Science.gov

Sample records for reactive functionality synthesis

  1. Synthesis, Characterization, and Reactivity of Functionalized Trinuclear Iron–Sulfur Clusters – A New Class of Bioinspired Hydrogenase Models

    PubMed Central

    Kaiser, Manuel; Knör, Günther

    2015-01-01

    The air- and moisture-stable iron–sulfur carbonyl clusters Fe3S2(CO)7(dppm) (1) and Fe3S2(CO)7(dppf) (2) carrying the bisphosphine ligands bis(diphenylphosphanyl)methane (dppm) and 1,1′-bis(diphenylphosphanyl)ferrocene (dppf) were prepared and fully characterized. Two alternative synthetic routes based on different thionation reactions of triiron dodecacarbonyl were tested. The molecular structures of the methylene-bridged compound 1 and the ferrocene-functionalized derivative 2 were determined by single-crystal X-ray diffraction. The catalytic reactivity of the trinuclear iron–sulfur cluster core for proton reduction in solution at low overpotential was demonstrated. These deeply colored bisphosphine-bridged sulfur-capped iron carbonyl systems are discussed as promising candidates for the development of new bioinspired model compounds of iron-based hydrogenases. PMID:26512211

  2. Functional Reactive Polymer Electrospun Matrix.

    PubMed

    Agarwal, Vipul; Ho, Dominic; Ho, Diwei; Galabura, Yuriy; Yasin, Faizah; Gong, Peijun; Ye, Weike; Singh, Ruhani; Munshi, Alaa; Saunders, Martin; Woodward, Robert C; St Pierre, Timothy; Wood, Fiona M; Fear, Mark; Lorenser, Dirk; Sampson, David D; Zdyrko, Bogdan; Luzinov, Igor; Smith, Nicole M; Iyer, K Swaminathan

    2016-02-01

    Synthetic multifunctional electrospun composites are a new class of hybrid materials with many potential applications. However, the lack of an efficient, reactive large-area substrate has been one of the major limitations in the development of these materials as advanced functional platforms. Herein, we demonstrate the utility of electrospun poly(glycidyl methacrylate) films as a highly versatile platform for the development of functional nanostructured materials anchored to a surface. The utility of this platform as a reactive substrate is demonstrated by grafting poly(N-isopropylacrylamide) to incorporate stimuli-responsive properties. Additionally, we demonstrate that functional nanocomposites can be fabricated using this platform with properties for sensing, fluorescence imaging, and magneto-responsiveness. PMID:26780245

  3. Synthesis, Aqueous Reactivity, and Biological Evaluation of Carboxylic Acid Ester-Functionalized Platinum–Acridine Hybrid Anticancer Agents

    PubMed Central

    Graham, Leigh A.; Suryadi, Jimmy; West, Tiffany K.; Kucera, Gregory L.; Bierbach, Ulrich

    2012-01-01

    The synthesis of platinum–acridine hybrid agents containing carboxylic acid ester groups is described. The most active derivatives and the unmodified parent compounds showed up to 6-fold higher activity in ovarian cancer (OVCAR-3) and breast cancer (MCF-7, MDA-MB-23) cell lines than cisplatin. Inhibition of cell proliferation at nanomolar concentrations was observed in pancreatic (PANC-1) and non-small cell lung cancer cells (NSCLC, NCI-H460) of 80- and 150-fold, respectively. Introduction of the ester groups did not affect the cytotoxic properties of the hybrids, which form the same monofunctional–intercalative DNA adducts as the parent compounds, as demonstrated in a plasmid unwinding assay. In-line high-performance liquid chromatography and electrospray mass spectrometry (LC-ESMS) shows that the ester moieties undergo platinum-mediated hydrolysis in a chloride concentration-dependent manner to form carboxylate chelates. Potential applications of the chloride-sensitive ester hydrolysis as a self-immolative release mechanism for tumor-selective delivery of platinum–acridines are discussed. PMID:22871158

  4. Synthesis and Reactivity of Triazaphenanthrenes.

    PubMed

    Fernandez, Sarah; Ganiek, Maximilian A; Karpacheva, Mariia; Hanusch, Fabian C; Reuter, Stephan; Bein, Thomas; Auras, Florian; Knochel, Paul

    2016-07-01

    Pyridonaphthyridines (triazaphenanthrenes) were prepared in 4 steps and in 13-52% overall yield using Negishi cross-couplings between iodopicolines and 2-chloro-pyridylzinc derivatives. After chlorination, Gabriel amination and spontaneous ring-closure, the final aromatization leading to the triazaphenanthrenes was achieved with chloranil. This heterocyclic scaffold underwent a nucleophilic addition at position 6 leading to further functionalized pyridonaphthyridines. The influence of these chemical modifications on the optical properties was studied by steady-state and time-resolved optical spectroscopy. While the thiophene-substituted heterocycles exhibited the most extended absorption, the phenyl- and furan-substituted compounds showed a stronger photoluminescence, reaching above 20% quantum yield and lifetimes of several nanoseconds. PMID:27321707

  5. Direct Laser Synthesis of Functional Coatings

    SciTech Connect

    P. Schaaf; Michelle D. Shinn; E. Carpene; J. Kaspar

    2005-06-01

    The direct laser synthesis of functional coatings employs the irradiation of materials with short intensive laser pulses in a reactive atmosphere. The material is heated and plasma is ignited in the reactive atmosphere. This leads to an intensive interaction of the material with the reactive species and a coating is directly formed on the materials surface. By that functional coatings can be easily produced a fast way on steel, aluminium, and silicon by irradiation in nitrogen, methane, or even hydrogen. The influence of the processing parameters to the properties of the functional coatings will be presented for titanium nitride coating produced on titanium with the free electron laser.

  6. Synthesis and analysis of reactive nanocomposites prepared arrested reactive milling

    NASA Astrophysics Data System (ADS)

    Umbrajkar, Swati M.

    Different types of reactive nanocomposites have been synthesized by Arrested Reactive Milling (ARM). The technical approach was to increase the interface area available for heterogeneous reaction between solid fuel and oxidizer components. Using aluminum as the main fuel and different metal oxides as oxidizers, highly energetic reactive nanocomposites with different degrees of structural refinement were synthesized. Specifically, stoichiometric Al-MoO 3, Al-CuO, and Al-NaNO3 material systems were studied in detail. The correlation of heterogeneous exothermic reactions occurring in the nanocomposite powders upon their heating at low rates and ignition events observed for the same powders heated rapidly was of interest. Differential scanning calorimetry (DSC), X-ray diffraction (XRD) and heated filament ignition experiments were used to quantify the ignition kinetics and related reaction mechanisms. Fuel rich Al-MoO3 nanocomposites were also synthesized using ARM. Optimum composition and milling parameters were identified for fuel-rich compositions. Analysis of exothermic reactions in Al-MoO3 system showed that kinetics of such reactions could not be determined by isoconversion processing and respective activation energies could not be meaningfully found as functions of reaction progress. Instead, detailed DSC measurements at different heating rates are required to enable one in developing a multi-step kinetic model to describe such reactions adequately.

  7. Language reactivity and work functioning in schizophrenia.

    PubMed

    St-Hilaire, Annie; Docherty, Nancy M

    2005-06-15

    Some studies have found that the speech of certain schizophrenia patients becomes more disordered in stressful laboratory situations. It is unknown, however, whether affective reactivity of speech is associated with stress responsiveness of symptoms in the real world. This study examines whether language-reactive patients report more stress-related impairments in work functioning than language-nonreactive patients. Forty-six patients provided speech samples and completed a work history interview. It was found that the language-reactive patients were more likely than the language-nonreactive patients to endorse items pertaining to social anxiety and difficulty relating to others as reasons for their work difficulties. This suggests that language-reactive patients are more sensitive to social stressors than language-nonreactive patients. PMID:15885516

  8. Design and synthesis of reactive separation systems

    SciTech Connect

    Doherty, M.F.

    1992-01-01

    During the last decade there has been a rapid upturn in interest in reactive distillation. The chemical process industry recognizes the favorable economics of carrying out reaction simultaneously with distillation for certain classes of reacting systems, and many new processes have been built based on this technology. Interest is also increasing by academics and software vendors. Systematic design methods for reactive distillation systems have only recently begun to emerge. In this report we survey the available design techniques and point out the contributions made by our group at the University of Massachusetts.

  9. Reactivity of functionalized indoles with rare-earth metal amides. Synthesis, characterization and catalytic activity of rare-earth metal complexes incorporating indolyl ligands.

    PubMed

    Feng, Zhijun; Wei, Yun; Zhou, Shuangliu; Zhang, Guangchao; Zhu, Xiancui; Guo, Liping; Wang, Shaowu; Mu, Xiaolong

    2015-12-21

    The reactivity of several functionalized indoles 2-(RNHCH2)C8H5NH (R = C6H5 (1), (t)Bu (2), 2,6-(i)Pr2C6H3 (3)) with rare-earth metal amides is described. Reactions of 1 or 2 with [(Me3Si)2N]3RE(μ-Cl)Li(THF)3 (RE = Eu, Yb) respectively produced the europium complexes [2-(C6H5N[double bond, length as m-dash]CH)C8H5N]2Eu[N(SiMe3)2] (4) and [2-((t)BuN[double bond, length as m-dash]CH)C8H5N]Eu[N(SiMe3)2]2 (5), and the ytterbium complex [2-((t)BuN[double bond, length as m-dash]CH)C8H5N]2Yb[N(SiMe3)2] (6), containing bidentate anionic indolyl ligands via dehydrogenation of the amine to the imine. In contrast, reactions of the more sterically bulky indole 3 with [(Me3Si)2N]3RE(μ-Cl)Li(THF)3 afforded complexes [2-(2,6-(i)Pr2C6H3NCH2)C8H5N]RE[N(SiMe3)2](THF)2 (RE = Yb (7), Y (8), Er (9), Dy (10)) with the deprotonated indolyl ligand. While reactions of 3 with yttrium and ytterbium amides in refluxing toluene respectively gave the complexes [2-(2,6-(i)Pr2C6H3N[double bond, length as m-dash]CH)C8H5N]3Y (11) and [2-(2,6-(i)Pr2C6H3N[double bond, length as m-dash]CH)C8H5N]2Yb(II)(THF)2 (12), along with transformation of the amino group to the imino group, and also with a reduction of Yb(3+) to Yb(2+) in the formation of 12. Reactions of 3 with samarium and neodymium amides provided novel dinuclear complexes {[μ-η(5):η(1):η(1)-2-(2,6-(i)Pr2C6H3NCH2)C8H5N]RE[N(SiMe3)2]}2 (RE = Sm (13), Nd (14)) having indolyl ligands in μ-η(5):η(1):η(1) hapticities. The pathway for the transformation of the amino group to the imino group is proposed on the basis of the experimental results. The new complexes displayed excellent activity in the intramolecular hydroamination of aminoalkenes. PMID:26548974

  10. Reactive Functionalized Membranes for Polychlorinated Biphenyl Degradation

    PubMed Central

    Gui, Minghui; Ormsbee, Lindell E.; Bhattacharyya, Dibakar

    2014-01-01

    Membranes have been widely used in water remediation (e.g. desalination and heavy metal removal) because of the ability to control membrane pore size and surface charge. The incorporation of nanomaterials into the membranes provides added benefits through increased reactivity with different functionality. In this study, we report the dechlorination of 2-chlorobiphenyl in the aqueous phase by a reactive membrane system. Fe/Pd bimetallic nanoparticles (NPs) were synthesized (in-situ) within polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) membranes for degradation of polychlorinated biphenyls (PCBs). Biphenyl formed in the reduction was further oxidized into hydroxylated biphenyls and benzoic acid by an iron-catalyzed hydroxyl radical (OH•) reaction. The formation of magnetite on Fe surface was observed. This combined pathway (reductive/oxidative) could reduce the toxicity of PCBs effectively while eliminating the formation of chlorinated degradation byproducts. The successful manufacturing of full-scale functionalized membranes demonstrates the possibility of applying reactive membranes in practical water treatment. PMID:24954974

  11. The 2-Arsaethynolate Anion: Synthesis and Reactivity Towards Heteroallenes.

    PubMed

    Hinz, Alexander; Goicoechea, Jose M

    2016-07-18

    The synthesis and isolation of the 2-arsaethynolate anion, AsCO(-) , and its subsequent reactivity towards heteroallenes is reported. Reactions with ketenes and carbodiimides afford four-membered anionic heterocycles in formal [2+2] cycloaddition reactions. By contrast, reaction with an isocyanate yielded a 1,4,2-diazaarsolidine-3,5-dionide anion and the unprecedented cluster anions As10 (2-) and As12 (4-) . These preliminary reactivity studies hint at the enormous potential synthetic utility of this novel anion, which may be employed as an arsenide (As(-) ) source. PMID:27093942

  12. Immune Function and Reactivation of Latent Viruses

    NASA Technical Reports Server (NTRS)

    Butel, Janet S.

    1999-01-01

    A major concern associated with long-duration space flight is the possibility of infectious diseases posing an unacceptable medical risk to crew members. One major hypothesis addressed in this project is that space flight will cause alterations in the immune system that will allow latent viruses that are endogenous in the human population to reactivate and shed to higher levels than normal, which may affect the health of crew members. The second major hypothesis being examined is that the effects of space flight will alter the mucosal immune system, the first line of defense against many microbial infections, including herpesviruses, polyomaviruses, and gastroenteritis viruses, rendering crew members more susceptible to virus infections across the mucosa. We are focusing the virus studies on the human herpesviruses and polyomaviruses, important pathogens known to establish latent infections in most of the human population. Both primary infection and reactivation from latent infection with these groups of viruses (especially certain herpesviruses) can cause a variety of illnesses that result in morbidity and, occasionally, mortality. Both herpesviruses and polyomaviruses have been associated with human cancer, as well. Effective vaccines exist for only one of the eight known human herpesviruses and available antivirals are of limited use. Whereas normal individuals display minimal consequences from latent viral infections, events which alter immune function (such as immunosuppressive therapy following solid organ transplantation) are known to increase the risk of complications as a result of viral reactivations.

  13. Intramolecular Tetrylene Lewis Adducts: Synthesis and Reactivity.

    PubMed

    Schneider, Julia; Krebs, Kilian M; Freitag, Sarah; Eichele, Klaus; Schubert, Hartmut; Wesemann, Lars

    2016-07-01

    A series of benzyl(diphenylphosphino) and o-phenyl(diphenlyphosphino) substituted germylenes and plumbylenes were synthesized by nucleophilic substitution between the respective lithium reagent and tetrylene halide. The Lewis pairs were characterized by X-ray crystallography and NMR spectroscopy. The reactivity of the tetrylenes was investigated with respect to azide addition. In the germylene case, the germaniumimide was formed as the kinetically controlled product, which rearranges upon heating to give the phosphinimide. The stannylene and plumbylene derivatives react with adamantylazide to give the azide adducts. 1-Pentene reacts diastereoselectively with the phosphagermirane to give a cyclic addition product. Trimethysilylacetylene shows an addition with the benzylphosphino-substituted germylene and plumbylene to give the cycloheteropentene molecules. The addition product between phenylacetylene and the four membered Ge-P adduct shows after addition at room temperature a 1,4-phenylmigration to give a cyclic phosphine. Alkylnitrene insertion into a Ge-C bond of the alkyne addition product of the phosphagermirane was found in reaction with adamantylazide. PMID:27273819

  14. Function through synthesis-informed design.

    PubMed

    Wender, Paul A; Quiroz, Ryan V; Stevens, Matthew C

    2015-03-17

    In 1996, a snapshot of the field of synthesis was provided by many of its thought leaders in a Chemical Reviews thematic issue on "Frontiers in Organic Synthesis". This Accounts of Chemical Research thematic issue on "Synthesis, Design, and Molecular Function" is intended to provide further perspective now from well into the 21st century. Much has happened in the past few decades. The targets, methods, strategies, reagents, procedures, goals, funding, practices, and practitioners of synthesis have changed, some in dramatic ways as documented in impressive contributions to this issue. However, a constant for most synthesis studies continues to be the goal of achieving function with synthetic economy. Whether in the form of new catalysts, reagents, therapeutic leads, diagnostics, drug delivery systems, imaging agents, sensors, materials, energy generation and storage systems, bioremediation strategies, or molecules that challenge old theories or test new ones, the function of a target has been and continues to be a major and compelling justification for its synthesis. While the targets of synthesis have historically been heavily represented by natural products, increasingly design, often inspired by natural structures, is providing a new source of target structures exhibiting new or natural functions and new or natural synthetic challenges. Complementing isolation and screening approaches to new target identification, design enables one to create targets de novo with an emphasis on sought-after function and synthetic innovation with step-economy. Design provides choice. It allows one to determine how close a synthesis will come to the ideal synthesis and how close a structure will come to the ideal function. In this Account, we address studies in our laboratory on function-oriented synthesis (FOS), a strategy to achieve function by design and with synthetic economy. By starting with function rather than structure, FOS places an initial emphasis on target design

  15. Function through Synthesis-Informed Design

    PubMed Central

    2016-01-01

    Conspectus In 1996, a snapshot of the field of synthesis was provided by many of its thought leaders in a Chemical Reviews thematic issue on “Frontiers in Organic Synthesis”. This Accounts of Chemical Research thematic issue on “Synthesis, Design, and Molecular Function” is intended to provide further perspective now from well into the 21st century. Much has happened in the past few decades. The targets, methods, strategies, reagents, procedures, goals, funding, practices, and practitioners of synthesis have changed, some in dramatic ways as documented in impressive contributions to this issue. However, a constant for most synthesis studies continues to be the goal of achieving function with synthetic economy. Whether in the form of new catalysts, reagents, therapeutic leads, diagnostics, drug delivery systems, imaging agents, sensors, materials, energy generation and storage systems, bioremediation strategies, or molecules that challenge old theories or test new ones, the function of a target has been and continues to be a major and compelling justification for its synthesis. While the targets of synthesis have historically been heavily represented by natural products, increasingly design, often inspired by natural structures, is providing a new source of target structures exhibiting new or natural functions and new or natural synthetic challenges. Complementing isolation and screening approaches to new target identification, design enables one to create targets de novo with an emphasis on sought-after function and synthetic innovation with step-economy. Design provides choice. It allows one to determine how close a synthesis will come to the ideal synthesis and how close a structure will come to the ideal function. In this Account, we address studies in our laboratory on function-oriented synthesis (FOS), a strategy to achieve function by design and with synthetic economy. By starting with function rather than structure, FOS places an initial emphasis on

  16. Synthesis of Reactive Polymers for Acrolein Capture Using AGET ATRP.

    PubMed

    Beringer, Laura T; Li, Shaohua; Gilmore, Gary; Lister, John; Averick, Saadyah

    2015-10-01

    Acrolein is a toxic metabolite of the anticancer agent cyclophosphamide (CP). Current strategies to mitigate acrolein toxicity are insufficient, and in this brief article, we report the synthesis of well-defined low molecular weight block copolymers using activators generated by electron transfer atom transfer radical polymerization (AGET ATRP) capable of reacting with the cytotoxic small molecule acrolein. Acrolein reactivity was introduced into the block copolymers via incorporation of either (a) aminooxy or (b) sulfhydryl groups. The cytoprotective effect of the polymers was compared to sodium 2-sulfanylethanesulfonate (mesna) the current gold standard for protection from CP urotoxicity, and we found that the polymers bearing sulfhydryl moieties demonstrated superior cytoprotective activity. PMID:26355438

  17. Reactive Oxygen Species and Neutrophil Function.

    PubMed

    Winterbourn, Christine C; Kettle, Anthony J; Hampton, Mark B

    2016-06-01

    Neutrophils are essential for killing bacteria and other microorganisms, and they also have a significant role in regulating the inflammatory response. Stimulated neutrophils activate their NADPH oxidase (NOX2) to generate large amounts of superoxide, which acts as a precursor of hydrogen peroxide and other reactive oxygen species that are generated by their heme enzyme myeloperoxidase. When neutrophils engulf bacteria they enclose them in small vesicles (phagosomes) into which superoxide is released by activated NOX2 on the internalized neutrophil membrane. The superoxide dismutates to hydrogen peroxide, which is used by myeloperoxidase to generate other oxidants, including the highly microbicidal species hypochlorous acid. NOX activation occurs at other sites in the cell, where it is considered to have a regulatory function. Neutrophils also release oxidants, which can modify extracellular targets and affect the function of neighboring cells. We discuss the identity and chemical properties of the specific oxidants produced by neutrophils in different situations, and what is known about oxidative mechanisms of microbial killing, inflammatory tissue damage, and signaling. PMID:27050287

  18. Carbasugars: Synthesis and Functions

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yoshiyuki

    It is well recognized that glycosidase inhibitors are not only tools to elucidate the mechanism of a living system manipulated by glycoconjugates but also potential clinical drugs and insecticides by inducing the failure of glycoconjugates to perform their function. In this chapter, the syntheses and functions of natural glycosidase inhibitors (cyclophelitol , allosamidine , and trehazoilin ), which possess highly oxygenated and functionalized cyclohexanes or cyclopentanes in their structures and are defined as carbasugars , and the structure and activity relationships (SAR) of their derivatives are described. Also, recently much attention has been focused on neuraminidase inhibitors as anti-influenza drugs since relenza , which was derived from sialic acid, and also, tamiflu , which is the artificial carbasugar designed as a transition state analogue in the hydrolysis pathway of substrates by neuraminidase, were launched in the market. Herein, the medicinal chemistry efforts to discover tamiflu and some efficient syntheses applicable to process chemistry are described. Finally, useful synthetic methodologies for carbasugar formation from sugars are also introduced in this chapter.

  19. Synthesis and processing of composites by reactive metal penetration

    SciTech Connect

    Loehman, R.E.; Ewsuk, K.G.; Tomsia, A.P.; Fahrenholtz, W.G.

    1996-07-01

    Ceramic-metal composites are being developed as engineering materials because of their high stiffness-to-weight ratios, good fracture toughness, and because their electrical and thermal properties can be varied through control of their compositions and microstructures. Wider use of ceramic-metal composites requires improvements in synthesis and processing so that high-performance parts can be produced more economically. Over the past three years reactive metal penetration has been shown to be a promising technique for making ceramic and metal-matrix composites to near-net-shape with control of both composition and microstructure. It appears that reactive metal penetration could be an economical process for manufacturing many of the advanced ceramic composites that are needed for light-weight structural and wear applications for transportation and energy conversion devices. Near-net-shape fabrication of parts has the additional advantage that costly and energy intensive grinding and machining operations are significantly reduced, and the waste generated from such finishing operations is minimized. The goals of this research and development program are: (1) to identify compositions favorable for making composites by reactive metal penetration; (2) to understand the mechanism(s) by which these composites are formed; and (3) to control and optimize the process so that composites and composite coatings can be made economically.

  20. Concise Synthesis of Functionalized Benzocyclobutenones

    PubMed Central

    Chen, Peng-hao; Savage, Nikolas A.; Dong, Guangbin

    2014-01-01

    A concise approach to access functionalized benzocyclobutenones from 3-halophenol derivatives is described. This modified synthesis employs a [2+2] cycloaddition between benzynes generated from dehydrohalogenation of aryl halides using LiTMP and acetaldehyde enolate generated from n-BuLi and THF, followed by oxidation of the benzocyclobutenol intermediates to provide benzocyclobutenones. The [2+2] reaction can be run on a 10-gram scale with an increased yield. A number of functional groups including alkenes and alkynes are tolerated. Coupling of benzynes with ketene silyl acetals to give 8-substituted benzocyclobutenones is also demonstrated. PMID:24926108

  1. Reactive oxygen species and boar sperm function.

    PubMed

    Awda, Basim J; Mackenzie-Bell, Meghan; Buhr, Mary M

    2009-09-01

    Boar spermatozoa are very susceptible to reactive oxygen species (ROS), but ROS involvement in damage and/or capacitation is unclear. The impact of exposing fresh boar spermatozoa to an ROS-generating system (xanthine/xanthine oxidase; XA/XO) on sperm ROS content, membrane lipid peroxidation, phospholipase (PL) A activity, and motility, viability, and capacitation was contrasted to ROS content and sperm function after cryopreservation. Exposing boar sperm (n = 4-5 ejaculates) to the ROS-generating system for 30 min rapidly increased hydrogen peroxide (H2O2) and lipid peroxidation in all sperm, increased PLA in dead sperm, and did not affect intracellular O2- (flow cytometry of sperm labeled with 2',7'-dichlorodihydrofluorscein diacetate, BODIPY 581/591 C11, bis-BODIPY-FL C11, hydroethidine, respectively; counterstained for viability). Sperm viability remained high, but sperm became immotile. Cryopreservation decreased sperm motility, viability, and intracellular O2- significantly, but did not affect H2O2. As expected, more sperm incubated in capacitating media than Beltsville thawing solution buffer underwent acrosome reactions and protein tyrosine phosphorylation (four proteins, 58-174 kDa); which proteins were tyrosine phosphorylated was pH dependent. Pre-exposing sperm to the ROS-generating system increased the percentage of sperm that underwent acrosome reactions after incubation in capacitating conditions (P < 0.025), and decreased capacitation-dependent increases in two tyrosine-phosphorylated proteins (P < or = 0.035). In summary, H2O2 is the major free radical mediating direct ROS effects, but not cryopreservation changes, on boar sperm. Boar sperm motility, acrosome integrity, and lipid peroxidation are more sensitive indicators of oxidative stress than viability and PLA activity. ROS may stimulate the acrosome reaction in boar sperm through membrane lipid peroxidation and PLA activation. PMID:19357363

  2. Quantitative reactivity profiling predicts functional cysteines in proteomes.

    PubMed

    Weerapana, Eranthie; Wang, Chu; Simon, Gabriel M; Richter, Florian; Khare, Sagar; Dillon, Myles B D; Bachovchin, Daniel A; Mowen, Kerri; Baker, David; Cravatt, Benjamin F

    2010-12-01

    Cysteine is the most intrinsically nucleophilic amino acid in proteins, where its reactivity is tuned to perform diverse biochemical functions. The absence of a consensus sequence that defines functional cysteines in proteins has hindered their discovery and characterization. Here we describe a proteomics method to profile quantitatively the intrinsic reactivity of cysteine residues en masse directly in native biological systems. Hyper-reactivity was a rare feature among cysteines and it was found to specify a wide range of activities, including nucleophilic and reductive catalysis and sites of oxidative modification. Hyper-reactive cysteines were identified in several proteins of uncharacterized function, including a residue conserved across eukaryotic phylogeny that we show is required for yeast viability and is involved in iron-sulphur protein biogenesis. We also demonstrate that quantitative reactivity profiling can form the basis for screening and functional assignment of cysteines in computationally designed proteins, where it discriminated catalytically active from inactive cysteine hydrolase designs. PMID:21085121

  3. Biotechnological synthesis of functional nanomaterials.

    PubMed

    Lloyd, Jonathan R; Byrne, James M; Coker, Victoria S

    2011-08-01

    Biological systems, especially those using microorganisms, have the potential to offer cheap, scalable and highly tunable green synthetic routes for the production of the latest generation of nanomaterials. Recent advances in the biotechnological synthesis of functional nano-scale materials are described. These nanomaterials range from catalysts to novel inorganic antimicrobials, nanomagnets, remediation agents and quantum dots for electronic and optical devices. Where possible, the roles of key biological macromolecules in controlling production of the nanomaterials are highlighted, and also technological limitations that must be addressed for widespread implementation are discussed. PMID:21742483

  4. Synthesis of cubic ruthenium nitride by reactive pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Moreno-Armenta, M. G.; Diaz, J.; Martinez-Ruiz, A.; Soto, G.

    2007-10-01

    The recent synthesis of platinum nitride opens the possibility of novel platinum-group metal nitrides to exist. In this work we report the synthesis of ruthenium nitride by reactive pulsed laser ablation. Several plausible structures have been evaluated by ab initio calculations using the full potential linearized augmented plane wave method, in order to investigate the ruthenium nitride structural and electronic properties. In fact, the predicted symmetry of stoichiometric RuN matches the experimental diffraction data. RuN crystallizes with NaCl-type structure at room temperature with cell-parameter somewhat larger than predicted by calculations. However we found a marginal chemical strength in these nitrides. The material is destroyed by mild acid and basic solutions. Under annealing RuN decomposes abruptly for temperatures beyond 100 °C. Since the thermal stability correlates directly with the mechanical properties our finding cast doubts than the latter transition metal nitrides can be ultra-hard materials at ambient conditions.

  5. Modulating executive functioning: trait motivational reactivity and resting HRV.

    PubMed

    Bailey, Rachel L; Potter, Robert F; Lang, Annie; Pisoni, David B

    2015-01-01

    This study assessed relationships among individual differences in trait motivational reactivity, executive functioning, and neurovisceral regulation of emotion and attention indexed via resting heart rate variability (rHRV). We derived predictions regarding these relationships according to neurovisceral neural network theory. Because lower rHRV has been suggested as an endophenotype of less adaptive behaviour, low rHRV individuals were predicted to have high aversive and low appetitive trait motivational reactivity, while high rHRV individuals were predicted to have high reactivity in both appetitive and aversive motivational systems. These predictions were supported. Motivational reactivity also was related to executive functioning deficits, although the pattern of results was not in the predicted direction. Results suggest that trait motivational reactivity scores are related to visceral responses proposed in the neurovisceral integration circuit as well as in the modulation of these responses by higher-order cognitive control systems related to executive function. PMID:24606341

  6. Unified Synthesis of 10-Oxygenated Lycopodium Alkaloids: Impact of C10-Stereochemistry on Reactivity.

    PubMed

    Saha, Mrinmoy; Li, Xin; Collett, Nathan D; Carter, Rich G

    2016-07-15

    The pronounced impact of the C10 stereochemistry on the successful construction of a polycyclic Lycopodium alkaloid scaffold has been explored. A wide range of reaction conditions and functionality were investigated to control a keto sulfone Michael addition to construct the C7-C12 linkage. An unexpected, overriding impact of the C10 stereochemistry in stereoselectivity and reaction rate in the Michael addition was observed. Furthermore, divergent reactivity of a conformationally accelerated, intramolecular Mannich cyclization based on the C10 stereochemistry was discovered. The successful execution of this synthetic route resulted in the total synthesis of all three known 10-oxygenated Lycopodium alkaloids: 10-hydroxylycopodine, paniculine, and deacetylpaniculine. PMID:27353498

  7. Negishi Cross-Coupling Is Compatible with a Reactive B–Cl Bond: Development of a Versatile Late-Stage Functionalization of 1,2-Azaborines and Its Application to the Synthesis of New BN Isosteres of Naphthalene and Indenyl

    PubMed Central

    Brown, Alec N.; Li, Bo; Liu, Shih-Yuan

    2016-01-01

    The compatibility of the Negishi cross-coupling reaction with the versatile B–Cl functionality has been demonstrated in the context of late-stage functionalization of 1,2-azaborines. Alkyl-, aryl-, and alkenylzinc reagents have been utilized for the functionalization of the triply orthogonal precursor 3-bromo-1-(tert-butyldimethylsilyl)-2-chloro-1,2-dihydro-1,2-azaborine (2) to furnish new 2,3-substituted monocyclic 1,2-azaborines. This methodology has enabled the synthesis of previously elusive BN-naphthalene and BN-indenyl structures from a common intermediate. PMID:26148959

  8. Tailored thiol-functional polyamides: synthesis and functionalization.

    PubMed

    Mommer, Stefan; Keul, Helmut; Möller, Martin

    2014-12-01

    In this article, a synthetic concept for the preparation of polyamides with functional side groups is described. First, the synthesis of a bis(thiolactone) monomer is shown in a concise three-step route from itaconic acid and DL-homocysteine thiolactone. The reactivity of the resulting bis(thiolactone) toward hexyl amine is examined. Next, the bis(thiolactone) is reacted as A,A-type monomer with different B,B-type comonomers (1,12-diaminododecane and 1,3-bis(aminopropyl)tetramethyldisiloxane). Ring opening of the thiolactones by the diamines leads to polyamides with pendant thiol groups. Using two diamines in different ratios, the properties of the resulting polyamides are tuned (thermal properties are determined) and different molecular weights are acquired. Subsequently, the thiol groups are reacted with methyl acrylate via Michael addition to functionalize the polyamides. Functionalization of thiol-functional polyamides using poly(ethylene glycol) monomethyl ether (mPEG) acrylates (Mn = 480 and 1700 g mol(-1) ) results in water-soluble amphiphilic poly-amides with molecular weights higher than 10,000 g mol(-1) . PMID:25257791

  9. Dimerization of functional pyrroloindolizines for the synthesis of complex myrmicarin alkaloids

    PubMed Central

    Ondrus, Alison E.; Kaniskan, H. Ümit; Movassaghi, Mohammad

    2010-01-01

    The union of functionalized pyrroloindolizines for the synthesis of heterodimeric products relevant to myrmicarin alkaloids is described. Design and synthesis of tricyclic substrates and new methods for their union enable the investigation of late-stage cyclopentannulation strategies. The rapid assembly of dimeric structures using unique modes of pyrroloindolizine reactivity presents a concise approach to the dimeric myrmicarins and relevant derivatives. PMID:20798891

  10. Synthesis, Characterization and Reactivity of a Hexane-Soluble Silver Salt

    ERIC Educational Resources Information Center

    Stockland, Robert A. Jr.; Wilson, Brian D.; Goodman, Caton C.; Giese, Barret J.; Shrimp, Frederick L., II

    2007-01-01

    The connectivity of a hexane-soluble silver salt is established by using NMR spectroscopy to describe the synthesis, characterization and reactivity of the salt. The results found hexane-soluble silver to be an effective transfer agent.

  11. Perfluorophenyl Azides: New Applications in Surface Functionalization and Nanomaterial Synthesis

    PubMed Central

    Liu, Li-Hong; Yan, Mingdi

    2010-01-01

    Conspectus A major challenge in materials science is the ongoing search for coupling agents that are readily synthesized, capable of versatile chemistry, able to easily functionalize materials and surfaces, and efficient in covalently linking organic and inorganic entities. A decade ago, we began a research program investigating perfluorophenylazides (PFPAs) as the coupling agents in surface functionalization and nanomaterial synthesis. The p-substituted PFPAs are attractive heterobifunctional coupling agents because of their two distinct and synthetically distinguishable reactive centers: (i) the fluorinated phenylazide, which is capable of forming stable covalent adducts, and (ii) the functional group R, which can be tailored through synthesis. Two approaches have been undertaken for material synthesis and surface functionalization. The first method involves synthesizing PFPA bearing the first molecule or material with a functional linker R, and then attaching the resulting PFPA to the second material by activating the azido group. In the second approach, the material surface is first functionalized with PFPA via functional center R, and coupling of the second molecule or material is achieved with the surface azido groups. In this Account, we review the design and protocols of the two approaches, providing examples in which PFPA derivatives were successfully used in material surface functionalization, ligand conjugation, and the synthesis of hybrid nanomaterials. The methods developed have proved to be general and versatile, and they are applicable to a wide range of materials (especially those that lack reactive functional groups or are difficult to derivatize) and to various substrates of polymers, oxides, carbon materials, and metal films. The coupling chemistry can be initiated by light, heat, and electrons. Patterned structures can be generated by selectively activating the areas of interest. Furthermore, the process is easy to perform, and light activation

  12. Glutathione (GSH) and the GSH synthesis gene Gclm modulate vascular reactivity in mice

    PubMed Central

    Weldy, Chad S.; Luttrell, Ian P.; White, Collin C.; Morgan-Stevenson, Vicki; Bammler, Theo K.; Beyer, Richard P.; Afsharinejad, Zahra; Kim, Francis; Chitaley, Kanchan; Kavanagh, Terrance J.

    2012-01-01

    Oxidative stress has been implicated in the development of vascular disease and in the promotion of endothelial dysfunction via the reduction in bioavailable nitric oxide (NO•). Glutathione (GSH) is a tripeptide thiol antioxidant that is utilized by glutathione peroxidase (GPx) to scavenge reactive oxygen species (ROS) such as hydrogen peroxide and phospholipid hydroperoxides. Relatively frequent single nucleotide polymorphisms (SNPs) within the 5’ promoters of the GSH synthesis genes GCLC and GCLM are associated with impaired vasomotor function as measured by decreased acetylcholine-stimulated coronary artery dilation and with increased risk of myocardial infarction. Although the influence of genetic knockdown of GPx on vascular function has been investigated in mice, no work to date has been published on the role of genetic knock down of GSH synthesis genes on vascular reactivity. We therefore investigated the effects of targeted disruption of Gclm in mice and the subsequent depletion of GSH on vascular reactivity, NO• production, aortic nitrotyrosine protein modification, and whole genome transcriptional responses as measured by DNA microarray. Gclm−/+ and Gclm−/− mice had 72% and 12%, respectively, of WT aortic GSH content. Gclm−/+ mice had a significant impairment in acetylcholine (ACh)-induced relaxation in aortic rings as well as increased aortic nitrotyrosine protein modification. Surprisingly, Gclm−/− aortas showed enhanced relaxation compared to Gclm−/+ aortas, as well as increased NO• production. Although aortic rings from Gclm−/− mice had enhanced ACh-relaxation, they have a significantly increased sensitivity to phenylephrine (PE)-induced contraction. Alternatively, the PE response of Gclm−/+ aortas was nearly identical to that of their WT littermates. In order to examine the role of NO• or other potential endothelium derived factors in differentially regulating vasomotor activity, we incubated aortic rings with the NO

  13. Synthesis, characterization, and reactivity of pentamethylcyclopentadienyl complexes of divalent cobalt and nickel

    SciTech Connect

    Smith, M.E.

    1993-10-01

    The thesis is divided into the following 4 chapters: synthesis, characterization, and reactivity of trinuclear pentamethylcyclopentadienyl cobalt and nickel clusters with triply-bridging methylidyne groups; chemical and physical properties of pentamethylcyclopentadienyl acetylacetonate complexes of Co(II) and Ni(II); synthesis, characterization, and reactivity of pentamethylcyclopentadienyl halide complexes of Co and Ni; and crystallographic studies of distortions in metallocenes with C{sub 5}-symmetrical cyclopentadienyl rings.

  14. Quantitative reactivity profiling predicts functional cysteines in proteomes

    PubMed Central

    Weerapana, Eranthie; Wang, Chu; Simon, Gabriel M.; Richter, Florian; Khare, Sagar; Dillon, Myles B.D.; Bachovchin, Daniel A.; Mowen, Kerri; Baker, David; Cravatt, Benjamin F.

    2010-01-01

    Cysteine is the most intrinsically nucleophilic amino acid in proteins, where its reactivity is tuned to perform diverse biochemical functions. The absence of a consensus sequence that defines functional cysteines in proteins has hindered their discovery and characterization. Here, we describe a proteomics method to quantitatively profile the intrinsic reactivity of cysteine residues en masse directly in native biological systems. Hyperreactivity was a rare feature among cysteines and found to specify a wide range of activities, including nucleophilic and reductive catalysis and sites of oxidative modification. Hyperreactive cysteines were identified in several proteins of uncharacterized function, including a residue conserved across eukaryotic phylogeny that we show is required for yeast viability and involved in iron-sulfur protein biogenesis. Finally, we demonstrate that quantitative reactivity profiling can also form the basis for screening and functional assignment of cysteines in computationally designed proteins, where it discriminated catalytically active from inactive cysteine hydrolase designs. PMID:21085121

  15. Meteorin is upregulated in reactive astrocytes and functions as a negative feedback effector in reactive gliosis.

    PubMed

    Lee, Hye Shin; Lee, Soon-Hee; Cha, Jong-Ho; Seo, Ji Hae; Ahn, Bum Ju; Kim, Kyu-Won

    2015-08-01

    Reactive gliosis is a glial response to a wide range of central nervous system insults, which results in cellular and molecular changes to resting glial cells. Despite its fundamental effect on neuropathologies, the identification and characterization of the molecular mechanisms underlying this process remain to be fully elucidated. The aim of the present study was to analyze the expression profile and functions of the astrocytic neurotrophic factor, meteorin, in the progression of reactive gliosis. A mouse model of photothrombotic ischemia, and a primary astrocyte culture were used in the present study. Reverse transcription quantitative polymerase chain reaction, western blotting and immunofluorescence staining were performed to examine the expression levels of meteorin and reactive gliosis markers. Increased expression levels of meteorin were observed in reactive astrocytes in a photothrombotic ischemia mouse model, as well as in cultured astrocytes, which were stimulated by transforming growth factor-β1. Exogenous treatment of the astrocytes with meteorin did not induce janus kinase-signal transducer and activator of transcription 3 signaling, however, silencing the expression of meteorin in the astrocytes resulted in an upregulation of reactive astrocyte markers, including glial fibrillary acidic protein and S100β, indicating that endogenous meteorin is required for the maintenance of astrocytic homeostasis. These results suggested a novel role for meteorin as a negative feedback effector in reactive gliosis. PMID:25873382

  16. Meteorin is upregulated in reactive astrocytes and functions as a negative feedback effector in reactive gliosis

    PubMed Central

    LEE, HYE SHIN; LEE, SOON-HEE; CHA, JONG-HO; SEO, JI HAE; AHN, BUM JU; KIM, KYU-WON

    2015-01-01

    Reactive gliosis is a glial response to a wide range of central nervous system insults, which results in cellular and molecular changes to resting glial cells. Despite its fundamental effect on neuropathologies, the identification and characterization of the molecular mechanisms underlying this process remain to be fully elucidated. The aim of the present study was to analyze the expression profile and functions of the astrocytic neurotrophic factor, meteorin, in the progression of reactive gliosis. A mouse model of photothrombotic ischemia, and a primary astrocyte culture were used in the present study. Reverse transcription quantitative polymerase chain reaction, western blotting and immunofluorescence staining were performed to examine the expression levels of meteorin and reactive gliosis markers. Increased expression levels of meteorin were observed in reactive astrocytes in a photothrombotic ischemia mouse model, as well as in cultured astrocytes, which were stimulated by transforming growth factor-β1. Exogenous treatment of the astrocytes with meteorin did not induce janus kinase-signal transducer and activator of transcription 3 signaling, however, silencing the expression of meteorin in the astrocytes resulted in an upregulation of reactive astrocyte markers, including glial fibrillary acidic protein and S100β, indicating that endogenous meteorin is required for the maintenance of astrocytic homeostasis. These results suggested a novel role for meteorin as a negative feedback effector in reactive gliosis. PMID:25873382

  17. Anomeric Reactivity-Based One-Pot Synthesis of Heparin-Like Oligosaccharides

    PubMed Central

    Polat, Tülay

    2008-01-01

    A highly efficient one-pot methodology is described for the synthesis of heparin and heparan sulfate oligosaccharides utilizing thioglycosides with well defined reactivity as building blocks. l-idopyranosyl and d-glucopyranosyl thioglycosides 5 and 10 were used as donors due to low reactivity of uronic acids as the glycosyl donors in the one-pot synthesis. The formation of uronic acids by a selective oxidation at C-6 was performed after assembly of the oligosaccharides. The efficiency of this strategy with the flexibility for sulfate incorporation was demonstrated in the representative synthesis of disaccharides 17, 18, tetrasaccharide 23 and pentasaccharide 26. PMID:17914818

  18. Executive function and cerebrovascular reactivity in pediatric hypertension.

    PubMed

    Ostrovskaya, Maria A; Rojas, Mary; Kupferman, Juan C; Lande, Marc B; Paterno, Kara; Brosgol, Yuri; Pavlakis, Steven G

    2015-04-01

    Primary hypertension is associated with decreased performance on neurocognitive testing and a blunted cerebrovascular reactivity to hypercapnia. Parents of 14 children with hypertension and prehypertension completed the Behavior Rating Inventory of Executive Functions. Children underwent 24-hour ambulatory blood pressure monitoring and transcranial Doppler with reactivity measurement using time-averaged maximum mean velocity and end-tidal carbon dioxide during hypercapnia-rebreathing test. Comparing the reactivity slope for the patients to historical controls showed a statistically significant difference (t = -5.19, df = 13, P < .001), with lower slopes. Pearson correlations of the Behavior Rating Inventory of Executive Functions scores with the reactivity slopes showed a statistically significant inverse relationship with Behavioral Regulation Index (r = -.60, P = .02), Metacognition Index (r = -.40, P = .05), and the Global Executive Component (r = -.53, P = .05). Children with hypertension have decreased executive function, and this correlates to low transcranial Doppler-reactivity slopes, suggesting that the brain is a target organ in hypertensive children. PMID:23877480

  19. Asymmetric synthesis of pyrazoles and pyrazolones employing the reactivity of pyrazolin-5-one derivatives.

    PubMed

    Chauhan, Pankaj; Mahajan, Suruchi; Enders, Dieter

    2015-08-21

    Due to the frequent occurrence of the pyrazole core in many important naturally occurring and synthetic molecules, tremendous efforts have been made for their synthesis. The pyrazolin-5-one derivatives have emerged as the most effective substrates for the synthesis of useful pyrazoles and their corresponding pyrazolone derivatives. Recently, the reactivity of pyrazolin-5-ones has been used for the asymmetric synthesis of highly functionalised pyrazole and pyrazolone derivatives by employing organo- and metal-catalysts. This feature article focuses on the progress in the catalytic asymmetric synthesis of pyrazoles and pyrazolones using pyrazolin-5-one derivatives. PMID:26178319

  20. Sulfonyl Azoles in the Synthesis of 3-Functionalized Azole Derivatives.

    PubMed

    Palmieri, Alessandro; Petrini, Marino

    2016-06-01

    Sulfonyl indoles, as well as related azolyl derivatives, have been recently introduced in synthesis as stable precursors of reactive indolenine intermediates. This personal account reports on the discovery of sulfonyl azoles and their practical utilization in many synthetic processes for the preparation of functionalized 3-substituted indoles, indazoles, and pyrroles. The indolenine intermediates obtained by treatment of sulfonyl azoles with Brønsted bases or Lewis acids can be considered as vinylogous imino derivatives that can be made to react with different nucleophilic reagents. These include organometallic reagents, reducing agents, stabilized carbanions, and heteronucleophiles. The controlled and mild conditions for the generation of indolenines from sulfonyl azoles make these substrates particularly useful in asymmetric synthesis, exploiting organo- or metal-catalyzed processes. Although less exploited, sulfonyl indoles can also be involved in photochemical processes for the preparation of polycyclic derivatives. PMID:27147297

  1. Three-coordinate iron(IV) bisimido complexes with aminocarbene ligation: synthesis, structure, and reactivity.

    PubMed

    Wang, Lei; Hu, Lianrui; Zhang, Hezhong; Chen, Hui; Deng, Liang

    2015-11-11

    High-valent iron imido species are implicated as reactive intermediates in many iron-catalyzed transformations. However, isolable complexes of this type are rare, and their reactivity is poorly understood. Herein, we report the synthesis, characterization, and reactivity studies on novel three-coordinate iron(IV) bisimido complexes with aminocarbene ligation. Using our recently reported synthetic method for [LFe(NDipp)2] (L = IMes, 1; Me2-cAAC, 2), four new iron(IV) imido complexes, [(IPr)Fe(NDipp)2] (3) and [(Me2-cAAC)Fe(NR)2] (R = Mes, 4; Ad, 5; CMe2CH2Ph, 6), were prepared from the reactions of three-coordinate iron(0) compounds with organic azides. Characterization data acquired from (1)H and (13)C NMR spectroscopy, (57)Fe Mössbauer spectroscopy, and X-ray diffraction studies suggest a low-spin singlet ground state for these iron(IV) complexes and the multiple-bond character of their Fe-N bonds. A reactivity study taking the reactions of 1 as representative revealed an intramolecular alkane dehydrogenation of 1 to produce the iron(II) complex [(IMes)Fe(NHDipp)(NHC6H3-2-Pr(i)-6-CMe═CH2)] (7), a Si-H bond activation reaction of 1 with PhSiH3 to produce the iron(II) complex [(IMes)Fe(NHDipp)(NDippSiPhH2)] (8), and a [2+2]-addition reaction of 1 with PhNCNPh and p-Pr(i)C6H4NCO to form the corresponding open-shell formal iron(IV) monoimido complexes [(IMes)Fe(NDipp)(N(Dipp)C(NPh)(═NPh))] (9) and [(IMes)Fe(NDipp)(N(Dipp)C(O)N(p-Pr(i)C6H4))] (10), as well as [NDipp]-group-transfer reactions with CO and Bu(t)NC. Density functional theory calculations suggested that the alkane chain dehydrogenation reaction starts with a hydrogen atom abstraction mechanism, whereas the Si-H activation reaction proceeds in a [2π+2σ]-addition manner. Both reactions have the pathways at the triplet potential energy surfaces being energetically preferred, and have formal iron(IV) hydride and iron(IV) silyl species as intermediates, respectively. The low-coordinate nature and low d

  2. Design and synthesis of reactive separation systems. Final report

    SciTech Connect

    Doherty, M.F.

    1992-12-31

    During the last decade there has been a rapid upturn in interest in reactive distillation. The chemical process industry recognizes the favorable economics of carrying out reaction simultaneously with distillation for certain classes of reacting systems, and many new processes have been built based on this technology. Interest is also increasing by academics and software vendors. Systematic design methods for reactive distillation systems have only recently begun to emerge. In this report we survey the available design techniques and point out the contributions made by our group at the University of Massachusetts.

  3. Synthesis and processing of composites by reactive metal penetration

    SciTech Connect

    Loehman, R.E.; Ewsuk, K.G.; Tomsia, A.P.

    1995-05-01

    Ceramic-metal composites are being developed because their high stiffness-to weight ratios, good fracture toughness, and variable electrical and thermal properties give them advantages over more conventional materials. However, because ceramic-metal composite components presently are more expensive than monolithic materials, improvements in processing are required to reduce manufacturing costs. Reactive metal penetration is a promising new method for making ceramic- and metal-matrix composites that has the advantage of being inherently a net-shape process. This technique, once fully developed, will provide another capability for manufacturing the advanced ceramic composites that are needed for many light-weight structural and wear applications. The lower densities of these composites lead directly to energy savings in use. Near-net-shape fabrication of composite parts should lead to additional savings because costly and energy intensive grinding and machining operations are significantly reduced, and the waste generated from such finishing operations is minimized. The goals of this research program are: (1) to identify feasible compositional systems for making composites by reactive metal penetration; (2) to understand the mechanism(s) of composite formation by reactive metal penetration; and (3) to learn how to control and optimize reactive metal penetration for economical production of composites and composite coatings.

  4. Selective decreased de novo synthesis of glomerular proteoglycans under the influence of reactive oxygen species.

    PubMed Central

    Kashihara, N; Watanabe, Y; Makino, H; Wallner, E I; Kanwar, Y S

    1992-01-01

    The effect of reactive oxygen species on de novo synthesis of heparan sulfate proteoglycans (HSPGs) of the renal glomerulus was investigated in an organ perfusion system. Isolated kidneys were perfused for 7 hr with a medium containing [35S]sulfate to label sulfated proteoglycans or [35S]methionine to label total glomerular glycoproteins. For the generation of reactive oxygen species, xanthine and xanthine oxidase were included in the perfusion medium, and catalase and superoxide dismutase were used as scavenging agents. Proteoglycans were characterized by Sepharose CL-6B and DEAE-Sephacel chromatographies and SDS/PAGE analysis. The labeled glycoproteins were immunoprecipitated with anti-HSPG, anti-type IV collagen, and anti-laminin, and their specific radioactivities were determined. With exposure to reactive oxygen species, a drastic dose-dependent decrease in de novo synthesis of proteoglycans was seen, and that effect was reversible by catalase treatment. No alterations in the biochemical characteristics of proteoglycans were noted. Immunoprecipitation studies revealed a 16-fold decrease in the synthesis of nascent core peptide of HSPGs, while at comparable concentrations of xanthine and xanthine oxidase, synthesis of type IV collagen and laminin slightly decreased (approximately 15%). Morphologic studies revealed a 14-fold decrease in [35S]sulfate-associated autoradiographic grains overlying the glomerular basement membrane, a critical component of the ultrafiltration apparatus. Relevance of the selective decreased de novo synthesis of HSPGs of the glomerular basement membrane is discussed in terms of increased glomerular permeability to plasma proteins. Images PMID:1631123

  5. Integrated reactive absorption process for synthesis of fatty esters.

    PubMed

    Kiss, Anton Alexandru; Bildea, Costin Sorin

    2011-01-01

    Reactive separations using green catalysts offer great opportunities for manufacturing fatty esters, involved in specialty chemicals and biodiesel production. Integrating reaction and separation into one unit provides key benefits such as: simplified operation, no waste, reduced capital investment and low operating costs. This work presents a novel heat-integrated reactive absorption process that eliminates all conventional catalyst related operations, efficiently uses the raw materials and equipment, and considerably reduces the energy requirements for biodiesel production--85% lower as compared to the base case. Rigorous simulations based on experimental results were carried out using Aspen Plus and Dynamics. Despite the high degree of integration, the process is well controllable using an efficient control structure proposed in this work. The main results are provided for a plant producing 10 ktpy fatty acid methyl esters from methanol and waste vegetable oil with high free fatty acids content, using sulfated zirconia as solid acid catalyst. PMID:20855198

  6. Simple Molecular Reactive Force Field for Metal-Organic Synthesis.

    PubMed

    Andrejevic, Jovana; Stevenson, James; Clancy, Paulette

    2016-02-01

    For colloidal quantum dots to transition from research laboratories to deployment as optical and electronic products, there will be a need to scale-up their production to large-scale manufacturing processes. This demand increases the need to understand their formation via a molecular representation of the nucleation of lead sulfide (PbS) quantum dot systems passivated by lead oleate complexes. We demonstrate the effectiveness of a new type of reactive potential, custom-made for this system, that is drawn from simple Morse, Lennard-Jones, and Coulombic components, which can reproduce reactions across a broad range of PbS quantum dot sizes with good accuracy. We validate the capability of this model to capture reactive systems by comparison to ab initio calculations for a reaction between two dots. PMID:26745239

  7. Graphene:. Synthesis, Functionalization and Properties

    NASA Astrophysics Data System (ADS)

    Rao, C. N. R.; Subrahmanyam, K. S.; Ramakrishna Matte, H. S. S.; Maitra, Urmimala; Moses, Kota; Govindaraj, A.

    Graphenes with varying number of layers can be synthesized by different strategies. Thus, single-layer graphene is obtained by the reduction of single layer graphene oxide, CVD and other methods besides micromechanical cleavage. Few-layer graphenes are prepared by the conversion of nanodiamond, arcdischarge of graphite and other means. We briefly present the various methods of synthesis and the nature of graphenes obtained. We then discuss the various properties of graphenes. The remarkable property of graphene of quenching fluorescence of aromatic molecules is shown to be associated with photo-induced electron transfer, on the basis of fluorescence decay and time-resolved transient absorption spectroscopic measurements. The interaction of electron donor and acceptor molecules with few-layer graphene samples has been discussed. Decoration of metal nano-particles on graphene sheets and the resulting changes in electronic structure are examined. Few-layer graphenes exhibit ferromagnetic features along with antiferromagnetic properties, independent of the method of preparation. Graphene-like MoS2 and WS2 have been prepared by chemical methods, and the materials are characterized by electron microscopy, atomic force microscopy (AFM) and other methods. Boron nitride analogues of graphene have been obtained by a simple chemical procedure starting with boric acid and urea and have been characterized by various techniques.

  8. Graphene:. Synthesis, Functionalization and Properties

    NASA Astrophysics Data System (ADS)

    Rao, C. N. R.; Subrahmanyam, K. S.; Ramakrishna Matte, H. S. S.; Govindaraj, A.

    Graphenes with varying number of layers can be synthesized by different strategies. Thus, single-layer graphene is obtained by the reduction of single layer graphene oxide, CVD and other methods besides micromechanical cleavage. Few-layer graphenes are prepared by the conversion of nanodiamond, arc-discharge of graphite and other means. We briefly present the various methods of synthesis and the nature of graphenes obtained. We then discuss the various properties of graphenes. The remarkable property of graphene of quenching fluorescence of aromatic molecules is shown to be associated with photo-induced electron transfer, on the basis of fluorescence decay and time-resolved transient absorption spectroscopic measurements. The interaction of electron donor and acceptor molecules with few-layer graphene samples has been discussed. Decoration of metal nano-particles on graphene sheets and the resulting changes in electronic structure are examined. Few-layer graphenes exhibit ferromagnetic features along with antiferromagnetic properties, independent of the method of preparation. Graphene-like MoS2 and WS2 have been prepared by chemical methods, and the materials are characterized by electron microscopy, atomic force microscopy (AFM) and other methods. Boron nitride analogues of graphene have been obtained by a simple chemical procedure starting with boric acid and urea and have been characterized by various techniques.

  9. Analysis and Functional Prediction of Reactive Cysteine Residues*

    PubMed Central

    Marino, Stefano M.; Gladyshev, Vadim N.

    2012-01-01

    Cys is much different from other common amino acids in proteins. Being one of the least abundant residues, Cys is often observed in functional sites in proteins. This residue is reactive, polarizable, and redox-active; has high affinity for metals; and is particularly responsive to the local environment. A better understanding of the basic properties of Cys is essential for interpretation of high-throughput data sets and for prediction and classification of functional Cys residues. We provide an overview of approaches used to study Cys residues, from methods for investigation of their basic properties, such as exposure and pKa, to algorithms for functional prediction of different types of Cys in proteins. PMID:22157013

  10. Synthesis and processing of composites by reactive metal penetration

    SciTech Connect

    Loehman, R.E.; Ewsuk, K.G.; Tomsia, A.P.

    1997-04-01

    Achieving better performance in commercial products and processes often is dependent on availability of new and improved materials. Ceramic-metal composites have advantages over more conventional materials because of their high stiffness-to-weight ratios, good fracture toughness, and because their electrical and thermal properties can be varied through control of their compositions and microstructures. However, ceramic composites will be more widely used only when their costs are competitive with other materials and when designers have more confidence in their reliability. Over the past four years reactive metal penetration has been shown to be a promising technique for making ceramic and metal-matrix composites to near-net-shape with control of both composition and microstructure. It appears that, with sufficient development, reactive metal penetration could be an economical process for manufacturing many of the advanced ceramic composites that are needed for light-weight structural and wear applications for transportation and energy conversion devices. Near-net-shape fabrication of parts is a significant advantage because costly and energy intensive grinding and machining operations are substantially reduced, and the waste generated from such finishing operations is minimized. The most promising compositions to date consist of Al and Al{sub 2}O{sub 3}; thus, these composites should be of particular interest to the aluminum industry. The goals of this ceramic-metal composite research and development program are: (1) to identify compositions favorable for making composites by reactive metal penetration; (2) to understand the mechanism(s) by which these composites are formed; (3) to control and optimize the process so that composites and composite coatings can be made economically; and (4) to apply R&D results to problems of interest to the aluminum industry.

  11. Reactive multilayer synthesis of hard ceramic foils and films

    DOEpatents

    Makowiecki, D.M.; Holt, J.B.

    1996-02-13

    A method is disclosed for synthesizing hard ceramic materials such as carbides, borides and aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coiled as a tape for later use.

  12. Reactive multilayer synthesis of hard ceramic foils and films

    DOEpatents

    Makowiecki, Daniel M.; Holt, Joseph B.

    1996-01-01

    A method for synthesizing hard ceramic materials such as carbides, borides nd aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coild as a tape for later use.

  13. Reactive multilayer synthesis of hard ceramic foils and films

    SciTech Connect

    Makowiecki, D.M.; Holt, J.B.

    1993-12-31

    Disclosed is method for synthesizing hard ceramic materials such as carbides, borides and aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. Method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coiled as a tape for later use.

  14. Reactivity of Graphene Investigated by Density-Functional Theory

    NASA Astrophysics Data System (ADS)

    Soni, Himadri; Gebhardt, Julian; Görling, Andreas; Chair of Theoretical Chemistry Team

    Using spin-polarized density-functional theory, we study the adsorption and reaction of hydrogen and fluorine with graphene. Graphene has a bipartite lattice with two different sublattices and hence, due to Lieb's theorem, the inequality between two sublattices should lead to a net magnetic moment upon adsorption of hydrogen or fluorine. Our calculations using density-functional theory with the generalized gradient approximation predict a magnetic moment of 1 µB for a single hydrogen adsorbed on graphene but not for a single fluorine atom adsorbed on graphene. Switching to hybrid density-functional theory with the HSE functional, we obtain a magnetic moment of 1 µB for of a single fluorine atom adsorption on graphene. This is in line with work of Kim et al., who also found in density-functional theory calculations with the HSE exchange-correlation functional spin-polarization for a fluorine adatom on graphene. Here, we present a systematic study of the reactivity and relevant adsorption mechanism for single-sided graphene, i.e., a graphene sheet which is accessible by an adsorbate from only one side with hydrogen and fluorine using hybrid density-functional theory. German Research Council (DFG) by the Collaborative Research Center 953.

  15. Synthesis and Reactivity of 4′-Deoxypentenosyl Disaccharides

    PubMed Central

    2015-01-01

    4-Deoxypentenosides (4-DPs) are versatile synthons for rare or higher-order pyranosides, and they provide an entry for structural diversification at the C5 position. Previous studies have shown that 4-DPs undergo stereocontrolled DMDO oxidation; subsequent epoxide ring-openings with various nucleophiles can proceed with both anti or syn selectivity. Here, we report the synthesis of α- and β-linked 4′-deoxypentenosyl (4′-DP) disaccharides, and we investigate their post-glycosylational C5′ additions using the DMDO oxidation/ring-opening sequence. The α-linked 4′-DP disaccharides were synthesized by coupling thiophenyl 4-DP donors with glycosyl acceptors using BSP/Tf2O activation, whereas β-linked 4′-DP disaccharides were generated by the decarboxylative elimination of glucuronyl disaccharides under microwave conditions. Both α- and β-linked 4′-DP disaccharides could be epoxidized with high stereoselectivity using DMDO. In some cases, the α-epoxypentenosides could be successfully converted into terminal l-iduronic acids via the syn addition of 2-furylzinc bromide. These studies support a novel approach to oligosaccharide synthesis, in which the stereochemical configuration of the terminal 4′-DP unit is established at a post-glycosylative stage. PMID:24797640

  16. α-Cationic Arsines: Synthesis, Structure, Reactivity, and Applications.

    PubMed

    Dube, Jonathan W; Zheng, Yiying; Thiel, Walter; Alcarazo, Manuel

    2016-06-01

    A series of structurally differentiated cationic arsines containing imidazolium, cyclopropenium, formamidinium, and pyridinium substituents have been synthesized through short and scalable routes. Evaluation of the donor properties of these compounds by IR spectroscopy and DFT calculations reveals similar σ-electron-releasing abilities for all of them; however, their π-acceptor properties are strongly influenced by the nature of the positively charged group. We describe the coordination chemistry of the newly prepared α-cationic arsines toward different metal centers and their reactivity in the presence of strong oxidants to afford cationic As(V) species. Their unique electronic properties have been exploited in Pt(II) catalysis to develop a new catalyst with remarkable activity in the cycloisomerization of enynes to trisubstituted cyclopropanes. To the best of our knowledge, this is the first report on the use of α-cationic arsine ligands in catalysis. PMID:27214007

  17. Synthesis and Regioselective Functionalization of Perhalogenated BODIPYs

    PubMed Central

    Zhao, Ning; Xuan, Sunting; Byrd, Brandon; Fronczek, Frank R.; Smith, Kevin M.

    2016-01-01

    Three perhalogenated BODIPYs (1b–3b), bearing chloro and bromo groups at all carbon positions, were synthesized and characterized. The reactivity of BODIPY 3b was investigated under Stille cross-coupling reactions, and single crystal X-ray analysis was used to confirm the regioselectivity of the reactions. Further substitution at the boron atom produced nona-functionalized BODIPYs 7a,b, which show 676 and 739 nm emissions with 91 and 100 nm Stokes shifts, respectively. PMID:27251595

  18. Synthesis and regioselective functionalization of perhalogenated BODIPYs.

    PubMed

    Zhao, Ning; Xuan, Sunting; Byrd, Brandon; Fronczek, Frank R; Smith, Kevin M; Vicente, M Graça H

    2016-07-14

    Three perhalogenated BODIPYs (1b-3b), bearing chloro and bromo groups at all carbon positions, were synthesized and characterized. The reactivity of BODIPY 3b was investigated under Stille cross-coupling reactions, and single crystal X-ray analysis was used to confirm the regioselectivity of the reactions. Further substitution at the boron atom produced nona-functionalized BODIPYs 7a,b, which show 676 and 739 nm emissions with 91 and 100 nm Stokes shifts, respectively. PMID:27251595

  19. Additive, modular functionalization of reactive self-assembled monolayers: toward the fabrication of multilevel optical storage media

    NASA Astrophysics Data System (ADS)

    Gentili, Denis; Barbalinardo, Marianna; Manet, Ilse; Durso, Margherita; Brucale, Marco; Mezzi, Alessio; Melucci, Manuela; Cavallini, Massimiliano

    2015-04-01

    We report a novel strategy based on iterative microcontact printing, which provides additive, modular functionalization of reactive SAMs by different functional molecules. We demonstrate that after printing the molecules form an interpenetrating network at the SAM surface preserving their individual properties. We exploited the process by fabricating new optical storage media that consist of a multilevel TAG.We report a novel strategy based on iterative microcontact printing, which provides additive, modular functionalization of reactive SAMs by different functional molecules. We demonstrate that after printing the molecules form an interpenetrating network at the SAM surface preserving their individual properties. We exploited the process by fabricating new optical storage media that consist of a multilevel TAG. Electronic supplementary information (ESI) available: Experimental details, synthesis and characterization of compounds 1, 2, 1-Sil and 2-Sil, and materials. See DOI: 10.1039/c5nr00346f

  20. Dithiolopyranthione Synthesis, Spectroscopy and an Unusual Reactivity with DDQ

    PubMed Central

    Pimkov, Igor V.; Nigam, Archana; Venna, Kiran; Solntsev, Pavlo V.; Nemykin, Victor N.

    2014-01-01

    The bicyclic pyran thiolone tetrahydro-3αH-[1,3]dithiolo[4,5-β]pyran-2-thione (3a) engages in a highly unusual fragmentation in the presence of DDQ. The pyran thiolone, 3a, was synthesized by chlorination of 3,4-dihydro-2H-pyran (1), followed by condensing with CS2 and NaSH. Reaction of 3a with DDQ generates the isomerized pyran thiolone tetrahydro-3αH-[1,3]dithiolo[4,5-β]pyran-2-thione (3b) and 4-benzyl-5-(3-hydroxypropyl)-1,3-dithiole-2-thione (4) via a deep-seated rearrangement. The identity of 3b was confirmed by single crystal X-ray analysis: P21/c, a=5.807(9) Å, b = 12.99(2) Å, c = 11.445(15), β=113.23(6)°. Mechanistic experiments and computational insight is used to explain the likely sequence of events in the highly unusual formation of 4. Collectively, these results establish fundamental reactivity patterns for further research in this area. PMID:25328243

  1. Synthesis, characterization, and reactivity of alkyldisulfanido zinc complexes.

    PubMed

    Galardon, Erwan; Tomas, Alain; Selkti, Mohamed; Roussel, Pascal; Artaud, Isabelle

    2009-07-01

    The alkyldisulfanido zinc complexes Tp(iPr,iPr)Zn(SSR) and Tp(Ph,Me)Zn(SSR) where Tp(iPr,iPr) is hydridotris-((3,5-isopropyl)pyrazolyl)borate, Tp(Ph,Me) is hydridotris-((3-phenyl,5-methyl)pyrazolyl)borate, and (SSR) is tert-butyldisulfanido or triphenylmethanedisulfanido were synthesized by reaction between the corresponding hydroxo complexes TpZn(OH) and the synthetic persulfide RSSH. All the complexes were characterized by elemental analysis and (1)H NMR spectroscopy, and representative members of the class were also structurally characterized. The reactivity of the alkyldisulfanido TpZn(SSR) complexes with thiols was studied. In the absence of base, a simple exchange reaction between the alkyldisulfanido ligand and the thiol was observed in dichloromethane; when in the presence of base, the corresponding hydrogen(sulfido) complexes TpZn(SH) were obtained. The mechanism of the latter reaction has been studied and does not involve the coordinated alkyldisulfanido group. Reaction of the hydrogen(sulfido) complexes Tp(iPr,iPr)Zn(SH) with the thiosulfonate PhCH(2)S-SO(2)CF(3) did not yield the expected alkyldisulfanido complex but benzyltrisulfide and a new complex tentatively assigned as Tp(iPr,iPr)Zn(O(2)SCF(3)). PMID:19514736

  2. Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis

    SciTech Connect

    Xu Hui; Li Qin; Shen Lifeng; Zhang Mengqun; Zhai Jianping

    2010-01-15

    In this contribution, low-reactive circulating fluidized bed combustion (CFBC) fly ashes (CFAs) have firstly been utilized as a source material for geopolymer synthesis. An alkali fusion process was employed to promote the dissolution of Si and Al species from the CFAs, and thus to enhance the reactivity of the ashes. A high-reactive metakaolin (MK) was also used to consume the excess alkali needed for the fusion. Reactivities of the CFAs and MK were examined by a series of dissolution tests in sodium hydroxide solutions. Geopolymer samples were prepared by alkali activation of the source materials using a sodium silicate solution as the activator. The synthesized products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffractography (XRD), as well as Fourier transform infrared spectroscopy (FTIR). The results of this study indicate that, via enhancing the reactivity by alkali fusion and balancing the Na/Al ratio by additional aluminosilicate source, low-reactive CFAs could also be recycled as an alternative source material for geopolymer production.

  3. Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis.

    PubMed

    Xu, Hui; Li, Qin; Shen, Lifeng; Zhang, Mengqun; Zhai, Jianping

    2010-01-01

    In this contribution, low-reactive circulating fluidized bed combustion (CFBC) fly ashes (CFAs) have firstly been utilized as a source material for geopolymer synthesis. An alkali fusion process was employed to promote the dissolution of Si and Al species from the CFAs, and thus to enhance the reactivity of the ashes. A high-reactive metakaolin (MK) was also used to consume the excess alkali needed for the fusion. Reactivities of the CFAs and MK were examined by a series of dissolution tests in sodium hydroxide solutions. Geopolymer samples were prepared by alkali activation of the source materials using a sodium silicate solution as the activator. The synthesized products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffractography (XRD), as well as Fourier transform infrared spectroscopy (FTIR). The results of this study indicate that, via enhancing the reactivity by alkali fusion and balancing the Na/Al ratio by additional aluminosilicate source, low-reactive CFAs could also be recycled as an alternative source material for geopolymer production. PMID:19853434

  4. Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity.

    PubMed

    Domingo, Luis R; Ríos-Gutiérrez, Mar; Pérez, Patricia

    2016-01-01

    Theoretical reactivity indices based on the conceptual Density Functional Theory (DFT) have become a powerful tool for the semiquantitative study of organic reactivity. A large number of reactivity indices have been proposed in the literature. Herein, global quantities like the electronic chemical potential μ, the electrophilicity ω and the nucleophilicity N indices, and local condensed indices like the electrophilic P k + and nucleophilic P k - Parr functions, as the most relevant indices for the study of organic reactivity, are discussed. PMID:27294896

  5. Synthesis of Chiral Piperazinones Using Amphoteric Aziridine Aldehyde Dimers and Functionalized Isocyanides.

    PubMed

    Heine, Niklas B; Kaldas, Sherif J; Belding, Lee; Shmatova, Olga; Dudding, Travis; Nenajdenko, Valentine G; Studer, Armido; Yudin, Andrei K

    2016-06-17

    We have evaluated a range of functionalized isocyanides in the aziridine aldehyde-driven multicomponent synthesis of piperazinones. High diasteroselectivity for each isocyanide was observed. A theoretical evaluation of the reaction course corroborates the experimental data. Moreover, the reactivity of cis- and trans-configured aziridine aldehyde dimers has been compared. This study further probes the dimer-driven mechanism of cyclization and enables an efficient access to a wide range of chiral piperazinones bearing functionalized side chains. PMID:27156711

  6. Synthesis and Reactivity of Tripodal Complexes Containing Pendant Bases

    SciTech Connect

    Blacquiere, Johanna M.; Pegis, Michael L.; Raugei, Simone; Kaminsky, Werner; Forget, Amelie; Cook, Sarah; Taguchi, Taketo; Borovik, Andrew S.; Mayer, James M.

    2014-09-02

    The synthesis of a new tripodal ligand family is reported, with tertiary-amine groups in the second-coordination sphere. The ligands are tris(amido)amine derivatives, with the pendant amines attached via a peptide coupling strategy. They were designed to be used in new catalysts for the oxygen reduction reaction (ORR), in which the pendant acid/base group could improve catalyst performance. Two members of the new ligand family were each metallated with Co(II) and Zn(II) to afford trigonal monopyramidal complexes. Reaction of the cobalt complexes, [Co(L)]-, with dioxygen reversibly generates a small amount of a Co(III)-superoxo species, which was characterized by EPR. Protonation of the zinc complex Zn[N{CH2CH2NC(O)CH2N(CH2Ph)2}3)-– ([Zn(TNBn)]-) with one equivalent of acid occurs with displacement and dissociation of an amide ligand. Addition of excess acid to the any of the complexes [M(L)]- results in complete proteolysis and formation of the ligands H3L. This decomposition limits the use of these complexes as catalysts for the ORR. An alternative ligand with two pyridyl arms was also prepared but could not be metallated. These studies highlight the importance of stability of the primary-coordination sphere of ORR electrocatalysts to both oxidative and acidic conditions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  7. Synthesis, characterization, and reactivity of sulfided hexanuclear molybdenum cluster compounds

    SciTech Connect

    Spink, D.

    1990-09-21

    Hexanuclear molybdenum clusters with mixed chloride and sulfide bridging ligands were prepared by reacting {alpha}-MoCl{sub 2} with sodium hydrosulfide in the presence of sodium butoxide. The resulting species, Mo{sub 6}Cl{sub (8-x)}S{sub x}{center dot}npy(x {congruent} 3.6, n {congruent} 4, py = pyridine), was pyrophoric and insoluble. The mixed sulfide chloride cluster species Mo{sub 6}S{sub 4}Cl{sub 4}{center dot}6OPEt{sub 3} and Mo{sub 6}S{sub {approximately}5}Cl{sub {approximately}3}{center dot}6PEt{sub 3} and Mo{sub 6}S{sub 8}{center dot}6PEt{sub 3} were isolated and characterized. Phosphorus-31 nuclear magnetic resonance, electron paramagnetic resonance, and UV/visible spectra were obtained for each fraction. The completely sulfided cluster, Mo{sub 6}S{sub 8}{center dot}6PEt{sub 3}, was prepared similarly and used in various experiments as a possible precursor to Chevrel phase materials of the type Mo{sub 6}S{sub 8}or M{sub n}Mo{sub 6}S{sub 8}. With the goal of removing all of the triethylphosphine ligands, Mo{sub 6}S{sub 8}{center dot}6PEt{sub 3} was reacted with the transition metal carbonyls molybdenum hexacarbonyl and dicobalt octacarbonyl. Reaction on the molecular sulfide cluster with copper(I) chloride in toluene gave a completely insoluble product. The reaction of Mo{sub 6}S{sub 8}{center dot}6PEt{sub 3} with propylene sulfide gave a product whose infrared spectra showed only very weak peaks associated with coordinated triethylphosphine. The elemental analysis of this product fit the formula Mo{sub 6}S{sub 8}{center dot}5SPEt{sub 3}. Reactivity of the outer ligands of the Mo{sub 6}S{sub 8}{center dot}npy and Mo{sub 6}S{sub 8}{center dot}(6{minus}x)PrNH{sub x} clusters were investigated. Crystalline Mo{sub 6}S{sub 8}{center dot}6THT was recovered from the reaction of the n-propylamine derivative with THT. A crystal structure determination was done. 87 refs., 12 fig., 15 tabs.

  8. Pyro-Synthesis of Functional Nanocrystals

    PubMed Central

    Gim, Jihyeon; Mathew, Vinod; Lim, Jinsub; Song, Jinju; Baek, Sora; Kang, Jungwon; Ahn, Docheon; Song, Sun-Ju; Yoon, Hyeonseok; Kim, Jaekook

    2012-01-01

    Despite nanomaterials with unique properties playing a vital role in scientific and technological advancements of various fields including chemical and electrochemical applications, the scope for exploration of nano-scale applications is still wide open. The intimate correlation between material properties and synthesis in combination with the urgency to enhance the empirical understanding of nanomaterials demand the evolution of new strategies to promising materials. Herein we introduce a rapid pyro-synthesis that produces highly crystalline functional nanomaterials under reaction times of a few seconds in open-air conditions. The versatile technique may facilitate the development of a variety of nanomaterials and, in particular, carbon-coated metal phosphates with appreciable physico-chemical properties benefiting energy storage applications. The present strategy may present opportunities to develop “design rules” not only to produce nanomaterials for various applications but also to realize cost-effective and simple nanomaterial production beyond lab-scale limitations. PMID:23230511

  9. Synthesis, reactivity and application studies for different biolubricants

    PubMed Central

    2014-01-01

    Vegetable oils have different unique properties owing to their unique chemical structure. Vegetable oils have a greater ability to lubricate and have higher viscosity indices. Therefore, they are being more closely examined as base oil for biolubricants and functional fluids. In spite of their many advantages, vegetable oils suffer from two major drawbacks of inadequate oxidative stability and poor low-temperature properties, which hinder their utilization as biolubricant base oils. Transforming alkene groups in fatty acids to other stable functional groups could improve the oxidative stability, whereas reducing structural uniformity of the oil by attaching alkyl side chains could improve the low-temperature performance. In that light, the epoxidation of unsaturated fatty acids is very interesting as it can provide diverse side chains arising from the mono- or di-epoxidation of the unsaturated fatty acid. Oxirane ring opening by an acid-catalyzed reaction with a suitable reagent provides interesting polyfunctional compounds. PMID:24612780

  10. Synthesis, reactivity and application studies for different biolubricants.

    PubMed

    Salimon, Jumat; Abdullah, Bashar Mudhaffar; Yusop, Rahimi M; Salih, Nadia

    2014-01-01

    Vegetable oils have different unique properties owing to their unique chemical structure. Vegetable oils have a greater ability to lubricate and have higher viscosity indices. Therefore, they are being more closely examined as base oil for biolubricants and functional fluids. In spite of their many advantages, vegetable oils suffer from two major drawbacks of inadequate oxidative stability and poor low-temperature properties, which hinder their utilization as biolubricant base oils. Transforming alkene groups in fatty acids to other stable functional groups could improve the oxidative stability, whereas reducing structural uniformity of the oil by attaching alkyl side chains could improve the low-temperature performance. In that light, the epoxidation of unsaturated fatty acids is very interesting as it can provide diverse side chains arising from the mono- or di-epoxidation of the unsaturated fatty acid. Oxirane ring opening by an acid-catalyzed reaction with a suitable reagent provides interesting polyfunctional compounds. PMID:24612780

  11. Zero Valent Iron: Impact of Anions Present during Synthesis on Subsequent Nanoparticle Reactivity

    SciTech Connect

    Moore, Kirsten; Forsberg, Brady; Baer, Donald R.; Arnold, William A.; Penn, R. Lee

    2011-10-01

    Zero-valent iron particles are an effective remediation technology for groundwater contaminated with halogenated organic compounds. In particular, nano-scale zero-valent iron is a promising material for remediation due to its high specific surface area, which results in faster rate constants and more effective use of the iron. An aspect of iron nanoparticle reactivity that has not been explored is the impact of anions present during iron metal nanoparticle synthesis. Solutions containing chloride, phosphate, sulfate, and nitrate anions and ferric ions were used to generate iron oxide nanoparticles. The resulting materials were dialyzed to remove dissolved byproducts and then dried and reduced by hydrogen gas at high temperature. The reactivity of the resulting zero valent iron nanoparticles was quantified by monitoring the kinetics as well as products of carbon tetrachloride reduction, and significant differences in reactivity and chloroform yield were observed. The reactivity of nanoparticles prepared in the presence of sulfate and phosphate demonstrated the highest reactivity and chloroform yield. Furthermore, substantial variations in the solid-state products of oxidation (magnetite, iron sulfide, and goethite, among others) were also observed.

  12. Reactivities of vinyl azides and their recent applications in nitrogen heterocycle synthesis

    PubMed Central

    Hu, Bao; DiMagno, Stephen G.

    2015-01-01

    Nitrogen heterocycles are abundant in natural products and pharmaceuticals. An emerging interest among synthetic chemists is to apply vinyl azides as a pivotal three-atom synthon for the construction of structurally complex and diverse N-heterocyclic skeletons. The unique features of the azide group connected to an alkene moiety permit vinyl azides to function as electrophiles, nucleophiles, or radical acceptors; their access to diverse reaction pathways provides great opportunities to generate highly reactive intermediates with often unusual or unconventional reactivities. This tutorial review will systematically illustrate the reactivities of vinyl azides and describe recent breakthroughs in the development of new transformations that create N-heterocycles. PMID:25731154

  13. Unsaturated platinum-rhenium cluster complexes. Synthesis, structures and reactivity.

    PubMed

    Adams, Richard D; Captain, Burjor; Smith, Mark D; Beddie, Chad; Hall, Michael B

    2007-05-01

    functional calculations confirm the hydride positions in the lowest energy structural isomers of 11 and 12 and suggest a mechanism for H2 addition to 11 that occurs on the Pt atom with the lower coordination number. PMID:17439219

  14. Glycerophospholipid synthesis and functions in Pseudomonas.

    PubMed

    Kondakova, Tatiana; D'Heygère, François; Feuilloley, Marc J; Orange, Nicole; Heipieper, Hermann J; Duclairoir Poc, Cécile

    2015-09-01

    The genus Pseudomonas is one of the most heterogeneous groups of eubacteria, presents in all major natural environments and in wide range of associations with plants and animals. The wide distribution of these bacteria is due to the use of specific mechanisms to adapt to environmental modifications. Generally, bacterial adaptation is only considered under the aspect of genes and protein expression, but lipids also play a pivotal role in bacterial functioning and homeostasis. This review resumes the mechanisms and regulations of pseudomonal glycerophospholipid synthesis, and the roles of glycerophospholipids in bacterial metabolism and homeostasis. Recently discovered specific pathways of P. aeruginosa lipid synthesis indicate the lineage dependent mechanisms of fatty acids homeostasis. Pseudomonas glycerophospholipids ensure structure functions and play important roles in bacterial adaptation to environmental modifications. The lipidome of Pseudomonas contains a typical eukaryotic glycerophospholipid--phosphatidylcholine -, which is involved in bacteria-host interactions. The ability of Pseudomonas to exploit eukaryotic lipids shows specific and original strategies developed by these microorganisms to succeed in their infectious process. All compiled data provide the demonstration of the importance of studying the Pseudomonas lipidome to inhibit the infectious potential of these highly versatile germs. PMID:26148574

  15. Impact of C-reactive protein (CRP) on surfactant function

    SciTech Connect

    Li, J.J.; Sanders, R.L.; McAdam, K.P.; Hales, C.A.; Thompson, B.T.; Gelfand, J.A.; Burke, J.F. )

    1989-12-01

    Plasma levels of the acute-phase reactant, C-reactive protein (CRP), increase up to one thousand-fold as a result of trauma or inflammation. CRP binds to phosphorylcholine (PC) in a calcium-ion dependent manner. The structural homology between PC and the major phospholipid component of surfactant, dipalmitoyl phosphatidylcholine (DPPC), led to the present study in which we examined if CRP levels might be increased in patients with adult respiratory distress syndrome (ARDS), and subsequently interfere with surfactant function. Our results showed that CRP levels in the bronchoalveolar fluid (BALF) was increased in patients with ARDS (97.8 +/- 84.2 micrograms/mg total protein vs. 4.04 +/- 2.2 micrograms/mg total protein in normals). Our results show that CRP binds to liposomes containing DPPC and phosphatidylglycerol (PG). As a result of this interaction, CRP inhibits the surface activity of a PG-DPPC mixture when tested with a Wilhelmy surfactometer or with the Enhorning pulsating bubble apparatus. Furthermore, the surface activity of a clinically used surfactant replacement, Surfactant TA (2 mg/ml), was also severely impaired by CRP in a dose-dependent manner (doses used ranging from 24.5 to 1,175 micrograms/ml). In contrast, human serum albumin (HSA) at 500 and 900 micrograms/ml had no inhibitory effect on Surfactant TA surface activity. These results suggest that CRP, although not an initiating insult in ARDS, may contribute to the subsequent abnormalities of surfactant function and thus the pathogenesis of the pulmonary dysfunction seen in ARDS.

  16. Tuning the Synthesis of Ternary Lead Chalcogenide Quantum Dots by Balancing Precursor Reactivity

    SciTech Connect

    Smith, Danielle K.; Luther, Joseph M; Semonin, Octavi Escala; Nozik, Arthur J; Beard, Matthew C

    2011-01-25

    We report the synthesis and characterization of composition-tunable ternary lead chalcogenide alloys PbSe{sub x}Te{sub 1-x}, PbS{sub x}Te{sub 1-x}, and PbS{sub x}Se{sub 1-x}. This work explores the relative reaction rates of chalcogenide precursors to produce alloyed quantum dots (QDs), and we find the highly reactive bis(trimethylsilyl) (TMS{sub 2})-based precursors allow for the homogeneous incorporation of anions. By varying the Pb to oleic acid ratio, we demonstrate size control of similar composition alloys. We find the resulting QDs are Pb-rich but the Pb/anion ratio is size- and composition-dependent in all alloyed QD as well as in PbSe, PbTe, and PbS QDs and is consistent with the reaction rates of the anion precursors. A more reactive anion precursor results in a lower Pb/anion ratio.

  17. Reactivity and synthesis inspired by the Zincke ring-opening of pyridines.

    PubMed

    Vanderwal, Christopher D

    2011-12-01

    The century-old Zincke process for ring-opening of pyridinium salts produces 5-amino-2,4-pentadienals, a type of donor-acceptor dienes known as Zincke aldehydes. Inspired by this reasonably general and often efficient process for dearomatization, my laboratory has used pyridines as a starting point for heterocycle synthesis, which resulted in unusual syntheses of indoles, pyrrolines, and a formal synthesis of the natural product porothramycin A. Furthermore, our study of the reactivity of Zincke aldehydes has led to accidental discoveries of pericyclic cascade reactions that produce Z-α,β-unsaturated amides or polycyclic lactams, depending upon the identity of the substituents on nitrogen. Finally, a base-mediated formal cycloaddition reaction of tryptamine-derived Zincke aldehydes has served as the key step in concise syntheses of the indole alkaloids norfluorocurarine and strychnine. PMID:21877712

  18. Filtered density function approach for reactive transport in groundwater

    NASA Astrophysics Data System (ADS)

    Suciu, Nicolae; Schüler, Lennart; Attinger, Sabine; Knabner, Peter

    2016-04-01

    Spatial filtering may be used in coarse-grained simulations (CGS) of reactive transport in groundwater, similar to the large eddy simulations (LES) in turbulence. The filtered density function (FDF), stochastically equivalent to a probability density function (PDF), provides a statistical description of the sub-grid, unresolved, variability of the concentration field. Besides closing the chemical source terms in the transport equation for the mean concentration, like in LES-FDF methods, the CGS-FDF approach aims at quantifying the uncertainty over the whole hierarchy of heterogeneity scales exhibited by natural porous media. Practically, that means estimating concentration PDFs on coarse grids, at affordable computational costs. To cope with the high dimensionality of the problem in case of multi-component reactive transport and to reduce the numerical diffusion, FDF equations are solved by particle methods. But, while trajectories of computational particles are modeled as stochastic processes indexed by time, the concentration's heterogeneity is modeled as a random field, with multi-dimensional, spatio-temporal sets of indices. To overcome this conceptual inconsistency, we consider FDFs/PDFs of random species concentrations weighted by conserved scalars and we show that their evolution equations can be formulated as Fokker-Planck equations describing stochastically equivalent processes in concentration-position spaces. Numerical solutions can then be approximated by the density in the concentration-position space of an ensemble of computational particles governed by the associated Itô equations. Instead of sequential particle methods we use a global random walk (GRW) algorithm, which is stable, free of numerical diffusion, and practically insensitive to the increase of the number of particles. We illustrate the general FDF approach and the GRW numerical solution for a reduced complexity problem consisting of the transport of a single scalar in groundwater

  19. Synthesis and postmodification of functionally relevant organically modified silica particles

    NASA Astrophysics Data System (ADS)

    Brozek, Eric

    This thesis describes the synthesis and properties of organically modified silica (ORMOSIL) particles with possible applications in the field of drug delivery. Nanoparticle drug delivery methods take advantage of the unique physical properties of nanoscale architecture to deliver a large payload of drug to a targeted site. They are highly porous, contain many organic functionalities for covalent attachment, and their surfaces can be functionalized. A particle-based approach allows for the delivery of a large and localized payload in a single package. Initial study focused on the generation of submicron organically modified silica particles containing boron. This involved the synthesis of vinyl-enriched silica particles and the postmodification of the vinyl functionalities throughout the particle body. Hydroboration and bromination of the vinyl functionalities showed for the first time that the organic functionalities of ORMOSIL particles could be significantly modified. Next, new organically modified silica particle types were developed. These new particle types incorporated unique organic functionalities that may undergo additional functionalization. Organic functionalities included alkenyl-, cyano-, mercapto-, and isocyanto- throughout the particle body. The different organic functionalities were then modified to demonstrate their reactivity. Finally, a particle containing nuclei suitable for neutron capture therapy, a fluorescent tag, and targeting ligand was synthesized. Boron was the active nuclei, fluorescein was the fluorescent label, useful for in vitro studies, and folic acid is a broad field targeting ligand, useful in targeting a variety of cancer types. The particle containing the three unique motifs underwent early stages of in vitro studies against the OVCAR-3 cell line. This thesis has considerably advanced the field of ORMOSIL chemistry through the development and modification of new ORMOSIL products. While initial efforts were geared toward the

  20. Synthesis, Characterization, and Reactivity Studies of Iron Complexes Supported by the Redox-Active [ONO] Ligand

    NASA Astrophysics Data System (ADS)

    Wong, Janice Lin

    The work reported herein primarily focuses on the development of new platforms for multi-electron reactivity using iron complexes supported by a redox-active pincer-type ligand. This dissertation details the synthesis, characterization, and reactivity of iron complexes coordinated to the redox-active [ONO] ([ONO]H3 = bis(3,5-di-tert-butyl-2-phenol)amine) ligand. Chapter 1 provides a general background on ligand-centered and metal-centered redox reactivity. Specifically, the characteristics of redox-active ligands and their ability to promote multi-electron reactivity at redox-inert metal centers is presented. In addition, iron-catalyzed organic transformations in which the metal center undergoes redox changes is also discussed. Finally, ligand-enabled redox reactions mediated by iron complexes containing redox-active ligands is described. Chapter 2 reports on the complexation of bis(3,5-di-tert-butyl-2-phenoxy)amine, [ONHO], and the redox-active [ONO] ligands by iron centers to afford a new family of iron complexes. Characterizations of each compound through a battery of analytical techniques reveal the oxidation states of the metal center and ligand. Furthermore, the electronic properties of each complex were investigated in order to evaluate their potential to facilitate multi-electron reactivity. Chapter 3 details the reactivity of the [ONO]Fe platform. Metathesis reactions are conducted with [ONOq]FeIIIX 2 (X = Cl, N[SiMe3]2) complexes, demonstrating the capability of the fully-oxidized [ONOq]1-- to act as a two-electron acceptor to generate the fully reduced [ONO cat]3-- that is coordinated to an iron(III) center. Similarly, oxidation of [ONOcat]FeIII(py) 3 (py = pyridine) using dihalogens result in two-electron oxidations of the tridentate ligand while the metal oxidation state remains the same. These redox reactions showcase the ability of the [ONO] ligand platform to undergo reversible two-electron oxidation state changes, allowing multi-electron reactivity

  1. Synthesis of functional materials in combustion reactions

    SciTech Connect

    Zhuravlev, V. D. Bamburov, V. G.; Ermakova, L. V.; Lobachevskaya, N. I.

    2015-12-15

    The conditions for obtaining oxide compounds in combustion reactions of nitrates of metals with organic chelating–reducing agents such as amino acids, urea, and polyvinyl alcohol are reviewed. Changing the nature of internal fuels and the reducing agent-to-oxidizing agent ratio makes possible to modify the thermal regime of the process, fractal dimensionality, morphology, and dispersion of synthesized functional materials. This method can be used to synthesize simple and complex oxides, composites, and metal powders, as well as ceramics and coatings. The possibilities of synthesis in combustion reactions are illustrated by examples of αand γ-Al{sub 2}O{sub 3}, YSZ composites, uranium oxides, nickel powder, NiO and NiO: YSZ composite, TiO{sub 2}, and manganites, cobaltites, and aluminates of rare earth elements.

  2. Synthesis of functional materials in combustion reactions

    NASA Astrophysics Data System (ADS)

    Zhuravlev, V. D.; Bamburov, V. G.; Ermakova, L. V.; Lobachevskaya, N. I.

    2015-12-01

    The conditions for obtaining oxide compounds in combustion reactions of nitrates of metals with organic chelating-reducing agents such as amino acids, urea, and polyvinyl alcohol are reviewed. Changing the nature of internal fuels and the reducing agent-to-oxidizing agent ratio makes possible to modify the thermal regime of the process, fractal dimensionality, morphology, and dispersion of synthesized functional materials. This method can be used to synthesize simple and complex oxides, composites, and metal powders, as well as ceramics and coatings. The possibilities of synthesis in combustion reactions are illustrated by examples of αand γ-Al2O3, YSZ composites, uranium oxides, nickel powder, NiO and NiO: YSZ composite, TiO2, and manganites, cobaltites, and aluminates of rare earth elements.

  3. Emotional reactivity and regulation in infancy interact to predict executive functioning in early childhood.

    PubMed

    Ursache, Alexandra; Blair, Clancy; Stifter, Cynthia; Voegtline, Kristin

    2013-01-01

    The relation of observed emotional reactivity and regulation in infancy to executive function in early childhood was examined in a prospective longitudinal sample of 1,292 children from predominantly low-income and rural communities. Children participated in a fear eliciting task at ages 7, 15, and 24 months and completed an executive function battery at age 48 months. Results indicated that the relation of child negative emotional reactivity at 15 months of age to executive functioning at 48 months of age was dependent on observed emotion regulation. High levels of executive function ability were observed among children who exhibited high levels of emotional reactivity and high levels of the regulation of this reactivity. In contrast, low levels of executive function ability were observed among children who exhibited high levels of reactivity but low levels of regulation. Among children exhibiting low levels of emotional reactivity, emotion regulation was unrelated to executive functioning. Moreover, emotionally reactive infants exhibiting high levels of emotion regulation were more likely to have primary caregivers who exhibited high levels of positive parenting behavior in a parent-child interaction task. Results provide support for a neurobiologically informed developmental model in which the regulation of emotional arousal is one mechanism whereby supportive environments are associated with higher levels of self-regulation ability for highly reactive infants. Findings are discussed with implications for differential susceptibility and biological sensitivity theories of child by context interaction. PMID:22563678

  4. Local and linear chemical reactivity response functions at finite temperature in density functional theory.

    PubMed

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model. PMID:26723661

  5. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    SciTech Connect

    Franco-Pérez, Marco E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Ayers, Paul W. E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Gázquez, José L. E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Vela, Alberto E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.

  6. Synthesis and reactivity of compounds containing ruthenium-carbon, -nitrogen, and -oxygen bonds

    SciTech Connect

    Hartwig, J.F.

    1990-12-01

    The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe{sub 3}){sub 4}Ru(X)(Y) and (DMPM){sub 2}Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe{sub 3}){sub 4}Ru(Ph)(Me) or (PMe{sub 3}){sub 4}Ru(Ph){sub 2} leads to the ruthenium benzyne complex (PMe{sub 3}){sub 4}Ru({eta}{sup 2}-C{sub 6}H{sub 4}) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO{sub 2} and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe{sub 3}){sub 4}Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs.

  7. HSV carrying WT REST establishes latency but reactivates only if the synthesis of REST is suppressed.

    PubMed

    Zhou, Guoying; Du, Te; Roizman, Bernard

    2013-02-01

    HSVs transit from vigorous replication at the portal of entry into the body to a latent state in sensory neurons in which only noncoding (e.g., latency-associated transcript) and micro-RNAs are expressed. In productive infection, viral genes must be sequentially derepressed at two checkpoints. A leading role in the repression of viral genes is carried out by histone deacetylase (HDAC)/corepressor element-1 silencing transcription factor (CoREST)/lysinespecific demethylase1(LSD1)/RE1-silencing transcription factor (REST) repressor complex (HCLR). Previously, we reported that to define the role of the components of the HCLR complex in the establishment of latency, we constructed recombinant virus (R112) carrying a dominant-negative REST that bound response elements in DNA but could not recruit repressive proteins. This recombinant virus was unable to establish latency. In the current studies, we constructed a virus (R111) carrying WT REST with a WT genome. We report the following findings: (a) R111 readily established latent infection in trigeminal ganglia; however, although the amounts of viral DNAs in latently infected neurons were similar to those of WT virus, the levels of latency-associated transcript and micro-RNAs were 50- to 100-fold lower; (b) R111 did not spontaneously reactivate in ganglionic organ cultures; however, viral genes were expressed if the synthesis of REST was blocked by cycloheximide; and (c) histone deacetylase inhibitors reactivated the WT parent but not the R111 recombinant virus. The results suggest that REST plays a transient role in the establishment of latency but not in reactivation and suggest the existence of at least two phases at both establishment and reactivation. PMID:23341636

  8. Polar red-emitting rhodamine dyes with reactive groups: synthesis, photophysical properties, and two-color STED nanoscopy applications.

    PubMed

    Kolmakov, Kirill; Wurm, Christian A; Meineke, Dirk N H; Göttfert, Fabian; Boyarskiy, Vadim P; Belov, Vladimir N; Hell, Stefan W

    2014-01-01

    The synthesis, reactivity, and photophysical properties of new rhodamines with intense red fluorescence, two polar residues (hydroxyls, primary phosphates, or sulfonic acid groups), and improved hydrolytic stability of the amino-reactive sites (NHS esters or mixed N-succinimidyl carbonates) are reported. All fluorophores contain an N-alkyl-1,2-dihydro-2,2,4-trimethylquinoline fragment, and most of them bear a fully substituted tetrafluoro phenyl ring with a secondary carboxamide group. The absorption and emission maxima in water are in the range of 635-639 and 655-659 nm, respectively. A vastly simplified approach to red-emitting rhodamines with two phosphate groups that are compatible with diverse functional linkers was developed. As an example, a phosphorylated dye with an azide residue was prepared and was used in a click reaction with a strained alkyne bearing an N-hydroxysuccinimid (NHS) ester group. This method bypasses the undesired activation of phosphate groups, and gives an amphiphilic amino-reactive dye, the solubility and distribution of which between aqueous and organic phases can be controlled by varying the pH. The presence of two hydroxyl groups and a phenyl ring with two carboxyl residues in the dyes with another substitution pattern is sufficient for providing the hydrophilic properties. Selective formation of a mono-N-hydroxysuccinimidyl ester from 5-carboxy isomer of this rhodamine is reported. The fluorescence quantum yields varied from 58 to 92% for free fluorophores, and amounted to 18-64% for antibody conjugates in aqueous buffers. The brightness and photostability of these fluorophores facilitated two-color stimulated emission depletion (STED) fluorescence nanoscopy of biological samples with high contrast and minimal background. Selecting a pair of fluorophores with absorption/emission bands at 579/609 and 635/655 nm enabled two-color channels with low cross-talk and negligible background at approximately 40 nm resolution. PMID:24338798

  9. Polyamines function in stress tolerance: from synthesis to regulation

    PubMed Central

    Liu, Ji-Hong; Wang, Wei; Wu, Hao; Gong, Xiaoqing; Moriguchi, Takaya

    2015-01-01

    Plants are challenged by a variety of biotic or abiotic stresses, which can affect their growth and development, productivity, and geographic distribution. In order to survive adverse environmental conditions, plants have evolved various adaptive strategies, among which is the accumulation of metabolites that play protective roles. A well-established example of the metabolites that are involved in stress responses, or stress tolerance, is the low-molecular-weight aliphatic polyamines, including putrescine, spermidine, and spermine. The critical role of polyamines in stress tolerance is suggested by several lines of evidence: firstly, the transcript levels of polyamine biosynthetic genes, as well as the activities of the corresponding enzymes, are induced by stresses; secondly, elevation of endogenous polyamine levels by exogenous supply of polyamines, or overexpression of polyamine biosynthetic genes, results in enhanced stress tolerance; and thirdly, a reduction of endogenous polyamines is accompanied by compromised stress tolerance. A number of studies have demonstrated that polyamines function in stress tolerance largely by modulating the homeostasis of reactive oxygen species (ROS) due to their direct, or indirect, roles in regulating antioxidant systems or suppressing ROS production. The transcriptional regulation of polyamine synthesis by transcription factors is also reviewed here. Meanwhile, future perspectives on polyamine research are also suggested. PMID:26528300

  10. The Synthesis of Functional Mesoporous Materials

    SciTech Connect

    Fryxell, Glen E.

    2006-11-01

    The ability to decorate a silica surface with specific ligand fields and/or metal complexes creates powerful new capabilities for catalysis, chemical separations and sensor development. Integrating this with the ability to control the spacing of these complexes across the surface, as well as the symmetry and size of the pore structure, allows the synthetic chemist to hierarchically tailor these structured nanomaterials to specific needs. The next step up the “scale ladder” is provided by the ability to coat these mesoporous materials onto complex shapes, allowing for the intimate integration of these tailored materials into device interfaces. The ability to tailor the pore structure of these mesoporous supports is derived from the surfactant templated synthesis of mesoporous materials, an area which has seen an explosion of activity over the last decade.[1,2] The ability to decorate the surface with the desired functionality requires chemical modification of the oxide interface, most commonly achieved using organosilane self-assembly.[3-6] This manuscript describes recent results from the confluence of these two research areas, with a focus on synthetic manipulation of the morphology and chemistry of the interface, with the ultimate goal of binding metal centers in a chemically useful manner.

  11. Multivariable synthesis with transfer functions. [applications to gas turbine engines

    NASA Technical Reports Server (NTRS)

    Peczkowski, J. L.

    1980-01-01

    A transfer function design theory for multivariable control synthesis is highlighted. The use of unique transfer function matrices and two simple, basic relationships - a synthesis equation and a design equation - are presented and illustrated. This multivariable transfer function approach provides the designer with a capability to specify directly desired dynamic relationships between command variables and controlled or response variables. At the same time, insight and influence over response, simplifications, and internal stability is afforded by the method. A general, comprehensive multivariable synthesis capability is indicated including nonminmum phase and unstable plants. Gas turbine engine examples are used to illustrate the ideas and method.

  12. Lewis Acid Zeolites for Biomass Conversion: Perspectives and Challenges on Reactivity, Synthesis, and Stability.

    PubMed

    Luo, Helen Y; Lewis, Jennifer D; Román-Leshkov, Yuriy

    2016-06-01

    Zeolites containing Sn, Ti, Zr, Hf, Nb, or Ta heteroatoms are versatile catalysts for the activation and conversion of oxygenated molecules owing to the unique Lewis acid character of their tetrahedral metal sites. Through fluoride-mediated synthesis, hydrophobic Lewis acid zeolites can behave as water-tolerant catalysts, which has resulted in a recent surge of experimental and computational studies in the field of biomass conversion. However, many open questions still surround these materials, especially relating to the nature of their active sites. This lack of fundamental understanding is exemplified by the many dissonant results that have been described in recent literature reports. In this review, we use a molecular-based approach to provide insight into the relationship between the structure of the metal center and its reactivity toward different substrates, with the ultimate goal of providing a robust framework to understand the properties that have the strongest influence on catalytic performance for the conversion of oxygenates. PMID:27146555

  13. Synthesis and Reactivity of a Bio-inspired Dithiolene Ligand and its Mo Oxo Complex.

    PubMed

    Porcher, Jean-Philippe; Fogeron, Thibault; Gomez-Mingot, Maria; Chamoreau, Lise-Marie; Li, Yun; Fontecave, Marc

    2016-03-18

    An original synthesis of the fused pyranoquinoxaline dithiolene ligand qpdt(2-) is discussed in detail. The most intriguing step is the introduction of the dithiolene moiety by Pd-catalyzed carbon-sulfur coupling. The corresponding Mo(IV) O complex (Bu4 N)2 [MoO(qpdt)2 ] (2) underwent reversible protonation in a strongly acidic medium and remained stable under anaerobic conditions. Besides, 2 was found to be very sensitive towards oxygen, as upon oxidation it formed a planar dithiin derivative. Moreover, the qpdt(2-) ligand in the presence of [MoCl4 (tBuNC)2 ] formed a tetracyclic structure. The products resulting from the unique reactivity of qpdt(2-) were characterized by X-ray diffraction, mass spectrometry, NMR spectroscopy, UV/Vis spectroscopy, and electrochemistry. Plausible mechanisms for the formation of these products are also proposed. PMID:26880579

  14. Synthesis and Reactivity of Palladium(II) Fluoride Complexes Containing Nitrogen-Donor Ligands

    PubMed Central

    Ball, Nicholas D.; Kampf, Jeff W.; Sanford, Melanie S.

    2010-01-01

    This article describes the synthesis, characterization, and reactivity of palladium(II) fluoride complexes containing sp2 and sp3 nitrogen-containing supporting ligands. Both cis and trans complexes of general structure (N)(N’)PdII(R)(F) (R = Ar or CH3) as well as cis-(N)2PdII(F)2 are reported. Crystallographic characterization of these molecules has allowed structural comparisons to related phosphine-ligated species. Furthermore, these studies have revealed that nitrogen-donor ligands support some of the longest and the shortest Pd–F bonds reported to date. The thermal decomposition of (N)(N’)PdII(R)(F) has also been examined, and no products of C–F bond-forming reductive elimination were obtained in any cases. PMID:20024002

  15. Synthesis and Characterization of Reactive Powder Concrete for its Application on Thermal Insulation Panels

    NASA Astrophysics Data System (ADS)

    Chozas, V.; Larraza, Í.; Vera-Agullo, J.; Williams-Portal, N.; Mueller, U.; Da Silva, N.; Flansbjer, M.

    2015-11-01

    This paper describes the synthesis and characterization of a set of textile reinforced reactive powder concrete (RPC) mixes that have been prepared in the framework of the SESBE project which aims to develop facade panels for the building envelope. In order to reduce the environmental impact, high concentration of type I and II mineral additions were added to the mixtures (up to 40% of cement replacement). The mechanical properties of the materials were analysed showing high values of compression strength thus indicating no disadvantages in the compression mechanical performance (∼140 MPa) and modulus of elasticity. In order to enable the use of these materials in building applications, textile reinforcement was introduced by incorporating layers of carbon fibre grids into the RPC matrix. The flexural performance of these samples was analysed showing high strength values and suitability for their further utilization.

  16. Synthesis of novel amorphous calcium carbonate by sono atomization for reactive mixing.

    PubMed

    Kojima, Yoshiyuki; Kanai, Makoto; Nishimiya, Nobuyuki

    2012-03-01

    Droplets of several micrometers in size can be formed in aqueous solution by atomization under ultrasonic irradiation at 2 MHz. This phenomenon, known as atomization, is capable of forming fine droplets for use as a reaction field. This synthetic method is called SARM (sono atomization for reactive mixing). This paper reports on the synthesis of a novel amorphous calcium carbonate formed by SARM. The amorphous calcium carbonate, obtained at a solution concentration of 0.8 mol/dm(3), had a specific surface area of 65 m(2)/g and a composition of CaCO(3)•0.5H(2)O as determined using thermogravimetric/differential thermal analysis (TG-DTA). Because the ACC had a lower hydrate composition than conventional amorphous calcium carbonate (ACC), the ACC synthesized in this paper was very stable at room temperature. PMID:21788149

  17. Synthesis of Some "Cobaloxime" Derivatives: A Demonstration of "Umpolung" in the Reactivity of an Organometallic Complex

    NASA Astrophysics Data System (ADS)

    Jameson, Donald L.; Grzybowski, Joseph J.; Hammels, Deb E.; Castellano, Ronald K.; Hoke, Molly E.; Freed, Kimberly; Basquill, Sean; Mendel, Angela; Shoemaker, William J.

    1998-04-01

    This article describes a four-reaction sequence for the synthesis of two organometallic "cobaloxime" derivatives. The concept of "Umpolung" or reversal of reactivity is demonstrated in the preparation of complexes. The complex Co(dmgH)2(4-t-BuPy)Et is formed by the reaction of a cobalt (I) intermediate (cobalt in the role of nucleophile) with ethyl iodide. The complex Co(dmgH)2(4-t-BuPy)Ph is formed by the reaction of PhMgBr with a cobalt (III) intermediate (cobalt in the role of electrophile). All the products contain cobalt in the diamagnetic +3 oxidation state and are readily characterized by proton and carbon NMR. The four reaction sequence may be completed in two 4-hour lab periods. Cobaloximes are well known as model complexes for Vitamin B-12 and the experiment exposes students to aspects of classical coordination chemistry, organometallic chemistry and bioinorganic chemistry. The experiment also illustrates an important reactivity parallel between organic and organometallic chemistry.

  18. Reactive hyperemia is not responsible for stimulating muscle protein synthesis following blood flow restriction exercise.

    PubMed

    Gundermann, David M; Fry, Christopher S; Dickinson, Jared M; Walker, Dillon K; Timmerman, Kyle L; Drummond, Micah J; Volpi, Elena; Rasmussen, Blake B

    2012-05-01

    Blood flow restriction (BFR) to contracting skeletal muscle during low-intensity resistance exercise training increases muscle strength and size in humans. However, the mechanism(s) underlying these effects are largely unknown. We have previously shown that mammalian target of rapamycin complex 1 (mTORC1) signaling and muscle protein synthesis (MPS) are stimulated following an acute bout of BFR exercise. The purpose of this study was to test the hypothesis that reactive hyperemia is the mechanism responsible for stimulating mTORC1 signaling and MPS following BFR exercise. Six young men (24 ± 2 yr) were used in a randomized crossover study consisting of two exercise trials: low-intensity resistance exercise with BFR (BFR trial) and low-intensity resistance exercise with sodium nitroprusside (SNP), a pharmacological vasodilator infusion into the femoral artery immediately after exercise to simulate the reactive hyperemia response after BFR exercise (SNP trial). Postexercise mixed-muscle fractional synthetic rate from the vastus lateralis increased by 49% in the BFR trial (P < 0.05) with no change in the SNP trial (P > 0.05). BFR exercise increased the phosphorylation of mTOR, S6 kinase 1, ribosomal protein S6, ERK1/2, and Mnk1-interacting kinase 1 (P < 0.05) with no changes in mTORC1 signaling in the SNP trial (P > 0.05). We conclude that reactive hyperemia is not a primary mechanism for BFR exercise-induced mTORC1 signaling and MPS. Further research is necessary to elucidate the cellular mechanism(s) responsible for the increase in mTOR signaling, MPS, and hypertrophy following acute and chronic BFR exercise. PMID:22362401

  19. Diversity synthesis using the complimentary reactivity of rhodium(II)- and palladium(II)-catalyzed reactions.

    PubMed

    Ni, Aiwu; France, Jessica E; Davies, Huw M L

    2006-07-21

    Rhodium(II)-catalyzed reactions of aryldiazoacetates can be conducted in the presence of iodide, triflate, organoboron, and organostannane functionality, resulting in the formation of a variety of cyclopropanes or C-H insertion products with high stereoselectivity. The combination of the rhodium(II)-catalyzed reaction with a subsequent palladium(II)-catalyzed Suzuki coupling offers a novel strategy for diversity synthesis. PMID:16839138

  20. Design and synthesis of supramolecular functional benzoxazines

    NASA Astrophysics Data System (ADS)

    Choi, Seong-Woo

    Dendritic macromolecules containing benzoxazine moieties are designed and synthesized using the Frechet type of ester dendritic building block via a convergent approach. Before proceeding with dendritic building synthesis, the compatibility of benzoxazine chemistry with four different types of 2,4-, 2,5-, 2,6-, and 3,5-dihydroxy benzoicacid isomers is evaluated using Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy (NMR). Among isomers, 3,5-dihydroxybenzoic acid is the most compatible with benzoxazine chemistry and yields completely closed-ring benzoxazine monomer structure. Unlike 3,5-dihydroxybenzoic acid, the other three isomers show only partial ring closure or incompatibility with benzoxazine chemistry due to the existence of intramolecular hydrogen bonding between OH--O species. After finishing the model isomer study, dendritic macromolecules containing benzoxazine moieties are newly synthesized using various combinations of amine derivatives. Benzoxazine dendrimers show much lower maximum polymerization exotherm temperatures as the generation is increased as compared to ordinary benzoxazine monomers. Especially, it is revealed that the dendritic effect on benzoxazine curing temperature is more effective for the aromatic amine based benzoxazine dendrimer than for the aliphatic amine based system. By characterizing benzoxazine dendrimers, their self-catalyzed ring opening ability is elucidated and suggests their use as a curing initiator with other benzoxazine monomers. The dendritic multiplication effect on benzoxazine curing behavior and dynamic viscosity is further investigated using a combination of 6-[1-methyl-1-(3-phenyl(2H,4H-benzo[3,4-e]1,3-oxazaperhydroin-6-yl))ethyl]-3-phenyl-2H,4H-benzo[e]1,3-oxazine (abbreviated as BA-a) monomer with various phenolic derivatives. Another possibility is found for improving processibility by decreasing the polymerization temperature of ordinary benzoxazine monomer with

  1. Linkage of functional and structural anomalies in the left amygdala of reactive-aggressive men

    PubMed Central

    Ostrosky, Feggy; Diaz, Karla; Romero, Cesar; Borja, Karina; Santos, Yusniel; Valdés-Sosa, Mitchell

    2013-01-01

    Amygdala structural and functional abnormalities have been associated to reactive aggression in previous studies. However, the possible linkage of these two types of anomalies has not been examined. We hypothesized that they would coincide in the same localizations, would be correlated in intensity and would be mediated by reactive aggression personality traits. Here violent (n = 25) and non-violent (n = 29) men were recruited on the basis of their reactive aggression. Callous-unemotional (CU) traits were also assessed. Gray matter concentration (gmC) and reactivity to fearful and neutral facial expressions were measured in dorsal and ventral amygdala partitions. The difference between responses to fearful and neutral facial expressions was calculated (F/N-difference). Violent individuals exhibited a smaller F/N-difference and gmC in the left dorsal amygdala, where a significant coincidence was found in a conjunction analysis. Moreover, the left amygdala F/N-difference and gmC were correlated to each other, an effect mediated by reactive aggression but not by CU. The F/N-difference was caused by increased reactivity to neutral faces. This suggests that anatomical anomalies within local circuitry (and not only altered input) may underlie the amygdala hyper-reactivity to social signals which is characteristic of reactive aggression. PMID:22956672

  2. Effects of reactive oxygen species on sperm function.

    PubMed

    Guthrie, H D; Welch, G R

    2012-11-01

    Reactive oxygen species (ROS) formation and membrane lipid peroxidation have been recognized as problems for sperm survival and fertility. The precise roles and detection of superoxide (SO), hydrogen peroxide (HP), and membrane lipid peroxidation have been problematic, because of the low specificity and sensitivity of the established chemiluminescence assay technologies. We developed flow cytometric assays to measure SO, HP, membrane lipid peroxidation, and inner mitochondrial transmembrane potential in boar sperm. These methods were sufficiently sensitive to permit detection of early changes in ROS formation in sperm cells that were still viable. Basal ROS formation and membrane lipid peroxidation in the absence of ROS generators were low in viable sperm of both fresh and frozen-thawed boar semen, affecting less than 4% of the sperm cells on average. However, this is not the case in other species, as human, bovine, and poultry sperm have large increases in sperm ROS formation, lipid peroxidation, loss of motility, and death in vitro. Closer study of the effects of ROS formation on the relationship between sperm motility and ATP content in boar sperm was conducted using menadione (mitochondrial SO generator) and HP treatment. Menadione or HP caused an immediate disruption of motility with delayed or no decrease in sperm ATP content, respectively. Overall, the inhibitory effects of ROS on motility point to a mitochondrial-independent mechanism. The reduction in motility may have been due to a ROS-induced lesion in ATP utilization or in the contractile apparatus of the flagellum. PMID:22704396

  3. Scar Functions, Barriers for Chemical Reactivity, and Vibrational Basis Sets.

    PubMed

    Revuelta, F; Vergini, E; Benito, R M; Borondo, F

    2016-07-14

    The performance of a recently proposed method to efficiently calculate scar functions is analyzed in problems of chemical interest. An application to the computation of wave functions associated with barriers relevant for the LiNC ⇄ LiCN isomerization reaction is presented as an illustration. These scar functions also constitute excellent elements for basis sets suitable for quantum calculation of vibrational energy levels. To illustrate their efficiency, a calculation of the LiNC/LiCN eigenfunctions is also presented. PMID:26905100

  4. Theoretical study for pyridinium-based ionic liquid 1-ethylpyridinium trifluoroacetate: synthesis mechanism, electronic structure, and catalytic reactivity.

    PubMed

    Zhu, Xueying; Cui, Peng; Zhang, Dongju; Liu, Chengbu

    2011-07-28

    By performing density functional theory calculations, we have studied the synthesis mechanism, electronic structure, and catalytic reactivity of a pyridinium-based ionic liquid, 1-ethylpyridinium trifluoroacetate ([epy](+)[CF(3)COO](-)). It is found that the synthesis of the pyridinium salt follows a S(N)2 mechanism. The electronic structural analyses show that multiple H bonds are generally involved in the pyridinium-based ionic liquid, which may play a decisive role for stabilizing the ionic liquid. The cation-anion interaction mainly involves electron transfer between the lone pair of the oxygen atom in the anion and the antibonding orbital of the C*-H bond (C* denotes the carbon atom at the ortho-position of nitrogen atom in the cation). This present work has also given clearly the catalytic mechanism of [epy](+)[CF(3)COO](-) toward to the Diels-Alder (D-A) reaction of acrylonitrile with 2-methyl-1,3-butadiene. Both the cation and anion are shown to play important roles in promoting the D-A reaction. The cation [epy](+), as a Lewis acid, associates the C≡N group by C≡N···H H bond to increase the polarity of the C═C double bond in acrylonitrile, while the anion CF(3)COO(-) links with the methyl group in 2-methyl-1,3-butadiene by C-H···O H bond, which weakens the electron-donating capability of methyl and thereby lowers the energy barrier of the D-A reaction. The present results are expected to provide valuable information for the design and application of pyridinium-based ionic liquids. PMID:21671599

  5. The use of density functional theory-based reactivity descriptors in molecular similarity calculations

    NASA Astrophysics Data System (ADS)

    Boon, Greet; De Proft, Frank; Langenaeker, Wilfried; Geerlings, Paul

    1998-10-01

    Molecular similarity is studied via density functional theory-based similarity indices using a numerical integration method. Complementary to the existing similarity indices, we introduce a reactivity-related similarity index based on the local softness. After a study of some test systems, a series of peptide isosteres is studied in view of their importance in pharmacology. The whole of the present work illustrates the importance of the study of molecular similarity based on both shape and reactivity.

  6. A highly reactive chalcogenide precursor for the synthesis of metal chalcogenide quantum dots

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Zhu, Dong-Liang; Zhu, Chun-Nan; Zhang, Zhi-Ling; Zhang, Guo-Jun; Pang, Dai-Wen

    2015-11-01

    Metal chalcogenide semiconductor nanocrystals (NCs) are ideal inorganic materials for solar cells and biomedical labeling. In consideration of the hazard and instability of alkylphosphines, the phosphine-free synthetic route has become one of the most important trends in synthesizing selenide QDs. Here we report a novel phase transfer strategy to prepare phosphine-free chalcogenide precursors. The anions in aqueous solution were transferred to toluene via electrostatic interactions between the anions and didodecyldimethylammonium bromide (DDAB). The obtained chalcogenide precursors show high reactivity with metal ions in the organic phase and could be applied to the low-temperature synthesis of various metal chalcogenide NCs based on a simple reaction between metal ions (e.g. Ag+, Pb2+, Cd2+) and chalcogenide anions (e.g. S2-) in toluene. In addition to chalcogenide anions, other anions such as BH4- ions and AuCl4- ions can also be transferred to the organic phase for synthesizing noble metal NCs (such as Ag and Au NCs).Metal chalcogenide semiconductor nanocrystals (NCs) are ideal inorganic materials for solar cells and biomedical labeling. In consideration of the hazard and instability of alkylphosphines, the phosphine-free synthetic route has become one of the most important trends in synthesizing selenide QDs. Here we report a novel phase transfer strategy to prepare phosphine-free chalcogenide precursors. The anions in aqueous solution were transferred to toluene via electrostatic interactions between the anions and didodecyldimethylammonium bromide (DDAB). The obtained chalcogenide precursors show high reactivity with metal ions in the organic phase and could be applied to the low-temperature synthesis of various metal chalcogenide NCs based on a simple reaction between metal ions (e.g. Ag+, Pb2+, Cd2+) and chalcogenide anions (e.g. S2-) in toluene. In addition to chalcogenide anions, other anions such as BH4- ions and AuCl4- ions can also be transferred to

  7. IMPACT OF AGING ON CARDIOVASCULAR FUNCTION AND REACTIVITY

    EPA Science Inventory

    It is generally thought that senescence in mammals is accompanied by an overall decline in functional integrity of the organism and its ability to adapt to various environmental challenges. onsiderable body of evidence has shown that in both human and laboratory animals, advancin...

  8. Iron complexes of a bidentate picolyl-NHC ligand: synthesis, structure and reactivity.

    PubMed

    Liang, Qiuming; Janes, Trevor; Gjergji, Xhoana; Song, Datong

    2016-09-21

    The synthesis, structure and reactivity of bidentate picolyl N-heterocyclic carbene (NHC) iron compounds were studied. Compounds [FeBr(HL)2]Br (1), [FeBr(HL)(HMDS)] (2) and [FeBr2(HL)] (3) (HL = 1-mesityl-3-(pyridin-2-ylmethyl)imidazol-1-ylidene, HMDS = hexamethyldisilazide) were prepared from H2LBr with suitable amounts of Fe(HMDS)2 or in situ prepared [Fe(HMDS)Br]. The deprotonation of 1 with 2 eq. of LiHMDS gave [FeL2] (4), featuring dearomatized pyridine moieties with exocyclic C-C double bonds. The protonation of 4 with 2 eq. of PPh3·HBr results in the formation of 1. Attempted deprotonation of 3 using benzyl Grignard as the base resulted in transmetalation products [FeBnBr(HL)] (5) and [FeBn2(HL)] (6). Exposure of 6 to CO resulted in the formation of diamagnetic compound [Fe(CO)3(HL)] (7) and dibenzyl ketone. Prolonged exposure of 7 to CO with heating induces pyridine dissociation, affording [Fe(CO)4(HL-κC)] (8). Treatment of compound 6 with an equimolar amount of p-methoxybenzyl bromide yielded homo- and cross-coupling products. PMID:27513216

  9. Development of a new graded-porosity FeAl alloy by elemental reactive synthesis

    SciTech Connect

    Shen, P Z; He, Y H; Gao, H Y; Zou, J; Xu, N P; Jiang, Y; Huang, B; Lui, C T

    2009-01-01

    A new graded-porosity FeAl alloy can be fabricated through Fe and Al elemental reactive synthesis. FeAl alloy with large connecting open pores and permeability were used as porous supports. The coating was obtained by spraying slurries consisting of mixtures of Fe powder and Al powder with 3 5 m diameter onto porous FeAl support and then sintered at 1100 C. The performances of the coating were compared in terms of thickness, pore diameter and permeability. With an increase in the coating thickness up to 200 m, the changes of maximum pore size decreased from 23.6 m to 5.9 m and the permeability decreased from 184.2 m3m 2kPa 1h 1 to 76.2 m3m 2kPa 1h 1, respectively, for a sintering temperature equal to 1100 C. The composite membranes have potential application for excellent filters in severe environments.

  10. Phosphorus-stabilized titanium carbene complexes: synthesis, reactivity and DFT studies.

    PubMed

    Lafage, Mathieu; Heuclin, Hadrien; Le Goff, Xavier-Frédéric; Saffon-Merceron, Nathalie; Mézailles, Nicolas

    2014-12-15

    The synthesis of two novel titanium carbene complexes from the bis(thiophosphinoyl)methanediide geminal dianion 1 (SCS(2-) ) is described. Dianion 1 reacts cleanly with 0.5 equivalents of [TiCl4 (thf)2 ] to afford the bis-carbene complex [(SCS)2 Ti] (2) in 86 % yield. The mono-carbene complex [(SCS)TiCl2 (thf)] (3) can also be obtained by using an excess of [TiCl4 (thf)2 ]. The structures of 2 and 3 are confirmed by X-ray crystallography. A strong nucleophilic reactivity towards various electrophiles (ketones and aldehydes) is observed. The reaction of 3 with N,N'-dicyclohexylcarbodiimide (DCC) and phenyl isocyanate leads to the formation of two novel diphosphinoketenimines 8 a and 8 b. The bis-titanium guanidinate complex 9 is trapped as the by-product of the reaction with DCC. The X-ray crystal structures of 8 a and 9 are presented. The mechanism of the reaction between complex 3 and DCC is rationalized by DFT studies. PMID:25339253

  11. A highly reactive chalcogenide precursor for the synthesis of metal chalcogenide quantum dots.

    PubMed

    Jiang, Peng; Zhu, Dong-Liang; Zhu, Chun-Nan; Zhang, Zhi-Ling; Zhang, Guo-Jun; Pang, Dai-Wen

    2015-12-01

    Metal chalcogenide semiconductor nanocrystals (NCs) are ideal inorganic materials for solar cells and biomedical labeling. In consideration of the hazard and instability of alkylphosphines, the phosphine-free synthetic route has become one of the most important trends in synthesizing selenide QDs. Here we report a novel phase transfer strategy to prepare phosphine-free chalcogenide precursors. The anions in aqueous solution were transferred to toluene via electrostatic interactions between the anions and didodecyldimethylammonium bromide (DDAB). The obtained chalcogenide precursors show high reactivity with metal ions in the organic phase and could be applied to the low-temperature synthesis of various metal chalcogenide NCs based on a simple reaction between metal ions (e.g. Ag(+), Pb(2+), Cd(2+)) and chalcogenide anions (e.g. S(2-)) in toluene. In addition to chalcogenide anions, other anions such as BH4(-) ions and AuCl4(-) ions can also be transferred to the organic phase for synthesizing noble metal NCs (such as Ag and Au NCs). PMID:26531253

  12. Executive functions and memory in autogenous and reactive subtype of obsessive-compulsive disorder patients.

    PubMed

    Aydın, Pinar Cetinay; Koybasi, Gulperi Putgul; Sert, Engin; Mete, Levent; Oyekcin, Demet Gulec

    2014-05-01

    There are concurrently with different results of studies about cognitive functions of Obsessive-Compulsive Disorder (OCD), impairment in non-verbal memory and executive functioning in OCD, has shown consistent results in several studies. In this study, 62 OCD patients and 40 healthy controls were participated. Firstly, cognitive functions of OCD group and healthy control group were compared in terms of scores in Stroop Test, Wisconsin Cart Sorting Test (WCST), Auditory Consonant Trigram Test (ACTT), Controlled Word Association Test (CWAT), Rey Auditory Verbal Learning Test (RAVLT), Digit Span Test (DST). And then, two patient groups of OCD patients (patients with autogenous obsessions and patients with reactive obsessions) were compared in terms of the scores of same tests, with a hypothesis that claims, cognitive functions of patients with autogenous obsessions, who shown schizotypal personality features and thought disorder in higher ratio, will show more impairment than cognitive functions of patients with reactive obsessions. Significant impairment was found in OCD patients in terms of Stroop test and WCST scores when compared to scores of healthy controls. There was no difference pointed out between cognitive functions of patients with autogenous obsessions and reactive obsessions. Due to limited number of patients with autogenous obsessions in current study, any future research with greater sample size will be helpful to explain the cognitive functions in OCD with autogenous and reactive obsessions. PMID:24582324

  13. Comparison of Global Reactivity Descriptors Calculated Using Various Density Functionals: A QSAR Perspective.

    PubMed

    Vijayaraj, R; Subramanian, V; Chattaraj, P K

    2009-10-13

    Conceptual density functional theory (DFT) based global reactivity descriptors are used to understand the relationship between structure, stability, and global chemical reactivity. Furthermore, these descriptors are employed in the development of quantitative structure-activity (QSAR), structure-property (QSPR), and structure-toxicity (QSTR) relationships. However, the predictive power of various relationships depends on the reliable estimates of these descriptors. The basic working equations used to calculate these descriptors contain both the ionization potential and the electron affinity of chosen molecules. Therefore, efficiency of different density functionals (DFs) in predicting the ionization potential and the electron affinity has to be systematically evaluated. With a view to benchmark the method of calculation of global reactivity descriptors, comprehensive calculations have been carried out on a series of chlorinated benzenes using a variety of density functionals employing different basis sets. In addition, to assess the utility of global reactivity descriptors, the relationships between the reactivity-electrophilicity and the structure-toxicity have been developed. The ionization potential and the electron affinity values obtained from M05-2X method using the ΔSCF approach are closer to the corresponding experimental values. This method reliably predicts these electronic properties when compared to the other DFT methods. The analysis of a series of QSTR equations reveals that computationally economic DFT functionals can be effectively and routinely applied in the development of QSAR/QSPR/QSTR. PMID:26631787

  14. Synthesis Of Reactive Nano-Fe/Pd Bimetallic System-Impregnated Activated Carbon For The Simultaneous Adsorption And Dechlorination Of PCBs

    EPA Science Inventory

    Synthesis and use of reactive metal particles have shown significant environmental implications for the remediation of groundwater and sediment contaminated with chlorinated compounds. Herein, we have developed an effective strategy, employing a series of innovative granular act...

  15. Chemical functionalities at the silica surface determining its reactivity when inhaled. Formation and reactivity of surface radicals.

    PubMed

    Fubini, B; Giamello, E; Volante, M; Bolis, V

    1990-12-01

    Reactive radicals at the surface of quartz or other SiO2 polymorphs have been studied by EPR in relation to their possible role in pathogenicity. All the examined dusts bear the characteristic radicals of silica ground in air: Si, SiO., SiO.2 (peroxyradical) and O2.- (superoxide ion), but some also show additional spectral lines belonging to other radical forms. Comparison of standard quartz dusts (DQ-12, Min-u-sil 5) with a natural quartz and with what obtained by grinding a very pure quartz crystal indicates that to a higher purity corresponds a higher radical population. Cristobalite and vitreous silica exhibit similar spectra, with larger proportion by respect to quartz, of partially reduced oxygen forms. The reactivity of the silica surface towards O2 and NaClO aqueous solutions are investigated by examining the modification in the EPR spectra induced by these treatments. A possible mechanism for fibrogenicity is proposed whereby, within the activated macrophage, a catalytic reaction occurs between surface functionalities and macrophage oxygen metabolites. This reaction would trigger the abnormal production of fibroblast stimulating factors, ending up with silicosis. PMID:1965871

  16. Computational Study of Chemical Reactivity Using Information-Theoretic Quantities from Density Functional Reactivity Theory for Electrophilic Aromatic Substitution Reactions.

    PubMed

    Wu, Wenjie; Wu, Zemin; Rong, Chunying; Lu, Tian; Huang, Ying; Liu, Shubin

    2015-07-23

    The electrophilic aromatic substitution for nitration, halogenation, sulfonation, and acylation is a vastly important category of chemical transformation. Its reactivity and regioselectivity is predominantly determined by nucleophilicity of carbon atoms on the aromatic ring, which in return is immensely influenced by the group that is attached to the aromatic ring a priori. In this work, taking advantage of recent developments in quantifying nucleophilicity (electrophilicity) with descriptors from the information-theoretic approach in density functional reactivity theory, we examine the reactivity properties of this reaction system from three perspectives. These include scaling patterns of information-theoretic quantities such as Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy and information gain at both molecular and atomic levels, quantitative predictions of the barrier height with both Hirshfeld charge and information gain, and energetic decomposition analyses of the barrier height for the reactions. To that end, we focused in this work on the identity reaction of the monosubstituted-benzene molecule reacting with hydrogen fluoride using boron trifluoride as the catalyst in the gas phase. We also considered 19 substituting groups, 9 of which are ortho/para directing and the other 9 meta directing, besides the case of R = -H. Similar scaling patterns for these information-theoretic quantities found for stable species elsewhere were disclosed for these reactions systems. We also unveiled novel scaling patterns for information gain at the atomic level. The barrier height of the reactions can reliably be predicted by using both the Hirshfeld charge and information gain at the regioselective carbon atom. The energy decomposition analysis ensued yields an unambiguous picture about the origin of the barrier height, where we showed that it is the electrostatic interaction that plays the dominant role, while the roles played by exchange-correlation and

  17. Study of curcumin immunomodulatory effects on reactive astrocyte cell function.

    PubMed

    Seyedzadeh, Mir Hadi; Safari, Zohreh; Zare, Ahad; Gholizadeh Navashenaq, Jamshid; Razavi, Seyed Alireza; Kardar, Gholam Ali; Khorramizadeh, Mohammad Reza

    2014-09-01

    Multiple sclerosis (MS) is considered an inflammatory and neurodegenerative disease of the central nervous system (CNS) which most often presents as relapsing-remitting episodes. Recent evidence suggests that activated astrocytes play a dual functional role in CNS inflammatory disorders such as MS. In this study, we tried to induce anti-inflammatory functions of astrocytes by curcumin. The effects of curcumin were examined on human a astrocyte cell line (U373-MG) induced by lipopolysaccharide (LPS) in vitro. Matrix metalloproteinase (MMP)-9 activity was assessed by gelatin zymography. Cytokine levels were evaluated by quantitative ELISA method and mRNA expression was measured by real-time PCR. We found that curcumin decreased the release of IL-6 and reduced MMP-9 enzyme activity. It down-regulated MCP-1 mRNA expression too. However, curcumin did not have significant effects on the expression of neurotrophin (NT)-3 and insulin-like growth factor (IGF)-1 mRNAs. Results suggest that curcumin might beneficially affect astrocyte population in CNS neuroinflammatory environment lean to anti-inflammatory response and help to components in respects of CNS repair. Our findings offer curcumin as a new therapeutic agent with the potential of regulating astrocyte-mediated inflammatory diseases in the CNS. PMID:24998635

  18. Tactic, reactive, and functional droplets outside of equilibrium.

    PubMed

    Lach, Sławomir; Yoon, Seok Min; Grzybowski, Bartosz A

    2016-08-22

    Under non-equilibrium conditions, liquid droplets coupled to their environment by sustained flows of matter and/or energy can become "active" systems capable of various life-like functions. When "fueled" by even simple chemical reactions, such droplets can become tactic and can perform "intelligent" tasks such as maze solving. With more complex chemistries, droplets can support basic forms of metabolism, grow, self-replicate, and exhibit evolutionary changes akin to biological cells. There are also first exciting examples of active droplets connected into larger, tissue-like systems supporting droplet-to-droplet communication, and giving rise to collective material properties. As practical applications of droplets also begin to appear (e.g., in single-cell diagnostics, new methods of electricity generation, optofluidics, or sensors), it appears timely to review and systematize progress in this highly interdisciplinary area of chemical research, and also think about the avenues (and the roadblocks) for future work. PMID:27293207

  19. Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization.

    PubMed

    Ong, Wee-Jun; Tan, Lling-Lling; Chai, Siang-Piao; Yong, Siek-Ting; Mohamed, Abdul Rahman

    2014-02-21

    Titanium dioxide (TiO2) is one of the most widely investigated metal oxides due to its extraordinary surface, electronic and catalytic properties. However, the large band gap of TiO2 and massive recombination of photogenerated electron-hole pairs limit its photocatalytic and photovoltaic efficiency. Therefore, increasing research attention is now being directed towards engineering the surface structure of TiO2 at the most fundamental and atomic level namely morphological control of {001} facets in the range of microscale and nanoscale to fine-tune its physicochemical properties, which could ultimately lead to the optimization of its selectivity and reactivity. The synthesis of {001}-faceted TiO2 is currently one of the most active interdisciplinary research areas and demonstrations of catalytic enhancement are abundant. Modifications such as metal and non-metal doping have also been extensively studied to extend its band gap to the visible light region. This steady progress has demonstrated that TiO2-based composites with {001} facets are playing and will continue to play an indispensable role in the environmental remediation and in the search for clean and renewable energy technologies. This review encompasses the state-of-the-art research activities and latest advancements in the design of highly reactive {001} facet-dominated TiO2via various strategies, including hydrothermal/solvothermal, high temperature gas phase reactions and non-hydrolytic alcoholysis methods. The stabilization of {001} facets using fluorine-containing species and fluorine-free capping agents is also critically discussed in this review. To overcome the large band gap of TiO2 and rapid recombination of photogenerated charge carriers, modifications are carried out to manipulate its electronic band structure, including transition metal doping, noble metal doping, non-metal doping and incorporating graphene as a two-dimensional (2D) catalyst support. The advancements made in these aspects are

  20. Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization

    NASA Astrophysics Data System (ADS)

    Ong, Wee-Jun; Tan, Lling-Lling; Chai, Siang-Piao; Yong, Siek-Ting; Mohamed, Abdul Rahman

    2014-01-01

    Titanium dioxide (TiO2) is one of the most widely investigated metal oxides due to its extraordinary surface, electronic and catalytic properties. However, the large band gap of TiO2 and massive recombination of photogenerated electron-hole pairs limit its photocatalytic and photovoltaic efficiency. Therefore, increasing research attention is now being directed towards engineering the surface structure of TiO2 at the most fundamental and atomic level namely morphological control of {001} facets in the range of microscale and nanoscale to fine-tune its physicochemical properties, which could ultimately lead to the optimization of its selectivity and reactivity. The synthesis of {001}-faceted TiO2 is currently one of the most active interdisciplinary research areas and demonstrations of catalytic enhancement are abundant. Modifications such as metal and non-metal doping have also been extensively studied to extend its band gap to the visible light region. This steady progress has demonstrated that TiO2-based composites with {001} facets are playing and will continue to play an indispensable role in the environmental remediation and in the search for clean and renewable energy technologies. This review encompasses the state-of-the-art research activities and latest advancements in the design of highly reactive {001} facet-dominated TiO2via various strategies, including hydrothermal/solvothermal, high temperature gas phase reactions and non-hydrolytic alcoholysis methods. The stabilization of {001} facets using fluorine-containing species and fluorine-free capping agents is also critically discussed in this review. To overcome the large band gap of TiO2 and rapid recombination of photogenerated charge carriers, modifications are carried out to manipulate its electronic band structure, including transition metal doping, noble metal doping, non-metal doping and incorporating graphene as a two-dimensional (2D) catalyst support. The advancements made in these aspects are

  1. Effects of nitrogen dioxide exposure on pulmonary function and airway reactivity in normal humans.

    PubMed

    Frampton, M W; Morrow, P E; Cox, C; Gibb, F R; Speers, D M; Utell, M J

    1991-03-01

    Nitrogen dioxide (NO2) is a product of combustion that has become recognized as a significant component of indoor air in some homes. Despite extensive study, it remains unresolved whether exposures to low levels of NO2 affect airway function or reactivity. These studies were designed to assess effects of various levels and patterns of NO2 exposure on pulmonary function and airway reactivity in normal humans. Normal volunteers screened for the absence of airway hyperreactivity were exposed for 3 h in an environmental chamber to purified air or NO2, separated by at least 2 wk, according to three protocols: (1) continuous 0.60 ppm NO2, (2) baseline 0.05 ppm NO2 with intermittent peaks of 2.0 ppm, and (3) continuous 1.5 ppm NO2. Subjects exercised for 10 min of each 30 min at a level sufficient to result in a minute ventilation near 40 L/min. Pulmonary function was measured before, during, and after exposure. Airway reactivity to increasing doses of carbachol was assessed 30 min after exposure. NO2 did not directly alter pulmonary function in any of the exposure protocols. In addition, airway reactivity was not altered by continuous exposure to 0.60 ppm or intermittent peaks of 2.0 ppm NO2. In contrast, continuous exposure to 1.5 ppm NO2 resulted in a greater fall in FVC and FEV1 in response to carbachol than after exposure to air (percent decrease in FVC: 1.5% after air, 3.9% after NO2, p less than 0.01). We conclude that for subjects without airway hyperreactivity, exposure to 1.5 ppm NO2 for 3 h increases airway reactivity, whereas repeated 15-min exposures to 2.0 ppm NO2 do not alter airway reactivity. PMID:2001061

  2. Tuning the reactivity of semiconductor surfaces by functionalization with amines of different basicity

    PubMed Central

    Bent, Stacey F.; Kachian, Jessica S.; Rodríguez-Reyes, Juan Carlos F.; Teplyakov, Andrew V.

    2011-01-01

    Surface functionalization of semiconductors has been the backbone of the newest developments in microelectronics, energy conversion, sensing device design, and many other fields of science and technology. Over a decade ago, the notion of viewing the surface itself as a chemical reagent in surface reactions was introduced, and adding a variety of new functionalities to the semiconductor surface has become a target of research for many groups. The electronic effects on the substrate have been considered as an important consequence of chemical modification. In this work, we shift the focus to the electronic properties of the functional groups attached to the surface and their role on subsequent reactivity. We investigate surface functionalization of clean Si(100)-2 × 1 and Ge(100)-2 × 1 surfaces with amines as a way to modify their reactivity and to fine tune this reactivity by considering the basicity of the attached functionality. The reactivity of silicon and germanium surfaces modified with ethylamine (CH3CH2NH2) and aniline (C6H5NH2) is predicted using density functional theory calculations of proton attachment to the nitrogen of the adsorbed amine to differ with respect to a nucleophilic attack of the surface species. These predictions are then tested using a model metalorganic reagent, tetrakis(dimethylamido)titanium (((CH3)2N)4Ti, TDMAT), which undergoes a transamination reaction with sufficiently nucleophilic amines, and the reactivity tests confirm trends consistent with predicted basicities. The identity of the underlying semiconductor surface has a profound effect on the outcome of this reaction, and results comparing silicon and germanium are discussed. PMID:21068370

  3. Effects of cryopreservation on sperm viability, synthesis of reactive oxygen species, and DNA damage of bovine sperm.

    PubMed

    Gürler, H; Malama, E; Heppelmann, M; Calisici, O; Leiding, C; Kastelic, J P; Bollwein, H

    2016-07-15

    The objective was to examine if there are relationships between alterations in sperm viability, reactive oxygen species (ROS) synthesis, and DNA integrity induced by cryopreservation of bovine sperm. Four ejaculates were collected from each of six bulls. Each ejaculate was diluted and divided into two aliquots; one was incubated for 24 hours at 37 °C, and the other frozen, thawed, and incubated for 24 hours at 37 °C. Analyses of quality of sperm were performed after 0, 3, 6, 12, and 24 hours of incubation. Progressive motile sperm was determined with computer assisted sperm analysis. Percentages of plasma membrane- and acrosome-intact sperm, sperm with a high mitochondrial membrane potential, sperm showing a high degree of DNA fragmentation (%DFI), and their reactive oxygen species content were assessed with dichlorofluorescein-diacetate, dihydrorhodamine, diaminofluorescein diacetate, and mitochondrial superoxide indicator using flow cytometry. Although all other sperm parameters showed alterations (P < 0.05) during the 24-hour incubation time, %DFI stayed constant (P > 0.05, 0.91 ± 0.23) in nonfrozen sperm. Cryopreservation induced changes of all sperm parameters (P < 0.05). In contrast to all other sperm parameters, dichlorofluorescein-diacetate-fluoroescence indicating the synthesis of H2O2 showed a similar exponential rise (P < 0.05) like the %DFI values in frozen sperm. In conclusion, changes of DNA integrity in frozen sperm seem to be related to synthesis of H2O2 but not to sperm viability and synthesis of other reactive oxygen species. PMID:27039074

  4. Emotional Reactivity and Regulation in Infancy Interact to Predict Executive Functioning in Early Childhood

    ERIC Educational Resources Information Center

    Ursache, Alexandra; Blair, Clancy; Stifter, Cynthia; Voegtline, Kristin

    2013-01-01

    The relation of observed emotional reactivity and regulation in infancy to executive function in early childhood was examined in a prospective longitudinal sample of 1,292 children from predominantly low-income and rural communities. Children participated in a fear eliciting task at ages 7, 15, and 24 months and completed an executive function…

  5. Cortisol Reactivity is Positively Related to Executive Function in Preschool Children Attending Head Start

    ERIC Educational Resources Information Center

    Blair, Clancy; Granger, Douglas; Razza, Rachel Peters

    2005-01-01

    This study examined relations among cortisol reactivity and measures of cognitive function and social behavior in 4- to 5-year-old children (N=169) attending Head Start. Saliva samples for the assay of cortisol were collected at the beginning, middle, and end of an approximately 45-min testing session. Moderate increase in cortisol followed by…

  6. Synthesis of neoglycosphingolipid from methoxyamino-functionalized ceramide.

    PubMed

    Ishida, Junya; Hinou, Hiroshi; Naruchi, Kentaro; Nishimura, Shin-Ichiro

    2014-02-15

    An efficient approach for the synthesis of a methoxyamino-functionalized ceramide was established from phytosphingosine using specific Nβ→Nα acyl migration of the octadecanoyl group during the removal of Nα-Fmoc protective group. One step glycoblotting reaction of the ceramide mimic with lactose afforded a neoglycosphingolipid showing potent inhibitory activity against recombinant endoglycoceramidase II from Rhodococcus sp. PMID:24461288

  7. Combinatorial effects of continuous protein synthesis, ERK-signaling, and reactive oxygen species on induction of cellular senescence.

    PubMed

    Takauji, Yuki; En, Atsuki; Miki, Kensuke; Ayusawa, Dai; Fujii, Michihiko

    2016-07-15

    Mammalian cells, when treated with sub-lethal doses of genotoxic stresses, slow down DNA synthesis but continue protein synthesis. Thus, these cells show an accumulation of proteins and undergo unbalanced growth. In the previous studies, we have shown that HeLa cells treated with excess thymidine or camptothecin undergo unbalanced growth, and prolonged unbalanced growth causes induction of cellular senescence, which is suppressed by restriction of protein synthesis or inhibition of ERK-signaling. In this study, we found that restriction of protein synthesis, inhibition of ERK-signaling, and elimination of reactive oxygen species showed a combinatorial effect on suppression of cellular senescence induced by excess thymidine or camptothecin. Of these, restriction of protein synthesis most effectively suppressed cellular senescence. Importantly, a similar combinatorial effect was observed in replicative senescence in normal human diploid fibroblasts. Our findings suggested that various stresses were cumulatively involved in cellular senescence, and suppression of cellular senescence was improved by combining the treatments that reduce the stresses. PMID:27339653

  8. Synthesis and characterization of functionalized magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Biswal, Dipti; Peeples, Brianna N.; Spence, Destiny D.; Peeples, Caryn; Bell, Crystal N.; Pradhan, A. K.

    2012-04-01

    Magnetic nanoparticles have been used in a wide array of industrial and biomedical applications due to their unique properties at the nanoscale level. They are extensively used in magnetic resonance imaging (MRI), magnetic hyperthermia treatment, drug delivery, and in assays for biological separations. Furthermore, superparamagnetic nanoparticles are of large interest for in vivo applications. However, these unmodified nanoparticles aggregate and consequently lose their superparamagnetic behaviors, due to high surface to volume ratio and strong dipole to dipole interaction. For these reasons, surface coating is necessary for the enhancement and effectiveness of magnetic nanoparticles to be used in various applications. In addition to providing increased stability to the nanoparticles in different solvents or media, stabilizers such as surfactants, organic/inorganic molecules, polymer and co-polymers are employed as surface coatings, which yield magnetically responsive systems. In this work we present the synthesis and magnetic characterization of Fe3O4 nanoparticles coated with 3-aminopropyltriethoxy silane (APS) and citric acid. The particles magnetic hysteresis was measured by a superconducting quantum interference device (SQUID) magnetometer with an in-plane magnetic field. The uncoated and coated magnetic nanoparticles were characterized by using fourier transform infrared (FTIR), UV-vis, X-ray diffraction, transmission electron microscopy, and thermo-gravimetric analysis.

  9. Reactive superhydrophobic surface and its photoinduced disulfide-ene and thiol-ene (bio)functionalization.

    PubMed

    Li, Junsheng; Li, Linxian; Du, Xin; Feng, Wenqian; Welle, Alexander; Trapp, Oliver; Grunze, Michael; Hirtz, Michael; Levkin, Pavel A

    2015-01-14

    Reactive superhydrophobic surfaces are highly promising for biotechnological, analytical, sensor, or diagnostic applications but are difficult to realize due to their chemical inertness. In this communication, we report on a photoactive, inscribable, nonwettable, and transparent surface (PAINTS), prepared by polycondensation of trichlorovinylsilane to form thin transparent reactive porous nanofilament on a solid substrate. The PAINTS shows superhydrophobicity and can be conveniently functionalized with the photoclick thiol-ene reaction. In addition, we show for the first time that the PAINTS bearing vinyl groups can be easily modified with disulfides under UV irradiation. The effect of superhydrophobicity of PAINTS on the formation of high-resolution surface patterns has been investigated. The developed reactive superhydrophobic coating can find applications for surface biofunctionalization using abundant thiol or disulfide bearing biomolecules, such as peptides, proteins, or antibodies. PMID:25486338

  10. DeoxyArbutin and its derivatives inhibit tyrosinase activity and melanin synthesis without inducing reactive oxygen species or apoptosis.

    PubMed

    Chawla, Smita; Kvalnes, Kalla; deLong, Mitchell A; Wickett, Randall; Manga, Prashiela; Boissy, Raymond E

    2012-10-01

    Safety is a major concern in developing commercial skin-lightening agents. Here, we report the modulating effects of deoxyArbutin (dA) and its second-generation derivatives - deoxyFuran (dF), 2-fluorodeoxyArbutin (fdA), and thiodeoxyArbutin (tdA) - on tyrosinase, and consequently, on melanization. Results demonstrate that dA and its derivatives inhibit tyrosine hydroxylase and dopa oxidase activity of tyrosinase. The inhibition is dose-dependent, thereby inhibiting melanin synthesis in intact melanocytes, when used at concentrations that retain 95% viability of the treated cells in culture. Herein we demonstrate that dA, and its second-generation derivatives dF, fdA, and tdA, exhibit dose-dependent reductions in melanocyte cell number, primarily due to inhibition of proliferation rather than initiation of apoptosis as exemplified by hydroquinone (HQ), ie, cytostatic as opposed to cytotoxic. Human and murine melanocytes with functional mutations in either tyrosinase or tyrosinase-related protein 1 (Tyrp1) are less sensitive to the cytostatic effects of dA and its derivatives. Minimal amounts of reactive oxygen species (ROS) were generated upon treatment with dA and its derivatives, in contrast to a dramatic amount of ROS induced by HQ. This increase in ROS subsequently induced the expression of the endogenous antioxidant catalase in treated melanocytes. Treatment with exogenous antioxidants provided protection for melanocytes treated with HQ, but not dA and its derivatives, suggesting that HQ exerts more oxidative stress. These studies demonstrate that dA and its derivatives are relatively safe tyrosinase inhibitors for skin lightening or for ameliorating hyperpigmented lesions. PMID:23134995

  11. Synthesis and properties of arsenic(III)-reactive coumarin-appended benzothiazolines: a new approach for inorganic arsenic detection.

    PubMed

    Ezeh, Vivian C; Harrop, Todd C

    2013-03-01

    The EPA has established a maximum contaminant level (MCL) of 10 ppb for arsenic (As) in drinking water requiring sensitive and selective detection methodologies. To tackle this challenge, we have been active in constructing small molecules that react specifically with As(3+) to furnish a new fluorescent species (termed a chemodosimeter). We report in this contribution, the synthesis and spectroscopy of two small-molecule fluorescent probes that we term ArsenoFluors (or AFs) as As-specific chemodosimeters. The AFs (AF1 and AF2) incorporate a coumarin fluorescent reporter coupled with an As-reactive benzothiazoline functional group. AFs react with As(3+) to yield the highly fluorescent coumarin-6 dye (C6) resulting in a 20-25-fold fluorescence enhancement at λem ∼ 500 nm with detection limits of 0.14-0.23 ppb in tetrahydrofuran (THF) at 298 K. The AFs also react with common environmental As(3+) sources such as sodium arsenite in a THF/CHES (N-cyclohexyl-2-aminoethanesulfonic acid) (1:1, pH 9, 298 K) mixture resulting in a modest fluorescence turn-ON (1.5- to 3-fold) due to the quenched nature of coumarin-6 derivatives in high polarity solvents. Bulk analysis of the reaction of the AFs with As(3+) revealed that the C6 derivatives and the Schiff-base disulfide of the AFs (SB1 and SB2) are the ultimate end-products of this chemistry with the formation of C6 being the principle photoproduct responsible for the As(3+)-specific turn-ON. It appears that a likely species that is traversed in the reaction path is an As-hydride-ligand complex that is a putative intermediate in the proposed reaction path. PMID:23421428

  12. Forward and reverse transfer function model synthesis

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.

    1985-01-01

    A process for synthesizing a mathematical model for a linear mechanical system using the forward and reverse Fourier transform functions is described. The differential equation for a system model is given. The Bode conversion of the differential equation, and the frequency and time-domain optimization matching of the model to the forward and reverse transform functions using the geometric simplex method of Nelder and Mead (1965) are examined. The effect of the window function on the linear mechanical system is analyzed. The model is applied to two examples; in one the signal damps down before the end of the time window and in the second the signal has significant energy at the end of the time window.

  13. Resting State Functional Connectivity within the Cingulate Cortex Jointly Predicts Agreeableness and Stressor-Evoked Cardiovascular Reactivity

    PubMed Central

    Ryan, John P.; Sheu, Lei K.; Gianaros, Peter J.

    2010-01-01

    Exaggerated cardiovascular reactivity to stress confers risk for cardiovascular disease. Further, individual differences in stressor-evoked cardiovascular reactivity covary with the functionality of cortical and limbic brain areas, particularly within the cingulate cortex. What remains unclear, however, is how individual differences in personality traits interact with cingulate functionality in the prediction of stressor-evoked cardiovascular reactivity. Accordingly, we tested the associations between (i) a particular personality trait, Agreeableness, which is associated with emotional reactions to conflict, (ii) resting state functional connectivity within the cingulate cortex, and (iii) stressor-evoked blood pressure (BP) reactivity. Participants (N=39, 19 men, aged 20–37 yrs) completed a resting functional connectivity MRI protocol, followed by two standardized stressor tasks that engaged conflict processing and evoked BP reactivity. Agreeableness covaried positively with BP reactivity across individuals. Moreover, connectivity analyses demonstrated that a more positive functional connectivity between the posterior cingulate (BA31) and the perigenual anterior cingulate (BA32) covaried positively with Agreeableness and with BP reactivity. Finally, statistical mediation analyses demonstrated that BA31–BA32 connectivity mediated the covariation between Agreeableness and BP reactivity. Functional connectivity within the cingulate appears to link Agreeableness and a risk factor for cardiovascular disease, stressor-evoked BP reactivity. PMID:21130172

  14. Synthesis of diethylamine-functionalized soybean oil.

    PubMed

    Biswas, Atanu; Adhvaryu, Atanu; Gordon, Sherald H; Erhan, Sevim Z; Willett, Julious L

    2005-11-30

    Specialty chemicals based on renewable resources are desirable commodities due to their eco-friendly nature and "green" product characteristics. These chemicals can demonstrate physical and chemical properties comparable to those of conventional petroleum-based products. Suitably functionalized amines in the triacylglycerol structure can function as an antioxidant, as well as an antiwear/antifriction agent. In addition, the amphiphilic nature of seed oils makes them an excellent candidate as base fluid. The reaction of amine and epoxidized seed oils in the presence of a catalyst almost always leads to different intra/intermolecular cross-linked products. In most cases, the triacylglycerol structure is lost due to disruption of the ester linkage. Currently, there is no reported literature describing the aminolysis of vegetable oil without cross-linking. Here the epoxy group of the epoxidized soybean oil has been selectively reacted with amines to give amine-functionalized soybean oil. The optimization procedure involved various amines and catalysts for maximum aminolysis, without cross-linking and disruption of the ester linkage. Diethylamine and ZnCl2 were found to be the best. NMR, IR, and nitrogen analysis were used to characterize the products. PMID:16302766

  15. Organometallic synthesis, reactivity and catalysis in the solid state using well-defined single-site species

    PubMed Central

    Pike, Sebastian D.; Weller, Andrew S.

    2015-01-01

    Acting as a bridge between the heterogeneous and homogeneous realms, the use of discrete, well-defined, solid-state organometallic complexes for synthesis and catalysis is a remarkably undeveloped field. Here, we present a review of this topic, focusing on describing the key transformations that can be observed at a transition-metal centre, as well as the use of well-defined organometallic complexes in the solid state as catalysts. There is a particular focus upon gas–solid reactivity/catalysis and single-crystal-to-single-crystal transformations. PMID:25666064

  16. Examining Endothelial Function and Platelet Reactivity in Patients with Depression before and after SSRI Therapy.

    PubMed

    Dawood, Tye; Barton, David A; Lambert, Elisabeth A; Eikelis, Nina; Lambert, Gavin W

    2016-01-01

    Although it is recognized that patients with major depressive disorder (MDD) are at increased risk of developing cardiovascular disease (CVD) the mechanisms responsible remain unknown. Endothelial dysfunction is one of the first signs of CVD. Using two techniques, flow-mediated dilatation in response to reactive hyperemia and laser Doppler velocimetry with iontophoresis, we examined endothelial function in the forearm before and after serotonin-specific reuptake inhibitor (SSRI) treatment in 31 patients with MDD. Measurement of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, soluble P-selectin, and noradrenaline in plasma was also performed. Prior to treatment, markers of endothelial and vascular function and platelet reactivity were within the normal range. Following SSRI therapy (95 ± 5 days) symptoms of depression were reduced (paired difference between pre- and post-treatment Hamilton rating -18 ± 1, P < 0.001) with 19 patients recovered and 4 remitted. There occurred no significant change in markers of endothelial or vascular function following SSRI therapy. The improvement in Hamilton depression rating in response to therapy could be independently predicted by the baseline arterial plasma noradrenaline concentration (r (2) = 0.36, P = 0.003). In this cohort of patients with MDD, SSRI therapy did not influence endothelial function or markers of vascular or platelet reactivity. Patient response to SSRI therapy could be predicted by the initial circulating level of noradrenaline, with noradrenaline levels being lower in responders. PMID:26924994

  17. Examining Endothelial Function and Platelet Reactivity in Patients with Depression before and after SSRI Therapy

    PubMed Central

    Dawood, Tye; Barton, David A.; Lambert, Elisabeth A.; Eikelis, Nina; Lambert, Gavin W.

    2016-01-01

    Although it is recognized that patients with major depressive disorder (MDD) are at increased risk of developing cardiovascular disease (CVD) the mechanisms responsible remain unknown. Endothelial dysfunction is one of the first signs of CVD. Using two techniques, flow-mediated dilatation in response to reactive hyperemia and laser Doppler velocimetry with iontophoresis, we examined endothelial function in the forearm before and after serotonin-specific reuptake inhibitor (SSRI) treatment in 31 patients with MDD. Measurement of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, soluble P-selectin, and noradrenaline in plasma was also performed. Prior to treatment, markers of endothelial and vascular function and platelet reactivity were within the normal range. Following SSRI therapy (95 ± 5 days) symptoms of depression were reduced (paired difference between pre- and post-treatment Hamilton rating −18 ± 1, P < 0.001) with 19 patients recovered and 4 remitted. There occurred no significant change in markers of endothelial or vascular function following SSRI therapy. The improvement in Hamilton depression rating in response to therapy could be independently predicted by the baseline arterial plasma noradrenaline concentration (r2 = 0.36, P = 0.003). In this cohort of patients with MDD, SSRI therapy did not influence endothelial function or markers of vascular or platelet reactivity. Patient response to SSRI therapy could be predicted by the initial circulating level of noradrenaline, with noradrenaline levels being lower in responders. PMID:26924994

  18. Synthesis, characterization and reactivity of group 4 metallocene bis(diphenylphosphino)acetylene complexes-a reactivity and bonding study.

    PubMed

    Haehnel, Martin; Hansen, Sven; Schubert, Kathleen; Arndt, Perdita; Spannenberg, Anke; Jiao, Haijun; Rosenthal, Uwe

    2013-11-20

    A study of the coordination chemistry of bis(diphenylphosphino)acetylene, Ph2P-C≡C-PPh2, with selected group 4 metallocenes is presented. By substitution of the alkyne in complexes of the type Cp'2M(L)(η(2)-Me3SiC2SiMe3) (M = Ti, no L; M = Zr, L = pyridine; Cp' = substituted or unsubstituted bridged or unbridged η(5)-cyclopentadienyl), the expected mononuclear complexes Cp*2Ti(η(2)-Ph2PC2PPh2) (4Ti), (rac-ebthi)Ti(η(2)-Ph2PC2PPh2) (5Ti), and (rac-ebthi)Zr(η(2)-Ph2PC2PPh2) (5Zr) [ebthi = ethylenebis(tetrahydroindenyl)] were obtained. When [Cp2Zr] was used in the reaction of Cp2Zr(py)(η(2)-Me3SiC2SiMe3) with Ph2P-C≡C-PPh2, the dinuclear complex [Cp2Zr(η(2)-Ph2PC2PPh2)]2 (6) was formed and isolated in the solid state. In solution, this complex is in equilibrium with the very spectacular structure of complex 7b as the first example of such a highly strained four-membered heterometallacycle of a group 4 metal, involving the rare R2PCCR' fragment in the cyclic unit. Both the stability and reactivity of heterodisubstituted alkynes X-C≡C-X (X = NR2, PR2, SR, SiR3, etc.) themselves and also of their complexes are of general interest. Complex 6 did not react with a second [Cp2Zr] fragment to form a homobimetallic complex. In contrast, for (rac-ebthi)Zr(η(2)-Ph2PC2PPh2) (5Zr) this reaction occurs. In the reaction of complex 4Ti with the Ni(0) complex (Cy3P)2Ni(η(2)-C2H4) (Cy = cyclohexyl), C-P bond cleavage of the alkyne ligand resulted in the formation of the isolated complex [(Cy3P)Ni(μ-PPh2)]2 (11). The structure and bonding of the complexes were investigated by DFT analysis to compare the different possible coordination modes of the R2P-C≡C-PR2 ligand. For compound 7b, a flip-flop coordination of the phosphorus atoms was proposed. Complexes 4Ti, 5Ti, 5Zr, 6, and 11 were characterized by X-ray crystallography. PMID:24156561

  19. Applications of C–H Functionalization Logic to Cyclobutane Synthesis

    PubMed Central

    2015-01-01

    The application of C–H functionalization logic to target-oriented synthesis provides an exciting new venue for the development of new and useful strategies in organic chemistry. In this article, C–H functionalization reactions are explored as an alternative approach to access pseudodimeric cyclobutane natural products, such as the dictazole and the piperarborenine families. The use of these strategies in a variety of complex settings highlights the subtle geometric, steric, and electronic effects at play in the auxiliary guided C–H functionalization of cyclobutanes. PMID:24548142

  20. Cellulose nanocrystals: synthesis, functional properties, and applications.

    PubMed

    George, Johnsy; Sabapathi, S N

    2015-01-01

    Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. PMID:26604715

  1. Cellulose nanocrystals: synthesis, functional properties, and applications

    PubMed Central

    George, Johnsy; Sabapathi, SN

    2015-01-01

    Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. PMID:26604715

  2. Synthesis and characterization of hydrogen-bond acidic functionalized graphene

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Han, Qiang; Pan, Yong; Cao, Shuya; Ding, Mingyu

    2014-05-01

    Hexafluoroisopropanol phenyl group functionalized materials have great potential in the application of gas-sensitive materials for nerve agent detection, due to the formation of strong hydrogen-bonding interactions between the group and the analytes. In this paper, take full advantage of ultra-large specific surface area and plenty of carbon-carbon double bonds and hexafluoroisopropanol phenyl functionalized graphene was synthesized through in situ diazonium reaction between -C=C- and p-hexafluoroisopropanol aniline. The identity of the as-synthesis material was confirmed by transmission electron microscopy, Raman spectroscopy, ultraviolet visible spectroscopy, X-ray photoelectron spectroscopy and thermo gravimetric analysis. The synthesis method is simply which retained the excellent physical properties of original graphene. In addition, the novel material can be assigned as an potential candidate for gas sensitive materials towards organophosphorus nerve agent detection.

  3. Facile Synthesis of Functionalized Carbene Metal Complexes from Coordinated Isonitriles.

    PubMed

    Lothschütz, Christian; Wurm, Thomas; Zeiler, Anna; Freiherr V Falkenhausen, Alexander; Rudolph, Matthias; Rominger, Frank; Hashmi, A Stephen K

    2016-02-01

    The scope and limitations of the isonitrile-based NHC template synthesis were investigated with a series of precursors containing a nucleophilic amine in combination with tethered electrophiles. In the case of alkynes and phosphonic esters as electrophiles no ring closure was observed and new functionalized NAC gold complexes were obtained. By the use of unsaturated esters and phosphonic esters as Michael acceptors in the amine precursors, ester-modified gold and palladium NHC complexes were accessible in high efficiency. PMID:26033484

  4. Microwave assisted synthesis of a mono organoimido functionalized Anderson polyoxometalate.

    PubMed

    Ritchie, C; Bryant, G

    2015-12-28

    The synthesis of an aliphatic organoimido functionalized polyoxometalate has been achieved through a microwave assisted reaction protocol in the absence of any activating reagents. Characterization of the pendant amine containing polyanion [Mo6O18NC(OCH2)3MnMo6O18(OCH2)3CNH2](5-) (1) includes single crystal XRD, NMR, ESI-MS, IR and SAXS. PMID:26583488

  5. HHV-6 reactivation and its effect on delirium and cognitive functioning in hematopoietic cell transplantation recipients

    PubMed Central

    Fann, Jesse R.; Breiger, David; Boeckh, Michael; Adler, Amanda L.; Xie, Hu; Delaney, Colleen; Huang, Meei-Li; Corey, Lawrence; Leisenring, Wendy M.

    2011-01-01

    Human herpesvirus 6 (HHV-6) is detected in the plasma of approximately 40% of patients undergoing hematopoietic cell transplantation (HCT) and sporadically causes encephalitis in this population. The effect of HHV-6 reactivation on central nervous system function has not been fully characterized. This prospective study aimed to evaluate associations between HHV-6 reactivation and central nervous system dysfunction after allogeneic HCT. Patients were enrolled before HCT. Plasma samples were tested for HHV-6 at baseline and twice weekly after transplantation until day 84. Delirium was assessed at baseline, 3 times weekly until day 56, and weekly on days 56 to 84 using a validated instrument. Neurocognitive testing was performed at baseline and at approximately day 84. HHV-6 was detected in 111 (35%) of the 315 included patients. Patients with HHV-6 were more likely to develop delirium (adjusted odds ratio = 2.5; 95% confidence interval, 1.2-5.3) and demonstrate neurocognitive decline (adjusted odds ratio = 2.6; 95% confidence interval, 1.1-6.2) in the first 84 days after HCT. Cord blood and unrelated transplantation increased risk of HHV-6 reactivation. These data provide the basis to conduct a randomized clinical trial to determine whether prevention of HHV-6 reactivation will reduce neurocognitive morbidity in HCT recipients. PMID:21389320

  6. Dissecting molecular descriptors into atomic contributions in density functional reactivity theory

    SciTech Connect

    Rong, Chunying; Lu, Tian; Liu, Shubin

    2014-01-14

    Density functional reactivity theory (DFRT) employs the electron density of a molecule and its related quantities such as gradient and Laplacian to describe its structure and reactivity properties. Proper descriptions at both molecular (global) and atomic (local) levels are equally important and illuminating. In this work, we make use of Bader's zero-flux partition scheme and consider atomic contributions for a few global reactivity descriptors in DFRT, including the density-based quantification of steric effect and related indices. Earlier, we proved that these quantities are intrinsically correlated for atomic and molecular systems [S. B. Liu, J. Chem. Phys. 126, 191107 (2007); ibid. 126, 244103 (2007)]. In this work, a new basin-based integration algorithm has been implemented, whose reliability and effectiveness have been extensively examined. We also investigated a list of simple hydrocarbon systems and different scenarios of bonding processes, including stretching, bending, and rotating. Interesting changing patterns for the atomic and molecular values of these quantities have been revealed for different systems. This work not only confirms the strong correlation between these global reactivity descriptors for molecular systems, as theoretically proven earlier by us, it also provides new and unexpected changing patterns for their atomic values, which can be employed to understand the origin and nature of chemical phenomena.

  7. Electrochemical synthesis and reactivity screening of a ternary composition gradient for combinatorial discovery of fuel cell catalysts

    NASA Astrophysics Data System (ADS)

    Jayaraman, S.; Hillier, A. C.

    2005-01-01

    This paper describes a method for synthesis of multi-component gradient libraries for combinatorial catalyst discovery. A 'gel-transfer' synthesis method is demonstrated that involves localized diffusion of aqueous precursor metal salts into a hydrated gel to establish spatially varying concentration fields. Electrodeposition is then used to transfer the gradient in metal precursors to a surface. To illustrate the utility of this method, a platinum-ruthenium-rhodium (PtxRuyRhz) catalyst gradient was constructed, and its reactivity towards several fuel cell reactions evaluated. An optical screening technique based upon the pH-sensitive fluorescence of quinine was used to visualize the spatial onset of reactivity on the ternary catalyst gradient. The evolution of protons from several reactions of interest for low temperature fuel cells was visualized by quinine fluorescence. The oxidation of hydrogen, carbon monoxide, methanol and ethanol were tested on the catalyst library. Catalyst regions that exhibited fluorescence (and hence the onset of activity) at lowest potentials were identified for each of the above reactions.

  8. Radiation-induced synthesis of vinyl copolymer based nanocomposites filled with reactive organic montmorillonite clay

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Kyum; Kwen, Hai-Doo; Choi, Seong-Ho

    2012-05-01

    Vinyl copolymer-clay nanocomposites were prepared by γ-irradiation-initiated radical polymerization using a mixture of styrene (St) and divinyl benzene (DVB) in the presence of reactive organic montmorillonite clay (OMMT) in methanol at room temperature. Reactive OMMT was synthesized by a cation exchange reaction of Na+-MMT and 1-[(4-ethylphenyl)methyl]-3-butyl-imidazolium chloride as a reactive organic modifier in an aqueous solution. The microstructures of the nanocomposites were confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The thermal stability was examined by thermo gravimetric analysis (TGA). As a result, the reactive OMMT was a good additive material for preparing vinyl copolymer-clay nanocomposites.

  9. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies

    NASA Astrophysics Data System (ADS)

    Wu, Wei; He, Quanguo; Jiang, Changzhong

    2008-10-01

    Surface functionalized magnetic iron oxide nanoparticles (NPs) are a kind of novel functional materials, which have been widely used in the biotechnology and catalysis. This review focuses on the recent development and various strategies in preparation, structure, and magnetic properties of naked and surface functionalized iron oxide NPs and their corresponding application briefly. In order to implement the practical application, the particles must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of iron oxide NPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The problems and major challenges, along with the directions for the synthesis and surface functionalization of iron oxide NPs, are considered. Finally, some future trends and prospective in these research areas are also discussed.

  10. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies

    PubMed Central

    2008-01-01

    Surface functionalized magnetic iron oxide nanoparticles (NPs) are a kind of novel functional materials, which have been widely used in the biotechnology and catalysis. This review focuses on the recent development and various strategies in preparation, structure, and magnetic properties of naked and surface functionalized iron oxide NPs and their corresponding application briefly. In order to implement the practical application, the particles must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of iron oxide NPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The problems and major challenges, along with the directions for the synthesis and surface functionalization of iron oxide NPs, are considered. Finally, some future trends and prospective in these research areas are also discussed. PMID:21749733

  11. Pt-Catalyzed Synthesis of Functionalized Symmetrical and Unsymmetrical Disilazanes.

    PubMed

    Kuciński, Krzysztof; Szudkowska-Frątczak, Justyna; Hreczycho, Grzegorz

    2016-09-01

    In nearly every total synthesis, silylating agents are employed in synthetic steps to protect sensitive functional groups. A Pt-catalyzed hydrosilylation of various unsaturated substrates to prepare novel symmetrical and unsymmetrical disilazanes is described. The developed synthetic methodology is widely applicable and tolerates all manner of functional groups (e.g., amines, ethers, esters, halogens, silanes, etc.). To demonstrate the value of the described method, mono-substituted 1,1,3,3-tetramethyldisilazanes were further selectively converted to completely new unsymmetrical derivatives. PMID:27414042

  12. Toward the Synthesis of More Reactive S = 2 Non-Heme Oxoiron(IV) Complexes

    PubMed Central

    2016-01-01

    cleave substrate C–H bonds. The second strategy entailed introducing weaker-field equatorial ligands in six-coordinate oxoiron(IV) complexes to decrease the dx2–y2/dxy energy gap to the point where the S = 2 ground state is favored. These pseudo-octahedral S = 2 oxoiron(IV) complexes exhibit high H-atom transfer reactivity relative to their S = 1 counterparts and shed light on the role that the spin state may play in these reactions. Among these complexes is a highly reactive species that to date represents the closest electronic and functional model of the enzymatic intermediate, TauD-J. PMID:26176555

  13. Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution

    NASA Astrophysics Data System (ADS)

    Chang, Seo Hyoung; Danilovic, Nemanja; Chang, Kee-Chul; Subbaraman, Ram; Paulikas, Arvydas P.; Fong, Dillon D.; Highland, Matthew J.; Baldo, Peter M.; Stamenkovic, Vojislav R.; Freeland, John W.; Eastman, Jeffrey A.; Markovic, Nenad M.

    2014-06-01

    In developing cost-effective complex oxide materials for the oxygen evolution reaction, it is critical to establish the missing links between structure and function at the atomic level. The fundamental and practical implications of the relationship on any oxide surface are prerequisite to the design of new stable and active materials. Here we report an intimate relationship between the stability and reactivity of oxide catalysts in exploring the reaction on strontium ruthenate single-crystal thin films in alkaline environments. We determine that for strontium ruthenate films with the same conductance, the degree of stability, decreasing in the order (001)>(110)>(111), is inversely proportional to the activity. Both stability and reactivity are governed by the potential-induced transformation of stable Ru4+ to unstable Run>4+. This ordered(Ru4+)-to-disordered(Run>4+) transition and the development of active sites for the reaction are determined by a synergy between electronic and morphological effects.

  14. Synthesis and in vitro reactivation study of isonicotinamide derivatives of 2-(hydroxyimino)-N-(pyridin-3-yl)acetamide as reactivators of Sarin and VX inhibited human acetylcholinesterase (hAChE).

    PubMed

    Karade, Hitendra N; Raviraju, G; Acharya, B N; Valiveti, Aditya Kapil; Bhalerao, Uma; Acharya, Jyotiranjan

    2016-09-15

    Previously (Karade et al., 2014), we have reported the synthesis and in vitro evaluation of bis-pyridinium derivatives of pyridine-3-yl-(2-hydroxyimino acetamide), as reactivators of sarin and VX inhibited hAChE. Few of the molecules showed superior in vivo protection efficacy (mice model) (Kumar et al., 2014; Swami et al., 2016) in comparison to 2-PAM against DFP and sarin poisoning. Encouraged by these results, herein we report the synthesis and in vitro evaluation of isonicotinamide derivatives of pyridine-3-yl-(2-hydroxyimino acetamide) (4a-4d) against sarin and VX inhibited erythrocyte ghost hAChE. Reactivation kinetics of these compounds was studied and the determined kinetic parameters were compared with that of commercial reactivators viz. 2-PAM and obidoxime. In comparison to 2-PAM and obidoxime, oxime 4a and 4b exhibited enhanced reactivation efficacy toward sarin inhibited hAChE while oxime 4c showed far greater reactivation efficacy toward VX inhibited hAChE. The acid dissociation constant and IC50 values of these oximes were determined and correlated with the observed reactivation potential. PMID:27450532

  15. New series of monoquaternary pyridinium oximes: synthesis and reactivation potency for paraoxon-inhibited electric eel and recombinant human acetylcholinesterase

    PubMed Central

    Bharate, Sandip B.; Guo, Lilu; Reeves, Tony E.; Cerasoli, Douglas M.; Thompson, Charles M.

    2009-01-01

    The preparation of a series of monoquaternary pyridinium oximes bearing either a heterocyclic side chain or a functionalized aliphatic side chain and the corresponding in vitro evaluation for reactivation of paraoxon-inhibited electric eel acetylcholinesterase (EeAChE) and recombinant human acetylcholinesterase (rHuAChE) are reported. Several newly synthesized compounds efficiently reactivated inhibited EeAChE, but were poor reactivators of inhibited rHuAChE. Compounds bearing a thiophene ring in the side chain (20, 23, 26 and 29) showed better reactivation (24–37% for EeAChE and 5–9% for rHuAChE) compared to compounds with furan and isoxazole heterocycles (0–8% for EeAChE and 2–3% for rHuAChE) at 10−5 M. The N-pyridyl-CH2COOH analog 8 reactivated EeAChE (36%) and rHuAChE (15%) at 10−4 M with a kr value better than 2-pyridine aldoxime methiodide (2-PAM) for rHuAChE. PMID:19640713

  16. Conformationally armed 3,6-tethered glycosyl donors: synthesis, conformation, reactivity, and selectivity.

    PubMed

    Heuckendorff, Mads; Pedersen, Christian Marcus; Bols, Mikael

    2013-07-19

    The reactivity and selectivity of 3,6-tethered glycosyl donors have been studied using acceptors with different steric and electronic characteristics. Eight (four anomeric pairs) 3,6-bridged-glycosyl donors were synthesized in high yields from their common parent sugars. The glycosylation properties were tested using at least three different acceptors and several promoter systems. Thiophenyl 2,4-di-O-benzyl-3,6-O-(di-tert-butylsilylene)-α-D-glucopyranoside gave α/β mixtures with standard NIS/TfOH mediated activation, whereas the corresponding fluoride was found to be highly β-selective, when using SnCl2/AgB(C6F5)4 as the promoter system. Mannosyl donors were highly α-selective despite the altered conformation. Galactosylations using NIS/TfOH were generally α-selective, but more β-selective using the galactosyl fluoride and depending on the acceptor used. Thiophenyl 2-azido-2-deoxy-4-O-benzyl-3,6-O-(di-tert-butylsilylene)-α-D-glucopyranoside was found to be α-selective. The reactivity of the donors was investigated using competition experiments, and some but not all were found to be highly reactive. Generally it was found that the α-thioglycosides were significantly more reactive than the β; this difference in reactivity was not found for 3,6-anhydro-, armed-(benzylated), or the classic super armed (silylated) donors. A mechanism supporting the unusual observations has been suggested. PMID:23786671

  17. Isotope effects in methanol synthesis and the reactivity of copper formates on a Cu/SiO2 catalyst

    SciTech Connect

    Yang, Yong; Mims, Charles A.; Disselkamp, Robert S.; Mei, Donghai; Kwak, Ja Hun; Szanyi, Janos; Peden, Charles HF; Campbell, C. T.

    2008-10-01

    Here we investigate isotope effects on the catalytic methanol synthesis reaction and the reactivity of copper-bound formate species in CO2-H2 atmospheres on Cu/SiO2 catalysts by simultaneous IR and MS measurements, both steady-state and transient. Studies of isotopic variants (H/D, 12C/13C) reveal that bidentate formate dominates the copper surface at steady state. The steady-state formate coverages of HCOO (in 6 bar 3:1 H2:CO2) and DCOO (in D2:CO2) are similar and the steady-state formate coverages in both systems decrease by ~80% from 350 K to 550 K. Over the temperature range 413K – 553K, the steady-state methanol synthesis rate shows a weak H/D isotope effect (1.05 ± 0.05) with somewhat higher activation energies in H2:CO2 (79 kJ/mole) than D2:CO2 (71 kJ/mole) over the range 473K-553K. The reverse water gas shift (RWGS) rates are higher than methanol synthesis and also shows a weak positive H/D isotope effect with higher activation energy for H2/CO2 than D2/CO2 (108 vs. and 102 kJ/mole). The reactivity of the resulting formate species in 6 bar H2, 6 bar D2 and 6 bar Ar is strongly dominated by decomposition back to CO2 and H2. H2 and D2 exposure compared to Ar do not enhance the formate decomposition rate. The decomposition profiles on the supported catalyst deviate from first order decay, indicating distributed surface reactivity. The average decomposition rates are similar to values previously reported on single crystals. The average activation energies for formate decomposition are 90 ± 17 kJ/mole for HCOO and 119 ± 11 kJ/mole for DCOO. By contrast to the catalytic reaction rates, the formate decomposition rate shows a strong H/D kinetic isotope effect (H/D ~ 8 at 413K), similar to previously observed values on Cu(110).

  18. Monitoring Immune System Function and Reactivation of Latent Viruses in the Artificial Gravity Pilot Study

    NASA Technical Reports Server (NTRS)

    Mehta, Satish K.; Crucian, Brian; Pierson, Duane L.; Sams, Clarence; Stowe, Raymond P.

    2007-01-01

    Numerous studies have indicated that dysregulation of the immune system occurs during or after spaceflight. Using 21 day -6 degrees head-down tilt bed rest as a spaceflight analog, this study describes the effects of artificial gravity (AG) as a daily countermeasure on immunity, stress and reactivation of clinically important latent herpes viruses. The specific aims were to evaluate psychological and physiological stress, to determine the status of the immune system, and to quantify reactivation of latent herpes viruses. Blood, saliva, and urine samples were collected from each participating subject at different times throughout the study. An immune assessment was performed on all treatment and control subjects that consisted of a comprehensive peripheral immunophenotype analysis, intracellular cytokine profiles and a measurement of T cell function. The treatment group displayed no differences throughout the course of the study with regards to peripheral leukocyte distribution, cytokine production or T cell function. Shedding of Epstein barr virus (EBV), Cytomegalovirus (CMV), and Varicella zoster virus (VZV) was quantified by real time PCR in saliva and urine samples, respectively. There was no significant difference in CMV DNA in the treatment group as compared to the control group. EBV and VZV on the other hand showed a mild reactivation during the study. There were no significant differences in cortisol between the control and treatment groups. In addition, no significant differences between antiviral antibody titers (EBV-VCA, -EA, -EBNA, CMV) or tetramer-positive (EBV, CMV) were found between the two groups. EBV DNA copies in blood were typically undetectable but never exceeded 1,500 copies per 106 PBMCs. Overall, these data indicate that the artificial gravity countermeasure and the 21 day head-down tilt bed rest regimen had no observable adverse effect on immune function.

  19. Monitoring Immune System Function and Reactivation of Latent Viruses in the Artificial Gravity Pilot Study

    NASA Technical Reports Server (NTRS)

    Mehta, Satish; Crusian, Brian; Pierson, Duane; Sams, Clarence; Stowe, Raymond

    2007-01-01

    Numerous studies have indicated that dysregulation of the immune system occurs during or after spaceflight. Using 21 day -6 deg. head-down tilt bed rest as a spaceflight analog, this study describes the effects of artificial gravity as a daily countermeasure on immunity, stress and reactivation of clinically important latent herpes viruses. The specific aims were to evaluate psychological and physiological stress, to determine the status of the immune system and to quantify reactivation of latent herpes viruses. Blood, saliva, and urine samples were collected from each participating subject at different times throughout the study. An immune assessment was performed on all treatment and control subjects that consisted of a comprehensive peripheral immunophenotype analysis, intracellular cytokine profiles and a measurement of T cell function. The treatment group displayed no differences throughout the course of the study with regards to peripheral leukocyte distribution, cytokine production or T cell function. Shedding of EBV and CMV was quantified by real time PCR in saliva and urine samples, respectively. There was no significant difference in CMV DNA in the treatment group as compared to the control group. EBV and VZV on the other hand showed a mild reactivation during the study. There were no significant differences in plasma cortisol between the control and treatment groups. In addition, no significant differences between antiviral antibody titers (EBV-VCA, -EA, -EBNA, CMV) or tetramer-positive (EBV, CMV) were found between the two groups. EBV DNA copies in blood were typically undetectable but never exceeded 1,500 copies per 10(exp 6) PBMCs. These data indicate that the artificial gravity countermeasure and the 21 day head-down tilt bed rest regimen had no observable adverse effect on immune function.

  20. Electronic structure and reactivity of cobalt oxide dimers and their hexacarbonyl complexes: a density functional study.

    PubMed

    Uzunova, Ellie L; Mikosch, Hans

    2012-03-29

    The dimers of cobalt oxide (CoO)(2) with cyclic and open bent structure are studied with the B1LYP density functional; the ordering of states is validated by the CCSD(T) method. The D(2h)-symmetry rhombic dioxide Co(2)O(2) with antiferromagnetically ordered electrons on cobalt centers is the global minimum. The cyclic peroxide Co(2)(O(2)) with side-on-bonded dioxygen in (7)B(2) ground state is separated from the global minimum by an energy gap of 3.15 eV. The dioxide is highly reactive as indicated by the high value of proton affinity and chemical reactivity indices. The four-member ring structures are more stable than those with three-member ring or chain configuration. The thermodynamic stability toward dissociation to CoO increases upon carbonylation, whereas proton affinity and reactivity with release of molecular oxygen also increase. The global minimum of Co(2)O(2)(CO)(6) corresponds to a triplet state (3)A" with oxygen atoms shifted above the molecular plane of the rhombic dioxide Co(2)O(2). The SOMO-LUMO gap in the ground-state carbonylated dioxide is wider, compared to the same gap in the bare dicobalt dioxide. The peroxo-isomer Co(2)(O(2))(CO)(6) retains the planar Co(2)(O(2)) ring and is only stable in a high-spin state (7)A". The carbonylated clusters have increased reactivity in both redox and nucleophilic reactions, as a result of the increased electron density in the Co(2)O(2)-ring area. PMID:22397598

  1. Synthesis and Characterization of Functionalized Metal-organic Frameworks

    PubMed Central

    Karagiaridi, Olga; Bury, Wojciech; Sarjeant, Amy A.; Hupp, Joseph T.; Farha, Omar K.

    2014-01-01

    Metal-organic frameworks have attracted extraordinary amounts of research attention, as they are attractive candidates for numerous industrial and technological applications. Their signature property is their ultrahigh porosity, which however imparts a series of challenges when it comes to both constructing them and working with them. Securing desired MOF chemical and physical functionality by linker/node assembly into a highly porous framework of choice can pose difficulties, as less porous and more thermodynamically stable congeners (e.g., other crystalline polymorphs, catenated analogues) are often preferentially obtained by conventional synthesis methods. Once the desired product is obtained, its characterization often requires specialized techniques that address complications potentially arising from, for example, guest-molecule loss or preferential orientation of microcrystallites. Finally, accessing the large voids inside the MOFs for use in applications that involve gases can be problematic, as frameworks may be subject to collapse during removal of solvent molecules (remnants of solvothermal synthesis). In this paper, we describe synthesis and characterization methods routinely utilized in our lab either to solve or circumvent these issues. The methods include solvent-assisted linker exchange, powder X-ray diffraction in capillaries, and materials activation (cavity evacuation) by supercritical CO2 drying. Finally, we provide a protocol for determining a suitable pressure region for applying the Brunauer-Emmett-Teller analysis to nitrogen isotherms, so as to estimate surface area of MOFs with good accuracy. PMID:25225784

  2. Effects of gravity on combustion synthesis of functionally graded biomaterials

    NASA Astrophysics Data System (ADS)

    Castillo, M.; Moore, J. J.; Schowengerdt, F. D.; Ayers, R. A.; Zhang, X.; Umakoshi, M.; Yi, H. C.; Guigne, J. Y.

    2003-07-01

    Combustion synthesis, or self-propagating, high temperature synthesis is currently being used at the Colorado School of Mines to produce advanced materials for biomedical applications. These biomaterials include ceramic, intermetallic, and metal-matrix composites for applications ranging from structural to oxidation- and wear-resistant materials, e.g., TiC-Ti, TiC-Cr 3C 2, MOSi 2-SiC, NiAl-TiB 2, to engineered porous composites, e.g., B 4C-Al 2O 3, Ti-TiB x, Ni-Ti, Ca 3(P0 4) 2 and glass-ceramic composites, e.g., CaO-SiO 2-BaO-Al 2O 3-TiB 2. The goal of the functionally graded biomaterials project is to develop new materials, graded in porosity and composition, which will combine the desirable mechanical properties of implant, e.g., NiTi, with the bone-growth enhancement properties of porous biodegradable ceramics, e.g., Ca 3(PO 4) 2. Recent experiments on the NASA parabolic flight (KC-135) aircraft have shown that gravity plays an important role in controlling the structure and properties of materials produced by combustion synthesis. The results of these studies, which will be presented at the conference, will provide valuable input to the design of experiments to be done in Space-DRUMS TM, a containerless materials processing facility scheduled to be placed on the International Space Station in 2003.

  3. Effects of gravity on combustion synthesis of functionally graded biomaterials

    NASA Astrophysics Data System (ADS)

    Moore, J.; Schowengerdt, F.; Ayers, R.; Castillo, M.; Zhang, X.; Umakoshi, U.; Yi, C.; Guigne, J.

    Combustion synthesis, or self-propagating, high temperature synthesis (SHS) is currently being used at the Colorado School of Mines to produce advanced materials for biomedical applications. These biomaterials include ceramic, intermetallic, and metal-matrix composites for applications ranging from structural to oxidation- and wear-resistant materials, e.g., TiC-Ti, TiC-Cr3 C2 , MoSi2 - SiC, NiAl-TiB2 , to engineered porous composites, e.g., B4 C-A l2 O3 , Ti-TiBx , Ni-Ti, Ca 3 (PO4 )2 and glass- ceramic composites, e.g., CaO-SiO2 - B a O-A l2 O3 -T i B2 . The goal of the functionally graded biomaterials project is to develop new materials, graded in porosity and composition, which will combine the desirable mechanical properties of implant, e.g., NiTi, with the bone-growth enhancement properties of porous biodegradable ceramics, e.g., Ca 3 (PO4 )2 . Recent experiments on the NASA parabolic flight (KC- 135) aircraft have shown that gravity plays an important role in controlling the structure and properties of materials produced by combustion synthesis. The results of these studies, which will be presented at the conference, will provide valuable input to the design of experiments to be done in Space-DRUMSTM, a containerless materials processing facility scheduled to be placed on the International Space Station in 2003.

  4. Asymmetric Catalysis with Ethylene. Synthesis of Functionalized Chiral Enolates

    PubMed Central

    Biswas, Souvagya; Page, Jordan P.; Dewese, Kendra R.; RajanBabu, T. V.

    2016-01-01

    Trialkylsilyl enol ethers are versatile intermediates often used as enolate surrogates for the synthesis of carbonyl compounds. Yet there are no reports of broadly applicable, catalytic methods for the synthesis of chiral silyl enol ethers carrying latent functionalities useful for synthetic operations beyond the many possible reactions of the silyl enol ether moiety itself. Here we report a general procedure for highly catalytic (substrate:catalyst ratio up to 1000:1) and enantioselective (92% to 98% major enantiomer) synthesis of such compounds bearing a vinyl group at a chiral carbon at the β-position. The reactions, run under ambient conditions, use trialkylsiloxy-1,3-dienes and ethylene (1 atmosphere) as precursors, and readily available (bis-phosphine)-cobalt(II) complexes as catalysts. The silyl enolates can be readily converted into novel enantiopure vinyl triflates, a class of highly versatile cross-coupling reagents, enabling the syntheses of other enantiomerically pure, stereo-defined trisubstituted alkene intermediates not easily accessible by current methods. Examples of Kumada, Stille and Suzuki coupling reactions are illustrated. PMID:26529467

  5. Asymmetric Catalysis with Ethylene. Synthesis of Functionalized Chiral Enolates.

    PubMed

    Biswas, Souvagya; Page, Jordan P; Dewese, Kendra R; RajanBabu, T V

    2015-11-18

    Trialkylsilyl enol ethers are versatile intermediates often used as enolate surrogates for the synthesis of carbonyl compounds. Yet there are no reports of broadly applicable, catalytic methods for the synthesis of chiral silyl enol ethers carrying latent functionalities useful for synthetic operations beyond the many possible reactions of the silyl enol ether moiety itself. Here we report a general procedure for highly catalytic (substrate:catalyst ratio up to 1000:1) and enantioselective (92% to 98% major enantiomer) synthesis of such compounds bearing a vinyl group at a chiral carbon at the β-position. The reactions, run under ambient conditions, use trialkylsiloxy-1,3-dienes and ethylene (1 atm) as precursors and readily available (bis-phosphine)-cobalt(II) complexes as catalysts. The silyl enolates can be readily converted into novel enantiopure vinyl triflates, a class of highly versatile cross-coupling reagents, enabling the syntheses of other enantiomerically pure, stereodefined trisubstituted alkene intermediates not easily accessible by current methods. Examples of Kumada, Stille, and Suzuki coupling reactions are illustrated. PMID:26529467

  6. Functional Immune Alterations, Latent Herpesvirus Reactivation, Physiological Stress and Clinical Incidence Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Kunz, Hawley; Mehta, Satish; Stowe, Ray; Ploutz-Snyder, Robert; Quiriarte, Heather; Chouker, Alexander; Pierson, Duane

    2016-01-01

    This study (OpNom 'Functional Immune') will be a comprehensive immunity Flight Definition investigation that will use longitudinal repeated measures to assess various aspects of immunity and viral reactivation during long-duration spaceflight. This proposal builds on the successful sampling architecture of the former Integrated Immune flight study, which for the first time returned ambient, live blood samples from space to allow functional assays. Blood (ambient, live) and saliva samples will be collected before, during, and following spaceflight. Previously uninvestigated live cell assays will be performed to assess cellular function during spaceflight. Specialized preservatives will be utilized to assess comprehensive immunophenotype, gene expression and proteomics. Measures of inflammation, stress, antimicrobial activity, etc. will be assessed in blood, saliva, and/or urine. The reactivation of a panel of herpesviruses will be assessed both during flight, and post-flight until shedding resolves. Array technology will be utilized to allow maximal information to be derived from minimal in-flight samples. This study will be a hybrid of NASA internal scientists and researchers external to NASA. The NASA 'Core' science package and implementation strategy was selected and approved in 2014. Via NRA, the solicitation for external participation, with science directed to comply with the parent study sampling architecture, is in progress

  7. Using density functional theory to study shape-reactivity relationships in Keggin Al-nanoclusters.

    PubMed

    Corum, Katie W; Mason, Sara E

    2016-10-01

    Keggin-based aluminum nanoclusters have been shown to be efficient sorbents for the removal of arsenic from water. Obtaining a molecular-level understanding of the adsorption processes associated with these molecules is of fundamental importance, and could pave the way for rational design strategies for water treatment. Due to their size and the availability of experimental crystal structures, Al nanoclusters are computationally tractable at the density functional theory (DFT) level. Here, we compare the reactivity of three aluminum polycations: [Al13O4(OH)24(H2O)12](7+) (Al13), [Al30O8(OH)56(H2O)26](18+) (Al30), and [Al32O8(OH)60(H2O)30](20+) (Al32). We use DFT calculations to determine reactivity as a function of particle topography, using sulfate and chloride as adsorption probes. Our comparative modeling of outer-sphere adsorption of Cl(-) and SO4(2-) on Al13, Al30, and A132 supports that the unique "hourglass" shape characteristic to Al30 gives rise to relatively strong adsorption in the molecular beltway, as well as a wide range of reaction energies as a function of particle topography. PMID:27393966

  8. Synthesis and application of polyepoxide cardanol glycidyl ether as biobased polyepoxide reactive diluent for epoxy resin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyepoxide cardanol glycidyl ether (PECGE), a novel cardanol derivative, was synthesized and used as reactive diluent for petroleum-based epoxy resin in this work. The synthetic condition was first optimized, and the resultant PECGE diluent was characterized using Fourier transform infrared spectro...

  9. Boron-based nanostructures: Synthesis, functionalization, and characterization

    NASA Astrophysics Data System (ADS)

    Bedasso, Eyrusalam Kifyalew

    Boron-based nanostructures have not been explored in detail; however, these structures have the potential to revolutionize many fields including electronics and biomedicine. The research discussed in this dissertation focuses on synthesis, functionalization, and characterization of boron-based zero-dimensional nanostructures (core/shell and nanoparticles) and one-dimensional nanostructures (nanorods). The first project investigates the synthesis and functionalization of boron-based core/shell nanoparticles. Two boron-containing core/shell nanoparticles, namely boron/iron oxide and boron/silica, were synthesized. Initially, boron nanoparticles with a diameter between 10-100 nm were prepared by decomposition of nido-decaborane (B10H14) followed by formation of a core/shell structure. The core/shell structures were prepared using the appropriate precursor, iron source and silica source, for the shell in the presence of boron nanoparticles. The formation of core/shell nanostructures was confirmed using high resolution TEM. Then, the core/shell nanoparticles underwent a surface modification. Boron/iron oxide core/shell nanoparticles were functionalized with oleic acid, citric acid, amine-terminated polyethylene glycol, folic acid, and dopamine, and boron/silica core/shell nanoparticles were modified with 3-(amino propyl) triethoxy silane, 3-(2-aminoethyleamino)propyltrimethoxysilane), citric acid, folic acid, amine-terminated polyethylene glycol, and O-(2-Carboxyethyl)polyethylene glycol. A UV-Vis and ATR-FTIR analysis established the success of surface modification. The cytotoxicity of water-soluble core/shell nanoparticles was studied in triple negative breast cancer cell line MDA-MB-231 and the result showed the compounds are not toxic. The second project highlights optimization of reaction conditions for the synthesis of boron nanorods. This synthesis, done via reduction of boron oxide with molten lithium, was studied to produce boron nanorods without any

  10. Electrochemical template synthesis of multisegment nanowires: fabrication and protein functionalization.

    PubMed

    Wildt, Bridget; Mali, Prashant; Searson, Peter C

    2006-12-01

    Multisegment nanowires represent a unique platform for engineering multifunctional nanoparticles for a wide range of applications. For example, the optical and magnetic properties of nanowires can be tailored by modifying the size, shape, and composition of each segment. Similarly, surface modification can be used to tailor chemical and biological properties. In this article, we report on recent work on electrochemical template synthesis of nanogap electrodes, the fabrication of multisegment nanowires with embedded catalysts, and the selective functionalization of multisegment nanowires with proteins. PMID:17129026

  11. Synthesis of fully functionalized aglycone of lycoperdinoside A and B.

    PubMed

    Chandrasekhar, Balla; Athe, Sudhakar; Reddy, P Purushotham; Ghosh, Subhash

    2015-01-01

    This article reported the synthesis of fully functionalized aglycone of lycoperdinoside A and B. Pd-catalyzed Stille-Migita cross coupling between E-vinyl iodide 6 and E-vinyl stannane 23 established the highly substituted E,E-diene unit present in lycoperdinoside A and B. The other two Z-olefins present in the molecule were introduced by means of cis-selective Horner-Wadsworth-Emmons reaction with Still-Gennari phosphonate. Evans syn- and anti-aldol reactions were utilized to fix six of the seven stereo centres present in the aglycone. PMID:25340961

  12. Synthesis of functional acetylene derivatives from calcium carbide.

    PubMed

    Lin, Zhewang; Yu, Dingyi; Sum, Yin Ngai; Zhang, Yugen

    2012-04-01

    AHA Erlebnis: CaC(2), used to produce acetylene until several decades ago, is re-emerging as a cheap, sustainable resource synthesized from coal and lignocellulosic biomass. We report efficient catalytic protocols for the synthesis of functional acetylene derivatives from CaC(2) through aldehyde, alkyne, and amine (AAA) as well as alkyne, haloalkane, and amine (AHA) couplings, and in addition demonstrate its use in click and Sonogashira chemistry, showing that calcium carbide is a sustainable and cost-efficient carbon source. PMID:22378645

  13. Stability and reactivity of ϵ-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: controlling μ(C).

    PubMed

    de Smit, Emiel; Cinquini, Fabrizio; Beale, Andrew M; Safonova, Olga V; van Beek, Wouter; Sautet, Philippe; Weckhuysen, Bert M

    2010-10-27

    The stability and reactivity of ϵ, χ, and θ iron carbide phases in Fischer-Tropsch synthesis (FTS) catalysts as a function of relevant reaction conditions was investigated by a synergistic combination of experimental and theoretical methods. Combined in situ X-ray Absorption Fine Structure Spectroscopy/X-ray Diffraction/Raman Spectroscopy was applied to study Fe-based catalysts during pretreatment and, for the first time, at relevant high pressure Fischer-Tropsch synthesis conditions, while Density Functional Theory calculations formed a fundamental basis for understanding the influence of pretreatment and FTS conditions on the formation of bulk iron carbide phases. By combining theory and experiment, it was found that the formation of θ-Fe(3)C, χ-Fe(5)C(2), and ϵ-carbides can be explained by their relative thermodynamic stability as imposed by gas phase composition and temperature. Furthermore, it was shown that a significant part of the Fe phases was present as amorphous carbide phases during high pressure FTS, sometimes in an equivalent amount to the crystalline iron carbide fraction. A catalyst containing mainly crystalline χ-Fe(5)C(2) was highly susceptible to oxidation during FTS conditions, while a catalyst containing θ-Fe(3)C and amorphous carbide phases showed a lower activity and selectivity, mainly due to the buildup of carbonaceous deposits on the catalyst surface, suggesting that amorphous phases and the resulting textural properties play an important role in determining final catalyst performance. The findings further uncovered the thermodynamic and kinetic factors inducing the ϵ-χ-θ carbide transformation as a function of the carbon chemical potential μ(C). PMID:20925335

  14. Facile synthesis of fluorescent polymer nanoparticles by covalent modification-nanoprecipitation of amine-reactive ester polymers.

    PubMed

    Lee, Yeonju; Hanif, Sadaf; Theato, Patrick; Zentel, Rudolf; Lim, Jeewoo; Char, Kookheon

    2015-06-01

    Emission wavelength control in fluorescent nanoparticles (NPs) is crucial for their applications. In the case of inorganic quantum dots or dye-impregnated silica NPs, such a control is readily achieved by changing the size of the particles or choosing appropriate fluorescent dyes, respectively. A similar modular approach for controlling the emission wavelength of fluo-rescent polymer NPs, however, is difficult. This article reports on fluorescent polymer NPs, the synthesis of which provides a platform for a modular approach towards the preparation of fluorescent NPs of desired emission wavelength. Atom-transfer radical polymerization (ATRP) is employed to synthesize reactive ester polymers, which are then easily modified with a commercially available dye and subsequently subjected to nanoprecipitation. The resulting NPs, with low size polydispersity, show an enhanced emission quantum yield when compared with the same dye molecules in solution. PMID:25761204

  15. Stabilization of moisture-reactive raw materials for improved synthesis of Ca-α-SiAlON:Eu2+ phosphor

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Myung; Kim, Mi-Ju; Lee, Jae-Wook; Park, Young-Jo

    2014-09-01

    The raw materials needed to make the Ca-α-SiAlON:Eu2+ phosphor contain highly moisture-reactive Ca3N2. Exposing them to a preheating process prior to high-temperature synthesis stabilized the raw materials against oxidation. Preheating above 1200 °C in a tube furnace directly connected to a glove box, resulted in the formation of intermediate phases such as CaAlSiN3, which provided higher moisture resistance to the raw materials. We found that even after exposure to a humid environment, the preheated samples maintained PL characteristics similar to the conventional unexposed samples, while the PL intensity and particle homogeneity of the un-preheated samples were severely deteriorated.

  16. Unscheduled DNA Synthesis: The Clinical and Functional Assay for Global Genomic DNA Nucleotide Excision Repair

    PubMed Central

    Latimer, Jean J.; Kelly, Crystal M.

    2016-01-01

    The unscheduled DNA synthesis (UDS) assay measures the ability of a cell to perform global genomic nucleotide excision repair (NER). This chapter provides instructions for the application of this technique by creating 6-4 photoproducts and pyrimidine dimers using UV-C irradiation. This procedure is designed specifically for quantification of the 6-4 photoproducts. Repair is quantified by the amount of radioactive thymidine incorporated during repair synthesis after this insult, and radioactivity is evaluated by grain counting after autoradiography. The results are used to clinically diagnose human DNA repair deficiency disorders and provide a basis for investigation of repair deficiency in human tissues or tumors. No other functional assay is available that directly measures the capacity to perform NER on the entire genome without the use of specific antibodies. Since live cells are required for this assay, explant culture techniques must be previously established. Host cell reactivation (HCR), as discussed in Chapter 37, is not an equivalent technique, as it measures only transcription-coupled repair (TCR) at active genes, a small subset of total NER. PMID:24623250

  17. Heightened Functional Neural Activation to Psychological Stress Covaries With Exaggerated Blood Pressure Reactivity

    PubMed Central

    Gianaros, Peter J.; Jennings, J. Richard; Sheu, Lei K.; Derbyshire, Stuart W.G.; Matthews, Karen A.

    2016-01-01

    Individuals who show exaggerated blood pressure reactions to psychological stressors are at increased risk for hypertension, atherosclerosis, and stroke. We tested whether individuals who show exaggerated stressor-induced blood pressure reactivity also show heightened stressor-induced neural activation in brain areas involved in controlling the cardiovascular system. In a functional MRI study, 46 postmenopausal women (mean age: 68.04; SD: 1.35 years) performed a standardized Stroop color-word interference task that served as a stressor to increase blood pressure. Across individuals, a larger task-induced rise in blood pressure covaried with heightened and correlated patterns of activation in brain areas implicated previously in stress-related cardiovascular control: the perigenual and posterior cingulate cortex, bilateral prefrontal cortex, anterior insula, and cerebellum. Entered as a set in hierarchical regression analyses, activation values in these brain areas uniquely predicted the magnitude of task-induced changes in systolic (ΔR2=0.54; P<0.001) and diastolic (ΔR2=0.27; P<0.05) blood pressure after statistical control for task accuracy and subjective reports of task stress. Heightened stressor-induced activation of cingulate, prefrontal, insular, and cerebellar brain areas may represent a functional neural phenotype that characterizes individuals who are prone to show exaggerated cardiovascular reactivity. PMID:17101844

  18. Sulfur dioxide and ammonium sulfate effects on pulmonary function and bronchial reactivity in human subjects

    SciTech Connect

    Kulle, T.J.; Sauder, L.R.; Shanty, F.; Kerr, H.D.; Farrell, B.P.; Miller, W.R.; Milman, J.H.

    1984-03-01

    The effect of exposures to 1 ppm sulfur dioxide (SO/sub 2/) and 500 ..mu..g/m/sup 3/ respirable ammonium sulfate ((NH/sub 4/)/sub 2/SO/sub 4/) was studied in 20 nonsmoking subjects to determine if a response can be measured at these atmospheric levels and if the response is additive or synergistic. Four-hour separate and combined exposures were employed. Each subject acted as his or her own control and performed two light-to-moderate exercise stints (612 kg-m/min) for 15 minutes on each day's confinement in the environmental chamber. Pulmonary function tests (body plethysmography and spirometry) and bronchial reactivity to methacholine were performed to assess the response of these exposures. No significant changes in pulmonary function or bronchial reactivity were observed in the individual exposures ((NH/sub 4/)/sub 2/SO/sub 4/ or SO/sub 2/), the combined exposure ((NH/sub 4/)/sub 2/SO/sub 4/ and SO/sub 2/), or 24 hours post-exposure. This study design and the observed results did not demonstrate any readily apparent risk to healthy subjects with these exposures. Since no significant changes were measured, it was not possible to conclude if these two pollutants in combination produce an additive or synergistic response.

  19. Origin of molecular conformational stability: Perspectives from molecular orbital interactions and density functional reactivity theory

    SciTech Connect

    Liu, Shubin E-mail: schauer@unc.edu; Schauer, Cynthia K. E-mail: schauer@unc.edu

    2015-02-07

    To have a quantitative understanding about the origin of conformation stability for molecular systems is still an unaccomplished task. Frontier orbital interactions from molecular orbital theory and energy partition schemes from density functional reactivity theory are the two approaches available in the literature that can be used for this purpose. In this work, we compare the performance of these approaches for a total of 48 simple molecules. We also conduct studies to flexibly bend bond angles for water, carbon dioxide, borane, and ammonia molecules to obtain energy profiles for these systems over a wide range of conformations. We find that results from molecular orbital interactions using frontier occupied orbitals such as the highest occupied molecular orbital and its neighbors are only qualitatively, at most semi-qualitatively, trustworthy. To obtain quantitative insights into relative stability of different conformations, the energy partition approach from density functional reactivity theory is much more reliable. We also find that the electrostatic interaction is the dominant descriptor for conformational stability, and steric and quantum effects are smaller in contribution but their contributions are indispensable. Stable molecular conformations prefer to have a strong electrostatic interaction, small molecular size, and large exchange-correlation effect. This work should shed new light towards establishing a general theoretical framework for molecular stability.

  20. Versatile and Biomass Synthesis of Iron-based Nanoparticles Supported on Carbon Matrix with High Iron Content and Tunable Reactivity

    SciTech Connect

    Zhang, Dongmao; Shi, Sheldon Q; Jiang, Dongping; Che, Wen; Gai, Zheng; Howe, Jane Y; More, Karren Leslie; Arockiasamy, Antonyraj

    2012-01-01

    Iron-based nanoparticles supported on carbon (FeNPs{at}C) have enormous potential for environmental applications. Reported is a biomass-based method for FeNP{at}C synthesis that involves pyrolysis of bleached wood fiber pre-mixed with Fe{sub 3}O{sub 4} nanoparticles. This method allows synthesis of iron-based nanoparticles with tunable chemical reactivity by changing the pyrolysis temperature. The FeNP{at}C synthesized at a pyrolysis temperature of 500 C (FeNP{at}C-500) reacts violently (pyrophoric) when exposed to air, while FeNP{at}C prepared at 800 C (FeNP{at}C-800) remains stable in ambient condition for at least 3 months. The FeNPs in FeNP{at}C-800 are mostly below 50 nm in diameter and are surrounded by carbon. The immediate carbon layer (within 5-15 nm radius) on the FeNPs is graphitized. Proof-of-concept environmental applications of FeNPs{at}C-800 were demonstrated by Rhodamine 6G and arsenate (V) removal from water. This biomass-based method provides an effective way for iron-based nanoparticle fabrication and biomass utilization.

  1. Chemical and Chemoenzymatic Synthesis of Glycoproteins for Deciphering Functions

    PubMed Central

    Wang, Lai-Xi; Amin, Mohammed N.

    2014-01-01

    Summary Glycoproteins are an important class of biomolecules involved in a number of biological recognition processes. However, natural and recombinant glycoproteins are usually produced as mixtures of glycoforms that differ in the structures of the pendent glycans, which are difficult to separate in pure glycoforms. As a result, synthetic homogeneous glycopeptides and glycoproteins have become indispensable probes for detailed structural and functional studies. A number of elegant chemical and biological strategies have been developed for synthetic construction of tailor-made, full-size glycoproteins to address specific biological problems. In this review, we highlight recent advances in chemical and chemoenzymatic synthesis of homogeneous glycoproteins. Selected examples are given to demonstrate the applications of tailor-made, glycan-defined glycoproteins for deciphering glycosylation functions. PMID:24439206

  2. Hodgkin-Reed-Sternberg Cells in Classical Hodgkin Lymphoma Show Alterations of Genes Encoding the NADPH Oxidase Complex and Impaired Reactive Oxygen Species Synthesis Capacity

    PubMed Central

    Sosna, Justyna; Döring, Claudia; Klapper, Wolfram; Küppers, Ralf; Böttcher, Sebastian; Adam, Dieter; Siebert, Reiner; Schütze, Stefan

    2013-01-01

    The membrane bound NADPH oxidase involved in the synthesis of reactive oxygen species (ROS) is a multi-protein enzyme encoded by CYBA, CYBB, NCF1, NCF2 and NCF4 genes. Growing evidence suggests a role of ROS in the modulation of signaling pathways of non-phagocytic cells, including differentiation and proliferation of B-cell progenitors. Transcriptional downregulation of the CYBB gene has been previously reported in cell lines of the B-cell derived classical Hodgkin lymphoma (cHL). Thus, we explored functional consequences of CYBB downregulation on the NADPH complex. Using flow cytometry to detect and quantify superoxide anion synthesis in cHL cell lines we identified recurrent loss of superoxide anion production in all stimulated cHL cell lines in contrast to stimulated non-Hodgkin lymphoma cell lines. As CYBB loss proved to exert a deleterious effect on the NADPH oxidase complex in cHL cell lines, we analyzed the CYBB locus in Hodgkin and Reed-Sternberg (HRS) cells of primary cHL biopsies by in situ hybridisation and identified recurrent deletions of the gene in 8/18 cases. Immunohistochemical analysis to 14 of these cases revealed a complete lack of detectable CYBB protein expression in all HRS cells in all cases studied. Moreover, by microarray profiling of cHL cell lines we identified additional alterations of NADPH oxidase genes including CYBA copy number loss in 3/7 cell lines and a significant downregulation of the NCF1 transcription (p=0.006) compared to normal B-cell subsets. Besides, NCF1 protein was significantly downregulated (p<0.005) in cHL compared to other lymphoma cell lines. Together this findings show recurrent alterations of the NADPH oxidase encoding genes that result in functional inactivation of the enzyme and reduced production of superoxide anion in cHL. PMID:24376854

  3. Density functional reactivity theory study of SN2 reactions from the information-theoretic perspective.

    PubMed

    Wu, Zemin; Rong, Chunying; Lu, Tian; Ayers, Paul W; Liu, Shubin

    2015-10-28

    As a continuation of our recent efforts to quantify chemical reactivity with quantities from the information-theoretic approach within the framework of density functional reactivity theory, the effectiveness of applying these quantities to quantify electrophilicity for the bimolecular nucleophilic substitution (SN2) reactions in both gas phase and aqueous solvent is presented in this work. We examined a total of 21 self-exchange SN2 reactions for the compound with the general chemical formula of R1R2R3C-F, where R1, R2, and R3 represent substituting alkyl groups such as -H, -CH3, -C2H5, -C3H7, and -C4H9 in both gas and solvent phases. Our findings confirm that scaling properties for information-theoretic quantities found elsewhere are still valid. It has also been verified that the barrier height has the strongest correlation with the electrostatic interaction, but the contributions from the exchange-correlation and steric effects, though less significant, are indispensable. We additionally unveiled that the barrier height of these SN2 reactions can reliably be predicted not only by the Hirshfeld charge and information gain at the regioselective carbon atom, as previously reported by us for other systems, but also by other information-theoretic descriptors such as Shannon entropy, Fisher information, and Ghosh-Berkowitz-Parr entropy on the same atom. These new findings provide further insights for the better understanding of the factors impacting the chemical reactivity of this vastly important category of chemical transformations. PMID:26412416

  4. Reading as functional coordination: not recycling but a novel synthesis

    PubMed Central

    Lachmann, Thomas; van Leeuwen, Cees

    2014-01-01

    The Functional Coordination approach describes the processes involved in learning to read as a form of procedural learning in which pre-existing skills, mainly from the visual, and auditory domain, are (1) recruited, (2) modified, and (3) coordinated to create the procedures for reading text, which form the basis of subsequent (4) automatization. In this context, we discuss evidence relating to the emerging prevalence of analytic processing in letter perception. We argue that the process of learning to read does not have to lead to a loss of perceptual skill as consequence of a “cultural recycling”; learning to read just leads to a novel synthesis of functions, which are coordinated for reading and then automatized as a package over several years. Developmental dyslexia is explained within this framework as a Functional Coordination Deficit (Lachmann, 2002), since the coordination level is assumed to be most liable to manifest deficiencies. This is because, at this level, the greatest degree of fine tuning of complex functions is required. Thus, developmental dyslexia is not seen as a consequence of a deficient automatization per se, but of automatization of abnormally developed functional coordination. PMID:25309489

  5. Reading as functional coordination: not recycling but a novel synthesis.

    PubMed

    Lachmann, Thomas; van Leeuwen, Cees

    2014-01-01

    The Functional Coordination approach describes the processes involved in learning to read as a form of procedural learning in which pre-existing skills, mainly from the visual, and auditory domain, are (1) recruited, (2) modified, and (3) coordinated to create the procedures for reading text, which form the basis of subsequent (4) automatization. In this context, we discuss evidence relating to the emerging prevalence of analytic processing in letter perception. We argue that the process of learning to read does not have to lead to a loss of perceptual skill as consequence of a "cultural recycling"; learning to read just leads to a novel synthesis of functions, which are coordinated for reading and then automatized as a package over several years. Developmental dyslexia is explained within this framework as a Functional Coordination Deficit (Lachmann, 2002), since the coordination level is assumed to be most liable to manifest deficiencies. This is because, at this level, the greatest degree of fine tuning of complex functions is required. Thus, developmental dyslexia is not seen as a consequence of a deficient automatization per se, but of automatization of abnormally developed functional coordination. PMID:25309489

  6. Unusual reactivity of nitronates with an aryl alkyl carbonate: synthesis of α-amino esters.

    PubMed

    Reddy, Golipalli Ramana; Mukherjee, Debopreeti; Chittoory, Arjun Kumar; Rajaram, Sridhar

    2014-11-21

    The monoanions of nitroalkanes are ambident nucleophiles that react with carbonate electrophiles through the oxygen atom. Products arising from reactivity at the carbon atom will yield α-nitro esters, which are precursors for α-amino esters. We demonstrate this in the reactions of nitroalkanes with benzyl phenyl carbonate and DABCO where α-nitro esters are obtained instead of nitrile oxides. The products are readily reduced to α-amino esters. This pathway could be a safe alternative to the Strecker reaction. PMID:25372506

  7. The synthesis, structure and reactivity of an imine-stabilized carboranylphosphorus(i) compound.

    PubMed

    Chan, Tek Long; Xie, Zuowei

    2016-06-01

    A new imine-stabilized carboranyl-phosphinidene has been synthesized and structurally characterized. DFT studies suggest that the imine moiety provides an electron pair to stabilize carboranyl-phosphinidene. On the other hand, the sterically demanding carboranyl ligand can prevent the dimerization, facilitating the formation of monomeric phosphinidene. These observations are supported by the reactivity studies. Such a monovalent phosphorous(i) compound can undergo reactions with Cu(OAc)2, S, Se, (TMS)CHN2 and HCl to give various phosphorus(iii) species. All compounds are fully characterized by NMR spectroscopy, elemental analyses as well as single-crystal X-ray analyses. PMID:27180610

  8. Revisiting the chemical reactivity indices as the state function derivatives. The role of classical chemical hardness

    SciTech Connect

    Malek, Ali; Balawender, Robert

    2015-02-07

    The chemical reactivity indices as the equilibrium state-function derivatives are revisited. They are obtained in terms of the central moments (fluctuation formulas). To analyze the role of the chemical hardness introduced by Pearson [J. Am. Chem. Soc. 105, 7512 (1983)], the relations between the derivatives up to the third-order and the central moments are obtained. As shown, the chemical hardness and the chemical potential are really the principal indices of the chemical reactivity theory. It is clear from the results presented here that the chemical hardness is not the derivative of the Mulliken chemical potential (this means also not the second derivative of the energy at zero-temperature limit). The conventional quadratic dependence of energy, observed at finite temperature, reduces to linear dependence on the electron number at zero-temperature limit. The chemical hardness plays a double role in the admixture of ionic states to the reference neutral state energy: it determines the amplitude of the admixture and regulates the damping of its thermal factor.

  9. Revisiting the chemical reactivity indices as the state function derivatives. The role of classical chemical hardness

    NASA Astrophysics Data System (ADS)

    Malek, Ali; Balawender, Robert

    2015-02-01

    The chemical reactivity indices as the equilibrium state-function derivatives are revisited. They are obtained in terms of the central moments (fluctuation formulas). To analyze the role of the chemical hardness introduced by Pearson [J. Am. Chem. Soc. 105, 7512 (1983)], the relations between the derivatives up to the third-order and the central moments are obtained. As shown, the chemical hardness and the chemical potential are really the principal indices of the chemical reactivity theory. It is clear from the results presented here that the chemical hardness is not the derivative of the Mulliken chemical potential (this means also not the second derivative of the energy at zero-temperature limit). The conventional quadratic dependence of energy, observed at finite temperature, reduces to linear dependence on the electron number at zero-temperature limit. The chemical hardness plays a double role in the admixture of ionic states to the reference neutral state energy: it determines the amplitude of the admixture and regulates the damping of its thermal factor.

  10. Revisiting the chemical reactivity indices as the state function derivatives. The role of classical chemical hardness.

    PubMed

    Malek, Ali; Balawender, Robert

    2015-02-01

    The chemical reactivity indices as the equilibrium state-function derivatives are revisited. They are obtained in terms of the central moments (fluctuation formulas). To analyze the role of the chemical hardness introduced by Pearson [J. Am. Chem. Soc. 105, 7512 (1983)], the relations between the derivatives up to the third-order and the central moments are obtained. As shown, the chemical hardness and the chemical potential are really the principal indices of the chemical reactivity theory. It is clear from the results presented here that the chemical hardness is not the derivative of the Mulliken chemical potential (this means also not the second derivative of the energy at zero-temperature limit). The conventional quadratic dependence of energy, observed at finite temperature, reduces to linear dependence on the electron number at zero-temperature limit. The chemical hardness plays a double role in the admixture of ionic states to the reference neutral state energy: it determines the amplitude of the admixture and regulates the damping of its thermal factor. PMID:25662633

  11. Amine Functionalization via Oxidative Photoredox Catalysis: Methodology Development and Complex Molecule Synthesis

    PubMed Central

    2016-01-01

    Conspectus While the use of visible light to drive chemical reactivity is of high importance to the development of environmentally benign chemical transformations, the concomitant use of a stoichiometric electron donor or acceptor is often required to steer the desired redox behavior of these systems. The low-cost and ubiquity of tertiary amine bases has led to their widespread use as reductive additives in photoredox catalysis. Early use of trialkylamines in this context was focused on their role as reductive excited state quenchers of the photocatalyst, which in turn provides a more highly reducing catalytic intermediate. In this Account, we discuss some of the observations and thought processes that have led from our use of amines as reductive additives to their use as complex substrates and intermediates for natural product synthesis. Early attempts by our group to construct key carbon–carbon bonds via free-radical intermediates led to the observation that some trialkylamines readily behave as efficient hydrogen atom donors under redox-active photochemical conditions. In the wake of in-depth mechanistic studies published in the 1970s, 1980s and 1990s, this understanding has in turn allowed for a systematic approach to the design of a number of photochemical methodologies through rational tuning of the amine component. Minimization of the C–H donicity of the amine additive was found to promote desired C–C bond formation in a number of contexts, and subsequent elucidation of the amine’s redox fate has sparked a reevaluation of the amine’s role from that of reagent to that of substrate. The reactivity of tertiary amines in these photochemical systems is complex, and allows for a number of mechanistic possibilities that are not necessarily mutually exclusive. A variety of combinations of single-electron oxidation, C–H abstraction, deprotonation, and β-scission result in the formation of reactive intermediates such as α-amino radicals and iminium ions

  12. Alphavirus RNA synthesis and non-structural protein functions

    PubMed Central

    Rupp, Jonathan C.; Sokoloski, Kevin J.; Gebhart, Natasha N.

    2015-01-01

    The members of the genus Alphavirus are positive-sense RNA viruses, which are predominantly transmitted to vertebrates by a mosquito vector. Alphavirus disease in humans can be severely debilitating, and depending on the particular viral species, infection may result in encephalitis and possibly death. In recent years, alphaviruses have received significant attention from public health authorities as a consequence of the dramatic emergence of chikungunya virus in the Indian Ocean islands and the Caribbean. Currently, no safe, approved or effective vaccine or antiviral intervention exists for human alphavirus infection. The molecular biology of alphavirus RNA synthesis has been well studied in a few species of the genus and represents a general target for antiviral drug development. This review describes what is currently understood about the regulation of alphavirus RNA synthesis, the roles of the viral non-structural proteins in this process and the functions of cis-acting RNA elements in replication, and points to open questions within the field. PMID:26219641

  13. Enzymatic synthesis of lignin-siloxane hybrid functional polymers.

    PubMed

    Prasetyo, Endry Nugroho; Kudanga, Tukayi; Fischer, Roman; Eichinger, Reinhard; Nyanhongo, Gibson S; Guebitz, Georg M

    2012-02-01

    This study combines the properties of siloxanes and lignin polymers to produce hybrid functional polymers that can be used as adhesives, coating materials, and/or multifunctionalized thin-coating films. Lignin-silica hybrid copolymers were synthesized by using a sol-gel process. Laccases from Trametes hirsuta were used to oxidize lignosulphonates to enhance their reactivity towards siloxanes and then were incorporated into siloxane precursors undergoing a sol-gel process. In vitro copolymerization studies using pure lignin monomers with aminosilanes or ethoxytrimethylsilane and analysis by ²⁹Si NMR spectroscopy revealed hybrid products. Except for kraft lignin, an increase in lignin concentration positively affected the tensile strength in all samples. Similarly, the viscosity generally increased in all samples with increasing lignin concentration and also affected the curing time. PMID:21751391

  14. Synthesis and reactivity of 3-methylene-7-vinylidenebicyclo(3. 3. 1)nonane

    SciTech Connect

    Krasutskii, P.A.; Fokin, A.A.; Yurchenko, A.G.

    1986-05-10

    The synthesis of 3-methylene-7-vinylidenebicyclo(3.3.1)nonane - a new representative of pseudoconjugated allenes - was realized. In its reaction with electrophilic reagents (sulfuric acid, hydrogen chloride, bromine, and iodine) preferential cyclization to derivatives of adamantane occurs. Increase in the sulfuric acid concentration leads to the formation of 1,2-dimethylprotoadamantan-3-one - the product from more extensive rearrangement. In addition to transannular cyclization, hydrogen chloride in hexane gives rise to exo-endo isomerization of the ..pi.. bond. The differences in the regioselectivity of transannular cyclization under the influence of the acid and the halogen are discussed.

  15. Cued Reactivation of Motor Learning during Sleep Leads to Overnight Changes in Functional Brain Activity and Connectivity.

    PubMed

    Cousins, James N; El-Deredy, Wael; Parkes, Laura M; Hennies, Nora; Lewis, Penelope A

    2016-05-01

    Sleep plays a role in memory consolidation. This is demonstrated by improved performance and neural plasticity underlying that improvement after sleep. Targeted memory reactivation (TMR) allows the manipulation of sleep-dependent consolidation through intentionally biasing the replay of specific memories in sleep, but the underlying neural basis of these altered memories remains unclear. We use functional magnetic resonance imaging (fMRI) to show a change in the neural representation of a motor memory after targeted reactivation in slow-wave sleep (SWS). Participants learned two serial reaction time task (SRTT) sequences associated with different auditory tones (high or low pitch). During subsequent SWS, one sequence was reactivated by replaying the associated tones. Participants were retested on both sequences the following day during fMRI. As predicted, they showed faster reaction times for the cued sequence after targeted memory reactivation. Furthermore, increased activity in bilateral caudate nucleus and hippocampus for the cued relative to uncued sequence was associated with time in SWS, while increased cerebellar and cortical motor activity was related to time in rapid eye movement (REM) sleep. Functional connectivity between the caudate nucleus and hippocampus was also increased after targeted memory reactivation. These findings suggest that the offline performance gains associated with memory reactivation are supported by altered functional activity in key cognitive and motor networks, and that this consolidation is differentially mediated by both REM sleep and SWS. PMID:27137944

  16. Cued Reactivation of Motor Learning during Sleep Leads to Overnight Changes in Functional Brain Activity and Connectivity

    PubMed Central

    Cousins, James N.; El-Deredy, Wael; Parkes, Laura M.; Hennies, Nora; Lewis, Penelope A.

    2016-01-01

    Sleep plays a role in memory consolidation. This is demonstrated by improved performance and neural plasticity underlying that improvement after sleep. Targeted memory reactivation (TMR) allows the manipulation of sleep-dependent consolidation through intentionally biasing the replay of specific memories in sleep, but the underlying neural basis of these altered memories remains unclear. We use functional magnetic resonance imaging (fMRI) to show a change in the neural representation of a motor memory after targeted reactivation in slow-wave sleep (SWS). Participants learned two serial reaction time task (SRTT) sequences associated with different auditory tones (high or low pitch). During subsequent SWS, one sequence was reactivated by replaying the associated tones. Participants were retested on both sequences the following day during fMRI. As predicted, they showed faster reaction times for the cued sequence after targeted memory reactivation. Furthermore, increased activity in bilateral caudate nucleus and hippocampus for the cued relative to uncued sequence was associated with time in SWS, while increased cerebellar and cortical motor activity was related to time in rapid eye movement (REM) sleep. Functional connectivity between the caudate nucleus and hippocampus was also increased after targeted memory reactivation. These findings suggest that the offline performance gains associated with memory reactivation are supported by altered functional activity in key cognitive and motor networks, and that this consolidation is differentially mediated by both REM sleep and SWS. PMID:27137944

  17. The two faces of reactive oxygen species (ROS) in adipocyte function and dysfunction.

    PubMed

    Castro, José Pedro; Grune, Tilman; Speckmann, Bodo

    2016-08-01

    White adipose tissue (WAT) is actively involved in the regulation of whole-body energy homeostasis via storage/release of lipids and adipokine secretion. Current research links WAT dysfunction to the development of metabolic syndrome (MetS) and type 2 diabetes (T2D). The expansion of WAT during oversupply of nutrients prevents ectopic fat accumulation and requires proper preadipocyte-to-adipocyte differentiation. An assumed link between excess levels of reactive oxygen species (ROS), WAT dysfunction and T2D has been discussed controversially. While oxidative stress conditions have conclusively been detected in WAT of T2D patients and related animal models, clinical trials with antioxidants failed to prevent T2D or to improve glucose homeostasis. Furthermore, animal studies yielded inconsistent results regarding the role of oxidative stress in the development of diabetes. Here, we discuss the contribution of ROS to the (patho)physiology of adipocyte function and differentiation, with particular emphasis on sources and nutritional modulators of adipocyte ROS and their functions in signaling mechanisms controlling adipogenesis and functions of mature fat cells. We propose a concept of ROS balance that is required for normal functioning of WAT. We explain how both excessive and diminished levels of ROS, e.g. resulting from over supplementation with antioxidants, contribute to WAT dysfunction and subsequently insulin resistance. PMID:27031218

  18. Effects of various physical stress factors on mitochondrial function and reactive oxygen species in rat spermatozoa

    PubMed Central

    Kim, Suhee; Agca, Cansu; Agca, Yuksel

    2013-01-01

    The aim of the present study was to evaluate the effects of various physical interventions on the function of epididymal rat spermatozoa and determine whether there are correlations among these functional parameters. Epididymal rat spermatozoa were subjected to various mechanical (pipetting, centrifugation and Percoll gradient separation) and anisotonic conditions, and sperm motility, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) were evaluated. Repeated pipetting caused a loss in motility, PMI and MMP (P < 0.05). Minimal centrifugation force (200g) had no effect on motility, PMI and MMP, whereas an increase in the centrifugation force to 400g or 600g decreased sperm function (P < 0.005). Percoll gradient separation increased total motility, PMI and MMP (P < 0.05). However, the spermatozoa that were subjected to mechanical interventions showed high susceptibility to a ROS stimulant (P < 0.005). Anisotonic conditions decreased motility, PMI and MMP, and hypotonic conditions in particular increased basal ROS (P < 0.05). In correlation tests, there were strong positive correlations among total motility, PMI and MMP, whereas ROS showed no or negatively weak correlations with the other parameters. In conclusion, the physical interventions may act as important variables, affecting functional parameters of epididymal rat spermatozoa. Therefore, careful consideration and proper protocols for handling of rat spermatozoa and osmotic conditions are required to achieve reliable results and minimise damage. PMID:23140582

  19. Path Integrals for Electronic Densities, Reactivity Indices, and Localization Functions in Quantum Systems

    PubMed Central

    Putz, Mihai V.

    2009-01-01

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems. PMID:20087467

  20. Synthesis and characterization of core-shell acrylate based latex and study of its reactive blends.

    PubMed

    Liu, Xiang; Fan, Xiao-Dong; Tang, Min-Feng; Nie, Ying

    2008-03-01

    Techniques in resin blending are simple and efficient method for improving the properties of polymers, and have been used widely in polymer modification field. However, polymer latex blends such as the combination of latexes, especially the latexes with water-soluble polymers, were rarely reported. Here, we report a core-shell composite latex synthesized using methyl methacrylate (MMA), butyl acrylate (BA), 2-ethylhexyl acrylate (EHA) and glycidyl methacrylate (GMA) as monomers and ammonium persulfate and sodium bisulfite redox system as the initiator. Two stages seeded semi-continuous emulsion polymerization were employed for constructing a core-shell structure with P(MMA-co-BA) component as the core and P(EHA-co-GMA) component as the shell. Results of Transmission Electron Microscopy (TEM) and Dynamics Light Scattering (DLS) tests confirmed that the particles obtained are indeed possessing a desired core-shell structural character. Stable reactive latex blends were prepared by adding the latex with waterborne melamine-formaldehyde resin (MF) or urea-formaldehyde resin (UF). It was found that the glass transition temperature, the mechanical strength and the hygroscopic property of films cast from the latex blends present marked enhancements under higher thermal treatment temperature. It was revealed that the physical properties of chemically reactive latexes with core-shell structure could be altered via the change of crosslinking density both from the addition of crosslinkers and the thermal treatment. PMID:19325753

  1. Synthesis and Characterization of Core-Shell Acrylate Based Latex and Study of Its Reactive Blends

    PubMed Central

    Liu, Xiang; Fan, Xiao-Dong; Tang, Min-Feng; Nie, Ying

    2008-01-01

    Techniques in resin blending are simple and efficient method for improving the properties of polymers, and have been used widely in polymer modification field. However, polymer latex blends such as the combination of latexes, especially the latexes with water-soluble polymers, were rarely reported. Here, we report a core-shell composite latex synthesized using methyl methacrylate (MMA), butyl acrylate (BA), 2-ethylhexyl acrylate (EHA) and glycidyl methacrylate (GMA) as monomers and ammonium persulfate and sodium bisulfite redox system as the initiator. Two stages seeded semi-continuous emulsion polymerization were employed for constructing a core-shell structure with P(MMA-co-BA) component as the core and P(EHA-co-GMA) component as the shell. Results of Transmission Electron Microscopy (TEM) and Dynamics Light Scattering (DLS) tests confirmed that the particles obtained are indeed possessing a desired core-shell structural character. Stable reactive latex blends were prepared by adding the latex with waterborne melamine-formaldehyde resin (MF) or urea-formaldehyde resin (UF). It was found that the glass transition temperature, the mechanical strength and the hygroscopic property of films cast from the latex blends present marked enhancements under higher thermal treatment temperature. It was revealed that the physical properties of chemically reactive latexes with core-shell structure could be altered via the change of crosslinking density both from the addition of crosslinkers and the thermal treatment. PMID:19325753

  2. Synthesis of novel reactive N-halamine precursors and application in antimicrobial cellulose

    NASA Astrophysics Data System (ADS)

    Jiang, Zhiming; Ma, Kaikai; Du, Jinmei; Li, Rong; Ren, Xuehong; Huang, T. S.

    2014-01-01

    2,4,6-Trichloro-s-triazine has been used as one of the important linkers of reactive dyes for textiles such as cellulosic fibers. N-Halamine precursors could be bonded to a triazine-based linker by the chloride displacement reaction, and the synthesized compounds could attach to cotton fabrics by covalent bonds through a reactive dyeing process. In this study, two novel antimicrobial N-halamine precursors, 2,2,6,6-tetramethyl-4-piperidinol-s-trizine (TMPT) and 4-(4-(2,2,6,6-tetramethyl-4-piperidinol)-6-chloro-1,3,5-triazinylamino)-benzenesulfonate (BTMPT), were synthesized and used to coat cotton fabrics. The synthesized s-triazine-based N-halamine precursors react with cellulose to produce biocidal cellulosic fibers upon exposure to diluted household bleach. The coated fabrics were characterized by FT-IR and SEM. The chlorinated treated cotton swatches demonstrated excellent antimicrobial properties against S. aureus (Gram-positive) and E. coli O157:H7 (Gram-negative) with short contact times. Washing test and UVA light test showed that chlorinated BTMPT-coated cotton fabrics were more stable than TMPT-coated cotton fabrics. Compared to the traditional pad-dry-cure technique to produce antimicrobial textiles, the novel process in this study has advantages of saving energy and maintaining tensile strength of fabrics.

  3. Synthesis, Electronic Structure, and Reactivity Studies of a 4-Coordinate Square Planar Germanium(IV) Cation.

    PubMed

    Fang, Huayi; Jing, Huize; Zhang, Aixi; Ge, Haonan; Yao, Zhengmin; Brothers, Penelope J; Fu, Xuefeng

    2016-06-22

    A tetra-coordinate, square planar germanium(IV) cation [(TPFC)Ge](+) (TPFC = tris(pentafluorophenyl)corrole) was synthesized quantitatively by the reaction of (TPFC)Ge-H with [Ph3C](+)[B(C6F5)4](¯). The highly reactive [(TPFC)Ge](+) cation reacted with benzene to form phenyl complex (TPFC)Ge-C6H5 through an electrophilic pathway. The key intermediate, a σ-type germylium-benzene adduct, [(TPFC)Ge(η(1)-C6H6)](+), was isolated and characterized by single-crystal X-ray diffraction. Deprotonation of [(TPFC)Ge(η(1)-C6H6)](+) cation led to the formation of (TPFC)Ge-C6H5. [(TPFC)Ge](+) also reacted with ethylene and cyclopropane in benzene at room temperature to form (TPFC)Ge-CH2CH2C6H5 and (TPFC)Ge-CH2CH2CH2C6H5, respectively. The observed electrophilic reactivity is ascribed to the highly exposed cationic germanium center with novel frontier orbitals comprising two vacant sp-hybridized orbitals that are not conjugated to π-system. The three electron-withdrawing pentafluorophenyl groups on the corrole ligand also enhance the electrophilicity of the cationic germanium corrole. PMID:27243114

  4. Tunable resin reactivity of spin-on dielectric by controlling synthesis process

    NASA Astrophysics Data System (ADS)

    Han, Kwen Woo; Song, Hyun-Ji; Kim, Mi-Young; Park, Eun Su; Yoon, Hui Chan; Kim, Go Eun; Lim, Sang Hak; Kim, Sang Kyun

    2012-03-01

    In the recent semiconductor industry, as the device shrinks, spin-on dielectric (SOD) has been adopted as a widely used material because of its excellent gap-fill, efficient throughput on mass production and highly competitive initial cost of ownership. Among various semiconductor applications, SOD is especially valued as the suitable gap-fill material for shallow trench isolation (STI), because the previously adopted technology, high density plasma chemical vapor deposition (HDP-CVD), has a significant problem with void-free gap-fill on patterns with high aspect ratios. As SOD is spin-coated on those narrow patterns, planarization is one of the important requirements. On the course of our efforts on developing novel modified SOD materials, we discovered that the reactivity of each SOD resins has meaningful correlation with the degree of planarization. In this paper, three experiments have been illustrated to prove this correlation, 1) step coverage test, 2) humid air bubble test, and 3) film thickness shrinkage upon prebake. The SOD resin with lower reactivity turned out to exhibit 1) larger size of circle around silica-beads, 2) slower molecular weight growth under humid bubble condition, and 3) higher shrinkage upon prebake.

  5. New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants

    PubMed Central

    Briat, Jean-Francois; Ravet, Karl; Arnaud, Nicolas; Duc, Céline; Boucherez, Jossia; Touraine, Brigitte; Cellier, Francoise; Gaymard, Frederic

    2010-01-01

    Background Iron is an essential element for both plant productivity and nutritional quality. Improving plant iron content was attempted through genetic engineering of plants overexpressing ferritins. However, both the roles of these proteins in plant physiology, and the mechanisms involved in the regulation of their expression are largely unknown. Although the structure of ferritins is highly conserved between plants and animals, their cellular localization differs. Furthermore, regulation of ferritin gene expression in response to iron excess occurs at the transcriptional level in plants, in contrast to animals which regulate ferritin expression at the translational level. Scope In this review, an overview of our knowledge of bacterial and mammalian ferritin synthesis and functions is presented. Then the following will be reviewed: (a) the specific features of plant ferritins; (b) the regulation of their synthesis during development and in response to various environmental cues; and (c) their function in plant physiology, with special emphasis on the role that both bacterial and plant ferritins play during plant–bacteria interactions. Arabidopsis ferritins are encoded by a small nuclear gene family of four members which are differentially expressed. Recent results obtained by using this model plant enabled progress to be made in our understanding of the regulation of the synthesis and the in planta function of these various ferritins. Conclusions Studies on plant ferritin functions and regulation of their synthesis revealed strong links between these proteins and protection against oxidative stress. In contrast, their putative iron-storage function to furnish iron during various development processes is unlikely to be essential. Ferritins, by buffering iron, exert a fine tuning of the quantity of metal required for metabolic purposes, and help plants to cope with adverse situations, the deleterious effects of which would be amplified if no system had evolved to

  6. Additive, modular functionalization of reactive self-assembled monolayers: toward the fabrication of multilevel optical storage media.

    PubMed

    Gentili, Denis; Barbalinardo, Marianna; Manet, Ilse; Durso, Margherita; Brucale, Marco; Mezzi, Alessio; Melucci, Manuela; Cavallini, Massimiliano

    2015-04-28

    We report a novel strategy based on iterative microcontact printing, which provides additive, modular functionalization of reactive SAMs by different functional molecules. We demonstrate that after printing the molecules form an interpenetrating network at the SAM surface preserving their individual properties. We exploited the process by fabricating new optical storage media that consist of a multilevel TAG. PMID:25824851

  7. PGC-1α and reactive oxygen species regulate human embryonic stem cell-derived cardiomyocyte function.

    PubMed

    Birket, Matthew J; Casini, Simona; Kosmidis, Georgios; Elliott, David A; Gerencser, Akos A; Baartscheer, Antonius; Schumacher, Cees; Mastroberardino, Pier G; Elefanty, Andrew G; Stanley, Ed G; Mummery, Christine L

    2013-01-01

    Diminished mitochondrial function is causally related to some heart diseases. Here, we developed a human disease model based on cardiomyocytes from human embryonic stem cells (hESCs), in which an important pathway of mitochondrial gene expression was inactivated. Repression of PGC-1α, which is normally induced during development of cardiomyocytes, decreased mitochondrial content and activity and decreased the capacity for coping with energetic stress. Yet, concurrently, reactive oxygen species (ROS) levels were lowered, and the amplitude of the action potential and the maximum amplitude of the calcium transient were in fact increased. Importantly, in control cardiomyocytes, lowering ROS levels emulated this beneficial effect of PGC-1α knockdown and similarly increased the calcium transient amplitude. Our results suggest that controlling ROS levels may be of key physiological importance for recapitulating mature cardiomyocyte phenotypes, and the combination of bioassays used in this study may have broad application in the analysis of cardiac physiology pertaining to disease. PMID:24371810

  8. PGC-1α and Reactive Oxygen Species Regulate Human Embryonic Stem Cell-Derived Cardiomyocyte Function

    PubMed Central

    Birket, Matthew J.; Casini, Simona; Kosmidis, Georgios; Elliott, David A.; Gerencser, Akos A.; Baartscheer, Antonius; Schumacher, Cees; Mastroberardino, Pier G.; Elefanty, Andrew G.; Stanley, Ed G.; Mummery, Christine L.

    2013-01-01

    Summary Diminished mitochondrial function is causally related to some heart diseases. Here, we developed a human disease model based on cardiomyocytes from human embryonic stem cells (hESCs), in which an important pathway of mitochondrial gene expression was inactivated. Repression of PGC-1α, which is normally induced during development of cardiomyocytes, decreased mitochondrial content and activity and decreased the capacity for coping with energetic stress. Yet, concurrently, reactive oxygen species (ROS) levels were lowered, and the amplitude of the action potential and the maximum amplitude of the calcium transient were in fact increased. Importantly, in control cardiomyocytes, lowering ROS levels emulated this beneficial effect of PGC-1α knockdown and similarly increased the calcium transient amplitude. Our results suggest that controlling ROS levels may be of key physiological importance for recapitulating mature cardiomyocyte phenotypes, and the combination of bioassays used in this study may have broad application in the analysis of cardiac physiology pertaining to disease. PMID:24371810

  9. Synthesis and Functions of Ag2S Nanostructures

    NASA Astrophysics Data System (ADS)

    Cui, Chunyan; Li, Xiaoru; Liu, Jixian; Hou, Yongchao; Zhao, Yuqing; Zhong, Guocheng

    2015-11-01

    The paper presents a review about synthesis and applications of Ag2S nanostructures. As the modern photoelectric and biological materials, Ag2S nanomaterials are potentially useful for both structure and function purposes. Ag2S is a direction narrow band gap semiconductor with special properties. Ag2S nanostructures have been widely researched in chemistry and biochemistry fields because of their unusual optical, electrical, and mechanical properties. It can also be used in many fields, such as photovoltaic cells and infrared detector. In the past few years, Ag2S nanostructures have been synthesized by various methods. The article mainly discusses the four types of preparation methods. Moreover, this article shows a detailed review on the new properties, fabrication, and applications of Ag2S nanocrystals.

  10. Synthesis and Functions of Ag2S Nanostructures.

    PubMed

    Cui, Chunyan; Li, Xiaoru; Liu, Jixian; Hou, Yongchao; Zhao, Yuqing; Zhong, Guocheng

    2015-12-01

    The paper presents a review about synthesis and applications of Ag2S nanostructures. As the modern photoelectric and biological materials, Ag2S nanomaterials are potentially useful for both structure and function purposes. Ag2S is a direction narrow band gap semiconductor with special properties. Ag2S nanostructures have been widely researched in chemistry and biochemistry fields because of their unusual optical, electrical, and mechanical properties. It can also be used in many fields, such as photovoltaic cells and infrared detector. In the past few years, Ag2S nanostructures have been synthesized by various methods. The article mainly discusses the four types of preparation methods. Moreover, this article shows a detailed review on the new properties, fabrication, and applications of Ag2S nanocrystals. PMID:26525702

  11. Mitochondrial Reactive Oxygen Species Production in Excitable Cells: Modulators of Mitochondrial and Cell Function

    PubMed Central

    Camara, Amadou K. S.

    2009-01-01

    Abstract The mitochondrion is a major source of reactive oxygen species (ROS). Superoxide (O2•−) is generated under specific bioenergetic conditions at several sites within the electron-transport system; most is converted to H2O2 inside and outside the mitochondrial matrix by superoxide dismutases. H2O2 is a major chemical messenger that, in low amounts and with its products, physiologically modulates cell function. The redox state and ROS scavengers largely control the emission (generation scavenging) of O2•−. Cell ischemia, hypoxia, or toxins can result in excess O2•− production when the redox state is altered and the ROS scavenger systems are overwhelmed. Too much H2O2 can combine with Fe2+ complexes to form reactive ferryl species (e.g., Fe(IV) = O•). In the presence of nitric oxide (NO•), O2•− forms the reactant peroxynitrite (ONOO−), and ONOOH-induced nitrosylation of proteins, DNA, and lipids can modify their structure and function. An initial increase in ROS can cause an even greater increase in ROS and allow excess mitochondrial Ca2+ entry, both of which are factors that induce cell apoptosis and necrosis. Approaches to reduce excess O2•− emission include selectively boosting the antioxidant capacity, uncoupling of oxidative phosphorylation to reduce generation of O2•− by inducing proton leak, and reversibly inhibiting electron transport. Mitochondrial cation channels and exchangers function to maintain matrix homeostasis and likely play a role in modulating mitochondrial function, in part by regulating O2•− generation. Cell-signaling pathways induced physiologically by ROS include effects on thiol groups and disulfide linkages to modify posttranslationally protein structure to activate/inactivate specific kinase/phosphatase pathways. Hypoxia-inducible factors that stimulate a cascade of gene transcription may be mediated physiologically by ROS. Our knowledge of the role played by ROS and their scavenging systems in

  12. Synthesis and reactivity of aliphatic sulfur pentafluorides from substituted (pentafluorosulfanyl)benzenes

    PubMed Central

    Vida, Norbert; Václavík, Jiří

    2016-01-01

    Summary Oxidation of 3- and 4-pentafluorosulfanyl-substituted anisoles and phenols with hydrogen peroxide and sulfuric acid provided a mixture of SF5-substituted muconolactone, maleic, and succinic acids. A plausible mechanism for the formation of the aliphatic SF5 compounds was presented and their chemical reactivity was investigated. SF5-substituted para-benzoquinone was synthesized; its oxidation led to an improved yield of 2-(pentafluorosulfanyl)maleic acid. The reaction of SF5-substituted maleic anhydride and para-benzoquinone with cyclopentadiene afforded the Diels–Alder adducts. Decomposition of 3-(pentafluorosulfanyl)muconolactone in acidic, neutral and basic aqueous media was investigated and the decarboxylation of 2-(pentafluorosulfanyl)maleic acid provided 3-(pentafluorosulfanyl)acrylic acid. PMID:26877813

  13. Two-coordinate terminal zinc hydride complexes: synthesis, structure and preliminary reactivity studies.

    PubMed

    Dawkins, Michael J C; Middleton, Ewart; Kefalidis, Christos E; Dange, Deepak; Juckel, Martin M; Maron, Laurent; Jones, Cameron

    2016-08-18

    The first examples of essentially two-coordinate, monomeric zinc hydride complexes, LZnH (L = -N(Ar)(SiR3)) (Ar = C6H2{C(H)Ph2}2R'-2,6,4; R = Me, R' = Pr(i) (L'); R = Pr(i), R' = Me (L*); R = Pr(i), R' = Pr(i) (L(†))) have been prepared and shown by crystallographic studies to have near linear N-Zn-H fragments. The results of computational studies imply that any PhZn interactions in the compounds are weak at best. Preliminary reactivity studies reveal the compounds to be effective for the stoichiometric hydrozincation and catalytic hydrosilylation of carbonyl compounds. PMID:27499232

  14. Synthesis and reactivity of aliphatic sulfur pentafluorides from substituted (pentafluorosulfanyl)benzenes.

    PubMed

    Vida, Norbert; Václavík, Jiří; Beier, Petr

    2016-01-01

    Oxidation of 3- and 4-pentafluorosulfanyl-substituted anisoles and phenols with hydrogen peroxide and sulfuric acid provided a mixture of SF5-substituted muconolactone, maleic, and succinic acids. A plausible mechanism for the formation of the aliphatic SF5 compounds was presented and their chemical reactivity was investigated. SF5-substituted para-benzoquinone was synthesized; its oxidation led to an improved yield of 2-(pentafluorosulfanyl)maleic acid. The reaction of SF5-substituted maleic anhydride and para-benzoquinone with cyclopentadiene afforded the Diels-Alder adducts. Decomposition of 3-(pentafluorosulfanyl)muconolactone in acidic, neutral and basic aqueous media was investigated and the decarboxylation of 2-(pentafluorosulfanyl)maleic acid provided 3-(pentafluorosulfanyl)acrylic acid. PMID:26877813

  15. Synthesis, characterization and reactivity of early transition metal neo-pentoxides

    SciTech Connect

    Boyle, T.J.; Alam, T.M.; Scott, B.; Ziller, J.W.

    1997-12-31

    Titanium neo-pentoxide was isolated by the alcoholysis exchange between Ti(OCHMe{sub 2}){sub 4} and ONep. The molecule, [Ti(ONep){sub 4}]{sub 2}, was characterized using X-ray analysis and solution {sup 17}O, and {sup 47},{sup 49}Ti NMR spectroscopy. This dinuclear complex is the smallest Ti(OR){sub 4} isolated wherein each metal center is 5-coordinated. The molecule is highly soluble in standard solvents and volatile. The reactivity of this compound has been undertaken to compare with the ubiquitous Ti(O-I-Pr){sub 4}. The various compounds isolated and further NMR studies will be reported. Analogous routes to other M(ONep){sub n} will be reported as well.

  16. Sphingosine-1-phosphate synthesis and functions in mast cells

    PubMed Central

    Price, Megan M; Oskeritzian, Carole A; Milstien, Sheldon; Spiegel, Sarah

    2009-01-01

    Sphingolipids are not only major lipid components of all eukaryotic cell membranes, but they also comprise an important family of bioactive signaling molecules that regulate a diverse array of biological responses. The sphingolipid metabolite sphingosine-1-phosphate (S1P), is a key regulator of immune responses. Cellular levels of S1P are determined by the balance between its synthesis, involving two sphingosine kinases (SphK1 and SphK2), and its degradation, involving S1P lyase and S1P phosphatases. S1P mainly signals through its cell-surface receptors and may also have intracellular functions. S1P has important functions in mast cells – the major effectors of allergic responses. Antigen triggering of IgE receptors on mast cells activates both SphKs resulting in the production of S1P that is released and regulates and amplifies mast cell functions, including degranulation as well as cytokine and chemokine release. PMID:19802381

  17. Organic functional group transformations in water at elevated temperature and pressure: Reversibility, reactivity, and mechanisms

    NASA Astrophysics Data System (ADS)

    Shipp, Jessie; Gould, Ian R.; Herckes, Pierre; Shock, Everett L.; Williams, Lynda B.; Hartnett, Hilairy E.

    2013-03-01

    Many transformation reactions involving hydrocarbons occur in the presence of H2O in hydrothermal systems and deep sedimentary systems. We investigate these reactions using laboratory-based organic chemistry experiments at high temperature and pressure (300 °C and 100 MPa). Organic functional group transformation reactions using model organic compounds based on cyclohexane with one or two methyl groups provided regio- and stereochemical markers that yield information about reversibility and reaction mechanisms. We found rapidly reversible interconversion between alkanes, alkenes, dienes, alcohols, ketones, and enones. The alkane-to-ketone reactions were not only completely reversible, but also exhibited such extensive reversibility that any of the functional groups along the reaction path (alcohol, ketone, and even the diene) could be used as the reactant and form all the other groups as products. There was also a propensity for these ring-based structures to dehydrogenate; presumably from the alkene, through a diene, to an aromatic ring. The product suites provide strong evidence that water behaved as a reactant and the various functional groups showed differing degrees of reactivity. Mechanistically-revealing products indicated reaction mechanisms that involve carbon-centered cation intermediates. This work therefore demonstrates that a wide range of organic compound types can be generated by abiotic reactions at hydrothermal conditions.

  18. Glucocorticoids: Dose-related effects on osteoclast formation and function via reactive oxygen species and autophagy.

    PubMed

    Shi, Jun; Wang, Long; Zhang, Hongyang; Jie, Qiang; Li, Xiaojie; Shi, Qiyue; Huang, Qiang; Gao, Bo; Han, Yuehu; Guo, Kai; Liu, Jian; Yang, Liu; Luo, Zhuojing

    2015-10-01

    Whether glucocorticoids directly enhance or interrupt osteoclastogenesis is still a controversial subject. In this study, we ascertained the dose-dependent positive effects of glucocorticoids on osteoclastogenesis in vivo and in vitro as well as investigated the mechanism in vitro. As the dose of glucocorticoids increased, osteoclastogenesis was stimulated at 0.1 μM, a peak was achieved at 1 μM and a corresponding decrease occurred at 10 μM. Reactive oxygen species (ROS), which play a crucial role in osteoclastogenesis, and autophagy flux activity, a cellular recycling process, were consistently up-regulated along with the dose-dependent effects of the glucocorticoids on osteoclast formation and function. N-acetyl-cysteine (NAC), a ROS scavenger, abrogated the effects of the glucocorticoids on autophagy and osteoclastogenesis. Moreover, 3-methyladenine (3-MA), an autophagy inhibitor, interrupted osteoclastogenesis stimulation by the glucocorticoids. These results implied that with glucocorticoid administration, ROS and autophagy, as a downstream factor of ROS, played vital roles in osteoclast formation and function. 3-MA administration did not enhance ROS accumulation, so that autophagy had no effect on ROS induced by glucocorticoids. Our investigation demonstrated that glucocorticoids had dose-dependent positive effects on osteoclast formation and function via ROS and autophagy. These results provide support for ROS and autophagy as therapeutic targets in glucocorticoid-related bone loss diseases such as glucocorticoid-induced osteoporosis. PMID:26115910

  19. Novel imidazolium and imidazolinium salts containing the 9-nickelafluorenyl anion--synthesis, structures and reactivity.

    PubMed

    Buchalski, Piotr; Pacholski, Roman; Chodkiewicz, Krzysztof; Buchowicz, Włodzimierz; Suwińska, Kinga; Shkurenko, Aleksander

    2015-04-28

    Investigation of the properties of carbene complexes is one of the most important fields of modern coordination chemistry. In this paper, we propose the convenient synthesis of NHC-nickel compounds. The 9-nickelafluorenyllithium complex reacts with imidazolium or imidazolinium salts to afford 9-nickelafluorenyl-NHC salts via ionic metathesis with very good yields (66-92%). These compounds can be isomerised at elevated temperatures to give Ni-NHC complexes with excellent yields (88-91%), probably via nickel mediated hydrogen transfer to the biphenyl moiety. In this reaction, the nickelacyclic ring itself serves as a base in the deprotonation of the carbene precursor. DFT calculations show the thermodynamic instability of the synthesized salts, with Gibbs free energy differences for 1 of -84 kJ mol(-1) at 298 K and -167 kJ mol(-1) at 374 K. The obtained salts and carbene complexes are relatively air and moisture stable in the solid state. PMID:25786198

  20. Medroxyprogesterone acetate inhibits CD8+ T cell viral specific effector function and induces herpes simplex virus type 1 reactivation

    PubMed Central

    Cherpes, Thomas L.; Busch, James L.; Sheridan, Brian S.; Harvey, Stephen A. K.; Hendricks, Robert L.

    2008-01-01

    Clinical research suggests hormonal contraceptive use is associated with increased frequencies of herpes simplex virus (HSV) reactivation and shedding. We examined the effects of medroxyprogesterone acetate (MPA), the compound most commonly used for injectable hormonal contraception, on HSV-1 reactivation and CD8+ T cell function in murine trigeminal ganglia (TG). In ex vivo TG cultures, MPA dramatically inhibited canonical CD8+ T cell effector functions, including IFN-γ production and lytic granule release, and increased HSV-1 reactivation from latency. In vivo, MPA treatment of latently infected ovariectomized mice inhibited IFN-γ production and lytic granule release by TG resident CD8+ T cells stimulated directly ex vivo. RNA specific for the essential immediate early viral gene ICP4 as well as viral genome DNA copy number were increased in mice that received MPA during latency, suggesting that treatment increased in vivo reactivation. The increase in HSV-1 copy number appeared to be the result of a two-tine effect, as MPA induced higher reactivation frequencies from latently infected explanted TG neurons in the presence or absence of CD45+ cells. Our data suggest hormonal contraceptives that contain MPA may promote increased frequency of HSV reactivation from latency through the combinatory effects of inhibiting protective CD8+ T cell responses and by a leukocyte-independent effect on infected neurons. PMID:18606648

  1. Template-mediated synthesis and bio-functionalization of flexible lignin-based nanotubes and nanowires.

    PubMed

    Caicedo, Hector M; Dempere, Luisa A; Vermerris, Wilfred

    2012-03-16

    Limitations of cylindrical carbon nanotubes based on the buckminsterfullerene structure as delivery vehicles for therapeutic agents include their chemical inertness, sharp edges and toxicological concerns. As an alternative, we have developed lignin-based nanotubes synthesized in a sacrificial template of commercially available alumina membranes. Lignin is a complex phenolic plant cell wall polymer that is generated as a waste product from paper mills and biorefineries that process lignocellulosic biomass into fuels and chemicals. We covalently linked isolated lignin to the inner walls of activated alumina membranes and then added layers of dehydrogenation polymer onto this base layer via a peroxidase-catalyzed reaction. By using phenolic monomers displaying different reactivities, we were able to change the thickness of the polymer layer deposited within the pores, resulting in the synthesis of nanotubes with a wall thickness of approximately 15 nm or nanowires with a nominal diameter of 200 nm. These novel nanotubes are flexible and can be bio-functionalized easily and specifically, as shown by in vitro assays with biotin and Concanavalin A. Together with their intrinsic optical properties, which can also be varied as a function of their chemical composition, these lignin-based nanotubes are expected to enable a variety of new applications including as delivery systems that can be easily localized and imaged after uptake by living cells. PMID:22362196

  2. Template-mediated synthesis and bio-functionalization of flexible lignin-based nanotubes and nanowires

    NASA Astrophysics Data System (ADS)

    Caicedo, Hector M.; Dempere, Luisa A.; Vermerris, Wilfred

    2012-03-01

    Limitations of cylindrical carbon nanotubes based on the buckminsterfullerene structure as delivery vehicles for therapeutic agents include their chemical inertness, sharp edges and toxicological concerns. As an alternative, we have developed lignin-based nanotubes synthesized in a sacrificial template of commercially available alumina membranes. Lignin is a complex phenolic plant cell wall polymer that is generated as a waste product from paper mills and biorefineries that process lignocellulosic biomass into fuels and chemicals. We covalently linked isolated lignin to the inner walls of activated alumina membranes and then added layers of dehydrogenation polymer onto this base layer via a peroxidase-catalyzed reaction. By using phenolic monomers displaying different reactivities, we were able to change the thickness of the polymer layer deposited within the pores, resulting in the synthesis of nanotubes with a wall thickness of approximately 15 nm or nanowires with a nominal diameter of 200 nm. These novel nanotubes are flexible and can be bio-functionalized easily and specifically, as shown by in vitro assays with biotin and Concanavalin A. Together with their intrinsic optical properties, which can also be varied as a function of their chemical composition, these lignin-based nanotubes are expected to enable a variety of new applications including as delivery systems that can be easily localized and imaged after uptake by living cells.

  3. Reactive processing and characterization of nickel aluminide-alumina functionally gradient composites

    NASA Astrophysics Data System (ADS)

    Zhu, Hexiang

    The reactive hot compaction (RHC) technique was successfully utilized to produce bulk in-situ nickel aluminide (NiAl)-alumina (Al 2O3) functionally gradient composites (FGCs) as well as thin FGC coating. The FGCs consisted of four or five layers with alumina content increasing from less than 3vol.% to about 35vol.%. The composites were fabricated via reactive processing of the powder mixtures of nickel, aluminum, partially oxidized aluminum (Al*) and/or nickel oxide (NiO). The technique resulted in a gradual transition of the microstructure and properties along the thickness of the FGC, and led to reduced residual stresses and a strong bonding between the NiAl substrate and the FGC coating. The FGC also had higher fracture toughness than the corresponding composites. The phase and microstructural development for the three powder mixture systems (Ni-Al, Ni-Al*, and NiO-Al), which occurred during reactive processing of the composites, were systematically studied. The reaction process of Ni + Al powder mixtures was found to be strongly affected by pressure, heating rates, heat loss and diffusion barrier. It was found that the formation of NiAl occurred rapidly via combustion reaction at high heating rates and with small heat loss. At slow heating rates, however, the reaction process was slow and controlled by solid-state diffusion. The phase formation sequence for the slow solid-state reaction was determined to be: NiAl3 → Ni2Al3 → NiAl (Ni3Al) → NiAl. An Al2O3 particle network was produced during RHC of Ni + Al* powders, while an interpenetrating Al2O3 skeleton formed for NiO + Al powders. The formation of Al2O 3 phases during RHC of NiO + Al powders was a three-stage process, with the Al2O3 phases coming from both the liquid and the solid state reactions. The solid state displacement reaction between NiO and nickel-aluminides (NiAl3, Ni2Al3, NiAl) is believed to lead to the formation of an interpenetrating Al2O 3 network in the final product. The in

  4. The synthesis, characterization and reactivity of high oxidation state nickel fluorides

    SciTech Connect

    Chacon, L.C. |

    1997-12-01

    The research described in this thesis has mainly addressed the challenge of the synthesis of thermodynamically unstable nickel fluorides, which cannot be made by traditional thermal methods. A low-temperature approach towards the synthesis of such transition metal fluorides exploits the greater thermodynamic stability of high oxidation states in anions and involves the use of anhydrous hydrogen fluoride (aHF) as a solvent. The general method consists of combining an aHF soluble starting material (e.g., K{sub 2}NiF{sub 6}) with a Lewis fluoroacid (e.g., BF{sub 3}), which precipitates a neutral polymeric solid state fluoride: 2 K{sup +} + NiF{sub 6}{sup 2{minus}} + BF{sub 3} {r_arrow} NiF{sub 4} + 2 BF{sub 4}{sup {minus}} + 2 K{sup +}. At room temperature, this reaction yields a different structural phase, with composition K{sub x}NiF{sub 3} (x {approx} 0.18). This material has a pseudo-hexagonal tungsten bronze structure (H{sub 0}-K{sub x}NiF{sub 3}), and is an ionic conductor, probably due to K{sup +} ions hosted in the lattice channels. R-NiF{sub 3} is capable of fluorinating a wide range of inorganic and organic substrates. These reactions have probably shed light on the mechanism of the Simons Electrochemical Fluorination (ECF) Process, an important industrial method of fluorinating organic compounds. It has long been speculated that NiF{sub 3} plays a role in the ECF process, which uses nickel electrodes in aHF solvent. K{sub 2}NiF{sub 6} also fluorinates organic compounds in aHF, but interestingly, yields different fluorinated products. The reduction of R-NiF{sub 3} and K{sub 2}NiF{sub 6} during fluorination reactions yields NiF{sub 2}. A method has been developed to regenerate NiF{sub 6}{sup 2{minus}} from NiF{sub 2}.

  5. Superhydrophobic Thin Films Fabricated by Reactive Layer-by-Layer Assembly of Azlactone-Functionalized Polymers

    PubMed Central

    Buck, Maren E.; Schwartz, Sarina C.

    2010-01-01

    We report an approach to the fabrication of superhydrophobic thin films that is based on the ‘reactive’ layer-by-layer assembly of azlactone-containing polymer multilayers. We demonstrate that films fabricated from alternating layers of the azlactone functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) and poly(ethyleneimine) (PEI) exhibit micro- and nanoscale surface features that result in water contact angles in excess of 150º. Our results reveal that the formation of these surface features is (i) dependent upon film thickness (i.e., the number of layers of PEI and PVDMA deposited) and (ii) that it is influenced strongly by the presence (or absence) of cyclic azlactone-functionalized oligomers that can form upon storage of the 2-vinyl-4,4-dimethylazlactone (VDMA) used to synthesize PVDMA. For example, films fabricated using polymers synthesized in the presence of these oligomers exhibited rough, textured surfaces and superhydrophobic behavior (i.e., advancing contact angles in excess of 150º). In contrast, films fabricated from PVDMA polymerized in the absence of this oligomer (e.g., using freshly distilled monomer) were smooth and only moderately hydrophobic (i.e., advancing contact angles of ~75º). The addition of authentic, independently synthesized oligomer to samples of distilled VDMA at specified and controlled concentrations permitted reproducible fabrication of superhydrophobic thin films on the surfaces of a variety of different substrates. The surfaces of these films were demonstrated to be superhydrophobic immediately after fabrication, but they became hydrophilic after exposure to water for six days. Additional experiments demonstrated that it was possible to stabilize and prolong the superhydrophobic properties of these films (e.g., advancing contact angles in excess of 150° even after complete submersion in water for at least six weeks) by exploiting the reactivity of residual azlactones to functionalize the surfaces of the

  6. Synthesis of copper nitride films doped with Fe, Co, or Ni by reactive magnetron sputtering

    SciTech Connect

    Yang, Jianbo; Huang, Saijia; Wang, Zhijiao; Hou, Yuxuan; Shi, Yuyu; Zhang, Jian; Yang, Jianping Li, Xing'ao

    2014-09-01

    Copper nitride (Cu{sub 3}N) and Fe-, Co-, and Ni-doped Cu{sub 3}N films were prepared by reactive magnetron sputtering. The films were deposited on silicon substrates at room temperature using pure Cu target and metal chips. The molar ratio of Cu to N atoms in the as-prepared Cu{sub 3}N film was 2.7:1, which is comparable with the stoichiometry ratio 3:1. X-ray diffraction measurements showed that the films were composed of Cu{sub 3}N crystallites with anti-ReO{sub 3} structure and adopted different preferred orientations. The reflectance of the four samples decreased in the wavelength range of 400–830 nm, but increased rapidly within wavelength range of 830–1200 nm. Compared with the Cu{sub 3}N films, the resistivity of the doped Cu{sub 3}N films decreased by three orders of magnitude. These changes have great application potential in optical and electrical devices based on Cu{sub 3}N films.

  7. Fe-Al layered double hydroxides in bromate reduction: Synthesis and reactivity.

    PubMed

    Chitrakar, Ramesh; Makita, Yoji; Sonoda, Akinari; Hirotsu, Takahiro

    2011-02-15

    This study presents a rare use of layered double hydroxides of Fe(II) and Al(III) (Fe-Al LDH), as reported for the first time for bromate removal from aqueous solutions. The Fe-Al LDH samples were prepared with Fe/Al molar ratios of 1-4 using a co-precipitation method at pH 7, with subsequent hydrothermal treatment at 120°C. The Fe-Al LDH (molar ratio of Fe/Al=1, 2) with a layered structure exhibited nearly complete removal of bromate from initial concentration of 100μmol/dm(3) at a wide pH range of 4.0-10.5 over a 2h reaction period; the residual bromate concentration in the solution was lower than the detection limit of 0.07μmol/dm(3) (9μg-BrO(3)(-)/dm(3)). During the reaction period, bromide was released into the solution via a reduction process. Reactivity of Fe-Al LDH with a Fe/Al molar ratio of 2 did not decrease the bromate reduction efficiency during 30days. PMID:21126742

  8. Rhodium Complex with Ethylene Ligands Supported on Highly Dehydroxylated MgO: Synthesis, Characterization, and Reactivity

    SciTech Connect

    Bhirud,V.; Ehresmann, J.; Kletnieks, P.; Haw, J.; Gates, B.

    2006-01-01

    Mononuclear rhodium complexes with reactive olefin ligands, supported on MgO powder, were synthesized by chemisorption of Rh(C2H4)2(C5H7O2) and characterized by infrared (IR), {sup 13}C MAS NMR, and extended X-ray absorption fine structure (EXAFS) spectroscopies. IR spectra show that the precursor adsorbed on MgO with dissociation of acetylacetonate ligand from rhodium, with the ethylene ligands remaining bound to the rhodium, as confirmed by the NMR spectra. EXAFS spectra give no evidence of Rh-Rh contributions, indicating that site-isolated mononuclear rhodium species formed on the support. The EXAFS data also show that the mononuclear complex was bonded to the support by two Rh-O bonds, at a distance of 2.18 Angstroms, which is typical of group 8 metals bonded to oxide supports. This is the first simple and nearly uniform supported mononuclear rhodium-olefin complex, and it appears to be a close analogue of molecular catalysts for olefin hydrogenation in solution. Correspondingly, the ethylene ligands bonded to rhodium in the supported complex were observed to react with H{sub 2} to form ethane, and the supported complex was catalytically active for the ethylene hydrogenation at 298 K. The ethylene ligands also underwent facile exchange with C{sub 2}D{sub 4}, and exposure of the sample to carbon monoxide led to the formation of rhodium gem dicarbonyls.

  9. Synthesis and characterization of petal type CZTS by stacked layer reactive sputtering

    NASA Astrophysics Data System (ADS)

    Singh, Om Pal; Parmar, R.; Gour, K. S.; Dalai, M. K.; Tawale, Jai; Singh, S. P.; Singh, Vidya Nand

    2015-12-01

    Here we present a method to grow the petal type structure of CZTS thin film on soda lime glass substrate using the stacked layer reactive sputtering and post-depostion annealing in N2 atmosphere. Optical bandgap of the petal type structure of CZTS was determined using UV-VIS spectroscopy and the value was 1.5 eV. In XRD analysis, (112) plane having highest intensity and other supporting planes with low intensity peaks corresponding to (200), (220) and (312) revealed the presence of CZTS phase. It was further confirmed by the Raman analysis, where the Raman peaks at 288 cm-1, 335 cm-1 and 353 cm-1 revealed the presence of CZTS phase. Petal type growth was observed in the scanning electron microscopy analysis. Elemental analysis was done by the EDAX. In EDAX analysis, It is observed that sample was Sn rich which may be responsible for petal type growth. Petal type growth of CZTS may be helpful in increasing the performance of the CZTS based thin film solar cell by phenomena of light scattering and enhanced surface area.

  10. Synthesis and characterization of reactive poloxamer 407s for biomedical applications.

    PubMed

    Niu, Guoguang; Du, Fengyi; Song, Li; Zhang, Hongbin; Yang, Jun; Cao, Hui; Zheng, Yudong; Yang, Zhou; Wang, Guojie; Yang, Huai; Zhu, Siquan

    2009-08-19

    The drawbacks of poloxamer hydrogel, such as dissolving quickly in aqueous solution, have limited its biomedical application. In order to improve the stability of hydrogel, a novel system was developed by combining the reversible thermo-sensitive property of poloxamer 407 and the thiol-ene reactivity between the acrylate and thiol groups. It was found that the sol-gel transition of the acrylate/thiol modified poloxamer 407 mixture could be achieved at body temperature even with a low concentration of 17.5 wt.%. Meanwhile, the reaction between the acrylate and thiol modified poloxamer 407s occurred spontaneously in mimic physiological conditions, thus the hydrogel with crosslinking structure was formed. As a result, the stability of the crosslinked hydrogel was enhanced remarkably, and the release time of the drug from the crosslinked hydrogel was about 4.0 times as long as that from the poloxamer 407 hydrogel. Invitro and invivo experiments revealed that the biocompatibilities of the modified poloxamer 407 hydrogel were similar to that of poloxamer 407. These results indicate that the modified poloxamer 407s have potential applications in controlled drug release, tissue engineering and cell encapsulation etc. PMID:19409430

  11. Green synthesis of iron nanoparticles by various tea extracts: Comparative study of the reactivity

    NASA Astrophysics Data System (ADS)

    Huang, Lanlan; Weng, Xiulan; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra

    2014-09-01

    Iron nanoparticles (Fe NPs) are often synthesized using sodium borohydride with aggregation, which is a high cost process and environmentally toxic. To address these issues, Fe NPs were synthesized using green methods based on tea extracts, including green, oolong and black teas. The best method for degrading malachite green (MG) was Fe NPs synthesized by green tea extracts because it contains a high concentration of caffeine/polyphenols which act as both reducing and capping agents in the synthesis of Fe NPs. These characteristics were confirmed by a scanning electron microscope (SEM), UV-visible (UV-vis) and specific surface area (BET). To understand the formation of Fe NPs using various tea extracts, the synthesized Fe NPs were characterized by SEM, X-ray energy-dispersive spectrometer (EDS), and X-ray diffraction (XRD). What emerged were different sizes and concentrations of Fe NPs being synthesized by tea extracts, leading to various degradations of MG. Furthermore, kinetics for the degradation of MG using these Fe NPs fitted well to the pseudo first-order reaction kinetics model with more than 20 kJ/mol activation energy, suggesting a chemically diffusion-controlled reaction. The degradation mechanism using these Fe NPs included adsorption of MG to Fe NPs, oxidation of iron, and cleaving the bond that was connected to the benzene ring.

  12. Synthesis of Self-Assembled Multifunctional Nanocomposite Catalysts with Highly Stabilized Reactivity and Magnetic Recyclability

    NASA Astrophysics Data System (ADS)

    Yu, Xu; Cheng, Gong; Zheng, Si-Yang

    2016-05-01

    In this paper, a multifunctional Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite catalyst with highly stabilized reactivity and magnetic recyclability was synthesized by a self-assembled method. The magnetic Fe3O4 nanoparticles were coated with a thin layer of the SiO2 to obtain a negatively charged surface. Then positively charged poly(ethyleneimine) polymer (PEI) was self-assembled onto the Fe3O4@SiO2 by electrostatic interaction. Next, negatively charged glutathione capped gold nanoparticles (GSH-AuNPs) were electrostatically self-assembled onto the Fe3O4@SiO2@PEI. After that, silver was grown on the surface of the nanocomposite due to the reduction of the dopamine in the alkaline solution. An about 5 nm thick layer of polydopamine (PDA) was observed to form the Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was carefully characterized by the SEM, TEM, FT-IR, XRD and so on. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite shows a high saturation magnetization (Ms) of 48.9 emu/g, which allows it to be attracted rapidly to a magnet. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was used to catalyze the reduction of p-nitrophenol (4-NP) to p-aminophenol (4-AP) as a model system. The reaction kinetic constant k was measured to be about 0.56 min‑1 (R2 = 0.974). Furthermore, the as-prepared catalyst can be easily recovered and reused for 8 times, which didn’t show much decrease of the catalytic capability.

  13. Synthesis of Self-Assembled Multifunctional Nanocomposite Catalysts with Highly Stabilized Reactivity and Magnetic Recyclability.

    PubMed

    Yu, Xu; Cheng, Gong; Zheng, Si-Yang

    2016-01-01

    In this paper, a multifunctional Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite catalyst with highly stabilized reactivity and magnetic recyclability was synthesized by a self-assembled method. The magnetic Fe3O4 nanoparticles were coated with a thin layer of the SiO2 to obtain a negatively charged surface. Then positively charged poly(ethyleneimine) polymer (PEI) was self-assembled onto the Fe3O4@SiO2 by electrostatic interaction. Next, negatively charged glutathione capped gold nanoparticles (GSH-AuNPs) were electrostatically self-assembled onto the Fe3O4@SiO2@PEI. After that, silver was grown on the surface of the nanocomposite due to the reduction of the dopamine in the alkaline solution. An about 5 nm thick layer of polydopamine (PDA) was observed to form the Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was carefully characterized by the SEM, TEM, FT-IR, XRD and so on. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite shows a high saturation magnetization (Ms) of 48.9 emu/g, which allows it to be attracted rapidly to a magnet. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was used to catalyze the reduction of p-nitrophenol (4-NP) to p-aminophenol (4-AP) as a model system. The reaction kinetic constant k was measured to be about 0.56 min(-1) (R(2) = 0.974). Furthermore, the as-prepared catalyst can be easily recovered and reused for 8 times, which didn't show much decrease of the catalytic capability. PMID:27147586

  14. Synthesis of Self-Assembled Multifunctional Nanocomposite Catalysts with Highly Stabilized Reactivity and Magnetic Recyclability

    PubMed Central

    Yu, Xu; Cheng, Gong; Zheng, Si-Yang

    2016-01-01

    In this paper, a multifunctional Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite catalyst with highly stabilized reactivity and magnetic recyclability was synthesized by a self-assembled method. The magnetic Fe3O4 nanoparticles were coated with a thin layer of the SiO2 to obtain a negatively charged surface. Then positively charged poly(ethyleneimine) polymer (PEI) was self-assembled onto the Fe3O4@SiO2 by electrostatic interaction. Next, negatively charged glutathione capped gold nanoparticles (GSH-AuNPs) were electrostatically self-assembled onto the Fe3O4@SiO2@PEI. After that, silver was grown on the surface of the nanocomposite due to the reduction of the dopamine in the alkaline solution. An about 5 nm thick layer of polydopamine (PDA) was observed to form the Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was carefully characterized by the SEM, TEM, FT-IR, XRD and so on. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite shows a high saturation magnetization (Ms) of 48.9 emu/g, which allows it to be attracted rapidly to a magnet. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was used to catalyze the reduction of p-nitrophenol (4-NP) to p-aminophenol (4-AP) as a model system. The reaction kinetic constant k was measured to be about 0.56 min−1 (R2 = 0.974). Furthermore, the as-prepared catalyst can be easily recovered and reused for 8 times, which didn’t show much decrease of the catalytic capability. PMID:27147586

  15. Synthesis and Characterization of a Novel Inhibitor of C-Reactive Protein–Mediated Proinflammatory Effects

    PubMed Central

    Devaraj, Sridevi; Huang, Wenzhe; Lau, Edmond Y.; Liu, Ruiwu; Lam, Kit S.

    2013-01-01

    Abstract Background Numerous studies have shown that high C-reactive protein (CRP) levels predict cardiovascular disease and augur a poor prognosis in patients with acute coronary syndromes. Much in vitro and in vivo data support of a role for CRP in atherogenesis. There is an urgent need to develop inhibitors that specifically block the biological effects of CRP in vivo. The one-bead–one-compound (OBOC) combinatorial library method has been used to discover ligands against several biological targets. In this study, we use a novel fluorescence-based screening method to screen an OBOC combinatorial library for the discovery of peptides against human CRP. Methods Human CRP was labeled with fluorescein isothiocyanate (FITC) and human serum albumin (HuSA) was labeled with phycoerythrin (PE) and used for screening. The OBOC library LWH-01 was synthesized on TentaGel resin beads using a standard solid-phase “split/mix” approach. Results By subtraction screening, eight peptides that bind specifically to CRP and not to HuSA were identified. In human aortic endothelial cells (HAECs) incubated with CRP, inhibitors CRPi-2, CRPi-3, and CRPi-6 significantly inhibited CRP-induced superoxide, cytokine release, and nuclear factor-κB (NFκB) activity. Molecular docking studies demonstrate that CRPi-2 interacts with the two Ca2+ ions in the single subunit of CRP. The binding of CRPi-2 is reminiscent of choline binding. Conclusions Future studies will examine the utility of this inhibitor in animal models and clinical trials. PMID:23445482

  16. Synthesis and Reactivity of Oxo-Peroxo-Vanadium(V) Bipyridine Compounds

    PubMed Central

    Waidmann, Christopher R.; DiPasquale, Antonio G.

    2010-01-01

    The vanadium(IV) compound [VIVO(OH)(tBu2bpy)2]BF4 (VIVO(OH)) (tBu2bpy = 4,4′-di-tert-butylbipyridine) is slowly oxidized by O2 in ethereal solvents to give the oxo-peroxo compound [VVO(O2)(tBu2bpy)2]BF4 (VVO(O2)) in excellent yield. This and related compounds were fully characterized by NMR, IR, and optical spectroscopies, mass spectrometry, elemental analyses, and an X-ray crystal structure of the 4,4′-dimethylbipyridine analog, [VVO(O2)(Me2bpy)2]BF4. Monitoring the reaction of VIVO(OH) with O2 in THF/acetonitrile mixtures by 1H NMR and optical spectroscopies surprisingly shows that the initial product is the cis-dioxo compound [VV(O)2(tBu2bpy)2]BF4 (VVO2), which then converts to VVO(O2). Reaction of VIVO(OH) with 18O2 gives ca. 60% triply 18O labeled VVO(O2). The mechanism of formation of VVO(O2) is complex and may occur via initial reduction of O2 at vanadium(IV) to give a superoxo-vanadium(V) intermediate, autoxidation of the THF solvent, or both. That VVO2 is generated first appears to be due to the ability of VIVO(OH) to act as a hydrogen atom donor. For instance, VIVO(OH) reacts with VVO(O2) give VVO2. VVO(O2) is also slowly reduced to VIVO(OH) by the organic hydrogen atom donors hydroquinone and TEMPOH (2,2,6,6-tetramethylpiperidin-1-ol) as well as by triphenylphosphine. Notably, the peroxo complex VVO(O2) is much less reactive with these substrates than the analogous dioxo compound VVO2. PMID:20108930

  17. Regioselective Synthesis of C-3-Functionalized Quinolines via Hetero-Diels-Alder Cycloaddition of Azadienes with Terminal Alkynes.

    PubMed

    Saunthwal, Rakesh K; Patel, Monika; Verma, Akhilesh K

    2016-08-01

    A highly efficient metal and protection-free approach for the regioselective synthesis of C-3-functionalized quinolines from azadienes (in situ generated from 2-aminobenzyl alcohol) and terminal alkynes through [4 + 2] cycloaddition has been developed. An unprecedented reaction of 2-aminobenzyl alcohol with 1,3- and 1,4-diethynylbenzene provided the C-3 tolylquinolines via [4 + 2] HDA and oxidative decarboxylation. The -NH2 group directed mechanistic approach was well supported by the control experiments and deuterium-labeling studies and by isolating the azadiene intermediate. The reactivity and selectivity of unprotected azadiene in metal-free base-assisted hetero-Diels-Alder reaction is exploited to quickly assemble an important class of C-3-functionalized quinolines, which are difficult to access. PMID:27380814

  18. Surface functionalization of titanium dioxide nanoparticles: Photo-stability and reactive oxygen species (ROS) generation

    NASA Astrophysics Data System (ADS)

    Louis, Kacie M.

    Metal oxide nanoparticles are becoming increasingly prevalent in society for applications of sunscreens, cosmetics, paints, biomedical imaging, and photovoltaics. Due to the increased surface area to volume ratio of nanoparticles compared to bulk materials, it is important to know the health and safety impacts of these materials. One mechanism of toxicity of nominally "safe" materials such as TiO 2 is through the photocatalytic generation of reactive oxygen species (ROS). ROS production and ligand degradation can affect the bioavailability of these particles in aqueous organisms. We have investigated ROS generation by functionalized TiO2 nanoparticles and its influence on aggregation and bioavailability and toxicity to zebrafish embryos/larvae. For these studies we investigated anatase TiO2 nanoparticles. For application purposes and solution stability, the TiO2 nanoparticles were functionalized with a variety of ligands such as citrate, 3,4-dihydroxybenzaldehyde, and ascorbate. We quantitatively examined the amount of ROS produced in aqueous solution using fluorescent probes and see that more ROS is produced under UV light than in the dark control. Our measurements show that TiO2 toxicity reaches a maximum for nanoparticles with smaller diameters, and is correlated with surface area dependent changes in ROS generation. In an effort to reduce toxicity through control of the surface and surface ligands, we synthesized anatase nanoparticles of different sizes, functionalized them with different ligands, and examined the resulting ROS generation and ligand stability. Using a modular ligand containing a hydrophobic inner region and a hydrophilic outer region, we synthesized water-stable nanoparticles, via two different chemical reactions, having much-reduced ROS generation and thus reduced toxicity. These results suggest new strategies for making safer nanoparticles while still retaining their desired properties. We also examine the degradation of the different ligands

  19. Synthesis, Characterization, and Reactivities of Manganese(V)-Oxo Porphyrin Complexes

    PubMed Central

    Song, Woon Ju; Seo, Mi Sook; George, Serena DeBeer; Ohta, Takehiro; Song, Rita; Kang, Min-Jung; Tosha, Takehiko; Kitagawa, Teizo; Solomon, Edward I.; Nam, Wonwoo

    2010-01-01

    The reactions of manganese(III) porphyrin complexes with terminal oxidants, such as m-chloroperbenzoic acid, iodosylarenes, and H2O2, produced high-valent manganese(V)-oxo porphyrins in the presence of base in organic solvents at room temperature. The manganese(V)-oxo porphyrins have been characterized with various spectroscopic techniques, including UV-vis, EPR, 1H and 19F NMR, resonance Raman, and X-ray absorption spectroscopy. The combined spectroscopic results indicate that the manganese(V)-oxo porphyrins are diamagnetic low-spin (S = 0) species with a longer, weaker Mn-O bond than in previously reported Mn(V)-oxo complexes of non-porphyrin ligands. This is indicative of double bond character between the manganese(V) ion and the oxygen atom, and may be attributed to the presence of a trans-axial ligand. The [(Porp)MnV=O]+ species are stable in the presence of base at room temperature. The stability of the intermediates is dependent on base concentration. In the absence of base, (Porp)MnIV=O is generated instead of the [(Porp)MnV=O]+ species. The stability of the [(Porp)MnV=O]+ species also depends on the electronic nature of porphyrin ligands; [(Porp)MnV=O]+ complexes bearing electron-deficient porphyrin ligands are more stable than those bearing electron-rich porphyrins. Reactivity studies of manganese(V)-oxo porphyrins revealed that the intermediates are capable of oxygenating PPh3 and thioanisoles, but not olefins and alkanes at room temperature. These results indicate that the oxidizing power of [(Porp)MnV=O]+ is low in the presence of base. However, when the [(Porp)MnV=O]+ complexes were associated with iodosylbenzene in the presence of olefins and alkanes, high yields of oxygenated products were obtained in the catalytic olefin epoxidation and alkane hydroxylation reactions. Mechanistic aspects, such as oxygen exchange between [(Porp)MnV=16O]+ and H218O, are also discussed. PMID:17263410

  20. Synthesis and reactivity of oxo-peroxo-vanadium(V) bipyridine compounds.

    PubMed

    Waidmann, Christopher R; DiPasquale, Antonio G; Mayer, James M

    2010-03-01

    The vanadium(IV) compound [V(IV)O(OH)((t)Bu(2)bpy)(2)]BF(4) (V(IV)O(OH)) ((t)Bu(2)bpy = 4,4'-di-tert-butylbipyridine) is slowly oxidized by O(2) in ethereal solvents to give the oxo-peroxo compound [V(V)O(O(2))((t)Bu(2)bpy)(2)]BF(4) (V(V)O(O(2))) in excellent yield. This and related compounds were fully characterized by NMR, IR, and optical spectroscopies; mass spectrometry; elemental analyses; and an X-ray crystal structure of the 4,4'-dimethylbipyridine analog, [V(V)O(O(2))(Me(2)bpy)(2)]BF(4). Monitoring the reaction of V(IV)O(OH) with O(2) in THF/acetonitrile mixtures by (1)H NMR and optical spectroscopies surprisingly shows that the initial product is the cis-dioxo compound [V(V)(O)(2)((t)Bu(2)bpy)(2)]BF(4) (V(V)O(2)), which then converts to V(V)O(O(2)). Reaction of V(IV)O(OH) with (18)O(2) gives ca. 60% triply (18)O labeled V(V)O(O(2)). The mechanism of formation of V(V)O(O(2)) is complex and may occur via initial reduction of O(2) at vanadium(IV) to give a superoxo-vanadium(V) intermediate, autoxidation of the THF solvent, or both. That V(V)O(2) is generated first appears to be due to the ability of V(IV)O(OH) to act as a hydrogen atom donor. For instance, V(IV)O(OH) reacts with V(V)O(O(2)) to give V(V)O(2). V(V)O(O(2)) is also slowly reduced to V(IV)O(OH) by the organic hydrogen atom donors hydroquinone and TEMPOH (2,2,6,6-tetramethylpiperidin-1-ol) as well as by triphenylphosphine. Notably, the peroxo complex V(V)O(O(2)) is much less reactive with these substrates than the analogous dioxo compound V(V)O(2). PMID:20108930

  1. Synthesis, Structure, and Reactivity of Co(II) and Ni(II) PCP Pincer Borohydride Complexes

    PubMed Central

    2015-01-01

    The 15e square-planar complexes [Co(PCPMe-iPr)Cl] (2a) and [Co(PCP-tBu)Cl] (2b), respectively, react readily with NaBH4 to afford complexes [Co(PCPMe-iPr)(η2-BH4)] (4a) and [Co(PCP-tBu)(η2-BH4)] (4b) in high yields, as confirmed by IR spectroscopy, X-ray crystallography, and elemental analysis. The borohydride ligand is symmetrically bound to the cobalt center in η2-fashion. These compounds are paramagnetic with effective magnetic moments of 2.0(1) and 2.1(1) μB consistent with a d7 low-spin system corresponding to one unpaired electron. None of these complexes reacted with CO2 to give formate complexes. For structural and reactivity comparisons, we prepared the analogous Ni(II) borohydride complex [Ni(PCPMe-iPr)(η2-BH4)] (5) via two different synthetic routes. One utilizes [Ni(PCPMe-iPr)Cl] (3) and NaBH4, the second one makes use of the hydride complex [Ni(PCPMe-iPr)H] (6) and BH3·THF. In both cases, 5 is obtained in high yields. In contrast to 4a and 4b, the borohydride ligand is asymmetrically bound to the nickel center but still in an η2-mode. [Ni(PCPMe-iPr)(η2-BH4)] (5) loses readily BH3 at elevated temperatures in the presence of NEt3 to form 6. Complexes 5 and 6 are both diamagnetic and were characterized by a combination of 1H, 13C{1H}, and 31P{1H} NMR, IR spectroscopy, and elemental analysis. Additionally, the structure of these compounds was established by X-ray crystallography. Complexes 5 and 6 react with CO2 to give the formate complex [Ni(PCPMe-iPr)(OC(C=O)H] (7). The extrusion of BH3 from [Co(PCPMe-iPr)(η2-BH4)] (4a) and [Ni(PCPMe-iPr)(η2-BH4)] (5) with the aid of NH3 to yield the respective hydride complexes [Co(PCPMe-iPr)H] and [Ni(PCPMe-iPr)H] (6) and BH3NH3 was investigated by DFT calculations showing that formation of the Ni hydride is thermodynamically favorable, whereas the formation of the Co(II) hydride, in agreement with the experiment, is unfavorable. The electronic structures and the bonding of the borohydride ligand in [Co

  2. Synthesis, structural characterization, and reactivity studies of 5-CF3SO3-B10H13.

    PubMed

    Berkeley, Emily R; Ewing, William C; Carroll, Patrick J; Sneddon, Larry G

    2014-05-19

    In contrast to previous reactions carried out in cyclopentane solvent at room temperature that produced 6-TfO-B10H13 (TfO = CF3SO3), the reaction of closo-B10H10(2-) with a large excess of trifluoromethanesulfonic acid in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate (bmimOTf) gave exclusively the previously unknown 5-TfO-B10H13 isomer. Experimental and computational studies demonstrated that the difference in the products of the two reactions is a result of 6-TfO-B10H13 isomerizing to 5-TfO-B10H13 above room temperature in bmimOTf solutions. Reactivity studies showed that 5-TfO-B10H13: (1) is deprotonated by reaction with 1,8-bis(dimethylamino)naphthalene to form the 5-TfO-B10H12(1-) anion; (2) reacts with alcohols to produce 6-RO-B10H13 boryl ethers (R = Me and 4-CH3O-C6H4); (3) undergoes olefin-hydroboration reactions to form 5-TfO-6,9-R2-B10H11 derivatives; and (4) forms a 5-TfO-6,9-(Me2S)2-B10H11 adduct at its Lewis acidic 6,9-borons upon reaction with dimethylsulfide. The 5-TfO-6,9-(Me2S)2-B10H11 adduct was also found to undergo alkyne-insertion reactions to form a range of previously unreported triflate-substituted 4-TfO-ortho-carboranes (1-R-4-TfO-1,2-C2B10H10) and reactions with triethylamine or ammonia to form the first TfO-substituted decaborate [R3NH(+)]2[2-TfO-B10H9(2-)], and [R3NH(+)]2[1-TfO-B10H9(2-)] (R = H, Et) salts. PMID:24785404

  3. Synthesis, characterization, and reactivities of manganese(V)-oxo porphyrin complexes.

    PubMed

    Song, Woon Ju; Seo, Mi Sook; George, Serena Debeer; Ohta, Takehiro; Song, Rita; Kang, Min-Jung; Tosha, Takehiko; Kitagawa, Teizo; Solomon, Edward I; Nam, Wonwoo

    2007-02-01

    The reactions of manganese(III) porphyrin complexes with terminal oxidants, such as m-chloroperbenzoic acid, iodosylarenes, and H(2)O(2), produced high-valent manganese(V)-oxo porphyrins in the presence of base in organic solvents at room temperature. The manganese(V)-oxo porphyrins have been characterized with various spectroscopic techniques, including UV-vis, EPR, 1H and 19F NMR, resonance Raman, and X-ray absorption spectroscopy. The combined spectroscopic results indicate that the manganese(V)-oxo porphyrins are diamagnetic low-spin (S = 0) species with a longer, weaker Mn-O bond than in previously reported Mn(V)-oxo complexes of non-porphyrin ligands. This is indicative of double-bond character between the manganese(V) ion and the oxygen atom and may be attributed to the presence of a trans axial ligand. The [(Porp)Mn(V)=O](+) species are stable in the presence of base at room temperature. The stability of the intermediates is dependent on base concentration. In the absence of base, (Porp)Mn(IV)=O is generated instead of the [(Porp)Mn(V)=O](+) species. The stability of the [(Porp)Mn(V)=O](+) species also depends on the electronic nature of the porphyrin ligands: [(Porp)Mn(V)=O](+) complexes bearing electron-deficient porphyrin ligands are more stable than those bearing electron-rich porphyrins. Reactivity studies of manganese(V)-oxo porphyrins revealed that the intermediates are capable of oxygenating PPh(3) and thioanisoles, but not olefins and alkanes at room temperature. These results indicate that the oxidizing power of [(Porp)Mn(V)=O](+) is low in the presence of base. However, when the [(Porp)Mn(V)=O](+) complexes were associated with iodosylbenzene in the presence of olefins and alkanes, high yields of oxygenated products were obtained in the catalytic olefin epoxidation and alkane hydroxylation reactions. Mechanistic aspects, such as oxygen exchange between [(Porp)Mn(V)=16O](+) and H(2)(18)O, are also discussed. PMID:17263410

  4. Design and synthesis of a C7-aryl piperlongumine derivative with potent antimicrotubule and mutant p53-reactivating properties.

    PubMed

    Punganuru, Surendra R; Madala, Hanumantha Rao; Venugopal, Sanjay N; Samala, Ramakrishna; Mikelis, Constantinos; Srivenugopal, Kalkunte S

    2016-01-01

    Small molecules that can restore biological function to the p53 mutants found in human cancers have been highly sought to increase the anticancer efficacy. In efforts to generate hybrid anticancer drugs that can impact two or more targets simultaneously, we designed and developed piperlongumine (PL) derivatives with an aryl group inserted at the C-7 position. This insertion bestowed a combretastatin A4 (CA4, an established microtubule disruptor) like structure while retaining the piperlongumine configuration. The new compounds exhibited potent antiproliferative activities against eight cancer cell lines, in particular, were more cytotoxic against the SKBR-3 breast cancer cells which harbor a R175H mutation in p53 suppressor. KSS-9, a representative aryl PL chosen for further studies induced abundant ROS generation and protein glutathionylation. KSS-9 strongly disrupted the tubulin polymerization in vitro, destabilized the microtubules in cells and induced a potent G2/M cell cycle block. More interestingly, KSS-9 showed the ability to reactivate the p53 mutation and restore biological activity to the R175H mutant protein present in SKBR3 cells. Several procedures, including immunocytochemistry using conformation-specific antibodies for p53, immunoprecipitation combined with western blotting, electrophoretic shift mobility shift assays showed a reciprocal loss of mutant protein and generation of wild-type like protein. p53 reactivation was accompanied by the induction of the target genes, MDM2, p21cip1 and PUMA. Mechanistically, the redox-perturbation in cancer cells by the hybrid drug appears to underlie the p53 reactivation process. This anticancer drug approach merits further development. PMID:26599530

  5. Hypothalamic Pituitary Adrenal Axis Functioning in Reactive and Proactive Aggression in Children

    ERIC Educational Resources Information Center

    Lopez-Duran, Nestor L.; Olson, Sheryl L.; Hajal, Nastassia J.; Felt, Barbara T.; Vazquez, Delia M.

    2009-01-01

    The purpose of this study was to examine the association between hypothalamic-pituitary-adrenal axis (HPA-axis) reactivity and proactive and reactive aggression in pre-pubertal children. After a 30-min controlled base line period, 73 7-year-old children (40 males and 33 females) were randomly assigned to one of two experimental tasks designed to…

  6. PULMONARY FUNCTION AND BRONCHIAL REACTIVITY IN HUMAN SUBJECTS WITH EXPOSURE TO OZONE AND RESPIRABLE SULFURIC ACID AEROSOL

    EPA Science Inventory

    A three-year research study was conducted investigating the effects of individual and sequential exposures to ozone and sulfuric acid aerosol on pulmonary function and bronchial reactivity in human subjects. PHASE I: In healthy smokers and nonsmokers exposed for 4 hours to 98 mic...

  7. Children's Patterns of Emotional Reactivity to Conflict as Explanatory Mechanisms in Links between Interpartner Aggression and Child Physiological Functioning

    ERIC Educational Resources Information Center

    Davies, Patrick T.; Sturge-Apple, Melissa L.; Cicchetti, Dante; Manning, Liviah G.; Zale, Emily

    2009-01-01

    Background: This paper examined children's fearful, sad, and angry reactivity to interparental conflict as mediators of associations between their exposure to interparental aggression and physiological functioning. Methods: Participants included 200 toddlers and their mothers. Assessments of interparental aggression and children's emotional…

  8. Facile and High-Throughput Synthesis of Functional Microparticles with Quick Response Codes.

    PubMed

    Ramirez, Lisa Marie S; He, Muhan; Mailloux, Shay; George, Justin; Wang, Jun

    2016-06-01

    Encoded microparticles are high demand in multiplexed assays and labeling. However, the current methods for the synthesis and coding of microparticles either lack robustness and reliability, or possess limited coding capacity. Here, a massive coding of dissociated elements (MiCODE) technology based on innovation of a chemically reactive off-stoichimetry thiol-allyl photocurable polymer and standard lithography to produce a large number of quick response (QR) code microparticles is introduced. The coding process is performed by photobleaching the QR code patterns on microparticles when fluorophores are incorporated into the prepolymer formulation. The fabricated encoded microparticles can be released from a substrate without changing their features. Excess thiol functionality on the microparticle surface allows for grafting of amine groups and further DNA probes. A multiplexed assay is demonstrated using the DNA-grafted QR code microparticles. The MiCODE technology is further characterized by showing the incorporation of BODIPY-maleimide (BDP-M) and Nile Red fluorophores for coding and the use of microcontact printing for immobilizing DNA probes on microparticle surfaces. This versatile technology leverages mature lithography facilities for fabrication and thus is amenable to scale-up in the future, with potential applications in bioassays and in labeling consumer products. PMID:27151936

  9. Radical Coupling Reactions in Lignin Synthesis: A Density Functional Theory Study

    SciTech Connect

    Sangha, A. K.; Parks, J. M.; Standaert, R. F.; Ziebell, A.; Davis, M.; Smith, J. C.

    2012-04-26

    Lignin is a complex, heterogeneous polymer in plant cell walls that provides mechanical strength to the plant stem and confers resistance to degrading microbes, enzymes, and chemicals. Lignin synthesis initiates through oxidative radical-radical coupling of monolignols, the most common of which are p-coumaryl, coniferyl, and sinapyl alcohols. Here, we use density functional theory to characterize radical-radical coupling reactions involved in monolignol dimerization. We compute reaction enthalpies for the initial self- and cross-coupling reactions of these monolignol radicals to form dimeric intermediates via six major linkages observed in natural lignin. The 8-O-4, 8-8, and 8-5 coupling are computed to be the most favorable, whereas the 5-O-4, 5-5, and 8-1 linkages are less favorable. Overall, p-coumaryl self- and cross-coupling reactions are calculated to be the most favorable. For cross-coupling reactions, in which each radical can couple via either of the two sites involved in dimer formation, the more reactive of the two radicals is found to undergo coupling at its site with the highest spin density.

  10. Self-Assembly for the Synthesis of Functional Biomaterials

    PubMed Central

    Stephanopoulos, Nicholas; Ortony, Julia H.; Stupp, Samuel I.

    2012-01-01

    The use of self-assembly for the construction of functional biomaterials is a highly promising and exciting area of research, with great potential for the treatment of injury or disease. By using multiple noncovalent interactions, coded into the molecular design of the constituent components, self-assembly allows for the construction of complex, adaptable, and highly tunable materials with potent biological effects. This review describes some of the seminal advances in the use of self-assembly to make novel systems for regenerative medicine and biology. Materials based on peptides, proteins, DNA, or hybrids thereof have found application in the treatment of a wide range of injuries and diseases, and this review outlines the design principles and practical applications of these systems. Most of the examples covered focus on the synthesis of hydrogels for the scaffolding or transplantation of cells, with an emphasis on the biological, mechanical, and structural properties of the resulting materials. In addition, we will discuss the distinct advantages conferred by self-assembly (compared with traditional covalent materials), and present some of the challenges and opportunities for the next generation of self-assembled biomaterials. PMID:23457423