes

    NASA Technical Reports Server (NTRS)

    Fliegel, H. F.; Ohandley, D. A.; Zielenbach, J. W.

    1974-01-01

    A new navigational method combining electronic measurement procedures and celestial mechanics makes it possible to conduct a space probe very close to a desired point in the neighborhood of a remote planet. Approaches for the determination of the position of the space probe in space are discussed, giving attention to the effects of errors in the employed data. The application of the navigational methods in a number of space missions is also considered.

  20. Understanding of Jupiter's Atmosphere After the Galileo Probe Entry

    NASA Technical Reports Server (NTRS)

    Young, Richard E.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Instruments on the Galileo probe measured composition, cloud properties, thermal structure. winds, radiative energy balance, and electrical properties of the Jovian atmosphere. As expected the probe results confirm some expectations about Jupiter's atmosphere, refute others, and raise new questions which still remain unanswered. This talk will concentrate on those aspects of the probe observations which either raised new questions or remain unresolved. The Galileo probe observations of composition and clouds provided some of the biggest surprises of the mission. Helium abundance measured by the probe differed significantly from the remote sensing derivations from Voyager. discrepancy between the Voyager helium abundance determinations for Jupiter and the Galileo probe value have now led to a considerably increased helium determination for Saturn. Global abundance of N in the form of ammonia was observed to be supersolar by approximately the same factor as carbon, in contrast to expectations that C/N would be significantly larger than solar. This has implications for the formation and evolution of Jupiter. The cloud structure was not what was generally anticipated, even though most previous remote sensing results below the uppermost cloud referred to 5 micron hot spots, local regions with reduced cloud opacity. The Galileo probe descended in one of these hot spots. Only a tenuous, presumed ammonium hydrosulfide, cloud was detected, and no significant water cloud or super-solar water abundance was measured. The mixing ratios as a function of depth for the condensibles ammonia, hydrogen sulfide, and water, exhibited no apparent correlation with either condensation levels or with each other, an observation that is still a puzzle, although there are now dynamical models of hot spots which show promise in being able to explain such behavior. Probe tracked zonal winds show that wind magnitude increases with depth to pressures of about 4 bars, with the winds extending to

  1. Understanding of Jupiter's Atmosphere after the Galileo Probe Entry

    NASA Technical Reports Server (NTRS)

    Fonda, Mark (Technical Monitor); Young, Richard E.

    2003-01-01

    Instruments on the Galileo probe measured composition, cloud properties, thermal structure, winds, radiative energy balance, and electrical properties of the Jovian atmosphere. As expected the probe results confirm some expectations about Jupiter's atmosphere, refute others, and raise new questions which still remain unanswered. This talk will concentrate on those aspects of the probe observations which either raised new questions or remain unresolved. The Galileo probe observations of composition and clouds provided some of the biggest surprises of the mission. Helium abundance measured by the probe differed significantly from the remote sensing derivations from Voyager. Discrepancy between the Voyager helium abundance determinations for Jupiter and the Galileo probe value have now led to a considerably increased helium determination for Saturn. Global abundance of N in the form of ammonia was observed to be super-solar by approximately the same factor as carbon, in contrast to expectations that C/N would be significantly larger than solar. This has implications for the formation and evolution of Jupiter. The cloud structure was not what was generally anticipated, even though most previous remote sensing results below the uppermost cloud referred to 5 micron hot spots, local regions with reduced cloud opacity. The Galileo probe descended in one of these hot spots. Only a tenuous, presumed ammomium hydrosulfide, cloud was detected, and no significant water cloud or super-solar water abundance was measured. The mixing ratios as a function of depth for the condensibles ammonia, hydrogen sulfide, and water, exhibited no apparent correlation with either condensation levels or with each other, an observation that is still a puzzle, although there are now dynamical models of hot spots which show promise in being able to explain such behavior. Probe tracked zonal winds show that wind magnitude increases with depth to pressures of about 4 bars, with the winds extending to

  2. The Interstellar Heliopause Probe

    NASA Astrophysics Data System (ADS)

    Lyngvi, A.; Falkner, P.; Peacock, A.

    The Interstellar Heliopause Probe (IHP) is one of four Technology Reference Missions (TRM) introduced by the Planetary Exploration Studies Section of the Science Payload & Advanced Concepts Office (SCI-A) at ESA. The overall purpose of the TRMs is to focus the development of strategically important technologies of likely relevance to future science missions. This is accomplished through the study of several technologically demanding and scientifically interesting missions, which are currently not part of the ESA science programme. The TRM baseline uses small satellites (< 200kg), with highly miniaturized and highly integrated payload suites. The motivation for this is to use low resource spacecraft in a phased approach, which will reduce the risk and cost, compared to a single, high resource mission. Equipped with a Highly Integrated Payload Suite (HIPS) the IHP will answer scientific questions concerning the nature of the interstellar medium, how the interstellar medium affects our solar system and how the solar system impacts the interstellar medium. The HIPS, which is a standard element in all TRMs miniaturize through resource reduction, by using miniaturized components and sensors, and by sharing common structures and payload functionality. To achieve the scientific requirements of the mission the spacecraft is to leave the solar system as close to the heliosphere nose as possible and reach a distance of 200 AU from the Sun within 25 years. The requirement of all TRMs is to use a Souyz-Fregat version 2B or equivalent low cost launch vehicle. With this constraint no current propulsion system is capable of delivering the necessary mass to the final destination. Technologies are therefore needed to enable this mission. The current alternatives are using nuclear propulsion, either with radioisotope or reactor power system or solar sailing. All these alternatives are currently being investigated. Other challenges exist as well such as designing a communication link

  3. Temperature Correction in Probe Measurements

    NASA Astrophysics Data System (ADS)

    Gutsev, S. A.

    2015-09-01

    This work is devoted to experimental investigations of a decaying plasma using Langmuir probes. The gas pressure, the discharge current, and the moment of afterglow were selected to obtain probe characteristics in collisionless, intermediate, and drifting regimes of motion of charged particles. The manner in which the shape of the volt- ampere characteristics changes on passage from the collisionless motion to diffusion motion has been shown. A detailed analysis has been made of the source of errors arising when orbital-motion formulas or the logarithmic-operation method are applied to processing of the probe curves. It has been shown that neglect of collisions of charged particles in the probe layer leads to an ion-density value overstated more than three times, an electron-temperature value overstated two times, and an ion temperature overstated three to nine times. A model of interaction of charged particles in the probe layer has been proposed for correction of the procedure of determining temperature. Such an approach makes it possible to determine the space-charge layer in the probe, and also the value of the self-consistent field. The use of the developed procedures gives good agreement between experimental and theoretical results.

  4. Luminescent Probes for Ultrasensitive Detection of Nucleic Acids

    PubMed Central

    Krasnoperov, Lev N.; Marras, Salvatore A.E.; Kozlov, Maxim; Wirpsza, Laura; Mustaev, Arkady

    2010-01-01

    Novel amino-reactive derivatives of lanthanide-based luminescent labels of enhanced brightness and metal retention were synthesized and used for the detection of complementary DNA oligonucleotides by molecular beacons. Time-resolved acquisition of the luminescent signal that occurs upon hybridization of the probe to the target enabled the avoidance of short-lived background fluorescence, markedly enhancing the sensitivity of detection, which was less than 1 pM. This value is about 50 to 100 times more sensitive than the level achieved with conventional fluorescence-based molecular beacons, and is 10 to 60 times more sensitive than previously reported for other lanthanide-based hybridization probes. These novel luminescent labels should significantly enhance the sensitivity of all type of nucleic acid hybridization probes, and could dramatically improve the detection limit of other biopolymers and small compounds that are used in a variety of biological applications. PMID:20085336

  5. AOTF-based remote sensor with sol-gel probe

    SciTech Connect

    Volkan, M.; Lee, Y.; Vo-Dinh, T.

    1999-11-01

    The authors report the development and application of a sensor using acousto-optic tunable filter (AOTF) and sol-gel probe technology. A pH-sensitive probe is used as a model sensing system with dextran derivatives of pH sensitive dyes doped into sol-gel thin films. They used a unique combination of pH-sensitive and pH-insensitive dual-label dye system. For optimization studies, the performance of these films as a pH sensing probe was evaluated using synchronous fluorescence detection. The performance of the prototype AOTF-based monitor using a low-power argon laser as an ion excitation source was evaluated.

  6. Quantitative microbial ecology through stable isotope probing.

    PubMed

    Hungate, Bruce A; Mau, Rebecca L; Schwartz, Egbert; Caporaso, J Gregory; Dijkstra, Paul; van Gestel, Natasja; Koch, Benjamin J; Liu, Cindy M; McHugh, Theresa A; Marks, Jane C; Morrissey, Ember M; Price, Lance B

    2015-11-01

    Bacteria grow and transform elements at different rates, and as yet, quantifying this variation in the environment is difficult. Determining isotope enrichment with fine taxonomic resolution after exposure to isotope tracers could help, but there are few suitable techniques. We propose a modification to stable isotope probing (SIP) that enables the isotopic composition of DNA from individual bacterial taxa after exposure to isotope tracers to be determined. In our modification, after isopycnic centrifugation, DNA is collected in multiple density fractions, and each fraction is sequenced separately. Taxon-specific density curves are produced for labeled and nonlabeled treatments, from which the shift in density for each individual taxon in response to isotope labeling is calculated. Expressing each taxon's density shift relative to that taxon's density measured without isotope enrichment accounts for the influence of nucleic acid composition on density and isolates the influence of isotope tracer assimilation. The shift in density translates quantitatively to isotopic enrichment. Because this revision to SIP allows quantitative measurements of isotope enrichment, we propose to call it quantitative stable isotope probing (qSIP). We demonstrated qSIP using soil incubations, in which soil bacteria exhibited strong taxonomic variations in (18)O and (13)C composition after exposure to [(18)O]water or [(13)C]glucose. The addition of glucose increased the assimilation of (18)O into DNA from [(18)O]water. However, the increase in (18)O assimilation was greater than expected based on utilization of glucose-derived carbon alone, because the addition of glucose indirectly stimulated bacteria to utilize other substrates for growth. This example illustrates the benefit of a quantitative approach to stable isotope probing. PMID:26296731

  7. Three-axis particle impact probe

    DOEpatents

    Fasching, George E.; Smith, Jr., Nelson S.; Utt, Carroll E.

    1992-01-01

    Three-axis particle impact probes detect particle impact vectors along x-, y-, and z-axes by spherical probe head mounted on the outer end of a shaft that is flexibly mounted in silicone rubber at the top of a housing so as to enable motion imparted to the head upon impact to be transmitted to a grounded electrode secured to the shaft within the housing. Excitable electrodes are mounted in the housing in a fixed position, spaced apart from the ground electrode and forming, with the ground electrode, capacitor pairs. Movement of the ground electrode results in changes in capacitance, and these difference in capacitance are used for measurement or derivation of momentum vectors along each of the three axes. In one embodiment, the ground electrode is mounted at the base of the shaft and is secured to a silicone rubber layer at the top of the housing, providing for cantilevered movement. In another embodiment, the shaft is mounted at its mid point in a flexible bushing so that it undergoes pivotal movement around that point.

  8. Probing gravitational dark matter

    NASA Astrophysics Data System (ADS)

    Ren, Jing; He, Hong-Jian

    2015-03-01

    So far all evidences of dark matter (DM) come from astrophysical and cosmological observations, due to the gravitational interactions of DM. It is possible that the true DM particle in the universe joins gravitational interactions only, but nothing else. Such a Gravitational DM (GDM) may act as a weakly interacting massive particle (WIMP), which is conceptually simple and attractive. In this work, we explore this direction by constructing the simplest scalar GDM particle χs. It is a Bbb Z2 odd singlet under the standard model (SM) gauge group, and naturally joins the unique dimension-4 interaction with Ricci curvature, ξsχs2Script R, where ξs is the dimensionless nonminimal coupling. We demonstrate that this gravitational interaction ξsχs2Script R, together with Higgs-curvature nonminimal coupling term ξhH†HScript R, induces effective couplings between χs2 and SM fields, and can account for the observed DM thermal relic abundance. We analyze the annihilation cross sections of GDM particles and derive the viable parameter space for realizing the DM thermal relic density. We further study the direct/indirect detections and the collider signatures of such a scalar GDM. These turn out to be highly predictive and testable.

  9. Probing gravitational dark matter

    SciTech Connect

    Ren, Jing; He, Hong-Jian

    2015-03-27

    So far all evidences of dark matter (DM) come from astrophysical and cosmological observations, due to the gravitational interactions of DM. It is possible that the true DM particle in the universe joins gravitational interactions only, but nothing else. Such a Gravitational DM (GDM) may act as a weakly interacting massive particle (WIMP), which is conceptually simple and attractive. In this work, we explore this direction by constructing the simplest scalar GDM particle χ{sub s}. It is a ℤ{sub 2} odd singlet under the standard model (SM) gauge group, and naturally joins the unique dimension-4 interaction with Ricci curvature, ξ{sub s}χ{sub s}{sup 2}R, where ξ{sub s} is the dimensionless nonminimal coupling. We demonstrate that this gravitational interaction ξ{sub s}χ{sub s}{sup 2}R, together with Higgs-curvature nonminimal coupling term ξ{sub h}H{sup †}HR, induces effective couplings between χ{sub s}{sup 2} and SM fields, and can account for the observed DM thermal relic abundance. We analyze the annihilation cross sections of GDM particles and derive the viable parameter space for realizing the DM thermal relic density. We further study the direct/indirect detections and the collider signatures of such a scalar GDM. These turn out to be highly predictive and testable.

  10. Continuous waves probing in dynamic acoustoelastic testing

    NASA Astrophysics Data System (ADS)

    Scalerandi, M.; Gliozzi, A. S.; Ait Ouarabi, M.; Boubenider, F.

    2016-05-01

    Consolidated granular media display a peculiar nonlinear elastic behavior, which is normally analysed with dynamic ultrasonic testing exploiting the dependence on amplitude of different measurable quantities, such as the resonance frequency shift, the amount of harmonics generation, or the break of the superposition principle. However, dynamic testing allows measuring effects which are averaged over one (or more) cycles of the exciting perturbation. Dynamic acoustoelastic testing has been proposed to overcome this limitation and allow the determination of the real amplitude dependence of the modulus of the material. Here, we propose an implementation of the approach, in which the pulse probing waves are substituted by continuous waves. As a result, instead of measuring a time-of-flight as a function of the pump strain, we study the dependence of the resonance frequency on the strain amplitude, allowing to derive the same conclusions but with an easier to implement procedure.

  11. Empirical model for analyzing Langmuir Probe characteristics

    NASA Astrophysics Data System (ADS)

    Burchill, J. K.

    2013-12-01

    A six-parameter empirical model is presented for obtaining plasma parameters from a Langmuir probe characteristic curve. The model curve is obtained by integrating expressions for the current derivative with respect to bias voltage. Slopes in the saturation regions are modeled by hyperbolic tangent sigmoids; the slope of the transition region between the two is modeled by a Gaussian. Nonlinear least-squares fits of lab- and satellite-based characteristics are used to investigate the robustness of the model over a wide range of plasma conditions. The technique may have utility in automated processing of characteristic curves, such as those from satellites where telemetry bandwidth is at a premium. Moreover, the technique may be useful as a basis for quantitative and systematic investigation of non-thermal and magnetized plasmas.

  12. Probing a slepton Higgs on all frontiers

    NASA Astrophysics Data System (ADS)

    Biggio, Carla; Dror, Jeff Asaf; Grossman, Yuval; Ng, Wee Hao

    2016-04-01

    We study several aspects of supersymmetric models with a U(1) R symmetry where the Higgs doublet is identified with the superpartner of a lepton. We derive new, stronger bounds on the gaugino masses based on current measurements, and also propose ways to probe the model up to scales of O (10 TeV) at future e + e - colliders. Since the U(1) R symmetry cannot be exact, we analyze the effects of R-symmetry breaking on neutrino masses and proton decay. In particular, we find that getting the neutrino mixing angles to agree with experiments in a minimal model requires a UV cutoff for the theory at around 10 TeV.

  13. Probing the Probes: Fitness Factors For Small Molecule Tools

    PubMed Central

    Workman, Paul; Collins, Ian

    2010-01-01

    Chemical probes for interrogating biological processes are of considerable current interest. Cell permeable small molecule tools have a major role in facilitating the functional annotation of the human genome, understanding both physiological and pathological processes, and validating new molecular targets. To be valuable, chemical tools must satisfy necessary criteria and recent publications have suggested objective guidelines for what makes a useful chemical probe. Although recognizing that such guidelines may be valuable, we caution against overly restrictive rules that may stifle innovation in favor of a “fit-for-purpose” approach. Reviewing the literature and providing examples from the cancer field, we recommend a series of “fitness factors” to be considered when assessing chemical probes. We hope this will encourage innovative chemical biology research while minimizing the generation of poor quality and misleading biological data, thus increasing understanding of the particular biological area, to the benefit of basic research and drug discovery. PMID:20609406

  14. Electron density dependence of impedance probe plasma potential measurements

    NASA Astrophysics Data System (ADS)

    Walker, D. N.; Blackwell, D. D.; Amatucci, W. E.

    2015-08-01

    In earlier works, we used spheres of various sizes as impedance probes in demonstrating a method of determining plasma potential, φp, when the probe radius is much larger than the Debye length, λD. The basis of the method in those works [Walker et al., Phys. Plasmas 13, 032108 (2006); ibid. 15, 123506 (2008); ibid. 17, 113503 (2010)] relies on applying a small amplitude signal of fixed frequency to a probe in a plasma and, through network analyzer-based measurements, determining the complex reflection coefficient, Γ, for varying probe bias, Vb. The frequency range of the applied signal is restricted to avoid sheath resonant effects and ion contributions such that ωpi ≪ ω ≪ ωpe, where ωpi is the ion plasma frequency and ωpe is the electron plasma frequency. For a given frequency and applied bias, both Re(Zac) and Im(Zac) are available from Γ. When Re(Zac) is plotted versus Vb, a minimum predicted by theory occurs at φp [Walker et al., Phys. Plasmas 17, 113503 (2010)]. In addition, Im(Zac) appears at, or very near, a maximum at φp. As ne decreases and the sheath expands, the minimum becomes harder to discern. The purpose of this work is to demonstrate that when using network analyzer-based measurements, Γ itself and Im(Zac) and their derivatives are useful as accompanying indicators to Re(Zac) in these difficult cases. We note the difficulties encountered by the most commonly used plasma diagnostic, the Langmuir probe. Spherical probe data is mainly used in this work, although we present limited data for a cylinder and a disk. To demonstrate the effect of lowered density as a function of probe geometry, we compare the cylinder and disk using only the indicator Re(Zac).

  15. An analytical model of eddy current ferrite-core probes

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Bowler, J. R.

    2012-05-01

    An analytical model of an axisymmetric eddy current probe with a cylindrical ferrite core above a layered conductive half-space is developed. Initially we consider the magnetic vector potential of a circular filament coaxial with a ferrite core over a layered conducting half-space. The principle of superposition is then used to derive close-form expressions for both the electromagnetic field and the impedance of a coil from the filament field. Rather than locating the probe in infinite space, it is confined coaxially within a circularly cylindrical boundary on which the vector potential field is zero. The radius of this artificial boundary is large in order to ensure that does not interfere substantially with the field near the probe. By using a truncated region in this way, the vector potential in the probe region can be expanded as a series rather than an integral form. Thus the solution of the problem amounts to finding the expansion coeefficients in the series. The numerical predictions of probe impedance have been compared with experimental data showing good agreement.

  16. Auroral Spatial Structures Probe Sub-Orbital Mission Preliminary Results

    NASA Astrophysics Data System (ADS)

    Pratt, J.; Swenson, C.; Martineau, R. J.; Fish, C. S.; Conde, M.; Hampton, D.; Crowley, G.

    2015-12-01

    The NASA Auroral Spatial Structures Probe, 49.002, was launched January 28, 2015 from the Poker Flat Research Range into active aurora over the northern coast of Alaska. The primary objective of this mission was to determine the contribution of small spatial and temporal scale fluctuations of the electric fields to the larger-scale energy deposition processes associated with the aurora. The Auroral Spatial Structures Probe Sub-Orbital Mission consisted of a formation of 7 spacecraft (a main payload with 6 deployable sub-payloads) designed for multiple temporally spaced co-located measurements of electric and magnetic fields in the earth's ionosphere. The mission was able to make observations at a short time scale and small spatial scale convergence that is unobservable by either satellite or ground-based observations. The payloads included magnetometers, electric field double probes, and Langmuir probes as well as a sweeping impedance probe on the main payload. We present here preliminary results from the measurements taken that hint at the underlying spatial structure of the currents and energy deposition in the aurora. The Poynting flux derived from the observations is shown and implications are discussed in terms of the contribution of small spatial scale, rapid temporal scale fluctuations in the currents that deposit energy in the auroral region. Funding provided by NASA Grants NNX11AE23G and NNX13AN20A.

  17. Quantitative dual-probe microdialysis: mathematical model and analysis.

    PubMed

    Chen, Kevin C; Höistad, Malin; Kehr, Jan; Fuxe, Kjell; Nicholson, Charles

    2002-04-01

    Steady-state microdialysis is a widely used technique to monitor the concentration changes and distributions of substances in tissues. To obtain more information about brain tissue properties from microdialysis, a dual-probe approach was applied to infuse and sample the radiotracer, [3H]mannitol, simultaneously both in agar gel and in the rat striatum. Because the molecules released by one probe and collected by the other must diffuse through the interstitial space, the concentration profile exhibits dynamic behavior that permits the assessment of the diffusion characteristics in the brain extracellular space and the clearance characteristics. In this paper a mathematical model for dual-probe microdialysis was developed to study brain interstitial diffusion and clearance processes. Theoretical expressions for the spatial distribution of the infused tracer in the brain extracellular space and the temporal concentration at the probe outlet were derived. A fitting program was developed using the simplex algorithm, which finds local minima of the standard deviations between experiments and theory by adjusting the relevant parameters. The theoretical curves accurately fitted the experimental data and generated realistic diffusion parameters, implying that the mathematical model is capable of predicting the interstitial diffusion behavior of [3H]mannitol and that it will be a valuable quantitative tool in dual-probe microdialysis. PMID:12067242

  18. Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion.

    PubMed

    Lo, Meng-chen; Wang, Shuwu; Singh, Sagar; Damodaran, Vinod B; Kaplan, Hilton M; Kohn, Joachim; Shreiber, David I; Zahn, Jeffrey D

    2015-04-01

    We report a fabrication process for coating neural probes with an ultrafast degrading polymer to create consistent and reproducible devices for neural tissue insertion. The rigid polymer coating acts as a probe insertion aid, but resorbs within hours post-implantation. Despite the feasibility for short term neural recordings from currently available neural prosthetic devices, most of these devices suffer from long term gliosis, which isolates the probes from adjacent neurons, increasing the recording impedance and stimulation threshold. The size and stiffness of implanted probes have been identified as critical factors that lead to this long term gliosis. Smaller, more flexible probes that match the mechanical properties of brain tissue could allow better long term integration by limiting the mechanical disruption of the surrounding tissue during and after probe insertion, while being flexible enough to deform with the tissue during brain movement. However, these small flexible probes inherently lack the mechanical strength to penetrate the brain on their own. In this work, we have developed a micromolding method for coating a non-functional miniaturized SU-8 probe with an ultrafast degrading tyrosine-derived polycarbonate (E5005(2K)). Coated, non-functionalized probes of varying dimensions were reproducibly fabricated with high yields. The polymer erosion/degradation profiles of the probes were characterized in vitro. The probes were also mechanically characterized in ex vivo brain tissue models by measuring buckling and insertion forces during probe insertion. The results demonstrate the ability to produce polymer coated probes of consistent quality for future in vivo use, for example to study the effects of different design parameters that may affect tissue response during long term chronic intra-cortical microelectrode neural recordings. PMID:25681971

  19. Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion

    PubMed Central

    Wang, Shuwu; Singh, Sagar; Damodaran, Vinod B.; Kaplan, Hilton M.; Kohn, Joachim; Shreiber, David I.; Zahn, Jeffrey D.

    2016-01-01

    We report a fabrication process for coating neural probes with an ultrafast degrading polymer to create consistent and reproducible devices for neural tissue insertion. The rigid polymer coating acts as a probe insertion aid, but resorbs within hours post-implantation. Despite the feasibility for short term neural recordings from currently available neural prosthetic devices, most of these devices suffer from long term gliosis, which isolates the probes from adjacent neurons, increasing the recording impedance and stimulation threshold. The size and stiffness of implanted probes have been identified as critical factors that lead to this long term gliosis. Smaller, more flexible probes that match the mechanical properties of brain tissue could allow better long term integration by limiting the mechanical disruption of the surrounding tissue during and after probe insertion, while being flexible enough to deform with the tissue during brain movement. However, these small flexible probes inherently lack the mechanical strength to penetrate the brain on their own. In this work, we have developed a micromolding method for coating a non-functional miniaturized SU-8 probe with an ultrafast degrading tyrosine-derived polycarbonate (E5005(2K)). Coated, non-functionalized probes of varying dimensions were reproducibly fabricated with high yields. The polymer erosion/degradation profiles of the probes were characterized in vitro. The probes were also mechanically characterized in ex vivo brain tissue models by measuring buckling and insertion forces during probe insertion. The results demonstrate the ability to produce polymer coated probes of consistent quality for future in vivo use, for example to study the effects of different design parameters that may affect tissue response during long term chronic intra-cortical microelectrode neural recordings. PMID:25681971

  20. Nanofabrication using near-field optical probes

    PubMed Central

    McLeod, Euan; Ozcan, Aydogan

    2012-01-01

    Nanofabrication using near-field optical probes is an established technique for rapid prototyping and automated maskless fabrication of nanostructured devices. In this review, we present the primary types of near-field probes and their physical processing mechanisms. Highlights of recent developments include improved resolution by optimizing the probe shape, incorporation of surface plasmonics in probe design, broader use in biological and magnetic storage applications, and increased throughput using probe arrays as well as high speed writing and patterning. PMID:22713756

  1. Constitutional Dynamic Chemistry-based New Concept of Molecular Beacons for High Efficient Development of Fluorescent Probes.

    PubMed

    Chang, Xingmao; Yu, Chunmeng; Wang, Gang; Fan, Jiayun; Zhang, Jianyun; Qi, Yanyu; Liu, Kaiqiang; Fang, Yu

    2015-06-01

    Inspired by the concept of constitutional dynamic chemistry, we propose a new and well-adaptable strategy for developing molecular beacon (MB)-like fluorescent probes. To demonstrate the strategy, we synthesized and used an amino group containing pyrenyl derivative of cholesterol (CP) for the construction of new fluorescent probes with EDTA and sulfuric acid. The probes as created were successfully used for n-hexane purity checking and Ba(2+)and Pb(2+)sensing, respectively. PMID:25985384

  2. Gravity field information from Gravity Probe-B

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Lerch, F. J.; Colombo, O. L.; Everitt, C. W. F.

    1989-01-01

    The Gravity Probe-B Mission will carry the Stanford Gyroscope relativity experiment into orbit in the mid 1990's, as well as a Global Positioning System (GPS) receiver whose tracking data will be used to study the earth gravity field. Estimates of the likely quality of a gravity field model to be derived from the GPS data are presented, and the significance of this experiment to geodesy and geophysics are discussed.

  3. Hand-held survey probe

    DOEpatents

    Young, Kevin L [Idaho Falls, ID; Hungate, Kevin E [Idaho Falls, ID

    2010-02-23

    A system for providing operational feedback to a user of a detection probe may include an optical sensor to generate data corresponding to a position of the detection probe with respect to a surface; a microprocessor to receive the data; a software medium having code to process the data with the microprocessor and pre-programmed parameters, and making a comparison of the data to the parameters; and an indicator device to indicate results of the comparison. A method of providing operational feedback to a user of a detection probe may include generating output data with an optical sensor corresponding to the relative position with respect to a surface; processing the output data, including comparing the output data to pre-programmed parameters; and indicating results of the comparison.

  4. Wake flowfields for Jovian probe

    NASA Technical Reports Server (NTRS)

    Engel, C. D.; Hair, L. M.

    1980-01-01

    The wake flow field developed by the Galileo probe as it enters the Jovian atmosphere was modeled. The wake produced by the probe is highly energetic, yielding both convective and radiative heat inputs to the base of the probe. A component mathematical model for the inviscid near and far wake, the viscous near and far wake, and near wake recirculation zone was developed. Equilibrium thermodynamics were used for both the ablation and atmospheric species. Flow fields for three entry conditions were calculated. The near viscous wave was found to exhibit a variable axial pressure distribution with the neck pressure approximately three times the base pressure. Peak wake flow field temperatures were found to be in proportion to forebody post shock temperatures.

  5. Enhanced Intracranial Microdialysis by Reduction of Traumatic Penetration Injury at the Probe Track.

    PubMed

    Varner, Erika L; Jaquins-Gerstl, Andrea; Michael, Adrian C

    2016-06-15

    Microdialysis provides deep insight into chemical neuroscience by enabling in vivo intracranial chemical monitoring. Nevertheless, implanting a microdialysis probe causes a traumatic penetration injury (TPI) of brain tissue at the probe track. The TPI, which is clearly documented by voltammetry and histochemical imaging, is a drawback because it perturbs the exact tissue from which the brain dialysate samples are derived. Our goal is to reduce, if not eventually eliminate, the TPI and its detrimental effects on neurochemical monitoring. Here, we demonstrate that combining a 5-day wait period after probe implantation with the continuous retrodialysis of a low-micromolar concentration of dexamethasone vastly reduces the TPI. Our approach to reducing the TPI reinstates normal evoked dopamine release activity in the tissue adjacent to the microdialysis probe, brings evoked dopamine release at the probe outlet into quantitative agreement with evoked dopamine release next to the probe, reinstates normal immunoreactivity for tyrosine hydroxylase and the dopamine transporter near the probe track, and greatly suppresses glial activation and scaring near the probe track. This reduction of the TPI and reinstatement of normal evoked dopamine release activity adjacent to the probe track appears to be due to dexamethasone's anti-inflammatory actions. PMID:27003503

  6. Dynamic light scattering homodyne probe

    NASA Technical Reports Server (NTRS)

    Meyer, William V. (Inventor); Cannell, David S. (Inventor); Smart, Anthony E. (Inventor)

    2002-01-01

    An optical probe for analyzing a sample illuminated by a laser includes an input optical fiber operably connectable to the laser where the input optical fiber has an entrance end and an exit end. The probe also includes a first beam splitter where the first beam splitter is adapted to transmit an alignment portion of a light beam from the input fiber exit end and to reflect a homodyning portion of the light beam from the input fiber. The probe also includes a lens between the input fiber exit end and the first beam splitter and a first and a second output optical fiber, each having an entrance end and an exit end, each exit end being operably connectable to respective optical detectors. The probe also includes a second beam splitter which is adapted to reflect at least a portion of the reflected homodyning portion into the output fiber entrance ends and to transmit light from the laser scattered by the sample into the entrance ends.

  7. Probing the atmosphere with infrasound

    NASA Technical Reports Server (NTRS)

    Posmentier, E. S.; Donn, W. L.

    1969-01-01

    Recent studies are reported which have contributed to the knowledge of atmospheric structure and have established the practicality of infrasonic techniques for probing the atmosphere to heights of 120 km or more. Observations of a few types of infrasound are reviewed, and the theories used to account for the infrasound propagation and the deduced atmospheric structures are discussed.

  8. A fluorescent probe for ecstasy.

    PubMed

    Masseroni, D; Biavardi, E; Genovese, D; Rampazzo, E; Prodi, L; Dalcanale, E

    2015-08-18

    A nanostructure formed by the insertion in silica nanoparticles of a pyrene-derivatized cavitand, which is able to specifically recognize ecstasy in water, is presented. The absence of effects from interferents and an efficient electron transfer process occurring after complexation of ecstasy, makes this system an efficient fluorescent probe for this popular drug. PMID:26166808

  9. Samara Probe For Remote Imaging

    NASA Technical Reports Server (NTRS)

    Burke, James D.

    1989-01-01

    Imaging probe descends through atmosphere of planet, obtaining images of ground surface as it travels. Released from aircraft over Earth or from spacecraft over another planet. Body and single wing shaped like samara - winged seed like those of maple trees. Rotates as descends, providing panoramic view of terrain below. Radio image obtained by video camera to aircraft or spacecraft overhead.

  10. SUB-SLAB PROBE INSTALLATION

    EPA Science Inventory

    Sub-slab sampling has become an integral part of vapor intrusion investigations. It is now recommended in guidance documents developed by EPA and most states. A method for sub-slab probe installation was devised in 2002, presented at conferences through 2005, and finally docume...

  11. Wind measurements by electromagnetic probes

    NASA Technical Reports Server (NTRS)

    Susko, Michael

    1988-01-01

    The emerging technology of electromagnetic probing of the atmosphere to measure winds used in a space vehicle ascent winds load calculations is presented. The frequency range, altitude, and resolution for the following probes are presented: lidars, microwave radars, and clear-air Doppler radars (popularly known as wind profilers). The electromagnetic probing of the atmosphere by clear-air radars and lasers is the new technology to supplement balloon-borne wind sensors used to determine ascent wind loads of space vehicles. The electromagnetic probes measure the wind velocity using the Doppler effect. This is the radar technology used in MSFC's Radar Wind Profiler, and is similar to the technology used in conventional Doppler systems except that the frequency is generally lower, antenna is bigger, and dwell time much longer. Designed for unattended and automated instrumentation in providing measurements of the wind in the troposphere, the profiler employs Doppler radar technology and is currently being put in operation at NASA Kennedy Space Center, Florida.

  12. Health. CEM Probe, January 1977.

    ERIC Educational Resources Information Center

    Billington, Roy

    The importance of health and its relationship to personal and community life are explored in this issue of PROBE. Designed to acquaint British secondary school youth with topical problems, the series contains discussion and case studies of national and world issues, followed by questions for student discussion and research. Nine chapters comprise…

  13. NASA Smart Surgical Probe Project

    NASA Technical Reports Server (NTRS)

    Mah, Robert W.; Andrews, Russell J.; Jeffrey, Stefanie S.; Guerrero, Michael; Papasin, Richard; Koga, Dennis (Technical Monitor)

    2002-01-01

    Information Technologies being developed by NASA to assist astronaut-physician in responding to medical emergencies during long space flights are being employed for the improvement of women's health in the form of "smart surgical probe". This technology, initially developed for neurosurgery applications, not only has enormous potential for the diagnosis and treatment of breast cancer, but broad applicability to a wide range of medical challenges. For the breast cancer application, the smart surgical probe is being designed to "see" a suspicious lump, determine by its features if it is cancerous, and ultimately predict how the disease may progress. A revolutionary early breast cancer detection tool based on this technology has been developed by a commercial company and is being tested in human clinical trials at the University of California at Davis, School of Medicine. The smart surgical probe technology makes use of adaptive intelligent software (hybrid neural networks/fuzzy logic algorithms) with the most advanced physiologic sensors to provide real-time in vivo tissue characterization for the detection, diagnosis and treatment of tumors, including determination of tumor microenvironment and evaluation of tumor margins. The software solutions and tools from these medical applications will lead to the development of better real-time minimally-invasive smart surgical probes for emergency medical care and treatment of astronauts on long space flights.

  14. CNP. Cervical Neoplasia Probe Control

    SciTech Connect

    Vargo, T.

    1995-05-17

    This software, which consists of a main executive and several subroutines, performs control of the optics, image acquisition, and Digital Signal Processing (DSP) of this image, of an optical based medical instrument that performs fluoresence detection of precancerous lesions (neoplasia) of the human cervix. The hardware portion of this medical instrument is known by the same name Cervical Neoplasia Probe (CNP)

  15. OCR Pace on Probes Quickens

    ERIC Educational Resources Information Center

    Maxwell, Lesli A.

    2011-01-01

    In the 21 months since U.S. Secretary of Education Arne Duncan stood on an iconic bridge in Selma, Alabama, and pledged to aggressively combat discrimination in the nation's schools, federal education officials have launched dozens of new probes in school districts and states that reach into civil rights issues that previously received little, if…

  16. Metrology for AGP - Astrometric Gravitation Probe

    NASA Astrophysics Data System (ADS)

    Gai, Mario; et al.

    2015-08-01

    The Astrometric Gravitation Probe (AGP) is a concept of space mission aimed at tests of Fundamental Physics in the Solar system, using Fizeau interferometry and coronagraphy techniques to implement differential astrometry among superposed stellar fields. The main goal is verification of the General Relativity (GR) and competing gravitation theories in the weak field of the Solar System by high precision measurement of the light deflection in the vicinity of the Sun at < 10-7 and of the main and minor planet dynamics at the microarcsec/year level. The AGP payload concept is based on a single main telescope (1.15 m diameter) implementing a multi-aperture Fizeau interferometer, for simultaneous observation of four regions close to the Solar limb and in opposition; coronagraphic techniques are applied on the elementary sub-apertures. The star displacement due to light deflection is derived by differential astrometry on images taken in different deflection conditions (e.g. ON and OFF). The instrument design is focused on systematic error control through multiple field simultaneous observation and calibration. The metrology system requirements related to the science goals are discussed, and the technical aspects of possible implementations are investigated. The potential benefit of auto-collimation and cophasing techniques derives from monitoring comparably large sections of the optical system common to the stellar beams. The performance at microarcsec level is verified by simulation.

  17. Nucleic acid probes in diagnostic medicine

    NASA Technical Reports Server (NTRS)

    Oberry, Phillip A.

    1991-01-01

    The need for improved diagnostic procedures is outlined and variations in probe technology are briefly reviewed. A discussion of the application of probe technology to the diagnosis of disease in animals and humans is presented. A comparison of probe versus nonprobe diagnostics and isotopic versus nonisotopic probes is made and the current state of sequence amplification is described. The current market status of nucleic acid probes is reviewed with respect to their diagnostic application in human and veterinary medicine. Representative product examples are described and information on probes being developed that offer promise as future products is discussed.

  18. High pressure optical combustion probe

    SciTech Connect

    Woodruff, S.D.; Richards, G.A.

    1995-06-01

    The Department of Energy`s Morgantown Energy Technology Center has developed a combustion probe for monitoring flame presence and heat release. The technology involved is a compact optical detector of the OH radical`s UV fluorescence. The OH Monitor/Probe is designed to determine the flame presence and provide a qualitative signal proportional to the flame intensity. The probe can be adjusted to monitor a specific volume in the combustion zone to track spatial fluctuations in the flame. The probe is capable of nanosecond time response and is usually slowed electronically to fit the flame characteristics. The probe is a sapphire rod in a stainless steel tube which may be inserted into the combustion chamber and pointed at the flame zone. The end of the sapphire rod is retracted into the SS tube to define a narrow optical collection cone. The collection cone may be adjusted to fit the experiment. The fluorescence signal is collected by the sapphire rod and transmitted through a UV transmitting, fused silica, fiber optic to the detector assembly. The detector is a side window photomultiplier (PMT) with a 310 run line filter. A Hamamatsu photomultiplier base combined with a integral high voltage power supply permits this to be a low voltage device. Electronic connections include: a power lead from a modular DC power supply for 15 VDC; a control lead for 0-1 volts to control the high voltage level (and therefore gain); and a lead out for the actual signal. All low voltage connections make this a safe and easy to use device while still delivering the sensitivity required.

  19. Pump-probe spectrometer for measuring x-ray induced strain.

    PubMed

    Loether, A; Adams, B W; DiCharia, A; Gao, Y; Henning, R; Walko, D A; DeCamp, M F

    2016-05-01

    A hard x-ray pump-probe spectrometer using a multi-crystal Bragg reflector is demonstrated at a third generation synchrotron source. This device derives both broadband pump and monochromatic probe pulses directly from a single intense, broadband x-ray pulse centered at 8.767 keV. We present a proof-of-concept experiment which directly measures x-ray induced crystalline lattice strain. PMID:27128053

  20. Systematic Enumeration and Symmetries of Cubane Derivatives.

    PubMed

    Fujita, Shinsaku

    2016-06-01

    The feasibilities of Fujita's unit-subduced-cycle-index (USCI) approach, Fujita's proligand method, and Fujita's stereoisogram approach have been demonstrated by applying them to cubane derivatives as probes. They provide us with a new set of theoretical foundations for comprehensive investigation of geometric and stereoisomeric features of stereochemistry. The new set of theoretical foundations is based on mathematical formulations so as to explore mathematical stereochemistry as a new interdisciplinary field of stereochemistry. PMID:27027497

  1. Synergy Between Entry Probes and Orbiters

    NASA Technical Reports Server (NTRS)

    Young, Richard E.

    2005-01-01

    We identify two catagories of probe-orbiter interactions which benefit the science return from a particular mission. The first category is termed "Mission Design Aspects". This category is meant to describe those aspects of the mission design involving the orbiter that affect the science return from the probe(s). The second category of probe-orbiter interaction is termed "Orbiter-Probe Science Interactions", and is meant to include interactions between oribter and probe(s) that directly involve science measurements made from each platform. Two mission related aspects of probe-orbiter interactions are delivery of a probe(s) to the entry site(s) by an orbiter, and communication between each probe and the orbiter. We consider four general probe-orbiter science interactions that greatly enhance, or in certain cases are essential for, the mission science return. The four topics are, global context of the probe entry site(s), ground truth for remote sensing observations of an orbiter, atmospheric composition measurements, and wind measurements.

  2. Scintillator probe diagnostic for high energy particles escaped from Large Helical Device

    SciTech Connect

    Nishiura, M.; Isobe, M.; Saida, T.; Sasao, M.; Darrow, D.S.

    2004-10-01

    A scintillator probe for escaping fast ion diagnostics has been developed in the Large Helical Device. This probe is capable of traveling across a divertor leg and sweeping the aperture angle rotationally with respect to the axis of the probe shaft. Pitch angle and gyro radius resolutions are estimated numerically by using a Monte Carlo orbit simulation. The result shows that the detector has sufficient resolution in pitch angle and gyro radius for our target plasmas. Under the neutral beam injected plasma, a signal derived from fast ions was obtained on the scintillator plate and analyzed by using the recorded camera image.

  3. An intramolecular charge transfer fluorescent probe: Synthesis and selective fluorescent sensing of Ag +

    NASA Astrophysics Data System (ADS)

    Mu, Honglei; Gong, Rui; Ren, Lin; Zhong, Cheng; Sun, Yimin; Fu, Enqin

    2008-09-01

    An intramolecular charge transfer (ICT) fluorescent probe, in which the thiourea derivative moiety is linked to the fluorescent 4-(dimethylamino) benzamide, has been designed and synthesized. The ions-selective signaling behaviors of the probe were investigated. Upon the addition of Ag +, an overall emission enhancement of 14-fold was observed. Compound 1 displayed highly selective chelation enhanced fluorescence (CHEF) effect with Ag + over alkali, alkali earth metal ions and some transition metal ions in aqueous methanol solutions. The prominent selective and efficient fluorescent enhancing behavior could be utilized as a new chemosensing probe for the analysis of Ag + ion in aqueous environment.

  4. Modified hyper-Ramsey methods for the elimination of probe shifts in optical clocks

    NASA Astrophysics Data System (ADS)

    Hobson, R.; Bowden, W.; King, S. A.; Baird, P. E. G.; Hill, I. R.; Gill, P.

    2016-01-01

    We develop a method of modified hyper-Ramsey spectroscopy in optical clocks, achieving complete immunity to the frequency shifts induced by the probing fields themselves. Using particular pulse sequences with tailored phases, frequencies, and durations, we can derive an error signal centered exactly at the unperturbed atomic resonance with a steep discriminant which is robust against variations in the probe shift. We experimentally investigate the scheme using the magnetically induced 1S0-3P0 transition in 88Sr, demonstrating automatic suppression of a sizable 2 ×10-13 probe Stark shift to below 1 ×10-16 even with very large errors in shift compensation.

  5. Earth-Based Radio Tracking of the Galileo Probe for Jupiter Wind Estimation

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Preston, R. A.; Border, J. S.; Navarro, J.; Wilson, W. E.; Oestreich, M.

    1997-01-01

    Although the Galileo probe was designed to communicate only to the orbiter, the probe radio signal was detected at two Earth-based radio observatories where the signal was a billion times weaker. The measured signal frequency was used to derive a vertical profile of the jovian zonal wind speed. Due to the mission geometry, the Earth-based wind estimates are less sensitive to descent trajectory errors than estimates based on probe-orbiter Doppler measurements. The two estimates of wind profiles agree qualitatively; both show high wind speeds at all depths sampled.

  6. Earth-Based Radio Tracking of the Galileo Probe for Jupiter Wind Estimation

    PubMed

    Folkner; Preston; Border; Navarro; Wilson; Oestreich

    1997-01-31

    Although the Galileo probe was designed to communicate only to the orbiter, the probe radio signal was detected at two Earth-based radio observatories where the signal was a billion times weaker. The measured signal frequency was used to derive a vertical profile of the jovian zonal wind speed. Due to the mission geometry, the Earth-based wind estimates are less sensitive to descent trajectory errors than estimates based on probe-orbiter Doppler measurements. The two estimates of wind profiles agree qualitatively; both show high wind speeds at all depths sampled. PMID:9005845

  7. An efficient ratiometric fluorescent probe for tracking dynamic changes in lysosomal pH.

    PubMed

    Wang, Qianqian; Zhou, Liyi; Qiu, Liping; Lu, Danqing; Wu, Yongxiang; Zhang, Xiao-Bing

    2015-08-21

    Lysosomes are acidic organelles (approximately pH 4.5-5.5) and tracking the changes in lysosomal pH is of great biological importance. To address this issue, quite a few of fluorescent probes have been developed. However, few of these probes can realize the tracking of dynamic changes in lysosomal pH. Herein, we report a new lysosome-targeted ratiometric fluorescent probe (FR-Lys) by hybridizing morpholine with a xanthane derivative and an o-hydroxy benzoxazole group. In this probe, the morpholine group serves as a targeting unit for lysosome, the xanthane derivative exhibits a pH-modulated open/close reaction of the spirocycle, while the o-hydroxy benzoxazole moiety shows a pH modulated excited-state intramolecular proton transfer (ESIPT) process. Such a design affords the probe a ratiometric fluorescence response towards pH with pH values ranging from 4.0 to 6.3. The response of the probe to pH was fast and reversible with high selectivity. Moreover, this probe possesses further advantages such as easy synthesis, high photostability and low cytotoxicity. These features are favorable for tracking dynamic pH changes in biosystems. It was then applied for dynamic imaging pH changes in lysosomes with satisfactory results. PMID:26107774

  8. Neptune Polar Orbiter with Probes

    NASA Technical Reports Server (NTRS)

    Bienstock, Bernard; Atkinson, David; Baines, Kevin; Mahaffy, Paul; Steffes, Paul; Atreya, Sushil; Stern, Alan; Wright, Michael; Willenberg, Harvey; Smith, David; Frampton, Robert; Sichi, Steve; Peltz, Leora; Masciarelli, James; VanCleve, Jeffey

    2005-01-01

    The giant planets of the outer solar system divide into two distinct classes: the gas giants Jupiter and Saturn, which consist mainly of hydrogen and helium; and the ice giants Uranus and Neptune, which are believed to contain significant amounts of the heavier elements oxygen, nitrogen, and carbon and sulfur. Detailed comparisons of the internal structures and compositions of the gas giants with those of the ice giants will yield valuable insights into the processes that formed the solar system and, perhaps, other planetary systems. By 2012, Galileo, Cassini and possibly a Jupiter Orbiter mission with microwave radiometers, Juno, in the New Frontiers program, will have yielded significant information on the chemical and physical properties of Jupiter and Saturn. A Neptune Orbiter with Probes (NOP) mission would deliver the corresponding key data for an ice giant planet. Such a mission would ideally study the deep Neptune atmosphere to pressures approaching and possibly exceeding 1000 bars, as well as the rings, Triton, Nereid, and Neptune s other icy satellites. A potential source of power would be nuclear electric propulsion (NEP). Such an ambitious mission requires that a number of technical issues be investigated, however, including: (1) atmospheric entry probe thermal protection system (TPS) design, (2) probe structural design including seals, windows, penetrations and pressure vessel, (3) digital, RF subsystem, and overall communication link design for long term operation in the very extreme environment of Neptune's deep atmosphere, (4) trajectory design allowing probe release on a trajectory to impact Neptune while allowing the spacecraft to achieve a polar orbit of Neptune, (5) and finally the suite of science instruments enabled by the probe technology to explore the depths of the Neptune atmosphere. Another driving factor in the design of the Orbiter and Probes is the necessity to maintain a fully operational flight system during the lengthy transit time

  9. Overview of Probe-based Storage Technologies

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Ci Hui; Wen, Jing; Gong, Si Di; Peng, Yuan Xiu

    2016-07-01

    The current world is in the age of big data where the total amount of global digital data is growing up at an incredible rate. This indeed necessitates a drastic enhancement on the capacity of conventional data storage devices that are, however, suffering from their respective physical drawbacks. Under this circumstance, it is essential to aggressively explore and develop alternative promising mass storage devices, leading to the presence of probe-based storage devices. In this paper, the physical principles and the current status of several different probe storage devices, including thermo-mechanical probe memory, magnetic probe memory, ferroelectric probe memory, and phase-change probe memory, are reviewed in details, as well as their respective merits and weakness. This paper provides an overview of the emerging probe memories potentially for next generation storage device so as to motivate the exploration of more innovative technologies to push forward the development of the probe storage devices.

  10. Further capacitive imaging experiments using modified probes

    NASA Astrophysics Data System (ADS)

    Yin, Xiaokang; Li, Zhen; Yan, An; Li, Wei; Chen, Guoming; Hutchins, David A.

    2016-02-01

    In recent years, capacitive imaging (CI) is growing in popularity within the NDE communities, as it has the potential to test materials and structures for defects that are not easily tested by other techniques. In previous work, The CI technique has been successfully used on a various types of materials, including concrete, glass/carbon fibre composite, steel, etc. In such CI experiments, the probes are normally with symmetric or concentric electrodes etched onto PCBs. In addition to these conventional coplanar PCB probes, modified geometries can be made and they can lead to different applications. A brief overview of these modified probes, including high resolution surface imaging probe, combined CI/eddy current probe, and CI probe using an oscilloscope probe as the sensing electrode, is presented in this work. The potential applications brought by these probes are also discussed.

  11. Overview of Probe-based Storage Technologies.

    PubMed

    Wang, Lei; Yang, Ci Hui; Wen, Jing; Gong, Si Di; Peng, Yuan Xiu

    2016-12-01

    The current world is in the age of big data where the total amount of global digital data is growing up at an incredible rate. This indeed necessitates a drastic enhancement on the capacity of conventional data storage devices that are, however, suffering from their respective physical drawbacks. Under this circumstance, it is essential to aggressively explore and develop alternative promising mass storage devices, leading to the presence of probe-based storage devices. In this paper, the physical principles and the current status of several different probe storage devices, including thermo-mechanical probe memory, magnetic probe memory, ferroelectric probe memory, and phase-change probe memory, are reviewed in details, as well as their respective merits and weakness. This paper provides an overview of the emerging probe memories potentially for next generation storage device so as to motivate the exploration of more innovative technologies to push forward the development of the probe storage devices. PMID:27456500

  12. Cantilevered probe detector with piezoelectric element

    SciTech Connect

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2014-04-29

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  13. Developing MR probes for molecular imaging.

    PubMed

    McMahon, Michael T; Chan, Kannie W Y

    2014-01-01

    Molecular imaging plays an important role in the era of personalized medicine, especially with recent advances in magnetic resonance (MR) probes. While the first generation of these probes focused on maximizing contrast enhancement, a second generation of probes has been developed to improve the accumulation within specific tissues or pathologies, and the newest generation of agents is also designed to report on changes in physiological status and has been termed "smart" agents. This represents a paradigm switch from the previously commercialized gadolinium and iron oxide probes to probes with new capabilities, and leads to new challenges as scanner hardware needs to be adapted for detecting these probes. In this chapter, we highlight the unique features for all five different categories of MR probes, including the emerging chemical exchange saturation transfer, (19)F, and hyperpolarized probes, and describe the key physical properties and features motivating their design. As part of this comparison, the strengths and weaknesses of each category are discussed. PMID:25287693

  14. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2013-04-30

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  15. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.

    2012-07-10

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  16. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.

    2010-04-06

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  17. Design Strategies for Bioorthogonal Smart Probes

    PubMed Central

    Shieh, Peyton; Bertozzi, Carolyn R.

    2014-01-01

    Bioorthogonal chemistry has enabled the selective labeling and detection of biomolecules in living systems. Bioorthogonal smart probes, which become fluorescent or deliver imaging or therapeutic agents upon reaction, allow for the visualization of biomolecules or targeted delivery even in the presence of excess unreacted probe. This review discusses the strategies used in the development of bioorthogonal smart probes and highlights the potential of these probes to further our understanding of biology. PMID:25315039

  18. Stellar Occultation Probe of Triton's Atmosphere

    NASA Technical Reports Server (NTRS)

    Elliot, James L.

    1998-01-01

    The goals of this research were (i) to better characterize Triton's atmospheric structure by probing a region not well investigated by Voyager and (ii) to begin acquiring baseline data for an investigation of the time evolution of the atmosphere which will set limits on the thermal conductivity of the surface and the total mass of N2 in the atmosphere. Our approach was to use observations (with the Kuiper Airborne Observatory) of a stellar occultation by Triton that was predicted to occur on 1993 July 10. As described in the attached reprint, we achieved these objectives through observation of this occultation and a subsequent one with the KAO in 1995. We found new results about Triton's atmospheric structure from the analysis of the two occultations observed with the KAO and ground-based data. These stellar occultation observations made both in the visible and infrared, have good spatial coverage of Triton including the first Triton central-flash observations, and are the first data to probe the 20-100 km altitude level on Triton. The small-planet light curve model of Elliot and Young (AJ 103, 991-1015) was generalized to include stellar flux refracted by the far limb, and then fitted to the data. Values of the pressure, derived from separate immersion and emersion chords, show no significant trends with latitude indicating that Triton's atmosphere is spherically symmetric at approximately 50 km altitude to within the error of the measurements. However, asymmetry observed in the central flash indicates the atmosphere is not homogeneous at the lowest levels probed (approximately 20 km altitude). From the average of the 1995 occultation data, the equivalent-isothermal temperature of the atmosphere is 47 +/- 1 K and the atmospheric pressure at 1400 km radius (approximately 50 km altitude) is 1.4 +/- 0.1 microbar. Both of these are not consistent with a model based on Voyager UVS and RSS observations in 1989 (Strobel et al, Icarus 120, 266-289). The atmospheric

  19. Development of new Malt1 inhibitors and probes.

    PubMed

    Xin, Bo-Tao; Schimmack, Gisela; Du, Yimeng; Florea, Bogdan I; van der Marel, Gijsbert A; Driessen, Christoph; Krappmann, Daniel; Overkleeft, Herman S

    2016-08-01

    Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (Malt1) is a promising therapeutic target for the treatment of activated B cell-like diffuse large B cell lymphoma (ABC-DLBCL). Several research groups have reported on the development of Malt1 inhibitors and activity-based probes for in vitro and in situ monitoring and modulating Malt1 activity. In this paper, we report on two activity-based Malt1 probes (6 and 7) and a focused library of 19 new Malt1 inhibitors. Our peptide-based probe 6 labels Malt1 in an activity-based manner. In contrast, probe 7, derived from the known covalent inhibitor MI-2, labels both wild type and catalytically inactive Cys to Ala mutant Malt1, suggesting that MI-2 inhibits Malt1 by reacting with a nucleophilic residue other than the active site cysteine. Furthermore, two of our inhibitors (9, apparent IC50 3.0μM, and 13, apparent IC50 2.1μM) show good inhibitory activity against Malt1 and outperform MI-2 (apparent IC50 7.8μM) in our competitive activity-based protein profiling assay. PMID:27085674

  20. Linear RNA amplification for the production of microarray hybridization probes.

    PubMed

    Klebes, Ansgar; Kornberg, Thomas B

    2008-01-01

    To understand Drosophila development and other genetically controlled processes, it is often desirable to identify differences in gene expression levels. An experimental approach to investigate these processes is to catalog the transcriptome by hybridization of mRNA to DNA microbar-rays. In these experiments mRNA-derived hybridization probes are produced and hybridized to an array of DNA spots on a solid support. The labeled cDNAs of the complex hybridization probe will bind to their complementary sequences and provide quantification of the relative concentration of the corresponding transcript in the starting material. However, such approaches are often limited by the scarcity of the experimental sample because standard methods of probe preparation require microgram quantities of mRNA template. Linear RNA amplification can alleviate such limitations to support the generation of microarray hybridization probes from a few 100 pg of mRNA. These smaller quantities can be isolated from a few 100 cells. Here, we present a linear amplification protocol designed to preserve both the relative abundance of transcripts as well as their sequence complexity. PMID:18641956

  1. Error prediction for probes guided by means of fixtures

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, J. Michael

    2012-02-01

    Probe guides are surgical fixtures that are rigidly attached to bone anchors in order to place a probe at a target with high accuracy (RMS error < 1 mm). Applications include needle biopsy, the placement of electrodes for deep-brain stimulation (DBS), spine surgery, and cochlear implant surgery. Targeting is based on pre-operative images, but targeting errors can arise from three sources: (1) anchor localization error, (2) guide fabrication error, and (3) external forces and torques. A well-established theory exists for the statistical prediction of target registration error (TRE) when targeting is accomplished by means of tracked probes, but no such TRE theory is available for fixtured probe guides. This paper provides that theory and shows that all three error sources can be accommodated in a remarkably simple extension of existing theory. Both the guide and the bone with attached anchors are modeled as objects with rigid sections and elastic sections, the latter of which are described by stiffness matrices. By relating minimization of elastic energy for guide attachment to minimization of fiducial registration error for point registration, it is shown that the expression for targeting error for the guide is identical to that for weighted rigid point registration if the weighting matrices are properly derived from stiffness matrices and the covariance matrices for fiducial localization are augmented with offsets in the anchor positions. An example of the application of the theory is provided for ear surgery.

  2. Characterization of a Fluorescent Probe for Imaging Nitric Oxide

    PubMed Central

    Ghebremariam, Yohannes T; Huang, Ngan F; Kambhampati, Swetha; Volz, Katharina S; Joshi, Gururaj G; Anslyn, Eric V; Cooke, John P

    2014-01-01

    Background Nitric Oxide (NO), a potent vasodilator and anti-atherogenic molecule, is synthesized in various cell types including vascular endothelial cells (ECs). The biological importance of NO enforces the need to develop and characterize specific and sensitive probes. To date, several fluorophores, chromophores and colorimetric techniques have been developed to detect NO or its metabolites (NO2 and NO3) in biological fluids, viable cells or cell lysates. Methods Recently, a novel probe (NO550) has been developed and reported to detect NO in solution and in primary astrocytes and neuronal cells with a fluorescence signal arising from a non-fluorescent background. Results Here, we report further characterization of this probe by optimizing conditions for the detection and imaging of NO products in primary vascular endothelial cells, fibroblasts, embryonic stem cell (ESC)- and induced pluripotent stem cell (iPSC)- derived endothelial cells (ESC-ECs. and iPSC-ECs respectively) in the absence and presence of pharmacological agents that modulate NO levels. In addition, we studied the stability of this probe in cells over time and evaluated its compartmentalization in reference to organelle-labeling dyes. Finally, we synthesized an inherently fluorescent diazo ring compound (AZO550) that is expected to form when the non-fluorescent NO550 reacts with cellular NO and compared its cellular distribution with that of NO550. Conclusion NO550 is a promising agent for imaging NO at baseline and in response to pharmacological agents that modulate its levels. PMID:24335468

  3. Modeling of eddy current NDE probe for steam generator tubes.

    SciTech Connect

    Chang, F. C.; Bakhtiari, S.; Kupperman, D.

    2003-01-29

    Calculations were performed with a three-dimensional (3-D) finite-element model to describe the response of an eddy current (EC) probe to defects in steam generator (SG) tubing of a nuclear reactor. Such calculations could be very helpful in understanding and interpreting the EC probe response to complex tube/defect geometries associated with longitudinal inner/outer notches, roll transitions, sludge, and through-wall holes in SG tubes. The governing field equations are derived in terms of coupled magnetic vector and electric scalar potentials in the conducting media and total or reduced scalar potentials in the non-conducting regions. To assess the validity of the model, we compared the signal responses for two numerical approaches, stored-energy-and-power-loss approach and magnetic-flux approach for various tube/defect geometries. Simulation results are also presented on the tube/defect geometries for the pancake coil response and the transmitter/receiver (T/R) probe response. The results indicate that the eddy-current NDE modeling is capable of predicting EC probe response to flaws in steam generator tubes.

  4. Fabrication of molecular tension probes.

    PubMed

    Kim, Sung Bae; Fujii, Rika

    2016-01-01

    A unique bioluminescent imaging probe is introduced for illuminating molecular tension appended by protein-protein interactions (PPIs) of interest. A full-length luciferase is sandwiched between two proteins of interest via minimal flexible linkers. The ligand-activated PPIs append intramolecular tension to the sandwiched luciferase, boosting or dropping the enzymatic activity in a quantitative manner. This method guides construction of a new lineage of bioassays for determining molecular tension appended by ligand-activated PPIs. The summary of the method is: •Molecular tension appended by protein-protein interactions (PPI) is visualized with a luciferase.•Estrogen activities are quantitatively illuminated with the molecular tension probes.•Full-length Renilla luciferase enhances the optical intensities after bending by PPI. PMID:27222821

  5. Underwater probing with laser radar

    NASA Technical Reports Server (NTRS)

    Carswell, A. I.; Sizgoric, S.

    1975-01-01

    Recent advances in laser and electro optics technology have greatly enhanced the feasibility of active optical probing techniques aimed at the remote sensing of water parameters. This paper describes a LIDAR (laser radar) that has been designed and constructed for underwater probing. The influence of the optical properties of water on the general design parameters of a LIDAR system is considered. Discussion of the specific details in the choice of the constructed LIDAR is given. This system utilizes a cavity dumped argon ion laser transmitter capable of 50 watt peak powers, 10 nanosecond pulses and megahertz pulse repetition rates at 10 different wavelengths in the blue green region of the spectrum. The performance of the system, in proving various types of water, is demonstrated by summarizing the results of initial laboratory and field experiments.

  6. Metalloprotein-based MRI probes

    PubMed Central

    Matsumoto, Yuri; Jasanoff, Alan

    2013-01-01

    Metalloproteins have long been recognized as key determinants of endogenous contrast in magnetic resonance imaging (MRI) of biological subjects. More recently, both natural and engineered metalloproteins have been harnessed as biotechnological tools to probe gene expression, enzyme activity, and analyte concentrations by MRI. Metalloprotein MRI probes are paramagnetic and function by analogous mechanisms to conventional gadolinium or iron oxide-based MRI contrast agents. Compared with synthetic agents, metalloproteins typically offer worse sensitivity, but the possibilities of using protein engineering and targeted gene expression approaches in conjunction with metalloprotein contrast agents are powerful and sometimes definitive strengths. This review summarizes theoretical and practical aspects of metalloprotein-based contrast agents, and discusses progress in the exploitation of these proteins for molecular imaging applications. PMID:23376346

  7. Fabrication of molecular tension probes

    PubMed Central

    Kim, Sung Bae; Fujii, Rika

    2016-01-01

    A unique bioluminescent imaging probe is introduced for illuminating molecular tension appended by protein–protein interactions (PPIs) of interest. A full-length luciferase is sandwiched between two proteins of interest via minimal flexible linkers. The ligand-activated PPIs append intramolecular tension to the sandwiched luciferase, boosting or dropping the enzymatic activity in a quantitative manner. This method guides construction of a new lineage of bioassays for determining molecular tension appended by ligand-activated PPIs. The summary of the method is: • Molecular tension appended by protein–protein interactions (PPI) is visualized with a luciferase. • Estrogen activities are quantitatively illuminated with the molecular tension probes. • Full-length Renilla luciferase enhances the optical intensities after bending by PPI. PMID:27222821

  8. Improved double planar probe data analysis technique

    SciTech Connect

    Ghim, Young-chul; Hershkowitz, Noah

    2009-03-15

    Plasma electron number density and ion number density in a dc multidipole weakly collisional Ar plasma are measured with a single planar Langmuir probe and a double planar probe, respectively. A factor of two discrepancy between the two density measurements is resolved by applying Sheridan's empirical formula [T. E. Sheridan, Phys. Plasmas 7, 3084 (2000)] for sheath expansion to the double probe data.

  9. PROBE: Empowering the Individual (A Case Study).

    ERIC Educational Resources Information Center

    Towns, Kathryn; And Others

    The Potential Reentry Opportunities in Business and Education (PROBE) counseling and referral system is intended to help single parents and displaced homemakers gain greater control over their own lives, careers, and futures. PROBE began in 1975 as a campus-based program at Pennsylvania State University and became community based in 1977. PROBE,…

  10. Outer planet probe missions, designs and science

    NASA Technical Reports Server (NTRS)

    Colin, L.

    1978-01-01

    The similarities and differences of atmosphere entry probe mission designs and sciences appropriate to certain solar system objects, are reviewed. Candidate payloads for Saturn and Titan probes are suggested. Significant supporting research and technology efforts are required to develop mission-peculiar technology for probe exploration of the Saturnian system.

  11. Probe Follower for Moving Blood Vessels

    NASA Technical Reports Server (NTRS)

    Frazer, R. E.; Andrews, T. W.

    1985-01-01

    Probes track vessel expansion and contraction with minimal perturbation. Nozzle back-pressure changes at cuff on blood vessel basis for monitoring position of probe in blood vessel. Fluidic amplifiers use signals to control three-axis servo that centers measuring probe between sensing-nozzle pairs at cuff.

  12. Fiber-Optic Probe For Laser Velocimetry

    NASA Technical Reports Server (NTRS)

    Lynch, Dana H.; Mcalister, Kenneth W.; Gunter, William D., Jr.

    1992-01-01

    Size and weight of optics reduced considerably. Proposed fiber-optic probe in laser velocimeter smaller (and, therefore, lighter in weight and more maneuverable) than previous probe. Proposed configuration is product of calculations and experiments showing virtual waists serve same purpose. Laser-velocimeter lens brought close to transfer lenses to focus on virtual waists, thereby shortening probe head considerably.

  13. Mission and instrumentation concept for the baryonic structure probe

    NASA Astrophysics Data System (ADS)

    Ebbets, Dennis; DeCino, James; Turner-Valle, Jennifer; Sembach, Kenneth

    2006-06-01

    There is a growing consensus that a substantial fraction of the matter in the universe, especially what we think of as normal baryonic matter, exists in a tenuous, hot filamentary intergalactic medium often referred to as the Cosmic Web. Improving our understanding of the web has been a high priority scientific goal in NASA's planning and roadmapping activities. NASA recently supported an Origins Probe study that explored the observable phenomenology of the web in detail and developed concepts for the instrumentation and mission. The Baryonic Structure Probe operates in the ultraviolet spectral region, using primarily O VI (λλ 1032, 1038 angstrom) and HI Ly α (λ 1216 angstrom) as tracers of the web. A productive investigation requires both moderate resolution (R = λ/Δλ ~ 30000) absorption line spectroscopy using faint background quasars as continuum sources, and imaging of the diffuse filaments in emission lines of the same ions. Spectroscopic sensitivity to quasars as faint as V ~ 19 will probe a large number of sight lines to derive physical diagnostics over the redshift range 0 < z < 1. Spectral imaging with a wide field of view and sensitivity to a redshift range 0 < z < 0.3 will map the filaments in a large volume of the universe after the web had evolved to near its modern structure. This paper summarizes the scientific goals, identifies the measurement requirements derived from them, and describes the instrument concepts and overall mission architecture developed by the BSP study team.

  14. Probing phospholipase a(2) with fluorescent phospholipid substrates.

    PubMed

    Wichmann, Oliver; Gelb, Michael H; Schultz, Carsten

    2007-09-01

    The Foerster resonance energy transfer-based sensor, PENN, measures intracellular phospholipase A(2) (PLA(2)) activity in living cells and small organisms. In an attempt to modify the probe for the detection of particular isoforms, we altered the sn-2 fatty acid in such a way that either one or three of the Z double bonds in arachidonic acid were present in the sensor molecule. Arachidonic-acid-mimicking fatty acids were prepared by copper-mediated coupling reactions. Probes with a single double bond in the 5-position exhibited favorable substrate properties for secretory PLA(2)s. In vitro experiments with the novel unsaturated doubly labeled phosphatidylethanolamine derivatives showed preferred cleavage of the sensor PENN2 (one double bond) by the physiologically important group V sPLA(2), while the O-methyl-derivative PMNN2 was accepted best by the isoform from hog pancreas. For experiments in living cells, we demonstrated that bioactivation via S-acetylthioethyl (SATE) groups is essential for probe performance. Surprisingly, membrane-permeant versions of the new sensors that contained double bonds, PENN2 and PENN3, were only cleaved to a minor extent in HeLa cells while the saturated form, PENN, was well accepted. PMID:17661302

  15. Distance Probes of Dark Energy

    DOE PAGESBeta

    Kim, A. G.; Padmanabhan, N.; Aldering, G.; Allen, S. W.; Baltay, C.; Cahn, R. N.; D' Andrea, C. B.; Dalal, N.; Dawson, K. S.; Denney, K. D.; et al

    2015-03-15

    We present the results from the Distances subgroup of the Cosmic Frontier Community Planning Study (Snowmass 2013). This document summarizes the current state of the field as well as future prospects and challenges. In addition to the established probes using Type Ia supernovae and baryon acoustic oscillations, we also consider prospective methods based on clusters, active galactic nuclei, gravitational wave sirens and strong lensing time delays.

  16. Study of a wideband probe

    NASA Technical Reports Server (NTRS)

    Alexander, P., Jr.; Salwen, H.

    1972-01-01

    The design of an experiment to measure communication characteristics of wideband satellite-to-ground links is reported. Of special concern are the effects of rainstorms and atmospheric turbulence on path attenuation and phase fluctuation. Multi-tone and pulse probing are considered. A multi-tone technique which is a modification of ATS-5 and ATS-F hardware is recommended. Data extraction and data processing techniques and key hardware requirements for the experiment are reviewed.

  17. Information gains from cosmological probes

    NASA Astrophysics Data System (ADS)

    Grandis, S.; Seehars, S.; Refregier, A.; Amara, A.; Nicola, A.

    2016-05-01

    In light of the growing number of cosmological observations, it is important to develop versatile tools to quantify the constraining power and consistency of cosmological probes. Originally motivated from information theory, we use the relative entropy to compute the information gained by Bayesian updates in units of bits. This measure quantifies both the improvement in precision and the `surprise', i.e. the tension arising from shifts in central values. Our starting point is a WMAP9 prior which we update with observations of the distance ladder, supernovae (SNe), baryon acoustic oscillations (BAO), and weak lensing as well as the 2015 Planck release. We consider the parameters of the flat ΛCDM concordance model and some of its extensions which include curvature and Dark Energy equation of state parameter w. We find that, relative to WMAP9 and within these model spaces, the probes that have provided the greatest gains are Planck (10 bits), followed by BAO surveys (5.1 bits) and SNe experiments (3.1 bits). The other cosmological probes, including weak lensing (1.7 bits) and {H0} measures (1.7 bits), have contributed information but at a lower level. Furthermore, we do not find any significant surprise when updating the constraints of WMAP9 with any of the other experiments, meaning that they are consistent with WMAP9. However, when we choose Planck15 as the prior, we find that, accounting for the full multi-dimensionality of the parameter space, the weak lensing measurements of CFHTLenS produce a large surprise of 4.4 bits which is statistically significant at the 8 σ level. We discuss how the relative entropy provides a versatile and robust framework to compare cosmological probes in the context of current and future surveys.

  18. Site-specific incorporation of probes into RNA polymerase by unnatural-amino-acid mutagenesis and Staudinger-Bertozzi ligation

    PubMed Central

    Chakraborty, Anirban; Mazumder, Abhishek; Lin, Miaoxin; Hasemeyer, Adam; Xu, Qumiao; Wang, Dongye; Ebright, Yon W.; Ebright, Richard H.

    2015-01-01

    Summary A three-step procedure comprising (i) unnatural-amino-acid mutagenesis with 4-azido-phenylalanine, (ii) Staudinger-Bertozzi ligation with a probe-phosphine derivative, and (iii) in vitro reconstitution of RNA polymerase (RNAP) enables the efficient site-specific incorporation of a fluorescent probe, a spin label, a crosslinking agent, a cleaving agent, an affinity tag, or any other biochemical or biophysical probe, at any site of interest in RNAP. Straightforward extensions of the procedure enable the efficient site-specific incorporation of two or more different probes in two or more different subunits of RNAP. We present protocols for synthesis of probe-phosphine derivatives, preparation of RNAP subunits and the transcription initiation factor σ, unnatural amino acid mutagenesis of RNAP subunits and σ, Staudinger ligation with unnatural-amino-acid-containing RNAP subunits and σ, quantitation of labelling efficiency and labelling specificity, and reconstitution of RNAP. PMID:25665560

  19. Persistence of Microbial Contamination on Transvaginal Ultrasound Probes despite Low-Level Disinfection Procedure

    PubMed Central

    M'Zali, Fatima; Bounizra, Carole; Leroy, Sandrine; Mekki, Yahia; Quentin-Noury, Claudine; Kann, Michael

    2014-01-01

    Aim of the Study In many countries, Low Level Disinfection (LLD) of covered transvaginal ultrasound probes is recommended between patients' examinations. The aim of this study was to evaluate the antimicrobial efficacy of LLD under routine conditions on a range of microorganisms. Materials and Methods Samples were taken over a six month period in a private French Radiology Center. 300 specimens derived from endovaginal ultrasound probes were analyzed after disinfection of the probe with wipes impregnated with a quaternary ammonium compound and chlorhexidine. Human papillomavirus (HPV) was sought in the first set of s100 samples, Chlamydia trachomatis and mycoplasmas were searched in the second set of 100 samples, bacteria and fungi in the third 100 set samples. HPV, C. trachomatis and mycoplasmas were detected by PCR amplification. PCR positive samples were subjected to a nuclease treatment before an additional PCR assay to assess the likely viable microorganisms. Bacteria and fungi were investigated by conventional methods. Results A substantial persistence of microorganisms was observed on the disinfected probes: HPV DNA was found on 13% of the samples and 7% in nuclease-resistant form. C. trachomatis DNA was detected on 20% of the probes by primary PCR but only 2% after nuclease treatment, while mycoplasma DNA was amplified in 8% and 4%, respectively. Commensal and/or environmental bacterial flora was present on 86% of the probes, occasionally in mixed culture, and at various levels (10->3000 CFU/probe); Staphylococcus aureus was cultured from 4% of the probes (10-560 CFU/probe). No fungi were isolated. Conclusion Our findings raise concerns about the efficacy of impregnated towels as a sole mean for disinfection of ultrasound probes. Although the ultrasound probes are used with disposable covers, our results highlight the potential risk of cross contamination between patients during ultrasound examination and emphasize the need for reviewing the disinfection

  20. Characterization of Probe Dynamic Behaviors in Critical Dimension Atomic Force Microscopy.

    PubMed

    Feng, Shaw C; Joung, Che Bong; Vorburger, Theodore V

    2009-01-01

    This paper describes a detailed computational model of the interaction between an atomic force microscope probe tip and a sample surface. The model provides analyses of dynamic behaviors of the tip to estimate the probe deflections due to surface intermittent contact and the resulting dimensional biases and uncertainties. Probe tip and cantilever beam responses to intermittent contact between the probe tip and sample surface are computed using the finite element method. Intermittent contacts with a wall and a horizontal surface are computed and modeled, respectively. Using a 75 nm Critical Dimension (CD) tip as an example, the responses of the probe to interaction forces between the sample surface and the probe tip are shown in both time and frequency domains. In particular, interaction forces between the tip and both a vertical wall and a horizontal surface of a silicon sample are modeled using Lennard-Jones theory. The Snap-in and Snap-out of the probe tip in surface scanning are calculated and shown in the time domain. Based on the given tip-sample interaction force model, the calculation includes the compliance of the probe and dynamic forces generated by an excitation. Cantilever and probe tip deflections versus interaction forces in the time domain can be derived for both vertical contact with a plateau and horizontal contact with a side wall. Dynamic analysis using the finite element method and Lennard-Jones model provide a unique means to analyze the interaction of the probe and sample, including calculation of the deflection and the gap between the probe tip and the measured sample surface. PMID:27504222

  1. Characterization of Probe Dynamic Behaviors in Critical Dimension Atomic Force Microscopy

    PubMed Central

    Feng, Shaw C.; Joung, Che Bong; Vorburger, Theodore V.

    2009-01-01

    This paper describes a detailed computational model of the interaction between an atomic force microscope probe tip and a sample surface. The model provides analyses of dynamic behaviors of the tip to estimate the probe deflections due to surface intermittent contact and the resulting dimensional biases and uncertainties. Probe tip and cantilever beam responses to intermittent contact between the probe tip and sample surface are computed using the finite element method. Intermittent contacts with a wall and a horizontal surface are computed and modeled, respectively. Using a 75 nm Critical Dimension (CD) tip as an example, the responses of the probe to interaction forces between the sample surface and the probe tip are shown in both time and frequency domains. In particular, interaction forces between the tip and both a vertical wall and a horizontal surface of a silicon sample are modeled using Lennard-Jones theory. The Snap-in and Snap-out of the probe tip in surface scanning are calculated and shown in the time domain. Based on the given tip-sample interaction force model, the calculation includes the compliance of the probe and dynamic forces generated by an excitation. Cantilever and probe tip deflections versus interaction forces in the time domain can be derived for both vertical contact with a plateau and horizontal contact with a side wall. Dynamic analysis using the finite element method and Lennard-Jones model provide a unique means to analyze the interaction of the probe and sample, including calculation of the deflection and the gap between the probe tip and the measured sample surface. PMID:27504222

  2. Sensing lymphoma cells based on a cell-penetrating/apoptosis-inducing/electron-transfer peptide probe.

    PubMed

    Sugawara, Kazuharu; Shinohara, Hiroki; Kadoya, Toshihiko; Kuramitz, Hideki

    2016-06-14

    To electrochemically sense lymphoma cells (U937), we fabricated a multifunctional peptide probe that consists of cell-penetrating/apoptosis-inducing/electron-transfer peptides. Electron-transfer peptides derive from cysteine residue combined with the C-terminals of four tyrosine residues (Y4). A peptide whereby Y4C is bound to the C-terminals of protegrin 1 (RGGRLCYCRRRFCVCVGR-NH2) is known to be an apoptosis-inducing agent against U937 cells, and is referred to as a peptide-1 probe. An oxidation response of the peptide-1 probe has been observed due to a phenolic hydroxyl group, and this response is decreased by the uptake of the peptide probe into the cells. To improve the cell membrane permeability against U937 cells, the RGGR at the N-terminals of the peptide-1 probe was replaced by RRRR (peptide-2 probe). In contrast, RNRCKGTDVQAWY4C (peptide-3 probe), which recognizes ovalbumin, was constructed as a control. Compared with the other probes, the change in the peak current of the peptide-2 probe was the greatest at low concentrations and occurred in a short amount of time. Therefore, the cell membrane permeability of the peptide-2 probe was increased based on the arginine residues and the apoptosis-inducing peptides. The peak current was linear and ranged from 100 to 1000 cells/ml. The relative standard deviation of 600 cells/ml was 5.0% (n = 5). Furthermore, the membrane permeability of the peptide probes was confirmed using fluorescent dye. PMID:27181650

  3. Atmospheric entry probes for outer planet exploration. Outer planet entry probe technical summary

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The use of unmanned space probes for investigating the conditions existing on and around the outer planets of the solar system is discussed. The subjects included in the report are: (1) the design of a common entry probe for outer planet missions, (2) the significant trades related to the development of a common probe design, (3) the impact of bus selection on probe design, (4) the impact of probe requirements on bus modifications, and (5) the key technology elements recommended for advanced development. Drawings and illustrations of typical probes are included to show the components and systems used in the space probes.

  4. pH Meter probe assembly

    DOEpatents

    Hale, Charles J.

    1983-01-01

    An assembly for mounting a pH probe in a flowing solution, such as a sanitary sewer line, which prevents the sensitive glass portion of the probe from becoming coated with grease, oil, and other contaminants, whereby the probe gives reliable pH indication over an extended period of time. The pH probe assembly utilizes a special filter media and a timed back-rinse feature for flushing clear surface contaminants of the filter. The flushing liquid is of a known pH and is utilized to check performance of the probe.

  5. pH Meter probe assembly

    DOEpatents

    Hale, C.J.

    1983-11-15

    An assembly for mounting a pH probe in a flowing solution, such as a sanitary sewer line, which prevents the sensitive glass portion of the probe from becoming coated with grease, oil, and other contaminants, whereby the probe gives reliable pH indication over an extended period of time. The pH probe assembly utilizes a special filter media and a timed back-rinse feature for flushing clear surface contaminants of the filter. The flushing liquid is of a known pH and is utilized to check performance of the probe. 1 fig.

  6. Metallized Capillaries as Probes for Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Pelletier, Michael

    2003-01-01

    A class of miniature probes has been proposed to supplant the fiber-optic probes used heretofore in some Raman and fluorescence spectroscopic systems. A probe according to the proposal would include a capillary tube coated with metal on its inside to make it reflective. A microlens would be hermetically sealed onto one end of the tube. A spectroscopic probe head would contain a single such probe, which would both deliver laser light to a sample and collect Raman or fluorescent light emitted by the sample.

  7. Phylogenetic and epidemiological analysis of Neisseria meningitidis using DNA probes.

    PubMed Central

    Ni, H.; Knight, A. I.; Cartwright, K. A.; McFadden, J. J.

    1992-01-01

    The genetic relationships between various serotypes and serogroups of meningococcal strains were investigated by restriction fragment-length polymorphism (RFLP) analysis using a number of random DNA probes and a probe containing a truncated copy of the meningococcal insertion sequence IS1106. The data were used to estimate genetic distance between all pairs of strains and to construct phylogenetic trees for meningococcal strains. B15:P1.16R strains isolated from cases of systemic meningococcal disease in two health districts with a high incidence of disease were clonal in contrast to similar strains from cases occurring in other parts of the UK. Strains from these areas, which contain a similar genomic deletion, were found to be derived from two distinct lineages within the B15:P1.16R phylogenetic group. RFLP data demonstrated that present serological typing systems for the meningococcus do not necessarily reflect true genetic relationships. Images Fig. 1 PMID:1356820

  8. The Mutual Impedance Probe (RPC-MIP) onboard ROSETTA

    NASA Astrophysics Data System (ADS)

    Henri, Pierre; Lebreton, Jean-Pierre; Béghin, Christian; Décréau, Pierrette; Grard, Réjean; Hamelin, Michel; Mazelle, Christian; Randriamboarison, Orélien; Schmidt, Walter; Winterhalter, Daniel; Aouad, Youcef; Lagoutte, Dominique; Vallières, Xavier

    2014-05-01

    The ROSETTA mission will reach the comet 67P/Churyumov-Gerasimenko in August 2014 and enable, for the first time, the in situ survey of a comet activity during along orbit. On board the ROSETTA orbiter, the Mutual Impedance Probe (MIP) is one of the instruments of the Rosetta Plasma Consortium (RPC) that aims at monitoring the cometary plasma environment. MIP is a quadrupolar probe that measures the frequency response of the coupling impedance between two emitting and two receiving dipoles. The electron density and temperature are derived from the resonance peak and the interference pattern of the mutual impedance spectrum. We will describe this instrument and discuss the preliminary results obtained during the third ROSETTA Earth flyby to show its expected capabilities. The RPC switch ON for the post-hibernation recommissioning is planned at the end of March. The health status of the instrument will be discussed.

  9. Preparation and Characterization of Fluorescent Derivatives of Chicken Egg White Lysozyme

    NASA Technical Reports Server (NTRS)

    Sumida, John; Forsythe, Elizabeth; Pusey, Marc

    2000-01-01

    Fluorescence is one of the most versatile and powerful tools for the study of macromolecules. While most proteins are intrinsically fluorescent, working at crystallization concentrations require the use of covalently prepared derivatives added as tracers. This approach requires derivatives that do not markedly affect the crystal packing. We have prepared a number of fluorescent derivatives of chicken egg white lysozyme with probes bound to one of two different sites on the protein molecule. Lucifer yellow, cascade blue, and 5-(2-aminoethyl)aminonapthalene-l-sulfonic acid (EDANS) have been attached to the side chain carboxyl of asp101 using a carbodiimide coupling procedure. asp101 lies within the active site cleft, and it is believed that the probes are at least partially "buried" within that cleft. Lucifer yellow and MANS probes with iodoacetamide reactive groups have been bound to hisl5, located on the "back side" of the molecule relative to the active site. The fluorescently labeled protein is readily purified from the starting material by cation exchange chromatography. All the derivatives fluoresce in both the solution and the crystalline states. Fluorescence characterization has focused on determining the bound probe quantum yields, lifetimes, absorption and emission spectra, and quenching by added solutes in comparison to the free probe. No appreciable changes are found in the lifetimes of any of the probes except for cascade blue, where Tau(sub free) = 3.52 ns vrs Tau(sub bound) = 2.8 ns. Spectral shifts are found in most cases. Particularly strong quenching upon binding is found in the case of the cascade blue derivative, likely due to probe interactions with the active site cleft. While none of the asp101 bound probes are well quenched by commonly employed solutes, such as potassium and sodium iodide, acrylamide, primuline, the chloride salts of manganese, cesium, and cobalt, trifluoroacetamide, trichloroethanol, and thallium iodide, in those cases where

  10. New BODIPY lipid probes for fluorescence studies of membranes

    PubMed Central

    Momsen, Maureen M.; Brockman, Howard L.; Brown, Rhoderick E.; Molotkovsky, Julian G.

    2007-01-01

    Many fluorescent lipid probes tend to loop back to the membrane interface when attached to a lipid acyl chain rather than embedding deeply into the bilayer. To achieve maximum embedding of BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorophore into the bilayer apolar region, a series of sn-2 acyl-labeled phosphatidylcholines was synthesized bearing 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene-8-yl (Me4-BODIPY-8) at the end of C3-, C5-, C7-, or C9-acyl. A strategy was used of symmetrically dispersing the methyl groups at BODIPY ring positions 1, 3, 5, and 7 to decrease fluorophore polarity. Iodide quenching of the phosphatidylcholine probes in bilayer vesicles confirmed that the Me4-BODIPY-8 fluorophore was embedded in the bilayer. Parallax analysis of Me4-BODIPY-8 fluorescence quenching by phosphatidylcholines containing iodide at different positions along the sn-2 acyl chain indicated that the penetration depth of Me4-BODIPY-8 into the bilayer was determined by the length of the linking acyl chain. Evaluation using monolayers showed minimal perturbation of <10 mol% probe in fluid-phase and cholesterol-enriched phosphatidylcholine. Spectral characterization in monolayers and bilayers confirmed the retention of many features of other BODIPY derivatives (i.e., absorption and emission wavelength maxima near 498 nm and ∼506−515 nm) but also showed the absence of the 620−630 nm peak associated with BODIPY dimer fluorescence and the presence of a 570 nm emission shoulder at high Me4-BODIPY-8 surface concentrations. We conclude that the new probes should have versatile utility in membrane studies, especially when precise location of the reporter group is needed.—Boldyrev, I. A., X. Zhai, M. M. Momsen, H. L. Brockman, R. E. Brown, and J. G. Molotkovsky. New BODIPY lipid probes for fluorescence studies of membranes. PMID:17416929

  11. Probing the nano-bio interface with nanoplasmonic optical probes

    NASA Astrophysics Data System (ADS)

    Yu, X.; Wu, Linxi; Khanehzar, Ali; Feizpour, Amin; Xu, Fangda; Reinhard, Björn M.

    2014-08-01

    Noble metal nanoparticles have large cross-sections in both optical and electron microscopy and plasmon coupling between noble metal nanoparticles facilitate the characterization of subdiffraction limit separations through spectral analysis of the scattered light in Plasmon Coupling Microscopy (PCM). The size compatibility of noble metal nanoparticles together with the ability to encode specific functionality in a rational fashion by control of the nanoparticle surface makes noble metal nanoparticles unique probes for a broad range of biological processes. Recent applications of the technology include i.) characterization of cellular heterogeneity in nanomaterial uptake and processing through macrophages, ii.) testing the role of viral membrane lipids in mediating viral binding and trafficking, and iii.) characterizing the spatial organization of cancer biomarkers in plasma membranes. This paper reviews some of these applications and introduces the physical and material science principles underlying them. We will also introduce the use of membrane wrapped noble metal nanoparticles, which combine the superb photophysical properties of a nanoparticle core with the biological functionality of a membrane, as probes in PCM.

  12. Solar probe: an engineering study

    NASA Astrophysics Data System (ADS)

    Bedini, P.; Potocki, K.

    2003-04-01

    Solar Probe, a program to study the origins of the solar wind and the heating of the Sun’s corona, is currently a mission under study in NASA’s Sun-Earth Connection Theme. The availability of the Evolved Expendable Launch Vehicle (EELV) and Multi-Mission Radioisotope Thermoelectric Generators has enabled the development of an implementable Solar Probe mission concept that now offers substantial resources (55 kg and 47 W) for its science payload. The mission design assumes a launch on an EELV and uses a direct Jupiter Gravity Assist to reach a perihelion of 4 RS. The mission affords two polar solar passes with Earth in quadrature within 7.1 years from launch. A large (2.7-m diameter × 5.1-m), conical Carbon-Carbon thermal protection system harbors a complement of in situ and remote-sensing instruments (based on the 1999 Solar Probe Science Definition Team straw-man payload). A Ka-band telecommunications system allows uninterrupted real-time data downlink at perihelion (p) despite coronal scintillation effects, providing > 25 kbps even at closest approach. The 43.2 Gbits of data down-linked during each pass (p -- 10 days through p + 10 days) is augmented by as much as another 128 Gbits of data recorded on redundant solid-state recorders for post-perihelion playback. The capability exists to download cruise mode science as well. Fault tolerance is achieved using redundant avionics and a dedicated attitude control unit to assure that the proper orientation of the spacecraft is maintained throughout the passes. Viable opportunities begin with a 2010 launch, provided new start authority is obtained in FY-05.

  13. Solar probe: an engineering solution

    NASA Astrophysics Data System (ADS)

    Bedini, P.; Potocki, K.

    2003-04-01

    Solar Probe, a program to study the origins of the solar wind and the heating of the Sun's corona, is currently a mission under study in NASA's Sun-Earth Connection Theme. The availability of the Evolved Expendable Launch Vehicle (EELV) and Multi-Mission Radioisotope Thermoelectric Generators has enabled the development of an implementable Solar Probe mission concept that now offers substantial resources (55 kg and 47 W) for its science payload. The mission design assumes a launch on an EELV and uses a direct Jupiter Gravity Assist to reach a perihelion of 4 RS. The mission affords two polar solar passes with Earth in quadrature within 7.1 years from launch. A large (2.7-m diameter x 5.1-m), conical Carbon-Carbon thermal protection system harbors a complement of in situ and remote-sensing instruments (based on the 1999 Solar Probe Science Definition Team straw-man payload). A Ka-band telecommunications system allows uninterrupted real-time data downlink at perihelion (p) despite coronal scintillation effects, providing > 25 kbps even at closest approach. The 43.2 Gbits of data down-linked during each pass (p - 10 days through p + 10 days) is augmented by as much as another 128 Gbits of data recorded on redundant solid-state recorders for post-perihelion playback. The capability exists to download cruise mode science as well. Fault tolerance is achieved using redundant avionics and a dedicated attitude control unit to assure that the proper orientation of the spacecraft is maintained throughout the passes. Viable opportunities begin with a 2010 launch, provided new start authority is obtained in FY-05.

  14. Probing Planetary Magnetic Fields During Transits

    NASA Astrophysics Data System (ADS)

    Vidotto, A. A.; Jardine, M.; Helling, C.

    2011-10-01

    Recently, Fossati et al. observed that the near-UV transit light curve of the close-in giant planet WASP-12b shows an early ingress as compared to its optical transit. Such observations were interpreted as due to the presence of asymmetries in the exosphere of the planet. In particular, we suggest that this asymmetry could be explained by the presence of a shock formed around the planet's magnetosphere. Bow shocks are formed as a result of the interaction of the planet with the coronal material of the host star, similar to the one formed around the Earth's magnetosphere. According to our model, shock detection through transit observations can be a useful tool to probe and constrain exoplanetary magnetic field. In the case of WASP- 12b, we derive an upper limit for the magnetic field of ∼ 24 G. In addition, we predict that observable shocks should be a common feature in other transiting systems. Promising candidates are: WASP- 19b, WASP-4b, WASP-18b, CoRoT-7b, HAT-P-7b, CoRoT-1b, TrES-3 and WASP-5b.

  15. Three-axis particle impact probe

    SciTech Connect

    Fasching, G.E.; Smith, N.S. Jr.; Utt, C.E.

    1991-04-02

    Three-axis particle impact probes detect particle impact vectors along x-, y-, and z-axes by means of a head mounted on the outer end of a shaft that is flexibly mounted in silicone rubber at the top of a housing so as to enable motion imparted to the head upon impact to be transmitted to a grounded electrode secured to the shaft within the housing. Excitable electrodes are mounted in the housing in a fixed position, spaced apart from the ground electrode and forming, with the ground electrode, capacitor pairs. Movement of the ground electrode results in changes in capacitance, and these differences in capacitance are used for measurement or derivation of momentum vectors along each of the three axes. In one embodiment, the ground electrode is mounted at the base of the shaft and is secured to a silicone rubber layer at the top of the housing, providing for cantilevered movement. In another embodiment, the shaft is mounted at its mid point in a flexible bushing so that it undergoes pivotal movement around that point.

  16. Probing the tides in interacting galaxy pairs

    NASA Technical Reports Server (NTRS)

    Borne, Kirk D.

    1990-01-01

    Detailed spectroscopic and imaging observations of colliding elliptical galaxies revealed unmistakable diagnostic signatures of the tidal interactions. It is possible to compare both the distorted luminosity distributions and the disturbed internal rotation profiles with numerical simulations in order to model the strength of the tidal gravitational field acting within a given pair of galaxies. Using the best-fit numerical model, one can then measure directly the mass of a specific interacting binary system. This technique applies to individual pairs and therefore complements the classical methods of measuring the masses of galaxy pairs in well-defined statistical samples. The 'personalized' modeling of galaxy pairs also permits the derivation of each binary's orbit, spatial orientation, and interaction timescale. Similarly, one can probe the tides in less-detailed observations of disturbed galaxies in order to estimate some of the physical parameters for larger samples of interacting galaxy pairs. These parameters are useful inputs to the more universal problems of (1) the galaxy merger rate, (2) the strength and duration of the driving forces behind tidally stimulated phenomena (e.g., starbursts and maybe quasi steller objects), and (3) the identification of long-lived signatures of interaction/merger events.

  17. Electron density dependence of impedance probe plasma potential measurements

    SciTech Connect

    Walker, D. N.; Blackwell, D. D.; Amatucci, W. E.

    2015-08-15

    In earlier works, we used spheres of various sizes as impedance probes in demonstrating a method of determining plasma potential, φ{sub p}, when the probe radius is much larger than the Debye length, λ{sub D}. The basis of the method in those works [Walker et al., Phys. Plasmas 13, 032108 (2006); ibid. 15, 123506 (2008); ibid. 17, 113503 (2010)] relies on applying a small amplitude signal of fixed frequency to a probe in a plasma and, through network analyzer-based measurements, determining the complex reflection coefficient, Γ, for varying probe bias, V{sub b}. The frequency range of the applied signal is restricted to avoid sheath resonant effects and ion contributions such that ω{sub pi} ≪ ω ≪ ω{sub pe}, where ω{sub pi} is the ion plasma frequency and ω{sub pe} is the electron plasma frequency. For a given frequency and applied bias, both Re(Z{sub ac}) and Im(Z{sub ac}) are available from Γ. When Re(Z{sub ac}) is plotted versus V{sub b}, a minimum predicted by theory occurs at φ{sub p} [Walker et al., Phys. Plasmas 17, 113503 (2010)]. In addition, Im(Z{sub ac}) appears at, or very near, a maximum at φ{sub p}. As n{sub e} decreases and the sheath expands, the minimum becomes harder to discern. The purpose of this work is to demonstrate that when using network analyzer-based measurements, Γ itself and Im(Z{sub ac}) and their derivatives are useful as accompanying indicators to Re(Z{sub ac}) in these difficult cases. We note the difficulties encountered by the most commonly used plasma diagnostic, the Langmuir probe. Spherical probe data is mainly used in this work, although we present limited data for a cylinder and a disk. To demonstrate the effect of lowered density as a function of probe geometry, we compare the cylinder and disk using only the indicator Re(Z{sub ac})

  18. Laser-heated emissive plasma probe.

    PubMed

    Schrittwieser, Roman; Ionita, Codrina; Balan, Petru; Gstrein, Ramona; Grulke, Olaf; Windisch, Thomas; Brandt, Christian; Klinger, Thomas; Madani, Ramin; Amarandei, George; Sarma, Arun K

    2008-08-01

    Emissive probes are standard tools in laboratory plasmas for the direct determination of the plasma potential. Usually they consist of a loop of refractory wire heated by an electric current until sufficient electron emission. Recently emissive probes were used also for measuring the radial fluctuation-induced particle flux and other essential parameters of edge turbulence in magnetized toroidal hot plasmas [R. Schrittwieser et al., Plasma Phys. Controlled Fusion 50, 055004 (2008)]. We have developed and investigated various types of emissive probes, which were heated by a focused infrared laser beam. Such a probe has several advantages: higher probe temperature without evaporation or melting and thus higher emissivity and longer lifetime, no deformation of the probe in a magnetic field, no potential drop along the probe wire, and faster time response. The probes are heated by an infrared diode laser with 808 nm wavelength and an output power up to 50 W. One probe was mounted together with the lens system on a radially movable probe shaft, and radial profiles of the plasma potential and of its oscillations were measured in a linear helicon discharge. PMID:19044350

  19. Spectral relaxation in pump-probe transients

    NASA Astrophysics Data System (ADS)

    Farrow, Darcie A.; Yu, Anchi; Jonas, David M.

    2003-05-01

    The relationship between pump-probe transients and the transition frequency correlation function, M(t), is examined. Calculations of pump-probe transients are carried out with a full-quantum expression for a displaced harmonic oscillator coupled to a heat bath. Pump-probe transients for a slowly decaying, overdamped, Brownian oscillator are shown to resemble a power series in M(t), where the slowest time scale is always equal to the slowest decay in M(t). This equality is consistent with a semiclassical model of pump-probe and valid over the full range of temperature, pulse duration, and detuning explored. The contribution of time scales faster than M(t) to the pump-probe transient increases with increasing temperature, pulse duration, and detuning of the pulse center frequency below resonance. Pump-probe transients for a critically damped oscillator that decays on a femtosecond time scale also have faster early time decay at higher temperatures. Based on these calculations a bootstrap method is suggested for extracting M(t) from pump-probe data starting with the slowest decay. Comparisons are made between simulations of pump-probe and three pulse echo peak shift (3PEPS) transients for a single oscillator and for multiple oscillator systems. Additional fast relaxations similar to those in pump-probe are also present in the 3PEPS transients. For the models investigated, pump-probe is comparable to 3PEPS for the extraction of M(t).

  20. Subwavelength optical probes for sensitive analysis

    NASA Astrophysics Data System (ADS)

    Tan, Weihong; Bang, Leng; Cordek, Julia; Liu, Xiaojing

    1998-04-01

    Near-field optics has been utilized for a variety of applications. Using near-field optical probe and microscopy, we have devised a method to introduce a near-field probe into live cultured vascular smooth muscle cell and NG108-15 neuroblastoma cells. We have effectively monitored cellular responses, with excellent spatial and fast temporal resolutions, to drug stimulation. Near-field optical probes enable the visualization of functional response in living cells. We have also nanofabricated the first single molecule optical probe. A single dye molecule, carbocyanine dye C18, is immobilized on a near-field optical probe by physical immobilization. We are able to control the preparation process by selecting the dye molecule concentrations and the interaction times of the probe with the DiI solution. The single DiI molecule probe's optical and spectroscopic properties have been characterized. Photobleaching of a single DiI molecule probe occurs as a discrete and total extinction of its fluorescence. We have also developed ultrasensitive detection schemes using near-field optical probes. Biomolecule immobilization has been carried out on optical fiber probes. Ultrasensitive biochemical sensors for glutamate and lactate have been prepared and characterized.

  1. Real-time cosmography with redshift derivatives

    NASA Astrophysics Data System (ADS)

    Martins, C. J. A. P.; Martinelli, M.; Calabrese, E.; Ramos, M. P. L. P.

    2016-08-01

    The drift in the redshift of objects passively following the cosmological expansion has long been recognized as a key model-independent probe of cosmology. Here, we study the cosmological relevance of measurements of time or redshift derivatives of this drift, arguing that the combination of first and second redshift derivatives is a powerful test of the Λ CDM cosmological model. In particular, the latter can be obtained numerically from a set of measurements of the drift at different redshifts. We show that, in the low-redshift limit, a measurement of the derivative of the drift can provide a constraint on the jerk parameter, which is j =1 for flat Λ CDM , while generically j ≠1 for other models. We emphasize that such a measurement is well within the reach of the ELT-HIRES and SKA Phase 2 array surveys.

  2. Synthetic Bioluminescent Coelenterazine Derivatives.

    PubMed

    Nishihara, Ryo; Citterio, Daniel; Suzuki, Koji

    2016-01-01

    The development of coelenterazine (CTZ) derivatives resulting in superior optical characteristics is an efficient method to extend the range of its possible applications. Here, we describe the synthesis of three C-6 substituted CTZ derivatives retaining the recognition by Renilla luciferase (RLuc) and its derivatives. The novel derivatives are useful as bright blue-shifted CTZ derivatives, which can be used as an alternative to hitherto reported compound DeepBlueC™. PMID:27424892

  3. Resolution analysis by random probing

    NASA Astrophysics Data System (ADS)

    Simutė, S.; Fichtner, A.; van Leeuwen, T.

    2015-12-01

    We develop and apply methods for resolution analysis in tomography, based on stochastic probing of the Hessian or resolution operators. Key properties of our methods are (i) low algorithmic complexity and easy implementation, (ii) applicability to any tomographic technique, including full-waveform inversion and linearized ray tomography, (iii) applicability in any spatial dimension and to inversions with a large number of model parameters, (iv) low computational costs that are mostly a fraction of those required for synthetic recovery tests, and (v) the ability to quantify both spatial resolution and inter-parameter trade-offs. Using synthetic full-waveform inversions as benchmarks, we demonstrate that auto-correlations of random-model applications to the Hessian yield various resolution measures, including direction- and position-dependent resolution lengths, and the strength of inter-parameter mappings. We observe that the required number of random test models is around 5 in one, two and three dimensions. This means that the proposed resolution analyses are not only more meaningful than recovery tests but also computationally less expensive. We demonstrate the applicability of our method in 3D real-data full-waveform inversions for the western Mediterranean and Japan. In addition to tomographic problems, resolution analysis by random probing may be used in other inverse methods that constrain continuously distributed properties, including electromagnetic and potential-field inversions, as well as recently emerging geodynamic data assimilation.

  4. Resolution analysis by random probing

    NASA Astrophysics Data System (ADS)

    Fichtner, Andreas; Leeuwen, Tristan van

    2015-08-01

    We develop and apply methods for resolution analysis in tomography, based on stochastic probing of the Hessian or resolution operators. Key properties of our methods are (i) low algorithmic complexity and easy implementation, (ii) applicability to any tomographic technique, including full-waveform inversion and linearized ray tomography, (iii) applicability in any spatial dimension and to inversions with a large number of model parameters, (iv) low computational costs that are mostly a fraction of those required for synthetic recovery tests, and (v) the ability to quantify both spatial resolution and interparameter trade-offs. Using synthetic full-waveform inversions as benchmarks, we demonstrate that autocorrelations of random-model applications to the Hessian yield various resolution measures, including direction- and position-dependent resolution lengths and the strength of interparameter mappings. We observe that the required number of random test models is around five in one, two, and three dimensions. This means that the proposed resolution analyses are not only more meaningful than recovery tests but also computationally less expensive. We demonstrate the applicability of our method in a 3-D real-data full-waveform inversion for the western Mediterranean. In addition to tomographic problems, resolution analysis by random probing may be used in other inverse methods that constrain continuously distributed properties, including electromagnetic and potential-field inversions, as well as recently emerging geodynamic data assimilation.

  5. Path optimization for oil probe

    NASA Astrophysics Data System (ADS)

    Smith, O'Neil; Rahmes, Mark; Blue, Mark; Peter, Adrian

    2014-05-01

    We discuss a robust method for optimal oil probe path planning inspired by medical imaging. Horizontal wells require three-dimensional steering made possible by the rotary steerable capabilities of the system, which allows the hole to intersect multiple target shale gas zones. Horizontal "legs" can be over a mile long; the longer the exposure length, the more oil and natural gas is drained and the faster it can flow. More oil and natural gas can be produced with fewer wells and less surface disturbance. Horizontal drilling can help producers tap oil and natural gas deposits under surface areas where a vertical well cannot be drilled, such as under developed or environmentally sensitive areas. Drilling creates well paths which have multiple twists and turns to try to hit multiple accumulations from a single well location. Our algorithm can be used to augment current state of the art methods. Our goal is to obtain a 3D path with nodes describing the optimal route to the destination. This algorithm works with BIG data and saves cost in planning for probe insertion. Our solution may be able to help increase the energy extracted vs. input energy.

  6. Compact Nanowire Sensors Probe Microdroplets.

    PubMed

    Schütt, Julian; Ibarlucea, Bergoi; Illing, Rico; Zörgiebel, Felix; Pregl, Sebastian; Nozaki, Daijiro; Weber, Walter M; Mikolajick, Thomas; Baraban, Larysa; Cuniberti, Gianaurelio

    2016-08-10

    The conjunction of miniature nanosensors and droplet-based microfluidic systems conceptually opens a new route toward sensitive, optics-less analysis of biochemical processes with high throughput, where a single device can be employed for probing of thousands of independent reactors. Here we combine droplet microfluidics with the compact silicon nanowire based field effect transistor (SiNW FET) for in-flow electrical detection of aqueous droplets one by one. We chemically probe the content of numerous (∼10(4)) droplets as independent events and resolve the pH values and ionic strengths of the encapsulated solution, resulting in a change of the source-drain current ISD through the nanowires. Further, we discuss the specificities of emulsion sensing using ion sensitive FETs and study the effect of droplet sizes with respect to the sensor area, as well as its role on the ability to sense the interior of the aqueous reservoir. Finally, we demonstrate the capability of the novel droplets based nanowire platform for bioassay applications and carry out a glucose oxidase (GOx) enzymatic test for glucose detection, providing also the reference readout with an integrated parallel optical detector. PMID:27417510

  7. Review of Gravity Probe B

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In response to a request by the NASA Administrator, the National Research Council (NRC) has conducted an accelerated scientific review of NASA's Gravity Probe B (GP-B) mission. The review was carried out by the Task Group on Gravity Probe B, under the auspices of the NRC's Space Studies Board and Board on Physics and Astronomy. The specific charge to the task group was to review the GP-B mission with respect to the following terms of reference: (1) scientific importance - including a current assessment of the value of the project in the context of recent progress in gravitational physics and relevant technology; (2) technical feasibility - the technical approach will be evaluated for likelihood of success, both in terms of achievement of flight mission objectives but also in terms of scientific conclusiveness of the various possible outcomes for the measurements to be made; and (3) competitive value - if possible, GP-B science will be assessed qualitatively against the objectives and accomplishments of one or more fundamental physics projects of similar cost (e.g., the Cosmic Background Explorer, COBE).

  8. Flux focusing eddy current probe

    NASA Technical Reports Server (NTRS)

    Simpson, John W. (Inventor); Clendenin, C. Gerald (Inventor); Fulton, James P. (Inventor); Wincheski, Russell A. (Inventor); Todhunter, Ronald G. (Inventor); Namkung, Min (Inventor); Nath, Shridhar C. (Inventor)

    1997-01-01

    A flux-focusing electromagnetic sensor which uses a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks and material loss in high conductivity material. The unique feature of the device is the ferrous shield isolating a high-turn pick-up coil from an excitation coil. The use of the magnetic shield is shown to produce a null voltage output across the receiving coil in the presence of an unflawed sample. A redistribution of the current flow in the sample caused by the presence of flaws, however, eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. The maximum sensor output is obtained when positioned symmetrically above the crack. Hence, by obtaining the position of the maximum sensor output, it is possible to track the fault and locate the area surrounding its tip. The accuracy of tip location is enhanced by two unique features of the sensor; a very high signal-to-noise ratio of the probe's output which results in an extremely smooth signal peak across the fault, and a rapidly decaying sensor output outside a small area surrounding the crack tip which enables the region for searching to be clearly defined. Under low frequency operation, material thinning due to corrosion damage causes an incomplete shielding of the pick-up coil. The low frequency output voltage of the probe is therefore a direct indicator of the thickness of the test sample.

  9. The Gravity Probe B Experiment

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, Jeffrey

    2008-01-01

    This presentation briefly describes the Gravity Probe B (GP-B) Experiment which is designed to measure parts of Einstein's general theory of relativity by monitoring gyroscope orientation relative to a distant guide star. To measure the miniscule angles predicted by Einstein's theory, it was necessary to build near-perfect gyroscopes that were approximately 50 million times more precise than the best navigational gyroscopes. A telescope mounted along the central axis of the dewar and spacecraft provided the experiment's pointing reference to a guide star. The telescope's image divide precisely split the star's beam into x-axis and y-axis components whose brightness could be compared. GP-B's 650-gallon dewar, kept the science instrument inside the probe at a cryogenic temperature for 17.3 months and also provided the thruster propellant for precision attitude and translation control. Built around the dewar, the GP-B spacecraft was a total-integrated system, comprising both the space vehicle and payload, dedicated as a single entity to experimentally testing predictions of Einstein's theory.

  10. Tunable nanowire nonlinear optical probe

    SciTech Connect

    Nakayama, Yuri; Pauzauskie, Peter J.; Radenovic, Aleksandra; Onorato, Robert M.; Saykally, Richard J.; Liphardt, Jan; Yang, Peidong

    2008-02-18

    One crucial challenge for subwavelength optics has been thedevelopment of a tunable source of coherent laser radiation for use inthe physical, information, and biological sciences that is stable at roomtemperature and physiological conditions. Current advanced near-fieldimaging techniques using fiber-optic scattering probes1,2 have alreadyachieved spatial resolution down to the 20-nm range. Recently reportedfar-field approaches for optical microscopy, including stimulatedemission depletion (STED)3, structured illumination4, and photoactivatedlocalization microscopy (PALM)5, have also enabled impressive,theoretically-unlimited spatial resolution of fluorescent biomolecularcomplexes. Previous work with laser tweezers6-8 has suggested the promiseof using optical traps to create novel spatial probes and sensors.Inorganic nanowires have diameters substantially below the wavelength ofvisible light and have unique electronic and optical properties9,10 thatmake them prime candidates for subwavelength laser and imagingtechnology. Here we report the development of an electrode-free,continuously-tunable coherent visible light source compatible withphysiological environments, from individual potassium niobate (KNbO3)nanowires. These wires exhibit efficient second harmonic generation(SHG), and act as frequency converters, allowing the local synthesis of awide range of colors via sum and difference frequency generation (SFG,DFG). We use this tunable nanometric light source to implement a novelform of subwavelength microscopy, in which an infrared (IR) laser is usedto optically trap and scan a nanowire over a sample, suggesting a widerange of potential applications in physics, chemistry, materials science,and biology.

  11. LabVIEW software for analyzing Langmuir probe characteristics in magnetized plasma

    NASA Astrophysics Data System (ADS)

    Gandhi, S.; Binwal, S.; Kabariya, H.; Karkari, S. K.

    2016-03-01

    This paper describes the methodology for processing Ampere-Volts (I-V) characteristics of the Langmuir probe in magnetized plasma using graphical programming language based on LabVIEW. Computing the plasma parameters from I-V characteristic involves several steps that include signal processing, interpolation, linear and non-linear curve fitting based on physical models, finding the derivatives of the experimental curve and determining the zero-crossing of the probe current as a function of the applied voltage. These operations are practically tedious to perform manually causing systematic errors in output parameters. To overcome this challenge, software is developed to analyze the planar Langmuir probe characteristics in magnetized plasma. The software allows simultaneous display of different plasma parameters that helps to verify the consistency of the analyzed plasma parameters with the standard probe theory. Using this software, plasma parameters are obtained in a linear plasma device and its characteristics are discussed.

  12. Semi-active magnetorheological refueling probe systems for aerial refueling events

    NASA Astrophysics Data System (ADS)

    Choi, Young-Tai; Wereley, Norman M.

    2013-09-01

    This study analyzes the feasibility of applying a semi-active magnetorheological (MR) damper to a naval hose-drogue based aerial refueling system to minimize undesirable hose-drogue vibrations. The semi-active smart aerial refueling probe system consists of a probe, a coil spring, and a MR damper. The dynamics of the smart refueling probe system were derived and incorporated into an analysis of the coupled hose-drogue dynamics, so as to evaluate the load reduction of the refueling hose at the drogue position effected by the MR damper. The simulated responses of the smart refueling probe system using a MR damper were conducted at different maximum closure velocities of 1.56 and 5 ft s-1 and different tanker flight speeds of 185 and 220 knots. The simulations demonstrate that the smart refueling probe system using a MR damper enables large reductions in probe-and-drogue motions, as well as preventing the onset of large and undesirable hose-drogue motions resulting from tension loads during engagement of the probe.

  13. Design and Flight Evaluation of a New Force-Based Flow Angle Probe

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Vachon, Michael Jacob

    2006-01-01

    A novel force-based flow angle probe was designed and flight tested on the NASA F-15B Research Testbed aircraft at NASA Dryden Flight Research Center. The prototype flow angle probe is a small, aerodynamic fin that has no moving parts. Forces on the prototype flow angle probe are measured with strain gages and correlated with the local flow angle. The flow angle probe may provide greater simplicity, greater robustness, and better access to flow measurements in confined areas relative to conventional moving vane-type flow angle probes. Flight test data were obtained at subsonic, transonic, and supersonic Mach numbers to a maximum of Mach 1.70. Flight conditions included takeoff, landing, straight and level flight, flight at higher aircraft angles of attack, and flight at elevated g-loadings. Flight test maneuvers included angle-of-attack and angle-of-sideslip sweeps. The flow angle probe-derived flow angles are compared with those obtained with a conventional moving vane probe. The flight tests validated the feasibility of a force-based flow angle measurement system.

  14. Contrast analysis of near-field scanning microscopy using a metal slit probe at millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Nozokido, Tatsuo; Ishino, Manabu; Seto, Ryosuke; Bae, Jongsuck

    2015-09-01

    We describe an analytical method for investigating the signal contrast obtained in near-field scanning microscopy using a metal slit probe. The probe has a slit-like aperture at the open end of a rectangular or a parallel plate waveguide. In our method, the electromagnetic field around the metal slit aperture at the probe tip is calculated from Maxwell's equations in the Fourier domain in order to derive the electrical admittance of a sample system consisting of layered dielectrics as seen from the probe tip. A simple two-port electrical circuit terminated by this admittance is then established to calculate the complex reflection coefficient of the probe as a signal. The validity of the method is verified at millimeter wavelengths by a full-wave high frequency 3-D finite element modeler and also by experiment. The signal contrast when varying the short dimension of the slit aperture, the separation between the probe tip and the sample, and the sample thickness are successfully explained in terms of the variation in the product of the admittance and the characteristic impedance of the waveguide at the probe tip. In particular, the cause of the local minimum in the signal intensity when varying the separation is clarified.

  15. Studies of new two-photon fluorescent probes suitable for multiphoton microscopy in biological settings

    NASA Astrophysics Data System (ADS)

    Gvishi, Raz; Berkovic, Garry; Kotler, Zvi; Krief, Pnina; Shapiro, Lev; Klug, Jacob T.; Skorka, Jacqueline; Khodorkovsky, Vladimir

    2003-11-01

    Multi-Photon Laser Scanning Microscopy (MPLSM) requires efficient two-photon absorbing fluorescent (TPF) probes. In particular, probes exhibiting bio-functionality are very attractive for MPLSM studies of biological samples. We have synthesized and studied a new class of TPF probes capable of caging metal ions, such as Ca+2 and Na+, which play an important role in neuronal mechanisms. The TPF probes are based on a tetraketo derivative with a symmetric Donor-Acceptor-Donor (D-A-D) structure. The donor is an azacrown moiety, which also serves as a metal ion-caging unit. We studied the linear and the non-linear spectroscopic properties of these TPF probes as a function of conjugation length and the size of the crown ring. We find that this new class of TPF probes possesses very large two-photon excitation cross-section coefficients (~1000GM) at near IR wavelengths as well as affinity to metal ions. In the presence of changing sodium ion concentration the dye spectra reveals four distinguishable forms and the TPF efficiency changes strongly. We therefore conclude that the dye can perform as a sensitive metal ion TPF probe.

  16. Creating and Probing Graphene Electron Optics with Local Scanning Probes

    NASA Astrophysics Data System (ADS)

    Stroscio, Joseph

    Ballistic propagation and the light-like dispersion of graphene charge carriers make graphene an attractive platform for optics-inspired graphene electronics where gate tunable potentials can control electron refraction and transmission. In analogy to optical wave propagation in lenses, mirrors and metamaterials, gate potentials can be used to create a negative index of refraction for Veselago lensing and Fabry-Pérot interferometers. In circular geometries, gate potentials can induce whispering gallery modes (WGM), similar to optical and acoustic whispering galleries albeit on a much smaller length scale. Klein scattering of Dirac carriers plays a central role in determining the coherent propagation of electron waves in these resonators. In this talk, I examine the probing of electron resonators in graphene confined by linear and circular gate potentials with the scanning tunneling microscope (STM). The tip in the STM tunnel junction serves both as a tunable local gate potential, and as a probe of the graphene states through tunneling spectroscopy. A combination of a back gate potential, Vg, and tip potential, Vb, creates and controls a circular pn junction that confines the WGM graphene states. The resonances are observed in two separate channels in the tunneling spectroscopy experiment: first, by directly tunneling into the state at the bias energy eVb, and, second, by tunneling from the resonance at the Fermi level as the state is gated by the tip potential. The second channel produces a fan-like set of WGM peaks, reminiscent of the fringes seen in planar geometries by transport measurements. The WGM resonances split in a small applied magnetic field, with a large energy splitting approaching the WGM spacing at 0.5 T. These results agree well with recent theory on Klein scattering in graphene electron resonators. This work is done in collaboration with Y. Zhao, J. Wyrick, F.D. Natterer, J. F. Rodriquez-Nieva, C. Lewandoswski, K. Watanabe, T. Taniguchi, N. B

  17. Design and Development of Molecular Imaging Probes

    PubMed Central

    Chen, Kai; Chen, Xiaoyuan

    2013-01-01

    Molecular imaging, the visualization, characterization and measurement of biological processes at the cellular, subcellular level, or even molecular level in living subjects, has rapidly gained importance in the dawning era of personalized medicine. Molecular imaging takes advantage of the traditional diagnostic imaging techniques and introduces molecular imaging probes to determine the expression of indicative molecular markers at different stages of diseases and disorders. As a key component of molecular imaging, molecular imaging probe must be able to specifically reach the target of interest in vivo while retaining long enough to be detected. A desirable molecular imaging probe with clinical translation potential is expected to have unique characteristics. Therefore, design and development of molecular imaging probe is frequently a challenging endeavor for medicinal chemists. This review summarizes the general principles of molecular imaging probe design and some fundamental strategies of molecular imaging probe development with a number of illustrative examples. PMID:20388106

  18. Note: Refined possibilities for plasma probe diagnostics

    NASA Astrophysics Data System (ADS)

    Masherov, P. E.; Riaby, V. A.; Abgaryan, V. K.

    2016-08-01

    In an earlier publication, the ion mass determination technique was proposed using the Langmuir probe measurement results for low-pressure Maxwellian plasmas and their analysis, based on the Bohm effect and the Child-Boguslavsky-Langmuir (CBL) probe sheath model, allowing for probe sheath thickness and ion mass evaluations after the Bohm coefficient CBCyl ≈ 1.13 for cylindrical probes had been determined. In the present study, the step-front sheath model, being physically closer to the reality of gas discharge plasmas, was considered in order to correct the CBL sheath model results. At this stage, more real Bohm coefficient (CBCyl ≈ 1.23) for cylindrical probes was found to provide a more reliable method of probe sheath thickness and ion mass determination.

  19. Entry and Landing Probe for Titan

    NASA Technical Reports Server (NTRS)

    Murphy, J. P.; Cuzzi, J. N.; Butts, A. J.; Carroll, P. C.

    1981-01-01

    Results of a recent study of entry and landing probes for the exploration of Titan are presented. The probes considered were based on a wide range of exploration mission possibilities. They included: an atmospheric science probe, an intermediate atmospheric and limited surface science probe, and a larger atmospheric and expanded surface science probe. Because of lower gravity on Titan and its atmospheric characteristics, the entry environment is less severe than that of Mars. However, the large uncertainties in the current definition of the atmosphere and the uncertainties in Titan's surface characteristics have required tradeoffs of various combinations of entry and descent shapes and hard lander configurations. Results show that all probe classes are feasible without major developments.

  20. Note: Refined possibilities for plasma probe diagnostics.

    PubMed

    Masherov, P E; Riaby, V A; Abgaryan, V K

    2016-08-01

    In an earlier publication, the ion mass determination technique was proposed using the Langmuir probe measurement results for low-pressure Maxwellian plasmas and their analysis, based on the Bohm effect and the Child-Boguslavsky-Langmuir (CBL) probe sheath model, allowing for probe sheath thickness and ion mass evaluations after the Bohm coefficient CBCyl ≈ 1.13 for cylindrical probes had been determined. In the present study, the step-front sheath model, being physically closer to the reality of gas discharge plasmas, was considered in order to correct the CBL sheath model results. At this stage, more real Bohm coefficient (CBCyl ≈ 1.23) for cylindrical probes was found to provide a more reliable method of probe sheath thickness and ion mass determination. PMID:27587177

  1. Thrust Vector Control using movable probes

    NASA Technical Reports Server (NTRS)

    Cavalleri, Robert; Tiarn, Weihnurng; Readey, Harvey

    1990-01-01

    A study was undertaken to determine if movable probes or struts positioned in the nozzle can be used to provide Thrust Vector Control of the Space Shuttle Solid Rocket Booster. The study employed CFD to determine estimates of the shock standoff distance from the probe. An empirical correlation was used to construct the shock shape and the pressure distribution generated by the probe. The TVC performance for a single and multiple number of probes was then used to determine requirements for a maximum thrust angle offset of 7.5 degrees. Consideration was given to what materials would be suitable for the probe and if active cooling is required. Based on the performance analysis and thermal requirements, a Probe Thrust Vector Control (PTVC) system was sized. Indications are that a PTVC system weight is in the 1500 1bm weight range, compared to the existing weight of 7500 1bm for the SRB nozzle gimble system.

  2. 2nd International Planetary Probe Workshop

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Martinez, Ed; Arcadi, Marla

    2005-01-01

    Included are presentations from the 2nd International Planetary Probe Workshop. The purpose of the second workshop was to continue to unite the community of planetary scientists, spacecraft engineers and mission designers and planners; whose expertise, experience and interests are in the areas of entry probe trajectory and attitude determination, and the aerodynamics/aerothermodynamics of planetary entry vehicles. Mars lander missions and the first probe mission to Titan made 2004 an exciting year for planetary exploration. The Workshop addressed entry probe science, engineering challenges, mission design and instruments, along with the challenges of reconstruction of the entry, descent and landing or the aerocapture phases. Topics addressed included methods, technologies, and algorithms currently employed; techniques and results from the rich history of entry probe science such as PAET, Venera/Vega, Pioneer Venus, Viking, Galileo, Mars Pathfinder and Mars MER; upcoming missions such as the imminent entry of Huygens and future Mars entry probes; and new and novel instrumentation and methodologies.

  3. Discrete Bimodal Probes for Thrombus Imaging

    PubMed Central

    Uppal, Ritika; Ciesienski, Kate L.; Chonde, Daniel B.; Loving, Galen S.; Caravan, Peter

    2012-01-01

    Here we report a generalizable solid/solution phase strategy for the synthesis of discrete bimodal fibrin-targeted imaging probes. A fibrin-specific peptide was conjugated with two distinct imaging reporters at the C- and N-terminus. In vitro studies demonstrated retention of fibrin affinity and specificity. Imaging studies showed that these probes could detect fibrin over a wide range of probe concentrations by optical, magnetic resonance, and positron emission tomography imaging. PMID:22698259

  4. Improved double planar probe data analysis technique.

    PubMed

    Ghim Kim, Young-Chul; Hershkowitz, Noah

    2009-03-01

    Plasma electron number density and ion number density in a dc multidipole weakly collisional Ar plasma are measured with a single planar Langmuir probe and a double planar probe, respectively. A factor of two discrepancy between the two density measurements is resolved by applying Sheridan's empirical formula [T. E. Sheridan, Phys. Plasmas 7, 3084 (2000)] for sheath expansion to the double probe data. PMID:19334917

  5. Ion Implantation with Scanning Probe Alignment

    SciTech Connect

    Persaud, A.; Liddle, J.A.; Schenkel, T.; Bokor, J.; Ivanov, Tzv.; Rangelow, I.W.

    2005-07-12

    We describe a scanning probe instrument which integrates ion beams with the imaging and alignment function of a piezo-resistive scanning probe in high vacuum. The beam passes through several apertures and is finally collimated by a hole in the cantilever of the scanning probe. The ion beam spot size is limited by the size of the last aperture. Highly charged ions are used to show hits of single ions in resist, and we discuss the issues for implantation of single ions.

  6. Visual-Inspection Probe For Cryogenic Chamber

    NASA Technical Reports Server (NTRS)

    Friend, Steve; Valenzuela, James; Yoshinaga, Jay

    1990-01-01

    Visual-inspection probe that resembles borescope enables observer at ambient temperature to view objects immersed in turbulent flow of liquid oxygen, liquid nitrogen, or other cryogenic fluid. Design of probe fairly conventional, except special consideration given to selection of materials and to thermal expansion to provide for expected range of operating temperatures. Penetrates wall of cryogenic chamber to provide view of interior. Similar probe illuminates scene. View displayed on video monitor.

  7. Improved optical probe for monitoring dust explosions

    NASA Astrophysics Data System (ADS)

    Conti, R. S.; Cashdollar, K. L.; Liebman, I.

    1982-03-01

    An improved optical probe was developed to monitor dust-cloud concentration in explosions even in the presence of dust flame radiation. Principal features of the probe include a pulsed light-emitting diode and a photodetector with optical interference filter to reduce flame radiation. The probe has a U-shaped configuration and air jets to keep the windows dust free. Experimental data are presented for a coal dust explosion.

  8. INNOVATIVE EDDY CURRENT PROBE FOR MICRO DEFECTS

    SciTech Connect

    Santos, Telmo G.; Vilaca, Pedro; Quintino, Luisa; Santos, Jorge dos; Rosado, Luis

    2010-02-22

    This paper reports the development of an innovative eddy current (EC) probe, and its application to micro-defects on the root of the Friction Stir Welding (FSW). The new EC probe presents innovative concept issues, allowing 3D induced current in the material, and a lift-off independence. Validation experiments were performed on aluminium alloys processed by FSW. The results clearly show that the new EC probe is able to detect and sizing surface defects about 60 microns depth.

  9. Innovative Eddy Current Probe for Micro Defects

    NASA Astrophysics Data System (ADS)

    Santos, Telmo G.; Vilaça, Pedro; dos Santos, Jorge; Quintino, Luísa; Rosado, Luís

    2010-02-01

    This paper reports the development of an innovative eddy current (EC) probe, and its application to micro-defects on the root of the Friction Stir Welding (FSW). The new EC probe presents innovative concept issues, allowing 3D induced current in the material, and a lift-off independence. Validation experiments were performed on aluminium alloys processed by FSW. The results clearly show that the new EC probe is able to detect and sizing surface defects about 60 microns depth.

  10. The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems.

    PubMed

    Miccoli, I; Edler, F; Pfnür, H; Tegenkamp, C

    2015-06-10

    The electrical conductivity of solid-state matter is a fundamental physical property and can be precisely derived from the resistance measured via the four-point probe technique excluding contributions from parasitic contact resistances. Over time, this method has become an interdisciplinary characterization tool in materials science, semiconductor industries, geology, physics, etc, and is employed for both fundamental and application-driven research. However, the correct derivation of the conductivity is a demanding task which faces several difficulties, e.g. the homogeneity of the sample or the isotropy of the phases. In addition, these sample-specific characteristics are intimately related to technical constraints such as the probe geometry and size of the sample. In particular, the latter is of importance for nanostructures which can now be probed technically on very small length scales. On the occasion of the 100th anniversary of the four-point probe technique, introduced by Frank Wenner, in this review we revisit and discuss various correction factors which are mandatory for an accurate derivation of the resistivity from the measured resistance. Among others, sample thickness, dimensionality, anisotropy, and the relative size and geometry of the sample with respect to the contact assembly are considered. We are also able to derive the correction factors for 2D anisotropic systems on circular finite areas with variable probe spacings. All these aspects are illustrated by state-of-the-art experiments carried out using a four-tip STM/SEM system. We are aware that this review article can only cover some of the most important topics. Regarding further aspects, e.g. technical realizations, the influence of inhomogeneities or different transport regimes, etc, we refer to other review articles in this field. PMID:25985184

  11. The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems

    NASA Astrophysics Data System (ADS)

    Miccoli, I.; Edler, F.; Pfnür, H.; Tegenkamp, C.

    2015-06-01

    The electrical conductivity of solid-state matter is a fundamental physical property and can be precisely derived from the resistance measured via the four-point probe technique excluding contributions from parasitic contact resistances. Over time, this method has become an interdisciplinary characterization tool in materials science, semiconductor industries, geology, physics, etc, and is employed for both fundamental and application-driven research. However, the correct derivation of the conductivity is a demanding task which faces several difficulties, e.g. the homogeneity of the sample or the isotropy of the phases. In addition, these sample-specific characteristics are intimately related to technical constraints such as the probe geometry and size of the sample. In particular, the latter is of importance for nanostructures which can now be probed technically on very small length scales. On the occasion of the 100th anniversary of the four-point probe technique, introduced by Frank Wenner, in this review we revisit and discuss various correction factors which are mandatory for an accurate derivation of the resistivity from the measured resistance. Among others, sample thickness, dimensionality, anisotropy, and the relative size and geometry of the sample with respect to the contact assembly are considered. We are also able to derive the correction factors for 2D anisotropic systems on circular finite areas with variable probe spacings. All these aspects are illustrated by state-of-the-art experiments carried out using a four-tip STM/SEM system. We are aware that this review article can only cover some of the most important topics. Regarding further aspects, e.g. technical realizations, the influence of inhomogeneities or different transport regimes, etc, we refer to other review articles in this field.

  12. Repair to the Huygens probe

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jet Propulsion Laboratory (JPL) workers examine the Huygens probe after removal from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to the thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. The damage required technicians to inspect the inside of the probe, repair the insulation, and clean the instruments. After returning from the PHSF to Launch Pad 40 at Cape Canaveral Air Station, Cassini/Huygens launched successfully in October 1997, and reached Saturn in July of 2004. Scientific instruments carried aboard the Cassini orbiter will study Saturn's atmosphere, magnetic field, rings, and several moons, while the Huygens probe will separate and land on the surface of Titan, Saturn's largest moon. The Cassini-Huygens mission owes its name to the Dutch astronomer Christiaan Huygens and Italian astronomer Giovanni Domenico Cassini. Both had spectacular careers as observers of the heavens, which included important discoveries about Saturn and its satellites. Huygens (1629-1695) discovered Saturn's largest moon, Titan, in 1655 and in 1656 described the shape and phase changes of Saturn's rings. Cassini (1625-1712) was the first to observe four of Saturn's moons, Iapetus, Rhea, Tethys, and Dione, in the 1670s and 1680s. He also, in 1675, discovered the gap in Saturn's rings, now called the Cassini Division, and proposed that the rings were formed from many tiny particles. Cassini-Huygens is a joint mission of NASA, the European Space Agency (ESA), and the Italian Space Agency, Agenzia Spaziale Italiana (ASI). JPL is managing the Cassini project for NASA. The mission was proposed in November 1982 by a group of European and American scientists from the European Science Foundation and the National Academy of Sciences. The Solar System Exploration Committee of the NASA Advisory Council endorsed the idea in April 1983, and NASA and ESA began a

  13. Outer planet probe cost estimates: First impressions

    NASA Technical Reports Server (NTRS)

    Niehoff, J.

    1974-01-01

    An examination was made of early estimates of outer planetary atmospheric probe cost by comparing the estimates with past planetary projects. Of particular interest is identification of project elements which are likely cost drivers for future probe missions. Data are divided into two parts: first, the description of a cost model developed by SAI for the Planetary Programs Office of NASA, and second, use of this model and its data base to evaluate estimates of probe costs. Several observations are offered in conclusion regarding the credibility of current estimates and specific areas of the outer planet probe concept most vulnerable to cost escalation.

  14. Recent Progress in Fluorescent Imaging Probes.

    PubMed

    Pak, Yen Leng; Swamy, K M K; Yoon, Juyoung

    2015-01-01

    Due to the simplicity and low detection limit, especially the bioimaging ability for cells, fluorescence probes serve as unique detection methods. With the aid of molecular recognition and specific organic reactions, research on fluorescent imaging probes has blossomed during the last decade. Especially, reaction based fluorescent probes have been proven to be highly selective for specific analytes. This review highlights our recent progress on fluorescent imaging probes for biologically important species, such as biothiols, reactive oxygen species, reactive nitrogen species, metal ions including Zn(2+), Hg(2+), Cu(2+) and Au(3+), and anions including cyanide and adenosine triphosphate (ATP). PMID:26402684

  15. Surface morphology implications on Langmuir probe measurements

    NASA Astrophysics Data System (ADS)

    Suresh, Padmashri

    2011-12-01

    Langmuir probes are extensively employed to study the plasmas in space and laboratory environments. Successful measurements require a comprehensive modeling of both the plasma environment and the probe conditions in the form of current collection models. In this thesis, the surface morphology implications on the probe current collection are investigated. This problem is applied and solved in the context of a CubeSat regime. The first problem that is investigated is the consequence of surface structural variability on the current measurements. A new model for dealing with non-uniformity of the probe surface structure is developed in this paper. This model is applied to analyze the Langmuir probe data from a sounding rocket mission that was subjected to surface structural non-homogeneities. This model would be particularly useful for CubeSat platforms where elaborate probe design procedures are not feasible. The second problem that is investigated is the surface area implications on Langmuir probe measurements. It has been established that surface area ratio of the spacecraft to that of the probe needs to be sufficiently large to make successful plasma measurements. CubeSats would therefore pose a challenge for employing Langmuir-type instruments to study the space plasma. We inspect the feasibility of making plasma measurements using Langmuir probes subjected to CubeSat area constraints. This analysis is done for a forthcoming Utah State University (USU)/Space Dynamics Lab (SDL) CubeSat mission.

  16. Activatable Molecular Probes for Cancer Imaging

    PubMed Central

    Lee, Seulki; Xie, Jin; Chen, Xiaoyuan

    2013-01-01

    The development of highly sensitive and specific molecular probes for cancer imaging still remains a daunting challenge. Recently, interdisciplinary research at the interface of imaging sciences and bionanoconjugation chemistry has generated novel activatable imaging probes that can provide high-resolution imaging with ultra-low background signals. Activatable imaging probes are designed to amplify output imaging signals in response to specific biomolecular recognition or environmental changes in real time. This review introduces and highlights the unique design strategies and applications of various activatable imaging probes in cancer imaging. PMID:20388112

  17. Recent Progress in Fluorescent Imaging Probes

    PubMed Central

    Pak, Yen Leng; Swamy, K. M. K.; Yoon, Juyoung

    2015-01-01

    Due to the simplicity and low detection limit, especially the bioimaging ability for cells, fluorescence probes serve as unique detection methods. With the aid of molecular recognition and specific organic reactions, research on fluorescent imaging probes has blossomed during the last decade. Especially, reaction based fluorescent probes have been proven to be highly selective for specific analytes. This review highlights our recent progress on fluorescent imaging probes for biologically important species, such as biothiols, reactive oxygen species, reactive nitrogen species, metal ions including Zn2+, Hg2+, Cu2+ and Au3+, and anions including cyanide and adenosine triphosphate (ATP). PMID:26402684

  18. NeuroMEMS: Neural Probe Microtechnologies

    PubMed Central

    HajjHassan, Mohamad; Chodavarapu, Vamsy; Musallam, Sam

    2008-01-01

    Neural probe technologies have already had a significant positive effect on our understanding of the brain by revealing the functioning of networks of biological neurons. Probes are implanted in different areas of the brain to record and/or stimulate specific sites in the brain. Neural probes are currently used in many clinical settings for diagnosis of brain diseases such as seizers, epilepsy, migraine, Alzheimer's, and dementia. We find these devices assisting paralyzed patients by allowing them to operate computers or robots using their neural activity. In recent years, probe technologies were assisted by rapid advancements in microfabrication and microelectronic technologies and thus are enabling highly functional and robust neural probes which are opening new and exciting avenues in neural sciences and brain machine interfaces. With a wide variety of probes that have been designed, fabricated, and tested to date, this review aims to provide an overview of the advances and recent progress in the microfabrication techniques of neural probes. In addition, we aim to highlight the challenges faced in developing and implementing ultra-long multi-site recording probes that are needed to monitor neural activity from deeper regions in the brain. Finally, we review techniques that can improve the biocompatibility of the neural probes to minimize the immune response and encourage neural growth around the electrodes for long term implantation studies.

  19. Direct Communication to Earth from Probes

    NASA Technical Reports Server (NTRS)

    Bolton, Scott J.; Folkner, William M.; Abraham, Douglas S.

    2005-01-01

    A viewgraph presentation on outer planetary probe communications to Earth is shown. The topics include: 1) Science Rational for Atmospheric Probes to the Outer Planets; 2) Controlling the Scientific Appetite; 3) Learning more about Jupiter before we send more probes; 4) Sample Microwave Scan From Juno; 5) Jupiter s Deep Interior; 6) The Square Kilometer Array (SKA): A Breakthrough for Radio Astronomy; 7) Deep Space Array-based Network (DSAN); 8) Probe Direct-to-Earth Data Rate Calculations; 9) Summary; and 10) Enabling Ideas.

  20. Integration of scanning probes and ion beams

    SciTech Connect

    Persaud, A.; Park, S.J.; Liddle, J.A.; Schenkel, T.; Bokor, J.; Rangelow, I.

    2005-03-30

    We report the integration of a scanning force microscope with ion beams. The scanning probe images surface structures non-invasively and aligns the ion beam to regions of interest. The ion beam is transported through a hole in the scanning probe tip. Piezoresistive force sensors allow placement of micromachined cantilevers close to the ion beam lens. Scanning probe imaging and alignment is demonstrated in a vacuum chamber coupled to the ion beam line. Dot arrays are formed by ion implantation in resist layers on silicon samples with dot diameters limited by the hole size in the probe tips of a few hundred nm.

  1. Bi-metal coated aperture SNOM probes

    NASA Astrophysics Data System (ADS)

    Antosiewicz, Tomasz J.; Wróbel, Piotr; Szoplik, Tomasz

    2011-05-01

    Aperture probes of scanning near-field optical microscopes (SNOM) offer resolution which is limited by a sum of the aperture diameter at the tip of a tapered waveguide probe and twice the skin depth in metal used for coating. An increase of resolution requires a decrease of the aperture diameter. However, due to low energy throughput of such probes aperture diameters usually are larger than 50 nm. A groove structure at fiber core-metal coating interface for photon-to-plasmon conversion enhances the energy throughput 5-fold for Al coated probes and 30-fold for Au coated probes due to lower losses in the metal. However, gold coated probes have lower resolution, first due to light coupling from the core to plasmons at the outside of the metal coating, and second due to the skin depth being larger than for Al. Here we report on the impact of a metal bilayer of constant thickness for coating aperture SNOM probes. The purpose of the bilayer of two metals of which the outer one is aluminum and the inner is a noble metal is to assure low losses, hence larger transmission. Using body-of-revolution finite-difference time-domain simulations we analyze properties of probes without corrugations to measure the impact of using a metal bilayer and choose an optimum bi-metal configuration. Additionally we investigate how this type of metalization works in the case of grooved probes.

  2. Filling a GAP-An Optimized Probe for ER Ca(2+) Imaging In Vivo.

    PubMed

    Malli, Roland; Eroglu, Emrah; Waldeck-Weiermair, Markus; Graier, Wolfgang F

    2016-06-23

    In this issue of Cell Chemical Biology, Navas-Navarro et al. (2016) demonstrate that fusion of engineered derivatives of the long-known jellyfish proteins green fluorescent protein (GFP) and aequorin yield optimized genetically encoded fluorescent probes for detecting Ca(2+) signals within the endoplasmic reticulum (ER) of living animals. PMID:27341431

  3. Diarylethene based fluorescent switchable probes for the detection of amyloid-β pathology in Alzheimer's disease.

    PubMed

    Lv, Guanglei; Cui, Baiping; Lan, Haichuang; Wen, Ying; Sun, Anyang; Yi, Tao

    2015-01-01

    Two fluorescent switchable diarylethene derivatives which exhibit high affinity for amyloid-β aggregates with the increase of fluorescence intensity were reported. Moreover, the probes show excellent photochromic and anti-photobleaching properties both in vitro and in vivo. PMID:25384304

  4. Characterization of photodynamic and sonodynamic cytotoxicity by fluorescent probes

    NASA Astrophysics Data System (ADS)

    Kessel, David

    1993-06-01

    A variety of porphyrins and related structures can sensitize cells to light; many of these agents can also promote ultrasound-induced cytotoxicity. Subcellular sites of localization sensitizers with a sufficient fluorescence yield can be assessed by fluorescence microscopy, but this becomes difficult when (Phi) F is low. We have explored several indirect procedures for assessing examining loci of photodamage and sonodamage. Damage to lysosomal structures was probed with acridine orange, mitochondria with Rhodamine 123 and the plasma membrane with several diphenylhexatriene (DPH) derivatives. Additional information on alterations in heterogeneity of binding of diphenylhexatriene derivatives to photodamaged cells was provided by a distributed fluorescent lifetime study. Using a sulfonated benzochlorin, which photosensitizes cell-surface loci, we evaluated four DPH derivatives for their sensitivity to membrane damage. Anionic or cationic DPH derivatives were the most sensitive in this regard. Enhanced cytotoxicity associated with ultrasound + porphyrins yielded no detectable effects on mitochondrial or lysosomal structures, and barely detectable changes in membrane interactions with DPH derivatives, suggesting an 'all or none' effect.

  5. Preparation and Preliminary Characterization of Crystallizing Fluorescent Derivatives of Chicken Egg White Lysozyme

    NASA Technical Reports Server (NTRS)

    Sumida, John P.; Forsythe, Elizabeth L.; Pusey, Marc L.

    2001-01-01

    Fluorescence is one of the most versatile and powerful tools for the study of macromolecules. While most proteins are intrinsically fluorescent, working at crystallization concentrations require the use of covalently prepared derivatives added as tracers. This approach requires derivatives that do not markedly affect the crystal packing. We have prepared fluorescent derivatives of chicken egg white lysozyme with probes bound to one of two different sites on the protein molecule. Lucifer yellow and 5-(2-aminoethyl)aminonapthalene-i-sulfonic acid (EDANS) have been attached to the side chain carboxyl of Asp(sup 101) using a carbodiimide coupling procedure. Asp(sup 101) lies within the active site cleft, and it is believed that the probes are 'buried' within that cleft. Lucifer yellow and MANS probes with iodoacetamide reactive five groups have been bound to His(sup 15), located on the 'back side' of the molecule relative to the active site. All the derivatives fluoresce in the solution and the crystalline states. Fluorescence characterization has focused on determination of binding effects on the probe quantum yield, lifetime, absorption and emission spectra, and quenching by added solutes. Quenching studies show that, as postulated, the Asp(sup 101)-bound probes are partially sheltered from the bulk solution by their location within the active site cleft. Probes bound to His(sup 15) have quenching constants about equal to those for the free probes, indicating that this site is highly exposed to the bulk solution.

  6. Preparation and Preliminary Characterization of Crystallizing Fluorescent Derivatives of Chicken Egg White Lysozyme

    NASA Technical Reports Server (NTRS)

    Sumida, John; Forsythe, Elizabeth L.; Pusey, Marc L.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Fluorescence is one of the most versatile and powerful tools for the study of macromolecules. While most proteins are intrinsically fluorescent, working at crystallization concentrations require the use of covalently prepared derivatives added as tracers. This approach requires derivatives that do not markedly affect the crystal packing. We have prepared fluorescent derivatives of chicken egg white lysozyme with probes bound to one of two different sites on the protein molecule. Lucifer yellow and 5-(2-aminoethyl)aminonapthalene-1-sulfonic acid (EDANS) have been attached to the side chain carboxyl of Asp(sup 101) using a carbodiimide coupling procedure. Asp(sup 101) lies within the active site cleft, and it is believed that the probes are "buried" within that cleft. Lucifer yellow and MANS probes with iodoacetamide reactive groups have been bound to His(sup 15), located on the "back side" of the molecule relative to the active site. All the derivatives fluoresce in the solution and the crystalline states. Fluorescence characterization has focused on determination of binding effects on the probe quantum yield, lifetime, absorption and emission spectra, and quenching by added solutes. Quenching studies show that, as postulated, the Asp(sup 101)-bound probes are partially sheltered from the bulk solution by their location within the active site cleft. Probes bound to His(sup 15) have quenching constants about equal to those for the free probes, indicating that this site is highly exposed to the bulk solution.

  7. Effect of fluid inertia on probe-tack adhesion

    NASA Astrophysics Data System (ADS)

    Dias, Eduardo O.; Miranda, José A.

    2012-01-01

    One way of determining the adhesive strength of liquids is provided by a probe-tack test, which involves measuring the force required to pull apart two parallel flat plates separated by a thin fluid film. The large majority of existing theoretical and experimental work on probe-tack adhesion use very viscous fluids and considers relatively low lifting plate velocities, so that effects due to fluid inertia can be neglected. However, the employment of low-viscosity fluids and the increase in operating speeds of modern lifting apparatus can modify this scenario. By dealing with a proper gap averaging of the Navier-Stokes equation, we obtain a modified Darcy-law-like description of the problem and derive an adhesion force which incorporates the effects of fluid inertia, fluid viscosity (for Newtonian and power law fluids), and the contribution of the compliance and inertia of the probe-tack apparatus. Our results indicate that fluid inertia may have a significant influence on the adhesion force profiles, inducing a considerable increase in the force peaks and producing oscillations in the force-displacement curves as the plate-plate separation is increased. The combined role of inertial and non-Newtonian fluid behaviors on the adhesion force response is also investigated.

  8. Thickness estimation of the subcutaneous fat using coaxial probe.

    PubMed

    Ramezani, Mohammad Hossein; Nadimi, Esmaeil S

    2016-03-01

    In this Letter, a non-invasive method for thickness estimation of the subcutaneous fat layer of abdominal wall is presented by using a coaxial probe. Fat layer has the highest impact on the averaged attenuation parameter of the abdominal wall due to its high thickness and low permittivity. The abdominal wall is modelled as a multi-layer medium and an analytical model for the probe is derived by calculation of its aperture admittance facing to this multi-layer medium. The performance of this model is then validated by a numerical simulation using finite-difference-time-domain (FDTD) analysis. Simulation results show the high impact of the probe dimension and fat layer thickness on the sensitivity of the measured permittivity. The authors further investigate this sensitivity by statistical analysis of the permittivity variations. Finally, measuring in different locations relative to the body surface is presented as a solution to estimate the fat layer thickness in the presence of uncertainty of model parameters. PMID:27222737

  9. Gravity Probe B spacecraft description

    NASA Astrophysics Data System (ADS)

    Bennett, Norman R.; Burns, Kevin; Katz, Russell; Kirschenbaum, Jon; Mason, Gary; Shehata, Shawky

    2015-11-01

    The Gravity Probe B spacecraft, developed, integrated, and tested by Lockheed Missiles & Space Company and later Lockheed Martin Corporation, consisted of structures, mechanisms, command and data handling, attitude and translation control, electrical power, thermal control, flight software, and communications. When integrated with the payload elements, the integrated system became the space vehicle. Key requirements shaping the design of the spacecraft were: (1) the tight mission timeline (17 months, 9 days of on-orbit operation), (2) precise attitude and translational control, (3) thermal protection of science hardware, (4) minimizing aerodynamic, magnetic, and eddy current effects, and (5) the need to provide a robust, low risk spacecraft. The spacecraft met all mission requirements, as demonstrated by dewar lifetime meeting specification, positive power and thermal margins, precision attitude control and drag-free performance, reliable communications, and the collection of more than 97% of the available science data.

  10. Millimeter-wave active probe

    DOEpatents

    Majidi-Ahy, Gholamreza; Bloom, David M.

    1991-01-01

    A millimeter-wave active probe for use in injecting signals with frequencies above 50GHz to millimeter-wave and ultrafast devices and integrated circuits including a substrate upon which a frequency multiplier consisting of filter sections and impedance matching sections are fabricated in uniplanar transmission line format. A coaxial input and uniplanar 50 ohm transmission line couple an approximately 20 GHz input signal to a low pass filter which rolls off at approximately 25 GHz. An input impedance matching section couples the energy from the low pass filter to a pair of matched, antiparallel beam lead diodes. These diodes generate odd-numberd harmonics which are coupled out of the diodes by an output impedance matching network and bandpass filter which suppresses the fundamental and third harmonics and selects the fifth harmonic for presentation at an output.

  11. In-situ spectrophotometric probe

    DOEpatents

    Prather, William S.

    1992-01-01

    A spectrophotometric probe for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and coterminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focussing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid.

  12. In-situ spectrophotometric probe

    DOEpatents

    Prather, W.S.

    1992-12-15

    A spectrophotometric probe is described for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and co-terminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focusing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid. 5 figs.

  13. Probing Inflation with CMB Polarization

    SciTech Connect

    Baumann, Daniel; Jackson, Mark G.; Adshead, Peter; Easther, Richard; Amblard, Alexandre; Cooray, Asantha; Ashoorioon, Amjad; Watson, Scott; Bartolo, Nicola; Matarrese, Sabino; Bean, Rachel; Beltran, Maria; Dvorkin, Cora; Bernardis, Francesco de; Melchiorri, Alessandro; Pagano, Luca; Bird, Simeon; Peiris, Hiranya V.; Chen Xingang; Hertzberg, Mark P.

    2009-06-09

    We summarize the utility of precise cosmic microwave background (CMB) polarization measurements as probes of the physics of inflation. We focus on the prospects for using CMB measurements to differentiate various inflationary mechanisms. In particular, a detection of primordial B-mode polarization would demonstrate that inflation occurred at a very high energy scale, and that the inflaton traversed a super-Planckian distance in field space. We explain how such a detection or constraint would illuminate aspects of physics at the Planck scale. Moreover, CMB measurements can constrain the scale-dependence and non-Gaussianity of the primordial fluctuations and limit the possibility of a significant isocurvature contribution. Each such limit provides crucial information on the underlying inflationary dynamics. Finally, we quantify these considerations by presenting forecasts for the sensitivities of a future satellite experiment to the inflationary parameters.

  14. Galileo Probe forebody thermal protection

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Davy, W. C.

    1981-01-01

    Material response solutions for the forebody heat shield on the candidate 310-kg Galileo Probe are presented. A charring material ablation analysis predicts thermochemical surface recession, insulation thickness, and total required heat shield mass. Benchmark shock layer solutions provide the imposed entry heating environments on the ablating surface. Heat shield sizing results are given for a nominal entry into modeled nominal and cool-heavy Jovian atmospheres, and for two heat-shield property models. The nominally designed heat shield requires a mass of at least 126 kg and would require an additional 13 kg to survive entry into the less probable cool-heavy atmosphere. The material-property model with a 30% surface reflectance reduces these mass requirements by as much as 16%.

  15. Magnetic TRAnsition Region Probe (MTRAP)

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Davis, John; Hathaway, David; Six, N. Frank (Technical Monitor)

    2002-01-01

    MTRAP (Magnetic Transition Region Probe) will reveal the fine-scale physical processes in the Sun's magnetic transition region, the complex layer from the upper photosphere to the upper chromosphere/lower transition region. In the magnetic transition region plasma forces and magnetic forces are of comparable strength, which results in complex interplay of the two, which interplay governs the coupling of the convectively-driven deeper layers to the magnetically-driven upper transition region and inner corona. The fine-scale magnetic structure, processes, and events in the magnetic transition region are key to the genesis of the Sun's entire hot, dynamic outer atmosphere and to the initiation of large eruptive events. MTRAP will be a single spacecraft in Sun-synchronous Earth orbit. Because MTRAP will probe and measure the 3-D structure and dynamics of the magnetic field and plasma in the chromosphere and transition region with unprecedented resolution, the required telescope size and telemetry rates dictate that MTRAP be in Earth orbit, not in deep space. The observations will feature visible and infrared maps of vector magnetic and velocity fields in the magnetic transition region and photosphere. These will have large field of view (greater than 100,000 km), high resolution (greater than 100 km), and high sensitivity (greater than 30 G in transverse field). These observations of the lower atmosphere will be complemented by UV maps of the structure, velocity, and magnetic field (including the full vector field if technically feasible) higher up, in the upper chromosphere and lower transition region. MTRAP will also have an EUV imaging spectrograph observing coronal structure and dynamics in the same field of view with comparable resolution. Specific phenomena to be analyzed include spicules, bright points, jets, the base of plumes, and the triggering of eruptive flares and coronal mass ejections. Additional information is included in the original extended abstract.

  16. Chemical probes in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Guzman, Viviana; Oberg, Karin I.; Loomis, Ryan A.; Qi, Chunhua

    2016-06-01

    Protoplanetary disks provide the material for new planetary systems. Moreover, the location and composition of nascent planets will depend on the chemical and physical structure of disks. The radiation field and gas temperature, as well as the chemical structure and composition in disks can be probed by the emission and spatial distribution of molecules.I will present ALMA observations of different molecular lines in protoplanetary disks and discuss chemical probes frequently used in the ISM and in our Solar system that, thanks the spectacular capabilities of ALMA, can now be applied to protoplanetary disks. First, the CN/HCN ratio, which is a good tracer of radiation field, because CN is a major product of HCN photodissociation. Second, Nitrogen isotopic ratios, which are widely used to trace the origin of molecules in our Solar system, can also be used to trace the thermal structure in disks, since 15N fractionation should depend sensitively on the formation temperature. Finally, the H2CO ortho-to-para ratio has great potential to constrain its formation pathway, because different values are expected if it forms in the gas or on grain surfaces.Thanks to ALMA we now have the sensitivity and angular resolution to detect and spatially resolve the emission of many new species in disks. However, in order to fully benefit from these observations, great progresses must also be made on the theoretical and experimental sides. This includes the need for spectroscopic constants, collisional rates, photodissociation rates, formation/destruction rates, and a better understanding on the interplay between the gas-phase and solid-phase chemistry.

  17. Probing intrinsic anisotropies of fluorescence: Mueller matrix approach.

    PubMed

    Saha, Sudipta; Soni, Jalpa; Chandel, Shubham; Kumar, Uday; Ghosh, Nirmalya

    2015-08-01

    We demonstrate that information on “intrinsic” anisotropies of fluorescence originating from preferential orientation/organization of fluorophore molecules can be probed using a Mueller matrix of fluorescence. For this purpose, we have developed a simplified model to decouple and separately quantify the depolarization property and the intrinsic anisotropy properties of fluorescence from the experimentally measured fluorescence Mueller matrix. Unlike the traditionally defined fluorescence anisotropy parameter, the Mueller matrix-derived fluorescence polarization metrics, namely, fluorescence diattenuation and polarizance parameters, exclusively deal with the intrinsic anisotropies of fluorescence. The utility of these newly derived fluorescence polarimetry parameters is demonstrated on model systems exhibiting multiple polarimetry effects, and an interesting example is illustrated on biomedically important fluorophores, collagen. PMID:26301796

  18. Probing inhibitory effects of nanocrystalline cellulose: inhibition versus surface charge

    NASA Astrophysics Data System (ADS)

    Male, Keith B.; Leung, Alfred C. W.; Montes, Johnny; Kamen, Amine; Luong, John H. T.

    2012-02-01

    NCC derived from different biomass sources was probed for its plausible cytotoxicity by electric cell-substrate impedance sensing (ECIS). Two different cell lines, Spodoptera frugiperda Sf9 insect cells and Chinese hamster lung fibroblast V79, were exposed to NCC and their spreading and viability were monitored and quantified by ECIS. Based on the 50%-inhibition concentration (ECIS50), none of the NCC produced was judged to have any significant cytotoxicity on these two cell lines. However, NCC derived from flax exhibited the most pronounced inhibition on Sf9 compared to hemp and cellulose powder. NCCs from flax and hemp pre-treated with pectate lyase were also less inhibitory than NCCs prepared from untreated flax and hemp. Results also suggested a correlation between the inhibitory effect and the carboxylic acid contents on the NCC.

  19. Probing {N}=2 superconformal field theories with localization

    NASA Astrophysics Data System (ADS)

    Fiol, Bartomeu; Garolera, Blai; Torrentsa, Genís

    2016-01-01

    We use supersymmetric localization to study probes of four dimensional Lagrangian {N}=2 superconformal field theories. We first derive a unique equation for the eigenvalue density of these theories. We observe that these theories have a Wigner eigenvalue density precisely when they satisfy a necessary condition for having a holographic dual with a sensible higher-derivative expansion. We then compute in the saddle-point approximation the vacuum expectation value of 1/2-BPS circular Wilson loops, and the two-point functions of these Wilson loops with the Lagrangian density and with the stress-energy tensor. This last computation also provides the corresponding Bremsstrahlung functions and entanglement entropies. As expected, whenever a finite fraction of the matter is in the fundamental representation, the results are drastically different from those of {N}=4 supersymmetric Yang-Mills theory.

  20. Europe's first Moon probe prepares for launch

    NASA Astrophysics Data System (ADS)

    2003-08-01

    The European Space Agency’s SMART-1 spacecraft was delivered to Kourou, French Guiana, on July 15 and is currently being prepared for launch atop an Ariane 5 during the night from August 28 to 29. The launch window will open at 20:04 local time (01:04 on August 29 morning CEST) and will remain open for26 minutes. The 367 kg spacecraft will share Ariane’s V162 launch with two commercial payloads: the Indian Space Research Organisation’s Insat 3E and Eutelsat’s e-Bird communication satellites. The smallest spacecraft in the trio, SMART-1, will travel in the lower position, inside a cylindrical adapter, and will be the last to be released. A generic Ariane 5 will be in charge of placing these three payloads in a standard geostationary transfer orbit from which each will begin its own journey towards its final operational orbit. SMART-1, powered by its ion engine, will reach its destination in about 16 months, having followed a long spiralling trajectory. SMART-1’s ion engine will be used to accelerate the probe and raise its orbit until it reaches the vicinity of the Moon, some 350,000 to 400,000 km from Earth. Then, following gravity assists from a series of lunar swingbys in late September, late October and late November 2004, SMART-1 will be “captured” by the Moon’s gravity in December 2004 and will begin using its engine to slow down and reduce the altitude of its lunar orbit. Testing breakthrough technologies and studying the Moon SMART-1 is not a standard outer space probe. As ESA’s first Small Mission for Advanced Research in Technology, it is primarily designed to demonstrate innovative and key technologies for future deep space science missions. However, once it has arrived at its destination, it will also perform an unprecedented scientific study of the Moon. SMART-1 is a very small spacecraft (measuring just one cubic metre). Its solar arrays, spanning 14 metres, will deliver 1.9 kW of power, about 75% of which will be used for the probe

  1. Probe measurements in ion-beam plasma

    SciTech Connect

    Dudin, S.V.

    1994-12-31

    The particularities of the electric probe measurements in the ion-beam plasma (IBP) have been investigated. To find the electron density n{sub e} and temperature T{sub c} as well as electron energy distribution it is necessary to separate electron current from full probe current, because ion part of this current is often large enough to mask the electron part. According to collisionless probe theory, radius of ion layer in strongly non-isothermal plasma (as in their case) and consequently the ion current are determined by Child`s law. However, at presence of ion beam with high enough energy {var_epsilon}{sub b} >> e{var_phi}{sub p}, this law is broken. The author has found the dependence of Langmuir probe ion current I{sub i} on probe potential {var_phi}{sub p} at presence of IB. The constant ion density approach was used in cylindrical and spherical geometry of the probe layer. Dependence of ion current founded experimentally accords with Child`s law when the probe is placed outside the beam and linear--within the beam. Application of only the chemical Langmuir probe is insufficient for energoanalysis of IBP electrons because of ion current interference. To solve this problem combination of the techniques of cylindrical probe, large plate probe (5 x 5mm) and two-grid energoanalyzer was used. Design and parameters of the two-grid analyzer are presented. Measuring system is described for determination of electron energy distribution function in low temperature plasma by double differentiation of the electric probe volt-ampere characteristic by modulation method.

  2. Rational design of fluorescent membrane probes for apoptosis based on 3-hydroxyflavone

    NASA Astrophysics Data System (ADS)

    Darwich, Zeinab; Kucherak, Oleksandr A.; Kreder, Rémy; Richert, Ludovic; Vauchelles, Romain; Mély, Yves; Klymchenko, Andrey S.

    2013-06-01

    Environment-sensitive probes constitute powerful tools for monitoring changes in the physico-chemical properties of cell plasma membranes. Among these probes, 3-hydroxyflavone probes are of great interest due to their dual emission and ratiometric response. Here, three probes derived from the parent F2N12S were designed, characterized and applied to monitor the membrane changes occurring during apoptosis. These three probes were designed to orient the dye vertically in the membrane. They differ by the length of their alkyl chains (from 4 to 8 carbons), which were included to optimize their affinity to the lipid membranes. Among these three probes, the one with medium chain length (hexyl) showed the best affinity to model and cell membranes, while the one with the longest alkyl chains (octyl) did not efficiently stain the membranes, probably due to aggregation. The new probes were found to be more sensitive than F2N12S to both the lipid phase and surface charge in lipid vesicles and to loss of lipid order in cell plasma membranes after cholesterol extraction. The one with the shortest (butyl) chains was found to be the most sensitive to apoptosis, while the one with medium-length (hexyl) chains was the brightest. Interestingly, apoptosis induced by different agents led to similar spectroscopic effects to those produced by the loss of lipid order and change in the surface charge, confirming that apoptosis decreases the lipid order and increases the negative surface charge in the outer leaflet of cell membranes. In conclusion, these studies report the relationship between the probe structures and their sensitivity to lipid order, surface charge and apoptosis and propose new probes for membrane research.

  3. Hydra Probe and Twelve-wire Probe Comparisons in Fluids and Soil Cores

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water content is determined from various permittivity probes. The Hydra Probe measures both the real and imaginary permittivity and estimates electrical conductivity (EC). The twelve-wire probe has been used with a vector network analyzer to determine real and imaginary permittivity and EC, and...

  4. Real-time fluorometric turn-on assay for protease activity and inhibitor screening with a benzoperylene probe.

    PubMed

    Zhou, Chuibei; Li, Wenying; Chen, Jian; Yang, Meiding; Li, Yang; Zhu, Jintao; Yu, Cong

    2014-03-01

    A real-time fluorescence turn-on strategy for protease activity and inhibitor screening has been developed. A negatively charged benzo[ghi]perylene derivative (probe 1) was employed. Protamine is a cationic protein which can induce aggregation of probe 1 via strong electrostatic and hydrophobic interactions. The fluorescence of probe 1 was efficiently quenched. In the presence of a protease, protamine was enzymatically hydrolyzed and probe 1 de-aggregated. The recovery of the probe 1 monomer fluorescence could be detected. The protease activity could be monitored in real-time. In addition, upon addition of a protease inhibitor, the protease-catalyzed hydrolysis was inhibited, which led to a decreased fluorescence recovery. The fluorometric assay thus could also be employed for screening protease inhibitors. PMID:24427771

  5. The promise and peril of chemical probes

    PubMed Central

    Arrowsmith, Cheryl H; Audia, James E; Austin, Christopher; Baell, Jonathan; Bennett, Jonathan; Blagg, Julian; Bountra, Chas; Brennan, Paul E; Brown, Peter J; Bunnage, Mark E; Buser-Doepner, Carolyn; Campbell, Robert M; Carter, Adrian J; Cohen, Philip; Copeland, Robert A; Cravatt, Ben; Dahlin, Jayme L; Dhanak, Dashyant; Frederiksen, Mathias; Frye, Stephen V; Gray, Nathanael; Grimshaw, Charles E; Hepworth, David; Howe, Trevor; Huber, Kilian V M; Jin, Jian; Knapp, Stefan; Kotz, Joanne D; Kruger, Ryan G; Lowe, Derek; Mader, Mary M; Marsden, Brian; Mueller-Fahrnow, Anke; Müller, Susanne; O'Hagan, Ronan C; Overington, John P; Owen, Dafydd R; Rosenberg, Saul H; Ross, Ruth; Roth, Bryan; Schapira, Matthieu; Schreiber, Stuart L; Shoichet, Brian; Sundström, Michael; Superti-Furga, Giulio; Taunton, Jack; Toledo-Sherman, Leticia; Walpole, Chris; Walters, Michael A; Willson, Timothy M; Workman, Paul; Young, Robert N; Zuercher, William J

    2016-01-01

    Chemical probes are powerful reagents with increasing impacts on biomedical research. However, probes of poor quality or that are used incorrectly generate misleading results. To help address these shortcomings, we will create a community-driven wiki resource to improve quality and convey current best practice. PMID:26196764

  6. Multiring probe in a flowing ionospheric plasma.

    NASA Technical Reports Server (NTRS)

    Sheldon, J. W.; Stone, N. H.

    1973-01-01

    Description of a multiring probe placed in an ionospheric flow simulation chamber utilizing a modified Kaufman ion engine for its plasma source. The pertinent details of the probe design, instrumentation, and operating procedures are discussed, and the preliminary results obtained are presented.

  7. Formative Assessment Probes: To Hypothesize or Not

    ERIC Educational Resources Information Center

    Keeley, Page

    2010-01-01

    Formative assessment probes are used not only to uncover the ideas students bring to their learning, they can also be used to reveal teachers' common misconceptions. Consider a process widely used in inquiry science--developing hypotheses. In this article, the author features the probe "Is It a Hypothesis?", which serves as an example of how…

  8. DIMENSIONAL ANALYSIS OF A PERMITTIVITY MEASUREMENT PROBE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Open-ended coaxial-line probes provide a convenient means of determining the dielectric properties of many materials over a relativity wide frequency range. Because of this, much attention has been given to understanding the interaction of the probe and the material which it is inserted into. In t...

  9. NASA SMART Probe: Breast Cancer Application

    NASA Technical Reports Server (NTRS)

    Mah, Robert W.; Norvig, Peter (Technical Monitor)

    2000-01-01

    There is evidence in breast cancer and other malignancies that the physiologic environment within a tumor correlates with clinical outcome. We are developing a unique percutaneous Smart Probe to be used at the time of needle biopsy of the breast. The Smart Probe will simultaneously measure multiple physiologic parameters within a breast tumor. Direct and indirect measurements of tissue oxygen levels, blood flow, pH, and tissue fluid pressure will be analyzed in real-time. These parameters will be interpreted individually and collectively by innovative neural network techniques using advanced intelligent software. The goals are 1) develop a pecutaneous Smart Probe with multiple sensor modalities and applying advanced Information Technologies to provide real time diagnostic information of the tissue at tip of the probe, 2) test the percutaneous Smart Probe in women with benign and malignant breast masses who will be undergoing surgical biopsy, 3) correlate probe sensor data with benign and malignant status of breast masses, 4) determine whether the probe can detect physiologic differences within a breast tumor, and its margins, and in adjacent normal breast tissue, 5) correlate probe sensor data with known prognostic factors for breast caner, including tumor size, tumor grade, axillary lymph node metastases, estrogen receptor and progesterone receptor status.

  10. Displacement Compensation of Temperature Probe Data

    NASA Technical Reports Server (NTRS)

    Welch, Christopher S.; Hubert, James A.; Barber, Patrick G.

    1996-01-01

    Analysis of temperature data from a probe in a vertical Bridgman furnace growing germanium crystals revealed a displacement of the temperature profile due to conduction error. A theoretical analysis shows that the displacement compensation is independent of local temperature gradient. A displacement compensation value should become a standard characteristic of temperature probes used for temperature profile measurements.

  11. Inspecting Friction Stir Welding using Electromagnetic Probes

    NASA Technical Reports Server (NTRS)

    Kinchen, David G.

    2004-01-01

    A report describes the use of advanced electromagnetic probes to measure the dimensions, the spatial distribution of electrical conductivity, and related other properties of friction stir welds (FSWs) between parts made of the same or different aluminum alloy(s). The probes are of the type described in in another Tech Brief. To recapitulate: A probe of this type is essentially an eddy-current probe that includes a primary (driver) winding that meanders and multiple secondary (sensing) windings that meander along the primary winding. Electrical conductivity is commonly used as a measure of heat treatment and tempering of aluminum alloys, but prior to the development of these probes, the inadequate sensitivity and limited accuracy of electrical-conductivity probes precluded such use on FSWs between different aluminum alloys, and the resolution of those probes was inadequate for measurement of FSW dimensions with positions and metallurgical properties. In contrast, the present probes afford adequate accuracy and spatial resolution for the purposes of measuring the dimensions of FSW welds and correlating spatially varying electrical conductivities with metallurgical properties, including surface defects.

  12. Ferromagnetic resonance probe liftoff suppression apparatus

    DOEpatents

    Davis, Thomas J.; Tomeraasen, Paul L.

    1985-01-01

    A liftoff suppression apparatus utilizing a liftoff sensing coil to sense the amount a ferromagnetic resonance probe lifts off the test surface during flaw detection and utilizing the liftoff signal to modulate the probe's field modulating coil to suppress the liftoff effects.

  13. Visualizing genomes with Oligopaint FISH probes

    PubMed Central

    Beliveau, Brian J.; Apostolopoulos, Nicholas; Wu, Chao-ting

    2014-01-01

    Oligopaint probes are fluorescently-labeled, single-stranded DNA oligonucleotides that can be used to visualize genomic regions ranging in size from tens of kilobases to many megabases. This unit details how Oligopaint probes can be synthesized using basic molecular biological techniques as well as provides protocols for FISH, 3D-FISH, and sample preparation. PMID:24510436

  14. Aspects of probing on the micro scale

    NASA Astrophysics Data System (ADS)

    Bos, Edwin J. C.

    2010-08-01

    This paper discusses the aspects that influence the interaction between a probe tip and a work piece during tactile probing in a coordinate measuring machine (CMM). The trend of component miniaturization results in a need for 3- dimensional characterization of micrometer sized features to nanometer accuracy. As the scale of the measurement decreases, the problems associated with the surface-probe interactions become increasingly apparent. The aspects of the interaction that are discussed include contact forces, surface forces, tip rotations, finite stiffness effects and probe repeatability. These aspects are investigated using the Gannen XP 3D tactile probing system developed by Xpress Precision Engineering using modeling and experimental verification of the effects. The Gannen XP suspension consists of three slender rods with integrated piezo resistive strain gauges. The deformation of the slender rods is measured using the strain gauges and is a measure for the deflection of the probe tip. It is shown that the standard deviation in repeatability is 2 nm in any direction and over the whole measurement range of the probe. The probe has an isotropic stiffness of 480 N/m and a moving mass below 25 mg. Finally, the TriNano CMM will be discussed. This novel coordinate measuring machine is designed for measuring three dimensional micro features with nanometer uncertainty. The TriNano has a kinematic and highly symmetrical design based on three parallel axes and obeys to the Abbe principle in its entire measurement volume.

  15. Probe with integrated heater and thermocouple pack

    SciTech Connect

    McCulloch, R.W.; Dial, R.E.; Finnell, W.F.R.

    1988-02-16

    This patent describes a gamma thermometer probe for detecting heat produced within the thermometer probe. It comprises: an outer elongate thermometer sheath; an elongate rod; annular recesses; a longitudinal bore; and an integrated thermocouple pack. The thermocouple pack comprises: a first type wire, and second type wires. The second type wires comprises: an outer section; and an inner segment.

  16. Rugged fiber optic probe for raman measurement

    DOEpatents

    O'Rourke, Patrick E.; Toole, Jr., William R.; Nave, Stanley E.

    1998-01-01

    An optical probe for conducting light scattering analysis is disclosed. The probe comprises a hollow housing and a probe tip. A fiber assembly made up of a transmitting fiber and a receiving bundle is inserted in the tip. A filter assembly is inserted in the housing and connected to the fiber assembly. A signal line from the light source and to the spectrometer also is connected to the filter assembly and communicates with the fiber assembly. By using a spring-loaded assembly to hold the fiber connectors together with the in-line filters, complex and sensitive alignment procedures are avoided. The close proximity of the filter assembly to the probe tip eliminates or minimizes self-scattering generated by the optical fiber. Also, because the probe can contact the sample directly, sensitive optics can be eliminated.

  17. Molecular Imaging Probe Development using Microfluidics

    PubMed Central

    Liu, Kan; Wang, Ming-Wei; Lin, Wei-Yu; Phung, Duy Linh; Girgis, Mark D.; Wu, Anna M.; Tomlinson, James S.; Shen, Clifton K.-F.

    2012-01-01

    In this manuscript, we review the latest advancement of microfluidics in molecular imaging probe development. Due to increasing needs for medical imaging, high demand for many types of molecular imaging probes will have to be met by exploiting novel chemistry/radiochemistry and engineering technologies to improve the production and development of suitable probes. The microfluidic-based probe synthesis is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional systems. Numerous chemical reactions have been successfully performed in micro-reactors and the results convincingly demonstrate with great benefits to aid synthetic procedures, such as purer products, higher yields, shorter reaction times compared to the corresponding batch/macroscale reactions, and more benign reaction conditions. Several ‘proof-of-principle’ examples of molecular imaging probe syntheses using microfluidics, along with basics of device architecture and operation, and their potential limitations are discussed here. PMID:22977436

  18. Engine spectrometer probe and method of use

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, Sarkis (Inventor); Kittinger, Scott A. (Inventor)

    2006-01-01

    The engine spectrometer probe and method of using the same of the present invention provides a simple engine spectrometer probe which is both lightweight and rugged, allowing an exhaust plume monitoring system to be attached to a vehicle, such as the space shuttle. The engine spectrometer probe can be mounted to limit exposure to the heat and debris of the exhaust plume. The spectrometer probe 50 comprises a housing 52 having an aperture 55 and a fiber optic cable 60 having a fiber optic tip 65. The fiber optic tip 65 has an acceptance angle 87 and is coupled to the aperture 55 so that the acceptance angle 87 intersects the exhaust plume 30. The spectrometer probe can generate a spectrum signal from light in the acceptance angle 506 and the spectrum signal can be provided to a spectrometer 508.

  19. Time-resolved multiple probe spectroscopy

    SciTech Connect

    Greetham, G. M.; Sole, D.; Clark, I. P.; Parker, A. W.; Pollard, M. R.; Towrie, M.

    2012-10-15

    Time-resolved multiple probe spectroscopy combines optical, electronic, and data acquisition capabilities to enable measurement of picosecond to millisecond time-resolved spectra within a single experiment, using a single activation pulse. This technology enables a wide range of dynamic processes to be studied on a single laser and sample system. The technique includes a 1 kHz pump, 10 kHz probe flash photolysis-like mode of acquisition (pump-probe-probe-probe, etc.), increasing the amount of information from each experiment. We demonstrate the capability of the instrument by measuring the photolysis of tungsten hexacarbonyl (W(CO){sub 6}) monitored by IR absorption spectroscopy, following picosecond vibrational cooling of product formation through to slower bimolecular diffusion reactions on the microsecond time scale.

  20. Soft stylus probes for scanning electrochemical microscopy.

    PubMed

    Cortés-Salazar, Fernando; Träuble, Markus; Li, Fei; Busnel, Jean-Marc; Gassner, Anne-Laure; Hojeij, Mohamad; Wittstock, Gunther; Girault, Hubert H

    2009-08-15

    A soft stylus microelectrode probe has been developed to carry out scanning electrochemical microscopy (SECM) of rough, tilted, and large substrates in contact mode. It is fabricated by first ablating a microchannel in a polyethylene terephthalate thin film and filling it with a conductive carbon ink. After curing the carbon track and lamination with a polymer film, the V-shaped stylus was cut thereby forming a probe, with the cross section of the carbon track at the tip being exposed either by UV-photoablation machining or by blade cutting followed by polishing to produce a crescent moon-shaped carbon microelectrode. The probe properties have been assessed by cyclic voltammetry, approach curves, and line scans over electrochemically active and inactive substrates of different roughness. The influence of probe bending on contact mode imaging was then characterized using simple patterns. Boundary element method simulations were employed to rationalize the distance-dependent electrochemical response of the soft stylus probes. PMID:19630394

  1. Protective shield for an instrument probe

    DOEpatents

    Johnsen, Howard A.; Ross, James R.; Birtola, Sal R.

    2004-10-26

    A shield is disclosed that is particularly useful for protecting exposed optical elements at the end of optical probes used in the analysis of hazardous emissions in and around an industrial environment from the contaminating effects of those emissions. The instant invention provides a hood or cowl in the shape of a right circular cylinder that can be fitted over the end of such optical probes. The hood provides a clear aperture through which the probe can perform unobstructed analysis. The probe optical elements are protected from the external environment by passing a dry gas through the interior of the hood and out through the hood aperture in sufficient quantity and velocity to prevent any significant mixing between the internal and external environments. Additionally, the hood is provided with a cooling jacket to lessen the potential for damaging the probe due to temperature excursions.

  2. Improved probes for ultrasonic flaw detection

    NASA Astrophysics Data System (ADS)

    Antsifirov, V. V.; Rubin, A. L.; Salaev, A. V.; Sharko, A. V.

    1980-10-01

    Refinements are introduced in the structure of scanning probes for ultrasonic flaw detection, eliminating a number of the shortcomings inherent in standard probes (small capture zone, high acoustic noise level, unsuitability for inspection on a blank unfinished surface, etc.). A wide-scan combination double transceiver probe with a flat response over the length of the transducer is used to inspect large-scale pieces. Surface-wave inspection of pieces is realized with a high-sensitivity combination double transceiver probe with a low internal noise level, and hot-rolled steel VNS-5 plates are inspected with a probe having a local immersion bath and a sensitivity to the exposure of defects comparable in size with a control reflector of diameter 2.4 mm.

  3. Tube curvature measuring probe and method

    DOEpatents

    Sokol, George J.

    1990-01-01

    The present invention is directed to a probe and method for measuring the radius of curvature of a bend in a section of tubing. The probe includes a member with a pair of guide means, one located at each end of the member. A strain gauge is operatively connected to the member for detecting bending stress exrted on the member as the probe is drawn through and in engagement with the inner surface of a section of tubing having a bend. The method of the present invention includes steps utilizing a probe, like the aforementioned probe, which can be made to detect bends only in a single plane when having a fixed orientation relative the section of tubing to determine the maximum radius of curvature of the bend.

  4. A fixed bias, floating double probe technique with simple Langmuir probe characteristics

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.

    1971-01-01

    A new floating double-probe method is presented which has advantages over other floated-probe systems previously described in literature. The method utilized two electrodes, one of constant area and the other with a variable area. The two-electrode configuration is separated by a fixed bias voltage. The current-voltage characteristics of the new technique, which are generated by varying the area of the one electrode, are identical to those of a simple Langmuir probe, thus coupling all the advantages of a floated-probe system with the simple analysis scheme generally applied to the Langmuir probe for the determination of plasma density and temperature.

  5. Pump-probe Kelvin-probe force microscopy: Principle of operation and resolution limits

    SciTech Connect

    Murawski, J.; Graupner, T.; Milde, P. Raupach, R.; Zerweck-Trogisch, U.; Eng, L. M.

    2015-10-21

    Knowledge on surface potential dynamics is crucial for understanding the performance of modern-type nanoscale devices. We describe an electrical pump-probe approach in Kelvin-probe force microscopy that enables a quantitative measurement of dynamic surface potentials at nanosecond-time and nanometer-length scales. Also, we investigate the performance of pump-probe Kelvin-probe force microscopy with respect to the relevant experimental parameters. We exemplify a measurement on an organic field effect transistor that verifies the undisturbed functionality of our pump-probe approach in terms of simultaneous and quantitative mapping of topographic and electronic information at a high lateral and temporal resolution.

  6. A comparative study of electrical probe techniques for plasma diagnostics

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.

    1972-01-01

    Techniques for using electrical probes for plasma diagnostics are reviewed. Specific consideration is given to the simple Langmuir probe, the symmetric double probe of Johnson and Malter, the variable-area probe of Fetz and Oeschsner, and a floating probe technique. The advantages and disadvantages of each technique are discussed.

  7. Arrays of nucleic acid probes on biological chips

    DOEpatents

    Chee, Mark; Cronin, Maureen T.; Fodor, Stephen P. A.; Huang, Xiaohua X.; Hubbell, Earl A.; Lipshutz, Robert J.; Lobban, Peter E.; Morris, MacDonald S.; Sheldon, Edward L.

    1998-11-17

    DNA chips containing arrays of oligonucleotide probes can be used to determine whether a target nucleic acid has a nucleotide sequence identical to or different from a specific reference sequence. The array of probes comprises probes exactly complementary to the reference sequence, as well as probes that differ by one or more bases from the exactly complementary probes.

  8. Triaxial Probe Magnetic Data Analysis

    NASA Technical Reports Server (NTRS)

    Shultz, Kimberly; Whittlesey, Albert; Narvaez, Pablo

    2007-01-01

    The Triaxial Magnetic Moment Analysis software uses measured magnetic field test data to compute dipole and quadrupole moment information from a hardware element. It is used to support JPL projects needing magnetic control and an understanding of the spacecraft-generated magnetic fields. Evaluation of the magnetic moment of an object consists of three steps: acquisition, conditioning, and analysis. This version of existing software was extensively rewritten for easier data acquisition, data analysis, and report presentation, including immediate feedback to the test operator during data acquisition. While prior JPL computer codes provided the same data content, this program has a better graphic display including original data overlaid with reconstructed results to show goodness of fit accuracy and better appearance of the report graphic page. Data are acquired using three magnetometers and two rotations of the device under test. A clean acquisition user interface presents required numeric data and graphic summaries, and the analysis module yields the best fit (least squares) for the magnetic dipole and/or quadrupole moment of a device. The acquisition module allows the user to record multiple data sets, selecting the best data to analyze, and is repeated three times for each of the z-axial and y-axial rotations. In this update, the y-axial rotation starting position has been changed to an option, allowing either the x- or z-axis to point towards the magnetometer. The code has been rewritten to use three simultaneous axes of magnetic data (three probes), now using two "rotations" of the device under test rather than the previous three rotations, thus reducing handling activities on the device under test. The present version of the software gathers data in one-degree increments, which permits much better accuracy of the fit ted data than the coarser data acquisition of the prior software. The data-conditioning module provides a clean data set for the analysis module

  9. Direct Density Derivative Estimation.

    PubMed

    Sasaki, Hiroaki; Noh, Yung-Kyun; Niu, Gang; Sugiyama, Masashi

    2016-06-01

    Estimating the derivatives of probability density functions is an essential step in statistical data analysis. A naive approach to estimate the derivatives is to first perform density estimation and then compute its derivatives. However, this approach can be unreliable because a good density estimator does not necessarily mean a good density derivative estimator. To cope with this problem, in this letter, we propose a novel method that directly estimates density derivatives without going through density estimation. The proposed method provides computationally efficient estimation for the derivatives of any order on multidimensional data with a hyperparameter tuning method and achieves the optimal parametric convergence rate. We further discuss an extension of the proposed method by applying regularized multitask learning and a general framework for density derivative estimation based on Bregman divergences. Applications of the proposed method to nonparametric Kullback-Leibler divergence approximation and bandwidth matrix selection in kernel density estimation are also explored. PMID:27140943

  10. Single molecule probes of membrane structure: orientation of BODIPY probes in DPPC as a function of probe structure.

    PubMed

    Armendariz, Kevin P; Huckabay, Heath A; Livanec, Philip W; Dunn, Robert C

    2012-03-21

    Single molecule fluorescence measurements have recently been used to probe the orientation of fluorescent lipid analogs doped into lipid films at trace levels. Using defocused polarized total internal reflection fluorescence microscopy (PTIRF-M), these studies have shown that fluorophore orientation responds to changes in membrane surface pressure and composition, providing a molecular level marker of membrane structure. Here we extend those studies by characterizing the single molecule orientations of six related BODIPY probes doped into monolayers of DPPC. Langmuir-Blodgett monolayers transferred at various surface pressures are used to compare the response from fluorescent lipid analogs in which the location of the BODIPY probe is varied along the length of the acyl chain. For each BODIPY probe location along the chain, comparisons are made between analogs containing phosphocholine and smaller fatty acid headgroups. Together these studies show a general propensity of the BODIPY analogs to insert into membranes with the BODIPY probe aligned along the acyl chains or looped back to interact with the headgroups. For all BODIPY probes studied, a bimodal orientation distribution is observed which is sensitive to surface pressure, with the population of BODIPY probes aligned along the acyl chains increasing with elevated surface pressure. Trends in the single molecule orientations for the six analogs reveal a configuration where optimal placement of the BODIPY probe within the acyl chain maximizes its sensitivity to the surrounding membrane structure. These results are discussed in terms of balancing the effects of headgroup association with acyl chain length in designing the optimal placement of the BODIPY probe. PMID:22322157

  11. Four-probe measurements with a three-probe scanning tunneling microscope

    SciTech Connect

    Salomons, Mark; Martins, Bruno V. C.; Zikovsky, Janik; Wolkow, Robert A.

    2014-04-15

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  12. Advances in Langmuir probe diagnostics of the plasma potential and electron-energy distribution function in magnetized plasma

    NASA Astrophysics Data System (ADS)

    Popov, Tsv K.; Dimitrova, M.; Ivanova, P.; Kovačič, J.; Gyergyek, T.; Dejarnac, R.; Stöckel, J.; Pedrosa, M. A.; López-Bruna, D.; Hidalgo, C.

    2016-06-01

    Advanced Langmuir probe techniques for evaluating the plasma potential and electron-energy distribution function (EEDF) in magnetized plasma are reviewed. It is shown that when the magnetic field applied is very weak and the electrons reach the probe without collisions in the probe sheath the second-derivative Druyvesteyn formula can be used for EEDF evaluation. At low values of the magnetic field, an extended second-derivative Druyvesteyn formula yields reliable results, while at higher values of the magnetic field, the first-derivative probe technique is applicable for precise evaluation of the plasma potential and the EEDF. There is an interval of intermediate values of the magnetic field when both techniques—the extended second-derivative and the first-derivative one—can be used. Experimental results from probe measurements in different ranges of magnetic field are reviewed and discussed: low-pressure argon gas discharges in the presence of a magnetic field in the range from 0.01 to 0.08 T, probe measurements in circular hydrogen plasmas for high-temperature fusion (magnetic fields from 0.45 T to 1.3 T) in small ISTTOK and CASTOR tokamaks, D-shape COMPASS tokamak plasmas, as well as in the TJ-II stellarator. In the vicinity of the last closed flux surface (LCFS) in tokamaks and in the TJ-II stellarator, the EEDF obtained is found to be bi-Maxwellian, while close to the tokamak chamber wall it is Maxwellian. The mechanism of the appearance of a bi-Maxwellian EEDF in the vicinity of the LCFS is discussed. Comparison of the results from probe measurements with those obtained from calculations using the ASTRA and EIRENE codes shows that the main reason for the appearance of a bi-Maxwellian EEDF in the vicinity of the LCFS is the ionization of the neutral atoms.

  13. On modified finite difference method to obtain the electron energy distribution functions in Langmuir probes

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Ju; Choi, Hyeok; Kim, Jae-Hyun; Lee, Se-Hun; Yoo, Tae-Ho; Chung, Chin-Wook

    2016-06-01

    A modified central difference method (MCDM) is proposed to obtain the electron energy distribution functions (EEDFs) in single Langmuir probes. Numerical calculation of the EEDF with MCDM is simple and has less noise. This method provides the second derivatives at a given point as the weighted average of second order central difference derivatives calculated at different voltage intervals, weighting each by the square of the interval. In this paper, the EEDFs obtained from MCDM are compared to those calculated via the averaged central difference method. It is found that MCDM effectively suppresses the noises in the EEDF, while the same number of points are used to calculate of the second derivative.

  14. Sharp Hypervelocity Aerodynamic Research Probe

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey; Kolodziej, Paul; Rasky, Daniel J. (Technical Monitor)

    1996-01-01

    The objective of this flight demonstration is to deploy a slender-body hypervelocity aerodynamic research probe (SHARP) from an orbiting platform using a tether, deorbit and fly it along its aerothermal performance constraint, and recover it intact in mid-air. To accomplish this objective, two flight demonstrations are proposed. The first flight uses a blunt-body, tethered reentry experiment vehicle (TREV) to prove out tethered deployment technology for accurate entries, a complete SHARP electronics suite, and a new soft mid-air helicopter recovery technique. The second flight takes advantage of this launch and recovery capability to demonstrate revolutionary sharp body concepts for hypervelocity vehicles, enabled by new Ultra-High Temperature Ceramics (UHTCs) recently developed by Ames Research Center. Successful demonstration of sharp body hypersonic vehicle technologies could have radical impact on space flight capabilities, including: enabling global reentry cross range capability from Station, eliminating reentry communications blackout, and allowing new highly efficient launch systems incorporating air breathing propulsion and zeroth staging.

  15. Three axis velocity probe system

    DOEpatents

    Fasching, George E.; Smith, Jr., Nelson S.; Utt, Carroll E.

    1992-01-01

    A three-axis velocity probe system for determining three-axis positional velocities of small particles in fluidized bed systems and similar applications. This system has a sensor head containing four closely-spaced sensing electrodes of small wires that have flat ends to establish a two axis plane, e.g. a X-Y plane. Two of the sensing electrodes are positioned along one of the axes and the other two are along the second axis. These four sensing electrodes are surrounded by a guard electrode, and the outer surface is a ground electrode and support member for the sensing head. The electrodes are excited by, for example, sinusoidal voltage having a peak-to-peak voltage of up to 500 volts at a frequency of 2 MHz. Capacitive currents flowing between the four sensing electrodes and the ground electrode are influenced by the presence and position of a particle passing the sensing head. Any changes in these currents due to the particle are amplified and synchronously detected to produce positional signal values that are converted to digital form. Using these digital forms and two values of time permit generation of values of the three components of the particle vector and thus the total velocity vector.

  16. Probing the Buried Magnetic Interfaces.

    PubMed

    Liu, Wenqing; Zhou, Qionghua; Chen, Qian; Niu, Daxin; Zhou, Yan; Xu, Yongbing; Zhang, Rong; Wang, Jinlan; van der Laan, Gerrit

    2016-03-01

    Understanding magnetism in ferromagnetic metal/semiconductor (FM/SC) heterostructures is important to the development of the new-generation spin field-effect transistor. Here, we report an element-specific X-ray magnetic circular dichroism study of the interfacial magnetic moments for two FM/SC model systems, namely, Co/GaAs and Ni/GaAs, which was enabled using a specially designed FM1/FM2/SC superstructure. We observed a robust room temperature magnetization of the interfacial Co, while that of the interfacial Ni was strongly diminished down to 5 K because of hybridization of the Ni d(eg) and GaAs sp(3) states. The validity of the selected method was confirmed by first-principles calculations, showing only small deviations (<0.02 and <0.07 μB/atom for Co/GaAs and Ni/GaAs, respectively) compared to the real FM/SC interfaces. Our work proved that the electronic structure and magnetic ground state of the interfacial FM2 is not altered when the topmost FM2 is replaced by FM1 and that this model is applicable generally for probing the buried magnetic interfaces in the advanced spintronic materials.. PMID:26887429

  17. Gravity Probe B Gyroscope Rotor

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. This photograph is a close up of a niobium-coated gyroscope motor and its housing halves. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Don Harley.)

  18. Gravity Probe B Space Vehicle

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The space vehicle for Gravity Probe B (GP-B) arrives at the launch site at Vandenburg Air Force Base. GP-B is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by the Marshall Space Flight Center, development of the GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.

  19. Imaging probe for tumor malignancy

    NASA Astrophysics Data System (ADS)

    Tanaka, Shotaro; Kizaka-Kondoh, Shinae; Hiraoka, Hasahiro

    2009-02-01

    Solid tumors possess unique microenvironments that are exposed to chronic hypoxic conditions ("tumor hypoxia"). Although more than half a century has passed since it was suggested that tumor hypoxia correlated with poor treatment outcomes and contributed to cancer recurrence, a fundamental solution to this problem has yet to be found. Hypoxia-inducible factor (HIF-1) is the main transcription factor that regulates the cellular response to hypoxia. It induces various genes whose functions are strongly associated with malignant alteration of the entire tumor. The cellular changes induced by HIF-1 are extremely important targets of cancer therapy, particularly in therapy against refractory cancers. Imaging of the HIF-1-active microenvironment is therefore important for cancer therapy. To image HIF-1activity in vivo, we developed a PTD-ODD fusion protein, POHA, which was uniquely labeled with near-infrared fluorescent dye at the C-terminal. POHA has two functional domains: protein transduction domain (PTD) and VHL-mediated protein destruction motif in oxygen-dependent degradation (ODD) domain of the alpha subunit of HIF-1 (HIF-1α). It can therefore be delivered to the entire body and remain stabilized in the HIF-1-active cells. When it was intravenously injected into tumor-bearing mice, a tumor-specific fluorescence signal was detected in the tumor 6 h after the injection. These results suggest that POHA can be used an imaging probe for tumor malignancy.

  20. The Gravity Probe B gyroscope

    NASA Astrophysics Data System (ADS)

    Buchman, S.; Lipa, J. A.; Keiser, G. M.; Muhlfelder, B.; Turneaure, J. P.

    2015-11-01

    The Gravity Probe B (GP-B) gyroscope, a unique cryogenically operated mechanical sensor, was used on-orbit to independently test two predictions of general relativity (GR). Here, we describe the development and performance of the GP-B gyroscope, its geometry and fabrication, spin-up and vacuum approach, magnetic considerations, and static charge management. The history of electrically suspended gyroscopes puts the current work in context. Fabrication and ground testing of the GP-B gyroscope are detailed, followed by a review of on-orbit initialization, calibration, operation, and performance. We find that the performance was degraded relative to the mission goals, but was still sufficient to provide excellent new tests of GR. The degradation is partially due to the existence of gyroscope torques due to an unanticipated interaction between patch potentials on the rotor and the housing. We discuss these patch potentials and describe the effect of related torques on gyro drift. It was essential to include models for the effects due to the patch potentials in the complete data analysis model to yield determinations of the two GR effects.

  1. Designing anthraquinone-pyrrole redox intercalating probes for electrochemical gene detection.

    PubMed

    Lin, Yu-Jen; Wu, Yung-Chao; Mani, Veerappan; Huang, Sheng-Tung; Huang, Chih-Hung; Hu, Yi-Chiuen; Peter Shan, His-Chi

    2016-05-15

    The real-time quantitative electrochemical monitoring of nucleic acid amplification through PCR is a promising renowned methodology to detect pathogenic DNAs. In this work, anthraquinone-pyrrole derivatives based redox intercalating probes (AP probes: AP1, AP2) have been designed, synthesized, characterized and successfully demonstrated in real-time like quantitative PCR. The rationally designed AP probes exhibited excellent DNA binding abilities and electrochemical behaviors. The binding parameters such as binding constant, binding site size and diffusion coefficient were estimated which were comparable to literature reports. Besides, the AP probes are highly stable under PCR thermal conditions and did not inhibit PCR. Therefore, a real-time like quantification of DNA amplification was demonstrated to quantify the initial copy number of target genes. The probe AP2 has excellent ability to detect ~10(3) copies of target tpc DNA with good sensitivity. The AP probes are metal-free, easily synthesizable, non-toxic, thermally stable and feasible for miniaturized PCR chips. PMID:26716423

  2. Self-quenching DNA probes based on aggregation of fluorescent dyes

    NASA Astrophysics Data System (ADS)

    Schafer, Gabriela; Muller, Matthias; Hafner, Bernhard; Habl, Gregor; Nolte, Oliver; Marme, Nicole; Knemeyer, Jens-Peter

    2005-04-01

    Here we present a novel class of self-quenching, double-labeled DNA probes based on the formation of non fluorescent H-type dye dimers. We therefore investigated the aggregation behavior of the red-absorbing oxazine derivative MR121 and found a dimerization constant of about 3000 M-1. This dye was successfully used to develop hairpin-structured as well as linear self-quenching DNA probes that report the presence of the target DNA by an increase of the fluorescence intensity by a factor of 3 to 12. Generally fluorescence quenching of the hairpin-structure probes is more efficient compared to the linear probes, whereas the kinetic of the fluorescence increase is significantly slower. The new probes were used for the identification of different mycobacteria and their antibiotic resistant species. As a test system a probe for the identification of a DNA sequence specific for the Mycobacterium xenopi was synthesized differing from the sequence of the Mycobacterium fortuitum by 6 nucleotides. Furthermore we developed a method for the discrimination between the sequences of the wild type and an antibiotic resistant species of Mycobacterium tuberculosis. Both sequences differ by just 2 nucleotides and were detected specifically by the use of competing olignonucleotides.

  3. Probe measurements of the electron distribution function in a nonequilibrium plasma

    SciTech Connect

    Mustafaev, A.S.; Mezentsev, A.P.; Simonov, V.Y.; Kaplan, V.B.; Martsinovskii, A.M.

    1984-11-01

    The probe characteristics and their second derivatives with respect to the potential are recorded in a hot-cathode inert-gas (He, Ne, Ar) arc discharge plasma for pressures 0.05--3 torr and discharge currents i = 0.02--2 A. An isotropic ''swarm'' of fast electrons was observed at distances dprobe characteristic must be analyzed in order to interpret the probe measurements under these conditions. The conventional methods for analyzing the probe characteristics do not apply, but it is shown that information about the plasma parameters can be obtained by modulating the probe current for plasmas with a highly nonmaxwellian energy distribution F(epsilon). The probe characteristics calculated from the measured distribution F(epsilon) agree with the measured results.

  4. A FRET-based fluorescent probe for mercury ions in water and living cells.

    PubMed

    Zhang, Bo; Ma, Pinyi; Gao, Dejiang; Wang, Xinghua; Sun, Ying; Song, Daqian; Li, Xuwen

    2016-08-01

    On the basis of fluorescence resonance energy transfer (FRET), a new rhodamine derivative (DRh) was synthesized as a ratiometric fluorescent probe for detecting Hg(2+) in water and living cells samples. The recognition properties of the probe DRh with metal ions had been investigated in H2O/CH3CN (9:1, v/v; Tris-HCl 50mmolL(-1); pH=7.0) solution by the UV-Vis spectrophotometry and the fluorescence spectrophotometry. The results showed that the probe DRh exhibited the selective recognition of Hg(2+). Upon the addition of Hg(2+), the spirolactam ring of probe DRh was opened. The 1:1 stoichiometric structure between DRh and Hg(2+) were supported by Job's plot, MS and DFT theoretical calculations. The linearly fluorescence intensity ratio (I582/I538) is proportional to the concentration of Hg(2+) in the range 0-30μmolL(-1). The limit of detection (LOD) of Hg(2+) is 0.008μmolL(-1) (base on S/N=3). The present probe was applied to the determination of Hg(2+) in neutral water samples and gave recoveries ranging from 104.5 to 107.9%. Furthermore, the fluorescent probe also can be applied as a bioimaging reagent for Hg(2+) detection in HeLa cells. PMID:27111158

  5. Study of wear of diamond-coated probe tips when scanning on different materials

    NASA Astrophysics Data System (ADS)

    Küng, A.; Nicolet, A.; Meli, F.

    2015-08-01

    The accuracy of today’s coordinate measuring machines (CMM) has reached a level at which the exact knowledge of each component is required. The role of the probe tip is particularly crucial because it is in contact with the sample surface. Understanding how the probe tip wears off will help to narrow the measurement errors. Today, diamond-coated probes of excellent quality are becoming commercially available. In the present work, the wear of those probes was studied when scanning on different sample materials and under different measuring conditions. The wear rate was quantified in terms of the rate of the removed diamond volume per meter scan length. It cannot be simply derived from material properties or scanning conditions. A simple calculation also shows that only a very small fraction of the friction energy is devoted to the removal of atoms from the diamond crystal. The wear rate of diamond-coated probes was found to be orders of magnitude smaller compared with the wear of traditional sapphire probes.

  6. Theory of cylindrical and spherical Langmuir probes in the limit of vanishing Debye number

    SciTech Connect

    Parrot, M.J.M.; Storey, L.R.O.; Parker, L.W.; Laframboise, J.G.

    1982-12-01

    A theory has been developed for cylindrical and spherical probes and other collectors in collisionless plasmas, in the limit where the ratio of Debye length to probe radius (the Debye number lambda/sub D/) vanishes. Results are presented for the case of equal electron and ion temperatures. On the scale of the probe radius, the distributions of potential and density in the presheath appear to have infinite slope at the probe surface. The dimensionless current--voltage characteristic is the same for the cylinder as for the sphere, within the limits of error of the numerical results, although no physical reason for this is evident. As the magnitude of probe potential (relative to space) increases, the current does not saturate abruptly but only asymptotically; its limiting value is about 45% larger than at space potential. Probe currents for small nonzero lambda/sub D/ approach those for zero lambda/sub D/ only very slowly, showing power-law behavior as function of lambda/sub D/ in the limit as lambda/sub D/ ..-->.. 0, with power-law exponents less than unity, resulting in infinite limiting derivatives with respect to lambda/sub D/.

  7. A FRET-based fluorescent probe for mercury ions in water and living cells

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Ma, Pinyi; Gao, Dejiang; Wang, Xinghua; Sun, Ying; Song, Daqian; Li, Xuwen

    2016-08-01

    On the basis of fluorescence resonance energy transfer (FRET), a new rhodamine derivative (DRh) was synthesized as a ratiometric fluorescent probe for detecting Hg2 + in water and living cells samples. The recognition properties of the probe DRh with metal ions had been investigated in H2O/CH3CN (9:1, v/v; Tris-HCl 50 mmol L- 1; pH = 7.0) solution by the UV-Vis spectrophotometry and the fluorescence spectrophotometry. The results showed that the probe DRh exhibited the selective recognition of Hg2 +. Upon the addition of Hg2 +, the spirolactam ring of probe DRh was opened. The 1:1 stoichiometric structure between DRh and Hg2 + were supported by Job's plot, MS and DFT theoretical calculations. The linearly fluorescence intensity ratio (I582/I538) is proportional to the concentration of Hg2 + in the range 0-30 μmol L- 1. The limit of detection (LOD) of Hg2 + is 0.008 μmol L- 1 (base on S/N = 3). The present probe was applied to the determination of Hg2 + in neutral water samples and gave recoveries ranging from 104.5 to 107.9%. Furthermore, the fluorescent probe also can be applied as a bioimaging reagent for Hg2 + detection in HeLa cells.

  8. Hyperpolarized NMR Probes for Biological Assays

    PubMed Central

    Meier, Sebastian; Jensen, Pernille R.; Karlsson, Magnus; Lerche, Mathilde H.

    2014-01-01

    During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized) molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments. PMID:24441771

  9. Next Generation Plasma Impedance Probe Instrumentation Technique

    NASA Astrophysics Data System (ADS)

    Carlson, C. G.; Swenson, C. M.; Fish, C.

    2003-12-01

    Four Utah State University Plasma Impedance Probes (PIP) were part of NASA's Sequential Rocket Study of Descending Layers in the E-Region (E-Winds). The payloads were launched at 11:19 pm, 1:41 am, 2:50 am and 3:07 am on June 30 and July 1, 2003 from Wallops Island, Virginia into the nighttime D and E-regions. The PIP is a suite of instruments for observing relative and absolute electron densities, magnetic field strength, and electron-neutral collision frequency. The suite consists of a Plasma Frequency Probe, a Swept Impedance Probe, a Q probe, an experimental Ion Impedance probe, and a DC Langmuir probe. The first four instrument diagnostics are based on the impedance characteristics of an antenna immersed in plasma. Resonance effects at low frequencies (1-100 kHz) where ion dynamics become important were observed by the Ion Impedance Probe. This data set may lead to the first mid-latitude measurements of ion-neutral collision frequency and full conductivity measurements of the ionosphere. Preliminary analysis of flight data shows a considerable amount of sensitivity in all of the instruments that should allow for absolute electron density measurement in the 1 to 10 per cc range and comparable accuracy in electron neutral collision frequency. This paper presents the instrumentation techniques, calibrations and initial results for this flight.

  10. Overview of Key Saturn Probe Mission Trades

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Kowalkowski, Theresa; Folkner, Bill

    2007-01-01

    Ongoing studies, performed at NASA/JPL over the past two years in support of NASA's SSE Roadmap activities, proved the feasibility of a NF class Saturn probe mission. I. This proposed mission could also provide a good opportunity for international collaboration with the proposed Cosmic Vision KRONOS mission: a) With ESA contributed probes (descent modules) on a NASA lead mission; b) Early 2017 launch could be a good programmatic option for ESA-CV/NASA-NF. II. A number of mission architectures could be suitable for this mission: a) Probe Relay based architecture with short flight time (approx. 6.3-7 years); b) DTE probe telecom based architecture with long flight time (-11 years), and low probe data rate, but with the probes decoupled from the carrier, allowing for polar trajectories I orbiter. This option may need technology development for telecom; c) Orbiter would likely impact mission cost over flyby, but would provide significantly higher science return. The Saturn probes mission is expected to be identified in NASA's New Frontiers AO. Thus, further studies are recommended to refine the most suitable architecture. International collaboration is started through the KRONOS proposal work; further collaborated studies will follow once KRONOS is selected in October under ESA's Cosmic Vision Program.

  11. Probe Project Status and Accomplishments - Year Two

    SciTech Connect

    Burris, R.D.

    2002-04-11

    The Probe project has established a facility for storage- and network-related research, development and testing. With sites at the Oak Ridge National Laboratory (ORNL) and the National Energy Research Scientific Computing Center (NERSC), Probe is investigating local-area or wide-area distributed storage issues ranging from data mining to optimizing retrieval operations from tape devices. Probe has completed its second full year of operation. In this document we will describe the status of the project as of December 31, 2001. This year we will structure this document by category of work, rather than by project status. We will present sections describing Scientific Discovery through Advanced Computation (SciDAC) projects, network research and research on data mining and distributed cluster analysis. Another section will describe data-transfer application development and testing and other types of hardware- and software-related testing and development activities. We will then describe the work undertaken for presentation at the SC2001 conference. The final section will summarize this year's publications. Individual projects described in this document have used some Probe resource--equipment, software, staff or funding. By describing these projects we do not imply that the work should be entirely credited to Probe, although we do assert that Probe's existence and assistance provided benefit to the work. The Probe project is funded by the Mathematical, Information, and Computer Sciences (MICS) department of the Advanced Scientific Computing Research office, Office of Science, Department of Energy.

  12. Comparison of Galileo Probe and Earth-Based Translation Rates of Jupiter's Equatorial Clouds

    PubMed

    Beebe; Simon; Huber

    1996-05-10

    The Doppler wind speeds derived from Galileo probe data are comparable with the maximum translation speeds observed in the equatorial zone by Voyager 1 and the Hubble Space Telescope. Slower published values of east-west winds are based on measurements of larger features and should be interpreted as translation rates of large weather systems interacting with the wind. The nature of the hot-spot region that the Galileo probe entered is compatible with a high-speed jet at 6 degrees north. The hot spot is associated with an equatorial weather system that spans 5 degrees of latitude and translates at 103 meters per second. PMID:8662572

  13. Quinoline-based two-photon fluorescent probe for nitric oxide in live cells and tissues.

    PubMed

    Dong, Xiaohu; Heo, Cheol Ho; Chen, Shiyu; Kim, Hwan Myung; Liu, Zhihong

    2014-01-01

    A two-photon fluorescent probe (QNO) for nitric oxide is reported. The probe is designed with a photoinduced electron transfer (PeT) mechanism and shows 12-fold fluorescence enhancement toward NO. Adopting a quinoline derivative as the fluorophore, QNO has a large two-photon action cross section value of 52 GM and long-wavelength emission. It also features high selectivity, low cytotoxicity, and pH insensitivity. By utilizing two-photon microscopy (TPM), QNO can detect NO in live cells and live tissues at a depth of 90-180 μm. PMID:24341482

  14. Scanning electron microscopy and electron probe X-ray microanalysis (SEM-EPMA) of pink teeth

    SciTech Connect

    Ikeda, N.; Watanabe, G.; Harada, A.; Suzuki, T.

    1988-11-01

    Samples of postmortem pink teeth were investigated by scanning electron microscopy and electron probe X-ray microanalysis. Fracture surfaces of the dentin in pink teeth were noticeably rough and revealed many more smaller dentinal tubules than those of the control white teeth. Electron probe X-ray microanalysis showed that the pink teeth contained iron which seemed to be derived from blood hemoglobin. The present study confirms that under the same circumstance red coloration of teeth may occur more easily in the teeth in which the dentin is less compact and contains more dentinal tubules.

  15. 21 CFR 870.2120 - Extravascular blood flow probe.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in...

  16. Compression of Space for Low Visibility Probes

    PubMed Central

    Born, Sabine; Krüger, Hannah M.; Zimmermann, Eckart; Cavanagh, Patrick

    2016-01-01

    Stimuli briefly flashed just before a saccade are perceived closer to the saccade target, a phenomenon known as perisaccadic compression of space (Ross et al., 1997). More recently, we have demonstrated that brief probes are attracted towards a visual reference when followed by a mask, even in the absence of saccades (Zimmermann et al., 2014a). Here, we ask whether spatial compression depends on the transient disruptions of the visual input stream caused by either a mask or a saccade. Both of these degrade the probe visibility but we show that low probe visibility alone causes compression in the absence of any disruption. In a first experiment, we varied the regions of the screen covered by a transient mask, including areas where no stimulus was presented and a condition without masking. In all conditions, we adjusted probe contrast to make the probe equally hard to detect. Compression effects were found in all conditions. To obtain compression without a mask, the probe had to be presented at much lower contrasts than with masking. Comparing mislocalizations at different probe detection rates across masking, saccades and low contrast conditions without mask or saccade, Experiment 2 confirmed this observation and showed a strong influence of probe contrast on compression. Finally, in Experiment 3, we found that compression decreased as probe duration increased both for masks and saccades although here we did find some evidence that factors other than simply visibility as we measured it contribute to compression. Our experiments suggest that compression reflects how the visual system localizes weak targets in the context of highly visible stimuli. PMID:27013989

  17. An efficient technique for estimating the two-dimensional temperature distributions around multiple cryo-surgical probes based on combining contributions of unit circles.

    PubMed

    Magalov, Zaur; Shitzer, Avraham; Degani, David

    2016-10-01

    This study presents an efficient, fast and accurate method for estimating the two-dimensional temperature distributions around multiple cryo-surgical probes. The identical probes are inserted into the same depth and are operated simultaneously and uniformly. The first step in this method involves numerical derivation of the temporal performance data of a single probe, embedded in a semi-infinite, tissue-like medium. The results of this derivation are approximated by algebraic expressions that form the basis for computing the temperature distributions of multiple embedded probes by combining the data of a single probe. Comparison of isothermal contours derived by this method to those computed numerically for a variety of geometrical cases, up to 15 inserted probes and 2-10 min times of operation, yielded excellent results. Since this technique obviates the solution of the differential equations of multiple probes, the computational time required for a particular case is several orders of magnitude shorter than that needed for obtaining the full numerical solution. Blood perfusion and metabolic heat generation rates are demonstrated to inhibit the advancement of isothermal fronts. Application of this method will significantly shorten computational times without compromising the accuracy of the results. It may also facilitate expeditious consideration of the advantages of different modes of operation and the number of inserted probes at the early design stage. PMID:26963943

  18. Miniature, Cooled Pressure-Measuring Probe

    NASA Technical Reports Server (NTRS)

    Ashby, George C., Jr.; Eves, John W.; White, David R.

    1994-01-01

    Probe designed to reduce settling time dramatically. Pressure-sensing transducer mounted in probe and connected to tip by short tube having cross-sectional area substantially smaller than conventional connecting tubes. Probe includes stainless-steel cylindrical exterior housing holding closed pressure chamber in which piezoelectric pressure transducer mounted. Open connecting tube passes portion of high-velocity, high-temperature fluid stream into closed pressure chamber. Any change of pressure in sampled stream propagates into closed pressure chamber with settling time inversely proportional to cross-sectional area of connecting tube. Cooling chamber formed around pressure chamber connected to source of water or other cooling fluid via inlet and outlet tubes.

  19. Preston Probe Calibrations at High Reynolds Number

    NASA Technical Reports Server (NTRS)

    Smits, Alexander J.

    1998-01-01

    The overall goal of the research effort is to study the performance of two Preston probes designed by NASA Langley Research Center across an unprecedented range of Reynolds number (based on friction velocity and probe diameter), and perform an accurate calibration over the same Reynolds number range. Using the Superpipe facility in Princeton, two rounds of experiments were performed. In each round of experiments for each Reynolds number, the pressure gradient, static pressure from the Preston probes and the total pressure from the Preston probes were measured. In the first round, 3 Preston probes having outer diameters of 0.058 inches, 0.083 inches and 0.203 inches were tested over a large range of pipe Reynolds numbers. Two data reduction methods were employed: first, the static pressure measured on the Preston probe was used to calculate P (modified Preston probe configuration), and secondly, the static pressure measured at the reference pressure tap was used to calculate P (un-modified Preston probe configuration). For both methods, the static pressure was adjusted to correspond with the static pressure at the Preston probe tip using the pressure gradient. The measurements for Preston probes with diameters of 0.058 inches, and 0.083 inches respectively were performed in the test pipe before it was polished a second time. Therefore, the measurements at high pipe Reynolds numbers may have been affected by roughness. In the second round of experiments the 0.058 inches and 0.083 inches diameter, un-modified probes were tested after the pipe was polished and prepared to ensure that the surface was smooth. The average velocity was estimated by assuming that the connection between the centerline velocity and the average velocity was known, and by using a Pitot tube to measure the centerline velocity. A preliminary error estimate suggests that it is possible to introduce a 1% to 2% error in estimating the average velocity using this approach. The evidence on the errors

  20. Fluorescent probes for shock compression spectroscopy

    NASA Astrophysics Data System (ADS)

    Banishev, Alexandr; Christensen, James; Dlott, Dana

    We have demonstrated the capability of using Rhodamine 6G dye as an ultrafast emission probe in high-speed shock compression of condensed matter. The ultimate time response of the probe, which functions as a high-speed pressure sensor, is limited by fundamental photophysical processes such as radiative rates, internal conversion rates and intersystem crossing rates. The time response has been greatly improved by encapsulating the dye in silica nano or microparticles. This probe was used to observed nanosecond viscoelastic shock compression of a polymer (PMMA), and has been used to monitor the response of individual grains of sand to high-speed impact.

  1. Electrical single probe with an automatic positioner

    SciTech Connect

    Lopez, R.; Melendez, L.; Sanchez, A.M.; Gaytan, E.; Chavez, E.; Valencia, R.; Cruz, G.; Olayo, M.G.; Flores, A.

    1996-01-01

    An easy to assemble and inexpensive plasma diagnostic system is presented. An electrical single probe and its vacuum and electrical isolation arrangement, integrated to an automatic positioner device, has been constructed and tested in plasma environments. This system provides a more precise estimation of the probe electrode position than others previously proposed in the literature. To control the probe electrode position an electronic circuit based in a microcontroller device is used. This automatic positioner avoids the troubles related to a manual operation. {copyright} {ital 1996 American Institute of Physics.}

  2. Characterization of Fiber Optic CMM Probe System

    SciTech Connect

    K.W.Swallow

    2007-05-15

    This report documents a study completed on the fiber optic probe system that is a part of the Werth optical CMM. This study was necessary due to a lack of documentation from the vendor for the proper use and calibration of the fiber probe, and was performed in support of the Lithographie Galvanoformung Abformung (LIGA) development program at the FM&T. As a result of this study, a better understanding of the fiber optic probe has been developed, including guidelines for its proper use and calibration.

  3. Functional nucleic acid probes and uses thereof

    DOEpatents

    Nilsen-Hamilton, Marit

    2006-10-03

    The present invention provides functional nucleic acid probes, and methods of using functional nucleic acid probes, for binding a target to carry out a desired function. The probes have at least one functional nucleic acid, at least one regulating nucleic acid, and at least one attenuator. The functional nucleic acid is maintained in an inactive state by the attenuator and activated by the regulating nucleic acid only in the presence of a regulating nucleic acid target. In its activated state the functional nucleic acid can bind to its target to carry out a desired function, such as generating a signal, cleaving a nucleic acid, or catalyzing a reaction.

  4. Probing small non-coding RNAs structures.

    PubMed

    Philippe, Jean-Vincent; Ayadi, Lilia; Branlant, Christiane; Behm-Ansmant, Isabelle

    2015-01-01

    The diverse roles of RNAs depend on their ability to fold so as to form biologically functional structures. Thus, understanding the function of a given RNA molecule often requires experimental analysis of its secondary structure by in vitro RNA probing, which is more accurate than using prediction programs only. This chapter presents in vitro RNA probing protocols that we routinely use, from RNA transcript production and purification to RNA structure determination using enzymatic (RNases T1, T2, and V1) and chemical (DMS, CMCT, kethoxal, and Pb(2+)) probing performed on both unlabeled and end-labeled RNAs. PMID:25791596

  5. Atom Probe Tomography of Geomaterials

    NASA Astrophysics Data System (ADS)

    Parman, S. W.; Diercks, D.; Gorman, B.; Cooper, R. F.

    2013-12-01

    From the electron microprobe to the secondary ion microprobe to laser-ablation ICP-MS, steady improvements in the spatial resolution and detection limits of geochemical micro-analysis have been central to generating new discoveries. Atom probe tomography (APT) is a relatively new technology that promises nm-scale spatial resolution (in three dimensions) with ppm level detection limits. The method is substantially different from traditional beam-based (electron, ion, laser) methods. In APT, the sample is shaped (usually with a dual-beam FIB) into a needle with typical dimensions of 1-2 μm height and 100-200 nm diameter. Within the atom probe, the needle is evaporated one atom (ideally) at a time by a high electric field (ten's of V per square nm at the needle tip). A femtosecond laser (12 ps pulse width) is used to assist in evaporating non-conducting samples. The two-dimensional detector locates where the atom was released from the needle's surface and so can reconstruct the positions of all detected atoms in three dimensions. It also records the time of flight of the ion, which is used to calculate the mass/charge ratio of the ion. We will discuss our results analyzing a range of geologic materials. In one case, naturally occurring platinum group alloys (PGA) from the Josephine Ophiolite have been imaged. Such alloys are of interest as recorders of the Os heterogeneity of the mantle [1,2]. Optimal ablation was achieved with a laser power of 120-240 pJ and laser pulse rates 500 kHz. Runs were stopped after 10 million atoms were imaged. An example analysis is: Pt 61(1), Fe 26.1(9), Rh 1.20(4), Ir 7.0(7), Ni 2.65(8), Ru 0.20(9), Cu 1.22(8), Co 0.00029(5). Values are in atomic %; values in parentheses are one-sigma standard deviations on five separate needles from the same FIB lift-out, which was 30 μm long. Assuming the sample is homogenous over the 30 μm from which the needle was extracted, the analyses suggest relative errors for major elements below 5% and for

  6. Distance probes of dark energy

    NASA Astrophysics Data System (ADS)

    Kim, A. G.; Padmanabhan, N.; Aldering, G.; Allen, S. W.; Baltay, C.; Cahn, R. N.; D'Andrea, C. B.; Dalal, N.; Dawson, K. S.; Denney, K. D.; Eisenstein, D. J.; Finley, D. A.; Freedman, W. L.; Ho, S.; Holz, D. E.; Kasen, D.; Kent, S. M.; Kessler, R.; Kuhlmann, S.; Linder, E. V.; Martini, P.; Nugent, P. E.; Perlmutter, S.; Peterson, B. M.; Riess, A. G.; Rubin, D.; Sako, M.; Suntzeff, N. V.; Suzuki, N.; Thomas, R. C.; Wood-Vasey, W. M.; Woosley, S. E.

    2015-03-01

    This document presents the results from the Distances subgroup of the Cosmic Frontier Community Planning Study (Snowmass 2013). We summarize the current state of the field as well as future prospects and challenges. In addition to the established probes using Type Ia supernovae and baryon acoustic oscillations, we also consider prospective methods based on clusters, active galactic nuclei, gravitational wave sirens and strong lensing time delays. We note that these three elements together make a comprehensive DOE SN program, with a well- sequenced combination of R&D, construction, operations and analysis projects. The DOE SN researchers will be involved in several of these at any given time, since the precision SN cosmology measurement requires an in-depth understanding and use of SN data from all the redshift ranges simultaneously. A future Stage IV space-based SNe project would be the simplest way to match, at high redshift, these precision measurements of Type Ia supernovae at low redshift -measurements needed to provide the same systematics control over the entire redshift range from z ∼ 0.01 to z ∼ 2 . With modest investments in spectroscopic capabilities and a small fraction of mission time, WFIRST-AFTA could be upgraded [Editor's note: and has been upgraded in the current baseline; see Footnote2] to become this project, and would be complementary to the lensing programs of LSST/EUCLID. However, given the timescales and many difficulties of a space mission, there is now a need to explore vigorously a ground-based alternative to fill this important missing element in the DOE program. In particular, an R&D effort to explore the potential of novel ground-based techniques, combining near-IR technology with OH sky-line suppression, could make it possible to accomplish the precision measurements for SNe from SCP, DES, and LSST, complementing and strengthening these currently approved DOE projects.

  7. Observational probes of cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Weinberg, David H.; Mortonson, Michael J.; Eisenstein, Daniel J.; Hirata, Christopher; Riess, Adam G.; Rozo, Eduardo

    2013-09-01

    The accelerating expansion of the universe is the most surprising cosmological discovery in many decades, implying that the universe is dominated by some form of “dark energy” with exotic physical properties, or that Einstein’s theory of gravity breaks down on cosmological scales. The profound implications of cosmic acceleration have inspired ambitious efforts to understand its origin, with experiments that aim to measure the history of expansion and growth of structure with percent-level precision or higher. We review in detail the four most well established methods for making such measurements: Type Ia supernovae, baryon acoustic oscillations (BAO), weak gravitational lensing, and the abundance of galaxy clusters. We pay particular attention to the systematic uncertainties in these techniques and to strategies for controlling them at the level needed to exploit “Stage IV” dark energy facilities such as BigBOSS, LSST, Euclid, and WFIRST. We briefly review a number of other approaches including redshift-space distortions, the Alcock-Paczynski effect, and direct measurements of the Hubble constant H0. We present extensive forecasts for constraints on the dark energy equation of state and parameterized deviations from General Relativity, achievable with Stage III and Stage IV experimental programs that incorporate supernovae, BAO, weak lensing, and cosmic microwave background data. We also show the level of precision required for clusters or other methods to provide constraints competitive with those of these fiducial programs. We emphasize the value of a balanced program that employs several of the most powerful methods in combination, both to cross-check systematic uncertainties and to take advantage of complementary information. Surveys to probe cosmic acceleration produce data sets that support a wide range of scientific investigations, and they continue the longstanding astronomical tradition of mapping the universe in ever greater detail over ever

  8. probeCheck--a central resource for evaluating oligonucleotide probe coverage and specificity.

    PubMed

    Loy, Alexander; Arnold, Roland; Tischler, Patrick; Rattei, Thomas; Wagner, Michael; Horn, Matthias

    2008-10-01

    The web server probeCheck, freely accessible at http://www.microbial-ecology.net/probecheck, provides a pivotal forum for rapid specificity and coverage evaluations of probes and primers against selected databases of phylogenetic and functional marker genes. Currently, 24 widely used sequence collections including the Ribosomal Database Project (RDP) II, Greengenes, SILVA and the Functional Gene Pipeline/Repository can be queried. For this purpose, probeCheck integrates a new online version of the popular ARB probe match tool with free energy (DeltaG) calculations for each perfectly matched and mismatched probe-target hybrid, allowing assessment of the theoretical binding stabilities of oligo-target and non-target hybrids. For each output sequence, the accession number, the GenBank taxonomy and a link to the respective entry at GenBank, EMBL and, if applicable, the query database are displayed. Filtering options allow customizing results on the output page. In addition, probeCheck is linked with probe match tools of RDP II and Greengenes, NCBI blast, the Oligonucleotide Properties Calculator, the two-state folding tool of the DINAMelt server and the rRNA-targeted probe database probeBase. Taken together, these features provide a multifunctional platform with maximal flexibility for the user in the choice of databases and options for the evaluation of published and newly developed probes and primers. PMID:18647333

  9. Electrostatic Probe with Shielded Probe Insulator Tube for Low Disturbing Plasma Measurements in Hall Thrusters

    SciTech Connect

    D. Staack, Y. Raitses, and N.J. Fisch

    2003-07-10

    Electrostatic probes are widely used to measure spatial plasma parameters of the quasi-neutral plasma in Hall thrusters and similar ExB electric discharge devices. Significant perturbations of the plasma, induced by such probes, can mask the actual physics involved in operation of these devices. In Hall thrusters, probe-induced perturbations can produce changes in the discharge current and plasma parameters on the order of their steady state values. These perturbations are explored by varying the material, penetration distance, and residence time of various probe designs. A possible cause of these perturbations appears to be the secondary electron emission, induced by energetic plasma electrons, from insulator ceramic tubes in which the probe wire is inserted. A new probe in which a low secondary electron emission material, such as metal, shields the probe ceramic tube, is shown to function without producing such large perturbations. A segmentation of this shield further prevents probe -induced perturbations, by not shortening the plasma through the conductive shield. In a set of experiments with a segmented shield probe, the thruster was operated in the input power range of 500-2.5 kW and discharge voltages of 200-500 V, while the probe-induced perturbations of the discharge current were below 4% of its steady state value in the region in which 90% of the voltage drop takes place.

  10. Endohedral Metallofullerene Derivatives

    NASA Technical Reports Server (NTRS)

    Dorn, Harry C. (Inventor); Iezzi, Erick B. (Inventor); Duchamp, James (Inventor)

    2008-01-01

    Trimetallic nitride endohedral metallofullerene derivatives and their preparation are described. The trimetallic nitride endohedral metallofullerene derivatives have the general formula A(sub 3-n)X(sub n)@C(sub m)(R) where n ranges from 0 to 3, A and X may be trivalent metals and may be either rare earth metal or group IIIB metals, m is between about 60 and about 200, and R is preferably an organic group. Derivatives where the R group forms cyclized derivatives with the fullerene cage are also described.

  11. Surface sampling concentration and reaction probe

    DOEpatents

    Van Berkel, Gary J; Elnaggar, Mariam S

    2013-07-16

    A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

  12. Titanium pigmentation. An electron probe microanalysis study

    SciTech Connect

    Dupre, A.; Touron, P.; Daste, J.; Lassere, J.; Bonafe, J.L.; Viraben, R.

    1985-05-01

    A patient had an unusual pigmentary disease induced by titanium dioxide. The use of a topical cream containing titanium dioxide caused a xanthomalike appearance on the patient's penis. Electron probe microanalysis was valuable in establishing the cause of this balanitis.

  13. Pioneer probe mission with orbiter option

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A spacecraft is described which is based on Pioneer 10 and 11, and existing propulsion technology; it can transport and release a probe for entry into Jupiter's atmosphere, and subsequently maneuver to place the spacecraft in orbit about Jupiter. Orbital operations last 3 years and include maneuvers to provide multiple close satellite encounters which allow the orbit to be significantly changed to explore different parts of the magnetosphere. A mission summary, a guide to related documents, and background information about Jupiter are presented along with mission analysis over the complete mission profile. Other topics discussed include the launch, interplanetary flight, probe release and orbit deflection, probe entry, orbit selection, orbit insertion, periapsis raising, spacecraft description, and the effects of Jupiter's radiation belt on both orbiter and the probe.

  14. Probe microscopy: Scanning below the cell surface

    NASA Astrophysics Data System (ADS)

    Sahin, Ozgur

    2008-08-01

    Conventional atomic force microscopy probes only the surface of specimens. A related technique called scanning near-field ultrasonic holography can now image nanoparticles buried below the surfaces of cells, which could prove useful in nanotoxicology.

  15. Outer planet probe engineering model structural tests

    NASA Technical Reports Server (NTRS)

    Smittkamp, J. A.; Gustin, W. H.; Griffin, M. W.

    1977-01-01

    A series of proof of concept structural tests was performed on an engineering model of the Outer Planets Atmospheric Entry Probe. The tests consisted of pyrotechnic shock, dynamic and static loadings. The tests partially verified the structural concept.

  16. Self-referencing remote optical probe

    DOEpatents

    O'Rourke, Patrick E.; Prather, William S.; Livingston, Ronald R.

    1991-01-01

    A probe for remote spectrometric measurements of fluid samples having a hollow probe body with a sliding reflective plug therein and a lens at one end, ports for admitting and expelling the fluid sample and a means for moving the reflector so that reference measurement can be made with the reflector in a first position near the lens and a sample measurement can be made with the reflector away from the lens and the fluid sample between the reflector and the lens. Comparison of the two measurements will yield the composition of the fluid sample. The probe is preferably used for remote measurements and light is carried to and from the probe via fiber optic cables.

  17. Design of a strain-gage probe

    NASA Technical Reports Server (NTRS)

    Kolba, V. M.; Vetter, D. L.

    1969-01-01

    Strain-gage spacer probe uses the deflection of a leaf spring to measure strain in a long, slender beam nondestructively. The selected gage is of the smallest practical size, as thin as possible and yet of a standard type.

  18. Glass Probe Stimulation of Hair Cell Stereocilia.

    PubMed

    Peng, Anthony W; Ricci, Anthony J

    2016-01-01

    Hair cells are designed to sense mechanical stimuli of sound using their apical stereocilia hair bundles. Mechanical deflection of this hair bundle is converted into an electrical signal through gating of mechano-electric transduction channels. Stiff probe stimulation of hair bundles is an invaluable tool for studying the transduction channel and its associated processes because of the speed and ability to precisely control hair bundle position. Proper construction of these devices is critical to their ultimate performance as is appropriate placement of the probe onto the hair bundle. Here we describe the construction and use of a glass probe coupled to a piezo-electric actuator for stimulating hair bundles, including the basic technique for positioning of the stimulating probe onto the hair bundle. These piezo-electric stimulators can be adapted to other mechanically sensitive systems. PMID:27259944

  19. SPAS: Saturn Probe for Atmospheric Science

    NASA Astrophysics Data System (ADS)

    Li, L.; Jain, N.; Noevere, A. T.; Raghunandan, P.; Walsh, C.

    2014-06-01

    A parametric study was performed to design an atmospheric entry probe to Saturn in order to determine the gas giant’s composition and structure at depths greater than previous missions. Vehicle and trajectory parameters were chosen.

  20. Modulated microwave microscopy and probes used therewith

    SciTech Connect

    Lai, Keji; Kelly, Michael; Shen, Zhi-Xun

    2012-09-11

    A microwave microscope including a probe tip electrode vertically positionable over a sample and projecting downwardly from the end of a cantilever. A transmission line connecting the tip electrode to the electronic control system extends along the cantilever and is separated from a ground plane at the bottom of the cantilever by a dielectric layer. The probe tip may be vertically tapped near or at the sample surface at a low frequency and the microwave signal reflected from the tip/sample interaction is demodulated at the low frequency. Alternatively, a low-frequency electrical signal is also a non-linear electrical element associated with the probe tip to non-linearly interact with the applied microwave signal and the reflected non-linear microwave signal is detected at the low frequency. The non-linear element may be semiconductor junction formed near the apex of the probe tip or be an FET formed at the base of a semiconducting tip.