Science.gov

Sample records for reactive functionality synthesis

  1. Synthesis, Characterization, and Reactivity of Functionalized Trinuclear Iron–Sulfur Clusters – A New Class of Bioinspired Hydrogenase Models

    PubMed Central

    Kaiser, Manuel; Knör, Günther

    2015-01-01

    The air- and moisture-stable iron–sulfur carbonyl clusters Fe3S2(CO)7(dppm) (1) and Fe3S2(CO)7(dppf) (2) carrying the bisphosphine ligands bis(diphenylphosphanyl)methane (dppm) and 1,1′-bis(diphenylphosphanyl)ferrocene (dppf) were prepared and fully characterized. Two alternative synthetic routes based on different thionation reactions of triiron dodecacarbonyl were tested. The molecular structures of the methylene-bridged compound 1 and the ferrocene-functionalized derivative 2 were determined by single-crystal X-ray diffraction. The catalytic reactivity of the trinuclear iron–sulfur cluster core for proton reduction in solution at low overpotential was demonstrated. These deeply colored bisphosphine-bridged sulfur-capped iron carbonyl systems are discussed as promising candidates for the development of new bioinspired model compounds of iron-based hydrogenases. PMID:26512211

  2. Functional Reactive Polymer Electrospun Matrix.

    PubMed

    Agarwal, Vipul; Ho, Dominic; Ho, Diwei; Galabura, Yuriy; Yasin, Faizah; Gong, Peijun; Ye, Weike; Singh, Ruhani; Munshi, Alaa; Saunders, Martin; Woodward, Robert C; St Pierre, Timothy; Wood, Fiona M; Fear, Mark; Lorenser, Dirk; Sampson, David D; Zdyrko, Bogdan; Luzinov, Igor; Smith, Nicole M; Iyer, K Swaminathan

    2016-02-01

    Synthetic multifunctional electrospun composites are a new class of hybrid materials with many potential applications. However, the lack of an efficient, reactive large-area substrate has been one of the major limitations in the development of these materials as advanced functional platforms. Herein, we demonstrate the utility of electrospun poly(glycidyl methacrylate) films as a highly versatile platform for the development of functional nanostructured materials anchored to a surface. The utility of this platform as a reactive substrate is demonstrated by grafting poly(N-isopropylacrylamide) to incorporate stimuli-responsive properties. Additionally, we demonstrate that functional nanocomposites can be fabricated using this platform with properties for sensing, fluorescence imaging, and magneto-responsiveness. PMID:26780245

  3. Synthesis, Aqueous Reactivity, and Biological Evaluation of Carboxylic Acid Ester-Functionalized Platinum–Acridine Hybrid Anticancer Agents

    PubMed Central

    Graham, Leigh A.; Suryadi, Jimmy; West, Tiffany K.; Kucera, Gregory L.; Bierbach, Ulrich

    2012-01-01

    The synthesis of platinum–acridine hybrid agents containing carboxylic acid ester groups is described. The most active derivatives and the unmodified parent compounds showed up to 6-fold higher activity in ovarian cancer (OVCAR-3) and breast cancer (MCF-7, MDA-MB-23) cell lines than cisplatin. Inhibition of cell proliferation at nanomolar concentrations was observed in pancreatic (PANC-1) and non-small cell lung cancer cells (NSCLC, NCI-H460) of 80- and 150-fold, respectively. Introduction of the ester groups did not affect the cytotoxic properties of the hybrids, which form the same monofunctional–intercalative DNA adducts as the parent compounds, as demonstrated in a plasmid unwinding assay. In-line high-performance liquid chromatography and electrospray mass spectrometry (LC-ESMS) shows that the ester moieties undergo platinum-mediated hydrolysis in a chloride concentration-dependent manner to form carboxylate chelates. Potential applications of the chloride-sensitive ester hydrolysis as a self-immolative release mechanism for tumor-selective delivery of platinum–acridines are discussed. PMID:22871158

  4. Synthesis and Reactivity of Triazaphenanthrenes.

    PubMed

    Fernandez, Sarah; Ganiek, Maximilian A; Karpacheva, Mariia; Hanusch, Fabian C; Reuter, Stephan; Bein, Thomas; Auras, Florian; Knochel, Paul

    2016-07-01

    Pyridonaphthyridines (triazaphenanthrenes) were prepared in 4 steps and in 13-52% overall yield using Negishi cross-couplings between iodopicolines and 2-chloro-pyridylzinc derivatives. After chlorination, Gabriel amination and spontaneous ring-closure, the final aromatization leading to the triazaphenanthrenes was achieved with chloranil. This heterocyclic scaffold underwent a nucleophilic addition at position 6 leading to further functionalized pyridonaphthyridines. The influence of these chemical modifications on the optical properties was studied by steady-state and time-resolved optical spectroscopy. While the thiophene-substituted heterocycles exhibited the most extended absorption, the phenyl- and furan-substituted compounds showed a stronger photoluminescence, reaching above 20% quantum yield and lifetimes of several nanoseconds. PMID:27321707

  5. Direct Laser Synthesis of Functional Coatings

    SciTech Connect

    P. Schaaf; Michelle D. Shinn; E. Carpene; J. Kaspar

    2005-06-01

    The direct laser synthesis of functional coatings employs the irradiation of materials with short intensive laser pulses in a reactive atmosphere. The material is heated and plasma is ignited in the reactive atmosphere. This leads to an intensive interaction of the material with the reactive species and a coating is directly formed on the materials surface. By that functional coatings can be easily produced a fast way on steel, aluminium, and silicon by irradiation in nitrogen, methane, or even hydrogen. The influence of the processing parameters to the properties of the functional coatings will be presented for titanium nitride coating produced on titanium with the free electron laser.

  6. Synthesis and analysis of reactive nanocomposites prepared arrested reactive milling

    NASA Astrophysics Data System (ADS)

    Umbrajkar, Swati M.

    Different types of reactive nanocomposites have been synthesized by Arrested Reactive Milling (ARM). The technical approach was to increase the interface area available for heterogeneous reaction between solid fuel and oxidizer components. Using aluminum as the main fuel and different metal oxides as oxidizers, highly energetic reactive nanocomposites with different degrees of structural refinement were synthesized. Specifically, stoichiometric Al-MoO 3, Al-CuO, and Al-NaNO3 material systems were studied in detail. The correlation of heterogeneous exothermic reactions occurring in the nanocomposite powders upon their heating at low rates and ignition events observed for the same powders heated rapidly was of interest. Differential scanning calorimetry (DSC), X-ray diffraction (XRD) and heated filament ignition experiments were used to quantify the ignition kinetics and related reaction mechanisms. Fuel rich Al-MoO3 nanocomposites were also synthesized using ARM. Optimum composition and milling parameters were identified for fuel-rich compositions. Analysis of exothermic reactions in Al-MoO3 system showed that kinetics of such reactions could not be determined by isoconversion processing and respective activation energies could not be meaningfully found as functions of reaction progress. Instead, detailed DSC measurements at different heating rates are required to enable one in developing a multi-step kinetic model to describe such reactions adequately.

  7. Language reactivity and work functioning in schizophrenia.

    PubMed

    St-Hilaire, Annie; Docherty, Nancy M

    2005-06-15

    Some studies have found that the speech of certain schizophrenia patients becomes more disordered in stressful laboratory situations. It is unknown, however, whether affective reactivity of speech is associated with stress responsiveness of symptoms in the real world. This study examines whether language-reactive patients report more stress-related impairments in work functioning than language-nonreactive patients. Forty-six patients provided speech samples and completed a work history interview. It was found that the language-reactive patients were more likely than the language-nonreactive patients to endorse items pertaining to social anxiety and difficulty relating to others as reasons for their work difficulties. This suggests that language-reactive patients are more sensitive to social stressors than language-nonreactive patients. PMID:15885516

  8. Design and synthesis of reactive separation systems

    SciTech Connect

    Doherty, M.F.

    1992-01-01

    During the last decade there has been a rapid upturn in interest in reactive distillation. The chemical process industry recognizes the favorable economics of carrying out reaction simultaneously with distillation for certain classes of reacting systems, and many new processes have been built based on this technology. Interest is also increasing by academics and software vendors. Systematic design methods for reactive distillation systems have only recently begun to emerge. In this report we survey the available design techniques and point out the contributions made by our group at the University of Massachusetts.

  9. Reactivity of functionalized indoles with rare-earth metal amides. Synthesis, characterization and catalytic activity of rare-earth metal complexes incorporating indolyl ligands.

    PubMed

    Feng, Zhijun; Wei, Yun; Zhou, Shuangliu; Zhang, Guangchao; Zhu, Xiancui; Guo, Liping; Wang, Shaowu; Mu, Xiaolong

    2015-12-21

    The reactivity of several functionalized indoles 2-(RNHCH2)C8H5NH (R = C6H5 (1), (t)Bu (2), 2,6-(i)Pr2C6H3 (3)) with rare-earth metal amides is described. Reactions of 1 or 2 with [(Me3Si)2N]3RE(μ-Cl)Li(THF)3 (RE = Eu, Yb) respectively produced the europium complexes [2-(C6H5N[double bond, length as m-dash]CH)C8H5N]2Eu[N(SiMe3)2] (4) and [2-((t)BuN[double bond, length as m-dash]CH)C8H5N]Eu[N(SiMe3)2]2 (5), and the ytterbium complex [2-((t)BuN[double bond, length as m-dash]CH)C8H5N]2Yb[N(SiMe3)2] (6), containing bidentate anionic indolyl ligands via dehydrogenation of the amine to the imine. In contrast, reactions of the more sterically bulky indole 3 with [(Me3Si)2N]3RE(μ-Cl)Li(THF)3 afforded complexes [2-(2,6-(i)Pr2C6H3NCH2)C8H5N]RE[N(SiMe3)2](THF)2 (RE = Yb (7), Y (8), Er (9), Dy (10)) with the deprotonated indolyl ligand. While reactions of 3 with yttrium and ytterbium amides in refluxing toluene respectively gave the complexes [2-(2,6-(i)Pr2C6H3N[double bond, length as m-dash]CH)C8H5N]3Y (11) and [2-(2,6-(i)Pr2C6H3N[double bond, length as m-dash]CH)C8H5N]2Yb(II)(THF)2 (12), along with transformation of the amino group to the imino group, and also with a reduction of Yb(3+) to Yb(2+) in the formation of 12. Reactions of 3 with samarium and neodymium amides provided novel dinuclear complexes {[μ-η(5):η(1):η(1)-2-(2,6-(i)Pr2C6H3NCH2)C8H5N]RE[N(SiMe3)2]}2 (RE = Sm (13), Nd (14)) having indolyl ligands in μ-η(5):η(1):η(1) hapticities. The pathway for the transformation of the amino group to the imino group is proposed on the basis of the experimental results. The new complexes displayed excellent activity in the intramolecular hydroamination of aminoalkenes. PMID:26548974

  10. Reactive Functionalized Membranes for Polychlorinated Biphenyl Degradation

    PubMed Central

    Gui, Minghui; Ormsbee, Lindell E.; Bhattacharyya, Dibakar

    2014-01-01

    Membranes have been widely used in water remediation (e.g. desalination and heavy metal removal) because of the ability to control membrane pore size and surface charge. The incorporation of nanomaterials into the membranes provides added benefits through increased reactivity with different functionality. In this study, we report the dechlorination of 2-chlorobiphenyl in the aqueous phase by a reactive membrane system. Fe/Pd bimetallic nanoparticles (NPs) were synthesized (in-situ) within polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) membranes for degradation of polychlorinated biphenyls (PCBs). Biphenyl formed in the reduction was further oxidized into hydroxylated biphenyls and benzoic acid by an iron-catalyzed hydroxyl radical (OH•) reaction. The formation of magnetite on Fe surface was observed. This combined pathway (reductive/oxidative) could reduce the toxicity of PCBs effectively while eliminating the formation of chlorinated degradation byproducts. The successful manufacturing of full-scale functionalized membranes demonstrates the possibility of applying reactive membranes in practical water treatment. PMID:24954974

  11. The 2-Arsaethynolate Anion: Synthesis and Reactivity Towards Heteroallenes.

    PubMed

    Hinz, Alexander; Goicoechea, Jose M

    2016-07-18

    The synthesis and isolation of the 2-arsaethynolate anion, AsCO(-) , and its subsequent reactivity towards heteroallenes is reported. Reactions with ketenes and carbodiimides afford four-membered anionic heterocycles in formal [2+2] cycloaddition reactions. By contrast, reaction with an isocyanate yielded a 1,4,2-diazaarsolidine-3,5-dionide anion and the unprecedented cluster anions As10 (2-) and As12 (4-) . These preliminary reactivity studies hint at the enormous potential synthetic utility of this novel anion, which may be employed as an arsenide (As(-) ) source. PMID:27093942

  12. Immune Function and Reactivation of Latent Viruses

    NASA Technical Reports Server (NTRS)

    Butel, Janet S.

    1999-01-01

    A major concern associated with long-duration space flight is the possibility of infectious diseases posing an unacceptable medical risk to crew members. One major hypothesis addressed in this project is that space flight will cause alterations in the immune system that will allow latent viruses that are endogenous in the human population to reactivate and shed to higher levels than normal, which may affect the health of crew members. The second major hypothesis being examined is that the effects of space flight will alter the mucosal immune system, the first line of defense against many microbial infections, including herpesviruses, polyomaviruses, and gastroenteritis viruses, rendering crew members more susceptible to virus infections across the mucosa. We are focusing the virus studies on the human herpesviruses and polyomaviruses, important pathogens known to establish latent infections in most of the human population. Both primary infection and reactivation from latent infection with these groups of viruses (especially certain herpesviruses) can cause a variety of illnesses that result in morbidity and, occasionally, mortality. Both herpesviruses and polyomaviruses have been associated with human cancer, as well. Effective vaccines exist for only one of the eight known human herpesviruses and available antivirals are of limited use. Whereas normal individuals display minimal consequences from latent viral infections, events which alter immune function (such as immunosuppressive therapy following solid organ transplantation) are known to increase the risk of complications as a result of viral reactivations.

  13. Intramolecular Tetrylene Lewis Adducts: Synthesis and Reactivity.

    PubMed

    Schneider, Julia; Krebs, Kilian M; Freitag, Sarah; Eichele, Klaus; Schubert, Hartmut; Wesemann, Lars

    2016-07-01

    A series of benzyl(diphenylphosphino) and o-phenyl(diphenlyphosphino) substituted germylenes and plumbylenes were synthesized by nucleophilic substitution between the respective lithium reagent and tetrylene halide. The Lewis pairs were characterized by X-ray crystallography and NMR spectroscopy. The reactivity of the tetrylenes was investigated with respect to azide addition. In the germylene case, the germaniumimide was formed as the kinetically controlled product, which rearranges upon heating to give the phosphinimide. The stannylene and plumbylene derivatives react with adamantylazide to give the azide adducts. 1-Pentene reacts diastereoselectively with the phosphagermirane to give a cyclic addition product. Trimethysilylacetylene shows an addition with the benzylphosphino-substituted germylene and plumbylene to give the cycloheteropentene molecules. The addition product between phenylacetylene and the four membered Ge-P adduct shows after addition at room temperature a 1,4-phenylmigration to give a cyclic phosphine. Alkylnitrene insertion into a Ge-C bond of the alkyne addition product of the phosphagermirane was found in reaction with adamantylazide. PMID:27273819

  14. Function through synthesis-informed design.

    PubMed

    Wender, Paul A; Quiroz, Ryan V; Stevens, Matthew C

    2015-03-17

    In 1996, a snapshot of the field of synthesis was provided by many of its thought leaders in a Chemical Reviews thematic issue on "Frontiers in Organic Synthesis". This Accounts of Chemical Research thematic issue on "Synthesis, Design, and Molecular Function" is intended to provide further perspective now from well into the 21st century. Much has happened in the past few decades. The targets, methods, strategies, reagents, procedures, goals, funding, practices, and practitioners of synthesis have changed, some in dramatic ways as documented in impressive contributions to this issue. However, a constant for most synthesis studies continues to be the goal of achieving function with synthetic economy. Whether in the form of new catalysts, reagents, therapeutic leads, diagnostics, drug delivery systems, imaging agents, sensors, materials, energy generation and storage systems, bioremediation strategies, or molecules that challenge old theories or test new ones, the function of a target has been and continues to be a major and compelling justification for its synthesis. While the targets of synthesis have historically been heavily represented by natural products, increasingly design, often inspired by natural structures, is providing a new source of target structures exhibiting new or natural functions and new or natural synthetic challenges. Complementing isolation and screening approaches to new target identification, design enables one to create targets de novo with an emphasis on sought-after function and synthetic innovation with step-economy. Design provides choice. It allows one to determine how close a synthesis will come to the ideal synthesis and how close a structure will come to the ideal function. In this Account, we address studies in our laboratory on function-oriented synthesis (FOS), a strategy to achieve function by design and with synthetic economy. By starting with function rather than structure, FOS places an initial emphasis on target design

  15. Function through Synthesis-Informed Design

    PubMed Central

    2016-01-01

    Conspectus In 1996, a snapshot of the field of synthesis was provided by many of its thought leaders in a Chemical Reviews thematic issue on “Frontiers in Organic Synthesis”. This Accounts of Chemical Research thematic issue on “Synthesis, Design, and Molecular Function” is intended to provide further perspective now from well into the 21st century. Much has happened in the past few decades. The targets, methods, strategies, reagents, procedures, goals, funding, practices, and practitioners of synthesis have changed, some in dramatic ways as documented in impressive contributions to this issue. However, a constant for most synthesis studies continues to be the goal of achieving function with synthetic economy. Whether in the form of new catalysts, reagents, therapeutic leads, diagnostics, drug delivery systems, imaging agents, sensors, materials, energy generation and storage systems, bioremediation strategies, or molecules that challenge old theories or test new ones, the function of a target has been and continues to be a major and compelling justification for its synthesis. While the targets of synthesis have historically been heavily represented by natural products, increasingly design, often inspired by natural structures, is providing a new source of target structures exhibiting new or natural functions and new or natural synthetic challenges. Complementing isolation and screening approaches to new target identification, design enables one to create targets de novo with an emphasis on sought-after function and synthetic innovation with step-economy. Design provides choice. It allows one to determine how close a synthesis will come to the ideal synthesis and how close a structure will come to the ideal function. In this Account, we address studies in our laboratory on function-oriented synthesis (FOS), a strategy to achieve function by design and with synthetic economy. By starting with function rather than structure, FOS places an initial emphasis on

  16. Synthesis of Reactive Polymers for Acrolein Capture Using AGET ATRP.

    PubMed

    Beringer, Laura T; Li, Shaohua; Gilmore, Gary; Lister, John; Averick, Saadyah

    2015-10-01

    Acrolein is a toxic metabolite of the anticancer agent cyclophosphamide (CP). Current strategies to mitigate acrolein toxicity are insufficient, and in this brief article, we report the synthesis of well-defined low molecular weight block copolymers using activators generated by electron transfer atom transfer radical polymerization (AGET ATRP) capable of reacting with the cytotoxic small molecule acrolein. Acrolein reactivity was introduced into the block copolymers via incorporation of either (a) aminooxy or (b) sulfhydryl groups. The cytoprotective effect of the polymers was compared to sodium 2-sulfanylethanesulfonate (mesna) the current gold standard for protection from CP urotoxicity, and we found that the polymers bearing sulfhydryl moieties demonstrated superior cytoprotective activity. PMID:26355438

  17. Reactive Oxygen Species and Neutrophil Function.

    PubMed

    Winterbourn, Christine C; Kettle, Anthony J; Hampton, Mark B

    2016-06-01

    Neutrophils are essential for killing bacteria and other microorganisms, and they also have a significant role in regulating the inflammatory response. Stimulated neutrophils activate their NADPH oxidase (NOX2) to generate large amounts of superoxide, which acts as a precursor of hydrogen peroxide and other reactive oxygen species that are generated by their heme enzyme myeloperoxidase. When neutrophils engulf bacteria they enclose them in small vesicles (phagosomes) into which superoxide is released by activated NOX2 on the internalized neutrophil membrane. The superoxide dismutates to hydrogen peroxide, which is used by myeloperoxidase to generate other oxidants, including the highly microbicidal species hypochlorous acid. NOX activation occurs at other sites in the cell, where it is considered to have a regulatory function. Neutrophils also release oxidants, which can modify extracellular targets and affect the function of neighboring cells. We discuss the identity and chemical properties of the specific oxidants produced by neutrophils in different situations, and what is known about oxidative mechanisms of microbial killing, inflammatory tissue damage, and signaling. PMID:27050287

  18. Carbasugars: Synthesis and Functions

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yoshiyuki

    It is well recognized that glycosidase inhibitors are not only tools to elucidate the mechanism of a living system manipulated by glycoconjugates but also potential clinical drugs and insecticides by inducing the failure of glycoconjugates to perform their function. In this chapter, the syntheses and functions of natural glycosidase inhibitors (cyclophelitol , allosamidine , and trehazoilin ), which possess highly oxygenated and functionalized cyclohexanes or cyclopentanes in their structures and are defined as carbasugars , and the structure and activity relationships (SAR) of their derivatives are described. Also, recently much attention has been focused on neuraminidase inhibitors as anti-influenza drugs since relenza , which was derived from sialic acid, and also, tamiflu , which is the artificial carbasugar designed as a transition state analogue in the hydrolysis pathway of substrates by neuraminidase, were launched in the market. Herein, the medicinal chemistry efforts to discover tamiflu and some efficient syntheses applicable to process chemistry are described. Finally, useful synthetic methodologies for carbasugar formation from sugars are also introduced in this chapter.

  19. Synthesis and processing of composites by reactive metal penetration

    SciTech Connect

    Loehman, R.E.; Ewsuk, K.G.; Tomsia, A.P.; Fahrenholtz, W.G.

    1996-07-01

    Ceramic-metal composites are being developed as engineering materials because of their high stiffness-to-weight ratios, good fracture toughness, and because their electrical and thermal properties can be varied through control of their compositions and microstructures. Wider use of ceramic-metal composites requires improvements in synthesis and processing so that high-performance parts can be produced more economically. Over the past three years reactive metal penetration has been shown to be a promising technique for making ceramic and metal-matrix composites to near-net-shape with control of both composition and microstructure. It appears that reactive metal penetration could be an economical process for manufacturing many of the advanced ceramic composites that are needed for light-weight structural and wear applications for transportation and energy conversion devices. Near-net-shape fabrication of parts has the additional advantage that costly and energy intensive grinding and machining operations are significantly reduced, and the waste generated from such finishing operations is minimized. The goals of this research and development program are: (1) to identify compositions favorable for making composites by reactive metal penetration; (2) to understand the mechanism(s) by which these composites are formed; and (3) to control and optimize the process so that composites and composite coatings can be made economically.

  20. Concise Synthesis of Functionalized Benzocyclobutenones

    PubMed Central

    Chen, Peng-hao; Savage, Nikolas A.; Dong, Guangbin

    2014-01-01

    A concise approach to access functionalized benzocyclobutenones from 3-halophenol derivatives is described. This modified synthesis employs a [2+2] cycloaddition between benzynes generated from dehydrohalogenation of aryl halides using LiTMP and acetaldehyde enolate generated from n-BuLi and THF, followed by oxidation of the benzocyclobutenol intermediates to provide benzocyclobutenones. The [2+2] reaction can be run on a 10-gram scale with an increased yield. A number of functional groups including alkenes and alkynes are tolerated. Coupling of benzynes with ketene silyl acetals to give 8-substituted benzocyclobutenones is also demonstrated. PMID:24926108

  1. Reactive oxygen species and boar sperm function.

    PubMed

    Awda, Basim J; Mackenzie-Bell, Meghan; Buhr, Mary M

    2009-09-01

    Boar spermatozoa are very susceptible to reactive oxygen species (ROS), but ROS involvement in damage and/or capacitation is unclear. The impact of exposing fresh boar spermatozoa to an ROS-generating system (xanthine/xanthine oxidase; XA/XO) on sperm ROS content, membrane lipid peroxidation, phospholipase (PL) A activity, and motility, viability, and capacitation was contrasted to ROS content and sperm function after cryopreservation. Exposing boar sperm (n = 4-5 ejaculates) to the ROS-generating system for 30 min rapidly increased hydrogen peroxide (H2O2) and lipid peroxidation in all sperm, increased PLA in dead sperm, and did not affect intracellular O2- (flow cytometry of sperm labeled with 2',7'-dichlorodihydrofluorscein diacetate, BODIPY 581/591 C11, bis-BODIPY-FL C11, hydroethidine, respectively; counterstained for viability). Sperm viability remained high, but sperm became immotile. Cryopreservation decreased sperm motility, viability, and intracellular O2- significantly, but did not affect H2O2. As expected, more sperm incubated in capacitating media than Beltsville thawing solution buffer underwent acrosome reactions and protein tyrosine phosphorylation (four proteins, 58-174 kDa); which proteins were tyrosine phosphorylated was pH dependent. Pre-exposing sperm to the ROS-generating system increased the percentage of sperm that underwent acrosome reactions after incubation in capacitating conditions (P < 0.025), and decreased capacitation-dependent increases in two tyrosine-phosphorylated proteins (P < or = 0.035). In summary, H2O2 is the major free radical mediating direct ROS effects, but not cryopreservation changes, on boar sperm. Boar sperm motility, acrosome integrity, and lipid peroxidation are more sensitive indicators of oxidative stress than viability and PLA activity. ROS may stimulate the acrosome reaction in boar sperm through membrane lipid peroxidation and PLA activation. PMID:19357363

  2. Quantitative reactivity profiling predicts functional cysteines in proteomes.

    PubMed

    Weerapana, Eranthie; Wang, Chu; Simon, Gabriel M; Richter, Florian; Khare, Sagar; Dillon, Myles B D; Bachovchin, Daniel A; Mowen, Kerri; Baker, David; Cravatt, Benjamin F

    2010-12-01

    Cysteine is the most intrinsically nucleophilic amino acid in proteins, where its reactivity is tuned to perform diverse biochemical functions. The absence of a consensus sequence that defines functional cysteines in proteins has hindered their discovery and characterization. Here we describe a proteomics method to profile quantitatively the intrinsic reactivity of cysteine residues en masse directly in native biological systems. Hyper-reactivity was a rare feature among cysteines and it was found to specify a wide range of activities, including nucleophilic and reductive catalysis and sites of oxidative modification. Hyper-reactive cysteines were identified in several proteins of uncharacterized function, including a residue conserved across eukaryotic phylogeny that we show is required for yeast viability and is involved in iron-sulphur protein biogenesis. We also demonstrate that quantitative reactivity profiling can form the basis for screening and functional assignment of cysteines in computationally designed proteins, where it discriminated catalytically active from inactive cysteine hydrolase designs. PMID:21085121

  3. Biotechnological synthesis of functional nanomaterials.

    PubMed

    Lloyd, Jonathan R; Byrne, James M; Coker, Victoria S

    2011-08-01

    Biological systems, especially those using microorganisms, have the potential to offer cheap, scalable and highly tunable green synthetic routes for the production of the latest generation of nanomaterials. Recent advances in the biotechnological synthesis of functional nano-scale materials are described. These nanomaterials range from catalysts to novel inorganic antimicrobials, nanomagnets, remediation agents and quantum dots for electronic and optical devices. Where possible, the roles of key biological macromolecules in controlling production of the nanomaterials are highlighted, and also technological limitations that must be addressed for widespread implementation are discussed. PMID:21742483

  4. Synthesis of cubic ruthenium nitride by reactive pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Moreno-Armenta, M. G.; Diaz, J.; Martinez-Ruiz, A.; Soto, G.

    2007-10-01

    The recent synthesis of platinum nitride opens the possibility of novel platinum-group metal nitrides to exist. In this work we report the synthesis of ruthenium nitride by reactive pulsed laser ablation. Several plausible structures have been evaluated by ab initio calculations using the full potential linearized augmented plane wave method, in order to investigate the ruthenium nitride structural and electronic properties. In fact, the predicted symmetry of stoichiometric RuN matches the experimental diffraction data. RuN crystallizes with NaCl-type structure at room temperature with cell-parameter somewhat larger than predicted by calculations. However we found a marginal chemical strength in these nitrides. The material is destroyed by mild acid and basic solutions. Under annealing RuN decomposes abruptly for temperatures beyond 100 °C. Since the thermal stability correlates directly with the mechanical properties our finding cast doubts than the latter transition metal nitrides can be ultra-hard materials at ambient conditions.

  5. Modulating executive functioning: trait motivational reactivity and resting HRV.

    PubMed

    Bailey, Rachel L; Potter, Robert F; Lang, Annie; Pisoni, David B

    2015-01-01

    This study assessed relationships among individual differences in trait motivational reactivity, executive functioning, and neurovisceral regulation of emotion and attention indexed via resting heart rate variability (rHRV). We derived predictions regarding these relationships according to neurovisceral neural network theory. Because lower rHRV has been suggested as an endophenotype of less adaptive behaviour, low rHRV individuals were predicted to have high aversive and low appetitive trait motivational reactivity, while high rHRV individuals were predicted to have high reactivity in both appetitive and aversive motivational systems. These predictions were supported. Motivational reactivity also was related to executive functioning deficits, although the pattern of results was not in the predicted direction. Results suggest that trait motivational reactivity scores are related to visceral responses proposed in the neurovisceral integration circuit as well as in the modulation of these responses by higher-order cognitive control systems related to executive function. PMID:24606341

  6. Unified Synthesis of 10-Oxygenated Lycopodium Alkaloids: Impact of C10-Stereochemistry on Reactivity.

    PubMed

    Saha, Mrinmoy; Li, Xin; Collett, Nathan D; Carter, Rich G

    2016-07-15

    The pronounced impact of the C10 stereochemistry on the successful construction of a polycyclic Lycopodium alkaloid scaffold has been explored. A wide range of reaction conditions and functionality were investigated to control a keto sulfone Michael addition to construct the C7-C12 linkage. An unexpected, overriding impact of the C10 stereochemistry in stereoselectivity and reaction rate in the Michael addition was observed. Furthermore, divergent reactivity of a conformationally accelerated, intramolecular Mannich cyclization based on the C10 stereochemistry was discovered. The successful execution of this synthetic route resulted in the total synthesis of all three known 10-oxygenated Lycopodium alkaloids: 10-hydroxylycopodine, paniculine, and deacetylpaniculine. PMID:27353498

  7. Negishi Cross-Coupling Is Compatible with a Reactive B–Cl Bond: Development of a Versatile Late-Stage Functionalization of 1,2-Azaborines and Its Application to the Synthesis of New BN Isosteres of Naphthalene and Indenyl

    PubMed Central

    Brown, Alec N.; Li, Bo; Liu, Shih-Yuan

    2016-01-01

    The compatibility of the Negishi cross-coupling reaction with the versatile B–Cl functionality has been demonstrated in the context of late-stage functionalization of 1,2-azaborines. Alkyl-, aryl-, and alkenylzinc reagents have been utilized for the functionalization of the triply orthogonal precursor 3-bromo-1-(tert-butyldimethylsilyl)-2-chloro-1,2-dihydro-1,2-azaborine (2) to furnish new 2,3-substituted monocyclic 1,2-azaborines. This methodology has enabled the synthesis of previously elusive BN-naphthalene and BN-indenyl structures from a common intermediate. PMID:26148959

  8. Tailored thiol-functional polyamides: synthesis and functionalization.

    PubMed

    Mommer, Stefan; Keul, Helmut; Möller, Martin

    2014-12-01

    In this article, a synthetic concept for the preparation of polyamides with functional side groups is described. First, the synthesis of a bis(thiolactone) monomer is shown in a concise three-step route from itaconic acid and DL-homocysteine thiolactone. The reactivity of the resulting bis(thiolactone) toward hexyl amine is examined. Next, the bis(thiolactone) is reacted as A,A-type monomer with different B,B-type comonomers (1,12-diaminododecane and 1,3-bis(aminopropyl)tetramethyldisiloxane). Ring opening of the thiolactones by the diamines leads to polyamides with pendant thiol groups. Using two diamines in different ratios, the properties of the resulting polyamides are tuned (thermal properties are determined) and different molecular weights are acquired. Subsequently, the thiol groups are reacted with methyl acrylate via Michael addition to functionalize the polyamides. Functionalization of thiol-functional polyamides using poly(ethylene glycol) monomethyl ether (mPEG) acrylates (Mn = 480 and 1700 g mol(-1) ) results in water-soluble amphiphilic poly-amides with molecular weights higher than 10,000 g mol(-1) . PMID:25257791

  9. Dimerization of functional pyrroloindolizines for the synthesis of complex myrmicarin alkaloids

    PubMed Central

    Ondrus, Alison E.; Kaniskan, H. Ümit; Movassaghi, Mohammad

    2010-01-01

    The union of functionalized pyrroloindolizines for the synthesis of heterodimeric products relevant to myrmicarin alkaloids is described. Design and synthesis of tricyclic substrates and new methods for their union enable the investigation of late-stage cyclopentannulation strategies. The rapid assembly of dimeric structures using unique modes of pyrroloindolizine reactivity presents a concise approach to the dimeric myrmicarins and relevant derivatives. PMID:20798891

  10. Synthesis, Characterization and Reactivity of a Hexane-Soluble Silver Salt

    ERIC Educational Resources Information Center

    Stockland, Robert A. Jr.; Wilson, Brian D.; Goodman, Caton C.; Giese, Barret J.; Shrimp, Frederick L., II

    2007-01-01

    The connectivity of a hexane-soluble silver salt is established by using NMR spectroscopy to describe the synthesis, characterization and reactivity of the salt. The results found hexane-soluble silver to be an effective transfer agent.

  11. Glutathione (GSH) and the GSH synthesis gene Gclm modulate vascular reactivity in mice

    PubMed Central

    Weldy, Chad S.; Luttrell, Ian P.; White, Collin C.; Morgan-Stevenson, Vicki; Bammler, Theo K.; Beyer, Richard P.; Afsharinejad, Zahra; Kim, Francis; Chitaley, Kanchan; Kavanagh, Terrance J.

    2012-01-01

    Oxidative stress has been implicated in the development of vascular disease and in the promotion of endothelial dysfunction via the reduction in bioavailable nitric oxide (NO•). Glutathione (GSH) is a tripeptide thiol antioxidant that is utilized by glutathione peroxidase (GPx) to scavenge reactive oxygen species (ROS) such as hydrogen peroxide and phospholipid hydroperoxides. Relatively frequent single nucleotide polymorphisms (SNPs) within the 5’ promoters of the GSH synthesis genes GCLC and GCLM are associated with impaired vasomotor function as measured by decreased acetylcholine-stimulated coronary artery dilation and with increased risk of myocardial infarction. Although the influence of genetic knockdown of GPx on vascular function has been investigated in mice, no work to date has been published on the role of genetic knock down of GSH synthesis genes on vascular reactivity. We therefore investigated the effects of targeted disruption of Gclm in mice and the subsequent depletion of GSH on vascular reactivity, NO• production, aortic nitrotyrosine protein modification, and whole genome transcriptional responses as measured by DNA microarray. Gclm−/+ and Gclm−/− mice had 72% and 12%, respectively, of WT aortic GSH content. Gclm−/+ mice had a significant impairment in acetylcholine (ACh)-induced relaxation in aortic rings as well as increased aortic nitrotyrosine protein modification. Surprisingly, Gclm−/− aortas showed enhanced relaxation compared to Gclm−/+ aortas, as well as increased NO• production. Although aortic rings from Gclm−/− mice had enhanced ACh-relaxation, they have a significantly increased sensitivity to phenylephrine (PE)-induced contraction. Alternatively, the PE response of Gclm−/+ aortas was nearly identical to that of their WT littermates. In order to examine the role of NO• or other potential endothelium derived factors in differentially regulating vasomotor activity, we incubated aortic rings with the NO

  12. Perfluorophenyl Azides: New Applications in Surface Functionalization and Nanomaterial Synthesis

    PubMed Central

    Liu, Li-Hong; Yan, Mingdi

    2010-01-01

    Conspectus A major challenge in materials science is the ongoing search for coupling agents that are readily synthesized, capable of versatile chemistry, able to easily functionalize materials and surfaces, and efficient in covalently linking organic and inorganic entities. A decade ago, we began a research program investigating perfluorophenylazides (PFPAs) as the coupling agents in surface functionalization and nanomaterial synthesis. The p-substituted PFPAs are attractive heterobifunctional coupling agents because of their two distinct and synthetically distinguishable reactive centers: (i) the fluorinated phenylazide, which is capable of forming stable covalent adducts, and (ii) the functional group R, which can be tailored through synthesis. Two approaches have been undertaken for material synthesis and surface functionalization. The first method involves synthesizing PFPA bearing the first molecule or material with a functional linker R, and then attaching the resulting PFPA to the second material by activating the azido group. In the second approach, the material surface is first functionalized with PFPA via functional center R, and coupling of the second molecule or material is achieved with the surface azido groups. In this Account, we review the design and protocols of the two approaches, providing examples in which PFPA derivatives were successfully used in material surface functionalization, ligand conjugation, and the synthesis of hybrid nanomaterials. The methods developed have proved to be general and versatile, and they are applicable to a wide range of materials (especially those that lack reactive functional groups or are difficult to derivatize) and to various substrates of polymers, oxides, carbon materials, and metal films. The coupling chemistry can be initiated by light, heat, and electrons. Patterned structures can be generated by selectively activating the areas of interest. Furthermore, the process is easy to perform, and light activation

  13. Synthesis, characterization, and reactivity of pentamethylcyclopentadienyl complexes of divalent cobalt and nickel

    SciTech Connect

    Smith, M.E.

    1993-10-01

    The thesis is divided into the following 4 chapters: synthesis, characterization, and reactivity of trinuclear pentamethylcyclopentadienyl cobalt and nickel clusters with triply-bridging methylidyne groups; chemical and physical properties of pentamethylcyclopentadienyl acetylacetonate complexes of Co(II) and Ni(II); synthesis, characterization, and reactivity of pentamethylcyclopentadienyl halide complexes of Co and Ni; and crystallographic studies of distortions in metallocenes with C{sub 5}-symmetrical cyclopentadienyl rings.

  14. Quantitative reactivity profiling predicts functional cysteines in proteomes

    PubMed Central

    Weerapana, Eranthie; Wang, Chu; Simon, Gabriel M.; Richter, Florian; Khare, Sagar; Dillon, Myles B.D.; Bachovchin, Daniel A.; Mowen, Kerri; Baker, David; Cravatt, Benjamin F.

    2010-01-01

    Cysteine is the most intrinsically nucleophilic amino acid in proteins, where its reactivity is tuned to perform diverse biochemical functions. The absence of a consensus sequence that defines functional cysteines in proteins has hindered their discovery and characterization. Here, we describe a proteomics method to quantitatively profile the intrinsic reactivity of cysteine residues en masse directly in native biological systems. Hyperreactivity was a rare feature among cysteines and found to specify a wide range of activities, including nucleophilic and reductive catalysis and sites of oxidative modification. Hyperreactive cysteines were identified in several proteins of uncharacterized function, including a residue conserved across eukaryotic phylogeny that we show is required for yeast viability and involved in iron-sulfur protein biogenesis. Finally, we demonstrate that quantitative reactivity profiling can also form the basis for screening and functional assignment of cysteines in computationally designed proteins, where it discriminated catalytically active from inactive cysteine hydrolase designs. PMID:21085121

  15. Meteorin is upregulated in reactive astrocytes and functions as a negative feedback effector in reactive gliosis.

    PubMed

    Lee, Hye Shin; Lee, Soon-Hee; Cha, Jong-Ho; Seo, Ji Hae; Ahn, Bum Ju; Kim, Kyu-Won

    2015-08-01

    Reactive gliosis is a glial response to a wide range of central nervous system insults, which results in cellular and molecular changes to resting glial cells. Despite its fundamental effect on neuropathologies, the identification and characterization of the molecular mechanisms underlying this process remain to be fully elucidated. The aim of the present study was to analyze the expression profile and functions of the astrocytic neurotrophic factor, meteorin, in the progression of reactive gliosis. A mouse model of photothrombotic ischemia, and a primary astrocyte culture were used in the present study. Reverse transcription quantitative polymerase chain reaction, western blotting and immunofluorescence staining were performed to examine the expression levels of meteorin and reactive gliosis markers. Increased expression levels of meteorin were observed in reactive astrocytes in a photothrombotic ischemia mouse model, as well as in cultured astrocytes, which were stimulated by transforming growth factor-β1. Exogenous treatment of the astrocytes with meteorin did not induce janus kinase-signal transducer and activator of transcription 3 signaling, however, silencing the expression of meteorin in the astrocytes resulted in an upregulation of reactive astrocyte markers, including glial fibrillary acidic protein and S100β, indicating that endogenous meteorin is required for the maintenance of astrocytic homeostasis. These results suggested a novel role for meteorin as a negative feedback effector in reactive gliosis. PMID:25873382

  16. Meteorin is upregulated in reactive astrocytes and functions as a negative feedback effector in reactive gliosis

    PubMed Central

    LEE, HYE SHIN; LEE, SOON-HEE; CHA, JONG-HO; SEO, JI HAE; AHN, BUM JU; KIM, KYU-WON

    2015-01-01

    Reactive gliosis is a glial response to a wide range of central nervous system insults, which results in cellular and molecular changes to resting glial cells. Despite its fundamental effect on neuropathologies, the identification and characterization of the molecular mechanisms underlying this process remain to be fully elucidated. The aim of the present study was to analyze the expression profile and functions of the astrocytic neurotrophic factor, meteorin, in the progression of reactive gliosis. A mouse model of photothrombotic ischemia, and a primary astrocyte culture were used in the present study. Reverse transcription quantitative polymerase chain reaction, western blotting and immunofluorescence staining were performed to examine the expression levels of meteorin and reactive gliosis markers. Increased expression levels of meteorin were observed in reactive astrocytes in a photothrombotic ischemia mouse model, as well as in cultured astrocytes, which were stimulated by transforming growth factor-β1. Exogenous treatment of the astrocytes with meteorin did not induce janus kinase-signal transducer and activator of transcription 3 signaling, however, silencing the expression of meteorin in the astrocytes resulted in an upregulation of reactive astrocyte markers, including glial fibrillary acidic protein and S100β, indicating that endogenous meteorin is required for the maintenance of astrocytic homeostasis. These results suggested a novel role for meteorin as a negative feedback effector in reactive gliosis. PMID:25873382

  17. Anomeric Reactivity-Based One-Pot Synthesis of Heparin-Like Oligosaccharides

    PubMed Central

    Polat, Tülay

    2008-01-01

    A highly efficient one-pot methodology is described for the synthesis of heparin and heparan sulfate oligosaccharides utilizing thioglycosides with well defined reactivity as building blocks. l-idopyranosyl and d-glucopyranosyl thioglycosides 5 and 10 were used as donors due to low reactivity of uronic acids as the glycosyl donors in the one-pot synthesis. The formation of uronic acids by a selective oxidation at C-6 was performed after assembly of the oligosaccharides. The efficiency of this strategy with the flexibility for sulfate incorporation was demonstrated in the representative synthesis of disaccharides 17, 18, tetrasaccharide 23 and pentasaccharide 26. PMID:17914818

  18. Executive function and cerebrovascular reactivity in pediatric hypertension.

    PubMed

    Ostrovskaya, Maria A; Rojas, Mary; Kupferman, Juan C; Lande, Marc B; Paterno, Kara; Brosgol, Yuri; Pavlakis, Steven G

    2015-04-01

    Primary hypertension is associated with decreased performance on neurocognitive testing and a blunted cerebrovascular reactivity to hypercapnia. Parents of 14 children with hypertension and prehypertension completed the Behavior Rating Inventory of Executive Functions. Children underwent 24-hour ambulatory blood pressure monitoring and transcranial Doppler with reactivity measurement using time-averaged maximum mean velocity and end-tidal carbon dioxide during hypercapnia-rebreathing test. Comparing the reactivity slope for the patients to historical controls showed a statistically significant difference (t = -5.19, df = 13, P < .001), with lower slopes. Pearson correlations of the Behavior Rating Inventory of Executive Functions scores with the reactivity slopes showed a statistically significant inverse relationship with Behavioral Regulation Index (r = -.60, P = .02), Metacognition Index (r = -.40, P = .05), and the Global Executive Component (r = -.53, P = .05). Children with hypertension have decreased executive function, and this correlates to low transcranial Doppler-reactivity slopes, suggesting that the brain is a target organ in hypertensive children. PMID:23877480

  19. Asymmetric synthesis of pyrazoles and pyrazolones employing the reactivity of pyrazolin-5-one derivatives.

    PubMed

    Chauhan, Pankaj; Mahajan, Suruchi; Enders, Dieter

    2015-08-21

    Due to the frequent occurrence of the pyrazole core in many important naturally occurring and synthetic molecules, tremendous efforts have been made for their synthesis. The pyrazolin-5-one derivatives have emerged as the most effective substrates for the synthesis of useful pyrazoles and their corresponding pyrazolone derivatives. Recently, the reactivity of pyrazolin-5-ones has been used for the asymmetric synthesis of highly functionalised pyrazole and pyrazolone derivatives by employing organo- and metal-catalysts. This feature article focuses on the progress in the catalytic asymmetric synthesis of pyrazoles and pyrazolones using pyrazolin-5-one derivatives. PMID:26178319

  20. Sulfonyl Azoles in the Synthesis of 3-Functionalized Azole Derivatives.

    PubMed

    Palmieri, Alessandro; Petrini, Marino

    2016-06-01

    Sulfonyl indoles, as well as related azolyl derivatives, have been recently introduced in synthesis as stable precursors of reactive indolenine intermediates. This personal account reports on the discovery of sulfonyl azoles and their practical utilization in many synthetic processes for the preparation of functionalized 3-substituted indoles, indazoles, and pyrroles. The indolenine intermediates obtained by treatment of sulfonyl azoles with Brønsted bases or Lewis acids can be considered as vinylogous imino derivatives that can be made to react with different nucleophilic reagents. These include organometallic reagents, reducing agents, stabilized carbanions, and heteronucleophiles. The controlled and mild conditions for the generation of indolenines from sulfonyl azoles make these substrates particularly useful in asymmetric synthesis, exploiting organo- or metal-catalyzed processes. Although less exploited, sulfonyl indoles can also be involved in photochemical processes for the preparation of polycyclic derivatives. PMID:27147297

  1. Three-coordinate iron(IV) bisimido complexes with aminocarbene ligation: synthesis, structure, and reactivity.

    PubMed

    Wang, Lei; Hu, Lianrui; Zhang, Hezhong; Chen, Hui; Deng, Liang

    2015-11-11

    High-valent iron imido species are implicated as reactive intermediates in many iron-catalyzed transformations. However, isolable complexes of this type are rare, and their reactivity is poorly understood. Herein, we report the synthesis, characterization, and reactivity studies on novel three-coordinate iron(IV) bisimido complexes with aminocarbene ligation. Using our recently reported synthetic method for [LFe(NDipp)2] (L = IMes, 1; Me2-cAAC, 2), four new iron(IV) imido complexes, [(IPr)Fe(NDipp)2] (3) and [(Me2-cAAC)Fe(NR)2] (R = Mes, 4; Ad, 5; CMe2CH2Ph, 6), were prepared from the reactions of three-coordinate iron(0) compounds with organic azides. Characterization data acquired from (1)H and (13)C NMR spectroscopy, (57)Fe Mössbauer spectroscopy, and X-ray diffraction studies suggest a low-spin singlet ground state for these iron(IV) complexes and the multiple-bond character of their Fe-N bonds. A reactivity study taking the reactions of 1 as representative revealed an intramolecular alkane dehydrogenation of 1 to produce the iron(II) complex [(IMes)Fe(NHDipp)(NHC6H3-2-Pr(i)-6-CMe═CH2)] (7), a Si-H bond activation reaction of 1 with PhSiH3 to produce the iron(II) complex [(IMes)Fe(NHDipp)(NDippSiPhH2)] (8), and a [2+2]-addition reaction of 1 with PhNCNPh and p-Pr(i)C6H4NCO to form the corresponding open-shell formal iron(IV) monoimido complexes [(IMes)Fe(NDipp)(N(Dipp)C(NPh)(═NPh))] (9) and [(IMes)Fe(NDipp)(N(Dipp)C(O)N(p-Pr(i)C6H4))] (10), as well as [NDipp]-group-transfer reactions with CO and Bu(t)NC. Density functional theory calculations suggested that the alkane chain dehydrogenation reaction starts with a hydrogen atom abstraction mechanism, whereas the Si-H activation reaction proceeds in a [2π+2σ]-addition manner. Both reactions have the pathways at the triplet potential energy surfaces being energetically preferred, and have formal iron(IV) hydride and iron(IV) silyl species as intermediates, respectively. The low-coordinate nature and low d

  2. Design and synthesis of reactive separation systems. Final report

    SciTech Connect

    Doherty, M.F.

    1992-12-31

    During the last decade there has been a rapid upturn in interest in reactive distillation. The chemical process industry recognizes the favorable economics of carrying out reaction simultaneously with distillation for certain classes of reacting systems, and many new processes have been built based on this technology. Interest is also increasing by academics and software vendors. Systematic design methods for reactive distillation systems have only recently begun to emerge. In this report we survey the available design techniques and point out the contributions made by our group at the University of Massachusetts.

  3. Synthesis and processing of composites by reactive metal penetration

    SciTech Connect

    Loehman, R.E.; Ewsuk, K.G.; Tomsia, A.P.

    1995-05-01

    Ceramic-metal composites are being developed because their high stiffness-to weight ratios, good fracture toughness, and variable electrical and thermal properties give them advantages over more conventional materials. However, because ceramic-metal composite components presently are more expensive than monolithic materials, improvements in processing are required to reduce manufacturing costs. Reactive metal penetration is a promising new method for making ceramic- and metal-matrix composites that has the advantage of being inherently a net-shape process. This technique, once fully developed, will provide another capability for manufacturing the advanced ceramic composites that are needed for many light-weight structural and wear applications. The lower densities of these composites lead directly to energy savings in use. Near-net-shape fabrication of composite parts should lead to additional savings because costly and energy intensive grinding and machining operations are significantly reduced, and the waste generated from such finishing operations is minimized. The goals of this research program are: (1) to identify feasible compositional systems for making composites by reactive metal penetration; (2) to understand the mechanism(s) of composite formation by reactive metal penetration; and (3) to learn how to control and optimize reactive metal penetration for economical production of composites and composite coatings.

  4. Selective decreased de novo synthesis of glomerular proteoglycans under the influence of reactive oxygen species.

    PubMed Central

    Kashihara, N; Watanabe, Y; Makino, H; Wallner, E I; Kanwar, Y S

    1992-01-01

    The effect of reactive oxygen species on de novo synthesis of heparan sulfate proteoglycans (HSPGs) of the renal glomerulus was investigated in an organ perfusion system. Isolated kidneys were perfused for 7 hr with a medium containing [35S]sulfate to label sulfated proteoglycans or [35S]methionine to label total glomerular glycoproteins. For the generation of reactive oxygen species, xanthine and xanthine oxidase were included in the perfusion medium, and catalase and superoxide dismutase were used as scavenging agents. Proteoglycans were characterized by Sepharose CL-6B and DEAE-Sephacel chromatographies and SDS/PAGE analysis. The labeled glycoproteins were immunoprecipitated with anti-HSPG, anti-type IV collagen, and anti-laminin, and their specific radioactivities were determined. With exposure to reactive oxygen species, a drastic dose-dependent decrease in de novo synthesis of proteoglycans was seen, and that effect was reversible by catalase treatment. No alterations in the biochemical characteristics of proteoglycans were noted. Immunoprecipitation studies revealed a 16-fold decrease in the synthesis of nascent core peptide of HSPGs, while at comparable concentrations of xanthine and xanthine oxidase, synthesis of type IV collagen and laminin slightly decreased (approximately 15%). Morphologic studies revealed a 14-fold decrease in [35S]sulfate-associated autoradiographic grains overlying the glomerular basement membrane, a critical component of the ultrafiltration apparatus. Relevance of the selective decreased de novo synthesis of HSPGs of the glomerular basement membrane is discussed in terms of increased glomerular permeability to plasma proteins. Images PMID:1631123

  5. Integrated reactive absorption process for synthesis of fatty esters.

    PubMed

    Kiss, Anton Alexandru; Bildea, Costin Sorin

    2011-01-01

    Reactive separations using green catalysts offer great opportunities for manufacturing fatty esters, involved in specialty chemicals and biodiesel production. Integrating reaction and separation into one unit provides key benefits such as: simplified operation, no waste, reduced capital investment and low operating costs. This work presents a novel heat-integrated reactive absorption process that eliminates all conventional catalyst related operations, efficiently uses the raw materials and equipment, and considerably reduces the energy requirements for biodiesel production--85% lower as compared to the base case. Rigorous simulations based on experimental results were carried out using Aspen Plus and Dynamics. Despite the high degree of integration, the process is well controllable using an efficient control structure proposed in this work. The main results are provided for a plant producing 10 ktpy fatty acid methyl esters from methanol and waste vegetable oil with high free fatty acids content, using sulfated zirconia as solid acid catalyst. PMID:20855198

  6. Simple Molecular Reactive Force Field for Metal-Organic Synthesis.

    PubMed

    Andrejevic, Jovana; Stevenson, James; Clancy, Paulette

    2016-02-01

    For colloidal quantum dots to transition from research laboratories to deployment as optical and electronic products, there will be a need to scale-up their production to large-scale manufacturing processes. This demand increases the need to understand their formation via a molecular representation of the nucleation of lead sulfide (PbS) quantum dot systems passivated by lead oleate complexes. We demonstrate the effectiveness of a new type of reactive potential, custom-made for this system, that is drawn from simple Morse, Lennard-Jones, and Coulombic components, which can reproduce reactions across a broad range of PbS quantum dot sizes with good accuracy. We validate the capability of this model to capture reactive systems by comparison to ab initio calculations for a reaction between two dots. PMID:26745239

  7. Graphene:. Synthesis, Functionalization and Properties

    NASA Astrophysics Data System (ADS)

    Rao, C. N. R.; Subrahmanyam, K. S.; Ramakrishna Matte, H. S. S.; Maitra, Urmimala; Moses, Kota; Govindaraj, A.

    Graphenes with varying number of layers can be synthesized by different strategies. Thus, single-layer graphene is obtained by the reduction of single layer graphene oxide, CVD and other methods besides micromechanical cleavage. Few-layer graphenes are prepared by the conversion of nanodiamond, arcdischarge of graphite and other means. We briefly present the various methods of synthesis and the nature of graphenes obtained. We then discuss the various properties of graphenes. The remarkable property of graphene of quenching fluorescence of aromatic molecules is shown to be associated with photo-induced electron transfer, on the basis of fluorescence decay and time-resolved transient absorption spectroscopic measurements. The interaction of electron donor and acceptor molecules with few-layer graphene samples has been discussed. Decoration of metal nano-particles on graphene sheets and the resulting changes in electronic structure are examined. Few-layer graphenes exhibit ferromagnetic features along with antiferromagnetic properties, independent of the method of preparation. Graphene-like MoS2 and WS2 have been prepared by chemical methods, and the materials are characterized by electron microscopy, atomic force microscopy (AFM) and other methods. Boron nitride analogues of graphene have been obtained by a simple chemical procedure starting with boric acid and urea and have been characterized by various techniques.

  8. Graphene:. Synthesis, Functionalization and Properties

    NASA Astrophysics Data System (ADS)

    Rao, C. N. R.; Subrahmanyam, K. S.; Ramakrishna Matte, H. S. S.; Govindaraj, A.

    Graphenes with varying number of layers can be synthesized by different strategies. Thus, single-layer graphene is obtained by the reduction of single layer graphene oxide, CVD and other methods besides micromechanical cleavage. Few-layer graphenes are prepared by the conversion of nanodiamond, arc-discharge of graphite and other means. We briefly present the various methods of synthesis and the nature of graphenes obtained. We then discuss the various properties of graphenes. The remarkable property of graphene of quenching fluorescence of aromatic molecules is shown to be associated with photo-induced electron transfer, on the basis of fluorescence decay and time-resolved transient absorption spectroscopic measurements. The interaction of electron donor and acceptor molecules with few-layer graphene samples has been discussed. Decoration of metal nano-particles on graphene sheets and the resulting changes in electronic structure are examined. Few-layer graphenes exhibit ferromagnetic features along with antiferromagnetic properties, independent of the method of preparation. Graphene-like MoS2 and WS2 have been prepared by chemical methods, and the materials are characterized by electron microscopy, atomic force microscopy (AFM) and other methods. Boron nitride analogues of graphene have been obtained by a simple chemical procedure starting with boric acid and urea and have been characterized by various techniques.

  9. Synthesis and processing of composites by reactive metal penetration

    SciTech Connect

    Loehman, R.E.; Ewsuk, K.G.; Tomsia, A.P.

    1997-04-01

    Achieving better performance in commercial products and processes often is dependent on availability of new and improved materials. Ceramic-metal composites have advantages over more conventional materials because of their high stiffness-to-weight ratios, good fracture toughness, and because their electrical and thermal properties can be varied through control of their compositions and microstructures. However, ceramic composites will be more widely used only when their costs are competitive with other materials and when designers have more confidence in their reliability. Over the past four years reactive metal penetration has been shown to be a promising technique for making ceramic and metal-matrix composites to near-net-shape with control of both composition and microstructure. It appears that, with sufficient development, reactive metal penetration could be an economical process for manufacturing many of the advanced ceramic composites that are needed for light-weight structural and wear applications for transportation and energy conversion devices. Near-net-shape fabrication of parts is a significant advantage because costly and energy intensive grinding and machining operations are substantially reduced, and the waste generated from such finishing operations is minimized. The most promising compositions to date consist of Al and Al{sub 2}O{sub 3}; thus, these composites should be of particular interest to the aluminum industry. The goals of this ceramic-metal composite research and development program are: (1) to identify compositions favorable for making composites by reactive metal penetration; (2) to understand the mechanism(s) by which these composites are formed; (3) to control and optimize the process so that composites and composite coatings can be made economically; and (4) to apply R&D results to problems of interest to the aluminum industry.

  10. Analysis and Functional Prediction of Reactive Cysteine Residues*

    PubMed Central

    Marino, Stefano M.; Gladyshev, Vadim N.

    2012-01-01

    Cys is much different from other common amino acids in proteins. Being one of the least abundant residues, Cys is often observed in functional sites in proteins. This residue is reactive, polarizable, and redox-active; has high affinity for metals; and is particularly responsive to the local environment. A better understanding of the basic properties of Cys is essential for interpretation of high-throughput data sets and for prediction and classification of functional Cys residues. We provide an overview of approaches used to study Cys residues, from methods for investigation of their basic properties, such as exposure and pKa, to algorithms for functional prediction of different types of Cys in proteins. PMID:22157013

  11. Reactive multilayer synthesis of hard ceramic foils and films

    DOEpatents

    Makowiecki, D.M.; Holt, J.B.

    1996-02-13

    A method is disclosed for synthesizing hard ceramic materials such as carbides, borides and aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coiled as a tape for later use.

  12. Reactive multilayer synthesis of hard ceramic foils and films

    DOEpatents

    Makowiecki, Daniel M.; Holt, Joseph B.

    1996-01-01

    A method for synthesizing hard ceramic materials such as carbides, borides nd aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coild as a tape for later use.

  13. Reactive multilayer synthesis of hard ceramic foils and films

    SciTech Connect

    Makowiecki, D.M.; Holt, J.B.

    1993-12-31

    Disclosed is method for synthesizing hard ceramic materials such as carbides, borides and aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. Method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coiled as a tape for later use.

  14. Reactivity of Graphene Investigated by Density-Functional Theory

    NASA Astrophysics Data System (ADS)

    Soni, Himadri; Gebhardt, Julian; Görling, Andreas; Chair of Theoretical Chemistry Team

    Using spin-polarized density-functional theory, we study the adsorption and reaction of hydrogen and fluorine with graphene. Graphene has a bipartite lattice with two different sublattices and hence, due to Lieb's theorem, the inequality between two sublattices should lead to a net magnetic moment upon adsorption of hydrogen or fluorine. Our calculations using density-functional theory with the generalized gradient approximation predict a magnetic moment of 1 µB for a single hydrogen adsorbed on graphene but not for a single fluorine atom adsorbed on graphene. Switching to hybrid density-functional theory with the HSE functional, we obtain a magnetic moment of 1 µB for of a single fluorine atom adsorption on graphene. This is in line with work of Kim et al., who also found in density-functional theory calculations with the HSE exchange-correlation functional spin-polarization for a fluorine adatom on graphene. Here, we present a systematic study of the reactivity and relevant adsorption mechanism for single-sided graphene, i.e., a graphene sheet which is accessible by an adsorbate from only one side with hydrogen and fluorine using hybrid density-functional theory. German Research Council (DFG) by the Collaborative Research Center 953.

  15. Synthesis and Reactivity of 4′-Deoxypentenosyl Disaccharides

    PubMed Central

    2015-01-01

    4-Deoxypentenosides (4-DPs) are versatile synthons for rare or higher-order pyranosides, and they provide an entry for structural diversification at the C5 position. Previous studies have shown that 4-DPs undergo stereocontrolled DMDO oxidation; subsequent epoxide ring-openings with various nucleophiles can proceed with both anti or syn selectivity. Here, we report the synthesis of α- and β-linked 4′-deoxypentenosyl (4′-DP) disaccharides, and we investigate their post-glycosylational C5′ additions using the DMDO oxidation/ring-opening sequence. The α-linked 4′-DP disaccharides were synthesized by coupling thiophenyl 4-DP donors with glycosyl acceptors using BSP/Tf2O activation, whereas β-linked 4′-DP disaccharides were generated by the decarboxylative elimination of glucuronyl disaccharides under microwave conditions. Both α- and β-linked 4′-DP disaccharides could be epoxidized with high stereoselectivity using DMDO. In some cases, the α-epoxypentenosides could be successfully converted into terminal l-iduronic acids via the syn addition of 2-furylzinc bromide. These studies support a novel approach to oligosaccharide synthesis, in which the stereochemical configuration of the terminal 4′-DP unit is established at a post-glycosylative stage. PMID:24797640

  16. α-Cationic Arsines: Synthesis, Structure, Reactivity, and Applications.

    PubMed

    Dube, Jonathan W; Zheng, Yiying; Thiel, Walter; Alcarazo, Manuel

    2016-06-01

    A series of structurally differentiated cationic arsines containing imidazolium, cyclopropenium, formamidinium, and pyridinium substituents have been synthesized through short and scalable routes. Evaluation of the donor properties of these compounds by IR spectroscopy and DFT calculations reveals similar σ-electron-releasing abilities for all of them; however, their π-acceptor properties are strongly influenced by the nature of the positively charged group. We describe the coordination chemistry of the newly prepared α-cationic arsines toward different metal centers and their reactivity in the presence of strong oxidants to afford cationic As(V) species. Their unique electronic properties have been exploited in Pt(II) catalysis to develop a new catalyst with remarkable activity in the cycloisomerization of enynes to trisubstituted cyclopropanes. To the best of our knowledge, this is the first report on the use of α-cationic arsine ligands in catalysis. PMID:27214007

  17. Synthesis and Regioselective Functionalization of Perhalogenated BODIPYs

    PubMed Central

    Zhao, Ning; Xuan, Sunting; Byrd, Brandon; Fronczek, Frank R.; Smith, Kevin M.

    2016-01-01

    Three perhalogenated BODIPYs (1b–3b), bearing chloro and bromo groups at all carbon positions, were synthesized and characterized. The reactivity of BODIPY 3b was investigated under Stille cross-coupling reactions, and single crystal X-ray analysis was used to confirm the regioselectivity of the reactions. Further substitution at the boron atom produced nona-functionalized BODIPYs 7a,b, which show 676 and 739 nm emissions with 91 and 100 nm Stokes shifts, respectively. PMID:27251595

  18. Synthesis and regioselective functionalization of perhalogenated BODIPYs.

    PubMed

    Zhao, Ning; Xuan, Sunting; Byrd, Brandon; Fronczek, Frank R; Smith, Kevin M; Vicente, M Graça H

    2016-07-14

    Three perhalogenated BODIPYs (1b-3b), bearing chloro and bromo groups at all carbon positions, were synthesized and characterized. The reactivity of BODIPY 3b was investigated under Stille cross-coupling reactions, and single crystal X-ray analysis was used to confirm the regioselectivity of the reactions. Further substitution at the boron atom produced nona-functionalized BODIPYs 7a,b, which show 676 and 739 nm emissions with 91 and 100 nm Stokes shifts, respectively. PMID:27251595

  19. Additive, modular functionalization of reactive self-assembled monolayers: toward the fabrication of multilevel optical storage media

    NASA Astrophysics Data System (ADS)

    Gentili, Denis; Barbalinardo, Marianna; Manet, Ilse; Durso, Margherita; Brucale, Marco; Mezzi, Alessio; Melucci, Manuela; Cavallini, Massimiliano

    2015-04-01

    We report a novel strategy based on iterative microcontact printing, which provides additive, modular functionalization of reactive SAMs by different functional molecules. We demonstrate that after printing the molecules form an interpenetrating network at the SAM surface preserving their individual properties. We exploited the process by fabricating new optical storage media that consist of a multilevel TAG.We report a novel strategy based on iterative microcontact printing, which provides additive, modular functionalization of reactive SAMs by different functional molecules. We demonstrate that after printing the molecules form an interpenetrating network at the SAM surface preserving their individual properties. We exploited the process by fabricating new optical storage media that consist of a multilevel TAG. Electronic supplementary information (ESI) available: Experimental details, synthesis and characterization of compounds 1, 2, 1-Sil and 2-Sil, and materials. See DOI: 10.1039/c5nr00346f

  20. Dithiolopyranthione Synthesis, Spectroscopy and an Unusual Reactivity with DDQ

    PubMed Central

    Pimkov, Igor V.; Nigam, Archana; Venna, Kiran; Solntsev, Pavlo V.; Nemykin, Victor N.

    2014-01-01

    The bicyclic pyran thiolone tetrahydro-3αH-[1,3]dithiolo[4,5-β]pyran-2-thione (3a) engages in a highly unusual fragmentation in the presence of DDQ. The pyran thiolone, 3a, was synthesized by chlorination of 3,4-dihydro-2H-pyran (1), followed by condensing with CS2 and NaSH. Reaction of 3a with DDQ generates the isomerized pyran thiolone tetrahydro-3αH-[1,3]dithiolo[4,5-β]pyran-2-thione (3b) and 4-benzyl-5-(3-hydroxypropyl)-1,3-dithiole-2-thione (4) via a deep-seated rearrangement. The identity of 3b was confirmed by single crystal X-ray analysis: P21/c, a=5.807(9) Å, b = 12.99(2) Å, c = 11.445(15), β=113.23(6)°. Mechanistic experiments and computational insight is used to explain the likely sequence of events in the highly unusual formation of 4. Collectively, these results establish fundamental reactivity patterns for further research in this area. PMID:25328243

  1. Synthesis, characterization, and reactivity of alkyldisulfanido zinc complexes.

    PubMed

    Galardon, Erwan; Tomas, Alain; Selkti, Mohamed; Roussel, Pascal; Artaud, Isabelle

    2009-07-01

    The alkyldisulfanido zinc complexes Tp(iPr,iPr)Zn(SSR) and Tp(Ph,Me)Zn(SSR) where Tp(iPr,iPr) is hydridotris-((3,5-isopropyl)pyrazolyl)borate, Tp(Ph,Me) is hydridotris-((3-phenyl,5-methyl)pyrazolyl)borate, and (SSR) is tert-butyldisulfanido or triphenylmethanedisulfanido were synthesized by reaction between the corresponding hydroxo complexes TpZn(OH) and the synthetic persulfide RSSH. All the complexes were characterized by elemental analysis and (1)H NMR spectroscopy, and representative members of the class were also structurally characterized. The reactivity of the alkyldisulfanido TpZn(SSR) complexes with thiols was studied. In the absence of base, a simple exchange reaction between the alkyldisulfanido ligand and the thiol was observed in dichloromethane; when in the presence of base, the corresponding hydrogen(sulfido) complexes TpZn(SH) were obtained. The mechanism of the latter reaction has been studied and does not involve the coordinated alkyldisulfanido group. Reaction of the hydrogen(sulfido) complexes Tp(iPr,iPr)Zn(SH) with the thiosulfonate PhCH(2)S-SO(2)CF(3) did not yield the expected alkyldisulfanido complex but benzyltrisulfide and a new complex tentatively assigned as Tp(iPr,iPr)Zn(O(2)SCF(3)). PMID:19514736

  2. Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis.

    PubMed

    Xu, Hui; Li, Qin; Shen, Lifeng; Zhang, Mengqun; Zhai, Jianping

    2010-01-01

    In this contribution, low-reactive circulating fluidized bed combustion (CFBC) fly ashes (CFAs) have firstly been utilized as a source material for geopolymer synthesis. An alkali fusion process was employed to promote the dissolution of Si and Al species from the CFAs, and thus to enhance the reactivity of the ashes. A high-reactive metakaolin (MK) was also used to consume the excess alkali needed for the fusion. Reactivities of the CFAs and MK were examined by a series of dissolution tests in sodium hydroxide solutions. Geopolymer samples were prepared by alkali activation of the source materials using a sodium silicate solution as the activator. The synthesized products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffractography (XRD), as well as Fourier transform infrared spectroscopy (FTIR). The results of this study indicate that, via enhancing the reactivity by alkali fusion and balancing the Na/Al ratio by additional aluminosilicate source, low-reactive CFAs could also be recycled as an alternative source material for geopolymer production. PMID:19853434

  3. Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis

    SciTech Connect

    Xu Hui; Li Qin; Shen Lifeng; Zhang Mengqun; Zhai Jianping

    2010-01-15

    In this contribution, low-reactive circulating fluidized bed combustion (CFBC) fly ashes (CFAs) have firstly been utilized as a source material for geopolymer synthesis. An alkali fusion process was employed to promote the dissolution of Si and Al species from the CFAs, and thus to enhance the reactivity of the ashes. A high-reactive metakaolin (MK) was also used to consume the excess alkali needed for the fusion. Reactivities of the CFAs and MK were examined by a series of dissolution tests in sodium hydroxide solutions. Geopolymer samples were prepared by alkali activation of the source materials using a sodium silicate solution as the activator. The synthesized products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffractography (XRD), as well as Fourier transform infrared spectroscopy (FTIR). The results of this study indicate that, via enhancing the reactivity by alkali fusion and balancing the Na/Al ratio by additional aluminosilicate source, low-reactive CFAs could also be recycled as an alternative source material for geopolymer production.

  4. Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity.

    PubMed

    Domingo, Luis R; Ríos-Gutiérrez, Mar; Pérez, Patricia

    2016-01-01

    Theoretical reactivity indices based on the conceptual Density Functional Theory (DFT) have become a powerful tool for the semiquantitative study of organic reactivity. A large number of reactivity indices have been proposed in the literature. Herein, global quantities like the electronic chemical potential μ, the electrophilicity ω and the nucleophilicity N indices, and local condensed indices like the electrophilic P k + and nucleophilic P k - Parr functions, as the most relevant indices for the study of organic reactivity, are discussed. PMID:27294896

  5. Synthesis and Reactivity of Tripodal Complexes Containing Pendant Bases

    SciTech Connect

    Blacquiere, Johanna M.; Pegis, Michael L.; Raugei, Simone; Kaminsky, Werner; Forget, Amelie; Cook, Sarah; Taguchi, Taketo; Borovik, Andrew S.; Mayer, James M.

    2014-09-02

    The synthesis of a new tripodal ligand family is reported, with tertiary-amine groups in the second-coordination sphere. The ligands are tris(amido)amine derivatives, with the pendant amines attached via a peptide coupling strategy. They were designed to be used in new catalysts for the oxygen reduction reaction (ORR), in which the pendant acid/base group could improve catalyst performance. Two members of the new ligand family were each metallated with Co(II) and Zn(II) to afford trigonal monopyramidal complexes. Reaction of the cobalt complexes, [Co(L)]-, with dioxygen reversibly generates a small amount of a Co(III)-superoxo species, which was characterized by EPR. Protonation of the zinc complex Zn[N{CH2CH2NC(O)CH2N(CH2Ph)2}3)-– ([Zn(TNBn)]-) with one equivalent of acid occurs with displacement and dissociation of an amide ligand. Addition of excess acid to the any of the complexes [M(L)]- results in complete proteolysis and formation of the ligands H3L. This decomposition limits the use of these complexes as catalysts for the ORR. An alternative ligand with two pyridyl arms was also prepared but could not be metallated. These studies highlight the importance of stability of the primary-coordination sphere of ORR electrocatalysts to both oxidative and acidic conditions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  6. Synthesis of Chiral Piperazinones Using Amphoteric Aziridine Aldehyde Dimers and Functionalized Isocyanides.

    PubMed

    Heine, Niklas B; Kaldas, Sherif J; Belding, Lee; Shmatova, Olga; Dudding, Travis; Nenajdenko, Valentine G; Studer, Armido; Yudin, Andrei K

    2016-06-17

    We have evaluated a range of functionalized isocyanides in the aziridine aldehyde-driven multicomponent synthesis of piperazinones. High diasteroselectivity for each isocyanide was observed. A theoretical evaluation of the reaction course corroborates the experimental data. Moreover, the reactivity of cis- and trans-configured aziridine aldehyde dimers has been compared. This study further probes the dimer-driven mechanism of cyclization and enables an efficient access to a wide range of chiral piperazinones bearing functionalized side chains. PMID:27156711

  7. Synthesis, characterization, and reactivity of sulfided hexanuclear molybdenum cluster compounds

    SciTech Connect

    Spink, D.

    1990-09-21

    Hexanuclear molybdenum clusters with mixed chloride and sulfide bridging ligands were prepared by reacting {alpha}-MoCl{sub 2} with sodium hydrosulfide in the presence of sodium butoxide. The resulting species, Mo{sub 6}Cl{sub (8-x)}S{sub x}{center dot}npy(x {congruent} 3.6, n {congruent} 4, py = pyridine), was pyrophoric and insoluble. The mixed sulfide chloride cluster species Mo{sub 6}S{sub 4}Cl{sub 4}{center dot}6OPEt{sub 3} and Mo{sub 6}S{sub {approximately}5}Cl{sub {approximately}3}{center dot}6PEt{sub 3} and Mo{sub 6}S{sub 8}{center dot}6PEt{sub 3} were isolated and characterized. Phosphorus-31 nuclear magnetic resonance, electron paramagnetic resonance, and UV/visible spectra were obtained for each fraction. The completely sulfided cluster, Mo{sub 6}S{sub 8}{center dot}6PEt{sub 3}, was prepared similarly and used in various experiments as a possible precursor to Chevrel phase materials of the type Mo{sub 6}S{sub 8}or M{sub n}Mo{sub 6}S{sub 8}. With the goal of removing all of the triethylphosphine ligands, Mo{sub 6}S{sub 8}{center dot}6PEt{sub 3} was reacted with the transition metal carbonyls molybdenum hexacarbonyl and dicobalt octacarbonyl. Reaction on the molecular sulfide cluster with copper(I) chloride in toluene gave a completely insoluble product. The reaction of Mo{sub 6}S{sub 8}{center dot}6PEt{sub 3} with propylene sulfide gave a product whose infrared spectra showed only very weak peaks associated with coordinated triethylphosphine. The elemental analysis of this product fit the formula Mo{sub 6}S{sub 8}{center dot}5SPEt{sub 3}. Reactivity of the outer ligands of the Mo{sub 6}S{sub 8}{center dot}npy and Mo{sub 6}S{sub 8}{center dot}(6{minus}x)PrNH{sub x} clusters were investigated. Crystalline Mo{sub 6}S{sub 8}{center dot}6THT was recovered from the reaction of the n-propylamine derivative with THT. A crystal structure determination was done. 87 refs., 12 fig., 15 tabs.

  8. Pyro-Synthesis of Functional Nanocrystals

    PubMed Central

    Gim, Jihyeon; Mathew, Vinod; Lim, Jinsub; Song, Jinju; Baek, Sora; Kang, Jungwon; Ahn, Docheon; Song, Sun-Ju; Yoon, Hyeonseok; Kim, Jaekook

    2012-01-01

    Despite nanomaterials with unique properties playing a vital role in scientific and technological advancements of various fields including chemical and electrochemical applications, the scope for exploration of nano-scale applications is still wide open. The intimate correlation between material properties and synthesis in combination with the urgency to enhance the empirical understanding of nanomaterials demand the evolution of new strategies to promising materials. Herein we introduce a rapid pyro-synthesis that produces highly crystalline functional nanomaterials under reaction times of a few seconds in open-air conditions. The versatile technique may facilitate the development of a variety of nanomaterials and, in particular, carbon-coated metal phosphates with appreciable physico-chemical properties benefiting energy storage applications. The present strategy may present opportunities to develop “design rules” not only to produce nanomaterials for various applications but also to realize cost-effective and simple nanomaterial production beyond lab-scale limitations. PMID:23230511

  9. Synthesis, reactivity and application studies for different biolubricants

    PubMed Central

    2014-01-01

    Vegetable oils have different unique properties owing to their unique chemical structure. Vegetable oils have a greater ability to lubricate and have higher viscosity indices. Therefore, they are being more closely examined as base oil for biolubricants and functional fluids. In spite of their many advantages, vegetable oils suffer from two major drawbacks of inadequate oxidative stability and poor low-temperature properties, which hinder their utilization as biolubricant base oils. Transforming alkene groups in fatty acids to other stable functional groups could improve the oxidative stability, whereas reducing structural uniformity of the oil by attaching alkyl side chains could improve the low-temperature performance. In that light, the epoxidation of unsaturated fatty acids is very interesting as it can provide diverse side chains arising from the mono- or di-epoxidation of the unsaturated fatty acid. Oxirane ring opening by an acid-catalyzed reaction with a suitable reagent provides interesting polyfunctional compounds. PMID:24612780

  10. Synthesis, reactivity and application studies for different biolubricants.

    PubMed

    Salimon, Jumat; Abdullah, Bashar Mudhaffar; Yusop, Rahimi M; Salih, Nadia

    2014-01-01

    Vegetable oils have different unique properties owing to their unique chemical structure. Vegetable oils have a greater ability to lubricate and have higher viscosity indices. Therefore, they are being more closely examined as base oil for biolubricants and functional fluids. In spite of their many advantages, vegetable oils suffer from two major drawbacks of inadequate oxidative stability and poor low-temperature properties, which hinder their utilization as biolubricant base oils. Transforming alkene groups in fatty acids to other stable functional groups could improve the oxidative stability, whereas reducing structural uniformity of the oil by attaching alkyl side chains could improve the low-temperature performance. In that light, the epoxidation of unsaturated fatty acids is very interesting as it can provide diverse side chains arising from the mono- or di-epoxidation of the unsaturated fatty acid. Oxirane ring opening by an acid-catalyzed reaction with a suitable reagent provides interesting polyfunctional compounds. PMID:24612780

  11. Zero Valent Iron: Impact of Anions Present during Synthesis on Subsequent Nanoparticle Reactivity

    SciTech Connect

    Moore, Kirsten; Forsberg, Brady; Baer, Donald R.; Arnold, William A.; Penn, R. Lee

    2011-10-01

    Zero-valent iron particles are an effective remediation technology for groundwater contaminated with halogenated organic compounds. In particular, nano-scale zero-valent iron is a promising material for remediation due to its high specific surface area, which results in faster rate constants and more effective use of the iron. An aspect of iron nanoparticle reactivity that has not been explored is the impact of anions present during iron metal nanoparticle synthesis. Solutions containing chloride, phosphate, sulfate, and nitrate anions and ferric ions were used to generate iron oxide nanoparticles. The resulting materials were dialyzed to remove dissolved byproducts and then dried and reduced by hydrogen gas at high temperature. The reactivity of the resulting zero valent iron nanoparticles was quantified by monitoring the kinetics as well as products of carbon tetrachloride reduction, and significant differences in reactivity and chloroform yield were observed. The reactivity of nanoparticles prepared in the presence of sulfate and phosphate demonstrated the highest reactivity and chloroform yield. Furthermore, substantial variations in the solid-state products of oxidation (magnetite, iron sulfide, and goethite, among others) were also observed.

  12. Reactivities of vinyl azides and their recent applications in nitrogen heterocycle synthesis

    PubMed Central

    Hu, Bao; DiMagno, Stephen G.

    2015-01-01

    Nitrogen heterocycles are abundant in natural products and pharmaceuticals. An emerging interest among synthetic chemists is to apply vinyl azides as a pivotal three-atom synthon for the construction of structurally complex and diverse N-heterocyclic skeletons. The unique features of the azide group connected to an alkene moiety permit vinyl azides to function as electrophiles, nucleophiles, or radical acceptors; their access to diverse reaction pathways provides great opportunities to generate highly reactive intermediates with often unusual or unconventional reactivities. This tutorial review will systematically illustrate the reactivities of vinyl azides and describe recent breakthroughs in the development of new transformations that create N-heterocycles. PMID:25731154

  13. Unsaturated platinum-rhenium cluster complexes. Synthesis, structures and reactivity.

    PubMed

    Adams, Richard D; Captain, Burjor; Smith, Mark D; Beddie, Chad; Hall, Michael B

    2007-05-01

    functional calculations confirm the hydride positions in the lowest energy structural isomers of 11 and 12 and suggest a mechanism for H2 addition to 11 that occurs on the Pt atom with the lower coordination number. PMID:17439219

  14. Glycerophospholipid synthesis and functions in Pseudomonas.

    PubMed

    Kondakova, Tatiana; D'Heygère, François; Feuilloley, Marc J; Orange, Nicole; Heipieper, Hermann J; Duclairoir Poc, Cécile

    2015-09-01

    The genus Pseudomonas is one of the most heterogeneous groups of eubacteria, presents in all major natural environments and in wide range of associations with plants and animals. The wide distribution of these bacteria is due to the use of specific mechanisms to adapt to environmental modifications. Generally, bacterial adaptation is only considered under the aspect of genes and protein expression, but lipids also play a pivotal role in bacterial functioning and homeostasis. This review resumes the mechanisms and regulations of pseudomonal glycerophospholipid synthesis, and the roles of glycerophospholipids in bacterial metabolism and homeostasis. Recently discovered specific pathways of P. aeruginosa lipid synthesis indicate the lineage dependent mechanisms of fatty acids homeostasis. Pseudomonas glycerophospholipids ensure structure functions and play important roles in bacterial adaptation to environmental modifications. The lipidome of Pseudomonas contains a typical eukaryotic glycerophospholipid--phosphatidylcholine -, which is involved in bacteria-host interactions. The ability of Pseudomonas to exploit eukaryotic lipids shows specific and original strategies developed by these microorganisms to succeed in their infectious process. All compiled data provide the demonstration of the importance of studying the Pseudomonas lipidome to inhibit the infectious potential of these highly versatile germs. PMID:26148574

  15. Impact of C-reactive protein (CRP) on surfactant function

    SciTech Connect

    Li, J.J.; Sanders, R.L.; McAdam, K.P.; Hales, C.A.; Thompson, B.T.; Gelfand, J.A.; Burke, J.F. )

    1989-12-01

    Plasma levels of the acute-phase reactant, C-reactive protein (CRP), increase up to one thousand-fold as a result of trauma or inflammation. CRP binds to phosphorylcholine (PC) in a calcium-ion dependent manner. The structural homology between PC and the major phospholipid component of surfactant, dipalmitoyl phosphatidylcholine (DPPC), led to the present study in which we examined if CRP levels might be increased in patients with adult respiratory distress syndrome (ARDS), and subsequently interfere with surfactant function. Our results showed that CRP levels in the bronchoalveolar fluid (BALF) was increased in patients with ARDS (97.8 +/- 84.2 micrograms/mg total protein vs. 4.04 +/- 2.2 micrograms/mg total protein in normals). Our results show that CRP binds to liposomes containing DPPC and phosphatidylglycerol (PG). As a result of this interaction, CRP inhibits the surface activity of a PG-DPPC mixture when tested with a Wilhelmy surfactometer or with the Enhorning pulsating bubble apparatus. Furthermore, the surface activity of a clinically used surfactant replacement, Surfactant TA (2 mg/ml), was also severely impaired by CRP in a dose-dependent manner (doses used ranging from 24.5 to 1,175 micrograms/ml). In contrast, human serum albumin (HSA) at 500 and 900 micrograms/ml had no inhibitory effect on Surfactant TA surface activity. These results suggest that CRP, although not an initiating insult in ARDS, may contribute to the subsequent abnormalities of surfactant function and thus the pathogenesis of the pulmonary dysfunction seen in ARDS.

  16. Tuning the Synthesis of Ternary Lead Chalcogenide Quantum Dots by Balancing Precursor Reactivity

    SciTech Connect

    Smith, Danielle K.; Luther, Joseph M; Semonin, Octavi Escala; Nozik, Arthur J; Beard, Matthew C

    2011-01-25

    We report the synthesis and characterization of composition-tunable ternary lead chalcogenide alloys PbSe{sub x}Te{sub 1-x}, PbS{sub x}Te{sub 1-x}, and PbS{sub x}Se{sub 1-x}. This work explores the relative reaction rates of chalcogenide precursors to produce alloyed quantum dots (QDs), and we find the highly reactive bis(trimethylsilyl) (TMS{sub 2})-based precursors allow for the homogeneous incorporation of anions. By varying the Pb to oleic acid ratio, we demonstrate size control of similar composition alloys. We find the resulting QDs are Pb-rich but the Pb/anion ratio is size- and composition-dependent in all alloyed QD as well as in PbSe, PbTe, and PbS QDs and is consistent with the reaction rates of the anion precursors. A more reactive anion precursor results in a lower Pb/anion ratio.

  17. Reactivity and synthesis inspired by the Zincke ring-opening of pyridines.

    PubMed

    Vanderwal, Christopher D

    2011-12-01

    The century-old Zincke process for ring-opening of pyridinium salts produces 5-amino-2,4-pentadienals, a type of donor-acceptor dienes known as Zincke aldehydes. Inspired by this reasonably general and often efficient process for dearomatization, my laboratory has used pyridines as a starting point for heterocycle synthesis, which resulted in unusual syntheses of indoles, pyrrolines, and a formal synthesis of the natural product porothramycin A. Furthermore, our study of the reactivity of Zincke aldehydes has led to accidental discoveries of pericyclic cascade reactions that produce Z-α,β-unsaturated amides or polycyclic lactams, depending upon the identity of the substituents on nitrogen. Finally, a base-mediated formal cycloaddition reaction of tryptamine-derived Zincke aldehydes has served as the key step in concise syntheses of the indole alkaloids norfluorocurarine and strychnine. PMID:21877712

  18. Filtered density function approach for reactive transport in groundwater

    NASA Astrophysics Data System (ADS)

    Suciu, Nicolae; Schüler, Lennart; Attinger, Sabine; Knabner, Peter

    2016-04-01

    Spatial filtering may be used in coarse-grained simulations (CGS) of reactive transport in groundwater, similar to the large eddy simulations (LES) in turbulence. The filtered density function (FDF), stochastically equivalent to a probability density function (PDF), provides a statistical description of the sub-grid, unresolved, variability of the concentration field. Besides closing the chemical source terms in the transport equation for the mean concentration, like in LES-FDF methods, the CGS-FDF approach aims at quantifying the uncertainty over the whole hierarchy of heterogeneity scales exhibited by natural porous media. Practically, that means estimating concentration PDFs on coarse grids, at affordable computational costs. To cope with the high dimensionality of the problem in case of multi-component reactive transport and to reduce the numerical diffusion, FDF equations are solved by particle methods. But, while trajectories of computational particles are modeled as stochastic processes indexed by time, the concentration's heterogeneity is modeled as a random field, with multi-dimensional, spatio-temporal sets of indices. To overcome this conceptual inconsistency, we consider FDFs/PDFs of random species concentrations weighted by conserved scalars and we show that their evolution equations can be formulated as Fokker-Planck equations describing stochastically equivalent processes in concentration-position spaces. Numerical solutions can then be approximated by the density in the concentration-position space of an ensemble of computational particles governed by the associated Itô equations. Instead of sequential particle methods we use a global random walk (GRW) algorithm, which is stable, free of numerical diffusion, and practically insensitive to the increase of the number of particles. We illustrate the general FDF approach and the GRW numerical solution for a reduced complexity problem consisting of the transport of a single scalar in groundwater

  19. Synthesis and postmodification of functionally relevant organically modified silica particles

    NASA Astrophysics Data System (ADS)

    Brozek, Eric

    This thesis describes the synthesis and properties of organically modified silica (ORMOSIL) particles with possible applications in the field of drug delivery. Nanoparticle drug delivery methods take advantage of the unique physical properties of nanoscale architecture to deliver a large payload of drug to a targeted site. They are highly porous, contain many organic functionalities for covalent attachment, and their surfaces can be functionalized. A particle-based approach allows for the delivery of a large and localized payload in a single package. Initial study focused on the generation of submicron organically modified silica particles containing boron. This involved the synthesis of vinyl-enriched silica particles and the postmodification of the vinyl functionalities throughout the particle body. Hydroboration and bromination of the vinyl functionalities showed for the first time that the organic functionalities of ORMOSIL particles could be significantly modified. Next, new organically modified silica particle types were developed. These new particle types incorporated unique organic functionalities that may undergo additional functionalization. Organic functionalities included alkenyl-, cyano-, mercapto-, and isocyanto- throughout the particle body. The different organic functionalities were then modified to demonstrate their reactivity. Finally, a particle containing nuclei suitable for neutron capture therapy, a fluorescent tag, and targeting ligand was synthesized. Boron was the active nuclei, fluorescein was the fluorescent label, useful for in vitro studies, and folic acid is a broad field targeting ligand, useful in targeting a variety of cancer types. The particle containing the three unique motifs underwent early stages of in vitro studies against the OVCAR-3 cell line. This thesis has considerably advanced the field of ORMOSIL chemistry through the development and modification of new ORMOSIL products. While initial efforts were geared toward the

  20. Synthesis, Characterization, and Reactivity Studies of Iron Complexes Supported by the Redox-Active [ONO] Ligand

    NASA Astrophysics Data System (ADS)

    Wong, Janice Lin

    The work reported herein primarily focuses on the development of new platforms for multi-electron reactivity using iron complexes supported by a redox-active pincer-type ligand. This dissertation details the synthesis, characterization, and reactivity of iron complexes coordinated to the redox-active [ONO] ([ONO]H3 = bis(3,5-di-tert-butyl-2-phenol)amine) ligand. Chapter 1 provides a general background on ligand-centered and metal-centered redox reactivity. Specifically, the characteristics of redox-active ligands and their ability to promote multi-electron reactivity at redox-inert metal centers is presented. In addition, iron-catalyzed organic transformations in which the metal center undergoes redox changes is also discussed. Finally, ligand-enabled redox reactions mediated by iron complexes containing redox-active ligands is described. Chapter 2 reports on the complexation of bis(3,5-di-tert-butyl-2-phenoxy)amine, [ONHO], and the redox-active [ONO] ligands by iron centers to afford a new family of iron complexes. Characterizations of each compound through a battery of analytical techniques reveal the oxidation states of the metal center and ligand. Furthermore, the electronic properties of each complex were investigated in order to evaluate their potential to facilitate multi-electron reactivity. Chapter 3 details the reactivity of the [ONO]Fe platform. Metathesis reactions are conducted with [ONOq]FeIIIX 2 (X = Cl, N[SiMe3]2) complexes, demonstrating the capability of the fully-oxidized [ONOq]1-- to act as a two-electron acceptor to generate the fully reduced [ONO cat]3-- that is coordinated to an iron(III) center. Similarly, oxidation of [ONOcat]FeIII(py) 3 (py = pyridine) using dihalogens result in two-electron oxidations of the tridentate ligand while the metal oxidation state remains the same. These redox reactions showcase the ability of the [ONO] ligand platform to undergo reversible two-electron oxidation state changes, allowing multi-electron reactivity

  1. Synthesis of functional materials in combustion reactions

    NASA Astrophysics Data System (ADS)

    Zhuravlev, V. D.; Bamburov, V. G.; Ermakova, L. V.; Lobachevskaya, N. I.

    2015-12-01

    The conditions for obtaining oxide compounds in combustion reactions of nitrates of metals with organic chelating-reducing agents such as amino acids, urea, and polyvinyl alcohol are reviewed. Changing the nature of internal fuels and the reducing agent-to-oxidizing agent ratio makes possible to modify the thermal regime of the process, fractal dimensionality, morphology, and dispersion of synthesized functional materials. This method can be used to synthesize simple and complex oxides, composites, and metal powders, as well as ceramics and coatings. The possibilities of synthesis in combustion reactions are illustrated by examples of αand γ-Al2O3, YSZ composites, uranium oxides, nickel powder, NiO and NiO: YSZ composite, TiO2, and manganites, cobaltites, and aluminates of rare earth elements.

  2. Synthesis of functional materials in combustion reactions

    SciTech Connect

    Zhuravlev, V. D. Bamburov, V. G.; Ermakova, L. V.; Lobachevskaya, N. I.

    2015-12-15

    The conditions for obtaining oxide compounds in combustion reactions of nitrates of metals with organic chelating–reducing agents such as amino acids, urea, and polyvinyl alcohol are reviewed. Changing the nature of internal fuels and the reducing agent-to-oxidizing agent ratio makes possible to modify the thermal regime of the process, fractal dimensionality, morphology, and dispersion of synthesized functional materials. This method can be used to synthesize simple and complex oxides, composites, and metal powders, as well as ceramics and coatings. The possibilities of synthesis in combustion reactions are illustrated by examples of αand γ-Al{sub 2}O{sub 3}, YSZ composites, uranium oxides, nickel powder, NiO and NiO: YSZ composite, TiO{sub 2}, and manganites, cobaltites, and aluminates of rare earth elements.

  3. Emotional reactivity and regulation in infancy interact to predict executive functioning in early childhood.

    PubMed

    Ursache, Alexandra; Blair, Clancy; Stifter, Cynthia; Voegtline, Kristin

    2013-01-01

    The relation of observed emotional reactivity and regulation in infancy to executive function in early childhood was examined in a prospective longitudinal sample of 1,292 children from predominantly low-income and rural communities. Children participated in a fear eliciting task at ages 7, 15, and 24 months and completed an executive function battery at age 48 months. Results indicated that the relation of child negative emotional reactivity at 15 months of age to executive functioning at 48 months of age was dependent on observed emotion regulation. High levels of executive function ability were observed among children who exhibited high levels of emotional reactivity and high levels of the regulation of this reactivity. In contrast, low levels of executive function ability were observed among children who exhibited high levels of reactivity but low levels of regulation. Among children exhibiting low levels of emotional reactivity, emotion regulation was unrelated to executive functioning. Moreover, emotionally reactive infants exhibiting high levels of emotion regulation were more likely to have primary caregivers who exhibited high levels of positive parenting behavior in a parent-child interaction task. Results provide support for a neurobiologically informed developmental model in which the regulation of emotional arousal is one mechanism whereby supportive environments are associated with higher levels of self-regulation ability for highly reactive infants. Findings are discussed with implications for differential susceptibility and biological sensitivity theories of child by context interaction. PMID:22563678

  4. Local and linear chemical reactivity response functions at finite temperature in density functional theory.

    PubMed

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model. PMID:26723661

  5. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    SciTech Connect

    Franco-Pérez, Marco E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Ayers, Paul W. E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Gázquez, José L. E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Vela, Alberto E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.

  6. HSV carrying WT REST establishes latency but reactivates only if the synthesis of REST is suppressed.

    PubMed

    Zhou, Guoying; Du, Te; Roizman, Bernard

    2013-02-01

    HSVs transit from vigorous replication at the portal of entry into the body to a latent state in sensory neurons in which only noncoding (e.g., latency-associated transcript) and micro-RNAs are expressed. In productive infection, viral genes must be sequentially derepressed at two checkpoints. A leading role in the repression of viral genes is carried out by histone deacetylase (HDAC)/corepressor element-1 silencing transcription factor (CoREST)/lysinespecific demethylase1(LSD1)/RE1-silencing transcription factor (REST) repressor complex (HCLR). Previously, we reported that to define the role of the components of the HCLR complex in the establishment of latency, we constructed recombinant virus (R112) carrying a dominant-negative REST that bound response elements in DNA but could not recruit repressive proteins. This recombinant virus was unable to establish latency. In the current studies, we constructed a virus (R111) carrying WT REST with a WT genome. We report the following findings: (a) R111 readily established latent infection in trigeminal ganglia; however, although the amounts of viral DNAs in latently infected neurons were similar to those of WT virus, the levels of latency-associated transcript and micro-RNAs were 50- to 100-fold lower; (b) R111 did not spontaneously reactivate in ganglionic organ cultures; however, viral genes were expressed if the synthesis of REST was blocked by cycloheximide; and (c) histone deacetylase inhibitors reactivated the WT parent but not the R111 recombinant virus. The results suggest that REST plays a transient role in the establishment of latency but not in reactivation and suggest the existence of at least two phases at both establishment and reactivation. PMID:23341636

  7. Synthesis and reactivity of compounds containing ruthenium-carbon, -nitrogen, and -oxygen bonds

    SciTech Connect

    Hartwig, J.F.

    1990-12-01

    The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe{sub 3}){sub 4}Ru(X)(Y) and (DMPM){sub 2}Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe{sub 3}){sub 4}Ru(Ph)(Me) or (PMe{sub 3}){sub 4}Ru(Ph){sub 2} leads to the ruthenium benzyne complex (PMe{sub 3}){sub 4}Ru({eta}{sup 2}-C{sub 6}H{sub 4}) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO{sub 2} and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe{sub 3}){sub 4}Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs.

  8. Polar red-emitting rhodamine dyes with reactive groups: synthesis, photophysical properties, and two-color STED nanoscopy applications.

    PubMed

    Kolmakov, Kirill; Wurm, Christian A; Meineke, Dirk N H; Göttfert, Fabian; Boyarskiy, Vadim P; Belov, Vladimir N; Hell, Stefan W

    2014-01-01

    The synthesis, reactivity, and photophysical properties of new rhodamines with intense red fluorescence, two polar residues (hydroxyls, primary phosphates, or sulfonic acid groups), and improved hydrolytic stability of the amino-reactive sites (NHS esters or mixed N-succinimidyl carbonates) are reported. All fluorophores contain an N-alkyl-1,2-dihydro-2,2,4-trimethylquinoline fragment, and most of them bear a fully substituted tetrafluoro phenyl ring with a secondary carboxamide group. The absorption and emission maxima in water are in the range of 635-639 and 655-659 nm, respectively. A vastly simplified approach to red-emitting rhodamines with two phosphate groups that are compatible with diverse functional linkers was developed. As an example, a phosphorylated dye with an azide residue was prepared and was used in a click reaction with a strained alkyne bearing an N-hydroxysuccinimid (NHS) ester group. This method bypasses the undesired activation of phosphate groups, and gives an amphiphilic amino-reactive dye, the solubility and distribution of which between aqueous and organic phases can be controlled by varying the pH. The presence of two hydroxyl groups and a phenyl ring with two carboxyl residues in the dyes with another substitution pattern is sufficient for providing the hydrophilic properties. Selective formation of a mono-N-hydroxysuccinimidyl ester from 5-carboxy isomer of this rhodamine is reported. The fluorescence quantum yields varied from 58 to 92% for free fluorophores, and amounted to 18-64% for antibody conjugates in aqueous buffers. The brightness and photostability of these fluorophores facilitated two-color stimulated emission depletion (STED) fluorescence nanoscopy of biological samples with high contrast and minimal background. Selecting a pair of fluorophores with absorption/emission bands at 579/609 and 635/655 nm enabled two-color channels with low cross-talk and negligible background at approximately 40 nm resolution. PMID:24338798

  9. Polyamines function in stress tolerance: from synthesis to regulation

    PubMed Central

    Liu, Ji-Hong; Wang, Wei; Wu, Hao; Gong, Xiaoqing; Moriguchi, Takaya

    2015-01-01

    Plants are challenged by a variety of biotic or abiotic stresses, which can affect their growth and development, productivity, and geographic distribution. In order to survive adverse environmental conditions, plants have evolved various adaptive strategies, among which is the accumulation of metabolites that play protective roles. A well-established example of the metabolites that are involved in stress responses, or stress tolerance, is the low-molecular-weight aliphatic polyamines, including putrescine, spermidine, and spermine. The critical role of polyamines in stress tolerance is suggested by several lines of evidence: firstly, the transcript levels of polyamine biosynthetic genes, as well as the activities of the corresponding enzymes, are induced by stresses; secondly, elevation of endogenous polyamine levels by exogenous supply of polyamines, or overexpression of polyamine biosynthetic genes, results in enhanced stress tolerance; and thirdly, a reduction of endogenous polyamines is accompanied by compromised stress tolerance. A number of studies have demonstrated that polyamines function in stress tolerance largely by modulating the homeostasis of reactive oxygen species (ROS) due to their direct, or indirect, roles in regulating antioxidant systems or suppressing ROS production. The transcriptional regulation of polyamine synthesis by transcription factors is also reviewed here. Meanwhile, future perspectives on polyamine research are also suggested. PMID:26528300

  10. The Synthesis of Functional Mesoporous Materials

    SciTech Connect

    Fryxell, Glen E.

    2006-11-01

    The ability to decorate a silica surface with specific ligand fields and/or metal complexes creates powerful new capabilities for catalysis, chemical separations and sensor development. Integrating this with the ability to control the spacing of these complexes across the surface, as well as the symmetry and size of the pore structure, allows the synthetic chemist to hierarchically tailor these structured nanomaterials to specific needs. The next step up the “scale ladder” is provided by the ability to coat these mesoporous materials onto complex shapes, allowing for the intimate integration of these tailored materials into device interfaces. The ability to tailor the pore structure of these mesoporous supports is derived from the surfactant templated synthesis of mesoporous materials, an area which has seen an explosion of activity over the last decade.[1,2] The ability to decorate the surface with the desired functionality requires chemical modification of the oxide interface, most commonly achieved using organosilane self-assembly.[3-6] This manuscript describes recent results from the confluence of these two research areas, with a focus on synthetic manipulation of the morphology and chemistry of the interface, with the ultimate goal of binding metal centers in a chemically useful manner.

  11. Multivariable synthesis with transfer functions. [applications to gas turbine engines

    NASA Technical Reports Server (NTRS)

    Peczkowski, J. L.

    1980-01-01

    A transfer function design theory for multivariable control synthesis is highlighted. The use of unique transfer function matrices and two simple, basic relationships - a synthesis equation and a design equation - are presented and illustrated. This multivariable transfer function approach provides the designer with a capability to specify directly desired dynamic relationships between command variables and controlled or response variables. At the same time, insight and influence over response, simplifications, and internal stability is afforded by the method. A general, comprehensive multivariable synthesis capability is indicated including nonminmum phase and unstable plants. Gas turbine engine examples are used to illustrate the ideas and method.

  12. Synthesis and Reactivity of a Bio-inspired Dithiolene Ligand and its Mo Oxo Complex.

    PubMed

    Porcher, Jean-Philippe; Fogeron, Thibault; Gomez-Mingot, Maria; Chamoreau, Lise-Marie; Li, Yun; Fontecave, Marc

    2016-03-18

    An original synthesis of the fused pyranoquinoxaline dithiolene ligand qpdt(2-) is discussed in detail. The most intriguing step is the introduction of the dithiolene moiety by Pd-catalyzed carbon-sulfur coupling. The corresponding Mo(IV) O complex (Bu4 N)2 [MoO(qpdt)2 ] (2) underwent reversible protonation in a strongly acidic medium and remained stable under anaerobic conditions. Besides, 2 was found to be very sensitive towards oxygen, as upon oxidation it formed a planar dithiin derivative. Moreover, the qpdt(2-) ligand in the presence of [MoCl4 (tBuNC)2 ] formed a tetracyclic structure. The products resulting from the unique reactivity of qpdt(2-) were characterized by X-ray diffraction, mass spectrometry, NMR spectroscopy, UV/Vis spectroscopy, and electrochemistry. Plausible mechanisms for the formation of these products are also proposed. PMID:26880579

  13. Synthesis and Reactivity of Palladium(II) Fluoride Complexes Containing Nitrogen-Donor Ligands

    PubMed Central

    Ball, Nicholas D.; Kampf, Jeff W.; Sanford, Melanie S.

    2010-01-01

    This article describes the synthesis, characterization, and reactivity of palladium(II) fluoride complexes containing sp2 and sp3 nitrogen-containing supporting ligands. Both cis and trans complexes of general structure (N)(N’)PdII(R)(F) (R = Ar or CH3) as well as cis-(N)2PdII(F)2 are reported. Crystallographic characterization of these molecules has allowed structural comparisons to related phosphine-ligated species. Furthermore, these studies have revealed that nitrogen-donor ligands support some of the longest and the shortest Pd–F bonds reported to date. The thermal decomposition of (N)(N’)PdII(R)(F) has also been examined, and no products of C–F bond-forming reductive elimination were obtained in any cases. PMID:20024002

  14. Synthesis and Characterization of Reactive Powder Concrete for its Application on Thermal Insulation Panels

    NASA Astrophysics Data System (ADS)

    Chozas, V.; Larraza, Í.; Vera-Agullo, J.; Williams-Portal, N.; Mueller, U.; Da Silva, N.; Flansbjer, M.

    2015-11-01

    This paper describes the synthesis and characterization of a set of textile reinforced reactive powder concrete (RPC) mixes that have been prepared in the framework of the SESBE project which aims to develop facade panels for the building envelope. In order to reduce the environmental impact, high concentration of type I and II mineral additions were added to the mixtures (up to 40% of cement replacement). The mechanical properties of the materials were analysed showing high values of compression strength thus indicating no disadvantages in the compression mechanical performance (∼140 MPa) and modulus of elasticity. In order to enable the use of these materials in building applications, textile reinforcement was introduced by incorporating layers of carbon fibre grids into the RPC matrix. The flexural performance of these samples was analysed showing high strength values and suitability for their further utilization.

  15. Lewis Acid Zeolites for Biomass Conversion: Perspectives and Challenges on Reactivity, Synthesis, and Stability.

    PubMed

    Luo, Helen Y; Lewis, Jennifer D; Román-Leshkov, Yuriy

    2016-06-01

    Zeolites containing Sn, Ti, Zr, Hf, Nb, or Ta heteroatoms are versatile catalysts for the activation and conversion of oxygenated molecules owing to the unique Lewis acid character of their tetrahedral metal sites. Through fluoride-mediated synthesis, hydrophobic Lewis acid zeolites can behave as water-tolerant catalysts, which has resulted in a recent surge of experimental and computational studies in the field of biomass conversion. However, many open questions still surround these materials, especially relating to the nature of their active sites. This lack of fundamental understanding is exemplified by the many dissonant results that have been described in recent literature reports. In this review, we use a molecular-based approach to provide insight into the relationship between the structure of the metal center and its reactivity toward different substrates, with the ultimate goal of providing a robust framework to understand the properties that have the strongest influence on catalytic performance for the conversion of oxygenates. PMID:27146555

  16. Synthesis of novel amorphous calcium carbonate by sono atomization for reactive mixing.

    PubMed

    Kojima, Yoshiyuki; Kanai, Makoto; Nishimiya, Nobuyuki

    2012-03-01

    Droplets of several micrometers in size can be formed in aqueous solution by atomization under ultrasonic irradiation at 2 MHz. This phenomenon, known as atomization, is capable of forming fine droplets for use as a reaction field. This synthetic method is called SARM (sono atomization for reactive mixing). This paper reports on the synthesis of a novel amorphous calcium carbonate formed by SARM. The amorphous calcium carbonate, obtained at a solution concentration of 0.8 mol/dm(3), had a specific surface area of 65 m(2)/g and a composition of CaCO(3)•0.5H(2)O as determined using thermogravimetric/differential thermal analysis (TG-DTA). Because the ACC had a lower hydrate composition than conventional amorphous calcium carbonate (ACC), the ACC synthesized in this paper was very stable at room temperature. PMID:21788149

  17. Synthesis of Some "Cobaloxime" Derivatives: A Demonstration of "Umpolung" in the Reactivity of an Organometallic Complex

    NASA Astrophysics Data System (ADS)

    Jameson, Donald L.; Grzybowski, Joseph J.; Hammels, Deb E.; Castellano, Ronald K.; Hoke, Molly E.; Freed, Kimberly; Basquill, Sean; Mendel, Angela; Shoemaker, William J.

    1998-04-01

    This article describes a four-reaction sequence for the synthesis of two organometallic "cobaloxime" derivatives. The concept of "Umpolung" or reversal of reactivity is demonstrated in the preparation of complexes. The complex Co(dmgH)2(4-t-BuPy)Et is formed by the reaction of a cobalt (I) intermediate (cobalt in the role of nucleophile) with ethyl iodide. The complex Co(dmgH)2(4-t-BuPy)Ph is formed by the reaction of PhMgBr with a cobalt (III) intermediate (cobalt in the role of electrophile). All the products contain cobalt in the diamagnetic +3 oxidation state and are readily characterized by proton and carbon NMR. The four reaction sequence may be completed in two 4-hour lab periods. Cobaloximes are well known as model complexes for Vitamin B-12 and the experiment exposes students to aspects of classical coordination chemistry, organometallic chemistry and bioinorganic chemistry. The experiment also illustrates an important reactivity parallel between organic and organometallic chemistry.

  18. Reactive hyperemia is not responsible for stimulating muscle protein synthesis following blood flow restriction exercise.

    PubMed

    Gundermann, David M; Fry, Christopher S; Dickinson, Jared M; Walker, Dillon K; Timmerman, Kyle L; Drummond, Micah J; Volpi, Elena; Rasmussen, Blake B

    2012-05-01

    Blood flow restriction (BFR) to contracting skeletal muscle during low-intensity resistance exercise training increases muscle strength and size in humans. However, the mechanism(s) underlying these effects are largely unknown. We have previously shown that mammalian target of rapamycin complex 1 (mTORC1) signaling and muscle protein synthesis (MPS) are stimulated following an acute bout of BFR exercise. The purpose of this study was to test the hypothesis that reactive hyperemia is the mechanism responsible for stimulating mTORC1 signaling and MPS following BFR exercise. Six young men (24 ± 2 yr) were used in a randomized crossover study consisting of two exercise trials: low-intensity resistance exercise with BFR (BFR trial) and low-intensity resistance exercise with sodium nitroprusside (SNP), a pharmacological vasodilator infusion into the femoral artery immediately after exercise to simulate the reactive hyperemia response after BFR exercise (SNP trial). Postexercise mixed-muscle fractional synthetic rate from the vastus lateralis increased by 49% in the BFR trial (P < 0.05) with no change in the SNP trial (P > 0.05). BFR exercise increased the phosphorylation of mTOR, S6 kinase 1, ribosomal protein S6, ERK1/2, and Mnk1-interacting kinase 1 (P < 0.05) with no changes in mTORC1 signaling in the SNP trial (P > 0.05). We conclude that reactive hyperemia is not a primary mechanism for BFR exercise-induced mTORC1 signaling and MPS. Further research is necessary to elucidate the cellular mechanism(s) responsible for the increase in mTOR signaling, MPS, and hypertrophy following acute and chronic BFR exercise. PMID:22362401

  19. Diversity synthesis using the complimentary reactivity of rhodium(II)- and palladium(II)-catalyzed reactions.

    PubMed

    Ni, Aiwu; France, Jessica E; Davies, Huw M L

    2006-07-21

    Rhodium(II)-catalyzed reactions of aryldiazoacetates can be conducted in the presence of iodide, triflate, organoboron, and organostannane functionality, resulting in the formation of a variety of cyclopropanes or C-H insertion products with high stereoselectivity. The combination of the rhodium(II)-catalyzed reaction with a subsequent palladium(II)-catalyzed Suzuki coupling offers a novel strategy for diversity synthesis. PMID:16839138

  20. Design and synthesis of supramolecular functional benzoxazines

    NASA Astrophysics Data System (ADS)

    Choi, Seong-Woo

    Dendritic macromolecules containing benzoxazine moieties are designed and synthesized using the Frechet type of ester dendritic building block via a convergent approach. Before proceeding with dendritic building synthesis, the compatibility of benzoxazine chemistry with four different types of 2,4-, 2,5-, 2,6-, and 3,5-dihydroxy benzoicacid isomers is evaluated using Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy (NMR). Among isomers, 3,5-dihydroxybenzoic acid is the most compatible with benzoxazine chemistry and yields completely closed-ring benzoxazine monomer structure. Unlike 3,5-dihydroxybenzoic acid, the other three isomers show only partial ring closure or incompatibility with benzoxazine chemistry due to the existence of intramolecular hydrogen bonding between OH--O species. After finishing the model isomer study, dendritic macromolecules containing benzoxazine moieties are newly synthesized using various combinations of amine derivatives. Benzoxazine dendrimers show much lower maximum polymerization exotherm temperatures as the generation is increased as compared to ordinary benzoxazine monomers. Especially, it is revealed that the dendritic effect on benzoxazine curing temperature is more effective for the aromatic amine based benzoxazine dendrimer than for the aliphatic amine based system. By characterizing benzoxazine dendrimers, their self-catalyzed ring opening ability is elucidated and suggests their use as a curing initiator with other benzoxazine monomers. The dendritic multiplication effect on benzoxazine curing behavior and dynamic viscosity is further investigated using a combination of 6-[1-methyl-1-(3-phenyl(2H,4H-benzo[3,4-e]1,3-oxazaperhydroin-6-yl))ethyl]-3-phenyl-2H,4H-benzo[e]1,3-oxazine (abbreviated as BA-a) monomer with various phenolic derivatives. Another possibility is found for improving processibility by decreasing the polymerization temperature of ordinary benzoxazine monomer with

  1. Linkage of functional and structural anomalies in the left amygdala of reactive-aggressive men

    PubMed Central

    Ostrosky, Feggy; Diaz, Karla; Romero, Cesar; Borja, Karina; Santos, Yusniel; Valdés-Sosa, Mitchell

    2013-01-01

    Amygdala structural and functional abnormalities have been associated to reactive aggression in previous studies. However, the possible linkage of these two types of anomalies has not been examined. We hypothesized that they would coincide in the same localizations, would be correlated in intensity and would be mediated by reactive aggression personality traits. Here violent (n = 25) and non-violent (n = 29) men were recruited on the basis of their reactive aggression. Callous-unemotional (CU) traits were also assessed. Gray matter concentration (gmC) and reactivity to fearful and neutral facial expressions were measured in dorsal and ventral amygdala partitions. The difference between responses to fearful and neutral facial expressions was calculated (F/N-difference). Violent individuals exhibited a smaller F/N-difference and gmC in the left dorsal amygdala, where a significant coincidence was found in a conjunction analysis. Moreover, the left amygdala F/N-difference and gmC were correlated to each other, an effect mediated by reactive aggression but not by CU. The F/N-difference was caused by increased reactivity to neutral faces. This suggests that anatomical anomalies within local circuitry (and not only altered input) may underlie the amygdala hyper-reactivity to social signals which is characteristic of reactive aggression. PMID:22956672

  2. Effects of reactive oxygen species on sperm function.

    PubMed

    Guthrie, H D; Welch, G R

    2012-11-01

    Reactive oxygen species (ROS) formation and membrane lipid peroxidation have been recognized as problems for sperm survival and fertility. The precise roles and detection of superoxide (SO), hydrogen peroxide (HP), and membrane lipid peroxidation have been problematic, because of the low specificity and sensitivity of the established chemiluminescence assay technologies. We developed flow cytometric assays to measure SO, HP, membrane lipid peroxidation, and inner mitochondrial transmembrane potential in boar sperm. These methods were sufficiently sensitive to permit detection of early changes in ROS formation in sperm cells that were still viable. Basal ROS formation and membrane lipid peroxidation in the absence of ROS generators were low in viable sperm of both fresh and frozen-thawed boar semen, affecting less than 4% of the sperm cells on average. However, this is not the case in other species, as human, bovine, and poultry sperm have large increases in sperm ROS formation, lipid peroxidation, loss of motility, and death in vitro. Closer study of the effects of ROS formation on the relationship between sperm motility and ATP content in boar sperm was conducted using menadione (mitochondrial SO generator) and HP treatment. Menadione or HP caused an immediate disruption of motility with delayed or no decrease in sperm ATP content, respectively. Overall, the inhibitory effects of ROS on motility point to a mitochondrial-independent mechanism. The reduction in motility may have been due to a ROS-induced lesion in ATP utilization or in the contractile apparatus of the flagellum. PMID:22704396

  3. Scar Functions, Barriers for Chemical Reactivity, and Vibrational Basis Sets.

    PubMed

    Revuelta, F; Vergini, E; Benito, R M; Borondo, F

    2016-07-14

    The performance of a recently proposed method to efficiently calculate scar functions is analyzed in problems of chemical interest. An application to the computation of wave functions associated with barriers relevant for the LiNC ⇄ LiCN isomerization reaction is presented as an illustration. These scar functions also constitute excellent elements for basis sets suitable for quantum calculation of vibrational energy levels. To illustrate their efficiency, a calculation of the LiNC/LiCN eigenfunctions is also presented. PMID:26905100

  4. Theoretical study for pyridinium-based ionic liquid 1-ethylpyridinium trifluoroacetate: synthesis mechanism, electronic structure, and catalytic reactivity.

    PubMed

    Zhu, Xueying; Cui, Peng; Zhang, Dongju; Liu, Chengbu

    2011-07-28

    By performing density functional theory calculations, we have studied the synthesis mechanism, electronic structure, and catalytic reactivity of a pyridinium-based ionic liquid, 1-ethylpyridinium trifluoroacetate ([epy](+)[CF(3)COO](-)). It is found that the synthesis of the pyridinium salt follows a S(N)2 mechanism. The electronic structural analyses show that multiple H bonds are generally involved in the pyridinium-based ionic liquid, which may play a decisive role for stabilizing the ionic liquid. The cation-anion interaction mainly involves electron transfer between the lone pair of the oxygen atom in the anion and the antibonding orbital of the C*-H bond (C* denotes the carbon atom at the ortho-position of nitrogen atom in the cation). This present work has also given clearly the catalytic mechanism of [epy](+)[CF(3)COO](-) toward to the Diels-Alder (D-A) reaction of acrylonitrile with 2-methyl-1,3-butadiene. Both the cation and anion are shown to play important roles in promoting the D-A reaction. The cation [epy](+), as a Lewis acid, associates the C≡N group by C≡N···H H bond to increase the polarity of the C═C double bond in acrylonitrile, while the anion CF(3)COO(-) links with the methyl group in 2-methyl-1,3-butadiene by C-H···O H bond, which weakens the electron-donating capability of methyl and thereby lowers the energy barrier of the D-A reaction. The present results are expected to provide valuable information for the design and application of pyridinium-based ionic liquids. PMID:21671599

  5. The use of density functional theory-based reactivity descriptors in molecular similarity calculations

    NASA Astrophysics Data System (ADS)

    Boon, Greet; De Proft, Frank; Langenaeker, Wilfried; Geerlings, Paul

    1998-10-01

    Molecular similarity is studied via density functional theory-based similarity indices using a numerical integration method. Complementary to the existing similarity indices, we introduce a reactivity-related similarity index based on the local softness. After a study of some test systems, a series of peptide isosteres is studied in view of their importance in pharmacology. The whole of the present work illustrates the importance of the study of molecular similarity based on both shape and reactivity.

  6. A highly reactive chalcogenide precursor for the synthesis of metal chalcogenide quantum dots

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Zhu, Dong-Liang; Zhu, Chun-Nan; Zhang, Zhi-Ling; Zhang, Guo-Jun; Pang, Dai-Wen

    2015-11-01

    Metal chalcogenide semiconductor nanocrystals (NCs) are ideal inorganic materials for solar cells and biomedical labeling. In consideration of the hazard and instability of alkylphosphines, the phosphine-free synthetic route has become one of the most important trends in synthesizing selenide QDs. Here we report a novel phase transfer strategy to prepare phosphine-free chalcogenide precursors. The anions in aqueous solution were transferred to toluene via electrostatic interactions between the anions and didodecyldimethylammonium bromide (DDAB). The obtained chalcogenide precursors show high reactivity with metal ions in the organic phase and could be applied to the low-temperature synthesis of various metal chalcogenide NCs based on a simple reaction between metal ions (e.g. Ag+, Pb2+, Cd2+) and chalcogenide anions (e.g. S2-) in toluene. In addition to chalcogenide anions, other anions such as BH4- ions and AuCl4- ions can also be transferred to the organic phase for synthesizing noble metal NCs (such as Ag and Au NCs).Metal chalcogenide semiconductor nanocrystals (NCs) are ideal inorganic materials for solar cells and biomedical labeling. In consideration of the hazard and instability of alkylphosphines, the phosphine-free synthetic route has become one of the most important trends in synthesizing selenide QDs. Here we report a novel phase transfer strategy to prepare phosphine-free chalcogenide precursors. The anions in aqueous solution were transferred to toluene via electrostatic interactions between the anions and didodecyldimethylammonium bromide (DDAB). The obtained chalcogenide precursors show high reactivity with metal ions in the organic phase and could be applied to the low-temperature synthesis of various metal chalcogenide NCs based on a simple reaction between metal ions (e.g. Ag+, Pb2+, Cd2+) and chalcogenide anions (e.g. S2-) in toluene. In addition to chalcogenide anions, other anions such as BH4- ions and AuCl4- ions can also be transferred to

  7. IMPACT OF AGING ON CARDIOVASCULAR FUNCTION AND REACTIVITY

    EPA Science Inventory

    It is generally thought that senescence in mammals is accompanied by an overall decline in functional integrity of the organism and its ability to adapt to various environmental challenges. onsiderable body of evidence has shown that in both human and laboratory animals, advancin...

  8. Iron complexes of a bidentate picolyl-NHC ligand: synthesis, structure and reactivity.

    PubMed

    Liang, Qiuming; Janes, Trevor; Gjergji, Xhoana; Song, Datong

    2016-09-21

    The synthesis, structure and reactivity of bidentate picolyl N-heterocyclic carbene (NHC) iron compounds were studied. Compounds [FeBr(HL)2]Br (1), [FeBr(HL)(HMDS)] (2) and [FeBr2(HL)] (3) (HL = 1-mesityl-3-(pyridin-2-ylmethyl)imidazol-1-ylidene, HMDS = hexamethyldisilazide) were prepared from H2LBr with suitable amounts of Fe(HMDS)2 or in situ prepared [Fe(HMDS)Br]. The deprotonation of 1 with 2 eq. of LiHMDS gave [FeL2] (4), featuring dearomatized pyridine moieties with exocyclic C-C double bonds. The protonation of 4 with 2 eq. of PPh3·HBr results in the formation of 1. Attempted deprotonation of 3 using benzyl Grignard as the base resulted in transmetalation products [FeBnBr(HL)] (5) and [FeBn2(HL)] (6). Exposure of 6 to CO resulted in the formation of diamagnetic compound [Fe(CO)3(HL)] (7) and dibenzyl ketone. Prolonged exposure of 7 to CO with heating induces pyridine dissociation, affording [Fe(CO)4(HL-κC)] (8). Treatment of compound 6 with an equimolar amount of p-methoxybenzyl bromide yielded homo- and cross-coupling products. PMID:27513216

  9. A highly reactive chalcogenide precursor for the synthesis of metal chalcogenide quantum dots.

    PubMed

    Jiang, Peng; Zhu, Dong-Liang; Zhu, Chun-Nan; Zhang, Zhi-Ling; Zhang, Guo-Jun; Pang, Dai-Wen

    2015-12-01

    Metal chalcogenide semiconductor nanocrystals (NCs) are ideal inorganic materials for solar cells and biomedical labeling. In consideration of the hazard and instability of alkylphosphines, the phosphine-free synthetic route has become one of the most important trends in synthesizing selenide QDs. Here we report a novel phase transfer strategy to prepare phosphine-free chalcogenide precursors. The anions in aqueous solution were transferred to toluene via electrostatic interactions between the anions and didodecyldimethylammonium bromide (DDAB). The obtained chalcogenide precursors show high reactivity with metal ions in the organic phase and could be applied to the low-temperature synthesis of various metal chalcogenide NCs based on a simple reaction between metal ions (e.g. Ag(+), Pb(2+), Cd(2+)) and chalcogenide anions (e.g. S(2-)) in toluene. In addition to chalcogenide anions, other anions such as BH4(-) ions and AuCl4(-) ions can also be transferred to the organic phase for synthesizing noble metal NCs (such as Ag and Au NCs). PMID:26531253

  10. Phosphorus-stabilized titanium carbene complexes: synthesis, reactivity and DFT studies.

    PubMed

    Lafage, Mathieu; Heuclin, Hadrien; Le Goff, Xavier-Frédéric; Saffon-Merceron, Nathalie; Mézailles, Nicolas

    2014-12-15

    The synthesis of two novel titanium carbene complexes from the bis(thiophosphinoyl)methanediide geminal dianion 1 (SCS(2-) ) is described. Dianion 1 reacts cleanly with 0.5 equivalents of [TiCl4 (thf)2 ] to afford the bis-carbene complex [(SCS)2 Ti] (2) in 86 % yield. The mono-carbene complex [(SCS)TiCl2 (thf)] (3) can also be obtained by using an excess of [TiCl4 (thf)2 ]. The structures of 2 and 3 are confirmed by X-ray crystallography. A strong nucleophilic reactivity towards various electrophiles (ketones and aldehydes) is observed. The reaction of 3 with N,N'-dicyclohexylcarbodiimide (DCC) and phenyl isocyanate leads to the formation of two novel diphosphinoketenimines 8 a and 8 b. The bis-titanium guanidinate complex 9 is trapped as the by-product of the reaction with DCC. The X-ray crystal structures of 8 a and 9 are presented. The mechanism of the reaction between complex 3 and DCC is rationalized by DFT studies. PMID:25339253

  11. Development of a new graded-porosity FeAl alloy by elemental reactive synthesis

    SciTech Connect

    Shen, P Z; He, Y H; Gao, H Y; Zou, J; Xu, N P; Jiang, Y; Huang, B; Lui, C T

    2009-01-01

    A new graded-porosity FeAl alloy can be fabricated through Fe and Al elemental reactive synthesis. FeAl alloy with large connecting open pores and permeability were used as porous supports. The coating was obtained by spraying slurries consisting of mixtures of Fe powder and Al powder with 3 5 m diameter onto porous FeAl support and then sintered at 1100 C. The performances of the coating were compared in terms of thickness, pore diameter and permeability. With an increase in the coating thickness up to 200 m, the changes of maximum pore size decreased from 23.6 m to 5.9 m and the permeability decreased from 184.2 m3m 2kPa 1h 1 to 76.2 m3m 2kPa 1h 1, respectively, for a sintering temperature equal to 1100 C. The composite membranes have potential application for excellent filters in severe environments.

  12. Executive functions and memory in autogenous and reactive subtype of obsessive-compulsive disorder patients.

    PubMed

    Aydın, Pinar Cetinay; Koybasi, Gulperi Putgul; Sert, Engin; Mete, Levent; Oyekcin, Demet Gulec

    2014-05-01

    There are concurrently with different results of studies about cognitive functions of Obsessive-Compulsive Disorder (OCD), impairment in non-verbal memory and executive functioning in OCD, has shown consistent results in several studies. In this study, 62 OCD patients and 40 healthy controls were participated. Firstly, cognitive functions of OCD group and healthy control group were compared in terms of scores in Stroop Test, Wisconsin Cart Sorting Test (WCST), Auditory Consonant Trigram Test (ACTT), Controlled Word Association Test (CWAT), Rey Auditory Verbal Learning Test (RAVLT), Digit Span Test (DST). And then, two patient groups of OCD patients (patients with autogenous obsessions and patients with reactive obsessions) were compared in terms of the scores of same tests, with a hypothesis that claims, cognitive functions of patients with autogenous obsessions, who shown schizotypal personality features and thought disorder in higher ratio, will show more impairment than cognitive functions of patients with reactive obsessions. Significant impairment was found in OCD patients in terms of Stroop test and WCST scores when compared to scores of healthy controls. There was no difference pointed out between cognitive functions of patients with autogenous obsessions and reactive obsessions. Due to limited number of patients with autogenous obsessions in current study, any future research with greater sample size will be helpful to explain the cognitive functions in OCD with autogenous and reactive obsessions. PMID:24582324

  13. Comparison of Global Reactivity Descriptors Calculated Using Various Density Functionals: A QSAR Perspective.

    PubMed

    Vijayaraj, R; Subramanian, V; Chattaraj, P K

    2009-10-13

    Conceptual density functional theory (DFT) based global reactivity descriptors are used to understand the relationship between structure, stability, and global chemical reactivity. Furthermore, these descriptors are employed in the development of quantitative structure-activity (QSAR), structure-property (QSPR), and structure-toxicity (QSTR) relationships. However, the predictive power of various relationships depends on the reliable estimates of these descriptors. The basic working equations used to calculate these descriptors contain both the ionization potential and the electron affinity of chosen molecules. Therefore, efficiency of different density functionals (DFs) in predicting the ionization potential and the electron affinity has to be systematically evaluated. With a view to benchmark the method of calculation of global reactivity descriptors, comprehensive calculations have been carried out on a series of chlorinated benzenes using a variety of density functionals employing different basis sets. In addition, to assess the utility of global reactivity descriptors, the relationships between the reactivity-electrophilicity and the structure-toxicity have been developed. The ionization potential and the electron affinity values obtained from M05-2X method using the ΔSCF approach are closer to the corresponding experimental values. This method reliably predicts these electronic properties when compared to the other DFT methods. The analysis of a series of QSTR equations reveals that computationally economic DFT functionals can be effectively and routinely applied in the development of QSAR/QSPR/QSTR. PMID:26631787

  14. Synthesis Of Reactive Nano-Fe/Pd Bimetallic System-Impregnated Activated Carbon For The Simultaneous Adsorption And Dechlorination Of PCBs

    EPA Science Inventory

    Synthesis and use of reactive metal particles have shown significant environmental implications for the remediation of groundwater and sediment contaminated with chlorinated compounds. Herein, we have developed an effective strategy, employing a series of innovative granular act...

  15. Chemical functionalities at the silica surface determining its reactivity when inhaled. Formation and reactivity of surface radicals.

    PubMed

    Fubini, B; Giamello, E; Volante, M; Bolis, V

    1990-12-01

    Reactive radicals at the surface of quartz or other SiO2 polymorphs have been studied by EPR in relation to their possible role in pathogenicity. All the examined dusts bear the characteristic radicals of silica ground in air: Si, SiO., SiO.2 (peroxyradical) and O2.- (superoxide ion), but some also show additional spectral lines belonging to other radical forms. Comparison of standard quartz dusts (DQ-12, Min-u-sil 5) with a natural quartz and with what obtained by grinding a very pure quartz crystal indicates that to a higher purity corresponds a higher radical population. Cristobalite and vitreous silica exhibit similar spectra, with larger proportion by respect to quartz, of partially reduced oxygen forms. The reactivity of the silica surface towards O2 and NaClO aqueous solutions are investigated by examining the modification in the EPR spectra induced by these treatments. A possible mechanism for fibrogenicity is proposed whereby, within the activated macrophage, a catalytic reaction occurs between surface functionalities and macrophage oxygen metabolites. This reaction would trigger the abnormal production of fibroblast stimulating factors, ending up with silicosis. PMID:1965871

  16. Computational Study of Chemical Reactivity Using Information-Theoretic Quantities from Density Functional Reactivity Theory for Electrophilic Aromatic Substitution Reactions.

    PubMed

    Wu, Wenjie; Wu, Zemin; Rong, Chunying; Lu, Tian; Huang, Ying; Liu, Shubin

    2015-07-23

    The electrophilic aromatic substitution for nitration, halogenation, sulfonation, and acylation is a vastly important category of chemical transformation. Its reactivity and regioselectivity is predominantly determined by nucleophilicity of carbon atoms on the aromatic ring, which in return is immensely influenced by the group that is attached to the aromatic ring a priori. In this work, taking advantage of recent developments in quantifying nucleophilicity (electrophilicity) with descriptors from the information-theoretic approach in density functional reactivity theory, we examine the reactivity properties of this reaction system from three perspectives. These include scaling patterns of information-theoretic quantities such as Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy and information gain at both molecular and atomic levels, quantitative predictions of the barrier height with both Hirshfeld charge and information gain, and energetic decomposition analyses of the barrier height for the reactions. To that end, we focused in this work on the identity reaction of the monosubstituted-benzene molecule reacting with hydrogen fluoride using boron trifluoride as the catalyst in the gas phase. We also considered 19 substituting groups, 9 of which are ortho/para directing and the other 9 meta directing, besides the case of R = -H. Similar scaling patterns for these information-theoretic quantities found for stable species elsewhere were disclosed for these reactions systems. We also unveiled novel scaling patterns for information gain at the atomic level. The barrier height of the reactions can reliably be predicted by using both the Hirshfeld charge and information gain at the regioselective carbon atom. The energy decomposition analysis ensued yields an unambiguous picture about the origin of the barrier height, where we showed that it is the electrostatic interaction that plays the dominant role, while the roles played by exchange-correlation and

  17. Study of curcumin immunomodulatory effects on reactive astrocyte cell function.

    PubMed

    Seyedzadeh, Mir Hadi; Safari, Zohreh; Zare, Ahad; Gholizadeh Navashenaq, Jamshid; Razavi, Seyed Alireza; Kardar, Gholam Ali; Khorramizadeh, Mohammad Reza

    2014-09-01

    Multiple sclerosis (MS) is considered an inflammatory and neurodegenerative disease of the central nervous system (CNS) which most often presents as relapsing-remitting episodes. Recent evidence suggests that activated astrocytes play a dual functional role in CNS inflammatory disorders such as MS. In this study, we tried to induce anti-inflammatory functions of astrocytes by curcumin. The effects of curcumin were examined on human a astrocyte cell line (U373-MG) induced by lipopolysaccharide (LPS) in vitro. Matrix metalloproteinase (MMP)-9 activity was assessed by gelatin zymography. Cytokine levels were evaluated by quantitative ELISA method and mRNA expression was measured by real-time PCR. We found that curcumin decreased the release of IL-6 and reduced MMP-9 enzyme activity. It down-regulated MCP-1 mRNA expression too. However, curcumin did not have significant effects on the expression of neurotrophin (NT)-3 and insulin-like growth factor (IGF)-1 mRNAs. Results suggest that curcumin might beneficially affect astrocyte population in CNS neuroinflammatory environment lean to anti-inflammatory response and help to components in respects of CNS repair. Our findings offer curcumin as a new therapeutic agent with the potential of regulating astrocyte-mediated inflammatory diseases in the CNS. PMID:24998635

  18. Tactic, reactive, and functional droplets outside of equilibrium.

    PubMed

    Lach, Sławomir; Yoon, Seok Min; Grzybowski, Bartosz A

    2016-08-22

    Under non-equilibrium conditions, liquid droplets coupled to their environment by sustained flows of matter and/or energy can become "active" systems capable of various life-like functions. When "fueled" by even simple chemical reactions, such droplets can become tactic and can perform "intelligent" tasks such as maze solving. With more complex chemistries, droplets can support basic forms of metabolism, grow, self-replicate, and exhibit evolutionary changes akin to biological cells. There are also first exciting examples of active droplets connected into larger, tissue-like systems supporting droplet-to-droplet communication, and giving rise to collective material properties. As practical applications of droplets also begin to appear (e.g., in single-cell diagnostics, new methods of electricity generation, optofluidics, or sensors), it appears timely to review and systematize progress in this highly interdisciplinary area of chemical research, and also think about the avenues (and the roadblocks) for future work. PMID:27293207

  19. Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization

    NASA Astrophysics Data System (ADS)

    Ong, Wee-Jun; Tan, Lling-Lling; Chai, Siang-Piao; Yong, Siek-Ting; Mohamed, Abdul Rahman

    2014-01-01

    Titanium dioxide (TiO2) is one of the most widely investigated metal oxides due to its extraordinary surface, electronic and catalytic properties. However, the large band gap of TiO2 and massive recombination of photogenerated electron-hole pairs limit its photocatalytic and photovoltaic efficiency. Therefore, increasing research attention is now being directed towards engineering the surface structure of TiO2 at the most fundamental and atomic level namely morphological control of {001} facets in the range of microscale and nanoscale to fine-tune its physicochemical properties, which could ultimately lead to the optimization of its selectivity and reactivity. The synthesis of {001}-faceted TiO2 is currently one of the most active interdisciplinary research areas and demonstrations of catalytic enhancement are abundant. Modifications such as metal and non-metal doping have also been extensively studied to extend its band gap to the visible light region. This steady progress has demonstrated that TiO2-based composites with {001} facets are playing and will continue to play an indispensable role in the environmental remediation and in the search for clean and renewable energy technologies. This review encompasses the state-of-the-art research activities and latest advancements in the design of highly reactive {001} facet-dominated TiO2via various strategies, including hydrothermal/solvothermal, high temperature gas phase reactions and non-hydrolytic alcoholysis methods. The stabilization of {001} facets using fluorine-containing species and fluorine-free capping agents is also critically discussed in this review. To overcome the large band gap of TiO2 and rapid recombination of photogenerated charge carriers, modifications are carried out to manipulate its electronic band structure, including transition metal doping, noble metal doping, non-metal doping and incorporating graphene as a two-dimensional (2D) catalyst support. The advancements made in these aspects are

  20. Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization.

    PubMed

    Ong, Wee-Jun; Tan, Lling-Lling; Chai, Siang-Piao; Yong, Siek-Ting; Mohamed, Abdul Rahman

    2014-02-21

    Titanium dioxide (TiO2) is one of the most widely investigated metal oxides due to its extraordinary surface, electronic and catalytic properties. However, the large band gap of TiO2 and massive recombination of photogenerated electron-hole pairs limit its photocatalytic and photovoltaic efficiency. Therefore, increasing research attention is now being directed towards engineering the surface structure of TiO2 at the most fundamental and atomic level namely morphological control of {001} facets in the range of microscale and nanoscale to fine-tune its physicochemical properties, which could ultimately lead to the optimization of its selectivity and reactivity. The synthesis of {001}-faceted TiO2 is currently one of the most active interdisciplinary research areas and demonstrations of catalytic enhancement are abundant. Modifications such as metal and non-metal doping have also been extensively studied to extend its band gap to the visible light region. This steady progress has demonstrated that TiO2-based composites with {001} facets are playing and will continue to play an indispensable role in the environmental remediation and in the search for clean and renewable energy technologies. This review encompasses the state-of-the-art research activities and latest advancements in the design of highly reactive {001} facet-dominated TiO2via various strategies, including hydrothermal/solvothermal, high temperature gas phase reactions and non-hydrolytic alcoholysis methods. The stabilization of {001} facets using fluorine-containing species and fluorine-free capping agents is also critically discussed in this review. To overcome the large band gap of TiO2 and rapid recombination of photogenerated charge carriers, modifications are carried out to manipulate its electronic band structure, including transition metal doping, noble metal doping, non-metal doping and incorporating graphene as a two-dimensional (2D) catalyst support. The advancements made in these aspects are

  1. Effects of nitrogen dioxide exposure on pulmonary function and airway reactivity in normal humans.

    PubMed

    Frampton, M W; Morrow, P E; Cox, C; Gibb, F R; Speers, D M; Utell, M J

    1991-03-01

    Nitrogen dioxide (NO2) is a product of combustion that has become recognized as a significant component of indoor air in some homes. Despite extensive study, it remains unresolved whether exposures to low levels of NO2 affect airway function or reactivity. These studies were designed to assess effects of various levels and patterns of NO2 exposure on pulmonary function and airway reactivity in normal humans. Normal volunteers screened for the absence of airway hyperreactivity were exposed for 3 h in an environmental chamber to purified air or NO2, separated by at least 2 wk, according to three protocols: (1) continuous 0.60 ppm NO2, (2) baseline 0.05 ppm NO2 with intermittent peaks of 2.0 ppm, and (3) continuous 1.5 ppm NO2. Subjects exercised for 10 min of each 30 min at a level sufficient to result in a minute ventilation near 40 L/min. Pulmonary function was measured before, during, and after exposure. Airway reactivity to increasing doses of carbachol was assessed 30 min after exposure. NO2 did not directly alter pulmonary function in any of the exposure protocols. In addition, airway reactivity was not altered by continuous exposure to 0.60 ppm or intermittent peaks of 2.0 ppm NO2. In contrast, continuous exposure to 1.5 ppm NO2 resulted in a greater fall in FVC and FEV1 in response to carbachol than after exposure to air (percent decrease in FVC: 1.5% after air, 3.9% after NO2, p less than 0.01). We conclude that for subjects without airway hyperreactivity, exposure to 1.5 ppm NO2 for 3 h increases airway reactivity, whereas repeated 15-min exposures to 2.0 ppm NO2 do not alter airway reactivity. PMID:2001061

  2. Tuning the reactivity of semiconductor surfaces by functionalization with amines of different basicity

    PubMed Central

    Bent, Stacey F.; Kachian, Jessica S.; Rodríguez-Reyes, Juan Carlos F.; Teplyakov, Andrew V.

    2011-01-01

    Surface functionalization of semiconductors has been the backbone of the newest developments in microelectronics, energy conversion, sensing device design, and many other fields of science and technology. Over a decade ago, the notion of viewing the surface itself as a chemical reagent in surface reactions was introduced, and adding a variety of new functionalities to the semiconductor surface has become a target of research for many groups. The electronic effects on the substrate have been considered as an important consequence of chemical modification. In this work, we shift the focus to the electronic properties of the functional groups attached to the surface and their role on subsequent reactivity. We investigate surface functionalization of clean Si(100)-2 × 1 and Ge(100)-2 × 1 surfaces with amines as a way to modify their reactivity and to fine tune this reactivity by considering the basicity of the attached functionality. The reactivity of silicon and germanium surfaces modified with ethylamine (CH3CH2NH2) and aniline (C6H5NH2) is predicted using density functional theory calculations of proton attachment to the nitrogen of the adsorbed amine to differ with respect to a nucleophilic attack of the surface species. These predictions are then tested using a model metalorganic reagent, tetrakis(dimethylamido)titanium (((CH3)2N)4Ti, TDMAT), which undergoes a transamination reaction with sufficiently nucleophilic amines, and the reactivity tests confirm trends consistent with predicted basicities. The identity of the underlying semiconductor surface has a profound effect on the outcome of this reaction, and results comparing silicon and germanium are discussed. PMID:21068370

  3. Effects of cryopreservation on sperm viability, synthesis of reactive oxygen species, and DNA damage of bovine sperm.

    PubMed

    Gürler, H; Malama, E; Heppelmann, M; Calisici, O; Leiding, C; Kastelic, J P; Bollwein, H

    2016-07-15

    The objective was to examine if there are relationships between alterations in sperm viability, reactive oxygen species (ROS) synthesis, and DNA integrity induced by cryopreservation of bovine sperm. Four ejaculates were collected from each of six bulls. Each ejaculate was diluted and divided into two aliquots; one was incubated for 24 hours at 37 °C, and the other frozen, thawed, and incubated for 24 hours at 37 °C. Analyses of quality of sperm were performed after 0, 3, 6, 12, and 24 hours of incubation. Progressive motile sperm was determined with computer assisted sperm analysis. Percentages of plasma membrane- and acrosome-intact sperm, sperm with a high mitochondrial membrane potential, sperm showing a high degree of DNA fragmentation (%DFI), and their reactive oxygen species content were assessed with dichlorofluorescein-diacetate, dihydrorhodamine, diaminofluorescein diacetate, and mitochondrial superoxide indicator using flow cytometry. Although all other sperm parameters showed alterations (P < 0.05) during the 24-hour incubation time, %DFI stayed constant (P > 0.05, 0.91 ± 0.23) in nonfrozen sperm. Cryopreservation induced changes of all sperm parameters (P < 0.05). In contrast to all other sperm parameters, dichlorofluorescein-diacetate-fluoroescence indicating the synthesis of H2O2 showed a similar exponential rise (P < 0.05) like the %DFI values in frozen sperm. In conclusion, changes of DNA integrity in frozen sperm seem to be related to synthesis of H2O2 but not to sperm viability and synthesis of other reactive oxygen species. PMID:27039074

  4. Cortisol Reactivity is Positively Related to Executive Function in Preschool Children Attending Head Start

    ERIC Educational Resources Information Center

    Blair, Clancy; Granger, Douglas; Razza, Rachel Peters

    2005-01-01

    This study examined relations among cortisol reactivity and measures of cognitive function and social behavior in 4- to 5-year-old children (N=169) attending Head Start. Saliva samples for the assay of cortisol were collected at the beginning, middle, and end of an approximately 45-min testing session. Moderate increase in cortisol followed by…

  5. Emotional Reactivity and Regulation in Infancy Interact to Predict Executive Functioning in Early Childhood

    ERIC Educational Resources Information Center

    Ursache, Alexandra; Blair, Clancy; Stifter, Cynthia; Voegtline, Kristin

    2013-01-01

    The relation of observed emotional reactivity and regulation in infancy to executive function in early childhood was examined in a prospective longitudinal sample of 1,292 children from predominantly low-income and rural communities. Children participated in a fear eliciting task at ages 7, 15, and 24 months and completed an executive function…

  6. Combinatorial effects of continuous protein synthesis, ERK-signaling, and reactive oxygen species on induction of cellular senescence.

    PubMed

    Takauji, Yuki; En, Atsuki; Miki, Kensuke; Ayusawa, Dai; Fujii, Michihiko

    2016-07-15

    Mammalian cells, when treated with sub-lethal doses of genotoxic stresses, slow down DNA synthesis but continue protein synthesis. Thus, these cells show an accumulation of proteins and undergo unbalanced growth. In the previous studies, we have shown that HeLa cells treated with excess thymidine or camptothecin undergo unbalanced growth, and prolonged unbalanced growth causes induction of cellular senescence, which is suppressed by restriction of protein synthesis or inhibition of ERK-signaling. In this study, we found that restriction of protein synthesis, inhibition of ERK-signaling, and elimination of reactive oxygen species showed a combinatorial effect on suppression of cellular senescence induced by excess thymidine or camptothecin. Of these, restriction of protein synthesis most effectively suppressed cellular senescence. Importantly, a similar combinatorial effect was observed in replicative senescence in normal human diploid fibroblasts. Our findings suggested that various stresses were cumulatively involved in cellular senescence, and suppression of cellular senescence was improved by combining the treatments that reduce the stresses. PMID:27339653

  7. Synthesis of neoglycosphingolipid from methoxyamino-functionalized ceramide.

    PubMed

    Ishida, Junya; Hinou, Hiroshi; Naruchi, Kentaro; Nishimura, Shin-Ichiro

    2014-02-15

    An efficient approach for the synthesis of a methoxyamino-functionalized ceramide was established from phytosphingosine using specific Nβ→Nα acyl migration of the octadecanoyl group during the removal of Nα-Fmoc protective group. One step glycoblotting reaction of the ceramide mimic with lactose afforded a neoglycosphingolipid showing potent inhibitory activity against recombinant endoglycoceramidase II from Rhodococcus sp. PMID:24461288

  8. Synthesis and characterization of functionalized magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Biswal, Dipti; Peeples, Brianna N.; Spence, Destiny D.; Peeples, Caryn; Bell, Crystal N.; Pradhan, A. K.

    2012-04-01

    Magnetic nanoparticles have been used in a wide array of industrial and biomedical applications due to their unique properties at the nanoscale level. They are extensively used in magnetic resonance imaging (MRI), magnetic hyperthermia treatment, drug delivery, and in assays for biological separations. Furthermore, superparamagnetic nanoparticles are of large interest for in vivo applications. However, these unmodified nanoparticles aggregate and consequently lose their superparamagnetic behaviors, due to high surface to volume ratio and strong dipole to dipole interaction. For these reasons, surface coating is necessary for the enhancement and effectiveness of magnetic nanoparticles to be used in various applications. In addition to providing increased stability to the nanoparticles in different solvents or media, stabilizers such as surfactants, organic/inorganic molecules, polymer and co-polymers are employed as surface coatings, which yield magnetically responsive systems. In this work we present the synthesis and magnetic characterization of Fe3O4 nanoparticles coated with 3-aminopropyltriethoxy silane (APS) and citric acid. The particles magnetic hysteresis was measured by a superconducting quantum interference device (SQUID) magnetometer with an in-plane magnetic field. The uncoated and coated magnetic nanoparticles were characterized by using fourier transform infrared (FTIR), UV-vis, X-ray diffraction, transmission electron microscopy, and thermo-gravimetric analysis.

  9. Reactive superhydrophobic surface and its photoinduced disulfide-ene and thiol-ene (bio)functionalization.

    PubMed

    Li, Junsheng; Li, Linxian; Du, Xin; Feng, Wenqian; Welle, Alexander; Trapp, Oliver; Grunze, Michael; Hirtz, Michael; Levkin, Pavel A

    2015-01-14

    Reactive superhydrophobic surfaces are highly promising for biotechnological, analytical, sensor, or diagnostic applications but are difficult to realize due to their chemical inertness. In this communication, we report on a photoactive, inscribable, nonwettable, and transparent surface (PAINTS), prepared by polycondensation of trichlorovinylsilane to form thin transparent reactive porous nanofilament on a solid substrate. The PAINTS shows superhydrophobicity and can be conveniently functionalized with the photoclick thiol-ene reaction. In addition, we show for the first time that the PAINTS bearing vinyl groups can be easily modified with disulfides under UV irradiation. The effect of superhydrophobicity of PAINTS on the formation of high-resolution surface patterns has been investigated. The developed reactive superhydrophobic coating can find applications for surface biofunctionalization using abundant thiol or disulfide bearing biomolecules, such as peptides, proteins, or antibodies. PMID:25486338

  10. Synthesis and properties of arsenic(III)-reactive coumarin-appended benzothiazolines: a new approach for inorganic arsenic detection.

    PubMed

    Ezeh, Vivian C; Harrop, Todd C

    2013-03-01

    The EPA has established a maximum contaminant level (MCL) of 10 ppb for arsenic (As) in drinking water requiring sensitive and selective detection methodologies. To tackle this challenge, we have been active in constructing small molecules that react specifically with As(3+) to furnish a new fluorescent species (termed a chemodosimeter). We report in this contribution, the synthesis and spectroscopy of two small-molecule fluorescent probes that we term ArsenoFluors (or AFs) as As-specific chemodosimeters. The AFs (AF1 and AF2) incorporate a coumarin fluorescent reporter coupled with an As-reactive benzothiazoline functional group. AFs react with As(3+) to yield the highly fluorescent coumarin-6 dye (C6) resulting in a 20-25-fold fluorescence enhancement at λem ∼ 500 nm with detection limits of 0.14-0.23 ppb in tetrahydrofuran (THF) at 298 K. The AFs also react with common environmental As(3+) sources such as sodium arsenite in a THF/CHES (N-cyclohexyl-2-aminoethanesulfonic acid) (1:1, pH 9, 298 K) mixture resulting in a modest fluorescence turn-ON (1.5- to 3-fold) due to the quenched nature of coumarin-6 derivatives in high polarity solvents. Bulk analysis of the reaction of the AFs with As(3+) revealed that the C6 derivatives and the Schiff-base disulfide of the AFs (SB1 and SB2) are the ultimate end-products of this chemistry with the formation of C6 being the principle photoproduct responsible for the As(3+)-specific turn-ON. It appears that a likely species that is traversed in the reaction path is an As-hydride-ligand complex that is a putative intermediate in the proposed reaction path. PMID:23421428

  11. DeoxyArbutin and its derivatives inhibit tyrosinase activity and melanin synthesis without inducing reactive oxygen species or apoptosis.

    PubMed

    Chawla, Smita; Kvalnes, Kalla; deLong, Mitchell A; Wickett, Randall; Manga, Prashiela; Boissy, Raymond E

    2012-10-01

    Safety is a major concern in developing commercial skin-lightening agents. Here, we report the modulating effects of deoxyArbutin (dA) and its second-generation derivatives - deoxyFuran (dF), 2-fluorodeoxyArbutin (fdA), and thiodeoxyArbutin (tdA) - on tyrosinase, and consequently, on melanization. Results demonstrate that dA and its derivatives inhibit tyrosine hydroxylase and dopa oxidase activity of tyrosinase. The inhibition is dose-dependent, thereby inhibiting melanin synthesis in intact melanocytes, when used at concentrations that retain 95% viability of the treated cells in culture. Herein we demonstrate that dA, and its second-generation derivatives dF, fdA, and tdA, exhibit dose-dependent reductions in melanocyte cell number, primarily due to inhibition of proliferation rather than initiation of apoptosis as exemplified by hydroquinone (HQ), ie, cytostatic as opposed to cytotoxic. Human and murine melanocytes with functional mutations in either tyrosinase or tyrosinase-related protein 1 (Tyrp1) are less sensitive to the cytostatic effects of dA and its derivatives. Minimal amounts of reactive oxygen species (ROS) were generated upon treatment with dA and its derivatives, in contrast to a dramatic amount of ROS induced by HQ. This increase in ROS subsequently induced the expression of the endogenous antioxidant catalase in treated melanocytes. Treatment with exogenous antioxidants provided protection for melanocytes treated with HQ, but not dA and its derivatives, suggesting that HQ exerts more oxidative stress. These studies demonstrate that dA and its derivatives are relatively safe tyrosinase inhibitors for skin lightening or for ameliorating hyperpigmented lesions. PMID:23134995

  12. Forward and reverse transfer function model synthesis

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.

    1985-01-01

    A process for synthesizing a mathematical model for a linear mechanical system using the forward and reverse Fourier transform functions is described. The differential equation for a system model is given. The Bode conversion of the differential equation, and the frequency and time-domain optimization matching of the model to the forward and reverse transform functions using the geometric simplex method of Nelder and Mead (1965) are examined. The effect of the window function on the linear mechanical system is analyzed. The model is applied to two examples; in one the signal damps down before the end of the time window and in the second the signal has significant energy at the end of the time window.

  13. Resting State Functional Connectivity within the Cingulate Cortex Jointly Predicts Agreeableness and Stressor-Evoked Cardiovascular Reactivity

    PubMed Central

    Ryan, John P.; Sheu, Lei K.; Gianaros, Peter J.

    2010-01-01

    Exaggerated cardiovascular reactivity to stress confers risk for cardiovascular disease. Further, individual differences in stressor-evoked cardiovascular reactivity covary with the functionality of cortical and limbic brain areas, particularly within the cingulate cortex. What remains unclear, however, is how individual differences in personality traits interact with cingulate functionality in the prediction of stressor-evoked cardiovascular reactivity. Accordingly, we tested the associations between (i) a particular personality trait, Agreeableness, which is associated with emotional reactions to conflict, (ii) resting state functional connectivity within the cingulate cortex, and (iii) stressor-evoked blood pressure (BP) reactivity. Participants (N=39, 19 men, aged 20–37 yrs) completed a resting functional connectivity MRI protocol, followed by two standardized stressor tasks that engaged conflict processing and evoked BP reactivity. Agreeableness covaried positively with BP reactivity across individuals. Moreover, connectivity analyses demonstrated that a more positive functional connectivity between the posterior cingulate (BA31) and the perigenual anterior cingulate (BA32) covaried positively with Agreeableness and with BP reactivity. Finally, statistical mediation analyses demonstrated that BA31–BA32 connectivity mediated the covariation between Agreeableness and BP reactivity. Functional connectivity within the cingulate appears to link Agreeableness and a risk factor for cardiovascular disease, stressor-evoked BP reactivity. PMID:21130172

  14. Synthesis of diethylamine-functionalized soybean oil.

    PubMed

    Biswas, Atanu; Adhvaryu, Atanu; Gordon, Sherald H; Erhan, Sevim Z; Willett, Julious L

    2005-11-30

    Specialty chemicals based on renewable resources are desirable commodities due to their eco-friendly nature and "green" product characteristics. These chemicals can demonstrate physical and chemical properties comparable to those of conventional petroleum-based products. Suitably functionalized amines in the triacylglycerol structure can function as an antioxidant, as well as an antiwear/antifriction agent. In addition, the amphiphilic nature of seed oils makes them an excellent candidate as base fluid. The reaction of amine and epoxidized seed oils in the presence of a catalyst almost always leads to different intra/intermolecular cross-linked products. In most cases, the triacylglycerol structure is lost due to disruption of the ester linkage. Currently, there is no reported literature describing the aminolysis of vegetable oil without cross-linking. Here the epoxy group of the epoxidized soybean oil has been selectively reacted with amines to give amine-functionalized soybean oil. The optimization procedure involved various amines and catalysts for maximum aminolysis, without cross-linking and disruption of the ester linkage. Diethylamine and ZnCl2 were found to be the best. NMR, IR, and nitrogen analysis were used to characterize the products. PMID:16302766

  15. Organometallic synthesis, reactivity and catalysis in the solid state using well-defined single-site species

    PubMed Central

    Pike, Sebastian D.; Weller, Andrew S.

    2015-01-01

    Acting as a bridge between the heterogeneous and homogeneous realms, the use of discrete, well-defined, solid-state organometallic complexes for synthesis and catalysis is a remarkably undeveloped field. Here, we present a review of this topic, focusing on describing the key transformations that can be observed at a transition-metal centre, as well as the use of well-defined organometallic complexes in the solid state as catalysts. There is a particular focus upon gas–solid reactivity/catalysis and single-crystal-to-single-crystal transformations. PMID:25666064

  16. Examining Endothelial Function and Platelet Reactivity in Patients with Depression before and after SSRI Therapy.

    PubMed

    Dawood, Tye; Barton, David A; Lambert, Elisabeth A; Eikelis, Nina; Lambert, Gavin W

    2016-01-01

    Although it is recognized that patients with major depressive disorder (MDD) are at increased risk of developing cardiovascular disease (CVD) the mechanisms responsible remain unknown. Endothelial dysfunction is one of the first signs of CVD. Using two techniques, flow-mediated dilatation in response to reactive hyperemia and laser Doppler velocimetry with iontophoresis, we examined endothelial function in the forearm before and after serotonin-specific reuptake inhibitor (SSRI) treatment in 31 patients with MDD. Measurement of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, soluble P-selectin, and noradrenaline in plasma was also performed. Prior to treatment, markers of endothelial and vascular function and platelet reactivity were within the normal range. Following SSRI therapy (95 ± 5 days) symptoms of depression were reduced (paired difference between pre- and post-treatment Hamilton rating -18 ± 1, P < 0.001) with 19 patients recovered and 4 remitted. There occurred no significant change in markers of endothelial or vascular function following SSRI therapy. The improvement in Hamilton depression rating in response to therapy could be independently predicted by the baseline arterial plasma noradrenaline concentration (r (2) = 0.36, P = 0.003). In this cohort of patients with MDD, SSRI therapy did not influence endothelial function or markers of vascular or platelet reactivity. Patient response to SSRI therapy could be predicted by the initial circulating level of noradrenaline, with noradrenaline levels being lower in responders. PMID:26924994

  17. Examining Endothelial Function and Platelet Reactivity in Patients with Depression before and after SSRI Therapy

    PubMed Central

    Dawood, Tye; Barton, David A.; Lambert, Elisabeth A.; Eikelis, Nina; Lambert, Gavin W.

    2016-01-01

    Although it is recognized that patients with major depressive disorder (MDD) are at increased risk of developing cardiovascular disease (CVD) the mechanisms responsible remain unknown. Endothelial dysfunction is one of the first signs of CVD. Using two techniques, flow-mediated dilatation in response to reactive hyperemia and laser Doppler velocimetry with iontophoresis, we examined endothelial function in the forearm before and after serotonin-specific reuptake inhibitor (SSRI) treatment in 31 patients with MDD. Measurement of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, soluble P-selectin, and noradrenaline in plasma was also performed. Prior to treatment, markers of endothelial and vascular function and platelet reactivity were within the normal range. Following SSRI therapy (95 ± 5 days) symptoms of depression were reduced (paired difference between pre- and post-treatment Hamilton rating −18 ± 1, P < 0.001) with 19 patients recovered and 4 remitted. There occurred no significant change in markers of endothelial or vascular function following SSRI therapy. The improvement in Hamilton depression rating in response to therapy could be independently predicted by the baseline arterial plasma noradrenaline concentration (r2 = 0.36, P = 0.003). In this cohort of patients with MDD, SSRI therapy did not influence endothelial function or markers of vascular or platelet reactivity. Patient response to SSRI therapy could be predicted by the initial circulating level of noradrenaline, with noradrenaline levels being lower in responders. PMID:26924994

  18. Synthesis, characterization and reactivity of group 4 metallocene bis(diphenylphosphino)acetylene complexes-a reactivity and bonding study.

    PubMed

    Haehnel, Martin; Hansen, Sven; Schubert, Kathleen; Arndt, Perdita; Spannenberg, Anke; Jiao, Haijun; Rosenthal, Uwe

    2013-11-20

    A study of the coordination chemistry of bis(diphenylphosphino)acetylene, Ph2P-C≡C-PPh2, with selected group 4 metallocenes is presented. By substitution of the alkyne in complexes of the type Cp'2M(L)(η(2)-Me3SiC2SiMe3) (M = Ti, no L; M = Zr, L = pyridine; Cp' = substituted or unsubstituted bridged or unbridged η(5)-cyclopentadienyl), the expected mononuclear complexes Cp*2Ti(η(2)-Ph2PC2PPh2) (4Ti), (rac-ebthi)Ti(η(2)-Ph2PC2PPh2) (5Ti), and (rac-ebthi)Zr(η(2)-Ph2PC2PPh2) (5Zr) [ebthi = ethylenebis(tetrahydroindenyl)] were obtained. When [Cp2Zr] was used in the reaction of Cp2Zr(py)(η(2)-Me3SiC2SiMe3) with Ph2P-C≡C-PPh2, the dinuclear complex [Cp2Zr(η(2)-Ph2PC2PPh2)]2 (6) was formed and isolated in the solid state. In solution, this complex is in equilibrium with the very spectacular structure of complex 7b as the first example of such a highly strained four-membered heterometallacycle of a group 4 metal, involving the rare R2PCCR' fragment in the cyclic unit. Both the stability and reactivity of heterodisubstituted alkynes X-C≡C-X (X = NR2, PR2, SR, SiR3, etc.) themselves and also of their complexes are of general interest. Complex 6 did not react with a second [Cp2Zr] fragment to form a homobimetallic complex. In contrast, for (rac-ebthi)Zr(η(2)-Ph2PC2PPh2) (5Zr) this reaction occurs. In the reaction of complex 4Ti with the Ni(0) complex (Cy3P)2Ni(η(2)-C2H4) (Cy = cyclohexyl), C-P bond cleavage of the alkyne ligand resulted in the formation of the isolated complex [(Cy3P)Ni(μ-PPh2)]2 (11). The structure and bonding of the complexes were investigated by DFT analysis to compare the different possible coordination modes of the R2P-C≡C-PR2 ligand. For compound 7b, a flip-flop coordination of the phosphorus atoms was proposed. Complexes 4Ti, 5Ti, 5Zr, 6, and 11 were characterized by X-ray crystallography. PMID:24156561

  19. Applications of C–H Functionalization Logic to Cyclobutane Synthesis

    PubMed Central

    2015-01-01

    The application of C–H functionalization logic to target-oriented synthesis provides an exciting new venue for the development of new and useful strategies in organic chemistry. In this article, C–H functionalization reactions are explored as an alternative approach to access pseudodimeric cyclobutane natural products, such as the dictazole and the piperarborenine families. The use of these strategies in a variety of complex settings highlights the subtle geometric, steric, and electronic effects at play in the auxiliary guided C–H functionalization of cyclobutanes. PMID:24548142

  20. Cellulose nanocrystals: synthesis, functional properties, and applications.

    PubMed

    George, Johnsy; Sabapathi, S N

    2015-01-01

    Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. PMID:26604715

  1. Cellulose nanocrystals: synthesis, functional properties, and applications

    PubMed Central

    George, Johnsy; Sabapathi, SN

    2015-01-01

    Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. PMID:26604715

  2. Synthesis and characterization of hydrogen-bond acidic functionalized graphene

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Han, Qiang; Pan, Yong; Cao, Shuya; Ding, Mingyu

    2014-05-01

    Hexafluoroisopropanol phenyl group functionalized materials have great potential in the application of gas-sensitive materials for nerve agent detection, due to the formation of strong hydrogen-bonding interactions between the group and the analytes. In this paper, take full advantage of ultra-large specific surface area and plenty of carbon-carbon double bonds and hexafluoroisopropanol phenyl functionalized graphene was synthesized through in situ diazonium reaction between -C=C- and p-hexafluoroisopropanol aniline. The identity of the as-synthesis material was confirmed by transmission electron microscopy, Raman spectroscopy, ultraviolet visible spectroscopy, X-ray photoelectron spectroscopy and thermo gravimetric analysis. The synthesis method is simply which retained the excellent physical properties of original graphene. In addition, the novel material can be assigned as an potential candidate for gas sensitive materials towards organophosphorus nerve agent detection.

  3. Dissecting molecular descriptors into atomic contributions in density functional reactivity theory

    SciTech Connect

    Rong, Chunying; Lu, Tian; Liu, Shubin

    2014-01-14

    Density functional reactivity theory (DFRT) employs the electron density of a molecule and its related quantities such as gradient and Laplacian to describe its structure and reactivity properties. Proper descriptions at both molecular (global) and atomic (local) levels are equally important and illuminating. In this work, we make use of Bader's zero-flux partition scheme and consider atomic contributions for a few global reactivity descriptors in DFRT, including the density-based quantification of steric effect and related indices. Earlier, we proved that these quantities are intrinsically correlated for atomic and molecular systems [S. B. Liu, J. Chem. Phys. 126, 191107 (2007); ibid. 126, 244103 (2007)]. In this work, a new basin-based integration algorithm has been implemented, whose reliability and effectiveness have been extensively examined. We also investigated a list of simple hydrocarbon systems and different scenarios of bonding processes, including stretching, bending, and rotating. Interesting changing patterns for the atomic and molecular values of these quantities have been revealed for different systems. This work not only confirms the strong correlation between these global reactivity descriptors for molecular systems, as theoretically proven earlier by us, it also provides new and unexpected changing patterns for their atomic values, which can be employed to understand the origin and nature of chemical phenomena.

  4. HHV-6 reactivation and its effect on delirium and cognitive functioning in hematopoietic cell transplantation recipients

    PubMed Central

    Fann, Jesse R.; Breiger, David; Boeckh, Michael; Adler, Amanda L.; Xie, Hu; Delaney, Colleen; Huang, Meei-Li; Corey, Lawrence; Leisenring, Wendy M.

    2011-01-01

    Human herpesvirus 6 (HHV-6) is detected in the plasma of approximately 40% of patients undergoing hematopoietic cell transplantation (HCT) and sporadically causes encephalitis in this population. The effect of HHV-6 reactivation on central nervous system function has not been fully characterized. This prospective study aimed to evaluate associations between HHV-6 reactivation and central nervous system dysfunction after allogeneic HCT. Patients were enrolled before HCT. Plasma samples were tested for HHV-6 at baseline and twice weekly after transplantation until day 84. Delirium was assessed at baseline, 3 times weekly until day 56, and weekly on days 56 to 84 using a validated instrument. Neurocognitive testing was performed at baseline and at approximately day 84. HHV-6 was detected in 111 (35%) of the 315 included patients. Patients with HHV-6 were more likely to develop delirium (adjusted odds ratio = 2.5; 95% confidence interval, 1.2-5.3) and demonstrate neurocognitive decline (adjusted odds ratio = 2.6; 95% confidence interval, 1.1-6.2) in the first 84 days after HCT. Cord blood and unrelated transplantation increased risk of HHV-6 reactivation. These data provide the basis to conduct a randomized clinical trial to determine whether prevention of HHV-6 reactivation will reduce neurocognitive morbidity in HCT recipients. PMID:21389320

  5. Facile Synthesis of Functionalized Carbene Metal Complexes from Coordinated Isonitriles.

    PubMed

    Lothschütz, Christian; Wurm, Thomas; Zeiler, Anna; Freiherr V Falkenhausen, Alexander; Rudolph, Matthias; Rominger, Frank; Hashmi, A Stephen K

    2016-02-01

    The scope and limitations of the isonitrile-based NHC template synthesis were investigated with a series of precursors containing a nucleophilic amine in combination with tethered electrophiles. In the case of alkynes and phosphonic esters as electrophiles no ring closure was observed and new functionalized NAC gold complexes were obtained. By the use of unsaturated esters and phosphonic esters as Michael acceptors in the amine precursors, ester-modified gold and palladium NHC complexes were accessible in high efficiency. PMID:26033484

  6. Microwave assisted synthesis of a mono organoimido functionalized Anderson polyoxometalate.

    PubMed

    Ritchie, C; Bryant, G

    2015-12-28

    The synthesis of an aliphatic organoimido functionalized polyoxometalate has been achieved through a microwave assisted reaction protocol in the absence of any activating reagents. Characterization of the pendant amine containing polyanion [Mo6O18NC(OCH2)3MnMo6O18(OCH2)3CNH2](5-) (1) includes single crystal XRD, NMR, ESI-MS, IR and SAXS. PMID:26583488

  7. Electrochemical synthesis and reactivity screening of a ternary composition gradient for combinatorial discovery of fuel cell catalysts

    NASA Astrophysics Data System (ADS)

    Jayaraman, S.; Hillier, A. C.

    2005-01-01

    This paper describes a method for synthesis of multi-component gradient libraries for combinatorial catalyst discovery. A 'gel-transfer' synthesis method is demonstrated that involves localized diffusion of aqueous precursor metal salts into a hydrated gel to establish spatially varying concentration fields. Electrodeposition is then used to transfer the gradient in metal precursors to a surface. To illustrate the utility of this method, a platinum-ruthenium-rhodium (PtxRuyRhz) catalyst gradient was constructed, and its reactivity towards several fuel cell reactions evaluated. An optical screening technique based upon the pH-sensitive fluorescence of quinine was used to visualize the spatial onset of reactivity on the ternary catalyst gradient. The evolution of protons from several reactions of interest for low temperature fuel cells was visualized by quinine fluorescence. The oxidation of hydrogen, carbon monoxide, methanol and ethanol were tested on the catalyst library. Catalyst regions that exhibited fluorescence (and hence the onset of activity) at lowest potentials were identified for each of the above reactions.

  8. Radiation-induced synthesis of vinyl copolymer based nanocomposites filled with reactive organic montmorillonite clay

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Kyum; Kwen, Hai-Doo; Choi, Seong-Ho

    2012-05-01

    Vinyl copolymer-clay nanocomposites were prepared by γ-irradiation-initiated radical polymerization using a mixture of styrene (St) and divinyl benzene (DVB) in the presence of reactive organic montmorillonite clay (OMMT) in methanol at room temperature. Reactive OMMT was synthesized by a cation exchange reaction of Na+-MMT and 1-[(4-ethylphenyl)methyl]-3-butyl-imidazolium chloride as a reactive organic modifier in an aqueous solution. The microstructures of the nanocomposites were confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The thermal stability was examined by thermo gravimetric analysis (TGA). As a result, the reactive OMMT was a good additive material for preparing vinyl copolymer-clay nanocomposites.

  9. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies

    NASA Astrophysics Data System (ADS)

    Wu, Wei; He, Quanguo; Jiang, Changzhong

    2008-10-01

    Surface functionalized magnetic iron oxide nanoparticles (NPs) are a kind of novel functional materials, which have been widely used in the biotechnology and catalysis. This review focuses on the recent development and various strategies in preparation, structure, and magnetic properties of naked and surface functionalized iron oxide NPs and their corresponding application briefly. In order to implement the practical application, the particles must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of iron oxide NPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The problems and major challenges, along with the directions for the synthesis and surface functionalization of iron oxide NPs, are considered. Finally, some future trends and prospective in these research areas are also discussed.

  10. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies

    PubMed Central

    2008-01-01

    Surface functionalized magnetic iron oxide nanoparticles (NPs) are a kind of novel functional materials, which have been widely used in the biotechnology and catalysis. This review focuses on the recent development and various strategies in preparation, structure, and magnetic properties of naked and surface functionalized iron oxide NPs and their corresponding application briefly. In order to implement the practical application, the particles must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of iron oxide NPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The problems and major challenges, along with the directions for the synthesis and surface functionalization of iron oxide NPs, are considered. Finally, some future trends and prospective in these research areas are also discussed. PMID:21749733

  11. Pt-Catalyzed Synthesis of Functionalized Symmetrical and Unsymmetrical Disilazanes.

    PubMed

    Kuciński, Krzysztof; Szudkowska-Frątczak, Justyna; Hreczycho, Grzegorz

    2016-09-01

    In nearly every total synthesis, silylating agents are employed in synthetic steps to protect sensitive functional groups. A Pt-catalyzed hydrosilylation of various unsaturated substrates to prepare novel symmetrical and unsymmetrical disilazanes is described. The developed synthetic methodology is widely applicable and tolerates all manner of functional groups (e.g., amines, ethers, esters, halogens, silanes, etc.). To demonstrate the value of the described method, mono-substituted 1,1,3,3-tetramethyldisilazanes were further selectively converted to completely new unsymmetrical derivatives. PMID:27414042

  12. Toward the Synthesis of More Reactive S = 2 Non-Heme Oxoiron(IV) Complexes

    PubMed Central

    2016-01-01

    cleave substrate C–H bonds. The second strategy entailed introducing weaker-field equatorial ligands in six-coordinate oxoiron(IV) complexes to decrease the dx2–y2/dxy energy gap to the point where the S = 2 ground state is favored. These pseudo-octahedral S = 2 oxoiron(IV) complexes exhibit high H-atom transfer reactivity relative to their S = 1 counterparts and shed light on the role that the spin state may play in these reactions. Among these complexes is a highly reactive species that to date represents the closest electronic and functional model of the enzymatic intermediate, TauD-J. PMID:26176555

  13. Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution

    NASA Astrophysics Data System (ADS)

    Chang, Seo Hyoung; Danilovic, Nemanja; Chang, Kee-Chul; Subbaraman, Ram; Paulikas, Arvydas P.; Fong, Dillon D.; Highland, Matthew J.; Baldo, Peter M.; Stamenkovic, Vojislav R.; Freeland, John W.; Eastman, Jeffrey A.; Markovic, Nenad M.

    2014-06-01

    In developing cost-effective complex oxide materials for the oxygen evolution reaction, it is critical to establish the missing links between structure and function at the atomic level. The fundamental and practical implications of the relationship on any oxide surface are prerequisite to the design of new stable and active materials. Here we report an intimate relationship between the stability and reactivity of oxide catalysts in exploring the reaction on strontium ruthenate single-crystal thin films in alkaline environments. We determine that for strontium ruthenate films with the same conductance, the degree of stability, decreasing in the order (001)>(110)>(111), is inversely proportional to the activity. Both stability and reactivity are governed by the potential-induced transformation of stable Ru4+ to unstable Run>4+. This ordered(Ru4+)-to-disordered(Run>4+) transition and the development of active sites for the reaction are determined by a synergy between electronic and morphological effects.

  14. Synthesis and in vitro reactivation study of isonicotinamide derivatives of 2-(hydroxyimino)-N-(pyridin-3-yl)acetamide as reactivators of Sarin and VX inhibited human acetylcholinesterase (hAChE).

    PubMed

    Karade, Hitendra N; Raviraju, G; Acharya, B N; Valiveti, Aditya Kapil; Bhalerao, Uma; Acharya, Jyotiranjan

    2016-09-15

    Previously (Karade et al., 2014), we have reported the synthesis and in vitro evaluation of bis-pyridinium derivatives of pyridine-3-yl-(2-hydroxyimino acetamide), as reactivators of sarin and VX inhibited hAChE. Few of the molecules showed superior in vivo protection efficacy (mice model) (Kumar et al., 2014; Swami et al., 2016) in comparison to 2-PAM against DFP and sarin poisoning. Encouraged by these results, herein we report the synthesis and in vitro evaluation of isonicotinamide derivatives of pyridine-3-yl-(2-hydroxyimino acetamide) (4a-4d) against sarin and VX inhibited erythrocyte ghost hAChE. Reactivation kinetics of these compounds was studied and the determined kinetic parameters were compared with that of commercial reactivators viz. 2-PAM and obidoxime. In comparison to 2-PAM and obidoxime, oxime 4a and 4b exhibited enhanced reactivation efficacy toward sarin inhibited hAChE while oxime 4c showed far greater reactivation efficacy toward VX inhibited hAChE. The acid dissociation constant and IC50 values of these oximes were determined and correlated with the observed reactivation potential. PMID:27450532

  15. New series of monoquaternary pyridinium oximes: synthesis and reactivation potency for paraoxon-inhibited electric eel and recombinant human acetylcholinesterase

    PubMed Central

    Bharate, Sandip B.; Guo, Lilu; Reeves, Tony E.; Cerasoli, Douglas M.; Thompson, Charles M.

    2009-01-01

    The preparation of a series of monoquaternary pyridinium oximes bearing either a heterocyclic side chain or a functionalized aliphatic side chain and the corresponding in vitro evaluation for reactivation of paraoxon-inhibited electric eel acetylcholinesterase (EeAChE) and recombinant human acetylcholinesterase (rHuAChE) are reported. Several newly synthesized compounds efficiently reactivated inhibited EeAChE, but were poor reactivators of inhibited rHuAChE. Compounds bearing a thiophene ring in the side chain (20, 23, 26 and 29) showed better reactivation (24–37% for EeAChE and 5–9% for rHuAChE) compared to compounds with furan and isoxazole heterocycles (0–8% for EeAChE and 2–3% for rHuAChE) at 10−5 M. The N-pyridyl-CH2COOH analog 8 reactivated EeAChE (36%) and rHuAChE (15%) at 10−4 M with a kr value better than 2-pyridine aldoxime methiodide (2-PAM) for rHuAChE. PMID:19640713

  16. Conformationally armed 3,6-tethered glycosyl donors: synthesis, conformation, reactivity, and selectivity.

    PubMed

    Heuckendorff, Mads; Pedersen, Christian Marcus; Bols, Mikael

    2013-07-19

    The reactivity and selectivity of 3,6-tethered glycosyl donors have been studied using acceptors with different steric and electronic characteristics. Eight (four anomeric pairs) 3,6-bridged-glycosyl donors were synthesized in high yields from their common parent sugars. The glycosylation properties were tested using at least three different acceptors and several promoter systems. Thiophenyl 2,4-di-O-benzyl-3,6-O-(di-tert-butylsilylene)-α-D-glucopyranoside gave α/β mixtures with standard NIS/TfOH mediated activation, whereas the corresponding fluoride was found to be highly β-selective, when using SnCl2/AgB(C6F5)4 as the promoter system. Mannosyl donors were highly α-selective despite the altered conformation. Galactosylations using NIS/TfOH were generally α-selective, but more β-selective using the galactosyl fluoride and depending on the acceptor used. Thiophenyl 2-azido-2-deoxy-4-O-benzyl-3,6-O-(di-tert-butylsilylene)-α-D-glucopyranoside was found to be α-selective. The reactivity of the donors was investigated using competition experiments, and some but not all were found to be highly reactive. Generally it was found that the α-thioglycosides were significantly more reactive than the β; this difference in reactivity was not found for 3,6-anhydro-, armed-(benzylated), or the classic super armed (silylated) donors. A mechanism supporting the unusual observations has been suggested. PMID:23786671

  17. Isotope effects in methanol synthesis and the reactivity of copper formates on a Cu/SiO2 catalyst

    SciTech Connect

    Yang, Yong; Mims, Charles A.; Disselkamp, Robert S.; Mei, Donghai; Kwak, Ja Hun; Szanyi, Janos; Peden, Charles HF; Campbell, C. T.

    2008-10-01

    Here we investigate isotope effects on the catalytic methanol synthesis reaction and the reactivity of copper-bound formate species in CO2-H2 atmospheres on Cu/SiO2 catalysts by simultaneous IR and MS measurements, both steady-state and transient. Studies of isotopic variants (H/D, 12C/13C) reveal that bidentate formate dominates the copper surface at steady state. The steady-state formate coverages of HCOO (in 6 bar 3:1 H2:CO2) and DCOO (in D2:CO2) are similar and the steady-state formate coverages in both systems decrease by ~80% from 350 K to 550 K. Over the temperature range 413K – 553K, the steady-state methanol synthesis rate shows a weak H/D isotope effect (1.05 ± 0.05) with somewhat higher activation energies in H2:CO2 (79 kJ/mole) than D2:CO2 (71 kJ/mole) over the range 473K-553K. The reverse water gas shift (RWGS) rates are higher than methanol synthesis and also shows a weak positive H/D isotope effect with higher activation energy for H2/CO2 than D2/CO2 (108 vs. and 102 kJ/mole). The reactivity of the resulting formate species in 6 bar H2, 6 bar D2 and 6 bar Ar is strongly dominated by decomposition back to CO2 and H2. H2 and D2 exposure compared to Ar do not enhance the formate decomposition rate. The decomposition profiles on the supported catalyst deviate from first order decay, indicating distributed surface reactivity. The average decomposition rates are similar to values previously reported on single crystals. The average activation energies for formate decomposition are 90 ± 17 kJ/mole for HCOO and 119 ± 11 kJ/mole for DCOO. By contrast to the catalytic reaction rates, the formate decomposition rate shows a strong H/D kinetic isotope effect (H/D ~ 8 at 413K), similar to previously observed values on Cu(110).

  18. Monitoring Immune System Function and Reactivation of Latent Viruses in the Artificial Gravity Pilot Study

    NASA Technical Reports Server (NTRS)

    Mehta, Satish K.; Crucian, Brian; Pierson, Duane L.; Sams, Clarence; Stowe, Raymond P.

    2007-01-01

    Numerous studies have indicated that dysregulation of the immune system occurs during or after spaceflight. Using 21 day -6 degrees head-down tilt bed rest as a spaceflight analog, this study describes the effects of artificial gravity (AG) as a daily countermeasure on immunity, stress and reactivation of clinically important latent herpes viruses. The specific aims were to evaluate psychological and physiological stress, to determine the status of the immune system, and to quantify reactivation of latent herpes viruses. Blood, saliva, and urine samples were collected from each participating subject at different times throughout the study. An immune assessment was performed on all treatment and control subjects that consisted of a comprehensive peripheral immunophenotype analysis, intracellular cytokine profiles and a measurement of T cell function. The treatment group displayed no differences throughout the course of the study with regards to peripheral leukocyte distribution, cytokine production or T cell function. Shedding of Epstein barr virus (EBV), Cytomegalovirus (CMV), and Varicella zoster virus (VZV) was quantified by real time PCR in saliva and urine samples, respectively. There was no significant difference in CMV DNA in the treatment group as compared to the control group. EBV and VZV on the other hand showed a mild reactivation during the study. There were no significant differences in cortisol between the control and treatment groups. In addition, no significant differences between antiviral antibody titers (EBV-VCA, -EA, -EBNA, CMV) or tetramer-positive (EBV, CMV) were found between the two groups. EBV DNA copies in blood were typically undetectable but never exceeded 1,500 copies per 106 PBMCs. Overall, these data indicate that the artificial gravity countermeasure and the 21 day head-down tilt bed rest regimen had no observable adverse effect on immune function.

  19. Monitoring Immune System Function and Reactivation of Latent Viruses in the Artificial Gravity Pilot Study

    NASA Technical Reports Server (NTRS)

    Mehta, Satish; Crusian, Brian; Pierson, Duane; Sams, Clarence; Stowe, Raymond

    2007-01-01

    Numerous studies have indicated that dysregulation of the immune system occurs during or after spaceflight. Using 21 day -6 deg. head-down tilt bed rest as a spaceflight analog, this study describes the effects of artificial gravity as a daily countermeasure on immunity, stress and reactivation of clinically important latent herpes viruses. The specific aims were to evaluate psychological and physiological stress, to determine the status of the immune system and to quantify reactivation of latent herpes viruses. Blood, saliva, and urine samples were collected from each participating subject at different times throughout the study. An immune assessment was performed on all treatment and control subjects that consisted of a comprehensive peripheral immunophenotype analysis, intracellular cytokine profiles and a measurement of T cell function. The treatment group displayed no differences throughout the course of the study with regards to peripheral leukocyte distribution, cytokine production or T cell function. Shedding of EBV and CMV was quantified by real time PCR in saliva and urine samples, respectively. There was no significant difference in CMV DNA in the treatment group as compared to the control group. EBV and VZV on the other hand showed a mild reactivation during the study. There were no significant differences in plasma cortisol between the control and treatment groups. In addition, no significant differences between antiviral antibody titers (EBV-VCA, -EA, -EBNA, CMV) or tetramer-positive (EBV, CMV) were found between the two groups. EBV DNA copies in blood were typically undetectable but never exceeded 1,500 copies per 10(exp 6) PBMCs. These data indicate that the artificial gravity countermeasure and the 21 day head-down tilt bed rest regimen had no observable adverse effect on immune function.

  20. Electronic structure and reactivity of cobalt oxide dimers and their hexacarbonyl complexes: a density functional study.

    PubMed

    Uzunova, Ellie L; Mikosch, Hans

    2012-03-29

    The dimers of cobalt oxide (CoO)(2) with cyclic and open bent structure are studied with the B1LYP density functional; the ordering of states is validated by the CCSD(T) method. The D(2h)-symmetry rhombic dioxide Co(2)O(2) with antiferromagnetically ordered electrons on cobalt centers is the global minimum. The cyclic peroxide Co(2)(O(2)) with side-on-bonded dioxygen in (7)B(2) ground state is separated from the global minimum by an energy gap of 3.15 eV. The dioxide is highly reactive as indicated by the high value of proton affinity and chemical reactivity indices. The four-member ring structures are more stable than those with three-member ring or chain configuration. The thermodynamic stability toward dissociation to CoO increases upon carbonylation, whereas proton affinity and reactivity with release of molecular oxygen also increase. The global minimum of Co(2)O(2)(CO)(6) corresponds to a triplet state (3)A" with oxygen atoms shifted above the molecular plane of the rhombic dioxide Co(2)O(2). The SOMO-LUMO gap in the ground-state carbonylated dioxide is wider, compared to the same gap in the bare dicobalt dioxide. The peroxo-isomer Co(2)(O(2))(CO)(6) retains the planar Co(2)(O(2)) ring and is only stable in a high-spin state (7)A". The carbonylated clusters have increased reactivity in both redox and nucleophilic reactions, as a result of the increased electron density in the Co(2)O(2)-ring area. PMID:22397598

  1. Synthesis and Characterization of Functionalized Metal-organic Frameworks

    PubMed Central

    Karagiaridi, Olga; Bury, Wojciech; Sarjeant, Amy A.; Hupp, Joseph T.; Farha, Omar K.

    2014-01-01

    Metal-organic frameworks have attracted extraordinary amounts of research attention, as they are attractive candidates for numerous industrial and technological applications. Their signature property is their ultrahigh porosity, which however imparts a series of challenges when it comes to both constructing them and working with them. Securing desired MOF chemical and physical functionality by linker/node assembly into a highly porous framework of choice can pose difficulties, as less porous and more thermodynamically stable congeners (e.g., other crystalline polymorphs, catenated analogues) are often preferentially obtained by conventional synthesis methods. Once the desired product is obtained, its characterization often requires specialized techniques that address complications potentially arising from, for example, guest-molecule loss or preferential orientation of microcrystallites. Finally, accessing the large voids inside the MOFs for use in applications that involve gases can be problematic, as frameworks may be subject to collapse during removal of solvent molecules (remnants of solvothermal synthesis). In this paper, we describe synthesis and characterization methods routinely utilized in our lab either to solve or circumvent these issues. The methods include solvent-assisted linker exchange, powder X-ray diffraction in capillaries, and materials activation (cavity evacuation) by supercritical CO2 drying. Finally, we provide a protocol for determining a suitable pressure region for applying the Brunauer-Emmett-Teller analysis to nitrogen isotherms, so as to estimate surface area of MOFs with good accuracy. PMID:25225784

  2. Asymmetric Catalysis with Ethylene. Synthesis of Functionalized Chiral Enolates

    PubMed Central

    Biswas, Souvagya; Page, Jordan P.; Dewese, Kendra R.; RajanBabu, T. V.

    2016-01-01

    Trialkylsilyl enol ethers are versatile intermediates often used as enolate surrogates for the synthesis of carbonyl compounds. Yet there are no reports of broadly applicable, catalytic methods for the synthesis of chiral silyl enol ethers carrying latent functionalities useful for synthetic operations beyond the many possible reactions of the silyl enol ether moiety itself. Here we report a general procedure for highly catalytic (substrate:catalyst ratio up to 1000:1) and enantioselective (92% to 98% major enantiomer) synthesis of such compounds bearing a vinyl group at a chiral carbon at the β-position. The reactions, run under ambient conditions, use trialkylsiloxy-1,3-dienes and ethylene (1 atmosphere) as precursors, and readily available (bis-phosphine)-cobalt(II) complexes as catalysts. The silyl enolates can be readily converted into novel enantiopure vinyl triflates, a class of highly versatile cross-coupling reagents, enabling the syntheses of other enantiomerically pure, stereo-defined trisubstituted alkene intermediates not easily accessible by current methods. Examples of Kumada, Stille and Suzuki coupling reactions are illustrated. PMID:26529467

  3. Asymmetric Catalysis with Ethylene. Synthesis of Functionalized Chiral Enolates.

    PubMed

    Biswas, Souvagya; Page, Jordan P; Dewese, Kendra R; RajanBabu, T V

    2015-11-18

    Trialkylsilyl enol ethers are versatile intermediates often used as enolate surrogates for the synthesis of carbonyl compounds. Yet there are no reports of broadly applicable, catalytic methods for the synthesis of chiral silyl enol ethers carrying latent functionalities useful for synthetic operations beyond the many possible reactions of the silyl enol ether moiety itself. Here we report a general procedure for highly catalytic (substrate:catalyst ratio up to 1000:1) and enantioselective (92% to 98% major enantiomer) synthesis of such compounds bearing a vinyl group at a chiral carbon at the β-position. The reactions, run under ambient conditions, use trialkylsiloxy-1,3-dienes and ethylene (1 atm) as precursors and readily available (bis-phosphine)-cobalt(II) complexes as catalysts. The silyl enolates can be readily converted into novel enantiopure vinyl triflates, a class of highly versatile cross-coupling reagents, enabling the syntheses of other enantiomerically pure, stereodefined trisubstituted alkene intermediates not easily accessible by current methods. Examples of Kumada, Stille, and Suzuki coupling reactions are illustrated. PMID:26529467

  4. Effects of gravity on combustion synthesis of functionally graded biomaterials

    NASA Astrophysics Data System (ADS)

    Castillo, M.; Moore, J. J.; Schowengerdt, F. D.; Ayers, R. A.; Zhang, X.; Umakoshi, M.; Yi, H. C.; Guigne, J. Y.

    2003-07-01

    Combustion synthesis, or self-propagating, high temperature synthesis is currently being used at the Colorado School of Mines to produce advanced materials for biomedical applications. These biomaterials include ceramic, intermetallic, and metal-matrix composites for applications ranging from structural to oxidation- and wear-resistant materials, e.g., TiC-Ti, TiC-Cr 3C 2, MOSi 2-SiC, NiAl-TiB 2, to engineered porous composites, e.g., B 4C-Al 2O 3, Ti-TiB x, Ni-Ti, Ca 3(P0 4) 2 and glass-ceramic composites, e.g., CaO-SiO 2-BaO-Al 2O 3-TiB 2. The goal of the functionally graded biomaterials project is to develop new materials, graded in porosity and composition, which will combine the desirable mechanical properties of implant, e.g., NiTi, with the bone-growth enhancement properties of porous biodegradable ceramics, e.g., Ca 3(PO 4) 2. Recent experiments on the NASA parabolic flight (KC-135) aircraft have shown that gravity plays an important role in controlling the structure and properties of materials produced by combustion synthesis. The results of these studies, which will be presented at the conference, will provide valuable input to the design of experiments to be done in Space-DRUMS TM, a containerless materials processing facility scheduled to be placed on the International Space Station in 2003.

  5. Effects of gravity on combustion synthesis of functionally graded biomaterials

    NASA Astrophysics Data System (ADS)

    Moore, J.; Schowengerdt, F.; Ayers, R.; Castillo, M.; Zhang, X.; Umakoshi, U.; Yi, C.; Guigne, J.

    Combustion synthesis, or self-propagating, high temperature synthesis (SHS) is currently being used at the Colorado School of Mines to produce advanced materials for biomedical applications. These biomaterials include ceramic, intermetallic, and metal-matrix composites for applications ranging from structural to oxidation- and wear-resistant materials, e.g., TiC-Ti, TiC-Cr3 C2 , MoSi2 - SiC, NiAl-TiB2 , to engineered porous composites, e.g., B4 C-A l2 O3 , Ti-TiBx , Ni-Ti, Ca 3 (PO4 )2 and glass- ceramic composites, e.g., CaO-SiO2 - B a O-A l2 O3 -T i B2 . The goal of the functionally graded biomaterials project is to develop new materials, graded in porosity and composition, which will combine the desirable mechanical properties of implant, e.g., NiTi, with the bone-growth enhancement properties of porous biodegradable ceramics, e.g., Ca 3 (PO4 )2 . Recent experiments on the NASA parabolic flight (KC- 135) aircraft have shown that gravity plays an important role in controlling the structure and properties of materials produced by combustion synthesis. The results of these studies, which will be presented at the conference, will provide valuable input to the design of experiments to be done in Space-DRUMSTM, a containerless materials processing facility scheduled to be placed on the International Space Station in 2003.

  6. Using density functional theory to study shape-reactivity relationships in Keggin Al-nanoclusters.

    PubMed

    Corum, Katie W; Mason, Sara E

    2016-10-01

    Keggin-based aluminum nanoclusters have been shown to be efficient sorbents for the removal of arsenic from water. Obtaining a molecular-level understanding of the adsorption processes associated with these molecules is of fundamental importance, and could pave the way for rational design strategies for water treatment. Due to their size and the availability of experimental crystal structures, Al nanoclusters are computationally tractable at the density functional theory (DFT) level. Here, we compare the reactivity of three aluminum polycations: [Al13O4(OH)24(H2O)12](7+) (Al13), [Al30O8(OH)56(H2O)26](18+) (Al30), and [Al32O8(OH)60(H2O)30](20+) (Al32). We use DFT calculations to determine reactivity as a function of particle topography, using sulfate and chloride as adsorption probes. Our comparative modeling of outer-sphere adsorption of Cl(-) and SO4(2-) on Al13, Al30, and A132 supports that the unique "hourglass" shape characteristic to Al30 gives rise to relatively strong adsorption in the molecular beltway, as well as a wide range of reaction energies as a function of particle topography. PMID:27393966

  7. Functional Immune Alterations, Latent Herpesvirus Reactivation, Physiological Stress and Clinical Incidence Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Kunz, Hawley; Mehta, Satish; Stowe, Ray; Ploutz-Snyder, Robert; Quiriarte, Heather; Chouker, Alexander; Pierson, Duane

    2016-01-01

    This study (OpNom 'Functional Immune') will be a comprehensive immunity Flight Definition investigation that will use longitudinal repeated measures to assess various aspects of immunity and viral reactivation during long-duration spaceflight. This proposal builds on the successful sampling architecture of the former Integrated Immune flight study, which for the first time returned ambient, live blood samples from space to allow functional assays. Blood (ambient, live) and saliva samples will be collected before, during, and following spaceflight. Previously uninvestigated live cell assays will be performed to assess cellular function during spaceflight. Specialized preservatives will be utilized to assess comprehensive immunophenotype, gene expression and proteomics. Measures of inflammation, stress, antimicrobial activity, etc. will be assessed in blood, saliva, and/or urine. The reactivation of a panel of herpesviruses will be assessed both during flight, and post-flight until shedding resolves. Array technology will be utilized to allow maximal information to be derived from minimal in-flight samples. This study will be a hybrid of NASA internal scientists and researchers external to NASA. The NASA 'Core' science package and implementation strategy was selected and approved in 2014. Via NRA, the solicitation for external participation, with science directed to comply with the parent study sampling architecture, is in progress

  8. Synthesis and application of polyepoxide cardanol glycidyl ether as biobased polyepoxide reactive diluent for epoxy resin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyepoxide cardanol glycidyl ether (PECGE), a novel cardanol derivative, was synthesized and used as reactive diluent for petroleum-based epoxy resin in this work. The synthetic condition was first optimized, and the resultant PECGE diluent was characterized using Fourier transform infrared spectro...

  9. Boron-based nanostructures: Synthesis, functionalization, and characterization

    NASA Astrophysics Data System (ADS)

    Bedasso, Eyrusalam Kifyalew

    Boron-based nanostructures have not been explored in detail; however, these structures have the potential to revolutionize many fields including electronics and biomedicine. The research discussed in this dissertation focuses on synthesis, functionalization, and characterization of boron-based zero-dimensional nanostructures (core/shell and nanoparticles) and one-dimensional nanostructures (nanorods). The first project investigates the synthesis and functionalization of boron-based core/shell nanoparticles. Two boron-containing core/shell nanoparticles, namely boron/iron oxide and boron/silica, were synthesized. Initially, boron nanoparticles with a diameter between 10-100 nm were prepared by decomposition of nido-decaborane (B10H14) followed by formation of a core/shell structure. The core/shell structures were prepared using the appropriate precursor, iron source and silica source, for the shell in the presence of boron nanoparticles. The formation of core/shell nanostructures was confirmed using high resolution TEM. Then, the core/shell nanoparticles underwent a surface modification. Boron/iron oxide core/shell nanoparticles were functionalized with oleic acid, citric acid, amine-terminated polyethylene glycol, folic acid, and dopamine, and boron/silica core/shell nanoparticles were modified with 3-(amino propyl) triethoxy silane, 3-(2-aminoethyleamino)propyltrimethoxysilane), citric acid, folic acid, amine-terminated polyethylene glycol, and O-(2-Carboxyethyl)polyethylene glycol. A UV-Vis and ATR-FTIR analysis established the success of surface modification. The cytotoxicity of water-soluble core/shell nanoparticles was studied in triple negative breast cancer cell line MDA-MB-231 and the result showed the compounds are not toxic. The second project highlights optimization of reaction conditions for the synthesis of boron nanorods. This synthesis, done via reduction of boron oxide with molten lithium, was studied to produce boron nanorods without any

  10. Electrochemical template synthesis of multisegment nanowires: fabrication and protein functionalization.

    PubMed

    Wildt, Bridget; Mali, Prashant; Searson, Peter C

    2006-12-01

    Multisegment nanowires represent a unique platform for engineering multifunctional nanoparticles for a wide range of applications. For example, the optical and magnetic properties of nanowires can be tailored by modifying the size, shape, and composition of each segment. Similarly, surface modification can be used to tailor chemical and biological properties. In this article, we report on recent work on electrochemical template synthesis of nanogap electrodes, the fabrication of multisegment nanowires with embedded catalysts, and the selective functionalization of multisegment nanowires with proteins. PMID:17129026

  11. Synthesis of functional acetylene derivatives from calcium carbide.

    PubMed

    Lin, Zhewang; Yu, Dingyi; Sum, Yin Ngai; Zhang, Yugen

    2012-04-01

    AHA Erlebnis: CaC(2), used to produce acetylene until several decades ago, is re-emerging as a cheap, sustainable resource synthesized from coal and lignocellulosic biomass. We report efficient catalytic protocols for the synthesis of functional acetylene derivatives from CaC(2) through aldehyde, alkyne, and amine (AAA) as well as alkyne, haloalkane, and amine (AHA) couplings, and in addition demonstrate its use in click and Sonogashira chemistry, showing that calcium carbide is a sustainable and cost-efficient carbon source. PMID:22378645

  12. Synthesis of fully functionalized aglycone of lycoperdinoside A and B.

    PubMed

    Chandrasekhar, Balla; Athe, Sudhakar; Reddy, P Purushotham; Ghosh, Subhash

    2015-01-01

    This article reported the synthesis of fully functionalized aglycone of lycoperdinoside A and B. Pd-catalyzed Stille-Migita cross coupling between E-vinyl iodide 6 and E-vinyl stannane 23 established the highly substituted E,E-diene unit present in lycoperdinoside A and B. The other two Z-olefins present in the molecule were introduced by means of cis-selective Horner-Wadsworth-Emmons reaction with Still-Gennari phosphonate. Evans syn- and anti-aldol reactions were utilized to fix six of the seven stereo centres present in the aglycone. PMID:25340961

  13. Stability and reactivity of ϵ-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: controlling μ(C).

    PubMed

    de Smit, Emiel; Cinquini, Fabrizio; Beale, Andrew M; Safonova, Olga V; van Beek, Wouter; Sautet, Philippe; Weckhuysen, Bert M

    2010-10-27

    The stability and reactivity of ϵ, χ, and θ iron carbide phases in Fischer-Tropsch synthesis (FTS) catalysts as a function of relevant reaction conditions was investigated by a synergistic combination of experimental and theoretical methods. Combined in situ X-ray Absorption Fine Structure Spectroscopy/X-ray Diffraction/Raman Spectroscopy was applied to study Fe-based catalysts during pretreatment and, for the first time, at relevant high pressure Fischer-Tropsch synthesis conditions, while Density Functional Theory calculations formed a fundamental basis for understanding the influence of pretreatment and FTS conditions on the formation of bulk iron carbide phases. By combining theory and experiment, it was found that the formation of θ-Fe(3)C, χ-Fe(5)C(2), and ϵ-carbides can be explained by their relative thermodynamic stability as imposed by gas phase composition and temperature. Furthermore, it was shown that a significant part of the Fe phases was present as amorphous carbide phases during high pressure FTS, sometimes in an equivalent amount to the crystalline iron carbide fraction. A catalyst containing mainly crystalline χ-Fe(5)C(2) was highly susceptible to oxidation during FTS conditions, while a catalyst containing θ-Fe(3)C and amorphous carbide phases showed a lower activity and selectivity, mainly due to the buildup of carbonaceous deposits on the catalyst surface, suggesting that amorphous phases and the resulting textural properties play an important role in determining final catalyst performance. The findings further uncovered the thermodynamic and kinetic factors inducing the ϵ-χ-θ carbide transformation as a function of the carbon chemical potential μ(C). PMID:20925335

  14. Facile synthesis of fluorescent polymer nanoparticles by covalent modification-nanoprecipitation of amine-reactive ester polymers.

    PubMed

    Lee, Yeonju; Hanif, Sadaf; Theato, Patrick; Zentel, Rudolf; Lim, Jeewoo; Char, Kookheon

    2015-06-01

    Emission wavelength control in fluorescent nanoparticles (NPs) is crucial for their applications. In the case of inorganic quantum dots or dye-impregnated silica NPs, such a control is readily achieved by changing the size of the particles or choosing appropriate fluorescent dyes, respectively. A similar modular approach for controlling the emission wavelength of fluo-rescent polymer NPs, however, is difficult. This article reports on fluorescent polymer NPs, the synthesis of which provides a platform for a modular approach towards the preparation of fluorescent NPs of desired emission wavelength. Atom-transfer radical polymerization (ATRP) is employed to synthesize reactive ester polymers, which are then easily modified with a commercially available dye and subsequently subjected to nanoprecipitation. The resulting NPs, with low size polydispersity, show an enhanced emission quantum yield when compared with the same dye molecules in solution. PMID:25761204

  15. Stabilization of moisture-reactive raw materials for improved synthesis of Ca-α-SiAlON:Eu2+ phosphor

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Myung; Kim, Mi-Ju; Lee, Jae-Wook; Park, Young-Jo

    2014-09-01

    The raw materials needed to make the Ca-α-SiAlON:Eu2+ phosphor contain highly moisture-reactive Ca3N2. Exposing them to a preheating process prior to high-temperature synthesis stabilized the raw materials against oxidation. Preheating above 1200 °C in a tube furnace directly connected to a glove box, resulted in the formation of intermediate phases such as CaAlSiN3, which provided higher moisture resistance to the raw materials. We found that even after exposure to a humid environment, the preheated samples maintained PL characteristics similar to the conventional unexposed samples, while the PL intensity and particle homogeneity of the un-preheated samples were severely deteriorated.

  16. Unscheduled DNA Synthesis: The Clinical and Functional Assay for Global Genomic DNA Nucleotide Excision Repair

    PubMed Central

    Latimer, Jean J.; Kelly, Crystal M.

    2016-01-01

    The unscheduled DNA synthesis (UDS) assay measures the ability of a cell to perform global genomic nucleotide excision repair (NER). This chapter provides instructions for the application of this technique by creating 6-4 photoproducts and pyrimidine dimers using UV-C irradiation. This procedure is designed specifically for quantification of the 6-4 photoproducts. Repair is quantified by the amount of radioactive thymidine incorporated during repair synthesis after this insult, and radioactivity is evaluated by grain counting after autoradiography. The results are used to clinically diagnose human DNA repair deficiency disorders and provide a basis for investigation of repair deficiency in human tissues or tumors. No other functional assay is available that directly measures the capacity to perform NER on the entire genome without the use of specific antibodies. Since live cells are required for this assay, explant culture techniques must be previously established. Host cell reactivation (HCR), as discussed in Chapter 37, is not an equivalent technique, as it measures only transcription-coupled repair (TCR) at active genes, a small subset of total NER. PMID:24623250

  17. Sulfur dioxide and ammonium sulfate effects on pulmonary function and bronchial reactivity in human subjects

    SciTech Connect

    Kulle, T.J.; Sauder, L.R.; Shanty, F.; Kerr, H.D.; Farrell, B.P.; Miller, W.R.; Milman, J.H.

    1984-03-01

    The effect of exposures to 1 ppm sulfur dioxide (SO/sub 2/) and 500 ..mu..g/m/sup 3/ respirable ammonium sulfate ((NH/sub 4/)/sub 2/SO/sub 4/) was studied in 20 nonsmoking subjects to determine if a response can be measured at these atmospheric levels and if the response is additive or synergistic. Four-hour separate and combined exposures were employed. Each subject acted as his or her own control and performed two light-to-moderate exercise stints (612 kg-m/min) for 15 minutes on each day's confinement in the environmental chamber. Pulmonary function tests (body plethysmography and spirometry) and bronchial reactivity to methacholine were performed to assess the response of these exposures. No significant changes in pulmonary function or bronchial reactivity were observed in the individual exposures ((NH/sub 4/)/sub 2/SO/sub 4/ or SO/sub 2/), the combined exposure ((NH/sub 4/)/sub 2/SO/sub 4/ and SO/sub 2/), or 24 hours post-exposure. This study design and the observed results did not demonstrate any readily apparent risk to healthy subjects with these exposures. Since no significant changes were measured, it was not possible to conclude if these two pollutants in combination produce an additive or synergistic response.

  18. Heightened Functional Neural Activation to Psychological Stress Covaries With Exaggerated Blood Pressure Reactivity

    PubMed Central

    Gianaros, Peter J.; Jennings, J. Richard; Sheu, Lei K.; Derbyshire, Stuart W.G.; Matthews, Karen A.

    2016-01-01

    Individuals who show exaggerated blood pressure reactions to psychological stressors are at increased risk for hypertension, atherosclerosis, and stroke. We tested whether individuals who show exaggerated stressor-induced blood pressure reactivity also show heightened stressor-induced neural activation in brain areas involved in controlling the cardiovascular system. In a functional MRI study, 46 postmenopausal women (mean age: 68.04; SD: 1.35 years) performed a standardized Stroop color-word interference task that served as a stressor to increase blood pressure. Across individuals, a larger task-induced rise in blood pressure covaried with heightened and correlated patterns of activation in brain areas implicated previously in stress-related cardiovascular control: the perigenual and posterior cingulate cortex, bilateral prefrontal cortex, anterior insula, and cerebellum. Entered as a set in hierarchical regression analyses, activation values in these brain areas uniquely predicted the magnitude of task-induced changes in systolic (ΔR2=0.54; P<0.001) and diastolic (ΔR2=0.27; P<0.05) blood pressure after statistical control for task accuracy and subjective reports of task stress. Heightened stressor-induced activation of cingulate, prefrontal, insular, and cerebellar brain areas may represent a functional neural phenotype that characterizes individuals who are prone to show exaggerated cardiovascular reactivity. PMID:17101844

  19. Origin of molecular conformational stability: Perspectives from molecular orbital interactions and density functional reactivity theory

    SciTech Connect

    Liu, Shubin E-mail: schauer@unc.edu; Schauer, Cynthia K. E-mail: schauer@unc.edu

    2015-02-07

    To have a quantitative understanding about the origin of conformation stability for molecular systems is still an unaccomplished task. Frontier orbital interactions from molecular orbital theory and energy partition schemes from density functional reactivity theory are the two approaches available in the literature that can be used for this purpose. In this work, we compare the performance of these approaches for a total of 48 simple molecules. We also conduct studies to flexibly bend bond angles for water, carbon dioxide, borane, and ammonia molecules to obtain energy profiles for these systems over a wide range of conformations. We find that results from molecular orbital interactions using frontier occupied orbitals such as the highest occupied molecular orbital and its neighbors are only qualitatively, at most semi-qualitatively, trustworthy. To obtain quantitative insights into relative stability of different conformations, the energy partition approach from density functional reactivity theory is much more reliable. We also find that the electrostatic interaction is the dominant descriptor for conformational stability, and steric and quantum effects are smaller in contribution but their contributions are indispensable. Stable molecular conformations prefer to have a strong electrostatic interaction, small molecular size, and large exchange-correlation effect. This work should shed new light towards establishing a general theoretical framework for molecular stability.

  20. Versatile and Biomass Synthesis of Iron-based Nanoparticles Supported on Carbon Matrix with High Iron Content and Tunable Reactivity

    SciTech Connect

    Zhang, Dongmao; Shi, Sheldon Q; Jiang, Dongping; Che, Wen; Gai, Zheng; Howe, Jane Y; More, Karren Leslie; Arockiasamy, Antonyraj

    2012-01-01

    Iron-based nanoparticles supported on carbon (FeNPs{at}C) have enormous potential for environmental applications. Reported is a biomass-based method for FeNP{at}C synthesis that involves pyrolysis of bleached wood fiber pre-mixed with Fe{sub 3}O{sub 4} nanoparticles. This method allows synthesis of iron-based nanoparticles with tunable chemical reactivity by changing the pyrolysis temperature. The FeNP{at}C synthesized at a pyrolysis temperature of 500 C (FeNP{at}C-500) reacts violently (pyrophoric) when exposed to air, while FeNP{at}C prepared at 800 C (FeNP{at}C-800) remains stable in ambient condition for at least 3 months. The FeNPs in FeNP{at}C-800 are mostly below 50 nm in diameter and are surrounded by carbon. The immediate carbon layer (within 5-15 nm radius) on the FeNPs is graphitized. Proof-of-concept environmental applications of FeNPs{at}C-800 were demonstrated by Rhodamine 6G and arsenate (V) removal from water. This biomass-based method provides an effective way for iron-based nanoparticle fabrication and biomass utilization.

  1. Chemical and Chemoenzymatic Synthesis of Glycoproteins for Deciphering Functions

    PubMed Central

    Wang, Lai-Xi; Amin, Mohammed N.

    2014-01-01

    Summary Glycoproteins are an important class of biomolecules involved in a number of biological recognition processes. However, natural and recombinant glycoproteins are usually produced as mixtures of glycoforms that differ in the structures of the pendent glycans, which are difficult to separate in pure glycoforms. As a result, synthetic homogeneous glycopeptides and glycoproteins have become indispensable probes for detailed structural and functional studies. A number of elegant chemical and biological strategies have been developed for synthetic construction of tailor-made, full-size glycoproteins to address specific biological problems. In this review, we highlight recent advances in chemical and chemoenzymatic synthesis of homogeneous glycoproteins. Selected examples are given to demonstrate the applications of tailor-made, glycan-defined glycoproteins for deciphering glycosylation functions. PMID:24439206

  2. Hodgkin-Reed-Sternberg Cells in Classical Hodgkin Lymphoma Show Alterations of Genes Encoding the NADPH Oxidase Complex and Impaired Reactive Oxygen Species Synthesis Capacity

    PubMed Central

    Sosna, Justyna; Döring, Claudia; Klapper, Wolfram; Küppers, Ralf; Böttcher, Sebastian; Adam, Dieter; Siebert, Reiner; Schütze, Stefan

    2013-01-01

    The membrane bound NADPH oxidase involved in the synthesis of reactive oxygen species (ROS) is a multi-protein enzyme encoded by CYBA, CYBB, NCF1, NCF2 and NCF4 genes. Growing evidence suggests a role of ROS in the modulation of signaling pathways of non-phagocytic cells, including differentiation and proliferation of B-cell progenitors. Transcriptional downregulation of the CYBB gene has been previously reported in cell lines of the B-cell derived classical Hodgkin lymphoma (cHL). Thus, we explored functional consequences of CYBB downregulation on the NADPH complex. Using flow cytometry to detect and quantify superoxide anion synthesis in cHL cell lines we identified recurrent loss of superoxide anion production in all stimulated cHL cell lines in contrast to stimulated non-Hodgkin lymphoma cell lines. As CYBB loss proved to exert a deleterious effect on the NADPH oxidase complex in cHL cell lines, we analyzed the CYBB locus in Hodgkin and Reed-Sternberg (HRS) cells of primary cHL biopsies by in situ hybridisation and identified recurrent deletions of the gene in 8/18 cases. Immunohistochemical analysis to 14 of these cases revealed a complete lack of detectable CYBB protein expression in all HRS cells in all cases studied. Moreover, by microarray profiling of cHL cell lines we identified additional alterations of NADPH oxidase genes including CYBA copy number loss in 3/7 cell lines and a significant downregulation of the NCF1 transcription (p=0.006) compared to normal B-cell subsets. Besides, NCF1 protein was significantly downregulated (p<0.005) in cHL compared to other lymphoma cell lines. Together this findings show recurrent alterations of the NADPH oxidase encoding genes that result in functional inactivation of the enzyme and reduced production of superoxide anion in cHL. PMID:24376854

  3. Density functional reactivity theory study of SN2 reactions from the information-theoretic perspective.

    PubMed

    Wu, Zemin; Rong, Chunying; Lu, Tian; Ayers, Paul W; Liu, Shubin

    2015-10-28

    As a continuation of our recent efforts to quantify chemical reactivity with quantities from the information-theoretic approach within the framework of density functional reactivity theory, the effectiveness of applying these quantities to quantify electrophilicity for the bimolecular nucleophilic substitution (SN2) reactions in both gas phase and aqueous solvent is presented in this work. We examined a total of 21 self-exchange SN2 reactions for the compound with the general chemical formula of R1R2R3C-F, where R1, R2, and R3 represent substituting alkyl groups such as -H, -CH3, -C2H5, -C3H7, and -C4H9 in both gas and solvent phases. Our findings confirm that scaling properties for information-theoretic quantities found elsewhere are still valid. It has also been verified that the barrier height has the strongest correlation with the electrostatic interaction, but the contributions from the exchange-correlation and steric effects, though less significant, are indispensable. We additionally unveiled that the barrier height of these SN2 reactions can reliably be predicted not only by the Hirshfeld charge and information gain at the regioselective carbon atom, as previously reported by us for other systems, but also by other information-theoretic descriptors such as Shannon entropy, Fisher information, and Ghosh-Berkowitz-Parr entropy on the same atom. These new findings provide further insights for the better understanding of the factors impacting the chemical reactivity of this vastly important category of chemical transformations. PMID:26412416

  4. Reading as functional coordination: not recycling but a novel synthesis

    PubMed Central

    Lachmann, Thomas; van Leeuwen, Cees

    2014-01-01

    The Functional Coordination approach describes the processes involved in learning to read as a form of procedural learning in which pre-existing skills, mainly from the visual, and auditory domain, are (1) recruited, (2) modified, and (3) coordinated to create the procedures for reading text, which form the basis of subsequent (4) automatization. In this context, we discuss evidence relating to the emerging prevalence of analytic processing in letter perception. We argue that the process of learning to read does not have to lead to a loss of perceptual skill as consequence of a “cultural recycling”; learning to read just leads to a novel synthesis of functions, which are coordinated for reading and then automatized as a package over several years. Developmental dyslexia is explained within this framework as a Functional Coordination Deficit (Lachmann, 2002), since the coordination level is assumed to be most liable to manifest deficiencies. This is because, at this level, the greatest degree of fine tuning of complex functions is required. Thus, developmental dyslexia is not seen as a consequence of a deficient automatization per se, but of automatization of abnormally developed functional coordination. PMID:25309489

  5. Reading as functional coordination: not recycling but a novel synthesis.

    PubMed

    Lachmann, Thomas; van Leeuwen, Cees

    2014-01-01

    The Functional Coordination approach describes the processes involved in learning to read as a form of procedural learning in which pre-existing skills, mainly from the visual, and auditory domain, are (1) recruited, (2) modified, and (3) coordinated to create the procedures for reading text, which form the basis of subsequent (4) automatization. In this context, we discuss evidence relating to the emerging prevalence of analytic processing in letter perception. We argue that the process of learning to read does not have to lead to a loss of perceptual skill as consequence of a "cultural recycling"; learning to read just leads to a novel synthesis of functions, which are coordinated for reading and then automatized as a package over several years. Developmental dyslexia is explained within this framework as a Functional Coordination Deficit (Lachmann, 2002), since the coordination level is assumed to be most liable to manifest deficiencies. This is because, at this level, the greatest degree of fine tuning of complex functions is required. Thus, developmental dyslexia is not seen as a consequence of a deficient automatization per se, but of automatization of abnormally developed functional coordination. PMID:25309489

  6. Unusual reactivity of nitronates with an aryl alkyl carbonate: synthesis of α-amino esters.

    PubMed

    Reddy, Golipalli Ramana; Mukherjee, Debopreeti; Chittoory, Arjun Kumar; Rajaram, Sridhar

    2014-11-21

    The monoanions of nitroalkanes are ambident nucleophiles that react with carbonate electrophiles through the oxygen atom. Products arising from reactivity at the carbon atom will yield α-nitro esters, which are precursors for α-amino esters. We demonstrate this in the reactions of nitroalkanes with benzyl phenyl carbonate and DABCO where α-nitro esters are obtained instead of nitrile oxides. The products are readily reduced to α-amino esters. This pathway could be a safe alternative to the Strecker reaction. PMID:25372506

  7. The synthesis, structure and reactivity of an imine-stabilized carboranylphosphorus(i) compound.

    PubMed

    Chan, Tek Long; Xie, Zuowei

    2016-06-01

    A new imine-stabilized carboranyl-phosphinidene has been synthesized and structurally characterized. DFT studies suggest that the imine moiety provides an electron pair to stabilize carboranyl-phosphinidene. On the other hand, the sterically demanding carboranyl ligand can prevent the dimerization, facilitating the formation of monomeric phosphinidene. These observations are supported by the reactivity studies. Such a monovalent phosphorous(i) compound can undergo reactions with Cu(OAc)2, S, Se, (TMS)CHN2 and HCl to give various phosphorus(iii) species. All compounds are fully characterized by NMR spectroscopy, elemental analyses as well as single-crystal X-ray analyses. PMID:27180610

  8. Revisiting the chemical reactivity indices as the state function derivatives. The role of classical chemical hardness

    SciTech Connect

    Malek, Ali; Balawender, Robert

    2015-02-07

    The chemical reactivity indices as the equilibrium state-function derivatives are revisited. They are obtained in terms of the central moments (fluctuation formulas). To analyze the role of the chemical hardness introduced by Pearson [J. Am. Chem. Soc. 105, 7512 (1983)], the relations between the derivatives up to the third-order and the central moments are obtained. As shown, the chemical hardness and the chemical potential are really the principal indices of the chemical reactivity theory. It is clear from the results presented here that the chemical hardness is not the derivative of the Mulliken chemical potential (this means also not the second derivative of the energy at zero-temperature limit). The conventional quadratic dependence of energy, observed at finite temperature, reduces to linear dependence on the electron number at zero-temperature limit. The chemical hardness plays a double role in the admixture of ionic states to the reference neutral state energy: it determines the amplitude of the admixture and regulates the damping of its thermal factor.

  9. Revisiting the chemical reactivity indices as the state function derivatives. The role of classical chemical hardness

    NASA Astrophysics Data System (ADS)

    Malek, Ali; Balawender, Robert

    2015-02-01

    The chemical reactivity indices as the equilibrium state-function derivatives are revisited. They are obtained in terms of the central moments (fluctuation formulas). To analyze the role of the chemical hardness introduced by Pearson [J. Am. Chem. Soc. 105, 7512 (1983)], the relations between the derivatives up to the third-order and the central moments are obtained. As shown, the chemical hardness and the chemical potential are really the principal indices of the chemical reactivity theory. It is clear from the results presented here that the chemical hardness is not the derivative of the Mulliken chemical potential (this means also not the second derivative of the energy at zero-temperature limit). The conventional quadratic dependence of energy, observed at finite temperature, reduces to linear dependence on the electron number at zero-temperature limit. The chemical hardness plays a double role in the admixture of ionic states to the reference neutral state energy: it determines the amplitude of the admixture and regulates the damping of its thermal factor.

  10. Revisiting the chemical reactivity indices as the state function derivatives. The role of classical chemical hardness.

    PubMed

    Malek, Ali; Balawender, Robert

    2015-02-01

    The chemical reactivity indices as the equilibrium state-function derivatives are revisited. They are obtained in terms of the central moments (fluctuation formulas). To analyze the role of the chemical hardness introduced by Pearson [J. Am. Chem. Soc. 105, 7512 (1983)], the relations between the derivatives up to the third-order and the central moments are obtained. As shown, the chemical hardness and the chemical potential are really the principal indices of the chemical reactivity theory. It is clear from the results presented here that the chemical hardness is not the derivative of the Mulliken chemical potential (this means also not the second derivative of the energy at zero-temperature limit). The conventional quadratic dependence of energy, observed at finite temperature, reduces to linear dependence on the electron number at zero-temperature limit. The chemical hardness plays a double role in the admixture of ionic states to the reference neutral state energy: it determines the amplitude of the admixture and regulates the damping of its thermal factor. PMID:25662633

  11. Amine Functionalization via Oxidative Photoredox Catalysis: Methodology Development and Complex Molecule Synthesis

    PubMed Central

    2016-01-01

    Conspectus While the use of visible light to drive chemical reactivity is of high importance to the development of environmentally benign chemical transformations, the concomitant use of a stoichiometric electron donor or acceptor is often required to steer the desired redox behavior of these systems. The low-cost and ubiquity of tertiary amine bases has led to their widespread use as reductive additives in photoredox catalysis. Early use of trialkylamines in this context was focused on their role as reductive excited state quenchers of the photocatalyst, which in turn provides a more highly reducing catalytic intermediate. In this Account, we discuss some of the observations and thought processes that have led from our use of amines as reductive additives to their use as complex substrates and intermediates for natural product synthesis. Early attempts by our group to construct key carbon–carbon bonds via free-radical intermediates led to the observation that some trialkylamines readily behave as efficient hydrogen atom donors under redox-active photochemical conditions. In the wake of in-depth mechanistic studies published in the 1970s, 1980s and 1990s, this understanding has in turn allowed for a systematic approach to the design of a number of photochemical methodologies through rational tuning of the amine component. Minimization of the C–H donicity of the amine additive was found to promote desired C–C bond formation in a number of contexts, and subsequent elucidation of the amine’s redox fate has sparked a reevaluation of the amine’s role from that of reagent to that of substrate. The reactivity of tertiary amines in these photochemical systems is complex, and allows for a number of mechanistic possibilities that are not necessarily mutually exclusive. A variety of combinations of single-electron oxidation, C–H abstraction, deprotonation, and β-scission result in the formation of reactive intermediates such as α-amino radicals and iminium ions

  12. Alphavirus RNA synthesis and non-structural protein functions

    PubMed Central

    Rupp, Jonathan C.; Sokoloski, Kevin J.; Gebhart, Natasha N.

    2015-01-01

    The members of the genus Alphavirus are positive-sense RNA viruses, which are predominantly transmitted to vertebrates by a mosquito vector. Alphavirus disease in humans can be severely debilitating, and depending on the particular viral species, infection may result in encephalitis and possibly death. In recent years, alphaviruses have received significant attention from public health authorities as a consequence of the dramatic emergence of chikungunya virus in the Indian Ocean islands and the Caribbean. Currently, no safe, approved or effective vaccine or antiviral intervention exists for human alphavirus infection. The molecular biology of alphavirus RNA synthesis has been well studied in a few species of the genus and represents a general target for antiviral drug development. This review describes what is currently understood about the regulation of alphavirus RNA synthesis, the roles of the viral non-structural proteins in this process and the functions of cis-acting RNA elements in replication, and points to open questions within the field. PMID:26219641

  13. Synthesis and reactivity of 3-methylene-7-vinylidenebicyclo(3. 3. 1)nonane

    SciTech Connect

    Krasutskii, P.A.; Fokin, A.A.; Yurchenko, A.G.

    1986-05-10

    The synthesis of 3-methylene-7-vinylidenebicyclo(3.3.1)nonane - a new representative of pseudoconjugated allenes - was realized. In its reaction with electrophilic reagents (sulfuric acid, hydrogen chloride, bromine, and iodine) preferential cyclization to derivatives of adamantane occurs. Increase in the sulfuric acid concentration leads to the formation of 1,2-dimethylprotoadamantan-3-one - the product from more extensive rearrangement. In addition to transannular cyclization, hydrogen chloride in hexane gives rise to exo-endo isomerization of the ..pi.. bond. The differences in the regioselectivity of transannular cyclization under the influence of the acid and the halogen are discussed.

  14. Enzymatic synthesis of lignin-siloxane hybrid functional polymers.

    PubMed

    Prasetyo, Endry Nugroho; Kudanga, Tukayi; Fischer, Roman; Eichinger, Reinhard; Nyanhongo, Gibson S; Guebitz, Georg M

    2012-02-01

    This study combines the properties of siloxanes and lignin polymers to produce hybrid functional polymers that can be used as adhesives, coating materials, and/or multifunctionalized thin-coating films. Lignin-silica hybrid copolymers were synthesized by using a sol-gel process. Laccases from Trametes hirsuta were used to oxidize lignosulphonates to enhance their reactivity towards siloxanes and then were incorporated into siloxane precursors undergoing a sol-gel process. In vitro copolymerization studies using pure lignin monomers with aminosilanes or ethoxytrimethylsilane and analysis by ²⁹Si NMR spectroscopy revealed hybrid products. Except for kraft lignin, an increase in lignin concentration positively affected the tensile strength in all samples. Similarly, the viscosity generally increased in all samples with increasing lignin concentration and also affected the curing time. PMID:21751391

  15. Cued Reactivation of Motor Learning during Sleep Leads to Overnight Changes in Functional Brain Activity and Connectivity.

    PubMed

    Cousins, James N; El-Deredy, Wael; Parkes, Laura M; Hennies, Nora; Lewis, Penelope A

    2016-05-01

    Sleep plays a role in memory consolidation. This is demonstrated by improved performance and neural plasticity underlying that improvement after sleep. Targeted memory reactivation (TMR) allows the manipulation of sleep-dependent consolidation through intentionally biasing the replay of specific memories in sleep, but the underlying neural basis of these altered memories remains unclear. We use functional magnetic resonance imaging (fMRI) to show a change in the neural representation of a motor memory after targeted reactivation in slow-wave sleep (SWS). Participants learned two serial reaction time task (SRTT) sequences associated with different auditory tones (high or low pitch). During subsequent SWS, one sequence was reactivated by replaying the associated tones. Participants were retested on both sequences the following day during fMRI. As predicted, they showed faster reaction times for the cued sequence after targeted memory reactivation. Furthermore, increased activity in bilateral caudate nucleus and hippocampus for the cued relative to uncued sequence was associated with time in SWS, while increased cerebellar and cortical motor activity was related to time in rapid eye movement (REM) sleep. Functional connectivity between the caudate nucleus and hippocampus was also increased after targeted memory reactivation. These findings suggest that the offline performance gains associated with memory reactivation are supported by altered functional activity in key cognitive and motor networks, and that this consolidation is differentially mediated by both REM sleep and SWS. PMID:27137944

  16. Cued Reactivation of Motor Learning during Sleep Leads to Overnight Changes in Functional Brain Activity and Connectivity

    PubMed Central

    Cousins, James N.; El-Deredy, Wael; Parkes, Laura M.; Hennies, Nora; Lewis, Penelope A.

    2016-01-01

    Sleep plays a role in memory consolidation. This is demonstrated by improved performance and neural plasticity underlying that improvement after sleep. Targeted memory reactivation (TMR) allows the manipulation of sleep-dependent consolidation through intentionally biasing the replay of specific memories in sleep, but the underlying neural basis of these altered memories remains unclear. We use functional magnetic resonance imaging (fMRI) to show a change in the neural representation of a motor memory after targeted reactivation in slow-wave sleep (SWS). Participants learned two serial reaction time task (SRTT) sequences associated with different auditory tones (high or low pitch). During subsequent SWS, one sequence was reactivated by replaying the associated tones. Participants were retested on both sequences the following day during fMRI. As predicted, they showed faster reaction times for the cued sequence after targeted memory reactivation. Furthermore, increased activity in bilateral caudate nucleus and hippocampus for the cued relative to uncued sequence was associated with time in SWS, while increased cerebellar and cortical motor activity was related to time in rapid eye movement (REM) sleep. Functional connectivity between the caudate nucleus and hippocampus was also increased after targeted memory reactivation. These findings suggest that the offline performance gains associated with memory reactivation are supported by altered functional activity in key cognitive and motor networks, and that this consolidation is differentially mediated by both REM sleep and SWS. PMID:27137944

  17. Tunable resin reactivity of spin-on dielectric by controlling synthesis process

    NASA Astrophysics Data System (ADS)

    Han, Kwen Woo; Song, Hyun-Ji; Kim, Mi-Young; Park, Eun Su; Yoon, Hui Chan; Kim, Go Eun; Lim, Sang Hak; Kim, Sang Kyun

    2012-03-01

    In the recent semiconductor industry, as the device shrinks, spin-on dielectric (SOD) has been adopted as a widely used material because of its excellent gap-fill, efficient throughput on mass production and highly competitive initial cost of ownership. Among various semiconductor applications, SOD is especially valued as the suitable gap-fill material for shallow trench isolation (STI), because the previously adopted technology, high density plasma chemical vapor deposition (HDP-CVD), has a significant problem with void-free gap-fill on patterns with high aspect ratios. As SOD is spin-coated on those narrow patterns, planarization is one of the important requirements. On the course of our efforts on developing novel modified SOD materials, we discovered that the reactivity of each SOD resins has meaningful correlation with the degree of planarization. In this paper, three experiments have been illustrated to prove this correlation, 1) step coverage test, 2) humid air bubble test, and 3) film thickness shrinkage upon prebake. The SOD resin with lower reactivity turned out to exhibit 1) larger size of circle around silica-beads, 2) slower molecular weight growth under humid bubble condition, and 3) higher shrinkage upon prebake.

  18. Synthesis and characterization of core-shell acrylate based latex and study of its reactive blends.

    PubMed

    Liu, Xiang; Fan, Xiao-Dong; Tang, Min-Feng; Nie, Ying

    2008-03-01

    Techniques in resin blending are simple and efficient method for improving the properties of polymers, and have been used widely in polymer modification field. However, polymer latex blends such as the combination of latexes, especially the latexes with water-soluble polymers, were rarely reported. Here, we report a core-shell composite latex synthesized using methyl methacrylate (MMA), butyl acrylate (BA), 2-ethylhexyl acrylate (EHA) and glycidyl methacrylate (GMA) as monomers and ammonium persulfate and sodium bisulfite redox system as the initiator. Two stages seeded semi-continuous emulsion polymerization were employed for constructing a core-shell structure with P(MMA-co-BA) component as the core and P(EHA-co-GMA) component as the shell. Results of Transmission Electron Microscopy (TEM) and Dynamics Light Scattering (DLS) tests confirmed that the particles obtained are indeed possessing a desired core-shell structural character. Stable reactive latex blends were prepared by adding the latex with waterborne melamine-formaldehyde resin (MF) or urea-formaldehyde resin (UF). It was found that the glass transition temperature, the mechanical strength and the hygroscopic property of films cast from the latex blends present marked enhancements under higher thermal treatment temperature. It was revealed that the physical properties of chemically reactive latexes with core-shell structure could be altered via the change of crosslinking density both from the addition of crosslinkers and the thermal treatment. PMID:19325753

  19. Synthesis and Characterization of Core-Shell Acrylate Based Latex and Study of Its Reactive Blends

    PubMed Central

    Liu, Xiang; Fan, Xiao-Dong; Tang, Min-Feng; Nie, Ying

    2008-01-01

    Techniques in resin blending are simple and efficient method for improving the properties of polymers, and have been used widely in polymer modification field. However, polymer latex blends such as the combination of latexes, especially the latexes with water-soluble polymers, were rarely reported. Here, we report a core-shell composite latex synthesized using methyl methacrylate (MMA), butyl acrylate (BA), 2-ethylhexyl acrylate (EHA) and glycidyl methacrylate (GMA) as monomers and ammonium persulfate and sodium bisulfite redox system as the initiator. Two stages seeded semi-continuous emulsion polymerization were employed for constructing a core-shell structure with P(MMA-co-BA) component as the core and P(EHA-co-GMA) component as the shell. Results of Transmission Electron Microscopy (TEM) and Dynamics Light Scattering (DLS) tests confirmed that the particles obtained are indeed possessing a desired core-shell structural character. Stable reactive latex blends were prepared by adding the latex with waterborne melamine-formaldehyde resin (MF) or urea-formaldehyde resin (UF). It was found that the glass transition temperature, the mechanical strength and the hygroscopic property of films cast from the latex blends present marked enhancements under higher thermal treatment temperature. It was revealed that the physical properties of chemically reactive latexes with core-shell structure could be altered via the change of crosslinking density both from the addition of crosslinkers and the thermal treatment. PMID:19325753

  20. Synthesis of novel reactive N-halamine precursors and application in antimicrobial cellulose

    NASA Astrophysics Data System (ADS)

    Jiang, Zhiming; Ma, Kaikai; Du, Jinmei; Li, Rong; Ren, Xuehong; Huang, T. S.

    2014-01-01

    2,4,6-Trichloro-s-triazine has been used as one of the important linkers of reactive dyes for textiles such as cellulosic fibers. N-Halamine precursors could be bonded to a triazine-based linker by the chloride displacement reaction, and the synthesized compounds could attach to cotton fabrics by covalent bonds through a reactive dyeing process. In this study, two novel antimicrobial N-halamine precursors, 2,2,6,6-tetramethyl-4-piperidinol-s-trizine (TMPT) and 4-(4-(2,2,6,6-tetramethyl-4-piperidinol)-6-chloro-1,3,5-triazinylamino)-benzenesulfonate (BTMPT), were synthesized and used to coat cotton fabrics. The synthesized s-triazine-based N-halamine precursors react with cellulose to produce biocidal cellulosic fibers upon exposure to diluted household bleach. The coated fabrics were characterized by FT-IR and SEM. The chlorinated treated cotton swatches demonstrated excellent antimicrobial properties against S. aureus (Gram-positive) and E. coli O157:H7 (Gram-negative) with short contact times. Washing test and UVA light test showed that chlorinated BTMPT-coated cotton fabrics were more stable than TMPT-coated cotton fabrics. Compared to the traditional pad-dry-cure technique to produce antimicrobial textiles, the novel process in this study has advantages of saving energy and maintaining tensile strength of fabrics.

  1. Synthesis, Electronic Structure, and Reactivity Studies of a 4-Coordinate Square Planar Germanium(IV) Cation.

    PubMed

    Fang, Huayi; Jing, Huize; Zhang, Aixi; Ge, Haonan; Yao, Zhengmin; Brothers, Penelope J; Fu, Xuefeng

    2016-06-22

    A tetra-coordinate, square planar germanium(IV) cation [(TPFC)Ge](+) (TPFC = tris(pentafluorophenyl)corrole) was synthesized quantitatively by the reaction of (TPFC)Ge-H with [Ph3C](+)[B(C6F5)4](¯). The highly reactive [(TPFC)Ge](+) cation reacted with benzene to form phenyl complex (TPFC)Ge-C6H5 through an electrophilic pathway. The key intermediate, a σ-type germylium-benzene adduct, [(TPFC)Ge(η(1)-C6H6)](+), was isolated and characterized by single-crystal X-ray diffraction. Deprotonation of [(TPFC)Ge(η(1)-C6H6)](+) cation led to the formation of (TPFC)Ge-C6H5. [(TPFC)Ge](+) also reacted with ethylene and cyclopropane in benzene at room temperature to form (TPFC)Ge-CH2CH2C6H5 and (TPFC)Ge-CH2CH2CH2C6H5, respectively. The observed electrophilic reactivity is ascribed to the highly exposed cationic germanium center with novel frontier orbitals comprising two vacant sp-hybridized orbitals that are not conjugated to π-system. The three electron-withdrawing pentafluorophenyl groups on the corrole ligand also enhance the electrophilicity of the cationic germanium corrole. PMID:27243114

  2. Effects of various physical stress factors on mitochondrial function and reactive oxygen species in rat spermatozoa

    PubMed Central

    Kim, Suhee; Agca, Cansu; Agca, Yuksel

    2013-01-01

    The aim of the present study was to evaluate the effects of various physical interventions on the function of epididymal rat spermatozoa and determine whether there are correlations among these functional parameters. Epididymal rat spermatozoa were subjected to various mechanical (pipetting, centrifugation and Percoll gradient separation) and anisotonic conditions, and sperm motility, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) were evaluated. Repeated pipetting caused a loss in motility, PMI and MMP (P < 0.05). Minimal centrifugation force (200g) had no effect on motility, PMI and MMP, whereas an increase in the centrifugation force to 400g or 600g decreased sperm function (P < 0.005). Percoll gradient separation increased total motility, PMI and MMP (P < 0.05). However, the spermatozoa that were subjected to mechanical interventions showed high susceptibility to a ROS stimulant (P < 0.005). Anisotonic conditions decreased motility, PMI and MMP, and hypotonic conditions in particular increased basal ROS (P < 0.05). In correlation tests, there were strong positive correlations among total motility, PMI and MMP, whereas ROS showed no or negatively weak correlations with the other parameters. In conclusion, the physical interventions may act as important variables, affecting functional parameters of epididymal rat spermatozoa. Therefore, careful consideration and proper protocols for handling of rat spermatozoa and osmotic conditions are required to achieve reliable results and minimise damage. PMID:23140582

  3. The two faces of reactive oxygen species (ROS) in adipocyte function and dysfunction.

    PubMed

    Castro, José Pedro; Grune, Tilman; Speckmann, Bodo

    2016-08-01

    White adipose tissue (WAT) is actively involved in the regulation of whole-body energy homeostasis via storage/release of lipids and adipokine secretion. Current research links WAT dysfunction to the development of metabolic syndrome (MetS) and type 2 diabetes (T2D). The expansion of WAT during oversupply of nutrients prevents ectopic fat accumulation and requires proper preadipocyte-to-adipocyte differentiation. An assumed link between excess levels of reactive oxygen species (ROS), WAT dysfunction and T2D has been discussed controversially. While oxidative stress conditions have conclusively been detected in WAT of T2D patients and related animal models, clinical trials with antioxidants failed to prevent T2D or to improve glucose homeostasis. Furthermore, animal studies yielded inconsistent results regarding the role of oxidative stress in the development of diabetes. Here, we discuss the contribution of ROS to the (patho)physiology of adipocyte function and differentiation, with particular emphasis on sources and nutritional modulators of adipocyte ROS and their functions in signaling mechanisms controlling adipogenesis and functions of mature fat cells. We propose a concept of ROS balance that is required for normal functioning of WAT. We explain how both excessive and diminished levels of ROS, e.g. resulting from over supplementation with antioxidants, contribute to WAT dysfunction and subsequently insulin resistance. PMID:27031218

  4. Path Integrals for Electronic Densities, Reactivity Indices, and Localization Functions in Quantum Systems

    PubMed Central

    Putz, Mihai V.

    2009-01-01

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems. PMID:20087467

  5. New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants

    PubMed Central

    Briat, Jean-Francois; Ravet, Karl; Arnaud, Nicolas; Duc, Céline; Boucherez, Jossia; Touraine, Brigitte; Cellier, Francoise; Gaymard, Frederic

    2010-01-01

    Background Iron is an essential element for both plant productivity and nutritional quality. Improving plant iron content was attempted through genetic engineering of plants overexpressing ferritins. However, both the roles of these proteins in plant physiology, and the mechanisms involved in the regulation of their expression are largely unknown. Although the structure of ferritins is highly conserved between plants and animals, their cellular localization differs. Furthermore, regulation of ferritin gene expression in response to iron excess occurs at the transcriptional level in plants, in contrast to animals which regulate ferritin expression at the translational level. Scope In this review, an overview of our knowledge of bacterial and mammalian ferritin synthesis and functions is presented. Then the following will be reviewed: (a) the specific features of plant ferritins; (b) the regulation of their synthesis during development and in response to various environmental cues; and (c) their function in plant physiology, with special emphasis on the role that both bacterial and plant ferritins play during plant–bacteria interactions. Arabidopsis ferritins are encoded by a small nuclear gene family of four members which are differentially expressed. Recent results obtained by using this model plant enabled progress to be made in our understanding of the regulation of the synthesis and the in planta function of these various ferritins. Conclusions Studies on plant ferritin functions and regulation of their synthesis revealed strong links between these proteins and protection against oxidative stress. In contrast, their putative iron-storage function to furnish iron during various development processes is unlikely to be essential. Ferritins, by buffering iron, exert a fine tuning of the quantity of metal required for metabolic purposes, and help plants to cope with adverse situations, the deleterious effects of which would be amplified if no system had evolved to

  6. Additive, modular functionalization of reactive self-assembled monolayers: toward the fabrication of multilevel optical storage media.

    PubMed

    Gentili, Denis; Barbalinardo, Marianna; Manet, Ilse; Durso, Margherita; Brucale, Marco; Mezzi, Alessio; Melucci, Manuela; Cavallini, Massimiliano

    2015-04-28

    We report a novel strategy based on iterative microcontact printing, which provides additive, modular functionalization of reactive SAMs by different functional molecules. We demonstrate that after printing the molecules form an interpenetrating network at the SAM surface preserving their individual properties. We exploited the process by fabricating new optical storage media that consist of a multilevel TAG. PMID:25824851

  7. PGC-1α and reactive oxygen species regulate human embryonic stem cell-derived cardiomyocyte function.

    PubMed

    Birket, Matthew J; Casini, Simona; Kosmidis, Georgios; Elliott, David A; Gerencser, Akos A; Baartscheer, Antonius; Schumacher, Cees; Mastroberardino, Pier G; Elefanty, Andrew G; Stanley, Ed G; Mummery, Christine L

    2013-01-01

    Diminished mitochondrial function is causally related to some heart diseases. Here, we developed a human disease model based on cardiomyocytes from human embryonic stem cells (hESCs), in which an important pathway of mitochondrial gene expression was inactivated. Repression of PGC-1α, which is normally induced during development of cardiomyocytes, decreased mitochondrial content and activity and decreased the capacity for coping with energetic stress. Yet, concurrently, reactive oxygen species (ROS) levels were lowered, and the amplitude of the action potential and the maximum amplitude of the calcium transient were in fact increased. Importantly, in control cardiomyocytes, lowering ROS levels emulated this beneficial effect of PGC-1α knockdown and similarly increased the calcium transient amplitude. Our results suggest that controlling ROS levels may be of key physiological importance for recapitulating mature cardiomyocyte phenotypes, and the combination of bioassays used in this study may have broad application in the analysis of cardiac physiology pertaining to disease. PMID:24371810

  8. PGC-1α and Reactive Oxygen Species Regulate Human Embryonic Stem Cell-Derived Cardiomyocyte Function

    PubMed Central

    Birket, Matthew J.; Casini, Simona; Kosmidis, Georgios; Elliott, David A.; Gerencser, Akos A.; Baartscheer, Antonius; Schumacher, Cees; Mastroberardino, Pier G.; Elefanty, Andrew G.; Stanley, Ed G.; Mummery, Christine L.

    2013-01-01

    Summary Diminished mitochondrial function is causally related to some heart diseases. Here, we developed a human disease model based on cardiomyocytes from human embryonic stem cells (hESCs), in which an important pathway of mitochondrial gene expression was inactivated. Repression of PGC-1α, which is normally induced during development of cardiomyocytes, decreased mitochondrial content and activity and decreased the capacity for coping with energetic stress. Yet, concurrently, reactive oxygen species (ROS) levels were lowered, and the amplitude of the action potential and the maximum amplitude of the calcium transient were in fact increased. Importantly, in control cardiomyocytes, lowering ROS levels emulated this beneficial effect of PGC-1α knockdown and similarly increased the calcium transient amplitude. Our results suggest that controlling ROS levels may be of key physiological importance for recapitulating mature cardiomyocyte phenotypes, and the combination of bioassays used in this study may have broad application in the analysis of cardiac physiology pertaining to disease. PMID:24371810

  9. Synthesis and Functions of Ag2S Nanostructures.

    PubMed

    Cui, Chunyan; Li, Xiaoru; Liu, Jixian; Hou, Yongchao; Zhao, Yuqing; Zhong, Guocheng

    2015-12-01

    The paper presents a review about synthesis and applications of Ag2S nanostructures. As the modern photoelectric and biological materials, Ag2S nanomaterials are potentially useful for both structure and function purposes. Ag2S is a direction narrow band gap semiconductor with special properties. Ag2S nanostructures have been widely researched in chemistry and biochemistry fields because of their unusual optical, electrical, and mechanical properties. It can also be used in many fields, such as photovoltaic cells and infrared detector. In the past few years, Ag2S nanostructures have been synthesized by various methods. The article mainly discusses the four types of preparation methods. Moreover, this article shows a detailed review on the new properties, fabrication, and applications of Ag2S nanocrystals. PMID:26525702

  10. Synthesis and Functions of Ag2S Nanostructures

    NASA Astrophysics Data System (ADS)

    Cui, Chunyan; Li, Xiaoru; Liu, Jixian; Hou, Yongchao; Zhao, Yuqing; Zhong, Guocheng

    2015-11-01

    The paper presents a review about synthesis and applications of Ag2S nanostructures. As the modern photoelectric and biological materials, Ag2S nanomaterials are potentially useful for both structure and function purposes. Ag2S is a direction narrow band gap semiconductor with special properties. Ag2S nanostructures have been widely researched in chemistry and biochemistry fields because of their unusual optical, electrical, and mechanical properties. It can also be used in many fields, such as photovoltaic cells and infrared detector. In the past few years, Ag2S nanostructures have been synthesized by various methods. The article mainly discusses the four types of preparation methods. Moreover, this article shows a detailed review on the new properties, fabrication, and applications of Ag2S nanocrystals.

  11. Mitochondrial Reactive Oxygen Species Production in Excitable Cells: Modulators of Mitochondrial and Cell Function

    PubMed Central

    Camara, Amadou K. S.

    2009-01-01

    Abstract The mitochondrion is a major source of reactive oxygen species (ROS). Superoxide (O2•−) is generated under specific bioenergetic conditions at several sites within the electron-transport system; most is converted to H2O2 inside and outside the mitochondrial matrix by superoxide dismutases. H2O2 is a major chemical messenger that, in low amounts and with its products, physiologically modulates cell function. The redox state and ROS scavengers largely control the emission (generation scavenging) of O2•−. Cell ischemia, hypoxia, or toxins can result in excess O2•− production when the redox state is altered and the ROS scavenger systems are overwhelmed. Too much H2O2 can combine with Fe2+ complexes to form reactive ferryl species (e.g., Fe(IV) = O•). In the presence of nitric oxide (NO•), O2•− forms the reactant peroxynitrite (ONOO−), and ONOOH-induced nitrosylation of proteins, DNA, and lipids can modify their structure and function. An initial increase in ROS can cause an even greater increase in ROS and allow excess mitochondrial Ca2+ entry, both of which are factors that induce cell apoptosis and necrosis. Approaches to reduce excess O2•− emission include selectively boosting the antioxidant capacity, uncoupling of oxidative phosphorylation to reduce generation of O2•− by inducing proton leak, and reversibly inhibiting electron transport. Mitochondrial cation channels and exchangers function to maintain matrix homeostasis and likely play a role in modulating mitochondrial function, in part by regulating O2•− generation. Cell-signaling pathways induced physiologically by ROS include effects on thiol groups and disulfide linkages to modify posttranslationally protein structure to activate/inactivate specific kinase/phosphatase pathways. Hypoxia-inducible factors that stimulate a cascade of gene transcription may be mediated physiologically by ROS. Our knowledge of the role played by ROS and their scavenging systems in

  12. Synthesis and reactivity of aliphatic sulfur pentafluorides from substituted (pentafluorosulfanyl)benzenes

    PubMed Central

    Vida, Norbert; Václavík, Jiří

    2016-01-01

    Summary Oxidation of 3- and 4-pentafluorosulfanyl-substituted anisoles and phenols with hydrogen peroxide and sulfuric acid provided a mixture of SF5-substituted muconolactone, maleic, and succinic acids. A plausible mechanism for the formation of the aliphatic SF5 compounds was presented and their chemical reactivity was investigated. SF5-substituted para-benzoquinone was synthesized; its oxidation led to an improved yield of 2-(pentafluorosulfanyl)maleic acid. The reaction of SF5-substituted maleic anhydride and para-benzoquinone with cyclopentadiene afforded the Diels–Alder adducts. Decomposition of 3-(pentafluorosulfanyl)muconolactone in acidic, neutral and basic aqueous media was investigated and the decarboxylation of 2-(pentafluorosulfanyl)maleic acid provided 3-(pentafluorosulfanyl)acrylic acid. PMID:26877813

  13. Synthesis and reactivity of aliphatic sulfur pentafluorides from substituted (pentafluorosulfanyl)benzenes.

    PubMed

    Vida, Norbert; Václavík, Jiří; Beier, Petr

    2016-01-01

    Oxidation of 3- and 4-pentafluorosulfanyl-substituted anisoles and phenols with hydrogen peroxide and sulfuric acid provided a mixture of SF5-substituted muconolactone, maleic, and succinic acids. A plausible mechanism for the formation of the aliphatic SF5 compounds was presented and their chemical reactivity was investigated. SF5-substituted para-benzoquinone was synthesized; its oxidation led to an improved yield of 2-(pentafluorosulfanyl)maleic acid. The reaction of SF5-substituted maleic anhydride and para-benzoquinone with cyclopentadiene afforded the Diels-Alder adducts. Decomposition of 3-(pentafluorosulfanyl)muconolactone in acidic, neutral and basic aqueous media was investigated and the decarboxylation of 2-(pentafluorosulfanyl)maleic acid provided 3-(pentafluorosulfanyl)acrylic acid. PMID:26877813

  14. Synthesis, characterization and reactivity of early transition metal neo-pentoxides

    SciTech Connect

    Boyle, T.J.; Alam, T.M.; Scott, B.; Ziller, J.W.

    1997-12-31

    Titanium neo-pentoxide was isolated by the alcoholysis exchange between Ti(OCHMe{sub 2}){sub 4} and ONep. The molecule, [Ti(ONep){sub 4}]{sub 2}, was characterized using X-ray analysis and solution {sup 17}O, and {sup 47},{sup 49}Ti NMR spectroscopy. This dinuclear complex is the smallest Ti(OR){sub 4} isolated wherein each metal center is 5-coordinated. The molecule is highly soluble in standard solvents and volatile. The reactivity of this compound has been undertaken to compare with the ubiquitous Ti(O-I-Pr){sub 4}. The various compounds isolated and further NMR studies will be reported. Analogous routes to other M(ONep){sub n} will be reported as well.

  15. Two-coordinate terminal zinc hydride complexes: synthesis, structure and preliminary reactivity studies.

    PubMed

    Dawkins, Michael J C; Middleton, Ewart; Kefalidis, Christos E; Dange, Deepak; Juckel, Martin M; Maron, Laurent; Jones, Cameron

    2016-08-18

    The first examples of essentially two-coordinate, monomeric zinc hydride complexes, LZnH (L = -N(Ar)(SiR3)) (Ar = C6H2{C(H)Ph2}2R'-2,6,4; R = Me, R' = Pr(i) (L'); R = Pr(i), R' = Me (L*); R = Pr(i), R' = Pr(i) (L(†))) have been prepared and shown by crystallographic studies to have near linear N-Zn-H fragments. The results of computational studies imply that any PhZn interactions in the compounds are weak at best. Preliminary reactivity studies reveal the compounds to be effective for the stoichiometric hydrozincation and catalytic hydrosilylation of carbonyl compounds. PMID:27499232

  16. Glucocorticoids: Dose-related effects on osteoclast formation and function via reactive oxygen species and autophagy.

    PubMed

    Shi, Jun; Wang, Long; Zhang, Hongyang; Jie, Qiang; Li, Xiaojie; Shi, Qiyue; Huang, Qiang; Gao, Bo; Han, Yuehu; Guo, Kai; Liu, Jian; Yang, Liu; Luo, Zhuojing

    2015-10-01

    Whether glucocorticoids directly enhance or interrupt osteoclastogenesis is still a controversial subject. In this study, we ascertained the dose-dependent positive effects of glucocorticoids on osteoclastogenesis in vivo and in vitro as well as investigated the mechanism in vitro. As the dose of glucocorticoids increased, osteoclastogenesis was stimulated at 0.1 μM, a peak was achieved at 1 μM and a corresponding decrease occurred at 10 μM. Reactive oxygen species (ROS), which play a crucial role in osteoclastogenesis, and autophagy flux activity, a cellular recycling process, were consistently up-regulated along with the dose-dependent effects of the glucocorticoids on osteoclast formation and function. N-acetyl-cysteine (NAC), a ROS scavenger, abrogated the effects of the glucocorticoids on autophagy and osteoclastogenesis. Moreover, 3-methyladenine (3-MA), an autophagy inhibitor, interrupted osteoclastogenesis stimulation by the glucocorticoids. These results implied that with glucocorticoid administration, ROS and autophagy, as a downstream factor of ROS, played vital roles in osteoclast formation and function. 3-MA administration did not enhance ROS accumulation, so that autophagy had no effect on ROS induced by glucocorticoids. Our investigation demonstrated that glucocorticoids had dose-dependent positive effects on osteoclast formation and function via ROS and autophagy. These results provide support for ROS and autophagy as therapeutic targets in glucocorticoid-related bone loss diseases such as glucocorticoid-induced osteoporosis. PMID:26115910

  17. Organic functional group transformations in water at elevated temperature and pressure: Reversibility, reactivity, and mechanisms

    NASA Astrophysics Data System (ADS)

    Shipp, Jessie; Gould, Ian R.; Herckes, Pierre; Shock, Everett L.; Williams, Lynda B.; Hartnett, Hilairy E.

    2013-03-01

    Many transformation reactions involving hydrocarbons occur in the presence of H2O in hydrothermal systems and deep sedimentary systems. We investigate these reactions using laboratory-based organic chemistry experiments at high temperature and pressure (300 °C and 100 MPa). Organic functional group transformation reactions using model organic compounds based on cyclohexane with one or two methyl groups provided regio- and stereochemical markers that yield information about reversibility and reaction mechanisms. We found rapidly reversible interconversion between alkanes, alkenes, dienes, alcohols, ketones, and enones. The alkane-to-ketone reactions were not only completely reversible, but also exhibited such extensive reversibility that any of the functional groups along the reaction path (alcohol, ketone, and even the diene) could be used as the reactant and form all the other groups as products. There was also a propensity for these ring-based structures to dehydrogenate; presumably from the alkene, through a diene, to an aromatic ring. The product suites provide strong evidence that water behaved as a reactant and the various functional groups showed differing degrees of reactivity. Mechanistically-revealing products indicated reaction mechanisms that involve carbon-centered cation intermediates. This work therefore demonstrates that a wide range of organic compound types can be generated by abiotic reactions at hydrothermal conditions.

  18. Sphingosine-1-phosphate synthesis and functions in mast cells

    PubMed Central

    Price, Megan M; Oskeritzian, Carole A; Milstien, Sheldon; Spiegel, Sarah

    2009-01-01

    Sphingolipids are not only major lipid components of all eukaryotic cell membranes, but they also comprise an important family of bioactive signaling molecules that regulate a diverse array of biological responses. The sphingolipid metabolite sphingosine-1-phosphate (S1P), is a key regulator of immune responses. Cellular levels of S1P are determined by the balance between its synthesis, involving two sphingosine kinases (SphK1 and SphK2), and its degradation, involving S1P lyase and S1P phosphatases. S1P mainly signals through its cell-surface receptors and may also have intracellular functions. S1P has important functions in mast cells – the major effectors of allergic responses. Antigen triggering of IgE receptors on mast cells activates both SphKs resulting in the production of S1P that is released and regulates and amplifies mast cell functions, including degranulation as well as cytokine and chemokine release. PMID:19802381

  19. Novel imidazolium and imidazolinium salts containing the 9-nickelafluorenyl anion--synthesis, structures and reactivity.

    PubMed

    Buchalski, Piotr; Pacholski, Roman; Chodkiewicz, Krzysztof; Buchowicz, Włodzimierz; Suwińska, Kinga; Shkurenko, Aleksander

    2015-04-28

    Investigation of the properties of carbene complexes is one of the most important fields of modern coordination chemistry. In this paper, we propose the convenient synthesis of NHC-nickel compounds. The 9-nickelafluorenyllithium complex reacts with imidazolium or imidazolinium salts to afford 9-nickelafluorenyl-NHC salts via ionic metathesis with very good yields (66-92%). These compounds can be isomerised at elevated temperatures to give Ni-NHC complexes with excellent yields (88-91%), probably via nickel mediated hydrogen transfer to the biphenyl moiety. In this reaction, the nickelacyclic ring itself serves as a base in the deprotonation of the carbene precursor. DFT calculations show the thermodynamic instability of the synthesized salts, with Gibbs free energy differences for 1 of -84 kJ mol(-1) at 298 K and -167 kJ mol(-1) at 374 K. The obtained salts and carbene complexes are relatively air and moisture stable in the solid state. PMID:25786198

  20. Medroxyprogesterone acetate inhibits CD8+ T cell viral specific effector function and induces herpes simplex virus type 1 reactivation

    PubMed Central

    Cherpes, Thomas L.; Busch, James L.; Sheridan, Brian S.; Harvey, Stephen A. K.; Hendricks, Robert L.

    2008-01-01

    Clinical research suggests hormonal contraceptive use is associated with increased frequencies of herpes simplex virus (HSV) reactivation and shedding. We examined the effects of medroxyprogesterone acetate (MPA), the compound most commonly used for injectable hormonal contraception, on HSV-1 reactivation and CD8+ T cell function in murine trigeminal ganglia (TG). In ex vivo TG cultures, MPA dramatically inhibited canonical CD8+ T cell effector functions, including IFN-γ production and lytic granule release, and increased HSV-1 reactivation from latency. In vivo, MPA treatment of latently infected ovariectomized mice inhibited IFN-γ production and lytic granule release by TG resident CD8+ T cells stimulated directly ex vivo. RNA specific for the essential immediate early viral gene ICP4 as well as viral genome DNA copy number were increased in mice that received MPA during latency, suggesting that treatment increased in vivo reactivation. The increase in HSV-1 copy number appeared to be the result of a two-tine effect, as MPA induced higher reactivation frequencies from latently infected explanted TG neurons in the presence or absence of CD45+ cells. Our data suggest hormonal contraceptives that contain MPA may promote increased frequency of HSV reactivation from latency through the combinatory effects of inhibiting protective CD8+ T cell responses and by a leukocyte-independent effect on infected neurons. PMID:18606648

  1. Template-mediated synthesis and bio-functionalization of flexible lignin-based nanotubes and nanowires.

    PubMed

    Caicedo, Hector M; Dempere, Luisa A; Vermerris, Wilfred

    2012-03-16

    Limitations of cylindrical carbon nanotubes based on the buckminsterfullerene structure as delivery vehicles for therapeutic agents include their chemical inertness, sharp edges and toxicological concerns. As an alternative, we have developed lignin-based nanotubes synthesized in a sacrificial template of commercially available alumina membranes. Lignin is a complex phenolic plant cell wall polymer that is generated as a waste product from paper mills and biorefineries that process lignocellulosic biomass into fuels and chemicals. We covalently linked isolated lignin to the inner walls of activated alumina membranes and then added layers of dehydrogenation polymer onto this base layer via a peroxidase-catalyzed reaction. By using phenolic monomers displaying different reactivities, we were able to change the thickness of the polymer layer deposited within the pores, resulting in the synthesis of nanotubes with a wall thickness of approximately 15 nm or nanowires with a nominal diameter of 200 nm. These novel nanotubes are flexible and can be bio-functionalized easily and specifically, as shown by in vitro assays with biotin and Concanavalin A. Together with their intrinsic optical properties, which can also be varied as a function of their chemical composition, these lignin-based nanotubes are expected to enable a variety of new applications including as delivery systems that can be easily localized and imaged after uptake by living cells. PMID:22362196

  2. Template-mediated synthesis and bio-functionalization of flexible lignin-based nanotubes and nanowires

    NASA Astrophysics Data System (ADS)

    Caicedo, Hector M.; Dempere, Luisa A.; Vermerris, Wilfred

    2012-03-01

    Limitations of cylindrical carbon nanotubes based on the buckminsterfullerene structure as delivery vehicles for therapeutic agents include their chemical inertness, sharp edges and toxicological concerns. As an alternative, we have developed lignin-based nanotubes synthesized in a sacrificial template of commercially available alumina membranes. Lignin is a complex phenolic plant cell wall polymer that is generated as a waste product from paper mills and biorefineries that process lignocellulosic biomass into fuels and chemicals. We covalently linked isolated lignin to the inner walls of activated alumina membranes and then added layers of dehydrogenation polymer onto this base layer via a peroxidase-catalyzed reaction. By using phenolic monomers displaying different reactivities, we were able to change the thickness of the polymer layer deposited within the pores, resulting in the synthesis of nanotubes with a wall thickness of approximately 15 nm or nanowires with a nominal diameter of 200 nm. These novel nanotubes are flexible and can be bio-functionalized easily and specifically, as shown by in vitro assays with biotin and Concanavalin A. Together with their intrinsic optical properties, which can also be varied as a function of their chemical composition, these lignin-based nanotubes are expected to enable a variety of new applications including as delivery systems that can be easily localized and imaged after uptake by living cells.

  3. Reactive processing and characterization of nickel aluminide-alumina functionally gradient composites

    NASA Astrophysics Data System (ADS)

    Zhu, Hexiang

    The reactive hot compaction (RHC) technique was successfully utilized to produce bulk in-situ nickel aluminide (NiAl)-alumina (Al 2O3) functionally gradient composites (FGCs) as well as thin FGC coating. The FGCs consisted of four or five layers with alumina content increasing from less than 3vol.% to about 35vol.%. The composites were fabricated via reactive processing of the powder mixtures of nickel, aluminum, partially oxidized aluminum (Al*) and/or nickel oxide (NiO). The technique resulted in a gradual transition of the microstructure and properties along the thickness of the FGC, and led to reduced residual stresses and a strong bonding between the NiAl substrate and the FGC coating. The FGC also had higher fracture toughness than the corresponding composites. The phase and microstructural development for the three powder mixture systems (Ni-Al, Ni-Al*, and NiO-Al), which occurred during reactive processing of the composites, were systematically studied. The reaction process of Ni + Al powder mixtures was found to be strongly affected by pressure, heating rates, heat loss and diffusion barrier. It was found that the formation of NiAl occurred rapidly via combustion reaction at high heating rates and with small heat loss. At slow heating rates, however, the reaction process was slow and controlled by solid-state diffusion. The phase formation sequence for the slow solid-state reaction was determined to be: NiAl3 → Ni2Al3 → NiAl (Ni3Al) → NiAl. An Al2O3 particle network was produced during RHC of Ni + Al* powders, while an interpenetrating Al2O3 skeleton formed for NiO + Al powders. The formation of Al2O 3 phases during RHC of NiO + Al powders was a three-stage process, with the Al2O3 phases coming from both the liquid and the solid state reactions. The solid state displacement reaction between NiO and nickel-aluminides (NiAl3, Ni2Al3, NiAl) is believed to lead to the formation of an interpenetrating Al2O 3 network in the final product. The in

  4. The synthesis, characterization and reactivity of high oxidation state nickel fluorides

    SciTech Connect

    Chacon, L.C. |

    1997-12-01

    The research described in this thesis has mainly addressed the challenge of the synthesis of thermodynamically unstable nickel fluorides, which cannot be made by traditional thermal methods. A low-temperature approach towards the synthesis of such transition metal fluorides exploits the greater thermodynamic stability of high oxidation states in anions and involves the use of anhydrous hydrogen fluoride (aHF) as a solvent. The general method consists of combining an aHF soluble starting material (e.g., K{sub 2}NiF{sub 6}) with a Lewis fluoroacid (e.g., BF{sub 3}), which precipitates a neutral polymeric solid state fluoride: 2 K{sup +} + NiF{sub 6}{sup 2{minus}} + BF{sub 3} {r_arrow} NiF{sub 4} + 2 BF{sub 4}{sup {minus}} + 2 K{sup +}. At room temperature, this reaction yields a different structural phase, with composition K{sub x}NiF{sub 3} (x {approx} 0.18). This material has a pseudo-hexagonal tungsten bronze structure (H{sub 0}-K{sub x}NiF{sub 3}), and is an ionic conductor, probably due to K{sup +} ions hosted in the lattice channels. R-NiF{sub 3} is capable of fluorinating a wide range of inorganic and organic substrates. These reactions have probably shed light on the mechanism of the Simons Electrochemical Fluorination (ECF) Process, an important industrial method of fluorinating organic compounds. It has long been speculated that NiF{sub 3} plays a role in the ECF process, which uses nickel electrodes in aHF solvent. K{sub 2}NiF{sub 6} also fluorinates organic compounds in aHF, but interestingly, yields different fluorinated products. The reduction of R-NiF{sub 3} and K{sub 2}NiF{sub 6} during fluorination reactions yields NiF{sub 2}. A method has been developed to regenerate NiF{sub 6}{sup 2{minus}} from NiF{sub 2}.

  5. Superhydrophobic Thin Films Fabricated by Reactive Layer-by-Layer Assembly of Azlactone-Functionalized Polymers

    PubMed Central

    Buck, Maren E.; Schwartz, Sarina C.

    2010-01-01

    We report an approach to the fabrication of superhydrophobic thin films that is based on the ‘reactive’ layer-by-layer assembly of azlactone-containing polymer multilayers. We demonstrate that films fabricated from alternating layers of the azlactone functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) and poly(ethyleneimine) (PEI) exhibit micro- and nanoscale surface features that result in water contact angles in excess of 150º. Our results reveal that the formation of these surface features is (i) dependent upon film thickness (i.e., the number of layers of PEI and PVDMA deposited) and (ii) that it is influenced strongly by the presence (or absence) of cyclic azlactone-functionalized oligomers that can form upon storage of the 2-vinyl-4,4-dimethylazlactone (VDMA) used to synthesize PVDMA. For example, films fabricated using polymers synthesized in the presence of these oligomers exhibited rough, textured surfaces and superhydrophobic behavior (i.e., advancing contact angles in excess of 150º). In contrast, films fabricated from PVDMA polymerized in the absence of this oligomer (e.g., using freshly distilled monomer) were smooth and only moderately hydrophobic (i.e., advancing contact angles of ~75º). The addition of authentic, independently synthesized oligomer to samples of distilled VDMA at specified and controlled concentrations permitted reproducible fabrication of superhydrophobic thin films on the surfaces of a variety of different substrates. The surfaces of these films were demonstrated to be superhydrophobic immediately after fabrication, but they became hydrophilic after exposure to water for six days. Additional experiments demonstrated that it was possible to stabilize and prolong the superhydrophobic properties of these films (e.g., advancing contact angles in excess of 150° even after complete submersion in water for at least six weeks) by exploiting the reactivity of residual azlactones to functionalize the surfaces of the

  6. Fe-Al layered double hydroxides in bromate reduction: Synthesis and reactivity.

    PubMed

    Chitrakar, Ramesh; Makita, Yoji; Sonoda, Akinari; Hirotsu, Takahiro

    2011-02-15

    This study presents a rare use of layered double hydroxides of Fe(II) and Al(III) (Fe-Al LDH), as reported for the first time for bromate removal from aqueous solutions. The Fe-Al LDH samples were prepared with Fe/Al molar ratios of 1-4 using a co-precipitation method at pH 7, with subsequent hydrothermal treatment at 120°C. The Fe-Al LDH (molar ratio of Fe/Al=1, 2) with a layered structure exhibited nearly complete removal of bromate from initial concentration of 100μmol/dm(3) at a wide pH range of 4.0-10.5 over a 2h reaction period; the residual bromate concentration in the solution was lower than the detection limit of 0.07μmol/dm(3) (9μg-BrO(3)(-)/dm(3)). During the reaction period, bromide was released into the solution via a reduction process. Reactivity of Fe-Al LDH with a Fe/Al molar ratio of 2 did not decrease the bromate reduction efficiency during 30days. PMID:21126742

  7. Rhodium Complex with Ethylene Ligands Supported on Highly Dehydroxylated MgO: Synthesis, Characterization, and Reactivity

    SciTech Connect

    Bhirud,V.; Ehresmann, J.; Kletnieks, P.; Haw, J.; Gates, B.

    2006-01-01

    Mononuclear rhodium complexes with reactive olefin ligands, supported on MgO powder, were synthesized by chemisorption of Rh(C2H4)2(C5H7O2) and characterized by infrared (IR), {sup 13}C MAS NMR, and extended X-ray absorption fine structure (EXAFS) spectroscopies. IR spectra show that the precursor adsorbed on MgO with dissociation of acetylacetonate ligand from rhodium, with the ethylene ligands remaining bound to the rhodium, as confirmed by the NMR spectra. EXAFS spectra give no evidence of Rh-Rh contributions, indicating that site-isolated mononuclear rhodium species formed on the support. The EXAFS data also show that the mononuclear complex was bonded to the support by two Rh-O bonds, at a distance of 2.18 Angstroms, which is typical of group 8 metals bonded to oxide supports. This is the first simple and nearly uniform supported mononuclear rhodium-olefin complex, and it appears to be a close analogue of molecular catalysts for olefin hydrogenation in solution. Correspondingly, the ethylene ligands bonded to rhodium in the supported complex were observed to react with H{sub 2} to form ethane, and the supported complex was catalytically active for the ethylene hydrogenation at 298 K. The ethylene ligands also underwent facile exchange with C{sub 2}D{sub 4}, and exposure of the sample to carbon monoxide led to the formation of rhodium gem dicarbonyls.

  8. Synthesis of copper nitride films doped with Fe, Co, or Ni by reactive magnetron sputtering

    SciTech Connect

    Yang, Jianbo; Huang, Saijia; Wang, Zhijiao; Hou, Yuxuan; Shi, Yuyu; Zhang, Jian; Yang, Jianping Li, Xing'ao

    2014-09-01

    Copper nitride (Cu{sub 3}N) and Fe-, Co-, and Ni-doped Cu{sub 3}N films were prepared by reactive magnetron sputtering. The films were deposited on silicon substrates at room temperature using pure Cu target and metal chips. The molar ratio of Cu to N atoms in the as-prepared Cu{sub 3}N film was 2.7:1, which is comparable with the stoichiometry ratio 3:1. X-ray diffraction measurements showed that the films were composed of Cu{sub 3}N crystallites with anti-ReO{sub 3} structure and adopted different preferred orientations. The reflectance of the four samples decreased in the wavelength range of 400–830 nm, but increased rapidly within wavelength range of 830–1200 nm. Compared with the Cu{sub 3}N films, the resistivity of the doped Cu{sub 3}N films decreased by three orders of magnitude. These changes have great application potential in optical and electrical devices based on Cu{sub 3}N films.

  9. Synthesis and characterization of reactive poloxamer 407s for biomedical applications.

    PubMed

    Niu, Guoguang; Du, Fengyi; Song, Li; Zhang, Hongbin; Yang, Jun; Cao, Hui; Zheng, Yudong; Yang, Zhou; Wang, Guojie; Yang, Huai; Zhu, Siquan

    2009-08-19

    The drawbacks of poloxamer hydrogel, such as dissolving quickly in aqueous solution, have limited its biomedical application. In order to improve the stability of hydrogel, a novel system was developed by combining the reversible thermo-sensitive property of poloxamer 407 and the thiol-ene reactivity between the acrylate and thiol groups. It was found that the sol-gel transition of the acrylate/thiol modified poloxamer 407 mixture could be achieved at body temperature even with a low concentration of 17.5 wt.%. Meanwhile, the reaction between the acrylate and thiol modified poloxamer 407s occurred spontaneously in mimic physiological conditions, thus the hydrogel with crosslinking structure was formed. As a result, the stability of the crosslinked hydrogel was enhanced remarkably, and the release time of the drug from the crosslinked hydrogel was about 4.0 times as long as that from the poloxamer 407 hydrogel. Invitro and invivo experiments revealed that the biocompatibilities of the modified poloxamer 407 hydrogel were similar to that of poloxamer 407. These results indicate that the modified poloxamer 407s have potential applications in controlled drug release, tissue engineering and cell encapsulation etc. PMID:19409430

  10. Synthesis and characterization of petal type CZTS by stacked layer reactive sputtering

    NASA Astrophysics Data System (ADS)

    Singh, Om Pal; Parmar, R.; Gour, K. S.; Dalai, M. K.; Tawale, Jai; Singh, S. P.; Singh, Vidya Nand

    2015-12-01

    Here we present a method to grow the petal type structure of CZTS thin film on soda lime glass substrate using the stacked layer reactive sputtering and post-depostion annealing in N2 atmosphere. Optical bandgap of the petal type structure of CZTS was determined using UV-VIS spectroscopy and the value was 1.5 eV. In XRD analysis, (112) plane having highest intensity and other supporting planes with low intensity peaks corresponding to (200), (220) and (312) revealed the presence of CZTS phase. It was further confirmed by the Raman analysis, where the Raman peaks at 288 cm-1, 335 cm-1 and 353 cm-1 revealed the presence of CZTS phase. Petal type growth was observed in the scanning electron microscopy analysis. Elemental analysis was done by the EDAX. In EDAX analysis, It is observed that sample was Sn rich which may be responsible for petal type growth. Petal type growth of CZTS may be helpful in increasing the performance of the CZTS based thin film solar cell by phenomena of light scattering and enhanced surface area.

  11. Green synthesis of iron nanoparticles by various tea extracts: Comparative study of the reactivity

    NASA Astrophysics Data System (ADS)

    Huang, Lanlan; Weng, Xiulan; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra

    2014-09-01

    Iron nanoparticles (Fe NPs) are often synthesized using sodium borohydride with aggregation, which is a high cost process and environmentally toxic. To address these issues, Fe NPs were synthesized using green methods based on tea extracts, including green, oolong and black teas. The best method for degrading malachite green (MG) was Fe NPs synthesized by green tea extracts because it contains a high concentration of caffeine/polyphenols which act as both reducing and capping agents in the synthesis of Fe NPs. These characteristics were confirmed by a scanning electron microscope (SEM), UV-visible (UV-vis) and specific surface area (BET). To understand the formation of Fe NPs using various tea extracts, the synthesized Fe NPs were characterized by SEM, X-ray energy-dispersive spectrometer (EDS), and X-ray diffraction (XRD). What emerged were different sizes and concentrations of Fe NPs being synthesized by tea extracts, leading to various degradations of MG. Furthermore, kinetics for the degradation of MG using these Fe NPs fitted well to the pseudo first-order reaction kinetics model with more than 20 kJ/mol activation energy, suggesting a chemically diffusion-controlled reaction. The degradation mechanism using these Fe NPs included adsorption of MG to Fe NPs, oxidation of iron, and cleaving the bond that was connected to the benzene ring.

  12. Synthesis and Characterization of a Novel Inhibitor of C-Reactive Protein–Mediated Proinflammatory Effects

    PubMed Central

    Devaraj, Sridevi; Huang, Wenzhe; Lau, Edmond Y.; Liu, Ruiwu; Lam, Kit S.

    2013-01-01

    Abstract Background Numerous studies have shown that high C-reactive protein (CRP) levels predict cardiovascular disease and augur a poor prognosis in patients with acute coronary syndromes. Much in vitro and in vivo data support of a role for CRP in atherogenesis. There is an urgent need to develop inhibitors that specifically block the biological effects of CRP in vivo. The one-bead–one-compound (OBOC) combinatorial library method has been used to discover ligands against several biological targets. In this study, we use a novel fluorescence-based screening method to screen an OBOC combinatorial library for the discovery of peptides against human CRP. Methods Human CRP was labeled with fluorescein isothiocyanate (FITC) and human serum albumin (HuSA) was labeled with phycoerythrin (PE) and used for screening. The OBOC library LWH-01 was synthesized on TentaGel resin beads using a standard solid-phase “split/mix” approach. Results By subtraction screening, eight peptides that bind specifically to CRP and not to HuSA were identified. In human aortic endothelial cells (HAECs) incubated with CRP, inhibitors CRPi-2, CRPi-3, and CRPi-6 significantly inhibited CRP-induced superoxide, cytokine release, and nuclear factor-κB (NFκB) activity. Molecular docking studies demonstrate that CRPi-2 interacts with the two Ca2+ ions in the single subunit of CRP. The binding of CRPi-2 is reminiscent of choline binding. Conclusions Future studies will examine the utility of this inhibitor in animal models and clinical trials. PMID:23445482

  13. Synthesis of Self-Assembled Multifunctional Nanocomposite Catalysts with Highly Stabilized Reactivity and Magnetic Recyclability.

    PubMed

    Yu, Xu; Cheng, Gong; Zheng, Si-Yang

    2016-01-01

    In this paper, a multifunctional Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite catalyst with highly stabilized reactivity and magnetic recyclability was synthesized by a self-assembled method. The magnetic Fe3O4 nanoparticles were coated with a thin layer of the SiO2 to obtain a negatively charged surface. Then positively charged poly(ethyleneimine) polymer (PEI) was self-assembled onto the Fe3O4@SiO2 by electrostatic interaction. Next, negatively charged glutathione capped gold nanoparticles (GSH-AuNPs) were electrostatically self-assembled onto the Fe3O4@SiO2@PEI. After that, silver was grown on the surface of the nanocomposite due to the reduction of the dopamine in the alkaline solution. An about 5 nm thick layer of polydopamine (PDA) was observed to form the Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was carefully characterized by the SEM, TEM, FT-IR, XRD and so on. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite shows a high saturation magnetization (Ms) of 48.9 emu/g, which allows it to be attracted rapidly to a magnet. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was used to catalyze the reduction of p-nitrophenol (4-NP) to p-aminophenol (4-AP) as a model system. The reaction kinetic constant k was measured to be about 0.56 min(-1) (R(2) = 0.974). Furthermore, the as-prepared catalyst can be easily recovered and reused for 8 times, which didn't show much decrease of the catalytic capability. PMID:27147586

  14. Synthesis of Self-Assembled Multifunctional Nanocomposite Catalysts with Highly Stabilized Reactivity and Magnetic Recyclability

    NASA Astrophysics Data System (ADS)

    Yu, Xu; Cheng, Gong; Zheng, Si-Yang

    2016-05-01

    In this paper, a multifunctional Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite catalyst with highly stabilized reactivity and magnetic recyclability was synthesized by a self-assembled method. The magnetic Fe3O4 nanoparticles were coated with a thin layer of the SiO2 to obtain a negatively charged surface. Then positively charged poly(ethyleneimine) polymer (PEI) was self-assembled onto the Fe3O4@SiO2 by electrostatic interaction. Next, negatively charged glutathione capped gold nanoparticles (GSH-AuNPs) were electrostatically self-assembled onto the Fe3O4@SiO2@PEI. After that, silver was grown on the surface of the nanocomposite due to the reduction of the dopamine in the alkaline solution. An about 5 nm thick layer of polydopamine (PDA) was observed to form the Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was carefully characterized by the SEM, TEM, FT-IR, XRD and so on. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite shows a high saturation magnetization (Ms) of 48.9 emu/g, which allows it to be attracted rapidly to a magnet. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was used to catalyze the reduction of p-nitrophenol (4-NP) to p-aminophenol (4-AP) as a model system. The reaction kinetic constant k was measured to be about 0.56 min‑1 (R2 = 0.974). Furthermore, the as-prepared catalyst can be easily recovered and reused for 8 times, which didn’t show much decrease of the catalytic capability.

  15. Synthesis of Self-Assembled Multifunctional Nanocomposite Catalysts with Highly Stabilized Reactivity and Magnetic Recyclability

    PubMed Central

    Yu, Xu; Cheng, Gong; Zheng, Si-Yang

    2016-01-01

    In this paper, a multifunctional Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite catalyst with highly stabilized reactivity and magnetic recyclability was synthesized by a self-assembled method. The magnetic Fe3O4 nanoparticles were coated with a thin layer of the SiO2 to obtain a negatively charged surface. Then positively charged poly(ethyleneimine) polymer (PEI) was self-assembled onto the Fe3O4@SiO2 by electrostatic interaction. Next, negatively charged glutathione capped gold nanoparticles (GSH-AuNPs) were electrostatically self-assembled onto the Fe3O4@SiO2@PEI. After that, silver was grown on the surface of the nanocomposite due to the reduction of the dopamine in the alkaline solution. An about 5 nm thick layer of polydopamine (PDA) was observed to form the Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was carefully characterized by the SEM, TEM, FT-IR, XRD and so on. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite shows a high saturation magnetization (Ms) of 48.9 emu/g, which allows it to be attracted rapidly to a magnet. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was used to catalyze the reduction of p-nitrophenol (4-NP) to p-aminophenol (4-AP) as a model system. The reaction kinetic constant k was measured to be about 0.56 min−1 (R2 = 0.974). Furthermore, the as-prepared catalyst can be easily recovered and reused for 8 times, which didn’t show much decrease of the catalytic capability. PMID:27147586

  16. Synthesis and Reactivity of Oxo-Peroxo-Vanadium(V) Bipyridine Compounds

    PubMed Central

    Waidmann, Christopher R.; DiPasquale, Antonio G.

    2010-01-01

    The vanadium(IV) compound [VIVO(OH)(tBu2bpy)2]BF4 (VIVO(OH)) (tBu2bpy = 4,4′-di-tert-butylbipyridine) is slowly oxidized by O2 in ethereal solvents to give the oxo-peroxo compound [VVO(O2)(tBu2bpy)2]BF4 (VVO(O2)) in excellent yield. This and related compounds were fully characterized by NMR, IR, and optical spectroscopies, mass spectrometry, elemental analyses, and an X-ray crystal structure of the 4,4′-dimethylbipyridine analog, [VVO(O2)(Me2bpy)2]BF4. Monitoring the reaction of VIVO(OH) with O2 in THF/acetonitrile mixtures by 1H NMR and optical spectroscopies surprisingly shows that the initial product is the cis-dioxo compound [VV(O)2(tBu2bpy)2]BF4 (VVO2), which then converts to VVO(O2). Reaction of VIVO(OH) with 18O2 gives ca. 60% triply 18O labeled VVO(O2). The mechanism of formation of VVO(O2) is complex and may occur via initial reduction of O2 at vanadium(IV) to give a superoxo-vanadium(V) intermediate, autoxidation of the THF solvent, or both. That VVO2 is generated first appears to be due to the ability of VIVO(OH) to act as a hydrogen atom donor. For instance, VIVO(OH) reacts with VVO(O2) give VVO2. VVO(O2) is also slowly reduced to VIVO(OH) by the organic hydrogen atom donors hydroquinone and TEMPOH (2,2,6,6-tetramethylpiperidin-1-ol) as well as by triphenylphosphine. Notably, the peroxo complex VVO(O2) is much less reactive with these substrates than the analogous dioxo compound VVO2. PMID:20108930

  17. Regioselective Synthesis of C-3-Functionalized Quinolines via Hetero-Diels-Alder Cycloaddition of Azadienes with Terminal Alkynes.

    PubMed

    Saunthwal, Rakesh K; Patel, Monika; Verma, Akhilesh K

    2016-08-01

    A highly efficient metal and protection-free approach for the regioselective synthesis of C-3-functionalized quinolines from azadienes (in situ generated from 2-aminobenzyl alcohol) and terminal alkynes through [4 + 2] cycloaddition has been developed. An unprecedented reaction of 2-aminobenzyl alcohol with 1,3- and 1,4-diethynylbenzene provided the C-3 tolylquinolines via [4 + 2] HDA and oxidative decarboxylation. The -NH2 group directed mechanistic approach was well supported by the control experiments and deuterium-labeling studies and by isolating the azadiene intermediate. The reactivity and selectivity of unprotected azadiene in metal-free base-assisted hetero-Diels-Alder reaction is exploited to quickly assemble an important class of C-3-functionalized quinolines, which are difficult to access. PMID:27380814

  18. Surface functionalization of titanium dioxide nanoparticles: Photo-stability and reactive oxygen species (ROS) generation

    NASA Astrophysics Data System (ADS)

    Louis, Kacie M.

    Metal oxide nanoparticles are becoming increasingly prevalent in society for applications of sunscreens, cosmetics, paints, biomedical imaging, and photovoltaics. Due to the increased surface area to volume ratio of nanoparticles compared to bulk materials, it is important to know the health and safety impacts of these materials. One mechanism of toxicity of nominally "safe" materials such as TiO 2 is through the photocatalytic generation of reactive oxygen species (ROS). ROS production and ligand degradation can affect the bioavailability of these particles in aqueous organisms. We have investigated ROS generation by functionalized TiO2 nanoparticles and its influence on aggregation and bioavailability and toxicity to zebrafish embryos/larvae. For these studies we investigated anatase TiO2 nanoparticles. For application purposes and solution stability, the TiO2 nanoparticles were functionalized with a variety of ligands such as citrate, 3,4-dihydroxybenzaldehyde, and ascorbate. We quantitatively examined the amount of ROS produced in aqueous solution using fluorescent probes and see that more ROS is produced under UV light than in the dark control. Our measurements show that TiO2 toxicity reaches a maximum for nanoparticles with smaller diameters, and is correlated with surface area dependent changes in ROS generation. In an effort to reduce toxicity through control of the surface and surface ligands, we synthesized anatase nanoparticles of different sizes, functionalized them with different ligands, and examined the resulting ROS generation and ligand stability. Using a modular ligand containing a hydrophobic inner region and a hydrophilic outer region, we synthesized water-stable nanoparticles, via two different chemical reactions, having much-reduced ROS generation and thus reduced toxicity. These results suggest new strategies for making safer nanoparticles while still retaining their desired properties. We also examine the degradation of the different ligands

  19. Synthesis, Structure, and Reactivity of Co(II) and Ni(II) PCP Pincer Borohydride Complexes

    PubMed Central

    2015-01-01

    The 15e square-planar complexes [Co(PCPMe-iPr)Cl] (2a) and [Co(PCP-tBu)Cl] (2b), respectively, react readily with NaBH4 to afford complexes [Co(PCPMe-iPr)(η2-BH4)] (4a) and [Co(PCP-tBu)(η2-BH4)] (4b) in high yields, as confirmed by IR spectroscopy, X-ray crystallography, and elemental analysis. The borohydride ligand is symmetrically bound to the cobalt center in η2-fashion. These compounds are paramagnetic with effective magnetic moments of 2.0(1) and 2.1(1) μB consistent with a d7 low-spin system corresponding to one unpaired electron. None of these complexes reacted with CO2 to give formate complexes. For structural and reactivity comparisons, we prepared the analogous Ni(II) borohydride complex [Ni(PCPMe-iPr)(η2-BH4)] (5) via two different synthetic routes. One utilizes [Ni(PCPMe-iPr)Cl] (3) and NaBH4, the second one makes use of the hydride complex [Ni(PCPMe-iPr)H] (6) and BH3·THF. In both cases, 5 is obtained in high yields. In contrast to 4a and 4b, the borohydride ligand is asymmetrically bound to the nickel center but still in an η2-mode. [Ni(PCPMe-iPr)(η2-BH4)] (5) loses readily BH3 at elevated temperatures in the presence of NEt3 to form 6. Complexes 5 and 6 are both diamagnetic and were characterized by a combination of 1H, 13C{1H}, and 31P{1H} NMR, IR spectroscopy, and elemental analysis. Additionally, the structure of these compounds was established by X-ray crystallography. Complexes 5 and 6 react with CO2 to give the formate complex [Ni(PCPMe-iPr)(OC(C=O)H] (7). The extrusion of BH3 from [Co(PCPMe-iPr)(η2-BH4)] (4a) and [Ni(PCPMe-iPr)(η2-BH4)] (5) with the aid of NH3 to yield the respective hydride complexes [Co(PCPMe-iPr)H] and [Ni(PCPMe-iPr)H] (6) and BH3NH3 was investigated by DFT calculations showing that formation of the Ni hydride is thermodynamically favorable, whereas the formation of the Co(II) hydride, in agreement with the experiment, is unfavorable. The electronic structures and the bonding of the borohydride ligand in [Co

  20. Synthesis, structural characterization, and reactivity studies of 5-CF3SO3-B10H13.

    PubMed

    Berkeley, Emily R; Ewing, William C; Carroll, Patrick J; Sneddon, Larry G

    2014-05-19

    In contrast to previous reactions carried out in cyclopentane solvent at room temperature that produced 6-TfO-B10H13 (TfO = CF3SO3), the reaction of closo-B10H10(2-) with a large excess of trifluoromethanesulfonic acid in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate (bmimOTf) gave exclusively the previously unknown 5-TfO-B10H13 isomer. Experimental and computational studies demonstrated that the difference in the products of the two reactions is a result of 6-TfO-B10H13 isomerizing to 5-TfO-B10H13 above room temperature in bmimOTf solutions. Reactivity studies showed that 5-TfO-B10H13: (1) is deprotonated by reaction with 1,8-bis(dimethylamino)naphthalene to form the 5-TfO-B10H12(1-) anion; (2) reacts with alcohols to produce 6-RO-B10H13 boryl ethers (R = Me and 4-CH3O-C6H4); (3) undergoes olefin-hydroboration reactions to form 5-TfO-6,9-R2-B10H11 derivatives; and (4) forms a 5-TfO-6,9-(Me2S)2-B10H11 adduct at its Lewis acidic 6,9-borons upon reaction with dimethylsulfide. The 5-TfO-6,9-(Me2S)2-B10H11 adduct was also found to undergo alkyne-insertion reactions to form a range of previously unreported triflate-substituted 4-TfO-ortho-carboranes (1-R-4-TfO-1,2-C2B10H10) and reactions with triethylamine or ammonia to form the first TfO-substituted decaborate [R3NH(+)]2[2-TfO-B10H9(2-)], and [R3NH(+)]2[1-TfO-B10H9(2-)] (R = H, Et) salts. PMID:24785404

  1. Synthesis, Characterization, and Reactivities of Manganese(V)-Oxo Porphyrin Complexes

    PubMed Central

    Song, Woon Ju; Seo, Mi Sook; George, Serena DeBeer; Ohta, Takehiro; Song, Rita; Kang, Min-Jung; Tosha, Takehiko; Kitagawa, Teizo; Solomon, Edward I.; Nam, Wonwoo

    2010-01-01

    The reactions of manganese(III) porphyrin complexes with terminal oxidants, such as m-chloroperbenzoic acid, iodosylarenes, and H2O2, produced high-valent manganese(V)-oxo porphyrins in the presence of base in organic solvents at room temperature. The manganese(V)-oxo porphyrins have been characterized with various spectroscopic techniques, including UV-vis, EPR, 1H and 19F NMR, resonance Raman, and X-ray absorption spectroscopy. The combined spectroscopic results indicate that the manganese(V)-oxo porphyrins are diamagnetic low-spin (S = 0) species with a longer, weaker Mn-O bond than in previously reported Mn(V)-oxo complexes of non-porphyrin ligands. This is indicative of double bond character between the manganese(V) ion and the oxygen atom, and may be attributed to the presence of a trans-axial ligand. The [(Porp)MnV=O]+ species are stable in the presence of base at room temperature. The stability of the intermediates is dependent on base concentration. In the absence of base, (Porp)MnIV=O is generated instead of the [(Porp)MnV=O]+ species. The stability of the [(Porp)MnV=O]+ species also depends on the electronic nature of porphyrin ligands; [(Porp)MnV=O]+ complexes bearing electron-deficient porphyrin ligands are more stable than those bearing electron-rich porphyrins. Reactivity studies of manganese(V)-oxo porphyrins revealed that the intermediates are capable of oxygenating PPh3 and thioanisoles, but not olefins and alkanes at room temperature. These results indicate that the oxidizing power of [(Porp)MnV=O]+ is low in the presence of base. However, when the [(Porp)MnV=O]+ complexes were associated with iodosylbenzene in the presence of olefins and alkanes, high yields of oxygenated products were obtained in the catalytic olefin epoxidation and alkane hydroxylation reactions. Mechanistic aspects, such as oxygen exchange between [(Porp)MnV=16O]+ and H218O, are also discussed. PMID:17263410

  2. Synthesis and reactivity of oxo-peroxo-vanadium(V) bipyridine compounds.

    PubMed

    Waidmann, Christopher R; DiPasquale, Antonio G; Mayer, James M

    2010-03-01

    The vanadium(IV) compound [V(IV)O(OH)((t)Bu(2)bpy)(2)]BF(4) (V(IV)O(OH)) ((t)Bu(2)bpy = 4,4'-di-tert-butylbipyridine) is slowly oxidized by O(2) in ethereal solvents to give the oxo-peroxo compound [V(V)O(O(2))((t)Bu(2)bpy)(2)]BF(4) (V(V)O(O(2))) in excellent yield. This and related compounds were fully characterized by NMR, IR, and optical spectroscopies; mass spectrometry; elemental analyses; and an X-ray crystal structure of the 4,4'-dimethylbipyridine analog, [V(V)O(O(2))(Me(2)bpy)(2)]BF(4). Monitoring the reaction of V(IV)O(OH) with O(2) in THF/acetonitrile mixtures by (1)H NMR and optical spectroscopies surprisingly shows that the initial product is the cis-dioxo compound [V(V)(O)(2)((t)Bu(2)bpy)(2)]BF(4) (V(V)O(2)), which then converts to V(V)O(O(2)). Reaction of V(IV)O(OH) with (18)O(2) gives ca. 60% triply (18)O labeled V(V)O(O(2)). The mechanism of formation of V(V)O(O(2)) is complex and may occur via initial reduction of O(2) at vanadium(IV) to give a superoxo-vanadium(V) intermediate, autoxidation of the THF solvent, or both. That V(V)O(2) is generated first appears to be due to the ability of V(IV)O(OH) to act as a hydrogen atom donor. For instance, V(IV)O(OH) reacts with V(V)O(O(2)) to give V(V)O(2). V(V)O(O(2)) is also slowly reduced to V(IV)O(OH) by the organic hydrogen atom donors hydroquinone and TEMPOH (2,2,6,6-tetramethylpiperidin-1-ol) as well as by triphenylphosphine. Notably, the peroxo complex V(V)O(O(2)) is much less reactive with these substrates than the analogous dioxo compound V(V)O(2). PMID:20108930

  3. Synthesis, characterization, and reactivities of manganese(V)-oxo porphyrin complexes.

    PubMed

    Song, Woon Ju; Seo, Mi Sook; George, Serena Debeer; Ohta, Takehiro; Song, Rita; Kang, Min-Jung; Tosha, Takehiko; Kitagawa, Teizo; Solomon, Edward I; Nam, Wonwoo

    2007-02-01

    The reactions of manganese(III) porphyrin complexes with terminal oxidants, such as m-chloroperbenzoic acid, iodosylarenes, and H(2)O(2), produced high-valent manganese(V)-oxo porphyrins in the presence of base in organic solvents at room temperature. The manganese(V)-oxo porphyrins have been characterized with various spectroscopic techniques, including UV-vis, EPR, 1H and 19F NMR, resonance Raman, and X-ray absorption spectroscopy. The combined spectroscopic results indicate that the manganese(V)-oxo porphyrins are diamagnetic low-spin (S = 0) species with a longer, weaker Mn-O bond than in previously reported Mn(V)-oxo complexes of non-porphyrin ligands. This is indicative of double-bond character between the manganese(V) ion and the oxygen atom and may be attributed to the presence of a trans axial ligand. The [(Porp)Mn(V)=O](+) species are stable in the presence of base at room temperature. The stability of the intermediates is dependent on base concentration. In the absence of base, (Porp)Mn(IV)=O is generated instead of the [(Porp)Mn(V)=O](+) species. The stability of the [(Porp)Mn(V)=O](+) species also depends on the electronic nature of the porphyrin ligands: [(Porp)Mn(V)=O](+) complexes bearing electron-deficient porphyrin ligands are more stable than those bearing electron-rich porphyrins. Reactivity studies of manganese(V)-oxo porphyrins revealed that the intermediates are capable of oxygenating PPh(3) and thioanisoles, but not olefins and alkanes at room temperature. These results indicate that the oxidizing power of [(Porp)Mn(V)=O](+) is low in the presence of base. However, when the [(Porp)Mn(V)=O](+) complexes were associated with iodosylbenzene in the presence of olefins and alkanes, high yields of oxygenated products were obtained in the catalytic olefin epoxidation and alkane hydroxylation reactions. Mechanistic aspects, such as oxygen exchange between [(Porp)Mn(V)=16O](+) and H(2)(18)O, are also discussed. PMID:17263410

  4. Design and synthesis of a C7-aryl piperlongumine derivative with potent antimicrotubule and mutant p53-reactivating properties.

    PubMed

    Punganuru, Surendra R; Madala, Hanumantha Rao; Venugopal, Sanjay N; Samala, Ramakrishna; Mikelis, Constantinos; Srivenugopal, Kalkunte S

    2016-01-01

    Small molecules that can restore biological function to the p53 mutants found in human cancers have been highly sought to increase the anticancer efficacy. In efforts to generate hybrid anticancer drugs that can impact two or more targets simultaneously, we designed and developed piperlongumine (PL) derivatives with an aryl group inserted at the C-7 position. This insertion bestowed a combretastatin A4 (CA4, an established microtubule disruptor) like structure while retaining the piperlongumine configuration. The new compounds exhibited potent antiproliferative activities against eight cancer cell lines, in particular, were more cytotoxic against the SKBR-3 breast cancer cells which harbor a R175H mutation in p53 suppressor. KSS-9, a representative aryl PL chosen for further studies induced abundant ROS generation and protein glutathionylation. KSS-9 strongly disrupted the tubulin polymerization in vitro, destabilized the microtubules in cells and induced a potent G2/M cell cycle block. More interestingly, KSS-9 showed the ability to reactivate the p53 mutation and restore biological activity to the R175H mutant protein present in SKBR3 cells. Several procedures, including immunocytochemistry using conformation-specific antibodies for p53, immunoprecipitation combined with western blotting, electrophoretic shift mobility shift assays showed a reciprocal loss of mutant protein and generation of wild-type like protein. p53 reactivation was accompanied by the induction of the target genes, MDM2, p21cip1 and PUMA. Mechanistically, the redox-perturbation in cancer cells by the hybrid drug appears to underlie the p53 reactivation process. This anticancer drug approach merits further development. PMID:26599530

  5. Hypothalamic Pituitary Adrenal Axis Functioning in Reactive and Proactive Aggression in Children

    ERIC Educational Resources Information Center

    Lopez-Duran, Nestor L.; Olson, Sheryl L.; Hajal, Nastassia J.; Felt, Barbara T.; Vazquez, Delia M.

    2009-01-01

    The purpose of this study was to examine the association between hypothalamic-pituitary-adrenal axis (HPA-axis) reactivity and proactive and reactive aggression in pre-pubertal children. After a 30-min controlled base line period, 73 7-year-old children (40 males and 33 females) were randomly assigned to one of two experimental tasks designed to…

  6. Children's Patterns of Emotional Reactivity to Conflict as Explanatory Mechanisms in Links between Interpartner Aggression and Child Physiological Functioning

    ERIC Educational Resources Information Center

    Davies, Patrick T.; Sturge-Apple, Melissa L.; Cicchetti, Dante; Manning, Liviah G.; Zale, Emily

    2009-01-01

    Background: This paper examined children's fearful, sad, and angry reactivity to interparental conflict as mediators of associations between their exposure to interparental aggression and physiological functioning. Methods: Participants included 200 toddlers and their mothers. Assessments of interparental aggression and children's emotional…

  7. PULMONARY FUNCTION AND BRONCHIAL REACTIVITY IN HUMAN SUBJECTS WITH EXPOSURE TO OZONE AND RESPIRABLE SULFURIC ACID AEROSOL

    EPA Science Inventory

    A three-year research study was conducted investigating the effects of individual and sequential exposures to ozone and sulfuric acid aerosol on pulmonary function and bronchial reactivity in human subjects. PHASE I: In healthy smokers and nonsmokers exposed for 4 hours to 98 mic...

  8. Radical Coupling Reactions in Lignin Synthesis: A Density Functional Theory Study

    SciTech Connect

    Sangha, A. K.; Parks, J. M.; Standaert, R. F.; Ziebell, A.; Davis, M.; Smith, J. C.

    2012-04-26

    Lignin is a complex, heterogeneous polymer in plant cell walls that provides mechanical strength to the plant stem and confers resistance to degrading microbes, enzymes, and chemicals. Lignin synthesis initiates through oxidative radical-radical coupling of monolignols, the most common of which are p-coumaryl, coniferyl, and sinapyl alcohols. Here, we use density functional theory to characterize radical-radical coupling reactions involved in monolignol dimerization. We compute reaction enthalpies for the initial self- and cross-coupling reactions of these monolignol radicals to form dimeric intermediates via six major linkages observed in natural lignin. The 8-O-4, 8-8, and 8-5 coupling are computed to be the most favorable, whereas the 5-O-4, 5-5, and 8-1 linkages are less favorable. Overall, p-coumaryl self- and cross-coupling reactions are calculated to be the most favorable. For cross-coupling reactions, in which each radical can couple via either of the two sites involved in dimer formation, the more reactive of the two radicals is found to undergo coupling at its site with the highest spin density.

  9. Facile and High-Throughput Synthesis of Functional Microparticles with Quick Response Codes.

    PubMed

    Ramirez, Lisa Marie S; He, Muhan; Mailloux, Shay; George, Justin; Wang, Jun

    2016-06-01

    Encoded microparticles are high demand in multiplexed assays and labeling. However, the current methods for the synthesis and coding of microparticles either lack robustness and reliability, or possess limited coding capacity. Here, a massive coding of dissociated elements (MiCODE) technology based on innovation of a chemically reactive off-stoichimetry thiol-allyl photocurable polymer and standard lithography to produce a large number of quick response (QR) code microparticles is introduced. The coding process is performed by photobleaching the QR code patterns on microparticles when fluorophores are incorporated into the prepolymer formulation. The fabricated encoded microparticles can be released from a substrate without changing their features. Excess thiol functionality on the microparticle surface allows for grafting of amine groups and further DNA probes. A multiplexed assay is demonstrated using the DNA-grafted QR code microparticles. The MiCODE technology is further characterized by showing the incorporation of BODIPY-maleimide (BDP-M) and Nile Red fluorophores for coding and the use of microcontact printing for immobilizing DNA probes on microparticle surfaces. This versatile technology leverages mature lithography facilities for fabrication and thus is amenable to scale-up in the future, with potential applications in bioassays and in labeling consumer products. PMID:27151936

  10. Lung function and bronchial reactivity in asthmatics during exposure to volatile organic compounds

    SciTech Connect

    Harving, H.; Dahl, R.; Molhave, L. )

    1991-04-01

    The purpose of the present study was to investigate whether vapors of organic solvents at low concentrations could exert an adverse effect in the lower airways. Under controlled conditions in a climate chamber, 11 persons with bronchial hyperreactivity to histamine and bronchial asthma were exposed for 90 min to a mixture of organic solvents at levels of zero, 2.5, and 25 mg/m3. During exposure to 25 mg/m3 a decrease in FEV1 to 90.7% of baseline value was measured. This was significantly different from the initial value (p less than 0.05), but not significantly different from the value found after sham exposure (FEV1, 97.4% of initial value). The decline in FEV1 during exposure to 25 mg/m3 was most pronounced in persons with high bronchial sensitivity. No changes were found in histamine reactivity after exposure, and no late reactions were registered. Ratings of discomfort showed different individual patterns ranging from no response to reactions towards both of the concentrations. The ratings indicated development of tolerance during exposure. Volatile organic compounds in concentrations found in both the work and the home environments may influence lung function and are probably of importance as bronchial irritants.

  11. Ligation of Glycophorin A Generates Reactive Oxygen Species Leading to Decreased Red Blood Cell Function

    PubMed Central

    Khoory, Joseph; Estanislau, Jessica; Elkhal, Abdallah; Lazaar, Asmae; Melhorn, Mark I.; Brodsky, Abigail; Illigens, Ben; Hamachi, Itaru; Kurishita, Yasutaka; Ivanov, Alexander R.; Shevkoplyas, Sergey; Shapiro, Nathan I.; Ghiran, Ionita C.

    2016-01-01

    Acute, inflammatory conditions associated with dysregulated complement activation are characterized by significant increases in blood concentration of reactive oxygen species (ROS) and ATP. The mechanisms by which these molecules arise are not fully understood. In this study, using luminometric- and fluorescence-based methods, we show that ligation of glycophorin A (GPA) on human red blood cells (RBCs) results in a 2.1-fold, NADPH-oxidase-dependent increase in intracellular ROS that, in turn, trigger multiple downstream cascades leading to caspase-3 activation, ATP release, and increased band 3 phosphorylation. Functionally, using 2D microchannels to assess membrane deformability, GPS-ligated RBCs travel 33% slower than control RBCs, and lipid mobility was hindered by 10% using fluorescence recovery after photobleaching (FRAP). These outcomes were preventable by pretreating RBCs with cell-permeable ROS scavenger glutathione monoethyl ester (GSH-ME). Our results obtained in vitro using anti-GPA antibodies were validated using complement-altered RBCs isolated from control and septic patients. Our results suggest that during inflammatory conditions, circulating RBCs significantly contribute to capillary flow dysfunctions, and constitute an important but overlooked source of intravascular ROS and ATP, both critical mediators responsible for endothelial cell activation, microcirculation impairment, platelet activation, as well as long-term dysregulated adaptive and innate immune responses. PMID:26784696

  12. Autophagy proteins control goblet cell function by potentiating reactive oxygen species production

    PubMed Central

    Patel, Khushbu K; Miyoshi, Hiroyuki; Beatty, Wandy L; Head, Richard D; Malvin, Nicole P; Cadwell, Ken; Guan, Jun-Lin; Saitoh, Tatsuya; Akira, Shizuo; Seglen, Per O; Dinauer, Mary C; Virgin, Herbert W; Stappenbeck, Thaddeus S

    2013-01-01

    Delivery of granule contents to epithelial surfaces by secretory cells is a critical physiologic process. In the intestine, goblet cells secrete mucus that is required for homeostasis. Autophagy proteins are required for secretion in some cases, though the mechanism and cell biological basis for this requirement remain unknown. We found that in colonic goblet cells, proteins involved in initiation and elongation of autophagosomes were required for efficient mucus secretion. The autophagy protein LC3 localized to intracellular multi-vesicular vacuoles that were consistent with a fusion of autophagosomes and endosomes. Using cultured intestinal epithelial cells, we found that NADPH oxidases localized to and enhanced the formation of these LC3-positive vacuoles. Both autophagy proteins and endosome formation were required for maximal production of reactive oxygen species (ROS) derived from NADPH oxidases. Importantly, generation of ROS was critical to control mucin granule accumulation in colonic goblet cells. Thus, autophagy proteins can control secretory function through ROS, which is in part generated by LC3-positive vacuole-associated NADPH oxidases. These findings provide a novel mechanism by which autophagy proteins can control secretion. PMID:24185898

  13. Convergent functional genomic studies of ω-3 fatty acids in stress reactivity, bipolar disorder and alcoholism.

    PubMed

    Le-Niculescu, H; Case, N J; Hulvershorn, L; Patel, S D; Bowker, D; Gupta, J; Bell, R; Edenberg, H J; Tsuang, M T; Kuczenski, R; Geyer, M A; Rodd, Z A; Niculescu, A B

    2011-01-01

    Omega-3 fatty acids have been proposed as an adjuvant treatment option in psychiatric disorders. Given their other health benefits and their relative lack of toxicity, teratogenicity and side effects, they may be particularly useful in children and in females of child-bearing age, especially during pregnancy and postpartum. A comprehensive mechanistic understanding of their effects is needed. Here we report translational studies demonstrating the phenotypic normalization and gene expression effects of dietary omega-3 fatty acids, specifically docosahexaenoic acid (DHA), in a stress-reactive knockout mouse model of bipolar disorder and co-morbid alcoholism, using a bioinformatic convergent functional genomics approach integrating animal model and human data to prioritize disease-relevant genes. Additionally, to validate at a behavioral level the novel observed effects on decreasing alcohol consumption, we also tested the effects of DHA in an independent animal model, alcohol-preferring (P) rats, a well-established animal model of alcoholism. Our studies uncover sex differences, brain region-specific effects and blood biomarkers that may underpin the effects of DHA. Of note, DHA modulates some of the same genes targeted by current psychotropic medications, as well as increases myelin-related gene expression. Myelin-related gene expression decrease is a common, if nonspecific, denominator of neuropsychiatric disorders. In conclusion, our work supports the potential utility of omega-3 fatty acids, specifically DHA, for a spectrum of psychiatric disorders such as stress disorders, bipolar disorder, alcoholism and beyond. PMID:22832392

  14. Self-Assembly for the Synthesis of Functional Biomaterials

    PubMed Central

    Stephanopoulos, Nicholas; Ortony, Julia H.; Stupp, Samuel I.

    2012-01-01

    The use of self-assembly for the construction of functional biomaterials is a highly promising and exciting area of research, with great potential for the treatment of injury or disease. By using multiple noncovalent interactions, coded into the molecular design of the constituent components, self-assembly allows for the construction of complex, adaptable, and highly tunable materials with potent biological effects. This review describes some of the seminal advances in the use of self-assembly to make novel systems for regenerative medicine and biology. Materials based on peptides, proteins, DNA, or hybrids thereof have found application in the treatment of a wide range of injuries and diseases, and this review outlines the design principles and practical applications of these systems. Most of the examples covered focus on the synthesis of hydrogels for the scaffolding or transplantation of cells, with an emphasis on the biological, mechanical, and structural properties of the resulting materials. In addition, we will discuss the distinct advantages conferred by self-assembly (compared with traditional covalent materials), and present some of the challenges and opportunities for the next generation of self-assembled biomaterials. PMID:23457423

  15. Synthesis of thiol-reactive lipopeptide adjuvants. Incorporation into liposomes and study of their mitogenic effect on mouse splenocytes.

    PubMed

    Roth, Audrey; Espuelas, Socorro; Thumann, Christine; Frisch, Benoît; Schuber, Francis

    2004-01-01

    Synthetic analogues of triacylated and diacylated lipopeptides derived from the N-terminal domain of respectively bacterial and mycoplasmal lipoproteins are highly potent immunoadjuvants when administered either in combination with protein antigens or covalently linked to small peptide epitopes. Because of their amphipathic properties, lipopeptides, such as S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-N-palmitoyl-(R)-cysteinyl-alanyl-glycine (Pam(3)CAG), can be conveniently incorporated into liposomes and serve as anchors for antigens that are linked to them. To design vaccination constructs based on synthetic peptides and liposomes as vectors. we have accordingly synthesized a series of lipopeptides that differ by the number (Pam(3)C vs Pam(2)C) and nature of the acyl chains (palmitoyl vs oleoyl) and by the presence at their C-terminus of thiol-reactive functions, such as maleimide or bromoacetyl. When incorporated into liposomes, these latter functionalized lipopeptides allow, in aqueous media, a well controlled chemoselective conjugation of HS-peptides to the surface of the vesicles. Using a BALB/c mice splenocyte proliferation assay ([(3)H]thymidine incorporation), we have measured the lymphocyte activation potency of the different lipopeptides. We found that, compared to their free (emulsified) forms, the liposomal lipopeptides were endowed with enhanced mitogenic activities; i.e., up to 2 orders of magnitude for Pam(3)CAG which was more potent than Pam(2)CAG. The impact of functionalization on the cellular activity of Pam(3)CAG was dependent on the thiol-reactive group introduced: whereas the bromoacetyl derivative retained its full activity, the presence of a maleimide group virtually abolished the lymphocyte activation of the lipopeptide. Finally, the substitution of saturated palmitoyl chains by unsaturated oleoyl chains was inhibitory. Thus, thiol-reactive Ol(3)CAG derivatives were the least active mitogens in our assay. Taken together, our findings are of

  16. Synthesis, Structure, and Reactivity ofbis(1,2,4-tri-t-butylcyclopentadienyl) Complexes of Cerium

    SciTech Connect

    Werkema, Evan L.

    2005-05-19

    The sterically demanding 1,2,4-tri-t-butylcyclopentadienylligand (1,2,4-(Me3C)3C5H2, hereafter Cp') has been used to preparemonomeric cerium metallocenes, Cp 2CeX (X = Cl, I, OSO2CF3), which areused to synthesize the benzyl, Cp'2CeCH2C6H5. The benzyl is a usefulstarting material for preparing other complexes in the Cp'2CeZ system (Z= BF4, F, NH2, C6H5, H). X-ray crystal structures of Cp'2CeOSO2CF3,Cp'2CeF, Cp'2CeCH2C6H5, and Cp'2CeH are presented. The benzyl slowlydecomposes in solution to toluene and a metallacycle,[Cp'][(Me3C)2C5H2(CMe2CH2)]Ce. The ring CMe3 groups of both themetallacycle and the hydride, Cp'2CeH, can be fully deuterated byprolonged exposure to C6D6, providing a useful labeling tool inmechanistic studies.The hydride activates C-F and/or C-H bonds influorobenzenes, C6HxF6-x , x = 0-5. The reactions are selective, with theselectivity depending on the presence of two fluorines ortho to thereaction site more than on the type of bond activated. Complexes of thetype Cp'2CeC6HxF5-x , x = 0-4, are formed as intermediates, which slowlydecompose in solution to Cp'2CeF and fluorobenzynes, C6HxF4-x, x = 0-4,which are trapped. The rate at which Cp'2CeC6HxF5-x complexes decomposeincreases as the number of fluorines decreases. Complexes with oneortho-fluorine decompose much faster than those with two ortho-fluorines.The metallacycle activates only C-H bonds in fluorobenzenes, permittingthe synthesis of specific Cp'2CeC6HxF5-x complexes. The crystal structureof Cp'2CeC6F5 is presented. The hydride and the metallacycle react withfluoromethanes, CH4-xFx, x = 1-3, through postulated Cp'2CeCH3-xFxintermediates to generate Cp'2CeF and other products. The other products,CH4, tri-t-butylbenzenes, tri-t-butylfluorobenzenes, and a presumedmetallocene cerium fluoride with one Cp' and one (Me2EtC)(Me3C)2C5H2ligand, suggest a decomposition pathway for Cp'2CeCH3-xFx , x = 1-3, thatinvolves carbenes or carbenoids, which are trapped. The hydridepolymerizes ethylene, but

  17. Evolution of New Enzymatic Function by Structural Modulation of Cysteine Reactivity in Pseudomonas fluorescens Isocyanide Hydratase

    SciTech Connect

    Lakshminarasimhan, Mahadevan; Madzelan, Peter; Nan, Ruth; Milkovic, Nicole M.; Wilson, Mark A.

    2010-09-13

    Isocyanide (formerly isonitrile) hydratase (EC 4.2.1.103) is an enzyme of the DJ-1 superfamily that hydrates isocyanides to yield the corresponding N-formamide. In order to understand the structural basis for isocyanide hydratase (ICH) catalysis, we determined the crystal structures of wild-type and several site-directed mutants of Pseudomonas fluorescens ICH at resolutions ranging from 1.0 to 1.9 {angstrom}. We also developed a simple UV-visible spectrophotometric assay for ICH activity using 2-naphthyl isocyanide as a substrate. ICH contains a highly conserved cysteine residue (Cys101) that is required for catalysis and interacts with Asp17, Thr102, and an ordered water molecule in the active site. Asp17 has carboxylic acid bond lengths that are consistent with protonation, and we propose that it activates the ordered water molecule to hydrate organic isocyanides. In contrast to Cys101 and Asp17, Thr102 is tolerant of mutagenesis, and the T102V mutation results in a substrate-inhibited enzyme. Although ICH is similar to human DJ-1 (1.6 {angstrom} C-{alpha} root mean square deviation), structural differences in the vicinity of Cys101 disfavor the facile oxidation of this residue that is functionally important in human DJ-1 but would be detrimental to ICH activity. The ICH active site region also exhibits surprising conformational plasticity and samples two distinct conformations in the crystal. ICH represents a previously uncharacterized clade of the DJ-1 superfamily that possesses a novel enzymatic activity, demonstrating that the DJ-1 core fold can evolve diverse functions by subtle modulation of the environment of a conserved, reactive cysteine residue.

  18. Testosterone improves erectile function through inhibition of reactive oxygen species generation in castrated rats

    PubMed Central

    Li, Rui; Meng, Xianghu; Zhang, Yan; Wang, Tao; Yang, Jun; Niu, Yonghua; Cui, Kai; Wang, Shaogang

    2016-01-01

    Testosterone is overwhelmingly important in regulating erectile physiology. However, the associated molecular mechanisms are poorly understood. The purpose of this study was to explore the effects and mechanisms of testosterone in erectile dysfunction (ED) in castrated rats. Forty male Sprague-Dawley rats were randomized to four groups (control, sham-operated, castration and castration-with-testosterone-replacement). Reactive oxygen species (ROS) production was measured by dihydroethidium (DHE) staining. Erectile function was assessed by the recording of intracavernous pressure (ICP) and mean arterial blood pressure (MAP). Protein expression levels were examined by western blotting. We found that castration reduced erectile function and that testosterone restored it. Nitric oxide synthase (NOS) activity was decrease in the castrated rats, and testosterone administration attenuated this decrease (each p < 0.05). The testosterone, dihydrotestosterone, cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) concentrations were lower in the castrated rats, and testosterone restored these levels (each p < 0.05). Furthermore, the cyclooxygenase-2 (COX-2) and prostacyclin synthase (PTGIS) expression levels and phospho-endothelial nitric oxide synthase (p-eNOS, Ser1177)/endothelial nitric oxide synthase (eNOS) ratio were reduced in the castrated rats compared with the controls (each p < 0.05). In addition, the p40phox and p67phox expression levels were increased in the castrated rats, and testosterone reversed these changes (each p < 0.05). Overall, our results demonstrate that testosterone ameliorates ED after castration by reducing ROS production and increasing the activity of the eNOS/cGMP and COX-2/PTGIS/cAMP signaling pathways. PMID:27168996

  19. In situ generation of functionality in a reactive haloalkane-based ligand for the design of new porous coordination polymers.

    PubMed

    Kanoo, Prakash; Matsuda, Ryotaro; Sato, Hiroshi; Li, Liangchun; Jeon, Hyung Joon; Kitagawa, Susumu

    2013-10-01

    Herein, we report new porous coordination polymers (PCPs) via a facile synthetic approach called "in situ generation of functionality in the ligand". Upon a synthetic process of PCPs, a neutral (-CH2OH) or a cationic functionality (-CH2-[4,4'-bipyridine](+)) was generated on a isophthalate ligand from a reactive haloalkane (-CH2Br) moiety, affording two new PCPs. The PCPs have two-dimensional layered structures with large potential solvent-accessible voids for CO2 adsorption. PMID:24016100

  20. Synthesis of internally functionalized silica nanoparticles for theranostic applications

    NASA Astrophysics Data System (ADS)

    Walton, Nathan Isaac

    This thesis addresses the synthesis and characterization of novel inorganic silica nanoparticle hybrids. It focuses in large part on their potential applications in the medical field. Silica acts as a useful carrier for a variety of compounds and this thesis silica will demonstrate its use as a carrier for boron or gadolinium. Boron-10 and gadolinium-157 have been suggested for the radiological treatment of tumor cells through the process called neutron capture therapy (NCT). Gadolinium is also commonly used as a Magnetic Resonance Imaging (MRI) contrast agent. Particles that carry it have potential theranostic applications of both imaging and treating tumors. Chapter 1 presents a background on synthetic strategies and usages of silica nanoparticles, and NCT theory. Chapter 2 describes a procedure to create mesoporous metal chelating silica nanoparticles, mDTTA. This is achieved via a co-condensation of tetraethoxysilane (TEOS) and 3-trimethoxysilyl-propyl diethylenetriamine (SiDETA) followed by a post-synthesis modification step with bromoacetic acid (BrAA). These particles have a large surface area and well-defined pores of ~2 nm. The mDTTA nanoparticles were used to chelate the copper(II), cobalt(II) and gadolinium(III). The chelating of gadolinium is the most interesting since it can be used as a MRI contrast agent and a neutron capture therapeutic. The synthetic procedure developed also allows for the attachment of a fluorophore that gives the gadolinium chelating mDTTA nanoparticles a dual imaging modality. Chapter 3 presents the synthetic method used to produce two classes of large surface area organically modified silica (ORMOSIL) nanoparticles. Condensating the organosilane vinyltrimethoxysilane in a micellar solution results in nanoparticles that are either surface rough (raspberry-like) or mesoporous nanoparticles, which prior to this thesis has not been demonstrated in ORMOSIL chemistry. Furthermore, the vinyl functionalities are modified, using

  1. Synthesis and reactivity of nitrogen nucleophiles-induced cage-rearrangement silsesquioxanes.

    PubMed

    Jaroentomeechai, Thapakorn; Yingsukkamol, Pa-Kwan; Phurat, Chuttree; Somsook, Ekasith; Osotchan, Tanakorn; Ervithayasuporn, Vuthichai

    2012-11-19

    Novel phthalimide and o-sulfobenzimide-functionalized silsesquioxanes were successfully synthesized via nucleophilic substitution reactions from octakis(3-chloropropyl)octasilsesquioxane. Surprisingly, the formation of deca- and dodecasilsesquioxanes cages was discovered during substitution with phthalimide, but only octasilsesquioxane maintained a cage in the o-sulfobenzimide substitution reaction. Moreover, we report the electronic effect of nitrogen nucleophiles to promote cage-rearrangement of inorganic silsesquioxane core for the first time. Structures of products were confirmed by (1)H, (13)C, and (29)Si NMR spectroscopy, ESI-MS analysis, and single-crystal X-ray diffraction. PMID:23134535

  2. Molecular Differentiated Initiator Reactivity in the Synthesis of Poly(caprolactone)-Based Hydrophobic Homopolymer and Amphiphilic Core Corona Star Polymers.

    PubMed

    Deng, Eileen; Nguyen, Nam T; Hild, Frédéric; Hamilton, Ian E; Dimitrakis, Georgios; Kingman, Samuel W; Lau, Phei-Li; Irvine, Derek J

    2015-01-01

    Macromolecules that possess three-dimensional, branched molecular structures are of great interest because they exhibit significantly differentiated application performance compared to conventional linear (straight chain) polymers. This paper reports the synthesis of 3- and 4-arm star branched polymers via ring opening polymerisation (ROP) utilising multi-functional hydroxyl initiators and Sn(Oct)2 as precatalyst. The structures produced include mono-functional hydrophobic and multi-functional amphiphilic core corona stars. The characteristics of the synthetic process were shown to be principally dependent upon the physical/dielectric properties of the initiators used. ROP's using initiators that were more available to become directly involved with the Sn(Oct)₂ in the "in-situ" formation of the true catalytic species were observed to require shorter reaction times. Use of microwave heating (MWH) in homopolymer star synthesis reduced reaction times compared to conventional heating (CH) equivalents, this was attributed to an increased rate of "in-situ" catalyst formation. However, in amphiphilic core corona star formation, the MWH polymerisations exhibited slower propagation rates than CH equivalents. This was attributed to macro-structuring within the reaction medium, which reduced the potential for reaction. It was concluded that CH experiments were less affected by this macro-structuring because it was disrupted by the thermal currents/gradients caused by the conductive/convective heating mechanisms. These gradients are much reduced/absent with MWH because it selectively heats specific species simultaneously throughout the entire volume of the reaction medium. These partitioning problems were overcome by introducing additional quantities of the species that had been determined to selectively heat. PMID:26569198

  3. The N cycle in Earth subsurface. Reactivity of functional genes to anthropogenic CO2 injections.

    NASA Astrophysics Data System (ADS)

    Trias, Rosalia; Gérard, Emmanuelle; Le Campion, Paul; Gíslason, Sigurður R.; Aradóttir, Edda S.; Alfreðsson, Helgui A.; Mesfin, Kiflom G.; Snæbjörnsdóttir, Sandra Ó.; Ménez, Bénédicte

    2014-05-01

    The Nitrogen cycle has been widely studied in surface ecosystems, due to the importance of this nutrient for the organisms' development, and to the impact in the environment of most of the N forms, many of them being considered pollutants. However, little is known about the importance of the N-related metabolisms in subsurface systems now recognized to host diverse and active microbial life. In this study, we have periodically sampled the subsurface aquifers of the Icelandic pilot site for CO2 storage associated with the geothermal plant of Hellisheidi (operated by Reykjavik Energy; http://www.or.is/en/projects/carbfix). With the aim of understanding the dynamics of N-cycle in the subsurface, and its reactivity to CO2 injections, we quantified through qPCR the functional genes amoA (archaea), amoA (bacteria), nirK, nirS, nosZ, nifH, and the 16SrRNA genes of the anammox, total archaea and total bacteria. The 16SrRNA gene quantification provided values of around 107 gene copies/l at non injection periods. CO2 injection caused first a slight decrease probably due to pH decrease or toxicity by oxygen contamination during the injections. Two months after injection, the copy numbers increased up to 109 gene copies/l, and slowly returned to pre-injection values. The archaeal 16S rDNA copy numbers showed a similar reaction, with higher toxicity effects, and a lower increase afterwards. Due to the high reactivity of the microbial populations to CO2 injections, all the N cycle quantifications were related to the total 16S rDNA copies for normalization. Nitrifying genes (amoA) were mainly represented by the ammonia oxidizing archaea, and were apparently not affected by CO2 injections. Anammox bacteria were present in a very low percentage, and the obtained copy numbers tended to decrease after the injection. These results were surprising due to the autotrophic character of ammonia oxidizers, but could be explained by a competitive exclusion. On the contrary, N-fixation (nif

  4. Lithium-ion polymer cells assembled with a reactive composite separator containing vinyl-functionalized SiO2 particles

    NASA Astrophysics Data System (ADS)

    Yoo, Ji-Hyun; Shin, Won-Kyung; Koo, Sang Man; Kim, Dong-Won

    2015-11-01

    Vinyl-functionalized SiO2 particles of different sizes are synthesized and coated onto both sides of a polyethylene separator to prepare a reactive composite separator for lithium-ion polymer cells. The SiO2-coated composite separators exhibit excellent thermal stability due to the presence of heat-resistant silica particles. By using these reactive composite separators and a gel electrolyte precursor, lithium-ion polymer cells composed of a graphite negative electrode and a LiNi1/3Co1/3Mn1/3O2 positive electrode are assembled by in-situ chemical cross-linking, and their cycling performance is evaluated. The cells assembled with a reactive composite separator exhibit superior cycling performance to cell prepared with a conventional polyethylene separator due to the strong interfacial adhesion between the electrodes and separator, as well as suppression of deleterious reactions during cycling.

  5. Synthesis of Redox-Active Molecules and Their Signaling Functions During the Expression of Plant Disease Resistance

    PubMed Central

    Skelly, Michael J.

    2013-01-01

    Abstract Significance: Activation of immune responses in plants is associated with a parallel burst of both reactive oxygen intermediates (ROIs) and nitric oxide (NO). The mechanisms by which these small redox-active molecules are synthesized and their signaling functions are critical for plants to defend themselves against pathogen infection. Recent Advances: The synthesis of apoplastic ROIs by plants after pathogen recognition has long been attributed to membrane-bound NAPDH oxidases. However, the emerging data suggest a role for other enzymes in various subcellular locations in ROI production after defense activation. It is becoming widely appreciated that NO exerts its biochemical function through the S-nitrosylation of reactive cysteine thiols on target proteins, constituting a key post-translational modification. Recent evidence suggests that S-nitrosylation of specific defense-related proteins regulates their activity. Critical Issues: The source(s) of NO production after pathogen recognition remain(s) poorly understood. Some NO synthesis can be attributed to the activity of nitrate reductase but to date, no nitric oxide synthase (NOS) has been identified in higher plants. However, the signaling functions of S-nitrosylation are becoming more apparent and thus dissecting the molecular machinery underpinning this redox-based modification is vital to further our understanding of plant disease resistance. Future Directions: In addition to identifying new contributors to the oxidative burst, the discovery of an NOS in higher plants would significantly move the field forward. Since S-nitrosylation has now been confirmed to play various roles in immune signaling, this redox-based modification is a potential target to exploit for improving disease resistance in crop species. Antioxid. Redox Signal. 19, 990–997. PMID:23725342

  6. Reactive combinatorial synthesis and characterization of a gradient Ag-Ti oxide thin film with antibacterial properties.

    PubMed

    Unosson, Erik; Rodriguez, Daniel; Welch, Ken; Engqvist, Håkan

    2015-01-01

    The growing demand for orthopedic and dental implants has spurred researchers to develop multifunctional coatings, combining tissue integration with antibacterial features. A possible strategy to endow titanium (Ti) with antibacterial properties is by incorporating silver (Ag), but designing a structure with adequate Ag(+) release while maintaining biocompatibility has been shown difficult. To further explore the composition-structure-property relationships between Ag and Ti, and its effects against bacteria, this study utilized a combinatorial approach to manufacture and test a single sample containing a binary Ag-Ti oxide gradient. The sample, sputter-deposited in a reactive (O2) environment using a custom-built combinatorial physical vapor deposition system, was shown to be effective against Staphylococcus aureus with viability reductions ranging from 17 to above 99%, depending on the amount of Ag(+) released from its different parts. The Ag content along the gradient ranged from 35 to 62 wt.%, but it was found that structural properties such as varied porosity and degree of crystallinity, rather than the amount of incorporated Ag, governed the Ag(+) release and resulting antibacterial activity. The coating also demonstrated in vitro apatite-forming abilities, where structural variety along the sample was shown to alter the hydrophilic behavior, with the degree of hydroxyapatite deposition varying accordingly. By means of combinatorial synthesis, a single gradient sample was able to display intricate compositional and structural features affecting its biological response, which would otherwise require a series of coatings. The current findings suggest that future implant coatings incorporating Ag as an antibacterial agent could be structurally enhanced to better suit clinical requirements. PMID:25281786

  7. Synthesis of nine-atom deltahedral Zintl ions of germanium and their functionalization with organic groups.

    PubMed

    Gillett-Kunnath, Miriam M; Sevov, Slavi C

    2012-01-01

    Although the first studies of Zintl ions date between the late 1890's and early 1930's they were not structurally characterized until many years later. Their redox chemistry is even younger, just about ten years old, but despite this short history these deltahedral clusters ions E9(n-) (E = Si, Ge, Sn, Pb; n = 2, 3, 4) have already shown interesting and diverse reactivity and have been at the forefront of rapidly developing and exciting new chemistry. Notable milestones are the oxidative coupling of Ge9(4-) clusters to oligomers and infinite chains, their metallation, capping by transition-metal organometallic fragments, insertion of a transition-metal atom at the center of the cluster which is sometimes combined with capping and oligomerization, addition of main-group organometallic fragments as exo-bonded substituents, and functionalization with various organic residues by reactions with organic halides and alkynes. This latter development of attaching organic fragments directly to the clusters has opened up a new field, namely organo-Zintl chemistry, that is potentially fertile for further synthetic explorations, and it is the step-by-step procedure for the synthesis of germanium-divinyl clusters described herein. The initial steps outline the synthesis of an intermetallic precursor of K4Ge9 from which the Ge9(4-) clusters are extracted later in solution. This involves fused-silica glass blowing, arc-welding of niobium containers, and handling of highly air-sensitive materials in a glove box. The air-sensitive K4Ge9 is then dissolved in ethylenediamine in the box and then alkenylated by a reaction with Me3SiC≡CSiMe3. The reaction is followed by electrospray mass spectrometry while the resulting solution is used for obtaining single crystals containing the functionalized clusters [H2C=CH-Ge9-CH=CH2](2-). For this purpose the solution is centrifuged, filtered, and carefully layered with a toluene solution of 18-crown-6. Left undisturbed for a few days, the so

  8. Synthesis of Nine-atom Deltahedral Zintl Ions of Germanium and their Functionalization with Organic Groups

    PubMed Central

    Gillett-Kunnath, Miriam M.; Sevov, Slavi C.

    2012-01-01

    Although the first studies of Zintl ions date between the late 1890's and early 1930's they were not structurally characterized until many years later.1,2 Their redox chemistry is even younger, just about ten years old, but despite this short history these deltahedral clusters ions E9n- (E = Si, Ge, Sn, Pb; n = 2, 3, 4) have already shown interesting and diverse reactivity and have been at the forefront of rapidly developing and exciting new chemistry.3-6 Notable milestones are the oxidative coupling of Ge94- clusters to oligomers and infinite chains,7-19 their metallation,14-16,20-25 capping by transition-metal organometallic fragments,26-34 insertion of a transition-metal atom at the center of the cluster which is sometimes combined with capping and oligomerization,35-47 addition of main-group organometallic fragments as exo-bonded substituents,48-50 and functionalization with various organic residues by reactions with organic halides and alkynes.51-58 This latter development of attaching organic fragments directly to the clusters has opened up a new field, namely organo-Zintl chemistry, that is potentially fertile for further synthetic explorations, and it is the step-by-step procedure for the synthesis of germanium-divinyl clusters described herein. The initial steps outline the synthesis of an intermetallic precursor of K4Ge9 from which the Ge94- clusters are extracted later in solution. This involves fused-silica glass blowing, arc-welding of niobium containers, and handling of highly air-sensitive materials in a glove box. The air-sensitive K4Ge9 is then dissolved in ethylenediamine in the box and then alkenylated by a reaction with Me3SiC≡CSiMe3. The reaction is followed by electrospray mass spectrometry while the resulting solution is used for obtaining single crystals containing the functionalized clusters [H2C=CH-Ge9-CH=CH2]2-. For this purpose the solution is centrifuged, filtered, and carefully layered with a toluene solution of 18-crown-6. Left

  9. Functional cloning of a gp100-reactive T-cell receptor from vitiligo patient skin.

    PubMed

    Klarquist, Jared; Eby, Jonathan M; Henning, Steven W; Li, Mingli; Wainwright, Derek A; Westerhof, Wiete; Luiten, Rosalie M; Nishimura, Michael I; Le Poole, I Caroline

    2016-05-01

    We isolated gp100-reactive T cells from perilesional skin of a patient with progressive vitiligo with superior reactivity toward melanoma cells compared with tumor-infiltrating lymphocytes 1520, a melanoma-derived T-cell line reactive with the same cognate peptide. After dimer enrichment and limited dilution cloning, amplified cells were subjected to reverse transcription and 5' RACE to identify the variable TCRα and TCRβ subunit sequences. The full-length sequence was cloned into a retroviral vector separating both subunits by a P2A slippage sequence and introduced into Jurkat cells and primary T cells. Cytokine secreted by transduced cells in response to cognate peptide and gp100-expressing targets signifies that we have successfully cloned a gp100-reactive T-cell receptor from actively depigmenting skin. PMID:26824221

  10. Synthesis of functionalized fluorescent gold nanoclusters for acid phosphatase sensing

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Yang, Fan; Yang, Xiurong

    2015-10-01

    A novel and convenient one-pot but two-step synthesis of fluorescent gold nanoclusters, incorporating glutathione (GSH) and 11-mercaptoundecanoic acid (MUA) as the functionalized ligands (i.e. AuNCs@GSH/MUA), is demonstrated. Herein, the mixing of HAuCl4 and GSH in aqueous solution results in the immediate formation of non-fluorescent GSH-Au+ complexes, and then a class of ~2.6 nm GSH-coated AuNCs (AuNCs@GSH) with mild orange-yellow fluorescence after several days. Interestingly, the intense orange-red emitting ~1.7 nm AuNCs@GSH/MUA can be synthesized within seconds by introducing an alkaline aqueous solution of MUA into the GSH-Au+ complexes or AuNC@GSH solution. Subsequently, a reliable AuNC@GSH/MUA-based real-time assay of acid phosphatase (ACP) is established for the first time, inspired by the selective coordination of Fe3+ with surface ligands of AuNCs, the higher binding affinity between the pyrophosphate ion (PPi) and Fe3+, and the hydrolysis of PPi into orthophosphate by ACP. Our fluorescent chemosensor can also be applied to assay ACP in a real biological sample and, furthermore, to screen the inhibitor of ACP. This report paves a new avenue for synthesizing AuNCs based on either the bottom-up reduction or top-down etching method, establishing real-time fluorescence assays for ACP by means of PPi as the substrate, and further exploring the sensing applications of fluorescent AuNCs.A novel and convenient one-pot but two-step synthesis of fluorescent gold nanoclusters, incorporating glutathione (GSH) and 11-mercaptoundecanoic acid (MUA) as the functionalized ligands (i.e. AuNCs@GSH/MUA), is demonstrated. Herein, the mixing of HAuCl4 and GSH in aqueous solution results in the immediate formation of non-fluorescent GSH-Au+ complexes, and then a class of ~2.6 nm GSH-coated AuNCs (AuNCs@GSH) with mild orange-yellow fluorescence after several days. Interestingly, the intense orange-red emitting ~1.7 nm AuNCs@GSH/MUA can be synthesized within seconds by

  11. An NHC-Stabilized Silicon Analogue of Acylium Ion: Synthesis, Structure, Reactivity, and Theoretical Studies.

    PubMed

    Ahmad, Syed Usman; Szilvási, Tibor; Irran, Elisabeth; Inoue, Shigeyoshi

    2015-05-01

    The silicon analogues of an acylium ion, namely, sila-acylium ions 2a and 2b [RSi(O)(NHC)2]Cl stabilized by two N-heterocyclic carbenes (NHC = 1,3,4,5-tetramethylimidazol-2-ylidene), and having chloride as a countercation were successfully synthesized by the reduction of CO2 using the donor stabilized silyliumylidene cations 1a and 1b [RSi(NHC)2]Cl (1a, 2a; R = m-Ter = 2,6-Mes2C6H3, Mes = 2,4,6-Me3C6H2 and 1b, 2b; R = Tipp = 2,4,6-iPr3C6H2). Structurally, compound 2a features a four coordinate silicon center together with a double bond between silicon and oxygen atoms. The reaction of sila-acylium ions 2a and 2b with water afforded different products which depend on the bulkiness of aryl substituents. Although the exposure of 2a to H2O afforded a stable silicon analogue of carboxylate anion as a dimer form, [m-TerSi(O)O]2(2-)·2[NHC-H](+) (3), the same reaction with the less bulkier triisopropylphenyl substituted sila-acylium ion 2b afforded cyclotetrasiloxanediol dianion [{TippSi(O)}4{(O)OH}2](2-)·2[NHC-H](+) (4). Metric and DFT (Density Functional Theory) evidence support that 2a and 2b possess strong Si═O double bond character, while 3 and 4 contain more ionic terminal Si-O bonds. Mechanistic details of the formation of different (SiO)n (n = 2, 3, 4) core rings were explored using DFT to explain the experimentally characterized products and a proposed stable intermediate was identified with mass spectrometry. PMID:25871835

  12. Synthesis, characterization, and reactivity of ruthenium diene/diamine complexes including catalytic hydrogenation of ketones.

    PubMed

    Morilla, M Esther; Rodríguez, Pilar; Belderrain, Tomas R; Graiff, Claudia; Tiripicchio, Antonio; Nicasio, M Carmen; Pérez, Pedro J

    2007-10-29

    Thermal reactions between [RuCl2(diene)]n (diene = 2,5-norbornadiene, nbd; 1,5-cyclooctadiene, cod) with an excess of N,N,N',N'-tetramethylethylene diamine (tmeda) afforded derivatives [RuCl2(diene)(tmeda)] (diene = nbd, 1; cod, 2) as a mixture of cis and trans isomers. When thermolysis was performed under H2 mixtures of hydride species [RuCl(H)(diene)(tmeda)] (diene = nbd, 3; cod, 4) and the bis-tmeda adduct trans-[RuCl2(tmeda)2] (5) were obtained in different ratios depending upon the reaction conditions and reaction times. Heating polymeric Ru(II) precursors in toluene in the presence of a 5-fold excess of the bulkier N,N,N',N'-tetraethylethylene diamine (teeda) resulted in a rare diamine dealkylation process with formation of trans-[RuCl2(nbd)(Et2NCH2CH2NHEt)] (6) and trans-[RuCl2(cod)(EtHNCH2CH2NHEt)] (7) in high yields. The presence of N-H functionalities in the coordinated diamine ligands of 6 and 7 was unambiguously established by single-crystal X-ray diffraction studies. The dealkylation process of the teeda ligand seems to proceed intramolecularly as shown by solution NMR studies performed with the soluble Ru(II) precursors trans-[RuCl2(amine)2(diene)] (diene = nbd, amine = morpholine, 9; diene = cod, amine = Et2NH, 10). The above complexes [RuCl2(diene)(diamine)] have been tested as precatalysts in the hydrogenation of ketones both for transfer as well as direct hydrogenation, the latter route being the most effective. PMID:17900107

  13. Lead-chromium carbonyl complexes incorporated with group 8 metals: synthesis, reactivity, and theoretical calculations.

    PubMed

    Shieh, Minghuey; Chu, Yen-Yi; Hsu, Miao-Hsing; Ke, Wei-Ming; Lin, Chien-Nan

    2011-01-17

    The trichromium-lead complex [Pb{Cr(CO)5}3](2-) (1) was isolated from the reaction of PbCl2 and Cr(CO)6 in a KOH/MeOH solution, and the new mixed chromium-iron-lead complex [Pb{Cr(CO)5}{Fe(CO)4}2](2-) (3) was synthesized from the reaction of PbCl2 and Cr(CO)6 in a KOH/MeOH solution followed by the addition of Fe(CO)5. X-ray crystallography showed that 3 consisted of a central Pb atom bound in a trigonal-planar environment to two Fe(CO)4 and one Cr(CO)5 fragments. When complex 1 reacted with 1.5 equiv of Mn(CO)5Br, the Cr(CO)4-bridged dimeric lead-chromium carbonyl complex [Pb2Br2Cr4(CO)18](2-) (4) was produced. However, a similar reaction of 3 or the isostructural triiron-lead complex [Pb{Fe(CO)4}3](2-) (2) with Mn(CO)5Br in MeCN led to the formation of the Fe3Pb2-based trigonal-bipyramidal complexes [Fe3(CO)9{PbCr(CO)5}2](2-) (6) and [Fe3(CO)9{PbFe(CO)4}2](2-) (5), respectively. On the other hand, the Ru3Pb2-based trigonal-bipyramidal complex [Ru3(CO)9{PbCr(CO)5}2](2-) (7) was obtained directly from the reaction of PbCl2, Cr(CO)6, and Ru3(CO)12 in a KOH/MeOH solution. X-ray crystallography showed that 5 and 6 each had an Fe3Pb2 trigonal-bipyramidal core geometry, with three Fe(CO)3 groups occupying the equatorial positions and two PbFe(CO)4 or PbCr(CO)5 units in the axial positions, while 7 displayed a Ru3Pb2 trigonal-bipyramidal geometry with three equatorial Ru(CO)3 groups and two axial PbCr(CO)5 units. The complexes 3-7 were characterized spectroscopically, and their nature, formation, and electrochemistry were further examined by molecular orbital calculations at the B3LYP level of density functional theory. PMID:21142206

  14. Phase-controlled synthesis of Cu2ZnSnS4 nanocrystals: the role of reactivity between Zn and S.

    PubMed

    Zou, Yu; Su, Xiong; Jiang, Jiang

    2013-12-11

    Cu2ZnSnS4 (CZTS) nanocrystals with different morphologies and phases have been synthesized in hot organic solvents such as dodecanethiol and oleylamine. The crystallographic phases could be controlled by the sulfur precursor and the ligand species of the metal salts used for the synthesis. When a highly reactive sulfur precursor and metal acetates were used, wurtzite CZTS nanocrystals were obtained. On the other hand, using a low-reactivity sulfur precursor or metal chlorides produced CZTS nanocrystals in a kesterite phase. The experimental results from systematic investigations indicated that the reaction rate between Zn and S precursors played a determining role for the growth of CZTS nanocrystals with different crystalline phases. A relatively faster reaction between Zn and S precursors in comparison to the Sn-S reaction favored the formation of a metastable wurtzite phase, which could be accelerated by increasing the reactivity of the S precursor. This work provided a safe and economical way to synthesize high-quality phase-controlled Cu2ZnSnS4 nanocrystals, especially wurtzite nanorods, for potential photovoltaic applications. Moreover, preliminary results show that the proposed mechanism also applies to the phase-controlled synthesis of other quaternary Cu2MSnS4 (M = Cd(2+), Mn(2+)) nanocrystals. PMID:24283701

  15. Highly luminescent half-lantern cyclometalated platinum(II) complex: synthesis, structure, luminescence studies, and reactivity.

    PubMed

    Sicilia, Violeta; Forniés, Juan; Casas, José Ma; Martín, Antonio; López, José A; Larraz, Carmen; Borja, Pilar; Ovejero, Carmen; Tordera, Daniel; Bolink, Henk

    2012-03-19

    The half-lantern compound [{Pt(bzq)(μ-C(7)H(4)NS(2)-κN,S)}(2)]·Me(2)CO (1) was obtained by reaction of equimolar amounts of potassium 2-mercaptobenzothiazolate (KC(7)H(4)NS(2)) and [Pt(bzq)(NCMe)(2)]ClO(4). The Pt(II)···Pt(II) separation in the neutral complex [{Pt(bzq)(μ-C(7)H(4)NS(2)-κN,S)}(2)] is 2.910 (2) Å, this being among the shortest observed in half-lantern divalent platinum complexes. Within the complex, the benzo[h]quinoline (bzq) groups lie in close proximity with most C···C distances being between 3.3 and 3.7 Å, which is indicative of significant π-π interactions. The reaction of 1 with halogens X(2) (X(2) = Cl(2), Br(2), or I(2)) proceeds with a two-electron oxidation to give the corresponding dihalodiplatinum(III) complexes [{Pt(bzq)(μ-C(7)H(4)NS(2)-κN,S)X}(2)] (X = Cl 2, Br 3, I 4). Their X-ray structures confirm the retention of the half-lantern structure and the coordination mode of the bzq and the bridging ligand μ-C(7)H(4)NS(2)-κN,S. The Pt-Pt distances (Pt-Pt = 2.6420(3) Å 2, 2.6435(4) Å 3, 2.6690(3) Å 4) are shorter than that in 1 because of the Pt-Pt bond formation. Time dependent-density functional theory (TD-DFT) studies performed on 1 show a formal bond order of 0 between the metal atoms, with the 6p(z) contribution diminishing the antibonding character of the highest occupied molecular orbital (HOMO) and being responsible for an attractive intermetallic interaction. A shortening of the Pt-Pt distance from 2.959 Å in the ground state S(0) to 2.760 Å in the optimized first excited state (T(1)) is consistent with an increase in the Pt-Pt bond order to 0.5. In agreement with TD-DFT calculations, the intense, structureless, red emission of 1 in the solid state and in solution can be mainly attributed to triplet metal-metal-to-ligand charge transfer ((3)MMLCT) [dσ*(Pt-Pt) → π*(bzq)] excited states. The high quantum yields of this emission measured in toluene (44%) and solid state (62%) at room temperature indicate

  16. Chemically functionalized gold nanoparticles: Synthesis, characterization, and applications

    NASA Astrophysics Data System (ADS)

    Daniel, Weston Lewis

    This thesis focuses on the development and application of gold nanoparticle based detection systems and biomimetic structures. Each class of modified nanoparticle has properties that are defined by its chemical moieties that interface with solution and the gold nanoparticle core. In Chapter 2, a comparison of the biomolecular composition and binding properties of various preparations of antibody oligonucleotide gold nanoparticle conjugates is presented. These constructs differed significantly in terms of their structure and binding properties. Chapter 3 reports the use of electroless gold deposition as a light scattering signal enhancer in a multiplexed, microarray-based scanometric immunoassay using the gold nanoparticle probes evaluated in Chapter 2. The use of gold development results in greater signal enhancement than the typical silver development, and multiple rounds of metal development were found to increase the resulting signal compared to one development. Chapter 4 describes an amplified scanometric detection method for human telomerase activity. Gold nanoparticles functionalized with specific oligonucleotide sequences can efficiently capture telomerase enzymes and subsequently be elongated. Both the elongated and unmodified oligonucleotide sequences are simultaneously measured. At low telomerase concentrations, elongated strands cannot be detected, but the unmodified sequences, which come from the same probe particles, can be detected because their concentration is higher, providing a novel form of amplification. Chapter 5 reports the development of a novel colorimetric nitrite and nitrate ion assay based upon gold nanoparticle probes functionalized with Griess reaction reagents. This assay takes advantage of the distance-dependent plasmonic properties of the gold nanoparticles and the ability of nitrite ion to facilitate the cross coupling of novel nanoparticle probes. The assay works on the concept of a kinetic end point and can be triggered at the EPA

  17. Synthesis, solubilization, and surface functionalization of highly fluorescent quantum dots for cellular targeting through a small molecule

    NASA Astrophysics Data System (ADS)

    Galloway, Justin F.

    To achieve long-term fluorescence imaging with quantum dots (QDs), a CdSe core/shell must first be synthesized. The synthesis of bright CdSe QDs is not trivial and as a consequence, the role of surfactant in nucleation and growth was investigated. It was found that the type of surfactant used, either phosphonic or fatty acid, played a pivotal role in the size of the CdSe core. The study of surfactant on CdSe synthesis, ultimately led to an electrical passivation method that utilized a short-chained phosphonic acid and highly reactive organometallic precursors to achieve high quantum yield (QY) as has been previously described. The synthesis of QDs using organometallic precursors and a phosphonic acid for passivation resulted in 4 out of 9 batches of QDs achieving QYs greater than 50% and 8 out of 9 batches with QYs greater than 35%. The synthesis of CdSe QDs was done in organic solutions rendering the surface of the particle hydrophobic. To perform cell-targeting experiments, QDs must be transferred to water. The transfer of QDs to water was successfully accomplished by using single acyl chain lipids. A systematic study of different lipid combinations and coatings demonstrated that 20-40 mol% single acyl chained lipids were able to transfer QDs to water resulting in monodispersed, stable QDs without adversely affecting the QY. The advantage to water solubilization using single acyl chain lipids is that the QD have a hydrodynamic radius less than 15 nm, QYs that can exceed 50% and additional surface functionalization can be down using the reactive sites incorporated into the lipid bilayer. QDs that are bright and stable in water were studied for the purpose of targeting G protein-coupled Receptors (GPCR). GPCRs are transmembrane receptors that internalize extracellular cues, and thus mediate signal transduction. The cyclic Adenosine Monophosphate Receptor 1 of the model organism Dictyostelium disodium was the receptor of interest. The Halo protein, a genetically

  18. Surface reactivity of Ge[111] for organic functionalization by means of a radical-initiated reaction: A DFT study

    NASA Astrophysics Data System (ADS)

    Rubio-Pereda, Pamela; Takeuchi, Noboru

    2016-08-01

    The study of interfacial chemistry at semiconductor surfaces has become an important area of research. Functionalities such as molecular recognition, biocompatibility of surfaces, and molecular computing, could be achieved by the combinations of organic chemistry with the semiconductor technology. One way to accomplish this goal is by means of organic functionalization of semiconductor surfaces such as the bulk-terminated germanium surfaces, more specifically the Ge[111]. In this work, we theoretically study, by applying density functional theory, the surface reactivity of the bulk-terminated Ge[111] surface for organic functionalization by means of a radical-initiated reaction of unsaturated molecules such as acetylene, ethylene and styrene with a hydrogen vacancy on a previously hydrogen-terminated Ge[111] surface. Results derived from this work are compared with those obtained in our previous calculations on the germanene surface, following the same chemical route. Our calculations show an accumulation of electronic charge at the H-vacancy having as a result electron pairing due to strong lattice-electron coupling and therefore a diminished surface reactivity. Calculation of the transition states for acetylene and ethylene indicates that the surface reactivity of the hydrogen-terminated Ge[111] surface is less promising than its two-dimensional analogue, the hydrogen-terminated germanene.

  19. [18F]Fluoroalkyl agents: synthesis, reactivity and application for development of PET ligands in molecular imaging.

    PubMed

    Zhang, Ming-Rong; Suzuki, Kazutoshi

    2007-01-01

    Fluorine-18 ((18)F, beta(+); 96.7%, T(1/2)=109.8 min) is of considerable importance for developing positron emission tomography (PET) ligands for imaging receptor, enzyme, gene expression etc. in brain, tumor, myocardium and other regions or organs due to its optimal decay characteristics. To synthesize (18)F-labeled PET ligands, reliable labeling techniques inserting (18)F into a target molecule are necessary. [(18)F]Fluoroalkylation is a useful way of introducing (18)F into target molecules containing amino, phenol, thiophenol, and amide functional groups. Here, we review the preparation, reactivity and application of [(18)F]fluoroalkyl agents for the development of (18)F-labeled PET ligands in molecular imaging. [(18)F]Fluoroalkyl agents have been synthesized by reacting [(18)F]F(-) with the corresponding alkyl derivatives containing halogen and sulfonate as leaving groups. After the fluorination reaction, the radiolabeled products with relatively low boiling points were distilled from the reaction mixtures, sometimes added by Sep-Pak or gas chromatography separation. The [(18)F]fluoromethyl agents have high reactivity with nucleophilic substrates, but many [(18)F]fluoromethylated compounds are in vitro unstable. To increase the efficiency of [(18)F]fluoroethylation, [(18)F]FCH2CH2Br, the most frequently used [(18)F]fluoroethyl agent, was converted into [(18)F]FCH2CH2I or [(18)F]FCH2CH2OTf in situ. Most [(18)F]fluoromethylated ligands were found to be in vivo unstable due to defluorination. Deuterium substitution for the fluoromethyl group reduced defluorination to an extent. A number of [(18)F]fluoroethylated PET ligands have been developed for animal evaluation and clinical investigation. PMID:17979790

  20. Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection.

    PubMed

    Stettler, Karin; Beltramello, Martina; Espinosa, Diego A; Graham, Victoria; Cassotta, Antonino; Bianchi, Siro; Vanzetta, Fabrizia; Minola, Andrea; Jaconi, Stefano; Mele, Federico; Foglierini, Mathilde; Pedotti, Mattia; Simonelli, Luca; Dowall, Stuart; Atkinson, Barry; Percivalle, Elena; Simmons, Cameron P; Varani, Luca; Blum, Johannes; Baldanti, Fausto; Cameroni, Elisabetta; Hewson, Roger; Harris, Eva; Lanzavecchia, Antonio; Sallusto, Federica; Corti, Davide

    2016-08-19

    Zika virus (ZIKV), a mosquito-borne flavivirus with homology to Dengue virus (DENV), has become a public health emergency. By characterizing memory lymphocytes from ZIKV-infected patients, we dissected ZIKV-specific and DENV-cross-reactive immune responses. Antibodies to nonstructural protein 1 (NS1) were largely ZIKV-specific and were used to develop a serological diagnostic tool. In contrast, antibodies against E protein domain I/II (EDI/II) were cross-reactive and, although poorly neutralizing, potently enhanced ZIKV and DENV infection in vitro and lethally enhanced DENV disease in mice. Memory T cells against NS1 or E proteins were poorly cross-reactive, even in donors preexposed to DENV. The most potent neutralizing antibodies were ZIKV-specific and targeted EDIII or quaternary epitopes on infectious virus. An EDIII-specific antibody protected mice from lethal ZIKV infection, illustrating the potential for antibody-based therapy. PMID:27417494

  1. Rheology at the Interface and the Role of the Interphase in Reactive Functionalized Multilayer Polymers in Coextrusion Process

    NASA Astrophysics Data System (ADS)

    Lamnawar, Khalid; Maazouz, Abderrahim

    2008-07-01

    Coextrusion technologies are commonly used to produce multilayered composite sheets or films for a large range of applications from food packaging to optics. The contrast of rheological properties between layers can lead to interfacial instabilities during flow. Important theoretical and experimental advances regarding the stability of compatible and incompatible polymers have, during the last decades, been made using a mechanical approach. However, few research efforts have been dedicated to the physicochemical affinity between the neighboring layers. The present study deals with the influence of this affinity on interfacial instabilities for functionalized incompatible polymers. Polyamide (PA6)/polyethylene grafted with glycidyl methacrylate (PE-GMA) was used as a reactive system and PE/PA6 as a non reactive one. Two grades of polyamide (PA6) were used in order to change the viscosity and elasticity ratios between PE (or PE-GMA) and PA6. It was experimentally confirmed, in this case, that weak disturbance can be predicted by considering an interphase of non-zero thickness (corresponding to an interdiffusion/reaction zone) instead of a purely geometrical interface between the two reactive layers. According to the rheological investigations from previous work which the interphase effect can be probed, an experimental strategy was here formulated to optimize the process by listing the parameters that controlled the stability of the reactive multilayer flows. Hence, based on this analysis, guidelines for a stable coextrusion of reactive functionalized polymers can be provided coupling the classical parameters (viscosity, elasticity and layer ratios) and the physicochemical affinity at the polymer/polymer interface.

  2. Kinesin molecular motor Eg5 functions during polypeptide synthesis

    PubMed Central

    Bartoli, Kristen M.; Jakovljevic, Jelena; Woolford, John L.; Saunders, William S.

    2011-01-01

    The kinesin-related molecular motor Eg5 plays roles in cell division, promoting spindle assembly. We show that during interphase Eg5 is associated with ribosomes and is required for optimal nascent polypeptide synthesis. When Eg5 was inhibited, ribosomes no longer bound to microtubules in vitro, ribosome transit rates slowed, and polysomes accumulated in intact cells, suggesting defects in elongation or termination during polypeptide synthesis. These results demonstrate that the molecular motor Eg5 associates with ribosomes and enhances the efficiency of translation. PMID:21795388

  3. Tryptophan 2,3-dioxygenase (TDO)-reactive T cells differ in their functional characteristics in health and cancer

    PubMed Central

    Hjortsø, Mads Duus; Larsen, Stine Kiaer; Kongsted, Per; Met, Özcan; Frøsig, Thomas Mørch; Andersen, Gitte Holmen; Ahmad, Shamaila Munir; Svane, Inge Marie; Becker, Jürgen C; Straten, Per thor; Andersen, Mads Hald

    2015-01-01

    Tryptophan-2,3-dioxygenase (TDO) physiologically regulates systemic tryptophan levels in the liver. However, numerous studies have linked cancer with activation of local and systemic tryptophan metabolism. Indeed, similar to other heme dioxygenases TDO is constitutively expressed in many cancers. In the present study, we detected the presence of both CD8+ and CD4+ T-cell reactivity toward TDO in peripheral blood of patients with malignant melanoma (MM) or breast cancer (BC) as well as healthy subjects. However, TDO-reactive CD4+ T cells constituted distinct functional phenotypes in health and disease. In healthy subjects these cells predominately comprised interferon (IFN)γ and tumor necrosis factor (TNF)-α producing Th1 cells, while in cancer patients TDO-reactive CD4+ T-cells were more differentiated with release of not only IFNγ and TNFα, but also interleukin (IL)-17 and IL-10 in response to TDO-derived MHC-class II restricted peptides. Hence, in healthy donors (HD) a Th1 helper response was predominant, whereas in cancer patients CD4+ T-cell responses were skewed toward a regulatory T cell (Treg) response. Furthermore, MM patients hosting a TDO-specific IL-17 response showed a trend toward an improved overall survival (OS) compared to MM patients with IL-10 producing, TDO-reactive CD4+ T cells. For further characterization, we isolated and expanded both CD8+ and CD4+ TDO-reactive T cells in vitro. TDO-reactive CD8+ T cells were able to kill HLA-matched tumor cells of different origin. Interestingly, the processed and presented TDO-derived epitopes varied between different cancer cells. With respect to CD4+ TDO-reactive T cells, in vitro expanded T-cell cultures comprised a Th1 and/or a Treg phenotype. In summary, our data demonstrate that the immune modulating enzyme TDO is a target for CD8+ and CD4+ T cell responses both in healthy subjects as well as patients with cancer; notably, however, the functional phenotype of these T-cell responses differ

  4. Mitochondrial function and reactive oxygen species action in relation to boar motility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flow cytometric assays were developed for reactive oxygen species (ROS) formation (ROS-induced oxidization of hydroethidine to ethidium), membrane lipid peroxidation (C11-BODIPY-581/591 oxidation), and mitochondrial transmembrane potential (MMP) (MMP-induced JC-1 aggregation, red fluorescence) in vi...

  5. The Role of Emotional Responses and Physiological Reactivity in the Marital Conflict-Child Functioning Link

    ERIC Educational Resources Information Center

    El-Sheikh, Mona

    2005-01-01

    Background: Children's emotional responses and physiological reactivity to conflict were examined as mediators and moderators in the associations between exposure to parental marital conflict and child adjustment and cognitive problems. Method: One hundred and eighty elementary school children participated. In response to a simulated argument,…

  6. Effects of reactive oxygen species action on sperm function in spermatozoa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reactive oxygen species (ROS) formation and lipid peroxidation have been recognized as problems for sperm survival and fertility. The precise roles and detection of superoxide (SO), hydrogen peroxide (HP), and membrane lipid peroxidation have been problematic because of the low specificity and sens...

  7. Mitochondrial function and reactive oxygen species action in relation to boar motility.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flow cytometric assays of viable boar sperm were developed to measure reactive oxygen species (ROS) formation (oxidization of hydroethidine to ethidium), membrane lipid peroxidation (oxidation of lipophilic probe C11-BODIPY581/591), and mitochondrial inner transmembrane potential (aggregation of mit...

  8. Data synthesis and display programs for wave distribution function analysis

    NASA Technical Reports Server (NTRS)

    Storey, L. R. O.; Yeh, K. J.

    1992-01-01

    At the National Space Science Data Center (NSSDC) software was written to synthesize and display artificial data for use in developing the methodology of wave distribution analysis. The software comprises two separate interactive programs, one for data synthesis and the other for data display.

  9. Triple-bond reactivity of an AsP complex intermediate: synthesis stemming from molecular arsenic, As(4).

    PubMed

    Spinney, Heather A; Piro, Nicholas A; Cummins, Christopher C

    2009-11-11

    While P(4) is the stable molecular form of phosphorus, a recent study illustrated the possibility of P(2) generation for reactions in organic media under mild conditions. The heavier group 15 element arsenic can exist as As(4) molecules, but As(4) cannot be stored as a pure substance because it is both light-sensitive and reverts thermally to its stable, metallic gray form. Herein we report As(4) activation giving rise to a mu-As(2) diniobium complex, serving in turn as precursor to a terminal arsenide anion complex of niobium. Functionalization of the latter provides the new AsPNMes* ligand, which when complexed with tungsten pentacarbonyl elicits extrusion of the (AsP)W(CO)(5) molecule as a reactive intermediate. Trapping reactions of the latter with organic dienes are found to furnish double Diels-Alder adducts in which the AsP unit is embedded in a polycyclic organic framework. Thermal generation of (AsP)W(CO)(5) in the presence of the neutral terminal phosphide complex P identical withMo(N[(i)Pr]Ar)(3) leads to the cyclo-AsP(2) complex (OC)(5)W(cyclo-AsP(2))Mo(N[(i)Pr]Ar)(3). The (AsP)W(CO)(5) trapping products were crystallized and characterized by X-ray diffraction methods, and computational methods were applied for analysis of the As-As and As-P bonds in the complexes. PMID:19842699

  10. Development of new methods in modern selective organic synthesis: preparation of functionalized molecules with atomic precision

    NASA Astrophysics Data System (ADS)

    Ananikov, V. P.; Khemchyan, L. L.; Ivanova, Yu V.; Bukhtiyarov, V. I.; Sorokin, A. M.; Prosvirin, I. P.; Vatsadze, S. Z.; Medved'ko, A. V.; Nuriev, V. N.; Dilman, A. D.; Levin, V. V.; Koptyug, I. V.; Kovtunov, K. V.; Zhivonitko, V. V.; Likholobov, V. A.; Romanenko, A. V.; Simonov, P. A.; Nenajdenko, V. G.; Shmatova, O. I.; Muzalevskiy, V. M.; Nechaev, M. S.; Asachenko, A. F.; Morozov, O. S.; Dzhevakov, P. B.; Osipov, S. N.; Vorobyeva, D. V.; Topchiy, M. A.; Zotova, M. A.; Ponomarenko, S. A.; Borshchev, O. V.; Luponosov, Yu N.; Rempel, A. A.; Valeeva, A. A.; Stakheev, A. Yu; Turova, O. V.; Mashkovsky, I. S.; Sysolyatin, S. V.; Malykhin, V. V.; Bukhtiyarova, G. A.; Terent'ev, A. O.; Krylov, I. B.

    2014-10-01

    The challenges of the modern society and the growing demand of high-technology sectors of industrial production bring about a new phase in the development of organic synthesis. A cutting edge of modern synthetic methods is introduction of functional groups and more complex structural units into organic molecules with unprecedented control over the course of chemical transformation. Analysis of the state-of-the-art achievements in selective organic synthesis indicates the appearance of a new trend — the synthesis of organic molecules, biologically active compounds, pharmaceutical substances and smart materials with absolute selectivity. Most advanced approaches to organic synthesis anticipated in the near future can be defined as 'atomic precision' in chemical reactions. The present review considers selective methods of organic synthesis suitable for transformation of complex functionalized molecules under mild conditions. Selected key trends in the modern organic synthesis are considered including the preparation of organofluorine compounds, catalytic cross-coupling and oxidative cross-coupling reactions, atom-economic addition reactions, methathesis processes, oxidation and reduction reactions, synthesis of heterocyclic compounds, design of new homogeneous and heterogeneous catalytic systems, application of photocatalysis, scaling up synthetic procedures to industrial level and development of new approaches to investigation of mechanisms of catalytic reactions. The bibliography includes 840 references.

  11. Functionally Responsive Self-Reactive B Cells of Low-Affinity Express Reduced Levels of Surface IgM1

    PubMed Central

    Kirchenbaum, Greg A.; St. Clair, James B.; Detanico, Thiago; Aviszus, Katja; Wysocki, Lawrence J.

    2014-01-01

    SUMMARY Somatic gene rearrangement generates a diverse repertoire of B cells, including B cell receptors (BCR) possessing a range of affinities for self-Ag. Newly generated B cells express high and relatively uniform amounts of surface IgM (sIgM), while follicular (FO) B cells express sIgM at widely varying levels. It is plausible, therefore, that down-modulation of sIgM serves as a mechanism to maintain weakly self-reactive B cells in a responsive state by decreasing their avidity for self-Ag. We tested this hypothesis by performing comparative functional tests with FO IgMhi and IgMlo B cells from the unrestricted repertoire of wildtype (WT) mice. We found that FO IgMlo B cells mobilized Ca2+ equivalently to IgMhi B cells when the same number of sIgM molecules was engaged. In agreement, FO IgMlo B cells were functionally competent to produce an antibody response following adoptive transfer. The FO IgMlo cell population had elevated levels of Nur77 transcript, and was enriched with nuclear-reactive specificities. Hybridoma sampling revealed that these BCR were of low affinity. Collectively, these results suggest that sIgM down-modulation by low-affinity, self-reactive B cells preserves their immunocompetence and circumvents classical peripheral tolerance mechanisms that would otherwise reduce diversity within the B cell compartment. PMID:24375379

  12. Using Force-Matched Potentials To Improve the Accuracy of Density Functional Tight Binding for Reactive Conditions

    NASA Astrophysics Data System (ADS)

    Goldman, Nir

    In this work, we show that force matching can be used to determine accurate density functional tight binding (DFTB) models for reactive materials under extreme conditions. Determination of chemical reactivity in high-pressure experiments is an unsolved problem that can span timescales orders of magnitude longer that what can be achieved with standard quantum simulation approaches, such as Kohn-Sham Density Functional Theory. DFTB holds promise as a semi-empirical quantum simulation method that yields a high degree of computational efficiency while potentially retaining the accuracy of these higher order methods. Here, we show that force matching can be used to determine accurate repulsive energies for DFTB for chemical reactivity in condensed phases. Our new models yield improved predictions for physical properties of molten liquid carbon, as well as small molecule production in phenolic polymer combustion. Our approach is general and can be implemented as a way to extend quantum simulations to several orders of magnitude longer timescales than previously possible, allowing for direct comparison with experiments.

  13. Intermatrix Synthesis as a rapid, inexpensive and reproducible methodology for the in situ functionalization of nanostructured surfaces with quantum dots

    NASA Astrophysics Data System (ADS)

    Bastos-Arrieta, Julio; Muñoz, Jose; Stenbock-Fermor, Anja; Muñoz, Maria; Muraviev, Dmitri N.; Céspedes, Francisco; Tsarkova, Larisa A.; Baeza, Mireia

    2016-04-01

    Intermatrix Synthesis (IMS) technique has proven to be a valid methodology for the in situ incorporation of quantum dots (QDs) in a wide range of nanostructured surfaces for the preparation of advanced hybrid-nanomaterials. In this sense, this communication reports the recent advances in the application of IMS for the synthesis of CdS-QDs with favourable distribution on sulfonated polyetherether ketone (SPEEK) membrane thin films (TFs), multiwall carbon nanotubes (MWCNTs) and nanodiamonds (NDs). The synthetic route takes advantage of the ion exchange functionality of the reactive surfaces for the loading of the QDs precursor and consequent QDs appearance by precipitation. The benefits of such modified nanomaterials were studied using CdS-QDs@MWCNTs hybrid-nanomaterials. CdS-QDs@MWCNTs has been used as conducting filler for the preparation of electrochemical nanocomposite sensors, which present electrocatalytic properties. Finally, the optical properties of the QDs contained on MWCNTs could allow a new procedure for the analytical detection of nanostructured carbon allotropes in water.

  14. The Dual Function of Reactive Oxygen/Nitrogen Species in Bioenergetics and Cell Death: The Role of ATP Synthase

    PubMed Central

    Kaludercic, Nina

    2016-01-01

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) targeting mitochondria are major causative factors in disease pathogenesis. The mitochondrial permeability transition pore (PTP) is a mega-channel modulated by calcium and ROS/RNS modifications and it has been described to play a crucial role in many pathophysiological events since prolonged channel opening causes cell death. The recent identification that dimers of ATP synthase form the PTP and the fact that posttranslational modifications caused by ROS/RNS also affect cellular bioenergetics through the modulation of ATP synthase catalysis reveal a dual function of these modifications in the cells. Here, we describe mitochondria as a major site of production and as a target of ROS/RNS and discuss the pathophysiological conditions in which oxidative and nitrosative modifications modulate the catalytic and pore-forming activities of ATP synthase. PMID:27034734

  15. Removal of nitric oxide by the highly reactive anatase TiO2 (001) surface: a density functional theory study.

    PubMed

    Zhao, Wenwen; Tian, Feng Hui; Wang, Xiaobin; Zhao, Linghuan; Wang, Yun; Fu, Aiping; Yuan, Shuping; Chu, Tianshu; Xia, Linhua; Yu, Jimmy C; Duan, Yunbo

    2014-09-15

    In this paper, density functional theory (DFT) calculation was employed to study the adsorption of nitric oxide (NO) on the highly reactive anatase TiO2 (001) surface. For comparison, the adsorption of NO on the (101) surface was also considered. Different from the physical adsorption on the (101) surface, NO molecules are found to chemisorb on the TiO2 (001) surface. The twofold coordinate oxygen atoms (O2c) on the anatase (001) surface are the active sites. Where NO is oxidized into a nitrite species (NO2(-)) trapping efficiently on the surface, with one of the surface Ti5c-O2c bonds adjacent to the adsorption site broken. Our results, therefore, supply a theoretical guidance to remove NO pollutants using highly reactive anatase TiO2 (001) facets. PMID:24998049

  16. A C-H functionalization protocol for the direct synthesis of benzobisthiazole derivatives.

    PubMed

    Bon, Jennifer L; Feng, Daijun; Marder, Seth R; Blakey, Simon B

    2014-08-15

    Benzobisthiazole and thiazolothiazole derivatives are useful components in a variety of organic electronics devices resulting from their absorption, electroluminescence, and charge-transport properties. A convenient synthesis of these molecules via palladium/copper cocatalyzed C-H bond functionalization is described. Reaction conditions were optimized in a bromobenzene/benzobisthiazole system that allowed for the one-pot functionalization of both thioimidate positions of benzobisthiazole. The extension of this methodology to the synthesis of cruciform architectures and the functionalization of thiazolothiazole is also described. PMID:25078255

  17. Precision synthesis, structure and function of helical polymers

    PubMed Central

    OKAMOTO, Yoshio

    2015-01-01

    Helical structures are chiral, which means that if we can synthesize a polymer having a stable one-handed helicity, the polymer is optically active. In 1979, we succeeded in the synthesis of a one-handed helical polymer from an optically inactive achiral monomer, triphenylmethyl methacrylate (TrMA). This is the first example of the asymmetric synthesis of an optically active one-handed helical polymer. The polymer (PTrMA) exhibited an unexpected high chiral recognition ability and afforded a practically useful chiral stationary phase (CSP) for high-performance liquid chromatography (HPLC) by coating it on silica gel. In addition, we also succeeded in the development of very useful CSPs for HPLC using the phenylcarbamate derivatives of polysaccharides, cellulose and amylose. These CSPs can efficiently resolve a broad range of chiral compounds, and have been used all over the world for separating and analyzing chiral compounds. PMID:26062738

  18. Precision synthesis, structure and function of helical polymers.

    PubMed

    Okamoto, Yoshio

    2015-01-01

    Helical structures are chiral, which means that if we can synthesize a polymer having a stable one-handed helicity, the polymer is optically active. In 1979, we succeeded in the synthesis of a one-handed helical polymer from an optically inactive achiral monomer, triphenylmethyl methacrylate (TrMA). This is the first example of the asymmetric synthesis of an optically active one-handed helical polymer. The polymer (PTrMA) exhibited an unexpected high chiral recognition ability and afforded a practically useful chiral stationary phase (CSP) for high-performance liquid chromatography (HPLC) by coating it on silica gel. In addition, we also succeeded in the development of very useful CSPs for HPLC using the phenylcarbamate derivatives of polysaccharides, cellulose and amylose. These CSPs can efficiently resolve a broad range of chiral compounds, and have been used all over the world for separating and analyzing chiral compounds. PMID:26062738

  19. Microstructure and wear resistance of Al2O3-M7C3/Fe composite coatings produced by laser controlled reactive synthesis

    NASA Astrophysics Data System (ADS)

    Tan, Hui; Luo, Zhen; Li, Yang; Yan, Fuyu; Duan, Rui

    2015-05-01

    Based on the principle of thermite reaction of Al and Fe2O3 powders, the Al2O3 ceramic reinforced Fe-based composite coatings were fabricated on a steel substrate by laser controlled reactive synthesis and cladding. The effects of different additions of thermite reactants on the phase transition, microstructure evolution, microhardness and wear resistance of the composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Vickers microhardness and block-on-ring wear test, respectively. The results show that Al2O3 ceramic and M7C3 carbide are in situ synthesized via the laser controlled reactive synthesis. The Al2O3 ceramic and M7C3 carbides prefer to distribute along the γ-Fe phase boundary continuously, which separates the γ-Fe matrix and is beneficial to the grain refinement. With the increase of thermite reactants, the amount of Al2O3 ceramic and M7C3 carbide in the composite coatings increases gradually. Moreover the cladding layer changes from dendritic structure to columnar structure and martensite structure in the heat affected zone becomes coarse. The increased thermite reactants improve the microhardness and wear resistance of the in situ composite coatings obviously and enhance the hardness of the heat affected zone, which should be ascribed to the grain refinement, ceramic and carbide precipitation and solid solution strengthening.

  20. Functional Metal Oxide Nanostructures: Their Synthesis, Characterization, and Energy Applications

    NASA Astrophysics Data System (ADS)

    Iyer, Aparna

    This research focuses on studying metal oxides (MnO 2, Co3O4, MgO, Y2O3) for various applications including water oxidation and photocatalytic oxidation, developing different synthesis methodologies, and presenting detailed characterization studies of these metal oxides. This research consists of three major parts. The first part is studying novel applications and developing a synthesis method for manganese oxide nanomaterials. Manganese oxide materials were studied for renewable energy applications by using them as catalysts for water oxidation reactions. In this study, various crystallographic forms of manganese oxides (amorphous, 2D layered, 1D 2 x 2 tunnel structures) were evaluated for water oxidation catalysis. Amorphous manganese oxides (AMO) were found to be catalytically active for chemical and photochemical water oxidation compared to cryptomelane type tunnel manganese oxides (2 x 2 tunnels; OMS2) or layered birnessite (OL-1) materials. Detailed characterization was done to establish a correlation between the properties of the manganese oxide materials and their catalytic activities in water oxidation. The gas phase photocatalytic oxidation of 2-propanol under visible light was studied using manganese oxide 2 x 2 tunnel structures (OMS-2) as catalysts (Chapter 3). The reaction is 100% selective to acetone. As suggested by the photocatalytic and characterization data, important factors for the design of active OMS-2 photocatalysts are synthesis methodology, morphology, mixed valency and the release of oxygen from the OMS-2 structure. Manganese oxide octahedral molecular sieves (2 x 2 tunnels; OMS-2) with self-assembled dense or hollow sphere morphologies were fabricated via a room temperature ultrasonic atomization assisted synthesis (Chapter 4). The properties and catalytic activities of these newly developed materials were compared with that of OMS-2 synthesized by conventional reflux route. These materials exhibit exceptionally high catalytic activities

  1. Nitrosylated Hemoglobin Levels in Human Venous Erythrocytes Correlate with Vascular Endothelial Function Measured by Digital Reactive Hyperemia

    PubMed Central

    Lobysheva, Irina I.; Biller, Pauline; Gallez, Bernard; Beauloye, Christophe; Balligand, Jean-Luc

    2013-01-01

    Impaired nitric oxide (NO)–dependent endothelial function is associated with the development of cardiovascular diseases. We hypothesized that erythrocyte levels of nitrosylated hemoglobin (HbNO-heme) may reflect vascular endothelial function in vivo. We developed a modified subtraction method using Electron Paramagnetic Resonance (EPR) spectroscopy to identify the 5-coordinate α-HbNO (HbNO) concentration in human erythrocytes and examined its correlation with endothelial function assessed by peripheral arterial tonometry (PAT). Changes in digital pulse amplitude were measured by PAT during reactive hyperemia following brachial arterial occlusion in a group of healthy volunteers (50 subjects). Erythrocyte HbNO levels were measured at baseline and at the peak of hyperemia. We digitally subtracted an individual model EPR signal of erythrocyte free radicals from the whole EPR spectrum to unmask and quantitate the HbNO EPR signals. Results Mean erythrocyte HbNO concentration at baseline was 219+/−12 nmol/L (n = 50). HbNO levels and reactive hyperemia (RH) indexes were higher in female (free of contraceptive pills) than male subjects. We observed a dynamic increase of HbNO levels in erythrocytes isolated at 1–2 min of post-occlusion hyperemia (120+/−8% of basal levels); post-occlusion HbNO levels were correlated with basal levels. Both basal and post-occlusion HbNO levels were significantly correlated with reactive hyperemia (RH) indexes (r = 0.58; P<0.0001 for basal HbNO). Conclusion The study demonstrates quantitative measurements of 5-coordinate α-HbNO in human venous erythrocytes, its dynamic physiologic regulation and correlation with endothelial function measured by tonometry during hyperemia. This opens the way to further understanding of in vivo determinants of NO bioavailability in human circulation. PMID:24130774

  2. A comparison of the chemical reactivity of naringenin calculated with the M06 family of density functionals

    PubMed Central

    2013-01-01

    Background Chemicals generically referred to as flavonoids belong to the group of phenolic compounds and constitute an important group of secondary metabolites due to their applications as well as their biochemical properties. Flavonoids, which share a common benzo- γ-pyrone structure, constitute a kind of compound which are highly ubiquitous in the plant kingdom. Findings The M06 family of density functionals has been assessed for the calculation of the molecular structure and properties of the Naringenin flavonoid. The chemical reactivity descriptors have been calculated through Conceptual DFT. The active sites for nucleophilic and electrophilic attacks have been chosen by relating them to the Fukui function indices and the dual descriptor f(2)(r). A comparison between the descriptors calculated through vertical energy values and those arising from the Koopmans’ theorem approximation have been performed in order to check for the validity of the last procedure. Conclusions The M06 family of density functionals (M06, M06L, M06-2X and M06-HF) used in the present work leads to the same qualitatively and quantitatively similar description of the chemistry and reactivity of the Naringenin molecule, yielding reasonable results. However, for the case of the M06-2X and M06-HF density functionals, which include a large portion of HF exchange, the calculations considering the validity of the Koopmans’ theorem lead to negative electron affinities. PMID:24041114

  3. Lineage-specific function of the noncoding Tsix RNA for Xist repression and Xi reactivation in mice

    PubMed Central

    Ohhata, Tatsuya; Senner, Claire E.; Hemberger, Myriam; Wutz, Anton

    2011-01-01

    The noncoding Tsix RNA is an antisense repressor of Xist and regulates X inactivation in mice. Tsix is essential for preventing the inactivation of the maternally inherited X chromosome in extraembryonic lineages where imprinted X-chromosome inactivation (XCI) occurs. Here we establish an inducible Tsix expression system for investigating Tsix function in development. We show that Tsix has a clear functional window in extraembryonic development. Within this window, Tsix can repress Xist, which is accompanied by DNA methylation of the Xist promoter. As a consequence of Xist repression, reactivation of the inactive X chromosome (Xi) is widely observed. In the parietal endoderm, Tsix represses Xist and causes reactivation of an Xi-linked GFP transgene throughout development, whereas Tsix progressively loses its Xist-repressing function from embryonic day 9.5 (E9.5) onward in trophoblast giant cells and spongiotrophoblast, suggesting that Tsix function depends on a lineage-specific environment. Our data also demonstrate that the maintenance of imprinted XCI requires Xist expression in specific extraembryonic tissues throughout development. This finding shows that reversible XCI is not exclusive to pluripotent cells, and that in some lineages cell differentiation is not accompanied by a stabilization of the Xi. PMID:21852535

  4. Cavitation and radicals drive the sonochemical synthesis of functional polymer spheres

    NASA Astrophysics Data System (ADS)

    Narayanan, Badri; Deshmukh, Sanket A.; Shrestha, Lok Kumar; Ariga, Katsuhiko; Pol, Vilas G.; Sankaranarayanan, Subramanian K. R. S.

    2016-07-01

    Sonochemical synthesis can lead to a dramatic increase in the kinetics of formation of polymer spheres (templates for carbon spheres) compared to the modified Stöber silica method applied to produce analogous polymer spheres. Reactive molecular dynamics simulations of the sonochemical process indicate a significantly enhanced rate of polymer sphere formation starting from resorcinol and formaldehyde precursors. The associated chemical reaction kinetics enhancement due to sonication is postulated to arise from the localized lowering of atomic densities, localized heating, and generation of radicals due to cavitation collapse in aqueous systems. This dramatic increase in reaction rates translates into enhanced nucleation and growth of the polymer spheres. The results are of broad significance to understanding mechanisms of sonication induced synthesis as well as technologies utilizing polymers spheres.

  5. Experimental investigation of aminoacetonitrile formation through the Strecker synthesis in astrophysical-like conditions: reactivity of methanimine (CH2NH), ammonia (NH3), and hydrogen cyanide (HCN)

    NASA Astrophysics Data System (ADS)

    Danger, G.; Borget, F.; Chomat, M.; Duvernay, F.; Theulé, P.; Guillemin, J.-C.; Le Sergeant D'Hendecourt, L.; Chiavassa, T.

    2011-11-01

    Context. Studing chemical reactivity in astrophysical environments is an important means for improving our understanding of the origin of the organic matter in molecular clouds, in protoplanetary disks, and possibly, as a final destination, in our solar system. Laboratory simulations of the reactivity of ice analogs provide important insight into the reactivity in these environments. Here, we use these experimental simulations to investigate the Strecker synthesis leading to the formation of aminoacetonitrile in astrophysical-like conditions. The aminoacetonitrile is an interesting compound because it was detected in SgrB2, hence could be a precursor of the smallest amino acid molecule, glycine, in astrophysical environments. Aims: We present the first experimental investigation of the formation of aminoacetonitrile NH2CH2CN from the thermal processing of ices including methanimine (CH2NH), ammonia (NH3), and hydrogen cyanide (HCN) in interstellar-like conditions without VUV photons or particules. Methods: We use Fourier Transform InfraRed (FTIR) spectroscopy to monitor the ice evolution during its warming. Infrared spectroscopy and mass spectroscopy are then used to identify the aminoacetonitrile formation. Results: We demonstrate that methanimine can react with -CN during the warming of ice analogs containing at 20 K methanimine, ammonia, and [NH4+ -CN] salt. During the ice warming, this reaction leads to the formation of poly(methylene-imine) polymers. The polymer length depend on the initial ratio of mass contained in methanimine to that in the [NH4+ -CN] salt. In a methanimine excess, long polymers are formed. As the methanimine is progressively diluted in the [NH4+ -CN] salt, the polymer length decreases until the aminoacetonitrile formation at 135 K. Therefore, these results demonstrate that aminoacetonitrile can be formed through the second step of the Strecker synthesis in astrophysical-like conditions.

  6. Synthesis and functionalization of magnetite nanoparticles with different amino-functional alkoxysilanes

    NASA Astrophysics Data System (ADS)

    Bini, Rafael A.; Marques, Rodrigo Fernando C.; Santos, Francisco J.; Chaker, Juliano A.; Jafelicci, Miguel

    2012-02-01

    Superparamagnetic iron oxide (SPIO) nanoparticles show great promise for many biotechnological applications. This paper addresses the synthesis and characterization of SPIO nanoparticles grafted with three different alkoxysilanes: 3-aminopropyl-triethoxysilane (APTES), 3-aminopropyl-ethyl-diethoxysilane (APDES) and 3-aminopropyl-diethy-ethoxysilane (APES). SPIO nanoparticles with an average particle diameter of 10 nm were prepared by chemical sonoprecipitation. As confirmed by Fourier transform infrared (FTIR) spectroscopy, silylation of these nanoparticles occurs through a two-step process. Decreasing the number of alkoxide groups reduced the concentration of free amino groups on the SPIO surface ([SPIO-NH2]-APTES>APDES>APES). This phenomenon results from steric contributions and the formation of H-bonded amines provided by the ethyl groups present in the APDES and APES molecules. A simulation of SPIO nanoparticles in a saline physiologic solution shows that the ethyl groups impart larger steric stability onto the ferrofluids, which reduces aggregation. The magnetization (M) versus magnetic field (H) curves show that the synthesized iron oxide nanoparticles display superparamagnetic behavior. The zero-field cooling (ZFC) and field cooling (FC) curves show that the changes in the blocking temperature depend on the alkoxysilane-functionalized particle surface.

  7. Nitric oxide synthase stimulates prostaglandin synthesis and barrier function in C. parvum-infected porcine ileum.

    PubMed

    Gookin, Jody L; Duckett, Laurel L; Armstrong, Martha U; Stauffer, Stephen H; Finnegan, Colleen P; Murtaugh, Michael P; Argenzio, Robert A

    2004-09-01

    Cell culture models implicate increased nitric oxide (NO) synthesis as a cause of mucosal hyperpermeability in intestinal epithelial infection. NO may also mediate a multitude of subepithelial events, including activation of cyclooxygenases. We examined whether NO promotes barrier function via prostaglandin synthesis using Cryptosporidium parvum-infected ileal epithelium in residence with an intact submucosa. Expression of NO synthase (NOS) isoforms was examined by real-time RT-PCR of ileal mucosa from control and C. parvum-infected piglets. The isoforms mediating and mechanism of NO action on barrier function were assessed by measuring transepithelial resistance (TER) and eicosanoid synthesis by ileal mucosa mounted in Ussing chambers in the presence of selective and nonselective NOS inhibitors and after rescue with exogenous prostaglandins. C. parvum infection results in induction of mucosal inducible NOS (iNOS), increased synthesis of NO and PGE2, and increased mucosal permeability. Nonselective inhibition of NOS (NG-nitro-L-arginine methyl ester) inhibited prostaglandin synthesis, resulting in further increases in paracellular permeability. Baseline permeability was restored in the absence of NO by exogenous PGE2. Selective inhibition of iNOS [L-N6-(1-iminoethyl)-L-lysine] accounted for approximately 50% of NOS-dependent PGE2 synthesis and TER. Using an entire intestinal mucosa, we have demonstrated for the first time that NO serves as a proximal mediator of PGE2 synthesis and barrier function in C. parvum infection. Expression of iNOS by infected mucosa was without detriment to overall barrier function and may serve to promote clearance of infected enterocytes. PMID:15155179

  8. Surface decoration through electrostatic interaction leading to enhanced reactivity: Low temperature synthesis of nanostructured chromium borides (CrB and CrB{sub 2})

    SciTech Connect

    Menaka,; Kumar, Bharat; Kumar, Sandeep; Ganguli, A.K.

    2013-04-15

    The present study describes a novel low temperature route at ambient pressure for the synthesis of nanocrystalline chromium borides (CrB and CrB{sub 2}) without using any flux or additives. The favorable and intimate mixing of nanoparticles of chromium acetate (Cr source) and boron forms an active chromium–boron precursor which decomposes at much lower temperature (400 °C) to form CrB (which is ∼1000 °C less than the known ambient pressure synthesis). The chromium acetate nanoparticles (∼5 nm) decorate the larger boron particles (150–200 nm) due to electrostatic interactions resulting from opposing surface charges of boron (zeta potential:+48.101 mV) and chromium acetate (zeta potential:−4.021 mV) in ethanolic medium and is evident in the TEM micrographs. The above method leads to the formation of pure CrB film like structure at 400 °C and nanospheres (40–60 nm) at 600 °C. Also, chromium diboride (CrB{sub 2}) nanoparticles (25 nm) could be obtained at 1000 °C. - Graphical abstract: Variation of surface charge of reactants, precursor and the products, chromium borides (CrB and CrB{sub 2}). Highlights: ► Novel borothermal reduction process for synthesis of chromium boride. ► Significant lowering of reaction temperature to obtain nanocrystalline chromium boride. ► Enhanced reactivity due to appropriate surface interactions.

  9. Functional implications of mitochondrial reactive oxygen species generated by oncogenic viruses

    PubMed Central

    Choi, Young Bong; Harhaj, Edward William

    2014-01-01

    Between 15–20% of human cancers are associated with infection by oncogenic viruses. Oncogenic viruses, including HPV, HBV, HCV and HTLV-1, target mitochondria to influence cell proliferation and survival. Oncogenic viral gene products also trigger the production of reactive oxygen species which can elicit oxidative DNA damage and potentiate oncogenic host signaling pathways. Viral oncogenes may also subvert mitochondria quality control mechanisms such as mitophagy and metabolic adaptation pathways to promote virus replication. Here, we will review recent progress on viral regulation of mitophagy and metabolic adaptation and their roles in viral oncogenesis. PMID:25580106

  10. A robust platform for functional microgels via thiol-ene achemistry with reactive polyether-based nanoparticles

    PubMed Central

    Fleischmann, Carolin; Gopez, Jeffrey; Lundberg, Pontus; Ritter, Helmut; Killops, Kato L.

    2015-01-01

    We herein report the development of crosslinked polyether particles as a reactive platform for the preparation of functional microgels. Thiol-ene crosslinking of poly(allyl glycidyl ether) in miniemulsion droplets - stabilized by a surface active, bio-compatible polyethylene glycol block copolymer - resulted in colloidal gels with a PEG corona and an inner polymeric network containing reactive allyl units. The stability of the allyl groups allows the microgels to be purified and stored before a second, subsequent thiol-ene functionalization step allows a wide variety of pH- and chemically-responsive groups to be introduced into the nanoparticles. The facile nature of this synthetic platform enables the preparation of microgel libraries that are responsive to different triggers but are characterized by the same size distribution, surface functionality, and crosslinking density. In addition, the utilization of a crosslinker containing cleavable ester groups renders the resulting hydrogel particles degradable at elevated pH or in the presence of esterase under physiological conditions. PMID:26005499

  11. Reliability and reactivity of the prefrontal hemodynamic responses in essential hypertension: a functional near infrared spectroscopy study.

    PubMed

    Grant, Hercules; Bhambhani, Yagesh; Singhal, Anthony; Haennel, Robert; Warren, Sharon

    2015-10-01

    Prefrontal (PFC) cerebral vasoreactivity may be altered in hypertension but has not been studied during postural change and carbon dioxide (CO2) rebreathing. In this study, a dual procedure of 5% CO2 rebreathing with positional change (standing to supine and reverse) was performed on normotensive (N = 24) and essential hypertensive males (N = 16) (18-55 years) to assess reliability of PFC responses using functional near infrared spectroscopy. The groups (matched on age levels, N = 13) were also compared on their hemodynamic reactivity (change of oxyhemoglobin or total hemoglobin as a function of change in end tidal CO2). Test-retest reliability within one session and 7 days later was moderate to high (intraclass correlation coefficient = .63-.901) in both normotensive and hypertensive groups for all hemodynamic measures; whereas reliability of reactivity measures for oxyhemoglobin and total hemoglobin was moderate (intraclass correlation coefficient = .68-.762). Functional near infrared spectroscopy-measured PFC hemodynamic responses are highly reproducible in normotensive and adult essential hypertensive males. PMID:26329474

  12. New reagents for the introduction of reactive functional groups into chemically synthesized DNA probes.

    PubMed

    Skrzypczynski, Zbigniew; Wayland, Sarah

    2003-01-01

    An efficient and versatile preparative approach is described, allowing for the preparation of DNA probes modified with an aldehyde group at the 3'- or 5'-end. The developed synthetic strategy allows for the preparation of a new family of phosphoramidites and solid supports compatible with the automated synthesis of modified oligonucleotide probes. These new reagents were prepared from intermediates 3 and 3a, obtained from the commercially available aleuritic acid 1. It was demonstrated that the new phosphoramidite reagents also could be used as new types of cleavable linkers. A new and efficient method for the production of 5' aldehyde-labeled DNA probes was developed. PMID:12757390

  13. Synthesis of Functionalized Mono-, Bis-, and Trisethynyltriptycenes for One-Dimensional Self-Assembly on Surfaces.

    PubMed

    Sirven, Agnès M; Garbage, Romain; Qiao, Yun; Kammerer, Claire; Rapenne, Gwénaël

    2015-10-12

    This paper describes the synthesis of triptycene-based building blocks that are able to interact through hydrogen bonds to form one-dimensional self-assembled motifs on surfaces. We designed 9,10-diethynyltriptycene derivatives functionalized at the ethynyl end groups by a variety of hydrogen-bonding groups for homomolecular recognition and complementary building blocks for heteromolecular recognition. We also present the synthesis of bis- and trisethynyltriptycenes with terminal alkyne functional groups available for on-surface azide-alkyne cycloaddition reaction to expand the potential of the triptycene building block. PMID:26334027

  14. Blockade of prostaglandin production increases cachectin synthesis and prevents depression of macrophage functions after hemorrhagic shock.

    PubMed Central

    Ertel, W; Morrison, M H; Ayala, A; Perrin, M M; Chaudry, I H

    1991-01-01

    Although hemorrhage severely depresses macrophage functions, it is not known whether the increased TNF-alpha or PGE2 production is responsible for it. To study this C3H/HeN mice were bled to mean blood pressure of 35 mmHg for 60 minutes, resuscitated, and treated with either ibuprofen (1.0 mg/kg body weight) or vehicle (saline). Hemorrhage increased plasma prostaglandin E2 (PGE2) levels by 151.7% +/- 40.0% (p less than 0.05) and significantly decreased peritoneal macrophage (pM phi) antigen presentation (AP) by 60.5% +/- 7.3%, Ia expression by 52.3% +/- 7.6%, and interleukin-1 (IL-1) synthesis by 60.5% +/- 12.3% compared to shams. However ibuprofen treatment reduced PGE2 plasma levels by 61.3% +/- 12.1% and significantly increased AP (+237.0% +/- 95.3%), Ia expression (+72.8% +/- 27.5%), IL-1 synthesis (+235.7% +/- 134.7%), and cachectin synthesis (+485.8% +/- 209.0%) compared to vehicle-treated animals. These results indicate that prostaglandins but not cachectin are involved in the suppression of pM phi functions following hemorrhage because blockade of prostaglandin synthesis improved depressed macrophage functions despite enhanced cachectin synthesis. PMID:1998408

  15. Synthesis and Characterization of Functional Iron and Germanium Nanomaterials

    NASA Astrophysics Data System (ADS)

    Hoffman, Melanie

    Germanium nanomaterials have many potential applications based on their size-tunable optical and electronic properties, for example in photodetectors, photovoltaics and non-volatile memory. In this work, the synthesis of Ge nanoparticles by two different methods based on tailorability through the substituent chemistry of the Ge precursors is explored. In Chapter Two, the effect of the organic substituent upon thermal decomposition of organogermanium oxides (RGeO1.5)n to yield oxide-embedded germanium nanocrystals (Ge-NCs) is investigated. Substituents with stable radical formation or the presence of beta-hydrogen are found to facilitate NC formation at lower temperatures. Lower temperature limits germanium production to a pathway based on disproportionation only, and not -- as previously -- also on hydrogen reduction of germanium oxides. The organic substituent also introduces tailorability of organogermanium oxide properties, such as melting points. For R = n-butyl, benzyl, these are lowered below the disproportionation temperature, yielding melts containing Ge-NCs. The knowledge gained in the substituent study is applied to solution synthesis of Ge-NCs in Chapter Three. The n-butyl substituent, which formed Ge-NC from (nBuGeO1.5)n at 300 °C, can eliminate by radical and beta-hydride elimination pathways. In the molecular compounds nBuxGeH4-x (x = 1-4), reductive elimination also becomes possible. We propose this leads to the decrease in decomposition temperature of nBu xGeH4-x from x = 4 to x = 1. In the second section of this thesis, Chapter Four, the catalytic activity of metal-decorated iron/iron-oxide core-shell nanoparticles (M/Fe Fe xOy) in Heck and Suzuki couplings is investigated. Electroless deposition of noble metals on Fe FexOy generates the catalyst. The catalytic activity of Pd/Fe FexOy is improved over standard heterogeneous catalysts (e.g., Pd/C) in Heck coupling of styrene and bromobenzene. Leaching studies in Suzuki coupling of bromobenzene with

  16. A general view on the reactivity of the oxygen-functionalized graphene basal plane.

    PubMed

    Dobrota, Ana S; Pašti, Igor A; Mentus, Slavko V; Skorodumova, Natalia V

    2016-03-01

    In this contribution we inspect the adsorption of H, OH, Cl and Pt on oxidized graphene using DFT calculations. The introduction of epoxy and hydroxyl groups on the graphene basal plane significantly alters its chemisorption properties, which can be attributed to the deformation of the basal plane and the type and distribution of these groups. We show that a general scaling relation exists between the hydrogen binding energies and the binding energies of other investigated adsorbates, which allows for a simple probing of the reactivity of oxidized graphene with only one adsorbate. The electronic states of carbon atoms located within the 2 eV interval below the Fermi level are found to be responsible for the interaction of the basal plane with the chosen adsorbates. The number of electronic states situated in this energy interval is shown to correlate with hydrogen binding energies. PMID:26866995

  17. Fabrication and Selective Functionalization of Amine-Reactive Polymer Multilayers on Topographically Patterned Microwell Cell Culture Arrays

    PubMed Central

    Broderick, Adam H.; Azarin, Samira M.; Buck, Maren E.; Palecek, Sean P.

    2011-01-01

    We report an approach to the fabrication and selective functionalization of amine-reactive polymer multilayers on the surfaces of three-dimensional (3-D) polyurethane-based microwell cell culture arrays. ‘Reactive’ layer-by-layer assembly of multilayers using branched polyethyleneimine (BPEI) and the azlactone-functionalized polymer poly(2-vinyl-4,4’-dimethylazlactone) (PVDMA) yielded film-coated microwell arrays that could be chemically functionalized post-fabrication by treatment with different amine-functionalized macromolecules or small molecule primary amines. Treatment of film-coated arrays with the small molecule amine D-glucamine resulted in microwell surfaces that resisted the adhesion and proliferation of mammalian fibroblast cells in vitro. These and other experiments demonstrated that it was possible to functionalize different structural features of these arrays in a spatially resolved manner to create dual-functionalized substrates (e.g., to create arrays having either (i) azlactone-functionalized wells, with regions between the wells functionalized with glucamine, or (ii) substrates with spatially resolved regions of two different cationic polymers). In particular, spatial control over glucamine functionalization yielded 3-D substrates that could be used to confine cell attachment and growth to microwells for periods of up to 28 days and support the 3-D culture of arrays of cuboidal cell clusters. These approaches to dual functionalization could prove useful for the long-term culture and maintenance of cell types for which the presentation of specific and chemically well-defined 3-D culture environments is required for control over cell growth, differentiation, and other important behaviors. More generally, our approach provides methods for the straightforward chemical functionalization of otherwise unreactive topographically patterned substrates that could prove useful in a range of other fundamental and applied contexts. PMID:21504222

  18. Reactive airways dysfunction syndrome due to chlorine: sequential bronchial biopsies and functional assessment.

    PubMed

    Lemière, C; Malo, J L; Boutet, M

    1997-01-01

    Very little information is available on the acute histopathological bronchial alterations caused by reactive airways dysfunction syndrome (RADS). We had the opportunity to carry out sequential bronchial biopsies in a subject with RADS due to chlorine (60 h, 15 days, 2 and 5 months after the acute exposure), and also to assess spirometry and bronchial responsiveness to methacholine. A 36 year old worker in a water-filtration plant (nonsmoker) abruptly inhaled high concentrations of chlorine on September 12, 1994. He experienced immediate nasal and throat burning, retrosternal burning and wheezing, and these symptoms persisted during and after the workshift. Two days later, he complained of retrosternal burning, dyspnoea and wheezing. Inspiratory wheezing was documented. His forced expiratory volume in one second (FEV1) was 66% of predicted and the provocative concentration of methacholine causing a 20% fall in FEV1 (PC20) was slightly abnormal (2.5 mg.mL-1). On the following day, the patient underwent bronchial biopsies, which showed almost complete replacement of the epithelium by a fibrinohaemorhagic exsudate. The subject was prescribed inhaled steroids. Fifteen days after the accident, the PC20 was improved to 6 mg.mL-1. Bronchial biopsies showed considerable epithelial desquamation with an inflammatory exudate and swelling of the subepithelial space. Five weeks after the accident, the PC20 was normal (57 mg.mL-1). Inhaled steroids were stopped. Two months after the accident, the PC20 deteriorated to 4 mg.mL-1. Biopsies then showed regeneration of the epithelium by basal cells and there was still a pronounced inflammatory infiltrate. Inhaled steroids were restarted. Three and five months later, the PC20 was normal (24 mg.mL-1). Bronchial biopsies showed a greatly improved epithelium and reduction of the inflammatory infiltrate. This case report shows that reactive airways dysfunction syndrome can cause acute, marked, though partially reversible, histological

  19. Synthesis of nanometric iron and chromium oxide films by reactive pulsed laser deposition for photo-thermo sensors

    NASA Astrophysics Data System (ADS)

    Mulenko, S. A.

    2011-02-01

    Films based on oxides of transitional metals have semiconducting properties that make them up-to-date materials for functional electronics. The reactive pulsed laser deposition (RPLD) allows the control of thickness and stoichiometry of deposits in order to obtain semiconductor structures with accurately tailored thickness and band gap. It is very important to study electrical, structural and optical properties of these semiconducting nanometric films, as sensing characteristics strongly depend on these properties. We deposited iron oxide (Fe2O3-X; 0 <= x <= 1) and chromium oxide (Cr3-XO3-Y; 0 <= x <= 2; 0 <= y <= 2) films on <100> Si substrate by RPLD using a KrF laser. The deposited nanometric films (thickness 50-200 nm) of iron and chromium oxides have large thermo electromotive force (e.m.f.) coefficient (S). The S coefficient of iron oxide films varied in the range 0.8-1.65 mV/K in the temperature range 210-322 K. The maximum value of the S coefficient (1.65mV/K) was measured in the temperature range 270-290 K. The largest photosensitivity (F) of iron oxides films was about 44 Vc/W for white light at power density (I) of about 6×10-3 W/cm2. As regards chromium oxide films, the S coefficient varied in the range 0.30-4.5 mV/K in the temperature range 210-333 K, with the maximum of 3.5-4.5 mV/K in the temperature range 270-290 K. The largest photosensitivity of chromium oxide films was about 2.5 Vc/W at I≅6×10-3 W/cm2. Our results show that RPLD is a very simple procedure to synthesize of iron and chromium oxide nanometric films with variable stoichiometry and, consequently, with different values of their band gap result in variable the S coefficient and the photosensitivity (F). The deposited films present large thermo e.m.f. coefficient and high photosensitivity that make them up-to-date materials for photo-thermo sensors.

  20. Synthesis of nanometric iron and chromium oxide films by reactive pulsed laser deposition for photo-thermo sensors

    NASA Astrophysics Data System (ADS)

    Mulenko, S. A.

    2010-07-01

    Films based on oxides of transitional metals have semiconducting properties that make them up-to-date materials for functional electronics. The reactive pulsed laser deposition (RPLD) allows the control of thickness and stoichiometry of deposits in order to obtain semiconductor structures with accurately tailored thickness and band gap. It is very important to study electrical, structural and optical properties of these semiconducting nanometric films, as sensing characteristics strongly depend on these properties. We deposited iron oxide (Fe2O3-X; 0 <= x <= 1) and chromium oxide (Cr3-XO3-Y; 0 <= x <= 2; 0 <= y <= 2) films on <100> Si substrate by RPLD using a KrF laser. The deposited nanometric films (thickness 50-200 nm) of iron and chromium oxides have large thermo electromotive force (e.m.f.) coefficient (S). The S coefficient of iron oxide films varied in the range 0.8-1.65 mV/K in the temperature range 210-322 K. The maximum value of the S coefficient (1.65mV/K) was measured in the temperature range 270-290 K. The largest photosensitivity (F) of iron oxides films was about 44 Vc/W for white light at power density (I) of about 6×10-3 W/cm2. As regards chromium oxide films, the S coefficient varied in the range 0.30-4.5 mV/K in the temperature range 210-333 K, with the maximum of 3.5-4.5 mV/K in the temperature range 270-290 K. The largest photosensitivity of chromium oxide films was about 2.5 Vc/W at I≅6×10-3 W/cm2. Our results show that RPLD is a very simple procedure to synthesize of iron and chromium oxide nanometric films with variable stoichiometry and, consequently, with different values of their band gap result in variable the S coefficient and the photosensitivity (F). The deposited films present large thermo e.m.f. coefficient and high photosensitivity that make them up-to-date materials for photo-thermo sensors.

  1. Site-specific covalent modifications of human insulin by catechol estrogens: Reactivity and induced structural and functional changes

    NASA Astrophysics Data System (ADS)

    Ku, Ming-Chun; Fang, Chieh-Ming; Cheng, Juei-Tang; Liang, Huei-Chen; Wang, Tzu-Fan; Wu, Chih-Hsing; Chen, Chiao-Chen; Tai, Jung-Hsiang; Chen, Shu-Hui

    2016-06-01

    Proteins, covalently modified by catechol estrogens (CEs), were identified recently from the blood serum of diabetic patients and referred to as estrogenized proteins. Estrogenization of circulating insulin may occur and affect its molecular functioning. Here, the chemical reactivity of CEs towards specific amino acid residues of proteins and the structural and functional changes induced by the estrogenization of insulin were studied using cyclic voltammetry, liquid chromatography-mass spectrometry, circular dichroism spectroscopy, molecular modeling, and bioassays. Our results indicate that CEs, namely, 2- and 4-hydroxyl estrogens, were thermodynamically and kinetically more reactive than the catechol moiety. Upon co-incubation, intact insulin formed a substantial number of adducts with one or multiple CEs via covalent conjugation at its Cys 7 in the A or B chain, as well as at His10 or Lys29 in the B chain. Such conjugation was coupled with the cleavage of inter-chain disulfide linkages. Estrogenization on these sites may block the receptor-binding pockets of insulin. Insulin signaling and glucose uptake levels were lower in MCF-7 cells treated with modified insulin than in cells treated with native insulin. Taken together, our findings demonstrate that insulin molecules are susceptible to active estrogenization, and that such modification may alter the action of insulin.

  2. Site-specific covalent modifications of human insulin by catechol estrogens: Reactivity and induced structural and functional changes

    PubMed Central

    Ku, Ming-Chun; Fang, Chieh-Ming; Cheng, Juei-Tang; Liang, Huei-Chen; Wang, Tzu-Fan; Wu, Chih-Hsing; Chen, Chiao-Chen; Tai, Jung-Hsiang; Chen, Shu-Hui

    2016-01-01

    Proteins, covalently modified by catechol estrogens (CEs), were identified recently from the blood serum of diabetic patients and referred to as estrogenized proteins. Estrogenization of circulating insulin may occur and affect its molecular functioning. Here, the chemical reactivity of CEs towards specific amino acid residues of proteins and the structural and functional changes induced by the estrogenization of insulin were studied using cyclic voltammetry, liquid chromatography-mass spectrometry, circular dichroism spectroscopy, molecular modeling, and bioassays. Our results indicate that CEs, namely, 2- and 4-hydroxyl estrogens, were thermodynamically and kinetically more reactive than the catechol moiety. Upon co-incubation, intact insulin formed a substantial number of adducts with one or multiple CEs via covalent conjugation at its Cys 7 in the A or B chain, as well as at His10 or Lys29 in the B chain. Such conjugation was coupled with the cleavage of inter-chain disulfide linkages. Estrogenization on these sites may block the receptor-binding pockets of insulin. Insulin signaling and glucose uptake levels were lower in MCF-7 cells treated with modified insulin than in cells treated with native insulin. Taken together, our findings demonstrate that insulin molecules are susceptible to active estrogenization, and that such modification may alter the action of insulin. PMID:27353345

  3. Site-specific covalent modifications of human insulin by catechol estrogens: Reactivity and induced structural and functional changes.

    PubMed

    Ku, Ming-Chun; Fang, Chieh-Ming; Cheng, Juei-Tang; Liang, Huei-Chen; Wang, Tzu-Fan; Wu, Chih-Hsing; Chen, Chiao-Chen; Tai, Jung-Hsiang; Chen, Shu-Hui

    2016-01-01

    Proteins, covalently modified by catechol estrogens (CEs), were identified recently from the blood serum of diabetic patients and referred to as estrogenized proteins. Estrogenization of circulating insulin may occur and affect its molecular functioning. Here, the chemical reactivity of CEs towards specific amino acid residues of proteins and the structural and functional changes induced by the estrogenization of insulin were studied using cyclic voltammetry, liquid chromatography-mass spectrometry, circular dichroism spectroscopy, molecular modeling, and bioassays. Our results indicate that CEs, namely, 2- and 4-hydroxyl estrogens, were thermodynamically and kinetically more reactive than the catechol moiety. Upon co-incubation, intact insulin formed a substantial number of adducts with one or multiple CEs via covalent conjugation at its Cys 7 in the A or B chain, as well as at His10 or Lys29 in the B chain. Such conjugation was coupled with the cleavage of inter-chain disulfide linkages. Estrogenization on these sites may block the receptor-binding pockets of insulin. Insulin signaling and glucose uptake levels were lower in MCF-7 cells treated with modified insulin than in cells treated with native insulin. Taken together, our findings demonstrate that insulin molecules are susceptible to active estrogenization, and that such modification may alter the action of insulin. PMID:27353345

  4. Sexual Satisfaction and Sexual Reactivity in Infertile Women: The Contribution of The Dyadic Functioning and Clinical Variables

    PubMed Central

    Czyżkowska, Anna; Awruk, Katarzyna; Janowski, Konrad

    2016-01-01

    Background Infertility is a factor which has been linked to higher prevalence of sexual dysfunctions in women; however, ambiguous results have been reported about the impact of infertility on women’s sexual satisfaction. The purpose of this study was to compare sexual and dyadic functioning in infertile and fertile women. Furthermore, the associations between sexual variables and clinical variables (depressive symptoms, period trying to conceive, and treatment period) were assessed in infertile women sample. Materials and Methods The cross-sectional study involved 50 women with the history of infertility and 50 fertile women recruited from the general population. The Sexual Satisfaction Scale (SSS), Mell-Krat Scale (women’s version), Family Assessment Measure (FAM-III), and Beck Depression Inventory (BDI) were administered to all participants. Results Infertile women reported lower sexual satisfaction and more maladaptive patterns of dyadic functioning in comparison to the control group. As many as 45 (90%) of infertile women, compared to 13 (26%) of the control group, reported the scores on the Mell-Krat Scale indicative of the presence of dysfunctions in sexual reactivity (P≤0.001). Infertile women reported significantly higher levels of depressive symptoms than the women from the control group (P≤0.001). Negative correlations were observed between sexual satisfaction and dyadic functioning in both groups (P≤0.05); however, the patterns of these associations were different in infertile and fertile women. For example, negative correlations were found between satisfaction with control and task accomplishment, role performance, affective involvement, and values and norms in infertile women. However, these relationships were not observed in the control group. No correlations were revealed between sexual reactivity and dyadic functioning in infertile women and the control group. Negative correlations were observed between satisfaction with control and

  5. Alkoxy-Terminated Si Surfaces: A New Reactive Platform for the Functionalization and Derivatization of Silicon Quantum Dots.

    PubMed

    Purkait, Tapas K; Iqbal, Muhammad; Islam, Muhammad Amirul; Mobarok, Md Hosnay; Gonzalez, Christina M; Hadidi, Lida; Veinot, Jonathan G C

    2016-06-01

    Alkoxy-terminated silicon quantum dots (SiQDs) were synthesized via hydrosilylation of aliphatic ketones on hydride-terminated SiQD (H-SiQD) surfaces under microwave-irradiation. Aromatic ketones undergo hydrosilylation on H-SiQD surfaces at room temperature without requiring any catalyst. The alkoxy-terminated SiQDs are soluble in organic solvents, colloidally stable, and show bright and size dependent photoluminescence (PL). The alkoxy-functionalized silicon surfaces were used as reactive platform for further functionalization via unprecedented ligand exchange of the alkoxy-surface groups with alkyl or alkenyl-surface groups in the presence of BH3·THF. Proton nuclear magnetic resonance ((1)H NMR), Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS) spectroscopy confirmed alkoxy-terminated surfaces and their ligand exchange reactions in the presence of various alkenes and alkynes. PMID:27195971

  6. Synthesis and solvent dependent reactivity of chelating bis-N-heterocyclic carbene complexes of Fe(II) hydrides.

    PubMed

    Zlatogorsky, Sergey; Ingleson, Michael J

    2012-03-01

    The synthesis and isolation of low coordinate methylenebis-(N-DIPP-imidazole-2-ylidene)iron((II))hydrides, (((DIPP)C)(2)CH(2))FeH(2-y)I(y) ((DIPP = 2,6-di-isopropylphenyl, y = 1 or 0), was complicated by competitive reactions with solvent, rapid reductive elimination of H(2) and/or dissociation of the bis-N-heterocyclic carbene ligand. Addition of KH to (((DIPP)C)(2)CH(2))FeI(2) in THF/haloalkane mixtures enabled a short lived mono-hydride to be trapped by reaction with CH(2)Cl(2) or cyclo-heptylbromide to form (((DIPP)C)(2)CH(2))FeI(X) (X = Cl or Br, respectively). Toluene coordination stabilises iron-mono hydride complexes as (((DIPP)C)(2)CH(2))Fe(II)H{η(6)-(toluene)} species, which can be isolated in low yield from combination of borohydride salts and (((DIPP)C)(2)CH(2))FeI(2) in toluene, including an imidazole C4 deprotonated carbene-borane, methylene(N-DIPP-imidazole-2-ylidene)(N-DIPP-4-triethyl-borane-imidazole-2-ylidene)](hydrido)(η(6)-toluene)iron. In the absence of toluene, or at short reaction times compounds with empirical formula (((DIPP)C)(2)CH(2))Fe(H)(HB(R)(3))·LiI (R = Et or sec-Bu) that function as a masked Fe((II))-dihydride are isolated. Whilst (((DIPP)C)(2)CH(2))Fe(H)(HB(R)(3))·LiI was stable for days in Et(2)O, more polar solvents (MeCN, THF) led to formation of the carbene borane adducts (((DIPP)C)(2)CH(2))(BR(3))(2). The addition of CO or cyclo-heptylbromide to (((DIPP)C)(2)CH(2))Fe(H)(HB(R)(3))·LiI formed (((DIPP)C)(2)CH(2))Fe(CO)(3) and (((DIPP)C)(2)CH(2))FeBr(2), respectively with BR(3) evolved from both reactions as a by-product. PMID:22234675

  7. Selective Synthesis of Isoquinolines by Rhodium(III)-Catalyzed C-H/N-H Functionalization with α-Substituted Ketones.

    PubMed

    Li, Jie; Zhang, Zhao; Tang, Mengyao; Zhang, Xiaolei; Jin, Jian

    2016-08-01

    A rhodium(III)-catalyzed C-H/N-H bond functionalization for the synthesis of 1-aminoisoquinolines from aryl amidines and α-MsO/TsO/Cl ketones was achieved under mild reaction conditions. Thus, this approach provides a practical method for the site-selective synthesis of various synthetically valuable isoquinolines with wide functional group tolerance. PMID:27441726

  8. C–H-Functionalization logic guides the synthesis of a carbacyclopamine analog

    PubMed Central

    Rabe, Sebastian; Moschner, Johann; Bantzi, Marina

    2014-01-01

    Summary The chemical synthesis of carbacyclopamine analog 2, a cyclopamine analog with an all-carbon E-ring, is reported. The use of C–H-functionalization logic and further metal-catalyzed transformations allows for a concise entry to this new class of acid-stable cyclopamine analogs. PMID:25161712

  9. A Synthesis of the Peer-Reviewed Differential Bundle Functioning Research

    ERIC Educational Resources Information Center

    Banks, Kathleen

    2013-01-01

    The purpose of this article was to present a synthesis of the peer-reviewed differential bundle functioning (DBF) research that has been conducted to date. A total of 16 studies were synthesized according to the following characteristics: tests used and learner groups, organizing principles used for developing bundles, DBF detection methods used,…

  10. Halomethyl-cobalt(bis-acetylacetonate) for the controlled synthesis of functional polymers.

    PubMed

    Demarteau, Jérémy; Kermagoret, Anthony; German, Ian; Cordella, Daniela; Robeyns, Koen; De Winter, Julien; Gerbaux, Pascal; Jérôme, Christine; Debuigne, Antoine; Detrembleur, Christophe

    2015-10-01

    Novel organocobalt complexes featuring weak C-CoL2 bonds (L = acetylacetonate) are prepared and used as sources of halomethyl radicals. They permit the precision synthesis of α-halide functionalized and telechelic polymers in organic media or in water. Substitution of halide by azide allows derivatization of polymers using the CuAAC click reaction. PMID:26273709

  11. Synthesis of Specifically Modified Oligonucleotides for Application in Structural and Functional Analysis of RNA

    PubMed Central

    Rublack, Nico; Nguyen, Hien; Appel, Bettina; Springstubbe, Danilo; Strohbach, Denise; Müller, Sabine

    2011-01-01

    Nowadays, RNA synthesis has become an essential tool not only in the field of molecular biology and medicine, but also in areas like molecular diagnostics and material sciences. Beyond synthetic RNAs for antisense, aptamer, ribozyme, and siRNA technologies, oligoribonucleotides carrying site-specific modifications for structure and function studies are needed. This often requires labeling of the RNA with a suitable spectroscopic reporter group. Herein, we describe the synthesis of functionalized monomer building blocks that upon incorporation in RNA allow for selective reaction with a specific reporter or functional entity. In particular, we report on the synthesis of 5′-O-dimethoxytrityl-2′-O-tert-butyldimethylsilyl protected 3′-O-phosphoramidites of nucleosides that carry amino linkers of different lengths and flexibility at the heterocyclic base, their incorporation in a variety of RNAs, and postsynthetic conjugation with fluorescent dyes and nitroxide spin labels. Further, we show the synthesis of a flavine mononucleotide-N-hydroxy-succinimidyl ester and its conjugation to amino functionalized RNA. PMID:22013508

  12. Full control of the regiospecific N-functionalization of C-functionalized cyclam bisaminal derivatives and application to the synthesis of their TETA, TE2A, and CB-TE2A analogues.

    PubMed

    Camus, Nathalie; Halime, Zakaria; Le Bris, Nathalie; Bernard, Hélène; Platas-Iglesias, Carlos; Tripier, Raphaël

    2014-03-01

    We describe an easy synthesis of original C-functionalized cyclam derivatives based on the efficient bisaminal template method. In the perspective of developing bifunctional chelating agents (BCAs), this new synthetic strategy offers the possibility of introducing various coupling functions on one carbon atom in the β-N position of the macrocycle, leaving the four nitrogen atoms available for the introduction of pendant coordinating arms. The methodology is based on a keystone C-functionalized oxo-cyclam bisaminal intermediate that is obtained by cyclization of a preorganized tetraamine using various methyl acrylate analogues. These compounds constitute valuable precursors for selective preparation of mono- and di-N-protected C-functionalized cyclams and C-functionalized cyclams, cross-bridged cyclams, and oxo-cyclam derivatives. This approach was successfully adapted to the synthesis of three BCAs with great interest especially for biomedical applications: TETA, TE2A, and CB-TE2A. The structures of different intermediates and Cu(II) complexes of C-functionalized cyclam derivatives were confirmed using single-crystal X-ray diffraction, while reactivity of the key intermediates was rationalized by the analysis of the electrostatic potentials calculated at the TPSSh/6-311G(d,p) level. PMID:24552189

  13. Functional Information: Towards Synthesis of Biosemiotics and Cybernetics

    PubMed Central

    Sharov, Alexei A.

    2012-01-01

    Biosemiotics and cybernetics are closely related, yet they are separated by the boundary between life and non-life: biosemiotics is focused on living organisms, whereas cybernetics is applied mostly to non-living artificial devices. However, both classes of systems are agents that perform functions necessary for reaching their goals. I propose to shift the focus of biosemiotics from living organisms to agents in general, which all belong to a pragmasphere or functional universe. Agents should be considered in the context of their hierarchy and origin because their semiosis can be inherited or induced by higher-level agents. To preserve and disseminate their functions, agents use functional information - a set of signs that encode and control their functions. It includes stable memory signs, transient messengers, and natural signs. The origin and evolution of functional information is discussed in terms of transitions between vegetative, animal, and social levels of semiosis, defined by Kull. Vegetative semiosis differs substantially from higher levels of semiosis, because signs are recognized and interpreted via direct code-based matching and are not associated with ideal representations of objects. Thus, I consider a separate classification of signs at the vegetative level that includes proto-icons, proto-indexes, and proto-symbols. Animal and social semiosis are based on classification, and modeling of objects, which represent the knowledge of agents about their body (Innenwelt) and environment (Umwelt). PMID:22368439

  14. Endothelial Microparticle-Derived Reactive Oxygen Species: Role in Endothelial Signaling and Vascular Function.

    PubMed

    Burger, Dylan; Turner, Maddison; Munkonda, Mercedes N; Touyz, Rhian M

    2016-01-01

    Endothelial microparticles are effectors of endothelial damage; however mechanisms involved are unclear. We examined the effects of eMPs on cultured endothelial cells (ECs) and isolated vessels and investigated the role of eMP-derived reactive oxygen species (ROS) and redox signaling in these processes. eMPs were isolated from EC media and their ability to directly produce ROS was assessed by lucigenin and liquid chromatography. Nicotinamide adenine dinucleotide phosphate oxidase (Nox) subunits were probed by Western blot. ECs were treated with eMPs and effects on kinase signaling, superoxide anion (O2 (∙-)) generation, and nitric oxide (NO) production were examined. Acetylcholine-mediated vasorelaxation was assessed by myography in eMP-treated mesenteric arteries. eMPs contained Nox1, Nox2, Nox4, p47(phox), p67(phox), and p22(phox) and they produced ROS which was inhibited by the Nox inhibitor, apocynin. eMPs increased phosphorylation of ERK1/2 and Src, increased O2 (∙-) production, and decreased A23187-induced NO production in ECs. Pretreatment of eMPs with apocynin diminished eMP-mediated effects on ROS and NO production but had no effect on eMP-mediated kinase activation or impairment in vasorelaxation. Our findings identify a novel mechanism whereby eMP-derived ROS contributes to MP bioactivity. These interactions may be important in conditions associated with vascular injury and increased eMP formation. PMID:27313830

  15. Parasympathetic Reactivity in Fibromyalgia and Temporomandibular Disorder: Associations with Sleep Problems, Symptom Severity, and Functional Impairment

    PubMed Central

    Eisenlohr-Moul, Tory A.; Crofford, Leslie J.; Howard, Thomas; Yepes, Juan F.; Carlson, Charles R.; de Leeuw, Reny

    2015-01-01

    Despite evidence of autonomic disturbances in chronic multi-symptom illnesses such as temporomandibular joint disorder (TMD) and fibromyalgia (FM), additional work is needed to characterize the role of parasympathetic reactivity in these disorders. Given the high levels of comorbidity with psychiatric disorders characterized by stronger parasympathetic reductions than controls in safe contexts (leading to higher arousal), it was hypothesized that individuals with TMD and FM would respond similarly. In this preliminary investigation, 43 women with TMD (n = 17), TMD + FM (n = 11), or neither (controls; n = 15) completed a baseline assessment of respiratory sinus arrhythmia (RSA; a measure of parasympathetic activity) followed by ongoing parasympathetic assessment during a questionnaire period. As predicted, patients showed greater parasympathetic decline in response to the questionnaire period, suggesting an autonomic stance that supports defensive rather than engagement behaviors. Individual differences in parasympathetic reduction during the questionnaire period were related to a variety of physical and psychosocial variables. Although this study has a number of key limitations, including a convenience sampling approach and the small group sizes, if replicated in larger samples, the findings would have important implications for the treatment of patients with these disorders. Perspective Compared to controls, individuals with temporomandibular disorders or temporomandibular disorder and fibromyalgia demonstrated greater parasympathetic reduction during psychosocial assessment, and individual differences in parasympathetic reduction predicted negative patient outcomes. Such parasympathetic reductions may betray a tendency to readily perceive danger in safe environments. PMID:25542636

  16. Endothelial Microparticle-Derived Reactive Oxygen Species: Role in Endothelial Signaling and Vascular Function

    PubMed Central

    Burger, Dylan; Turner, Maddison; Munkonda, Mercedes N.; Touyz, Rhian M.

    2016-01-01

    Endothelial microparticles are effectors of endothelial damage; however mechanisms involved are unclear. We examined the effects of eMPs on cultured endothelial cells (ECs) and isolated vessels and investigated the role of eMP-derived reactive oxygen species (ROS) and redox signaling in these processes. eMPs were isolated from EC media and their ability to directly produce ROS was assessed by lucigenin and liquid chromatography. Nicotinamide adenine dinucleotide phosphate oxidase (Nox) subunits were probed by Western blot. ECs were treated with eMPs and effects on kinase signaling, superoxide anion (O2∙−) generation, and nitric oxide (NO) production were examined. Acetylcholine-mediated vasorelaxation was assessed by myography in eMP-treated mesenteric arteries. eMPs contained Nox1, Nox2, Nox4, p47phox, p67phox, and p22phox and they produced ROS which was inhibited by the Nox inhibitor, apocynin. eMPs increased phosphorylation of ERK1/2 and Src, increased O2∙− production, and decreased A23187-induced NO production in ECs. Pretreatment of eMPs with apocynin diminished eMP-mediated effects on ROS and NO production but had no effect on eMP-mediated kinase activation or impairment in vasorelaxation. Our findings identify a novel mechanism whereby eMP-derived ROS contributes to MP bioactivity. These interactions may be important in conditions associated with vascular injury and increased eMP formation. PMID:27313830

  17. Reactive-Oxygen-Species-Mediated P. aeruginosa Killing Is Functional in Human Cystic Fibrosis Macrophages

    PubMed Central

    Cifani, Noemi; Pompili, Barbara; Anile, Marco; Patella, Miriam; Diso, Daniele; Venuta, Federico; Cimino, Giuseppe; Quattrucci, Serena; Di Domenico, Enea Gino; Ascenzioni, Fiorentina; Porto, Paola Del

    2013-01-01

    Pseudomonas aeruginosa is the most common pathogen for chronic lung infection in cystic fibrosis (CF) patients. About 80% of adult CF patients have chronic P. aeruginosa infection, which accounts for much of the morbidity and most of the mortality. Both bacterial genetic adaptations and defective innate immune responses contribute to the bacteria persistence. It is well accepted that CF transmembrane conductance regulator (CFTR) dysfunction impairs the airways-epithelium-mediated lung defence; however, other innate immune cells also appear to be affected, such as neutrophils and macrophages, which thus contribute to this infectious pathology in the CF lung. In macrophages, the absence of CFTR has been linked to defective P. aeruginosa killing, increased pro-inflammatory cytokine secretion, and reduced reactive oxygen species (ROS) production. To learn more about macrophage dysfunction in CF patients, we investigated the generation of the oxidative burst and its impact on bacterial killing in CF macrophages isolated from peripheral blood or lung parenchyma of CF patients, after P. aeruginosa infection. Our data demonstrate that CF macrophages show an oxidative response of similar intensity to that of non-CF macrophages. Intracellular ROS are recognized as one of the earliest microbicidal mechanisms against engulfed pathogens that are activated by macrophages. Accordingly, NADPH inhibition resulted in a significant increase in the intracellular bacteria survival in CF and non-CF macrophages, both as monocyte-derived macrophages and as lung macrophages. These data strongly suggest that the contribution of ROS to P. aeruginosa killing is not affected by CFTR mutations. PMID:23977124

  18. C-Reactive Protein: An In-Depth Look into Structure, Function, and Regulation

    PubMed Central

    Salazar, Juan; Martínez, María Sofía; Chávez-Castillo, Mervin; Núñez, Victoria; Añez, Roberto; Torres, Yaquelin; Toledo, Alexandra; Chacín, Maricarmen; Silva, Carlos; Pacheco, Enrique; Rojas, Joselyn; Bermúdez, Valmore

    2014-01-01

    Cardiovascular disease is the leading cause of morbidity and mortality in the adult population worldwide, with atherosclerosis being its key pathophysiologic component. Atherosclerosis possesses a fundamental chronic inflammatory aspect, and the involvement of numerous inflammatory molecules has been studied in this scenario, particularly C-reactive protein (CRP). CRP is a plasma protein with strong phylogenetic conservation and high resistance to proteolysis, predominantly synthesized in the liver in response to proinflammatory cytokines, especially IL-6, IL-1β, and TNF. CRP may intervene in atherosclerosis by directly activating the complement system and inducing apoptosis, vascular cell activation, monocyte recruitment, lipid accumulation, and thrombosis, among other actions. Moreover, CRP can dissociate in peripheral tissue—including atheromatous plaques—from its native pentameric form into a monomeric form, which may also be synthesized de novo in extrahepatic sites. Each form exhibits distinct affinities for ligands and receptors, and exerts different effects in the progression of atherosclerosis. In view of epidemiologic evidence associating high CRP levels with cardiovascular risk—reflecting the biologic impact it bears on atherosclerosis—measurement of serum levels of high-sensitivity CRP has been proposed as a tool for assessment of cardiovascular risk. PMID:27433484

  19. Rapid Access to Orthogonally Functionalized Naphthalenes: Application to the Total Synthesis of the Anticancer Agent Chartarin.

    PubMed

    Unzner, Teresa A; Grossmann, Adriana S; Magauer, Thomas

    2016-08-01

    We report the synthesis of orthogonally functionalized naphthalenes from simple, commercially available indanones in four steps. The developed method proceeds through a two-step process that features a thermally induced fragmentation of a cyclopropane indanone with simultaneous 1,2-chloride shift. Migration of the chloride substituent occurs in a regioselective manner to preferentially afford the para-chloronaphthol substitution pattern. The obtained naphthols are versatile building blocks that can be selectively modified and used for the efficient construction of biologically active molecules. This has enabled the total synthesis of the potent anticancer natural product chartarin through a highly convergent retrosynthetic bond disconnection. PMID:27355517

  20. Dichlorocarbene-Functionalized Fluorographene: Synthesis and Reaction Mechanism.

    PubMed

    Lazar, Petr; Chua, Chun Kiang; Holá, Kateřina; Zbořil, Radek; Otyepka, Michal; Pumera, Martin

    2015-08-01

    Halogen functionalization of graphene is an important branch of graphene research as it provides opportunities to tailor the band gap and catalytic properties of graphene. Monovalent C-X bond obviates pitfalls of functionalization with atoms of groups 13, 15, and 16, which can introduce various poorly defined groups. Here, the preparation of functionalized graphene containing both fluorine and chlorine atoms is shown. The starting material, fluorographite, undergoes a reaction with dichlorocarbene to provide dichlorocarbene-functionalized fluorographene (DCC-FG). The material is characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, and high-resolution transmission electron microscopy with X-ray dispersive spectroscopy. It is found that the chlorine atoms in DCC-FG are distributed homogeneously over the entire area of the fluorographene sheet. Further density functional theory calculations show that the mechanism of dichlorocarbene attack on fluorographene sheet is a two-step process. Dichlorocarbene detaches fluorine atoms from fluorographene sheet and subsequently adds to the newly formed sp(2) carbons. Halogenated graphene consisting of two (or eventually three) types of halogen atoms is envisioned to find its way as new graphene materials with tailored properties. PMID:25939616

  1. Low frequency sonochemical synthesis of nanoporous amorphous manganese dioxide (MnO2) and adsorption of remazol reactive dye

    NASA Astrophysics Data System (ADS)

    Hasan, Siti Zubaidah; Yusop, Muhammad Rahimi; Othman, Mohamed Rozali

    2015-09-01

    Nanoporous amorphous-MnO2 was synthesized by sonochemical process (sonication) on the solid manganese (II) acetate tetrahydrate (Mn(CH3COO)2.4H2O) in 0.1 M KMnO4. The product was characterized by X-ray diffraction (XRD), morphology of the material was scanned by Field Emission Scanning Electron Microscopy (FE-SEM) and absorptions of MnO2 bonding was characterized by Fourier Transform Infra-Red Spectrometer (FT-IR). Remazol reactive dye or Red 3BS, was used in the adsorption study using nanoporous amorphous-MnO2. In batch experiment, 10 ppm of Remazol reactive dye was used and experiment was carried out at room temperature. Adsorption of Remazol dye on 0.2g synthesized nanoporous amorphous-MnO2 showed 99 - 100% decolorization.

  2. Low frequency sonochemical synthesis of nanoporous amorphous manganese dioxide (MnO{sub 2}) and adsorption of remazol reactive dye

    SciTech Connect

    Hasan, Siti Zubaidah; Yusop, Muhammad Rahimi; Othman, Mohamed Rozali

    2015-09-25

    Nanoporous amorphous-MnO{sub 2} was synthesized by sonochemical process (sonication) on the solid manganese (II) acetate tetrahydrate (Mn(CH{sub 3}COO){sub 2}.4H{sub 2}O) in 0.1 M KMnO{sub 4}. The product was characterized by X-ray diffraction (XRD), morphology of the material was scanned by Field Emission Scanning Electron Microscopy (FE-SEM) and absorptions of MnO{sub 2} bonding was characterized by Fourier Transform Infra-Red Spectrometer (FT-IR). Remazol reactive dye or Red 3BS, was used in the adsorption study using nanoporous amorphous-MnO{sub 2}. In batch experiment, 10 ppm of Remazol reactive dye was used and experiment was carried out at room temperature. Adsorption of Remazol dye on 0.2g synthesized nanoporous amorphous-MnO{sub 2} showed 99 – 100% decolorization.

  3. Enhanced Neuropeptide Y Synthesis During Intermittent Hypoxia in the Rat Adrenal Medulla: Role of Reactive Oxygen Species–Dependent Alterations in Precursor Peptide Processing

    PubMed Central

    Raghuraman, Gayatri; Kalari, Apeksha; Dhingra, Rishi; Prabhakar, Nanduri R.

    2011-01-01

    Abstract Intermittent hypoxia (IH) associated with recurrent apneas often leads to cardiovascular abnormalities. Previously, we showed that IH treatment elevates blood pressure and increases plasma catecholamines (CAs) in rats via reactive oxygen species (ROS)-dependent enhanced synthesis and secretion from the adrenal medulla (AM). Neuropeptide Y (NPY), a sympathetic neurotransmitter that colocalizes with CA in the AM, has been implicated in blood pressure regulation during persistent stress. Here, we investigated whether IH facilitates NPY synthesis in the rat AM and assessed the role of ROS signaling. IH increased NPY-like immunoreactivity in many dopamine-β-hydroxylase–expressing chromaffin cells with a parallel increase in preproNPY mRNA and protein. IH increased the activities of proNPY-processing enzymes, which were due, in part, to elevated protein expression and increased proteolytic processing. IH increased ROS generation, and antioxidants reversed IH-induced increases in ROS, preproNPY, and its processing to bioactive NPY in the AM. IH treatment increased blood pressure and antioxidants and inhibition of NPY amidation prevented this response. These findings suggest that IH-induced elevation in NPY expression in the rat AM is mediated by ROS-dependent augmentation of preproNPY mRNA expression and proNPY-processing enzyme activities and contributes to IH-induced elevation of blood pressure. Antioxid. Redox Signal. 14, 1179–1190. PMID:20836657

  4. Boryl (Hetero)aryne Precursors as Versatile Arylation Reagents: Synthesis through C–H Activation and Orthogonal Reactivity

    PubMed Central

    Demory, Emilien; Devaraj, Karthik; Orthaber, Andreas; Gates, Paul J; Pilarski, Lukasz T

    2015-01-01

    (Pinacolato)boryl ortho-silyl(hetero)aryl triflates are presented as a new class of building blocks for arylation. They demonstrate unique versatility by delivering boronate or (hetero)aryne reactivity chemoselectively in a broad range of transformations. This approach enables the unprecedented postfunctionalization of fluoride-activated (hetero)aryne precursors, for example, as substrates in transition-metal catalysis, and offers valuable new possibilities for aryl boronate postfunctionalization without the use of specialized protecting groups. PMID:26270451

  5. Effect of Obesity on Acute Ozone-Induced Changes in Airway Function, Reactivity, and Inflammation in Adult Females

    PubMed Central

    Bennett, William D.; Ivins, Sally; Alexis, Neil E.; Wu, Jihong; Bromberg, Philip A.; Brar, Sukhdev S.; Travlos, Gregory; London, Stephanie J.

    2016-01-01

    We previously observed greater ozone-induced lung function decrements in obese than non-obese women. Animal models suggest that obesity enhances ozone-induced airway reactivity and inflammation. In a controlled exposure study, we compared the acute effect of randomized 0.4ppm ozone and air exposures (2 h with intermittent light exercise) in obese (N = 20) (30reactivity to inhaled methacholine (3h post-exposure). Inflammation and obesity markers were assessed in the blood (pre, 4h post, and 20h post exposures) and induced-sputum (4h post-exposures and on 24h pre-exposure training day, no exercise): measures of C reactive protein (CRP) (blood only), leptin (blood only), adiponectin, interleukins IL-6, IL-1b, and IL-8, and tumor necrosis factor alpha, and sputum cell differential cell counts. The pre- to post-exposure decrease in forced vital capacity after ozone (adjusted for the change after air exposure) was significantly greater in the obese group (12.5+/-7.5 vs. 8.0+/-5.8%, p<0.05). Post ozone exposure, 6 obese and 6 non-obese subjects responded to methacholine at ≤ 10mg/ml (the maximum dose); the degree of hyperresponsiveness was similar for the two groups. Both BMI groups showed similar and significant ozone-induced increases in sputum neutrophils. Plasma IL-6 was increased by exercise (4 hr post air exposure vs. pre) only in the obese but returned to pre-air exposure levels at 20hr post-exposure. Plasma IL-6 was significantly increased at 4hr post ozone exposure in both groups and returned to pre-exposure levels by 20h post-exposure. These results confirm our previous findings of greater post-ozone spirometric decrements in obese young women. However, acute ozone-induced airway reactivity to methacholine and airway inflammation did not differ by obesity at the exposure and exercise levels used. PMID:27513854

  6. Effect of Obesity on Acute Ozone-Induced Changes in Airway Function, Reactivity, and Inflammation in Adult Females.

    PubMed

    Bennett, William D; Ivins, Sally; Alexis, Neil E; Wu, Jihong; Bromberg, Philip A; Brar, Sukhdev S; Travlos, Gregory; London, Stephanie J

    2016-01-01

    We previously observed greater ozone-induced lung function decrements in obese than non-obese women. Animal models suggest that obesity enhances ozone-induced airway reactivity and inflammation. In a controlled exposure study, we compared the acute effect of randomized 0.4ppm ozone and air exposures (2 h with intermittent light exercise) in obese (N = 20) (30reactivity to inhaled methacholine (3h post-exposure). Inflammation and obesity markers were assessed in the blood (pre, 4h post, and 20h post exposures) and induced-sputum (4h post-exposures and on 24h pre-exposure training day, no exercise): measures of C reactive protein (CRP) (blood only), leptin (blood only), adiponectin, interleukins IL-6, IL-1b, and IL-8, and tumor necrosis factor alpha, and sputum cell differential cell counts. The pre- to post-exposure decrease in forced vital capacity after ozone (adjusted for the change after air exposure) was significantly greater in the obese group (12.5+/-7.5 vs. 8.0+/-5.8%, p<0.05). Post ozone exposure, 6 obese and 6 non-obese subjects responded to methacholine at ≤ 10mg/ml (the maximum dose); the degree of hyperresponsiveness was similar for the two groups. Both BMI groups showed similar and significant ozone-induced increases in sputum neutrophils. Plasma IL-6 was increased by exercise (4 hr post air exposure vs. pre) only in the obese but returned to pre-air exposure levels at 20hr post-exposure. Plasma IL-6 was significantly increased at 4hr post ozone exposure in both groups and returned to pre-exposure levels by 20h post-exposure. These results confirm our previous findings of greater post-ozone spirometric decrements in obese young women. However, acute ozone-induced airway reactivity to methacholine and airway inflammation did not differ by obesity at the exposure and exercise levels used. PMID:27513854

  7. Production and characterization of thermoplastic cassava starch, functionalized poly(lactic acid), and their reactive compatibilized blends

    NASA Astrophysics Data System (ADS)

    Detyothin, Sukeewan

    Cassava starch was blended with glycerol using a co-rotating twin-screw extruder (TSE). Thermoplastic cassava starch (TPCS) at a ratio of 70/30 by weight of cassava/glycerol was selected and further blended with other polymers. TPCS sheets made from compression molding had low tensile strength (0.45 +/- 0.05 MPa) and Young's modulus (1.24 +/- 0.58 MPa), but moderate elongation at break (83.0 +/- 0.18.6%), medium level of oxygen permeability, and high water vapor permeability with a very high rate of water absorption. TPCS was blended with poly(lactic acid) (PLA) at various ratios by using a TSE. The blend resins exhibited good properties such as increased thermal stability (Tmax) and crystallinity of PLA, and improved water sensitivity and processability of TPCS. PLA and TPCS exhibited a high interfacial tension between the two phases of 7.9 mJ·m -2, indicating the formation of an incompatible, immiscible blend. SEM micrographs showed a non-homogeneous distribution of TPCS droplets in the PLA continuous phase. TEM micrographs of the blend films made by cast-film extrusion showed coalescence of the TPCS droplets in the PLA continuous phase of the blend, indicating that the compatibility between the polymer pair needs to be improved. A response surface methodology (RSM) design was used to analyze the effects of maleic anhydride (MA) and 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane (Luperox or L101) contents, and TSE screw speed on the degree of grafted MA and number average molecular weight (Mn) of functionalized PLA (PLA-g-MA), a reactive compatibilizer. PLA-g- MA made by reactive extrusion had an array of colors depending on the content of L101 and MA used. New FTIR peaks suggested that MA was grafted onto the PLA backbone and oligomeric MA may occur. Increasing L101 increased the degree of grafting and decreased Mn, but the Mn of the PLA-g-MA's produced with a high amount of L101 was stable during storage. MA exhibited an optimum concentration for maximizing the

  8. Aqueous synthesis of Cu-doped ZnCdS/ZnS core/shell nanocrystals with a new and highly reactive sulfur source.

    PubMed

    Zeng, Ruosheng; Shen, Rongan; Zhao, Yunqiang; Li, Xingsheng; Sun, Zhiguo; Shen, Yayun

    2014-04-01

    A new sulfur precursor with a highly reactive chemical nature was prepared with S powder and NaBH₄ at the high temperature of 180 °C in a closed autoclave and made it possible to carry out the synthesis of high quality metal sulfide nanocrystals (NCs) with diverse composition and structure. Using this new sulfur source, we demonstrated aqueous synthesis of colloidal Cu-doped ZnCdS NCs (d-dots) with pure, color-tunable photoluminescence (PL) in a wide spectral range (from 517 to 650 nm) based on the 'co-nucleation doping' strategy. The influences of the various experimental variables, including Cd/Zn ratio, Cu-doping concentration, pH value and amount of mercaptopropionic acid (MPA), on the optical properties of Cu-doped ZnCdS NCs were systematically investigated. Furthermore, highly efficient and stable dopant emission from Cu:ZnCdS/ZnS core/shell d-dots with PL quantum yield as high as 40% was achieved by the deposition of a ZnS shell around the bare Cu:ZnCdS cores; this is the highest reported to date for aqueous doped NCs. The optical properties and structure of the d-dots were characterized by UV-vis absorption spectra, PL spectra, x-ray photoelectron spectroscopy, powder x-ray diffraction, and transmission electron microscopy. The experimental results indicated that this facile synthesis route would provide a versatile approach for the preparation of other water-soluble sulfide NCs. PMID:24583650

  9. Aqueous synthesis of Cu-doped ZnCdS/ZnS core/shell nanocrystals with a new and highly reactive sulfur source

    NASA Astrophysics Data System (ADS)

    Zeng, Ruosheng; Shen, Rongan; Zhao, Yunqiang; Li, Xingsheng; Sun, Zhiguo; Shen, Yayun

    2014-04-01

    A new sulfur precursor with a highly reactive chemical nature was prepared with S powder and NaBH4 at the high temperature of 180 °C in a closed autoclave and made it possible to carry out the synthesis of high quality metal sulfide nanocrystals (NCs) with diverse composition and structure. Using this new sulfur source, we demonstrated aqueous synthesis of colloidal Cu-doped ZnCdS NCs (d-dots) with pure, color-tunable photoluminescence (PL) in a wide spectral range (from 517 to 650 nm) based on the ‘co-nucleation doping’ strategy. The influences of the various experimental variables, including Cd/Zn ratio, Cu-doping concentration, pH value and amount of mercaptopropionic acid (MPA), on the optical properties of Cu-doped ZnCdS NCs were systematically investigated. Furthermore, highly efficient and stable dopant emission from Cu:ZnCdS/ZnS core/shell d-dots with PL quantum yield as high as 40% was achieved by the deposition of a ZnS shell around the bare Cu:ZnCdS cores; this is the highest reported to date for aqueous doped NCs. The optical properties and structure of the d-dots were characterized by UV-vis absorption spectra, PL spectra, x-ray photoelectron spectroscopy, powder x-ray diffraction, and transmission electron microscopy. The experimental results indicated that this facile synthesis route would provide a versatile approach for the preparation of other water-soluble sulfide NCs.

  10. Fischer-Tropsch synthesis on functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Pokhrel, Sewa

    The aim of this research was to investigate the role of chemical functionalization on carbon nanotubes surfaces and its effect on FT catalysis. Multi walled carbon nanotubes (MWNT) were first treated with acid (HCl) to remove the residual metal particles and were then functionalized using H2O2 and HNO3 to introduce oxygen-containing groups to the MWNT surface. These treatments also add defects on MWNT surface. Morphological analyses were performed on the MWNT samples with TEM and it was found that the peroxide and acid treated MWNTs showed an increase oxygen functional groups and created additional surface defects on the MWNTs. Results of FT experiments showed enhanced CO conversion, FT activity and product selectivity towards liquid hydrocarbons due to functionalization. The liquid selectivity was found to be significantly high for H2O 2 treated catalyst. HNO3 treated catalyst had highest activity although selectivity to methane and CO2 was found higher than the H2O2 treated catalyst. It was observed that the chemical treatments increase the carbon chain length of the produced hydrocarbons. While comparing hydrocarbon distribution of as-produced and H2O2 treated MWNT, it was found that carbon-chain length increases for peroxide treated catalyst. Along with as-produced and functionalized nanotube, FT experiments were also conducted using B-doped sponge, un-doped sponge and N-doped CNT catalyst. B-doped sponge showed enhanced CO conversion and FT activity as compared to un-doped sponge. Conversion and product selectivity were found to be affected by temperature when test was conducted with N-CNT. Operating conditions like temperature, syngas feed flow rate and syngas ratio were also to impact the FT performance.

  11. Very rapid effect of pitavastatin on microvascular function in comparison to rosuvastatin: reactive hyperemia peripheral arterial tonometric study

    PubMed Central

    Kono, Yasushi; Fukuda, Shota; Shimada, Kenei; Nakanishi, Koki; Otsuka, Kenichiro; Kubo, Tomoichiro; Jissho, Satoshi; Taguchi, Haruyuki; Yoshikawa, Junichi; Yoshiyama, Minoru

    2013-01-01

    Background: It has been reported that pitavastatin improves endothelial function faster than other statins. Recently introduced reactive hyperemia peripheral arterial tonometry (RH-PAT) provides objective and quantitative assessment of peripheral microvascular function. Purpose: This study aimed to investigate whether peripheral microvascular function improved 2 hours after pitavastatin in subjects with coronary artery disease (CAD) using RH-PAT, and the results were compared with those of rosuvastatin. Methods: This study included 94 subjects with CAD, assigned to a group given 2 mg of pitavastatin (n = 36), a group given 2.5 mg of rosuvastatin (n = 38), and a control group (n = 20). RH-PAT examinations were performed before and 2 hours after statin administration. Results: The RH-PAT index increased 2 hours after pitavastatin administration from 1.82 ± 0.45 to 2.16 ± 0.62 (P = 0.02), whereas there were no differences in the RH-PAT index in the rosuvastatin group (1.79 ± 0.71 to 1.91 ± 0.53, P = 0.09) and the control group (1.68 ± 0.36 to 1.84 ± 0.58, P = 0.4). No significant changes were observed at 2 hours in serum cholesterol levels in each group. Conclusion: The present study demonstrated that peripheral microvascular function improved 2 hours after a single clinical dose of pitavastatin, but not after rosuvastatin. PMID:23667308

  12. Synthesis, characterization and application of functional carbon nano materials

    NASA Astrophysics Data System (ADS)

    Chu, Jin

    The synthesis, characterizations and applications of carbon nanomaterials, including carbon nanorods, carbon nanosheets, carbon nanohoneycombs and carbon nanotubes were demonstrated. Different growth techniques such as pulsed laser deposition, DC/RF sputtering, hot filament physical vapour deposition, evaporative casting and vacuum filtration methods were introduced or applied for synthesizing carbon nanomaterials. The morphology, chemical compositions, bond structures, electronic, mechanical and sensing properties of the obtained samples were investigated. Tilted well-aligned carbon micro- and nano- hybrid rods were fabricated on Si at different substrate temperatures and incident angles of carbon source beam using the hot filament physical vapour deposition technique. The morphologic surfaces and bond structures of the oblique carbon rod-like structures were investigated by scanning electron microscopy, field emission scanning electron microscopy, transmission electron diffraction and Raman scattering spectroscopy. The field emission behaviour of the fabricated samples was also tested. Carbon nanosheets and nanohoneycombs were also synthesized on Si substrates using a hot filament physical vapor deposition technique under methane ambient and vacuum, respectively. The four-point Au electrodes are then sputtered on the surface of the nanostructured carbon films to form prototypical humidity sensors. The sensing properties of prototypical sensors at different temperature, humidity, direct current, and alternative current voltage were characterized. Linear sensing response of sensors to relative humidity ranging from 11% to 95% is observed at room temperature. Experimental data indicate that the carbon nanosheets based sensors exhibit an excellent reversible behavior and long-term stability. It also has higher response than that of the humidity sensor with carbon nanohoneycombs materials. Conducting composite films containing carbon nanotubes (CNTs) were prepared in

  13. Rapid Functional Decline of Activated and Memory Graft-versus-Host-Reactive T Cells Encountering Host Antigens in the Absence of Inflammation.

    PubMed

    Li, Hao Wei; Andreola, Giovanna; Carlson, Alicia L; Shao, Steven; Lin, Charles P; Zhao, Guiling; Sykes, Megan

    2015-08-01

    Inflammation in the priming host environment has critical effects on the graft-versus-host (GVH) responses mediated by naive donor T cells. However, it is unclear how a quiescent or inflammatory environment impacts the activity of GVH-reactive primed T and memory cells. We show in this article that GVH-reactive primed donor T cells generated in irradiated recipients had diminished ability compared with naive T cells to increase donor chimerism when transferred to quiescent mixed allogeneic chimeras. GVH-reactive primed T cells showed marked loss of cytotoxic function and activation, and delayed but not decreased proliferation or accumulation in lymphoid tissues when transferred to quiescent mixed chimeras compared with freshly irradiated secondary recipients. Primed CD4 and CD8 T cells provided mutual help to sustain these functions in both subsets. CD8 help for CD4 cells was largely IFN-γ dependent. TLR stimulation after transfer of GVH-reactive primed T cells to mixed chimeras restored their cytotoxic effector function and permitted the generation of more effective T cell memory in association with reduced PD-1 expression on CD4 memory cells. Our data indicate that an inflammatory host environment is required for the maintenance of GVH-reactive primed T cell functions and the generation of memory T cells that can rapidly acquire effector functions. These findings have important implications for graft-versus-host disease and T cell-mediated immunotherapies. PMID:26085679

  14. Instrumental and Reactive Functions and Overt and Relational Forms of Aggression: Developmental Trajectories and Prospective Associations during Middle School

    ERIC Educational Resources Information Center

    Ojanen, Tiina; Kiefer, Sarah

    2013-01-01

    This study examined the development of adolescent self-reported instrumental-overt, instrumental-relational, reactive-overt, and reactive-relational aggression during middle school ("N" = 384; 12-14 years; 53% boys). Growth modeling indicated average increases in instrumental-relational aggression, and decreases in reactive-overt and…

  15. Approach to Rapid Synthesis and Functionalization of Iron Oxide Nanoparticles for High Gene Transfection.

    PubMed

    Stephen, Zachary R; Dayringer, Christopher J; Lim, Josh J; Revia, Richard A; Halbert, Mackenzie V; Jeon, Mike; Bakthavatsalam, Arvind; Ellenbogen, Richard G; Zhang, Miqin

    2016-03-16

    Surface functionalization of theranostic nanoparticles (NPs) typically relies on lengthy, aqueous postsynthesis labeling chemistries that have limited ability to fine-tune surface properties and can lead to NP heterogeneity. The need for a rapid, simple synthesis approach that can provide great control over the display of functional moieties on NP surfaces has led to increased use of highly selective bioorthoganol chemistries including metal-affinity coordination. Here we report a simple approach for rapid production of a superparamagnetic iron oxide NPs (SPIONs) with tunable functionality and high reproducibility under aqueous conditions. We utilize the high affinity complex formed between catechol and Fe((III)) as a means to dock well-defined catechol modified polymer modules on the surface of SPIONs during sonochemical coprecipitation synthesis. Polymer modules consisted of chitosan and poly(ethylene glycol) (PEG) copolymer (CP) modified with catechol (CCP), and CCP functionalized with cationic polyethylenimine (CCP-PEI) to facilitate binding and delivery of DNA for gene therapy. This rapid synthesis/functionalization approach provided excellent control over the extent of PEI labeling, improved SPION magnetic resonance imaging (MRI) contrast enhancement and produced an efficient transfection agent. PMID:26894609

  16. Flavonoids function as antioxidants: By scavenging reactive oxygen species or by chelating iron?

    NASA Astrophysics Data System (ADS)

    Wuguo, Deng; Xingwang, Fang; Jilan, Wu

    1997-09-01

    Flavonoids have been reported to exhibit strong antioxidative activity. In the present work, a systematic mechanistic study has been performed on five flavonoids (baicalin, hesperidin, naringin, quercetin and rutin) selected according to their structural characteristics. The experimental results reveal that flavonoids function as antioxidant mainly by chelating iron ions and by scavenging peroxyl radicals whereas their OH radical scavenging effect is much less important.

  17. Patterns of Sensitivity to Emotion in Children with Williams Syndrome and Autism: Relations between Autonomic Nervous System Reactivity and Social Functioning

    ERIC Educational Resources Information Center

    Järvinen, Anna; Ng, Rowena; Crivelli, Davide; Neumann, Dirk; Grichanik, Mark; Arnold, Andrew J.; Lai, Philip; Trauner, Doris; Bellugi, Ursula

    2015-01-01

    Williams syndrome (WS) and autism spectrum disorder (ASD) are associated with atypical social-emotional functioning. Affective visual stimuli were used to assess autonomic reactivity and emotion identification, and the social responsiveness scale was used to determine the level social functioning in children with WS and ASD contrasted with typical…

  18. A XAFS study of the local environment and reactivity of Pt- sites in functionalized UiO-67 MOFs

    NASA Astrophysics Data System (ADS)

    Borfecchia, E.; Øien, S.; Svelle, S.; Mino, L.; Braglia, L.; Agostini, G.; Gallo, E.; Lomachenko, K. A.; Bordiga, S.; Guda, A. A.; Soldatov, M. A.; Soldatov, A. V.; Olsbye, U.; Lillerud, K. P.; Lamberti, C.

    2016-05-01

    We synthesized UiO-67 Metal Organic Frameworks (MOFs) functionalized with bpydcPt(II)Cl2 and bpydcPt(IV)Cl4 complexes (bpydc = bipyridine-dicarboxylate), as attractive candidates for the heterogenization of homogeneous catalytic reactions. Pt L3-edge XAFS experiments allowed us to thoroughly characterize these materials, in the local environment of the Pt centers. XAFS studies evidenced the rich reactivity of UiO-67-Pt(II) MOFs, including reduction to bpydcPt(0) under H2 flow in the 600-700 K range, room-temperature oxidation to bpydcPt(IV)Br4 through oxidative addition of liquid Br2 and ligand exchange between 2 Cl- and even bulky ligands such as toluene-3,4-dithiol. Preliminary XANES simulations with ADF code provide additional information on the oxidation state of Pt sites.

  19. Direct synthesis and characterization of phenyl-functionalized SBA-15

    NASA Astrophysics Data System (ADS)

    Wang, Xue-mei; Du, Xin-zhen; Li, Chun-lan; Cao, Xu

    2008-04-01

    Phenyl-functionalized SBA-15 materials (Ph-SBA-15) were directly synthesized by using tri-block copolymer Pluronic P123 as templating agent under acidic conditions. The samples were characterized by Fourier transform infrared (FT-IR) spectra, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetry analysis (TGA) and N 2 adsorption-desorption. The results show that the phenyl groups are covalently attached to the pore wall of SBA-15 after modification. The functionalized materials still preserve a desirable two-dimensional P6 mm hexagonal structure and have large specific surface area and pore volume although the molar ratio of phenyltrimethoxysilane in total silica precursors is as high as 23.0%.

  20. Minimalism in radiation synthesis of biomedical functional nanogels.

    PubMed

    Dispenza, Clelia; Sabatino, Maria Antonietta; Grimaldi, Natascia; Bulone, Donatella; Bondì, Maria Luisa; Casaletto, Maria Pia; Rigogliuso, Salvatrice; Adamo, Giorgia; Ghersi, Giulio

    2012-06-11

    A scalable, single-step, synthetic approach for the manufacture of biocompatible, functionalized micro- and nanogels is presented. In particular, poly(N-vinyl pyrrolidone)-grafted-(aminopropyl)methacrylamide microgels and nanogels were generated through e-beam irradiation of PVP aqueous solutions in the presence of a primary amino-group-carrying monomer. Particles with different hydrodynamic diameters and surface charge densities were obtained at the variance of the irradiation conditions. Chemical structure was investigated by different spectroscopic techniques. Fluorescent variants were generated through fluorescein isothiocyanate attachment to the primary amino groups grafted to PVP, to both quantify the available functional groups for bioconjugation and follow nanogels localization in cell cultures. Finally, a model protein, bovine serum albumin, was conjugated to the nanogels to demonstrate the attachment of biologically relevant molecules for targeting purposes in drug delivery. The described approach provides a novel strategy to fabricate biohybrid nanogels with a very promising potential in nanomedicine. PMID:22571354

  1. Selecting for Function: Solution Synthesis of Magnetic Nanopropellers

    PubMed Central

    2013-01-01

    We show that we can select magnetically steerable nanopropellers from a set of carbon coated aggregates of magnetic nanoparticles using weak homogeneous rotating magnetic fields. The carbon coating can be functionalized, enabling a wide range of applications. Despite their arbitrary shape, all nanostructures propel parallel to the vector of rotation of the magnetic field. We use a simple theoretical model to find experimental conditions to select nanopropellers which are predominantly smaller than previously published ones. PMID:24127909

  2. Fluoroalkyl-functionalized silica particles: synthesis, characterization, and wetting characteristics.

    PubMed

    Campos, Raymond; Guenthner, Andrew J; Haddad, Timothy S; Mabry, Joseph M

    2011-08-16

    Fluoroalkyl-functionalized silica particles for use in nonwetting surfaces were prepared by treatment of silica particles with fluoroalkyl-functional chlorosilanes. Both fumed and precipitated silica were studied, as well as the efficiency of surface coverage using mono-, di-, and trifunctional chlorosilanes. The most effective surface treatment was accomplished via the surface grafting of monofunctional chlorosilanes in the presence of preadsorbed dimethylamine under anhydrous conditions at room temperature. Confirmation of covalent attachment was accomplished via Fourier transform infrared (FT-IR) spectroscopy, while elemental analysis, thermogravimetric analysis, and nitrogen adsorption isotherms were used to determine grafting densities and additional key geometric characteristics of the grafted layer. The effect of residual silanol content on the moisture uptake properties of the modified silica particles was determined by measuring the water uptake of unbound particles, while liquid wetting properties were determined by dynamic contact angle analysis of elastomeric composites. Although residual silanol content was shown to effect wetting properties, results suggest that surface geometry dominates the performance of liquid-repellent surfaces. The potential use of fluoroalkyl-functionalized silica particles for hydrophobic and oleophobic applications is discussed. PMID:21728328

  3. Iron-Functionalized Membranes for Nanoparticle Synthesis and Reactions

    PubMed Central

    Lewis, Scott; Smuleac, Vasile; Montague, Alex; Bachas, Leonidas; Bhattacharyya, Dibakar

    2010-01-01

    Membrane-based separation processes have been used extensively for drinking water purification, wastewater treatment, and numerous other applications. More recent developments in membrane functionalization have made the use of membrane science important in diverse fields, from tunable separations to catalysis. The focus of this work is to create a common membrane platform for the incorporation of technologies capable of degrading target pollutants. Functionalized membranes capable of metal capture were created using water-based and solvent-based acrylic acid polymerization to synthesize poly (acrylic acid) (PAA) within poly(vinylidene fluoride) (PVDF) membrane pores. The COO− groups of PAA were used to capture Fe(II), which was then either reduced and doped with Pd to form Fe/Pd nanoparticles or used as-is for free radical generation with hydrogen peroxide. Fe/Pd nanoparticles were synthesized within the pores of a PAA/PVDF membrane functionalized via aqueous (green) chemistry and used to dechlorinate trichloroethylene (TCE) and 2,2′-dichlorobiphenyl (DiCB). A PAA/PVDF membrane containing immobilized Fe(III) was used to obtain controlled free radical generation and target organic (pentachlorophenol) degradation within the membrane pore under convective flow conditions. PMID:20556223

  4. One pot synthesis of Curcumin-NSAIDs prodrug, spectroscopic characterization, conformational analysis, chemical reactivity, intramolecular interactions and first order hyperpolarizability by DFT method

    NASA Astrophysics Data System (ADS)

    Srivastava, Sangeeta; Gupta, Preeti; Sethi, Arun; Singh, Ranvijay Pratap

    2016-08-01

    A novel Curcumin-NSAIDs prodrug 4-((1E, 3Z, 6E)-3-hydroxy-(4-hydroxy-3-methoxyphenyl)-5-oxohepta-1,3,3-trienyl)-2-methoxyphenyl-2-(4-isobutylphenyl) propanoate (2) derivative was synthesized by Steglich esterification in high yield and characterized with the help of 1H, 13C NMR, 1H-1H COSY, UV, FT-IR spectroscopy and mass spectrometry. The molecular geometry of synthesized compound was calculated in ground state by Density functional theory (DFT/B3LYP) using two different basis set 6-31G (d, p) and 6-311G (d, p). Conformational analysis of 2 was carried out to determine the most stable conformation. Stability of the molecule as a result of hyperconjugative interactions and electron delocalization were analysed using Natural bond orbital (NBO) analysis. Intramolecular interactions were analysed by AIM (Atom in molecule) approach. Global and local reactivity descriptors were calculated to study the reactive site within molecule. The electronic properties such as HOMO and LUMO energies were calculated using time dependent Density Functional Theory (TD-DFT). The vibrational wavenumbers were calculated using DFT method and assigned with the help of potential energy distribution (PED). First hyperpolarizability value has been calculated to describe the nonlinear optical (NLO) property of the synthesized compound. Molecular electrostatic potential (MEP) for synthesized compounds have also been determined to check their electrophilic or nucleophilic reactivity.

  5. FTY720 Treatment in the Convalescence Period Improves Functional Recovery and Reduces Reactive Astrogliosis in Photothrombotic Stroke

    PubMed Central

    Brunkhorst, Robert; Kanaan, Nathalie; Koch, Alexander; Ferreirós, Nerea; Mirceska, Ana; Zeiner, Pia; Mittelbronn, Michel; Derouiche, Amin; Steinmetz, Helmuth; Foerch, Christian; Pfeilschifter, Josef; Pfeilschifter, Waltraud

    2013-01-01

    Background The Sphingosine-1-phosphate (S1P) signaling pathway is known to influence pathophysiological processes within the brain and the synthetic S1P analog FTY720 has been shown to provide neuroprotection in experimental models of acute stroke. However, the effects of a manipulation of S1P signaling at later time points after experimental stroke have not yet been investigated. We examined whether a relatively late initiation of a FTY720 treatment has a positive effect on long-term neurological outcome with a focus on reactive astrogliosis, synapses and neurotrophic factors. Methods We induced photothrombotic stroke (PT) in adult C57BL/6J mice and allowed them to recover for three days. Starting on post-stroke day 3, mice were treated with FTY720 (1 mg/kg b.i.d.) for 5 days. Behavioral outcome was observed until day 31 after photothrombosis and periinfarct cortical tissue was analyzed using tandem mass-spectrometry, TaqMan®analysis and immunofluorescence. Results FTY720 treatment results in a significantly better functional outcome persisting up to day 31 after PT. This is accompanied by a significant decrease in reactive astrogliosis and larger post-synaptic densities as well as changes in the expression of vascular endothelial growth factor α (VEGF α). Within the periinfarct cortex, S1P is significantly increased compared to healthy brain tissue. Conclusion Besides its known neuroprotective effects in the acute phase of experimental stroke, the initiation of FTY720 treatment in the convalescence period has a positive impact on long-term functional outcome, probably mediated through reduced astrogliosis, a modulation in synaptic morphology and an increased expression of neurotrophic factors. PMID:23936150

  6. Synthesis and characterization of dual-functionalized core-shell fluorescent microspheres for bioconjugation and cellular delivery.

    PubMed

    Behrendt, Jonathan M; Nagel, David; Chundoo, Evita; Alexander, Lois M; Dupin, Damien; Hine, Anna V; Bradley, Mark; Sutherland, Andrew J

    2013-01-01

    The efficient transport of micron-sized beads into cells, via a non-endocytosis mediated mechanism, has only recently been described. As such there is considerable scope for optimization and exploitation of this procedure to enable imaging and sensing applications to be realized. Herein, we report the design, synthesis and characterization of fluorescent microsphere-based cellular delivery agents that can also carry biological cargoes. These core-shell polymer microspheres possess two distinct chemical environments; the core is hydrophobic and can be labeled with fluorescent dye, to permit visual tracking of the microsphere during and after cellular delivery, whilst the outer shell renders the external surfaces of the microspheres hydrophilic, thus facilitating both bioconjugation and cellular compatibility. Cross-linked core particles were prepared in a dispersion polymerization reaction employing styrene, divinylbenzene and a thiol-functionalized co-monomer. These core particles were then shelled in a seeded emulsion polymerization reaction, employing styrene, divinylbenzene and methacrylic acid, to generate orthogonally functionalized core-shell microspheres which were internally labeled via the core thiol moieties through reaction with a thiol reactive dye (DY630-maleimide). Following internal labeling, bioconjugation of green fluorescent protein (GFP) to their carboxyl-functionalized surfaces was successfully accomplished using standard coupling protocols. The resultant dual-labeled microspheres were visualized by both of the fully resolvable fluorescence emissions of their cores (DY630) and shells (GFP). In vitro cellular uptake of these microspheres by HeLa cells was demonstrated conventionally by fluorescence-based flow cytometry, whilst MTT assays demonstrated that 92% of HeLa cells remained viable after uptake. Due to their size and surface functionalities, these far-red-labeled microspheres are ideal candidates for in vitro, cellular delivery of proteins

  7. Absence of insulin signalling in skeletal muscle is associated with reduced muscle mass and function: evidence for decreased protein synthesis and not increased degradation

    PubMed Central

    O’Neill, Elaine D.; Wilding, John P. H.; Kahn, C. Ronald; Van Remmen, Holly; McArdle, Anne; Jackson, Malcolm J.

    2010-01-01

    Loss of skeletal muscle mass and function is observed in many insulin-resistant disease states such as diabetes, cancer cachexia, renal failure and ageing although the mechanisms for this remain unclear. We hypothesised that impaired insulin signalling results in reduced muscle mass and function and that this decrease in muscle mass and function is due to both increased production of atrogenes and aberrant reactive oxygen species (ROS) generation. Maximum tetanic force of the extensor digitorum longus of muscle insulin receptor knockout (MIRKO) and lox/lox control mice was measured in situ. Muscles were removed for the measurement of mass, histological examination and ROS production. Activation of insulin signalling pathways, markers of muscle atrophy and indices of protein synthesis were determined in a separate group of MIRKO and lox/lox mice 15 min following treatment with insulin. Muscles from MIRKO mice had 36% lower maximum tetanic force generation compared with muscles of lox/lox mice. Muscle fibres of MIRKO mice were significantly smaller than those of lox/lox mice with no apparent structural abnormalities. Muscles from MIRKO mice demonstrated absent phosphorylation of AKT in response to exogenous insulin along with a failure to phosphorylate ribosomal S6 compared with lox/lox mice. Atrogin-1 and MuRF1 relative mRNA expression in muscles from MIRKO mice were decreased compared with muscles from lox/lox mice following insulin treatment. There were no differences in markers of reactive oxygen species damage between muscles from MIRKO mice and lox/lox mice. These data support the hypothesis that the absence of insulin signalling contributes to reduced muscle mass and function though decreased protein synthesis rather than proteasomal atrophic pathways. PMID:20431988

  8. Synthesis of chain-end functionalized polyolefins and fluoropolymers and applications in nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Zhiming

    In this thesis, we have demonstrated a very useful and simple method (one-pot polymerization process) for synthesis of chain end functionalized polypropylene. The chemistry involves a chain transfer reaction to a styrenic derivative (St-f), with or without hydrogen during propylene polymerization, using an Exxon-Hoechst C2-symmetric catalyst (rac-Me 2Si[2-Me-4-Ph(Ind)]2ZrCl2/MAO complex) or a Mitsubishi C1-symmetric catalyst (Me2Si(2-Me-Benz[e]Ind(2-Me-4-Ph-4HAzu)HfCl 2 with MAO or trialkylaluminum-treated clay). In the presence of the Exxon-Hoechst catalyst, the propylene propagating chain-end engages in a facile consecutive chain transfer reaction, reacting with St-f and then with hydrogen, with high catalytic activity under the proper reaction conditions. The polymer molecular weight is proportional to the molar ratio of [propylene]/[St-f]. A silane protecting group in St-NSi2 or St-OSi unit can be hydrolyzed in an acidic solution during the sample work-up step to obtain desirable i-PP polymers, such as i-PP with a terminal NH2 or OH group, in one pot. Despite the low concentration, the terminal functional group is very reactive and can serve as an active site for many applications. One example was shown in a chain extension reaction (coupling reaction) with polycaprolactone (PCL) in solution to form PP-b-PCL diblock copolymers that are very effective compatibilizers in PP/PCL polymer blends. Unexpectedly, a Mitsubishi C1-symmetric catalyst exhibits significant polymerization activity even in the absence of hydrogen, indicating that the trialkylaluminum may participate in chain transfer to p-MS (p-methylstyrene) terminated propagating chains. In the case of polymerization using MAO as a cocatalyst at 55°C, the addition of hydrogen increases the activity and regulates the polymer molecular weight. The chain-end structure is solely terminal p-MS. When TEA (triethylaluminium) -treated clay is adopted as an activator and carrier at the optimal polymerization

  9. Correlation functions for fully or partially state-resolved reactive scattering calculations.

    PubMed

    Manthe, Uwe; Welsch, Ralph

    2014-06-28

    Flux correlation functions and the quantum transition state concept are important tools for the accurate description of polyatomic reaction processes. Combined with the multi-configurational time-dependent Hartree approach, they facilitate rigorous full-dimensional calculations of cumulative and initial-state selected reaction probabilities for six atom reactions. In recent work [R. Welsch, F. Huarte-Larrañaga, and U. Manthe, J. Chem. Phys. 136, 064117 (2012)], an approach which allows one to calculate also state-to-state reaction probabilities within the quantum transition state concept has been introduced. This article presents further developments. Alternative generalized flux correlation functions are introduced and discussed. Equations for the calculation of fully state-resolved differential cross section using arbitrary definitions of the body fixed frame are derived. An approach for the efficient calculation of partially state-resolved observables as a function of the collision energy is introduced. Finally, numerical test studying the D + H2 reaction illustrate important aspects of the formalism. PMID:24985624

  10. A Biochemical and Functional Protein Complex Involving Dopamine Synthesis and Transport into Synaptic Vesicles

    PubMed Central

    Cartier, Etienne A.; Parra, Leonardo A.; Baust, Tracy B.; Quiroz, Marisol; Salazar, Gloria; Faundez, Victor; Egaña, Loreto; Torres, Gonzalo E.

    2010-01-01

    Synaptic transmission depends on neurotransmitter pools stored within vesicles that undergo regulated exocytosis. In the brain, the vesicular monoamine transporter-2 (VMAT2) is responsible for the loading of dopamine (DA) and other monoamines into synaptic vesicles. Prior to storage within vesicles, DA synthesis occurs at the synaptic terminal in a two-step enzymatic process. First, the rate-limiting enzyme tyrosine hydroxylase (TH) converts tyrosine to di-OH-phenylalanine. Aromatic amino acid decarboxylase (AADC) then converts di-OH-phenylalanine into DA. Here, we provide evidence that VMAT2 physically and functionally interacts with the enzymes responsible for DA synthesis. In rat striata, TH and AADC co-immunoprecipitate with VMAT2, whereas in PC 12 cells, TH co-immunoprecipitates with the closely related VMAT1 and with overexpressed VMAT2. GST pull-down assays further identified three cytosolic domains of VMAT2 involved in the interaction with TH and AADC. Furthermore, in vitro binding assays demonstrated that TH directly interacts with VMAT2. Additionally, using fractionation and immunoisolation approaches, we demonstrate that TH and AADC associate with VMAT2-containing synaptic vesicles from rat brain. These vesicles exhibited specific TH activity. Finally, the coupling between synthesis and transport of DA into vesicles was impaired in the presence of fragments involved in the VMAT2/TH/AADC interaction. Taken together, our results indicate that DA synthesis can occur at the synaptic vesicle membrane, where it is physically and functionally coupled to VMAT2-mediated transport into vesicles. PMID:19903816

  11. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia.

    PubMed

    Gao, Xue; Lin, Shu-Hai; Ren, Feng; Li, Jin-Tao; Chen, Jia-Jia; Yao, Chuan-Bo; Yang, Hong-Bin; Jiang, Shu-Xia; Yan, Guo-Quan; Wang, Di; Wang, Yi; Liu, Ying; Cai, Zongwei; Xu, Ying-Ying; Chen, Jing; Yu, Wenqiang; Yang, Peng-Yuan; Lei, Qun-Ying

    2016-01-01

    Besides the conventional carbon sources, acetyl-CoA has recently been shown to be generated from acetate in various types of cancers, where it promotes lipid synthesis and tumour growth. The underlying mechanism, however, remains largely unknown. We find that acetate induces a hyperacetylated state of histone H3 in hypoxic cells. Acetate predominately activates lipogenic genes ACACA and FASN expression by increasing H3K9, H3K27 and H3K56 acetylation levels at their promoter regions, thus enhancing de novo lipid synthesis, which combines with its function as the metabolic precursor for fatty acid synthesis. Acetyl-CoA synthetases (ACSS1, ACSS2) are involved in this acetate-mediated epigenetic regulation. More importantly, human hepatocellular carcinoma with high ACSS1/2 expression exhibit increased histone H3 acetylation and FASN expression. Taken together, this study demonstrates that acetate, in addition to its ability to induce fatty acid synthesis as an immediate metabolic precursor, also functions as an epigenetic metabolite to promote cancer cell survival under hypoxic stress. PMID:27357947

  12. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia

    PubMed Central

    Gao, Xue; Lin, Shu-Hai; Ren, Feng; Li, Jin-Tao; Chen, Jia-Jia; Yao, Chuan-Bo; Yang, Hong-Bin; Jiang, Shu-Xia; Yan, Guo-Quan; Wang, Di; Wang, Yi; Liu, Ying; Cai, Zongwei; Xu, Ying-Ying; Chen, Jing; Yu, Wenqiang; Yang, Peng-Yuan; Lei, Qun-Ying

    2016-01-01

    Besides the conventional carbon sources, acetyl-CoA has recently been shown to be generated from acetate in various types of cancers, where it promotes lipid synthesis and tumour growth. The underlying mechanism, however, remains largely unknown. We find that acetate induces a hyperacetylated state of histone H3 in hypoxic cells. Acetate predominately activates lipogenic genes ACACA and FASN expression by increasing H3K9, H3K27 and H3K56 acetylation levels at their promoter regions, thus enhancing de novo lipid synthesis, which combines with its function as the metabolic precursor for fatty acid synthesis. Acetyl-CoA synthetases (ACSS1, ACSS2) are involved in this acetate-mediated epigenetic regulation. More importantly, human hepatocellular carcinoma with high ACSS1/2 expression exhibit increased histone H3 acetylation and FASN expression. Taken together, this study demonstrates that acetate, in addition to its ability to induce fatty acid synthesis as an immediate metabolic precursor, also functions as an epigenetic metabolite to promote cancer cell survival under hypoxic stress. PMID:27357947

  13. Synthesis of onion-peel nanodendritic structures with sequential functional phosphorus diversity.

    PubMed

    Katir, Nadia; El Brahmi, Nabil; El Kadib, Abdelkrim; Mignani, Serge; Caminade, Anne-Marie; Bousmina, Mosto; Majoral, Jean Pierre

    2015-04-20

    The preparation of novel families of phosphorus-based macromolecular architectures called "onion peel" phosphorus nanodendritic systems is reported. This construct is based on the versatility of methods of synthesis using several building blocks and on the capability of these systems to undergo regioselective reactions within the cascade structure. Sustainable metal-free routes such as the Staudinger reaction or Schiff-base condensation, involving only water and nitrogen as byproducts, allow access to several dendritic macromolecules bearing up to seven different phosphorus units in their backbone, each of them featuring specific reactivity. The presence of the highly aurophilic P=N-P=S fragment enables selective ligation of Au(I) within the dendritic framework. PMID:25754619

  14. Synthesis of functionalized ZnS:Mn/ZnS nanocrystals

    NASA Astrophysics Data System (ADS)

    Li, Dongmei; Wang, Yiqiang; Yang, Guowei; Xu, Zhen

    2008-02-01

    ZnS:Mn/ZnS core/shell nanoparticles were pre-synthesized by microemulsions technique. To prepare water-soluble and biocompatible nanoparticles, thioglycolic acid was directly added into the same reverse microemulsion system to modify the surface of ZnS:Mn/ZnS nanoparticles. The functionalized ZnS:Mn/ZnS nanoparticles were coupled with carboxyl and revealed farther luminescence enhancement at 600nm. The experiment results indicated that passivating of the organic molecules and the polynuclear complex of Zinc may be the possible mechanism leading to enhancement of luminescence.

  15. Synthesis of amine functionalized cellulose nanocrystals: optimization and characterization.

    PubMed

    Akhlaghi, Seyedeh Parinaz; Zaman, Masuduz; Mohammed, Nishil; Brinatti, César; Batmaz, Rasim; Berry, Richard; Loh, Watson; Tam, Kam Chiu

    2015-05-29

    A simple protocol was used to prepare amine functionalized cellulose nanocrystals (CNC-NH2). In the first step, epichlorohydrin (EPH) was reacted with ammonium hydroxide to produce 2-hydroxy-3-chloro propylamine (HCPA). In the next step, HCPA was grafted to CNC using the etherification reaction in an organic solution media. Various reaction parameters, such as time, temperature, and reactant molar ratio were performed to determine the optimal reaction conditions. The final product (CNC-NH2(T)) was dialyzed for a week. Further purification via centrifugation yielded the sediment (CNC-NH2(P)) and supernatant (POLY-NH2). The presence of amine groups on the surface of modified CNC was confirmed by FTIR and the amine content was determined by potentiometric titration and elemental analysis. A high amine content of 2.2 and 0.6 mmol amine/g was achieved for CNC-NH2(T) and CNC-NH2(P), respectively. Zeta potential measurements confirmed the charge reversal of amine CNC from positive to negative when the pH was increased from 3 to 10. The flocculation of amine functionalized CNC due to its interactions with a negatively charged surfactant namely, sodium dodecyl sulfate (SDS) was investigated at pH 4. It showed promising results for applications, such as in flocculation of fine dispersions in water treatment. This simple and versatile synthetic method to produce high amine content CNC can be used for further conjugation as required for various applications. PMID:25933198

  16. Synthesis, functionalization and bioimaging applications of highly fluorescent carbonnanoparticles

    NASA Astrophysics Data System (ADS)

    Chandra, Sourov; Das, Pradip; Bag, Sourav; Laha, Dipranjan; Pramanik, Panchanan

    2011-04-01

    Highly fluorescent crystalline carbonnanoparticles (CNPs) have been synthesized by one step microwave irradiation of sucrose with phosphoric acid at 100 W for 3 min 40 s. This method is very simple, rapid and economical and hence can be used for large scale applications. The average particle sizes are 3 to 10 nm and they emit bright green fluorescence under the irradiation of UV-light. Therefore, the particles can be used as a unique material for bioimaging as well as drug delivery. To further increase the fluorescence property of the synthetic carbonnanoparticles we simply functionalized them by using different organic dyes, such as fluorescein, rhodamine B and α-naphthylamine the maximum fluorescence intensity was observed for the particles functionalized with fluorescein. It is very interesting to note that all of those compounds show maximum fluorescence intensity at 225 nm excitation wavelength and for any excitation wavelength the peak positions are exactly same the position as that of CNPs itself, which is completely different from the individual precursors (dyes). All of the above compounds, including CNPs, have also been successfully introduced into the erythrocyte enriched fraction of healthy human blood cells with minimum cytotoxicity.

  17. Requirement of E. coli DNA synthesis functions for the lytic replication of bacteriophage P1.

    PubMed

    Hay, N; Cohen, G

    1983-11-01

    P1 lytic growth was examined in a number of different temperature sensitive mutants of E. coli that affect chromosomal replication. Growth was analyzed by measurements of phage burst sizes and specific DNA synthesis. Efficient P1 growth required each of the bacterial elongation functions dnaE (polC), dnaZ (sub units of E. coli polymerase III holoenzyme), and dnaG (primase) but was not dependent on the elongation function dnaB (mobile promoter). Of two initiation functions tested the dnaA function was found to be dispensable for normal growth whereas the dnaC function was essential. Temperature shift experiments with different dnaC mutants showed that the initiation component of the dnaC function was needed continuously throughout at least the first half of the lytic cycle, while the dnaC elongation activity was probably required during the entire cycle for normal phage yields. In two respects the dependence of P1 lytic growth on E. coli DNA synthesis functions was significantly different from that reported for P1 plasmid replication (Scott and Vapnek, 1980). Thus, lytic replication was far more dependent on a functional polC gene product than was plasmid replication and did not require the bacterial dnaB product. PMID:6359668

  18. Simultaneous MS-IR Studies of Surface Formate Reactivity Under Methanol Synthesis Conditions on Cu/SiO2

    SciTech Connect

    Yang, Yong; Mims, Charles A.; Disselkamp, Robert S.; Peden, Charles HF; Campbell, C. T.

    2009-06-09

    The coverages and surface lifetimes of copper-bound formates on Cu/SiO2 catalysts, and the steady-state rates of reverse water-gas shift and methanol synthesis have been measured simultaneously by mass (MS) and infrared (IR) spectroscopies under a variety of elevated pressure conditions at temperatures between 140 and 160°C. DCOO lifetimes under steady state catalytic conditions in CO2:D2 atmospheres were measured by 12C – 13C isotope transients (SSITKA). The values range from 220s at 160°C to 660s at 140°C. The catalytic rates of both reverse water gas shift (RWGS) and methanol synthesis are ~100-fold slower than this formate removal rate back to CO2+1/2 H2, and thus they do not significantly influence the formate lifetime or coverage at steady state. The formate coverage is instead determined by formate’s rapid production / decomposition equilibrium with gas phase CO2+H2. The results are consistent with formate being an intermediate in methanol synthesis, but with the rate-controlling step being after formate production (for example, its further hydrogenation to methoxy). A 2-3 fold shorter life time (faster decomposition rate) was observed for formate under reactions conditions when both D2 and CO2 are present than in pure Ar or D2+Ar alone, attributed to effects of coadsorbates (produced in D2 and CO2) on adsorbed formate reaction pathways. The carbon which appears in the methanol product spends a longer time on the surface than the formate species, 1.8 times as long at 140°C. The additional delay on the surface is attributed in part to readsorption of methanol on the catalyst, thus obscuring the mechanistic link between formate and methanol.

  19. Synthesis and characterization of a pH responsive folic acid functionalized polymeric drug delivery system.

    PubMed

    Li, Xia; McTaggart, Matt; Malardier-Jugroot, Cecile

    2016-01-01

    We report the computational analysis, synthesis and characterization of folate functionalized poly(styrene-alt-maleic anhydride), PSMA for drug delivery purpose. The selection of the proper linker between the polymer and the folic acid group was performed before conducting the synthesis using Density Functional Theory (DFT). The computational results showed the bio-degradable linker 2, 4-diaminobutyric acid, DABA as a good candidate allowing flexibility of the folic acid group while maintaining the pH sensitivity of PSMA, used as a trigger for drug release. The synthesis was subsequently carried out in multi-step experimental procedures. The functionalized polymer was characterized using InfraRed spectroscopy, Nuclear Magnetic Resonance and Dynamic Light Scattering confirming both the chemical structure and the pH responsiveness of PSMA-DABA-Folate polymers. This study provides an excellent example of how computational chemistry can be used in selection process for the functional materials and product characterization. The pH sensitive polymers are expected to be used in delivering anti-cancer drugs to solid tumors with overly expressed folic acid receptors. PMID:27183249

  20. Exercise improves endothelial function: a local analysis of production of nitric oxide and reactive oxygen species.

    PubMed

    Tanaka, Leonardo Yuji; Bechara, Luiz Roberto Grassmann; dos Santos, Adriana Marques; Jordão, Camila Paixão; de Sousa, Luís Gustavo Oliveira; Bartholomeu, Teresa; Ventura, Laura Inês; Laurindo, Francisco Rafael Martins; Ramires, Paulo Rizzo

    2015-02-15

    This study aimed at investigating the acute effects of aerobic exercise on endothelium-dependent vasomotor function of rat aorta, as well as mechanisms involved in endothelial nitric oxide (NO) bioactivity. Wistar rats were assigned to either a resting control (C, n = 21) or acutely exercised (E, n = 21) groups (60 min, 55-60% of maximum speed). After exercise, thoracic aorta was excised and cut into rings. Two rings were promptly applied to evaluate vasomotor function and the rest of aorta was used for additional measurements. Acute exercise significantly improved maximum ACh-induced relaxation (C, 91.6 ± 1.2 vs. E, 102.4 ± 1.7%, p < 0.001) and sensitivity to ACh (C, -7.3 ± 0.06 vs. E, -7.3 ± 0.02 log M, p < 0.01), and was accompanied by significantly increases on serine1177 eNOS phosphorylation, reflecting its enhanced activation. However, acute exercise also enhanced both superoxide and hydrogen peroxide production, as assayed by dihydroethidium oxidation, lucigenin chemiluminescence and Amplex Red assays. We also provided evidence for Nox2 NADPH oxidase (Nox) activation through gp91dstat-mediated inhibition of superoxide signals. Enhanced arterial relaxations associated with acute exercise were nearly-completely prevented by catalase, suggesting a role for paracrine hydrogen peroxide. Despite increased detectable oxidant generation, cellular oxidative stress was not evident, as suggested by unaltered GSH:GSSG ratio and lipid hydroperoxides. Collectively, these results demonstrate that one bout of moderate aerobic exercise improves endothelial function by increasing NO bioavailability, while superoxide and hydrogen peroxide are generated in a controlled fashion. PMID:25619203

  1. Towards a specific reaction parameter density functional for reactive scattering of H{sub 2} from Pd(111)

    SciTech Connect

    Boereboom, J. M.; Wijzenbroek, M.; Somers, M. F.; Kroes, G. J.

    2013-12-28

    Recently, an implementation of the specific reaction parameter (SRP) approach to density functional theory (DFT) was used to study several reactive scattering experiments of H{sub 2} on Cu(111). It was possible to obtain chemical accuracy (1 kcal/mol ≈ 4.2 kJ/mol), and therefore, accurately model this paradigmatic example of activated H{sub 2} dissociation on a metal surface. In this work, the SRP-DFT methodology is applied to the dissociation of hydrogen on a Pd(111) surface, in order to test whether the SRP-DFT approach is also applicable to non-activated H{sub 2}-metal systems. In the calculations, the Born–Oppenheimer static surface approximations are used. A comparison to molecular beam sticking experiments, performed at incidence energies ⩾125 meV, on H{sub 2} + Pd(111) suggested the PBE-vdW [where the Perdew, Burke, and Ernzerhof (PBE) correlation is replaced by van der Waals correlation] functional as a candidate SRP density functional describing the reactive scattering of H{sub 2} on Pd(111). Unfortunately, quantum dynamics calculations are not able to reproduce the molecular beam sticking results for incidence energies <125 meV. From a comparison to initial state-resolved (degeneracy averaged) sticking probabilities it seems clear that for H{sub 2} + Pd(111) dynamic trapping and steering effects are important, and that these effects are not yet well modeled with the potential energy surfaces considered here. Applying the SRP-DFT method to systems where H{sub 2} dissociation is non-activated remains difficult. It is suggested that a density functional that yields a broader barrier distribution and has more non-activated pathways than PBE-vdW (i.e., non-activated dissociation at some sites but similarly high barriers at the high energy end of the spectrum) should allow a more accurate description of the available experiments. Finally, it is suggested that new and better characterized molecular beam sticking experiments be done on H{sub 2} + Pd(111

  2. Synthesis and evaluation of novel analogues of vitamin B6 as reactivators of tabun and paraoxon inhibited acetylcholinesterase.

    PubMed

    Gaso-Sokac, Dajana; Katalinić, Maja; Kovarik, Zrinka; Busić, Valentina; Kovac, Spomenka

    2010-09-01

    A series of novel pyridinium oximes was prepared by reactions of quaternization of pyridoxal oxime with substituted phenacyl bromides in acetone at room temperature. The structures of compounds were determined according to the data obtained by IR spectroscopy, mass spectrometry, (1)H and (13)C nuclear magnetic resonance spectroscopy as well as by elemental analysis. We tested pyridoxal oxime (1) and five prepared oximes in 1mM concentration as reactivators of human erythrocytes acetylcholinesterase (AChE) inhibited by organophosphorus compounds tabun and paraoxon: 1-phenacyl-3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methylpyridinium bromide (2), 1-(4'-chlorophenacyl)-3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methylpyridinium bromide (3), 1-(4'-fluorophenacyl)-3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methylpyridinium bromide (4), 3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methyl-1-(4'-methylphenacyl)pyridinium bromide (5), 3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methyl-1-(4'-methoxyphenacyl)pyridinium bromide (6). However, tested oximes were not efficient in reactivation of either tabun or paraoxon inhibited AChE. The maximum restored enzyme activity in 24h was below 25%. Therefore, this class of compounds cannot be considered as potential improvement in a search for new and more efficient antidotes against OP poisoning. PMID:20144593

  3. Synthesis of an Al{sub 2}O{sub 3}/Al co-continuous composite by reactive melt infiltration

    SciTech Connect

    Wu, C.M.L. . E-mail: Lawrence.Wu@cityu.edu.hk; Han, G.W.

    2007-05-15

    The route for the fabrication of an Al{sub 2}O{sub 3}/Al co-continuous composite by reactive melt infiltration was investigated using scanning electron microscopy, energy dispersive X-ray microanalysis and X-ray diffraction analysis. It was found that in the process of molten aluminium infiltration into the SiO{sub 2} preform, the chemical reaction of 3SiO{sub 2} + 4Al {sup {yields}} 2Al{sub 2}O{sub 3} + 3Si occurred at the infiltration front, and generated a transition zone containing a new type of continuous porosity about 100 {mu}m in width. The reaction continued with further infiltration of molten aluminium alloy into this porosity which reacted with the residual SiO{sub 2} until all the SiO{sub 2} was transformed into Al{sub 2}O{sub 3}. A comparison was made between this route and that by direct infiltration of molten aluminium alloy into the open porosity of an Al{sub 2}O{sub 3} preform. As a result of the increased wetting ability of the molten aluminium alloy by the chemical reaction, reactive melt infiltration took place at a higher rate for the SiO{sub 2} preform than that for the direct infiltration of the Al{sub 2}O{sub 3} preform. A fracture surface examination demonstrated a toughening effect provided by the continuous aluminium alloy in the composite.

  4. Synthesis and Reactivity of Low-Coordinate Titanium Synthons Supported by a Reduced Redox-Active Ligand.

    PubMed

    Clark, Kensha Marie

    2016-07-01

    To further explore the reactivity and redox capability of the bis-arylimino acenaphthylene ligand (BIAN) in early transition metal complexes, the coordinatively unsaturated titanium synthons, [(dpp-BAAN)Ti(R)2] ([dpp-BAAN](2-) = N,N'-bis(2,6-diisopropylphenylamido)acenaphthylene and R = O(t)Bu (2) or CH2C(CH3)3 (3)), in which the BAAN ligand is reduced by two electrons, were isolated in good yields via sterically induced radical elimination reactions. Addition of p-tolyl azide to complex 3 initiated reductive elimination of the neopentyl ligands to generate a putative imido species. The imido species was trapped by a second oxidative addition of chloride ligands to yield the titanium imido complex, [(dpp-BIAN)Ti[═N(4-C6H4Me)]Cl2 (4). These reactions demonstrate that the BAAN ligand can provide redox equivalents for enhanced reactivity that includes oxidative addition and reductive elimination at d(0) metal centers. PMID:27304996

  5. Synthesis and Function of Apocarotenoid Signals in Plants.

    PubMed

    Hou, Xin; Rivers, John; León, Patricia; McQuinn, Ryan P; Pogson, Barry J

    2016-09-01

    In plants, carotenoids are essential for photosynthesis and photoprotection. However, carotenoids are not the end products of the pathway; apocarotenoids are produced by carotenoid cleavage dioxygenases (CCDs) or non-enzymatic processes. Apocarotenoids are more soluble or volatile than carotenoids but they are not simply breakdown products, as there can be modifications post-cleavage and their functions include hormones, volatiles, and signals. Evidence is emerging for a class of apocarotenoids, here referred to as apocarotenoid signals (ACSs), that have regulatory roles throughout plant development beyond those ascribed to abscisic acid (ABA) and strigolactone (SL). In this context we review studies of carotenoid feedback regulation, chloroplast biogenesis, stress signaling, and leaf and root development providing evidence that apocarotenoids may fine-tune plant development and responses to environmental stimuli. PMID:27344539

  6. Direct Synthesis of Imidazolium-Functional Polyethylene by Insertion Copolymerization.

    PubMed

    Jian, Zhongbao; Leicht, Hannes; Mecking, Stefan

    2016-06-01

    Cationic imidazolium-functionalized polyethylene is accessible by insertion copolymerization of ethylene and allyl imidazolium tetrafluoroborate (AIm-BF4 ) with phosphinesulfonato palladium(II) catalyst precursors. Imidazolium-substituted repeat units are incorporated into the main chain and the initiating saturated chain end of the linear polymers, rather than the terminating unsaturated chain end. The counterion of the allyl imidazolium monomer is decisive, with the chloride analogue (AIm-Cl) no polymerization is observed. Stoichiometric studies reveal the formation of an inactive chloride complex from the catalyst precursor. An effect of moderate densities (0.5 mol%) of ionic groups on the copolymers' physical properties is exemplified by an enhanced wetting by water. PMID:27111477

  7. One-step continuous synthesis of functionalized magnetite nanoflowers

    NASA Astrophysics Data System (ADS)

    Thomas, G.; Demoisson, F.; Chassagnon, R.; Popova, E.; Millot, N.

    2016-04-01

    For the first time, functionalized magnetite nanoparticles (Fe3O4 NPs) that form aggregates with a nanoflower morphology were synthesized using a rapid (11 s) one-step continuous hydrothermal process, which was recently modified, and their application as a T 2 magnetic resonance imaging (MRI) contrast agent was evaluated. The nanoparticles functionalized with 3,4-dihydroxy-L-phenylalanine (LDOPA) or 3,4-dihydroxyhydrocinnamic acid (DHCA) consisted of small crystallites of approximately 15 nm of diameter that assembled to form flower-shaped aggregate structures. The Fe3O4-LDOPA nanoflowers exhibited a high transverse relaxivity, r 2 of 418 ± 10 l mmolFe -1 s-1 at 3 T owing to magnetic dipolar interactions, which is twice as that of the commercial Feridex®/Endorem®. The prepared nanostructures were compared with bare Fe3O4 NPs and citrated Fe3O4 NPs. DHCA, LDOPA, and citric acid (CA) were found to have an anti-oxidizing effect and to influence the crystallite size and the lattice parameter of the NPs. DHCA and LDOPA increased the crystallite size, whereas CA decreased it. Surface modification increased the colloidal stability of NPs as compared to bare NPs. Nanoflower suspensions of Fe3O4-LDOPA NPs were found to be stable in the phosphate-buffered saline, saline medium, and minimal essential medium and formed aggregates of sizes smaller than 120 nm. All samples were found to be superparamagnetic in nature and the highest saturation magnetization was obtained for the Fe3O4-LDOPA samples. These NPs can bind to polymers such as PEG, and to fluorescent and chelating agents owing to the presence of free -NH2 or -COOH groups on the surface of NPs, allowing their use in dual imaging applications.

  8. One-step continuous synthesis of functionalized magnetite nanoflowers.

    PubMed

    Thomas, G; Demoisson, F; Chassagnon, R; Popova, E; Millot, N

    2016-04-01

    For the first time, functionalized magnetite nanoparticles (Fe3O4 NPs) that form aggregates with a nanoflower morphology were synthesized using a rapid (11 s) one-step continuous hydrothermal process, which was recently modified, and their application as a T 2 magnetic resonance imaging (MRI) contrast agent was evaluated. The nanoparticles functionalized with 3,4-dihydroxy-L-phenylalanine (LDOPA) or 3,4-dihydroxyhydrocinnamic acid (DHCA) consisted of small crystallites of approximately 15 nm of diameter that assembled to form flower-shaped aggregate structures. The Fe3O4-LDOPA nanoflowers exhibited a high transverse relaxivity, r 2 of 418 ± 10 l mmolFe (-1) s(-1) at 3 T owing to magnetic dipolar interactions, which is twice as that of the commercial Feridex®/Endorem®. The prepared nanostructures were compared with bare Fe3O4 NPs and citrated Fe3O4 NPs. DHCA, LDOPA, and citric acid (CA) were found to have an anti-oxidizing effect and to influence the crystallite size and the lattice parameter of the NPs. DHCA and LDOPA increased the crystallite size, whereas CA decreased it. Surface modification increased the colloidal stability of NPs as compared to bare NPs. Nanoflower suspensions of Fe3O4-LDOPA NPs were found to be stable in the phosphate-buffered saline, saline medium, and minimal essential medium and formed aggregates of sizes smaller than 120 nm. All samples were found to be superparamagnetic in nature and the highest saturation magnetization was obtained for the Fe3O4-LDOPA samples. These NPs can bind to polymers such as PEG, and to fluorescent and chelating agents owing to the presence of free -NH2 or -COOH groups on the surface of NPs, allowing their use in dual imaging applications. PMID:26900748

  9. An application of distributed approximating functional-wavelets to reactive scattering

    SciTech Connect

    Wei, G.W.; Althorpe, S.C.; Kouri, D.J.; Hoffman, D.K.

    1998-05-01

    A newly developed distributed approximating functional (DAF)-wavelet, the Dirichlet{endash}Gabor DAF-wavelet (DGDW), is applied in a calculation of the state-to-state reaction probabilities for the three-dimensional (3-D) (J=0)H+H{sub 2} reaction, using the time-independent wave-packet reactant-product decoupling (TIWRPD) method. The DGDWs are reconstructed from a rigorous mathematical sampling theorem, and are shown to be DAF-wavelet generalizations of both the sine discrete variable representation (sinc-DVR) and the Fourier distributed approximating functionals (DAFs). An important feature of the generalized sinc-DVR representation is that the grid points are distributed at equally spaced intervals and the kinetic energy matrix has a banded, Toeplitz structure. Test calculations show that, in accordance with mathematical sampling theory, the DAF-windowed sinc-DVR converges much more rapidly and to higher accuracy with bandwidth, 2W+1. The results of the H+H{sub 2} calculation are in very close agreement with the results of previous TIWRPD calculations, demonstrating that the DGDW representation is an accurate and efficient representation for use in FFT wave-packet propagation methods, and that, more generally, the theory of wavelets and related techniques have great potential for the study of molecular dynamics. {copyright} {ital 1998 American Institute of Physics.}

  10. An application of distributed approximating functional-wavelets to reactive scattering

    NASA Astrophysics Data System (ADS)

    Wei, G. W.; Althorpe, S. C.; Kouri, D. J.; Hoffman, D. K.

    1998-05-01

    A newly developed distributed approximating functional (DAF)-wavelet, the Dirichlet-Gabor DAF-wavelet (DGDW), is applied in a calculation of the state-to-state reaction probabilities for the three-dimensional (3-D) (J=0)H+H2 reaction, using the time-independent wave-packet reactant-product decoupling (TIWRPD) method. The DGDWs are reconstructed from a rigorous mathematical sampling theorem, and are shown to be DAF-wavelet generalizations of both the sine discrete variable representation (sinc-DVR) and the Fourier distributed approximating functionals (DAFs). An important feature of the generalized sinc-DVR representation is that the grid points are distributed at equally spaced intervals and the kinetic energy matrix has a banded, Toeplitz structure. Test calculations show that, in accordance with mathematical sampling theory, the DAF-windowed sinc-DVR converges much more rapidly and to higher accuracy with bandwidth, 2W+1. The results of the H+H2 calculation are in very close agreement with the results of previous TIWRPD calculations, demonstrating that the DGDW representation is an accurate and efficient representation for use in FFT wave-packet propagation methods, and that, more generally, the theory of wavelets and related techniques have great potential for the study of molecular dynamics.

  11. Local delivery of FTY720 in PCL membrane improves SCI functional recovery by reducing reactive astrogliosis.

    PubMed

    Wang, Junjuan; Wang, Jiaqiu; Lu, Ping; Cai, Youzhi; Wang, Yafei; Hong, Lan; Ren, Hao; Heng, Boon Chin; Liu, Hua; Zhou, Jing; Ouyang, Hongwei

    2015-09-01

    FTY720 has recently been approved as an oral drug for treating relapsing forms of multiple sclerosis, and exerts its therapeutic effect by acting as an immunological inhibitor targeting the sphingosine-1-phosphate (S1P) receptor subtype (S1P1) of T cells. Recently studies demonstrated positive efficacy of this drug on spinal cord injury (SCI) in animal models after systemic administration, albeit with significant adverse side effects. We hereby hypothesize that localized delivery of FTY720 can promote SCI recovery by reducing pathological astrogliosis. The mechanistic functions of FTY720 were investigated in vitro and in vivo utilizing immunofluorescence, histology, MRI and behavioral analysis. The in vitro study showed that FTY720 can reduce astrocyte migration and proliferation activated by S1P. FTY720 can prolong internalization of S1P1 and exert antagonistic effects on S1P1. In vivo study of SCI animal models demonstrated that local delivery of FTY720 with polycaprolactone (PCL) membrane significantly decreased S1P1 expression and glial scarring compared with the control group. Furthermore, FTY720-treated groups exhibited less cavitation volume and neuron loss, which significantly improved recovery of motor function. These findings demonstrated that localized delivery of FTY720 can promote SCI recovery by targeting the S1P1 receptor of astrocytes, provide a new therapeutic strategy for SCI treatment. PMID:26036174

  12. Circadian clock functioning is linked to acute stress reactivity in rats.

    PubMed

    Weibel, L; Maccari, S; Van Reeth, O

    2002-10-01

    At least two major physiological systems are involved in the adaptation of the organism to environmental challenges: the circadian system and the stress reaction. This study addressed the possibility that interindividual differences in stress sensitivity and in the functioning of the circadian system are related. At 2 months of age, corticosterone secretion in response to a 20-min restraint stress was assessed in 9 Sprague-Dawley rats for which running wheel activity was recorded as a rhythmic behavioral marker of the circadian clock. Two weeks later, the adaptive response of the circadian system to an abrupt shift in the light:dark (LD) cycle was assessed in those rats using a jet-lag paradigm. Finally, after resynchronization to the new LD cycle, rats were transferred to constant darkness to assess the free-running period of their circadian rhythm of running-wheel activity. Results indicate that stress-induced corticosterone secretion was (1) positively correlated with the number of days to resynchronize the circadian activity rhythm to the new LD cycle, and with the value of its free-running period, and (2) negatively correlated with the intensity of daily locomotor activity. Those data, emphasizing the interactions between the stress response of an organism and the functioning of its circadian system, could explain interindividual differences in humans' susceptibility to shift work or other circadian-related disorders. PMID:12375620

  13. Ligands for FKBP12 Increase Ca2+ Influx and Protein Synthesis to Improve Skeletal Muscle Function*

    PubMed Central

    Lee, Chang Seok; Georgiou, Dimitra K.; Dagnino-Acosta, Adan; Xu, Jianjun; Ismailov, Iskander I.; Knoblauch, Mark; Monroe, Tanner O.; Ji, RuiRui; Hanna, Amy D.; Joshi, Aditya D.; Long, Cheng; Oakes, Joshua; Tran, Ted; Corona, Benjamin T.; Lorca, Sabina; Ingalls, Christopher P.; Narkar, Vihang A.; Lanner, Johanna T.; Bayle, J. Henri; Durham, William J.; Hamilton, Susan L.

    2014-01-01

    Rapamycin at high doses (2–10 mg/kg body weight) inhibits mammalian target of rapamycin complex 1 (mTORC1) and protein synthesis in mice. In contrast, low doses of rapamycin (10 μg/kg) increase mTORC1 activity and protein synthesis in skeletal muscle. Similar changes are found with SLF (synthetic ligand for FKBP12, which does not inhibit mTORC1) and in mice with a skeletal muscle-specific FKBP12 deficiency. These interventions also increase Ca2+ influx to enhance refilling of sarcoplasmic reticulum Ca2+ stores, slow muscle fatigue, and increase running endurance without negatively impacting cardiac function. FKBP12 deficiency or longer treatments with low dose rapamycin or SLF increase the percentage of type I fibers, further adding to fatigue resistance. We demonstrate that FKBP12 and its ligands impact multiple aspects of muscle function. PMID:25053409

  14. Stem cell function and stress response are controlled by protein synthesis.

    PubMed

    Blanco, Sandra; Bandiera, Roberto; Popis, Martyna; Hussain, Shobbir; Lombard, Patrick; Aleksic, Jelena; Sajini, Abdulrahim; Tanna, Hinal; Cortés-Garrido, Rosana; Gkatza, Nikoletta; Dietmann, Sabine; Frye, Michaela

    2016-06-16

    Whether protein synthesis and cellular stress response pathways interact to control stem cell function is currently unknown. Here we show that mouse skin stem cells synthesize less protein than their immediate progenitors in vivo, even when forced to proliferate. Our analyses reveal that activation of stress response pathways drives both a global reduction of protein synthesis and altered translational programmes that together promote stem cell functions and tumorigenesis. Mechanistically, we show that inhibition of post-transcriptional cytosine-5 methylation locks tumour-initiating cells in this distinct translational inhibition programme. Paradoxically, this inhibition renders stem cells hypersensitive to cytotoxic stress, as tumour regeneration after treatment with 5-fluorouracil is blocked. Thus, stem cells must revoke translation inhibition pathways to regenerate a tissue or tumour. PMID:27306184

  15. Childhood poverty and stress reactivity are associated with aberrant functional connectivity in default mode network.

    PubMed

    Sripada, Rebecca K; Swain, James E; Evans, Gary W; Welsh, Robert C; Liberzon, Israel

    2014-08-01

    Convergent research suggests that childhood poverty is associated with perturbation in the stress response system. This might extend to aberrations in the connectivity of large-scale brain networks, which subserve key cognitive and emotional functions. Resting-state brain activity was measured in adults with a documented history of childhood poverty (n=26) and matched controls from middle-income families (n=26). Participants also underwent a standard laboratory social stress test and provided saliva samples for cortisol assay. Childhood poverty was associated with reduced default mode network (DMN) connectivity. This, in turn, was associated with higher cortisol levels in anticipation of social stress. These results suggest a possible brain basis for exaggerated stress sensitivity in low-income individuals. Alterations in DMN may be associated with less efficient cognitive processing or greater risk for development of stress-related psychopathology among individuals who experienced the adversity of chronic childhood poverty. PMID:24675708

  16. Computational chemistry of natural products: a comparison of the chemical reactivity of isonaringin calculated with the M06 family of density functionals.

    PubMed

    Glossman-Mitnik, Daniel

    2014-07-01

    The M06 family of density functionals has been assessed for the calculation of the molecular structure and properties of the Isonaringin flavonoid that can be an interesting material for dye-sensitized solar cells (DSSC). The chemical reactivity descriptors have been calculated through chemical reactivity theory within DFT (CR-DFT). The active sites for nucleophilic and electrophilic attacks have been chosen by relating them to the Fukui function indices and the dual descriptor f ((2))(r). A comparison between the descriptors calculated through vertical energy values and those arising from the Janak's theorem approximation have been performed in order to check for the validity of the last procedure. PMID:24992989

  17. Au(I)-catalyzed efficient synthesis of functionalized bicyclo[3.2.0]heptanes.

    PubMed

    Li, Guotao; Huang, Xiaogen; Zhang, Liming

    2008-06-01

    An efficient Au(I)-catalyzed synthesis of highly strained and functionalized bicyclo[3.2.0]heptanes is developed. Subsequent couplings with various nucleophiles offer additional structural features/complexity. These one-pot, three-component reactions are proposed to proceed via a key 1,3-dipolar cycloaddition between a Au carbenoid-containing carbonyl ylide and ethyl vinyl ether. PMID:18465856

  18. Luminescent Rare-earth-based Nanoparticles: A Summarized Overview of their Synthesis, Functionalization, and Applications.

    PubMed

    Escudero, Alberto; Carrillo-Carrión, Carolina; Zyuzin, Mikhail V; Parak, Wolfgang J

    2016-08-01

    Rare-earth-based nanoparticles are currently attracting wide research interest in material science, physics, chemistry, medicine, and biology due to their optical properties, their stability, and novel applications. We present in this review a summarized overview of the general and recent developments in their synthesis and functionalization. Their luminescent properties are also discussed, including the latest advances in the enhancement of their emission luminescence. Some of their more relevant and novel biomedical, analytical, and optoelectronic applications are also commented on. PMID:27573400

  19. Methanol synthesis from H2 and CO2 on a Mo6S8 cluster: a density functional study.

    PubMed

    Liu, Ping; Choi, YongMan; Yang, Yixiong; White, Michael G

    2010-03-25

    Catalytic CO(2) hydrogenation to methanol has received considerable attention as an effective way to utilize CO(2). In this paper, density functional theory was employed to investigate the methanol synthesis from CO(2) and H(2) on a Mo(6)S(8) cluster. The Mo(6)S(8) cluster is the structural building block of the Chevrel phase of molybdenum sulfide, and has a cagelike structure with an octahedral Mo(6) metallic core. Our calculations indicate that the preferred catalytic pathway for methanol synthesis on the Mo(6)S(8) cluster is very different from that of bulklike MoS(2). MoS(2) promotes the C-O scission of H(x)CO intermediates, and therefore, only hydrocarbons are produced. The lower S/Mo ratio for the cluster compared to stoichiometric MoS(2) might be expected to lead to higher activity because more low-coordinated Mo sites are available for reaction. However, our results show that the Mo(6)S(8) cluster is not as reactive as bulk MoS(2) because it is unable to break the C-O bond of H(x)CO intermediates and therefore cannot produce hydrocarbons. Yet, the Mo(6)S(8) cluster is predicted to have moderate activity for converting CO(2) and H(2) to methanol. The overall reaction pathway involves the reverse water-gas shift reaction (CO(2) + H(2) --> CO + H(2)O), followed by CO hydrogenation via HCO (CO + 2H(2) --> CH(3)OH) to form methanol. The rate-limiting step is CO hydrogenation to the HCO with a calculated barrier of +1 eV. This barrier is much lower than that calculated for a comparably sized Cu nanoparticle, which is the prototypical metal catalyst used for methanol synthesis from syngas (CO + H(2)). Both the Mo and S sites participate in the reaction with CO(2), CO, and CH(x)O preferentially binding to the Mo sites, whereas S atoms facilitate H-H bond cleavage by forming relatively strong S-H bonds. Our study reveals that the unexpected activity of the Mo(6)S(8) cluster is the result of the interplay between shifts in the Mo d-band and S p-band and its unique

  20. Towards a filtered density function approach for reactive transport in groundwater

    NASA Astrophysics Data System (ADS)

    Suciu, N.; Schüler, L.; Attinger, S.; Knabner, P.

    2016-04-01

    Evolution equations for probability density functions (PDFs) and filtered density functions (FDFs) of random species concentrations weighted by conserved scalars are formulated as Fokker-Planck equations describing stochastically equivalent processes in concentration-position spaces. This approach provides consistent numerical PDF/FDF solutions, given by the density in the concentration-position space of an ensemble of computational particles governed by the associated Itô equations. The solutions are obtained by a global random walk (GRW) algorithm, which is stable, free of numerical diffusion, and practically insensitive to the increase of the number of particles. The general FDF approach and the GRW numerical solution are illustrated for a reduced complexity problem consisting of the transport of a single scalar in groundwater. Randomness is induced by the stochastic parameterization of the hydraulic conductivity, characterized by short range correlations and small variance. The objective is to infer the statistics of the random concentration sampled at the plume center of mass, integrated over the transverse dimension of a two-dimensional spatial domain. The PDF/FDF problem can therefore be formulated in a two-dimensional domain as well, a spatial dimension and one in the concentration space. The upscaled drift and diffusion coefficients describing the PDF transport in the physical space are estimated on single-trajectories of diffusion in velocity fields with short-range correlations, owing to their self-averaging property. The mixing coefficients describing the PDF transport in concentration spaces are parameterized by the trend and the noise inferred from the statistical analysis of an ensemble of simulated concentration time series, as well as by classical mixing models. A Gaussian spatial filter applied to a Kraichnan velocity field generator is used to construct coarse-grained simulations (CGS) for FDF problems. The purposes of the CGS simulations are

  1. Synthesis, thermal stability and reactivity towards 9-aminoellipticine of double-stranded oligonucleotides containing a true abasic site.

    PubMed Central

    Bertrand, J R; Vasseur, J J; Rayner, B; Imbach, J L; Paoletti, J; Paoletti, C; Malvy, C

    1989-01-01

    A 13 mers abasic oligonucleotide was synthetized. It was therefore possible to compare thermal stability and reactivity of duplex oligonucleotides either with an apurinic/apyrimidinic site or without any lesion. An important decrease in the melting temperature appeared for duplexes with an abasic site. The chemical reaction of these modified oligonucleotides with the intercalating agent 9-aminoellipticine was studied by gel electrophoresis and by fluorescence. The formation of a Schiff base between 9-aminoellipticine and abasic sites was rapid and complete with duplexes at 11 degrees C. Schiff base related fluorescence and beta-elimination cleavage were more important with the apyrimidinic sites than with the apurinic ones. When compared to previous results obtained with the model d(TprpT) some unexpected behaviours appeared with longer and duplex oligonucleotides. For instance only partial beta-elimination cleavage was observed. It is likely that stacking parameters in the double helix play a great role in the studied reaction. Images PMID:2602153

  2. One-Pot Synthesis of Benzene-Fused Medium-Ring Ketones: Gold Catalysis-Enabled Enolate Umpolung Reactivity.

    PubMed

    Xu, Zhou; Chen, Hongyi; Wang, Zhixun; Ying, Anguo; Zhang, Liming

    2016-05-01

    Enolate umpolung reactivities offer valuable and potentially unique alternatives over the enolate counterparts for the construction of ubiquitous carbonyl compounds. We disclose here that N-alkenoxypyridinium salts, generated readily upon gold-catalyzed additions of protonated pyridine N-oxide to C-C triple bonds of unactivated terminal alkynes, display versatile enolate umpolung chemistry upon heating and react with tethered arene nucleophiles in an SN2' manner. In a synthetically efficient one-pot, two-step process, this chemistry enables expedient preparation of valuable benzo-fused seven-/eight-membered cyclic ketones, including those of O-/N-heterocycles, from easily accessible aryl-substituted linear alkyne substrates. The reaction yields can be up to 87%. PMID:27082456

  3. Reactivity Study of a Pyridyl-1-azaallylgermanium(I) Dimer: Synthesis of Heavier Ether and Ester Analogues of Germanium.

    PubMed

    Leung, Wing-Por; Chan, Yuk-Chi; So, Cheuk-Wai; Mak, Thomas C W

    2016-04-01

    The reactivity study of a pyridyl-1-azaallylgermanium(I) dimer LGe-GeL [1; L = N(SiMe3)C(Ph)C(SiMe3)(C5H4N-2)] with different stoichiometric ratios of elemental selenium and tellurium is described. The reactions of 1 with 1 equiv of selenium and tellurium afforded the first examples of heavier ether analogues of germanium, bis(germylene) selenide and telluride LGe(μ-E)GeL [E = Se (2) and Te (3)], respectively. Meanwhile, the reactions of 1 with 2 equiv of selenium and tellurium gave the heavier ester analogues LGe═E(μ-E)GeL [E = Se (4) and (5)]. All compounds have been characterized by X-ray crystallography and multinuclear NMR spectroscopy. PMID:26991426

  4. Synthesis of Ag/Pd nanoparticles via reactive micelles as templates and its application to electroless copper deposition.

    PubMed

    Yang, Chia-Cheng; Wan, Chi-Chao; Wang, Yung-Yun

    2004-11-15

    Ag/Pd nanoparticles have been synthesized with a reactive alcohol-type surfactant, sodium dodecyl sulfate (SDS), without the presence of an external reducing agent. Both UV-vis absorption spectra and X-ray diffraction patterns for the bimetallic and physical mixtures of individual nanoparticles revealed the formation of a bimetallic structure. Based on this method, an ordered 3D grapelike nanostructure was formed, possibly due to transformation of the liquid crystal phase of the micelles. Data from the energy-dispersive X-ray analysis show that the composition of bimetallic nanoparticle is approximately equal to the feeing solution. Furthermore, the Ag/Pd nanoparticles exhibit distinct catalyst for electroless copper deposition and may be a substitute for the conventional palladium system, which is expensive and unstable in operation. PMID:15464808

  5. Functional imaging of emotion reactivity in opiate-dependent borderline personality disorder.

    PubMed

    Smoski, Moria J; Salsman, Nicholas; Wang, Lihong; Smith, Veronica; Lynch, Thomas R; Dager, Stephen R; LaBar, Kevin S; Linehan, Marsha M

    2011-07-01

    Opiate dependence (OD) and borderline personality disorder (BPD), separately and together, are significant public health problems with poor treatment outcomes. BPD is associated with difficulties in emotion regulation, and brain-imaging studies in BPD individuals indicate differential activation in prefrontal cingulate cortices and their interactions with limbic regions. Likewise, a similar network is implicated in drug cue responsivity in substance abusers. The present, preliminary study used functional MRI to examine activation of this network in comorbid OD/BPD participants when engaged in an "oddball" task that required attention to a target in the context of emotionally negative distractors. Twelve male OD/BPD participants and 12 male healthy controls participated. All OD/BPD participants were taking the opiate replacement medication Suboxone, and a subset of participants was positive for substances of abuse on scan day. Relative to controls, OD/BPD participants demonstrated reduced activation to negative stimuli in the amygdala and anterior cingulate. Unlike previous studies that demonstrated hyperresponsivity in neural regions associated with affective processing in individuals with BPD versus healthy controls, comorbid OD/BPD participants were hyporesponsive to emotional cues. Future studies that also include BPD-only and OD-only groups are necessary to help clarify the individual and potentially synergistic effects of these two conditions. PMID:22448769

  6. From Synthesis to Function via Iterative Assembly of MIDA Boronate Building Blocks

    PubMed Central

    Li, Junqi; Grillo, Anthony S.; Burke, Martin D.

    2015-01-01

    Small molecules can powerfully benefit society, but the study and optimization of their function is too often impeded by the time-intensive and specialist-dependent process that is typically used to make them. In contrast, general and automated platforms have been developed for peptide, oligonucleotide, and increasingly oligosaccharide synthesis, resulting in on-demand access to these molecules, even for non-specialists. A more generalized and automated approach for making small molecules could similarly help shift the rate limiting step in small molecule science from synthesis to function. Targeting this goal, we have developed a fully automated and increasingly general platform for iterative coupling of boronate building blocks. Analogous to peptide synthesis, the process involves iterative coupling of haloboronic acids protected as the corresponding N-methyliminodiacetic acid (MIDA) boronates. This platform has enabled us and other groups to access many polyene natural products, including the polyene motifs in >75% of all polyene natural products. It further allowed us to derivatize and thereby understand the powerful but also highly toxic antifungal natural product amphotericin B, which has led to the development of less toxic derivatives currently under evaluation as drug candidates. We also discovered a stereocontrolled entry into chiral, non-racemic α-boryl aldehydes, which are versatile intermediates for the synthesis of many Csp3 boronate building blocks that are otherwise difficult to access. We have also expanded the scope of the platform to include Csp3-rich, polycyclic molecules using a linear-to-cyclized strategy, in which Csp3 boronate building blocks are iteratively assembled into linear precursors that are then cyclized into the cyclic frameworks found in many natural products and natural product-like structures. Enabled by the serendipitous discovery of a catch-and-release protocol for generally purifying MIDA boronate intermediates, the platform

  7. One-Pot Synthesis of Aza-Diketopiperazines Enabled by Controlled Reactivity of N-Isocyanate Precursors.

    PubMed

    Ivanovich, Ryan A; Vincent-Rocan, Jean-François; Elkaeed, Eslam B; Beauchemin, André M

    2015-10-01

    A one-pot sequence for the synthesis of aza-diketopiperazines is reported, involving carbazate acylation with chloroacetyl chloride, SN2 with a primary amine, N-isocyanate formation, and cyclization. Nitrogen-substituted isocyanates (N-isocyanates) are a rare class of amphoteric isocyanate with high, but severely underdeveloped synthetic potential. This approach highlights that βN-acyl carbazates can act as blocked (masked) N-isocyanates, thus allowing a challenging intermolecular SN2 reaction of a primary amine to proceed while the N-isocyanate is "protected", and then cyclization once it is unmasked. Control experiments show that the alternate pathway--N-isocyanate substitution and then cyclization by an intramolecular SN2 reaction--is not operating. PMID:26394075

  8. Lipid Peroxidation-Derived Reactive Aldehydes Directly and Differentially Impair Spinal Cord and Brain Mitochondrial Function

    PubMed Central

    Vaishnav, Radhika A.; Singh, Indrapal N.; Miller, Darren M.

    2010-01-01

    Abstract Mitochondrial bioenergetic dysfunction in traumatic spinal cord and brain injury is associated with post-traumatic free radical–mediated oxidative damage to proteins and lipids. Lipid peroxidation by-products, such as 4-hydroxy-2-nonenal and acrolein, can form adducts with proteins and exacerbate the effects of direct free radical–induced protein oxidation. The aim of the present investigation was to determine and compare the direct contribution of 4-hydroxy-2-nonenal and acrolein to spinal cord and brain mitochondrial dysfunction. Ficoll gradient–isolated mitochondria from normal rat spinal cords and brains were treated with carefully selected doses of 4-hydroxy-2-nonenal or acrolein, followed by measurement of complex I– and complex II–driven respiratory rates. Both compounds were potent inhibitors of mitochondrial respiration in a dose-dependent manner. 4-Hydroxy-2-nonenal significantly compromised spinal cord mitochondrial respiration at a 0.1-μM concentration, whereas 10-fold greater concentrations produced a similar effect in brain. Acrolein was more potent than 4-hydroxy-2-nonenal, significantly decreasing spinal cord and brain mitochondrial respiration at 0.01 μM and 0.1 μM concentrations, respectively. The results of this study show that 4-hydroxy-2-nonenal and acrolein can directly and differentially impair spinal cord and brain mitochondrial function, and that the targets for the toxic effects of aldehydes appear to include pyruvate dehydrogenase and complex I–associated proteins. Furthermore, they suggest that protein modification by these lipid peroxidation products may directly contribute to post-traumatic mitochondrial damage, with spinal cord mitochondria showing a greater sensitivity than those in brain. PMID:20392143

  9. Heteropolyacid-functionalized aluminum 2-aminoterephthalate metal-organic frameworks as reactive aldehyde sorbents and catalysts.

    PubMed

    Bromberg, Lev; Su, Xiao; Hatton, T Alan

    2013-06-26

    Porous materials based on aluminum(III) 2-aminoterephthalate metal organic frameworks (MOFs NH2MIL101(Al) and NH2MIL53(Al)) and their composites with phosphotungstic acid (PTA) were studied as sorbents of saturated vapors of acetaldehyde, acrolein, and butyraldehyde. MOF functionalization by PTA impregnation from aqueous/methanol solutions resulted in MOF with the original crystal topology with the presence of an ordered PTA phase in the MOF/PTA composite. The MOF/PTA composites contained 29-32 wt % PTA and were stable against loss of PTA through leaching to the aqueous/organic solvent solutions. The MOF and MOF/PTA materials exhibited equilibrium uptake of acetaldehyde from its saturated vapor phase exceeding 50 and 600 wt %, respectively, at 25 °C. The acetaldehyde vapor uptake occurs through the vapor condensation, pore-filling mechanism with simultaneous conversion of acetaldehyde to crotonaldehyde and higher-molecular-weight compounds resulting from repeated aldol condensation. The products of aldehyde condensation and polymerization were identified by MALDI-TOF and electrospray mass spectrometry. The kinetics of the MOF- and MOF/PTA-catalyzed aldol condensation of acetaldehyde were studied in water-acetonitrile mixtures. The aldol condensation kinetics in MOF suspensions were rapid and pseudo-first-order. The apparent second-order rate constants for the aldol condensation catalyzed by MOF/PTA were estimated to be 5 × 10(-4) to 1.5 × 10(-3) M(-1)s(-1), which are higher than those reported in the case of homogeneous catalysis by amino acids or sulfuric acid. MOF and MOF/PTA materials are efficient heterogeneous catalysts for the aldehyde self-condensation in aqueous-organic media. PMID:23673368

  10. Asymmetric Total Synthesis of Propindilactone G, Part 2: Enantioselective Construction of the Fully Functionalized BCDE Ring System.

    PubMed

    Zhang, Jia-Jun; You, Lin; Wang, Yue-Fan; Li, Yuan-He; Liang, Xin-Ting; Zhang, Bo; Yang, Shou-Liang; Su, Qi; Chen, Jia-Hua; Yang, Zhen

    2016-05-01

    The enantioselective synthesis of the fully functionalized BCDE tetracyclic ring system of propindilactone G (A) is reported. Several synthetic methods were developed and applied to achieve this goal, including: 1) an asymmetric Diels-Alder reaction in the presence of Hayashi's catalyst for the synthesis of optically pure key intermediate 3; 2) an intramolecular Pauson-Khand reaction (PKR) for the stereoselective synthesis of the BCDE ring with an all-carbon chiral quaternary center at the C13 position by using the TMS-substituted acetylene as the substrate; and 3) Pd-catalyzed reductive hydrogenolysis for the stereoselective synthesis of the fully functionalized BCDE tetracyclic ring system. The chemistry developed herein provided a greater understanding of the total synthesis propindilactone G (A) and its analogues. PMID:26991420

  11. Biocompatible polyurethane/thiacalix[4]arenes functionalized Fe3O4 magnetic nanocomposites: Synthesis and properties.

    PubMed

    Mohammadi, Abbas; Barikani, Mehdi; Lakouraj, Moslem Mansour

    2016-09-01

    In this study, a series of magnetic polyurethane/Fe3O4 elastomer nanocomposites were prepared by covalently embedding novel thiacalix[4]arenes (TC4As) functionalized Fe3O4 nanoparticles (TC4As-Fe3O4) which contain macrocycles with reactive hydroxyl groups. Surface functionalization of Fe3O4 nanoparticles with TC4As macrocycles as unique reactive surface modifier not only gives specific characteristics to Fe3O4 nanoparticles but also improves the interphase interaction between nanoparticles and the polyurethane matrices through covalent attachment of polymer chains to nanoparticle surfaces. The novel synthesized TC4As-Fe3O4 nanoparticles were characterized by FTIR, XRD, TGA, VSM and SEM analysis. Furthermore, the effect of functionalization of Fe3O4 nanoparticles on the various properties of resulting nanocomposites was studied by XRD, TGA, DMTA, SEM, and a universal tensile tester. It was found that the functionalization of nanoparticles with TC4As affords better mechanical and thermal properties to polyurethane nanocomposites in comparison with unmodified nanoparticles. The SEM analysis showed finer dispersion of TC4As-Fe3O4 nanoparticles than unmodified Fe3O4 nanoparticles within the polyurethane matrices, which arising from formation of covalent bonding between TC4As functionalized Fe3O4 nanoparticles and polyurethane matrices. Moreover, the investigation of in vitro biocompatibility of novel nanocomposites showed that these samples are excellent candidate for biomedical use. PMID:27207044

  12. Synthesis and non-covalent functionalization of carbon nanotubes rings: new nanomaterials with lectin affinity

    NASA Astrophysics Data System (ADS)

    Assali, Mohyeddin; Pernía Leal, Manuel; Fernández, Inmaculada; Khiar, Noureddine

    2013-03-01

    We present a mild and practical carbon nanotubes rings (CNRs) synthesis from non-covalent functionalized and water-soluble linear single-wall carbon nanotubes. The hemi-micellar-supramolecular self-organization of lactose-based glycolipid 1 on the ring surface, followed by photo-polymerization of the diacetylenic function triggered by UV light afforded the first water-soluble and biocompatible CNRs. The obtained donut-like nanoconstructs expose a high density of lactose moieties on their surface, and are able to engage specific interactions with Arachis hypogea lectin similar to glycoconjugates on the cell membrane.

  13. Polymer/organosilica nanocomposites based on polyimide with benzimidazole linkages and reactive organoclay containing isoleucine amino acid: Synthesis, characterization and morphology properties

    SciTech Connect

    Mallakpour, Shadpour; Dinari, Mohammad

    2012-09-15

    Highlights: ► A reactive organoclay was formed using L-isoleucine amino acid as a swelling agent. ► Polyimide was synthesized from benzimidazole diamine and pyromellitic dianhydride. ► Imide and benzimidazole groups assured the thermal stability of the nanocomposites. ► Nanocomposite films were prepared by an in situ polymerization reaction. ► The TEM micrographs of nanocomposites revealed well-exfoliated structures. -- Abstract: Polyimide–silica nanocomposites are attractive hybrid architectures that possess excellent mechanical, thermal and chemical properties. But, the dispersion of inorganic domains in the polymer matrix and the compatibility between the organic and inorganic phases are critical factors in these hybrid systems. In this investigation, a reactive organoclay was prepared via ion exchange reaction between protonated form of difunctional L-isoleucine amino acid as a swelling agent and Cloisite Na{sup +} montmorillonite. Amine functional groups of this swelling agent formed an ionic bond with the negatively charged silicates, whereas the remaining acid functional groups were available for further interaction with polymer chains. Then organo-soluble polyimide (PI) have been successfully synthesized from the reaction of 2-(3,5-diaminophenyl)-benzimidazole and pyromellitic dianhydride in N,N-dimethylacetamide. Finally, PI/organoclay nanocomposite films enclosing 1%, 3%, 5%, 7% and 10% of synthesized organoclay were successfully prepared by an in situ polymerization reaction through thermal imidization. The synthesized hybrid materials were subsequently characterized by Fourier transform infrared spectroscopy, X-ray diffraction, electron microscopy, and thermogravimetric analysis techniques. The PI/organoclay nanocomposite films have good optical transparencies and the mechanical properties were substantially improved by the incorporation of the reactive organoclay.

  14. Activity-driven local ATP synthesis is required for synaptic function

    PubMed Central

    Rangaraju, Vidhya; Calloway, Nathaniel; Ryan, Timothy A.

    2014-01-01

    Summary Cognitive function is tightly related to metabolic state but the locus of this control is not well understood. Synapses are thought to present large ATP demands however it is unclear how fuel availability and electrical activity impact synaptic ATP levels, and how ATP availability controls synaptic function. We developed a quantitative genetically-encoded optical reporter of presynaptic ATP, Syn-ATP, and find that electrical activity imposes large metabolic demands that are met via activity-driven control of both glycolysis and mitochondrial function. We discovered that the primary source of activity-driven metabolic demand is the synaptic vesicle cycle. In metabolically intact synapses, activity-driven ATP synthesis is well matched to the energetic needs of synaptic function which at steady state results in ~ 106 free ATPs per nerve terminal. Despite this large reservoir of ATP we find that several key aspects of presynaptic function are severely impaired following even brief interruptions in activity-stimulated ATP synthesis. PMID:24529383

  15. Synthesis, Structure, and Reactivities of Iminosulfane- and Phosphane-Stabilized Carbones Exhibiting Four-Electron Donor Ability.

    PubMed

    Morosaki, Tomohito; Wang, Wei-Wei; Nagase, Shigeru; Fujii, Takayoshi

    2015-10-19

    Iminosulfane(phosphane)carbon(0) derivatives (iSPCs; Ar3 P→C←SPh2 (NMe); Ar=Ph (1), 4-MeOC6 H4 (2), 4-(Me2 N)C6 H4 (3)) have been successfully synthesized and the molecular structure of 3 characterized. Carbone 3 is the first thermally and hydrolytically stable carbone stabilized by phosphorus and sulfur ligands. DFT calculations reveal the electronic structures of 1-3, which have two lone pairs of electrons at the carbon center. First and second proton affinity values are theoretically calculated to be in the range of 286.8-301.1 and 189.6-208.3 kcal mol(-1) , respectively. Cyclic voltammetry measurements reveal that the HOMO energy levels follow the order of 3>2>1 and the HOMO of 3 is at a higher energy than those of bis(chalcogenane)carbon(0) (BChCs). The reactivities of these lone pairs of electrons are demonstrated by the C-diaurated and C-proton-aurated complexes. These results are the first experimental evidence of phosphorus- and sulfur-stabilized carbones behaving as four-electron donors. In addition, the reaction of hydrochloric salts of the carbones with Ag2 O gives the corresponding Ag(I) complexes. The resulting silver(I) carbone complexes can be used as carbone transfer agents. This synthetic protocol can also be used for moisture-sensitive carbone species. PMID:26471447

  16. Functionalization of SBA-15 mesoporous silica by Cu-phosphonate units: Probing of synthesis route

    SciTech Connect

    Laskowski, Lukasz; Laskowska, Magdalena

    2014-12-15

    Mesoporous silica SBA-15 containing propyl-copper phosphonate units was investigated. The structure of mesoporous samples was tested by N{sub 2} isothermal sorption (BET and BHJ analysis), TEM microscopy and X-Ray scattering. Quantitative analysis EDX has given information about proportions between component atoms in the sample. Quantitative elemental analysis has been carried out to support EDX. To examine bounding between copper atoms and phosphonic units the Raman spectroscopy was carried out. As a support of Raman scattering, the theoretical calculations were made based on density functional theory, with the B3LYP method. By comparison of the calculated vibrational spectra of the molecule with experimental results, distribution of the active units inside silica matrix has been determined. - Graphical abstract: The present study is devoted to mesoporous silica SBA-15 containing propyl-copper phosphonate units. The species were investigated to confirm of synthesis procedure correctness by the micro-Raman technique combined with DFT numerical simulations. Complementary research was carried out to test the structure of mesoporous samples. - Highlights: • SBA-15 silica functionalized with propyl-copper phosphonate units was synthesized. • Synthesis efficiency probed by Raman study supported with DFT simulations. • Homogenous distribution of active units was proved. • Synthesis route enables precise control of distance between copper ions.

  17. A general and highly regioselective synthesis approach to multi-functionalized organoimido derivatives of Polyoxometalates

    NASA Astrophysics Data System (ADS)

    Huang, Yichao; Zhang, Jiangwei; Hao, Jian; Wei, Yongge

    2016-04-01

    Organoimidoylization of Polyoxometalates (POMs) can dramatically modify the electronic structures of POMs and gives rise to novel “value-adding” properties of the POMs for promising material applications including photo-electronic transformation and catalysis. To date, the preparation of multi-functionalized organoimido derivatives of POMs is generally conducted under strict condition and is time-consuming with limited yields. Herein, a series of regioselective polyorganoimido derivatives of POMs, ocatant- [Mo6O13(NAr)3(μ2-NAr)3]2‑ (Ar = phenyl (1), p-methoxyphenyl (2) and p-ethylphenyl (3)), were synthesized with high selectivity and in good yields via a general and highly regioselective synthesis method, called as the one-octant synthesis protocol. The reaction was monitored by ESI-MS and the as-prepared products were studied by ESI-MS, IR, UV-Vis, EA, 1HNMR, single crystal XRD analysis and DFT calculations. The one-octant synthesis protocol here may serve as an idea method to design novel nanoscale POM-based organic-inorganic multi-functional hybrids.

  18. A general and highly regioselective synthesis approach to multi-functionalized organoimido derivatives of Polyoxometalates

    PubMed Central

    Huang, Yichao; Zhang, Jiangwei; Hao, Jian; Wei, Yongge

    2016-01-01

    Organoimidoylization of Polyoxometalates (POMs) can dramatically modify the electronic structures of POMs and gives rise to novel “value-adding” properties of the POMs for promising material applications including photo-electronic transformation and catalysis. To date, the preparation of multi-functionalized organoimido derivatives of POMs is generally conducted under strict condition and is time-consuming with limited yields. Herein, a series of regioselective polyorganoimido derivatives of POMs, ocatant- [Mo6O13(NAr)3(μ2-NAr)3]2− (Ar = phenyl (1), p-methoxyphenyl (2) and p-ethylphenyl (3)), were synthesized with high selectivity and in good yields via a general and highly regioselective synthesis method, called as the one-octant synthesis protocol. The reaction was monitored by ESI-MS and the as-prepared products were studied by ESI-MS, IR, UV-Vis, EA, 1HNMR, single crystal XRD analysis and DFT calculations. The one-octant synthesis protocol here may serve as an idea method to design novel nanoscale POM-based organic-inorganic multi-functional hybrids. PMID:27108955

  19. Asymmetric Synthesis, Structure, and Reactivity of Unexpectedly Stable Spiroepoxy-β-Lactones Including Facile Conversion to Tetronic Acids: Application to (+)-Maculalactone A

    PubMed Central

    Duffy, Richard J.; Morris, Kay A.; Vallakati, Ravikrishna; Zhang, Wei; Romo, Daniel

    2009-01-01

    A novel class of small spirocyclic heterocycles, spiroepoxy-β-lactones (1,4-dioxaspiro[2.3]-hexan-5-ones), is described that exhibit a number of interesting reactivity patterns. These spiroheterocycles, including an optically active series, are readily synthesized by epoxidation of ketene dimers (4-alkylidene-2-oxetanones) available from homo- or heteroketene dimerization. An analysis of bond lengths in these systems by X-ray crystallography and comparison to data for known spirocycles and those determined computationally, suggest that anomeric effects in these systems may be more pronounced due to their rigidity and may contribute to their surprising stability. The synthetic utility of spiroepoxy-β-lactones was explored and one facile rearrangement identified under several conditions provides a 3-step route from acid chlorides to optically active tetronic acids, ubiquitous heterocycles in bioactive natural products. The addition of various nucleophiles to these spirocycles leads primarily to addition at C5 and C2. The utility of an optically active spiroepoxy-β-lactone was demonstrated in the concise, enantioselective synthesis of the anti-fouling agent, (+)-maculalactone A, which proceeds in 5 steps from hydrocinnamoyl chloride by way of a tetronic acid intermediate. PMID:19453152

  20. Asymmetric synthesis, structure, and reactivity of unexpectedly stable spiroepoxy-beta-lactones including facile conversion to tetronic acids: application to (+)-maculalactone A.

    PubMed

    Duffy, Richard J; Morris, Kay A; Vallakati, Ravikrishna; Zhang, Wei; Romo, Daniel

    2009-07-01

    A novel class of small spirocyclic heterocycles, spiroepoxy-beta-lactones (1,4-dioxaspiro[2.3]-hexan-5-ones), is described that exhibit a number of interesting reactivity patterns. These spiroheterocycles, including an optically active series, are readily synthesized by epoxidation of ketene dimers (4-alkylidene-2-oxetanones) available from homo- or heteroketene dimerization. An analysis of bond lengths in these systems by X-ray crystallography and comparison to data for known spirocycles and those determined computationally suggest that anomeric effects in these systems may be more pronounced due to their rigidity and may contribute to their surprising stability. The synthetic utility of spiroepoxy-beta-lactones was explored, and one facile rearrangement identified under several conditions provides a three-step route from acid chlorides to optically active tetronic acids, ubiquitous heterocycles in bioactive natural products. The addition of various nucleophiles to these spirocycles leads primarily to addition at C5 and C2. The utility of an optically active spiroepoxy-beta-lactone was demonstrated in the concise, enantioselective synthesis of the antifouling agent, (+)-maculalactone A, which proceeds in five steps from hydrocinnamoyl chloride by way of a tetronic acid intermediate. PMID:19453152

  1. Sulfide Oxidation by O2: Synthesis, Structure and Reactivity of Novel Sulfide-Incorporated Fe(II) Bis(imino)pyridine Complexes

    PubMed Central

    Widger, Leland R.; Siegler, Maxime A.

    2013-01-01

    The unsymmetrical iron(II) bis(imino)pyridine complexes [FeII(LN3SMe)(H2O)3](OTf)2 (1), and [FeII(LN3SMe)Cl2] (2) were synthesized and their reactivity with O2 was examined. Complexes 1 and 2 were characterized by single crystal X-ray crystallography, LDI-MS, 1H-NMR and elemental analysis. The LN3SMe ligand was designed to incorporate a single sulfide donor and relies on the bis(imino)pyridine scaffold. This scaffold was selected for its ease of synthesis and its well-precedented ability to stabilize Fe(II) ions. Complexes 1 and 2 ware prepared via a metal-assisted template reaction from the unsymmetrical pyridyl ketone precursor 2-(O=CMe)-6-(2,6-(iPr2-C6H3N=CMe)-C5H3N. Reaction of 1 with O2 was shown to afford the S-oxygenated sulfoxide complex [Fe(LN3S(O)Me)(OTf)]2+(3), whereas compound 2, under the same reaction conditions, afforded the corresponding sulfone complex [Fe(LN3S(O2)Me)Cl]2+ (4). PMID:23878411

  2. Self-Assembly Synthesis and Functionalization of Mesoporous Carbon Materials for Energy-Related Applications

    SciTech Connect

    Dai, Sheng

    2009-01-01

    Self-Assembly Synthesis and Functionalization of Mesoporous Carbon Materials for Energy-Related Applications Sheng Dai Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6201 Porous carbon materials are ubiquitous in separation, catalysis, and energy storage/conversion. Well-defined mesoporous carbon materials are essential for a number of the aforementioned applications. Ordered porous carbon materials have previously been synthesized using colloidal crystals and presynthesized mesoporous silicas as hard templates. The mesostructures of these carbon materials are connected via ultrathin carbon filaments and can readily collapse under high-temperature conditions. Furthermore, these hard-template methodologies are extremely difficult to adapt to the fabrication of large-scale ordered nanoporous films or monoliths with controlled pore orientations. More recently, my research group at the Oak Ridge National Laboratory and several others around the world have developed alternative methods for synthesis of highly ordered mesoporous carbons via self-assembly. Unlike the mesoporous carbons synthesized via hard-template methods, these mesoporous carbons are highly stable and can be graphitized at high temperature (>2800ᵒC) without significant loss of mesopores. The surface properties of these materials can be further tailored via surface functionalization. This seminar will provide an overview and perspective of the mesoporous carbon materials derived from soft-template synthesis and surface functionalization and their fascinating applications in catalysis, separation, and energy storage devices. Dr. Sheng Dai got his B.S. and M.S. degrees from Zhejiang University in 1984 and 1986, respectively. He subsequently obtained a PhD degree from the University of Tennessee, Knoxville in 1990. He is currently a Senior Staff Scientist and Group Leader of Nanomaterials Group and Center for Nanophase Materials Science of Oak Ridge National Laboratory and

  3. Carbonated hydroxyapatite starting from calcite and different orthophosphates under moderate hydrothermal conditions: Synthesis and surface reactivity in simulated body fluid

    SciTech Connect

    Pham Minh, Doan Nzihou, Ange; Sharrock, Patrick

    2014-12-15

    Highlights: • Carbonated apatite (CAP) could be easily obtained from CaCO{sub 3} and orthophosphates. • Highest CaCO{sub 3} dissolution and apatitic carbonate content were obtained with H{sub 3}PO{sub 4}. • A-B-type CAP was formed. • The synthesized CAP was thermally stable up to 1000 °C. • This CAP showed high biomineralization activity before and after thermal treatment. - Abstract: The one-step synthesis of carbonated hydroxyapatite (CAP) using calcite and different orthophosphates was investigated in a closed batch reactor. Only orthophosphoric acid could lead to the complete decomposition of calcite particles, when the reaction temperature was set at 80 °C. On the other hand, the reaction time and the dilution of the initial calcite suspension had no significant influence on the formation of the solid products. CAP was formed as the main crystalline calcium phosphate with the carbonate content in the range of 4.2–4.6 wt.%. The thermal decarbonation of the synthesized CAP started at 750 °C but it was only significant at 1000 °C under air atmosphere. This thermal decarbonation was total at 1200 °C or above. All CAP samples and products following thermal treatments were found bioactive in the test using simulated body fluid (SBF) solution.

  4. Synthesis and reactivity of 1,2-bis(chlorodimethylgermyl)carborane and 1,2-bis(bromodimethylstannyl)carborane.

    PubMed

    Lee, Chongchan; Lee, Junghyun; Lee, Soon W; Kang, Sang Ook; Ko, Jaejung

    2002-06-17

    The 1,2-bis(chlorogermyl)- (1) and 1,2-bis(bromostannyl)carborane (2) have been prepared by the reaction of dilithio-o-carborane with Me(2)GeCl(2) and Me(2)SnBr(2), respectively. Compounds 1 and 2 are found to be good precursors for the synthesis of a variety of cyclization compounds. The Wurtz-type coupling reaction of 1 and 2 using sodium metal afforded the four-membered digerma compound 3 and five-membered tristanna compound 4, respectively. The salt elimination reactions of 1 and 2 using Li(2)N(t)Bu and Li(2)PC(6)H(5) afforded the cyclic products [structure: see text]. The 1,2-bis(dimethylgermyl)carborane 9 and 1,2-bis(dimethylstannyl)carborane 10 were prepared by the reaction of 1 and 2 with sodium cyanoborohydride. The reactions of 9 and 10 with Pd(PPh(3))(4) afforded the bis(germyl)palladium 12 and bis(stannyl)palladium 13 complexes, respectively. PMID:12054986

  5. Enantioselective Synthesis of (−)-Maoecrystal V by Enantiodetermining C–H Functionalization

    PubMed Central

    2015-01-01

    The evolution of a program directed at the enantioselective total synthesis of maoecrystal V, a highly modified ent-kauranoid, is described. An early stage chiral auxiliary-directed asymmetric C–H functionalization for the construction of a key benzofuran intermediate enabled the first asymmetric synthesis of the natural enantiomer of maoecrystal V, confirming the assigned stereochemistry. A divergent course of the central intramolecular Diels–Alder reaction, which is dependent on the nature of the dienophile, initially led to the development of an unanticipated and previously unknown isomer of maoecrystal V, which we named maoecrystal ZG. In light of the reported selective and potent cytotoxic activity of maoecrystal V, the cytotoxic properties of maoecrystal ZG were also investigated. PMID:25409033

  6. Small-Molecule Library Synthesis on Silicon-Functionalized SynPhase Lanterns

    PubMed Central

    Duvall, Jeremy R.; Vrcic, Anita; Marcaurelle, Lisa A.

    2011-01-01

    Silicon-functionalized SynPhase Lanterns are useful for the combinatorial synthesis of small-molecule libraries. Lanterns bearing an alkyl tethered diisopropylarylsilane are first activated with triflic acid to afford the corresponding diisopropylsilyl triflate, which is then reacted with a library scaffold bearing a free alcohol. Once the scaffold has been loaded onto the solid phase, a variety of transformations can be run, including amine cappings, cross-coupling reactions and amide bond formation. These reactions can yield a variety of products when run sequentially using split-pool synthesis strategies. Upon completion of the solid-phase transformations, the small-molecules are released from the Lanterns using HF/pyridine. Using the techniques described within, libraries can be made ranging from a few compounds to >10,000 members in a highly efficient manner. PMID:22679566

  7. Mechanistic study of synthesis of gold nanoparticles using multi-functional polymer

    NASA Astrophysics Data System (ADS)

    Yu, Taekyung; Kim, Rayoung; Park, Hoseok; Yi, Jonghyup; Kim, Woo-Sik

    2014-01-01

    This Letter presents a mechanistic study of the large-scale synthesis of Au nanoparticles when using branched polyethyleneimine (BPEI) as a multi-functional reducing agent, capping agent, and stabilizer. During the synthesis, the molar ratio of BPEI/HAuCl4, reaction temperature, and pH of the reacting solution were all found to be important factors in the formation, size control, and stabilization of the Au nanoparticles. The proposed synthetic route provided a highly concentrated product of Au nanoparticles (above 40 g/L), at least 10- to 200-fold more than previous methods, and can be readily applied to a large-scale process due to its simple and mild reaction conditions.

  8. Small-Molecule Library Synthesis on Silicon-Functionalized SynPhase Lanterns.

    PubMed

    Duvall, Jeremy R; Vrcic, Anita; Marcaurelle, Lisa A

    2010-01-01

    Silicon-functionalized SynPhase Lanterns are useful for the combinatorial synthesis of small-molecule libraries. Lanterns bearing an alkyl tethered diisopropylarylsilane are first activated with triflic acid to afford the corresponding diisopropylsilyl triflate, which is then reacted with a library scaffold bearing a free alcohol. Once the scaffold has been loaded onto the solid phase, a variety of transformations can be run, including amine cappings, cross-coupling reactions and amide bond formation. These reactions can yield a variety of products when run sequentially using split-pool synthesis strategies. Upon completion of the solid-phase transformations, the small-molecules are released from the Lanterns using HF/pyridine. Using the techniques described within, libraries can be made ranging from a few compounds to >10,000 members in a highly efficient manner. PMID:22679566

  9. Halogen bonding from a hard and soft acids and bases perspective: investigation by using density functional theory reactivity indices.

    PubMed

    Pinter, Balazs; Nagels, Nick; Herrebout, Wouter A; De Proft, Frank

    2013-01-01

    Halogen bonds between the trifluoromethyl halides CF(3)Cl, CF(3)Br and CF(3)I, and dimethyl ether, dimethyl sulfide, trimethylamine and trimethyl phosphine were investigated using Pearson's hard and soft acids and bases (HSAB) concept with conceptual DFT reactivity indices, the Ziegler-Rauk-type energy-decomposition analysis, the natural orbital for chemical valence (NOCV) framework and the non-covalent interaction (NCI) index. It is found that the relative importance of electrostatic and orbital (charge transfer) interactions varies as a function of both the donor and acceptor molecules. Hard and soft interactions were distinguished and characterised by atomic charges, electrophilicity and local softness indices. Dual-descriptor plots indicate an orbital σ hole on the halogen similar to the electrostatic σ hole manifested in the molecular electrostatic potential. The predicted high halogen-bond-acceptor affinity of N-heterocyclic carbenes was evidenced in the highest complexation energy for the hitherto unknown CF(3) I·NHC complex. The dominant NOCV orbital represents an electron-density deformation according to a n→σ*-type interaction. The characteristic signal found in the reduced density gradient versus electron-density diagram corresponds to the non-covalent interaction between contact atoms in the NCI plots, which is the manifestation of halogen bonding within the NCI theory. The unexpected C-X bond strengthening observed in several cases was rationalised within the molecular orbital framework. PMID:23169478

  10. Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets.

    PubMed

    Lee, Ben H; Mohr, Claudia; Lopez-Hilfiker, Felipe D; Lutz, Anna; Hallquist, Mattias; Lee, Lance; Romer, Paul; Cohen, Ronald C; Iyer, Siddharth; Kurtén, Theo; Hu, Weiwei; Day, Douglas A; Campuzano-Jost, Pedro; Jimenez, Jose L; Xu, Lu; Ng, Nga Lee; Guo, Hongyu; Weber, Rodney J; Wild, Robert J; Brown, Steven S; Koss, Abigail; de Gouw, Joost; Olson, Kevin; Goldstein, Allen H; Seco, Roger; Kim, Saewung; McAvey, Kevin; Shepson, Paul B; Starn, Tim; Baumann, Karsten; Edgerton, Eric S; Liu, Jiumeng; Shilling, John E; Miller, David O; Brune, William; Schobesberger, Siegfried; D'Ambro, Emma L; Thornton, Joel A

    2016-02-01

    Speciated particle-phase organic nitrates (pONs) were quantified using online chemical ionization MS during June and July of 2013 in rural Alabama as part of the Southern Oxidant and Aerosol Study. A large fraction of pONs is highly functionalized, possessing between six and eight oxygen atoms within each carbon number group, and is not the common first generation alkyl nitrates previously reported. Using calibrations for isoprene hydroxynitrates and the measured molecular compositions, we estimate that pONs account for 3% and 8% of total submicrometer organic aerosol mass, on average, during the day and night, respectively. Each of the isoprene- and monoterpenes-derived groups exhibited a strong diel trend consistent with the emission patterns of likely biogenic hydrocarbon precursors. An observationally constrained diel box model can replicate the observed pON assuming that pONs (i) are produced in the gas phase and rapidly establish gas-particle equilibrium and (ii) have a short particle-phase lifetime (∼2-4 h). Such dynamic behavior has significant implications for the production and phase partitioning of pONs, organic aerosol mass, and reactive nitrogen speciation in a forested environment. PMID:26811465

  11. Nucleophilic Reactivity of a Nitride-Bridged Diuranium(IV) Complex: CO2 and CS2 Functionalization.

    PubMed

    Falcone, Marta; Chatelain, Lucile; Mazzanti, Marinella

    2016-03-14

    Thermolysis of the nitride-bridged diuranium(IV) complex Cs{(μ-N)[U(OSi(O(t) Bu)3 )3 ]2 } (1) showed that the bridging nitride behaves as a strong nucleophile, promoting N-C bond formation by siloxide ligand fragmentation to yield an imido-bridged siloxide/silanediolate diuranium(IV) complex, Cs{(μ-N(t) Bu)(μ-O2 Si(O(t) Bu)2 )U2 (OSi(O(t) Bu)3 )5 }. Complex 1 displayed reactivity towards CS2 and CO2 at room temperature that is unprecedented in f-element chemistry, affording diverse N-functionalized products depending on the reaction stoichiometry. The reaction of 1 with two equivalents of CS2 yielded the thiocyanate/thiocarbonate complex Cs{(μ-NCS)(μ-CS3 )[U(OSi(O(t) Bu)3 )3 ]2 } via a putative NCS(-) /S(2-) intermediate. The reaction of 1 with one equivalent of CO2 resulted in deoxygenation and N-C bond formation, yielding the cyanate/oxo complex Cs{(μ-NCO)(μ-O)[U(OSi(O(t) Bu)3 )3 ]2 }. Addition of excess CO2 to 1 led to the unprecedented dicarbamate product Cs{(μ-NC2 O4 )[U(OSi(O(t) Bu)3 )3 ]2 }. PMID:26914732

  12. Heart function in magnetic resonance imaging and the mesenteric artery reactivity in rats receiving lead-contaminated drinking water.

    PubMed

    Skoczynska, A; Skórka, T; Wojakowska, A; Nowacki, D; Turczyn, B; Poręba, R; Tyrankiewicz, U; Byk, K; Szuba, A

    2014-05-01

    The aim of this study was to evaluate the effect of lead (Pb)-contaminated drinking water on magnetic resonance imaging (MRI)-estimated cardiac function, vascular reactivity, and serum lipids in rats. For 3 months, male Wistar rats, aged 4-6 weeks, were given drinking water with the addition of lead acetate at a concentration of 100 ppm Pb (10 rats) or water free from Pb (8 control rats). The cardiac MRI was performed at rest and under β-adrenergic stimulation on a 4.7 T scanner using electrocardiogram-triggered gradient echo (FLASH) cine sequence. After 1-2 weeks of the MRI test, experiments were performed ex vivo. After stabilization of perfusion pressure (PP), norepinephrine at doses from 0.01 to 5.0 μg was dissolved in Krebs solution, injected in a volume of 100 μl, and next infused at a concentration of 0.5 μg/ml into the isolated mesenteric artery. In this manner, preconstricted mesenteric bed was used to determine PP changes induced by acetylcholine, given at doses from 0.05 to 5.0 μg, before and during the infusion of nitric oxide synthase inhibitor (1.0 μg/ml). At the end, dobutamine (5 mg), followed by potassium chloride (10.5 mg), was injected. Lipid levels were determined enzymatically, blood Pb level was measured by the atomic absorption spectrophotometer. This study showed that Pb impairs the left ventricular systolic and diastolic function. Pb-induced changes in response to resistance of vessels to vasoactive agents may be secondary to the reduced left ventricular ejection fraction. The high-density lipoprotein subfraction 2 (HDL2) is involved in the cardiovascular effect of Pb. PMID:23760256

  13. Recent Advances in the Synthesis and Functions of Reconfigurable Interlocked DNA Nanostructures.

    PubMed

    Lu, Chun-Hua; Cecconello, Alessandro; Willner, Itamar

    2016-04-27

    Interlocked circular DNA nanostructures, e.g., catenanes or rotaxanes, provide functional materials within the area of DNA nanotechnology. Specifically, the triggered reversible reconfiguration of the catenane or rotaxane structures provides a means to yield new DNA switches and to use them as dynamic scaffolds for controlling chemical functions and positioning functional cargoes. The synthesis of two-ring catenanes and their switchable reconfiguration by pH, metal ions, or fuel/anti-fuel stimuli are presented, and the functions of these systems, as pendulum or rotor devices or as switchable catalysts, are described. Also, the synthesis of three-, five-, and seven-ring catenanes is presented, and their switchable reconfiguration using fuel/anti-fuel strands is addressed. Implementation of the dynamically reconfigured catenane structures for the programmed organization of Au nanoparticle (NP) assemblies, which allows the plasmonic control of the fluorescence properties of Au NP/fluorophore loads associated with the scaffold, and for the operation of logic gates is discussed. Interlocked DNA rotaxanes and their different synthetic approaches are presented, and their switchable reconfiguration by means of fuel/anti-fuel strands or photonic stimuli is described. Specifically, the use of the rotaxane as a scaffold to organize Au NP assemblies, and the control of the fluorescence properties with Au NP/fluorophore hybrids loaded on the rotaxane scaffold, are introduced. The future prospectives and challenges in the field of interlocked DNA nanostructures and the possible applications are discussed. PMID:27019201

  14. Applications of Click Chemistry Reactions to the Synthesis of Functional Materials

    NASA Astrophysics Data System (ADS)

    Accurso, Adrian A.

    This body of work focuses on the production of functional materials using the most reliable carbon-hetoratom bond-forming processes available, which are widely termed "click chemistry" reactions in the literature. This focus on function is enabled by a basis in synthetic chemistry, and where appropriate, brings in techniques from the related fields of materials science and biology to address current needs in those areas. Chapter 1 concerns the in situ production of azide and alkyne-based click chemistry adhesive polymers. Screening of a library of multivalent azides and alkynes was accomplished on a custom-built highthroughput instrument and followed up on a lap-shear testing apparatus. The conductivity of composites made of the adhesive was also explored according to standard methods. The second and third chapters explore the synthesis and function of a family of related [3.3.1]-bicyclononane dichlorides, which we have termed "WCL" electrophiles, and their potential applications for surface functionalization, the synthesis of polycations, and candidate membrane disruptive compounds. The rates of consumption of dichlorides and hydrolysis of model compounds were also explored using NMR, GC-MS, and HPLC-based methods.

  15. Synthesis and Exploratory Catalysis of 3d Metals: Group-Transfer Reactions, and the Activation and Functionalization of Small Molecules Including Greenhouse Gases

    SciTech Connect

    Mindiola, Daniel J.

    2014-05-07

    Our work over the past three years has resulted in the development of electron rich and low-coordinate vanadium fragments, molecular nitrides of vanadium and parent imide systems of titanium, and the synthesis of phosphorus containing molecules of the 3d transition metal series. Likewise, with financial support from BES Division in DOE (DE-FG02-07ER15893), we now completed the full characterization of the first single molecular magnet (SMM) of Fe(III). We demonstrated that this monomeric form of Fe(III) has an unusual slow relaxation of the magnetization under zero applied field. To make matters more interesting, this system also undergoes a rare example of an intermediate to high-spin transition (an S = 3/2 to S = 5/2 transition). In 2010 we reported the synthesis of the first neutral and low-coordinate vanadium complexes having the terminal nitride functionality. We have now completed a full study to understand formation of the nitride ligand from the metastable azide precursor, and have also explored the reactivity of the nitride ligand in the context of incomplete and complete N-atom transfer. During the 2010-2013 period we also discovered a facile approach to assemble low-coordinate and low-valent vanadium(II) complexes and exploit their multielectron chemistry ranging from 1-3 electrons. Consequently, we can now access 3d ligand frameworks such as cyclo-P3 (and its corresponding radical anion), nitride radical anions and cations, low-coordinate vanadium oxo’s, and the first example of a vanadium thionitrosyl complex. A cis-divacant iron(IV) imido having some ligand centered radical has been also discovered, and we are in the process of elucidating its electronic structure (in particular the sign of zero field splitting and the origin of its magnitude), bonding and reactivity. We have also revisited some paramagnetic and classic metallocene compounds with S >1/2 ground states in order to understand their reactivity patterns and electronic structure. Lastly

  16. Facile Synthesis of Carboxylic Functionalized MFe2O4 (M = Mn, Co, Zn) Nanospheres.

    PubMed

    Xing, Ruimin; Lu, Li; Huang, Haiping; Liu, Shanhu; Niu, Jingyang

    2015-07-01

    A facile one-pot solvothermal method was developed for the synthesis of carboxylic functionalized MFe2O4 (M = Mn, Co, Zn) nanospheres. Field-emission scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectrometer, and a superconducting quantum interference device magnetometer were used to characterize the morphologies, compositions and properties of the functionalized materials. Results show that all of the products were cubic spinel structures and exhibited hierarchical sphere-like morphologies, which were composed of primary nanocrystals. The MFe2O4 present advantageous functionality and good water dispensability due to the preferential exposure of uncoordinated carboxylate groups on their respective surfaces. These properties make them ideal candidates for various important applications such as drug delivery, bioseparation, and magnetic resonance imaging. PMID:26373101

  17. Synthesis of neamine-derived pseudodisaccharides by stereo- and regio-selective functional group transformations.

    PubMed

    Pang, Li-Juan; Wang, Dan; Zhou, Jian; Zhang, Li-He; Ye, Xin-Shan

    2009-10-21

    Neamine is normally found as a core structure of aminoglycoside antibiotics. In order to understand the relationship between the antibiotic activity and the configurations of the functional groups of neamine, a series of novel neamine analogues with functional group manipulations on the 2-deoxystreptamine (2-DOS) ring or the sugar ring were designed and synthesized. The synthetic approach involved the construction of 2-DOS derivatives by catalytic Ferrier II rearrangement, stereo- and regio-selective functional group transformations, glycosyl coupling reaction, and global deprotection. Of the synthetic neamine analogues, four compounds showed comparable 16S rRNA binding affinities with neamine, whereas they displayed lower binding affinities towards 18S rRNA than neamine, implying a lower toxicity to mammals. This strategy might have applications in the chemical synthesis of other neamine derivatives and new aminoglycoside antibiotics with improved biological activities. PMID:19795065

  18. Biological sensitivity to context: I. An evolutionary-developmental theory of the origins and functions of stress reactivity.

    PubMed

    Boyce, W Thomas; Ellis, Bruce J

    2005-01-01

    Biological reactivity to psychological stressors comprises a complex, integrated, and highly conserved repertoire of central neural and peripheral neuroendocrine responses designed to prepare the organism for challenge or threat. Developmental experience plays a role, along with heritable, polygenic variation, in calibrating the response dynamics of these systems, with early adversity biasing their combined effects toward a profile of heightened or prolonged reactivity. Conventional views of such high reactivity suggest that it is an atavistic and pathogenic legacy of an evolutionary past in which threats to survival were more prevalent and severe. Recent evidence, however, indicates that (a) stress reactivity is not a unitary process, but rather incorporates counterregulatory circuits serving to modify or temper physiological arousal, and (b) the effects of high reactivity phenotypes on psychiatric and biomedical outcomes are bivalent, rather than univalent, in character, exerting both risk-augmenting and risk-protective effects in a context-dependent manner. These observations suggest that heightened stress reactivity may reflect, not simply exaggerated arousal under challenge, but rather an increased biological sensitivity to context, with potential for negative health effects under conditions of adversity and positive effects under conditions of support and protection. From an evolutionary perspective, the developmental plasticity of the stress response systems, along with their structured, context-dependent effects, suggests that these systems may constitute conditional adaptations: evolved psychobiological mechanisms that monitor specific features of childhood environments as a basis for calibrating the development of stress response systems to adaptively match those environments. Taken together, these theoretical perspectives generate a novel hypothesis: that there is a curvilinear, U-shaped relation between early exposures to adversity and the development

  19. Cell-free synthesis, functional refolding, and spectroscopic characterization of bacteriorhodopsin, an integral membrane protein.

    PubMed

    Sonar, S; Patel, N; Fischer, W; Rothschild, K J

    1993-12-21

    Bacteriorhodopsin (bR) is an integral membrane protein which functions as a light-driven proton pump in Halobacterium halobium (also known as Halobacterium salinarium). The cell-free synthesis of bR in quantities sufficient for FTIR and NMR spectroscopy and the ability to selectively isotope label bR using aminoacylated suppressor tRNAs would provide a powerful approach for studying the role of specific amino acid residues. However, no integral membrane protein has yet been expressed in a cell-free system in quantities sufficient for such biophysical studies. We report the cell-free synthesis of bacterioopsin, its purification, its refolding in polar lipids from H. halobium, and its regeneration with all-trans-retinal to yield bacteriorhodopsin in a form functionally similar to bR in purple membrane. Importantly, the yields obtained from in vitro and in vivo expression are comparable. Functionality of the cell-free expressed bR is established using static and time-resolved absorption spectroscopy and FTIR difference spectroscopy. PMID:8268152

  20. Structures and Functions of Qβ Replicase: Translation Factors beyond Protein Synthesis

    PubMed Central

    Tomita, Kozo

    2014-01-01

    Qβ replicase is a unique RNA polymerase complex, comprising Qβ virus-encoded RNA-dependent RNA polymerase (the catalytic β-subunit) and three host-derived factors: translational elongation factor (EF) -Tu, EF-Ts and ribosomal protein S1. For almost fifty years, since the isolation of Qβ replicase, there have been several unsolved, important questions about the mechanism of RNA polymerization by Qβ replicase. Especially, the detailed functions of the host factors, EF-Tu, EF-Ts, and S1, in Qβ replicase, which are all essential in the Escherichia coli (E. coli) host for protein synthesis, had remained enigmatic, due to the absence of structural information about Qβ replicase. In the last five years, the crystal structures of the core Qβ replicase, consisting of the β-subunit, EF-Tu and Ts, and those of the core Qβ replicase representing RNA polymerization, have been reported. Recently, the structure of Qβ replicase comprising the β-subunit, EF-Tu, EF-Ts and the N-terminal half of S1, which is capable of initiating Qβ RNA replication, has also been reported. In this review, based on the structures of Qβ replicase, we describe our current understanding of the alternative functions of the host translational elongation factors and ribosomal protein S1 in Qβ replicase as replication factors, beyond their established functions in protein synthesis. PMID:25184952

  1. Synthesis, Radical Reactivity, and Thermochemistry of Monomeric Cu(II) Alkoxide Complexes Relevant to Cu/Radical Alcohol Oxidation Catalysis.

    PubMed

    Porter, Thomas R; Capitao, Dany; Kaminsky, Werner; Qian, Zhaoshen; Mayer, James M

    2016-06-01

    with (t)Bu3ArO(•) gives no reaction, despite evidence that overall ligand oxidation and formation of 1/2[Tp(tBuMe)Cu(I)]2 is significantly exoergic. The origin of this lack of reactivity may be due to insufficient weakening of the alcohol α-C-H bond upon complexation to copper. PMID:27171230

  2. (Thio)urea-mediated synthesis of functionalized six-membered rings with multiple chiral centers.

    PubMed

    Koutoulogenis, Giorgos; Kaplaneris, Nikolaos; Kokotos, Christoforos G

    2016-01-01

    Organocatalysis, now running its second decade of life, is being considered one of the main tools a synthetic chemist has to perform asymmetric catalysis. In this review the synthesis of six-membered rings, that contain multiple chiral centers, either by a ring closing process or by a functionalization reaction on an already existing six-membered ring, utilizing bifunctional (thio)ureas will be summarized. Initially, the use of primary amine-thioureas as organocatalysts for the above transformation is being discussed, followed by the examples employing secondary amine-thioureas. Finally, the use of tertiary amine-thioureas and miscellaneous examples are presented. PMID:27340441

  3. (Thio)urea-mediated synthesis of functionalized six-membered rings with multiple chiral centers

    PubMed Central

    Koutoulogenis, Giorgos; Kaplaneris, Nikolaos

    2016-01-01

    Summary Organocatalysis, now running its second decade of life, is being considered one of the main tools a synthetic chemist has to perform asymmetric catalysis. In this review the synthesis of six-membered rings, that contain multiple chiral centers, either by a ring closing process or by a functionalization reaction on an already existing six-membered ring, utilizing bifunctional (thio)ureas will be summarized. Initially, the use of primary amine-thioureas as organocatalysts for the above transformation is being discussed, followed by the examples employing secondary amine-thioureas. Finally, the use of tertiary amine-thioureas and miscellaneous examples are presented. PMID:27340441

  4. Boron Nitride Nanotubes: Recent Advances in Their Synthesis, Functionalization, and Applications.

    PubMed

    Lee, Chee Huei; Bhandari, Shiva; Tiwari, Bishnu; Yapici, Nazmiye; Zhang, Dongyan; Yap, Yoke Khin

    2016-01-01

    A comprehensive overview of current research progress on boron nitride nanotubes (BNNTs) is presented in this article. Particularly, recent advancements in controlled synthesis and large-scale production of BNNTs will first be summarized. While recent success in mass production of BNNTs has opened up new opportunities to implement the appealing properties in various applications, concerns about product purity and quality still remain. Secondly, we will summarize the progress in functionalization of BNNTs, which is the necessary step for their applications. Additionally, selected potential applications in structural composites and biomedicine will be highlighted. PMID:27428947

  5. Synthesis and optical behaviour of mesoporous silica functionalized by organometallic molecules

    NASA Astrophysics Data System (ADS)

    Laskowski, L.; Kassiba, A.; Makowska-Janusik, M.; Errien, N.; Mehdi, A.; Swiatek, J.

    2011-04-01

    Mesoporous silica SBA-15 functionalized by (1,4,8,11-tetraazacyclotetradecane) cyclam groups chelating nickel ions (Ni-cyclam) were synthesized by two different approaches. Characterizations by transmission electron microscopy TEM and UV-VIS absorption spectroscopy were performed to monitor the structure and optical properties of the material with regard to the used synthesis methods. The assignment of the experimental UV-VIS absorption spectra is carried out by using the support of suitable numerical simulations based on quantum chemistry DFT codes developed on the modelled (Ni-cyclam) system as free molecule and also constrained in the pores of mesoporous silica matrices.

  6. One-Pot, Four-Step Organocatalytic Asymmetric Synthesis of Functionalized Nitrocyclopropanes.

    PubMed

    Zaghi, Anna; Bernardi, Tatiana; Bertolasi, Valerio; Bortolini, Olga; Massi, Alessandro; De Risi, Carmela

    2015-09-18

    The asymmetric synthesis of functionalized nitrocyclopropanes has been achieved by a one-pot, four-step method catalyzed by (S)-diphenylprolinol TMS ether, which joins two sequential domino reactions, namely a domino sulfa-Michael/aldol condensation of α,β-unsaturated aldehydes with 1,4-dithiane-2,5-diol, and a domino Michael/α-alkylation reaction of the derived chiral dihydrothiophenes with bromonitromethane. The title compounds were obtained in 27-45% yields, with high levels of diastereoselectivity (93:7 to 100:0 dr) and generally good enantioselectivities (up to 95:5 er). PMID:26317611

  7. Synthesis of a mononuclear, non-square-planar chromium(ii) bis(alkoxide) complex and its reactivity toward organic carbonyls and CO2.

    PubMed

    Yousif, Maryam; Cabelof, Alyssa C; Martin, Philip D; Lord, Richard L; Groysman, Stanislav

    2016-06-14

    In this paper, we report the synthesis and reactivity of a rare mononuclear chromium(ii) bis(alkoxide) complex, Cr(OR')2(THF)2, that is supported by a new bulky alkoxide ligand (OR' = di-t-butyl-(3,5-diphenylphenyl)methoxide). The complex is prepared by protonolysis of square-planar Cr(N(SiMe3)2)2(THF)2 with HOR'. X-ray structure determination disclosed that Cr(OR')2(THF)2 features a distorted seesaw geometry, in contrast to nearly all other tetra-coordinate Cr(ii) complexes, which are square-planar. The reactivity of Cr(OR')2(THF)2 with aldehydes, ketones, and carbon dioxide was investigated. Treatment of Cr(OR')2(THF)2 with two equivalents of aromatic aldehydes ArCHO (ArCHO = benzaldehyde, 4-anisaldehyde, 4-trifluorbenzaldehyde, and 2,4,6-trimethylbenzaldehyde) leads cleanly to the formation of Cr(iv) diolate complexes Cr(OR')2(O2C2H2Ar2) that were characterized by UV-vis and IR spectroscopies and elemental analysis; the representative complex Cr(OR')2(O2C2H2Ph2) was characterized by X-ray crystallography. In contrast, no reductive coupling was observed for ketones: treatment of Cr(OR')2(THF)2 with one or two equivalents of benzophenone forms invariably a single ketone adduct Cr(OR')2(OCPh2) which does not react further. QM/MM calculations suggest the steric demands prevent ketone coupling, and demonstrate that a mononuclear Cr(iii) bis-aldehyde complex with partially reduced aldehydes is sufficient for C-C bond formation. The reaction of Cr(OR')2(THF)2 with CO2 leads to the insertion of CO2 into a Cr-OR' bond, followed by complex rearrangement to form a diamagnetic dinuclear paddlewheel complex Cr2(O2COR')4(THF)2, that was characterized by NMR, UV-vis, and IR spectroscopy, and X-ray crystallography. PMID:27073074

  8. PtrABF of Poncirus trifoliata functions in dehydration tolerance by reducing stomatal density and maintaining reactive oxygen species homeostasis

    PubMed Central

    Zhang, Qinghua; Wang, Min; Hu, Jianbing; Wang, Wei; Fu, Xingzheng; Liu, Ji-Hong

    2015-01-01

    Abscisic acid-responsive element (ABRE)-binding factors (ABFs) play important roles in abiotic stress responses; however, the underlying mechanisms are poorly understood. In this study, it is reported that overexpression of Poncirus trifoliata PtrABF significantly enhanced dehydration tolerance. The transgenic lines displayed smaller stomatal apertures, reduced stomatal density/index, and lower expression levels of genes associated with stomatal development. PtrABF was found to interact with PtrICE1, a homologue of ICE1 (Inducer of CBF Expression 1) that has been shown to be critical for stomatal development. Microarray analysis revealed that a total of 70 genes were differentially expressed in the transgenic line, 42 induced and 28 repressed. At least two units of ABREs and coupling elements were present in the promoters of most of the induced genes, among which peroxidase and arginine decarboxylase were verified as bona fide targets of PtrABF. Transgenic plants exhibited higher antioxidant enzyme activities and free polyamine levels, but lower levels of reactive oxygen species (ROS) and malondialdehyde. Polyamines were revealed to be associated with ROS scavenging in the transgenic plants due to a modulation of antioxidant enzymes triggered by signalling mediated by H2O2 derived from polyamine oxidase (PAO)-mediated catabolism. Taken together, the results indicate that PtrABF functions positively in dehydration tolerance by limiting water loss through its influence on stomatal movement or formation and maintaining ROS homeostasis via modulation of antioxidant enzymes and polyamines through transcriptional regulation of relevant target genes. PMID:26116025

  9. PtrABF of Poncirus trifoliata functions in dehydration tolerance by reducing stomatal density and maintaining reactive oxygen species homeostasis.

    PubMed

    Zhang, Qinghua; Wang, Min; Hu, Jianbing; Wang, Wei; Fu, Xingzheng; Liu, Ji-Hong

    2015-09-01

    Abscisic acid-responsive element (ABRE)-binding factors (ABFs) play important roles in abiotic stress responses; however, the underlying mechanisms are poorly understood. In this study, it is reported that overexpression of Poncirus trifoliata PtrABF significantly enhanced dehydration tolerance. The transgenic lines displayed smaller stomatal apertures, reduced stomatal density/index, and lower expression levels of genes associated with stomatal development. PtrABF was found to interact with PtrICE1, a homologue of ICE1 (Inducer of CBF Expression 1) that has been shown to be critical for stomatal development. Microarray analysis revealed that a total of 70 genes were differentially expressed in the transgenic line, 42 induced and 28 repressed. At least two units of ABREs and coupling elements were present in the promoters of most of the induced genes, among which peroxidase and arginine decarboxylase were verified as bona fide targets of PtrABF. Transgenic plants exhibited higher antioxidant enzyme activities and free polyamine levels, but lower levels of reactive oxygen species (ROS) and malondialdehyde. Polyamines were revealed to be associated with ROS scavenging in the transgenic plants due to a modulation of antioxidant enzymes triggered by signalling mediated by H2O2 derived from polyamine oxidase (PAO)-mediated catabolism. Taken together, the results indicate that PtrABF functions positively in dehydration tolerance by limiting water loss through its influence on stomatal movement or formation and maintaining ROS homeostasis via modulation of antioxidant enzymes and polyamines through transcriptional regulation of relevant target genes. PMID:26116025

  10. Synthesis of densely functionalized enantiopure indolizidines by ring-closing metathesis (RCM) of hydroxylamines from carbohydrate-derived nitrones

    PubMed Central

    Bonanni, Marco; Marradi, Marco; Cardona, Francesca; Cicchi, Stefano; Goti, Andrea

    2007-01-01

    Background Indolizidine alkaloids widely occur in nature and display interesting biological activity. This is the reason for which their total synthesis as well as the synthesis of non-natural analogues still attracts the attention of many research groups. To establish new straightforward accesses to these molecules is therefore highly desirable. Results The ring closing metathesis (RCM) of enantiopure hydroxylamines bearing suitable unsaturated groups cleanly afforded piperidine derivatives in good yields. Further cyclization and deprotection of the hydroxy groups gave novel highly functionalized indolizidines. The synthesis of a pyrroloazepine analogue is also described. Conclusion We have developed a new straightforward methodology for the synthesis of densely functionalized indolizidines and pyrroloazepine analogues in 6 steps and 30–60% overall yields from enantiopure hydroxylamines obtained straightforwardly from carbohydrate-derived nitrones. PMID:18076753

  11. Interactions of NO2 with amine-functionalized SBA-15: effects of synthesis route.

    PubMed

    Levasseur, Benoit; Ebrahim, Amani M; Bandosz, Teresa J

    2012-04-01

    SBA-15 mesoporous silica was modified using (3-aminopropyl)trimethoxysilane (APTMS) following co-condensation or grafting methods and then used as a NO(2) adsorbent at room temperature. The samples were characterized before and after exposure to NO(2) by SEM-EDX, N(2) adsorption at 77 K, potentiometric titration, thermal analysis, and FTIR spectroscopy. Even though, regardless of the synthesis route, the addition of propylamine groups leads to a significant enhancement in the amount of NO(2) adsorbed (from 21 to 124 mg(NO(2))/g), a higher retention of NO(2) and NO (released as a result of surface reactions) was measured on the grafted silica than on all of the co-condensed samples. In the case of the latter materials, improvements in both NO(2) adsorption capacity and NO retention were found for the samples treated with NaOH. This behavior is related to the higher reactivity of deprotonated propylamine groups (formed during NaOH treatment) with NO(2), the presence of silanol groups, and the residual amount of sodium present in the samples. The mechanism of NO(2) adsorption on propylamine groups involves the formation of nitramine and/or nitrosamine. Analysis of the spent materials indicates that the porosity of co-condensed materials is not affected to the same extent by adsorption of NO(2) as that of the grafted silica. PMID:22432815

  12. Electrochemical C-H/N-H Functionalization for the Synthesis of Highly Functionalized (Aza)indoles.

    PubMed

    Hou, Zhong-Wei; Mao, Zhong-Yi; Zhao, Huai-Bo; Melcamu, Yared Yohannes; Lu, Xin; Song, Jinshuai; Xu, Hai-Chao

    2016-08-01

    Indoles and azaindoles are among the most important heterocycles because of their prevalence in nature and their broad utility in pharmaceutical industry. Reported herein is an unprecedented noble-metal- and oxidant-free electrochemical method for the coupling of (hetero)arylamines with tethered alkynes to synthesize highly functionalized indoles, as well as the more challenging azaindoles. PMID:27240116

  13. Reactivity studies of plasma-synthesized aluminum trifluoride and electrochemical synthesis of non-stoichiometric silver selenide nanowire arrays

    NASA Astrophysics Data System (ADS)

    Hajime, Evan Koon Lun Yuuji

    A high surface area aluminum trifluoride material ("plasma-AIF3 ") has previously been synthesized in our laboratory by decomposition of zeolitic precursors in fluorine-containing, low-temperature plasmas. The characterization of the halogen exchange reactivity of this unique fluoride material is presented in Part 1 of the dissertation. A gas flow reactor was designed and built to study the isothermal and temperature-dependent halogen exchange activity of plasma-AIF3, with comparisons being made to the well-known halogen exchange catalyst beta-AIF3. Isothermal experiments showed that plasma-AIF3 is an active halogen exchange catalyst for the dismutation of dichlorodifluoromethane, while temperature-programmed reaction (TPR) experiments revealed a lower temperature onset of activity with plasma-AIF3 when compared to beta-AIF3. The existence of two distinct active sites for halogen exchange on aluminum fluoride is proposed, with sites characteristic of plasma-AIF3 and R-AIF3 having lower and higher temperature onsets of activity, respectively. TPR data for hydrated plasma-AIF3 showed a significant attenuation of the lower temperature active sites, while the higher temperature site remained relatively unchanged in activity. Temperature-programmed X-ray diffraction of plasma-AIF3 revealed the existence of beta-AIF 3 crystallites at temperatures between 225 and 500°C, thus rationalizing the existence of the higher temperature active site (associated with beta-AIF 3) in plasma-AIF3 during heating. Plasma-AIF3 also displayed a high affinity for crystalline hydrate formation with extended exposure to moist air, and TPR experiments performed on commercially available AIF3·3H2O produced plots similar in shape and features when compared to plasma-AIF3. The thermal transformation processes of the trihydrate suggest the origin of the lower temperature active site to be associated with an amorphous bulk AIF3 structure. Part 2 of the dissertation summarizes the current efforts

  14. Multiscale Theoretical and Computational Modeling of the Synthesis, Structure and Performance of Functional Carbon Materials

    NASA Astrophysics Data System (ADS)

    Mushrif, Samir Hemant

    2010-09-01

    Functional carbon-based/supported materials, including those doped with transition metal, are widely applied in hydrogen mediated catalysis and are currently being designed for hydrogen storage applications. This thesis focuses on acquiring a fundamental understanding and quantitative characterization of: (i) the chemistry of their synthesis procedure, (ii) their microstructure and chemical composition and (iii) their functionality, using multiscale modeling and simulation methodologies. Palladium and palladium(II) acetylacetonate are the transition metal and its precursor of interest, respectively. A first-principles modeling approach consisting of the planewave-pseudopotential implementation of the Kohn-Sham density functional theory, combined with the Car-Parrinello molecular dynamics, is implemented to model the palladium doping step in the synthesis of carbon-based/supported material and its interaction with hydrogen. The electronic structure is analyzed using the electron localization function and, when required, the hydrogen interaction dynamics are accelerated and the energetics are computed using the metadynamics technique. Palladium pseudopotentials are tested and validated for their use in a hydrocarbon environment by successfully computing the experimentally observed crystal structure of palladium(II) acetylacetonate. Long-standing hypotheses related to the palladium doping process are confirmed and new fundamental insights about its molecular chemistry are revealed. The dynamics, mechanism and energy landscape and barriers of hydrogen adsorption and migration on and desorption from the carbon-based/supported palladium clusters are reported for the first time. The effects of palladium doping and of the synthesis procedure on the pore structure of palladium-doped activated carbon fibers are quantified by applying novel statistical mechanical based methods to the experimental physisorption isotherms. The drawbacks of the conventional adsorption-based pore

  15. Functionalization of Fibers Using Azlactone-Containing Polymers: Layer-by-Layer Fabrication of Reactive Thin Films on the Surfaces of Hair and Cellulose-Based Materials

    PubMed Central

    Buck, Maren E.

    2010-01-01

    We report an approach to the functionalization of fibers and fiber-based materials that is based on the deposition of reactive azlactone-functionalized polymers and the ‘reactive’ layer-by-layer assembly of azlactone-containing thin films. We demonstrate (i) that the azlactone-functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) can be used to modify the surfaces of a model protein-based fiber (horsehair) and cellulose-based materials (e.g., cotton and paper), and (ii) that fibers functionalized in this manner can be used to support the fabrication of covalently crosslinked and reactive polymer multilayers assembled using PVDMA and poly(ethyleneimine) (PEI). The growth, chemical reactivity, and uniformity of films deposited on these substrates were characterized using fluorescence microscopy, confocal microscopy, and scanning electron microscopy (SEM). In addition to the direct functionalization of fibers, we demonstrate that the residual azlactone functionality in PVDMA-treated or film-coated fibers can be exploited to chemically modify the surface chemistry and physicochemical properties of fiber-based materials post-fabrication using amine functionalized molecules. For example, we demonstrate that this approach permits control over the surface properties of paper (e.g., absorption of water) by simple post-fabrication treatment of film-coated paper with the hydrophobic amine n-decylamine. The azlactone functionality present in these materials provides a platform for the modification of polymer-treated and film-coated fibers with a broad range of other chemical and biological species (e.g., enzymes, peptides, catalysts, etc.). The results of this investigation thus provide a basis for the functionalization of fibers and fiber-based materials (e.g., textile fabrics or non-woven mats) of potential utility in a broad range of consumer, industrial, and biomedical contexts. PMID:20402471

  16. Anionic synthesis of in-chain and chain-end functionalized polymers

    NASA Astrophysics Data System (ADS)

    Roy Chowdhury, Sumana

    The objective of this work was to anionically synthesize well-defined polymers having functional groups either at the chain-end or along the polymer chain. General functionalization methods (GFM) were used for synthesizing both kinds of polymers. Chain-end functionalized polymers were synthesized by terminating the anionically synthesized, living polymer chains using chlorodimethylsilane. Hydrosilation reactions were then done between the silyl-hydride groups at the chain-ends and the double bonds of commercially available substituted alkenes. This produced a range of well-defined polymers having the desired functional groups at the chain-ends. In-chain functionalized polymers were synthesized by anionically polymerizing a silylhydride functionalized styrene monomer: (4-vinylphenyl)dimethysilane. Polymerizations were done at room temperature in hydrocarbon solvents to produce well-defined polymers. Functional groups were then introduced into the polymer chains by use of hydrosilation reactions done post-polymerization. The functionalized polymers produced were characterized using SEC, 1H and 13C NMR, FTIR, MALDI TOF mass spectrometry and DSC. The monomer reactivity ratios in the copolymerization of styrene with (4-vinylphenyl)dimethylsilane were also measured. A series of copolymerizaions was done with different molar ratios of styrene(S) and (4-vinylphenyl)dimethylsilane(Si). Three different methods were used to determine the values of the monomer reactivity ratios: Fineman-Ross, Kelen-Tudos and Error-In-Variable (EVM) methods. The average values of the two monomer reactivity ratios obtained were: r Si = 0.16 and rS = 1.74. From these values it was observed that in the copolymerization of styrene with (4-vinylphenyl)dimethylsilane, the second monomer was preferentially incorporated into the copolymer chain. Also, rSirS = 0.27, which shows that the copolymer has a tendency to have an alternating structure. Amino acid-functionalized polymers (biohybrids) were

  17. Direct Synthesis of Novel and Reactive Sulfide-modified Nano Iron through Nanoparticle Seeding for Improved Cadmium-Contaminated Water Treatment

    PubMed Central

    Su, Yiming; Adeleye, Adeyemi S.; Huang, Yuxiong; Zhou, Xuefei; Keller, Arturo A.; Zhang, Yalei

    2016-01-01

    Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) is of great technical and scientific interest because of its promising application in groundwater remediation, although its synthesis is still a challenge. We develop a new nanoparticle seeding method to obtain a novel and reactive nanohybrid, which contains an Fe(0) core covered by a highly sulfidized layer under high extent of sulfidation. Syntheses monitoring experiments show that seeding accelerates the reduction rate from Fe2+ to Fe0 by 19%. X-ray adsorption near edge structure (XANES) spectroscopy and extended X-ray absorption fine structure analyses demonstrate the hexahedral Fe-Fe bond (2.45 and 2.83 Å) formation through breaking down of the 1.99 Å Fe-O bond both in crystalline and amorphous iron oxide. The XANES analysis also shows 24.2% (wt%) of FeS with bond length of 2.4 Å in final nanohybrid. Both X-ray diffraction and Mössbauer analyses further confirm that increased nanoparticle seeding results in formation of more Fe0 crystals. Nano-SiO2 seeding brings down the size of single Fe0 grain from 32.4 nm to 18.7 nm, enhances final Fe0 content from 5.9% to 55.6%, and increases magnetization from 4.7 to 65.5 emu/g. The synthesized nanohybrid has high cadmium removal capacity and holds promising prospects for treatment of metal-contaminated water. PMID:27095387

  18. Direct Synthesis of Novel and Reactive Sulfide-modified Nano Iron through Nanoparticle Seeding for Improved Cadmium-Contaminated Water Treatment

    NASA Astrophysics Data System (ADS)

    Su, Yiming; Adeleye, Adeyemi S.; Huang, Yuxiong; Zhou, Xuefei; Keller, Arturo A.; Zhang, Yalei

    2016-04-01

    Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) is of great technical and scientific interest because of its promising application in groundwater remediation, although its synthesis is still a challenge. We develop a new nanoparticle seeding method to obtain a novel and reactive nanohybrid, which contains an Fe(0) core covered by a highly sulfidized layer under high extent of sulfidation. Syntheses monitoring experiments show that seeding accelerates the reduction rate from Fe2+ to Fe0 by 19%. X-ray adsorption near edge structure (XANES) spectroscopy and extended X-ray absorption fine structure analyses demonstrate the hexahedral Fe-Fe bond (2.45 and 2.83 Å) formation through breaking down of the 1.99 Å Fe-O bond both in crystalline and amorphous iron oxide. The XANES analysis also shows 24.2% (wt%) of FeS with bond length of 2.4 Å in final nanohybrid. Both X-ray diffraction and Mössbauer analyses further confirm that increased nanoparticle seeding results in formation of more Fe0 crystals. Nano-SiO2 seeding brings down the size of single Fe0 grain from 32.4 nm to 18.7 nm, enhances final Fe0 content from 5.9% to 55.6%, and increases magnetization from 4.7 to 65.5 emu/g. The synthesized nanohybrid has high cadmium removal capacity and holds promising prospects for treatment of metal-contaminated water.

  19. Direct Synthesis of Novel and Reactive Sulfide-modified Nano Iron through Nanoparticle Seeding for Improved Cadmium-Contaminated Water Treatment.

    PubMed

    Su, Yiming; Adeleye, Adeyemi S; Huang, Yuxiong; Zhou, Xuefei; Keller, Arturo A; Zhang, Yalei

    2016-01-01

    Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) is of great technical and scientific interest because of its promising application in groundwater remediation, although its synthesis is still a challenge. We develop a new nanoparticle seeding method to obtain a novel and reactive nanohybrid, which contains an Fe(0) core covered by a highly sulfidized layer under high extent of sulfidation. Syntheses monitoring experiments show that seeding accelerates the reduction rate from Fe(2+) to Fe(0) by 19%. X-ray adsorption near edge structure (XANES) spectroscopy and extended X-ray absorption fine structure analyses demonstrate the hexahedral Fe-Fe bond (2.45 and 2.83 Å) formation through breaking down of the 1.99 Å Fe-O bond both in crystalline and amorphous iron oxide. The XANES analysis also shows 24.2% (wt%) of FeS with bond length of 2.4 Å in final nanohybrid. Both X-ray diffraction and Mössbauer analyses further confirm that increased nanoparticle seeding results in formation of more Fe(0) crystals. Nano-SiO2 seeding brings down the size of single Fe(0) grain from 32.4 nm to 18.7 nm, enhances final Fe(0) content from 5.9% to 55.6%, and increases magnetization from 4.7 to 65.5 emu/g. The synthesized nanohybrid has high cadmium removal capacity and holds promising prospects for treatment of metal-contaminated water. PMID:27095387

  20. A test of geochemical reactivity as a function of mineral size: Manganese oxidation promoted by hematite nanoparticles

    NASA Astrophysics Data System (ADS)

    Madden, Andrew S.; Hochella, Michael F.

    2005-01-01

    Mn 2+(aq) oxidation as promoted by hematite in the presence of molecular oxygen has been studied as a function of hematite particle size. This system is a good candidate to serve as a test of the change of particle reactivity as a function of size due not only to its importance in Earth/environmental processes, but also because it involves electronic coupling between the hematite and adsorbed manganese. The properties of nanoscale hematite, including size quantization of the electronic structure and the relative proportions of terrace vs. edge/kink sites, are expected to change significantly with the particle size in this size range. Experimental results from this study suggest that the heterogeneous manganese oxidation rate is approximately one to one and a half orders of magnitude greater on hematite particles with an average diameter of 7.3 nm than with those having an average diameter of 37 nm, even when normalized to the surface areas of the particles. The acceleration of electron transfer rate for the reactions promoted by the smallest particles is rationalized in the framework of electron transfer theory. According to this theory, for a reaction such as heterogeneous Mn oxidation, the rate depends on three factors: the electronic coupling between initial and final electronic states, the substantial reorganization energy for solvent and coordinated ligands between initial and final states, and the free energy of reaction (corrected for work required to bring reactants together). The adsorbed Mn is electronically coupled with the solid during the electron transfer, and changes in the electronic structure of the solid would be expected to influence the rate. The Lewis base character of surface oxygen atoms increases as the electronic structure becomes quantized, which should allow increased coupling with adsorbed Mn. Finally, as demonstrated previously by in situ AFM observations, the reaction proceeds most readily at topographic features that distort the

  1. Click dendrimers and triazole-related aspects: catalysts, mechanism, synthesis, and functions. A bridge between dendritic architectures and nanomaterials.

    PubMed

    Astruc, Didier; Liang, Liyuan; Rapakousiou, Amalia; Ruiz, Jaime

    2012-04-17

    One of the primary recent improvements in molecular chemistry is the now decade-old concept of click chemistry. Typically performed as copper-catalyzed azide-alkyne (CuAAC) Huisgen-type 1,3-cycloadditions, this reaction has many applications in biomedicine and materials science. The application of this chemistry in dendrimer synthesis beyond the zeroth generation and in nanoparticle functionalization requires stoichiometric use of the most common click catalyst, CuSO(4)·5H(2)O with sodium ascorbate. Efforts to develop milder reaction conditions for these substrates have led to the design of polydentate nitrogen ligands. Along these lines, we have described a new, efficient, practical, and easy-to-synthesize catalytic complex, [Cu(I)(hexabenzyltren)]Br, 1 [tren = tris(2-aminoethyl)amine], for the synthesis of relatively large dendrimers and functional gold nanoparticles (AuNPs). This efficient catalyst can be used alone in 0.1% mol amounts for nondendritic click reactions or with the sodium-ascorbate additive, which inhibits aerobic catalyst oxidation. Alternatively, catalytic quantities of the air-stable compounds hexabenzyltren and CuBr added to the click reaction medium can provide analogously satisfactory results. Based on this catalyst as a core, we have also designed and synthesized analogous Cu(I)-centered dendritic catalysts that are much less air-sensitive than 1 and are soluble in organic solvents or in water (depending on the nature of the terminal groups). These multivalent catalysts facilitate efficient click chemistry and exert positive dendritic effects that mimic enzyme activity. We propose a monometallic CuAAC click mechanism for this process. Although the primary use of click chemistry with dendrimers has been to decorate dendrimers with a large number of molecules for medicinal or materials purposes, we are specifically interested in the formation of intradendritic [1,2,3]-triazole heterocycles that coordinate to transition-metal ions via their

  2. Generation and Reaction of Carbamoyl Anions in Flow: Applications in the Three-Component Synthesis of Functionalized α-Ketoamides.

    PubMed

    Nagaki, Aiichiro; Takahashi, Yusuke; Yoshida, Jun-Ichi

    2016-04-18

    Using a flow microreactor system, carbamoyllithium compounds were successfully generated and used for reactions with electrophiles to give various amides, including α-ketoamides. The present method could be applied to the three-component synthesis of functionalized α-ketoamides using a carbamoyllithium compound, methyl chloroformate, and a functionalized organolithium reagent. PMID:26990703

  3. Automated ARGET ATRP Accelerates Catalyst Optimization for the Synthesis of Thiol-Functionalized Polymers

    PubMed Central

    Siegwart, Daniel J.; Leiendecker, Matthias; Langer, Robert; Anderson, Daniel G.

    2013-01-01

    Conventional synthesis of polymers by ATRP is relatively low throughput, involving iterative optimization of conditions in an inert atmosphere. Automated, high-throughput controlled radical polymerization was developed to accelerate catalyst optimization and production of disulfide-functionalized polymers without the need of an inert gas. Using ARGET ATRP, polymerization conditions were rapidly identified for eight different monomers, including the first ARGET ATRP of 2-(diethylamino)ethyl methacrylate and di(ethylene glycol) methyl ether methacrylate. In addition, butyl acrylate, oligo(ethylene glycol) methacrylate 300 and 475, 2-(dimethylamino)ethyl methacrylate, styrene, and methyl methacrylate were polymerized using bis(2-hydroxyethyl) disulfide bis(2-bromo-2-methylpropionate) as the initiator, tris(2-pyridylmethyl)amine as the ligand, and tin(II) 2-ethylhexanoate as the reducing agent. The catalyst and reducing agent concentration was optimized specifically for each monomer, and then a library of polymers was synthesized systematically using the optimized conditions. The disulfide-functionalized chains could be cleaved to two thiol-terminated chains upon exposure to dithiothreitol, which may have utility for the synthesis of polymer bioconjugates. Finally, we demonstrated that these new conditions translated perfectly to conventional batch polymerization. We believe the methods developed here may prove generally useful to accelerate the systematic optimization of a variety of chemical reactions and polymerizations. PMID:23599541

  4. Synthesis and characterization of cysteine functionalized silver nanoparticles for biomolecule immobilization.

    PubMed

    Upadhyay, Lata Sheo Bachan; Verma, Nishant

    2014-11-01

    A facile method for the aqueous phase synthesis of cysteine-functionalized silver nanoparticles by potato extract has been reported in the present work. These functionalized nanoparticles were then used for the covalent immobilization of a biomolecule, alkaline phosphatase, on its surface through carbodiimide coupling. Different reaction parameters such as cysteine concentration, reducing agent concentration, temperature, pH and reaction time were varied during the nanoparticles' formation, and their effects on plasmon resonance were studied using Ultraviolet-visible spectroscopy. Fourier transform infrared spectroscopy was used to confirm the surface modification of silver nanoparticles by cysteine and the particle size analysis was done using particle size analyzer, which showed the average nanoparticles' size of 61 nm for bare silver nanoparticles and 201 nm for the enzyme-immobilized nanoparticles. The synthesized nanoparticles were found to be highly efficient for the covalent immobilization of alkaline phosphatase on its surface and retained 67% of its initial enzyme activity (9.44 U/mg), with 75% binding efficiency. The shelf life of the enzyme-nanoparticle bioconjugates was found to be 60 days, with a 12% loss in the initial enzyme activity. With a simple synthesis strategy, high immobilization efficiency and enhanced stability, these enzyme-coated nanoparticles have the potential for further integration into the biosensor technology. PMID:24760173

  5. Adiponectin Inhibits Insulin Function in Primary Trophoblasts by PPARα-Mediated Ceramide Synthesis

    PubMed Central

    Gao, Xiaoli; Weintraub, Susan T.; Jansson, Thomas; Powell, Theresa L.

    2014-01-01

    Maternal adiponectin (ADN) levels are inversely correlated with birth weight, and ADN infusion in pregnant mice down-regulates placental nutrient transporters and decreases fetal growth. In contrast to the insulin-sensitizing effects in adipose tissue and muscle, ADN inhibits insulin signaling in the placenta. However, the molecular mechanisms involved are unknown. We hypothesized that ADN inhibits insulin signaling and insulin-stimulated amino acid transport in primary human trophoblasts by peroxisome proliferator-activated receptor-α (PPARα)-mediated ceramide synthesis. Primary human term trophoblast cells were treated with ADN and/or insulin. ADN increased the phosphorylation of p38 MAPK and PPARα. ADN inhibited insulin signaling and insulin-stimulated amino acid transport. This effect was dependent on PPARα, because activation of PPARα with an agonist (GW7647) inhibited insulin signaling and function, whereas PPARα-small interfering RNA reversed the effects of ADN on the insulin response. ADN increased ceramide synthase expression and stimulated ceramide production. C2-ceramide inhibited insulin signaling and function, whereas inhibition of ceramide synthase (with Fumonisin B1) reversed the effects of ADN on insulin signaling and amino acid transport. These findings are consistent with the model that maternal ADN limits fetal growth mediated by activation of placental PPARα and ceramide synthesis, which inhibits placental insulin signaling and amino acid transport, resulting in reduced fetal nutrient availability. PMID:24606127

  6. Synthesis of folate-functionalized RAFT polymers for targeted siRNA delivery

    PubMed Central

    Srinivasan, Selvi; Shubin, Andrew D.; Stayton, Patrick S.

    2011-01-01

    Receptor-mediated, cell-specific delivery of siRNA enables silencing of target genes in specific tissues, opening the door to powerful therapeutic options for a multitude of diseases. However, development of delivery systems capable of targeted and effective siRNA delivery typically requires multiple steps and use of sophisticated, orthogonal chemistries. Previously, we developed diblock copolymers consisting of dimethaminoethyl methacrylate-b-dimethylaminoethyl methacrylate-co-butyl methacrylate-copropylacrylic acid as potent siRNA delivery systems that protect siRNA from enzymatic degradation and enable its cytosolic delivery through pH-responsive, endosomolytic behavior.1,2 These architectures were polymerized using a living radical polymerization method, specifically reversible addition-fragmentation chain transfer (RAFT) polymerization, which employs a chain transfer agent (CTA) to modulate the rate of reaction, resulting in polymers with low polydispersity and telechelic chain ends reflecting the chemistry of the CTA. Here, we describe the straightforward, facile synthesis of a folate receptor-targeted diblock copolymer siRNA delivery system, as the folate receptor is an attractive target for tumor-selective therapies due to its overexpression in a number of cancers. Specifically, we detail the de novo synthesis of a folate-functionalized CTA, use the folate-CTA for controlled polymerizations of diblock copolymers, and demonstrate efficient, specific cellular folate receptor interaction and in vitro gene knockdown using the folate-functionalized polymer. PMID:21634800

  7. SYNTHESIS AND CHARACTERIZATION OF SMART FUNCTIONAL COATINGS BY CHEMICAL SOLUTION DEPOSITION METHODS

    SciTech Connect

    Mendez-Torres, A.

    2011-07-19

    New coating technology enables the fabrication of low cost structural health monitoring (SHM) and tamper indication devices that can be employed to strengthen national and international safeguards objectives. In particular, such innovations could serve the safeguards community by improving both the timeliness of detection and confidence in verification and monitoring. This work investigates the synthesis of functional surface coatings using chemical solutions deposition methods. Chemical solution deposition has recently received attention in the materials research community due to its unique advantages such as low temperature processing, high homogeneity of final products and the ability to fabricate materials with controlled surface properties and pore structures. The synthesis of functional coatings aimed at modifying the materials conductivity and optical properties was investigated by the incorporation of transition element (e.g. Cr{sup +3}) and rare earth (e.g. Er{sup +3}) serving as dopants in a polymer or gel matrix. The structural and morphological investigation of the as-deposited films was carried out using UV/Vis and photoluminescence (PL) spectroscopy. The as deposited coating was further investigated by scanning electron microscopy and energy dispersive x-ray microscopy.

  8. Phosphatidate phosphatase-1 is functionally conserved in lipid synthesis and storage from human to yeast.

    PubMed

    Fang, Zhijia; Wang, Song; Du, Xiuxiu; Shi, Ping; Huang, Zhiwei

    2014-12-01

    Phosphatidate phosphatase-1 (PAP1) enzymes (yeast Pah1p/Smp2p, mammalian lipin1-3) have a key role in lipid homeostasis by controlling the relative proportions of its substrate phosphatidate (PA) and its product diacylglycerol (DAG). Recent investigation shows that mammalian lipin-1 complements phenotypes exhibited by yeast pah1Δ mutant cells, which indicates the functions of PAP1 enzymes are evolutionarily conserved. The observation was confirmed after transformation of human LPIN1 into PAH1-defective yeast, which resulted in human LPIN1-induced accumulation of triacylglycerol (TAG )and lipid droplet formation. In double mutants lacking Tgl3p and Tgl4p, overexpression of PAH1 or LPIN1 induced TAG accumulation and excessive obesity. Furthermore, the obese yeast was used as a model to study the anti-obesity effects of PAP1 activity inhibitors, including propranolol and clenbuterol. The data showed that the inhibitors significantly suppressed TAG accumulation and lipid droplets formation. These findings demonstrate that LPIN1 plays a functional role in lipid synthesis and storage, a role which is highly conserved from human to yeast. Inhibition of TAG synthesis will become an efficacious treatment strategy for obesity and our excessive obesity model will provide a very useful tool for discovery of new anti-obesity drugs in the future. PMID:25475986

  9. One-pot synthesis of aptamer-functionalized silver nanoclusters for cell-type-specific imaging.

    PubMed

    Li, Jingjing; Zhong, Xiaoqin; Cheng, Fangfang; Zhang, Jian-Rong; Jiang, Li-Ping; Zhu, Jun-Jie

    2012-05-01

    As an emerging category of fluorescent metal nanoclusters, oligonucleotide-templated silver nanoclusters (Ag NCs) have attracted a lot of interest and have shown wide application in biorelated disciplines. However, the weak fluorescence emission and poor permeability to cell membranes tethered further intracellular applications of Ag NCs. AS1411 is an antiproliferative G-rich phosphodiester oligonucleotide and currently an anticancer agent under phase II clinical trials. Herein, we present a strategy to synthesize AS1411-functionalized Ag NCs with excellent fluorescence through a facile one-pot process. Confocal laser scanning microscopy and Z-axis scanning confirmed that the AS1411-functionalized Ag NCs could be internalized into MCF-7 human breast cancer cells and were able to specifically stain nuclei with red color. To our surprise, 3-[4,5-dimethylthiazol-z-yl]-2,5-diphenyltetrazolium bromide (MTT) assay demonstrated the Ag NCs were cytocompatible and showed better inhibition effects than pure AS1411 on MCF-7 human breast cancer cells. In addition, a universal design of the oligonucleotide scaffold for synthesis of Ag NCs was extended to other aptamers, such as Sgc8c and mucin 1 aptamer. Due to the facile synthesis procedure and capability of specific target recognition, this fluorescent platform will potentially broaden the applications of Ag NCs in biosensing and biological imaging. PMID:22482827

  10. Metal-ligand synergistic effects in the complex Ni(η(2)-TEMPO)2: synthesis, structures, and reactivity.

    PubMed

    Isrow, Derek; DeYonker, Nathan J; Koppaka, Anjaneyulu; Pellechia, Perry J; Webster, Charles Edwin; Captain, Burjor

    2013-12-16

    In the current investigation, reactions of the "bow-tie" Ni(η(2)-TEMPO)2 complex with an assortment of donor ligands have been characterized experimentally and computationally. While the Ni(η(2)-TEMPO)2 complex has trans-disposed TEMPO ligands, proton transfer from the C-H bond of alkyne substrates (phenylacetylene, acetylene, trimethylsilyl acetylene, and 1,4-diethynylbenzene) produce cis-disposed ligands of the form Ni(η(2)-TEMPO)(κ(1)-TEMPOH)(κ(1)-R). In the case of 1,4-diethynylbenzene, a two-stage reaction occurs. The initial product Ni(η(2)-TEMPO)(κ(1)-TEMPOH)[κ(1)-CC(C6H4)CCH] is formed first but can react further with another equivalent of Ni(η(2)-TEMPO)2 to form the bridged complex Ni(η(2)-TEMPO)(κ(1)-TEMPOH)[κ(1)-κ(1)-CC(C6H4)CC]Ni(η(2)-TEMPO)(κ(1)-TEMPOH). The corresponding reaction with acetylene, which could conceivably also yield a bridging complex, does not occur. Via density functional theory (DFT), addition mechanisms are proposed in order to rationalize thermodynamic and kinetic selectivity. Computations have also been used to probe the relative thermodynamic stabilities of the cis and trans addition products and are in accord with experimental results. Based upon the computational results and the geometry of the experimentally observed product, a trans-cis isomerization must occur. PMID:24262003

  11. The Closure of the Cycle: Enzymatic Synthesis and Functionalization of Bio-Based Polyesters.

    PubMed

    Pellis, Alessandro; Herrero Acero, Enrique; Ferrario, Valerio; Ribitsch, Doris; Guebitz, Georg M; Gardossi, Lucia

    2016-04-01

    The polymer industry is under pressure to mitigate the environmental cost of petrol-based plastics. Biotechnologies contribute to the gradual replacement of petrol-based chemistry and the development of new renewable products, leading to the closure of carbon circle. An array of bio-based building blocks is already available on an industrial scale and is boosting the development of new generations of sustainable and functionally competitive polymers, such as polylactic acid (PLA). Biocatalysts add higher value to bio-based polymers by catalyzing not only their selective modification, but also their synthesis under mild and controlled conditions. The ultimate aim is the introduction of chemical functionalities on the surface of the polymer while retaining its bulk properties, thus enlarging the spectrum of advanced applications. PMID:26806112

  12. Synthesis and structure of high-valent organouranium complexes containing terminal monooxo functional groups

    SciTech Connect

    Arney, D.S.J.; Burns, C.J. )

    1993-10-20

    We describe the synthesis by oxidative atom-transfer chemistry and structure of organouranium(V) and -(VI)complexes containing terminal oxo functional groups of the general formula (C[sub 5]Me[sub 5])[sub 2]U-(EAr)(O) (E = O (3) and N (4); Ar=2,6-diisopropylphenyl). In effect, we have extended the synthetic utility of oxidative atom-transfer chemistry to the preparation of the first complexes of uranium(V) and-(VI)containing terminal nonooxo functional groups. The structural characterization of these compounds reveals uranium oxo bond lengths longer than those typical for the uranyl ion (UO[sub 2])[sup 2+], which may reflect a reduced relative bond order. 18 refs., 1 fig.

  13. CO2-responsive polymeric materials: synthesis, self-assembly, and functional applications.

    PubMed

    Darabi, Ali; Jessop, Philip G; Cunningham, Michael F

    2016-08-01

    CO2 is an ideal trigger for switchable or stimuli-responsive materials because it is benign, inexpensive, green, abundant, and does not accumulate in the system. Many different CO2-responsive materials including polymers, latexes, solvents, solutes, gels, surfactants, and catalysts have been prepared. This review focuses on the preparation, self-assembly, and functional applications of CO2-responsive polymers. Detailed discussion is provided on the synthesis of CO2-responsive polymers, in particular using reversible deactivation radical polymerization (RDRP), formerly known as controlled/living radical polymerization (CLRP), a powerful technique for the preparation of well-defined (co)polymers with precise control over molecular weight distribution, chain-end functional groups, and polymer architectural design. Self-assembly in aqueous dispersed media is highlighted as well as emerging potential applications. PMID:27284587

  14. Dienamine Activation of Diazoenals: Application to the Direct Synthesis of Functionalized 1,4-Oxazines.

    PubMed

    Kalepu, Jagadeesh; Katukojvala, Sreenivas

    2016-06-27

    A novel rhodium-catalyzed dienamine activation of diazoenals resulted in a new class of γ-functionalized donor-acceptor dienamines. The synthetic utility of these dienamines has been demonstrated in a cooperative rhodium(II)/Brønsted acid and gold(I)-catalyzed direct [3+3] annulation of enaldiazo ketones with N-propargyl anilines, thus leading to highly substituted enal-functionalized 1,4-oxazines. The reaction is proposed to involve dienamine activation through the diacceptor rhodium enalcarbenoid NH-insertion and a gold-catalyzed intramolecular site-selective 6-exo-dig heterocyclization. The methodology was applied to the efficient synthesis of structurally complex [1,4]oxazino[4,3-a]quinolone, which is present in the antibacterial agent PNU-286607. PMID:26949079

  15. The synthesis and in vivo assembly of functional antibodies in yeast

    NASA Astrophysics Data System (ADS)

    Wood, Clive R.; Boss, Michael A.; Kenten, John H.; Calvert, Jane E.; Roberts, Nicola A.; Emtage, J. Spencer

    1985-04-01

    The yeast Saccharomyces cerevisiae can synthesize, process and secrete higher eukaryotic proteins1-5. We have investigated the expression of immunoglobulin chains in yeast and demonstrate here (1) the synthesis, processing and secretion of light and heavy chains, (2) the glycosylation of heavy chain, (3) the intracellular localization of these foreign proteins by immunofluorescence, and (4) the detection of functional antibodies in cells co-expressing both chains. This may provide the basis of a microbial fermentation process for the production of monoclonal antibodies. The co-expression of light and heavy chains in Escherichia coli has been reported but functional antibodies were not assembled in vivo6,7. Furthermore, only low-level assembly of these chains was found in vitro.

  16. Regio-, Stereo-, and Atropselective Synthesis of C60 Fullerene Bisadducts by Supramolecular-Directed Functionalization.

    PubMed

    Bottari, Giovanni; Trukhina, Olga; Kahnt, Axel; Frunzi, Michael; Murata, Yasujiro; Rodríguez-Fortea, Antonio; Poblet, Josep M; Guldi, Dirk M; Torres, Tomás

    2016-09-01

    The regio- and stereocontrolled synthesis of fullerene bisadducts is a topic of increasing interest in fullerene chemistry and a key point for the full exploitation of these derivatives in materials science. In this context, while the tether-directed remote functionalization strategy offers a valid approach to this synthetic challenge, no examples of such control have yet been reported using nontethered species. Presented here is a conceptually novel, supramolecular-directed functionalization approach in which noncovalent interactions between untethered residues have been used, for the first time, to amplify (>2800-fold) the regio-, stereo-, and atropselective formation of a C60 fullerene bisadduct racemate from a complex mixture of 130 bisadducts. Remarkably, both enantiomers, which present a sterically demanding cis-1 C60 addition pattern, represent the first examples of fullerene derivatives which combine central, axial, and helical chirality. PMID:27159570

  17. FeMo cofactor synthesis by a nifH mutant with altered MgATP reactivity.

    PubMed

    Gavini, N; Burgess, B K

    1992-10-15

    We have characterized a Nif- mutant of Azotobacter vinelandii, designated UW91 (Shah, V. K., Davis, L. C., Gordon, J. K., Orme-Johnson, W. H., and Brill, W. J. (1973) Biochim. Biophys. Acta 292, 246-255). The specific Fe protein mutation giving rise to the Nif- phenotype was shown by DNA sequencing and site-directed mutagenesis to be the substitution of a conserved alanine at position 157 by a serine. The UW91 Fe protein was purified and shown to have a normal [4Fe-4S] cluster and normal MgATP binding activity. The substitution of alanine 157 by serine, however, prevents the MgATP-induced conformational change that occurs for the wild-type Fe protein, prevents MgATP hydrolysis, and prevents productive electron transfer to the MoFe protein. The UW91 Fe protein does bind to the MoFe protein to give a normal cross-linking pattern; however, it does not compete very successfully with wild-type Fe protein in an activity assay. The UW91 MoFe protein was also purified and characterized and shown to be indistinguishable from the wild-type protein. Thus, the substitution of Fe protein residue alanine 157 by serine does not change the Fe protein's ability to function in FeMo cofactor biosynthesis or insertion. This demonstrates that these events do not require the MgATP-induced conformational change, MgATP hydrolysis, or productive electron transfer to the MoFe protein. PMID:1400428

  18. Comparative DFT study of structure, reactivity and IR spectra of phosphorus-containing dendrons with Pdbnd Nsbnd Pdbnd S linkages, vinyl and azide functional groups

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Gottis, S.; Laurent, R.; Kovalenko, V. I.

    2015-07-01

    Fourier transform IR spectra of the first generation dendrons built from thiophosphoryl core with terminal Psbnd Cl groups, vinyl (G1) and azide (G2) functional group at the level of the core have been recorded. The optimized geometries of low energy isomers of G1 and G2 have been calculated by density functional (DFT) method at the PBE/TZ2P level of theory. DFT is used for analyzing the properties of each structural part (core, branches, surface). It was found that the repeated branching units of G1 and G2 contain planar sbnd Osbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd Prbond2 fragments. DFT results for the structure of G1 and G2 are in good agreement with X-ray diffraction measurements. A complete vibrational assignment is proposed for different parts of G1 and G2. The global and local reactivity descriptors have been used to characterize the reactivity pattern of the core functional and terminal groups. Natural bond orbital (NBO) analysis has been applied to comparative study of charge delocalization. Our study reveals why azide group linked to phosphorus has a different reactivity when compared to organic azides.

  19. From solution to in-cell study of the chemical reactivity of acid sensitive functional groups: a rational approach towards improved cleavable linkers for biospecific endosomal release.

    PubMed

    Jacques, Sylvain A; Leriche, Geoffray; Mosser, Michel; Nothisen, Marc; Muller, Christian D; Remy, Jean-Serge; Wagner, Alain

    2016-06-01

    pH-Sensitive linkers designed to undergo selective hydrolysis at acidic pH compared to physiological pH can be used for the selective release of therapeutics at their site of action. In this paper, the hydrolytic cleavage of a wide variety of molecular structures that have been reported for their use in pH-sensitive delivery systems was examined. A wide variety of hydrolytic stability profiles were found among the panel of tested chemical functionalities. Even within a structural family, a slight modification of the substitution pattern has an unsuspected outcome on the hydrolysis stability. This work led us to establish a first classification of these groups based on their reactivities at pH 5.5 and their relative hydrolysis at pH 5.5 vs. pH 7.4. From this classification, four representative chemical functions were selected and studied in-vitro. The results revealed that only the most reactive functions underwent significant lysosomal cleavage, according to flow cytometry measurements. These last results question the acid-based mechanism of action of known drug release systems and advocate for the importance of an in-depth structure-reactivity study, using a tailored methodology, for the rational design and development of bio-responsive linkers. PMID:27169758

  20. Reactive oxygen species generated by PAH o-quinones cause change-in-function mutations in p53.

    PubMed

    Yu, Deshan; Berlin, Jesse A; Penning, Trevor M; Field, Jeffrey

    2002-06-01

    Polycyclic aromatic hydrocarbons (PAHs) in tobacco smoke may cause human lung cancer via metabolic activation to ultimate carcinogens. p53 is one of the most commonly mutated tumor suppressor genes in this disease. An analysis of the p53 mutational database shows that G to T transversions are a signature mutation of lung cancer. Aldo-keto reductases (AKRs) activate PAH trans-dihydrodiol proximate carcinogens to yield their corresponding reactive and redox-active o-quinones, e.g., benzo[a]pyrene-7,8-dione (BP-7,8-dione). We employed a yeast reporter system to determine whether PAH o-quinones or the ROS they generate cause change-in-function mutations in p53. N-Methyl-N-nitroso-N'-nitro-guanidine, a standard alkylating mutagen was used as a positive control. MNNG caused a dose-dependent increase in mutant yeast colonies and at the highest concentrations 8-14% of the yeast colonies were mutated and were characterized by G:C to A:T transitions in the p53 DNA binding domain. Treatment of p53 cDNA with micromolar concentrations of (+/-)-anti-7,8-dihydroxy-9alpha,10alpha-epoxy-7,8,9,10-tetrahydro-benzo[a]pyrene, (anti-BPDE, an ultimate carcinogen) or sub-micromolar concentrations of BP-7,8-dione in the presence of redox-cycling conditions (NADPH and CuCl(2)) also caused p53 mutations in a dose-dependent manner. We found that no mutants were observed with PAH o-quinones or NADPH alone. p53 mutagenesis by BP-7,8-dione was attenuated by ROS scavengers and completely abrogated by a combination of superoxide dismutase and catalase, indicating that both superoxide anion and hydroxyl radicals were the responsible mutagens. The bulk of the mutations detected were single-point mutations and were not random in occurrence. Over 46% of BP-7,8-dione-induced mutations were G:C to T:A transversions, consistent with the formation of 8-oxo-dGuo or its secondary oxidation products. In addition, 25% of these mutations were at hotspots in p53 which are known to be mutated in lung cancer

  1. Synthesis of a BSA-Le(x) glycoconjugate and recognition of Le(x) analogues by the anti-Le(x) monoclonal antibody SH1: the identification of a non-cross reactive analogue.

    PubMed

    Wang, Jo-Wen; Asnani, Ari; Auzanneau, France-Isabelle

    2010-10-15

    A Le(x) trisaccharide functionalized with a cysteamine arm was prepared and this synthesis provided additional information on the reactivity of N-acetylglucosamine O-4 acceptors when they are glycosylated with trichloroacetimidate donors activated with excess BF(3)·OEt(2). In turn, this trisaccharide was conjugated to BSA lysine side chains through a squarate-mediated coupling. This BSA-Le(x) glycoconjugate displayed 35 Le(x) haptens per BSA molecule. The relative affinity of the anti-Le(x) monoclonal antibody SH1 for the Le(x) antigen and analogues of Le(x) in which the D-glucosamine, L-fucose or D-galactose residues were replaced with D-glucose, L-rhamnose and D-glucose, respectively, was measured by competitive ELISA experiments. While all analogues were weaker inhibitors than the Le(x) antigen, only the analogue of Le(x) in which the galactose residue was replaced by a glucose unit showed no binding to the SH1 mAb. To confirm that the reduced or loss of recognition of the Le(x) analogues by the anti-Le(x) mAb SH1 did not result from different conformations adopted by the analogues when compared to the native Le(x) antigen, we assessed the conformational behavior of all trisaccharides by a combination of stochastic searches and NMR experiments. Our results showed that, indeed, the analogues adopted the same stacked conformation as that identified for the Le(x) antigen. The identification of a trisaccharide analogue that does not cross-react with Le(x) but still retains the same conformation as Le(x) constitutes the first step to the design of a safe anti-cancer vaccine based on the dimeric Le(x) tumor associated carbohydrate antigen. PMID:20843695

  2. Use of Modern Chemical Protein Synthesis and Advanced Fluorescent Assay Techniques to Experimentally Validate the Functional Annotation of Microbial Genomes

    SciTech Connect

    Kent, Stephen

    2012-07-20

    The objective of this research program was to prototype methods for the chemical synthesis of predicted protein molecules in annotated microbial genomes. High throughput chemical methods were to be used to make large numbers of predicted proteins and protein domains, based on microbial genome sequences. Microscale chemical synthesis methods for the parallel preparation of peptide-thioester building blocks were developed; these peptide segments are used for the parallel chemical synthesis of proteins and protein domains. Ultimately, it is envisaged that these synthetic molecules would be ‘printed’ in spatially addressable arrays. The unique ability of total synthesis to precision label protein molecules with dyes and with chemical or biochemical ‘tags’ can be used to facilitate novel assay technologies adapted from state-of-the art single molecule fluorescence detection techniques. In the future, in conjunction with modern laboratory automation this integrated set of techniques will enable high throughput experimental validation of the functional annotation of microbial genomes.

  3. Functional diversification of two UGT80 enzymes required for steryl glucoside synthesis in Arabidopsis

    PubMed Central

    Stucky, Daniel F.; Arpin, James C.

    2015-01-01

    Steryl glucosides (SG) are abundant steroid conjugates in plant membranes. Beyond structural roles in lipid bilayers, functions in sugar transport, storage, and/or signalling are predicted. UDP-glucose:sterol glucosyltransferase 80A2 (UGT80A2) and UGT80B1, which share similarity to fungal counterparts, are implicated in SG synthesis in Arabidopsis thaliana. A third related enzyme, which seems specific to the plant lineage, is encoded by UGT713B1/At5g24750. Genetic and biochemical approaches were employed to determine the role of each UGT gene in the production of specific SGs and acyl SGs (ASGs). Using direct infusion electrospray ionization tandem mass spectrometry (ESI-MS/MS), SG and acyl SG (ASG) contents of ugt80 and ugt713 mutants, and triple and double mutants were profiled in seeds. In vitro enzyme assays were performed to assay substrate preferences. Both UGT80A2 and UGT80B1, but not UGT713B1 were shown to be coordinately down-regulated during seed imbibition when SG levels decline, consistent with similar functions as UGT80 enzymes. UGT80A2 was found to be required for normal levels of major SGs in seeds, whereas UGT80B1 is involved in accumulation of minor SG and ASG compounds. Although the results demonstrate specific activities for UGT80A2 and UGT80B1, a role for UGT713B1 in SG synthesis was not supported. The data show that UGT80A2, the more highly conserved enzyme, is responsible for the bulk production of SGs in seeds, whereas UGT80B1 plays a critical accessory role. This study extends our knowledge of UGT80 enzymes and provides evidence for specialized functions for distinct classes of SG and ASG molecules in plants. PMID:25316063

  4. A Synthetic Lethal Interaction between Glutathione Synthesis and Mitochondrial Reactive Oxygen Species Provides a Tumor-Specific Vulnerability Dependent on STAT3

    PubMed Central

    Garama, Daniel J.; Harris, Tiffany J.; White, Christine L.; Rossello, Fernando J.; Abdul-Hay, Maher

    2015-01-01

    Increased production of mitochondrion-derived reactive oxygen species (ROS) is characteristic of a metabolic shift observed during malignant transformation. While the exact sources and roles of ROS in tumorigenesis remain to be defined, it has become clear that maintaining redox balance is critical for cancer cell proliferation and survival and, as such, may represent a vulnerability that can be exploited therapeutically. STAT3, a latent cytosolic transcription factor activated by diverse cytokines and growth factors, has been shown to exhibit an additional, nontranscriptional function in mitochondria, including modulation of electron transport chain activity. In particular, malignant transformation by Ras oncogenes exploits mitochondrial STAT3 functions. We used mass spectrometry-based metabolomics profiling to explore the biochemical basis for the STAT3 dependence of Ras transformation. We identified the gamma-glutamyl cycle, the production of glutathione, and the regulation of ROS as a mitochondrion-STAT3-dependent pathway in Ras-transformed cells. Experimental inhibition of key enzymes in the glutathione cycle resulted in the depletion of glutathione, accumulation of ROS, oxidative DNA damage, and cell death in an oncogenic Ras- and mitochondrial STAT3-dependent manner. These data uncover a synthetic lethal interaction involving glutathione production and mitochondrial ROS regulation in Ras-transformed cells that is governed by mitochondrial STAT3 and might be exploited therapeutically. PMID:26283727

  5. Mitochondrial fatty acid synthesis is required for normal mitochondrial morphology and function in Trypanosoma brucei

    PubMed Central

    Guler, Jennifer L.; Kriegova, Eva; Smith, Terry K.; Lukeš, Julius; Englund, Paul T.

    2013-01-01

    Summary Trypanosoma brucei use microsomal elongases for de novo synthesis of most of its fatty acids. In addition, this parasite utilizes an essential mitochondrial type II synthase for production of octanoate (a lipoic acid precursor) as well as longer fatty acids such as palmitate. Evidence from other organisms suggests that mitochondrially synthesized fatty acids are required for efficient respiration but the exact relationship remains unclear. In procyclic form trypanosomes, we also found that RNAi depletion of the mitochondrial acyl carrier protein, an important component of the fatty acid synthesis machinery, significantly reduces cytochrome-mediated respiration. This reduction was explained by RNAi-mediated inhibition of respiratory complexes II, III and IV, but not complex I. Other effects of RNAi, such as changes in mitochondrial morphology and alterations in membrane potential, raised the possibility of a change in mitochondrial membrane composition. Using mass spectrometry, we observed a decrease in total and mitochondrial phosphatidylinositol and mitochondrial phosphatidylethanolamine. Thus, we conclude that the mitochondrial synthase produces fatty acids needed for maintaining local phospholipid levels that are required for activity of respiratory complexes and preservation of mitochondrial morphology and function. PMID:18221265

  6. Biological function of the dTDP-rhamnose synthesis pathway in Streptococcus mutans.

    PubMed Central

    Tsukioka, Y; Yamashita, Y; Oho, T; Nakano, Y; Koga, T

    1997-01-01

    We have cloned a new gene locus that comprises three genes concerned with the biosynthesis of the serotype c-specific polysaccharide antigen in Streptococcus mutans. The genes encode proteins exhibiting significant homology to the rfbA, rfbB, and rfbD gene products that are involved in the anabolism of dTDP-L-rhamnose from D-glucose-1-phosphate. This anabolism pathway pertains to biosynthesis of the O antigen of lipopolysaccharide in gram-negative bacteria. The cell extract of Escherichia coli expressing each of the cloned genes of S. mutans exhibited enzymatic activity corresponding to the homologous counterpart of the rfb gene products. Rhamnose was not detected in the cell wall preparation purified from the mutant in which each of the three cloned genes was insertionally inactivated. Rabbit antiserum against S. mutans serotype c-specific antigen did not react with the autoclaved extracts from these mutants. These results indicate that the gene products identified in the present study are involved in the dTDP-L-rhamnose synthesis pathway and that the pathway relates to the biosynthesis of the serotype-specific polysaccharide antigen of S. mutans. Southern hybridization analysis revealed that genes homologous to the cloned genes involved in the dTDP-L-rhamnose synthesis pathway were widely distributed in a variety of streptococci. This is the first report of the biological function of the dTDP-rhamnose pathway in streptococci. PMID:9023194

  7. Synthesis and microwave absorbing characteristics of functionally graded carbonyl iron/polyurethane composites

    NASA Astrophysics Data System (ADS)

    Yang, R. B.; Liang, W. F.; Wu, C. H.; Chen, C. C.

    2016-05-01

    Radar absorbing materials (RAMs) also known as microwave absorbers, which can absorb and dissipate incident electromagnetic wave, are widely used in the fields of radar-cross section reduction, electromagnetic interference (EMI) reduction and human health protection. In this study, the synthesis of functionally graded material (FGM) (CI/Polyurethane composites), which is fabricated with semi-sequentially varied composition along the thickness, is implemented with a genetic algorithm (GA) to optimize the microwave absorption efficiency and bandwidth of FGM. For impedance matching and broad-band design, the original 8-layered FGM was obtained by the GA method to calculate the thickness of each layer for a sequential stacking of FGM from 20, 30, 40, 50, 60, 65, 70 and 75 wt% of CI fillers. The reflection loss of the original 8-layered FGM below -10 dB can be obtained in the frequency range of 5.12˜18 GHz with a total thickness of 9.66 mm. Further optimization reduces the number of the layers and the stacking sequence of the optimized 4-layered FGM is 20, 30, 65, 75 wt% with thickness of 0.8, 1.6, 0.6 and 1.0 mm, respectively. The synthesis and measurement of the optimized 4-layered FGM with a thickness of 4 mm reveal a minimum reflection loss of -25.2 dB at 6.64 GHz and its bandwidth below - 10 dB is larger than 12.8 GHz.

  8. A retrospective: Use of Escherichia coli as a vehicle to study phospholipid synthesis and function

    PubMed Central

    Dowhan, William

    2012-01-01

    Although the study of individual phospholipids and their synthesis began in the 1920’s first in plants and then mammals, it was not until the early 1960’s that Eugene Kennedy using Escherichia coli initiated studies of bacterial phospholipid metabolism. With the base of information already available from studies of mammalian tissue, the basic blueprint of phospholipid biosynthesis in E. coli was worked out by the late 1960’s. In 1970’s and 1980’s most of the enzymes responsible for phospholipid biosynthesis were purified and many of the genes encoding these enzymes were identified. By the late 1990’s conditional and null mutants were available along with clones of the genes for every step of phospholipid biosynthesis. Most of these genes had been sequenced before the complete E. coli genome sequence was available. Strains of E. coli were developed in which phospholipid composition could be changed in a systematic manner while maintaining cell viability. Null mutants, strains in which phospholipid metabolism was artificially regulated, and strains synthesizing foreign lipids not found in E. coli have been used to this day to define specific roles for individual phospholipid. This review will trace the findings that have led to the development of E. coli as an excellent model system to study mechanisms underlying the synthesis and function of phospholipids that are widely applicable to other prokaryotic and eukaryotic systems. PMID:22925633

  9. Reactivation of the methylation-inactivated late E2A promoter of adenovirus type 2 by E1A (13 S) functions.

    PubMed

    Weisshaar, B; Langner, K D; Jüttermann, R; Müller, U; Zock, C; Klimkait, T; Doerfler, W

    1988-07-20

    The inactivating effect of sequence-specific promoter methylations was extensively studied by using the late E2A promoter of adenovirus type 2 (Ad2) DNA. The modification of the three 5' CCGG 3' sequences at nucleotides +24, +6 and -215, relative to the cap site in this promoter, sufficed to silence the gene in transient expression either in Xenopus laevis oocytes or in mammalian cells, and after the fixation of the E2A promoter-chloramphenicol-acetyltransferase (CAT) gene construct in the genome of hamster cells. It will now be demonstrated that the inactivation of the late promoter of Ad2 DNA can be reversed by transactivating functions that are encoded in the 13S messenger RNA of the E1A region of Ad2 DNA. The reactivation of a methylation-inactivated eukaryotic promoter by transactivating functions has general significance in that the value of a regulatory signal can be fully realized only by its controlled reversibility. It was demonstrated in transient expression experiments that the 5' CCGG 3'-methylated late E2A promoter was at least partly reactivated in cell lines constitutively expressing the E1 region of Ad2 or of adenovirus type 5 (Ad5) DNA. The reactivation led to transcriptional initiation at the authentic cap sites of the late E2A promoter and was not associated with promoter demethylation, at least not in both DNA complements. Reactivation of the methylation-inactivated E2A promoter could also be demonstrated in two BHK21 cell lines (mc14 and mc20), which carried the late E2A promoter-CAT gene assembly in an integrated form. In these cell lines the late E2A promoter was methylated and the CAT gene was not expressed. By transfection of cell lines mc14 and mc20, the reactivating functions were shown to reside in the pAd2E1A-13 S cDNA clone of Ad2 DNA. The pAd2E1A-12 S cDNA clone or the pAd2E1B clone showed no reactivating function. These findings implicated the E1A 289 amino acid residue protein of Ad2, a well-known transactivator, as the

  10. Nitrolinoleate, a nitric oxide-derived mediator of cell function: Synthesis, characterization, and vasomotor activity

    PubMed Central

    Lim, Dong Gun; Sweeney, Scott; Bloodsworth, Allison; White, C. Roger; Chumley, Phillip H.; Krishna, N. Rama; Schopfer, Francisco; O'Donnell, Valerie B.; Eiserich, Jason P.; Freeman, Bruce A.

    2002-01-01

    Nitric oxide (•NO) and •NO-derived reactive species rapidly react with lipids during both autocatalytic and enzymatic oxidation reactions to yield nitrated derivatives that serve as cell signaling molecules. Herein we report the synthesis, purification, characterization, and bioactivity of nitrolinoleate (LNO2). Nitroselenylation of linoleic acid yielded LNO2 that was purified by solvent extraction, silicic acid chromatography, and reverse-phase HPLC. Structural characterization was performed by IR spectroscopy, 15N-NMR, LC-negative ion electrospray mass spectroscopy (MS), and chemiluminescent nitrogen analysis. Quantitative MS analysis of cell and vessel LNO2 metabolism, using L[15N]O2 as an internal standard, revealed that LNO2 is rapidly metabolized by rat aortic smooth muscle (RASM) monolayers and rat thoracic aorta, resulting in nitrite production and up to 3-fold increases in cGMP (ED50 = 30 μM for RASM, 50 μM for aorta). LNO2 induced endothelium-independent relaxation of preconstricted rat aortic rings, which was unaffected by LG-nitro-l-arginine methyl ester addition and inhibited by the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazole[4,3-a]quinoxalin-1-one and the •NO scavenger HbO2. These results reveal that synthetic LNO2, identical to lipid derivatives produced biologically by the reaction of •NO and •NO-derived species with oxidizing unsaturated fatty acids (e.g., linoleate), can transduce vascular signaling actions of •NO. PMID:12444258

  11. Precision synthesis of functional materials via RAFT polymerization and click-type chemical reactions

    NASA Astrophysics Data System (ADS)

    Flores, Joel Diez

    2011-12-01

    The need to tailor polymeric architectures with specific physico-chemical properties via the simplest, cleanest, and most efficient synthetic route possible has become the ultimate goal in polymer synthesis. Recent progress in macromolecular science, such as the discoveries of controlled/"living" free radical polymerization (CRP) methods, has brought about synthetic capabilities to prepare (co)polymers with advanced topologies, predetermined molecular weights, narrow molecular weight distributions, and precisely located functional groups. In addition, the establishment of click chemistry has redefined the selected few highly efficient chemical reactions that become highly useful in post-polymerization modification strategies. Hence, the ability to make well-defined topologies afforded by controlled polymerization techniques and the facile incorporation of functionalities along the chain via click-type reactions have yielded complex architectures, allowing the investigation of physical phenomena which otherwise could not be studied with systems prepared via conventional methods. The overarching theme of the research work described in this dissertation is the fusion of the excellent attributes of reversible addition-fragmentation chain transfer (RAFT) polymerization method, which is one of the CRP techniques, and click-type chemical reactions in the precision of synthesis of advanced functional materials. Chapter IV is divided into three sections. In Section I, the direct RAFT homopolymerization of 2-(acryloyloxy)ethyl isocyanate (AOI) and subsequent post-polymerization modifications are described. The polymerization conditions were optimized in terms of the choice of RAFT chain transfer agent (CTA), polymerization temperature and the reaction medium. Direct RAFT polymerization of AOI requires a neutral CTA, and relatively low reaction temperature to yield AOI homopolymers with low polydispersities. Efficient side-chain functionalization of PAOI homopolymers was

  12. Functionalization of reactive polymer multilayers with RGD and an antifouling motif: RGD density provides control over human corneal epithelial cell-substrate interactions.

    PubMed

    Tocce, Elizabeth J; Broderick, Adam H; Murphy, Kaitlin C; Liliensiek, Sara J; Murphy, Christopher J; Lynn, David M; Nealey, Paul F

    2012-01-01

    Our study demonstrates that substrates fabricated using a "reactive" layer-by-layer approach promote well-defined cell-substrate interactions of human corneal epithelial cells. Specifically, crosslinked and amine-reactive polymer multilayers were produced by alternating "reactive" deposition of an azlactone-functionalized polymer [poly(2-vinyl-4,4-dimethylazlactone)] (PVDMA) and a primary amine-containing polymer [branched poly(ethylene imine)] (PEI). Advantages of our system include a 5- to 30-fold decrease in deposition time compared to traditional polyelectrolyte films and direct modification of the films with peptides. Our films react with mixtures of an adhesion-promoting peptide containing Arg-Gly-Asp (RGD) and the small molecule D-glucamine, a chemical motif which is nonfouling. Resulting surfaces prevent protein adsorption and promote cell attachment through specific peptide interactions. The specificity of cell attachment via immobilized RGD sequences was verified using both a scrambled RDG peptide control as well as soluble-RGD competitive assays. Films were functionalized with monotonically increasing surface densities of RGD which resulted in both increased cell attachment and the promotion of a tri-phasic proliferative response of a human corneal epithelial cell line (hTCEpi). The ability to treat PEI/PVDMA films with peptides for controlled cell-substrate interactions enables the use of these films in a wide range of biological applications. PMID:21972074

  13. A combined crystallographic analysis and ab initio calculations to interpret the reactivity of functionalized hexavanadates and their inhibitor potency toward Na(+)/K(+)-ATPase.

    PubMed

    Xu, Xiao; Bošnjaković-Pavlović, Nada; Čolović, Mirjana B; Krstić, Danijela Z; Vasić, Vesna M; Gillet, Jean-Michel; Wu, Pingfan; Wei, Yongge; Spasojević-de Biré, Anne

    2016-08-01

    In vitro influence of five synthesized functionalized hexavanadates (V6) on commercial porcine cerebral cortex Na(+)/K(+)-ATPase activity has been studied. Dose dependent Na(+)/K(+)-ATPase inhibition was obtained for all investigated compounds. Calculated half maximal inhibitory concentration IC50 values, in mol/L, for Na(+)/K(+)-ATPase were 7.6×10(-5), 1.8×10(-5), 2.9×10(-5), 5.5×10(-5) for functionalized hexavanadates (V6) with tetrabutylammonium (TBA) [V6-CH3][TBA]2, [V6-NO2][TBA]2, [V6-OH][TBA]2 and [V6-C3][TBA]2 respectively. [V6-OH][Na]2 inhibited Na(+)/K(+)-ATPase activity up to 30% at maximal investigated concentration 1×10(-3)mol/L. This reactivity has been interpreted using a study of the non-covalent interactions of functionalized hexavanadate hybrids through Cambridge Structural Database (CSD) analysis. Bibliographic searching has led to 18 different structures and 99 contacts. We have observed that C-H⋯O contacts consolidate the structures. We have also performed density functional theory (DFT) calculations and have determined electrostatic potential values at the molecular surface on a series of functionalized V6. These results enlightened their chemical reactivity and their potential biological applications such as the inhibition of the ATPase. PMID:27235271

  14. Synthesis and Reactivity of Four- and Five-Coordinate Low-Spin Cobalt(II) PCP Pincer Complexes and Some Nickel(II) Analogues

    PubMed Central

    2014-01-01

    Anhydrous CoCl2 or [NiCl2(DME)] reacts with the ligand PCPMe-iPr (1) in the presence of nBuLi to afford the 15e and 16e square planar complexes [Co(PCPMe-iPr)Cl] (2) and [Ni(PCPMe-iPr)Cl] (3), respectively. Complex 2 is a paramagnetic d7 low-spin complex, which is a useful precursor for a series of Co(I), Co(II), and Co(III) PCP complexes. Complex 2 reacts readily with CO and pyridine to afford the five-coordinate square-pyramidal 17e complexes [Co(PCPMe-iPr)(CO)Cl] (4) and [Co(PCPMe-iPr)(py)Cl] (5), respectively, while in the presence of Ag+ and CO the cationic complex [Co(PCPMe-iPr)(CO)2]+ (6) is afforded. The effective magnetic moments μeff of all Co(II) complexes were derived from the temperature dependence of the inverse molar magnetic susceptibility by SQUID measurements and are in the range 1.9 to 2.4 μB. This is consistent with a d7 low-spin configuration with some degree of spin–orbit coupling. Oxidation of 2 with CuCl2 affords the paramagnetic Co(III) PCP complex [Co(PCPMe-iPr)Cl2] (7), while the synthesis of the diamagnetic Co(I) complex [Co(PCPMe-iPr)(CO)2] (8) was achieved by stirring 2 in toluene with KC8 in the presence of CO. Finally, the cationic 16e Ni(II) PCP complex [Ni(PCPMe-iPr)(CO)]+ (10) was obtained by reacting complex 3 with 1 equiv of AgSbF6 in the presence of CO. The reactivity of CO addition to Co(I), Co(II), and Ni(II) PCP square planar complexes of the type [M(PCPMe-iPr)(CO)]n (n = +1, 0) was investigated by DFT calculations, showing that formation of the Co species, 6 and 8, is thermodynamically favorable, while Ni(II) maintains the 16e configuration since CO addition is unfavorable in this case. X-ray structures of most complexes are provided and discussed. A structural feature of interest is that the apical CO ligand in 4 deviates significantly from linearity, with a Co–C–O angle of 170.0(1)°. The DFT-calculated value is 172°, clearly showing that this is not a packing but an electronic effect.

  15. Control of extracellular polysaccharide synthesis in Erwinia stewartii and Escherichia coli K-12: a common regulatory function.

    PubMed Central

    Torres-Cabassa, A; Gottesman, S; Frederick, R D; Dolph, P J; Coplin, D L

    1987-01-01

    A primary determinant of pathogenicity in Erwinia stewartii is the production of extracellular polysaccharide (EPS). A single mutation can abolish both EPS synthesis and pathogenicity; both properties are restored by a single cosmid clone. Subcloning and insertion analysis have defined a single positive regulatory function which shares a number of similarities with the rcsA function of Escherichia coli K-12, a positive regulator for capsular polysaccharide synthesis. In E. stewartii, the gene promotes the transcription of at least two operons (cps) involved in EPS synthesis; we have previously demonstrated a similar function for rcsA in E. coli. Both genes code for proteins of 25 to 27 kilodaltons; both proteins are unstable in E. coli. The E. stewartii RcsA protein was stabilized in E. coli lon mutants, as the RcsA product from E. coli is. The E. stewartii function complemented E. coli rcsA mutants, and the E. coli RcsA function increased cps expression and restored virulence in E. stewartii mutants. Therefore, these two gram-negative organisms share a similar component of their regulatory circuitry for the control of capsular polysaccharide synthesis. Images PMID:2820930

  16. Mono- and bi-functional arenethiols as surfactants for gold nanoparticles: synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Vitale, Floriana; Fratoddi, Ilaria; Battocchio, Chiara; Piscopiello, Emanuela; Tapfer, Leander; Russo, Maria Vittoria; Polzonetti, Giovanni; Giannini, Cinzia

    2011-12-01

    Stable gold nanoparticles stabilized by different mono and bi-functional arenethiols, namely, benzylthiol and 1,4-benzenedimethanethiol, have been prepared by using a modified Brust's two-phase synthesis. The size, shape, and crystalline structure of the gold nanoparticles have been determined by high-resolution electron microscopy and full-pattern X-ray powder diffraction analyses. Nanocrystals diameters have been tuned in the range 2 ÷ 9 nm by a proper variation of Au/S molar ratio. The chemical composition of gold nanoparticles and their interaction with thiols have been investigated by X-ray photoelectron spectroscopy. In particular, the formation of networks has been observed with interconnected gold nanoparticles containing 1,4-benzenedimethanethiol as ligand.

  17. Amine functionalized TiO2-carbon nanotube composite: synthesis, characterization and application to glucose biosensing

    NASA Astrophysics Data System (ADS)

    Tasviri, Mahboubeh; Rafiee-Pour, Hossain-Ali; Ghourchian, Hedayatollah; Gholami, Mohammad Reza

    2011-12-01

    The synthesis of amine functionalized TiO2-coated multiwalled carbon nanotubes (NH2-TiO2-CNTs) using sol-gel method was investigated. The synthesized nanocomposite was characterized with XRD, FTIR spectroscopy, BET test and SEM imaging. The results demonstrated a unique nanostructure with no destruction of the CNTs' shape. In addition, the presence of amine groups on the composite surface was confirmed by FTIR. This nanocomposite was used for one-step immobilization of glucose oxidase (GOx) to sense glucose. The result of cyclic voltammetry showed a pair of well-defined and quasi-reversible peaks for direct electron transfer of GOx in the absence of glucose. Also, the result of electrochemical impedance spectroscopy indicated that GOx was successfully immobilized on the surface of NH2-TiO2-CNTs. Furthermore, good amperometric response showed that immobilized GOx on the NH2-TiO2-CNTs exhibits exceptional bioelectrocatalytic activity toward glucose oxidation.

  18. Functionalized O6-Corona[6]arenes: Synthesis, Structure, and Fullerene Complexation Property.

    PubMed

    Ren, Wen-Sheng; Zhao, Liang; Wang, Mei-Xiang

    2016-07-01

    The synthesis, structure, and fullerene complexation property of novel and functionalized On-corona[n]arenes were reported. Based on the fragment coupling strategy, ester-containing On-corona[n]arenes (n = 6, 8) were obtained readily starting from 1,4-hydroquinone and diethyl 2,5-difluoroterephthalate. Reduction of esters with LiAlH4 produced almost quantitatively hydroxymethylated On-corona[n]arenes, which underwent etherification with MeI to afford methoxymethyl-substituted On-corona[n]arenes (n = 6, 8) in good yields. The macrocycles adopt unique corona-type conformation with a large cylindroid cavity. They are strong macrocyclic host molecules to form 1:1 complexes with fullerenes C60 and C70 in toluene with an associate constant up to (1.59 ± 0.04) × 10(5) M(-1). PMID:27324274

  19. Synthesis and Antifungal Activity of Functionalized 2,3-Spirostane Isomers

    PubMed Central

    Upadhyay, Sunil Kumar; Creech, Clinton C.; Bowdy, Katharine L.; Stevens, Edwin D.; Jursic, Branko S.; Neumann, Donna M.

    2011-01-01

    Invasive fungal infections are a major complication for individuals with compromised immune systems. One of the most significant challenges in the treatment of invasive fungal infections is the increased resistance of many organisms to widely used antifungals, making the development of novel antifungal agents essential. Many naturally occurring products have been found to be effective antimicrobial agents. In particular, saponins with spirostane glycosidic moieties- isolated from plant or marine species- have been shown to possess a range of antimicrobial properties. In this report, we outline a novel approach to the synthesis of a number of functionalized spirostane molecules that can be further used as building blocks for novel spirostane-linked glycosides and present results from the in vitro screenings of the antifungal potential of each derivative against four fungal species, including Candida albicans, Cryptococcus neoformans, Candida glabrata, and the filamentous fungus Aspergillus fumigatus. PMID:21489791

  20. Density functional theory study of C₂F₅I synthesis over activated carbon catalyst.

    PubMed

    Hu, Yingjie; Xue, Mengwei; Yang, Guangchen; Pan, Renming

    2015-09-01

    Quantum chemistry calculations based on the density functional theory (DFT) are carried out to investigate the reaction mechanism of C2F5I synthesis catalyzed by activated carbon. The possible adsorption configurations of fluorocarbon intermediates are analyzed carefully. Also, the related transition states and reaction pathway are analyzed. According to calculation, firstly, the dehydrofluorination of C2HF5, as the rate-determining step, is catalyzed by the carboxyl acid groups. Secondly, the tetrafluoroethylidene radicals disproportionate on graphite (001) surface instead of rearrangement or dimerization. Next, the fluorine abstractions between fluorocarbon intermediates over graphite (001) surfaces proceed successfully. Finally, the desorbed pentafluoroethyl abstracts iodine atom from molecular iodine