Science.gov

Sample records for reactive highly fluorescent

  1. Biological detection and tagging using tailorable, reactive, highly fluorescent chemosensors.

    SciTech Connect

    Shepodd, Timothy J.; Zifer, Thomas; McElhanon, James Ross; Rahn, Larry A.

    2006-11-01

    This program was focused on the development of a fluorogenic chemosensor family that could tuned for reaction with electrophilic (e.g. chemical species, toxins) and nucleophilic (e.g. proteins and other biological molecules) species. Our chemosensor approach utilized the fluorescent properties of well-known berberine-type alkaloids. In situ chemosensor reaction with a target species transformed two out-of-plane, weakly conjugated, short-wavelength chromophores into one rigid, planar, conjugated, chromophore with strong long wavelength fluorescence (530-560 nm,) and large Stokes shift (100-180 nm). The chemosensor was activated with an isourea group which allowed for reaction with carboxylic acid moieties found in amino acids.

  2. A fluorescence high throughput screening method for the detection of reactive electrophiles as potential skin sensitizers.

    PubMed

    Avonto, Cristina; Chittiboyina, Amar G; Rua, Diego; Khan, Ikhlas A

    2015-12-01

    Skin sensitization is an important toxicological end-point in the risk assessment of chemical allergens. Because of the complexity of the biological mechanisms associated with skin sensitization, integrated approaches combining different chemical, biological and in silico methods are recommended to replace conventional animal tests. Chemical methods are intended to characterize the potential of a sensitizer to induce earlier molecular initiating events. The presence of an electrophilic mechanistic domain is considered one of the essential chemical features to covalently bind to the biological target and induce further haptenation processes. Current in chemico assays rely on the quantification of unreacted model nucleophiles after incubation with the candidate sensitizer. In the current study, a new fluorescence-based method, 'HTS-DCYA assay', is proposed. The assay aims at the identification of reactive electrophiles based on their chemical reactivity toward a model fluorescent thiol. The reaction workflow enabled the development of a High Throughput Screening (HTS) method to directly quantify the reaction adducts. The reaction conditions have been optimized to minimize solubility issues, oxidative side reactions and increase the throughput of the assay while minimizing the reaction time, which are common issues with existing methods. Thirty-six chemicals previously classified with LLNA, DPRA or KeratinoSens™ were tested as a proof of concept. Preliminary results gave an estimated 82% accuracy, 78% sensitivity, 90% specificity, comparable to other in chemico methods such as Cys-DPRA. In addition to validated chemicals, six natural products were analyzed and a prediction of their sensitization potential is presented for the first time. PMID:26455772

  3. Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescence-activated flow cytometry.

    PubMed

    Guthrie, H D; Welch, G R

    2006-08-01

    The use of frozen semen in the swine industry is limited by problems with viability and fertility compared with liquid semen. Part of the reduction in sperm motility and fertility associated with cryopreservation may be due to oxidative damage from excessive or inappropriate formation of reactive oxygen species (ROS). Chemiluminescence measurements of ROS are not possible in live cells and are problematic because of poor specificity. An alternative approach, flow cytometry, was developed to identify viable boar sperm containing ROS utilizing the dyes hydroethidine and 2', 7'-dichlorodihydrofluorescein diacetate as oxidizable substrates and impermeant DNA dyes to exclude dead sperm. The percentage of sperm with high mitochondrial transmembrane potential was determined by flow cytometry using the mitochondrial probe 5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimidazolylcarbocyanine iodide with propidium iodide staining to exclude nonviable cells. Sperm were incubated with and without ROS generators and free radical scavengers. Basal ROS formation was low (less than 4%) and did not differ (P = 0.26) between viable fresh and frozen-thawed boar sperm. In addition, fresh and frozen-thawed viable sperm were equally susceptible (P = 0.20) to intracellular formation of ROS produced by xanthine/xanthine oxidase (94.4 and 87.9% of sperm, respectively). Menadione increased (P < 0.05) ROS formation, decreased (P < 0.05) JC-1-aggregate fluorescence intensity, and decreased (P < 0.05) motion variables by 25 to 60%. The mechanism of inhibition of motility by ROS formation may be related to a decrease in mitochondrial charge potential below a critical threshold. Catalase and superoxide dismutase treatment in the presence of xanthine/xanthine oxidase indicated that hydrogen peroxide was the primary intracellular ROS measured. Further, catalase, but not superoxide dismutase, was capable of attenuating ROS-induced inhibition of motility. Whereas basal intracellular hydrogen

  4. Reactive Fluorescent Dyes For Urethane Coatings

    NASA Technical Reports Server (NTRS)

    Willis, Paul B.; Cuddihy, Edward F.

    1991-01-01

    Molecules of fluorescent dyes chemically bound in urethane conformal-coating materials to enable nondestructive detection of flaws in coats through inspection under ultraviolet light, according to proposal. Dye-bonding technique prevents outgassing of dyes, making coating materials suitable for use where flaw-free coats must be assured in instrumentation or other applications in which contamination by outgassing must be minimized.

  5. Chemical reactivation of quenched fluorescent protein molecules enables resin-embedded fluorescence microimaging

    NASA Astrophysics Data System (ADS)

    Xiong, Hanqing; Zhou, Zhenqiao; Zhu, Mingqiang; Lv, Xiaohua; Li, Anan; Li, Shiwei; Li, Longhui; Yang, Tao; Wang, Siming; Yang, Zhongqin; Xu, Tonghui; Luo, Qingming; Gong, Hui; Zeng, Shaoqun

    2014-06-01

    Resin embedding is a well-established technique to prepare biological specimens for microscopic imaging. However, it is not compatible with modern green-fluorescent protein (GFP) fluorescent-labelling technique because it significantly quenches the fluorescence of GFP and its variants. Previous empirical optimization efforts are good for thin tissue but not successful on macroscopic tissue blocks as the quenching mechanism remains uncertain. Here we show most of the quenched GFP molecules are structurally preserved and not denatured after routine embedding in resin, and can be chemically reactivated to a fluorescent state by alkaline buffer during imaging. We observe up to 98% preservation in yellow-fluorescent protein case, and improve the fluorescence intensity 11.8-fold compared with unprocessed samples. We demonstrate fluorescence microimaging of resin-embedded EGFP/EYFP-labelled tissue block without noticeable loss of labelled structures. This work provides a turning point for the imaging of fluorescent protein-labelled specimens after resin embedding.

  6. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2011-03-22

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  7. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2012-05-01

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  8. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2011-11-29

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  9. High-Pressure Fluorescence Spectroscopy.

    PubMed

    Maeno, Akihiro; Akasaka, Kazuyuki

    2015-01-01

    The combination of fluorescence and pressure perturbation is a widely used technique to study the effect of pressure on a protein system to obtain thermodynamic, structural and kinetic information on proteins. However, we often encounter the situation where the available pressure range up to 400 MPa of most commercial high-pressure fluorescence spectrometers is insufficient for studying highly pressure-stable proteins like inhibitors and allergenic proteins. To overcome the difficulty, we have recently developed a new high-pressure fluorescence system that allows fluorescence measurements up to 700 MPa. Here we describe the basic design of the apparatus and its application to study structural and thermodynamic properties of a couple of highly stable allergenic proteins, hen lysozyme and ovomucoid, using Tryptophan and Tyrosine/Tyrosinate fluorescence, respectively. Finally, we discuss the utility and the limitation of Trp and Tyr fluorescence. We discuss pitfalls of fluorescence technique and importance of simultaneous use of other high-pressure spectroscopy, particularly high-pressure NMR spectroscopy. PMID:26174405

  10. Detection of reactive oxygen species in mainstream cigarette smoke by a fluorescent probe

    NASA Astrophysics Data System (ADS)

    Liu, Li; Xu, Shi-jie; Li, Song-zhan

    2009-07-01

    A mass of reactive oxygen species(ROS) are produced in the process of smoking. Superfluous ROS can induce the oxidative stress in organism, which will cause irreversible damage to cells. Fluorescent probe is taken as a marker of oxidative stress in biology and has been applied to ROS detection in the field of biology and chemistry for high sensitivity, high simplicity of data collection and high resolution. As one type of fluorescent probe, dihydrorhodamine 6G (dR6G) will be oxidized to the fluorescent rhodamine 6G, which could be used to detect ROS in mainstream cigarette smoke. We investigated the action mechanism of ROS on dR6G, built up the standard curve of R6G fluorescence intensity with its content, achieved the variation pattern of R6G fluorescence intensity with ROS content in mainstream cigarette smoke and detected the contents of ROS from the 4 types of cigarettes purchased in market. The result shows that the amount of ROS has close relationship with the types of tobacco and cigarette production technology. Compared with other detecting methods such as electronic spin resonance(ESR), chromatography and mass spectrometry, this detection method by the fluorescent probe has higher efficiency and sensitivity and will have wide applications in the ROS detection field.

  11. Fluorescent detection of C-reactive protein using polyamide beads

    NASA Astrophysics Data System (ADS)

    Jagadeesh, Shreesha; Chen, Lu; Aitchison, Stewart

    2016-03-01

    Bacterial infection causes Sepsis which is one of the leading cause of mortality in hospitals. This infection can be quantified from blood plasma using C - reactive protein (CRP). A quick diagnosis at the patient's location through Point-of- Care (POC) testing could give doctors the confidence to prescribe antibiotics. In this paper, the development and testing of a bead-based procedure for CRP quantification is described. The size of the beads enable them to be trapped in wells without the need for magnetic methods of immobilization. Large (1.5 mm diameter) Polyamide nylon beads were used as the substrate for capturing CRP from pure analyte samples. The beads captured CRP either directly through adsorption or indirectly by having specific capture antibodies on their surface. Both methods used fluorescent imaging techniques to quantify the protein. The amount of CRP needed to give a sufficient fluorescent signal through direct capture method was found suitable for identifying bacterial causes of infection. Similarly, viral infections could be quantified by the more sensitive indirect capture method. This bead-based assay can be potentially integrated as a disposable cartridge in a POC device due to its passive nature and the small quantities needed.

  12. High intensity portable fluorescent light

    NASA Technical Reports Server (NTRS)

    Kendall, F. B.

    1972-01-01

    Eight high intensity portable fluorescent lights were produced. Three prototype lights were also produced, two of which were subsequently updated to the physical and operational configuration of the qualification and flight units. Positioning of lamp apertures and reflectors in these lights is such that the light is concentrated and intensified in a specific pattern rather than widely diffused. Indium amalgam control of mercury vapor pressure in the lamp gives high output at lamp ambient temperatures up to 105 C. A small amount of amalgam applied to each electrode stem helps to obtain fast warm-up. Shrinking a Teflon sleeve on the tube and potting metal caps on each end of the lamp minimizes dispersion of mercury vapor and glass particles in the event of accidental lamp breakage. Operation at 20 kHz allows the lamps to consume more power than at low frequency, thus increasing their light output and raising their efficiency. When used to expose color photographic film, light from the lamps produces results approximately equal to sunlight.

  13. Enantioselective fluorescent recognition in the fluorous phase: enhanced reactivity and expanded chiral recognition.

    PubMed

    Wang, Chao; Wu, Elaine; Wu, Xuedan; Xu, Xiangchuan; Zhang, Guoqing; Pu, Lin

    2015-03-25

    A novel perfluoroalkyl-BINOL-based chiral diketone is found to be the first highly enantioselective fluorescent sensor in the fluorous phase. One enantiomer of a chiral amino alcohol or diamine at a concentration greater than 1 mM can cause an up to 1200-2000-fold fluorescent enhancement of the sensor (0.08 mM), while the other enantiomer gives only a 10-50-fold enhancement. The fluorous-phase-based sensor is found to enhance the reactivity of the previously reported fluorous insoluble sensor with amino alcohols and expand its chiral recognition ability. Dynamic light scattering studies show the formation of aggregates of very different particle sizes when two enantiomers of a substrate interact with the sensor in perfluorohexane (FC-12). This substantial difference enables easy discrimination of the enantiomers with UV-lamps or even the naked eye. NMR, IR, and mass spectroscopic studies indicate that the fluorescent enhancement and enantioselectivity should originate from the fluorous solvent-promoted nucleophilic addition of the amino alcohols to the carbonyl groups of the sensor. PMID:25761050

  14. High yield fabrication of fluorescent nanodiamonds

    PubMed Central

    Boudou, Jean-Paul; Curmi, Patrick; Jelezko, Fedor; Wrachtrup, Joerg; Aubert, Pascal; Sennour, Mohamed; Balasubramanian, Gopalakrischnan; Reuter, Rolf; Thorel, Alain; Gaffet, Eric

    2009-01-01

    A new fabrication method to produce homogeneously fluorescent nanodiamonds with high yields is described. The powder obtained by high energy ball milling of fluorescent high pressure, high temperature diamond microcrystals was converted in a pure concentrated aqueous colloidal dispersion of highly crystalline ultrasmall nanoparticles with a mean size less than or equal to 10 nm. The whole fabrication yield of colloidal quasi-spherical nanodiamonds was several orders of magnitude higher than those previously reported starting from microdiamonds. The results open up avenues for the industrial cost-effective production of fluorescent nanodiamonds with well-controlled properties. PMID:19451687

  15. A fluorescence high-temperature sensor based on fluorescence lifetime

    NASA Astrophysics Data System (ADS)

    Wu, Jinling; Wang, Yutian; Wang, Xinian

    2006-11-01

    A kind of fluorescence optic-fiber temperature sensor is devised based on the alexandrite crystal. In this system, a new optic- fiber probe fabrication techniques is proposed. This system is particularly adapted to the temperature measurement in the range of room temperature to 650°C. During the cause of experimentation, using the PLD-PMTR (termed the Pulse Modulated Phase-locked detection with Two References) signal processing scheme. This temperature measurement method is proved to be effective and useful for its highly resolution and precision. It ensured the detected fluorescence signal to noise ratio was high enough to be measurable when the temperature is raised to 650°C.

  16. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Achari, Aniruddha

    2006-01-01

    We have shown that by covalently modifying a subpopulation, less than or equal to 1%, of a macromolecule with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification, and the presence of the probe at low concentrations does not affect the X-ray data quality or the crystallization behavior. The presence of the trace fluorescent label gives a number of advantages when used with high throughput crystallizations. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination crystals show up as bright objects against a dark background. Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Brightly fluorescent crystals are readily found against less bright precipitated phases, which under white light illumination may obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries as the protein or protein structures is all that shows up. Fluorescence intensity is a faster search parameter, whether visually or by automated methods, than looking for crystalline features. We are now testing the use of high fluorescence intensity regions, in the absence of clear crystalline features or "hits", as a means for determining potential lead conditions. A working hypothesis is that kinetics leading to non-structured phases may overwhelm and trap more slowly formed ordered assemblies, which subsequently show up as regions of brighter fluorescence intensity. Preliminary experiments with test proteins have resulted in the extraction of a number of crystallization conditions from screening outcomes based solely on the presence of bright fluorescent regions. Subsequent experiments will test this approach using a wider

  17. On reactive high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.

    2016-01-01

    High power impulse magnetron sputtering (HiPIMS) is an ionized physical vapor deposition (IPVD) technique that is particularly promising for reactive sputtering applications. However, there are few issues that have to be resolved before the full potential of this technique can be realized. Here we give an overview of the key experimental findings for the reactive HiPIMS discharge. An increase in the discharge current is commonly observed with increased partial pressure of the reactive gas or decreased repetition pulse frequency. There are somewhat conflicting claims regarding the hysteresis effect in the reactive HiPIMS discharge as some report reduction or elimination of the hysteresis effect while others claim a feedback control is essential. The ion energy distribution of the metal ion and the atomic ion of the reactive gas are similar and extend to very high energies while the ion energy distribution of the working gas and the molecular ion of the reactive gas are similar and are much less energetic.

  18. Coupling Electrochemistry with Fluorescence Confocal Microscopy To Investigate Electrochemical Reactivity: A Case Study with the Resazurin-Resorufin Fluorogenic Couple.

    PubMed

    Doneux, Thomas; Bouffier, Laurent; Goudeau, Bertrand; Arbault, Stéphane

    2016-06-21

    The redox couple resazurin-resorufin exhibits electrofluorochromic properties which are investigated herein by absorption and fluorescence spectroelectrochemistry and by electrochemically coupled-fluorescence confocal laser scanning microscopy (EC-CLSM). At pH 10, the highly fluorescent resorufin dye is generated at the electrode surface by the electrochemical reduction of the poorly fluorescent resazurin. Performing EC-CLSM at electrode surfaces allows to monitor spatially resolved electrochemical processes in situ and in real time. Using a small (315 μm diameter) cylindrical electrode, a steady-state diffusion layer builds up under potentiostatic conditions at -0.45 V vs Ag|AgCl. Mapping the fluorescence intensity in 3D by CLSM enables us to reconstruct the relative concentration profile of resorufin around the electrode. The comparison of the experimental diffusion-profile with theoretical predictions demonstrates that spontaneous convection has a direct influence on the actual thickness of the diffusion layer, which is smaller than the value predicted for a purely diffusional transport. This study shows that combining fluorescence CLSM with electrochemistry is a powerful tool to study electrochemical reactivity at a spatially resolved level. PMID:27247989

  19. HIGH REACTIVITY SORBENTS FOR SO2 CONTROL

    EPA Science Inventory

    The paper discusses studies, relating to air pollution control from coal-fired utility boilers, that show that the primary variable affecting sorbent reactivity at high temperature or at low temperature with water droplets is surface area. For the development of high surface area...

  20. Diagnostic Implications of the Reactivity of Fluorescence Tracers

    SciTech Connect

    Sick, V; Westbrook, C

    2008-07-14

    Measurements of fuel concentration distributions with planar laser induced fluorescence of tracer molecules that are added to a base fuel are commonly used in combustion research and development. It usually is assumed that the tracer concentration follows the parent fuel concentration if physical properties such as those determining evaporation are matched. As an example to address this general issue a computational study of combustion of biacetyl/iso-octane mixtures was performed to investigate how well the concentration of biacetyl represents the concentration of iso-octane. For premixed mixture conditions with flame propagation the spatial concentration profiles of the two species in the flame front are separated by 110 {micro}m at 1 bar and by 11 {micro}m at 10 bar. For practical applications this spatial separation is insignificantly small. However, for conditions that mimic ignition and combustion in diesel and HCCI-like operation the differences in tracer and fuel concentration can be significant, exceeding hundreds of percent. At low initial temperature biacetyl was found to be more stable whereas at higher temperature (>1000K) iso-octane is more stable. Similar findings were obtained for a multi-component fuel comprised of iso-octane, n-heptane, methylcyclohexane, and toluene. It may be assumed that similar differences can exist for other tracer/fuel combinations. Caution has therefore to be applied when interpreting PLIF measurements in homogeneous reaction conditions such as in HCCI engine studies.

  1. Hg2+-reactive double hydrophilic block copolymer assemblies as novel multifunctional fluorescent probes with improved performance.

    PubMed

    Hu, Jinming; Li, Changhua; Liu, Shiyong

    2010-01-19

    We report on novel type of responsive double hydrophilic block copolymer (DHBC)-based multifunctional chemosensors to Hg(2+) ions, pH, and temperatures and investigate the effects of thermo-induced micellization on the detection sensitivity. Well-defined DHBCs bearing rhodamine B-based Hg(2+)-reactive moieties (RhBHA) in the thermo-responsive block, poly(ethylene oxide)-b-poly(N-isopropylacrylamide-co-RhBHA) (PEO-b-P(NIPAM-co-RhBHA)), were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Nonfluorescent RhBHA moieties are subjected to selective ring-opening reaction upon addition of Hg(2+) ions or lowering solution pH, producing highly fluorescent acyclic species. Thus, at room temperature PEO-b-P(NIPAM-co-RhBHA) DHBCs can serve as water-soluble multifunctional and efficient fluorescent chemosensors to Hg(2+) ions and pH. Upon heating above the lower critical solution temperature (approximately 36 degrees C) of the PNIPAM block, they self-assemble into micelles possessing P(NIPAM-co-RhBHA) cores and well-solvated PEO coronas, which were fully characterized by dynamic and static laser light scattering. It was found that the detection sensitivity to Hg(2+) ions and pH could be dramatically improved at elevated temperatures due to fluorescence enhancement of RhBHA residues in the acyclic form, which were embedded within hydrophobic cores of thermo-induced micellar aggregates. This work represents a proof-of-concept example of responsive DHBC-based multifunctional fluorescent chemosensors for the highly efficient detection of Hg(2+) ions, pH, and temperatures with tunable detection sensitivity. Compared to reaction-based small molecule Hg(2+) probes in previous literature reports, the integration of stimuli-responsive block copolymers with well-developed small molecule-based selective sensing moieties in the current study are expected to exhibit preferred advantages including enhanced detection sensitivity, water dispersibility

  2. Safe Disposal of Highly Reactive Chemicals.

    ERIC Educational Resources Information Center

    Lunn, George; Sansone, Eric B.

    1994-01-01

    Provides specific procedures for the disposal of a variety of highly reactive chemicals and reports the results of a study of their safe disposal. Disposal of some problematic sulfur-containing compounds are included. Procedures are based on a combination of literature review and author development. (LZ)

  3. Measurement of OH reactivity by laser flash photolysis coupled with laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Stone, Daniel; Whalley, Lisa K.; Ingham, Trevor; Edwards, Peter M.; Cryer, Danny R.; Brumby, Charlotte A.; Seakins, Paul W.; Heard, Dwayne E.

    2016-07-01

    OH reactivity (k'OH) is the total pseudo-first-order loss rate coefficient describing the removal of OH radicals to all sinks in the atmosphere, and is the inverse of the chemical lifetime of OH. Measurements of ambient OH reactivity can be used to discover the extent to which measured OH sinks contribute to the total OH loss rate. Thus, OH reactivity measurements enable determination of the comprehensiveness of measurements used in models to predict air quality and ozone production, and, in conjunction with measurements of OH radical concentrations, to assess our understanding of OH production rates. In this work, we describe the design and characterisation of an instrument to measure OH reactivity using laser flash photolysis coupled to laser-induced fluorescence (LFP-LIF) spectroscopy. The LFP-LIF technique produces OH radicals in isolation, and thus minimises potential interferences in OH reactivity measurements owing to the reaction of HO2 with NO which can occur if HO2 is co-produced with OH in the instrument. Capabilities of the instrument for ambient OH reactivity measurements are illustrated by data collected during field campaigns in London, UK, and York, UK. The instrumental limit of detection for k'OH was determined to be 1.0 s-1 for the campaign in London and 0.4 s-1 for the campaign in York. The precision, determined by laboratory experiment, is typically < 1 s-1 for most ambient measurements of OH reactivity. Total uncertainty in ambient measurements of OH reactivity is ˜ 6 %. We also present the coupling and characterisation of the LFP-LIF instrument to an atmospheric chamber for measurements of OH reactivity during simulated experiments, and provide suggestions for future improvements to OH reactivity LFP-LIF instruments.

  4. Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems.

    PubMed

    Aron, Allegra T; Ramos-Torres, Karla M; Cotruvo, Joseph A; Chang, Christopher J

    2015-08-18

    Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed "recognition" and "reactivity". Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three recent

  5. A fluorescent immunoassay for the determination of procalcitonin and C-reactive protein

    NASA Astrophysics Data System (ADS)

    Baldini, F.; Bolzoni, L.; Giannetti, A.; Porro, G.; Senesi, F.; Trono, C.

    2009-05-01

    The discrimination of viral and bacterial sepsis is an important issue in intensive care patients. For this purpose, the simultaneous measurements of different analytes such as C-reactive protein (CRP), procalcitonin (PCT), myeloperoxidase, interleukines and neopterin, are necessary. A novel optical platform was designed and realised for the implementation of fluorescence-based immunoassays. The core of the optical platform is a plastic biochip, formed by a series of microchannels each of them devoted to the determination of a single analyte. Sandwich assays for CRP and PCT spiked in serum were performed in order to demonstrate the reliability of a multi-array device.

  6. Recognition- and Reactivity-Based Fluorescent Probes for Studying Transition Metal Signaling in Living Systems

    PubMed Central

    2015-01-01

    Conspectus Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed “recognition” and “reactivity”. Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give

  7. High-order fluorescence fluctuation analysis of model protein clusters.

    PubMed Central

    Palmer, A G; Thompson, N L

    1989-01-01

    The technique of high-order fluorescence fluctuation autocorrelation for detecting and characterizing protein oligomers was applied to solutions containing two fluorescent proteins in which the more fluorescent proteins were analogues for clusters of the less fluorescent ones. The results show that the model protein clusters can be detected for average numbers of observed subunits (free monomers plus monomers in oligomers) equal to 10-100 and for relative fluorescent yields that correspond to oligomers as small as trimers. High-order fluorescent fluctuation analysis may therefore be applicable to cell surface receptor clusters in natural or model membranes. PMID:2548201

  8. Vertical nanopillars for highly localized fluorescence imaging

    PubMed Central

    Xie, Chong; Hanson, Lindsey; Cui, Yi; Cui, Bianxiao

    2011-01-01

    Observing individual molecules in a complex environment by fluorescence microscopy is becoming increasingly important in biological and medical research, for which critical reduction of observation volume is required. Here, we demonstrate the use of vertically aligned silicon dioxide nanopillars to achieve below-the-diffraction-limit observation volume in vitro and inside live cells. With a diameter much smaller than the wavelength of visible light, a transparent silicon dioxide nanopillar embedded in a nontransparent substrate restricts the propagation of light and affords evanescence wave excitation along its vertical surface. This effect creates highly confined illumination volume that selectively excites fluorescence molecules in the vicinity of the nanopillar. We show that this nanopillar illumination can be used for in vitro single-molecule detection at high fluorophore concentrations. In addition, we demonstrate that vertical nanopillars interface tightly with live cells and function as highly localized light sources inside the cell. Furthermore, specific chemical modification of the nanopillar surface makes it possible to locally recruit proteins of interest and simultaneously observe their behavior within the complex, crowded environment of the cell. PMID:21368157

  9. In Vivo Imaging of Retinal Oxidative Stress Using a Reactive Oxygen Species–Activated Fluorescent Probe

    PubMed Central

    Prunty, Megan C.; Aung, Moe H.; Hanif, Adam M.; Allen, Rachael S.; Chrenek, Micah A.; Boatright, Jeffrey H.; Thule, Peter M.; Kundu, Kousik; Murthy, Niren; Pardue, Machelle T.

    2015-01-01

    Purpose In vivo methods for detecting oxidative stress in the eye would improve screening and monitoring of the leading causes of blindness: diabetic retinopathy, glaucoma, and age-related macular degeneration. Methods To develop an in vivo biomarker for oxidative stress in the eye, we tested the efficacy of a reactive oxygen species (ROS)–activated, near-infrared hydrocyanine-800CW (H-800CW) fluorescent probe in light-induced retinal degeneration (LIRD) mouse models. After intravitreal delivery in LIRD rats, fluorescent microscopy was used to confirm that the oxidized H-800CW appeared in the same retinal layers as an established ROS marker (dichlorofluorescein). Results Dose–response curves of increasing concentrations of intravenously injected H-800CW demonstrated linear increases in both intensity and total area of fundus hyperfluorescence in LIRD mice, as detected by scanning laser ophthalmoscopy. Fundus hyperfluorescence also correlated with the duration of light damage and functional deficits in vision after LIRD. In LIRD rats with intravitreal injections of H-800CW, fluorescent labeling was localized to photoreceptor inner segments, similar to dichlorofluorescein. Conclusions Hydrocyanine-800CW detects retinal ROS in vivo and shows potential as a novel biomarker for ROS levels in ophthalmic diseases. PMID:26348635

  10. Novel Nanophosphors for High Efficiency Fluorescent Lamps

    SciTech Connect

    Alok Srivatava

    2007-03-31

    This is the Final Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet (UV) emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. Our work started by investigating through modeling calculations the requirement for the particle size of the NCP. Our work to develop suitable nanocrystalline phosphors started with the known oxide quantum splitting and UV emitting phosphors. We demonstrated several synthesis techniques for the production of high quality nanocrystalline materials that crystallizes in the desired phase and with the desired particle size. In collaboration with our subcontractor we demonstrated the feasibility for the manufacture of NC phosphors. We also demonstrated novel techniques of coating the NCP on the surface of micron sized phosphors. Our chief achievement pertains to the successful testing of the coated hybrid phosphor systems in linear fluorescent lamps. In linear fluorescent lamp tests, we have demonstrated up to 7% increase in the efficacy of hybrid phosphors over the conventional (uncoated) phosphors. We have also demonstrated the improvement in the lumen maintenance of the coated phosphors. A hybrid phosphor system based on the commercial red emitting phosphor, Y{sub 2}O{sub 3}:Eu{sup 3+} did not show the anticipated improvement in lamp efficacy. We explored the reasons for this observation

  11. Novel Nanophosphors for High Efficiency Fluorescent Lamps

    SciTech Connect

    Alok M. Srivastava

    2005-09-30

    This is the Yearly Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. Our chief achievement, during the current contract period, pertains to the successful synthesis and characterization of coated phosphors. We demonstrated several synthesis techniques for the coating of micron sized commercial phosphors with quantum-splitting and UV emitting nanophosphors. We have also continued our fundamental investigations into the physical processes that determine the quantum efficiency of the nanophosphors and this has further helped codify a set of rules for the host lattice that support efficient quantum splitting and UV emission at room temperature. In this report we summarize the technical work completed under the Program, summarize our findings about the performance limits of the various technologies we investigated, and outline promising paths for future work.

  12. Novel high-sensitivity fluorescence polarization reader

    NASA Astrophysics Data System (ADS)

    Hoyt, Clifford C.; Levenson, Richard M.; Banks, Peter

    2001-05-01

    We have developed a new fluorescence polarization (FP) reader suitable for high-throughput screening (HST) and ultra-HTS whose assay-performance and sample-throughput are both considerably improved over present state-of-the-art instrumentation. The SymmetryTM reader possesses a number of features that differ from conventional HTS FP readers. These include: laser-based excitation, liquid crystal polarization optics that rapidly and accurately measure polarization states; and CCD detectors to capture emission from multiple wells. We show that the performance in assays relevant to the drug discovery process, such as G- protein coupled receptor-based assays, is significantly enhanced due to a dramatic improvement in precision. Furthermore, the CCD-detection system used can substantially improve sample throughput compared to sequential readers while maintaining high performance.

  13. A cross-reactive sensor array for the fluorescence qualitative analysis of heavy metal ions.

    PubMed

    Kang, Huaizhi; Lin, Liping; Rong, Mingcong; Chen, Xi

    2014-11-01

    A cross-reactive sensor array using mercaptopropionic acid modified cadmium telluride (CdTe), glutathione modified CdTe, poly(methacrylic acid) modified silver nanoclusters, bovine serum albumin modified gold nanoclusters, rhodamine derivative and calcein blue as fluorescent indicators has been designed for the detection of seven heavy metal ions (Ag(+), Hg(2+), Pb(2+), Cu(2+), Cr(3+), Mn(2+) and Cd(2+)). The discriminatory capacity of the sensor array to different heavy metal ions in different pH solutions has been tested and the results have been analyzed with linear discriminant analysis. Results showed that the sensor array could be used to qualitatively analyze the selected heavy metal ions. The array performance was also evaluated in the identification of known and unknown samples and the preliminary results suggested the promising practicability of the designed sensor assay. PMID:25127598

  14. On the Inclusion of Inorganic Chemical Reactivity in High School Chemistry: The Reactivity Network.

    ERIC Educational Resources Information Center

    Mellon, E. K.

    1989-01-01

    Reports the function of the Reactivity Network which is to translate reactivity data from the primary literature into some 30 reviews for high school teachers and curriculum developers and to disseminate that information nationwide. Discusses a needs assessment done for the project. (MVL)

  15. Facile synthesis of fluorescent polymer nanoparticles by covalent modification-nanoprecipitation of amine-reactive ester polymers.

    PubMed

    Lee, Yeonju; Hanif, Sadaf; Theato, Patrick; Zentel, Rudolf; Lim, Jeewoo; Char, Kookheon

    2015-06-01

    Emission wavelength control in fluorescent nanoparticles (NPs) is crucial for their applications. In the case of inorganic quantum dots or dye-impregnated silica NPs, such a control is readily achieved by changing the size of the particles or choosing appropriate fluorescent dyes, respectively. A similar modular approach for controlling the emission wavelength of fluo-rescent polymer NPs, however, is difficult. This article reports on fluorescent polymer NPs, the synthesis of which provides a platform for a modular approach towards the preparation of fluorescent NPs of desired emission wavelength. Atom-transfer radical polymerization (ATRP) is employed to synthesize reactive ester polymers, which are then easily modified with a commercially available dye and subsequently subjected to nanoprecipitation. The resulting NPs, with low size polydispersity, show an enhanced emission quantum yield when compared with the same dye molecules in solution. PMID:25761204

  16. Monitoring Cr Intermediates and Reactive Oxygen Species with Fluorescent Probes during Chromate Reduction

    PubMed Central

    2015-01-01

    Cr(VI) genotoxicity is caused by products of its reductive metabolism inside the cells. Reactive oxygen species (ROS) and Cr(V,IV) intermediates are potential sources of oxidative damage by Cr(VI). Here, we investigated seven fluorescent probes for the detection of ROS and non-ROS oxidants in Cr(VI) reactions with its main reducers. We found that Cr(V)-skipping metabolism of Cr(VI) by ascorbate in vitro gave no responses with all tested dyes, indicating nonreactivity of Cr(IV) and absence of ROS. Cr(VI) reduction with glutathione (GSH) or Cys strongly enhanced the fluorescence of dichlorofluorescein (DCF) and dihydrorhodamine 123 (DHR123) but produced minimal fluorescence with dihydroethidium and no increases with aminophenylfluorescein and CellRox Green, Orange, and Red. Several tests showed that Cr(VI)-thiol reactions lacked ROS and that Cr(V) caused oxidation of DCF and DHR123. DCF reacted only with free Cr(V), whereas DHR123 detected both the free Cr(V) and Cr(V)-GSH complex. We estimated that Cr(VI)-GSH reactions generated approximately 75% Cr(V)-GSH and 25% free Cr(V), whereas Cys reactions appeared to produce only free Cr(V). DHR123 measurements in H460 cells showed that reduction of Cr(VI) was complete within 20 min postexposure, but it lasted at least 1 h without GSH. Cells with restored ascorbate levels exhibited no DCF or DHR123 oxidation by Cr(VI). Overall, our results demonstrated that Cr(VI) metabolism with its biological reducers lacked ROS and that DHR123 and DCF responses were indicators of total and free Cr(V), respectively. CellRox dyes, dihydroethidium and aminophenylfluorescein, are insensitive to Cr(V,IV) and can be used for monitoring ROS during coexposure to Cr(VI) and oxidants. PMID:24646070

  17. Using fluorescence-activated flow cytometry to determine reactive oxygen species formation and membrane lipid peroxidation in viable boar spermatozoa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fluorescence-activated flow cytometry analyses were developed for determination of reactive oxygen species (ROS) formation and membrane lipid peroxidation in live spermatozoa loaded with, respectively, hydroethidine (HE) or the lipophilic probe 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-d...

  18. High frame rate fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Agronskaia, A. V.; Tertoolen, L.; Gerritsen, H. C.

    2003-07-01

    A fast time-domain based fluorescence lifetime imaging (FLIM) microscope is presented that can operate at frame rates of hundreds of frames per second. A beam splitter in the detection path of a wide-field fluorescence microscope divides the fluorescence in two parts. One part is optically delayed with respect to the other. Both parts are viewed with a single time-gated intensified CCD camera with a gate width of 5 ns. The fluorescence lifetime image is obtained from the ratio of these two images. The fluorescence lifetime resolution of the FLIM microscope is verified both with dye solutions and fluorescent latex beads. The fluorescence lifetimes obtained from the reference specimens are in good agreement with values obtained from time correlated single photon counting measurements on the same specimens. The acquisition speed of the FLIM system is evaluated with a measurement of the calcium fluxes in neonatal rat myocytes stained with the calcium probe Oregon Green 488-Bapta. Fluorescence lifetime images of the calcium fluxes related to the beating of the myocytes are acquired with frame rates of up to 100 Hz.

  19. Riboflavin enhanced fluorescence of highly reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Iliut, Maria; Gabudean, Ana-Maria; Leordean, Cosmin; Simon, Timea; Teodorescu, Cristian-Mihail; Astilean, Simion

    2013-10-01

    The improvement of graphene derivates' fluorescence properties is a challenging topic and very few ways were reported up to now. In this Letter we propose an easy method to enhance the fluorescence of highly reduced graphene oxide (rGO) through non-covalent binding to a molecular fluorophore, namely the riboflavin (Rb). While the fluorescence of Rb is quenched, the Rb - decorated rGO exhibits strong blue fluorescence and significantly increased fluorescence lifetime, as compared to its pristine form. The data reported here represent a promising start towards tailoring the optical properties of rGOs, having utmost importance in optical applications.

  20. Fluorescent-conjugated polymer superquenching facilitates highly sensitive detection of proteases

    NASA Astrophysics Data System (ADS)

    Kumaraswamy, Sriram; Bergstedt, Troy; Shi, Xiaobo; Rininsland, Frauke; Kushon, Stuart; Xia, Wensheng; Ley, Kevin; Achyuthan, Komandoor; McBranch, Duncan; Whitten, David

    2004-05-01

    Sensor formats have been developed for detecting the activity of proteolytic enzymes based on fluorescent conjugated polymer superquenching. These sensors employ a reactive peptide sequence within a tether linking a quencher to a biotin. The peptide binds to sensors containing colocated biotin-binding protein and fluorescent polymer by means of biotin-biotin binding protein interactions, resulting in a strong quenching of polymer fluorescence. Enzyme-mediated cleavage of the peptide results in a reversal of the fluorescence quenching. These assays for protease activity are simple, sensitive, fast, and have the specificity required for screening chemical libraries for novel protease inhibitors in a high-throughput screening assay environment. These assays have been demonstrated for enterokinase, caspase-3/7, and -secretase.

  1. Fluorescent-conjugated polymer superquenching facilitates highly sensitive detection of proteases.

    PubMed

    Kumaraswamy, Sriram; Bergstedt, Troy; Shi, Xiaobo; Rininsland, Frauke; Kushon, Stuart; Xia, Wensheng; Ley, Kevin; Achyuthan, Komandoor; McBranch, Duncan; Whitten, David

    2004-05-18

    Sensor formats have been developed for detecting the activity of proteolytic enzymes based on fluorescent conjugated polymer superquenching. These sensors employ a reactive peptide sequence within a tether linking a quencher to a biotin. The peptide binds to sensors containing colocated biotin-binding protein and fluorescent polymer by means of biotin-biotin binding protein interactions, resulting in a strong quenching of polymer fluorescence. Enzyme-mediated cleavage of the peptide results in a reversal of the fluorescence quenching. These assays for protease activity are simple, sensitive, fast, and have the specificity required for screening chemical libraries for novel protease inhibitors in a high-throughput screening assay environment. These assays have been demonstrated for enterokinase, caspase-3/7, and beta-secretase. PMID:15136731

  2. Development of Highly Fluorescent Materials Based on Thiophenylimidazole Dyes

    NASA Technical Reports Server (NTRS)

    Santos, Javier; Bu, Xiu R.; Mintz, Eric A.; Meador, Michael A. (Technical Monitor)

    2000-01-01

    Organic fluorescent materials are expected to find many potential applications in optical devices and photo-functionalized materials. Although many investigations have been focused on heterocyclic compounds such as coumarins, bipyridines, rhodamines, and pyrrole derivatives, little is known for fluorescent imidazole materials. We discovered that one particular class of imidazole derivatives is highly fluorescent. A series of monomeric and polymeric based fluorescent dyes were prepared containing a thiophene unit at the second position of the imidazole ring. Dependence of fluorescence efficiency on parameters such as solvent polarity and substituent groups has been investigated. It was found that a formyl group at the 2-position of the thiophene ring dramatically enhance fluorescence properties. Ion recognition probes indicated their potential as sensor materials. These fluorophores have flexibility for introduction of versatile substituent groups that could improve the fluorescence efficiency and sensor properties.

  3. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Achari, Amiruddha

    2005-01-01

    X-ray crystallography remains the primary method for determining the structure of macromolecules. The first requirement is to have crystals, and obtaining them is often the rate-limiting step. The numbers of crystallization trials that are set up for any one protein for structural genomics, and the rate at which they are being set up, now overwhelm the ability for strictly human analysis of the results. Automated analysis methods are now being implemented with varying degrees of success, but these typically cannot reliably extract intermediate results. By covalently modifying a subpopulation, less than or = 1 %, of a macromolecule solution with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination the crystals show up as bright objects against a dark background. As crystalline packing is more dense than amorphous precipitate, the fluorescence intensity can be used as a guide in distinguishing different types of precipitated phases, even in the absence of obvious crystalline features, widening the available potential lead conditions in the absence of clear "hits." Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Also, brightly fluorescent crystals are readily found against less fluorescent precipitated phases, which under white light illumination may serve to obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries and by having the protein or protein structures all that show up. The trace fluorescently labeled crystals will also emit with sufficient intensity to aid in the automation of crystal alignment using relatively low

  4. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth

    2005-01-01

    X-ray crystallography remains the primary method for determining the structure of macromolecules. The first requirement is to have crystals, and obtaining them is often the rate-limiting step. The numbers of crystallization trials that are set up for any one protein for structural genomics, and the rate at which they are being set up, now overwhelm the ability for strictly human analysis of the results. Automated analysis methods are now being implemented with varying degrees of success, but these typically cannot reliably extract intermediate results. By covalently modifying a subpopulation, 51%, of a macromolecule solution with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination the crystals show up as bright objects against a dark background. As crystalline packing is more dense than amorphous precipitate, the fluorescence intensity can be used as a guide in distinguishing different types of precipitated phases, even in the absence of obvious crystalline features, widening the available potential lead conditions in the absence of clear hits. Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Also, brightly fluorescent crystals are readily found against less fluorescent precipitated phases, which under white light illumination may serve to obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries and by having the protein or protein structures all that show up. The trace fluorescently labeled crystals will also emit with sufficient intensity to aid in the automation of crystal alignment using relatively low cost optics

  5. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Minamitani, Elizabeth Forsythe; Pusey, Marc L.

    2004-01-01

    X-ray crystallography remains the primary method for determining the structure of macromolecules. The first requirement is to have crystals, and obtaining them is often the rate-limiting step. The numbers of crystallization trials that are set up for any one protein for structural genomics, and the rate at which they are being set up, now overwhelm the ability for strictly human analysis of the results. Automated analysis methods are now being implemented with varying degrees of success, but these typically cannot reliably extract intermediate results. By covalently modifying a subpopulation, less than or = 1%, of a macromolecule solution with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of a macromolecules purification. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination the crystals will show up as bright objects against a dark background. As crystalline packing is more dense than amorphous precipitate, the fluorescence intensity can be used as a guide in distinguishing different types of precipitated phases, even in the absence of obvious crystalline features, widening the available potential lead conditions in the absence of clear "bits." Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Also, brightly fluorescent crystals are readily found against less fluorescent precipitated phases, which under white light illumination may serve to obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries and by having the protein or protein structures all that show up. The trace fluorescently labeled crystals will also emit with sufficient intensity to aid in the automation of crystal alignment

  6. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth

    2004-01-01

    X-ray crystallography remains the primary method for determining the structure of macromolecules. The first requirement is to have crystals, and obtaining them is often the rate-limiting step. The numbers of crystallization trials that are set up for any one protein for structural genomics, and the rate at which they are being set up, now overwhelm the ability for strictly human analysis of the results. Automated analysis methods are now being implemented with varying degrees of success, but these typically can not reliably extract intermediate results. By covalently modifying a subpopulation, less than or = 1%, of a macromolecule solution with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination the crystals show up as bright objects against a dark background. As crystalline packing is more dense than amorphous precipitate, the fluorescence intensity can be used as a guide in distinguishing different types of precipitated phases, even in the absence of obvious crystalline features, widening the available potential lead conditions in the absence of clear "hits." Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Also, brightly fluorescent crystals are readily found against less fluorescent precipitated phases, which under white light illumination may serve to obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries and by having the protein or protein structures all that show up. The trace fluorescently labeled crystals will also emit with sufficient intensity to aid in the automation of crystal alignment using relatively low

  7. High-Collection-Efficiency Fluorescence Detection Cell

    NASA Technical Reports Server (NTRS)

    Hanisco, Thomas; Cazorla, Maria; Swanson, Andrew

    2013-01-01

    A new fluorescence cell has been developed for the laser induced fluorescence (LIF) detection of formaldehyde. The cell is used to sample a flow of air that contains trace concentrations of formaldehyde. The cell provides a hermetically sealed volume in which a flow of air containing formaldehyde can be illuminated by a laser. The cell includes the optics for transmitting the laser beam that is used to excite the formaldehyde and for collecting the resulting fluorescence. The novelty of the cell is its small size and simple design that provides a more robust and cheaper alternative to the state of the art. Despite its simplicity, the cell provides the same sensitivity to detection as larger, more complicated cells.

  8. Highly reactive light-dependent monoterpenes in the Amazon

    SciTech Connect

    Jardine, A. B.; Jardine, K. J.; Fuentes, J. D.; Martin, S. T.; Martins, G.; Durgante, F.; Carneiro, V.; Higuchi, N.; Manzi, A. O.; Chambers, J. Q.

    2015-03-06

    Despite orders of magnitude difference in atmospheric reactivity and great diversity in biological functioning, little is known about monoterpene speciation in tropical forests. Here we report vertically resolved ambient air mixing ratios for 12 monoterpenes in a central Amazon rainforest including observations of the highly reactive cis-β-ocimene (160 ppt), trans-β-ocimene (79 ppt), and terpinolene (32 ppt) which accounted for an estimated 21% of total monoterpene composition yet 55% of the upper canopy monoterpene ozonolysis rate. All 12 monoterpenes showed a mixing ratio peak in the upper canopy, with three demonstrating subcanopy peaks in 7 of 11 profiles. Leaf level emissions of highly reactive monoterpenes accounted for up to 1.9% of photosynthesis confirming light-dependent emissions across several Amazon tree genera. These results suggest that highly reactive monoterpenes play important antioxidant roles during photosynthesis in plants and serve as near-canopy sources of secondary organic aerosol precursors through atmospheric photooxidation via ozonolysis.

  9. Highly reactive light-dependent monoterpenes in the Amazon

    NASA Astrophysics Data System (ADS)

    Jardine, A. B.; Jardine, K. J.; Fuentes, J. D.; Martin, S. T.; Martins, G.; Durgante, F.; Carneiro, V.; Higuchi, N.; Manzi, A. O.; Chambers, J. Q.

    2015-03-01

    Despite orders of magnitude difference in atmospheric reactivity and great diversity in biological functioning, little is known about monoterpene speciation in tropical forests. Here we report vertically resolved ambient air mixing ratios for 12 monoterpenes in a central Amazon rainforest including observations of the highly reactive cis-β-ocimene (160 ppt), trans-β-ocimene (79 ppt), and terpinolene (32 ppt) which accounted for an estimated 21% of total monoterpene composition yet 55% of the upper canopy monoterpene ozonolysis rate. All 12 monoterpenes showed a mixing ratio peak in the upper canopy, with three demonstrating subcanopy peaks in 7 of 11 profiles. Leaf level emissions of highly reactive monoterpenes accounted for up to 1.9% of photosynthesis confirming light-dependent emissions across several Amazon tree genera. These results suggest that highly reactive monoterpenes play important antioxidant roles during photosynthesis in plants and serve as near-canopy sources of secondary organic aerosol precursors through atmospheric photooxidation via ozonolysis.

  10. Highly Fluorescent dye-nanoclay Hybrid Materials Made from Different Dye Classes.

    PubMed

    Grabolle, Markus; Starke, Marian; Resch-Genger, Ute

    2016-04-12

    Nanoclays like laponites, which are commercially avaible in large quantities for a very moderate price, provide a facile solubilization strategy for hydrophobic dyes without the need for chemical functionalization and can act as a carrier for a high number of dye molecules. This does not require reactive dyes, amplifies fluorescence signals from individual emitters due to the high number of dyes molecules per laponite disk, and renders hydrophobic emitters applicable in aqueous environments. Aiming at the rational design of bright dye-loaded nanoclays as a new class of fluorescent reporters for bioanalysis and material sciences and the identification of dye structure-property relationships, we screened a series of commercial fluorescent dyes, differing in dye class, charge, and character of the optical transitions involved, and studied the changes of their optical properties caused by clay adsorption at different dye loading concentrations. Upon the basis of our dye loading density-dependent absorption and fluorescence measurements with S2105 and Lumogen F Yellow 083, we could identify two promising dye-nanoclay hybrid materials that reveal high fluorescence quantum yields of the nanoclay-adsorbed dyes of at least 0.20 and low dye self-quenching even at high dye-loading densities of up to 50 dye molecules per laponite platelet. PMID:27007448

  11. High missing OH reactivity in summertime boreal forest environment

    NASA Astrophysics Data System (ADS)

    Nölscher, A. C.; Williams, J.; Sinha, V.; Song, W.; Johnson, A.; Yassaa, N.; Phillips, G.; Crowley, J.; Axinte, R.; Fischer, H.; Gonzales, D.; Valverde-Canossa, J.; Vogel, A.; Hoffmann, T.; Rantala, P.; Rinne, J.; Kulmala, M.; Ouwersloot, H.; Vila, J.; Lelieveld, J.

    2012-04-01

    Forest emissions represent a strong potential sink for the main tropospheric oxidant, the hydroxyl radical (OH). Resulting photochemical products can influence ambient ozone, contribute to particle formation and growth processes, and therefore impact climate and air quality. Direct measurements of total OH reactivity in ambient air can reveal gaps in the general understanding of reactive gaseous emissions from the biosphere to the atmosphere. By comparing the contribution from individually measured compounds to the overall OH sink and the directly measured total OH reactivity, the size of any unaccounted for, or "missing" sink can be deduced. In July and August 2010 an intensive field measurement campaign (HUMPPA-COPEC 2010) was performed at the Finnish boreal forest station SMEAR II in Hyytiälä (Latitude 61° 51' N; Longitude 24° 17' E) to investigate the summertime emissions and photochemistry of volatile organic compounds (VOCs) [1]. Speciated VOCs, the key oxidants OH, O3 and NO3, as well as aerosol, ions and other trace gases were quantified. Total OH reactivity was measured directly using the Comparative Reactivity Method (CRM) [2]. This total OH reactivity method is an in-situ determination of the total loss rate of OH radicals caused by all reactive species in ambient air. During HUMPPA-COPEC 2010, total OH reactivity was monitored both inside and directly above the canopy. The impact of various parameters such as temperature and light dependent biogenic emissions and reaction products in "normal" and "stressed" conditions, the long-range transport of pollution and the boundary layer height development were characterized. For "normal" boreal conditions a missing reactivity of 58% was determined, whereas for "stressed" boreal conditions this increased to 89 %. Possible explanations are proposed to explain the high missing OH reactivity in summertime boreal forest environment. [1] J. Williams et al, 2011, Atmos. Chem. Phys., 11, 10599-10618 [2] V. Sinha et

  12. Carbon dots with high fluorescence quantum yield: the fluorescence originates from organic fluorophores

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Yang, Jian Hai; Zeng, Hai Bo; Chen, Yong Mei; Yang, Sheng Chun; Wu, Chao; Zeng, Hao; Yoshihito, Osada; Zhang, Qiqing

    2016-07-01

    In this contribution, we have shown that the organic fluorophores, 5-oxo-3,5-dihydro-2H-thiazolo [3,2-a] pyridine-3,7-dicarboxylic acid (TPDCA) and 5-oxo-3,5-dihydro-2H-thiazolo [3,2-a] pyridine-7-carboxylic acid (TPCA), are the main ingredients and fluorescence origins of N,S-CDs via systematic analyses. It inspires us to deeply analyze and understand the fluorescence origins of carbon dots with high fluorescence quantum yields, which will expand their applications.In this contribution, we have shown that the organic fluorophores, 5-oxo-3,5-dihydro-2H-thiazolo [3,2-a] pyridine-3,7-dicarboxylic acid (TPDCA) and 5-oxo-3,5-dihydro-2H-thiazolo [3,2-a] pyridine-7-carboxylic acid (TPCA), are the main ingredients and fluorescence origins of N,S-CDs via systematic analyses. It inspires us to deeply analyze and understand the fluorescence origins of carbon dots with high fluorescence quantum yields, which will expand their applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00451b

  13. A Nano-Selenium Reactive Barrier Approach for Managing Mercury over the Life-Cycle of Compact Fluorescent Lamps

    PubMed Central

    Lee, Brian; Sarin, Love; Johnson, Natalie C.; Hurt, Robert H.

    2013-01-01

    Compact fluorescent lamps contain small quantities of mercury, whose release can lead to human exposures of potential concern in special cases involving multiple lamps, confined spaces, or young children. The exposure scenarios typically involve solid lamp debris that slowly releases elemental mercury vapor to indoor spaces. Here we propose and demonstrate a reactive barrier approach for the suppression of that mercury release, and demonstrate the concept using uncoated amorphous nano-selenium as the reactive component. Multi-layer structures containing an impregnated reactive layer and a mercury vapor barrier are fabricated, characterized, and evaluated in three exposure prevention scenarios: carpeted break sites, disposal/recycling bags, and boxes as used for retail sales, shipping and collection. The reactive barriers achieve significant suppression of mercury release to indoor spaces in each of the three scenarios. The nano-selenium barriers also exhibit a unique indicator function that can reveal the location of Hg-contamination by local reaction-induced change in optical properties. The article also presents results on equilibrium Hg vapor pressure above lamp debris, mathematical modeling of reaction and transport processes within reactive barriers, and landfill stability of nano-selenium and its reaction products. PMID:19731697

  14. Optical spectroscopy of a highly fluorescent aggregate of bacteriochlorophyll c

    NASA Technical Reports Server (NTRS)

    Causgrove, T. P.; Cheng, P.; Brune, D. C.; Blankenship, R. E.

    1993-01-01

    Bacteriochlorophyll (BChl) c and a similar model compound, Mg-methyl bacteriopheophorbide d, form several types of aggregates in nonpolar solvents. One of these aggregates is highly fluorescent, with a quantum yield higher than that of the monomer. This aggregate is also unusual in that it shows a rise time in its fluorescence emission decay at certain wavelengths, which is ascribed to a change in conformation of the aggregate. An analysis of fluorescence depolarization data is consistent with either a linear aggregate of four or five monomers or preferably a cyclic arrangement of three dimers.

  15. Highly fluorescent semiconducting pyrazoline materials for optoelectronics

    NASA Astrophysics Data System (ADS)

    Ramkumar, V.; Kannan, P.

    2015-08-01

    An investigation has been made to synthesize small organic materials possessing longer wavelength emission in a simple manner. Three novel pyrazoline compounds were synthesized and characterized by appropriate approaches. The effect of thiophene, furan and pyridine substitution on pyrazoline skeleton was studied and explained systematically. Green, blue and violet emission was obtained with respect to different substituent groups. The fluorescence decay time and quantum yield of the synthesized materials I, II and III are found to be 3.42, 2.65, 2.83 ns and 0.83, 0.76, 0.78 respectively. The theoretical quantum calculation was used to optimize the spatial distribution of ground state geometry (HOMO) and excited state geometry (LUMO) levels of the molecules. The materials performance and bandgap energies (Eg) of all the three compounds revealed that they belong to a semiconductor materials category.

  16. A BODIPY-based fluorescent probe for ratiometric detection of gold ions: utilization of Z-enynol as the reactive unit.

    PubMed

    Üçüncü, Muhammed; Karakuş, Erman; Emrullahoğlu, Mustafa

    2016-07-01

    Using an irreversible intramolecular cyclisation pathway triggered by gold ions, a boron-dipyrromethene (BODIPY) based fluorescent probe integrated with a reactive Z-enynol motif responds selectively to gold ions. With the addition of gold(iii), the probe displays ratiometric fluorescence behaviour clearly observable to the naked eye under both visible and UV light. PMID:27284598

  17. Frequency Division Multiplexed Multichannel High-Speed Fluorescence Confocal Microscope

    PubMed Central

    Wu, Fei; Zhang, Xueqian; Cheung, Joseph Y.; Shi, Kebin; Liu, Zhiwen; Luo, Claire; Yin, Stuart; Ruffin, Paul

    2006-01-01

    In this article, we report a new type of fluorescence confocal microscope: frequency division multiplexed multichannel fluorescence confocal microscope, in which we encode the spatial location information into the frequency domain. In this microscope, the exciting laser beam is first split into multiple beams and each beam is modulated at a different frequency. These multiple beams are focused at different locations of the target to form multiple focal points, which further generate multiple fluorescent emission spots. The fluorescent emissions from different focal points are also modulated at different frequencies, because the exciting beams are modulated at different frequencies (or difference carrier frequency). Then, all the fluorescent emissions (modulated at different frequencies) are collected together and detected by a highly sensitive, large-dynamic-range photomultiplier tube. By demodulating the detected signal (i.e., via the Fourier transform), we can distinguish the fluorescent light emitted from the different locations by the corresponding carrier frequencies. The major advantage of this unique fluorescence confocal microscope is that it not only has a high sensitivity because of the use of photomultiplier tube but also can get multiple-point data simultaneously, which is crucial to study the dynamic behavior of many biological process. As an initial step, to verify the feasibility of the proposed multichannel confocal microscope, we have developed a two-channel confocal fluorescence microscope and applied it to study the dynamic behavior of the changes of the calcium ion concentration during the single cardiac myocyte contraction. Our preliminary experimental results demonstrated that we could indeed realize multichannel confocal fluorescence microscopy by utilizing the frequency division multiplexed microscope, which could become an effective tool to study the dynamic behavior of many biological processes. PMID:16815894

  18. Using fluorescence-activated flow cytometry to determine reactive oxygen species formation and membrane lipid peroxidation in viable boar spermatozoa.

    PubMed

    Guthrie, H David; Welch, Glenn R

    2010-01-01

    Fluorescence-activated flow cytometry analyses were developed for determination of reactive oxygen species (ROS) formation and membrane lipid peroxidation in live spermatozoa loaded with, respectively, hydroethidine (HE) or the lipophilic probe 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid, C(11)BODIPY(581/591) (BODIPY). ROS was detected by red fluorescence emission from oxidization of HE and membrane lipid peroxidation was detected by green fluorescence emission from oxidation of BODIPY in individual live sperm. Of the reactive oxygen species generators tested, BODIPY oxidation was specific for FeSo4/ascorbate (FeAc), because menadione and H(2)O(2) had little or no effect. The oxidization of hydroethidine to ethidium was specific for menadione and H(2)O(2); FeAc had no effect. The incidence of basal or spontaneous ROS formation and membrane lipid peroxidation were low in boar sperm (<1% of live sperm) in fresh semen or after low temperature storage; however the sperm were quite susceptible to treatment-induced ROS formation and membrane lipid peroxidation. PMID:20072917

  19. Development of Thermally Stable and Highly Fluorescent IR Dyes

    NASA Technical Reports Server (NTRS)

    Bu, Xiu R.

    2004-01-01

    Fluorophores are the core component in various optical applications such as sensors and probes. Fluorphores with low-energy or long wavelength emission, in particular, in NIR region, possess advantages of low interference and high sensitivity. In this study, we has explored several classes of imidazole-based compounds for NIR fluorescent properties and concluded: (1) thiazole-based imidazole compounds are fluorescent; (2) emission energy is tunable by additional donor groups; (3) they also possess impressive two- photon absorption properties; and (4) fluorescence emission can be induced by two- photon input. This report summarizes (1) synthesis of new series of fluorophore; (2) impact of electron-withdrawing groups on fluorescent property; (3) unique property of two-photon absorption; and (4) on-going development.

  20. Optically modulated fluorescence bioimaging: visualizing obscured fluorophores in high background.

    PubMed

    Hsiang, Jung-Cheng; Jablonski, Amy E; Dickson, Robert M

    2014-05-20

    Fluorescence microscopy and detection have become indispensible for understanding organization and dynamics in biological systems. Novel fluorophores with improved brightness, photostability, and biocompatibility continue to fuel further advances but often rely on having minimal background. The visualization of interactions in very high biological background, especially for proteins or bound complexes at very low copy numbers, remains a primary challenge. Instead of focusing on molecular brightness of fluorophores, we have adapted the principles of high-sensitivity absorption spectroscopy to improve the sensitivity and signal discrimination in fluorescence bioimaging. Utilizing very long wavelength transient absorptions of kinetically trapped dark states, we employ molecular modulation schemes that do not simultaneously modulate the background fluorescence. This improves the sensitivity and ease of implementation over high-energy photoswitch-based recovery schemes, as no internal dye reference or nanoparticle-based fluorophores are needed to separate the desired signals from background. In this Account, we describe the selection process for and identification of fluorophores that enable optically modulated fluorescence to decrease obscuring background. Differing from thermally stable photoswitches using higher-energy secondary lasers, coillumination at very low energies depopulates transient dark states, dynamically altering the fluorescence and giving characteristic modulation time scales for each modulatable emitter. This process is termed synchronously amplified fluorescence image recovery (SAFIRe) microscopy. By understanding and optically controlling the dye photophysics, we selectively modulate desired fluorophore signals independent of all autofluorescent background. This shifts the fluorescence of interest to unique detection frequencies with nearly shot-noise-limited detection, as no background signals are collected. Although the fluorescence brightness is

  1. Real-Time Discrimination and Versatile Profiling of Spontaneous Reactive Oxygen Species in Living Organisms with a Single Fluorescent Probe.

    PubMed

    Zhang, Ruilong; Zhao, Jun; Han, Guangmei; Liu, Zhengjie; Liu, Cui; Zhang, Cheng; Liu, Bianhua; Jiang, Changlong; Liu, Renyong; Zhao, Tingting; Han, Ming-Yong; Zhang, Zhongping

    2016-03-23

    Fluorescent probes are powerful tools for the investigations of reactive oxygen species (ROS) in living organisms by visualization and imaging. However, the multiparallel assays of several ROS with multiple probes are often limited by the available number of spectrally nonoverlapping chromophores together with large invasive effects and discrepant biological locations. Meanwhile, the spontaneous ROS profilings in various living organs/tissues are also limited by the penetration capability of probes across different biological barriers and the stability in reactive in vivo environments. Here, we report a single fluorescent probe to achieve the effective discrimination and profiling of hydroxyl radicals (•OH) and hypochlorous acid (HClO) in living organisms. The probe is constructed by chemically grafting an additional five-membered heterocyclic ring and a lateral triethylene glycol chain to a fluorescein mother, which does not only turn off the fluorescence of fluorescein, but also create the dual reactive sites to ROS and the penetration capability in passing through various biological barriers. The reactions of probe with •OH and HClO simultaneously result in cyan and green emissions, respectively, providing the real-time discrimination and quantitative analysis of the two ROS in cellular mitochondria. Surprisingly, the accumulation of probes in the intestine and liver of a normal-state zebrafish and the transfer pathway from intestine-to-blood-to-organ/tissue-to-kidney-to-excretion clearly present the profiling of spontaneous •OH and HClO in these metabolic organs. In particular, the stress generation of •OH at the fresh wound of zebrafish is successfully visualized for the first time, in spite of its extremely short lifetime. PMID:26938117

  2. High resolution 3D fluorescence tomography using ballistic photons

    NASA Astrophysics Data System (ADS)

    Zheng, Jie; Nouizi, Farouk; Cho, Jaedu; Kwong, Jessica; Gulsen, Gultekin

    2015-03-01

    We are developing a ballistic-photon based approach for improving the spatial resolution of fluorescence tomography using time-domain measurements. This approach uses early photon information contained in measured time-of-fight distributions originating from fluorescence emission. The time point spread functions (TPSF) from both excitation light and emission light are acquired with gated single photon Avalanche detector (SPAD) and time-correlated single photon counting after a short laser pulse. To determine the ballistic photons for reconstruction, the lifetime of the fluorophore and the time gate from the excitation profiles will be used for calibration, and then the time gate of the fluorescence profile can be defined by a simple time convolution. By mimicking first generation CT data acquisition, the sourcedetector pair will translate across and also rotate around the subject. The measurement from each source-detector position will be reshaped into a histogram that can be used by a simple back-projection algorithm in order to reconstruct high resolution fluorescence images. Finally, from these 2D sectioning slides, a 3D inclusion can be reconstructed accurately. To validate the approach, simulation of light transport is performed for biological tissue-like media with embedded fluorescent inclusion by solving the diffusion equation with Finite Element Method using COMSOL Multiphysics simulation. The reconstruction results from simulation studies have confirmed that this approach drastically improves the spatial resolution of fluorescence tomography. Moreover, all the results have shown the feasibility of this technique for high resolution small animal imaging up to several centimeters.

  3. Marine fluorescence from high spectrally resolved satellite measurements

    NASA Astrophysics Data System (ADS)

    Wolanin, Aleksandra; Dinter, Tilman; Rozanov, Vladimir; Noël, Stefan; Vountas, Marco; Burrows, John P.; Bracher, Astrid

    2014-05-01

    When chlorophyll molecules absorb light, most of this energy is transformed into chemical energy in a process of photosynthesis. However, a fraction of the energy absorbed is reemitted as fluorescence. As a result of its relationship to photosynthetic e?ciency, information about chlorophyll fluorescence can be used to assess the physiological state of phytoplankton (Falkowski and Kolber,1995). In-situ measurements of chlorophyll fluorescence are widespread in physiological and ecophysiological studies. When retrieved from space, chlorophyll fluorescence can improve our knowledge of global biogeochemical cycles and phytoplankton productivity (Behrenfeld et al., 2009; Huot et al., 2013) by providing high coverage and periodicity. So far, the only satellite retrieval of sun-induced marine fluorescence, Fluorescence Line Height (FLH), was designed for MODIS (Abbott and Letelier, 1999), and later also applied to the similar sensor MERIS (Gower et al., 2004). However, it could so far not be evaluated on global scale. Here, we present a different approach to observe marine chlorophyll fluorescence, based on the Differential Optical Absorption Spectroscopy (DOAS) technique (Perner and Platt, 1979) applied to the hyperspectral data from Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) and Global Ozone Monitoring Experiment-2 (GOME-2). Since fluorescence, as a trans-spectral process, leads to the shift of the wavelength of the radiation, it can be observed in the filling-in of Fraunhofer lines. In our retrieval, we evaluate the filling-in of the Zeeman triplet Fraunhofer line FeI at 684.3 nm, which is located very close to the emission peak of marine fluorescence (~685 nm). In order to conduct the chlorophyll fluorescence retrieval with the DOAS method, we calculated the reference spectra for chlorophyll fluorescence, based on simulations performed with the coupled ocean-atmosphere radiative transfer model SCIATRAN (Rozanov et al., 2014

  4. Laser-induced fluorescence monitoring of the gas phase in a glow discharge during reactive sputtering of vanadium

    NASA Astrophysics Data System (ADS)

    Khvostikov, V. A.; Grazhulene, S. S.; Burmii, Zh. P.; Marchenko, V. A.

    2011-11-01

    Processes in the gas phase of a glow discharge during diode and magnetron reactive sputtering of vanadium in an Ar-O2 atmosphere have been investigated by laser-induced fluorescence (LIF) as a function of the parameters of the glow discharge and the composition of the atmosphere. The intensity of the fluorescence spectra increased by 1.5-2.0 orders of magnitude in the magnetron sputtering process compared with that of diode sputtering. Under continuous sputtering conditions, the dependences of the intensities and relative compositions of the fluorescence spectra on the discharge parameters (discharge voltage and current) have been investigated. In pulsed mode of the glow discharge, the dynamics of changes in the spectra have been studied versus variations in the discharge duration and the lag time for recording the fluorescence signal. The dependence of the spectral line intensities on the partial pressure of oxygen has been found for vanadium and its oxide. The cathode surface at pressures of 0.03-0.04 Pa was shown to convert to the oxidized state.

  5. Metal–Dielectric Waveguides for High Efficiency Fluorescence Imaging

    PubMed Central

    Zhu, Liangfu; Zhang, Douguo; Wang, Ruxue; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Du, Luping; Yuan, Xiaocong; Lakowicz, Joseph R.

    2015-01-01

    We demonstrate that Metal–Dielectric Waveguide structures (MDWs) with high efficiency of fluorescence coupling can be suitable as substrates for fluorescence imaging. This hybrid MDWs consists of a continuous metal film and a dielectric top layer. The optical modes sustaining inside this structure can be excited with a high numerical aperture (N.A) objective, and then focused into a virtual optical probe with high intensity, leading to efficient excitation of fluorophores deposited on top of the MDWs. The emitted fluorophores couple with the optical modes thus enabling the directional emission, which is verified by the back focal plane (BFP) imaging. These unique properties of MDWs have been adopted in a scanning laser confocal optical microscopy, and show the merit of high efficiency fluorescence imaging. MDWs can be easily fabricated by vapor deposition and/or spin coating, the silica surface of the MDWs is suitable for biomolecule tethering, and will offer new opportunities for cell biology and biophysics research. PMID:26525494

  6. Metal-organic framework based highly selective fluorescence turn-on probe for hydrogen sulphide

    PubMed Central

    Nagarkar, Sanjog S.; Saha, Tanmoy; Desai, Aamod V.; Talukdar, Pinaki; Ghosh, Sujit K.

    2014-01-01

    Hydrogen sulphide (H2S) is known to play a vital role in human physiology and pathology which stimulated interest in understanding complex behaviour of H2S. Discerning the pathways of H2S production and its mode of action is still a challenge owing to its volatile and reactive nature. Herein we report azide functionalized metal-organic framework (MOF) as a selective turn-on fluorescent probe for H2S detection. The MOF shows highly selective and fast response towards H2S even in presence of other relevant biomolecules. Low cytotoxicity and H2S detection in live cells, demonstrate the potential of MOF towards monitoring H2S chemistry in biological system. To the best of our knowledge this is the first example of MOF that exhibit fast and highly selective fluorescence turn-on response towards H2S under physiological conditions. PMID:25394493

  7. Investigating the Reactivities of a Polyketide Synthase Module through Fluorescent Click Chemistry

    PubMed Central

    Hughes, Amanda Jane; Tibby, Matthew R.; Wagner, Drew T.; Brantley, Johnathan N.; Keatinge-Clay, Adrian T.

    2014-01-01

    A method for monitoring in vitro polyketide synthesis has been developed whereby nonchromophoric polyketide products are made brightly fluorescent in a simple, rapid, inexpensive, and bioorthogonal manner through CuAAC with sulforhodamine B azide. PMID:24196586

  8. The Hazards of Reactive Chemicals in High School Laboratories.

    ERIC Educational Resources Information Center

    Forlin, Peter

    Chemical reactivity is a major area of risk in high school laboratories. This paper reports on a study that has provided a research-based framework for risk management in Australian chemical education. The chemical practice model of risk management is considered with respect to kinetic factors; catalysts; concentrations and proportions;…

  9. High-resolution methods for fluorescence retrieval from space.

    PubMed

    Mazzoni, Marina; Falorni, Pierluigi; Verhoef, Wouter

    2010-07-19

    The retrieval from space of a very weak fluorescence signal was studied in the O(2)A and O(2)B oxygen atmospheric absorption bands. The accuracy of the method was tested for the retrieval of the chlorophyll fluorescence and reflectance terms contributing to the sensor signal. The radiance at the top of the atmosphere was simulated by means of a commercial radiative-transfer program at a high resolution (0.1 cm(-1)). A test data set was generated in order to simulate sun-induced chlorophyll fluorescence at the top of the canopy. Reflectance terms were spectrally modeled using cubic splines and fluorescence by means of the sum of two Voigt functions. Sensor radiance residual minimization was performed in the presence of a multiplicative noise, thus ensuring that the sensor simulations were realistic. The study, which focused on the possibility of retrieving fluorescence with an accuracy better than 10%, was performed for instrument resolutions ranging from about 0.4 cm(-1) to 2 cm(-1) in order to test the algorithm for the characteristics of existing and planned hyper-spectral sensors. The algorithm was also used to retrieve fluorescence in the single O(2)A band at the OCO and TANSO-FTS instrument spectral resolutions. PMID:20720947

  10. High-Level Fluorescence Labeling of Gram-Positive Pathogens

    PubMed Central

    Aymanns, Simone; Mauerer, Stefanie; van Zandbergen, Ger; Wolz, Christiane; Spellerberg, Barbara

    2011-01-01

    Fluorescence labeling of bacterial pathogens has a broad range of interesting applications including the observation of living bacteria within host cells. We constructed a novel vector based on the E. coli streptococcal shuttle plasmid pAT28 that can propagate in numerous bacterial species from different genera. The plasmid harbors a promoterless copy of the green fluorescent variant gene egfp under the control of the CAMP-factor gene (cfb) promoter of Streptococcus agalactiae and was designated pBSU101. Upon transfer of the plasmid into streptococci, the bacteria show a distinct and easily detectable fluorescence using a standard fluorescence microscope and quantification by FACS-analysis demonstrated values that were 10–50 times increased over the respective controls. To assess the suitability of the construct for high efficiency fluorescence labeling in different gram-positive pathogens, numerous species were transformed. We successfully labeled Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimilis, Enterococcus faecalis, Enterococcus faecium, Streptococcus mutans, Streptococcus anginosus and Staphylococcus aureus strains utilizing the EGFP reporter plasmid pBSU101. In all of these species the presence of the cfb promoter construct resulted in high-level EGFP expression that could be further increased by growing the streptococcal and enterococcal cultures under high oxygen conditions through continuous aeration. PMID:21731607

  11. Highly reactive light-dependent monoterpenes in the Amazon

    DOE PAGESBeta

    Jardine, A. B.; Jardine, K. J.; Fuentes, J. D.; Martin, S. T.; Martins, G.; Durgante, F.; Carneiro, V.; Higuchi, N.; Manzi, A. O.; Chambers, J. Q.

    2015-03-06

    Despite orders of magnitude difference in atmospheric reactivity and great diversity in biological functioning, little is known about monoterpene speciation in tropical forests. Here we report vertically resolved ambient air mixing ratios for 12 monoterpenes in a central Amazon rainforest including observations of the highly reactive cis-β-ocimene (160 ppt), trans-β-ocimene (79 ppt), and terpinolene (32 ppt) which accounted for an estimated 21% of total monoterpene composition yet 55% of the upper canopy monoterpene ozonolysis rate. All 12 monoterpenes showed a mixing ratio peak in the upper canopy, with three demonstrating subcanopy peaks in 7 of 11 profiles. Leaf level emissionsmore » of highly reactive monoterpenes accounted for up to 1.9% of photosynthesis confirming light-dependent emissions across several Amazon tree genera. These results suggest that highly reactive monoterpenes play important antioxidant roles during photosynthesis in plants and serve as near-canopy sources of secondary organic aerosol precursors through atmospheric photooxidation via ozonolysis.« less

  12. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2002-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime, high frequency, high power bursts of low-duty factor microwaves sufficient to generate a plasma discharge and passing a gas to be treated through the discharge so as to cause dissociative reduction of the exhaust gases and enhanced catalyst reactivity through application of the pulsed microwave fields directly to the catalyst material sufficient to cause a polarizability catastrophe and enhanced heating of the metal crystallite particles of the catalyst, and in the presence or absence of the plasma. The invention also includes a reactor for aftertreatment of exhaust gases.

  13. Host Engineering for High Quantum Efficiency Blue and White Fluorescent Organic Light-Emitting Diodes.

    PubMed

    Song, Wook; Lee, Inho; Lee, Jun Yeob

    2015-08-01

    High quantum efficiency in blue and white fluorescence organic light-emitting diodes is achieved by developing a novel device architecture with fluorescent emitters doped in a thermally activated delayed fluorescent emitter as a host material. PMID:26078193

  14. Fluorescent Mueller matrix analysis of a highly scattering turbid media

    SciTech Connect

    Satapathi, Soumitra; Soni, Jalpa; Ghosh, Nirmalya

    2014-03-31

    We report the fluorescent Mueller matrix analysis of a highly scattering, inhomogeneous, and low quantum yield polymeric nanoparticle system. Both the ground and the excited state anisotropy of this turbid system were measured. The excited state anisotropy was found to be higher than ground state anisotropy by inverse polar decomposition analysis. The depolarization coefficients of these polythiophene nanoparticles were experimentally determined by recording Mueller matrices from this complex random medium. This approach provides an alternative method of determining optical characteristics of low quantum efficiency turbid system like fluorescently leveled tissue phantom.

  15. Synthesis, functionalization and bioimaging applications of highly fluorescent carbonnanoparticles

    NASA Astrophysics Data System (ADS)

    Chandra, Sourov; Das, Pradip; Bag, Sourav; Laha, Dipranjan; Pramanik, Panchanan

    2011-04-01

    Highly fluorescent crystalline carbonnanoparticles (CNPs) have been synthesized by one step microwave irradiation of sucrose with phosphoric acid at 100 W for 3 min 40 s. This method is very simple, rapid and economical and hence can be used for large scale applications. The average particle sizes are 3 to 10 nm and they emit bright green fluorescence under the irradiation of UV-light. Therefore, the particles can be used as a unique material for bioimaging as well as drug delivery. To further increase the fluorescence property of the synthetic carbonnanoparticles we simply functionalized them by using different organic dyes, such as fluorescein, rhodamine B and α-naphthylamine the maximum fluorescence intensity was observed for the particles functionalized with fluorescein. It is very interesting to note that all of those compounds show maximum fluorescence intensity at 225 nm excitation wavelength and for any excitation wavelength the peak positions are exactly same the position as that of CNPs itself, which is completely different from the individual precursors (dyes). All of the above compounds, including CNPs, have also been successfully introduced into the erythrocyte enriched fraction of healthy human blood cells with minimum cytotoxicity.

  16. High Hats, Swiss Cheese, and Fluorescent Lighting?

    SciTech Connect

    McCullough, Jeffrey J.; Gordon, Kelly L.

    2002-08-30

    For DOE, PNNL is conducting a competitive procurement to promote market introduction of new residential recessed downlights (also known as ''recessed cans'' or ''high hats'') that are airtight, rated for insulated ceilings, and hard-wired for CFLs. This paper discusses the potential energy savings of new high-efficiency downlights, and the results of product testing to date. Recessed downlights are the most popular residential lighting fixtures in the United States, with 21.7 million fixtures sold in 2000. An estimated 350 million are currently installed in American homes. Recessed cans are relatively inexpensive, and provide an unobtrusive, directed source of light for kitchens, hallways, and living rooms. Recessed cans are energy-intensive in three ways. First, virtually all recessed cans currently installed in the residential sector use incandescent light sources, typically reflector-type lamps drawing 65-150 watts. Second, heat from incandescent lamps adds to air-conditioning loads. Third, most installed recessed cans are not airtight, so they allow conditioned air to escape from the living area into unconditioned spaces such as attics. Addressing both lighting energy use and air leakage in recessed cans has proven challenging. Lighting energy efficiency is greatly improved by using CFLs. Air leakage can be addressed by making fixtures airtight. But when CFLs are used in an airtight recessed can, heat generated by the lamp and ballast is trapped within the fixture. Excessive heat causes reduced light output and shorter lifespan of the CFL. The procurement was designed to overcome these technical challenges and make new products available in the marketplace.

  17. In situ measurement of reactive neutral constituents in the thermosphere by atomic and molecular resonance fluorescence

    NASA Technical Reports Server (NTRS)

    Anderson, J. G.

    1978-01-01

    The Tethered Satellite System in combination with in situ atomic and molecular resonance fluorescence techniques can treat the problem of simultaneously determining the absolute density of atomic and molecular species known to control the photochemical structure of the upper atmosphere. Two familities of reactants which can be treated by these techniques are the nitrogen oxygen family and the hydrogen oxygen family.

  18. Aqueous synthesis of near-infrared highly fluorescent platinum nanoclusters

    NASA Astrophysics Data System (ADS)

    García Fernández, Jenifer; Trapiella-Alfonso, Laura; Costa-Fernández, José M.; Pereiro, Rosario; Sanz-Medel, Alfredo

    2015-05-01

    A one-step synthesis of near infrared fluorescent platinum nanoclusters (PtNCs) in aqueous medium is described. The proposed optimized procedure for PtNC synthesis is rather simple, fast and it is based on the direct metal reduction with NaBH4. Bidentated thiol ligands (lipoic acid) were selected as nanoclusters stabilizers in water media. The structural characterization revealed attractive features of the PtNCs, including small size, high water solubility, near-infrared luminescence centered at 680 nm, long-term stability and the highest quantum yield in water reported so far (47%) for PtNCs. Moreover, their stability in different pH media and an ionic strength of 0.2 M NaCl was studied and no significant changes in fluorescence emission were detected. In brief, they offer a new type of fluorescent noble metal nanoprobe with a great potential to be applied in several fields, including biolabeling and imaging experiments.

  19. HIgh Rate X-ray Fluorescence Detector

    SciTech Connect

    Grudberg, Peter Matthew

    2013-04-30

    The purpose of this project was to develop a compact, modular multi-channel x-ray detector with integrated electronics. This detector, based upon emerging silicon drift detector (SDD) technology, will be capable of high data rate operation superior to the current state of the art offered by high purity germanium (HPGe) detectors, without the need for liquid nitrogen. In addition, by integrating the processing electronics inside the detector housing, the detector performance will be much less affected by the typically noisy electrical environment of a synchrotron hutch, and will also be much more compact than current systems, which can include a detector involving a large LN2 dewar and multiple racks of electronics. The combined detector/processor system is designed to match or exceed the performance and features of currently available detector systems, at a lower cost and with more ease of use due to the small size of the detector. In addition, the detector system is designed to be modular, so a small system might just have one detector module, while a larger system can have many you can start with one detector module, and add more as needs grow and budget allows. The modular nature also serves to simplify repair. In large part, we were successful in achieving our goals. We did develop a very high performance, large area multi-channel SDD detector, packaged with all associated electronics, which is easy to use and requires minimal external support (a simple power supply module and a closed-loop water cooling system). However, we did fall short of some of our stated goals. We had intended to base the detector on modular, large-area detectors from Ketek GmbH in Munich, Germany; however, these were not available in a suitable time frame for this project, so we worked instead with pnDetector GmbH (also located in Munich). They were able to provide a front-end detector module with six 100 m^2 SDD detectors (two monolithic arrays of three elements each) along with

  20. Titanium dioxide nanoswords with highly reactive, photocatalytic facets

    NASA Astrophysics Data System (ADS)

    Sosnowchik, Brian D.; Chiamori, Heather C.; Ding, Yong; Ha, Jong-Yoon; Wang, Zhong Lin; Lin, Liwei

    2010-12-01

    Titanium dioxide (TiO2) is one of the most widely studied and important materials for catalysis, photovoltaics, and surface science applications, but the ability to consistently control the relative exposure of higher surface energy facets during synthesis remains challenging. Here, we present the repeatable synthesis of highly reactive, rutile {001} or {101} facets on broad, sword-shaped TiO2 nanostructures rapidly synthesized in minutes. Growth occurs along planes of lower surface energy, repeatedly yielding nanostructures with large, high energy facets. The quantitative photocatalytic reactivity of the nanoswords, demonstrated by the photoreduction of silver, is over an order of magnitude higher than reference low energy TiO2{110} substrates. Therefore, the higher surface energy dominated TiO2 nanoswords are ideal structures for characterizing the physicochemical properties of rutile TiO2, and may be used to enhance a variety of catalytic, optical, and clean-technology applications.

  1. Structure-reactivity relationships between fluorescent chromophores and antioxidant activity of grain and sweet sorghum seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenolic structures, such as tannins, are the putative cause of a variety of seed functions including bird/insect resistance and antioxidant activity. Structure-reactivity relationships are necessary to understand the influence of polyphenolic chromophore structures on the tannin content and fr...

  2. A Simple Visualization of Double Bond Properties: Chemical Reactivity and UV Fluorescence

    ERIC Educational Resources Information Center

    Grayson, Scott M.

    2012-01-01

    A simple, easily visualized thin-layer chromatography (TLC) staining experiment is presented that highlights the difference in reactivity between aromatic double bonds and nonaromatic double bonds. Although the stability of aromatic systems is a major theme in organic chemistry, the concept is rarely reinforced "visually" in the undergraduate…

  3. Quantitative high dynamic range beam profiling for fluorescence microscopy

    SciTech Connect

    Mitchell, T. J. Saunter, C. D.; O’Nions, W.; Girkin, J. M.; Love, G. D.

    2014-10-15

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences.

  4. Quantitative high dynamic range beam profiling for fluorescence microscopy.

    PubMed

    Mitchell, T J; Saunter, C D; O'Nions, W; Girkin, J M; Love, G D

    2014-10-01

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences. PMID:25362409

  5. Superresolution fluorescence mapping of single-nanoparticle catalysts reveals spatiotemporal variations in surface reactivity

    PubMed Central

    Zhang, Yuwei; Lucas, J. Matthew; Song, Ping; Beberwyck, Brandon; Fu, Qiang; Xu, Weilin; Alivisatos, A. Paul

    2015-01-01

    For the practical application of nanocatalysts, it is desirable to understand the spatiotemporal fluctuations of nanocatalytic activity at the single-nanoparticle level. Here we use time-lapsed superresolution mapping of single-molecule catalysis events on individual nanoparticles to observe time-varying changes in the spatial distribution of catalysis events on Sb-doped TiO2 nanorods and Au triangle nanoplates. Compared with the active sites on well-defined surface facets, the defects of the nanoparticle catalysts possess higher intrinsic reactivity but lower stability. Corners and ends are more reactive but also less stable than flat surfaces. Averaged over time, the most stable sites dominate the total apparent activity of single nanocatalysts. However, the active sites with higher intrinsic activity but lower stability show activity at earlier time points before deactivating. Unexpectedly, some active sites are found to recover their activity (“self-healing”) after deactivation, which is probably due to desorption of the adsorbate. Our superresolution measurement of different types of active catalytic sites, over both space and time, leads to a more comprehensive understanding of reactivity patterns and may enable the design of new and more productive heterogeneous catalysts. PMID:26150516

  6. Superresolution fluorescence mapping of single-nanoparticle catalysts reveals spatiotemporal variations in surface reactivity.

    PubMed

    Zhang, Yuwei; Lucas, J Matthew; Song, Ping; Beberwyck, Brandon; Fu, Qiang; Xu, Weilin; Alivisatos, A Paul

    2015-07-21

    For the practical application of nanocatalysts, it is desirable to understand the spatiotemporal fluctuations of nanocatalytic activity at the single-nanoparticle level. Here we use time-lapsed superresolution mapping of single-molecule catalysis events on individual nanoparticles to observe time-varying changes in the spatial distribution of catalysis events on Sb-doped TiO2 nanorods and Au triangle nanoplates. Compared with the active sites on well-defined surface facets, the defects of the nanoparticle catalysts possess higher intrinsic reactivity but lower stability. Corners and ends are more reactive but also less stable than flat surfaces. Averaged over time, the most stable sites dominate the total apparent activity of single nanocatalysts. However, the active sites with higher intrinsic activity but lower stability show activity at earlier time points before deactivating. Unexpectedly, some active sites are found to recover their activity ("self-healing") after deactivation, which is probably due to desorption of the adsorbate. Our superresolution measurement of different types of active catalytic sites, over both space and time, leads to a more comprehensive understanding of reactivity patterns and may enable the design of new and more productive heterogeneous catalysts. PMID:26150516

  7. Recent progress in the development of fluorescent, luminescent and colorimetric probes for detection of reactive oxygen and nitrogen species.

    PubMed

    Chen, Xiaoqiang; Wang, Fang; Hyun, Ji Young; Wei, Tingwen; Qiang, Jian; Ren, Xintong; Shin, Injae; Yoon, Juyoung

    2016-05-21

    Reactive oxygen (ROS) and nitrogen (RNS) species cause oxidative and nitrosative stresses, respectively. These stresses are implicated not only in diverse physiological processes but also in various pathological processes, including cancer and neurodegenerative disorders. In addition, some ROS and RNS in the environment are pollutants that threaten human health. As a consequence of these effects, sensitive methods, which can be employed to selectively monitor ROS and RNS in live cells, tissues and organisms as well as in environmental samples, are needed so that their biological roles can be understood and their concentrations in environmental samples can be determined. In this review, fluorescent, luminescent and colorimetric ROS and RNS probes, which have been developed since 2011, are comprehensively discussed. PMID:27092436

  8. High-resolution fluorescence microscopy of myelin without exogenous probes.

    PubMed

    Christensen, Pia Crone; Brideau, Craig; Poon, Kelvin W C; Döring, Axinia; Yong, V Wee; Stys, Peter K

    2014-02-15

    Myelin is a critical element of the central and peripheral nervous systems of all higher vertebrates. Any disturbance in the integrity of the myelin sheath interferes with the axon's ability to conduct action potentials. Thus, the study of myelin structure and biochemistry is critically important. Accurate and even staining of myelin is often difficult because of its lipid-rich nature and multiple tight membrane wraps, hindering penetration of immunoprobes. Here we show a method of visualizing myelin that is fast, inexpensive and reliable using the cross-linking fixative glutaraldehyde that produces strong, broad-spectrum auto-fluorescence in fixed tissue. Traditionally, effort is generally aimed at eliminating this auto-fluorescence. However, we show that this intrinsic signal, which is very photostable and particularly strong in glutaraldehyde-fixed myelin, can be exploited to visualize this structure to produce very detailed images of myelin morphology. We imaged fixed rodent tissues from the central and peripheral nervous systems using spectral confocal microscopy to acquire high-resolution 3-dimensional images spanning the visual range of wavelengths (400-750 nm). Mathematical post-processing allows accurate and unequivocal separation of broadband auto-fluorescence from exogenous fluorescent probes such as DAPI and fluorescently-tagged secondary antibodies. We additionally show the feasibility of immunohistochemistry with antigen retrieval, which allows co-localization of proteins of interest together with detailed myelin morphology. The lysolecithin model of de- and remyelination is shown as an example of a practical application of this technique, which can be routinely applied when high-resolution microscopy of central or peripheral myelinated tracts is required. PMID:24188810

  9. A high resolution solar atlas for fluorescence calculations

    NASA Technical Reports Server (NTRS)

    Hearn, M. F.; Ohlmacher, J. T.; Schleicher, D. G.

    1983-01-01

    The characteristics required of a solar atlas to be used for studying the fluorescence process in comets are examined. Several sources of low resolution data were combined to provide an absolutely calibrated spectrum from 2250 A to 7000A. Three different sources of high resolution data were also used to cover this same spectral range. The low resolution data were then used to put each high resolution spectrum on an absolute scale. The three high resolution spectra were then combined in their overlap regions to produce a single, absolutely calibrated high resolution spectrum over the entire spectral range.

  10. High-resolution reactive transport: A coupled parallel hydrogeochemical model

    NASA Astrophysics Data System (ADS)

    Beisman, J. J.; Maxwell, R. M.; Steefel, C. I.; Sitchler, A.; Molins, S.

    2013-12-01

    Subsurface hydrogeochemical systems are an especially complex component of the terrestrial environment and play host to a multitude of interactions. Parameterizations of these interactions are perhaps the least understood component of terrestrial systems, presenting uncertainties in the predictive understanding of biogeochemical cycling and transport. Thorough knowledge of biogeochemical transport processes is critical to the quantification of carbon/nutrient fluxes in the subsurface, and to the development of effective contaminant remediation techniques. Here we present a coupled parallel hydrogeochemical model, ParCrunchFlow, as a tool to further our understanding of governing processes and interactions in natural hydrogeochemical systems. ParCrunchFlow is a coupling of the reactive transport simulator CrunchFlow with the hydrologic model ParFlow. CrunchFlow is a multicomponent reactive flow and transport code that can be used to simulate a range of important processes and environments, including reactive contaminant transport, chemical weathering, carbon sequestration, biogeochemical cycling, and water-rock interaction. ParFlow is a parallel, three-dimensional, variably-saturated, coupled surface-subsurface flow and transport code with the ability to simulate complex topography, geology, and heterogeneity. ParCrunchflow takes advantage of the efficient parallelism built into Parflow, allowing the numerical simulation of reactive transport processes in chemically and physically heterogeneous media at high spatial resolutions. This model provides an ability to further examine the interactions and feedbacks between biogeochemical systems and complex subsurface flow fields. In addition to the details of model construction, results will be presented that show floodplain nutrient cycling and the effects of heterogeneity on small-scale mixing reactions at the Department of Energy's Old Rifle Legacy site.

  11. A scanning fluorescence spectroscopy of decorin under high pressure

    NASA Astrophysics Data System (ADS)

    Komoda, Takahito; Kim, Yun-Jung; Suzuki, Atsushi; Nishiumi, Tadayuki

    2013-06-01

    High pressure processing is able to tenderize not only meat but also intramuscular connective tissue, which is mainly composed of collagen. Decorin, one of the proteoglycans, binds to and stabilizes collagen fibrils. It has been suggested that structural weakening of intramuscular connective tissue may result from the disappearance of the decorin-collagen interaction. In this study, the fluorescence spectra and the surface hydrophobicity of decorin molecules were measured under high pressure in order to examine the resulting change in the tertiary structure. The fluorescence intensity and the surface hydrophobicity of decorin molecules both decreased with increasing applied pressure and with applied time at the constant applied pressure, respectively. The observations indicate that the native structure of decorin is maintained during 200 MPa pressurization for less than 30 min.

  12. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence.

    PubMed

    Hirata, Shuzo; Sakai, Yumi; Masui, Kensuke; Tanaka, Hiroyuki; Lee, Sae Youn; Nomura, Hiroko; Nakamura, Nozomi; Yasumatsu, Mao; Nakanotani, Hajime; Zhang, Qisheng; Shizu, Katsuyuki; Miyazaki, Hiroshi; Adachi, Chihaya

    2015-03-01

    Organic compounds that exhibit highly efficient, stable blue emission are required to realize inexpensive organic light-emitting diodes for future displays and lighting applications. Here, we define the design rules for increasing the electroluminescence efficiency of blue-emitting organic molecules that exhibit thermally activated delayed fluorescence. We show that a large delocalization of the highest occupied molecular orbital and lowest unoccupied molecular orbital in these charge-transfer compounds enhances the rate of radiative decay considerably by inducing a large oscillator strength even when there is a small overlap between the two wavefunctions. A compound based on our design principles exhibited a high rate of fluorescence decay and efficient up-conversion of triplet excitons into singlet excited states, leading to both photoluminescence and internal electroluminescence quantum yields of nearly 100%. PMID:25485987

  13. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence

    NASA Astrophysics Data System (ADS)

    Hirata, Shuzo; Sakai, Yumi; Masui, Kensuke; Tanaka, Hiroyuki; Lee, Sae Youn; Nomura, Hiroko; Nakamura, Nozomi; Yasumatsu, Mao; Nakanotani, Hajime; Zhang, Qisheng; Shizu, Katsuyuki; Miyazaki, Hiroshi; Adachi, Chihaya

    2015-03-01

    Organic compounds that exhibit highly efficient, stable blue emission are required to realize inexpensive organic light-emitting diodes for future displays and lighting applications. Here, we define the design rules for increasing the electroluminescence efficiency of blue-emitting organic molecules that exhibit thermally activated delayed fluorescence. We show that a large delocalization of the highest occupied molecular orbital and lowest unoccupied molecular orbital in these charge-transfer compounds enhances the rate of radiative decay considerably by inducing a large oscillator strength even when there is a small overlap between the two wavefunctions. A compound based on our design principles exhibited a high rate of fluorescence decay and efficient up-conversion of triplet excitons into singlet excited states, leading to both photoluminescence and internal electroluminescence quantum yields of nearly 100%.

  14. KIVA reactive hydrodynamics code applied to detonations in high vacuum

    NASA Astrophysics Data System (ADS)

    Greiner, N. Roy

    1989-08-01

    The KIVA reactive hydrodynamics code was adapted for modeling detonation hydrodynamics in a high vacuum. Adiabatic cooling rapidly freezes detonation reactions as a result of free expansion into the vacuum. After further expansion, a molecular beam of the products is admitted without disturbance into a drift tube, where the products are analyzed with a mass spectrometer. How the model is used for interpretation and design of experiments for detonation chemistry is explained. Modeling of experimental hydrodynamic characterization by laser-schlieren imaging and model-aided mapping that will link chemical composition data to particular volume elements in the explosive charge are also discussed.

  15. Highly fluorescent resorcinarene cavitand nanocapsules with efficient renal clearance

    NASA Astrophysics Data System (ADS)

    Mahadevan, Kalpana; Patthipati, Venkata Suresh; Han, Sangbum; Swanson, R. James; Whelan, Eoin C.; Osgood, Christopher; Balasubramanian, Ramjee

    2016-08-01

    Nanomaterial based imaging approaches hold substantial promise in addressing current diagnostic and therapeutic challenges. One of the key requirements for the successful clinical translation of nanomaterials is their complete clearance from the body within a reasonable time period preferably via the renal filtration route. This article describes the synthesis of highly fluorescent, water soluble, resorcinarene cavitand nanocapsules and demonstrates their effective renal clearance in mice. The synthesis and functionalization of nanocapsules was accomplished in a one-pot operation via thiol-ene reactions without involving self-assembly, sacrificial templates or emulsions. Water soluble resorcinarene cavitand nanocapsules obtained by this approach were covalently functionalized with Alexa Fluor 750. Highly fluorescent nanocapsules with hydrodynamic diameters of 122 nm and 68 nm and extinction coefficients of 1.3 × 109 M‑1 cm‑1 and 1.5 × 108 M‑1 cm‑1 respectively were prepared by varying the reaction conditions. The in vivo biodistribution and clearance of these nanocapsules in mice followed by whole-body fluorescence imaging showed that they were both cleared renally within a few hours. Given the inherent encapsulation capabilities of nanocapsules, the renal clearance demonstrated in this work opens up new opportunities for their theranostic applications especially for targeting and treating the urinary tract.

  16. Highly fluorescent resorcinarene cavitand nanocapsules with efficient renal clearance.

    PubMed

    Mahadevan, Kalpana; Patthipati, Venkata Suresh; Han, Sangbum; Swanson, R James; Whelan, Eoin C; Osgood, Christopher; Balasubramanian, Ramjee

    2016-08-19

    Nanomaterial based imaging approaches hold substantial promise in addressing current diagnostic and therapeutic challenges. One of the key requirements for the successful clinical translation of nanomaterials is their complete clearance from the body within a reasonable time period preferably via the renal filtration route. This article describes the synthesis of highly fluorescent, water soluble, resorcinarene cavitand nanocapsules and demonstrates their effective renal clearance in mice. The synthesis and functionalization of nanocapsules was accomplished in a one-pot operation via thiol-ene reactions without involving self-assembly, sacrificial templates or emulsions. Water soluble resorcinarene cavitand nanocapsules obtained by this approach were covalently functionalized with Alexa Fluor 750. Highly fluorescent nanocapsules with hydrodynamic diameters of 122 nm and 68 nm and extinction coefficients of 1.3 × 10(9) M(-1) cm(-1) and 1.5 × 10(8) M(-1) cm(-1) respectively were prepared by varying the reaction conditions. The in vivo biodistribution and clearance of these nanocapsules in mice followed by whole-body fluorescence imaging showed that they were both cleared renally within a few hours. Given the inherent encapsulation capabilities of nanocapsules, the renal clearance demonstrated in this work opens up new opportunities for their theranostic applications especially for targeting and treating the urinary tract. PMID:27378394

  17. High-intensity xenon pulse light source for fluorescence excitation

    NASA Astrophysics Data System (ADS)

    Miyamoto, Makoto; Ueno, Kazuo

    1997-05-01

    A newly developed 60W xenon flash lamp, L6604 and L6605, achieves the goals of longer operating life, higher output, and improved light stability. It operates at 2 Joules per flash input energy with approximately a 4 microsecond flash duration. The stability achieved is 2-3 percent peak-to-peak during a lifetime of 5 X 10e7 flashes, which is almost double that of conventional xenon flash lamps. This newly developed xenon flashlamp should serve as an excellent light source for analytical cytology and other fluorescence instruments. It can function as a high output, stable excitation light source for conventional fluorescence or delayed luminescence with a CCD. Besides providing powerful and stable illumination for absorption analysis of cells on slides, this lamp eliminates the optical artifacts associated with vibration of the stage which often limit throughput. This paper will describe in detail performance improvements obtained from this newly developed xenon flash lamp.

  18. Containerless high temperature property measurements by atomic fluorescence

    NASA Technical Reports Server (NTRS)

    Nordine, P. C.; Schiffman, R. A.

    1982-01-01

    Laser induced fluorescence techniques were developed for the containerless study of high temperature processes, material properties, levitation, and heating techniques for containerless earth-based experimentation. Experiments were performed in which fluorescence of atomic aluminum, mercury, or tungsten were studied. These experiments include measurements of: (1) Al atom evaporation from CW CO2 laser heated and aerodynamically levitated sapphire and alumina spheres, and self-supported sapphire filaments, (2) Al atom reaction with ambient oxygen in the wake of a levitated specimen, (3) Hg atom concentrations in the wake of levitated alumina and sapphire spheres, relative to the ambient Hg atom concentration, (4) Hg atom concentrations in supersonic levitation jets, and (5) metastable, electronically excited W atom concentrations produced by evaporation of an electrically heated tungsten filament.

  19. X-ray Excited Optical Fluorescence and Diffraction Imaging of Reactivity and Crystallinity in a Zeolite Crystal: Crystallography and Molecular Spectroscopy in One.

    PubMed

    Ristanović, Zoran; Hofmann, Jan P; Richard, Marie-Ingrid; Jiang, Tao; Chahine, Gilbert A; Schülli, Tobias U; Meirer, Florian; Weckhuysen, Bert M

    2016-06-20

    Structure-activity relationships in heterogeneous catalysis are challenging to be measured on a single-particle level. For the first time, one X-ray beam is used to determine the crystallographic structure and reactivity of a single zeolite crystal. The method generates μm-resolved X-ray diffraction (μ-XRD) and X-ray excited optical fluorescence (μ-XEOF) maps of the crystallinity and Brønsted reactivity of a zeolite crystal previously reacted with a styrene probe molecule. The local gradients in chemical reactivity (derived from μ-XEOF) were correlated with local crystallinity and framework Al content, determined by μ-XRD. Two distinctly different types of fluorescent species formed selectively, depending on the local zeolite crystallinity. The results illustrate the potential of this approach to resolve the crystallographic structure of a porous material and its reactivity in one experiment via X-ray induced fluorescence of organic molecules formed at the reactive centers. PMID:27145171

  20. X‐ray Excited Optical Fluorescence and Diffraction Imaging of Reactivity and Crystallinity in a Zeolite Crystal: Crystallography and Molecular Spectroscopy in One

    PubMed Central

    Ristanović, Zoran; Hofmann, Jan P.; Richard, Marie‐Ingrid; Jiang, Tao; Chahine, Gilbert A.; Schülli, Tobias U.; Meirer, Florian

    2016-01-01

    Abstract Structure–activity relationships in heterogeneous catalysis are challenging to be measured on a single‐particle level. For the first time, one X‐ray beam is used to determine the crystallographic structure and reactivity of a single zeolite crystal. The method generates μm‐resolved X‐ray diffraction (μ‐XRD) and X‐ray excited optical fluorescence (μ‐XEOF) maps of the crystallinity and Brønsted reactivity of a zeolite crystal previously reacted with a styrene probe molecule. The local gradients in chemical reactivity (derived from μ‐XEOF) were correlated with local crystallinity and framework Al content, determined by μ‐XRD. Two distinctly different types of fluorescent species formed selectively, depending on the local zeolite crystallinity. The results illustrate the potential of this approach to resolve the crystallographic structure of a porous material and its reactivity in one experiment via X‐ray induced fluorescence of organic molecules formed at the reactive centers. PMID:27145171

  1. X‐ray Excited Optical Fluorescence and Diffraction Imaging of Reactivity and Crystallinity in a Zeolite Crystal: Crystallography and Molecular Spectroscopy in One

    PubMed Central

    Ristanović, Zoran; Hofmann, Jan P.; Richard, Marie‐Ingrid; Jiang, Tao; Chahine, Gilbert A.; Schülli, Tobias U.; Meirer, Florian

    2016-01-01

    Abstract Structure–activity relationships in heterogeneous catalysis are challenging to be measured on a single‐particle level. For the first time, one X‐ray beam is used to determine the crystallographic structure and reactivity of a single zeolite crystal. The method generates μm‐resolved X‐ray diffraction (μ‐XRD) and X‐ray excited optical fluorescence (μ‐XEOF) maps of the crystallinity and Brønsted reactivity of a zeolite crystal previously reacted with a styrene probe molecule. The local gradients in chemical reactivity (derived from μ‐XEOF) were correlated with local crystallinity and framework Al content, determined by μ‐XRD. Two distinctly different types of fluorescent species formed selectively, depending on the local zeolite crystallinity. The results illustrate the potential of this approach to resolve the crystallographic structure of a porous material and its reactivity in one experiment via X‐ray induced fluorescence of organic molecules formed at the reactive centers. PMID:27478278

  2. High throughput identification of promiscuous inhibitors from screening libraries with the use of a thiol-containing fluorescent probe

    PubMed Central

    McCallum, Megan M.; Nandhikonda, Premchendar; Temmer, Jonathan J.; Eyermann, Charles; Simeonov, Anton; Jadhav, Ajit; Yasgar, Adam; Maloney, David; Arnold, Leggy A.

    2013-01-01

    Testing small molecules for their ability to modify cysteine residues of proteins in the early stages of drug discovery is expected to accelerate our ability to develop more selective drugs with lesser side effects. In addition, this approach also enables the rapid evaluation of the mode of binding of new drug candidates in respect to thiol-reactivity and metabolism by glutathione. Herein, we describe the development of a fluorescence-based high throughput assay that allows the identification of thiol-reactive compounds. A thiol-containing fluorescent probe MSTI was synthesized and used to evaluate small molecules from the LOPAC collection of bioactive molecules. LOPAC compounds that are known to react with sulfur nucleophiles were identified with this assay, for example, irreversible protease inhibitors, nitric oxide releasing compounds, and proton-pump inhibitors. The results confirm that both electrophilic and redox reactive compounds can be quickly identified in a high throughput manner enabling the assessment of screening libraries in respect to thiol-reactive compounds. PMID:23446699

  3. Fluorescence spectroscopy: considerations for highly absorbing dissolved organic matter samples

    NASA Astrophysics Data System (ADS)

    Simone, B. E.; Miller, M.; McKnight, D. M.

    2009-12-01

    Fluorescence spectroscopy is a robust method for characterizing organic matter (OM). However, proper collection and correction of spectra are necessary to provide useful data. One important correction is the inner-filter correction, which primarily accounts for the inner-filter effect by adjusting for the wavelength dependent attenuation of emitted light by the solution prior to detection by the fluorometer. The most commonly used correction is based on an assumption that light is emitted at the center of the pathlength. Thus, the inner-filter effect is more pronounced in highly absorbing samples, and has the potential to skew the fluorescence spectra. For this study, the terrestrially derived Suwannee River fulvic acid (SRFA) and microbially derived Pony Lake fulvic acid (PLFA), from the International Humic Substances Society (IHSS), were diluted to incremental absorbances at a wavelength of 254 nm from 0.05 to 1.0 at pH 4 and 7. Three dimensional fluorescence spectra were measured and modeled with the Cory and McKnight (2005) parallel factor analysis (PARAFAC) model which resolves the fluorescence spectra into 13 components, including quinone-like and protein-like components. In the absence of inner-filter effects, plots of absorbance vs. loadings should be linear. Using the data from absorbance of 0.05 to 0.3, where the inner-filter affect is least pronounced, a linear regression was created and used as a baseline to predict component loadings at higher absorbance values in the absence of inner-filter effects. Results indicate that at absorbance values greater than 0.3, the commonly-used inner-filter correction is not able to remove the inner-filter effect. Therefore, in order to obtain reliable component loadings and correctly interpret the spectra, samples should be diluted to absorbance values less than 0.3 at 254 nm prior to collection of three dimensional fluorescence scans. The recommendation of a maximum absorbance of 0.3 agrees with the results of a

  4. Containerless high temperature property measurements by atomic fluorescence

    NASA Technical Reports Server (NTRS)

    Schiffman, R. A.; Walker, C. A.

    1984-01-01

    Laser induced fluorescence (LIF) techniques for containerless study of high temperature processes and material properties was studied. Gas jet and electromagnetic levitation and electromagnetic and laser heating techniques are used with LIF in earth-based containerless high temperature experiments. Included are the development of an apparatus and its use in the studies of (1) chemical reactions on Al2O3, molybdenum, tungsten and LaB6 specimens, (2) methods for noncontact specimen temperature measurement, (3) levitation jet properties and (4) radiative lifetime and collisional energy transfer rates for electronically excited atoms.

  5. Containerless high temperature property measurements by atomic fluorescence

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The use of laser induced fluorescence (LIF) techniques for containerless study of high temperature processes and material properties is studied. Gas jet and electromagnetic levitation and electromagnetic and laser heating techniques are used with LIF in Earth-based containerless high temperature experiments. The work to date includes development of an apparatus and its use in studies of chemical reactions on Al2O3, molybdenum, and tungsten specimens, novel methods for noncontact specimen temperature measurement, and levitation jet properties. Brief summaries of these studies are given. The apparatus is described and detailed results for the current reporting period are presented.

  6. Measurements of OH and HO2 Radicals and OH Reactivity at Tropical Locations Using Laser-Induced Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Furneaux, K. L.; Whalley, L. K.; Edwards, P.; Goddard, A.; Ingham, T.; Evans, M. J.; Heard, D. E.

    2009-04-01

    The OH radical is the dominant daytime oxidant in the atmosphere. Together with the closely coupled HO2 radical, these two species (termed HOx) play an important role in determining the composition of the atmosphere. Tropical latitudes are active regions of atmospheric chemistry due to high solar radiation, humidity and temperature. For these reasons, field measurements of HOx in the tropics are crucial to improve understanding of atmospheric chemistry through model - measurement comparisons. Due to the low number of HOx measurements in the tropics, these comparisons are sparse. An aircraft campaign over the pristine Amazon rainforest found HOx concentrations to be high1,2. It has been proposed that this is due to a previously overlooked OH recycling mechanism via the oxidation of isoprene1,2. The need to determine if this is ubiquitous across tropical rainforest regions is necessary. The Leeds FAGE instrument was deployed at the Bukit Atur Global Atmospheric Watch Station, Borneo (5.0N, 117.8E) from April - July 2008 as part of the OP3 project (Oxidant and Particle Photochemical Processes above a South-East Asian tropical rainforest) to measure OH and HO2 concentrations and the OH chemical lifetime by Fluorescence Assay by Gas Expansion (FAGE). These measurements represent the first ground based [HOx] measurements in a tropical rainforest. Chemical activity differed significantly throughout the measurement period. HOx concentrations were elevated in July (average peak [OH] = 5.3 ×106 molecule cm-3) compared to April (average peak [OH] = 2.5 ×106 molecule cm-3), attributed to higher OH sinks in April. Measurements of the OH chemical lifetime can be used to quantify unknown OH sinks. The OH chemical lifetime displayed a diurnal cycle that correlated with isoprene concentrations. At this site isoprene represents the major OH loss route but there are significant unknown fractions. Model calculations result in an under prediction of HOx when measured sinks are

  7. Simultaneous Correlative Scanning Electron and High-NA Fluorescence Microscopy

    PubMed Central

    Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Effting, Andries P. J.; Voorneveld, Philip W.; Lucas, Miriam S.; Hardwick, James C.; Wepf, Roger A.; Kruit, Pieter; Hoogenboom, Jacob P.

    2013-01-01

    Correlative light and electron microscopy (CLEM) is a unique method for investigating biological structure-function relations. With CLEM protein distributions visualized in fluorescence can be mapped onto the cellular ultrastructure measured with electron microscopy. Widespread application of correlative microscopy is hampered by elaborate experimental procedures related foremost to retrieving regions of interest in both modalities and/or compromises in integrated approaches. We present a novel approach to correlative microscopy, in which a high numerical aperture epi-fluorescence microscope and a scanning electron microscope illuminate the same area of a sample at the same time. This removes the need for retrieval of regions of interest leading to a drastic reduction of inspection times and the possibility for quantitative investigations of large areas and datasets with correlative microscopy. We demonstrate Simultaneous CLEM (SCLEM) analyzing cell-cell connections and membrane protrusions in whole uncoated colon adenocarcinoma cell line cells stained for actin and cortactin with AlexaFluor488. SCLEM imaging of coverglass-mounted tissue sections with both electron-dense and fluorescence staining is also shown. PMID:23409024

  8. Aqueous synthesis of near-infrared highly fluorescent platinum nanoclusters.

    PubMed

    García Fernández, Jenifer; Trapiella-Alfonso, Laura; Costa-Fernández, José M; Pereiro, Rosario; Sanz-Medel, Alfredo

    2015-05-29

    A one-step synthesis of near infrared fluorescent platinum nanoclusters (PtNCs) in aqueous medium is described. The proposed optimized procedure for PtNC synthesis is rather simple, fast and it is based on the direct metal reduction with NaBH4. Bidentated thiol ligands (lipoic acid) were selected as nanoclusters stabilizers in water media. The structural characterization revealed attractive features of the PtNCs, including small size, high water solubility, near-infrared luminescence centered at 680 nm, long-term stability and the highest quantum yield in water reported so far (47%) for PtNCs. Moreover, their stability in different pH media and an ionic strength of 0.2 M NaCl was studied and no significant changes in fluorescence emission were detected. In brief, they offer a new type of fluorescent noble metal nanoprobe with a great potential to be applied in several fields, including biolabeling and imaging experiments. PMID:25944823

  9. Scanning fluorescence detector for high-throughput DNA genotyping

    NASA Astrophysics Data System (ADS)

    Rusch, Terry L.; Petsinger, Jeremy; Christensen, Carl; Vaske, David A.; Brumley, Robert L., Jr.; Luckey, John A.; Weber, James L.

    1996-04-01

    A new scanning fluorescence detector (SCAFUD) was developed for high-throughput genotyping of short tandem repeat polymorphisms (STRPs). Fluorescent dyes are incorporated into relatively short DNA fragments via polymerase chain reaction (PCR) and are separated by electrophoresis in short, wide polyacrylamide gels (144 lanes with well to read distances of 14 cm). Excitation light from an argon laser with primary lines at 488 and 514 nm is introduced into the gel through a fiber optic cable, dichroic mirror, and 40X microscope objective. Emitted fluorescent light is collected confocally through a second fiber. The confocal head is translated across the bottom of the gel at 0.5 Hz. The detection unit utilizes dichroic mirrors and band pass filters to direct light with 10 - 20 nm bandwidths to four photomultiplier tubes (PMTs). PMT signals are independently amplified with variable gain and then sampled at a rate of 2500 points per scan using a computer based A/D board. LabView software (National Instruments) is used for instrument operation. Currently, three fluorescent dyes (Fam, Hex and Rox) are simultaneously detected with peak detection wavelengths of 543, 567, and 613 nm, respectively. The detection limit for fluorescein-labeled primers is about 100 attomoles. Planned SCAFUD upgrades include rearrangement of laser head geometry, use of additional excitation lasers for simultaneous detection of more dyes, and the use of detector arrays instead of individual PMTs. Extensive software has been written for automatic analysis of SCAFUD images. The software enables background subtraction, band identification, multiple- dye signal resolution, lane finding, band sizing and allele calling. Whole genome screens are currently underway to search for loci influencing such complex diseases as diabetes, asthma, and hypertension. Seven production SCAFUDs are currently in operation. Genotyping output for the coming year is projected to be about one million total genotypes (DNA

  10. High-spatial-resolution nanoparticle x-ray fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Larsson, Jakob C.; Vâgberg, William; Vogt, Carmen; Lundström, Ulf; Larsson, Daniel H.; Hertz, Hans M.

    2016-03-01

    X-ray fluorescence tomography (XFCT) has potential for high-resolution 3D molecular x-ray bio-imaging. In this technique the fluorescence signal from targeted nanoparticles (NPs) is measured, providing information about the spatial distribution and concentration of the NPs inside the object. However, present laboratory XFCT systems typically have limited spatial resolution (>1 mm) and suffer from long scan times and high radiation dose even at high NP concentrations, mainly due to low efficiency and poor signal-to-noise ratio. We have developed a laboratory XFCT system with high spatial resolution (sub-100 μm), low NP concentration and vastly decreased scan times and dose, opening up the possibilities for in-vivo small-animal imaging research. The system consists of a high-brightness liquid-metal-jet microfocus x-ray source, x-ray focusing optics and an energy-resolving photon-counting detector. By using the source's characteristic 24 keV line-emission together with carefully matched molybdenum nanoparticles the Compton background is greatly reduced, increasing the SNR. Each measurement provides information about the spatial distribution and concentration of the Mo nanoparticles. A filtered back-projection method is used to produce the final XFCT image.

  11. Highly conducting ZnSe films by reactive magnetron sputtering

    NASA Technical Reports Server (NTRS)

    Nouhi, A.; Stirn, R. J.

    1986-01-01

    This paper presents the results of an effort to deposit high-conductivity ZnSe on glass and conducting SnO2-coated glass substrates by reactive magnetron sputter deposition, using pure metal sputter targets of Zn and dopants such as In, Ga, and Al. Clear yellow ZnSe films were successfully obtained. By using substrate temperatures as low as 150 C, cosputtered dopants, and sputter parameters and H2Se injection rates which maximize the Zn-to-Se ratio in the films, ZnSe bulk resistivities have been lowered by up to seven orders of magnitude, reaching values as low as 20 ohm cm. The most effective dopant to data has been In, cosputtered with Zn in amounts leading to In atomic concentrations as high as 1.4 percent. Atomic-absorption measurements show an average 49.9/48.9 ratio of Zn to Se.

  12. Implementation of a new scanning method for high-resolution fluorescence tomography using thermo-sensitive fluorescent agents

    PubMed Central

    Nouizi, Farouk; Kwong, Tiffany C.; Cho, Jaedu; Lin, Yuting; Sampathkumaran, Uma; Gulsen, Gultekin

    2016-01-01

    Conventional fluorescence tomography provides images of the distribution of fluorescent agents within highly scattering media, but suffers from poor spatial resolution. Previously, we introduced a new method termed “temperature-modulated fluorescence tomography” (TM-FT) that generates fluorescence images with high spatial resolution. TM-FT first uses focused ultrasound to locate the distribution of temperature-sensitive fluorescence probes. Afterward, this a priori information is utilized to improve the performance of the inverse solver for conventional fluorescence tomography and reveal quantitatively accurate fluorophore concentration maps. However, the disadvantage of this novel method is the long data acquisition time as the ultrasound beam was scanned in a step-and-shoot mode. In this Letter, we present a new, fast scanning method that reduces the imaging time 40 fold. By continuously scanning the ultrasound beam over a 50 mm by 25 mm field-of-view, high-resolution fluorescence images are obtained in less than 29 min, which is critical for in vivo small animal imaging. PMID:26512501

  13. Implementation of a new scanning method for high-resolution fluorescence tomography using thermo-sensitive fluorescent agents.

    PubMed

    Nouizi, Farouk; Kwong, Tiffany C; Cho, Jaedu; Lin, Yuting; Sampathkumaran, Uma; Gulsen, Gultekin

    2015-11-01

    Conventional fluorescence tomography provides images of the distribution of fluorescent agents within highly scattering media, but suffers from poor spatial resolution. Previously, we introduced a new method termed "temperature-modulated fluorescence tomography" (TM-FT) that generates fluorescence images with high spatial resolution. TM-FT first uses focused ultrasound to locate the distribution of temperature-sensitive fluorescence probes. Afterward, this a priori information is utilized to improve the performance of the inverse solver for conventional fluorescence tomography and reveal quantitatively accurate fluorophore concentration maps. However, the disadvantage of this novel method is the long data acquisition time as the ultrasound beam was scanned in a step-and-shoot mode. In this Letter, we present a new, fast scanning method that reduces the imaging time 40 fold. By continuously scanning the ultrasound beam over a 50 mm by 25 mm field-of-view, high-resolution fluorescence images are obtained in less than 29 min, which is critical for in vivo small animal imaging. PMID:26512501

  14. Method for generating a highly reactive plasma for exhaust gas after treatment and enhanced catalyst reactivity

    SciTech Connect

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2000-07-01

    This patent application describes a method and apparatus of exhaust gas remediation that enhance the reactivity of the material catalysts found within catalytic converters of cars, trucks, and power stations.

  15. Highly photoluminescent polysilsesquioxane hybrids based on weakly fluorescent 1,8-naphthalic anhydride derivatives

    NASA Astrophysics Data System (ADS)

    Pan, Fei; Huang, Miao; Song, Jianhui; Wu, Meng; Xu, Min

    2016-07-01

    A series of highly fluorescent polysilsesquioxane materials based on 1,8-naphthalic anhydride derivatives(XNA) have been prepared. The XNAs were chemically bonded with the polysiloxane. Though the fluorescent intensities of the solution of XNAs with different substitutes make a great difference, some of them are even very weakly emissive, the fluorescent intensities of the corresponding solid polysilsesquioxane materials are strong. In this case, the electronic effect of the substitute became non-important. With restricted molecular motion and J-aggregation, some traditionally weakly fluorescent or non-fluorescent chromophoric organics due to the substituent effect may be used to prepare highly fluorescent materials.

  16. High refractive index substrates for fluorescence microscopy of biological interfaces with high z contrast

    PubMed Central

    Ajo-Franklin, Caroline M.; Kam, Lance; Boxer, Steven G.

    2001-01-01

    Total internal reflection fluorescence microscopy is widely used to confine the excitation of a complex fluorescent sample very close to the material on which it is supported. By working with high refractive index solid supports, it is possible to confine even further the evanescent field, and by varying the angle of incidence, to obtain quantitative information on the distance of the fluorescent object from the surface. We report the fabrication of hybrid surfaces consisting of nm layers of SiO2 on lithium niobate (LiNbO3, n = 2.3). Supported lipid bilayer membranes can be assembled and patterned on these hybrid surfaces as on conventional glass. By varying the angle of incidence of the excitation light, we are able to obtain fluorescent contrast between 40-nm fluorescent beads tethered to a supported bilayer and fluorescently labeled protein printed on the surface, which differ in vertical position by only tens of nm. Preliminary experiments that test theoretical models for the fluorescence-collection factor near a high refractive index surface are presented, and this factor is incorporated into a semiquantitative model used to predict the contrast of the 40-nm bead/protein system. These results demonstrate that it should be possible to profile the vertical location of fluorophores on the nm distance scale in real time, opening the possibility of many experiments at the interface between supported membranes and living cells. Improvements in materials and optical techniques are outlined. PMID:11717428

  17. Earle K. Plyler Prize Talk: Using High Resolution Electronic Spectroscopy to Probe Reactive Chemical Intermediates

    NASA Astrophysics Data System (ADS)

    Miller, Terry

    2009-03-01

    Gas phase chemical reactions, such as occur in atmospheric chemistry, combustion, plasma processing, etc. are of great importance to our economy and society. These reactions are typically very complex involving up to 1000's of elementary steps with a corresponding number of reactive chemical intermediates. Spectrospic diagnostics, based upon well analyzed and well understood spectra of the intermediates, are crucial for monitoring such reactions and unraveling their mechanisms. These spectral analyses often benefit from the guidance provided by quantum chemical calculations and conversely the molecular parameters, experimentally determined from the spectra, serve as ``gold standards'' for benchmarking such calculations. Such standards are especially valuable for reactive intermediates whose electronic or geometric structure is particularly complex because of electron-spin interactions, Jahn-Teller effects or other vibronic interactions, hindered internal motions, large molecular size and weight, etc. The organic alkoxy, RO., and peroxy, RO2., (R=alkyl group) free radicals are excellent examples of such species. The talk will focus on our recent characterization of these radicals via their ``high-resolution,'' mostly rotationally resolved, electronic spectra utilizing the techniques of laser induced fluorescence, stimulated emission pumping, and cavity ringdown spectroscopy. Selected spectra, their analysis, and the molecular information resulting therefrom will be discussed.

  18. Synthesis of highly fluorescent gold nanoclusters using egg white proteins.

    PubMed

    Joseph, Dickson; Geckeler, Kurt E

    2014-03-01

    Gold nanoclusters (AuNCs) have gained interest during the recent years because of their low toxicity and finer size for the bioimaging and biolabeling applications in comparison to the semiconductor quantum dot analogues. Diverse materials such as sulfur compounds, peptides, dendrimers, proteins, etc., are exploited for the preparation of AuNCs. Henceforth, highly fluorescent, water-soluble, and few atom-containing gold nanoclusters are created using a rapid, straightforward, and green method. In this regard for the first time chicken egg white (CEW), one of the most unique materials, is utilized in an aqueous solution under basic conditions at physiological temperature for the preparation of AuNCs. Tyrosine and tryptophan amino acid residues are responsible for the conversion of Au ions to Au(0) under alkaline condtions. CEW contains four major proteins of which the main constituent protein, ovalbumin also leads to the formation of the AuNCs with a higher fluorescence emission compared to the CEW. The ratios between the different reaction partners are very crucial, along with temperature and time for the preparation of AuNCs with high photoluminescence emission. The limited vibrational motion of the proteins under alkaline condition and the bulkiness of the proteins help in the formation of AuNCs. PMID:24321847

  19. Rapidly responsive and highly selective fluorescent probe for sulfite detection in real samples and living cells.

    PubMed

    Li, Hongda

    2015-10-15

    Sulfites (HSO3(-) or SO3(-)) have very significant toxicity in the environment and in the system. However, developing specific identification of sulfite probes is still very important. In this paper, a highly selective colorimetric and fluorescent probe (HHC) was synthesized to detect HSO3(-) in real samples and living cells. Sensing performance and preponderance are listed as follows. First, probe HHC showed remarkable selectivity for HSO3(-) over varieties of other species, including cysteine, glutathione, S(2-), CN(-), and reactive oxygen species, mainly because of the introduction of the electron-poor C=C double bond for HSO3(-). Second, probe HHC has great molar absorptivity, allowing it to act as a visual detection of probe for HSO3(-). Third, the fluorescence intensities of HHC linearly correlate with the concentration of HSO3(-), with a detection limit of 6.8 nm. Finally, our proposed probe can be applied to the visually determination of trace HSO3(-) in real samples and living HeLa cells with high precision. We hope that our proposed probe will greatly benefit biological sciences when biological researchers survey the role of HSO3(-) in biological systems. PMID:26515011

  20. Red phosphors for use in high CRI fluorescent lamps

    DOEpatents

    Srivastava, Alok; Comanzo, Holly; Manivannan, Vankatesan; Setlur, Anant Achyut

    2005-11-15

    Novel red emitting phosphors for use in fluorescent lamps resulting in superior color rendering index values compared to conventional red phosphors. Also disclosed is a fluorescent lamp including a phosphor layer comprising blends of one or more of a blue phosphor, a blue-green phosphor, a green phosphor and a red a phosphor selected from the group consisting of SrY.sub.2 O.sub.4 :Eu.sup.3+, (Y,Gd)Al.sub.3 B.sub.4 O.sub.12 :Eu.sup.3+, and [(Y.sub.1-x-y-m La.sub.y)Gd.sub.x ]BO.sub.3 :Eu.sub.m wherein y<0.50 and m=0.001-0.3. The phosphor layer can optionally include an additional deep red phosphor and a yellow emitting phosphor. The resulting lamp will exhibit a white light having a color rendering index of 90 or higher with a correlated color temperature of from 2500 to 10000 Kelvin. The use of the disclosed red phosphors in phosphor blends of lamps results in high CRI light sources with increased stability and acceptable lumen maintenance over the course of the lamp life.

  1. Molecular Dynamics Simulations of Highly Charged Green Fluorescent Proteins

    SciTech Connect

    Lau, E Y; Phillips, J L; Colvin, M E

    2009-03-26

    A recent experimental study showed that green fluorescent protein (GFP) that has been mutated to have ultra-high positive or negative net charges, retain their native structure and fluorescent properties while gaining resistance to aggregation under denaturing conditions. These proteins also provide an ideal test case for studying the effects of surface charge on protein structure and dynamics. They have performed classical molecular dynamics (MD) simulations on the near-neutral wildtype GFP and mutants with net charges of -29 and +35. They analyzed the resulting trajectories to quantify differences in structure and dynamics between the three GFPs. This analyses shows that all three proteins are stable over the MD trajectory, with the near-neutral wild type GFP exhibiting somewhat more flexibility than the positive or negative GFP mutants, as measured by the order parameter and changes in phi-psi angles. There are more dramatic differences in the properties of the water and counter ions surrounding the proteins. The water diffusion constant near the protein surface is closer to the value for bulk water in the positively charged GFP than in the other two proteins. Additionally, the positively charged GFP shows a much greater clustering of the counter ions (CL-) near its surface than corresponding counter ions (Na+) near the negatively charged mutant.

  2. Real-time Monitoring of Dissolved Organic Matter (DOM) Amount, Composition, Source and Reactivity Using Fluorescence Spectroscopy: Applications for Drinking Water Quality

    NASA Astrophysics Data System (ADS)

    Kraus, T. E.; Saraceno, J.; Downing, B. D.; Goldman, J. H.; Carpenter, K. D.; McGhee, G.; Bergamaschi, B. A.

    2010-12-01

    There is growing interest in the use of in situ, continuous fluorescence spectroscopy as a proxy for dissolved organic carbon (DOC) concentration. To date, in situ fluorometers designed to estimate DOC concentration are single wavelength sensors centered near the excitation/emission (ex/em) pair 370/460 nm. Additional information about dissolved organic matter (DOM) composition has only been obtainable from benchtop fluorometers that provide multi-spectral data. Changes in DOM composition are important as they provide insight into DOM source (e.g. terrestrial, algal, wastewater) and reactivity. Recent advances in sensor technology make it possible to build in situ instruments for measuring multiple fluorescence ex/em pairs, including pairs with excitations in the lower “deep UV” region (e.g. 270/340 nm) associated with fresher and more labile DOM pools. The deployment of multi-spectral sensors will provide real-time continuous data showing not only changes in DOM concentration, but also changes in composition. This information is particularly pertinent to drinking water utilities because a fraction of DOM reacts upon disinfection (e.g. chlorination and ozonation) to form toxic disinfection byproducts (DBPs) which are regulated by the EPA. To test this application, we designed a multi-wavelength sensor that will measure three ex/em pairs (370/470, 370/520 and 270/340 nm) for deployment near a drinking water intake on the Clackamas River in Oregon. Comparison of the continuous data with discrete sample data indicates these tools can track both quantitative and qualitative changes in the DOM pool. The availability of this type of continuous data in real time could enable utilities to minimize the formation of DBPs by continuously optimizing treatment plant operations in response to changes in source water. In addition, collection of high-frequency data will improve understanding of watershed DOM dynamics and help identify sources of DOM and DBP precursors, thereby

  3. Large enhancement of quantum dot fluorescence by highly scalable nanoporous gold.

    PubMed

    Zhang, Ling; Song, Yunke; Fujita, Takeshi; Zhang, Ye; Chen, Mingwei; Wang, Tza-Huei

    2014-02-26

    Dealloyed nanoporous gold (NPG) dramatically enhances quantum dot (QD) fluorescence by amplifying near-field excitation and increasing the radiative decay rate. Originating from plasmonic coupling, the fluorescence enhancement is highly dependent upon the nanopore size of the NPG. In contrast to other nanoengineered metallic structures, NPG exhibits fluorescence enhancement of QDs over a large substrate surface. PMID:24339211

  4. Highly reactive electrophilic oxidants in cytochrome P450 catalysis

    SciTech Connect

    Newcomb, Martin . E-mail: men@uic.edu; Chandrasena, R. Esala P.

    2005-12-09

    The cytochrome P450 enzymes effect a wide range of oxidations in nature including difficult hydroxylation reactions of unactivated C-H. Most of the high energy reactions of these catalysts appear to involve highly electrophilic active species. Attempts to detect the reactive transients in the enzymes have met with limited success, but evidence has accumulated that two distinct electrophilic oxidants are produced in the P450 enzymes. The consensus electrophilic oxidant termed 'iron-oxo' is usually thought to be an analogue of Compound I, an iron(IV)-oxo porphyrin radical cation species, but it is possible that a higher energy electronic isomer of Compound I is required to account for the facility of the C-H oxidation reactions. The second electrophilic oxidant of P450 is speculative; circumstantial evidence suggests that this species is iron-complexed hydrogen peroxide, but this oxidant might be a second spin state of iron-oxo. This overview discusses recent studies directed at detection of the electrophilic oxidants in P450 enzymes and the accumulated evidence for two distinct species.

  5. Substrate degradation in high-Rayleigh-number reactive convection

    NASA Astrophysics Data System (ADS)

    Ward, T. J.; Jensen, O. E.; Power, H.; Riley, D. S.

    2015-11-01

    We study buoyancy-induced convection of a solute in an ideal two-dimensional fluid-saturated porous medium, where the solute undergoes a second-order reaction with a chemical substrate that is fixed in the underlying matrix. Numerical simulations at high Rayleigh number show how a flow is established in which a thin dynamic boundary layer beneath the solute source feeds slender vertical plumes beneath. We examine how the substrate is reactively degraded, at a rate enhanced by convective mixing. For the case when the substrate is abundant, we derive a reduced-order model describing the slow degradation of the substrate, which is formulated as a novel one-dimensional free-boundary problem. Numerical simulations and the reduced model reveal how, when the reaction is rapid compared to the convective time scale, the plumes propagate deep into the flow domain with reaction confined to a narrow region at their base. In contrast, slow reaction allows plumes to fill the domain before degradation of the substrate proceeds homogeneously. An alternative model with a thin reaction front captures the rapid degradation of the substrate when the solute concentration is relatively high.

  6. High rate reactive sputtering of MoN(x) coatings

    NASA Technical Reports Server (NTRS)

    Rudnik, Paul J.; Graham, Michael E.; Sproul, William D.

    1991-01-01

    High rate reactive sputtering of MoN(x) films was performed using feedback control of the nitorgen partial pressure. Coatings were made at four different target powers: 2.5, 5.0, 7.5 and 10 kW. No hysteresis was observed in the nitrogen partial pressure vs. flow plot, as is typically seen for the Ti-N system. Four phases were determined by X-ray diffraction: molybdenum, Mo-N solid solution, Beta-Mo2N and gamma-Mo2N. The hardness of the coatings depended upon composition, substrate bias, and target power. The phases present in the hardest films differed depending upon deposition parameters. For example, the Beta-Mo2N phase was hardest (load 25 gf) at 5.0 kW with a value of 3200 kgf/sq mm, whereas the hardest coatings at 10 kW were the gamma-Mo2N phase (3000 kgf/sq mm). The deposition rate generally decreased with increasing nitrogen partial pressure, but there was a range of partial pressures where the rate was relatively constant. At a target power of 5.0 kW, for example, the deposition rates were 3300 A/min for a N2 partial pressure of 0.05 - 1.0 mTorr.

  7. Strategies for the analysis of highly reactive pinacolboronate esters.

    PubMed

    Zhong, Qiqing; Ngim, Kenley K; Sun, Megan; Li, Jane; Deese, Alan; Chetwyn, Nik P

    2012-03-16

    Pinacolboronate esters (or boronic acid, pinacol esters) are widely used in the Suzuki coupling reaction to connect organic building blocks for the total synthesis of complex molecules. The 2-aminopyrimidine-5-pinacolboronate ester was used as a starting material in the synthesis of a development compound, necessitating a chromatographic purity method to assess its quality. This aryl pinacolboronate ester posed unique analytical challenges due to its facile hydrolysis to the corresponding boronic acid, which is nonvolatile and poorly soluble in organic solvents. This made GC and normal-phase HPLC analysis unsuitable. In reversed-phase mode, typical sample preparation and analysis conditions promoted rapid sample degradation to the boronic acid. To overcome these challenges, unconventional approaches were necessary in order to stabilize 2-aminopyrimidine-5-pinacolboronate ester, adequately solubilize its boronic acid, and produce acceptable separation and retention. The final method employed non-aqueous and aprotic diluent, and a reversed-phase separation using highly basic mobile phases (pH 12.4) with an ion pairing reagent. These strategies were successfully applied to several other reactive pinacolboronate esters for purity analysis, demonstrating broad applicability to this unique class of compounds. PMID:22321949

  8. Physical activity and high-sensitivity C-reactive protein.

    PubMed

    Plaisance, Eric P; Grandjean, Peter W

    2006-01-01

    Cardiovascular disease (CVD) remains one of the leading causes of death and disability in developed countries around the world despite the documented success of lifestyle and pharmacological interventions. This illustrates the multifactorial nature of atherosclerosis and the use of novel inflammatory markers as an adjunct to risk factor reduction strategies. As evidence continues to accumulate that inflammation is involved in all stages of the development and progression of atherosclerosis, markers of inflammation such as high-sensitivity C-reactive protein (CRP) may provide additional information regarding the biological status of the atherosclerotic lesion. Recent investigations suggest that physical activity reduces CRP levels. Higher levels of physical activity and cardiorespiratory fitness are consistently associated with 6-35% lower CRP levels. Longitudinal training studies that have demonstrated reductions in CRP concentrations range from 16% to 41%, an effect that may be independent of baseline levels of CRP, body composition or weight loss. The average change in CRP associated with physical activity appears to be at least as good, if not better, than currently prescribed pharmacological interventions in similar populations. The primary purpose of this review will be to present evidence from both cross-sectional and longitudinal investigations that physical activity lowers CRP levels in a dose-response manner. Finally, this review will examine factors such as body composition, sex, blood sample timing, diet and smoking, which may influence the CRP response to physical activity. PMID:16646631

  9. Temperature-modulated fluorescence tomography: modulating tissue temperature using HIFU for high-resolution in vivo fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Kwong, Tiffany C.; Nouizi, Farouk; Lin, Yuting; Sampathkumaran, Uma; Ahmed, Shaaz; Gulsen, Gultekin

    2013-03-01

    Low spatial resolution due to strong tissue scattering is one of the main barriers that prevent the wide-spread use of fluorescence tomography. To overcome this limitation, we previously demonstrated a new technique, temperature modulated fluorescence tomography (TM-FT), which relies on key elements: temperature sensitive ICG loaded pluronic nanocapsules and high intensity focused ultrasound (HIFU), to combine the sensitivity of fluorescence imaging with focused ultrasound resolution. While conventional fluorescence tomography measurements are acquired, the tissue is scanned by a HIFU beam and irradiated to produce a local hot spot, in which the temperature increases nearly 5K. The fluorescence emission signal measured by the optical detectors varies drastically when the hot spot overlays onto the location of the temperature dependent nanocapsules. The small size of the focal spot (~1.4 mm) up to a depth of 6 cm, allows imaging the distribution of these temperature sensitive agents with not only high spatial resolution but also high quantitative accuracy in deep tissue using a proper image reconstruction algorithm. Previously we have demonstrated this technique with a phantom study with nanocapsules sensitive to 20-25°C range. In this work, we will show the first nanocapsules optimized for in vivo animal imaging.

  10. Low Dissipative High Order Numerical Simulations of Supersonic Reactive Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, B.; Yee, H. C.; Mansour, Nagi (Technical Monitor)

    2001-01-01

    The objective of this paper is to evaluate the performance of a newly developed low dissipative sixth-order spatial and fourth-order temporal scheme for viscous reactive flows interacting with shock waves that contain fine scale flow structures. The accuracy and efficiency of the scheme, and to what degree the scheme can capture the correct physical wave speeds of stiff reactive flows will be included.

  11. Assessment of reactivity transient experiments with high burnup fuel

    SciTech Connect

    Ozer, O.; Yang, R.L.; Rashid, Y.R.; Montgomery, R.O.

    1996-03-01

    A few recent experiments aimed at determining the response of high-burnup LWR fuel during a reactivity initiated accident (RIA) have raised concerns that existing failure criteria may be inappropriate for such fuel. In particular, three experiments (SPERT CDC-859, NSRR HBO-1 and CABRI REP Na-1) appear to have resulted in fuel failures at only a fraction of the anticipated enthalpy levels. In evaluating the results of such RIA simulation experiments, however, it is necessary that the following two key considerations be taken into account: (1) Are the experiments representative of conditions that LWR fuel would experience during an in-reactor RIA event? (2) Is the fuel that is being utilized in the tests representative of the present (or anticipated) population of LWR fuel? Conducting experiments under conditions that can not occur in-reactor can trigger response modes that could not take place during in-reactor operation. Similarly, using unrepresentative fuel samples for the tests will produce failure information that is of limited relevance to commercial LWR fuel. This is particularly important for high-burnup fuel since the manner under which the test samples are base-irradiated prior to the test will impact the mechanical properties of the cladding and will therefore affect the RIA response. A good example of this effect can be seen in the results of the SPERT CDC-859 test and in the NSRR JM-4 and JM-5 tests. The conditions under which the fuel used for these tests was fabricated and/or base-irradiated prior to the RIA pulse resulted in the formation of multiple cladding defects in the form of hydride blisters. When this fuel was subjected to the RIA power pulse, it failed by developing multiple cracks that were closely correlated with the locations of the pre-existing hydride blisters. In the case of the JM tests, many of the cracks formed within the blisters themselves and did not propagate beyond the heavily hydrided regions.

  12. Highly Efficient, Simplified, Solution-Processed Thermally Activated Delayed-Fluorescence Organic Light-Emitting Diodes.

    PubMed

    Kim, Young-Hoon; Wolf, Christoph; Cho, Himchan; Jeong, Su-Hun; Lee, Tae-Woo

    2016-01-27

    Highly efficient, simplified, solution-processed thermally activated delayed-fluorescence organic light-emitting diodes can be realized by using pure-organic thermally activated delayed fluorescence emitters and a multifunctional buffer hole-injection layer, in which high EQE (≈24%) and current efficiency (≈73 cd A(-1) ) are demonstrated. High-efficiency fluorescence red-emitting and blue-emitting devices can also be fabricated in this manner. PMID:26619309

  13. High reactivity of ancient permafrost carbon upon hydrological release

    NASA Astrophysics Data System (ADS)

    Vonk, J. E.; Mann, P. J.; Davydov, S.; Davydova, A.; Sobczak, W. V.; Schade, J.; Bulygina, E.; Zimov, S.; Spencer, R. G. M.; Eglinton, T. I.; Holmes, R. M.

    2012-04-01

    Half of the global stock of soil organic carbon (OC) is stored in Arctic permafrost. About one third of this pool consists of so-called yedoma, organic-rich deposits that were formed during the Pleistocene. Previous studies show rapid respiration of yedoma upon thawing, with the potential release of large quantities of relict OC into the contemporary C cycle. The fluvial and coastal reactivity and fate of this OC, however, remain unclear. Duvannyi Yar is a well-studied yedoma exposure on the banks of Kolyma River in Northeastern Siberia. It can serve as a model for the >7000 km long East Siberian Arctic coastline that is dominated by similarly exposed yedoma cliffs, and is increasingly vulnerable to erosion with climate warming-induced decreases in sea-ice, and increases in storms and wave-fetch. Permafrost thaw on the Duvannyi Yar exposure produces thaw streams that are heavily loaded with freshly thawed yedoma sediments (suspended load ca. 650 g/L; particulate OC ca. 8-10 g/L; dissolved OC ca. 150-300 mg/L). We traced organic carbon loss and oxygen utilisation during incubations of Duvannyi Yar stream water, and a series of dilutions of Duvannyi Yar water and Kolyma River and East Siberian Sea water. Concurrent measurements of enzyme activities were taken to investigate the processes limitating degradation. The overall goal of the study was to investigate the relative bioavailability of contemporary versus ancient organic carbon pools over short time scales (days-weeks). Radiocarbon ages of the dissolved OC in the thaw streams were 19-29 ky BP, and particulate OC 19-38 ky BP. These ages are far older than any previously published values and clearly illustrate the mobilization of ancient permafrost organic matter into the contemporary carbon cycle. Incubation experiments showed that the ancient dissolved OC was highly susceptible to degradation, losing 34% of its carbon in 14 days (and 41% in 28 days). River and ocean water samples spiked with ancient carbon

  14. Fluorescence Rise Time Measurements for High Temperature Fluorescence-Based Thermometry

    SciTech Connect

    Allison, S.W.

    2005-03-24

    Certain ceramic-like phosphor materials exhibit bright fluorescence with a pronounced temperature dependence over a range which spans the cryogenic to 1700 C, depending on the specific phosphor. To measure temperature, a surface, for instance a turbine blade, is coated with the material. An optical system, sometimes including optical fibers, conveys stimulating light and collects the emission for analysis. Either emission intensity or decay time may indicate temperature. Previously fielded tests have involved surfaces such as blades, vanes, pistons, in-take valves, sheets of galvanneal steel, etc. The fluorescent coatings may be applied to small parts via sputtering methods or to large areas by mixture with inorganic binders. Presented here are results characterizing fluorescence rise times as a means of determining temperature from ambient to 700 C for Y{sub 2}O{sub 3}:Eu.

  15. High-resolution single-molecule fluorescence imaging of zeolite aggregates within real-life fluid catalytic cracking particles.

    PubMed

    Ristanović, Zoran; Kerssens, Marleen M; Kubarev, Alexey V; Hendriks, Frank C; Dedecker, Peter; Hofkens, Johan; Roeffaers, Maarten B J; Weckhuysen, Bert M

    2015-02-01

    Fluid catalytic cracking (FCC) is a major process in oil refineries to produce gasoline and base chemicals from crude oil fractions. The spatial distribution and acidity of zeolite aggregates embedded within the 50-150 μm-sized FCC spheres heavily influence their catalytic performance. Single-molecule fluorescence-based imaging methods, namely nanometer accuracy by stochastic chemical reactions (NASCA) and super-resolution optical fluctuation imaging (SOFI) were used to study the catalytic activity of sub-micrometer zeolite ZSM-5 domains within real-life FCC catalyst particles. The formation of fluorescent product molecules taking place at Brønsted acid sites was monitored with single turnover sensitivity and high spatiotemporal resolution, providing detailed insight in dispersion and catalytic activity of zeolite ZSM-5 aggregates. The results point towards substantial differences in turnover frequencies between the zeolite aggregates, revealing significant intraparticle heterogeneities in Brønsted reactivity. PMID:25504139

  16. Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy.

    PubMed

    Zhang, Xi; Zhang, Mingshu; Li, Dong; He, Wenting; Peng, Jianxin; Betzig, Eric; Xu, Pingyong

    2016-09-13

    Two long-standing problems for superresolution (SR) fluorescence microscopy are high illumination intensity and long acquisition time, which significantly hamper its application for live-cell imaging. Reversibly photoswitchable fluorescent proteins (RSFPs) have made it possible to dramatically lower the illumination intensities in saturated depletion-based SR techniques, such as saturated depletion nonlinear structured illumination microscopy (NL-SIM) and reversible saturable optical fluorescence transition microscopy. The characteristics of RSFPs most critical for SR live-cell imaging include, first, the integrated fluorescence signal across each switching cycle, which depends upon the absorption cross-section, effective quantum yield, and characteristic switching time from the fluorescent "on" to "off" state; second, the fluorescence contrast ratio of on/off states; and third, the photostability under excitation and depletion. Up to now, the RSFPs of the Dronpa and rsEGFP (reversibly switchable EGFP) families have been exploited for SR imaging. However, their limited number of switching cycles, relatively low fluorescence signal, and poor contrast ratio under physiological conditions ultimately restrict their utility in time-lapse live-cell imaging and their ability to reach the desired resolution at a reasonable signal-to-noise ratio. Here, we present a truly monomeric RSFP, Skylan-NS, whose properties are optimized for the recently developed patterned activation NL-SIM, which enables low-intensity (∼100 W/cm(2)) live-cell SR imaging at ∼60-nm resolution at subsecond acquisition times for tens of time points over broad field of view. PMID:27562163

  17. Novel inhibitors for PRMT1 discovered by high-throughput screening using activity-based fluorescence polarization.

    PubMed

    Dillon, Myles B C; Bachovchin, Daniel A; Brown, Steven J; Finn, M G; Rosen, Hugh; Cravatt, Benjamin F; Mowen, Kerri A

    2012-07-20

    Protein arginine methyltransferases (PRMTs) catalyze the posttranslational methylation of arginine using S-adenosylmethionine (SAM) as a methyl-donor. The PRMT family is widely expressed and has been implicated in biological functions such as RNA splicing, transcriptional control, signal transduction, and DNA repair. Therefore, specific inhibitors of individual PRMTs have potentially significant research and therapeutic value. In particular, PRMT1 is responsible for >85% of arginine methyltransferase activity, but currently available inhibitors of PRMT1 lack specificity, efficacy, and bioavailability. To address this limitation, we developed a high-throughput screening assay for PRMT1 that utilizes a hyper-reactive cysteine within the active site, which is lacking in almost all other PRMTs. This assay, which monitors the kinetics of the fluorescence polarization signal increase upon PRMT1 labeling by a rhodamine-containing cysteine-reactive probe, successfully identified two novel inhibitors selective for PRMT1 over other SAM-dependent methyltransferases. PMID:22506763

  18. Genetic determinants of on-clopidogrel high platelet reactivity.

    PubMed

    Campo, Gianluca; Miccoli, Matteo; Tebaldi, Matteo; Marchesini, Jlenia; Fileti, Luca; Monti, Monia; Valgimigli, Marco; Ferrari, Roberto

    2011-01-01

    Clopidogrel has been used (alone or in association with aspirin) to prevent vascular complications in atherothrombotic patients, to prevent stent thrombosis (ST) in patients undergoing percutaneous coronary intervention (PCI) and as a long-term prevention of cardiovascular and cerebrovascular events. Unfortunately, it is important to note that there are a number of patients who, during clopidogrel therapy, show and maintain a high platelet reactivity (PR), similar to that observed before the start of antiplatelet therapy. Clopidogrel pro-drug is absorbed in the intestine and this process is influenced by P-glycoprotein-1 (P-GP). Its conversion into 2-oxo clopidogrel is regulated by cytochromes (CYP) called CYP2C19, CYP2B6 and CYP1A2. Whereas, the final transformation into the active metabolite is regulated by CYP called CYP2C19, CYP2C9, CYP2B6, CYP3A4, CYP3A5 and, as recently emerged, by the glycoprotein paraoxonase-1 (PON1). The genes encoding these enzymes are characterized by several polymorphisms. Some of these are able to modify the activity of proteins, reducing the concentration of active metabolite and the values of on-clopidogrel PR. Only one gene polymorphism (CYP2C19*17) increases the clopidogrel metabolization and so the clopidogrel-induced platelet inhibition. Several studies have clearly associated these gene polymorphisms to both ischemic and bleeding complications in patients receiving dual antiplatelet therapy. The aim of this review is to describe the principal gene polymorphisms influencing on-clopidogrel PR and their relationship with long-term clinical outcome. PMID:21627411

  19. Light up ClO(-) in live cells using an aza-coumarin based fluorescent probe with fast response and high sensitivity.

    PubMed

    Fan, Jiangli; Mu, Huiying; Zhu, Hao; Wang, Jingyun; Peng, Xiaojun

    2015-07-01

    Hypochlorous acid (HClO)/hypochlorite (ClO(-)), one of the reactive oxygen species (ROS), is a key microbicidal agent used for natural defense; however, HClO is also responsible for some human diseases. Although much effort has been made to develop HClO-selective fluorescent probes, many of them display a delayed response time and nanomole-sensitive probes are rare. In this study, we designed and synthesized an aza-coumarin based fluorescent probe AC-ClO for ClO(-) determination with fast response (completed within 2 min) and high sensitivity (detection limit is 25 nM). AC-ClO displayed a color change from pink to light yellow and a remarkable "turn-on" fluorescence response towards ClO(-). Confocal fluorescence microscopy experiments demonstrated that the probe could be applied for the live-cell imaging of exogenous and endogenous ClO(-). PMID:25997521

  20. Containerless high temperature property measurements by atomic fluorescence

    NASA Technical Reports Server (NTRS)

    Nordine, Paul C.; Shiffman, Robert A.

    1987-01-01

    Containerless high temperature processing and material property measurements are discussed. Researchers developed methods for non-contact suspension, heating, and property measurement for materials at temperatures up to 3,680K, the melting point of tungsten. New, scientifically interesting results were obtained in Earth-based research. These results and the demonstration of new methods and techniques form a basis for further advances under the low gravity environment of space where containerless conditions are more easily achieved. Containerless high temperature material property investigations that have been completed in this and our earlier projects include measurements of fluorine LaB sub 6 reaction kinetics at 1,000 to 1,500K; optical property measurements on sapphire (Al2O3) at temperatures up to the melting point (2,327K); and vapor pressure measurements for LaB sub 6 at 2,000 to 2,500K, for molybdenum up to 2,890K and for tungsten up to 3,680K. Gas jet levitation which is applicable to any solid material, and electromagnetic levitation of electrical conductors were used to suspend the materials of interest. Non-contact heating and property measurements were achieved by optical techniques, i.e., laser heating, laser induced fluorescence measurements of vapor concentrations, and optical pyrometry for specimen temperatures.

  1. High-throughput screening with micro-x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Havrilla, George J.; Miller, Thomasin C.

    2005-06-01

    Micro-x-ray fluorescence (MXRF) is a useful characterization tool for high-throughput screening of combinatorial libraries. Due to the increasing threat of use of chemical warfare (CW) agents both in military actions and against civilians by terrorist extremists, there is a strong push to improve existing methods and develop means for the detection of a broad spectrum of CW agents in a minimal amount of time to increase national security. This paper describes a combinatorial high-throughput screening technique for CW receptor discovery to aid in sensor development. MXRF can screen materials for elemental composition at the mesoscale level (tens to hundreds of micrometers). The key aspect of this work is the use of commercial MXRF instrumentation coupled with the inherent heteroatom elements within the target molecules of the combinatorial reaction to provide rapid and specific identification of lead species. The method is demonstrated by screening an 11-mer oligopeptide library for selective binding of the degradation products of the nerve agent VX. The identified oligopeptides can be used as selective molecular receptors for sensor development. The MXRF screening method is nondestructive, requires minimal sample preparation or special tags for analysis, and the screening time depends on the desired sensitivity.

  2. High-throughput screening with micro-x-ray fluorescence

    SciTech Connect

    Havrilla, George J.; Miller, Thomasin C.

    2005-06-15

    Micro-x-ray fluorescence (MXRF) is a useful characterization tool for high-throughput screening of combinatorial libraries. Due to the increasing threat of use of chemical warfare (CW) agents both in military actions and against civilians by terrorist extremists, there is a strong push to improve existing methods and develop means for the detection of a broad spectrum of CW agents in a minimal amount of time to increase national security. This paper describes a combinatorial high-throughput screening technique for CW receptor discovery to aid in sensor development. MXRF can screen materials for elemental composition at the mesoscale level (tens to hundreds of micrometers). The key aspect of this work is the use of commercial MXRF instrumentation coupled with the inherent heteroatom elements within the target molecules of the combinatorial reaction to provide rapid and specific identification of lead species. The method is demonstrated by screening an 11-mer oligopeptide library for selective binding of the degradation products of the nerve agent VX. The identified oligopeptides can be used as selective molecular receptors for sensor development. The MXRF screening method is nondestructive, requires minimal sample preparation or special tags for analysis, and the screening time depends on the desired sensitivity.

  3. Development of fluorescence-based high-throughput screening assays: choice of appropriate instrumentation

    NASA Astrophysics Data System (ADS)

    Burns, David J.; Alder, Elisabeth; Fan, Yi-Hong; McKeegan, Evelyn; Warrior, Usha; Beutel, Bruce

    1998-04-01

    Fluorescence-based assays have become increasingly popular in high throughput screening for a variety of reasons (e.g. sensitivity). However, new screening technologies are pushing the limits of conventional fluorescence plate readers. For example, instruments that have optical sensitivities beyond most of the commercially available plate readers are required to reproducibly measure the fluorescence generated by the green fluorescent protein (GFP)--a novel reporter gene. Also, miniaturization of screening formats (with densities higher than the conventional 96-well plate) requires high resolution instrumentation to measure fluorescence. Several assays based on optical fluorescence measurements have been developed and screened in our Biological Screening group. These assays include various fluorescence-based protease assays (standard end-point and kinetic modes) and a functional cell-based screen using the green fluorescent protein as a reporter gene. The choice of instrumentation was the critical factor in the performance and success of each of these arrays. Data will be presented for the cell- based reporter assay including the type of instrumentation (fluorescence plate readers; fluorescence imaging systems) used for detection of GFP fluorescence.

  4. [Determination of fluorescent whitening agents in plastic food contact materials by high performance liquid chromatography with fluorescence detector].

    PubMed

    Jiao, Yanna; Ding, Li; Zhu, Shaohua; Fu, Shanliang; Gong, Qiang; Li, Hui; Wang, Libing

    2013-01-01

    A method for the determination of fluorescent whitening agents in plastic food contact materials by high performance liquid chromatography (HPLC) with fluorescence detector was developed. The samples were extracted with trichloromethane by sonication for 30 min at 40 degrees C. The HPLC method was performed on a column of Eclipse XDB-C18 (250 mm x 4.6 mm, 5 microm) by gradient elution using 5 mmol/L ammonium acetate and acetonitrile as the mobile phases, and detected by the fluorescence detector at an excitation wavelength of 350 nm and an emission wavelength of 430 nm. The experimental results indicated that the four fluorescent whitening agents were separated well. The limits of detection (LOD) (S/N = 3) were 0.3, 0.1, 0.05, 0.14 mg/L, and the limits of quantification (LOQ) (S/N = 10) were 1.0, 0.4, 0.2, 0.5 mg/L for 1,4-bis (4-cyanostyryl) benzene (C. I. 199), 1,4-bis (2-benzoxazolyl) naphthalene (C. I. 367), 4,4'-bis(2-methoxystyryl) biphenyl (C. I. 378) and 2,5-thiophenediylbis (5-tert-butyl-1,3-benzoxazole) (C. I. 184), respectively. Good linearities with correlation coefficients (r2) not less than 0.991 were obtained. The proposed method is simple, accurate, sensitive and can meet the requirements of the routine determination of fluorescent whitening agents in entry-exit products. PMID:23667995

  5. Recent Progress in Fluorescent Imaging Probes.

    PubMed

    Pak, Yen Leng; Swamy, K M K; Yoon, Juyoung

    2015-01-01

    Due to the simplicity and low detection limit, especially the bioimaging ability for cells, fluorescence probes serve as unique detection methods. With the aid of molecular recognition and specific organic reactions, research on fluorescent imaging probes has blossomed during the last decade. Especially, reaction based fluorescent probes have been proven to be highly selective for specific analytes. This review highlights our recent progress on fluorescent imaging probes for biologically important species, such as biothiols, reactive oxygen species, reactive nitrogen species, metal ions including Zn(2+), Hg(2+), Cu(2+) and Au(3+), and anions including cyanide and adenosine triphosphate (ATP). PMID:26402684

  6. Recent Progress in Fluorescent Imaging Probes

    PubMed Central

    Pak, Yen Leng; Swamy, K. M. K.; Yoon, Juyoung

    2015-01-01

    Due to the simplicity and low detection limit, especially the bioimaging ability for cells, fluorescence probes serve as unique detection methods. With the aid of molecular recognition and specific organic reactions, research on fluorescent imaging probes has blossomed during the last decade. Especially, reaction based fluorescent probes have been proven to be highly selective for specific analytes. This review highlights our recent progress on fluorescent imaging probes for biologically important species, such as biothiols, reactive oxygen species, reactive nitrogen species, metal ions including Zn2+, Hg2+, Cu2+ and Au3+, and anions including cyanide and adenosine triphosphate (ATP). PMID:26402684

  7. High-efficiency organic light-emitting diodes with fluorescent emitters

    NASA Astrophysics Data System (ADS)

    Nakanotani, Hajime; Higuchi, Takahiro; Furukawa, Taro; Masui, Kensuke; Morimoto, Kei; Numata, Masaki; Tanaka, Hiroyuki; Sagara, Yuta; Yasuda, Takuma; Adachi, Chihaya

    2014-05-01

    Fluorescence-based organic light-emitting diodes have continued to attract interest because of their long operational lifetimes, high colour purity of electroluminescence and potential to be manufactured at low cost in next-generation full-colour display and lighting applications. In fluorescent molecules, however, the exciton production efficiency is limited to 25% due to the deactivation of triplet excitons. Here we report fluorescence-based organic light-emitting diodes that realize external quantum efficiencies as high as 13.4-18% for blue, green, yellow and red emission, indicating that the exciton production efficiency reached nearly 100%. The high performance is enabled by utilization of thermally activated delayed fluorescence molecules as assistant dopants that permit efficient transfer of all electrically generated singlet and triplet excitons from the assistant dopants to the fluorescent emitters. Organic light-emitting diodes employing this exciton harvesting process provide freedom for the selection of emitters from a wide variety of conventional fluorescent molecules.

  8. High resolution fluorescent bio-imaging with electron beam excitation.

    PubMed

    Kawata, Yoshimasa; Nawa, Yasunori; Inami, Wataru

    2014-11-01

    We have developed electron beam excitation assisted (EXA) optical microscope[1-3], and demonstrated its resolution higher than 50 nm. In the microscope, a light source in a few nanometers size is excited by focused electron beam in a luminescent film. The microscope makes it possible to observe dynamic behavior of living biological specimens in various surroundings, such as air or liquids. Scan speed of the nanometric light source is faster than that in conventional near-field scanning optical microscopes. The microscope enables to observe optical constants such as absorption, refractive index, polarization, and their dynamic behavior on a nanometric scale. The microscope opens new microscopy applications in nano-technology and nano-science.Figure 1(a) shows schematic diagram of the proposed EXA microscope. An electron beam is focused on a luminescent film. A specimen is put on the luminescent film directly. The inset in Fig. 1(a) shows magnified image of the luminescent film and the specimen. Nanometric light source is excited in the luminescent film by the focused electron beam. The nanometric light source illuminates the specimen, and the scattered or transmitted radiation is detected with a photomultiplier tube (PMT). The light source is scanned by scanning of the focused electron beam in order to construct on image. Figure 1(b) shows a luminescence image of the cells acquired with the EXA microscope, and Fig. 1(c) shows a phase contrast microscope image. Cells were observed in culture solution without any treatments, such as fixation and drying. The shape of each cell was clearly recognized and some bright spots were observed in cells. We believe that the bright spots indicated with arrows were auto-fluorescence of intracellular granules and light- grey regions were auto-fluorescence of cell membranes. It is clearly demonstrated that the EXA microscope is useful tool for observation of living biological cells in physiological conditions.jmicro;63/suppl_1/i

  9. Rational design, synthesis and characterization of highly fluorescent optical switches for high-contrast optical lock-in detection (OLID) imaging microscopy in living cells

    PubMed Central

    Petchprayoon, Chutima; Yan, Yuling; Mao, Shu; Marriott, Gerard

    2010-01-01

    A major challenge in cell biology is to elucidate molecular mechanisms that underlie the spatio-temporal control of cellular processes. These studies require microscope imaging techniques and associated optical probes that provide high-contrast and high-resolution images of specific proteins and their complexes. Auto-fluorescence however, can severely compromise image contrast and represents a fundamental limitation for imaging proteins within living cells. We have previously shown that optical switch probes and optical lock-in detection (OLID) image microscopy improve image contrast in high background environments. Here, we present the design, synthesis and characterization of amino- reactive and cell permeable optical switches that integrate the highly fluorescent fluorophore, tetramethylrhodamine (TMR) and spironaphthoxazine (NISO), a highly efficient optical switch. The NISO moiety in TMR-NISO undergoes rapid and reversible, excited-state driven transitions between a colorless spiro (SP)-state and a colored merocyanine (MC)-state in response to irradiation with 365 nm and >530 nm light. In the MC-state, the TMR (donor) emission is almost completely extinguished by Förster resonance energy transfer (FRET) to the MC probe (acceptor), whereas in the colorless SP-state, the quantum yield for TMR fluorescence is maximal. Irradiation of TMR-NISO with a defined sequence of 365 nm and 546 nm manipulates the levels of SP and MC with concomitant modulation of FRET efficiency and the TMR fluorescence signal. High fidelity optical switching of TMR fluorescence is shown for TMR-NISO probes in vitro and for membrane permeable TMR-NISO within living cells. PMID:20674372

  10. A CMOS In-Pixel CTIA High Sensitivity Fluorescence Imager

    PubMed Central

    Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert

    2012-01-01

    Traditionally, charge coupled device (CCD) based image sensors have held sway over the field of biomedical imaging. Complementary metal oxide semiconductor (CMOS) based imagers so far lack sensitivity leading to poor low-light imaging. Certain applications including our work on animal-mountable systems for imaging in awake and unrestrained rodents require the high sensitivity and image quality of CCDs and the low power consumption, flexibility and compactness of CMOS imagers. We present a 132×124 high sensitivity imager array with a 20.1 μm pixel pitch fabricated in a standard 0.5 μ CMOS process. The chip incorporates n-well/p-sub photodiodes, capacitive transimpedance amplifier (CTIA) based in-pixel amplification, pixel scanners and delta differencing circuits. The 5-transistor all-nMOS pixel interfaces with peripheral pMOS transistors for column-parallel CTIA. At 70 fps, the array has a minimum detectable signal of 4 nW/cm2 at a wavelength of 450 nm while consuming 718 μA from a 3.3 V supply. Peak signal to noise ratio (SNR) was 44 dB at an incident intensity of 1 μW/cm2. Implementing 4×4 binning allowed the frame rate to be increased to 675 fps. Alternately, sensitivity could be increased to detect about 0.8 nW/cm2 while maintaining 70 fps. The chip was used to image single cell fluorescence at 28 fps with an average SNR of 32 dB. For comparison, a cooled CCD camera imaged the same cell at 20 fps with an average SNR of 33.2 dB under the same illumination while consuming over a watt. PMID:23136624

  11. Transmission and fluorescence X-ray absorption spectroscopy cell/flow reactor for powder samples under vacuum or in reactive atmospheres

    NASA Astrophysics Data System (ADS)

    Hoffman, A. S.; Debefve, L. M.; Bendjeriou-Sedjerari, A.; Ouldchikh, S.; Bare, Simon R.; Basset, J.-M.; Gates, B. C.

    2016-07-01

    X-ray absorption spectroscopy is an element-specific technique for probing the local atomic-scale environment around an absorber atom. It is widely used to investigate the structures of liquids and solids, being especially valuable for characterization of solid-supported catalysts. Reported cell designs are limited in capabilities—to fluorescence or transmission and to static or flowing atmospheres, or to vacuum. Our goal was to design a robust and widely applicable cell for catalyst characterizations under all these conditions—to allow tracking of changes during genesis and during operation, both under vacuum and in reactive atmospheres. Herein, we report the design of such a cell and a demonstration of its operation both with a sample under dynamic vacuum and in the presence of gases flowing at temperatures up to 300 °C, showing data obtained with both fluorescence and transmission detection. The cell allows more flexibility in catalyst characterization than any reported.

  12. Transmission and fluorescence X-ray absorption spectroscopy cell/flow reactor for powder samples under vacuum or in reactive atmospheres.

    PubMed

    Hoffman, A S; Debefve, L M; Bendjeriou-Sedjerari, A; Ouldchikh, S; Bare, Simon R; Basset, J-M; Gates, B C

    2016-07-01

    X-ray absorption spectroscopy is an element-specific technique for probing the local atomic-scale environment around an absorber atom. It is widely used to investigate the structures of liquids and solids, being especially valuable for characterization of solid-supported catalysts. Reported cell designs are limited in capabilities-to fluorescence or transmission and to static or flowing atmospheres, or to vacuum. Our goal was to design a robust and widely applicable cell for catalyst characterizations under all these conditions-to allow tracking of changes during genesis and during operation, both under vacuum and in reactive atmospheres. Herein, we report the design of such a cell and a demonstration of its operation both with a sample under dynamic vacuum and in the presence of gases flowing at temperatures up to 300 °C, showing data obtained with both fluorescence and transmission detection. The cell allows more flexibility in catalyst characterization than any reported. PMID:27475549

  13. Concerns in the application of fluorescent probes DCDHF-DA, DHR 123 and DHE to measure reactive oxygen species in vitro.

    PubMed

    Yazdani, Mazyar

    2015-12-25

    Reactive oxygen species (ROS) are formed in biological systems by partial reduction of molecular oxygen. The essential role of ROS in maintaining physiological health may be corrupted into oxidative stress by their overproduction or the exhaustion of antioxidant mechanisms. Many studies covering a broad range of methodologies have investigated ROS production and their toxic mechanisms of action. Of these methodologies, fluorometry has been among the preferred techniques. Three frequently used fluorescent probes for in vitro studies are 2',7'-dichlorodihydrofluorescein diacetate (DCDHF-DA), Dihydrorhodamine 123 (DHR 123) and Dihydroethidium (DHE). Apart from the unavoidable limitations of auto-oxidation, photo-oxidation and photo-conversion, there are also concerns relating to protocol modification for the improved monitoring of ROS. This paper aims to highlight such contributing factors, including cell culture conditions and the characteristics of individual fluorescent probes in the utilization of these selected probes in in vitro systems. PMID:26318276

  14. High throughput assay for evaluation of reactive carbonyl scavenging capacity☆

    PubMed Central

    Vidal, N.; Cavaille, J.P.; Graziani, F.; Robin, M.; Ouari, O.; Pietri, S.; Stocker, P.

    2014-01-01

    Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or decreasing carbonyl stress-associated pathologies. There is no rapid and convenient analytical method available for the assessment of direct carbonyl scavenging capacity, and a very limited number of carbonyl scavengers have been identified to date, their therapeutic potential being highlighted only recently. In this context, we have developed a new and rapid sensitive fluorimetric method for the assessment of reactive carbonyl scavengers without involvement glycoxidation systems. Efficacy of various thiol- and non-thiol-carbonyl scavenger pharmacophores was tested both using this screening assay adapted to 96-well microplates and in cultured cells. The scavenging effects on the formation of Advanced Glycation End-product of Bovine Serum Albumin formed with methylglyoxal, 4-hydroxynonenal and glucose-glycated as molecular models were also examined. Low molecular mass thiols with an α-amino-β-mercaptoethane structure showed the highest degree of inhibitory activity toward both α,β-unsaturated aldehydes and dicarbonyls. Cysteine and cysteamine have the best scavenging ability toward methylglyoxal. WR-1065 which is currently approved for clinical use as a protective agent against radiation and renal toxicity was identified as the best inhibitor of 4-hydroxynonenal. PMID:24688895

  15. A hemicyanine-conjugated copolymer as a highly sensitive fluorescent thermometer.

    PubMed

    Shiraishi, Yasuhiro; Miyamoto, Ryo; Hirai, Takayuki

    2008-04-15

    A simple-structured copolymer, poly(NIPAM-co-HC), consisting of N-isopropylacrylamide (NIPAM) and 4-(4-dimethylaminostyryl)pyridine (hemicyanine, HC) units as thermoresponsive and fluorescent signaling parts, respectively, has been synthesized. This copolymer dissolved in water shows very weak fluorescence at <25 degrees C, while showing fluorescence enhancement at >25 degrees C. The fluorescence intensity increases with a rise in temperature and saturates at >40 degrees C, enabling temperature detection at 25-40 degrees C. The fluorescence enhancement is driven by a heat-induced phase transition of the polymer from coil to globule state. The HC units within the coil state polymer exist as the nonfluorescent benzenoid form; however, the less polar domain formed inside the globule state polymer leads to transformation of the HC unit to the fluorescent quinoid form, resulting in heat-induced fluorescence enhancement. The fluorescence intensity measured at 40 degrees C is >20-fold higher than the intensity at <25 degrees C, which is the highest enhancement value among the fluorescent thermometers proposed so far. The polymer shows reversible fluorescence enhancement/quenching, regardless of the heating/cooling process. In addition, the polymer shows high reusability with a simple recovery process. PMID:18315023

  16. High levels of reactive oxygen species in gold nanoparticle-targeted cancer cells following femtosecond pulse irradiation

    NASA Astrophysics Data System (ADS)

    Minai, Limor; Yeheskely-Hayon, Daniella; Yelin, Dvir

    2013-07-01

    Cancer cells could be locally damaged using specifically targeted gold nanoparticles and laser pulse irradiation, while maintaining minimum damage to nearby, particle-free tissue. Here, we show that in addition to the immediate photothermal cell damage, high concentrations of reactive oxygen species (ROS) are formed within the irradiated cells. Burkitt lymphoma B cells and epithelial breast cancer cells were targeted by antibody-coated gold nanospheres and irradiated by a few resonant femtosecond pulses, resulting in significant elevation of intracellular ROS which was characterized and quantified using time-lapse microscopy of different fluorescent markers. The results suggest that techniques that involve targeting of various malignancies using gold nanoparticles and ultrashort pulses may be more effective and versatile than previously anticipated, allowing diverse, highly specific set of tools for local cancer therapy.

  17. High levels of reactive oxygen species in gold nanoparticle-targeted cancer cells following femtosecond pulse irradiation.

    PubMed

    Minai, Limor; Yeheskely-Hayon, Daniella; Yelin, Dvir

    2013-01-01

    Cancer cells could be locally damaged using specifically targeted gold nanoparticles and laser pulse irradiation, while maintaining minimum damage to nearby, particle-free tissue. Here, we show that in addition to the immediate photothermal cell damage, high concentrations of reactive oxygen species (ROS) are formed within the irradiated cells. Burkitt lymphoma B cells and epithelial breast cancer cells were targeted by antibody-coated gold nanospheres and irradiated by a few resonant femtosecond pulses, resulting in significant elevation of intracellular ROS which was characterized and quantified using time-lapse microscopy of different fluorescent markers. The results suggest that techniques that involve targeting of various malignancies using gold nanoparticles and ultrashort pulses may be more effective and versatile than previously anticipated, allowing diverse, highly specific set of tools for local cancer therapy. PMID:23828378

  18. Highly Fluorescent Green Fluorescent Protein Chromophore Analogues Made by Decorating the Imidazolone Ring.

    PubMed

    Gutiérrez, Sara; Martínez-López, David; Morón, María; Sucunza, David; Sampedro, Diego; Domingo, Alberto; Salgado, Antonio; Vaquero, Juan J

    2015-12-14

    The synthesis and photophysical behavior of an unexplored family of green fluorescent protein (GFP)-like chromophore analogues is reported. The compound (Z)-4-(4-hydroxybenzylidene)-1-propyl-2-(propylamino)-1H-imidazol-5(4 H)-one (p-HBDNI, 2 a) exhibits significantly enhanced fluorescence properties relative to the parent compound (Z)-5-(4-hydroxybenzylidene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one (p-HBDI, 1). p-HBDNI was considered as a model system and the photophysical properties of other novel 2-amino-3,5-dihydro-4H-imidazol-4-one derivatives were evaluated. Time-dependent DFT calculations were carried out to rationalize the results. The analogue AIDNI (2 c), in which the 4-hydroxybenzyl group of p-HBDNI was replaced by an azaindole group, showed improved photophysical properties and potential for cell staining. The uptake and intracellular distribution of 2 c in living cells was investigated by confocal microscopy imaging. PMID:26525155

  19. Laser-induced fluorescence detection strategies for sodium atoms and compounds in high-pressure combustors

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J. R.; Wise, Michael L.; Smith, Gregory P.

    1993-01-01

    A variety of laser-induced fluorescence schemes were examined experimentally in atmospheric pressure flames to determine their use for sodium atom and salt detection in high-pressure, optically thick environments. Collisional energy transfer plays a large role in fluorescence detection. Optimum sensitivity, at the parts in 10 exp 9 level for a single laser pulse, was obtained with the excitation of the 4p-3s transition at 330 nm and the detection of the 3d-3p fluorescence at 818 nm. Fluorescence loss processes, such as ionization and amplified spontaneous emission, were examined. A new laser-induced atomization/laser-induced fluorescence detection technique was demonstrated for NaOH and NaCl. A 248-nm excimer laser photodissociates the salt molecules present in the seeded flames prior to atom detection by laser-induced fluorescence.

  20. A novel fluorescent reagent for recognition of triplex DNA with high specificity and selectivity.

    PubMed

    Chen, Zongbao; Zhang, Huimi; Ma, Xiaoming; Lin, Zhenyu; Zhang, Lan; Chen, Guonan

    2015-11-21

    A fluorescent agent (DMT) was screened for recognizing triplex DNA with a specific and selective characteristic, which was embedded into the triplex DNA structure. The triplex DNA was firstly formed by a complementary target sequence through two distinct and sequential events. The conditions including pH and hybridization time, fluorescent agent concentration and embedding time were optimized in the experiment. Under the optimum conditions, the fluorescence signal was enhanced up to 9-fold in comparison with the DMT embedding into the ssDNA, dsDNA and G-quadruplexes. Under the same fluorescence conditions, the changes of the fluorescence signal were also investigated by several kinds of base mismatched DNAs in the experiment. The results showed that our biosensor provided excellent discrimination efficiency toward the perfectly mismatched target DNA with no formation of triplex DNA. We preliminarily deduced the mechanism of the fluorescent reagent for recognizing triplex DNA with high specificity and selectivity. PMID:26456316

  1. Ionic Liquids and Ionizing Radiation: Reactivity of Highly Energetic Species

    SciTech Connect

    Wishart, J.F.

    2010-11-04

    Due to their unique properties, ionic liquids present many opportunities for basic research on the interactions of radiation with materials under conditions not previously available. At the same time, there are practical applied reasons for characterizing, understanding, and being able to predict how ionic-liquid-based devices and industrial-scale systems will perform under conditions of extreme reactivity, including radiation. This perspective discusses current issues in ionic liquid physical chemistry, provides a brief introduction to radiation chemistry, draws attention to some key findings in ionic liquid radiation chemistry, and identifies some current hot topics and new opportunities.

  2. Fluorescence of Dyes in Solutions with High Absorbance. Inner Filter Effect Correction

    PubMed Central

    Fonin, Alexander V.; Sulatskaya, Anna I.; Kuznetsova, Irina M.; Turoverov, Konstantin K.

    2014-01-01

    Fluorescence is a proven tool in all fields of knowledge, including biology and medicine. A significant obstacle in its use is the nonlinearity of the dependence of the fluorescence intensity on fluorophore concentration that is caused by the so-called primary inner filter effect. The existing methods for correcting the fluorescence intensity are hard to implement in practice; thus, it is generally considered best to use dilute solutions. We showed that correction must be performed always. Furthermore, high-concentration solutions (high absorbance) are inherent condition in studying of the photophysical properties of fluorescent dyes and the functionally significant interactions of biological macromolecules. We proposed an easy to use method to correct the experimentally recorded total fluorescence intensity and showed that informative component of fluorescence intensity numerically equals to the product of the absorbance and the fluorescence quantum yield of the object. It is shown that if dye molecules do not interact with each other and there is no reabsorption (as for NATA) and spectrofluorimeter provides the proportionality of the detected fluorescence intensity to the part of the absorbed light (that is possible for spectrofluorimeter with horizontal slits) then the dependence of experimentally detected total fluorescence intensity of the dye on its absorbance coincides with the calculated dependence and the correction factor for eliminating the primary inner filter effect can be calculated on the basis of solution absorbance. It was experimentally shown for NATA fluorescence in the wide range of absorbance (at least up to 60). For ATTO-425, which fluorescence and absorption spectra overlap, the elimination of the primary and secondary filter effects and additional spectral analysis allow to conclude that the most probable reason of the deviation of experimentally detected fluorescence intensity dependence on solution absorbance from the calculated dependence

  3. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2001-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime (about 40 ps), high frequency (about 5G hz), high power bursts of low-duty factor microwaves sufficient to generate a dielectric barrier discharge and passing a gas to treated through the discharge so as to cause dissociative reduction of the exhaust gases. The invention also includes a reactor for generating the non-thermal plasma.

  4. Characteristics of high quality sorbent for fluidized bed combustion and problems of maintaining uniform reactivity

    SciTech Connect

    Bain, R.J. . Dept. of Geology)

    1993-03-01

    Fluidized bed combustion of coal is considered one of the more promising clean coal technologies for the future. While much research has gone into the design and operation of FBC units, there is little concern for what characterizes a high quality sorbent and the source of such a sorbent. Carbonate rocks, limestone and dolomite, have been tested extensively as sorbents and primarily two rock characteristics appear to significantly control reactivity: composition and texture. Calcium carbonate is more reactive than magnesium carbonate where all other rock characteristics are the same. In considering texture, highest reactivity is measured for carbonate rocks which consist of homogeneous, euhedral crystals ranging in size from .05 to .2 mm and which possess uniform intercrystalline porosity. The most reactive material possesses both high calcium content, uniform microcrystalline texture and intercrystalline porosity, however, such material is not very abundant in nature and is not locally available to midcontinent facilities. Sucrosic dolomite, which possesses uniform microcrystalline texture and intercrystalline porosity has high rank reactivity. While this rock is quite common, it occurs as beds, generally less than twenty feet thick, interlayered with less reactive dolomite types. Therefore, without selective quarrying methods, production of sorbent with uniformly high reactivity will be impossible.

  5. Impaired systemic vascular reactivity & raised high-sensitivity C reactive protein levels in chronic obstructive pulmonary disease

    PubMed Central

    Khare, Parul; Talwar, Anjana; Chandran, Dinu; Guleria, Randeep; Jaryal, Ashok Kumar; Kumar, Guresh; Trivedi, Anjali; Deepak, K.K.

    2016-01-01

    Background & objectives: Chronic obstructive pulmonary disease (COPD) is characterized by slowly progressive airflow limitaion, chronic lung inflammation and associated systemic manifestations. The objective of this preliminary study was to investigate the levels of high sensitivity C reactive protein (hs CRP) and tumour necrosis factor-α (TNF-α) as markers of systemic inflammation and assessment of systemic vascular reactivity that may play an important role in development of cardiovascular disease in COPD patients. Methods: Systemic vascular reactivity was assessed non-invasively by measuring peripheral pulse waveform changes during reactive hyperemia (RH) in 16 COPD patients and 14 controls by photoplethysmography technique (PPG). Parameters measured were pulse wave amplitude (PWA), slope and pulse transit time (PTT). Tumour necrosis factor-α (TNF-α) and hs CRP were measured as markers of inflammation. Results: PWA during the 1st, 2nd and 3rd minutes post release of occlusion were significantly higher than the baseline means in controls, whereas in the patient group there was no significant change in the PWA during any of the observed time periods following release of occlusion, in comparison to the baseline means. Similar results were observed in slope values for patients and controls. Maximum percentage change in PWA during RH with reference to baseline was significantly lower in patients as compared to controls (26.78±20.19 vs 57.20±19.80%, P<0.001). Maximum percentage change in slope during RH with reference to baseline was significantly lower in patients as compared to controls (19.77±10.73 vs 39.25±13.49%, P<0.001). A vascular tone response as represented by PTT was also impaired in the 3rd minute of RH as compared to baseline mean values in COPD patients only. Interpretation & conclusions: Our findings showed raised hs CRP levels and impaired systemic vascular reactivity in COPD patients. Whether these may increase the risk of cardiovascular

  6. Birth Weight, Current Anthropometric Markers, and High Sensitivity C-Reactive Protein in Brazilian School Children

    PubMed Central

    Pellanda, Lucia Campos

    2015-01-01

    Studies have shown associations of birth weight with increased concentrations of high sensitivity C-reactive protein. This study assessed the relationship between birth weight, anthropometric and metabolic parameters during childhood, and high sensitivity C-reactive protein. A total of 612 Brazilian school children aged 5–13 years were included in the study. High sensitivity C-reactive protein was measured by particle-enhanced immunonephelometry. Nutritional status was assessed by body mass index, waist circumference, and skinfolds. Total cholesterol and fractions, triglycerides, and glucose were measured by enzymatic methods. Insulin sensitivity was determined by the homeostasis model assessment method. Statistical analysis included chi-square test, General Linear Model, and General Linear Model for Gamma Distribution. Body mass index, waist circumference, and skinfolds were directly associated with birth weight (P < 0.001, P = 0.001, and P = 0.015, resp.). Large for gestational age children showed higher high sensitivity C-reactive protein levels (P < 0.001) than small for gestational age. High birth weight is associated with higher levels of high sensitivity C-reactive protein, body mass index, waist circumference, and skinfolds. Large for gestational age altered high sensitivity C-reactive protein and promoted additional risk factor for atherosclerosis in these school children, independent of current nutritional status. PMID:25874126

  7. A high-resolution mitochondria-targeting ratiometric fluorescent probe for detection of the endogenous hypochlorous acid

    NASA Astrophysics Data System (ADS)

    Zhou, Liyi; Lu, Dan-Qing; Wang, Qianqian; Hu, Shunqin; Wang, Haifei; Sun, Hongyan; Zhang, Xiaobing

    2016-09-01

    Hypochlorite anion, one of the biologically important reactive oxygen species, plays an essential role in diverse normal biochemical functions and abnormal pathological processes. Herein, an efficient high-resolution mitochondria-targeting ratiometric fluorescent probe for hypochlorous acid detection has been designed, synthesized and characterized. It is easily synthesized by the condensation reaction (Cdbnd C) of a 2-(2-hydroxyphenyl) quinazolin-4(3H)-one fluorophore and a cyanine group (mitochondria-targeting), which made the whole molecular a large Stokes shift (210 nm) and the two well-resolved emission peaks separated by 140 nm. As a result, it is considered as a good candidate for high resolution hypochlorous acid imaging in live cells. The ratiometric fluorescent probe exhibited outstanding features of high sensitivity, high selectivity, rapid response time (within 50 s), and excellent mitochondria-targeting ability. Moreover, the probe can also be successfully applied to imaging endogenously hypochlorous acid in the mitochondria of living cells with low cytotoxicity, and high resolution.

  8. A high-resolution mitochondria-targeting ratiometric fluorescent probe for detection of the endogenous hypochlorous acid.

    PubMed

    Zhou, Liyi; Lu, Dan-Qing; Wang, Qianqian; Hu, Shunqin; Wang, Haifei; Sun, Hongyan; Zhang, Xiaobing

    2016-09-01

    Hypochlorite anion, one of the biologically important reactive oxygen species, plays an essential role in diverse normal biochemical functions and abnormal pathological processes. Herein, an efficient high-resolution mitochondria-targeting ratiometric fluorescent probe for hypochlorous acid detection has been designed, synthesized and characterized. It is easily synthesized by the condensation reaction (CC) of a 2-(2-hydroxyphenyl) quinazolin-4(3H)-one fluorophore and a cyanine group (mitochondria-targeting), which made the whole molecular a large Stokes shift (210nm) and the two well-resolved emission peaks separated by 140nm. As a result, it is considered as a good candidate for high resolution hypochlorous acid imaging in live cells. The ratiometric fluorescent probe exhibited outstanding features of high sensitivity, high selectivity, rapid response time (within 50s), and excellent mitochondria-targeting ability. Moreover, the probe can also be successfully applied to imaging endogenously hypochlorous acid in the mitochondria of living cells with low cytotoxicity, and high resolution. PMID:27236136

  9. Impact of fluorine based reactive chemistry on structure and properties of high moment magnetic material

    SciTech Connect

    Yang, Xiaoyu Chen, Lifan; Han, Hongmei; Fu, Lianfeng; Sun, Ming; Liu, Feng; Zhang, Jinqiu

    2014-05-07

    The impact of the fluorine-based reactive ion etch (RIE) process on the structural, electrical, and magnetic properties of NiFe and CoNiFe-plated materials was investigated. Several techniques, including X-ray fluorescence, 4-point-probe, BH looper, transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS), were utilized to characterize both bulk film properties such as thickness, average composition, Rs, ρ, Bs, Ms, and surface magnetic “dead” layers' properties such as thickness and element concentration. Experimental data showed that the majority of Rs and Bs changes of these bulk films were due to thickness reduction during exposure to the RIE process. ρ and Ms change after taking thickness reduction into account were negligible. The composition of the bulk films, which were not sensitive to surface magnetic dead layers with nano-meter scale, showed minimum change as well. It was found by TEM and EELS analysis that although both before and after RIE there were magnetic dead layers on the top surface of these materials, the thickness and element concentration of the layers were quite different. Prior to RIE, dead layer was actually native oxidation layers (about 2 nm thick), while after RIE dead layer consisted of two sub-layers that were about 6 nm thick in total. Sub-layer on the top was native oxidation layer, while the bottom layer was RIE “damaged” layer with very high fluorine concentration. Two in-situ RIE approaches were also proposed and tested to remove such damaged sub-layers.

  10. Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus.

    PubMed

    Priyamvada, Lalita; Quicke, Kendra M; Hudson, William H; Onlamoon, Nattawat; Sewatanon, Jaturong; Edupuganti, Srilatha; Pattanapanyasat, Kovit; Chokephaibulkit, Kulkanya; Mulligan, Mark J; Wilson, Patrick C; Ahmed, Rafi; Suthar, Mehul S; Wrammert, Jens

    2016-07-12

    Zika virus (ZIKV) is an emerging mosquito-borne flavivirus of significant public health concern. ZIKV shares a high degree of sequence and structural homology compared with other flaviviruses, including dengue virus (DENV), resulting in immunological cross-reactivity. Improving our current understanding of the extent and characteristics of this immunological cross-reactivity is important, as ZIKV is presently circulating in areas that are highly endemic for dengue. To assess the magnitude and functional quality of cross-reactive immune responses between these closely related viruses, we tested acute and convalescent sera from nine Thai patients with PCR-confirmed DENV infection against ZIKV. All of the sera tested were cross-reactive with ZIKV, both in binding and in neutralization. To deconstruct the observed serum cross-reactivity in depth, we also characterized a panel of DENV-specific plasmablast-derived monoclonal antibodies (mAbs) for activity against ZIKV. Nearly half of the 47 DENV-reactive mAbs studied bound to both whole ZIKV virion and ZIKV lysate, of which a subset also neutralized ZIKV. In addition, both sera and mAbs from the dengue-infected patients enhanced ZIKV infection of Fc gamma receptor (FcγR)-bearing cells in vitro. Taken together, these findings suggest that preexisting immunity to DENV may impact protective immune responses against ZIKV. In addition, the extensive cross-reactivity may have implications for ZIKV virulence and disease severity in DENV-experienced populations. PMID:27354515

  11. Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus

    PubMed Central

    Priyamvada, Lalita; Quicke, Kendra M.; Hudson, William H.; Onlamoon, Nattawat; Sewatanon, Jaturong; Edupuganti, Srilatha; Pattanapanyasat, Kovit; Chokephaibulkit, Kulkanya; Mulligan, Mark J.; Wilson, Patrick C.; Ahmed, Rafi; Suthar, Mehul S.; Wrammert, Jens

    2016-01-01

    Zika virus (ZIKV) is an emerging mosquito-borne flavivirus of significant public health concern. ZIKV shares a high degree of sequence and structural homology compared with other flaviviruses, including dengue virus (DENV), resulting in immunological cross-reactivity. Improving our current understanding of the extent and characteristics of this immunological cross-reactivity is important, as ZIKV is presently circulating in areas that are highly endemic for dengue. To assess the magnitude and functional quality of cross-reactive immune responses between these closely related viruses, we tested acute and convalescent sera from nine Thai patients with PCR-confirmed DENV infection against ZIKV. All of the sera tested were cross-reactive with ZIKV, both in binding and in neutralization. To deconstruct the observed serum cross-reactivity in depth, we also characterized a panel of DENV-specific plasmablast-derived monoclonal antibodies (mAbs) for activity against ZIKV. Nearly half of the 47 DENV-reactive mAbs studied bound to both whole ZIKV virion and ZIKV lysate, of which a subset also neutralized ZIKV. In addition, both sera and mAbs from the dengue-infected patients enhanced ZIKV infection of Fc gamma receptor (FcγR)-bearing cells in vitro. Taken together, these findings suggest that preexisting immunity to DENV may impact protective immune responses against ZIKV. In addition, the extensive cross-reactivity may have implications for ZIKV virulence and disease severity in DENV-experienced populations. PMID:27354515

  12. Fluorescent and high intensity discharge lamp use in chambers and greenhouses

    NASA Technical Reports Server (NTRS)

    Langhans, Robert W.

    1994-01-01

    Fluorescent and High Intensity Discharge lamps have opened up great opportunities for researchers to study plant growth under controlled environment conditions and for commercial growers to increase plant production during low/light periods. Specific technical qualities of fluorescent and HID lamps have been critically reviewed. I will direct my remarks to fluorescent and high intensity discharge (HID) lamps in growth chambers, growth rooms, and greenhouses. I will discuss the advantages and disadvantages of using each lamp in growth chambers, growth rooms and greenhouses.

  13. Sensitive and selective tumor imaging with novel and highly activatable fluorescence strategies

    NASA Astrophysics Data System (ADS)

    Urano, Yasuteru

    2008-02-01

    Nowadays, several tumor imaging modalities such as MRI, PET and fluorescence imaging techniques have been extensively investigated. One of the central problems associated with these conventional tumor-targeted imaging methods, however, is the fact that the signal contrast between tumor and surrounding tissues relies on the efficient targeting to the tumor and the rapid sequestration or excretion of unbound agent. Among these modalities, only fluorescence imaging technique has a significant feature, in that great signal activation could be achieved which potentially leads to the selective imaging of cancer with higher tumor-to-background ratio. In this symposium, I will present some examples of fluorescence cancer imaging based on highly activatable strategies with using precisely designed novel fluorescence probes. Recently, we developed highly sensitive fluorescence probes for β-galactosidase which is applicable for living cell system. By utilizing these probes, we could establish a novel and highly activatable strategy for sensitive and selective optical imaging of imbedded tumor in the peritoneum. We took a two step procedure in that a lectin is used to localize β-galactosidase to cancer cells as an activating enzyme, and subsequent administration of a highly-sensitive fluorescence probe for the enzyme have afforded remarkable fluorescence activation selectively in tumor mass. Since the tumor-targeted enzyme can catalyze numerous substrate turnovers, a great number of fluorescent molecules could be produced and hence the rapid and sensitive detection of tumor in vivo with high tumor-to-background ratio could be achieved. Moreover, the consequent close-up investigation using fluorescence microscopy revealed that cancer microfoci as small as 200 μm could be successfully visualized.

  14. Two-photon fluorescence correlation spectroscopy with high count rates and low background using dielectric microspheres

    PubMed Central

    Aouani, Heykel; Schön, Peter; Brasselet, Sophie; Rigneault, Hervé; Wenger, Jérôme

    2010-01-01

    Two-photon excitation fluorescence is a powerful technique commonly used for biological imaging. However, the low absorption cross section of this non-linear process is a critical issue for performing biomolecular spectroscopy at the single molecule level. Enhancing the two-photon fluorescence signal would greatly improve the effectiveness of this technique, yet current methods struggle with medium enhancement factors and/or high background noise. Here, we show that the two-photon fluorescence signal from single Alexa Fluor 488 molecules can be enhanced up to 10 times by using a 3 µm diameter latex sphere while adding almost no photoluminescence background. We report a full characterization of the two-photon fluorescence enhancement by a single microsphere using fluorescence correlation spectroscopy. This opens new routes to enhance non-linear optical signals and extend biophotonic applications. PMID:21258531

  15. Highly H2O2-sensitive electrospun quantum dots nanocomposite films for fluorescent biosensor.

    PubMed

    Tan, Longfei; He, Xiaolong; Chen, Dong; Wu, Xiaoli; Li, Hongbo; Ren, Xiangling; Meng, Xianwei; Tang, Fangqiong

    2013-01-01

    Bright CdSe quantum dots (QDs)/polycaprolactone (PCL) nanocomposite fluorescent films were fabricated by electronspinning. By using chloroform and N,N-dimethylformamide as electronspinning solvent, the oil-soluble CdSe QDs were uniformly distributed in PCL fibers, and were directly employed as optical probe without any modification processing. The fluorescences of CdSe QDs/PCL nanocomposite films were quickly quenched when the films were contacted with H2O2, solution. In the presence of glucose oxidase (GOD), the fluorescence intensities of these fluorescent films exhibit a liner change with the concentrations of glucose. The H2O2-sensitive electrospun QDs nanocomposite films are highly uniform and repeatable, demonstrating the potential to fabricate stable, sensitive and recyclable fluorescent biosensor for the detection different H2O2-generating oxidases and their substrates. PMID:23627067

  16. Development and biological applications of high-resolution ion beam induced fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Zhaohong, Mi

    High-resolution fluorescence microscopy has become an essential tool in both biological and biomedical sciences, to directly visualize biological processes at the cellular and subcellular levels through specific fluorescence labeling. Among the fluorescence microscopy techniques, mega-electron-volt (MeV) ion-induced fluorescence microscopy has unique advantages because MeV ions can penetrate through biological cells with little deflection in their trajectories. The state-of-the-art bioimaging facility in the Centre for Ion Beam Applications, National University of Singapore can achieve sub-30 nm spatial resolutions for structural imaging of biological cells, which is well below the diffraction limits imposed by optical microscopy. Our aim is to achieve similar spatial resolutions for Ion Beam Induced Fluorescence Imaging. (Abstract shortened by UMI.).

  17. A High-Speed Detector System for X-ray Fluorescence Microprobes.

    SciTech Connect

    Siddons,P.D.; Dragone, A.; De Geronimo, g.; Kuczewski, A.; Kuczewski, J.; O

    2006-10-29

    We have developed a high-speed system for collecting x-ray fluorescence microprobe data, based on ASICs developed at BNL and high-speed processors developed by CSIRO. The system can collect fluorescence data in a continuous raster scan mode, and present elemental images in real time using Ryan's Dynamic Analysis algorithm. We will present results from a 32-element prototype array illustrating the concept. The final instrument will have 384 elements arranged in a square array around a central hole.

  18. Static reactive power compensators for high-voltage power systems. Final report

    SciTech Connect

    Not Available

    1981-04-01

    A study conducted to summarize the role of static reactive power compensators for high voltage power system applications is described. This information should be useful to the utility system planning engineer in applying static var systems (SVS) to high voltage as (HVAC) systems. The static var system is defined as a form of reactive power compensator. The general need for reactive power compensation in HVAC systems is discussed, and the static var system is compared to other devices utilized to provide reactive power compensation. Examples are presented of applying SVS for specific functions, such as the prevention of voltage collapse. The operating principles of commercially available SVS's are discussed in detail. The perormance and active power loss characteristics of SVS types are compared.

  19. Quantitative 3D Fluorescence Imaging of Single Catalytic Turnovers Reveals Spatiotemporal Gradients in Reactivity of Zeolite H-ZSM-5 Crystals upon Steaming.

    PubMed

    Ristanović, Zoran; Hofmann, Jan P; De Cremer, Gert; Kubarev, Alexey V; Rohnke, Marcus; Meirer, Florian; Hofkens, Johan; Roeffaers, Maarten B J; Weckhuysen, Bert M

    2015-05-27

    Optimizing the number, distribution, and accessibility of Brønsted acid sites in zeolite-based catalysts is of a paramount importance to further improve their catalytic performance. However, it remains challenging to measure real-time changes in reactivity of single zeolite catalyst particles by ensemble-averaging characterization methods. In this work, a detailed 3D single molecule, single turnover sensitive fluorescence microscopy study is presented to quantify the reactivity of Brønsted acid sites in zeolite H-ZSM-5 crystals upon steaming. This approach, in combination with the oligomerization of furfuryl alcohol as a probe reaction, allowed the stochastic behavior of single catalytic turnovers and temporally resolved turnover frequencies of zeolite domains smaller than the diffraction limited resolution to be investigated with great precision. It was found that the single turnover kinetics of the parent zeolite crystal proceeds with significant spatial differences in turnover frequencies on the nanoscale and noncorrelated temporal fluctuations. Mild steaming of zeolite H-ZSM-5 crystals at 500 °C led to an enhanced surface reactivity, with up to 4 times higher local turnover rates than those of the parent H-ZSM-5 crystals, and revealed remarkable heterogeneities in surface reactivity. In strong contrast, severe steaming at 700 °C significantly dealuminated the zeolite H-ZSM-5 material, leading to a 460 times lower turnover rate. The differences in measured turnover activities are explained by changes in the 3D aluminum distribution due to migration of extraframework Al-species and their subsequent effect on pore accessibility, as corroborated by time-of-flight secondary ion mass spectrometry (TOF-SIMS) sputter depth profiling data. PMID:25867455

  20. Quantitative 3D Fluorescence Imaging of Single Catalytic Turnovers Reveals Spatiotemporal Gradients in Reactivity of Zeolite H-ZSM-5 Crystals upon Steaming

    PubMed Central

    2015-01-01

    Optimizing the number, distribution, and accessibility of Brønsted acid sites in zeolite-based catalysts is of a paramount importance to further improve their catalytic performance. However, it remains challenging to measure real-time changes in reactivity of single zeolite catalyst particles by ensemble-averaging characterization methods. In this work, a detailed 3D single molecule, single turnover sensitive fluorescence microscopy study is presented to quantify the reactivity of Brønsted acid sites in zeolite H-ZSM-5 crystals upon steaming. This approach, in combination with the oligomerization of furfuryl alcohol as a probe reaction, allowed the stochastic behavior of single catalytic turnovers and temporally resolved turnover frequencies of zeolite domains smaller than the diffraction limited resolution to be investigated with great precision. It was found that the single turnover kinetics of the parent zeolite crystal proceeds with significant spatial differences in turnover frequencies on the nanoscale and noncorrelated temporal fluctuations. Mild steaming of zeolite H-ZSM-5 crystals at 500 °C led to an enhanced surface reactivity, with up to 4 times higher local turnover rates than those of the parent H-ZSM-5 crystals, and revealed remarkable heterogeneities in surface reactivity. In strong contrast, severe steaming at 700 °C significantly dealuminated the zeolite H-ZSM-5 material, leading to a 460 times lower turnover rate. The differences in measured turnover activities are explained by changes in the 3D aluminum distribution due to migration of extraframework Al-species and their subsequent effect on pore accessibility, as corroborated by time-of-flight secondary ion mass spectrometry (TOF-SIMS) sputter depth profiling data. PMID:25867455

  1. Highly thymine-dependent formation of fluorescent copper nanoparticles templated by ss-DNA

    NASA Astrophysics Data System (ADS)

    Liu, Guiying; Shao, Yong; Peng, Jian; Dai, Wei; Liu, Lingling; Xu, Shujuan; Wu, Fei; Wu, Xiaohua

    2013-08-01

    Double-stranded DNAs (ds-DNAs) have been identified as efficient templates favoring the formation of fluorescent copper nanoparticles (Cu NPs). Herein, we have tried to synthesize fluorescent Cu NPs using single-stranded DNAs (ss-DNAs) as templates and to identify the critical DNA sequences. By comparing the results using homopolymer DNAs, hairpin DNAs, and pristine ss-DNAs as templates, we found that DNA thymine base plays a dominant role in producing red-emissive fluorescent Cu NPs on ss-DNA templates. The thymine-dependent growth of the fluorescent Cu NPs is confirmed by Hg2+ mediated T-T base pair in comparison with the other non-specific metal ions, which could be developed into a practical sensor for turn-on fluorescence detection of Hg2+ with a high selectivity. The mechanism is briefly discussed according the DNA sequence-dependent formation of fluorescent Cu NPs. This work demonstrates the sequence role in producing fluorescent Cu NPs that could serve as promising fluorescent nanoprobes in biosensing and DNA-hosted Cu nanomaterials.

  2. Deposition of highly textured AlN thin films by reactive high power impulse magnetron sputtering

    SciTech Connect

    Moreira, Milena A.; Törndahl, Tobias; Katardjiev, Ilia; Kubart, Tomas

    2015-03-15

    Aluminum nitride thin films were deposited by reactive high power impulse magnetron sputtering (HiPIMS) and pulsed direct-current on Si (100) and textured Mo substrates, where the same deposition conditions were used for both techniques. The films were characterized by x-ray diffraction and atomic force microscopy. The results show a pronounced improvement in the AlN crystalline texture for all films deposited by HiPIMS on Si. Already at room temperature, the HiPIMS films exhibited a strong preferred (002) orientation and at 400 °C, no contributions from other orientations were detected. Despite the low film thickness of only 200 nm, an ω-scan full width at half maximum value of 5.1° was achieved on Si. The results are attributed to the high ionization of sputtered material achieved in HiPIMS. On textured Mo, there was no significant difference between the deposition techniques.

  3. Phthalocyanine dye as an extremely photostable and highly fluorescent near-infrared labeling reagent

    NASA Astrophysics Data System (ADS)

    Peng, Xinzhan; Draney, Daniel R.; Volcheck, William M.; Bashford, Gregory R.; Lamb, Donald T.; Grone, Daniel L.; Zhang, Yonghong; Johnson, Craig M.

    2006-02-01

    Current organic fluorophores used as labeling reagents for biomolecule conjugation have significant limitations in photostability. This compromises their performance in applications that require a photostable fluorescent reporting group. For example, in molecular imaging and single molecule microscopy, photostable fluorescent labels are important for observing and tracking individual molecular events over extended period of time. We report in this paper an extremely photostable and highly fluorescent phthalocyanine dye, IRDye TM 700DX, as a near-infrared fluorescence labeling reagent to conjugate with biomolecules. This novel water-soluble silicon phthalocyanine dye has an isomericly pure chemical structure. The dye is about 45 to 128 times more photostable than current near-IR fluorophores, e.g. Alexa Fluor"R"680, Cy TM 5.5, Cy TM 7 and IRDye TM 800CW dyes; and about 27 times more photostable than tetramethylrhodamine (TMR), one of the most photostable organic dyes. This dye also meets all the other stringent requirements as an ideal fluorophore for biomolecules labeling such as excellent water solubility, no aggregation in high ionic strength buffer, large extinction coefficient and high fluorescent quantum yield. Antibodies conjugated with IRDye TM 700DX at high D/P ratio exist as monomeric species in high ionic buffer and have bright fluorescence. The IRDye TM 700DX conjugated antibodies generate sensitive, highly specific detection with very low background in Western blot and cytoblot assays.

  4. Synthesis of a highly HOCl-selective fluorescent probe and its use for imaging HOCl in cells and organisms.

    PubMed

    Chen, Xiaoqiang; Lee, Kyung-Ah; Ren, Xintong; Ryu, Jae-Chan; Kim, Gyungmi; Ryu, Ji-Hwan; Lee, Won-Jae; Yoon, Juyoung

    2016-07-01

    During infection, nicotinamide adenine dinucleotide phosphate-oxidase of innate immune cells generates important microbicidal reactive oxygen species (ROS) such as hypochlorous acid (HOCl) to kill the invading pathogens. However, excess amounts of HOCl induce oxidative damage of functional biomolecules such as DNA and proteins, which may cause chronic inflammatory diseases. Herein, we outline protocols for the preparation of a rhodamine-based HOCl probe, as well as applications thereof, with which to detect HOCl in living cells and organisms. The probe (R19S) can be prepared from a commercially available rhodamine, rhodamine 6G, in two steps. When R19S is treated with HOCl, the sulfur atom is replaced by an oxygen atom, resulting in opening of the lactone ring; thus, nonfluorescent R19S is converted to highly fluorescent rhodamine 19 (R19). R19S exhibits high selectivity for HOCl over other ROS and high sensitivity in a weakly acidic environment. In addition, we describe fluorescence imaging assays of HOCl in mouse neutrophils and Drosophila targeted using this probe. The approximate amount of time required to synthesize the probe is 2-3 d, after which it can be used for up to 5 h in the bioimaging of living cells. PMID:27281649

  5. Development of chiral metal amides as highly reactive catalysts for asymmetric [3 + 2] cycloadditions.

    PubMed

    Yamashita, Yasuhiro; Yoshimoto, Susumu; Dutton, Mark J; Kobayashi, Shū

    2016-01-01

    Highly efficient catalytic asymmetric [3 + 2] cycloadditions using a chiral copper amide are reported. Compared with the chiral CuOTf/Et3N system, the CuHMDS system showed higher reactivity, and the desired reactions proceeded in high yields and high selectivities with catalyst loadings as low as 0.01 mol %. PMID:27559396

  6. Development of chiral metal amides as highly reactive catalysts for asymmetric [3 + 2] cycloadditions

    PubMed Central

    Yamashita, Yasuhiro; Yoshimoto, Susumu; Dutton, Mark J

    2016-01-01

    Summary Highly efficient catalytic asymmetric [3 + 2] cycloadditions using a chiral copper amide are reported. Compared with the chiral CuOTf/Et3N system, the CuHMDS system showed higher reactivity, and the desired reactions proceeded in high yields and high selectivities with catalyst loadings as low as 0.01 mol %. PMID:27559396

  7. Fluorescence imaging of reactive oxygen species by confocal laser scanning microscopy for track analysis of synchrotron X-ray photoelectric nanoradiator dose: X-ray pump-optical probe.

    PubMed

    Jeon, Jae Kun; Han, Sung Mi; Kim, Jong Ki

    2016-09-01

    Bursts of emissions of low-energy electrons, including interatomic Coulomb decay electrons and Auger electrons (0-1000 eV), as well as X-ray fluorescence produced by irradiation of large-Z element nanoparticles by either X-ray photons or high-energy ion beams, is referred to as the nanoradiator effect. In therapeutic applications, this effect can damage pathological tissues that selectively take up the nanoparticles. Herein, a new nanoradiator dosimetry method is presented that uses probes for reactive oxygen species (ROS) incorporated into three-dimensional gels, on which macrophages containing iron oxide nanoparticles (IONs) are attached. This method, together with site-specific irradiation of the intracellular nanoparticles from a microbeam of polychromatic synchrotron X-rays (5-14 keV), measures the range and distribution of OH radicals produced by X-ray emission or superoxide anions ({\\rm{O}}_2^-) produced by low-energy electrons. The measurements are based on confocal laser scanning of the fluorescence of the hydroxyl radical probe 2-[6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl] benzoic acid (APF) or the superoxide probe hydroethidine-dihydroethidium (DHE) that was oxidized by each ROS, enabling tracking of the radiation dose emitted by the nanoradiator. In the range 70 µm below the irradiated cell, ^\\bullet{\\rm{OH}} radicals derived mostly from either incident X-ray or X-ray fluorescence of ION nanoradiators are distributed along the line of depth direction in ROS gel. In contrast, {\\rm{O}}_2^- derived from secondary electron or low-energy electron emission by ION nanoradiators are scattered over the ROS gel. ROS fluorescence due to the ION nanoradiators was observed continuously to a depth of 1.5 mm for both oxidized APF and oxidized DHE with relatively large intensity compared with the fluorescence caused by the ROS produced solely by incident primary X-rays, which was limited to a depth of 600 µm, suggesting dose enhancement as well as more

  8. Laser-induced fluorescence studies of polycyclic aromatic hydrocarbons (PAH) vapors at high temperatures.

    PubMed

    Chi, Z; Cullum, B M; Stokes, D L; Mobley, J; Miller, G H; Hajaligol, M R; Vo-Dinh, T

    2001-06-01

    In this work, we present the fluorescence spectra of anthracene and pyrene vapors at different elevated temperatures (from 150 to 650 degrees C) excited with the 337 nm line of a nitrogen laser. We describe the high temperature effects on the resulting spectral properties including spectral intensity, spectral bandwidth and spectral shift. We found that the PAH fluorescence spectral bandwidths become very broad as the temperature increases. The broadening is mainly due to thermal vibrational sequence congestion. We also have found that the fluorescence intensity of pyrene vapor increases with increasing temperature, which results from the increase of the pyrene vapor absorption cross section at 337 nm. PMID:11446693

  9. Highly efficient fluorescence detection in picoliter volume liquid-core waveguides

    SciTech Connect

    Yin Dongliang; Barber, John P.; Hawkins, Aaron R.; Schmidt, Holger

    2005-11-21

    We report loss improvement and fluorescence detection in integrated antiresonant reflecting optical waveguides with liquid cores. The minimum waveguide loss is reduced to 0.33/cm by compensating for thickness variations in the fabrication process. We demonstrate fluorescence detection from as few as 490 molecules in a 57 pl core using these optimized waveguides. We measure angular fluorescence collection factors as high as 15% per facet in good agreement with theory. This demonstrates the potential of integrated hollow-core waveguides as optical sensors for single-molecule spectroscopy.

  10. A Sensitive Ratiometric Fluorescent Sensor for Zinc(II) with High Selectivity

    PubMed Central

    Lv, Yuanyuan; Cao, Mingda; Li, Jiakai; Wang, Junbo

    2013-01-01

    A new fluorescent Zn2+ chemosensor (P1) based on a functionalized porphyrin was synthesized and characterized. P1 displayed dramatic ratiometric variations in absorption and fluorescent emission spectra upon exposure to Zn2+ due to the formation of a 1:1 Zn2+/P1 complex. The sensor also exhibited high selectivity and sensitivity toward Zn2+ over other common metal ions in the physiological pH range with a detection limit of 1.8 μM. The sensor showed fast response times and excellent reproducibility, thus confirming its potential applicability as a fluorescent sensor for Zn2+ sensing. PMID:23467028

  11. High photostability and enhanced fluorescence of gold nanoclusters by silver doping

    NASA Astrophysics Data System (ADS)

    Le Guével, Xavier; Trouillet, Vanessa; Spies, Christian; Li, Ke; Laaksonen, Timo; Auerbach, Dagmar; Jung, Gregor; Schneider, Marc

    2012-11-01

    Gold nanoclusters prepared with a controlled amount of Ag exhibit intense fluorescence with a quantum yield of ~16% and a ``quasi-monoexponential'' long lifetime of >200 ns. Characterization of the luminescent probes indicates high photostability and easy detection in cells. Additionally, fluorescence enhancement in the presence of proteins was found.Gold nanoclusters prepared with a controlled amount of Ag exhibit intense fluorescence with a quantum yield of ~16% and a ``quasi-monoexponential'' long lifetime of >200 ns. Characterization of the luminescent probes indicates high photostability and easy detection in cells. Additionally, fluorescence enhancement in the presence of proteins was found. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30653k

  12. High-throughput screening assay of hepatitis C virus helicase inhibitors using fluorescence-quenching phenomenon

    SciTech Connect

    Tani, Hidenori; Akimitsu, Nobuyoshi; Fujita, Osamu; Matsuda, Yasuyoshi; Miyata, Ryo; Tsuneda, Satoshi; Igarashi, Masayuki; Sekiguchi, Yuji; Noda, Naohiro

    2009-02-20

    We have developed a novel high-throughput screening assay of hepatitis C virus (HCV) nonstructural protein 3 (NS3) helicase inhibitors using the fluorescence-quenching phenomenon via photoinduced electron transfer between fluorescent dyes and guanine bases. We prepared double-stranded DNA (dsDNA) with a 5'-fluorescent-dye (BODIPY FL)-labeled strand hybridized with a complementary strand, the 3'-end of which has guanine bases. When dsDNA is unwound by helicase, the dye emits fluorescence owing to its release from the guanine bases. Our results demonstrate that this assay is suitable for quantitative assay of HCV NS3 helicase activity and useful for high-throughput screening for inhibitors. Furthermore, we applied this assay to the screening for NS3 helicase inhibitors from cell extracts of microorganisms, and found several cell extracts containing potential inhibitors.

  13. An aqueous fluorescent probe for Hg(2+) detection with high selectivity and sensitivity.

    PubMed

    Fang, Qian; Liu, Qian; Song, Xiangzhi; Kang, Jian

    2015-12-01

    An aqueous fluorescent probe, 1, was developed for the rapid detection of Hg(2+) with high sensitivity and excellent selectivity. Upon the addition of Hg(2+) in pure aqueous media, the Hg(2+)-mediated hydrolysis of vinyl ether and subsequent cyclization reactions converted probe 1 into the corresponding iminocoumarin dye, which is strongly fluorescent when excited. The application of this probe for the detection of intracellular Hg(2+) was successfully demonstrated in living cells. PMID:25761896

  14. Molecular imprinting ratiometric fluorescence sensor for highly selective and sensitive detection of phycocyanin.

    PubMed

    Wang, Xiaoyan; Yu, Jialuo; Kang, Qi; Shen, Dazhong; Li, Jinhua; Chen, Lingxin

    2016-03-15

    A facile strategy was developed to prepare molecular imprinting ratiometric fluorescence sensor for highly selective and sensitive detection of phycocyanin (PC) based on fluorescence resonance energy transfer (FRET), via a sol-gel polymerization process using nitrobenzoxadiazole (NBD) as fluorescent signal source. The ratio of two fluorescence peak emission intensities of NBD and PC was utilized to determine the concentration of PC, which could effectively reduce the background interference and fluctuation of diverse conditions. As a result, this sensor obtained high sensitivity with a low detection limit of 0.14 nM within 6 min, and excellent recognition specificity for PC over its analogues with a high imprinting factor of 9.1. Furthermore, the sensor attained high recoveries in the range of 93.8-110.2% at three spiking levels of PC, with precisions below 4.7% in seawater and lake water samples. The developed sensor strategy demonstrated simplicity, reliability, rapidity, high selectivity and high sensitivity, proving to be a feasible way to develop high efficient fluorescence sensors and thus potentially applicable for ultratrace analysis of complicated matrices. PMID:26485176

  15. Fluorescent boronate-based polymer nanoparticles with reactive oxygen species (ROS)-triggered cargo release for drug-delivery applications.

    PubMed

    Jäger, Eliézer; Höcherl, Anita; Janoušková, Olga; Jäger, Alessandro; Hrubý, Martin; Konefał, Rafał; Netopilik, Miloš; Pánek, Jiří; Šlouf, Miroslav; Ulbrich, Karel; Štěpánek, Petr

    2016-03-24

    A new drug-delivery system of polymer nanoparticles (NPs) bearing pinacol-type boronic ester and alkyne moieties displaying triggered self-immolative polymer degradation in the presence of reactive oxygen species (ROS) with the capability of cellular imaging is presented. The NPs specifically release their drug cargo under concentrations of ROS that are commonly found in the intracellular environment of certain tumors and of inflamed tissues and exhibit significant cytotoxicity to cancer cells compared to their non-ROS-responsive counterparts. PMID:26961769

  16. Highly confined, enhanced surface fluorescence imaging with two-dimensional silver nanoparticle sheets

    SciTech Connect

    Usukura, Eiji; Shinohara, Shuhei; Okamoto, Koichi; Tamada, Kaoru; Lim, Jaehoon; Char, Kookheon

    2014-03-24

    A method of obtaining highly confined, enhanced surface fluorescence imaging is proposed using two-dimensional (2D) silver nanoparticle (AgMy) sheets. This technique is based on the localized surface plasmon resonance excited homogeneously on a 2D silver nanoparticle sheet. The AgMy sheets are fabricated at the air–water interface by self-assembly and transferred onto hydrophobic glass substrates. These sheets can enhance the fluorescence only when the excitation wavelength overlaps with the plasmon resonance wavelength. To confirm the validity of this technique, two separate test experiments are performed. One is the epifluorescence microscope imaging of a quantum dot 2D sheet on the AgMy 2D sheet with a SiO{sub 2} spacer layer, where the fluorescence is maximized with the 20 nm SiO{sub 2} layer, determined by the Förster resonance energy transfer distances. The second experiment is the imaging of a single fluorescence bead with a total internal reflection fluorescent microscope. We confirmed that the AgMy sheet provides a 4-fold increase in fluorescence with a 160-nm spatial resolution at 30 ms/frame snapshot. The AgMy sheet will be a powerful tool for high sensitivity and high-resolution real time bioimaging at nanointerfaces.

  17. Separating Reflective and Fluorescent Components Using High Frequency Illumination in the Spectral Domain.

    PubMed

    Fu, Ying; Lam, Antony; Sato, Imari; Okabe, Takahiro; Sato, Yoichi

    2016-05-01

    Hyperspectral imaging is beneficial to many applications but most traditional methods do not consider fluorescent effects which are present in everyday items ranging from paper to even our food. Furthermore, everyday fluorescent items exhibit a mix of reflection and fluorescence so proper separation of these components is necessary for analyzing them. In recent years, effective imaging methods have been proposed but most require capturing the scene under multiple illuminants. In this paper, we demonstrate efficient separation and recovery of reflectance and fluorescence emission spectra through the use of two high frequency illuminations in the spectral domain. With the obtained fluorescence emission spectra from our high frequency illuminants, we then describe how to estimate the fluorescence absorption spectrum of a material given its emission spectrum. In addition, we provide an in depth analysis of our method and also show that filters can be used in conjunction with standard light sources to generate the required high frequency illuminants. We also test our method under ambient light and demonstrate an application of our method to synthetic relighting of real scenes. PMID:26336113

  18. Fluorescence lifetime plate reader: Resolution and precision meet high-throughput

    NASA Astrophysics Data System (ADS)

    Petersen, Karl J.; Peterson, Kurt C.; Muretta, Joseph M.; Higgins, Sutton E.; Gillispie, Gregory D.; Thomas, David D.

    2014-11-01

    We describe a nanosecond time-resolved fluorescence spectrometer that acquires fluorescence decay waveforms from each well of a 384-well microplate in 3 min with signal-to-noise exceeding 400 using direct waveform recording. The instrument combines high-energy pulsed laser sources (5-10 kHz repetition rate) with a photomultiplier and high-speed digitizer (1 GHz) to record a fluorescence decay waveform after each pulse. Waveforms acquired from rhodamine or 5-((2-aminoethyl)amino) naphthalene-1-sulfonic acid dyes in a 384-well plate gave lifetime measurements 5- to 25-fold more precise than the simultaneous intensity measurements. Lifetimes as short as 0.04 ns were acquired by interleaving with an effective sample rate of 5 GHz. Lifetime measurements resolved mixtures of single-exponential dyes with better than 1% accuracy. The fluorescence lifetime plate reader enables multiple-well fluorescence lifetime measurements with an acquisition time of 0.5 s per well, suitable for high-throughput fluorescence lifetime screening applications.

  19. Fluorescence lifetime plate reader: Resolution and precision meet high-throughput

    PubMed Central

    Petersen, Karl J.; Peterson, Kurt C.; Muretta, Joseph M.; Higgins, Sutton E.; Gillispie, Gregory D.; Thomas, David D.

    2014-01-01

    We describe a nanosecond time-resolved fluorescence spectrometer that acquires fluorescence decay waveforms from each well of a 384-well microplate in 3 min with signal-to-noise exceeding 400 using direct waveform recording. The instrument combines high-energy pulsed laser sources (5–10 kHz repetition rate) with a photomultiplier and high-speed digitizer (1 GHz) to record a fluorescence decay waveform after each pulse. Waveforms acquired from rhodamine or 5-((2-aminoethyl)amino) naphthalene-1-sulfonic acid dyes in a 384-well plate gave lifetime measurements 5- to 25-fold more precise than the simultaneous intensity measurements. Lifetimes as short as 0.04 ns were acquired by interleaving with an effective sample rate of 5 GHz. Lifetime measurements resolved mixtures of single-exponential dyes with better than 1% accuracy. The fluorescence lifetime plate reader enables multiple-well fluorescence lifetime measurements with an acquisition time of 0.5 s per well, suitable for high-throughput fluorescence lifetime screening applications. PMID:25430092

  20. The importance of narcissism in predicting proactive and reactive aggression in moderately to highly aggressive children.

    PubMed

    Barry, Tammy D; Thompson, Alice; Barry, Christopher T; Lochman, John E; Adler, Kristy; Hill, Kwoneathia

    2007-01-01

    The present study examined the importance of psychopathy-linked narcissism in predicting proactive and reactive aggression and conduct problems in a group of 160 moderately to highly aggressive children (mean age of 10 years, 9 months). Children's self-report of self-esteem and parent and teacher report of dimensions of psychopathy [narcissism, callous-unemotional (CU) traits, and impulsivity], proactive and reactive aggression, and conduct problems were collected. Composites of parent and teacher ratings of children's behavior were used. Consistent with the study's hypotheses, narcissism predicted unique variance in both proactive and reactive aggression, even when controlling for other dimensions of psychopathy, demographic variables associated with narcissism, and the alternative subtype of aggression. As hypothesized, impulsivity was significantly associated with only reactive aggression. CU traits were not related to proactive or reactive aggression once the control variables were entered. All dimensions of psychopathy predicted unique variance in conduct problems. Consistent with prediction, narcissism was not significantly related to general self-esteem, providing support that narcissism and self-esteem are different constructs. Furthermore, narcissism and self-esteem related differentially to proactive aggression, reactive aggression, and conduct problems. Furthermore, narcissism but not self-esteem accounted for unique variance in aggression and conduct problems. The importance of narcissism in the prediction of aggressive behaviors and clinical implications are discussed. PMID:17444525

  1. Fluorescent boronate-based polymer nanoparticles with reactive oxygen species (ROS)-triggered cargo release for drug-delivery applications

    NASA Astrophysics Data System (ADS)

    Jäger, Eliézer; Höcherl, Anita; Janoušková, Olga; Jäger, Alessandro; Hrubý, Martin; Konefał, Rafał; Netopilik, Miloš; Pánek, Jiří; Šlouf, Miroslav; Ulbrich, Karel; Štěpánek, Petr

    2016-03-01

    A new drug-delivery system of polymer nanoparticles (NPs) bearing pinacol-type boronic ester and alkyne moieties displaying triggered self-immolative polymer degradation in the presence of reactive oxygen species (ROS) with the capability of cellular imaging is presented. The NPs specifically release their drug cargo under concentrations of ROS that are commonly found in the intracellular environment of certain tumors and of inflamed tissues and exhibit significant cytotoxicity to cancer cells compared to their non-ROS-responsive counterparts.A new drug-delivery system of polymer nanoparticles (NPs) bearing pinacol-type boronic ester and alkyne moieties displaying triggered self-immolative polymer degradation in the presence of reactive oxygen species (ROS) with the capability of cellular imaging is presented. The NPs specifically release their drug cargo under concentrations of ROS that are commonly found in the intracellular environment of certain tumors and of inflamed tissues and exhibit significant cytotoxicity to cancer cells compared to their non-ROS-responsive counterparts. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00791k

  2. Li2 - Li reactive collisions at high initial j

    NASA Astrophysics Data System (ADS)

    Rosenberry, Mark; Marhatta, Ramesh; Stewart, Brian

    2014-05-01

    Inelastic molecular collisions are a fundamental process in astronomy and chemistry. We are studying collisions of 7Li2 with 7Li in a heat pipe oven, and looking for nuclear parity-changing events that signal a chemical reaction. Previous work in our group studied such reactions for low initial j; we are now working to collect data for the case of high initial j, where quasi-resonant phenomena occur. We have also incorporated new corrections for multiple collisions in our analysis. Quasi-classical trajectory calculations are used to model these reactions and extract physical insight.

  3. Laser measurement of the spectral extinction coefficients of fluorescent, highly absorbing liquids. [crude petroleum oils

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.

    1982-01-01

    A conceptual method is developed to deduce rapidly the spectral extinction coefficient of fluorescent, highly absorbing liquids, such as crude or refined petroleum oils. The technique offers the advantage of only requiring one laser wavelength and a single experimental assembly and execution for any specific fluorescent liquid. The liquid is inserted into an extremely thin wedge-shaped cavity for stimulation by a laser from one side and flurescence measurement on the other side by a monochromator system. For each arbitrarily selected extinction wavelength, the wedge is driven slowly to increasing thicknesses until the fluorescence extinguishes. The fluorescence as a function of wedge thickness permits a determination of the extinction coefficient using an included theoretical model. When the monochromator is set to the laser emission wavelength, the extinction coefficient is determined using the usual on-wavelength signal extinction procedure.

  4. Fluorescent Protein Nanowire-Mediated Protein Microarrays for Multiplexed and Highly Sensitive Pathogen Detection.

    PubMed

    Men, Dong; Zhou, Juan; Li, Wei; Leng, Yan; Chen, Xinwen; Tao, Shengce; Zhang, Xian-En

    2016-07-13

    Protein microarrays are powerful tools for high-throughput and simultaneous detection of different target molecules in complex biological samples. However, the sensitivity of conventional fluorescence-labeling protein detection methods is limited by the availability of signal molecules for binding to the target molecule. Here, we built a multifunctional fluorescent protein nanowire (FNw) by harnessing self-assembly of yeast amyloid protein. The FNw integrated a large number of fluorescent molecules, thereby enhancing the fluorescent signal output in target detection. The FNw was then combined with protein microarray technology to detect proteins derived from two pathogens, including influenza virus (hemagglutinin 1, HA1) and human immunodeficiency virus (p24 and gp120). The resulting detection sensitivity achieved a 100-fold improvement over a commercially available detection reagent. PMID:27315221

  5. Preparation and characterization of fluorescent microtubes with high length/diameter ratios

    NASA Astrophysics Data System (ADS)

    Chu, Maoquan; Huang, Jiasheng

    2009-02-01

    Fluorescent microtubes were prepared by self-assembly of CdTe quantum dots (QDs) following calcination at 500 °C using silkworm silks as templates. The obtained microtubes exhibited high length/diameter ratios. The cross-sectional dimension of the microtubes was no more than 10 µm, but the length could be up to several millimeters. The microtube wall was mainly composed of CdO, Cd3TeO6, and CdCO3 nanocrystals. Compared with the original red fluorescent CdTe QDs and the silk/QD core-shell structures, the microtubes exhibited a bright green-yellow fluorescence. The approach reported in this work opens the possibility of the large-scale preparation of fluorescent microtubes for both fundamental research and applications.

  6. Highly fluorescent colloids based on rhodamine 6G, modified layered silicate, and organic solvent.

    PubMed

    Bujdák, Juraj; Iyi, Nobuo

    2012-12-15

    Synthetic layered silicate saponite was modified with dodecyltrimethylammonium (C12), octadecyltrimethylammonium (C18), and dioctadecyldimethylammonium (2C18) cations for use as sorbents of the laser dye, rhodamine 6G (R6G). Via solvent exchange, transparent colloids in xylene were prepared and investigated using absorption and fluorescence spectroscopies. Molecular aggregation and partial quenching of the fluorescence were observed for the colloids based on 2C18 cations. Maximal fluorescence yields were observed for the colloids with C12 and C18 cations. Transparent gels without an apparent loss of luminescent efficiency could be prepared by concentrating the colloids. These highly fluorescent colloids and gels represent new types of materials with interesting optical properties. PMID:22995248

  7. Premixed direct injection nozzle for highly reactive fuels

    SciTech Connect

    Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang

    2013-09-24

    A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  8. Impact reactivity of materials at very high oxygen pressure

    NASA Technical Reports Server (NTRS)

    Connor, H. W.; Minchey, J. G.; Crowder, R.; Davidson, R.

    1983-01-01

    The requirements for impact testing of materials in an oxygen atmosphere at pressures from 82.7 MPa (12,000 psi) to 172 MPa (25,000 psi) were evaluated. The impact tester system was evaluated for potential pressure increases from 69 MPa (10,000 psi) to 82.7 MPa (12,000 psi). The low pressure oxygen and nitrogen systems, the impact tower, the impact test cell, and the high pressure oxygen system were evaluated individually. Although the structural integrity of the impact test cell and the compressor were sufficient for operation at 82.7 MPa (12,000 psi), studies revealed possible material incompatibility at that pressure and above. It was recommended that if a component should be replaced for 82.7 MPa (12,000 psi) operation the replacement should meet the final objectives of 172 MPa (25,000 psi). Recommended changes in the system include; use of Monel 400 for pressures above 82.7 MPa (12,000 psi), use of bellows to replace the seal in the impact tester, use of a sapphire window attached to a fiber optic for event sensing, and use of a three diaphragm compressor.

  9. A virus-MIPs fluorescent sensor based on FRET for highly sensitive detection of JEV.

    PubMed

    Liang, Caishuang; Wang, Huan; He, Kui; Chen, Chunyan; Chen, Xiaoming; Gong, Hang; Cai, Changqun

    2016-11-01

    Major stumbling blocks in the recognition and detection of virus are the unstable biological recognition element or the complex detection means. Here a fluorescent sensor based on virus-molecular imprinted polymers (virus-MIPs) was designed for specific recognition and highly sensitive detection of Japanese encephalitis virus (JEV). The virus-MIPs were anchored on the surface of silica microspheres modified by fluorescent dye, pyrene-1-carboxaldehyde (PC). The fluorescence intensity of PC can be enhanced by the principle of fluorescence resonance energy transfer (FRET), where virus acted as energy donor and PC acted as energy acceptor. The enhanced fluorescence intensity was proportional to the concentration of virus in the range of 24-960pM, with a limit of detection (LOD, 3σ) of 9.6pM, and the relative standard deviation was 1.99%. In additional, the specificity study confirmed the resultant MIPs has high-selectivity for JEV. This sensor would become a new key for the detection of virus because of its high sensitive, simple operation, high stability and low cost. PMID:27591625

  10. THE HIGH TEMPERATURE CHEMICAL REACTIVITY OF LI2O

    SciTech Connect

    Kessinger, G.; Missimer, D.

    2009-11-13

    ) It is likely that some or all of the past high temperature phase behavior and vaporization experiments involving Li{sub 2}O(s) at temperatures above 1250 C have actually involved Li{sub 2}O(l). If these past measurements were actually measurements performed on Li{sub 2}O(l) instead of the solid, the thermochemical data for phases and species in the Li-O system will require reevaluation.

  11. Future use of silicon photomultipliers for the fluorescence detection of ultra-high-energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Stephan, Maurice; Hebbeker, Thomas; Lauscher, Markus; Meurer, Christine; Niggemann, Tim; Schumacher, Johannes

    2011-10-01

    A sophisticated technique to measure extensive air showers initiated by ultra-high-energy cosmic rays is by means of fluorescence telescopes. Secondary particles of the air shower excite nitrogen molecules of the atmosphere, which emit fluorescence light when they de-excite. Due to their high photon detection efficiency (PDE) silicon photomultipliers (SiPMs) promise to increase the sensitivity of todays fluorescence telescopes which use photomultiplier tubes - for example the fluorescence detector of the Pierre Auger Observatory. On the other hand drawbacks like a small sensitive area, a strong temperature dependency and a high noise rate have to be managed. We present plans for a prototype fluorescence telescope using SiPMs and a special light collecting optical system of Winston cones to increase the sensitive area. In this context we made measurements of the relative PDE of SiPMs depending on the incident angle of light. The results agree with calculations based on the Fresnel equations. Furthermore, measurements of the brightness of the night sky are presented since this photon flux is the main background to the fluorescence signals of the extensive air showers. To compensate the temperature dependency of the SiPM, frontend electronics make use of temperature sensors and microcontrollers to directly adjust the bias-voltage according to the thermal conditions. To reduce the noise rate we study the coincidence of several SiPMs signals triggered by cosmic ray events. By summing up these signals the SiPMs will constitute a single pixel of the fluorescence telescope.

  12. A fluorescence high throughput screening method for the detection of reactive electrophiles as potential skin sensitizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Skin sensitization is an important toxicological end-point in the risk assessment of chemical allergens. Because of the complexity of the biological mechanisms associated with skin sensitization integrated approaches combining different chemical, biological and in silico methods are recommended to r...

  13. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    PubMed

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis. PMID:26922047

  14. EVALUATION OF FGD DRY INJECTION SORBENTS AND ADDITIVES - VOLUME 1 - DEVELOPMENT OF HIGH REACTIVITY SORBENTS

    EPA Science Inventory

    The report discusses recent work addressing lime enhancement by slurrying with siliceous materials and testing in a laboratory packed-bed reactor, as part of EPA's efforts to develop low cost, retrofit flue gas cleaning technology, including the development of highly reactive sor...

  15. EVALUATION OF FGD DRY INJECTION SORBENTS AND ADDITIVES: VOLUME 1. DEVELOPMENT OF HIGH REACTIVITY SORBENTS

    EPA Science Inventory

    The report discusses recent work addressing lime enhancement by slurrying with siliceous materials and testing in a laboratory packed-bed reactor, as part of EPA's efforts to develop low cost, retrofit flue gas cleaning technology, including the development of highly reactive sor...

  16. Aptamer-Functionalized Fluorescent Silica Nanoparticles for Highly Sensitive Detection of Leukemia Cells

    NASA Astrophysics Data System (ADS)

    Tan, Juntao; Yang, Nuo; Hu, Zixi; Su, Jing; Zhong, Jianhong; Yang, Yang; Yu, Yating; Zhu, Jianmeng; Xue, Dabin; Huang, Yingying; Lai, Zongqiang; Huang, Yong; Lu, Xiaoling; Zhao, Yongxiang

    2016-06-01

    A simple, highly sensitive method to detect leukemia cells has been developed based on aptamer-modified fluorescent silica nanoparticles (FSNPs). In this strategy, the amine-labeled Sgc8 aptamer was conjugated to carboxyl-modified FSNPs via amide coupling between amino and carboxyl groups. Sensitivity and specificity of Sgc8-FSNPs were assessed using flow cytometry and fluorescence microscopy. These results showed that Sgc8-FSNPs detected leukemia cells with high sensitivity and specificity. Aptamer-modified FSNPs hold promise for sensitive and specific detection of leukemia cells. Changing the aptamer may allow the FSNPs to detect other types of cancer cells.

  17. High quality fluorescent cellulose nanofibers from endemic rice husk: isolation and characterization.

    PubMed

    Kalita, E; Nath, B K; Deb, P; Agan, F; Islam, Md R; Saikia, K

    2015-05-20

    Cellulose nanofibers (CNFs) with high crystallinity and purity were isolated from two endemic rice husk varieties using a hydrothermal approach followed by acid-alkali treatments and mechanical disruption. The CNFs isolated had a mean diameter of ∼ 35 nm. The TGA and DTG profiles showed good thermostability of the CNFs. The CNFs also showed a prominent photoluminescence peak at 404 nm with high quantum yield (∼ 58%). This is the first report on the native fluorescence property of nanocellulose in absence of any conjugated fluorescence molecule/dye. The CNFs further demonstrated appreciable hemocompatibility in the hemolysis test, exhibiting its potential for biomedical applications. PMID:25817673

  18. Aptamer-Functionalized Fluorescent Silica Nanoparticles for Highly Sensitive Detection of Leukemia Cells.

    PubMed

    Tan, Juntao; Yang, Nuo; Hu, Zixi; Su, Jing; Zhong, Jianhong; Yang, Yang; Yu, Yating; Zhu, Jianmeng; Xue, Dabin; Huang, Yingying; Lai, Zongqiang; Huang, Yong; Lu, Xiaoling; Zhao, Yongxiang

    2016-12-01

    A simple, highly sensitive method to detect leukemia cells has been developed based on aptamer-modified fluorescent silica nanoparticles (FSNPs). In this strategy, the amine-labeled Sgc8 aptamer was conjugated to carboxyl-modified FSNPs via amide coupling between amino and carboxyl groups. Sensitivity and specificity of Sgc8-FSNPs were assessed using flow cytometry and fluorescence microscopy. These results showed that Sgc8-FSNPs detected leukemia cells with high sensitivity and specificity. Aptamer-modified FSNPs hold promise for sensitive and specific detection of leukemia cells. Changing the aptamer may allow the FSNPs to detect other types of cancer cells. PMID:27299653

  19. Life of fluorescent lamps operated at high frequencies with solid-state ballasts

    NASA Astrophysics Data System (ADS)

    Verderber, R. R.; Morse, O.; Rubinstein, F. M.

    1985-07-01

    Standard 40-watt, F-40, rapid-start, fluorescent lamps were operated with solid-state ballasts following the standard life-testing cycle of 3 hours on and 20 minutes off for more than 20,000 hours at high frequency. Lamp operating characteristics (starting voltage, filament voltage, arc current, and current-crest factor) were studied as factors affecting lamp life. Measurements show that fluorescent lamps can attain rated life at high frequency using solid-state ballasts. When lamps are operated in the dimmed mode, full filament power is required to sustain lamplife. The rate of lamp lumen depreciation is dependent on the lamp loading and not the operating frequency.

  20. Highly selective ensembles for D-fructose based on fluorescent method in aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Zhijun; Lei, Haiying; Zhou, Chengyong; Wang, Guofeng; Feng, Liheng

    2012-06-01

    Three highly sensitive and selective switches for monosaccharides were composed by anionic polyelectrolyte PPPSO3Na and cationic viologen quencheres BBVs. The sensing processes of three ensembles (PPPSO3Na/o-BBV, PPPSO3Na/m-BBV and PPPSO3Na/p-BBV) to common seven monosaccharides have been determined by fluorescence spectra at pH 7.4 buffer solution. The results show that the three sensing ensembles all embody higher selectivity and sensitivity for D-fructose with reversible "on-off-on" fluorescence response. The research results can provide a new mode for developing highly selective probes.

  1. Unusual high fluorescence of two nitro-distyrylbenzene-like compounds induced by CT processes affecting the fluorescence/intersystem-crossing competition.

    PubMed

    Carlotti, B; Elisei, F; Mazzucato, U; Spalletti, A

    2015-06-14

    Two nitro-substituted 1,4-distyrylbenzene-like compounds have been investigated using stationary and time-resolved (ns/fs) spectrometric techniques as a function of solvent polarity. In the two compounds the central benzene ring is substituted with a p-nitrostyryl group at one side while, at the other side, compound 1 (asymmetric) bears a pyrid-4-ylethenyl group and compound 2 (symmetric) another p-nitrostyryl group. The solvent dependent intramolecular charge transfer (ICT) in the singlet manifold was found to strongly affect the competition among fluorescence, intersystem crossing and trans-cis photoisomerization. The presence of nitro-groups in the 1,4-distyrylbenzene skeleton causes the usual strong decrease of fluorescence in favour of intersystem crossing to a reactive triplet state. However, the favoured formation of the ICT state in polar solvents induces an unexpected important increase of the fluorescence quantum yield (three/two order of magnitude for the nitro and dinitro derivatives, respectively). The ultrafast spectral transients helped to understand the solvent effects measured by stationary techniques and gave information on the dynamics of the locally excited singlet state ((1)LE*) and the (1)ICT* state, fast produced in polar solvents. Evidence of dual fluorescence in a limited range of solvent polarity, particularly for compound 1, is also reported. The role of an upper triplet state in a non-polar solvent is discussed also based on quantum-mechanical calculations (TD-DFT method) and temperature effects on the photophysical parameters. PMID:25975235

  2. The chemical and mechanical behaviors of polymer / reactive metal systems under high strain rates

    NASA Astrophysics Data System (ADS)

    Shen, Yubin

    As one category of energetic materials, impact-initiated reactive materials are able to release a high amount of stored chemical energy under high strain rate impact loading, and are used extensively in civil and military applications. In general, polymers are introduced as binder materials to trap the reactive metal powders inside, and also act as an oxidizing agent for the metal ingredient. Since critical attention has been paid on the metal / metal reaction, only a few types of polymer / reactive metal interactions have been studied in the literature. With the higher requirement of materials resistant to different thermal and mechanical environments, the understanding and characterization of polymer / reactive metal interactions are in great demand. In this study, PTFE (Polytetrafluoroethylene) 7A / Ti (Titanium) composites were studied under high strain rates by utilizing the Taylor impact and SHPB tests. Taylor impact tests with different impact velocities, sample dimensions and sample configurations were conducted on the composite, equipped with a high-speed camera for tracking transient images during the sudden process. SHPB and Instron tests were carried out to obtain the stress vs. strain curves of the composite under a wide range of strain rates, the result of which were also utilized for fitting the constitutive relations of the composite based on the modified Johnson-Cook strength model. Thermal analyses by DTA tests under different flow rates accompanied with XRD identification were conducted to study the reaction mechanism between PTFE 7A and Ti when only heat was provided. Numerical simulations on Taylor impact tests and microstructural deformations were also performed to validate the constitutive model built for the composite system, and to investigate the possible reaction mechanism between two components. The results obtained from the high strain rate tests, thermal analyses and numerical simulations were combined to provide a systematic study on

  3. Facile synthesis of N, S-codoped fluorescent carbon nanodots for fluorescent resonance energy transfer recognition of methotrexate with high sensitivity and selectivity.

    PubMed

    Wang, Weiping; Lu, Ya-Chun; Huang, Hong; Wang, Ai-Jun; Chen, Jian-Rong; Feng, Jiu-Ju

    2015-02-15

    In this report, N, S-codoped fluorescent carbon nanodots (NSCDs) were prepared by a facile, simple, low-cost, and green thermal treatment of ammonium persulfate, glucose, and ethylenediamine. The as-prepared NSCDs displayed bright blue emission with a relatively high fluorescent quantum yield of 21.6%, good water solubility, uniform morphology, and excellent chemical stability, compared to pure CDs. The fluorescence of NSCDs can be significantly quenched by methotrexate (MTX) via fluorescence resonance energy transfer (FRET) between NSCDs and MTX, which was used for highly selective and sensitive detection of MTX with a wide linear range up to 50.0 μM and a low detection limit of 0.33 nM (S/N = 3). Moreover, this method was explored for practical detection of MTX in human serum with satisfied results. PMID:25310482

  4. Sonochemical synthesis of highly fluorescent glutathione-stabilized Ag nanoclusters and S2- sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Tingyao; Rong, Mingcong; Cai, Zhimin; Yang, Chaoyong James; Chen, Xi

    2012-06-01

    A facile one-pot sonochemical approach is presented to prepare highly blue-emitting Ag nanoclusters (AgNCs) using glutathione as a stabilizing agent in aqueous solution. The as-prepared AgNCs can be applied in the selective detection of S2- with a limit of detection of 2 nM based on fluorescence quenching.A facile one-pot sonochemical approach is presented to prepare highly blue-emitting Ag nanoclusters (AgNCs) using glutathione as a stabilizing agent in aqueous solution. The as-prepared AgNCs can be applied in the selective detection of S2- with a limit of detection of 2 nM based on fluorescence quenching. Electronic supplementary information (ESI) available: Experimental procedures of fluorescent AgNCs synthesis and Fig. S1-S6. See DOI: 10.1039/c2nr30718a

  5. High-speed confocal fluorescence lifetime imaging microscopy by analog mean-delay method

    NASA Astrophysics Data System (ADS)

    Won, Youngjae; Kim, Donguk; Yang, Wenzhong; Kim, Dug Y.

    2010-02-01

    We have demonstrated the high-speed confocal fluorescence lifetime imaging microscopy (FLIM) by analog mean-delay (AMD) method. The AMD method is a new signal processing technique for calculation of fluorescence lifetime and it is very suitable for the high-speed confocal FLIM with good accuracy and photon economy. We achieved the acquisition speed of 7.7 frames per second for confocal FLIM imaging. Here, the highest photon detection rate for one pixel was larger than 125 MHz and averaged photon detection rate was more than 62.5 MHz. Based on our system, we successfully obtained a sequence of confocal fluorescence lifetime images of RBL-2H3 cell labeled with Fluo-3/AM and excited by 4αPDD (TRPV channel agonist) within one second.

  6. Development of a High-performance Optical System and Fluorescent Converters for High-resolution Neutron Imaging

    NASA Astrophysics Data System (ADS)

    Sakai, T.; Yasuda, R.; Iikura, H.; Nojima, T.; Matsubayashi, M.

    Two novel devices for use in neutron imaging technique are introduced. The first one is a high-performance optical lens for video camera systems. The lens system has a magnification of 1:1 and an F value of 3. The optical resolution is less than 5 μm. The second device is a high-resolution fluorescent plate that converts neutrons into visible light. The fluorescent converter material consists of a mixture of 6LiF and ZnS(Ag) fine powder, and the thickness of the converter is material is as little as 15 μm. The surface of the plate is coated with a 1 μm-thick gadolinium oxide layer. This layer is optically transparent and acts as an electron emitter for neutron detection. Our preliminary results show that the developed optical lens and fluorescent converter plates are very promising for high-resolution neutron imaging.

  7. High-efficiency white organic light-emitting diodes based on a blue thermally activated delayed fluorescent emitter combined with green and red fluorescent emitters.

    PubMed

    Higuchi, Takahiro; Nakanotani, Hajime; Adachi, Chihaya

    2015-03-25

    A new device architecture for highly efficient white organic light-emitting diodes is proposed, using a molecule exhibiting blue thermally activated delayed fluorescence as a common source of singlet excitons for molecules emitting red and green light based on conventional fluorescence. The device, with an optimum combination of materials, shows a maximum external quantum efficiency of over 12% without using phosphorescent emitters. PMID:25664428

  8. High-performance time-resolved fluorescence by direct waveform recording

    NASA Astrophysics Data System (ADS)

    Muretta, Joseph M.; Kyrychenko, Alexander; Ladokhin, Alexey S.; Kast, David J.; Gillispie, Gregory D.; Thomas, David D.

    2010-10-01

    We describe a high-performance time-resolved fluorescence (HPTRF) spectrometer that dramatically increases the rate at which precise and accurate subnanosecond-resolved fluorescence emission waveforms can be acquired in response to pulsed excitation. The key features of this instrument are an intense (1 μJ/pulse), high-repetition rate (10 kHz), and short (1 ns full width at half maximum) laser excitation source and a transient digitizer (0.125 ns per time point) that records a complete and accurate fluorescence decay curve for every laser pulse. For a typical fluorescent sample containing a few nanomoles of dye, a waveform with a signal/noise of about 100 can be acquired in response to a single laser pulse every 0.1 ms, at least 105 times faster than the conventional method of time-correlated single photon counting, with equal accuracy and precision in lifetime determination for lifetimes as short as 100 ps. Using standard single-lifetime samples, the detected signals are extremely reproducible, with waveform precision and linearity to within 1% error for single-pulse experiments. Waveforms acquired in 0.1 s (1000 pulses) with the HPTRF instrument were of sufficient precision to analyze two samples having different lifetimes, resolving minor components with high accuracy with respect to both lifetime and mole fraction. The instrument makes possible a new class of high-throughput time-resolved fluorescence experiments that should be especially powerful for biological applications, including transient kinetics, multidimensional fluorescence, and microplate formats.

  9. High-temperature reactive flow of combustion gases in an expansion turbine

    SciTech Connect

    Godin, T.; Harvey, S.; Stouffs, P.

    1997-07-01

    The analysis of the chemical behavior of the working fluid in gas turbines is usually restricted to the combustion chamber sections. However, the current trend toward higher Turbine Inlet Temperatures (TIT), in order to achieve improved thermal efficiency, will invalidate the assumption of frozen composition of the gases in the first stages of the expansion process. It will become necessary to consider the recombination reactions of the dissociated species, resulting in heat release during expansion. In order to quantify the influence of this reactivity on the performance of high TIT gas turbines, a one-dimensional model of the reactive flow has been developed. Preliminary results were reported in a previous paper. The authors concluded that, in the case of expansion of combustion gases in a subsonic static uncurved distributor nozzle, the residual reactivity must be taken into account above a temperature threshold of around 2,000 K. The present study extend these results by investigating the reactive flow in a complete multistage turbine set, including a transonic first-stage nozzle. A key result of this study is that heat release during the expansion process itself will be considerable in future high-temperature gas turbines, and this will have significant implications for turbine design techniques. Furthermore, they show that, at the turbine exit, the fractions of NO and CO are very different from the values computed at the combustor outlet. In particular, NO production in the early part of the expansion process is very high. Finally, the effects of temperature fluctuations at the turbine inlet are considered. They show that residual chemical reactivity affects the expansion characteristics in gas turbines with TITs comparable to those attained by modern high-performance machines.

  10. A parametric model for reactive high-power impulse magnetron sputtering of films

    NASA Astrophysics Data System (ADS)

    Kozák, Tomáš; Vlček, Jaroslav

    2016-02-01

    We present a time-dependent parametric model for reactive HiPIMS deposition of films. Specific features of HiPIMS discharges and a possible increase in the density of the reactive gas in front of the reactive gas inlets placed between the target and the substrate are considered in the model. The model makes it possible to calculate the compound fractions in two target layers and in one substrate layer, and the deposition rate of films at fixed partial pressures of the reactive and inert gas. A simplified relation for the deposition rate of films prepared using a reactive HiPIMS is presented. We used the model to simulate controlled reactive HiPIMS depositions of stoichiometric \\text{Zr}{{\\text{O}}2} films, which were recently carried out in our laboratories with two different configurations of the {{\\text{O}}2} inlets in front of the sputtered target. The repetition frequency was 500 Hz at the deposition-averaged target power densities of 5 Wcm-2and 50 Wcm-2 with a pulse-averaged target power density up to 2 kWcm-2. The pulse durations were 50 μs and 200 μs. Our model calculations show that the to-substrate {{\\text{O}}2} inlet provides systematically lower compound fractions in the target surface layer and higher compound fractions in the substrate surface layer, compared with the to-target {{\\text{O}}2} inlet. The low compound fractions in the target surface layer (being approximately 10% at the deposition-averaged target power density of 50 Wcm-2 and the pulse duration of 200 μs) result in high deposition rates of the films produced, which are in agreement with experimental values.

  11. Micromixing visualization and quantification in a microscale multi-inlet vortex nanoprecipitation reactor using confocal-based reactive micro laser-induced fluorescence

    PubMed Central

    Shi, Yanxiang; Fox, Rodney O.; Olsen, Michael G.

    2014-01-01

    A technique for visualizing and quantifying reactive mixing for laminar and turbulent flow in a microscale chemical reactor using confocal-based microscopic laser induced fluorescence (confocal μ-LIF) was demonstrated in a microscale multi-inlet vortex nanoprecipitation reactor. Unlike passive scalar μ-LIF, the reactive μ-LIF technique is able to visualize and quantify micromixing effects. The confocal imaging results indicated that the flow in the reactor was laminar and steady for inlet Reynolds numbers of 10, 53, and 93. Mixing and reaction were incomplete at each of these Reynolds numbers. The results also suggested that although mixing by diffusion was enhanced near the midplane of the reactor at Rej = 53 and 93 due to very thin bands of acidic and basic fluid forming as the fluid spiraled towards the center of the reactor, near the top, and bottom walls of the reactor, the lower velocities due to fluid friction with the walls hindered the formation of these thin bands, and, thus, resulted in large regions of unmixed and unreacted fluid. At Rej = 240, the flow was turbulent and unsteady. The mixing and reaction processes were still found to be incomplete even at this highest Reynolds number. At the reactor midplane, the flow images at Rej = 240 showed unmixed base fluid near the center of the reactor, suggesting that just as in the Rej = 53 and 93 cases, lower velocities near the top and bottom walls of the reactor hinder the mixing and rection of the acidic and basic streams. Ensemble averages of line-scan profiles for the Rej = 240 were then calculated to provide statistical quantification of the microscale mixing in the reactor. These results further demonstrate that even at this highest Reynolds number investigated, mixing and reaction are incomplete. Visualization and quantification of micromixing using this reactive μ-LIF technique can prove useful in the validation of computational fluid dynamics models of micromixing within

  12. Amino-terminated biphenylthiol self-assembled monolayers as highly reactive molecular templates

    SciTech Connect

    Meyerbroeker, N.; Waske, P.; Zharnikov, M.

    2015-03-14

    Self-assembled monolayers (SAMs) with amino tail groups are of interest due to their ability of coupling further compounds. Such groups can be, in particular, created by electron irradiation of nitro- or nitrile-substituted aromatic SAMs, which provide a basis for chemical nanolithography and the fabrication of functionalized nanomembranes. An estimate of reactivity of the created amino groups requires a reference system of homogeneous, amino-terminated aromatic SAMs, which can also be used as a highly reactive molecular template. Here, we describe the synthesis of 4′-aminobiphenyl-4-thiol (ABPT) and SAMs prepared from this precursor on Au(111). The monolayers were characterized by X-ray photoelectron spectroscopy and near edge X-ray absorption fine structure spectroscopy, which revealed that they are well defined, chemically uniform, densely packed, and highly ordered. To examine the influence of electron irradiation on the reactivity of the terminal amino groups, ABPT SAMs were exposed to low energy (50 eV) electrons up to a dose of 40 mC/cm{sup 2} and, subsequently, immersed in either trifluoroacetic, pentafluoropropionic, or heptafluorobutyric anhydride. Analysing the amount of the attached anhydride species made it possible to determine the percentage of reactive amino groups as well as the effect of steric hindrance upon the coupling reaction. The above results are compared with those obtained for the well-established nitro-substituted biphenylthiol monolayers.

  13. Reactive power planning under high penetration of wind energy using Benders decomposition

    DOE PAGESBeta

    Xu, Yan; Wei, Yanli; Fang, Xin; Li, Fangxing; Azim, Riyasat

    2015-11-05

    This study addresses the optimal allocation of reactive power volt-ampere reactive (VAR) sources under the paradigm of high penetration of wind energy. Reactive power planning (RPP) in this particular condition involves a high level of uncertainty because of wind power characteristic. To properly model wind generation uncertainty, a multi-scenario framework optimal power flow that considers the voltage stability constraint under the worst wind scenario and transmission N 1 contingency is developed. The objective of RPP in this study is to minimise the total cost including the VAR investment cost and the expected generation cost. Therefore RPP under this condition ismore » modelled as a two-stage stochastic programming problem to optimise the VAR location and size in one stage, then to minimise the fuel cost in the other stage, and eventually, to find the global optimal RPP results iteratively. Benders decomposition is used to solve this model with an upper level problem (master problem) for VAR allocation optimisation and a lower problem (sub-problem) for generation cost minimisation. Impact of the potential reactive power support from doubly-fed induction generator (DFIG) is also analysed. Lastly, case studies on the IEEE 14-bus and 118-bus systems are provided to verify the proposed method.« less

  14. A manganese catalyst for highly reactive yet chemoselective intramolecular C(sp3)-H amination

    NASA Astrophysics Data System (ADS)

    Paradine, Shauna M.; Griffin, Jennifer R.; Zhao, Jinpeng; Petronico, Aaron L.; Miller, Shannon M.; Christina White, M.

    2015-12-01

    C-H bond oxidation reactions underscore the existing paradigm wherein high reactivity and high selectivity are inversely correlated. The development of catalysts capable of oxidizing strong aliphatic C(sp3)-H bonds while displaying chemoselectivity (that is, tolerance of more oxidizable functionality) remains an unsolved problem. Here, we describe a catalyst, manganese tert-butylphthalocyanine [Mn(tBuPc)], that is an outlier to the reactivity-selectivity paradigm. It is unique in its capacity to functionalize all types of C(sp3)-H bond intramolecularly, while displaying excellent chemoselectivity in the presence of π functionality. Mechanistic studies indicate that [Mn(tBuPc)] transfers bound nitrenes to C(sp3)-H bonds via a pathway that lies between concerted C-H insertion, observed with reactive noble metals such as rhodium, and stepwise radical C-H abstraction/rebound, as observed with chemoselective base metals such as iron. Rather than achieving a blending of effects, [Mn(tBuPc)] aminates even 1° aliphatic and propargylic C-H bonds, demonstrating reactivity and selectivity unusual for previously known catalysts.

  15. Reactive power planning under high penetration of wind energy using Benders decomposition

    SciTech Connect

    Xu, Yan; Wei, Yanli; Fang, Xin; Li, Fangxing; Azim, Riyasat

    2015-11-05

    This study addresses the optimal allocation of reactive power volt-ampere reactive (VAR) sources under the paradigm of high penetration of wind energy. Reactive power planning (RPP) in this particular condition involves a high level of uncertainty because of wind power characteristic. To properly model wind generation uncertainty, a multi-scenario framework optimal power flow that considers the voltage stability constraint under the worst wind scenario and transmission N 1 contingency is developed. The objective of RPP in this study is to minimise the total cost including the VAR investment cost and the expected generation cost. Therefore RPP under this condition is modelled as a two-stage stochastic programming problem to optimise the VAR location and size in one stage, then to minimise the fuel cost in the other stage, and eventually, to find the global optimal RPP results iteratively. Benders decomposition is used to solve this model with an upper level problem (master problem) for VAR allocation optimisation and a lower problem (sub-problem) for generation cost minimisation. Impact of the potential reactive power support from doubly-fed induction generator (DFIG) is also analysed. Lastly, case studies on the IEEE 14-bus and 118-bus systems are provided to verify the proposed method.

  16. Magnetic Separation-Assistant Fluorescence Resonance Energy Transfer Inhibition for Highly Sensitive Probing of Nucleolin.

    PubMed

    Li, Yan-Ran; Liu, Qian; Hong, Zhangyong; Wang, He-Fang

    2015-12-15

    For the widely used "off-on" fluorescence (or phosphorescence) resonance energy transfer (FRET or PRET) system, the separation of donors and acceptors species was vital for enhancing the sensitivity. To date, separation of free donors from FRET/PRET inhibition systems was somewhat not convenient, whereas separation of the target-induced far-between acceptors has hardly been reported yet. We presented here a novel magnetic separation-assistant fluorescence resonance energy transfer (MS-FRET) inhibition strategy for highly sensitive detection of nucleolin using Cy5.5-AS1411 as the donor and Fe3O4-polypyrrole core-shell (Fe3O4@PPY) nanoparticles as the NIR quenching acceptor. Due to hydrophobic interaction and π-π stacking of AS1411 and PPY, Cy5.5-AS1411 was bound onto the surface of Fe3O4@PPY, resulting in 90% of fluorescence quenching of Cy5.5-AS1411. Owing to the much stronger specific interaction of AS1411 and nucleolin, the presence of nucleolin could take Cy5.5-AS1411 apart from Fe3O4@PPY and restore the fluorescence of Cy5.5-AS1411. The superparamagnetism of Fe3O4@PPY enabled all separations and fluorescence measurements complete in the same quartz cell, and thus allowed the convenient but accurate comparison of the sensitivity and fluorescence recovery in the cases of separation or nonseparation. Compared to nonseparation FRET inhibition, the separation of free Cy5.5-AS1411 from Cy5.5-AS1411-Fe3O4@PPY solution (the first magnetic separation, MS-1) had as high as 25-fold enhancement of the sensitivity, whereas further separation of the nucleolin-inducing far-between Fe3O4@PPY from the FRET inhibition solution (the second magnetic separation, MS-2) could further enhance the sensitivity to 35-fold. Finally, the MS-FRET inhibition assay displayed the linear range of 0.625-27.5 μg L(-1) (8.1-359 pM) and detection limit of 0.04 μg L(-1) (0.05 pM) of nucleolin. The fluorescence intensity recovery (the percentage ratio of the final restoring fluorescence intensity

  17. Phosphor blends for high-CRI fluorescent lamps

    DOEpatents

    Setlur, Anant Achyut; Srivastava, Alok Mani; Comanzo, Holly Ann; Manivannan, Venkatesan; Beers, William Winder; Toth, Katalin; Balazs, Laszlo D.

    2008-06-24

    A phosphor blend comprises at least two phosphors each selected from one of the groups of phosphors that absorb UV electromagnetic radiation and emit in a region of visible light. The phosphor blend can be applied to a discharge gas radiation source to produce light sources having high color rendering index. A phosphor blend is advantageously includes the phosphor (Tb,Y,LuLa,Gd).sub.x(Al,Ga).sub.yO.sub.12:Ce.sup.3+, wherein x is in the range from about 2.8 to and including 3 and y is in the range from about 4 to and including 5.

  18. Understanding the Reactivity of Lunar Dust for Future Lunar Missions

    NASA Technical Reports Server (NTRS)

    Wallace, W. T.; Jeevarajan, A. S.; Taylor, L. A.

    2010-01-01

    Fluorescence and EPR can be used to measure the reactivity of lunar soil. Lunar soil is highly activated by grinding. Reactivity is dependent upon soil maturity and locale. Maturity is based on the amount of nanophase iron (np-Fe) in a soil relative to the total iron (FeO). Lunar soil activity ia a direct function of the amount of np-Fe present. Reactive soil can be "deactivated" by humid atmosphere.

  19. Rewritable multicolor fluorescent patterns for multistate memory devices with high data storage capacity.

    PubMed

    Lu, Zhisong; Liu, Yingshuai; Hu, Weihua; Lou, Xiong Wen David; Li, Chang Ming

    2011-09-14

    We report a branched polyethyleneimine (BPEI)-quantum dot (QD) based rewritable fluorescent system with a multicolor recording mode, in which BPEI is both QD-multicolor patterning "writer" and data erasing "remover". This method could write distinct colors from size-tailored QDs to represent large numbers of logic states for high data storage capacity. PMID:21796321

  20. Solvatochromic pyrene analogues of Prodan exhibiting extremely high fluorescence quantum yields in apolar and polar solvents.

    PubMed

    Niko, Yosuke; Kawauchi, Susumu; Konishi, Gen-ichi

    2013-07-22

    True colors: Novel pyrene analogues of Prodan exhibit outstanding photophysical properties with remarkably high fluorescence quantum yield (QY) in solvents ranging from apolar hexane to polar methanol (see figure). This is accompanied by strong solvatochromism and large Stokes shifts. These properties have not been previously achieved in enormous solvatochromic dyes, but are quite useful for emitting materials and imaging tools. PMID:23744761

  1. Thermally Activated Delayed Fluorescence in Polymers: A New Route toward Highly Efficient Solution Processable OLEDs.

    PubMed

    Nikolaenko, Andrey E; Cass, Michael; Bourcet, Florence; Mohamad, David; Roberts, Matthew

    2015-11-25

    Efficient intermonomer thermally activated delayed fluorescence is demonstrated for the first time, opening a new route to achieving high-efficiency solution processable polymer light-emitting device materials. External quantum efficiency (EQE) of up to 10% is achieved in a simple fully solution-processed device structure, and routes for further EQE improvement identified. PMID:26457683

  2. RADIOCHEMICAL ANALYSIS BY HIGH SENSITIVITY DUAL-OPTIC MICRO X-RAY FLUORESCENCE

    EPA Science Inventory

    A novel dual-optic micro X-ray fluorescence instrument will be developed to do radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford. This concept incorporates new X-ray optical elements such as monolithic polycapillaries and...

  3. A high performance fluorescence switching system triggered electrochemically by Prussian blue with upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhai, Yiwen; Zhang, Hui; Zhang, Lingling; Dong, Shaojun

    2016-05-01

    A high performance fluorescence switching system triggered electrochemically by Prussian blue with upconversion nanoparticles was proposed. We synthesized a kind of hexagonal monodisperse β-NaYF4:Yb3+,Er3+,Tm3+ upconversion nanoparticle and manipulated the intensity ratio of red emission (at 653 nm) and green emission at (523 and 541 nm) around 2 : 1, in order to match well with the absorption spectrum of Prussian blue. Based on the efficient fluorescence resonance energy transfer and inner-filter effect of the as-synthesized upconversion nanoparticles and Prussian blue, the present fluorescence switching system shows obvious behavior with high fluorescence contrast and good stability. To further extend the application of this system in analysis, sulfite, a kind of important anion in environmental and physiological systems, which could also reduce Prussian blue to Prussian white nanoparticles leading to a decrease of the absorption spectrum, was chosen as the target. And we were able to determine the concentration of sulfite in aqueous solution with a low detection limit and a broad linear relationship.A high performance fluorescence switching system triggered electrochemically by Prussian blue with upconversion nanoparticles was proposed. We synthesized a kind of hexagonal monodisperse β-NaYF4:Yb3+,Er3+,Tm3+ upconversion nanoparticle and manipulated the intensity ratio of red emission (at 653 nm) and green emission at (523 and 541 nm) around 2 : 1, in order to match well with the absorption spectrum of Prussian blue. Based on the efficient fluorescence resonance energy transfer and inner-filter effect of the as-synthesized upconversion nanoparticles and Prussian blue, the present fluorescence switching system shows obvious behavior with high fluorescence contrast and good stability. To further extend the application of this system in analysis, sulfite, a kind of important anion in environmental and physiological systems, which could also reduce Prussian blue to

  4. High efficiency and brightness fluorescent organic light emitting diode by triplet-triplet fusion

    SciTech Connect

    Forrest, Stephen; Zhang, Yifan

    2015-02-10

    A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer may include an organic host compound and at least one organic emitting compound capable of fluorescent emission at room temperature. Various configurations are described for providing a range of current densities in which T-T fusion dominates over S-T annihilation, leading to very high efficiency fluorescent OLEDs.

  5. Determination of MDMA, MDEA and MDA in urine by high performance liquid chromatography with fluorescence detection.

    PubMed

    da Costa, José Luiz; da Matta Chasin, Alice Aparecida

    2004-11-01

    This paper describes the development and validation of analytical methodology for the determination of the use of MDMA, MDEA and MDA in urine. After a simple liquid extraction, the analyses were carried out on a high performance liquid chromatography (HPLC) in an octadecyl column, with fluorescence detection. The mobile phase using a sodium dodecyl sulfate ion-pairing reagent allows good separation and efficiency. The method showed good linearity and precision. Recovery was between 85 and 102% and detection limits were 10, 15 and 20 ng/ml for MDA, MDMA and MDEA, respectively. No interfering substances were detected with fluorescence detection. PMID:15458720

  6. A Low-Cost, High-Performance System for Fluorescence Lateral Flow Assays

    PubMed Central

    Lee, Linda G.; Nordman, Eric S.; Johnson, Martin D.; Oldham, Mark F.

    2013-01-01

    We demonstrate a fluorescence lateral flow system that has excellent sensitivity and wide dynamic range. The illumination system utilizes an LED, plastic lenses and plastic and colored glass filters for the excitation and emission light. Images are collected on an iPhone 4. Several fluorescent dyes with long Stokes shifts were evaluated for their signal and nonspecific binding in lateral flow. A wide range of values for the ratio of signal to nonspecific binding was found, from 50 for R-phycoerythrin (R-PE) to 0.15 for Brilliant Violet 605. The long Stokes shift of R-PE allowed the use of inexpensive plastic filters rather than costly interference filters to block the LED light. Fluorescence detection with R-PE and absorbance detection with colloidal gold were directly compared in lateral flow using biotinylated bovine serum albumen (BSA) as the analyte. Fluorescence provided linear data over a range of 0.4–4,000 ng/mL with a 1,000-fold signal change while colloidal gold provided non-linear data over a range of 16–4,000 ng/mL with a 10-fold signal change. A comparison using human chorionic gonadotropin (hCG) as the analyte showed a similar advantage in the fluorescent system. We believe our inexpensive yet high-performance platform will be useful for providing quantitative and sensitive detection in a point-of-care setting. PMID:25586412

  7. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers☆

    PubMed Central

    Schellenberger, Pascale; Kaufmann, Rainer; Siebert, C. Alistair; Hagen, Christoph; Wodrich, Harald; Grünewald, Kay

    2014-01-01

    Correlative light and electron microscopy (CLEM) is an emerging technique which combines functional information provided by fluorescence microscopy (FM) with the high-resolution structural information of electron microscopy (EM). So far, correlative cryo microscopy of frozen-hydrated samples has not reached better than micrometre range accuracy. Here, a method is presented that enables the correlation between fluorescently tagged proteins and electron cryo tomography (cryoET) data with nanometre range precision. Specifically, thin areas of vitrified whole cells are examined by correlative fluorescence cryo microscopy (cryoFM) and cryoET. Novel aspects of the presented cryoCLEM workflow not only include the implementation of two independent electron dense fluorescent markers to improve the precision of the alignment, but also the ability of obtaining an estimate of the correlation accuracy for each individual object of interest. The correlative workflow from plunge-freezing to cryoET is detailed step-by-step for the example of locating fluorescence-labelled adenovirus particles trafficking inside a cell. PMID:24262358

  8. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers.

    PubMed

    Schellenberger, Pascale; Kaufmann, Rainer; Siebert, C Alistair; Hagen, Christoph; Wodrich, Harald; Grünewald, Kay

    2014-08-01

    Correlative light and electron microscopy (CLEM) is an emerging technique which combines functional information provided by fluorescence microscopy (FM) with the high-resolution structural information of electron microscopy (EM). So far, correlative cryo microscopy of frozen-hydrated samples has not reached better than micrometre range accuracy. Here, a method is presented that enables the correlation between fluorescently tagged proteins and electron cryo tomography (cryoET) data with nanometre range precision. Specifically, thin areas of vitrified whole cells are examined by correlative fluorescence cryo microscopy (cryoFM) and cryoET. Novel aspects of the presented cryoCLEM workflow not only include the implementation of two independent electron dense fluorescent markers to improve the precision of the alignment, but also the ability of obtaining an estimate of the correlation accuracy for each individual object of interest. The correlative workflow from plunge-freezing to cryoET is detailed step-by-step for the example of locating fluorescence-labelled adenovirus particles trafficking inside a cell. PMID:24262358

  9. Highly selective and sensitive nanoprobes for cyanide based on gold nanoclusters with red fluorescence emission

    NASA Astrophysics Data System (ADS)

    Zhang, Guomei; Qiao, Yunyun; Xu, Ting; Zhang, Caihong; Zhang, Yan; Shi, Lihong; Shuang, Shaomin; Dong, Chuan

    2015-07-01

    We report a novel and environmentally friendly fluorescent probe for detecting the cyanide ion (CN-) using l-amino acid oxidase (LAAOx)-protected Au nanoclusters (LAAOx@AuNCs) with red emission. The fluorescence-based sensing behaviour of LAAOx@AuNCs towards anions was investigated in buffered aqueous media. Among the anions studied, CN- was found to effectively quench the fluorescence emission of AuNCs based on CN- induced Au core decomposition. Excellent sensitivity and selectivity toward the detection of CN- in aqueous solution were observed. The CN- detection limit was determined to be approximately 180 nM, which is 15 times lower than the maximum level (2700 nM) of CN- in drinking water permitted by the World Health Organization (WHO). A linear relationship between the fluorescence intensity and CN- concentration was observed in two ranges of CN- concentration, including 3.2 × 10-6 to 3.4 × 10-5 mol L-1 and 3.81 × 10-5 to 1.04 × 10-4 mol L-1. The high sensitivity and selectivity to CN- among the 17 types of anions make the AuNCs good candidates for use in fluorescent nanoprobes of CN-.

  10. Linear ruby scale and one megabar. [high pressure fluorescence

    NASA Technical Reports Server (NTRS)

    Ruoff, A. L.

    1979-01-01

    The accuracy and validity of certain techniques used in studying high-pressure transitions have been investigated. Experiments which place upper limits of about 20 GPa and about 50 GPa on pressures practically attainable using uniaxial supported opposed anvil devices with tungsten carbide pistons and uniaxial opposed flat anvil diamond devices, respectively, are reported. Direct static determinations of the transition pressures of GaP by two different methods are described. The values obtained indicate that the linear ruby scale increasingly overestimates the transition pressure as the pressure rises above 10 GPa. It is further shown that the use of shock-based marker materials, such as silver, as the basis of pressure measurement in X-ray diffraction studies leads to bulk moduli of cubic carbides which are in extreme disagreement with expected values.

  11. Optimizing the operation of a high resolution vertical Johann spectrometer using a high energy fluorescer x-ray source

    SciTech Connect

    Haugh, Michael; Stewart, Richard

    2010-10-15

    This paper describes the operation and testing for a vertical Johann spectrometer (VJS) operating in the 13 keV range. The spectrometer is designed to use thin curved mica crystals or thick germanium crystals. The VJS must have a resolution of E/{Delta}E=3000 or better to measure the Doppler broadening of highly ionized krypton and operate at a small x-ray angle in order to be used as a diagnostic in a laser plasma target chamber. The VJS was aligned, tested, and optimized using a fluorescer type high energy x-ray (HEX) source located at National Security Technologies (NSTec), LLC, in Livermore, CA. The HEX uses a 160 kV x-ray tube to excite fluorescence from various targets. Both rubidium and bismuth fluorescers were used for this effort. This presentation describes the NSTec HEX system and the methods used to optimize and characterize the VJS performance.

  12. [Atomic/ionic fluorescence in microwave plasma torch discharge with excitation of high current and microsecond pulsed hollow cathode lamp: Ca atomic/ionic fluorescence spectrometry].

    PubMed

    Gong, Zhen-bin; Liang, Feng; Yang, Peng-yuan; Jin, Qin-han; Huang, Ben-li

    2002-02-01

    A system of atomic and ionic fluorescence spectrometry in microwave plasma torch (MPT) discharge excited by high current microsecond pulsed hollow cathode lamp (HCMP HCL) has been developed. The operation conditions for Ca atomic and ionic fluorescence spectrometry have been optimized. Compared with atomic fluorescence spectrometry (AFS) in argon microwave induced plasma (MIP) and MPT with the excitation of direct current and conventional pulsed HCL, the system with HCMP HCL excitation can improve AFS and ionic fluorescence spectrometry (IFS) detection limits in MPT atomizer and ionizer. Detection limits (3 sigma) with HCMP HCL-MPT-AFS/IFS are 10.1 ng.mL-1 for Ca I 422.7 nm, 14.6 ng.mL-1 for Ca II 393.4 nm, and 37.4 ng.mL-1 for Ca II 396.8 nm, respectively. PMID:12940030

  13. Fluorescent screen for high-dose-rate (HDR) brachytherapy quality assurance

    SciTech Connect

    Lightstone, A.W. . E-mail: Alex.Lightstone@sw.ca

    2005-09-30

    This article describes apparatus for quickly checking the positioning and dwell times of a high-dose-rate (HDR) afterloader as part of daily quality assurance (QA). A groove was milled into an aluminum plate to align an HDR applicator, and fluorescent screens were placed on either side of the groove. Lines were drawn at the fluorescent screen corresponding to distances to which the radioactive source should travel in our daily QA treatment protocol. By dimming the room lights, the fluorescence from the source was seen with a closed-circuit video camera, and the positioning accuracy and dwell time of the source could be efficiently verified. Not only is this an excellent QA tool, but it also provides good training for radiation therapists and other HDR professionals.

  14. Stem-directed growth of highly fluorescent silver nanoclusters for versatile logic devices.

    PubMed

    Li, Jing; Jia, Xiaofang; Li, Dongyue; Ren, Jiangtao; Han, Yanchao; Xia, Yong; Wang, Erkang

    2013-07-01

    This work described for the first time the stem-directed growth of silver nanoclusters (AgNCs) with high brightness using the well-chosen hairpin DNA structure. In comparison with the corresponding double-stranded (ds) DNA capped AgNCs, the fluorescence emission of hairpin DNA structure templated AgNCs were lighted up with 12.5-fold enhancement fluorescent intensity by sequence modification with T-loop. It provided a new prospect for precise placement of nanoscale optical elements onto DNA scaffolds. And these DNA protected AgNCs exhibited the base sequence, strand length and microenvironment-dependent fluorescent properties. Benefiting from these properties, versatile logic gates (or, not, inhibit, XNOR, implication) were constructed using different ions as inputs with AgNCs as signal transducer. PMID:23728712

  15. Quantitative fluorescence measurements of the OH radical in high pressure methane flames

    NASA Technical Reports Server (NTRS)

    Battles, B. E.; Hanson, R. K.

    1992-01-01

    A method for quantifying laser-induced fluorescence signals from the OH radical in high-pressure flames is presented. The fluorescence signal per unit OH mole fraction is modeled as a function of temperature, pressure, and overall flame stoichiometry. Known values of the collisional quenching cross sections as a function of temperature are used to model the electronic quench rate. The reverse A - X (1.0) Q15 transition is used with broadband collection to measure single-point fluorescence produced by a pulsed Nd:YAG-pumped, frequency-doubled dye laser. Laser absorption and thermocouples are used to measure absolute OH concentration and temperature, respectively, which are used to confirm the validity of the model. Measurements are made in CH4/O2/N2 flames up to 10 atm.

  16. A highly selective fluorescent probe for in vitro and in vivo detection of Hg(2+) .

    PubMed

    Zhou, Quan; Wu, Zeming; Huang, Xiaohua; Zhong, Fenfen; Cai, Qingyun

    2015-10-01

    In this paper, a simple fluorescent probe, rhodamine B derivatives (RS), was designed and prepared for sensitive detection of Hg(2+) in CH3CN/H2O (5/5, v/v). RS exhibits high selectivity and sensitivity toward Hg(2+) over other common metal ions, displaying a significant color change from colorless to pink in the presence of Hg(2+). The fluorescence responses remain stable over a broad pH range (5.0 to 9.0) and are suitable for detection under physiological conditions. Experimental results of HeLa cells and zebrafish show that RS is cell and organism permeable. We also demonstrate the acquisition of images of Hg(2+) in HeLa cells and zebrafish by using a simple fluorescence confocal imaging technique. PMID:26301269

  17. Demonstration of x-ray fluorescence imaging of a high-energy-density plasma

    SciTech Connect

    MacDonald, M. J. Gamboa, E. J.; Keiter, P. A.; Fein, J. R.; Klein, S. R.; Kuranz, C. C.; LeFevre, H. J.; Manuel, M. J.-E.; Wan, W. C.; Drake, R. P.; Montgomery, D. S.; Biener, M. M.; Fournier, K. B.; Streit, J.

    2014-11-15

    Experiments at the Trident Laser Facility have successfully demonstrated the use of x-ray fluorescence imaging (XRFI) to diagnose shocked carbonized resorcinol formaldehyde (CRF) foams doped with Ti. One laser beam created a shock wave in the doped foam. A second laser beam produced a flux of vanadium He-α x-rays, which in turn induced Ti K-shell fluorescence within the foam. Spectrally resolved 1D imaging of the x-ray fluorescence provided shock location and compression measurements. Additionally, experiments using a collimator demonstrated that one can probe specific regions within a target. These results show that XRFI is a capable alternative to path-integrated measurements for diagnosing hydrodynamic experiments at high energy density.

  18. High-throughput single-molecule fluorescence spectroscopy using parallel detection

    PubMed Central

    Michalet, X.; Colyer, R. A.; Scalia, G.; Kim, T.; Levi, Moran; Aharoni, Daniel; Cheng, Adrian; Guerrieri, F.; Arisaka, Katsushi; Millaud, Jacques; Rech, I.; Resnati, D.; Marangoni, S.; Gulinatti, A.; Ghioni, M.; Tisa, S.; Zappa, F.; Cova, S.; Weiss, S.

    2011-01-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful new experimental approach with applications in all fields of natural sciences. The basic concept of this technique is to excite and collect light from a very small volume (typically femtoliter) and work in a concentration regime resulting in rare burst-like events corresponding to the transit of a single-molecule. Those events are accumulated over time to achieve proper statistical accuracy. Therefore the advantage of extreme sensitivity is somewhat counterbalanced by a very long acquisition time. One way to speed up data acquisition is parallelization. Here we will discuss a general approach to address this issue, using a multispot excitation and detection geometry that can accommodate different types of novel highly-parallel detector arrays. We will illustrate the potential of this approach with fluorescence correlation spectroscopy (FCS) and single-molecule fluorescence measurements obtained with different novel multipixel single-photon counting detectors. PMID:21625288

  19. Rigid and high NA multiphoton fluorescence GRIN-endoscopes

    NASA Astrophysics Data System (ADS)

    Schenkl, Selma; Ehlers, Alexander; Le Harzic, Ronan; Stark, Martin; Riemann, Iris; Messerschmidt, Bernhard; Kaatz, Martin; König, Karsten

    2007-07-01

    Multiphoton autofluorescence imaging offers minimal-invasive examination of cells without the need of staining and complicated confocal detection systems. Therefore, it is especially interesting for non-invasive clinical diagnostics. To extend this sophisticated technique from superficial regions to deep lying cell layers, internal body parts and specimens difficult of access, the bulky optics need to be reduced in diameter. This is done by tiny GRIN-optics, based on a radial gradient in the reflective index. Of especial interest for multi-photon applications is the newly developed GRIN-lens assembly with increased numerical aperture. High resolution images of plant tissue, hair and cells show the improved image quality,compared to classical GRIN-lenses. The rigid GRIN-endoscopes are already applied in wound healing studies. Here, the GRIN-lenses with diameters smaller than 3 mm enter small skin depressions. They reproduce the focus of a conventional laser scanning tomograph tens of mm apart in the specimen under study. We present first clinical measurements of elastin and SHG of collagen of in-vivo human skin of venous ulcers (ulcer curis).

  20. High Resolution Phonon-assisted Quasi-resonance Fluorescence Spectroscopy.

    PubMed

    Czarnocki, Cyprian; Kerfoot, Mark L; Casara, Joshua; Jacobs, Andrew R; Jennings, Cameron; Scheibner, Michael

    2016-01-01

    High resolution optical spectroscopy methods are demanding in terms of either technology, equipment, complexity, time or a combination of these. Here we demonstrate an optical spectroscopy method that is capable of resolving spectral features beyond that of the spin fine structure and homogeneous linewidth of single quantum dots (QDs) using a standard, easy-to-use spectrometer setup. This method incorporates both laser and photoluminescence spectroscopy, combining the advantage of laser line-width limited resolution with multi-channel photoluminescence detection. Such a scheme allows for considerable improvement of resolution over that of a common single-stage spectrometer. The method uses phonons to assist in the measurement of the photoluminescence of a single quantum dot after resonant excitation of its ground state transition. The phonon's energy difference allows one to separate and filter out the laser light exciting the quantum dot. An advantageous feature of this method is its straight forward integration into standard spectroscopy setups, which are accessible to most researchers. PMID:27405015

  1. Stem-directed growth of highly fluorescent silver nanoclusters for versatile logic devices

    NASA Astrophysics Data System (ADS)

    Li, Jing; Jia, Xiaofang; Li, Dongyue; Ren, Jiangtao; Han, Yanchao; Xia, Yong; Wang, Erkang

    2013-06-01

    This work described for the first time the stem-directed growth of silver nanoclusters (AgNCs) with high brightness using the well-chosen hairpin DNA structure. In comparison with the corresponding double-stranded (ds) DNA capped AgNCs, the fluorescence emission of hairpin DNA structure templated AgNCs were lighted up with 12.5-fold enhancement fluorescent intensity by sequence modification with T-loop. It provided a new prospect for precise placement of nanoscale optical elements onto DNA scaffolds. And these DNA protected AgNCs exhibited the base sequence, strand length and microenvironment-dependent fluorescent properties. Benefiting from these properties, versatile logic gates (OR, NOT, INHIBIT, XNOR, IMPLICATION) were constructed using different ions as inputs with AgNCs as signal transducer.This work described for the first time the stem-directed growth of silver nanoclusters (AgNCs) with high brightness using the well-chosen hairpin DNA structure. In comparison with the corresponding double-stranded (ds) DNA capped AgNCs, the fluorescence emission of hairpin DNA structure templated AgNCs were lighted up with 12.5-fold enhancement fluorescent intensity by sequence modification with T-loop. It provided a new prospect for precise placement of nanoscale optical elements onto DNA scaffolds. And these DNA protected AgNCs exhibited the base sequence, strand length and microenvironment-dependent fluorescent properties. Benefiting from these properties, versatile logic gates (OR, NOT, INHIBIT, XNOR, IMPLICATION) were constructed using different ions as inputs with AgNCs as signal transducer. Electronic supplementary information (ESI) available: DNA sequences used, Tm curves and spectra data of the obtained AgNCs. See DOI: 10.1039/c3nr00998j

  2. High expression of CD26 accurately identifies human bacteria-reactive MR1-restricted MAIT cells

    PubMed Central

    Sharma, Prabhat K; Wong, Emily B; Napier, Ruth J; Bishai, William R; Ndung'u, Thumbi; Kasprowicz, Victoria O; Lewinsohn, Deborah A; Lewinsohn, David M; Gold, Marielle C

    2015-01-01

    Mucosa-associated invariant T (MAIT) cells express the semi-invariant T-cell receptor TRAV1–2 and detect a range of bacteria and fungi through the MHC-like molecule MR1. However, knowledge of the function and phenotype of bacteria-reactive MR1-restricted TRAV1–2+ MAIT cells from human blood is limited. We broadly characterized the function of MR1-restricted MAIT cells in response to bacteria-infected targets and defined a phenotypic panel to identify these cells in the circulation. We demonstrated that bacteria-reactive MR1-restricted T cells shared effector functions of cytolytic effector CD8+ T cells. By analysing an extensive panel of phenotypic markers, we determined that CD26 and CD161 were most strongly associated with these T cells. Using FACS to sort phenotypically defined CD8+ subsets we demonstrated that high expression of CD26 on CD8+ TRAV1–2+ cells identified with high specificity and sensitivity, bacteria-reactive MR1-restricted T cells from human blood. CD161hi was also specific for but lacked sensitivity in identifying all bacteria-reactive MR1-restricted T cells, some of which were CD161dim. Using cell surface expression of CD8, TRAV1–2, and CD26hi in the absence of stimulation we confirm that bacteria-reactive T cells are lacking in the blood of individuals with active tuberculosis and are restored in the blood of individuals undergoing treatment for tuberculosis. PMID:25752900

  3. Laser induced fluorescence measurements and modeling of nitric oxide in high-pressure premixed flames

    NASA Technical Reports Server (NTRS)

    Reisel, John R.; Laurendeau, Normand M.

    1994-01-01

    Laser-induced fluorescence (LIF) has been applied to the quantitative measurement of nitric oxide (NO) in premixed, laminar, high-pressure flames. Their chemistry was also studied using three current kinetics schemes to determine the predictive capabilities of each mechanism with respect to NO concentrations. The flames studied were low-temperature (1600 less than T less than 1850K) C2H6/O2/N2 and C2H6/O2/N2 flames, and high temperature (2100 less than T less than 2300K) C2H6/O2/N2 flames. Laser-saturated fluorescence (LSF) was initially used to measure the NO concentrations. However, while the excitation transition was well saturated at atmospheric pressure, the fluorescence behavior was basically linear with respect to laser power at pressures above 6 atm. Measurements and calculations demonstrated that the fluorescence quenching rate variation is negligible for LIF measurements of NO at a given pressure. Therefore, linear LIF was used to perform quantitative measurements of NO concentration in these high-pressure flames. The transportability of a calibration factor from one set of flame conditions to another also was investigated by considering changes in the absorption and quenching environment for different flame conditions. The feasibility of performing LIF measurements of (NO) in turbulent flames was studied; the single-shot detection limit was determined to be 2 ppm.

  4. Fluorescent photoswitching of a naphthopyran-benzimidazole dyad with high-degree fluorescent modulation within poly(methyl methacrylate) matrices

    NASA Astrophysics Data System (ADS)

    Wang, Shuangqing; Si, Yanling; Tong, Cuiyan; Wang, Guang; Qi, Bin; Yang, Guochun

    2013-06-01

    A naphthopyran-bridge-benzimidazole dyad which exhibits both fluorescence and photochromism was synthesized and its fluorescence photoswitching was investigated. Irradiation with UV light induces the isomerization of the naphthopyran component to the corresponding merocyanine. The fluorescence of the dyad was switched reversibly between on and off upon UV irradiation and thermal bleaching of the naphthopyran. Using ultraviolet illumination a pattern was created on a polymethylmethacrylate doped film with the dyad. Thus either a non-destructive photoswitch or an image recording system becomes available. The measurement of redox potentials by cyclic voltammetry combined with electronic spectra and a molecular energy diagram of the individual naphthopyran and benzimidazole demonstrated that the transformation of naphthopyran induced energy and electron transfer from the fluorescent benzimidazole to the photochromic naphthopyran, a feature which was also supported by our DFT calculations.

  5. Moving Overlapping Grids with Adaptive Mesh Refinement for High-Speed Reactive and Non-reactive Flow

    SciTech Connect

    Henshaw, W D; Schwendeman, D W

    2005-08-30

    We consider the solution of the reactive and non-reactive Euler equations on two-dimensional domains that evolve in time. The domains are discretized using moving overlapping grids. In a typical grid construction, boundary-fitted grids are used to represent moving boundaries, and these grids overlap with stationary background Cartesian grids. Block-structured adaptive mesh refinement (AMR) is used to resolve fine-scale features in the flow such as shocks and detonations. Refinement grids are added to base-level grids according to an estimate of the error, and these refinement grids move with their corresponding base-level grids. The numerical approximation of the governing equations takes place in the parameter space of each component grid which is defined by a mapping from (fixed) parameter space to (moving) physical space. The mapped equations are solved numerically using a second-order extension of Godunov's method. The stiff source term in the reactive case is handled using a Runge-Kutta error-control scheme. We consider cases when the boundaries move according to a prescribed function of time and when the boundaries of embedded bodies move according to the surface stress exerted by the fluid. In the latter case, the Newton-Euler equations describe the motion of the center of mass of the each body and the rotation about it, and these equations are integrated numerically using a second-order predictor-corrector scheme. Numerical boundary conditions at slip walls are described, and numerical results are presented for both reactive and non-reactive flows in order to demonstrate the use and accuracy of the numerical approach.

  6. Distributed control of reactive power flow in a radial distribution circuit with high photovoltaic penetration

    SciTech Connect

    Chertkov, Michael; Turitsyn, Konstantin; Backhaus, Scott; Sule, Petr

    2009-01-01

    We show how distributed control of reactive power can serve to regulate voltage and minimize resistive losses in a distribution circuit that includes a significant level of photovoltaic (PV) generation. To demonstrate the technique, we consider a radial distribution circuit with a single branch consisting of sequentially-arranged residential-scale loads that consume both real and reactive power. In parallel, some loads also have PV generation capability. We postulate that the inverters associated with each PV system are also capable of limited reactive power generation or consumption, and we seek to find the optimal dispatch of each inverter's reactive power to both maintain the voltage within an acceptable range and minimize the resistive losses over the entire circuit. We assume the complex impedance of the distribution circuit links and the instantaneous load and PV generation at each load are known. We compare the results of the optimal dispatch with a suboptimal local scheme that does not require any communication. On our model distribution circuit, we illustrate the feasibility of high levels of PV penetration and a significant (20% or higher) reduction in losses.

  7. Highly Sensitive Determination of Hydrogen Peroxide and Glucose by Fluorescence Correlation Spectroscopy

    PubMed Central

    Watabe, Satoshi; Sakamoto, Yuki; Morikawa, Mika; Okada, Ryuichi; Miura, Toshiaki; Ito, Etsuro

    2011-01-01

    Background Because H2O2 is generated by various oxidase-catalyzed reactions, a highly sensitive determination method of H2O2 is applicable to measurements of low levels of various oxidases and their substrates such as glucose, lactate, glutamate, urate, xanthine, choline, cholesterol and NADPH. We propose herein a new, highly sensitive method for the measurement of H2O2 and glucose using fluorescence correlation spectroscopy (FCS). Methodology/Principal Findings FCS has the advantage of allowing us to determine the number of fluorescent molecules. FCS measures the fluctuations in fluorescence intensity caused by fluorescent probe movement in a small light cavity with a defined volume generated by confocal illumination. We thus developed a highly sensitive determination system of H2O2 by FCS, where horseradish peroxidase (HRP) catalyzes the formation of a covalent bond between fluorescent molecules and proteins in the presence of H2O2. Our developed system gave a linear calibration curve for H2O2 in the range of 28 to 300 nM with the detection limit of 8 nM. In addition, by coupling with glucose oxidase (GOD)-catalyzed reaction, the method allows to measure glucose in the range of 80 nM to 1.5 µM with detection limit of 24 nM. The method was applicable to the assay of glucose in blood plasma. The mean concentration of glucose in normal human blood plasma was determined to be 4.9 mM. Conclusions/Significance In comparison with commercial available methods, the detection limit and the minimum value of determination for glucose are at least 2 orders of magnitude more sensitive in our system. Such a highly sensitive method leads the fact that only a very small amount of plasma (20 nL) is needed for the determination of glucose concentration in blood plasma. PMID:21850246

  8. 3D pulsed laser-triggered high-speed microfluidic fluorescence-activated cell sorter.

    PubMed

    Chen, Yue; Wu, Ting-Hsiang; Kung, Yu-Chun; Teitell, Michael A; Chiou, Pei-Yu

    2013-11-12

    We report a 3D microfluidic pulsed laser-triggered fluorescence-activated cell sorter capable of sorting at a throughput of 23 000 cells per s with 90% purity in high-purity mode and at a throughput of 45 000 cells per s with 45% purity in enrichment mode in one stage and in a single channel. This performance is realized by exciting laser-induced cavitation bubbles in a 3D PDMS microfluidic channel to generate high-speed liquid jets that deflect detected fluorescent cells and particles focused by 3D sheath flows. The ultrafast switching mechanism (20 μs complete on-off cycle), small liquid jet perturbation volume, and three-dimensional sheath flow focusing for accurate timing control of fast (1.5 m s(-1)) passing cells and particles are three critical factors enabling high-purity sorting at high-throughput in this sorter. PMID:23844418

  9. Cavitand-Based Polyphenols as Highly Reactive Organocatalysts for the Coupling of Carbon Dioxide and Oxiranes.

    PubMed

    Martínez-Rodríguez, Luis; Otalora Garmilla, Javier; Kleij, Arjan W

    2016-04-01

    A variety of cavitand-based polyphenols was prepared from cheap and accessible aldehyde and resorcinol/pyrogallol reagents to give the respective resorcin[4]- or pyrogallol[4]arenes. The preorganization of the phenolic units allows intra- and intermolecular hydrogen bond (HB) networks that affect both the reactivity and stability of these HB-donor catalysts. Unexpectedly, we found that the resorcin[4]arenes show cooperative catalysis behavior compared to the parent resorcinol in the catalytic coupling of epoxides and CO2 with a significantly higher turnover. At elevated reaction temperatures, the resorcin[4]arene-based catalyst 3 d displays the best catalytic performance with very high turnover numbers and frequencies, combining increased reactivity and stability compared to pyrogallol, and an ample substrate scope. This type of polyphenol structure thus illustrates the importance of a new, highly competitive organocatalyst design to devise sustainable CO2 conversion processes. PMID:26914250

  10. Cosputtered composition-spread reproducibility established by high-throughput x-ray fluorescence

    SciTech Connect

    Gregoire, John M.; Dale, Darren; Kazimirov, Alexander; DiSalvo, Francis J.; Dover, R. Bruce van

    2010-09-15

    We describe the characterization of sputtered yttria-zirconia composition spread thin films by x-ray fluorescence (XRF). We also discuss our automated analysis of the XRF data, which was collected in a high throughput experiment at the Cornell High Energy Synchrotron Source. The results indicate that both the composition reproducibility of the library deposition and the composition measurements have a precision of better than 1 atomic percent.

  11. The artificial control of enhanced optical processes in fluorescent molecules on high-emittance metasurfaces

    NASA Astrophysics Data System (ADS)

    Iwanaga, Masanobu; Choi, Bongseok; Miyazaki, Hideki T.; Sugimoto, Yoshimasa

    2016-05-01

    Plasmon-enhanced optical processes in molecules have been extensively but individually explored for Raman scattering, fluorescence, and infrared light absorption. In contrast to recent progress in the interfacial control of hot electrons in plasmon-semiconductor hybrid systems, plasmon-molecule hybrid systems have remained to be a conventional scheme, mainly assuming electric-field enhancement. This was because it was difficult to control the plasmon-molecule interface in a well-controlled manner. We here experimentally substantiate an obvious change in artificially enhanced optical processes of fluorescence/Raman scattering in fluorescent molecules on high-emittance plasmo-photonic metasurfaces with/without a self-assembled monolayer of sub-nm thickness. These results indicate that the enhanced optical processes were successfully selected under artificial configurations without any additional chemical treatment that modifies the molecules themselves. Although Raman-scattering efficiency is generally weak in high-fluorescence-yield molecules, it was found that Raman scattering becomes prominent around the molecular fingerprint range on the metasurfaces, being enhanced by more than 2000 fold at the maximum for reference signals. In addition, the highly and uniformly enhancing metasurfaces are able to serve as two-way functional, reproducible, and wavelength-tunable platforms to detect molecules at very low densities, being distinct from other platforms reported so far. The change in the enhanced signals suggests that energy diagrams in fluorescent molecules are changed in the configuration that includes the metal-molecule interface, meaning that plasmon-molecule hybrid systems are rich in the phenomena beyond the conventional scheme.Plasmon-enhanced optical processes in molecules have been extensively but individually explored for Raman scattering, fluorescence, and infrared light absorption. In contrast to recent progress in the interfacial control of hot electrons

  12. [Rapid and high throughput measurement of lipase thermo-stability through ANS fluorescence signal assay].

    PubMed

    Feng, Weizong; Lin, Junhan; Cai, Shaoli; Zou, Youtu; Chen, Guoren; Huang, Ping; Lin, Yajing; Wang, Bingbing; Lin, Lin

    2011-04-01

    We have developed a rapid and high throughput lipase-ANS (8-Anilino-l-naphthalenesulfonic acid) assay to evaluate the thermo-stability of lipases based on the ANS fluorescence signal's increasing and shifting when this small fluorescence probes binds to lipase. The testing lipase samples were incubated at a temperature range of 25 degrees C to 65 degrees C for 30 min before mixed with ANS solution (0.20 mg/mL lipase and 0.05 mmol/L ANS in the buffer of 20 mmol/L Tris-HCl, 100 mmol/L NaCl, pH 7.2) in a cuvette or microplate. Fluorescence signals of the samples were measured at EX 378 nm, EM 465 nm with a fluorescence photometer or a plate reader, and Tm was calculated with the software of GraphPad Prism5.0. The Tm values of several mutants of Penicillium expansum lipase (PEL) were measured with this ANS assay and conventional method simultaneously and the results show that Tm values are comparative and consistent between these methods, suggesting that the lipase-ANS assay is a reliable, rapid and high throughput method for lipase thermo-stability measurement. PMID:21847993

  13. A high performance fluorescence switching system triggered electrochemically by Prussian blue with upconversion nanoparticles.

    PubMed

    Zhai, Yiwen; Zhang, Hui; Zhang, Lingling; Dong, Shaojun

    2016-05-01

    A high performance fluorescence switching system triggered electrochemically by Prussian blue with upconversion nanoparticles was proposed. We synthesized a kind of hexagonal monodisperse β-NaYF4:Yb(3+),Er(3+),Tm(3+) upconversion nanoparticle and manipulated the intensity ratio of red emission (at 653 nm) and green emission at (523 and 541 nm) around 2 : 1, in order to match well with the absorption spectrum of Prussian blue. Based on the efficient fluorescence resonance energy transfer and inner-filter effect of the as-synthesized upconversion nanoparticles and Prussian blue, the present fluorescence switching system shows obvious behavior with high fluorescence contrast and good stability. To further extend the application of this system in analysis, sulfite, a kind of important anion in environmental and physiological systems, which could also reduce Prussian blue to Prussian white nanoparticles leading to a decrease of the absorption spectrum, was chosen as the target. And we were able to determine the concentration of sulfite in aqueous solution with a low detection limit and a broad linear relationship. PMID:27102984

  14. Highly fluorescent and bioresorbable polymeric nanoparticles with enhanced photostability for cell imaging

    NASA Astrophysics Data System (ADS)

    Huang, Shuo; Liu, Shiying; Wang, Kai; Yang, Cangjie; Luo, Yimin; Zhang, Yingdan; Cao, Bin; Kang, Yuejun; Wang, Mingfeng

    2014-12-01

    We report a facile and general strategy for enhancing the photostability of organic fluorophores for bioimaging applications. As a proof of concept, bright and robust fluorescence was observed in solid states of a well-defined synthetic polymer polycaprolactone consisting of di(thiophene-2-yl)-diketopyrrolopyrrole covalently linked in the middle of the polymer chain as a biocompatible and bioresorbable matrix. The nanoparticles prepared through a nanoprecipitation process of these polymers could be internalized by both tumor cells and stem cells with little cytotoxicity. Moreover, these highly fluorescent nanoparticles exhibited significantly enhanced photostability compared to commercial quantum dots or physical blends of dye/polymer complexes in cell imaging and long-term tracing.We report a facile and general strategy for enhancing the photostability of organic fluorophores for bioimaging applications. As a proof of concept, bright and robust fluorescence was observed in solid states of a well-defined synthetic polymer polycaprolactone consisting of di(thiophene-2-yl)-diketopyrrolopyrrole covalently linked in the middle of the polymer chain as a biocompatible and bioresorbable matrix. The nanoparticles prepared through a nanoprecipitation process of these polymers could be internalized by both tumor cells and stem cells with little cytotoxicity. Moreover, these highly fluorescent nanoparticles exhibited significantly enhanced photostability compared to commercial quantum dots or physical blends of dye/polymer complexes in cell imaging and long-term tracing. Electronic supplementary information (ESI) available: Experimental procedures, absorbance spectra, confocal microscopy characterization. See DOI: 10.1039/c4nr05576d

  15. The artificial control of enhanced optical processes in fluorescent molecules on high-emittance metasurfaces.

    PubMed

    Iwanaga, Masanobu; Choi, Bongseok; Miyazaki, Hideki T; Sugimoto, Yoshimasa

    2016-06-01

    Plasmon-enhanced optical processes in molecules have been extensively but individually explored for Raman scattering, fluorescence, and infrared light absorption. In contrast to recent progress in the interfacial control of hot electrons in plasmon-semiconductor hybrid systems, plasmon-molecule hybrid systems have remained to be a conventional scheme, mainly assuming electric-field enhancement. This was because it was difficult to control the plasmon-molecule interface in a well-controlled manner. We here experimentally substantiate an obvious change in artificially enhanced optical processes of fluorescence/Raman scattering in fluorescent molecules on high-emittance plasmo-photonic metasurfaces with/without a self-assembled monolayer of sub-nm thickness. These results indicate that the enhanced optical processes were successfully selected under artificial configurations without any additional chemical treatment that modifies the molecules themselves. Although Raman-scattering efficiency is generally weak in high-fluorescence-yield molecules, it was found that Raman scattering becomes prominent around the molecular fingerprint range on the metasurfaces, being enhanced by more than 2000 fold at the maximum for reference signals. In addition, the highly and uniformly enhancing metasurfaces are able to serve as two-way functional, reproducible, and wavelength-tunable platforms to detect molecules at very low densities, being distinct from other platforms reported so far. The change in the enhanced signals suggests that energy diagrams in fluorescent molecules are changed in the configuration that includes the metal-molecule interface, meaning that plasmon-molecule hybrid systems are rich in the phenomena beyond the conventional scheme. PMID:27227964

  16. Metal-Enhanced Fluorescence from Silver Nanowires with High Aspect Ratio on Glass Slides for Biosensing Applications

    PubMed Central

    2015-01-01

    High enhancement of fluorescence emission, improved fluorophore photostability, and significant reduction of fluorescence lifetimes have been obtained from high aspect ratio (>100) silver (Ag) nanowires. These quantities are found to depend on the surface loading of Ag nanowires on glass slides, where the enhancement of fluorescence emission increases with the density of nanowires. The surface loading dependence was attributed to the creation of intense electric fields around the network of Ag nanowires and to the coupling of fluorophore excited states that takes place efficiently at a distance of 10 nm from the surface of nanowires, which was confirmed by theoretical calculations. The enhancement of fluorescence emission of fluorescein isothiocyanate (FITC) was assessed by fluorescence spectroscopy and fluorescence-lifetime imaging microscopy (FLIM) to demonstrate the potential of high aspect ratio Ag nanowires. Fluorescence enhancement factors exceeding 14 were observed on Ag nanowires with high loading by FLIM. The photostability of FITC was the highest on nanowires with medium loading under continuous laser excitation for 10 min because of the significant reduction in the fluorescence lifetime of FITC on these surfaces. These results clearly demonstrate the potential of Ag nanowires in metal-enhanced fluorescence-based applications of biosensing on planar surfaces and cellular imaging. PMID:25598859

  17. Asymmetric hydrogenation of ketones: Tactics to achieve high reactivity, enantioselectivity, and wide scope

    PubMed Central

    Ohkuma, Takeshi

    2010-01-01

    Ru complexes with chiral diphosphines and amine-based ligands achieve high catalytic activity and enantioselectivity for the hydrogenation of ketones under neutral to slightly basic conditions. The chiral environment is controllable by changing the combination of these two ligands. A concerted six-membered transition state is proposed to be the origin of the high reactivity. The η6-arene/TsDPEN–Ru and MsDPEN–Cp*Ir catalysts effect the asymmetric reaction under slightly acidic conditions. A variety of chiral secondary alcohols are obtained in high enantiomeric excess. PMID:20228621

  18. Multiphoton fluorescence microscopy: behavior of biological specimens under high-intensity illumination

    NASA Astrophysics Data System (ADS)

    Cheng, Ping C.; Lin, Bai-Ling; Kao, Fu-Jen; Sun, Chi-Kuang

    2000-07-01

    Recent development in multi-photon fluorescence microscopy, second and third harmonic generation microscopy (SHG and THG) and CARS open new dimensions in biological studies. Not only the technologies allow probing the biological specimen both functionally and structurally with increasing spatial and temporal resolution, but also raise the interest in how biological specimens respond to high intensity illumination commonly used in these types of microscopy. We have used maize leaf protoplast as a model system to evaluate the photo-induced response of living sample under high intensity illumination. It was found that cells can be seriously damaged by high intensity NIR irradiation even the linear absorption coefficient in low in these wavelengths. Micro-spectroscopy of single chloroplast also allows us to gain insight on the possible photo-damage mechanism. In addition to fluorescence emission, second harmonic generation was observed in the maize protoplasts.

  19. Guidelines for application of fluorescent lamps in high-performance avionic backlight systems

    NASA Astrophysics Data System (ADS)

    Syroid, Daniel D.

    1997-07-01

    Fluorescent lamps have proven to be well suited for use in high performance avionic backlight systems as demonstrated by numerous production applications for both commercial and military cockpit displays. Cockpit display applications include: Boeing 777, new 737s, F-15, F-16, F-18, F-22, C- 130, Navy P3, NASA Space Shuttle and many others. Fluorescent lamp based backlights provide high luminance, high lumen efficiency, precision chromaticity and long life for avionic active matrix liquid crystal display applications. Lamps have been produced in many sizes and shapes. Lamp diameters range from 2.6 mm to over 20 mm and lengths for the larger diameter lamps range to over one meter. Highly convoluted serpentine lamp configurations are common as are both hot and cold cathode electrode designs. This paper will review fluorescent lamp operating principles, discuss typical requirements for avionic grade lamps, compare avionic and laptop backlight designs and provide guidelines for the proper application of lamps and performance choices that must be made to attain optimum system performance considering high luminance output, system efficiency, dimming range and cost.

  20. Eolian delivery of highly reactive iron to the glacial ocean of the late Paleozoic

    NASA Astrophysics Data System (ADS)

    Sur, S.; Soreghan, G. S.; Owens, J. D.; Lyons, T. W.; Soreghan, M. J.

    2010-12-01

    The potential biogeochemical impact of iron-rich dust delivery to the oceans is well recognized for Earth’s recent record but virtually unexplored in deeper time, despite recognition of large ancient dust fluxes. Abundant eolian dust (loess) deposits have been documented in western equatorial Pangaea (western U.S.), dating from the late Paleozoic (300 Ma), a time of known continental-scale glaciation. The role of iron in ancient ecosystems is elucidated by analytical techniques that enable identification of three iron pools within the total iron (FeT) pool: highly reactive (FeHR), poorly reactive, and unreactive. FeHR consists of amorphous and crystalline iron oxides and (oxyhydr)oxides that are readily reactive to H2S on an early diagenetic time scale. FeHR in our ancient sediments is dominated by crystalline oxide forms soluble in a citrate-bicarbonate, Na dithionite (CBD) solution, iron transformed to pyrite (Fepy), and magnetite. If the crystalline oxide phases that we measure in the record at least partially reflect less crystalline, more soluble oxyhydroxide precursors, then ancient FeHR roughly tracks its initial bioavailability and thus can be used as a proxy for potential primary productivity. Here, we report the uniqueness of Fe relationships (enriched FeHR/FeT values and relatively depleted FeT/Al) from a Pennsylvanian (Upper Carboniferous), loess-derived mudrock that accumulated at lowstand (glacial) time within a carbonate buildup of the so-called “Horseshoe Atoll” of the Midland basin (west Texas). This relationship is atypical compared to modern fluvial sediment and soil-derived dust and suggests an enhancement of the reactivity of an internal Fe pool and possible loss of Fe phases through unknown, but extreme biogeochemical processing. Comparisons of our data with other Permo-Carboniferous dusts, pedogenically altered loess, and emerging data on modern dusts suggest that the high values of FeHR/FeT in the mudrock may reflect glacial weathering

  1. Highly selective and sensitive fluorescent paper sensor for nitroaromatic explosive detection.

    PubMed

    Ma, Yingxin; Li, Hao; Peng, Shan; Wang, Leyu

    2012-10-01

    Rapid, sensitive, and selective detection of explosives such as 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenol (TNP), especially using a facile paper sensor, is in high demand for homeland security and public safety. Although many strategies have been successfully developed for the detection of TNT, it is not easy to differentiate the influence from TNP. Also, few methods were demonstrated for the selective detection of TNP. In this work, via a facile and versatile method, 8-hydroxyquinoline aluminum (Alq(3))-based bluish green fluorescent composite nanospheres were successfully synthesized through self-assembly under vigorous stirring and ultrasonic treatment. These polymer-coated nanocomposites are not only water-stable but also highly luminescent. Based on the dramatic and selective fluorescence quenching of the nanocomposites via adding TNP into the aqueous solution, a sensitive and robust platform was developed for visual detection of TNP in the mixture of nitroaromatics including TNT, 2,4-dinitrotoluene (DNT), and nitrobenzene (NB). Meanwhile, the fluorescence intensity is proportional to the concentration of TNP in the range of 0.05-7.0 μg/mL with the 3σ limit of detection of 32.3 ng/mL. By handwriting or finger printing with TNP solution as ink on the filter paper soaked with the fluorescent nanocomposites, the bluish green fluorescence was instantly and dramatically quenched and the dark patterns were left on the paper. Therefore, a convenient and rapid paper sensor for TNP-selective detection was fabricated. PMID:22946839

  2. Patterning pallet arrays for cell selection based on high-resolution measurements of fluorescent biosensors.

    PubMed

    Shadpour, Hamed; Zawistowski, Jon S; Herman, Annadele; Hahn, Klaus; Allbritton, Nancy L

    2011-06-24

    Pallet arrays enable cells to be separated while they remain adherent to a surface and provide a much greater range of cell selection criteria relative to that of current technologies. However there remains a need to further broaden cell selection criteria to include dynamic intracellular signaling events. To demonstrate the feasibility of measuring cellular protein behavior on the arrays using high resolution microscopy, the surfaces of individual pallets were modified to minimize the impact of scattered light at the pallet edges. The surfaces of the three-dimensional pallets on an array were patterned with a coating such as fibronectin using a customized stamping tool. Micropatterns of varying shape and size were printed in designated regions on the pallets in single or multiple steps to demonstrate the reliability and precision of patterning molecules on the pallet surface. Use of a fibronectin matrix stamped at the center of each pallet permitted the localization of H1299 and mouse embryonic fibroblast (MEF) cells to the pallet centers and away from the edges. Compared to pallet arrays with fibronectin coating the entire top surface, arrays with a central fibronectin pattern increased the percentage of cells localized to the pallet center by 3-4-fold. Localization of cells to the pallet center also enabled the physical separation of cells from optical artifacts created by the rough pallet side walls. To demonstrate the measurement of dynamic intracellular signaling on the arrays, fluorescence measurements of high spatial resolution were performed using a RhoA GTPase biosensor. This biosensor utilized fluorescence resonance energy transfer (FRET) between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) to measure localized RhoA activity in cellular ruffles at the cell periphery. These results demonstrated the ability to perform spatially resolved measurements of fluorescence-based sensors on the pallet arrays. Thus, the patterned pallet arrays

  3. Duty cycle control in reactive high-power impulse magnetron sputtering of hafnium and niobium

    NASA Astrophysics Data System (ADS)

    Ganesan, R.; Treverrow, B.; Murdoch, B.; Xie, D.; Ross, A. E.; Partridge, J. G.; Falconer, I. S.; McCulloch, D. G.; McKenzie, D. R.; Bilek, M. M. M.

    2016-06-01

    Instabilities in reactive sputtering have technological consequences and have been attributed to the formation of a compound layer on the target surface (‘poisoning’). Here we demonstrate how the duty cycle of high power impulse magnetron sputtering (HiPIMS) can be used to control the surface conditions of Hf and Nb targets. Variations in the time resolved target current characteristics as a function of duty cycle were attributed to gas rarefaction and to the degree of poisoning of the target surface. As the operation transitions from Ar driven sputtering to metal driven sputtering, the secondary electron emission changes and reduces the target current. The target surface transitions smoothly from a poisoned state at low duty cycles to a quasi-metallic state at high duty cycles. Appropriate selection of duty cycle increases the deposition rate, eliminates the need for active regulation of oxygen flow and enables stable reactive deposition of stoichiometric metal oxide films. A model is presented for the reactive HIPIMS process in which the target operates in a partially poisoned mode with different degrees of oxide layer distribution on its surface that depends on the duty cycle. Finally, we show that by tuning the pulse characteristics, the refractive indices of the metal oxides can be controlled without increasing the absorption coefficients, a result important for the fabrication of optical multilayer stacks.

  4. High resolution single-mode-fiber-based sensor for intravascular detection of fluorescent molecular probes

    NASA Astrophysics Data System (ADS)

    Razansky, R. Nika; Mueller, Mathias S.; Borisov, Alexander; Koch, Alexander W.; Jaffer, Farouc A.; Ntziachristos, Vasilis

    2010-04-01

    Early detection of coronary atherosclerosis is an unmet clinical challenge. The detection system has to be highly sensitive and possess high spacial resolution, in order to provide precise information of the vulnerable plaque location and size. Recently molecular fluorescence probes have been identified as efficient inflammation biomarkers for the inflammation process within vulnerable plaques1 and being used in the proposed application to detect inflamed lesions in the blood vessel wall. The general principle of the proposed solution is based on a sensor whose head is guided by an intravascular catheter to the region of interest (coronary artery). When the sensor illuminates an activated fluorescent probe, located in inflamed areas of vulnerable plaques, the fluorescence is excited and light is emitted with a slightly shifted spectrum. The emitted light is being collected by the same sensor head, guided through the optical fiber and finally detected by photo-detectors. In this way, by detecting emitted fluorescence one can obtain information about the location of vulnerable plaques. The localization resolution is critically depending on the spot size of the illuminating light beam. Moreover, for a high signal to noise ratio in the detection electronics, as much fluorescent light as possible has to be collected from the plaque location. It has been already demonstrated that using single-mode fibers in combination with graded index fibers, a Gaussian beam, with adjustable waist position and diameter can be formed, representing the fundamental limit of achievable spot size2. However, when using single mode fibers in this application, the collection efficiency would be very low due to the small core diameter of this fiber and thus signal to noise ratio would be strongly reduced. In this work, we present a solution to this challenge, combining both principles. A single mode fiber in combination with a graded index fiber is used for illumination purposes, while the

  5. Masked illumination scheme for a galvanometer scanning high-speed confocal fluorescence microscope.

    PubMed

    Kim, Dong Uk; Moon, Sucbei; Song, Hoseong; Kwon, Hyuk-Sang; Kim, Dug Young

    2011-01-01

    High-speed beam scanning and data acquisition in a laser scanning confocal microscope system are normally implemented with a resonant galvanometer scanner and a frame grabber. However, the nonlinear scanning speed of a resonant galvanometer can generate nonuniform photobleaching in a fluorescence sample as well as image distortion near the edges of a galvanometer scanned fluorescence image. Besides, incompatibility of signal format between a frame grabber and a point detector can lead to digitization error during data acquisition. In this article, we introduce a masked illumination scheme which can effectively decrease drawbacks in fluorescence images taken by a laser scanning confocal microscope with a resonant galvanometer and a frame grabber. We have demonstrated that the difference of photobleaching between the center and the edge of a fluorescence image can be reduced from 26 to 5% in our confocal laser scanning microscope with a square illumination mask. Another advantage of our masked illumination scheme is that the zero level or the lowest input level of an analog signal in a frame grabber can be accurately set by the dark area of a mask in our masked illumination scheme. We have experimentally demonstrated the advantages of our masked illumination method in detail. PMID:21809349

  6. High Fluorescence Anisotropy of Thioflavin T in Aqueous Solution Resulting from Its Molecular Rotor Nature.

    PubMed

    Kuznetsova, Irina M; Sulatskaya, Anna I; Maskevich, Alexander A; Uversky, Vladimir N; Turoverov, Konstantin K

    2016-01-01

    Thioflavin T (ThT) is widely used to study amyloid fibrils while its properties are still debated in the literature. By steady-state and femtosecond time-resolved fluorescence we showed that, unlike small sized rigid molecules, the fluorescence anisotropy value of the free ThT in aqueous solutions is very high, close to the limiting value. This is determined by the molecular rotor nature of ThT, where the direction of the ThT transition dipole moment S₀ → S₁* is not changed either by the internal rotation of the ThT benzothiazole and aminobenzene rings relative to each other in the excited state, because the axis of this rotation coincides with the direction of the transition dipole moment, or by the rotation of the ThT molecule as a whole, because the rate of this process is 3 orders of magnitude smaller than the rate of the internal rotation which leads to the fluorescence quenching. Consequently, ThT fluorescence anisotropy cannot be directly used to study amyloid fibrils formation, as it was proposed by some authors. PMID:26637393

  7. Pilot Clinical Trial of Indocyanine Green Fluorescence-Augmented Colonoscopy in High Risk Patients.

    PubMed

    Sheth, Rahul A; Heidari, Pedram; Woods, Kevin; Chung, Daniel; Chan, Andrew T; Mahmood, Umar

    2016-01-01

    White light colonoscopy is the current gold standard for early detection and treatment of colorectal cancer, but emerging data suggest that this approach is inherently limited. Even the most experienced colonoscopists, under optimal conditions, miss at least 15-25% of adenomas. There is an unmet clinical need for an adjunctive modality to white light colonoscopy with improved lesion detection and characterization. Optical molecular imaging with exogenously administered organic fluorochromes is a burgeoning imaging modality poised to advance the capabilities of colonoscopy. In this proof-of-principle clinical trial, we investigated the ability of a custom-designed fluorescent colonoscope and indocyanine green, a clinically approved fluorescent blood pool imaging agent, to visualize polyps in high risk patients with polyposis syndromes or known distal colonic masses. We demonstrate (1) the successful performance of real-time, wide-field fluorescence endoscopy using off-the-shelf equipment, (2) the ability of this system to identify polyps as small as 1 mm, and (3) the potential for fluorescence imaging signal intensity to differentiate between neoplastic and benign polyps. PMID:26989406

  8. Effect of high temperature on photosynthesis in beans. I. Oxygen evolution and chlorophyll fluorescence

    SciTech Connect

    Pastenes, C.; Horton, P.

    1996-11-01

    We studied the effect of increasing temperature on photosynthesis in two bean (Phaseolus vulgaris L.) varieties known to differ in their resistance to extreme high temperatures, Blue Lake (BL), commercially available in the United Kingdom, and Barbucho (BA), noncommercially bred in Chile. We paid particular attention to the energy-transducing mechanisms and structural responses inferred from fluorescence kinetics. The study was conducted in non-photorespiratory conditions. Increases in temperature resulted in changes in the fluorescence parameters nonphotochemical quenching (qN) and photochemical quenching (qP) in both varieties, but to a different extent. In BL and BA the increase in qP and the decrease in qN were either completed at 30{degrees}C. No indication of photoinhibition was detected at any temperature, and the ratio of the quantum efficiencies of photosystem II (PSII) and O{sub 2} evolution remained constant from 20 to 35{degrees}C. Measurements of 77-K fluorescence showed an increase in the photosystem I (PSI)/PSII ratio with temperature, suggesting an increase in the state transitions. In addition, measurements of fast-induction fluorescence revealed that the proportion of PSII{sub {beta}} centers increased with increasing temperatures. The extent of both changes were maximum at 30 to 35{degrees}C, coinciding with the ratio of rates at temperatures differing by 10{degrees}C for oxygen evolution. 40 refs., 4 figs.

  9. Effect of High Temperature on Photosynthesis in Beans (I. Oxygen Evolution and Chlorophyll Fluorescence).

    PubMed Central

    Pastenes, C.; Horton, P.

    1996-01-01

    We studied the effect of increasing temperature on photosynthesis in two bean (Phaseolus vulgaris L.) varieties known to differ in their resistance to extreme high temperatures, Blue Lake (BL), commercially available in the United Kingdom, and Barbucho (BA), noncommercially bred in Chile. We paid particular attention to the energy-transducing mechanisms and structural responses inferred from fluorescence kinetics. The study was conducted in non-photorespiratory conditions. Increases in temperature resulted in changes in the fluorescence parameters nonphotochemical quenching (qN) and photochemical quenching (qP) in both varieties, but to a different extent. In BL and BA the increase in qP and the decrease in qN were either completed at 30[deg]C or slightly changed following increases from 30 to 35[deg]C. No indication of photoinhibition was detected at any temperature, and the ratio of the quantum efficiencies of photosystem II (PSII) and O2 evolution remained constant from 20 to 35[deg]C. Measurements of 77-K fluorescence showed an increase in the photosystem I (PSI)/PSII ratio with temperature, suggesting an increase in the state transitions. In addition, measurements of fast-induction fluorescence revealed that the proportion of PSII[beta] centers increased with increasing temperatures. The extent of both changes were maximum at 30 to 35[deg]C, coinciding with the ratio of rates at temperatures differing by 10[deg]C for oxygen evolution. PMID:12226442

  10. HyperSpectral imaging microscopy for identification and quantitative analysis of fluorescently-labeled cells in highly autofluorescent tissue

    PubMed Central

    Leavesley, Silas J.; Annamdevula, Naga; Boni, John; Stocker, Samantha; Grant, Kristin; Troyanovsky, Boris; Rich, Thomas C.; Alvarez, Diego F.

    2012-01-01

    Standard fluorescence microscopy approaches rely on measurements at single excitation and emission bands to identify specific fluorophores and the setting of thresholds to quantify fluorophore intensity. This is often insufficient to reliably resolve and quantify fluorescent labels in tissues due to high autofluorescence. Here we describe the use of hyperspectral analysis techniques to resolve and quantify fluorescently labeled cells in highly autofluorescent lung tissue. This approach allowed accurate detection of green fluorescent protein (GFP) emission spectra, even when GFP intensity was as little as 15% of the autofluorescence intensity. GFP-expressing cells were readily quantified with zero false positives detected. In contrast, when the same images were analyzed using standard (single-band) thresholding approaches, either few GFP cells (high thresholds) or substantial false positives (intermediate and low thresholds) were detected. These results demonstrate that hyperspectral analysis approaches uniquely offer accurate and precise detection and quantification of fluorescence signals in highly autofluorescent tissues. PMID:21987373

  11. Observations of fluorescent and biological aerosol at a high-altitude site in central France

    NASA Astrophysics Data System (ADS)

    Gabey, A. M.; Vaitilingom, M.; Freney, E.; Boulon, J.; Sellegri, K.; Gallagher, M. W.; Crawford, I. P.; Robinson, N. H.; Stanley, W. R.; Kaye, P. H.

    2013-08-01

    an aerosol mass spectrometer (AMS; Aerodyne Inc.) suggests that aerosol reaching the site at night was more aged than that during the day, indicative of sampling the residual layer at night. Supplementary meteorological data and previous work also show that PdD lies in the residual layer/free troposphere at night, and this is thought to cause the observed diurnal cycles in organic-type and fluorescent aerosol particles. Based on the observed disparity between bacteria and fluorescent particle concentrations, fluorescent non-PBA is likely to be important in the WIBS-3 data and the surprisingly high fluorescent concentration in the residual layer/free troposphere raises questions about a ubiquitous background in continental air during the summer.

  12. Observations of fluorescent and biological aerosol at a high-altitude site in Central France

    NASA Astrophysics Data System (ADS)

    Gabey, A. M.; Vaitilingom, M.; Freney, E.; Boulon, J.; Sellegri, K.; Gallagher, M. W.; Crawford, I. P.; Robinson, N. H.; Stanley, W. R.; Kaye, P. H.

    2013-01-01

    more aged than that during the day, indicative of sampling the residual layer at night. Supplementary meteorological data and previous work also show that pdD lies in the residual layer/free troposphere at night, and this is thought to cause the observed diurnal cycles in organic-type and fluorescent aerosol particles. Based on the observed disparity between bacteria and fluorescent particle concentrations, fluorescent non-PBA is likely to be important in the WIBS-3 data and the surprisingly high fluorescent concentration in the residual layer/free troposphere raises questions about a ubiquitous background in continental air during the summer.

  13. High Ki-67 Immunohistochemical Reactivity Correlates With Poor Prognosis in Bladder Carcinoma

    PubMed Central

    Luo, Yihuan; Zhang, Xin; Mo, Meile; Tan, Zhong; Huang, Lanshan; Zhou, Hong; Wang, Chunqin; Wei, Fanglin; Qiu, Xiaohui; He, Rongquan; Chen, Gang

    2016-01-01

    Abstract Ki-67 is considered as one of prime biomarkers to reflect cell proliferation and immunohistochemical Ki-67 staining has been widely applied in clinical pathology. To solve the widespread controversy whether Ki-67 reactivity significantly predicts clinical prognosis of bladder carcinoma (BC), we performed a comprehensive meta-analysis by combining results from different literature. A comprehensive search was conducted in the Chinese databases of WanFang, China National Knowledge Infrastructure and Chinese VIP as well as English databases of PubMed, ISI web of science, EMBASE, Science Direct, and Wiley online library. Independent studies linking Ki-67 to cancer-specific survival (CSS), disease-free survival (DFS), overall survival (OS), progression-free survival (PFS), and recurrence-free survival (RFS) were included in our meta-analysis. With the cut-off values literature provided, hazard ratio (HR) values between the survival distributions were extracted and later combined with STATA 12.0. In total, 76 studies (n = 13,053 patients) were eligible for the meta-analysis. It was indicated in either univariate or multivariate analysis for survival that high Ki-67 reactivity significantly predicted poor prognosis. In the univariate analysis, the combined HR for CSS, DFS, OS, PFS, and RFS were 2.588 (95% confidence interval [CI]: 1.623–4.127, P < 0.001), 2.697 (95%CI: 1.874–3.883, P < 0.001), 2.649 (95%CI: 1.632–4.300, P < 0.001), 3.506 (95%CI: 2.231–5.508, P < 0.001), and 1.792 (95%CI: 1.409–2.279, P < 0.001), respectively. The pooled HR of multivariate analysis for CSS, DFS, OS, PFS, and RFS were 1.868 (95%CI: 1.343–2.597, P < 0.001), 2.626 (95%CI: 2.089–3.301, P < 0.001), 1.104 (95%CI: 1.008–1.209, P = 0.032), 1.518 (95%CI: 1.299–1.773, P < 0.001), and 1.294 (95%CI: 1.203–1.392, P < 0.001), respectively. Subgroup analysis of univariate analysis by origin showed that Ki-67 reactivity significantly

  14. Nanometer scale high-aspect-ratio trench etching at controllable angles using ballistic reactive ion etching

    SciTech Connect

    Cybart, Shane; Roediger, Peter; Ulin-Avila, Erick; Wu, Stephen; Wong, Travis; Dynes, Robert

    2012-11-30

    We demonstrate a low pressure reactive ion etching process capable of patterning nanometer scale angled sidewalls and three dimensional structures in photoresist. At low pressure the plasma has a large dark space region where the etchant ions have very large highly-directional mean free paths. Mounting the sample entirely within this dark space allows for etching at angles relative to the cathode with minimal undercutting, resulting in high-aspect ratio nanometer scale angled features. By reversing the initial angle and performing a second etch we create three-dimensional mask profiles.

  15. High efficiency pure blue thermally activated delayed fluorescence molecules having 10H-phenoxaborin and acridan units.

    PubMed

    Numata, Masaki; Yasuda, Takuma; Adachi, Chihaya

    2015-06-11

    Highly efficient blue thermally activated delayed fluorescence molecules having 10H-phenoxaborin and acridan units were reported. Pure blue emission peaking at around 450 nm with a high external electroluminescence quantum efficiency of around 20% was demonstrated. PMID:25959457

  16. Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells

    NASA Astrophysics Data System (ADS)

    Slegerova, Jitka; Hajek, Miroslav; Rehor, Ivan; Sedlak, Frantisek; Stursa, Jan; Hruby, Martin; Cigler, Petr

    2014-12-01

    Core-shell nanoparticles based on fluorescent nanodiamonds coated with a biocompatible N-(2-hydroxypropyl)methacrylamide copolymer shell were developed for background-free near-infrared imaging of cancer cells. The particles showed excellent colloidal stability in buffers and culture media. After conjugation with a cyclic RGD peptide they selectively targeted integrin αvβ3 receptors on glioblastoma cells with high internalization efficacy.Core-shell nanoparticles based on fluorescent nanodiamonds coated with a biocompatible N-(2-hydroxypropyl)methacrylamide copolymer shell were developed for background-free near-infrared imaging of cancer cells. The particles showed excellent colloidal stability in buffers and culture media. After conjugation with a cyclic RGD peptide they selectively targeted integrin αvβ3 receptors on glioblastoma cells with high internalization efficacy. Electronic supplementary information (ESI) available: Materials and methods, colloidal stability studies and cell viability studies. See DOI: 10.1039/c4nr02776k

  17. High-Resolution In Vivo Imaging of Fluorescent Proteins Using Window Chamber Models

    PubMed Central

    Palmer, Gregory M.; Fontanella, Andrew N.; Shan, Siqing; Dewhirst, Mark W.

    2013-01-01

    Fluorescent proteins enable in vivo characterization of a wide and growing array of morphological and functional biomarkers. To fully capitalize on the spatial and temporal information afforded by these reporter proteins, a method for imaging these proteins at high resolution longitudinally is required. This chapter describes the use of window chamber models as a means of imaging fluorescent proteins and other optical parameters. Such models essentially involve surgically implanting a window through which tumor or normal tissue can be imaged using existing microscopy techniques. This enables acquisition of high-quality images down to the cellular or subcellular scale, exploiting the diverse array of optical contrast mechanisms, while also maintaining the native microenvironment of the tissue of interest. This makes these techniques applicable to a wide array of problems in the biomedical sciences. PMID:22700402

  18. Multispot live-image autofocusing for high-throughput microscopy of fluorescently stained bacteria.

    PubMed

    Zeder, M; Pernthaler, J

    2009-09-01

    Screening by automated high-throughput microscopy has become a valuable research tool. An essential component of such systems is the autonomous acquisition of focused images. Here we describe the implementation of a high-precision autofocus routine for imaging of fluorescently stained bacteria on a commercially available microscope. We integrated various concepts and strategies that together substantially enhance the performance of autonomous image acquisition. These are (i) nested focusing in bright-field and fluorescence illumination, (ii) autofocusing by continuous life-image acquisition during movement in z-direction rather than at distinct z-positions, (iii) assessment of the quality and topology of a field of view (FOV) by multispot focus measurements, and (iv) acquisition of z-stacks and application of an extended depth of field algorithm to compensate for FOV unevenness. The freely provided program and documented source code allow ready adaptation of the here presented approach to various platforms and scientific questions. PMID:19658173

  19. Highly efficient red OLEDs using DCJTB as the dopant and delayed fluorescent exciplex as the host.

    PubMed

    Zhao, Bo; Zhang, Tianyou; Chu, Bei; Li, Wenlian; Su, Zisheng; Wu, Hairuo; Yan, Xingwu; Jin, Fangming; Gao, Yuan; Liu, Chengyuan

    2015-01-01

    In this manuscript, we demonstrated a highly efficient DCJTB emission with delayed fluorescent exciplex TCTA:3P-T2T as the host. For the 1.0% DCJTB doped concentration, a maximum luminance, current efficiency, power efficiency and EQE of 22,767 cd m(-2), 22.7 cd A(-1), 21.5 lm W(-1) and 10.15% were achieved, respectively. The device performance is the best compared to either red OLEDs with traditional fluorescent emitter or traditional red phosphor of Ir(piq)3 doped into CBP host. The extraction of so high efficiency can be explained as the efficient triplet excitons up-conversion of TCTA:3P-T2T and the energy transfer from exciplex host singlet state to DCJTB singlet state. PMID:26023882

  20. Mesoporous structured MIPs@CDs fluorescence sensor for highly sensitive detection of TNT.

    PubMed

    Xu, Shoufang; Lu, Hongzhi

    2016-11-15

    A facile strategy was developed to prepare mesoporous structured molecularly imprinted polymers capped carbon dots (M-MIPs@CDs) fluorescence sensor for highly sensitive and selective determination of TNT. The strategy using amino-CDs directly as "functional monomer" for imprinting simplify the imprinting process and provide well recognition sites accessibility. The as-prepared M-MIPs@CDs sensor, using periodic mesoporous silica as imprinting matrix, and amino-CDs directly as "functional monomer", exhibited excellent selectivity and sensitivity toward TNT with detection limit of 17nM. The recycling process was sustainable for 10 times without obvious efficiency decrease. The feasibility of the developed method in real samples was successfully evaluated through the analysis of TNT in soil and water samples with satisfactory recoveries of 88.6-95.7%. The method proposed in this work was proved to be a convenient and practical way to prepare high sensitive and selective fluorescence MIPs@CDs sensors. PMID:27315521

  1. Highly efficient red OLEDs using DCJTB as the dopant and delayed fluorescent exciplex as the host

    PubMed Central

    Zhao, Bo; Zhang, Tianyou; Chu, Bei; Li, Wenlian; Su, Zisheng; Wu, Hairuo; Yan, Xingwu; Jin, Fangming; Gao, Yuan; Liu, Chengyuan

    2015-01-01

    In this manuscript, we demonstrated a highly efficient DCJTB emission with delayed fluorescent exciplex TCTA:3P-T2T as the host. For the 1.0% DCJTB doped concentration, a maximum luminance, current efficiency, power efficiency and EQE of 22,767 cd m−2, 22.7 cd A−1, 21.5 lm W−1 and 10.15% were achieved, respectively. The device performance is the best compared to either red OLEDs with traditional fluorescent emitter or traditional red phosphor of Ir(piq)3 doped into CBP host. The extraction of so high efficiency can be explained as the efficient triplet excitons up-conversion of TCTA:3P-T2T and the energy transfer from exciplex host singlet state to DCJTB singlet state. PMID:26023882

  2. Planar laser-induced fluorescence measurements of high-enthalpy free jet flow with nitric oxide

    NASA Technical Reports Server (NTRS)

    Palmer, Jennifer L.; Mcmillin, Brian K.; Hanson, Ronald K.

    1992-01-01

    Planar laser-induced fluorescence (PLIF) measurements of property fields in a high-enthalpy, supersonic, underexpanded free jet generated in a reflection-type shock tunnel are reported. PLIF images showing velocity and temperature sensitivity are presented. The inferred radial velocity and relative rotational temperature fields are found to be in agreement with those predicted by a numerical simulation of the flowfield using the method of characteristics.

  3. Fluorescence lidar imaging of fungal growth on high-voltage outdoor composite insulators

    NASA Astrophysics Data System (ADS)

    Bengtsson, M.; Grönlund, R.; Sjöholm, M.; Abrahamsson, Ch.; Dernfalk, A. D.; Wallström, S.; Larsson, A.; Weibring, P.; Karlsson, S.; Gubanski, S. M.; Kröll, S.; Svanberg, S.

    2005-06-01

    Remote fluorescence imaging of fungal growth on polymeric high-voltage insulators was performed using a mobile lidar system with a laser wavelength of 355 nm. Insulator areas contaminated by fungal growth could be distinguished from clean surfaces and readily be imaged. The experiments were supported by detailed spectral studies performed in laboratory using a fibre-optic fluorosensor incorporating an optical multi-channel analyser system (OMA) and a nitrogen laser emitting radiation at 337 nm.

  4. Highly Fluorescent Nanotubes with Tunable Diameter and Wall Thickness Self-Assembled from Asymmetric Perylene Diimides.

    PubMed

    Peng, Cheng; Zhang, Yibin; Zhang, Yifan; Hu, Yanyong; Che, Yanke; Zhao, Jincai

    2016-08-01

    Highly fluorescent bilayer-walled and monolayer-walled nanotubes are assembled from elaborately designed asymmetric perylene diimide (PDI) molecules. The diameter of bilayer-walled nanotubes increases with the size of the branched substituents at the meta-position of the phenyl moiety of PDI molecules, whereas that of monolayer-walled nanotubes remains unchanged regardless of the size of branched substituents. PMID:27375155

  5. Extent of antigenic cross-reactivity among highly pathogenic H5N1 influenza viruses.

    PubMed

    Ducatez, Mariette F; Cai, Zhipeng; Peiris, Malik; Guan, Yi; Ye, Zhiping; Wan, Xiu-Feng; Webby, Richard J

    2011-10-01

    Highly pathogenic H5N1 avian influenza viruses emerged in 1996 and have since evolved so extensively that a single strain can no longer be used as a prepandemic vaccine or diagnostic reagent. We therefore sought to identify the H5N1 strains that may best serve as cross-reactive diagnostic reagents. We compared the cross-reactivity of 27 viruses of clades 0, 1, 2.1, 2.2, 2.3, and 4 and of four computationally designed ancestral H5N1 strains by hemagglutination inhibition (HI) and microneutralization (MN) assays. Antigenic cartography was used to analyze the large quantity of resulting data. Cartographs of HI titers with chicken red blood cells were similar to those of MN titers, but HI with horse red blood cells decreased antigenic distances among the H5N1 strains studied. Thus, HI with horse red blood cells seems to be the assay of choice for H5N1 diagnostics. Whereas clade 2.2 antigens were able to detect antibodies raised to most of the tested H5N1 viruses (and clade 2.2-specific antisera detected most of the H5N1 antigens), ancestral strain A exhibited the widest reactivity pattern and hence was the best candidate diagnostic reagent for broad detection of H5N1 strains. PMID:21832017

  6. THC-MP: High performance numerical simulation of reactive transport and multiphase flow in porous media

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu

    2015-07-01

    The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.

  7. A highly sensitive ratiometric fluorescent probe with a large emission shift for imaging endogenous cysteine in living cells.

    PubMed

    Zhu, Baocun; Guo, Bingpeng; Zhao, Yunzhou; Zhang, Bing; Du, Bin

    2014-05-15

    A new design strategy for the construction of ratiometric fluorescent probe with a large emission shift was developed. Based on this strategy, a highly selective and sensitive colorimetric and ratiometic fluorescent probe for cysteine (Cys) with a 117 nm red-shifted emission was synthesized and applied to the ratiometric imaging of endogenous Cys in living cells. PMID:24362081

  8. Understanding the Composition and Reactivity of Au/Cu Electrocatalyst Nanoparticles in Solution Using Highly Accurate Reactive Potentials

    NASA Astrophysics Data System (ADS)

    Artrith, Nongnuch; Kolpak, Alexie

    2014-03-01

    The shape, size, and composition of catalyst nanoparticles can have a significant influence on their catalytic activity. Understanding such structure-reactivity relationships is crucial for the optimization of industrial catalysts and the design of novel catalysts with enhanced properties. In this work, we investigate the equilibrium shape and surface structure/composition of Au/Cu nanoparticles in solution, which have recently been shown to be stable and efficient catalysts for CO2 reduction. Using a combination of density functional theory calculations and large-scale Monte-Carlo and molecular dynamics simulations with reactive atomistic potentials, we determine how the nanoparticle shape, surface structure, and surface stoichiometry (i.e., fraction of Au at the surface relative to overall composition), evolve as a function of varying catalytic conditions. We discuss the effects of these changes on the surface electronic structure and binding energies of CO2, H2, and CH3OH. Our results emphasize the important relationships between catalytic environment (e.g., solvent effects), catalyst structure, and catalytic activity. We thank the Schlumberger Foundation Faculty for the Future for financial support. Computing time at XSEDE and NERSC clusters are gratefully acknowledged.

  9. Hand-Held High-Resolution Fluorescence Imaging System for Fluorescence-Guided Surgery of Patient and Cell-Line Pancreatic Tumors Growing Orthotopically in Nude Mice

    PubMed Central

    Hiroshima, Yukihiko; Maawy, Ali; Sato, Sho; Murakami, Takashi; Uehara, Fuminari; Miwa, Shinji; Yano, Shuya; Momiyama, Masashi; Chishima, Takashi; Tanaka, Kuniya; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M.

    2014-01-01

    Background In this study, we investigated the advantages for fluorescence-guided surgery (FGS) in mice of a portable hand-sized imaging system compared to a large chamber fluorescing imaging system or a long-working-distance fluorescence microscope. Methods Mouse models of human pancreatic cancer for FGS included (1) MiaPaCa-2-expressing green fluorescent protein (GFP), (2) BxPC3 labeled with anti-CEA antibody conjugated with Alexa 488, (3) patient-derived orhotopic xenograft (PDOX)™ labeled with anti-CA19-9 antibody conjugated with Alexa 488. Results Each device could clearly detect the primary MiaPaCa-2-GFP. tumor and any residual tumor after FGS. In the BxPC3 model labeled with Alexa 488-conjugated anti-CEA, each device could detect the primary tumor, but the MVX10 could not clearly detect the residual tumor remaining after FGS while the other devices could. In the PDOX™ model labeled with Alexa 488 conjugated with anti CA19-9, only the portable hand-held device could distinguish the residual tumor from the background, and complete resection of the residual tumor was achieved under fluorescence navigation. Conclusions The results described in the present report suggest the hand-held mobile imaging system can be able to be applied to the clinic for FGS due to its convenient size and high sensitivity and help make FGS widely-used. PMID:24373959

  10. Highly Efficient Sky-Blue Fluorescent Organic Light Emitting Diode Based on Mixed Cohost System for Thermally Activated Delayed Fluorescence Emitter (2CzPN).

    PubMed

    Sun, Jin Won; Kim, Kwon-Hyeon; Moon, Chang-Ki; Lee, Jeong-Hwan; Kim, Jang-Joo

    2016-04-20

    The mixed cohosts of 1,3-bis(N-carbazolyl)benzene and 2,8-bis(diphenylphosphoryl)dibenzothiophene have been developed for a highly efficient blue fluorescent oragnic light emitting diode (OLED) doped with a thermally activated delayed fluorescence (TADF) emitter [4,5-di (9H-carbazol-9-yl) phthalonitrile (2CzPN)]. We have demonstrated one of the highest external quantum efficiency of 21.8% in blue fluorescent OLEDs, which is identical to the theoretically achievable maximum electroluminescence efficiency using the emitter. Interestingly, the efficiency roll-off is large even under the excellent charge balance in the device and almost the same as the single host based devices, indicating that the efficiency roll-off in 2CzPN based TADF host is related to the material characteristics, such as low reverse intesystem crossing rate rather than charge imbalance. PMID:27019330

  11. Ratiometric fluorescent ion detection in water with high sensitivity via aggregation-mediated fluorescence resonance energy transfer using a conjugated polyelectrolyte as an optical platform.

    PubMed

    Le, Van Sang; Kim, Boram; Lee, Wonho; Jeong, Ji-Eun; Yang, Renqiang; Woo, Han Young

    2013-05-14

    A cationic conjugated polyelectrolyte was designed and synthesized based on poly(fluorene-co-phenylene) containing 5 mol% benzothiadiazole (BT) as a low energy trap and 15-crown-5 as a recognizing group for potassium ions. A potassium ion can form a sandwich-type 2:1 Lewis acid-based complex with 15-crown-5, to cause the intermolecular aggregation of polymers. This facilitates inter-chain fluorescence resonance energy transfer (FRET) to a low-energy BT segment, resulting in fluorescent signal amplification, even at dilute analyte concentrations. Highly sensitive and selective detection of K(+) ions was demonstrated in water. The linear response of ratiometric fluorescent signal as a function of [K(+) ] allows K(+) quantification in a range of nanomolar concentrations with a detection limit of ≈0.7 × 10(-9) M. PMID:23417971

  12. Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter†‡

    PubMed Central

    Wu, Ting-Hsiang; Chen, Yue; Park, Sung-Yong; Hong, Jason; Teslaa, Tara; Zhong, Jiang F.; Di Carlo, Dino; Teitell, Michael A.

    2014-01-01

    We report a high speed and high purity pulsed laser triggered fluorescence activated cell sorter (PLACS) with a sorting throughput up to 20 000 mammalian cells s−1 with 37% sorting purity, 90% cell viability in enrichment mode, and >90% purity in high purity mode at 1500 cells s−1 or 3000 beads s−1. Fast switching (30 μs) and a small perturbation volume (~90 pL) is achieved by a unique sorting mechanism in which explosive vapor bubbles are generated using focused laser pulses in a single layer microfluidic PDMS channel. PMID:22361780

  13. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence

    SciTech Connect

    Nishide, Jun-ichi; Hiraga, Yasuhide; Nakanotani, Hajime; Adachi, Chihaya

    2014-06-09

    White organic light-emitting diodes (WOLEDs) have attracted much attention recently, aimed for next-generation lighting sources because of their high potential to realize high electroluminescence efficiency, flexibility, and low-cost manufacture. Here, we demonstrate high-efficiency WOLED using red, green, and blue thermally activated delayed fluorescence materials as emissive dopants to generate white electroluminescence. The WOLED has a maximum external quantum efficiency of over 17% with Commission Internationale de l'Eclairage coordinates of (0.30, 0.38).

  14. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence

    NASA Astrophysics Data System (ADS)

    Nishide, Jun-ichi; Nakanotani, Hajime; Hiraga, Yasuhide; Adachi, Chihaya

    2014-06-01

    White organic light-emitting diodes (WOLEDs) have attracted much attention recently, aimed for next-generation lighting sources because of their high potential to realize high electroluminescence efficiency, flexibility, and low-cost manufacture. Here, we demonstrate high-efficiency WOLED using red, green, and blue thermally activated delayed fluorescence materials as emissive dopants to generate white electroluminescence. The WOLED has a maximum external quantum efficiency of over 17% with Commission Internationale de l'Eclairage coordinates of (0.30, 0.38).

  15. Calculating the X-Ray Fluorescence from the Planet Mercury Due to High-Energy Electrons

    NASA Technical Reports Server (NTRS)

    Burbine, T. H.; Trombka, J. I.; Bergstrom, P. M., Jr.; Christon, S. P.

    2005-01-01

    The least-studied terrestrial planet is Mercury due to its proximity to the Sun, which makes telescopic observations and spacecraft encounters difficult. Our lack of knowledge about Mercury should change in the near future due to the recent launching of MESSENGER, a Mercury orbiter. Another mission (BepiColombo) is currently being planned. The x-ray spectrometer on MESSENGER (and planned for BepiColombo) can characterize the elemental composition of a planetary surface by measuring emitted fluorescent x-rays. If electrons are ejected from an atom s inner shell by interaction with energetic particles such as photons, electrons, or ions, electrons from an outer shell can transfer to the inner shell. Characteristic x-rays are then emitted with energies that are the difference between the binding energy of the ion in its excited state and that of the ion in its ground state. Because each element has a unique set of energy levels, each element emits x-rays at a unique set of energies. Electrons and ions usually do not have the needed flux at high energies to cause significant x-ray fluorescence on most planetary bodies. This is not the case for Mercury where high-energy particles were detected during the Mariner 10 flybys. Mercury has an intrinsic magnetic field that deflects the solar wind, resulting in a bow shock in the solar wind and a magnetospheric cavity. Electrons and ions accelerated in the magnetosphere tend to follow its magnetic field lines and can impact the surface on Mercury s dark side Modeling has been done to determine if x-ray fluorescence resulting from the impact of high-energy electrons accelerated in Mercury's magnetosphere can be detected by MESSENGER. Our goal is to understand how much bulk chemical information can be obtained from x-ray fluorescence measurements on the dark side of Mercury.

  16. High glucose causes delayed fetal lung maturation as measured by fluorescence anisotropy.

    PubMed

    Gewolb, I H; Unger, M E; Merdian, W; Deutsch, J; Cavalieri, R L

    1993-06-15

    Fluorescence anisotropy has been used to estimate the microviscosity of the surfactant phospholipid bilayer and no predict fetal lung maturity in human amniotic fluid; its usefulness in in vitro systems has been recently demonstrated. To investigate the effect of high glucose on lung development, anisotropy measurements were performed on 20-day fetal rat lung explant homogenates and culture media after culture for 48 hours in medium containing final concentrations of 10, 50, and 100mM glucose. Anisotropy of lung tissue cultured in 100mM glucose was significantly increased when compared to those cultured in 10mM glucose (p < .01). After 48 hours, the media from samples grown in 100mM glucose had significantly higher anisotropy (.2210 +/- .0031) than did media from explants grown in 50mM glucose (.2027 +/- .0079; p < .05), or in 10mM glucose (.1886 +/- .0046; p < .001). Relative fluorescence intensity of explants grown in 100mM glucose was 74.4 +/- 5.7% of those grown in 10mM glucose (p < .01). Fluorescence intensity of media was also decreased by 15-30% under higher glucose considerations (p < .05). These data suggest that surfactant synthesized and secreted under high glucose conditions, such as exist in the infant of the diabetic gestation, may have qualitative as well as quantitative changes. PMID:8512578

  17. Highly selective, sensitive and fast-responsive fluorescent sensor for Hg2 +

    NASA Astrophysics Data System (ADS)

    Niu, Qingfen; Wu, Xingxing; Li, Tianduo; Cui, Yuezhi; Zhang, Shanshan; Li, Xiaoyan

    2016-06-01

    A phenylamine-oligothiophene-based fluorescent sensor 2TBEA was reported. This sensor exhibited highly selective, sensitive and rapid detection of Hg2 + ion in THF/H2O (7/3, v/v) solution through fluorescence quenching. The detection was unaffected by the coexistence of other competitive metal cations including Na+, K+, Ag+, Ca2 +, Fe3 +, Al3 +, Co2 +, Cu2 +, Ni2 +, Zn2 +, Pb2 +, Cd2 +, Fe2 + and Cr3 +. A1:1 binding ratio for 2TBEA - Hg2 + was demonstrated by Job's plot and mole-ratio curves. The coordination process was chemically reversible with EDTA. The detection limit was evaluated to be as low as 6.164 × 10- 8 M.

  18. A rhodamine B-based fluorescent sensor toward highly selective mercury (II) ions detection.

    PubMed

    Jiao, Yang; Zhang, Lei; Zhou, Peng

    2016-04-01

    This work presented the design, syntheses and photophysical properties of a rhodamine B-based fluorescence probe, which exhibited a sensitive and selective recognition towards mercury (II). The chemosensor RA (Rhodamine- amide- derivative) contained a 5-aminoisophthalic acid diethyl ester and a rhodamine group, and the property of spirolactone of this chemosensor RA was detected by X-ray crystal structure analyses. Chemosensor RA afforded turn-on fluorescence enhancement and displayed high brightness for Hg(2+), which leaded to the opening of the spirolactone ring and consequently caused the appearance of strong absorption at visible range, moreover, the obvious and characteristic color changed from colorless to pink was observed. We envisioned that the chemosensor RA exhibited a considerable specificity with two mercury (II) ions which was attributed to the open of spirolactone over other interference metal ions. PMID:26838376

  19. Highly selective, sensitive and fast-responsive fluorescent sensor for Hg(2.).

    PubMed

    Niu, Qingfen; Wu, Xingxing; Li, Tianduo; Cui, Yuezhi; Zhang, Shanshan; Li, Xiaoyan

    2016-06-15

    A phenylamine-oligothiophene-based fluorescent sensor 2TBEA was reported. This sensor exhibited highly selective, sensitive and rapid detection of Hg(2+) ion in THF/H2O (7/3, v/v) solution through fluorescence quenching. The detection was unaffected by the coexistence of other competitive metal cations including Na(+), K(+), Ag(+), Ca(2+), Fe(3+), Al(3+), Co(2+), Cu(2+), Ni(2+), Zn(2+), Pb(2+), Cd(2+), Fe(2+) and Cr(3+). A1:1 binding ratio for 2TBEA - Hg(2+) was demonstrated by Job's plot and mole-ratio curves. The coordination process was chemically reversible with EDTA. The detection limit was evaluated to be as low as 6.164×10(-8)M. PMID:27049866

  20. A highly sensitive and selective fluorescent probe for fluoride anions based on intramolecular charge transfer.

    PubMed

    Liu, Jingkai; Xu, Zhenghe; Liu, Caiyun; Xu, Lirong; Wang, Zhongpeng; Zhu, Baocun

    2016-08-01

    Currently, there is a great need to develop methods for the selective detection of fluoride anions (F(-) ) owing to their toxicity in the environment and biological function in living systems. In this study, we developed a new fluorescent probe (probe 1) employing a Si-O bond as a highly selective recognition receptor for detecting F(-) via intramolecular charge transfer. Probe 1 could detect F(-) quantitatively using the turn-on fluorescence spectroscopy method with excellent sensitivity in the range of 4-38 μM and a detection limit of 0.26 μM; the detection time was < 17 min. We anticipate that probe 1 would be used widely to monitor F(-) in the environment. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26467672

  1. Highly sensitive vertically standing Ag nanorod arrays substrates for surface enhanced fluorescence studies

    NASA Astrophysics Data System (ADS)

    Singh, Dhruv P.; Singh, J. P.

    2013-06-01

    The nanorods length dependence of surface enhanced fluorescence (SEF) has been investigated for Rhodamine 6G films adsorbed onto Ag nanorods array substrates grown by glancing angle deposition technique. It is found that the substrate enhancement efficiency increases with increase in the length (l) of nanorods from 450 nm to 1.7 μm. The silver nanorod arrays substrate with l =1.6 μm exhibited a remarkable enhancement factor (EF) of 72. However, the rate of increment in EF did not remain same. It varies faster for the values of l up to ˜1 μm and after that it increases at comparatively slower rate. The understanding of the effect of nanorods morphology on EF and the identification of high sensitivity SEF substrates is the novelty of this work. These SEF substrates can be used for sensing and trace detection of the fluorescent biological and chemical compounds.

  2. Highly fluorescent and bioresorbable polymeric nanoparticles with enhanced photostability for cell imaging.

    PubMed

    Huang, Shuo; Liu, Shiying; Wang, Kai; Yang, Cangjie; Luo, Yimin; Zhang, Yingdan; Cao, Bin; Kang, Yuejun; Wang, Mingfeng

    2015-01-21

    We report a facile and general strategy for enhancing the photostability of organic fluorophores for bioimaging applications. As a proof of concept, bright and robust fluorescence was observed in solid states of a well-defined synthetic polymer polycaprolactone consisting of di(thiophene-2-yl)-diketopyrrolopyrrole covalently linked in the middle of the polymer chain as a biocompatible and bioresorbable matrix. The nanoparticles prepared through a nanoprecipitation process of these polymers could be internalized by both tumor cells and stem cells with little cytotoxicity. Moreover, these highly fluorescent nanoparticles exhibited significantly enhanced photostability compared to commercial quantum dots or physical blends of dye/polymer complexes in cell imaging and long-term tracing. PMID:25470662

  3. Bodilisant—A Novel Fluorescent, Highly Affine Histamine H3 Receptor Ligand

    PubMed Central

    2012-01-01

    A piperidine-based lead structure for the human histamine H3 receptor (hH3R) was coupled with the BODIPY fluorophore and resulted in a strong green fluorescent (quantum yield, 0.92) hH3R ligand with affinity in the nanomolar concentration range (Ki hH3R = 6.51 ± 3.31 nM), named Bodilisant. Screening for affinities at histamine and dopamine receptor subtypes showed high hH3R preference. Bodilisant was used for visualization of hH3R in hH3R overexpressing HEK-293 cells with fluorescence confocal laser scanning microscopy. In addition, in native human brain tissues, Bodilisant showed clear and displaceable images of labeled hH3R. PMID:24900647

  4. Highly selective and sensitive fluorescent probe for the detection of nitrite.

    PubMed

    Gu, Biao; Huang, Liyan; Hu, Jiali; Liu, Jingjing; Su, Wei; Duan, Xiaoli; Li, Haitao; Yao, Shouzhuo

    2016-05-15

    A simple and reliable fluorescent nitrite (NO2(-)) probe, 2-(1H-phenanthro[9,10-d] imidazol-2-yl)aniline (PA), was rationally developed based on a novel NO2(-)-mediated diazozation and subsequent cyclization. The new sensing mechanism of the probe was confirmed by using NMR, IR spectra, control experiments and DFT calculations. The synthesized probe showed low pH dependence, fast and highly selective fluorescence response to NO2(-) over other species. Under the optimized conditions, the linear response of the probe toward NO2(-) was in the range of 0.1-10 μM with a low detection limit of 4.3×10(-8) M. Moreover, PA was successfully applied for the determination of NO2(-) in environmental samples and food products. PMID:26992506

  5. Assessment of controlling processes for field-scale uranium reactive transport under highly transient flow conditions

    NASA Astrophysics Data System (ADS)

    Ma, Rui; Zheng, Chunmiao; Liu, Chongxuan; Greskowiak, Janek; Prommer, Henning; Zachara, John M.

    2014-02-01

    This paper presents the results of a comprehensive model-based analysis of a uranyl [U(VI)] tracer test conducted at the U.S. DOE Hanford 300 Area (300A) IFRC. Despite the highly complex field conditions the numerical three-dimensional multicomponent reactive transport model was able to capture most of the spatiotemporal variations of the observed U(VI) concentrations. A multimodel analysis was performed to interrogate the relative importance of various processes and factors for controlling field-scale reactive transport during the uranyl tracer test. The results indicate that multirate sorption/desorption, surface complexation reactions, and initial concentration distributions were the most important processes and factors controlling U(VI) migration. On the other hand, cation exchange reactions, the choice of the surface complexation model, and dual-domain mass transfer processes played less important roles under the prevailing field-test conditions. Further analysis of the modeling results demonstrates that these findings are conditioned to the relatively stable groundwater chemistry and the selected length of the field experimental duration (16 days). The model analysis also revealed the crucial role of the intraborehole flow that occurred within the long-screened monitoring wells and thus affected both field measurements and simulated U(VI) concentrations as a combined effect of aquifer heterogeneity and dynamic flow conditions. This study provides the first highly data-constrained uranium transport simulations under highly dynamic flow conditions. It illustrates the value of reactive transport modeling for elucidating the relative importance of individual processes in controlling uranium transport under specific field-scale conditions.

  6. High-pressure ruby and diamond fluorescence - Observations at 0.21 to 0.55 terapascal

    NASA Technical Reports Server (NTRS)

    Xu, J. A.; Mao, H. K.; Bell, P. M.

    1986-01-01

    A diamond-anvil, high-pressure apparatus was used to extend the upper pressure limit of static laboratory experiments. Shifts of the R1 strong fluorescent line of ruby were observed that correspond to static pressures of 0.21 to 0.55 terapascal (2.1 to 5.5 megabars) at 25 C. Sensitive spectroscopic techniques in the pressure range 0.15 to 0.28 terapascal were used to observe ruby and diamond fluorescence separately; these two fluorescent emissions overlap strongly at high pressures. At pressures greater than approximately 0.28 terapascal, the diamond fluorescence diminished and the ruby fluorescence reappeared strongly. Pressure was determined by extrapolation of the calibrated shift of the ruby R1 line.

  7. Naturally high plasma glucose levels in mourning doves (Zenaida macroura) do not lead to high levels of reactive oxygen species in the vasculature.

    PubMed

    Smith, Christina L; Toomey, Matthew; Walker, Benjimen R; Braun, Eldon J; Wolf, Blair O; McGraw, Kevin; Sweazea, Karen L

    2011-06-01

    Plasma glucose (P(Glu)) concentrations in birds are 1.5-2 times higher than those of mammals of similar body mass. In mammals, sustained elevations of P(Glu) lead to oxidative stress and free radical-mediated scavenging of endogenous vasodilators (e.g., nitric oxide), contributing to elevated blood pressure. Despite the relatively high P(Glu) levels in birds, they appear resistant to the development of oxidative stress in tissues such as the heart, brain and kidneys. To our knowledge no information exists on oxidative stress susceptibility in the resistance vasculature of birds. Therefore, we compared endogenous antioxidant mechanisms in the resistance vasculature of mourning doves (MODO; Zenaida macroura) and rats (Rattus norvegicus). Reactive oxygen species (ROS) were assessed with the fluorescent indicator 7'-dichlorodihydrofluorescein diacetate, acetyl ester in mesenteric arteries from rats and wild-caught MODO. Despite having significantly higher P(Glu) than rats, there were no significant differences in ROS levels between mesenteric arteries from rats or doves. Although superoxide dismutase and catalase activities were lower in the plasma, total antioxidant capacity, uric acid, vitamin E (α-tocopherol), and carotenoids (lutein and zeaxanthin) were significantly higher in MODO than in rats. Thus, compared to rats, MODO have multiple circulating antioxidants that may prevent the development of oxidative stress in the vasculature. PMID:21600747

  8. Mesoscopic simulations of shock-to-detonation transition in reactive liquid high explosive

    NASA Astrophysics Data System (ADS)

    Maillet, J. B.; Bourasseau, E.; Desbiens, N.; Vallverdu, G.; Stoltz, G.

    2011-12-01

    An extension of the model described in a previous work (see Maillet J. B. et al., EPL, 78 (2007) 68001) based on Dissipative Particle Dynamics is presented and applied to a liquid high explosive (HE), with thermodynamic properties mimicking those of liquid nitromethane. Large scale nonequilibrium simulations of reacting liquid HE with model kinetic under sustained shock conditions allow a better understanding of the shock-to-detonation transition in homogeneous explosives. Moreover, the propagation of the reactive wave appears discontinuous since ignition points in the shocked material can be activated by the compressive waves emitted from the onset of chemical reactions.

  9. Fluidizable zinc titanate materials with high chemical reactivity and attrition resistance

    DOEpatents

    Gupta, R.P.; Gangwal, S.K.; Jain, S.C.

    1993-10-19

    Highly durable and chemically reactive zinc titanate materials are prepared in a particle size range of 50 to 400 [mu]m suitable for a fluidized-bed reactor for removing reduced sulfur species in a gaseous form by granulating a mixture of fine zinc oxide and titanium oxide with inorganic and organic binders and by optional additions of small amounts of activators such as CoO and MoO[sub 3]; and then indurating it at 800 to 900 C for a time sufficient to produce attrition-resistant granules.

  10. Fluidizable zinc titanate materials with high chemical reactivity and attrition resistance

    DOEpatents

    Gupta, Raghubir P.; Gangwal, Santosh K.; Jain, Suresh C.

    1993-01-01

    Highly durable and chemically reactive zinc titanate materials are prepared in a particle size range of 50 to 400 .mu.m suitable for a fluidized-bed reactor for removing reduced sulfur species in a gaseous form by granulating a mixture of fine zinc oxide and titanium oxide with inorganic and organic binders and by optional additions of small amounts of activators such as CoO and MoO.sub.3 ; and then indurating it at 800.degree. to 900.degree. C. for a time sufficient to produce attrition-resistant granules.

  11. Plasma reactivity in high-power impulse magnetron sputtering through oxygen kinetics

    SciTech Connect

    Vitelaru, Catalin; Lundin, Daniel; Brenning, Nils; Minea, Tiberiu

    2013-09-02

    The atomic oxygen metastable dynamics in a Reactive High-Power Impulse Magnetron Sputtering (R-HiPIMS) discharge has been characterized using time-resolved diode laser absorption in an Ar/O{sub 2} gas mixture with a Ti target. Two plasma regions are identified: the ionization region (IR) close to the target and further out the diffusion region (DR), separated by a transition region. The μs temporal resolution allows identifying the main atomic oxygen production and destruction routes, which are found to be very different during the pulse as compared to the afterglow as deduced from their evolution in space and time.

  12. Observations of fluorescent aerosol-cloud interactions in the free troposphere at the High-Altitude Research Station Jungfraujoch

    NASA Astrophysics Data System (ADS)

    Crawford, I.; Lloyd, G.; Herrmann, E.; Hoyle, C. R.; Bower, K. N.; Connolly, P. J.; Flynn, M. J.; Kaye, P. H.; Choularton, T. W.; Gallagher, M. W.

    2016-02-01

    The fluorescent nature of aerosol at a high-altitude Alpine site was studied using a wide-band integrated bioaerosol (WIBS-4) single particle multi-channel ultraviolet - light-induced fluorescence (UV-LIF) spectrometer. This was supported by comprehensive cloud microphysics and meteorological measurements with the aims of cataloguing concentrations of bio-fluorescent aerosols at this high-altitude site and also investigating possible influences of UV-fluorescent particle types on cloud-aerosol processes. Analysis of background free tropospheric air masses, using a total aerosol inlet, showed there to be a minor increase in the fluorescent aerosol fraction during in-cloud cases compared to out-of-cloud cases. The size dependence of the fluorescent aerosol fraction showed the larger aerosol to be more likely to be fluorescent with 80 % of 10 μm particles being fluorescent. Whilst the fluorescent particles were in the minority (NFl/NAll = 0.27 ± 0.19), a new hierarchical agglomerative cluster analysis approach, Crawford et al. (2015) revealed the majority of the fluorescent aerosols were likely to be representative of fluorescent mineral dust. A minor episodic contribution from a cluster likely to be representative of primary biological aerosol particles (PBAP) was also observed with a wintertime baseline concentration of 0.1 ± 0.4 L-1. Given the low concentration of this cluster and the typically low ice-active fraction of studied PBAP (e.g. pseudomonas syringae), we suggest that the contribution to the observed ice crystal concentration at this location is not significant during the wintertime.

  13. Observations of fluorescent aerosol-cloud interactions in the free troposphere at the Sphinx high Alpine research station, Jungfraujoch

    NASA Astrophysics Data System (ADS)

    Crawford, I.; Lloyd, G.; Bower, K. N.; Connolly, P. J.; Flynn, M. J.; Kaye, P. H.; Choularton, T. W.; Gallagher, M. W.

    2015-09-01

    The fluorescent nature of aerosol at a high Alpine site was studied using a wide-band integrated bioaerosol (WIBS-4) single particle multi-channel ultra violet-light induced fluorescence (UV-LIF) spectrometer. This was supported by comprehensive cloud microphysics and meteorological measurements with the aims of cataloguing concentrations of bio-fluorescent aerosols at this high altitude site and also investigating possible influences of UV-fluorescent particle types on cloud-aerosol processes. Analysis of background free tropospheric air masses, using a total aerosol inlet, showed there to be a minor but statistically insignificant increase in the fluorescent aerosol fraction during in-cloud cases compared to out of cloud cases. The size dependence of the fluorescent aerosol fraction showed the larger aerosol to be more likely to be fluorescent with 80 % of 10 μm particles being fluorescent. Whilst the fluorescent particles were in the minority (NFl/NAll = 0.27±0.19), a new hierarchical agglomerative cluster analysis approach, Crawford et al. (2015) revealed the majority of the fluorescent aerosol were likely to be representative of fluorescent mineral dust. A minor episodic contribution from a cluster likely to be representative of primary biological aerosol particles (PBAP) was also observed with a wintertime baseline concentration of 0.1±0.4 L-1. Given the low concentration of this cluster and the typically low ice active fraction of studied PBAP (e.g. pseudomonas syringae) we suggest that the contribution to the observed ice crystal concentration at this location is not significant during the wintertime.

  14. Highly mobile and reactive state of hydrogen in metal oxide semiconductors at room temperature

    NASA Astrophysics Data System (ADS)

    Chen, Wan Ping; He, Ke Feng; Wang, Yu; Chan, Helen Lai Wah; Yan, Zijie

    2013-11-01

    Hydrogen in metal oxides usually strongly associates with a neighboring oxygen ion through an O-H bond and thus displays a high stability. Here we report a novel state of hydrogen with unusually high mobility and reactivity in metal oxides at room temperature. We show that freshly doped hydrogen in Nb2O5 and WO3 polycrystals via electrochemical hydrogenation can reduce Cu2+ ions into Cu0 if the polycrystals are immersed in a CuSO4 solution, while this would not happen if the hydrogenated polycrystals have been placed in air for several hours before the immersion. Time-dependent studies of electrochemically hydrogenated rutile single crystals reveal two distinct states of hydrogen: one as protons covalently bonded to oxygen ions, while the other one is highly unstable with a lifetime of just a few hours. Observation of this mobile and reactive state of hydrogen will provide new insight into numerous moderate and low temperature interactions between metal oxides and hydrogen.

  15. A high resolution x-ray fluorescence spectrometer for near edge absorption studies

    SciTech Connect

    Stojanoff, V.; Hamalainen, K.; Siddons, D.P.; Hastings, J.B.; Berman, L.E.; Cramer, S.; Smith, G.

    1991-01-01

    A high resolution fluorescence spectrometer using a Johann geometry in a back scattering arrangement was developed. The spectrometer, with a resolution of 0.3 eV at 6.5 keV, combined with an incident beam, with a resolution of 0.7 eV, form the basis of a high resolution instrument for measuring x-ray absorption spectra. The advantages of the instrument are illustrated with the near edge absorption spectrum of dysprosium nitrate. 10 refs., 4 figs.

  16. A high resolution x-ray fluorescence spectrometer for near edge absorption studies

    SciTech Connect

    Stojanoff, V.; Hamalainen, K.; Siddons, D.P.; Hastings, J.B.; Berman, L.E.; Cramer, S.; Smith, G.

    1991-12-31

    A high resolution fluorescence spectrometer using a Johann geometry in a back scattering arrangement was developed. The spectrometer, with a resolution of 0.3 eV at 6.5 keV, combined with an incident beam, with a resolution of 0.7 eV, form the basis of a high resolution instrument for measuring x-ray absorption spectra. The advantages of the instrument are illustrated with the near edge absorption spectrum of dysprosium nitrate. 10 refs., 4 figs.

  17. A highly selective fluorescent probe for direct detection and isolation of mouse embryonic stem cells.

    PubMed

    Chandran, Yogeswari; Kang, Nam-Young; Park, Sung-Jin; Alamudi, Samira Husen; Kim, Jun-Young; Sahu, Srikanta; Su, Dongdong; Lee, Jungyeol; Vendrell, Marc; Chang, Young-Tae

    2015-11-01

    Stem cell research has gathered immense attention in the past decade due to the remarkable ability of stem cells for self-renewal and tissue-specific differentiation. Despite having numerous advancements in stem cell isolation and manipulation techniques, there is a need for highly reliable probes for the specific detection of live stem cells. Herein we developed a new fluorescence probe (CDy9) with high selectivity for mouse embryonic stem cells. CDy9 allows the detection and isolation of intact stem cells with marginal impact on their function and capabilities. PMID:26115574

  18. Dynamic Solvent Control of a Reaction in Ionic Deep Eutectic Solvents: Time-Resolved Fluorescence Measurements of Reactive and Nonreactive Dynamics in (Choline Chloride + Urea) Melts.

    PubMed

    Das, Anuradha; Biswas, Ranjit

    2015-08-01

    Dynamic fluorescence anisotropy and Stokes shift measurements of [f choline chloride + (1 - f) urea)] deep eutectic solvents at f = 0.33 and 0.40 have been carried out using a dipolar solute, coumarin 153 (C153), in the temperature range 298 ≤ T ≤ 333 K. Subsequently, measured time-dependent solvent response is utilized to investigate the dynamic solvent control on the measured rates of photoexcited intramolecular charge transfer (ICT) reactions of two molecules, 4-(1-azetidinyl)benzonitrile (P4C) and 4-(1-pyrrolidinyl)benzonitrile (P5C), occurring in these media. Measured average reaction time scales (⟨τ(rxn)⟩) exhibit the following dependence on average solvation times scales (⟨τ(s)⟩): ⟨τ(rxn)⟩ ∝ ⟨τ(s)⟩(α) with α = 0.5 and 0.35 for P4C and P5C, respectively. Such a strong dynamic solvent control of ⟨τ(rxn)⟩, particularly for P4C, is different from earlier observations with these ICT molecules in conventional molecular solvents. Excitation wavelength-dependent fluorescence emissions of C153 and trans-2-[4-(dimethylamino)styryl]-benzothiazole (DMASBT), which differ widely in average fluorescence lifetimes (⟨τ(life)⟩), suggest the presence of substantial spatial heterogeneity in these systems. Dynamic heterogeneity is reflected via the following fractional viscosity (η) dependences of ⟨τ(s)⟩ and ⟨τ(r)⟩ (⟨τ(r)⟩ being solute's average rotation time): ⟨τx⟩ ∝ (η/T)(p) with 0.7 ≤ p ≤ 0.9. Different correlations between ⟨τ(s)⟩ and ⟨τ(r)⟩ emerge at different temperature regimes, indicating variable frictional coupling at low and high temperatures. Estimated dynamic Stokes shifts in these media vary between ∼1200 and ∼1600 cm(-1), more than 50% of which possess a time scale much faster than the temporal resolution (∼75 ps) employed in these measurements. Estimated activation energy for η is closer to that for ⟨τ(r)⟩ than that for ⟨τ(s)⟩, suggesting ⟨τ(s)⟩ being more decoupled

  19. Fluorescence polarization assays in high-throughput screening and drug discovery: a review

    NASA Astrophysics Data System (ADS)

    Hall, Matthew D.; Yasgar, Adam; Peryea, Tyler; Braisted, John C.; Jadhav, Ajit; Simeonov, Anton; Coussens, Nathan P.

    2016-06-01

    The sensitivity of fluorescence polarization (FP) and fluorescence anisotropy (FA) to molecular weight changes has enabled the interrogation of diverse biological mechanisms, ranging from molecular interactions to enzymatic activity. Assays based on FP/FA technology have been widely utilized in high-throughput screening (HTS) and drug discovery due to the homogenous format, robust performance and relative insensitivity to some types of interferences, such as inner filter effects. Advancements in assay design, fluorescent probes, and technology have enabled the application of FP assays to increasingly complex biological processes. Herein we discuss different types of FP/FA assays developed for HTS, with examples to emphasize the diversity of applicable targets. Furthermore, trends in target and fluorophore selection, as well as assay type and format, are examined using annotated HTS assays within the PubChem database. Finally, practical considerations for the successful development and implementation of FP/FA assays for HTS are provided based on experience at our center and examples from the literature, including strategies for flagging interference compounds among a list of hits.

  20. Fluorescent water-soluble organic aerosols in the High Arctic atmosphere

    PubMed Central

    Fu, Pingqing; Kawamura, Kimitaka; Chen, Jing; Qin, Mingyue; Ren, Lujie; Sun, Yele; Wang, Zifa; Barrie, Leonard A.; Tachibana, Eri; Ding, Aijun; Yamashita, Youhei

    2015-01-01

    Organic aerosols are ubiquitous in the earth’s atmosphere. They have been extensively studied in urban, rural and marine environments. However, little is known about the fluorescence properties of water-soluble organic carbon (WSOC) or their transport to and distribution in the polar regions. Here, we present evidence that fluorescent WSOC is a substantial component of High Arctic aerosols. The ratios of fluorescence intensity of protein-like peak to humic-like peak generally increased from dark winter to early summer, indicating an enhanced contribution of protein-like organics from the ocean to Arctic aerosols after the polar sunrise. Such a seasonal pattern is in agreement with an increase of stable carbon isotope ratios of total carbon (δ13CTC) from −26.8‰ to −22.5‰. Our results suggest that Arctic aerosols are derived from a combination of the long-range transport of terrestrial organics and local sea-to-air emission of marine organics, with an estimated contribution from the latter of 8.7–77% (mean 45%). PMID:25920042

  1. A fluorescent hydrogel-based flow cytometry high-throughput screening platform for hydrolytic enzymes.

    PubMed

    Pitzler, Christian; Wirtz, Georgette; Vojcic, Ljubica; Hiltl, Stephanie; Böker, Alexander; Martinez, Ronny; Schwaneberg, Ulrich

    2014-12-18

    Screening throughput is a key in directed evolution experiments and enzyme discovery. Here, we describe a high-throughput screening platform based on a coupled reaction of glucose oxidase and a hydrolase (Yersinia mollaretii phytase [YmPh]). The coupled reaction produces hydroxyl radicals through Fenton's reaction, acting as initiator of poly(ethyleneglycol)-acrylate-based polymerization incorporating a fluorescent monomer. As a consequence, a fluorescent hydrogel is formed around Escherichia coli cells expressing active YmPh. We achieve five times enrichment of active cell population through flow cytometry analysis and sorting of mixed populations. Finally, we validate the performance of the fluorescent polymer shell (fur-shell) technology by directed phytase evolution that yielded improved variants starting from a library containing 10(7) phytase variants. Thus, fur-shell technology represents a rapid and nonlaborious way of identifying the most active variants from vast populations, as well as a platform for generation of polymer-hybrid cells for biobased interactive materials. PMID:25525992

  2. Fluorescent probe for high-throughput screening of membrane protein expression

    PubMed Central

    Backmark, A E; Olivier, N; Snijder, A; Gordon, E; Dekker, N; Ferguson, A D

    2013-01-01

    Screening of protein variants requires specific detection methods to assay protein levels and stability in crude mixtures. Many strategies apply fluorescence-detection size-exclusion chromatography (FSEC) using green fluorescent protein (GFP) fusion proteins to qualitatively monitor expression, stability, and monodispersity. However, GFP fusion proteins have several important disadvantages; including false-positives, protein aggregation after proteolytic removal of GFP, and reductions in protein yields without the GFP fusion. Here we describe a FSEC screening strategy based on a fluorescent multivalent NTA probe that interacts with polyhistidine-tags on target proteins. This method overcomes the limitations of GFP fusion proteins, and can be used to rank protein production based on qualitative and quantitative parameters. Domain boundaries of the human G-protein coupled adenosine A2a receptor were readily identified from crude detergent-extracts of a library of construct variants transiently produced in suspension-adapted HEK293-6E cells. Well expressing clones of MraY, an important bacterial infection target, could be identified from a library of 24 orthologs. This probe provides a highly sensitive tool to detect target proteins to expression levels down to 0.02 mg/L in crude lysate, and requires minimal amounts of cell culture. PMID:23776061

  3. Development of highly fluorescent silica nanoparticles chemically doped with organic dye for sensitive DNA microarray detection.

    PubMed

    Liu, Aihua; Wu, Liyou; He, Zhili; Zhou, Jizhong

    2011-10-01

    Increasing the sensitivity in DNA microarray hybridization can significantly enhance the capability of microarray technology for a wide range of research and clinical diagnostic applications, especially for those with limited sample biomass. To address this issue, using reverse microemulsion method and surface chemistry, a novel class of homogenous, photostable, highly fluorescent streptavidin-functionalized silica nanoparticles was developed, in which Alexa Fluor 647 (AF647) molecules were covalently embedded. The coating of bovine serum albumin on the resultant fluorescent particles can greatly eliminate nonspecific background signal interference. The thus-synthesized fluorescent nanoparticles can specifically recognize biotin-labeled target DNA hybridized to the microarray via streptavidin-biotin interaction. The response of this DNA microarray technology exhibited a linear range within 0.2 to 10 pM complementary DNA and limit of detection of 0.1 pM, enhancing microarray hybridization sensitivity over tenfold. This promising technology may be potentially applied to other binding events such as specific interactions between proteins. PMID:21822973

  4. A retrievable and highly selective fluorescent probe for monitoring sulfide and imaging in living cells.

    PubMed

    Hou, Fengping; Huang, Liang; Xi, Pinxian; Cheng, Ju; Zhao, Xuefei; Xie, Guoqiang; Shi, Yanjun; Cheng, Fengjuan; Yao, Xiaojun; Bai, Decheng; Zeng, Zhengzhi

    2012-02-20

    A novel selective fluorescent chemosensor based on an 8-hydroxyquinoline-appended fluorescein derivative (L1) was synthesized and characterized. Once combined with Cu(2+), it displayed high specificity for sulfide anion. Among the various anions, only sulfide anion induced the revival of fluoresecence of L1, which was quenched by Cu(2+), resulting in "off-on"-type sensing of sulfide anion. What's more, the sensor was retrievable to indicate sulfide anions with Cu(2+), and S(2-), in turn, increased. With the addition of Cu(2+), compound L1 could give rise to a visible pink-to-yellow color change and green fluorescence quenching. The resulting yellow solution could change to pink and regenerate to green fluorescence immediately upon the addition of sulfide anion; however, no changes were observed in the presence of other anions, including CN(-), P(2)O(7)(4-), and other forms of sulfate, making compound L1 an extremely selective and efficient sulfide chemosensor. The signal transduction occurs via reversible formation-separation of complex L1Cu and CuS. What's more, the biological imaging study has demonstrated that the chemosensor can detect sulfur anions in biological systems at a relatively low concentration. PMID:22303885

  5. Deposition of ultrahard Ti-Si-N coatings by pulsed high-current reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Oskomov, K. V.; Zakharov, A. N.; Rabotkin, S. V.; Solov'ev, A. A.

    2016-02-01

    We report on the results of investigation of properties of ultrahard Ti-Si-N coatings deposited by pulsed high-current magnetron reactive sputtering (discharge pulse voltage is 300-900 V, discharge pulse current is up to 200 A, pulse duration is 10-100 μs, and pulse repetition rate is 20-2000 Hz). It is shown that for a short sputtering pulse (25 μs) and a high discharge current (160 A), the films exhibit high hardness (66 GPa), wear resistance, better adhesion, and a lower sliding friction coefficient. The reason is an enhancement of ion bombardment of the growing coating due to higher plasma density in the substrate region (1013 cm-3) and a manifold increase in the degree of ionization of the plasma with increasing peak discharge current (mainly due to the material being sputtered).

  6. Subjective and physiological reactivity to chocolate images in high and low chocolate cravers.

    PubMed

    Rodríguez, Sonia; Fernández, María Carmen; Cepeda-Benito, Antonio; Vila, Jaime

    2005-09-01

    Cue-reactivity to chocolate images was assessed using self-report and physiological measures. From a pre-screening sample of 454, young women were selected and assigned to high and low chocolate craving groups (N = 36/group). The experimental procedure consisted in the elicitation and measurement of the cardiac defense and startle reflexes while viewing chocolate and standard affective images selected from the International Affective Picture System. In response to chocolate images, high cravers reported more pleasure and arousal but less control than low cravers. In high cravers, viewing chocolate images inhibited the cardiac defense but potentiated the startle reflex, as compared to low cravers. The results confirmed at the physiological level that the motivational state that underlies the experience of chocolate craving include both appetitive (inhibition of the defense reflex) and aversive (potentiation of the startle response) components. The findings supported a motivational conflict theory of chocolate craving. PMID:16038770

  7. Development of a Highly Specific Fluorescence Immunoassay for Detection of Diisobutyl Phthalate in Edible Oil Samples.

    PubMed

    Cui, Xiping; Wu, Panpan; Lai, Dan; Zheng, Shengwu; Chen, Yingshan; Eremin, Sergei A; Peng, Wei; Zhao, Suqing

    2015-10-28

    The diisobutyl phthalate (DiBP) hapten containing an amino group was synthesized successfully, and the polyclonal antibody against 4-amino phthalate-bovine serum albumin (BSA) was developed. On the basis of the polyclonal antibody, a rapid and sensitive indirect competitive fluorescence immunoassay (icFIA) has been established to detect DiBP in edible oil samples for the first time. Under the optimized conditions, the quantitative working range of the icFIA was from 10.47 to 357.06 ng/mL (R(2) = 0.991), exhibiting a detection limit of 5.82 ng/mL. In this assay, the specific results showed that other similar phthalates did not significantly interfere with the analysis, with the cross-reactivity less than 1.5%, except for that of DiBAP. Thereafter, DiBP contamination in edible oil samples was detected by icFIA, with the recovery being from 79 to 103%. Furthermore, the reliability of icFIA was validated by gas chromatography-mass spectrometry (GC-MS). Therefore, the developed icFIA is suitable for monitoring DiBP in some edible oil samples. PMID:26449794

  8. Highly sensitive detection of human papillomavirus type 16 DNA using time-resolved fluorescence microscopy and long lifetime probes

    NASA Astrophysics Data System (ADS)

    Wang, Xue F.; Periasamy, Ammasi; Wodnicki, Pawel; Siadat-Pajouh, M.; Herman, Brian

    1995-04-01

    We have been interested in the role of Human Papillomavirus (HPV) in cervical cancer and its diagnosis; to that end we have been developing microscopic imaging and fluorescent in situ hybridization (FISH) techniques to genotype and quantitate the amount of HPV present at a single cell level in cervical PAP smears. However, we have found that low levels of HPV DNA are difficult to detect accurately because theoretically obtainable sensitivity is never achieved due to nonspecific autofluorescence, fixative induced fluorescence of cells and tissues, and autofluorescence of the optical components in the microscopic system. In addition, the absorption stains used for PAP smears are intensely autofluorescent. Autofluorescence is a rapidly decaying process with lifetimes in the range of 1-100 nsec, whereas phosphorescence and delayed fluorescence have lifetimes in the range of 1 microsecond(s) ec-10 msec. The ability to discriminate between specific fluorescence and autofluorescence in the time-domain has improved the sensitivity of diagnostic test such that they perform comparably to, or even more sensitive than radioisotopic assays. We have developed a novel time-resolved fluorescence microscope to improve the sensitivity of detection of specific molecules of interest in slide based specimens. This time-resolved fluorescence microscope is based on our recently developed fluorescence lifetime imaging microscopy (FILM) in conjunction with the use of long lifetime fluorescent labels. By using fluorescence in situ hybridization and the long lifetime probe (europium), we have demonstrated the utility of this technique for detection of HPV DNA in cervicovaginal cells. Our results indicate that the use of time-resolved fluorescence microscopy and long lifetime probes increases the sensitivity of detection by removing autofluorescence and will thus lead to improved early diagnosis of cervical cancer. Since the highly sensitive detection of DNA in clinical samples using

  9. Simultaneous removal of SO{sub 2} and NO by highly reactive absorbent containing calcium hypochlorite

    SciTech Connect

    Zhao, Y.; Xu, P.Y.; Wang, L.D.

    2008-12-15

    Fly ash, industrial lime, and an additive (calcium hypochlorite )) were used to prepare a highly reactive absorbent. Simultaneous desulfurization and denitrification were carried out in a flue gas circulating fluidized bed (CFB). The effects of influencing factors on the removal efficiencies of SO{sub 2} and NO were also investigated. Removal efficiencies of 94.5% for SO{sub 2} and 65.5% for NO were obtained under the optimal experimental conditions. The component of the spent absorbent was analyzed with chemical analysis methods. The results indicated that more nitrogen than sulfur species appeared in the spent absorbent. A scanning electron microscope (SEM) and an accessory X-ray energy spectrometer (EDS) were used to observe the microproperties of the samples, including fly ash, highly reactive absorbent, and spent absorbent. The removal products of spent absorbent were analyzed using ion chromatography and chemical analysis. The simultaneous removal mechanism of SO{sub 2} and NO based on this absorbent was proposed according to the experimental results.

  10. Micromolding of a Highly Fluorescent Reticular Coordination Polymer: Solvent-Mediated Reconfigurable Polymerization in a Soft Lithographic Mold

    SciTech Connect

    Y You; H Yang; J Chung; J Kim; Y Jung; S Park

    2011-12-31

    Coordination polymerization of pyridine-based ligands and zinc or silver ions was controlled by soft lithographic micromolding in capillaries. The polymer patterns that are produced are highly fluorescent and supramolecularly structured.

  11. Smartphone-Based Fluorescent Diagnostic System for Highly Pathogenic H5N1 Viruses.

    PubMed

    Yeo, Seon-Ju; Choi, Kyunghan; Cuc, Bui Thi; Hong, Nguyen Ngoc; Bao, Duong Tuan; Ngoc, Nguyen Minh; Le, Mai Quynh; Hang, Nguyen Le Khanh; Thach, Nguyen Co; Mallik, Shyam Kumar; Kim, Hak Sung; Chong, Chom-Kyu; Choi, Hak Soo; Sung, Haan Woo; Yu, Kyoungsik; Park, Hyun

    2016-01-01

    Field diagnostic tools for avian influenza (AI) are indispensable for the prevention and controlled management of highly pathogenic AI-related diseases. More accurate, faster and networked on-site monitoring is demanded to detect such AI viruses with high sensitivity as well as to maintain up-to-date information about their geographical transmission. In this work, we assessed the clinical and field-level performance of a smartphone-based fluorescent diagnostic device with an efficient reflective light collection module using a coumarin-derived dendrimer-based fluorescent lateral flow immunoassay. By application of an optimized bioconjugate, a smartphone-based diagnostic device had a two-fold higher detectability as compared to that of the table-top fluorescence strip reader for three different AI subtypes (H5N3, H7N1, and H9N2). Additionally, in a clinical study of H5N1-confirmed patients, the smartphone-based diagnostic device showed a sensitivity of 96.55% (28/29) [95% confidence interval (CI): 82.24 to 99.91] and a specificity of 98.55% (68/69) (95% CI: 92.19 to 99.96). The measurement results from the distributed individual smartphones were wirelessly transmitted via short messaging service and collected by a centralized database system for further information processing and data mining. Smartphone-based diagnosis provided highly sensitive measurement results for H5N1 detection within 15 minutes. Because of its high sensitivity, portability and automatic reporting feature, the proposed device will enable agile identification of patients and efficient control of AI dissemination. PMID:26877781

  12. Smartphone-Based Fluorescent Diagnostic System for Highly Pathogenic H5N1 Viruses

    PubMed Central

    Yeo, Seon-Ju; Choi, Kyunghan; Cuc, Bui Thi; Hong, Nguyen Ngoc; Bao, Duong Tuan; Ngoc, Nguyen Minh; Le, Mai Quynh; Hang, Nguyen Le Khanh; Thach, Nguyen Co; Mallik, Shyam Kumar; Kim, Hak Sung; Chong, Chom-Kyu; Choi, Hak Soo; Sung, Haan Woo; Yu, Kyoungsik; Park, Hyun

    2016-01-01

    Field diagnostic tools for avian influenza (AI) are indispensable for the prevention and controlled management of highly pathogenic AI-related diseases. More accurate, faster and networked on-site monitoring is demanded to detect such AI viruses with high sensitivity as well as to maintain up-to-date information about their geographical transmission. In this work, we assessed the clinical and field-level performance of a smartphone-based fluorescent diagnostic device with an efficient reflective light collection module using a coumarin-derived dendrimer-based fluorescent lateral flow immunoassay. By application of an optimized bioconjugate, a smartphone-based diagnostic device had a two-fold higher detectability as compared to that of the table-top fluorescence strip reader for three different AI subtypes (H5N3, H7N1, and H9N2). Additionally, in a clinical study of H5N1-confirmed patients, the smartphone-based diagnostic device showed a sensitivity of 96.55% (28/29) [95% confidence interval (CI): 82.24 to 99.91] and a specificity of 98.55% (68/69) (95% CI: 92.19 to 99.96). The measurement results from the distributed individual smartphones were wirelessly transmitted via short messaging service and collected by a centralized database system for further information processing and data mining. Smartphone-based diagnosis provided highly sensitive measurement results for H5N1 detection within 15 minutes. Because of its high sensitivity, portability and automatic reporting feature, the proposed device will enable agile identification of patients and efficient control of AI dissemination. PMID:26877781

  13. Generation of fluorescent silver nanoclusters in reverse micelles using gamma irradiation: low vs. high dosages and spectral evolution with time

    NASA Astrophysics Data System (ADS)

    Martin, Brett D.; Fontana, Jake; Wang, Zheng; Trammell, Scott A.

    2015-04-01

    Reverse micelles (RMs) containing aqueous solutions of Ag+ ions in their core produce fluorescent Ag nanoclusters (NCs), upon exposure to gamma irradiation. The fluorescence spectra of the NCs evolve over days to weeks after the exposure, and usually show large increases in intensity. Responses of as high as 2.8 × 104 CPS/Gy were reached. A dosage as low as 0.5 Gy (10 % of the lethal dosage for humans) produces NCs having fluorescence intensities higher than background. The RMs can be employed in novel gamma radiation detectors with appearance of fluorescence indicating that radiation was once present. In applications involving detection and tracking of fissile materials, the evolution of the fluorescence spectra over time may provide additional information about the radiation source. A two-phase liquid system is used for RM formation in a simple procedure. It is likely that this synthesis method may be adapted to produce NCs from other metal ions.

  14. Ticagrelor versus high dose clopidogrel in ST-segment elevation myocardial infarction patients with high platelet reactivity post fibrinolysis.

    PubMed

    Alexopoulos, Dimitrios; Perperis, Angelos; Koniari, Ioanna; Karvounis, Haralambos; Patsilinakos, Sotirios; Ziakas, Antonios; Barampoutis, Nikolaos; Panagiotidis, Theofilos; Akinosoglou, Karolina; Hahalis, George; Xanthopoulou, Ioanna

    2015-10-01

    Limited data are available on high platelet reactivity (HPR) rate early post fibrinolysis, while no effective way to overcome it has been proposed. In this context, we aimed to compare ticagrelor versus high dose clopidogrel in patients with ST-segment elevation myocardial infarction (STEMI) who exhibit HPR post fibrinolysis. In a prospective, randomized, parallel design, 3-center study, 56 STEMI patients, out of 83 (67.5 %) screened, who presented with HPR (PRU ≥ 208 by VerifyNow) 3-48 h post fibrinolysis and prior to coronary angiography were allocated to ticagrelor 180 mg loading dose (LD)/90 mg bid maintenance dose (MD) or clopidogrel 600 mg LD/150 mg MD. Platelet reactivity was assessed at randomization (Hour 0), at Hour 2, Hour 24 and pre-discharge. The primary endpoint of platelet reactivity (in PRU) at Hour 2 was significantly lower for ticagrelor compared to clopidogrel with a least square mean difference (95 % confidence interval) of -141.7 (-173.4 to -109.9), p < 0.001. HPR rates at Hour 2 and 24 were significantly lower for ticagrelor versus clopidogrel (14.3 vs. 82.1 %, p < 0.001 and 0 vs. 25.0 %, p = 0.01 respectively), though not significantly different pre-discharge. In-hospital Bleeding Academic Research Consortium type ≥2 bleeding occurred in 1 and 2 clopidogrel and ticagrelor-treated patients, respectively. In STEMI patients, post fibrinolysis HPR is common. Ticagrelor treats HPR more effectively compared to high dose clopidogrel therapy. Although antiplatelet regimens tested in this study were well tolerated, this finding should be considered only exploratory. PMID:25680893

  15. A Dual Regime Reactive Transport Model for Simulation of High Level Waste Tank Closure Scenarios - 13375

    SciTech Connect

    Sarkar, Sohini; Kosson, David S.; Brown, Kevin; Garrabrants, Andrew C.; Meeussen, Hans; Van der Sloot, Hans

    2013-07-01

    A numerical simulation framework is presented in this paper for estimating evolution of pH and release of major species from grout within high-level waste tanks after closure. This model was developed as part of the Cementitious Barriers Partnership. The reactive transport model consists of two parts - (1) transport of species, and (2) chemical reactions. The closure grout can be assumed to have varying extents of cracking and composition for performance assessment purposes. The partially or completely degraded grouted tank is idealized as a dual regime system comprising of a mobile region having solid materials with cracks and macro-pores, and an immobile/stagnant region having solid matrix with micropores. The transport profiles of the species are calculated by incorporating advection of species through the mobile region, diffusion of species through the immobile/stagnant region, and exchange of species between the mobile and immobile regions. A geochemical speciation code in conjunction with the pH dependent test data for a grout material is used to obtain a mineral set that best describes the trends in the test data of the major species. The dual regime reactive transport model predictions are compared with the release data from an up-flow column percolation test. The coupled model is then used to assess effects of crack state of the structure, rate and composition of the infiltrating water on the pH evolution at the grout-waste interface. The coupled reactive transport model developed in this work can be used as part of the performance assessment process for evaluating potential risks from leaching of a cracked tank containing elements of human health and environmental concern. (authors)

  16. Reactivity Accountability Attributed to Reflector Poisons in the High Flux Isotope Reactor

    SciTech Connect

    Chandler, David; Maldonado, G Ivan; Primm, Trent

    2009-12-01

    The objective of this study is to develop a methodology to predict the reactivity impact as a function of outage time between cycles of 3He, 6Li, and other poisons in the High Flux Isotope Reactor s (HFIR) beryllium reflector. The reactivity worth at startup of the HFIR has been incorrectly predicted in the past after the reactor has been shut-down for long periods of time. The incorrect prediction was postulated to be due to the erroneous calculation of 3He buildup in the beryllium reflector. It is necessary to develop a better estimate of the start-of-cycle symmetric critical control element positions since if the estimated and actual symmetrical critical control element positions differ by more than $1.55 in reactivity (approximately one-half inch in control element startup position), HFIR is to be shutdown and a technical evaluation is performed to resolve the discrepancy prior to restart. 3He is generated and depleted during operation, but during an outage, the depletion of 3He ceases because it is a stable isotope. 3He is born from the radioactive decay of tritium, and thus the concentration of 3He increases during shutdown. SCALE, specifically the TRITON and CSAS5 control modules including the KENO V.A, COUPLE, and ORIGEN functional modules were utilized in this study. An equation relating the down time (td) to the change in symmetric control element position was generated and validated against measurements for approximately 40 HFIR operating cycles. The newly-derived correlation was shown to improve accuracy of predictions for long periods of down time.

  17. A high-throughput screening strategy for accurate quantification of menaquinone based on fluorescence-activated cell sorting.

    PubMed

    Liu, Yan; Xue, Zheng-Lian; Chen, Shao-Peng; Wang, Zhou; Zhang, Yong; Gong, Wei-Liang; Zheng, Zhi-Ming

    2016-06-01

    To enhance the screening efficiency and accuracy of a high-yield menaquinone (vitamin K2, MK) bacterial strain, a novel, quantitative method by fluorescence-activated cell sorting (FACS) was developed. The staining technique was optimized to maximize the differences in fluorescence signals between spontaneous and MK-accumulating cells. The fluorescence carrier rhodamine 123 (Rh123), with its ability to reflect membrane potential, proved to be an appropriate fluorescent dye to connect the MK content with fluorescence signal quantitatively. To promote adequate access of the fluorescent molecule to the target and maintain higher cell survival rates, staining and incubation conditions were optimized. The results showed that 10 % sucrose facilitated uptake of Rh123, while maintaining a certain level of cell viability. The pre-treatment of cells with MgCl2 before staining with Rh123 also improved cell viability. Using FACS, 50 thousands cells can easily be assayed in less than 1 h. The optimized staining protocol yielded a linear response for the mean fluorescence against high performance liquid chromatography-measured MK content. We have developed a novel and useful staining protocol in the high-throughput evaluation of Flavobacterium sp. mutant libraries, using FACS to identify mutants with increased MK-accumulating properties. This study also provides reference for the screening of other industrial microbial strains. PMID:27001261

  18. A highly soluble, non-phototoxic, non-fluorescent blebbistatin derivative.

    PubMed

    Várkuti, Boglárka H; Képiró, Miklós; Horváth, István Ádám; Végner, László; Ráti, Szilvia; Zsigmond, Áron; Hegyi, György; Lenkei, Zsolt; Varga, Máté; Málnási-Csizmadia, András

    2016-01-01

    Blebbistatin is a commonly used molecular tool for the specific inhibition of various myosin II isoforms both in vitro and in vivo. Despite its popularity, the use of blebbistatin is hindered by its poor water-solubility (below 10 micromolar in aqueous buffer) and blue-light sensitivity, resulting in the photoconversion of the molecule, causing severe cellular phototoxicity in addition to its cytotoxicity. Furthermore, blebbistatin forms insoluble aggregates in water-based media above 10 micromolar with extremely high fluorescence and also high adherence to different types of surfaces, which biases its experimental usage. Here, we report a highly soluble (440 micromolar in aqueous buffer), non-fluorescent and photostable C15 amino-substituted derivative of blebbistatin, called para-aminoblebbistatin. Importantly, it is neither photo- nor cytotoxic, as demonstrated on HeLa cells and zebrafish embryos. Additionally, para-aminoblebbistatin bears similar myosin II inhibitory properties to blebbistatin or para-nitroblebbistatin (not to be confused with the C7 substituted nitroblebbistatin), tested on rabbit skeletal muscle myosin S1 and on M2 and HeLa cells. Due to its drastically improved solubility and photochemical feature, as well as lack of photo- or cytotoxicity, para-aminoblebbistatin may become a feasible replacement for blebbistatin, especially at applications when high concentrations of the inhibitor or blue light irradiation is required. PMID:27241904

  19. A highly soluble, non-phototoxic, non-fluorescent blebbistatin derivative

    PubMed Central

    Várkuti, Boglárka H.; Képiró, Miklós; Horváth, István Ádám; Végner, László; Ráti, Szilvia; Zsigmond, Áron; Hegyi, György; Lenkei, Zsolt; Varga, Máté; Málnási-Csizmadia, András

    2016-01-01

    Blebbistatin is a commonly used molecular tool for the specific inhibition of various myosin II isoforms both in vitro and in vivo. Despite its popularity, the use of blebbistatin is hindered by its poor water-solubility (below 10 micromolar in aqueous buffer) and blue-light sensitivity, resulting in the photoconversion of the molecule, causing severe cellular phototoxicity in addition to its cytotoxicity. Furthermore, blebbistatin forms insoluble aggregates in water-based media above 10 micromolar with extremely high fluorescence and also high adherence to different types of surfaces, which biases its experimental usage. Here, we report a highly soluble (440 micromolar in aqueous buffer), non-fluorescent and photostable C15 amino-substituted derivative of blebbistatin, called para-aminoblebbistatin. Importantly, it is neither photo- nor cytotoxic, as demonstrated on HeLa cells and zebrafish embryos. Additionally, para-aminoblebbistatin bears similar myosin II inhibitory properties to blebbistatin or para-nitroblebbistatin (not to be confused with the C7 substituted nitroblebbistatin), tested on rabbit skeletal muscle myosin S1 and on M2 and HeLa cells. Due to its drastically improved solubility and photochemical feature, as well as lack of photo- or cytotoxicity, para-aminoblebbistatin may become a feasible replacement for blebbistatin, especially at applications when high concentrations of the inhibitor or blue light irradiation is required. PMID:27241904

  20. High Density Labeling of PCR Products with the Fluorescent Analogue tCo

    PubMed Central

    Stengel, Gudrun; Urban, Milan; Purse, Byron W.; Kuchta, Robert D.

    2009-01-01

    Fluorescent DNA of high molecular weight is an important tool for studying the physical properties of DNA and DNA-protein interactions and it plays a key role in modern biotechnology for DNA sequencing and detection. While several DNA polymerases can incorporate large numbers of dye-linked nucleotides into primed DNA templates, the amplification of the resulting densely labeled DNA strands by PCR is problematic. Here, we report a method for high density labeling of DNA in PCR reactions employing the 5’-triphosphate of 1, 3-diaza-2-oxo-phenoxazine (tCo) and Deep Vent DNA polymerase. tCo is a fluorescent cytosine analogue that absorbs and emits light at 365 and 460 nm, respectively. We obtained PCR products that were fluorescent enough to directly visualize them in a gel by excitation with long UV light, thus eliminating the need for staining with ethidium bromide. Reactions with Taq polymerase failed to produce PCR products in the presence of only small amounts of dtCoTP. A comparative kinetic study of Taq and Deep Vent polymerase revealed that Taq polymerase, although it inserts dtCoTP with high efficiency opposite G, is prone to forming mutagenic tCo-A base pairs and does not efficiently extend base pairs containing tCo. These kinetics features explain the poor outcome of the PCR reactions with Taq polymerase. Since tCo substitutes structurally for cytosine, the presented labeling method is believed to be less invasive than labeling with dye-linked nucleotides and therefore produces DNA that is ideally suited for biophysical studies. PMID:19810708

  1. High-Resolution, Noninvasive, Two-Photon Fluorescence Measurement of Molecular Concentrations in Corneal Tissue

    PubMed Central

    Cui, Liping; Huxlin, Krystel R.; Xu, Lisen; MacRae, Scott

    2011-01-01

    Purpose. To perform high-resolution, noninvasive, calibrated measurements of the concentrations and diffusion profiles of fluorescent molecules in the live cornea after topical application to the ocular surface. Methods. An 800-nm femtosecond laser was used to perform two-photon fluorescence (TPF) axial scanning measurements. Calibration solutions consisting of sodium fluorescein (Na-Fl; concentration range, 0.01%–2.5%) and riboflavin (concentration range, 0.0125%–0.1%) were tested in well slides, and TPF signals were assessed. Excised feline eyeballs preserved in corneal storage medium and with either intact or removed corneal epithelia were then treated with Na-Fl, riboflavin, or fluorescein dextran (Fl-d) of different molecular weight (MW) for 30 minutes. Calibrated TPF was then used immediately to measure the concentration of these molecules across the central corneal depth. Results. The axial resolution of our TPF system was 6 μm, and a linear relationship was observed between TPF signal and low concentrations of most fluorophores. Intact corneas treated with Na-Fl or riboflavin exhibited a detectable penetration depth of only approximately 20 μm, compared with approximately 400 to 600 μm when the epithelium was removed before fluorophore application. Peak concentrations for intact corneas were half those attained with epithelial removal. Debrided corneas treated with 2,000,000 MW Fl-d showed a half-maximum penetration depth of 156.7 μm compared with 384 μm for the 3,000 MW dextran. The peak concentration of the high MW dextran was one quarter that of the lower MW dextran. Conclusions. TPF is an effective, high-resolution, noninvasive method of quantifying the diffusion and concentration of fluorescent molecules across the cornea. PMID:21228379

  2. A Highly Selective Ratiometric Two-Photon Fluorescent Probe for Human Cytochrome P450 1A.

    PubMed

    Dai, Zi-Ru; Ge, Guang-Bo; Feng, Lei; Ning, Jing; Hu, Liang-Hai; Jin, Qiang; Wang, Dan-Dan; Lv, Xia; Dou, Tong-Yi; Cui, Jing-Nan; Yang, Ling

    2015-11-18

    Cytochrome P450 1A (CYP1A), one of the most important phase I drug-metabolizing enzymes in humans, plays a crucial role in the metabolic activation of procarcinogenic compounds to their ultimate carcinogens. Herein, we reported the development of a ratiometric two-photon fluorescent probe NCMN that allowed for selective and sensitive detection of CYP1A for the first time. The probe was designed on the basis of substrate preference of CYP1A and its high capacity for O-dealkylation, while 1,8-naphthalimide was selected as fluorophore because of its two-photon absorption properties. To achieve a highly selective probe for CYP1A, a series of 1,8-naphthalimide derivatives were synthesized and used to explore the potential structure-selectivity relationship, by using a panel of human CYP isoforms for selectivity screening. After screening and optimization, NCMN displayed the best combination of selectivity, sensitivity and ratiometric fluorescence response following CYP1A-catalyzed O-demetylation. Furthermore, the probe can be used to real-time monitor the enzyme activity of CYP1A in complex biological systems, and it has the potential for rapid screening of CYP1A modulators using tissue preparation as enzyme sources. NCMN has also been successfully used for two-photon imaging of intracellular CYP1A in living cells and tissues, and showed high ratiometric imaging resolution and deep-tissue imaging depth. In summary, a two-photon excited ratiometric fluorescent probe NCMN has been developed and well-characterized for sensitive and selective detection of CYP1A, which holds great promise for bioimaging of endogenous CYP1A in living cells and for further investigation on CYP1A associated biological functions in complex biological systems. PMID:26488456

  3. Current-voltage-time characteristics of the reactive Ar/N{sub 2} high power impulse magnetron sputtering discharge

    SciTech Connect

    Magnus, F.; Sveinsson, O. B.; Olafsson, S.; Gudmundsson, J. T.

    2011-10-15

    The discharge current and voltage waveforms have been measured in a reactive high power impulse magnetron sputtering (HiPIMS) Ar/N{sub 2} discharge with a Ti target for 400 {mu}s long pulses. We observe that the current waveform in the reactive Ar/N{sub 2} HiPIMS discharge is highly dependent on the pulse repetition frequency, unlike the non-reactive Ar discharge. The current is found to increase significantly as the frequency is lowered. This is attributed to an increase in the secondary electron emission yield during the self-sputtering phase, when the nitride forms on the target at low frequencies. In addition, self-sputtering runaway occurs at lower discharge voltages when nitrogen is added to the discharge. This illustrates the crucial role of self-sputtering in the behavior of the reactive HiPIMS discharge.

  4. Successful treatment of reactive airways dysfunction syndrome by high-dose vitamin D.

    PubMed

    Varney, Veronica A; Evans, Jane; Bansal, Amolak S

    2011-01-01

    Reactive airways dysfunction syndrome is a controversial and poorly understood condition produced by inhalational injury from gas, vapors, or fumes. The symptoms mimic asthma, but appear unresponsive to asthma treatments. If symptoms persist for more than 6 months, there is a risk that they can become chronic. For these cases, effective treatments are lacking and quality of life is poor. We describe the first use of high-dose vitamin D in a patient with this condition, who fulfilled the 1995 American College of Chest Physicians criteria for this syndrome. The patient we describe presented an extremely difficult management problem and was refractory to conventional treatments, but responded to high-dose oral vitamin D supplements. PMID:22034572

  5. Synthesis, solubilization, and surface functionalization of highly fluorescent quantum dots for cellular targeting through a small molecule

    NASA Astrophysics Data System (ADS)

    Galloway, Justin F.

    To achieve long-term fluorescence imaging with quantum dots (QDs), a CdSe core/shell must first be synthesized. The synthesis of bright CdSe QDs is not trivial and as a consequence, the role of surfactant in nucleation and growth was investigated. It was found that the type of surfactant used, either phosphonic or fatty acid, played a pivotal role in the size of the CdSe core. The study of surfactant on CdSe synthesis, ultimately led to an electrical passivation method that utilized a short-chained phosphonic acid and highly reactive organometallic precursors to achieve high quantum yield (QY) as has been previously described. The synthesis of QDs using organometallic precursors and a phosphonic acid for passivation resulted in 4 out of 9 batches of QDs achieving QYs greater than 50% and 8 out of 9 batches with QYs greater than 35%. The synthesis of CdSe QDs was done in organic solutions rendering the surface of the particle hydrophobic. To perform cell-targeting experiments, QDs must be transferred to water. The transfer of QDs to water was successfully accomplished by using single acyl chain lipids. A systematic study of different lipid combinations and coatings demonstrated that 20-40 mol% single acyl chained lipids were able to transfer QDs to water resulting in monodispersed, stable QDs without adversely affecting the QY. The advantage to water solubilization using single acyl chain lipids is that the QD have a hydrodynamic radius less than 15 nm, QYs that can exceed 50% and additional surface functionalization can be down using the reactive sites incorporated into the lipid bilayer. QDs that are bright and stable in water were studied for the purpose of targeting G protein-coupled Receptors (GPCR). GPCRs are transmembrane receptors that internalize extracellular cues, and thus mediate signal transduction. The cyclic Adenosine Monophosphate Receptor 1 of the model organism Dictyostelium disodium was the receptor of interest. The Halo protein, a genetically

  6. Trapping a Highly Reactive Nonheme Iron Intermediate That Oxygenates Strong C-H Bonds with Stereoretention.

    PubMed

    Serrano-Plana, Joan; Oloo, Williamson N; Acosta-Rueda, Laura; Meier, Katlyn K; Verdejo, Begoña; García-España, Enrique; Basallote, Manuel G; Münck, Eckard; Que, Lawrence; Company, Anna; Costas, Miquel

    2015-12-23

    An unprecedentedly reactive iron species (2) has been generated by reaction of excess peracetic acid with a mononuclear iron complex [Fe(II)(CF3SO3)2(PyNMe3)] (1) at cryogenic temperatures, and characterized spectroscopically. Compound 2 is kinetically competent for breaking strong C-H bonds of alkanes (BDE ≈ 100 kcal·mol(-1)) through a hydrogen-atom transfer mechanism, and the transformations proceed with stereoretention and regioselectively, responding to bond strength, as well as to steric and polar effects. Bimolecular reaction rates are at least an order of magnitude faster than those of the most reactive synthetic high-valent nonheme oxoiron species described to date. EPR studies in tandem with kinetic analysis show that the 490 nm chromophore of 2 is associated with two S = 1/2 species in rapid equilibrium. The minor component 2a (∼5% iron) has g-values at 2.20, 2.19, and 1.99 characteristic of a low-spin iron(III) center, and it is assigned as [Fe(III)(OOAc)(PyNMe3)](2+), also by comparison with the EPR parameters of the structurally characterized hydroxamate analogue [Fe(III)(tBuCON(H)O)(PyNMe3)](2+) (4). The major component 2b (∼40% iron, g-values = 2.07, 2.01, 1.95) has unusual EPR parameters, and it is proposed to be [Fe(V)(O)(OAc)(PyNMe3)](2+), where the O-O bond in 2a has been broken. Consistent with this assignment, 2b undergoes exchange of its acetate ligand with CD3CO2D and very rapidly reacts with olefins to produce the corresponding cis-1,2-hydroxoacetate product. Therefore, this work constitutes the first example where a synthetic nonheme iron species responsible for stereospecific and site selective C-H hydroxylation is spectroscopically trapped, and its catalytic reactivity against C-H bonds can be directly interrogated by kinetic methods. The accumulated evidence indicates that 2 consists mainly of an extraordinarily reactive [Fe(V)(O)(OAc)(PyNMe3)](2+) (2b) species capable of hydroxylating unactivated alkyl C-H bonds with

  7. Single molecule tracking fluorescence microscopy in mitochondria reveals highly dynamic but confined movement of Tom40

    NASA Astrophysics Data System (ADS)

    Kuzmenko, Anton; Tankov, Stoyan; English, Brian P.; Tarassov, Ivan; Tenson, Tanel; Kamenski, Piotr; Elf, Johan; Hauryliuk, Vasili

    2011-12-01

    Tom40 is an integral protein of the mitochondrial outer membrane, which as the central component of the Translocase of the Outer Membrane (TOM) complex forms a channel for protein import. We characterize the diffusion properties of individual Tom40 molecules fused to the photoconvertable fluorescent protein Dendra2 with millisecond temporal resolution. By imaging individual Tom40 molecules in intact isolated yeast mitochondria using photoactivated localization microscopy with sub-diffraction limited spatial precision, we demonstrate that Tom40 movement in the outer mitochondrial membrane is highly dynamic but confined in nature, suggesting anchoring of the TOM complex as a whole.

  8. Single molecule tracking fluorescence microscopy in mitochondria reveals highly dynamic but confined movement of Tom40

    PubMed Central

    Kuzmenko, Anton; Tankov, Stoyan; English, Brian P.; Tarassov, Ivan; Tenson, Tanel; Kamenski, Piotr; Elf, Johan; Hauryliuk, Vasili

    2011-01-01

    Tom40 is an integral protein of the mitochondrial outer membrane, which as the central component of the Translocase of the Outer Membrane (TOM) complex forms a channel for protein import. We characterize the diffusion properties of individual Tom40 molecules fused to the photoconvertable fluorescent protein Dendra2 with millisecond temporal resolution. By imaging individual Tom40 molecules in intact isolated yeast mitochondria using photoactivated localization microscopy with sub-diffraction limited spatial precision, we demonstrate that Tom40 movement in the outer mitochondrial membrane is highly dynamic but confined in nature, suggesting anchoring of the TOM complex as a whole. PMID:22355710

  9. High efficiency fluorescent excimer lamps: an alternative to mercury based UVC lamps.

    PubMed

    Masoud, N M; Murnick, D E

    2013-12-01

    A high efficiency xenon excimer lamp radiating at 172 nm, with an internal phosphor coating shifting to UVC has been demonstrated, showing the feasibility of a cost effective alternative to UVC mercury lamps. Fluorescent lamps so designed can be fabricated in various geometries with high efficiency. Unlike other xenon excimer lamps based on dielectric barrier discharges this new system is highly compatible with existing and proposed phosphors as it operates in an inert gas environment at modest temperature and is subject only to 172 nm primary radiation. Using a lamp coated with a UVC phosphor we have demonstrated the feasibility of germicidal and curing lamps with 40% energy conversion efficiency and high power density. These lamps are rapidly switchable, have long projected lifetimes and are compatible with dimmers. PMID:24387421

  10. High efficiency fluorescent excimer lamps: An alternative to mercury based UVC lamps

    SciTech Connect

    Masoud, N. M.; Murnick, D. E.

    2013-12-15

    A high efficiency xenon excimer lamp radiating at 172 nm, with an internal phosphor coating shifting to UVC has been demonstrated, showing the feasibility of a cost effective alternative to UVC mercury lamps. Fluorescent lamps so designed can be fabricated in various geometries with high efficiency. Unlike other xenon excimer lamps based on dielectric barrier discharges this new system is highly compatible with existing and proposed phosphors as it operates in an inert gas environment at modest temperature and is subject only to 172 nm primary radiation. Using a lamp coated with a UVC phosphor we have demonstrated the feasibility of germicidal and curing lamps with 40% energy conversion efficiency and high power density. These lamps are rapidly switchable, have long projected lifetimes and are compatible with dimmers.

  11. Highly sensitive SnO2 sensor via reactive laser-induced transfer

    PubMed Central

    Palla Papavlu, Alexandra; Mattle, Thomas; Temmel, Sandra; Lehmann, Ulrike; Hintennach, Andreas; Grisel, Alain; Wokaun, Alexander; Lippert, Thomas

    2016-01-01

    Gas sensors based on tin oxide (SnO2) and palladium doped SnO2 (Pd:SnO2) active materials are fabricated by a laser printing method, i.e. reactive laser-induced forward transfer (rLIFT). Thin films from tin based metal-complex precursors are prepared by spin coating and then laser transferred with high resolution onto sensor structures. The devices fabricated by rLIFT exhibit low ppm sensitivity towards ethanol and methane as well as good stability with respect to air, moisture, and time. Promising results are obtained by applying rLIFT to transfer metal-complex precursors onto uncoated commercial gas sensors. We could show that rLIFT onto commercial sensors is possible if the sensor structures are reinforced prior to printing. The rLIFT fabricated sensors show up to 4 times higher sensitivities then the commercial sensors (with inkjet printed SnO2). In addition, the selectivity towards CH4 of the Pd:SnO2 sensors is significantly enhanced compared to the pure SnO2 sensors. Our results indicate that the reactive laser transfer technique applied here represents an important technical step for the realization of improved gas detection systems with wide-ranging applications in environmental and health monitoring control. PMID:27118531

  12. Hysteresis-free high rate reactive sputtering of niobium oxide, tantalum oxide, and aluminum oxide

    SciTech Connect

    Särhammar, Erik Berg, Sören; Nyberg, Tomas

    2014-07-01

    This work reports on experimental studies of reactive sputtering from targets consisting of a metal and its oxide. The composition of the targets varied from pure metal to pure oxide of Al, Ta, and Nb. This combines features from both the metal target and oxide target in reactive sputtering. If a certain relation between the metal and oxide parts is chosen, it may be possible to obtain a high deposition rate, due to the metal part, and a hysteresis-free process, due to the oxide part. The aim of this work is to quantify the achievable boost in oxide deposition rate from a hysteresis-free process by using a target consisting of segments of a metal and its oxide. Such an increase has been previously demonstrated for Ti using a homogeneous substoichiometric target. The achievable gain in deposition rate depends on transformation mechanisms from oxide to suboxides due to preferential sputtering of oxygen. Such mechanisms are different for different materials and the achievable gain is therefore material dependent. For the investigated materials, the authors have demonstrated oxide deposition rates that are 1.5–10 times higher than what is possible from metal targets in compound mode. However, although the principle is demonstrated for oxides of Al, Ta, and Nb, a similar behavior is expected for most oxides.

  13. Highly sensitive SnO2 sensor via reactive laser-induced transfer

    NASA Astrophysics Data System (ADS)

    Palla Papavlu, Alexandra; Mattle, Thomas; Temmel, Sandra; Lehmann, Ulrike; Hintennach, Andreas; Grisel, Alain; Wokaun, Alexander; Lippert, Thomas

    2016-04-01

    Gas sensors based on tin oxide (SnO2) and palladium doped SnO2 (Pd:SnO2) active materials are fabricated by a laser printing method, i.e. reactive laser-induced forward transfer (rLIFT). Thin films from tin based metal-complex precursors are prepared by spin coating and then laser transferred with high resolution onto sensor structures. The devices fabricated by rLIFT exhibit low ppm sensitivity towards ethanol and methane as well as good stability with respect to air, moisture, and time. Promising results are obtained by applying rLIFT to transfer metal-complex precursors onto uncoated commercial gas sensors. We could show that rLIFT onto commercial sensors is possible if the sensor structures are reinforced prior to printing. The rLIFT fabricated sensors show up to 4 times higher sensitivities then the commercial sensors (with inkjet printed SnO2). In addition, the selectivity towards CH4 of the Pd:SnO2 sensors is significantly enhanced compared to the pure SnO2 sensors. Our results indicate that the reactive laser transfer technique applied here represents an important technical step for the realization of improved gas detection systems with wide-ranging applications in environmental and health monitoring control.

  14. Highly sensitive SnO2 sensor via reactive laser-induced transfer.

    PubMed

    Palla Papavlu, Alexandra; Mattle, Thomas; Temmel, Sandra; Lehmann, Ulrike; Hintennach, Andreas; Grisel, Alain; Wokaun, Alexander; Lippert, Thomas

    2016-01-01

    Gas sensors based on tin oxide (SnO2) and palladium doped SnO2 (Pd:SnO2) active materials are fabricated by a laser printing method, i.e. reactive laser-induced forward transfer (rLIFT). Thin films from tin based metal-complex precursors are prepared by spin coating and then laser transferred with high resolution onto sensor structures. The devices fabricated by rLIFT exhibit low ppm sensitivity towards ethanol and methane as well as good stability with respect to air, moisture, and time. Promising results are obtained by applying rLIFT to transfer metal-complex precursors onto uncoated commercial gas sensors. We could show that rLIFT onto commercial sensors is possible if the sensor structures are reinforced prior to printing. The rLIFT fabricated sensors show up to 4 times higher sensitivities then the commercial sensors (with inkjet printed SnO2). In addition, the selectivity towards CH4 of the Pd:SnO2 sensors is significantly enhanced compared to the pure SnO2 sensors. Our results indicate that the reactive laser transfer technique applied here represents an important technical step for the realization of improved gas detection systems with wide-ranging applications in environmental and health monitoring control. PMID:27118531

  15. A High-Performance Fluorescence Immunoassay Based on the Relaxation of Quenching, Exemplified by Detection of Cardiac Troponin I.

    PubMed

    Kim, Seung-Wan; Cho, Il-Hoon; Park, Ji-Na; Seo, Sung-Min; Paek, Se-Hwan

    2016-01-01

    The intramolecular fluorescence self-quenching phenomenon is a major drawback in developing high-performance fluorometric biosensors which use common fluorophores as signal generators. We propose two strategies involving liberation of the fluorescent molecules by means of enzymatic fragmentation of protein or dehybridization of double-stranded DNA. In the former, bovine serum albumin (BSA) was coupled with the fluorescent BODIPY dye (Red BSA), and then immobilized on a solid surface. When the insolubilized Red BSA was treated with proteinase K (10 units/mL) for 30 min, the fluorescent signal was significantly increased (3.5-fold) compared to the untreated control. In the second case, fluorophore-tagged DNA probes were linked to gold nanoparticles by hybridization with capture DNA strands densely immobilized on the surface. The quenched fluorescence signal was recovered (3.7-fold) by thermal dehybridization, which was induced with light of a specific wavelength (e.g., 530 nm) for less than 1 min. We next applied the Red BSA self-quenching relaxation technique employing enzymatic fragmentation to a high-performance immunoassay of cardiac troponin I (cTnI) in a microtiter plate format. The detection limit was 0.19 ng/mL cTnI, and the fluorescent signal was enhanced approximately 4.1-fold compared with the conventional method of direct measurement of the fluorescent signal from a non-fragmented fluorophore-labeled antibody. PMID:27171097

  16. A gold nanoparticle-based fluorescence sensor for high sensitive and selective detection of thiols in living cells.

    PubMed

    Xu, Jian; Yu, Hui; Hu, Yue; Chen, Mingzhong; Shao, Shijun

    2016-01-15

    A novel gold nanoparticle (AuNP)-based sensor for detecting thiols in aqueous solution has been developed. Due to the weak N···Au interactions, meso-(4-pyridinyl)-substituted BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) dyes were coordinated to AuNP surfaces, which effectively quenched the fluorescence of organic/inorganic hybrid systems. The fluorescent quenching mechanism was mainly ascribed to the highly efficient fluorescent resonance energy transfer (FRET) and the inner filter effect. In the presence of thiols, meso-(4-pyridinyl)-substituted BODIPY chromophore were displaced and released from the AuNP surfaces and thus restored the fluorescence of BODIPY chromophore. The modulation of the fluorescence quenching efficiency of BODIPY–AuNPs in the presence of thiols can achieve a large turn-on fluorescence enhancement (40-fold) in aqueous solution. The new AuNP-based fluorescence sensor displayed desired properties such as high specificity, relatively low detection limit (30 nM for Cys), appreciable water solubility and rapid response time (within 2 min for Cys/Hcy). Moreover, the sensor has been successfully applied for monitoring and imaging of intracellular thiols within living HeLa cells. PMID:26278044

  17. A High-Performance Fluorescence Immunoassay Based on the Relaxation of Quenching, Exemplified by Detection of Cardiac Troponin I

    PubMed Central

    Kim, Seung-Wan; Cho, Il-Hoon; Park, Ji-Na; Seo, Sung-Min; Paek, Se-Hwan

    2016-01-01

    The intramolecular fluorescence self-quenching phenomenon is a major drawback in developing high-performance fluorometric biosensors which use common fluorophores as signal generators. We propose two strategies involving liberation of the fluorescent molecules by means of enzymatic fragmentation of protein or dehybridization of double-stranded DNA. In the former, bovine serum albumin (BSA) was coupled with the fluorescent BODIPY dye (Red BSA), and then immobilized on a solid surface. When the insolubilized Red BSA was treated with proteinase K (10 units/mL) for 30 min, the fluorescent signal was significantly increased (3.5-fold) compared to the untreated control. In the second case, fluorophore-tagged DNA probes were linked to gold nanoparticles by hybridization with capture DNA strands densely immobilized on the surface. The quenched fluorescence signal was recovered (3.7-fold) by thermal dehybridization, which was induced with light of a specific wavelength (e.g., 530 nm) for less than 1 min. We next applied the Red BSA self-quenching relaxation technique employing enzymatic fragmentation to a high-performance immunoassay of cardiac troponin I (cTnI) in a microtiter plate format. The detection limit was 0.19 ng/mL cTnI, and the fluorescent signal was enhanced approximately 4.1-fold compared with the conventional method of direct measurement of the fluorescent signal from a non-fragmented fluorophore-labeled antibody. PMID:27171097

  18. Highly sensitive and selective fluorescence assays for rapid screening of endothelin-converting enzyme inhibitors.

    PubMed Central

    Luciani, N; de Rocquigny, H; Turcaud, S; Romieu, A; Roques, B P

    2001-01-01

    The highly potent vasoconstrictor peptide endothelin (ET) is generated from an inactive precursor, big endothelin (bET), by endothelin-converting enzyme (ECE). ECE is a phosphoramidon-sensitive zinc metallopeptidase, which is closely related to neprilysin (neutral endopeptidase). It is possible that compounds which inhibit the formation of ET may be used as new drugs for the treatment of cardiovascular diseases. Such an approach requires a fast, simple and selective assay to measure ECE activity, allowing rapid screening of inhibitors. We describe here two new ECE substrates based on the concept of 'intramolecularly quenched fluorescence' which may fulfill this aim. One, S(1) [Pya(21)-Nop(22)-bET-1(19--35)], is the (19--35) fragment of the natural peptide big-ET-1(1--38), which is modified by introducing the fluorescent amino acid, pyrenylalanine (Pya), in position 21 and a quencher, p-nitrophenylalanine (Nop), in position 22. The second substrate (S(2)) is a small peptide, Ac-Ser-Gly-Pya-Lys-Ala-Phe-Ala-Nop-Gly-Lys-NH(2), from a biased substrate peptide library. The recombinant, hECE-1c, cleaved both Pya(21)-Nop(22)-bET-1(19--35) and the natural substrate selectively between residues 21 and 22, whereas cleavage occurred between alanine and phenylalanine in the small peptide. In both cases, this generated intense fluorescence emission. The synthesis and kinetic parameters of these substrates are described. These assays, which can be used directly on tissue homogenates, are the most sensitive and selective described to date for ECE, and are easily automated for a high-throughput screening of inhibitors. PMID:11389689

  19. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    SciTech Connect

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.

  20. Generation of highly-reactive oxygen species is closely related to hair cell damage in rat organ of Corti treated with gentamicin.

    PubMed

    Choung, Y H; Taura, A; Pak, K; Choi, S J; Masuda, M; Ryan, A F

    2009-06-16

    Reactive oxygen species (ROS) have been suggested to play a major role in aminoglycoside-induced hair cell (HC) loss, but are difficult to detect. Moreover, ROS can occur normally in cells where they have roles in metabolism, cell signaling and other processes. Two new probes, aminophenyl fluorescein (APF) and hydroxyphenyl fluorescein (HPF) are dyes which selectively detect highly-reactive oxygen species (hROS), those most associated with cellular damage. We assessed the presence of hROS in the neonatal rat organ of Corti during chronic exposure to 50 microM gentamicin in vitro, to examine the relationship between cell damage and hROS across HC type and across the three cochlear turns. hROS were initially detected at 48 hours (h), with an increase at 72 h and persistence until at least 96 h. At 48 h, hROS were restricted to outer HCs and occurred prior to loss of stereocilia. At 72 h, outer HCs showed both hROS and stereocilia loss, and hROS were noted in a few inner HCs. Basal turn HCs showed more hROS than middle turn HCs. Very little hROS accumulation or stereocilia loss was observed in the apical turn, even at 72 h. First row outer HCs were most vulnerable to gentamicin-induced hROS, followed by second and then third row outer HCs. Inner HCs behaved similarly to third row outer HCs. By 96 h stereocilia damage was extensive, but surviving HCs showed persisting fluorescence. APF consistently showed more fluorescence than HPF. The results suggest that hROS accumulation is an important initial step in gentamicin-induced HC damage, and that the differential sensitivity of HCs in the organ of Corti is closely related to differences in hROS accumulation. PMID:19318119

  1. Assessment of Controlling Processes for Field-Scale Uranium Reactive Transport under Highly Transient Flow Conditions

    SciTech Connect

    Ma, Rui; Zheng, Chunmiao; Liu, Chongxuan; Greskowiak, Janek; Prommer, Henning; Zachara, John M.

    2014-02-06

    This paper presents the results of a comprehensive model-based analysis of a uranium tracer test conducted at the U.S Department of Energy Hanford 300 Area (300A) IFRC site. A three-dimensional multi-component reactive transport model was employed to assess the key factors and processes that control the field-scale uranium reactive transport. Taking into consideration of relevant physical and chemical processes, the selected conceptual/numerical model replicates the spatial and temporal variations of the observed U(VI) concentrations reasonably well in spite of the highly complex field conditions. A sensitivity analysis was performed to interrogate the relative importance of various processes and factors for reactive transport of U(VI) at the field-scale. The results indicate that multi-rate U(VI) sorption/desorption, U(VI) surface complexation reactions, and initial U(VI) concentrations were the most important processes and factors controlling U(VI) migration. On the other hand, cation exchange reactions, the choice of the surface complexation model, and dual-domain mass transfer processes, which were previously identified to be important in laboratory experiments, played less important roles under the field-scale experimental condition at the 300A site. However, the model simulations also revealed that the groundwater chemistry was relatively stable during the uranium tracer experiment and therefore presumably not dynamic enough to appropriately assess the effects of ion exchange reaction and the choice of surface complexation models on U(VI) sorption and desorption. Furthermore, it also showed that the field experimental duration (16 days) was not sufficiently long to precisely assess the role of a majority of the sorption sites that were accessed by slow kinetic processes within the dual domain model. The sensitivity analysis revealed the crucial role of the intraborehole flow that occurred within the long-screened monitoring wells and thus significantly

  2. Flat field correction for high-throughput imaging of fluorescent samples.

    PubMed

    Kask, Peet; Palo, Kaupo; Hinnah, Chris; Pommerencke, Thora

    2016-09-01

    Vignetting of microscopic images impacts both the visual impression of the images and any image analysis applied to it. Especially in high-throughput screening high demands are made on an automated image analysis. In our work we focused on fluorescent samples and found that two profiles (background and foreground) for each imaging channel need to be estimated to achieve a sufficiently flat image after correction. We have developed a method which runs completely unsupervised on a wide range of assays. By adding a reliable internal quality control we mitigate the risk of introducing artefacts into sample images through correction. The method requires hundreds of images for the foreground profile, thus limiting its application to high-throughput screening where this requirement is fulfilled in routine operation. PMID:27028041

  3. High resolution imaging beyond the acoustic diffraction limit in deep tissue via ultrasound-switchable NIR fluorescence

    NASA Astrophysics Data System (ADS)

    Pei, Yanbo; Wei, Ming-Yuan; Cheng, Bingbing; Liu, Yuan; Xie, Zhiwei; Nguyen, Kytai; Yuan, Baohong

    2014-04-01

    Fluorescence imaging in deep tissue with high spatial resolution is highly desirable because it can provide details about tissue's structural, functional, and molecular information. Unfortunately, current fluorescence imaging techniques are limited either in penetration depth (microscopy) or spatial resolution (diffuse light based imaging) as a result of strong light scattering in deep tissue. To overcome this limitation, we developed an ultrasound-switchable fluorescence (USF) imaging technique whereby ultrasound was used to switch on/off the emission of near infrared (NIR) fluorophores. We synthesized and characterized unique NIR USF contrast agents. The excellent switching properties of these agents, combined with the sensitive USF imaging system developed in this study, enabled us to image fluorescent targets in deep tissue with spatial resolution beyond the acoustic diffraction limit.

  4. Highly sensitive and selective fluorescence detection of copper (II) ion based on multi-ligand metal chelation.

    PubMed

    Zhang, Shan; Yu, Tao; Sun, Mingtai; Yu, Huan; Zhang, Zhongping; Wang, Suhua; Jiang, Hui

    2014-08-01

    A fluorescent probe was synthesized and demonstrated to be highly selective and sensitive in the reaction with copper (II) ion, generating a large variation of the fluorescence intensity in a dose-response manner. The probe contains a dansyl moiety as fluorophore and a multidentate ligand for copper (II) ion recognition. The reaction of the molecular probe with copper (II) ion proceeds rapidly and irreversibly in a 1 to 1 stoichiometric way, leading to the production of stable copper (II) complex, which subsequently results in the quenching of fluorescence. The detection limit for copper (II) ion was measured to be about 2ppb. It was also shown that the probe has high selectivity for copper (II) ion and good anti-interference ability against other transition metal ions. The herein reported very simple and reliable fluorescence probe could be employed for copper (II) ion detection in many aspects. PMID:24881551

  5. New results in high-resolution X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Žitnik, Matjaž; Kavčič, Matjaž; Bučar, Klemen; Mihelič, Andrej; Bohinc, Rok

    2014-04-01

    We present some recent results dealing with resonant inelastic X-ray scattering (RIXS) on atomic targets in the 3-5 keV enegy region. In this so-called tender spectral region, the K-shell fluorescence branching ratios become reasonably large, but a full vacuum enclosure is still preferable to avoid detection efficiency loss due to the sizeable arms of high resolution crystal spectrometers. By squeezing energy resolution in the fluorescence decay channel, one may improve the spectral resolution of photoabsorption, enable separation of multielectron excitation and relaxation channels, and completely eliminate the need to scan across the selected energy range of the photon probe in order to acquire the photoabsorption spectrum. On the other hand, the spectra may be untrivially modified by effects such as interference of absorption-emission paths or structured relaxation modes, and a more elaborated modelling is needed to understand the emitted signal. We illustrate these aspects by presenting four cases: the reconstruction of Ar KM and Ar KL absorption edges from a series of highly resolved emission spectra recorded at different probe energies, the reconstruction of the Xe L3 edge from a single X-ray emission spectrum, and the analysis of the radiative Ar K-MM Auger decay preceeded by the resonant or nonresonant photon absorption.

  6. Identification of adiponectin receptor agonist utilizing a fluorescence polarization based high throughput assay.

    PubMed

    Sun, Yiyi; Zang, Zhihe; Zhong, Ling; Wu, Min; Su, Qing; Gao, Xiurong; Zan, Wang; Lin, Dong; Zhao, Yan; Zhang, Zhonglin

    2013-01-01

    Adiponectin, the adipose-derived hormone, plays an important role in the suppression of metabolic disorders that can result in type 2 diabetes, obesity, and atherosclerosis. It has been shown that up-regulation of adiponectin or adiponectin receptor has a number of therapeutic benefits. Given that it is hard to convert the full size adiponectin protein into a viable drug, adiponectin receptor agonists could be designed or identified using high-throughput screening. Here, we report on the development of a two-step screening process to identify adiponectin agonists. First step, we developed a high throughput screening assay based on fluorescence polarization to identify adiponectin ligands. The fluorescence polarization assay reported here could be adapted to screening against larger small molecular compound libraries. A natural product library containing 10,000 compounds was screened and 9 hits were selected for validation. These compounds have been taken for the second-step in vitro tests to confirm their agonistic activity. The most active adiponectin receptor 1 agonists are matairesinol, arctiin, (-)-arctigenin and gramine. The most active adiponectin receptor 2 agonists are parthenolide, taxifoliol, deoxyschizandrin, and syringin. These compounds may be useful drug candidates for hypoadiponectin related diseases. PMID:23691032

  7. Monochromatic multicomponent fluorescence sedimentation velocity for the study of high-affinity protein interactions

    PubMed Central

    Zhao, Huaying; Fu, Yan; Glasser, Carla; Andrade Alba, Eric J; Mayer, Mark L; Patterson, George; Schuck, Peter

    2016-01-01

    The dynamic assembly of multi-protein complexes underlies fundamental processes in cell biology. A mechanistic understanding of assemblies requires accurate measurement of their stoichiometry, affinity and cooperativity, and frequently consideration of multiple co-existing complexes. Sedimentation velocity analytical ultracentrifugation equipped with fluorescence detection (FDS-SV) allows the characterization of protein complexes free in solution with high size resolution, at concentrations in the nanomolar and picomolar range. Here, we extend the capabilities of FDS-SV with a single excitation wavelength from single-component to multi-component detection using photoswitchable fluorescent proteins (psFPs). We exploit their characteristic quantum yield of photo-switching to imprint spatio-temporal modulations onto the sedimentation signal that reveal different psFP-tagged protein components in the mixture. This novel approach facilitates studies of heterogeneous multi-protein complexes at orders of magnitude lower concentrations and for higher-affinity systems than previously possible. Using this technique we studied high-affinity interactions between the amino-terminal domains of GluA2 and GluA3 AMPA receptors. DOI: http://dx.doi.org/10.7554/eLife.17812.001 PMID:27436096

  8. Identification of Adiponectin Receptor Agonist Utilizing a Fluorescence Polarization Based High Throughput Assay

    PubMed Central

    Sun, Yiyi; Zang, Zhihe; Zhong, Ling; Wu, Min; Su, Qing; Gao, Xiurong; Zan, Wang; Lin, Dong; Zhao, Yan; Zhang, Zhonglin

    2013-01-01

    Adiponectin, the adipose-derived hormone, plays an important role in the suppression of metabolic disorders that can result in type 2 diabetes, obesity, and atherosclerosis. It has been shown that up-regulation of adiponectin or adiponectin receptor has a number of therapeutic benefits. Given that it is hard to convert the full size adiponectin protein into a viable drug, adiponectin receptor agonists could be designed or identified using high-throughput screening. Here, we report on the development of a two-step screening process to identify adiponectin agonists. First step, we developed a high throughput screening assay based on fluorescence polarization to identify adiponectin ligands. The fluorescence polarization assay reported here could be adapted to screening against larger small molecular compound libraries. A natural product library containing 10,000 compounds was screened and 9 hits were selected for validation. These compounds have been taken for the second-step in vitro tests to confirm their agonistic activity. The most active adiponectin receptor 1 agonists are matairesinol, arctiin, (-)-arctigenin and gramine. The most active adiponectin receptor 2 agonists are parthenolide, taxifoliol, deoxyschizandrin, and syringin. These compounds may be useful drug candidates for hypoadiponectin related diseases. PMID:23691032

  9. Monochromatic multicomponent fluorescence sedimentation velocity for the study of high-affinity protein interactions.

    PubMed

    Zhao, Huaying; Fu, Yan; Glasser, Carla; Andrade Alba, Eric J; Mayer, Mark L; Patterson, George; Schuck, Peter

    2016-01-01

    The dynamic assembly of multi-protein complexes underlies fundamental processes in cell biology. A mechanistic understanding of assemblies requires accurate measurement of their stoichiometry, affinity and cooperativity, and frequently consideration of multiple co-existing complexes. Sedimentation velocity analytical ultracentrifugation equipped with fluorescence detection (FDS-SV) allows the characterization of protein complexes free in solution with high size resolution, at concentrations in the nanomolar and picomolar range. Here, we extend the capabilities of FDS-SV with a single excitation wavelength from single-component to multi-component detection using photoswitchable fluorescent proteins (psFPs). We exploit their characteristic quantum yield of photo-switching to imprint spatio-temporal modulations onto the sedimentation signal that reveal different psFP-tagged protein components in the mixture. This novel approach facilitates studies of heterogeneous multi-protein complexes at orders of magnitude lower concentrations and for higher-affinity systems than previously possible. Using this technique we studied high-affinity interactions between the amino-terminal domains of GluA2 and GluA3 AMPA receptors. PMID:27436096

  10. The Gray Institute ‘open’ high-content, fluorescence lifetime microscopes

    PubMed Central

    BARBER, PR; TULLIS, IDC; PIERCE, GP; NEWMAN, RG; PRENTICE, J; ROWLEY, MI; MATTHEWS, DR; AMEER-BEG, SM; VOJNOVIC, B

    2013-01-01

    Summary We describe a microscopy design methodology and details of microscopes built to this ‘open’ design approach. These demonstrate the first implementation of time-domain fluorescence microscopy in a flexible automated platform with the ability to ease the transition of this and other advanced microscopy techniques from development to use in routine biology applications. This approach allows easy expansion and modification of the platform capabilities, as it moves away from the use of a commercial, monolithic, microscope body to small, commercial off-the-shelf and custom made modular components. Drawings and diagrams of our microscopes have been made available under an open license for noncommercial use at http://users.ox.ac.uk/~atdgroup. Several automated high-content fluorescence microscope implementations have been constructed with this design framework and optimized for specific applications with multiwell plates and tissue microarrays. In particular, three platforms incorporate time-domain FLIM via time-correlated single photon counting in an automated fashion. We also present data from experiments performed on these platforms highlighting their automated wide-field and laser scanning capabilities designed for high-content microscopy. Devices using these designs also form radiation-beam ‘end-stations’ at Oxford and Surrey Universities, showing the versatility and extendibility of this approach. PMID:23772985

  11. Highly efficient white organic light-emitting diodes based on fluorescent blue emitters

    NASA Astrophysics Data System (ADS)

    Rosenow, Thomas C.; Furno, Mauro; Reineke, Sebastian; Olthof, Selina; Lüssem, Björn; Leo, Karl

    2010-12-01

    Beside inorganic LEDs and fluorescent lamps, organic light-emitting diodes (OLEDs) are evolving into a serious alternative to incandescent lamps. Up to now, it was assumed that all-phosphorescent OLEDs are required for reaching sufficiently high efficiencies. However, the stability of phosphorescent blue emitters is a major challenge. We present a novel approach to achieve highly efficient (up to 90 lm/W at 1000 cd/m2 using a macroextractor) white light emission from OLEDs. The here presented combination of a fluorescent blue and a phosphorescent red emitter simultaneously allows for a strong blue emission and efficient triplet transfer to the phosphor. The spectrum is extended in the green and yellow region by a full phosphorescent unit stacked on top of the triplet harvesting device. This superposition of four different emitters results in color coordinates close to illuminant A and a color rendering index of 80. Furthermore, color stability is given with respect to varying driving conditions and estimations of the electrical and optical efficiencies are provided.

  12. Fluorescent Lyα Emission from the High-Redshift Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Cantalupo, Sebastiano; Porciani, Cristiano; Lilly, Simon J.; Miniati, Francesco

    2005-07-01

    We combine a high-resolution hydro simulation of the ΛCDM cosmology with two radiative transfer schemes (for continuum and line radiation) to predict the properties, spectra, and spatial distribution of fluorescent Lyα emission at z~3. We focus on line radiation produced by recombinations in the dense intergalactic medium ionized by UV photons. In particular, we consider both a uniform background and the case in which gas clouds are illuminated by a nearby quasar. We find that the emission from optically thick regions is substantially less than predicted from the widely used static, plane-parallel model. The effects induced by a realistic velocity field and by the complex geometric structure of the emitting regions are discussed in detail. We make predictions for the expected brightness and size distributions of the fluorescent sources. Our results account for recent null detections and can be used to plan new observational campaigns both in the field (to measure the intensity of the diffuse UV background) and in the proximity of bright quasars (to understand the origin of high column density absorbers).

  13. IPr3 Si3 Cl5 (+) : A Highly Reactive Cation with Silanide Character.

    PubMed

    Uhlemann, Fabian; Schnepf, Andreas

    2016-07-25

    The reaction of a metastable SiCl2 solution with the sterically less-demanding carbene N,N-diisopropylimidazo-2-ylidene (IPr) yields the salt [(IPr3 Si3 Cl5 )(+) ]Cl(-) (1-Cl), containing a silyl cation with a Si3 backbone. Salt 1 is highly reactive, but it can be used as a reagent in deuterated dichloromethane, whereby dehalogenation with Me3 SiOTf (OTf=O3 SCF3 ) gives the dicationic silyl halide [(IPr3 Si3 Cl4 )](2+) 2. Quantum chemical calculations show that the HOMO is localized at the negatively charged central silicon atom of 1 and 2, and thus although both compounds are cations they are better described as silanides, which was also corroborated by NMR investigations. PMID:27258331

  14. Development of a Sensitive Bioluminogenic Probe for Imaging Highly Reactive Oxygen Species in Living Rats.

    PubMed

    Kojima, Ryosuke; Takakura, Hideo; Kamiya, Mako; Kobayashi, Eiji; Komatsu, Toru; Ueno, Tasuku; Terai, Takuya; Hanaoka, Kenjiro; Nagano, Tetsuo; Urano, Yasuteru

    2015-12-01

    A sensitive bioluminogenic probe for highly reactive oxygen species (hROS), SO3 H-APL, was developed based on the concept of dual control of bioluminescence emission by means of bioluminescent enzyme-induced electron transfer (BioLeT) and modulation of cell-membrane permeability. This probe enables non-invasive visualization of physiologically relevant amounts of hROS generated deep inside the body of living rats for the first time. It is expected to serve as a practical analytical tool for investigating a wide range of biological functions of hROS in vivo. The design concept should be applicable to other in vivo bioluminogenic probes. PMID:26474404

  15. Amine-reactive neutron-encoded labels for highly plexed proteomic quantitation.

    PubMed

    Hebert, Alexander S; Merrill, Anna E; Stefely, Jonathan A; Bailey, Derek J; Wenger, Craig D; Westphall, Michael S; Pagliarini, David J; Coon, Joshua J

    2013-11-01

    We describe a novel amine-reactive chemical label that exploits differential neutron-binding energy between (13)C and (15)N isotopes. These neutron-encoded (NeuCode) chemical labels enable up to 12-plex MS1-based protein quantification. Each structurally identical, but isotopically unique, tag is encoded with a 12.6-mDa mass difference-relative to its nearest neighbor-so that peptides bearing these NeuCode signatures do not increase spectral complexity and are detected only upon analysis with very high mass-resolving powers. We demonstrate that the method provides quantitative performance that is comparable to both metabolic labeling and isobaric tagging while combining the benefits of both strategies. Finally, we employ the tags to characterize the proteome of Saccharomyces cerevisiae during the diauxic shift, a metabolic transition from fermentation to aerobic respiration. PMID:23882030

  16. Amine-reactive Neutron-encoded Labels for Highly Plexed Proteomic Quantitation*

    PubMed Central

    Hebert, Alexander S.; Merrill, Anna E.; Stefely, Jonathan A.; Bailey, Derek J.; Wenger, Craig D.; Westphall, Michael S.; Pagliarini, David J.; Coon, Joshua J.

    2013-01-01

    We describe a novel amine-reactive chemical label that exploits differential neutron-binding energy between 13C and 15N isotopes. These neutron-encoded (NeuCode) chemical labels enable up to 12-plex MS1-based protein quantification. Each structurally identical, but isotopically unique, tag is encoded with a 12.6-mDa mass difference—relative to its nearest neighbor—so that peptides bearing these NeuCode signatures do not increase spectral complexity and are detected only upon analysis with very high mass-resolving powers. We demonstrate that the method provides quantitative performance that is comparable to both metabolic labeling and isobaric tagging while combining the benefits of both strategies. Finally, we employ the tags to characterize the proteome of Saccharomyces cerevisiae during the diauxic shift, a metabolic transition from fermentation to aerobic respiration. PMID:23882030

  17. High osmotic pressure increases reactive oxygen species generation in rabbit corneal epithelial cells by endoplasmic reticulum

    PubMed Central

    Wang, Peng; Sheng, Minjie; Li, Bing; Jiang, Yaping; Chen, Yihui

    2016-01-01

    Tear high osmotic pressure (HOP) has been recognized as the core mechanism underlying ocular surface inflammation, injury and symptoms and is closely associated with many ocular surface diseases, especially dry eye. The endoplasmic reticulum (ER) is a multi-functional organelle responsible for protein synthesis, folding and transport, biological synthesis of lipids, vesicle transport and intracellular calcium storage. Accumulation of unfolded proteins and imbalance of calcium ion in the ER would induce ER stress and protective unfolded protein response (UPR). Many studies have demonstrated that ER stress can induce cell apoptosis. However, the association between tear HOP and ER stress has not been studied systematically. In the present study, rabbit corneal epithelial cells were treated with HOP and results showed that the production of reactive oxygen species increased markedly, which further activated the ER signaling pathway and ultimately induced cell apoptosis. These findings shed new lights on the pathogenesis and clinical treatment of dry eye and other ocular surface diseases. PMID:27158374

  18. High-temperature thermal degradation of polyethylene from reactive molecular dynamics

    NASA Astrophysics Data System (ADS)

    Lane, J. Matthew D.; Moore, Nathan W.

    Thermal degradation of polyethylene is studied under extremely high-rate temperature ramp rates from 1014 to 1010 K/s in isochoric, condensed phases. The molecular evolution and macroscopic state variables are extracted as a function of density from reactive molecular dynamics simulations using the ReaxFF potential. These results are used to parameterize a kinetic rate model for the dissociation and coalescence of hydrocarbons as a function of temperature, temperature ramp rate, and density. The results are contrasted to first-order random-scission macrokinetic models often assumed for pyrolysis of linear polyethylene under ambient conditions. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04- 94AL85000.

  19. High fluorescence S, N co-doped carbon dots as an ultra-sensitive fluorescent probe for the determination of uric acid.

    PubMed

    Wang, Haiyan; Lu, Qiujun; Hou, Yuxin; Liu, Yalan; Zhang, Youyu

    2016-08-01

    Sulfur, nitrogen co-doped carbon dots (S, N co-doped C-dots) as highly selective fluorescent probe for uric acid (UA) detection were designed. The S, N co-doped C-dots with high quantum yield of 73.1% were prepared by hydrothermal method. It was found that the fluorescence of S, N co-doped C-dots was quenched apparently by hydroxyl radicals from Fenton reaction between H2O2 and Fe(2+). The production of H2O2 originated from the oxidization of UA by uricase. Therefore, an optical biosensor was developed for the detection of UA based on Fenton reaction and enzymatic reaction. Under the optimized conditions, two linear relationships between the ratio of fluorescence quenching of the C-dots and UA concentration were found in the range of 0.08-10µM and 10-50µM, respectively. The detection limit was down to 0.07µM. Moreover, the proposed biosensor was successfully applied to the detection of uric acid in human serum samples. PMID:27216657

  20. Combined system for high-time-resolution dual-excitation fluorescence photometry and fluorescence imaging of calcium transients in single normal and diseased skeletal muscle fibers

    NASA Astrophysics Data System (ADS)

    Uttenweiler, Dietmar; Wojciechowski, Reinhold; Makabe, Makoto; Veigel, Claudia; Fink, Rainer H.

    1994-12-01

    Fast photometric measurements and video-imaging of fluorescent indicators both are powerful tools in measuring the intracellular free calcium concentration of muscle and many other cells. as photometric systems yield a high temporal resolution, calcium imaging systems have high spatial but significantly reduced temporal resolution. Therefore we have developed an integrated system combining both methods and based mostly on standard components. As a common, sensitive Ca2+- indicator we used the fluorescent probe Fura-2, which is alternatingly excited for ratio measurements at 340/380 nm. We used a commercially available dual excitation photometric system (OSP-3; Olympus) for attaching a CCD-camera and a frame grabber board. To achieve the synchronization we had to design circuitries for external triggering, synchronization and accurate control of the filter changer, which we added to the system. Additionally, the software for a triggered image acquisition was developed. With this integrated setup one can easily switch between the fast photometric mode (ratio frequency 100 Hz) and the imaging mode (ratio frequency 4.17 Hz). The calcium images are correlated with the 25 times faster spot measurements and are analyzed by means of image processing. With this combined system we study release and uptake of calcium ions of normal and diseased skeletal muscle from mdx mice. Such a system will also be important for other cellular studies in which fluorescence indicators are used to monitor similar time dependent alterations as well as changes in cellular distributions of calcium.

  1. A Rapid Approach to High-Resolution Fluorescence Imaging in Semi-Thick Brain Slices

    PubMed Central

    Selever, Jennifer; Kong, Jian-Qiang; Arenkiel, Benjamin R.

    2011-01-01

    A fundamental goal to both basic and clinical neuroscience is to better understand the identities, molecular makeup, and patterns of connectivity that are characteristic to neurons in both normal and diseased brain. Towards this, a great deal of effort has been placed on building high-resolution neuroanatomical maps1-3. With the expansion of molecular genetics and advances in light microscopy has come the ability to query not only neuronal morphologies, but also the molecular and cellular makeup of individual neurons and their associated networks4. Major advances in the ability to mark and manipulate neurons through transgenic and gene targeting technologies in the rodent now allow investigators to 'program' neuronal subsets at will5-6. Arguably, one of the most influential contributions to contemporary neuroscience has been the discovery and cloning of genes encoding fluorescent proteins (FPs) in marine invertebrates7-8, alongside their subsequent engineering to yield an ever-expanding toolbox of vital reporters9. Exploiting cell type-specific promoter activity to drive targeted FP expression in discrete neuronal populations now affords neuroanatomical investigation with genetic precision. Engineering FP expression in neurons has vastly improved our understanding of brain structure and function. However, imaging individual neurons and their associated networks in deep brain tissues, or in three dimensions, has remained a challenge. Due to high lipid content, nervous tissue is rather opaque and exhibits auto fluorescence. These inherent biophysical properties make it difficult to visualize and image fluorescently labelled neurons at high resolution using standard epifluorescent or confocal microscopy beyond depths of tens of microns. To circumvent this challenge investigators often employ serial thin-section imaging and reconstruction methods10, or 2-photon laser scanning microscopy11. Current drawbacks to these approaches are the associated labor-intensive tissue

  2. High-rate reactive magnetron sputtering of zirconia films for laser optics applications

    NASA Astrophysics Data System (ADS)

    Juškevičius, K.; Audronis, M.; Subačius, A.; Drazdys, R.; Juškėnas, R.; Matthews, A.; Leyland, A.

    2014-09-01

    ZrO2 exhibits low optical absorption in the near-UV range and is one of the highest laser-induced damage threshold (LIDT) materials; it is, therefore, very attractive for laser optics applications. This paper reports explorations of reactive sputtering technology for deposition of ZrO2 films with low extinction coefficient k values in the UV spectrum region at low substrate temperature. A high deposition rate (64 % of the pure metal rate) process is obtained by employing active feedback reactive gas control which creates a stable and repeatable deposition processes in the transition region. Substrate heating at 200 °C was found to have no significant effect on the optical ZrO2 film properties. The addition of nitrogen to a closed-loop controlled process was found to have mostly negative effects in terms of deposition rate and optical properties. Open-loop O2 gas-regulated ZrO2 film deposition is slow and requires elevated (200 °C) substrate temperature or post-deposition annealing to reduce absorption losses. Refractive indices of the films were distributed in the range n = 2.05-2.20 at 1,000 nm and extinction coefficients were in the range k = 0.6 × 10-4 and 4.8 × 10-3 at 350 nm. X-ray diffraction analysis showed crystalline ZrO2 films consisted of monoclinic + tetragonal phases when produced in Ar/O2 atmosphere and monoclinic + rhombohedral or a single rhombohedral phase when produced in Ar/O2 + N2. Optical and physical properties of the ZrO2 layers produced in this study are suitable for high-power laser applications in the near-UV range.

  3. Genetic predisposition for high stress reactivity amplifies effects of early-life adversity.

    PubMed

    McIlwrick, Silja; Rechenberg, Alexandra; Matthes, Mariana; Burgstaller, Jessica; Schwarzbauer, Thomas; Chen, Alon; Touma, Chadi

    2016-08-01

    A dysregulation of the hypothalamus-pituitary-adrenocortical (HPA) axis and the experience of early-life adversity are both well-established risk factors for the development of affective disorders, such as major depression. However, little is known about the interaction of these two factors in shaping endophenotypes of the disease. Here, we studied the gene-environment interaction of a genetic predisposition for HPA axis dysregulation with early-life stress (ELS), assessing the short-, as well as the long-lasting consequences on emotional behavior, neuroendocrine functions and gene expression profiles. Three mouse lines, selectively bred for either high (HR), intermediate (IR), or low (LR) HPA axis reactivity, were exposed to one week of ELS using the limited nesting and bedding material paradigm. Measurements collected during or shortly after the ELS period showed that, regardless of genetic background, ELS exposure led to impaired weight gain and altered the animals' coping behavior under stressful conditions. However, only HR mice additionally showed significant changes in neuroendocrine stress responsiveness at a young age. Accordingly, adult HR mice also showed lasting consequences of ELS, including hyperactive stress-coping, HPA axis hyperreactivity, and gene expression changes in the Crh system, as well as downregulation of Fkbp5 in relevant brain regions. We suggest that the genetic predisposition for high stress reactivity interacts with ELS exposure by disturbing the suppression of corticosterone release during a critical period of brain development, thus exerting lasting programming effects on the HPA axis, presumably via epigenetic mechanisms. In concert, these changes lead to the emergence of important endophenotypes associated with affective disorders. PMID:27179233

  4. Deriving chlorophyll fluorescence emissions of vegetation canopies from high resolution field reflectance spectra

    NASA Astrophysics Data System (ADS)

    Middleton, Elizabeth M.; Corp, Lawrence A.; Daughtry, Craig S.; Entcheva Campbell, Petya K.; Butcher, L. Maryn

    2005-11-01

    Fluorescence of foliage in the laboratory has proven more rigorous than reflectance for correlation to plant physiology. Especially useful are emissions produced from two stable red and far-red chlorophyll fluorescence (ChlF) peaks centered at 685 nm and 735 nm. Methods have been developed elsewhere to extract steady state solar induced fluorescence (SIF) from apparent reflectance of vegetation canopies/landscapes using the Fraunhofer Line Depth (FLD) principal. Our study utilized these methods in conjunction with field-acquired high spectral resolution canopy reflectance spectra obtained in 2004 and 2005 over corn crops and small tree plots of three deciduous species (red maple, tulip poplar, sweet gum). Leaf level measurements were also made of foliage which included ChlF, photosynthesis, and leaf constituents (photosynthetic pigment, carbon (C), and nitrogen (N) contents). As part of ongoing experiments, measurements were made on N application plots within corn (280, 140, 70, and 0 kg N/ha) and tree (0, 37.5, 75, 112.5, 150 kg N /ha) sites at the USDA/Agriculture Research Service in Beltsville, MD. SIF intensities for ChlF were derived directly from canopy reflectance spectra in specific narrow- band regions associated with atmospheric oxygen absorption features centered at 688 and 760 nm. The red/far-red SIF ratio (SIFratio) derived from these field reflectance spectra successfully discriminated foliar pigment ratios altered by N application rates in both corn crops. This ratio was also positively correlated to the C/N ratio at leaf and canopy levels, for the available corn data (e.g., 2004). No consistent N treatment or species differences in SIF were detected in the tree foliage, but additional 2005 data are forthcoming. This study has relevance to future passive satellite remote sensing approaches to monitoring C dynamics from space.

  5. In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring

    PubMed Central

    Zhong, W; Celli, J P; Rizvi, I; Mai, Z; Spring, B Q; Yun, S H; Hasan, T

    2009-01-01

    Background: In patients with advanced ovarian cancer (OvCa), microscopic residual tumour nodules that remain after surgical debulking frequently escape detection by current treatment assessment methods and lead to disease recurrence. The aim of this study was to evaluate the use of high-resolution fibre-optic fluorescence imaging of the clinically approved photodynamic therapy (PDT) agent benzoporphyin-derivative monoacid ring A (BPD-MA) for detection of microscopic OvCa and for monitoring treatment response. Methods: Our fluorescence microendoscope consists of a flexible imaging fibre coupled to a custom epi-fluorescence system optimised for imaging BPD-MA, which, after a single administration, serves as both an imaging agent and a light-activated therapeutic agent. After characterisation in an in vitro OvCa 3D model, we used the flexible imaging fibre to minimally invasively image the peritoneal cavity of a disseminated OvCa murine model using BPD-MA administered intraperitoneally (i.p.). To evaluate longitudinal changes in response to treatment, we compared sets of images obtained before and after PDT with those from untreated mice imaged at the same time points. Results: By comparison with histopathology, we report an 86% sensitivity for tumour detection in vivo using the microendoscope. Using a custom routine to batch process-image data in the monitoring study, treated mice exhibited an average decrease of 58.8% in tumour volumes compared with an increase of 59.3% in untreated controls (P<0.05). Conclusions: Our findings indicate the potential of this approach as a reporter of treatment outcome that could aid in the rational design of strategies to mitigate recurrent OvCa. PMID:19920823

  6. A novel method using high-performance liquid chromatography with fluorescence detection for the determination of betaxanthins.

    PubMed

    Gandía-Herrero, Fernando; García-Carmona, Francisco; Escribano, Josefa

    2005-06-17

    Betaxanthins are natural water-soluble yellow pigments present in plants of the order Caryophyllales. The native fluorescence of these compounds is extensively characterized in this work, with study of the fluorescent properties of 14 different betaxanthins. All the species showed a similar behavior, with excitation maxima between 463 and 475 nm and emission maxima between 506 and 515 nm. Thus, betaxanthins absorb light corresponding to the blue color and emit visible green light. Similarities in excitation and emission spectra point to the responsibility of betalamic acid in fluorescence. The influence of the amine moiety is discussed. For the first time fluorescent properties of betaxanthins are applied to the detection of these pigments after separation by high-performance liquid chromatography. Wavelengths used were 460 nm for excitation and 510 nm for emission, which were suitable for detecting the native fluorescence of all the pigments assayed. Calibration was performed in each case and it exhibited linearity within the range considered, at least 20 microM. The lowest detection limit was 100 nM, corresponding to betaxanthins derived from methionine sulfoxide and leucine. Fluorescence detection was applied to the quantification of betaxanthins present in Carpobrotus acinaciformis. The present work opens up new possibilities for the analysis of betaxanthins by improving existing protocols through fluorescence detection. PMID:16007985

  7. Coumarin-based 'turn-off' fluorescent chemosensor with high selectivity for Cu2+ in aqueous solution

    NASA Astrophysics Data System (ADS)

    Xu, Wen-Jun; Qi, De-Qiang; You, Jin-Zong; Hu, Fei-Fei; Bian, Jia-Ying; Yang, Chun-Xia; Huang, Juan

    2015-07-01

    Coumarin-based "turn-off" fluorescent chemosensor, 3-acetoacetyl-7-diethylaminocoumarin (1), has been synthesized and structurally characterized by IR, 1H NMR and X-ray crystal structure analysis. The fluorescence behaviors in the presence of various metal ions were investigated in aqueous media. 1 Exhibits highly selective and sensitive absorbance and fluorescence sensing ability for Cu2+ over other metal ions. Addition of Cu2+ to the aqueous solution of 1 gave rise to obvious absorbance change and fluorescence quenching. Other competing ions, such as Mg2+, Ba2+, Mn2+, Fe3+, Co2+, Ni2+, Zn2+, Pb2+, Cd2+, Hg2+, induced negligible absorbance and fluorescence changes under the same conditions. The job's plot showed that the stoichiometry between 1 and Cu2+ was estimated to be 1:1. The fluorescence intensity varied almost linearly vs. the concentration of Cu2+ (1.0-7.0 μM), and the detection limit of Cu2+ was estimated to be 1.81 nM, indicating that 1 can be used as "turn-off" fluorescent chemosensor to selectively detect Cu2+ in aqueous solution.

  8. High-magnification vascular imaging to reject false-positive sites in situ during Hexvix® fluorescence cystoscopy

    NASA Astrophysics Data System (ADS)

    Lovisa, Blaise; Jichlinski, Patrice; Weber, Bernd-Claus; Aymon, Daniela; van den Bergh, Hubert; Wagnières, Georges

    2010-09-01

    Fluorescence imaging for detection of non-muscle-invasive bladder cancer is based on the selective production and accumulation of fluorescing porphyrins-mainly, protoporphyrin IX-in cancerous tissues after the instillation of Hexvix®. Although the sensitivity of this procedure is very good, its specificity is somewhat limited due to fluorescence false-positive sites. Consequently, magnification cystoscopy has been investigated in order to discriminate false from true fluorescence positive findings. Both white-light and fluorescence modes are possible with the magnification cystoscope, allowing observation of the bladder wall with magnification ranging between 30× for standard observation and 650×. The optical zooming setup allows adjusting the magnification continuously in situ. In the high-magnification (HM) regime, the smallest diameter of the field of view is 600 microns and the resolution is 2.5 microns when in contact with the bladder wall. With this cystoscope, we characterized the superficial vascularization of the fluorescing sites in order to discriminate cancerous from noncancerous tissues. This procedure allowed us to establish a classification based on observed vascular patterns. Seventy-two patients subject to Hexvix® fluorescence cystoscopy were included in the study. Comparison of HM cystoscopy classification with histopathology results confirmed 32/33 (97%) cancerous biopsies and rejected 17/20 (85%) noncancerous lesions.

  9. Uptake and effect of highly fluorescent silver nanoclusters on Scenedesmus obliquus.

    PubMed

    Zhang, Li; He, Yiliang; Goswami, Nirmal; Xie, Jianping; Zhang, Bo; Tao, Xianji

    2016-06-01

    The release of silver nanoparticles (Ag NPs) in aquatic environment has caused wide public concern about their effects on living organisms (e.g., algae). However, how these small NPs exert cytotoxicity in the living organisms has always been under heated debate. In this study, the uptake and toxicity effects of strongly red-emitting fluorescent silver nanoclusters (r-Ag NCs) exposed to the green algae Scenedesmus obliquus was investigated. Upon exposure to pure r-Ag NCs and r-Ag NCs containing l-cysteine, the algae growth inhibition test showed that Ag(+) ions released from r-Ag NCs played an important role in the toxicity of r-Ag NCs along with the toxicity of intact r-Ag NCs. Furthermore, no signals of intracellular reactive oxygen species (ROS) were observed indicating that r-Ag NCs or released Ag(+) ions - mediated growth inhibition of algae cells was independent of ROS production. Transmission electron microscopy (TEM) and laser scanning confocal microscopy (LSCM) were employed to study cellular uptake and cytotoxicity. Furthermore, analysis of differential expressed gene demonstrated that r-Ag NCs as well as the released Ag(+) ions can simultaneously exist inside the algae cells, and inhibit the transcriptomic process of genes by their "joint-toxicity" mechanism. Taken together, our study provides a new insight into the molecular mechanisms of r-Ag NCs and Ag(+) ions exposure to the aquatic organism and can be applied to early diagnosis of ecologic risk mediated by others metal-based NPs. PMID:27023120

  10. Highly selective fluorescent chemosensor for detection of Fe3+ based on Fe3O4@ZnO

    PubMed Central

    Li, Jingshuai; Wang, Qi; Guo, Zhankui; Ma, Hongmin; Zhang, Yong; Wang, Bing; Bin, Du; Wei, Qin

    2016-01-01

    The combination of fluorescent nanoparticles and specific molecular probes appears to be a promising strategy for developing fluorescent nanoprobes. In this work, L-cysteine (L-Cys) capped Fe3O4@ZnO core-shell nanoparticles were synthesized for the highly selective detection of Fe3+. The proposed nanoprobe shows excellent fluorescent property and high selectivity for Fe3+ due to the binding affinity of L-Cys with Fe3+. The binding of Fe3+ to the nanoprobe induces an apparent decrease of the fluorescence. Thus a highly selective fluorescent chemosensor for Fe3+ was proposed based on Fe3O4@ZnO nanoprobe. The magnetism of the nanoprobe enables the facile separation of bound Fe3+ from the sample solution with an external magnetic field, which effectively reduces the interference of matrix. The detection limit was 3 nmol L−1 with a rapid response time of less than 1 min. The proposed method was applied to detect Fe3+ in both serum and wastewater samples with acceptable performance. All above features indicated that the proposed fluorescent probe as sensing platform held great potential in applications of biological and analytical field. PMID:27000972

  11. A carbon dot-based "off-on" fluorescent probe for highly selective and sensitive detection of phytic acid.

    PubMed

    Gao, Zhao; Wang, Libing; Su, Rongxin; Huang, Renliang; Qi, Wei; He, Zhimin

    2015-08-15

    We herein report a facile, one-step pyrolysis synthesis of photoluminescent carbon dots (CDs) using citric acid as the carbon source and lysine as the surface passivation reagent. The as-prepared CDs show narrow size distribution, excellent blue fluorescence and good photo-stability and water dispersivity. The fluorescence of the CDs was found to be effectively quenched by ferric (Fe(III)) ions with high selectivity via a photo-induced electron transfer (PET) process. Upon addition of phytic acid (PA) to the CDs/Fe(III) complex dispersion, the fluorescence of the CDs was significantly recovered, arising from the release of Fe(III) ions from the CDs/Fe(III) complex because PA has a higher affinity for Fe(III) ions compared to CDs. Furthermore, we developed an "off-on" fluorescence assay method for the detection of phytic acid using CDs/Fe(III) as a fluorescent probe. This probe enables the selective detection of PA with a linear range of 0.68-18.69 μM and a limit of detection (signal-to-noise ratio is 3) of 0.36 μM. The assay method demonstrates high selectivity, repeatability, stability and recovery ratio in the detection of the standard and real PA samples. We believe that the facile operation, low-cost, high sensitivity and selectivity render this CD-based "off-on" fluorescent probe an ideal sensing platform for the detection of PA. PMID:25829220

  12. Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure flames

    NASA Technical Reports Server (NTRS)

    Carter, Campbell D.; King, Galen B.; Laurendeau, Normand M.

    1990-01-01

    The efficacy of laser saturated fluorescence (LSF) for OH concentration measurements in high pressure flames was studied theoretically and experimentally. Using a numerical model describing the interaction of hydroxyl with nonuniform laser excitation, the effect of pressure on the validity of the balanced cross-rate model was studied along with the sensitivity of the depopulation of the laser-coupled levels to the ratio of rate coefficients describing: (1) electronic quenching to (sup 2) Sigma (+) (v double prime greater than 0), and (2) vibrational relaxation from v double prime greater than 0 to v double prime = 0. At sufficiently high pressures and near-saturated conditions, the total population of the laser-coupled levels reaches an asymptotic value, which is insensitive to the degree of saturation. When the ratio of electronic quenching to vibrational relaxation is small and the rate of coefficients for rotational transfer in the ground and excited electronic states are nearly the same, the balanced cross-rate model remains a good approximation for all pressures. When the above ratio is large, depopulation of the laser-coupled levels becomes significant at high pressures, and thus the balanced cross-rate model no longer holds. Under these conditions, however, knowledge of the depletion of the laser-coupled levels can be used to correct the model. A combustion facility for operation up to 20 atm was developed to allow LSF measurements of OH in high pressure flames. Using this facility, partial saturation in laminar high pressure (less than or equal to 12.3 atm) C2H6/O2/N2 flames was achieved. To evaluate the limits of the balanced cross-rate model, absorption and calibrated LSF measurements at 3.1 and 6.1 atm were compared. The fluorescence voltages were calibrated with absorption measurements in an atmospheric flame and corrected for their finite sensitivity to quenching with: (1) estimated quenching rate coefficients, and (2) an in situ measurement from a

  13. Fluorescence microscopy studies with a fluorescent glibenclamide derivative, a high-affinity blocker of pancreatic beta-cell ATP-sensitive K+ currents.

    PubMed

    Zünkler, Bernd J; Wos-Maganga, Maria; Panten, Uwe

    2004-04-15

    Hypoglycemic sulfonylureas (e.g. tolbutamide, glibenclamide) exert their stimulatory effects on pancreatic beta-cells by closure of ATP-sensitive K(+) (K(ATP)) channels. Pancreatic K(ATP) channels are composed of two subunits, a pore-forming inwardly rectifying K(+) channel (Kir6.2) subunit and a regulatory subunit (the sulfonylurea receptor of subtype 1 (SUR1)) in a (SUR1/Kir6.2)(4) stoichiometry. The aim of the present study was to characterize the interaction of green-fluorescent 3-[3-(4,4 difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-S-indacen-3-yl)propanamido] glibenclamide (Bodipy-glibenclamide) with pancreatic beta-cell K(ATP) channels using patch-clamp and fluorescence microscopy techniques. Bodipy-glibenclamide inhibited K(ATP) currents from the clonal insulinoma cell line RINm5F half-maximally at a concentration of 0.6nM. Using laser-scanning confocal microscopy Bodipy-glibenclamide was shown to induce a diffuse fluorescence across the RINm5F cell, but only about 17% of total Bodipy-glibenclamide-induced fluorescence intensity in RINm5F cells was due to specific binding to SUR1. Using fluorescence correlation spectroscopy, it could be demonstrated that the fluorescence label contributes to the protein binding and, therefore, possibly also to the non-specific binding of Bodipy-glibenclamide observed in RINm5F cells. Specific binding of Bodipy-glibenclamide to SUR1 in RINm5F cells might be localized to different intracellular structures (nuclear envelope, endoplasmic reticulum, Golgi compartment, insulin secretory granules) as well as to the plasma membrane. In conclusion, Bodipy-glibenclamide is a high-affinity blocker of pancreatic beta-cell K(ATP) currents and can be used for visualizing SUR1 in intact pancreatic beta-cells, although non-specific binding must be taken into account in confocal microscopy experiments on intact beta-cells. PMID:15041461

  14. Fluorescence techniques as suitable methods to discriminate wheat genotypes under drought and high-temperature conditions

    NASA Astrophysics Data System (ADS)

    Balota, Maria; Sowinska, Malgorzata; Buschmann, Claus; Lichtenthaler, Hartmut K.; Heisel, Francine; Babani, Fardbardha

    1999-05-01

    The chlorophyll fluorescence parameters Fv/Fo and Fd/Fs (equals Rfd690), related to the quantum conversion capacity at dark-adapted and light-adapted state of the photosynthetic apparatus respectively, have been evaluated as possible indicators of drought and heat tolerance in winter wheat. The measurements were carried out on primary leaves of 8-day old seedlings. Rfd values decreased in 8 days by 20% (p less than or equal to 0.01) only under severe water limitation and for the drought susceptible genotype. The photosynthetic apparatus was more sensitive to high temperature with both ratios, Fv/Fo and Rfd690, showing mean decrease (p less than or equal to 0.001) of 27% and 43%, respectively, in 5 days at 35 degrees Celsius. The susceptible cultivars decreased of up to 42% and 65% and the drought and heat tolerant genotypes only 7% and 12% for Fv/Fo and Rfd690, respectively. The Fv/Fo ratio correlated well (p less than or equal to 0.05 and p less than or equal to 0.01) with seedling responses to oxidative and osmotic stresses. The Rfd690-values correlated better with all physiological parameters considered and with the deviations from linear regression of drought susceptibility index DSI (r equals -0.84, p less than or equal to 0.01) on yield potential showing the highest potential to predict drought and heat tolerance. In addition the blue, green, red and far-red fluorescence have been determined using a laser-induced-fluorescence imaging system in entire seedlings of wheat and triticale grown under optimal laboratory conditions. The ratios F690/F740 and F440/F520 correlated well (p less than or equal to 0.05) with the total chlorophyll content (detected by the SPAD-chlorophyll-meter) and the specific leaf dry weight (SLDW) showing the potential of the both fluorescence ratios to discriminate genetic differences between cultivars for these leaf structural sources of water use efficiency (WUE) improvement.

  15. Chlorophyll Fluorescence Emissions of Vegetation Canopies From High Resolution Field Reflectance Spectra

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; Corp, L. A.; Daughtry, C. S. T.; Campbell, P. K. Entcheva

    2006-01-01

    A two-year experiment was performed on corn (Zea mays L.) crops under nitrogen (N) fertilization regimes to examine the use of hyperspectral canopy reflectance information for estimating chlorophyll fluorescence (ChlF) and vegetation production. Fluorescence of foliage in the laboratory has proven more rigorous than reflectance for correlation to plant physiology. Especially useful are emissions produced from two stable red and far-red chlorophyll ChlF peaks centered at 685V10 nm and 735V5 nm. Methods have been developed elsewhere to extract steady state solar induced fluorescence (SF) from apparent reflectance of vegetation canopies/landscapes using the Fraunhofer Line Depth (FLD) principal. Our study utilized these methods in conjunction with field-acquired high spectral resolution canopy reflectance spectra obtained in 2004 and 2005 over corn crops, as part of an ongoing multi-year experiment at the USDA/Agriculture Research Service in Beltsville, MD. A spectroradiometer (ASD-FR Fieldspec Pro, Analytical Spectral Devices, Inc., Boulder, CO) was used to measure canopy radiances 1 m above plant canopies with a 22deg field of view and a 0deg nadir view zenith angle. Canopy and plant measurements were made at the R3 grain fill reproductive stage on 3-4 replicate N application plots provided seasonal inputs of 280, 140, 70, and 28 kg N/ha. Leaf level measurements were also made which included ChlF, photosynthesis, and leaf constituents (photosynthetic pigment, carbon (C), and N contents). Crop yields were determined at harvest. SIF intensities for ChlF were derived directly from canopy reflectance spectra in specific narrowband regions associated with atmospheric oxygen absorption features centered at 688 and 760 nm. The red/far-red S F ratio derived from these field reflectance spectra successfully discriminated foliar pigment levels (e.g., total chlorophyll, Chl) associated with N application rates in both corn crops. This canopy-level spectral ratio was also

  16. Remote analyses of highly radioactive samples by x-ray fluorescence

    SciTech Connect

    Warrant, R.W.; Shurtliff, R.M.; Haskell, K.J.; Ryder, W.A.

    1991-09-11

    The Idaho Chemical Processing Plant (ICPP) is a multipurpose nuclear fuel and waste processing facility located at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. The plant is presently operated for the Department of Energy (DOE) by a subsidiary of Westinghouse Electric Company, Westinghouse Idaho Nuclear Company (WINCO). The facility receives and processes a large variety of reactor fuel types. The analysis of spent nuclear fuel reprocessing streams causes some unique problems for the analytical chemist. The major problems are the high levels of radioactivity, the complex solution of fuel components, fission products, dissolved cladding, and dissolver solutions as well as the need for rapid results. For the analysis of the heavy metals in these complex radioactive samples, the technique of wavelength dispersive X-ray fluorescence offers some distinct advantages. The method is specific, highly automated, and the sample requires minimum preparation.

  17. Ultrasensitive and High-Throughput Fluorescence Analysis of Droplet Contents with Orthogonal Line Confocal Excitation

    PubMed Central

    Jeffries, Gavin D.M.; Lorenz, Robert M.; Chiu, Daniel T.

    2010-01-01

    This paper describes a simple modification to traditional confocal fluorescence detection that greatly improves signal-to-noise (S/N) for the high-speed analysis of droplet streams. Rather than using the conventional epi geometry, illumination of the droplet was in the form of a line that is orthogonal to both the direction of flow and the light-collection objective. In contrast to the epi geometry where we observed high levels of scattering background from the droplets, we detected more than 10-fold less background (depending on the laser power used) when orthogonal-line-confocal illumination was used. We characterized this improvement using a standard microfluidic platform over a range of analyte concentrations, and observed an improvement in limits of detection of greater than 10. Using this method, we were able to analyze pico-molar concentrations of analytes contained within picoliter-volume droplets at a rate of greater than 350 droplets per second. PMID:21062029

  18. Highly efficient electroluminescence from a solution-processable thermally activated delayed fluorescence emitter

    SciTech Connect

    Wada, Yoshimasa; Kubo, Shosei; Suzuki, Katsuaki; Kaji, Hironori; Shizu, Katsuyuki; Tanaka, Hiroyuki; Adachi, Chihaya

    2015-11-02

    We developed a thermally activated delayed fluorescence (TADF) emitter, 2,4,6-tris(4-(9,9-dimethylacridan-10-yl)phenyl)-1,3,5-triazine (3ACR-TRZ), suitable for use in solution-processed organic light-emitting diodes (OLEDs). When doped into 4,4′-bis(carbazol-9-yl)biphenyl (CBP) host at 16 wt. %, 3ACR-TRZ showed a high photoluminescence quantum yield of 98%. Transient photoluminescence decay measurements of the 16 wt. % 3ACR-TRZ:CBP film confirmed that 3ACR-TRZ exhibits efficient TADF with a triplet-to-light conversion efficiency of 96%. This high conversion efficiency makes 3ACR-TRZ attractive as an emitting dopant in OLEDs. Using 3ACR-TRZ as an emitter, we fabricated a solution-processed OLED exhibiting a maximum external quantum efficiency of 18.6%.

  19. Highly efficient electroluminescence from a solution-processable thermally activated delayed fluorescence emitter

    NASA Astrophysics Data System (ADS)

    Wada, Yoshimasa; Shizu, Katsuyuki; Kubo, Shosei; Suzuki, Katsuaki; Tanaka, Hiroyuki; Adachi, Chihaya; Kaji, Hironori

    2015-11-01

    We developed a thermally activated delayed fluorescence (TADF) emitter, 2,4,6-tris(4-(9,9-dimethylacridan-10-yl)phenyl)-1,3,5-triazine (3ACR-TRZ), suitable for use in solution-processed organic light-emitting diodes (OLEDs). When doped into 4,4'-bis(carbazol-9-yl)biphenyl (CBP) host at 16 wt. %, 3ACR-TRZ showed a high photoluminescence quantum yield of 98%. Transient photoluminescence decay measurements of the 16 wt. % 3ACR-TRZ:CBP film confirmed that 3ACR-TRZ exhibits efficient TADF with a triplet-to-light conversion efficiency of 96%. This high conversion efficiency makes 3ACR-TRZ attractive as an emitting dopant in OLEDs. Using 3ACR-TRZ as an emitter, we fabricated a solution-processed OLED exhibiting a maximum external quantum efficiency of 18.6%.

  20. Detection of ultra-high energy cosmic ray showers with a single-pixel fluorescence telescope

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Malacari, M.; Bertaina, M.; Casolino, M.; Dawson, B.; Horvath, P.; Hrabovsky, M.; Jiang, J.; Mandat, D.; Matalon, A.; Matthews, J. N.; Motloch, P.; Palatka, M.; Pech, M.; Privitera, P.; Schovanek, P.; Takizawa, Y.; Thomas, S. B.; Travnicek, P.; Yamazaki, K.

    2016-02-01

    We present a concept for large-area, low-cost detection of ultra-high energy cosmic rays (UHECRs) with a Fluorescence detector Array of Single-pixel Telescopes (FAST), addressing the requirements for the next generation of UHECR experiments. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. We report first results of a FAST prototype installed at the Telescope Array site, consisting of a single 200 mm photomultiplier tube at the focal plane of a 1 m2 Fresnel lens system taken from the prototype of the JEM-EUSO experiment. The FAST prototype took data for 19 nights, demonstrating remarkable operational stability. We detected laser shots at distances of several kilometers as well as 16 highly significant UHECR shower candidates.

  1. High performance organic ultraviolet photodetector with efficient electroluminescence realized by a thermally activated delayed fluorescence emitter

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Zhou, Dianli; Huang, Jiang; Yu, Junsheng

    2015-07-01

    A high performance organic ultraviolet (UV) photodetector with efficient electroluminescence (EL) was obtained by using a thermally activated delayed fluorescence (TADF) emitter of (4s,6s)-2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN). An exciton adjusting layer (EAL) was delicately designed to construct an energy-level-aligned heterojunction with 4CzIPN. As a result, the bi-functional device exhibited a high detectivity of 1.4 × 1012 Jones under 350 nm UV light. Moreover, our device exhibited efficient EL emission utilizing the merit of reverse intersystem crossing process from triplet to singlet excitons of 4CzIPN, showing a maximum luminance, current efficiency, and power efficiency of 26370 cd/m2, 8.2 cd/A, and 4.9 lm/W, respectively. This work arouses widespread interest in constructing efficient bi-functional device based on TADF emitter and EAL structure.

  2. Fluorescence Spectroscopy as a Rapid, High-Resolution Tool for Detecting Biomolecules in Glacial Ice

    NASA Astrophysics Data System (ADS)

    Rohde, R. A.; Price, P. B.; Bramall, N.; Bay, R.

    2007-12-01

    We have developed new instruments utilizing the intrinsic fluorescence of specific biomolecules as a sensitive, non-destructive tool for detecting microorganisms. Using a 224-nm excitation, we detect protein-bound tryptophan (an amino acid present in all cells) at a detection threshold of approximately 1 cell per laser excitation volume and a duty cycle of 100 ms per measurement. Tryptophan is easily distinguished from inorganic backgrounds due to its characteristic spectral shape and ~300 times higher intensity per unit volume than typical inorganic compounds. A different excitation was also used to detect coenzyme F420, a characteristic marker for viable methanogenic cells. At the National Ice Core Laboratory, systematic scans of a 1 meter core sections took about 15 minutes and generated ~5000 measurements per meter. The high-resolution of this work revealed strong variability of microbial content on a scale of cm within individual cores, which suggests that microbial deposition at polar sites is strongly influenced by meteorological events (e.g. storms) on subannual and interannual scales. In addition, high levels of microbes are found to correlate with anomalously high concentrations of metabolic gases (e.g. methane, nitrous oxide, and 18O/16O of O2), suggesting that many of the isolated "gas artifacts" identified in deep ice cores are the accumulated waste products of in situ metabolism. This means that fluorescence spectroscopy may be a useful tool for identifying regions where high microbial concentrations have contaminated gas records. The existing instrumentation is suitcase portable and could be easily deployed in a variety of environments. Future versions of these instruments may be practical for continuous, rapid scans of entire cores, as an on-site deployable technique for characterizing microbial abundances in ice, and for searching for as few as 1 microbe per cm3 in ice-bound planets. This work was supported by NSF grant ANT-0440609.

  3. High resolution X-ray fluorescence imaging for a microbeam radiation therapy treatment planning system

    NASA Astrophysics Data System (ADS)

    Chtcheprov, Pavel; Inscoe, Christina; Burk, Laurel; Ger, Rachel; Yuan, Hong; Lu, Jianping; Chang, Sha; Zhou, Otto

    2014-03-01

    Microbeam radiation therapy (MRT) uses an array of high-dose, narrow (~100 μm) beams separated by a fraction of a millimeter to treat various radio-resistant, deep-seated tumors. MRT has been shown to spare normal tissue up to 1000 Gy of entrance dose while still being highly tumoricidal. Current methods of tumor localization for our MRT treatments require MRI and X-ray imaging with subject motion and image registration that contribute to the measurement error. The purpose of this study is to develop a novel form of imaging to quickly and accurately assist in high resolution target positioning for MRT treatments using X-ray fluorescence (XRF). The key to this method is using the microbeam to both treat and image. High Z contrast media is injected into the phantom or blood pool of the subject prior to imaging. Using a collimated spectrum analyzer, the region of interest is scanned through the MRT beam and the fluorescence signal is recorded for each slice. The signal can be processed to show vascular differences in the tissue and isolate tumor regions. Using the radiation therapy source as the imaging source, repositioning and registration errors are eliminated. A phantom study showed that a spatial resolution of a fraction of microbeam width can be achieved by precision translation of the mouse stage. Preliminary results from an animal study showed accurate iodine profusion, confirmed by CT. The proposed image guidance method, using XRF to locate and ablate tumors, can be used as a fast and accurate MRT treatment planning system.

  4. Highly CO2 sensitive extruded fluorescent plastic indicator film based on HPTS.

    PubMed

    Mills, Andrew; Yusufu, Dilidaer

    2016-02-01

    Highly-sensitive optical fluorescent extruded plastic films are reported for the detection of gaseous and dissolved CO2. The pH-sensitive fluorescent dye used is 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS, PTS(-)) coated on the surface of hydrophilic fumed silica and the base is tetrabutylammonium hydroxide (TBAH). The above components are used to create an HPTS pigment (i.e. HPTS/SiO2/TBAH) with a high CO2 sensitivity (%CO2 (S = 1/2) = 0.16%) and fast 50% response (t50↓) = 2 s and recovery (t50↑) = 5 s times. Highly CO2-sensitive plastic films are then fabricated, via the extrusion of the HPTS pigment powder in low-density polyethylene (LDPE). As with the HPTS-pigment, the luminescence intensity (at 515 nm) and absorbance (at 475 nm) of the HPTS plastic film decreases as the %CO2 in the ambient gas phase increases. The HPTS plastic film exhibits a high CO2 sensitivity, %CO2 (S = 1/2), of 0.29%, but a response time <2 min and recovery time <40 min, which is slower than that of the HPTS pigment. The HPTS plastic film is very stable under ambient conditions, (with a shelf life >six month when stored in the dark but under otherwise ambient conditions). Moreover, the HPTS-LDPE film is stable in water, salt solution and even in acid (pH = 2), and in each of these media it can be used to detect dissolved CO2. PMID:26677800

  5. Subunits of highly Fluorescent Protein R-Phycoerythrin as Probes for Cell Imaging and Single-Molecule Detection

    SciTech Connect

    Dragan Isailovic

    2005-12-17

    The purposes of our research were: (1) To characterize subunits of highly fluorescent protein R-Phycoerythrin (R-PE) and check their suitability for single-molecule detection (SMD) and cell imaging, (2) To extend the use of R-PE subunits through design of similar proteins that will be used as probes for microscopy and spectral imaging in a single cell, and (3) To demonstrate a high-throughput spectral imaging method that will rival spectral flow cytometry in the analysis of individual cells. We first demonstrated that R-PE subunits have spectroscopic and structural characteristics that make them suitable for SMD. Subunits were isolated from R-PE by high-performance liquid chromatography (HPLC) and detected as single molecules by total internal reflection fluorescence microscopy (TIRFM). In addition, R-PE subunits and their enzymatic digests were characterized by several separation and detection methods including HPLC, capillary electrophoresis, sodium dodecyl sulfate-polyacrilamide gel electrophoresis (SDS-PAGE) and HPLC-electrospray ionization mass spectrometry (ESI-MS). Favorable absorption and fluorescence of the R-PE subunits and digest peptides originate from phycoerythrobilin (PEB) and phycourobilin (PUB) chromophores that are covalently attached to cysteine residues. High absorption coefficients and strong fluorescence (even under denaturing conditions), broad excitation and emission fluorescence spectra in the visible region of electromagnetic spectrum, and relatively low molecular weights make these molecules suitable for use as fluorescence labels of biomolecules and cells. We further designed fluorescent proteins both in vitro and in vivo (in Escherichia coli) based on the highly specific attachment of PEB chromophore to genetically expressed apo-subunits of R-PE. In one example, apo-alpha and apo-beta R-PE subunits were cloned from red algae Polisiphonia boldii (P. boldii), and expressed in E. coli. Although expressed apo-subunits formed inclusion

  6. Highly sensitive immunoassay of protein molecules based on single nanoparticle fluorescence detection in a nanowell

    NASA Astrophysics Data System (ADS)

    Han, Jin-Hee; Kim, Hee-Joo; Lakshmana, Sudheendra; Gee, Shirley J.; Hammock, Bruce D.; Kennedy, Ian M.

    2011-03-01

    A nanoarray based-single molecule detection system was developed for detecting proteins with extremely high sensitivity. The nanoarray was able to effectively trap nanoparticles conjugated with biological sample into nanowells by integrating with an electrophoretic particle entrapment system (EPES). The nanoarray/EPES is superior to other biosensor using immunoassays in terms of saving the amounts of biological solution and enhancing kinetics of antibody binding due to reduced steric hindrance from the neighboring biological molecules. The nanoarray patterned onto a layer of PMMA and LOL on conductive and transparent indium tin oxide (ITO)-glass slide by using e-beam lithography. The suspension of 500 nm-fluorescent (green emission)-carboxylated polystyrene (PS) particles coated with protein-A followed by BDE 47 polyclonal antibody was added to the chip that was connected to the positive voltage. The droplet was covered by another ITO-coated-glass slide and connected to a ground terminal. After trapping the particles into the nanowells, the solution of different concentrations of anti-rabbit- IgG labeled with Alexa 532 was added for an immunoassay. A single molecule detection system could quantify the anti-rabbit IgG down to atto-mole level by counting photons emitted from the fluorescent dye bound to a single nanoparticle in a nanowell.

  7. Development of a High Output Fluorescent Light Module for the Commercial Plant Biotechnology Facility

    NASA Technical Reports Server (NTRS)

    Turner, Mark; Zhou, Wei-Jia; Doty, Laura (Technical Monitor)

    2000-01-01

    To maximize the use of available resources provided onboard the International Space Station, the development of an efficient lighting 1 system is critical to the overall performance of the CPBF. Not only is it important to efficiently generate photon energy, but thermal loads on the CPBF Temperature and Humidity Control System must be minimized. By utilizing optical coatings designed to produce highly diffuse reflectance in the visible wavelengths while minimizing reflectance in the infrared region, the design of the fluorescent light module for the CPBF is optimized for maximum photon flux, spatial uniformity and energy efficiency. Since the Fluorescent Light Module must be fully enclosed to meet (ISS) requirements for containment of particulates and toxic materials, heat removal from the lights presented some unique design challenges. By using the Express Rack moderate C, temperature-cooling loop, heat is rejected by means of a liquid/air coolant manifold. Heat transfer to the manifold is performed by conduction using copper fins, by forced air convection using miniature fans, and by radiation using optically selective coatings that absorb in the infrared wavelengths. Using this combination of heat transfer mechanisms builds in redundancy to prevent thermal build up and premature bulb failure.

  8. Analysis of abamectin residues in avocados by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Hernández-Borges, Javier; Ravelo-Pérez, Lidia M; Hernández-Suárez, Estrella M; Carnero, Aurelio; Rodríguez-Delgado, Miguel Angel

    2007-09-21

    In this work an analytical method for the determination of abamectin residues in avocados is developed using high-performance liquid chromatography (HPLC) with fluorescence (FL) detection. A pre-column derivatization with trifluoroacetic anhydride (TFAA) and N-methylimidazole (NMIM) was carried out. The mobile phase consisted of water, methanol and acetonitrile (5:47.5:47.5 v/v/v) and was pumped at a rate of 1 mL/min (isocratic elution). The fluorescence detector was set at an excitation wavelength of 365 nm and an emission wavelength of 470 nm. Homogenized avocado samples were extracted twice with acetonitrile:water 8:2 (v/v) and cleaned using C(18) solid-phase extraction (SPE) cartridges. Recovery values were in the range 87-98% with RSD values lower than 13%. The limits of detection (LODs) and quantification (LOQs) of the whole method were 0.001 and 0.003 mg/kg, respectively. These values are lower than the maximum residue limit (MRL) established by the European Union (EU) and the Spanish legislation in avocado samples. PMID:17681518

  9. Strategy for high recovery of fluorescence from quencher assembled quantum-dot donor

    NASA Astrophysics Data System (ADS)

    Kim, Joong Hyun; Ozkan, Mihrimah

    2014-05-01

    We fabricated 1.4 nm nanogold and molecular dark quencher assembled quantum dot for estimating their performances in a target specific conformal changing molecular event. For the assembling, we immobilized each acceptor linked molecular beacons using interaction between biotin at molecular beacon and streptavidins on quantum dot. Through optical analysis of the purified hybrids of the acceptors and quantum dots, we could estimate numbers of the assembled acceptors per quantum dot and their efficiency of energy transfer depending on conformal changes of molecular beacons. We obtained maximum 95 % and 78% of energy transfer efficiency with 17 metallic nanocrystals and 41 black hole quencher 2, the molecular dark quencher per single quantum dote, respectively. Molecular beacons form linear helix from a hair-pin structure by hybridizing with complementary DNA. In the presence of target DNA, energy transfer efficiency of the organic quencher was 22 % while only 2 % decreased efficiency was obtained with the nanogold, indicating higher fluorescence recovery with the ordinary organic quencher. Considering the relatively low assembled number and the large size, a steric hindrance might be attributed to the low fluorescence recovery. Since the energy transfer efficiency obtained with the nanogold at a fixed distance is high enough, it would be still effective to apply nanogold a system, where nanogold is removed permanently from quantum dots.

  10. High Resolution Fluorescence Imaging of Cancers Using Lanthanide Ion-Doped Upconverting Nanocrystals

    PubMed Central

    Naccache, Rafik; Rodríguez, Emma Martín; Bogdan, Nicoleta; Sanz-Rodríguez, Francisco; de la Cruz, Maria del Carmen Iglesias; de la Fuente, Ángeles Juarranz; Vetrone, Fiorenzo; Jaque, Daniel; Solé, José García; Capobianco, John A.

    2012-01-01

    During the last decade inorganic luminescent nanoparticles that emit visible light under near infrared (NIR) excitation (in the biological window) have played a relevant role for high resolution imaging of cancer. Indeed, semiconductor quantum dots (QDs) and metal nanoparticles, mostly gold nanorods (GNRs), are already commercially available for this purpose. In this work we review the role which is being played by a relatively new class of nanoparticles, based on lanthanide ion doped nanocrystals, to target and image cancer cells using upconversion fluorescence microscopy. These nanoparticles are insulating nanocrystals that are usually doped with small percentages of two different rare earth (lanthanide) ions: The excited donor ions (usually Yb3+ ion) that absorb the NIR excitation and the acceptor ions (usually Er3+, Ho3+ or Tm3+), that are responsible for the emitted visible (or also near infrared) radiation. The higher conversion efficiency of these nanoparticles in respect to those based on QDs and GNRs, as well as the almost independent excitation/emission properties from the particle size, make them particularly promising for fluorescence imaging. The different approaches of these novel nanoparticles devoted to “in vitro” and “in vivo” cancer imaging, selective targeting and treatment are examined in this review. PMID:24213500

  11. High performance magnesium anode in paper-based microfluidic battery, powering on-chip fluorescence assay

    PubMed Central

    Koo, Youngmi; Sankar, Jagannathan; Yun, Yeoheung

    2014-01-01

    A high power density and long-lasting stable/disposable magnesium battery anode was explored for a paper-based fluidic battery to power on-chip functions of various Point of Care (POC) devices. The single galvanic cell with magnesium foil anode and silver foil cathode in Origami cellulose chip provided open circuit potential, 2.2 V, and power density, 3.0 mW/cm2. A paper-based fluidic galvanic cell was operated with one drop of water (80 μl) and continued to run until it was dry. To prove the concept about powering on-chip POC devices, two-serial galvanic cells are developed and incorporated with a UV-light emitting diode (λ = 365 nm) and fluorescence assay for alkaline phosphatase reaction. Further, detection using smart phones was performed for quantitative measurement of fluorescent density. To conclude, a magnesium-based fluidic battery paper chip was extremely low-cost, required minute sample volumes, was easy to dispose of, light weight, easy to stack, store and transport, easy to fabricate, scalable, and has faster analysis times. PMID:25332741

  12. Highly stable antibacterial silver nanoparticles as selective fluorescent sensor for Fe3+ ions

    NASA Astrophysics Data System (ADS)

    Makwana, Bharat A.; Vyas, Disha J.; Bhatt, Keyur D.; Jain, Vinod K.; Agrawal, Yadvendra K.

    2015-01-01

    Calix[4]resorcinarene polyhydrazide (CPH) protected water dispersible fluorescent silver nanaoparticles (AgNps) were prepared by one-pot method using water soluble CPH and AgNO3. (CPH) bearing hydrazide group on its periphery acts as a reducing agent and its web type of structure as a stabilizing agent for the formation of calix protected silver nanoparticles (CPH-AgNps). CPH-AgNps were found to be highly stable over 120 days at room temperature and at varied pH. CPH-AgNps were characterized by UV/Vis-spectroscopy, particle size analyzer (PSA), transmission electron microscopy (TEM) and Energy dispersive X-ray analysis (EDX). Duly characterized nanoparticles were explored for their application as sensitive and selective fluorescent chemosensors for various metal ions. It was found that nanoparticles were selective and sensitive only for Fe3+ ions with the linear range of detection from 0.1 μM to 10 μM. CPH-AgNps were also found to exhibit good antimicrobial activity when compared with standard Chloramphenicol. The selectivity and antimicrobial activity of CPH-AgNps suggests its potential use as a sensor for Fe(III) ions in ecosystems prone to industrial pollution and as an antimicrobial agent in biological applications.

  13. Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains.

    PubMed

    Schwarz, Martin K; Scherbarth, Annemarie; Sprengel, Rolf; Engelhardt, Johann; Theer, Patrick; Giese, Guenter

    2015-01-01

    In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain. PMID:25993380

  14. Fluorescence correlation spectroscopy to measure the metabolism of high-density lipoprotein

    NASA Astrophysics Data System (ADS)

    Deitrick, Russell; Gibson, Emily; Razzaghi, Hamid

    2009-10-01

    High-density lipoprotein (HDL), referred to as the ``good cholesterol'', carries free cholesterol to the liver to be filtered from the bloodstream and is important to our understanding of atherosclerosis. HDL is metabolized in part by the enzyme Endothelial Lipase (EL). With this project we will use fluorescence correlation spectroscopy (FCS) to study the metabolism of HDL by EL comparing wild type with different genetic mutations. FCS is an advanced microscopy technique in which we record fluctuations in the fluorescence of dye-labeled molecules (in this case, HDL labeled with Nile Red) as they freely diffuse through a small focal volume. This data can be analyzed mathematically using the cross-correlation function, from which we can ultimately ascertain much information. In our case, we are interested in the diffusion coefficient which, via the Stokes-Einstein relation for a sphere, we can determine the size of HDL as it undergoes the process of metabolism. Preliminary results seem to indicate that the metabolic process occurs very quickly, that the final size of HDL depends primarily on the concentration of EL, and that the wild and mutant variants of EL have a similar effectiveness. In following experiments, we hope to investigate these relationships further.

  15. High performance magnesium anode in paper-based microfluidic battery, powering on-chip fluorescence assay.

    PubMed

    Koo, Youngmi; Sankar, Jagannathan; Yun, Yeoheung

    2014-09-01

    A high power density and long-lasting stable/disposable magnesium battery anode was explored for a paper-based fluidic battery to power on-chip functions of various Point of Care (POC) devices. The single galvanic cell with magnesium foil anode and silver foil cathode in Origami cellulose chip provided open circuit potential, 2.2 V, and power density, 3.0 mW/cm(2). A paper-based fluidic galvanic cell was operated with one drop of water (80 μl) and continued to run until it was dry. To prove the concept about powering on-chip POC devices, two-serial galvanic cells are developed and incorporated with a UV-light emitting diode (λ = 365 nm) and fluorescence assay for alkaline phosphatase reaction. Further, detection using smart phones was performed for quantitative measurement of fluorescent density. To conclude, a magnesium-based fluidic battery paper chip was extremely low-cost, required minute sample volumes, was easy to dispose of, light weight, easy to stack, store and transport, easy to fabricate, scalable, and has faster analysis times. PMID:25332741

  16. Highly sensitive cell imaging "Off-On" fluorescent probe for mitochondria and ATP.

    PubMed

    Srivastava, Priyanka; Razi, Syed S; Ali, Rashid; Srivastav, Saurabh; Patnaik, Satyakam; Srikrishna, Saripella; Misra, Arvind

    2015-07-15

    A smart Off-On molecular scaffold/fluorescent probe 1 has been designed and synthesized. The probe has shown considerable photostability, cell permeability, organelle specificity and selectivity for ATP. The multicolor live cell imaging experiments in HeLa cells showed high selectivity of probe 1 for mitochondria with fluorescence "turn-on" response. As a proof of concept and promising prospects for application in biological sciences probe 1 has been utilized to detect ATP sensitively in a partial aqueous medium and intracellularly in HeLa cells. The favorable interaction between triphosphate unit of ATP and piperazine N atoms of probe 1 is attributed to synergistic effects of H-bonding and electrostatic interactions that encouraged the CH-π and π→π stacking between anthracene and purine rings. Consequently, the observed enhanced "turn-on" emission and a naked-eye sensitive blue-green color in the medium is attributable to arrest in photoinduced electron transfer (PET) process. PMID:25727034

  17. Fluorescent-Protein Stabilization and High-Resolution Imaging of Cleared, Intact Mouse Brains

    PubMed Central

    Schwarz, Martin K.; Scherbarth, Annemarie; Sprengel, Rolf; Engelhardt, Johann; Theer, Patrick; Giese, Guenter

    2015-01-01

    In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain. PMID:25993380

  18. The exceptionally high reactivity of Cys 621 is critical for electrophilic activation of the sensory nerve ion channel TRPA1.

    PubMed

    Bahia, Parmvir K; Parks, Thomas A; Stanford, Katherine R; Mitchell, David A; Varma, Sameer; Stevens, Stanley M; Taylor-Clark, Thomas E

    2016-06-01

    Activation of the sensory nerve ion channel TRPA1 by electrophiles is the key mechanism that initiates nociceptive signaling, and leads to defensive reflexes and avoidance behaviors, during oxidative stress in mammals. TRPA1 is rapidly activated by subtoxic levels of electrophiles, but it is unclear how TRPA1 outcompetes cellular antioxidants that protect cytosolic proteins from electrophiles. Here, using physiologically relevant exposures, we demonstrate that electrophiles react with cysteine residues on mammalian TRPA1 at rates that exceed the reactivity of typical cysteines by 6,000-fold and that also exceed the reactivity of antioxidant enzymes. We show that TRPA1 possesses a complex reactive cysteine profile in which C621 is necessary for electrophile-induced binding and activation. Modeling of deprotonation energies suggests that K620 contributes to C621 reactivity and mutation of K620 alone greatly reduces the effect of electrophiles on TRPA1. Nevertheless, binding of electrophiles to C621 is not sufficient for activation, which also depends on the function of another reactive cysteine (C665). Together, our results demonstrate that TRPA1 acts as an effective electrophilic sensor because of the exceptionally high reactivity of C621. PMID:27241698

  19. High-Level Incorporation of Silver in Gold Nanoclusters: Fluorescence Redshift upon Interaction with Hydrogen Peroxide and Fluorescence Enhancement with Herbicide.

    PubMed

    Guan, Guijian; Cai, Yongqing; Liu, Shuhua; Yu, Haidong; Bai, Shiqiang; Cheng, Yuan; Tang, Tao; Bharathi, M S; Zhang, Yong-Wei; Han, Ming-Yong

    2016-01-26

    High-level incorporation of Ag in Au nanoclusters (NCs) is conveniently achieved by controlling the concentration of Ag(+) in the synthesis of bovine serum albumin (BSA)-protected Au NCs, and the resulting structure is determined to be bimetallic Ag28 Au10-BSA NCs through a series of characterizations including energy-dispersive X-ray spectroscopy, mass spectroscopy, and X-ray photoelectron spectroscopy, together with density functional theory simulations. Interestingly, the Ag28 Au10 NCs exhibit a significant fluorescence redshift rather than quenching upon interaction with hydrogen peroxide, providing a new approach to the detection of hydrogen peroxide through direct comparison of their fluorescence peaks. Furthermore, the Ag28 Au10 NCs are also used for the sensitive and selective detection of herbicide through fluorescence enhancement. The detection limit for herbicide (0.1 nm) is far below the health value established by the U.S. Environmental Protection Agency; such sensitive detection was not achieved by using AuAg NCs with low-level incorporation of Ag or by using the individual metal NCs. PMID:26692116

  20. Highly sensitive and selective fluorescent sensor for zinc ion based on a new diarylethene with a thiocarbamide unit.

    PubMed

    Zhang, Congcong; Pu, Shouzhi; Sun, Zhiyuan; Fan, Congbin; Liu, Gang

    2015-04-01

    A new photochromic diarylethene has been synthesized by using thiocarbamide as a functional group and perfluordiarylethene as photoswitching trigger via a salicylidene Schiff base linkage. The diarylethene could be used as a multicontrollable fluorescence switch when triggered by base/acid, light, and metal ions. The results showed that the absorption and fluorescence characteristics of the diarylethene exhibited sequence-dependent responses through efficient interaction of specific salicylidene Schiff base-linked thiocarbamide unit with tetrabutylammonium hydroxide/trifluoroacetic acid and photoirradiation. Moreover, the diarylethene was highly selective toward Zn(2+) ion with obvious fluorescence change from light blue to bright yellow in acetonitrile. The deprotonated form of the diarylethene had typical photochromism, but it showed an irreversible photocyclization reaction after binding with Zn(2+). Finally, two logic circuits were constructed by using the fluorescence intensity as the output signal with the inputs of the combinational stimuli of light and chemical species. PMID:25760313

  1. A highly purified, fluorescently labeled in vitro translation system for single-molecule studies of protein synthesis.

    PubMed

    Fei, Jingyi; Wang, Jiangning; Sternberg, Samuel H; MacDougall, Daniel D; Elvekrog, Margaret M; Pulukkunat, Dileep K; Englander, Michael T; Gonzalez, Ruben L

    2010-01-01

    Single-molecule fluorescence resonance energy transfer (smFRET) has emerged as a powerful tool for mechanistic investigations of increasingly complex biochemical systems. Recently, we and others have successfully used smFRET to directly investigate the role of structural dynamics in the function and regulation of the cellular protein synthesis machinery. A significant challenge to these experiments, and to analogous experiments in similarly complex cellular machineries, is the need for specific and efficient fluorescent labeling of the biochemical system at locations that are both mechanistically informative and minimally perturbative to the biological activity. Here, we describe the development of a highly purified, fluorescently labeled in vitro translation system that we have successfully designed for smFRET studies of protein synthesis. The general approaches we outline should be amenable to single-molecule fluorescence studies of other complex biochemical systems. PMID:20580967

  2. Model systems for chlorophyll photochemistry: retention of fluorescence at high chlorophyll density at a hydrophobic-hydrophilic interface

    SciTech Connect

    Seely, G.R.; Senthilathipan, V.

    1983-01-01

    Many model systems containing chlorophyll show concentration quenching of fluorescence at quite moderate occupancies of the available phase space. A new kind of model system has been introduced, involving adsorption of chlorophyll and certain other amphiphilic substances to particles of polyethylene swollen with hydrocarbons, in which fluorescence is retained at coverages approaching a monolayer. In the example illustrated, the fluorescence lifetime is undiminished in spite of evidence for the presence of associated chlorophyll species along with the monomer. The preservation of fluorescence is probably owing to a combination of high viscosity in the swollen polyethylene phase and the presence of a surfactant to keep the chlorophyll in monomeric and well-defined associated forms.

  3. Model systems for chlorophyll photochemistry: retention of fluorescence at high chlorophyll density at a hydrophobic-hydrophilic interface

    SciTech Connect

    Seely, G.R.; Senthilathipan, V.

    1982-01-01

    Many model systems containing chlorophyll show concentration quenching of fluorescence at quite moderate occupancies of the available phase space. A new kind of model system has been introduced, involving adsorption of chlorophyll and certain other amphiphilic substances to particles of polyethylene swollen with hydrocarbons, in which fluorescence is retained at coverages approaching a monolayer. In the example illustrated, the fluorescence lifetime is undiminished in spite of evidence for the prescence of associated chlorophyll species along with the monomer. The preservation of fluorescence is probably owing to a combination of high viscosity in the swollen polyethylene phase and the presence of a surfactant to keep the chlorophyll in monomeric and well-defined associated forms.

  4. High-Sensitivity C-Reactive Protein as a Predictor of Cardiovascular Events after ST-Elevation Myocardial Infarction

    PubMed Central

    Ribeiro, Daniel Rios Pinto; Ramos, Adriane Monserrat; Vieira, Pedro Lima; Menti, Eduardo; Bordin, Odemir Luiz; de Souza, Priscilla Azambuja Lopes; de Quadros, Alexandre Schaan; Portal, Vera Lúcia

    2014-01-01

    Background The association between high-sensitivity C-reactive protein and recurrent major adverse cardiovascular events (MACE) in patients with ST-elevation myocardial infarction who undergo primary percutaneous coronary intervention remains controversial. Objective To investigate the potential association between high-sensitivity C-reactive protein and an increased risk of MACE such as death, heart failure, reinfarction, and new revascularization in patients with ST-elevation myocardial infarction treated with primary percutaneous coronary intervention. Methods This prospective cohort study included 300 individuals aged >18 years who were diagnosed with ST-elevation myocardial infarction and underwent primary percutaneous coronary intervention at a tertiary health center. An instrument evaluating clinical variables and the Thrombolysis in Myocardial Infarction (TIMI) and Global Registry of Acute Coronary Events (GRACE) risk scores was used. High-sensitivity C-reactive protein was determined by nephelometry. The patients were followed-up during hospitalization and up to 30 days after infarction for the occurrence of MACE. Student's t, Mann-Whitney, chi-square, and logistic regression tests were used for statistical analyses. P values of ≤0.05 were considered statistically significant. Results The mean age was 59.76 years, and 69.3% of patients were male. No statistically significant association was observed between high-sensitivity C-reactive protein and recurrent MACE (p = 0.11). However, high-sensitivity C-reactive protein was independently associated with 30-day mortality when adjusted for TIMI [odds ratio (OR), 1.27; 95% confidence interval (CI), 1.07-1.51; p = 0.005] and GRACE (OR, 1.26; 95% CI, 1.06-1.49; p = 0.007) risk scores. Conclusion Although high-sensitivity C-reactive protein was not predictive of combined major cardiovascular events within 30 days after ST-elevation myocardial infarction in patients who underwent primary angioplasty and stent

  5. Experimental technique for studying high-temperature phase equilibria in reactive molten metal based systems

    NASA Astrophysics Data System (ADS)

    Ermoline, Alexandre

    The general objective of this work is to develop an experimental technique for studying the high-temperature phase compositions and phase equilibria in molten metal-based binary and ternary systems, such as Zr-O-N, B-N-O, Al-O, and others. A specific material system of Zr-O-N was selected for studying and testing this technique. The information about the high-temperature phase equilibria in reactive metal-based systems is scarce and their studying is difficult because of chemical reactions occurring between samples and essentially any container materials, and causing contamination of the system. Containerless microgravity experiments for studying equilibria in molten metal-gas systems were designed to be conducted onboard of a NASA KC-135 aircraft flying parabolic trajectories. A uniaxial apparatus suitable for acoustic levitation, laser heating, and splat quenching of small samples was developed and equipped with computer-based controller and optical diagnostics. Normal-gravity tests were conducted to determine the most suitable operating parameters of the levitator by direct observations of the levitated samples, as opposed to more traditional pressure mapping of the acoustic field. The size range of samples that could be reliably heated and quenched in this setup was determined to be on the order of 1--3 mm. In microgravity experiments, small spherical specimens (1--2 mm diameter), prepared as pressed, premixed solid components, ZrO2, ZrN, and Zr powders, were acoustically levitated inside an argon-filled chamber at one atmosphere and heated by a CO2 laser. The levitating samples could be continuously laser heated for about 1 sec, resulting in local sample melting. The sample stability in the vertical direction was undisturbed by simultaneous laser heating. Oscillations of the levitating sample in the horizontal direction increased while it was heated, which eventually resulted in the movement of the sample away from its stable levitation position and the laser

  6. AltitudeOmics: Resetting of Cerebrovascular CO2 Reactivity Following Acclimatization to High Altitude

    PubMed Central

    Fan, Jui-Lin; Subudhi, Andrew W.; Duffin, James; Lovering, Andrew T.; Roach, Robert C.; Kayser, Bengt

    2016-01-01

    Previous studies reported enhanced cerebrovascular CO2 reactivity upon ascent to high altitude using linear models. However, there is evidence that this response may be sigmoidal in nature. Moreover, it was speculated that these changes at high altitude are mediated by alterations in acid-base buffering. Accordingly, we reanalyzed previously published data to assess middle cerebral blood flow velocity (MCAv) responses to modified rebreathing at sea level (SL), upon ascent (ALT1) and following 16 days of acclimatization (ALT16) to 5260 m in 21 lowlanders. Using sigmoid curve fitting of the MCAv responses to CO2, we found the amplitude (95 vs. 129%, SL vs. ALT1, 95% confidence intervals (CI) [77, 112], [111, 145], respectively, P = 0.024) and the slope of the sigmoid response (4.5 vs. 7.5%/mmHg, SL vs. ALT1, 95% CIs [3.1, 5.9], [6.0, 9.0], respectively, P = 0.026) to be enhanced at ALT1, which persisted with acclimatization at ALT16 (amplitude: 177, 95% CI [139, 215], P < 0.001; slope: 10.3%/mmHg, 95% CI [8.2, 12.5], P = 0.003) compared to SL. Meanwhile, the sigmoidal response midpoint was unchanged at ALT1 (SL: 36.5 mmHg; ALT1: 35.4 mmHg, 95% CIs [34.0, 39.0], [33.1, 37.7], respectively, P = 0.982), while it was reduced by ~7 mmHg at ALT16 (28.6 mmHg, 95% CI [26.4, 30.8], P = 0.001 vs. SL), indicating leftward shift of the cerebrovascular CO2 response to a lower arterial partial pressure of CO2 (PaCO2) following acclimatization to altitude. Sigmoid fitting revealed a leftward shift in the midpoint of the cerebrovascular response curve which could not be observed with linear fitting. These findings demonstrate that there is resetting of the cerebrovascular CO2 reactivity operating point to a lower PaCO2 following acclimatization to high altitude. This cerebrovascular resetting is likely the result of an altered acid-base buffer status resulting from prolonged exposure to the severe hypocapnia associated with ventilatory acclimatization to high altitude. PMID:26779030

  7. New Method for Production of High-Energy Neutral Molecules of Reactive Gases

    NASA Astrophysics Data System (ADS)

    Metel, Alexander; Bolbukov, Vasily; Volosova, Marina; Grigoriev, Sergei; Melnik, Yury

    2015-09-01

    For the surface modification of dielectric substrates by reactive gas molecules with energy of 100 keV they are usually produced due to charge exchange collisions of ions extracted from a plasma emitter and accelerated by high-voltage pulses. As generation of the ion plasma emitter at a 100-kV potential is quite difficult, it was proposed to extract the ions from a ground potential emitter, accelerate them by high voltage between the emitter and a negatively biased high-transparency grid and transform them into fast neutral molecules in the positive space charge sheaths of the grid. As the energy of fast molecules is defined by potentials of charge exchange collision points inside the sheath their spectrum ranges from zero to a value corresponding to the pulse amplitude. A reverse beam is always generated due to acceleration of ions from the plasma on the other side of the grid. The lower the latter density, the higher the ratio of the primary to the reverse beam currents. When the grid is composed of parallel flat plates, the charge exchange due to reflections from the plates substantially contributes at low gas pressure to production of molecules with the energy corresponding to the pulse amplitude. The work was supported by the Grant No. 14-29-00297 of the Russian Science Foundation.

  8. A new hydroxynaphthyl benzothiazole derived fluorescent probe for highly selective and sensitive Cu(2+) detection.

    PubMed

    Tang, Lijun; He, Ping; Zhong, Keli; Hou, Shuhua; Bian, Yanjiang

    2016-12-01

    A new reactive probe, 1-(benzo[d]thiazol-2-yl)naphthalen-2-yl-picolinate (BTNP), was designed and synthesized. BTNP acts as a highly selective probe to Cu(2+) in DMSO/H2O (7/3, v/v, Tris-HCl 10mM, pH=7.4) solution based on Cu(2+) catalyzed hydrolysis of the picolinate ester moiety in BTNP, which leads to the formation of an ESIPT active product with dual wavelength emission enhancement. The probe also possesses the advantages of simple synthesis, rapid response and high sensitivity. The pseudo-first-order reaction rate constant was calculated to be 0.205min(-1). Moreover, application of BTNP to Cu(2+) detection in living cells and real water samples was also explored. PMID:27391231

  9. A new hydroxynaphthyl benzothiazole derived fluorescent probe for highly selective and sensitive Cu2 + detection

    NASA Astrophysics Data System (ADS)

    Tang, Lijun; He, Ping; Zhong, Keli; Hou, Shuhua; Bian, Yanjiang

    2016-12-01

    A new reactive probe, 1-(benzo[d]thiazol-2-yl)naphthalen-2-yl-picolinate (BTNP), was designed and synthesized. BTNP acts as a highly selective probe to Cu2 + in DMSO/H2O (7/3, v/v, Tris-HCl 10 mM, pH = 7.4) solution based on Cu2 + catalyzed hydrolysis of the picolinate ester moiety in BTNP, which leads to the formation of an ESIPT active product with dual wavelength emission enhancement. The probe also possesses the advantages of simple synthesis, rapid response and high sensitivity. The pseudo-first-order reaction rate constant was calculated to be 0.205 min- 1. Moreover, application of BTNP to Cu2 + detection in living cells and real water samples was also explored.

  10. High precision during food recruitment of experienced (reactivated) foragers in the stingless bee Scaptotrigona mexicana (Apidae, Meliponini)

    NASA Astrophysics Data System (ADS)

    Sánchez, Daniel; Nieh, James C.; Hénaut, Yann; Cruz, Leopoldo; Vandame, Rémy

    Several studies have examined the existence of recruitment communication mechanisms in stingless bees. However, the spatial accuracy of location-specific recruitment has not been examined. Moreover, the location-specific recruitment of reactivated foragers, i.e., foragers that have previously experienced the same food source at a different location and time, has not been explicitly examined. However, such foragers may also play a significant role in colony foraging, particularly in small colonies. Here we report that reactivated Scaptotrigona mexicana foragers can recruit with high precision to a specific food location. The recruitment precision of reactivated foragers was evaluated by placing control feeders to the left and the right of the training feeder (direction-precision tests) and between the nest and the training feeder and beyond it (distance-precision tests). Reactivated foragers arrived at the correct location with high precision: 98.44% arrived at the training feeder in the direction trials (five-feeder fan-shaped array, accuracy of at least +/-6° of azimuth at 50 m from the nest), and 88.62% arrived at the training feeder in the distance trials (five-feeder linear array, accuracy of at least +/-5 m or +/-10% at 50 m from the nest). Thus, S. mexicana reactivated foragers can find the indicated food source at a specific distance and direction with high precision, higher than that shown by honeybees, Apis mellifera, which do not communicate food location at such close distances to the nest.

  11. Kinase control prevents HIV-1 reactivation in spite of high levels of induced NF-κB activity.

    PubMed

    Wolschendorf, Frank; Bosque, Alberto; Shishido, Takao; Duverger, Alexandra; Jones, Jennifer; Planelles, Vicente; Kutsch, Olaf

    2012-04-01

    Despite its clinical importance, the molecular biology of HIV-1 latency control is at best partially understood, and the literature remains conflicting. The most recent description that latent HIV-1 is integrated into actively expressed host genes has further confounded the situation. This lack of molecular understanding complicates our efforts to identify therapeutic compounds or strategies that could reactivate latent HIV-1 infection in patients, a prerequisite for the eradication of HIV-1 infection. Currently, many therapeutic development efforts operate under the assumption that a restrictive histone code could govern latent infection and that either dissipation of the histone-based restrictions or NF-κB activation could be sufficient to trigger HIV-1 reactivation. We here present data that suggest an additional, higher level of molecular control. During a high-content drug screening effort, we identified AS601245 as a potent inhibitor of HIV-1 reactivation in latently infected primary T cells and T cell lines. In either system, AS601245 inhibited HIV-1 reactivation despite high levels of induced NF-κB activation. This finding suggests the presence of a gatekeeper kinase activity that controls latent HIV-1 infection even in the presence of high levels of NF-κB activity. Potential therapeutic stimuli that do not target this gatekeeper kinase will likely fail to trigger efficient system-wide HIV-1 reactivation. PMID:22345467

  12. Kinase Control Prevents HIV-1 Reactivation in Spite of High Levels of Induced NF-κB Activity

    PubMed Central

    Wolschendorf, Frank; Bosque, Alberto; Shishido, Takao; Duverger, Alexandra; Jones, Jennifer; Planelles, Vicente

    2012-01-01

    Despite its clinical importance, the molecular biology of HIV-1 latency control is at best partially understood, and the literature remains conflicting. The most recent description that latent HIV-1 is integrated into actively expressed host genes has further confounded the situation. This lack of molecular understanding complicates our efforts to identify therapeutic compounds or strategies that could reactivate latent HIV-1 infection in patients, a prerequisite for the eradication of HIV-1 infection. Currently, many therapeutic development efforts operate under the assumption that a restrictive histone code could govern latent infection and that either dissipation of the histone-based restrictions or NF-κB activation could be sufficient to trigger HIV-1 reactivation. We here present data that suggest an additional, higher level of molecular control. During a high-content drug screening effort, we identified AS601245 as a potent inhibitor of HIV-1 reactivation in latently infected primary T cells and T cell lines. In either system, AS601245 inhibited HIV-1 reactivation despite high levels of induced NF-κB activation. This finding suggests the presence of a gatekeeper kinase activity that controls latent HIV-1 infection even in the presence of high levels of NF-κB activity. Potential therapeutic stimuli that do not target this gatekeeper kinase will likely fail to trigger efficient system-wide HIV-1 reactivation. PMID:22345467

  13. Biogeochemical processing of nutrients in groundwater-fed stream during baseflow conditions - the value of fluorescence spectroscopy and automated high-frequency nutrient monitoring

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Heathwaite, Louise

    2014-05-01

    Recent research in groundwater-dominated streams indicates that organic matter plays an important role in nutrient transformations at the surface-groundwater interface known as the hyporheic zone. Mixing of water and nutrient fluxes in the hyporheic zone controls in-stream nutrients availability, dynamics and export to downstream reaches. In particular, benthic sediments can form adsorptive sinks for organic matter and reactive nutrients (nitrogen and phosphorus) that sustain a variety of hyporheic processes e.g. denitrification, microbial uptake. Thus, hyporheic metabolism can have an important effect on both quantity (concentration) and quality (labile vs. refractory character) of organic matter. Here high-frequency nutrient monitoring combined with spectroscopic analysis was used to provide insights into biogeochemical processing of a small, agricultural stream in the NE England subject to diffuse nutrient pollution. Biogeochemical data were collected hourly for a week at baseflow conditions when in-stream-hyporheic nutrient dynamics have the greatest impact on stream health. In-stream nutrients (total phosphorus, reactive phosphorus, nitrate nitrogen) and water quality parameters (turbidity, specific conductivity, pH, temperature, dissolved oxygen, redox potential) were measured in situ hourly by an automated bank-side laboratory. Concurrent hourly autosamples were retrieved daily and analysed for nutrients and fine sediments including spectroscopic analyses of dissolved organic matter - excitation-emission matrix (EEM) fluorescence spectroscopy and ultraviolet-visible (UV-Vis) absorbance spectroscopy. Our results show that organic matter can potentially be utilised as a natural, environmental tracer of the biogeochemical processes occurring at the surface-groundwater interface in streams. High-frequency spectroscopic characterisation of in-stream organic matter can provide useful quantitative and qualitative information on fluxes of reactive nutrients in

  14. Shock compression response of highly reactive Ni + Al multilayered thin foils

    NASA Astrophysics Data System (ADS)

    Kelly, Sean C.; Thadhani, Naresh N.

    2016-03-01

    The shock-compression response of Ni + Al multilayered thin foils is investigated using laser-accelerated thin-foil plate-impact experiments over the pressure range of 2 to 11 GPa. The foils contain alternating Ni and Al layers (parallel but not flat) of nominally 50 nm bilayer spacing. The goal is to determine the equation of state and shock-induced reactivity of these highly reactive fully dense thin-foil materials. The laser-accelerated thin-foil impact set-up involved combined use of photon-doppler-velocimetry to monitor the acceleration and impact velocity of an aluminum flyer, and VISAR interferometry was used to monitor the back free-surface velocity of the impacted Ni + Al multilayered target. The shock-compression response of the Ni + Al target foils was determined using experimentally measured parameters and impedance matching approach, with error bars identified considering systematic and experimental errors. Meso-scale CTH shock simulations were performed using real imported microstructures of the cross-sections of the multilayered Ni + Al foils to compute the Hugoniot response (assuming no reaction) for correlation with their experimentally determined equation of state. It was observed that at particle velocities below ˜150 m/s, the experimentally determined equation of state trend matches the CTH-predicted inert response and is consistent with the observed unreacted state of the recovered Ni + Al target foils from this velocity regime. At higher particle velocities, the experimentally determined equation of state deviates from the CTH-predicted inert response. A complete and self-sustained reaction is also seen in targets recovered from experiments performed at these higher particle velocities. The deviation in the measured equation of state, to higher shock speeds and expanded volumes, combined with the observation of complete reaction in the recovered multilayered foils, confirmed via microstructure characterization, is indicative of the occurrence

  15. Single-cell analysis of dihydroartemisinin-induced apoptosis through reactive oxygen species-mediated caspase-8 activation and mitochondrial pathway in ASTC-a-1 cells using fluorescence imaging techniques

    NASA Astrophysics Data System (ADS)

    Lu, Ying-Ying; Chen, Tong-Sheng; Wang, Xiao-Ping; Li, Li

    2010-07-01

    Dihydroartemisinin (DHA), a front-line antimalarial herbal compound, has been shown to possess promising anticancer activity with low toxicity. We have previously reported that DHA induced caspase-3-dependent apoptosis in human lung adenocarcinoma cells. However, the cellular target and molecular mechanism of DHA-induced apoptosis is still poorly defined. We use confocal fluorescence microscopy imaging, fluorescence resonance energy transfer, and fluorescence recovery after photobleaching techniques to explore the roles of DHA-elicited reactive oxygen species (ROS) in the DHA-induced Bcl-2 family proteins activation, mitochondrial dysfunction, caspase cascade, and cell death. Cell Counting Kit-8 assay and flow cytometry analysis showed that DHA induced ROS-mediated apoptosis. Confocal imaging analysis in a single living cell and Western blot assay showed that DHA triggered ROS-dependent Bax translocation, mitochondrial membrane depolarization, alteration of mitochondrial morphology, cytochrome c release, caspase-9, caspase-8, and caspase-3 activation, indicating the coexistence of ROS-mediated mitochondrial and death receptor pathway. Collectively, our findings demonstrate for the first time that DHA induces cell apoptosis by triggering ROS-mediated caspase-8/Bid activation and the mitochondrial pathway, which provides some novel insights into the application of DHA as a potential anticancer drug and a new therapeutic strategy by targeting ROS signaling in lung adenocarcinoma therapy in the future.

  16. Highly sensitive quantification of pyrethroid insecticide etofenprox in vegetables with high-performance liquid chromatography and fluorescence detection.

    PubMed

    Watanabe, Eiki; Baba, Koji

    2015-03-13

    This paper describes a highly sensitive analytical method using high-performance liquid chromatography and fluorescence detection (HPLC-FLD) capable of quantifying trace amounts of synthetic pyrethroid insecticide etofenprox residue in six vegetable samples: bell pepper, cucumber, eggplant, Japanese mustard spinach, spinach, and tomato. After extraction with acetonitrile, the crude sample extract was cleaned up with a solid-phase extraction cartridge. The matrix interference derived from the tested vegetable samples was evaluated. Quantification was conducted using external calibrators prepared in pure acetonitrile. The limits of quantification for etofenprox in each sample were 1.87-3.87 ng/g. Recoveries obtained by application of the proposed analytical method of vegetable samples spiked at the considerably low levels (5-100 ng/g) were 85-111% with relative standard deviations of less than 12%. The proposed method using the HPLC-FLD was applied for trace analysis of the insecticide residue in vegetable samples. PMID:25662063

  17. "Fastening" porphyrin in highly cross-linked polyphosphazene hybrid nanoparticles: powerful red fluorescent probe for detecting mercury ion.

    PubMed

    Hu, Ying; Meng, Lingjie; Lu, Qinghua

    2014-04-22

    It is a significant issue to overcome the concentration-quenching effect of the small fluorescent probes and maintain the high fluorescent efficiency at high concentration for sensitive and selective fluorescent mark or detection. We developed a new strategy to "isolate" and "fasten" porphyrin moieties in a highly cross-linked poly(tetraphenylporphyrin-co-cyclotriphosphazene) (TPP-PZS) by the polycondensation of hexachlorocyclotriphosphazene (HCCP) and 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin (TPP-(OH)4) in a suitable solvent. The resulting TPP-PZS particles were characterized with transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), (31)P nuclear magnetic resonance (NMR), and ultraviolet and visible (UV-vis) absorption spectra. Remarkably, TPP-PZS particles obtained in acetone emitted a bright red fluorescence both in powder state and in solution because the aggregation of porphyrin moieties in "H-type" (face-to-face) and "J-type" (edge-to-edge) was effectively blocked. The fluorescent TPP-PZS particles also showed superior resistance to photobleaching, and had a high sensitivity and selectivity for the detection of Hg(2+) ions. The TPP-PZS particles were therefore used as an ideal material for preparing test strips to quickly detect/monitor the Hg(2+) ions in a facile way. PMID:24678932

  18. High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis

    PubMed Central

    2013-01-01

    Background In order to select for quantitative plant resistance to pathogens, high throughput approaches that can precisely quantify disease severity are needed. Automation and use of calibrated image analysis should provide more accurate, objective and faster analyses than visual assessments. In contrast to conventional visible imaging, chlorophyll fluorescence imaging is not sensitive to environmental light variations and provides single-channel images prone to a segmentation analysis by simple thresholding approaches. Among the various parameters used in chlorophyll fluorescence imaging, the maximum quantum yield of photosystem II photochemistry (Fv/Fm) is well adapted to phenotyping disease severity. Fv/Fm is an indicator of plant stress that displays a robust contrast between infected and healthy tissues. In the present paper, we aimed at the segmentation of Fv/Fm images to quantify disease severity. Results Based on the Fv/Fm values of each pixel of the image, a thresholding approach was developed to delimit diseased areas. A first step consisted in setting up thresholds to reproduce visual observations by trained raters of symptoms caused by Xanthomonas fuscans subsp. fuscans (Xff) CFBP4834-R on Phaseolus vulgaris cv. Flavert. In order to develop a thresholding approach valuable on any cultivars or species, a second step was based on modeling pixel-wise Fv/Fm-distributions as mixtures of Gaussian distributions. Such a modeling may discriminate various stages of the symptom development but over-weights artifacts that can occur on mock-inoculated samples. Therefore, we developed a thresholding approach based on the probability of misclassification of a healthy pixel. Then, a clustering step is performed on the diseased areas to discriminate between various stages of alteration of plant tissues. Notably, the use of chlorophyll fluorescence imaging could detect pre-symptomatic area. The interest of this image analysis procedure for assessing the levels of

  19. Bacterial iron transport: coordination properties of azotobactin, the highly fluorescent siderophore of Azotobacter vinelandii.

    PubMed

    Palanché, Tania; Blanc, Sylvie; Hennard, Christophe; Abdallah, Mohamed A; Albrecht-Gary, Anne-Marie

    2004-02-01

    Azotobacter vinelandii, a nitrogen-fixing soil bacterium, secretes in iron deficiency azotobactin delta, a highly fluorescent pyoverdin-like chromopeptidic hexadentate siderophore. The chromophore, derived from 2,3-diamino-6,7 dihydroxyquinoline, is bound to a peptide chain of 10 amino acids: (L)-Asp-(D)-Ser-(L)-Hse-Gly-(D)-beta-threo-HOAsp-(L)-Ser-(D)-Cit-(L)-Hse-(L)-Hse lactone-(D)-N(delta)-Acetyl, N(delta)-HOOrn. Azotobactin delta has three different iron(III) binding sites which are one hydroxamate group at the C-terminal end of the peptidic chain (N(delta)-Acetyl, N(delta)-HOOrn), one alpha-hydroxycarboxylic function in the middle of the chain (beta-threo-hydroxyaspartic acid), and one catechol group on the chromophore. The coordination properties of its iron(III) and iron(II) complexes were measured by spectrophotometry, potentiometry, and voltammetry after the determination of the acid-base functions of the uncomplexed free siderophore. Strongly negatively charged ferric species were observed at neutral p[H]'s corresponding to a predominant absolute configuration Lambda of the ferric complex in solution as deduced from CD measurements. The presence of an alpha-hydroxycarboxylic chelating group does not decrease the stability of the iron(III) complex when compared to the main trishydroxamate siderophores or to pyoverdins. The value of the redox potential of ferric azotobactin is highly consistent with a reductive step by physiological reductants for the iron release. Formation and dissociation kinetics of the azotobactin delta ferric complex point out that both ends of this long siderophore chain get coordinated to Fe(III) before the middle. The most striking result provided by fluorescence measurements is the lasting quenching of the fluorophore in the course of the protonation of the ferric azotobactin delta complex. Despite the release of the hydroxyacid and of the catechol, the fluorescence remains indeed quenched, when iron(III) is bound only to the

  20. Review of Fluorescence-Based Velocimetry Techniques to Study High-Speed Compressible Flows

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Johansen, Criag; Inman, Jennifer A.; Jones, Stephen B.; Danehy, Paul M.

    2013-01-01

    This paper reviews five laser-induced fluorescence-based velocimetry techniques that have been used to study high-speed compressible flows at NASA Langley Research Center. The techniques discussed in this paper include nitric oxide (NO) molecular tagging velocimetry (MTV), nitrogen dioxide photodissociation (NO2-to-NO) MTV, and NO and atomic oxygen (O-atom) Doppler-shift-based velocimetry. Measurements of both single-component and two-component velocity have been performed using these techniques. This paper details the specific application and experiment for which each technique has been used, the facility in which the experiment was performed, the experimental setup, sample results, and a discussion of the lessons learned from each experiment.

  1. Comparison of fluorescent and high-pressure sodium lamps on growth of leaf lettuce

    NASA Technical Reports Server (NTRS)

    Koontz, H. V.; Prince, R. P.; Koontz, R. F.; Knott, W. M. (Principal Investigator)

    1987-01-01

    Radiation from high-pressure sodium (HPS) lamps provided more than a 50% increased yield (fresh and dry weight of tops) of loose-leaf lettuce cultivars Grand Rapids Forcing and RubyConn, compared to that obtained by radiation from cool-white fluorescent (CWF) lamps at equal photosynthetic photon flux; yet, input wattage was approximately 36% less. It was postulated that the considerable output of 700 to 850 nm radiation from the HPS lamp was a significant factor of the increased yield. Under HPS lamps, the leaves of both cultivars were slightly less green with very little red pigmentation ('RubyConn') and slightly elongated, compared to CWF, but plant productivity per unit electrical energy input was vastly superior with HPS.

  2. Fabrication of fluorescent composite with ultrafast aqueous synthesized high luminescent CdTe quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Bi, Xianghong; Chen, Haibin; Wu, Jingshen

    2014-05-01

    Without precursor preparation, inert gas protection and enormous amount of additives and reductants, CdTe quantum dots (QDs) can be rapidly synthesized with high quality. A 600 nm photoluminescence peak wavelength could be obtained within 1 hour's refluxing through minimal addition of 1,2-diaminoethane (DAE). The theoretical design for the experiments are illustrated and further proved by the characterization results with different concentrations and reagents. On the other hand, generation of CdTe QDs was found even under room temperature by applying droplet quantity of DAE. This indicates that QDs can be synthesized with simply a bottle and no enormous additives required. The QDs were mixed into the epoxy matrix through solution casting method with cetyltrimethylammonium (CTA) capping for phase transfer. The acquired epoxy based nanocomposite exhibits good transparency, compatibility and fluorescence.

  3. High repetition rate laser induced fluorescence applied to Surfatron Induced Plasmas

    NASA Astrophysics Data System (ADS)

    van der Mullen, J. J. A. M.; Palomares, J. M.; Carbone, E. A. D.; Graef, W.; Hübner, S.

    2012-05-01

    The reaction kinetics in the excitation space of Ar and the conversion space of Ar-molecule mixtures are explored using a combination of high rep-rate YAG-Dye laser systems with a well defined and easily controllable Surfatron Induced Plasma set-up. Applying the method of Saturation Time Resolved Laser Induced Fluorescence (SaTiRe-LIF), we could trace excitation and conversion channels and determine rates of electron and heavy particle excitation kinetics. The time resolved density disturbances observed in the Ar excitation space, which are initiated by the laser, reveal the excitation channels and corresponding rates; responses of the molecular radiation in Ar-molecule mixtures corresponds to the presence of conversion processes induced by heavy particle excitation kinetics.

  4. Feasibility of hydroxyl concentration measurements by laser-saturated fluorescence in high-pressure flames

    NASA Technical Reports Server (NTRS)

    Carter, Campbell D.; King, Galen B.; Laurendeau, Normand M.; Salmon, J. Thaddeus

    1987-01-01

    The effect of pressure on the laser-saturated fluorescence method for measuring OH concentration in high-pressure flames is studied using calculations for the burned-gas region of a stoichiometric H2-O2 flame at 2000 K. A numerical model of the excitation dynamics of OH is developed to explore the validity of the balanced cross-rate model at higher pressures. It is shown that depopulation of the laser-coupled levels is sensitive to collisions which depopulate v-double-prime (VDP) = 0 and to rate coefficients for rotational transfer in the ground state which are smaller than those in the excited state. In particular, it is shown that the depopulation of VDP = 0, and hence the laser-coupled levels, depends on the probability of electronic quenching to vibrational levels for which VDP is greater than 0 and vibrational relaxation to VDP = 0.

  5. [Analysis of amines in water samples by high performance liquid chromatography-laser induced fluorescence detection].

    PubMed

    Liu, Fan; Gao, Fangyuan; Tang, Tao; Sun, Yuanshe; Li, Tong; Zhang, Weibing

    2013-11-01

    A sensitive high performance liquid chromatography (HPLC)-laser induced fluorescence detection (LIFD) method was developed for the determination of amines. The derivatization and separation conditions were investigated. Under the optimized conditions, spermidine, putrescine and histamine were analyzed. The limits of detection (LODs) of the three biogenic amines (S/N = 3) were as low as 10(-10) mol/L. This method showed excellent stability. The RSDs of retention times and peak areas of the three biogenic amines were lower than 0.3% and 3%, respectively. This method was applied in biogenic amine analysis in water samples, and the average recoveries were in the range of 94.99%-104.7%. Furthermore, the amines in seven tea samples were analyzed by this method, and satisfactory results were achieved. The developed assay is of excellent sensitivity and good reproducibility, which can be used in the analysis of the amines in water samples. PMID:24558849

  6. Rapid determination of succinylcholine in human plasma by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Lagerwerf, A J; Vanlinthout, L E; Vree, T B

    1991-10-01

    A high-performance liquid chromatographic method with fluorometric detection has been developed for the determination of succinylcholine in human plasma. Succinylcholine shows fluorescence at 282 nm with an excitation at 257 nm. The assay is sensitive, reproducible and linear for concentrations ranging from 100 ng/ml to 100 micrograms/ml of succinylcholine. In a pilot study the plasma concentration-time curve showed a triphasic elimination, with half-lives of 0.4, 1.2 and 8 min, respectively. In a clinical setting, drugs commonly administered during anaesthesia did not interfere with the assay. This method provides a simple and time-saving alternative to existing methods. PMID:1797854

  7. High spectral resolution observations of fluorescent molecular hydrogen in molecular clouds

    NASA Technical Reports Server (NTRS)

    Burton, Michael G.; Geballe, T. R.; Brand, P. W. J. L.; Moorhouse, A.

    1990-01-01

    The 1-0 S(1) line of molecular hydrogen has been observed at high spectral resolution in several sources where the emission was suspected of being fluorescent. In NGC 2023, the Orion Bar, and Parsamyan 18, the S(1) line is unresolved, and the line center close to the rest velocity of the ambient molecular cloud. Such behavior is expected for UV-excited line emission. The H2 line widths in molecular clouds thus can serve as diagnostic for shocked and UV-excitation mechanisms. If the lines are broader than several km/s or velocity shifts are observed across a source it is likely that shocks are responsible for the excitation of the gas.

  8. Application of a High-throughput Fluorescent Acetyltransferase Assay to Identify Inhibitors of Homocitrate Synthase

    PubMed Central

    Bulfer, Stacie L.; McQuade, Thomas J.; Larsen, Martha J.; Trievel, Raymond C.

    2011-01-01

    Homocitrate synthase (HCS) catalyzes the first step of L-lysine biosynthesis in fungi by condensing acetyl-Coenzyme A and 2-oxoglutarate to form 3R-homocitrate and Coenzyme A. Due to its conservation in pathogenic fungi, HCS has been proposed as a candidate for antifungal drug design. Here we report the development and validation of a robust, fluorescent assay for HCS that is amenable to high-throughput screening for inhibitors in vitro. Using this assay, Schizosaccharomyces pombe HCS was screened against a diverse library of ~41,000 small molecules. Following confirmation, counter screens, and dose-response analysis, we prioritized over 100 compounds for further in vitro and in vivo analysis. This assay can be readily adapted to screen for small molecule modulators of other acyl-CoA-dependent acyltransferases or enzymes that generate a product with a free sulfhydryl group, including histone acetyltransferases, aminoglycoside N-acetyltransferases, thioesterases and enzymes involved in lipid metabolism. PMID:21073853

  9. Incorporation of magnetite nanoparticle clusters in fluorescent silica nanoparticles for high-performance brain tumor delineation.

    PubMed

    Wan, Jiaqi; Meng, Xiangxi; Liu, Enzhong; Chen, Kezheng

    2010-06-11

    Bifunctional nanoprobes with both magnetic and optical contrast have been developed for ultra-sensitive brain tumor imaging at the cellular level. The nanoprobes were synthesized by simultaneously incorporating a magnetite nanoparticle cluster and fluorescence dyes into silica encapsulation by a sol-gel approach under ultrasonic treatment. The nanoprobes maintain superparamagnetic behavior at room temperature and possess enhanced transverse relaxivity and good photostability. As a glioma targeting ligand, chlorotoxin was covalently bonded to the surface of the nanoprobes. In vitro cellular uptake assays demonstrated that the nanoprobes were highly specific, taken up by human U251-MG glioma cells via receptor-mediated endocytosis. The labeled glioma cells were readily detectable by both MR imager and confocal laser scanning microscopy. PMID:20472942

  10. Fabrication of fluorescent composite with ultrafast aqueous synthesized high luminescent CdTe quantum dots

    SciTech Connect

    Zhang, Lei Chen, Haibin E-mail: mejswu@ust.hk; Wu, Jingshen E-mail: mejswu@ust.hk; Bi, Xianghong

    2014-05-15

    Without precursor preparation, inert gas protection and enormous amount of additives and reductants, CdTe quantum dots (QDs) can be rapidly synthesized with high quality. A 600 nm photoluminescence peak wavelength could be obtained within 1 hour's refluxing through minimal addition of 1,2-diaminoethane (DAE). The theoretical design for the experiments are illustrated and further proved by the characterization results with different concentrations and reagents. On the other hand, generation of CdTe QDs was found even under room temperature by applying droplet quantity of DAE. This indicates that QDs can be synthesized with simply a bottle and no enormous additives required. The QDs were mixed into the epoxy matrix through solution casting method with cetyltrimethylammonium (CTA) capping for phase transfer. The acquired epoxy based nanocomposite exhibits good transparency, compatibility and fluorescence.

  11. High Repetition Rate, LINAC-Based Nuclear Resonance Fluorescence FY 2008 Final Report

    SciTech Connect

    Scott M Watson; Mathew T Kinlaw; James L Jones; Alan W. Hunt; Glen A. Warren

    2008-12-01

    This summarizes the first year of a multi-laboratory/university, multi-year effort focusing on high repetition rate, pulsed LINAC-based nuclear resonance fluorescence (NRF) measurements. Specifically, this FY2008 effort centered on experimentally assessing NRF measurements using pulsed linear electron accelerators, operated at various repetition rates, and identifying specific detection requirements to optimize such measurements. Traditionally, interest in NRF as a detection technology, which continues to receive funding from DHS and DOE/NA-22, has been driven by continuous-wave (CW), Van de Graff-based bremsstrahlung sources. However, in addition to the relatively sparse present-day use of Van de Graff sources, only limited NRF data from special nuclear materials has been presented; there is even less data available regarding shielding effects and photon source optimization for NRF measurements on selected nuclear materials.

  12. Novel Phenotypic Fluorescent Three-Dimensional Platforms for High-throughput Drug Screening and Personalized Chemotherapy.

    PubMed

    Fang, Changge; Avis, Ingalill; Salomon, David; Cuttitta, Frank

    2013-01-01

    We have developed novel phenotypic fluorescent three-dimensional co-culture platforms that efficiently and economically screen anti-angiogenic/anti-metastatic drugs on a high-throughput scale. Individual cell populations can be identified and isolated for protein/gene expression profiling studies and cellular movement/interactions can be tracked by time-lapse cinematography. More importantly, these platforms closely parallel the in vivo angiogenic and metastatic outcomes of a given tumor xenograft in the nude mouse model but, unlike in vivo models, our co-culture platforms produce comparable results in five to nine days. Potentially, by incorporating cancer patient biopsies, the co-culture platforms should greatly improve the effectiveness and efficiency of personalized chemotherapy. PMID:23833685

  13. Reactively-sputtered zinc semiconductor films of high conductivity for heterojunction devices

    NASA Technical Reports Server (NTRS)

    Stirn, Richard J. (Inventor)

    1986-01-01

    A high conductivity, n-doped semiconductor film is produced from zinc, or Zn and Cd, and group VI elements selected from Se, S and Te in a reactive magnetron sputtering system having a chamber with one or two targets, a substrate holder, means for heating the substrate holder, and an electric field for ionizing gases in the chamber. Zinc or a compound of Zn and Cd is placed in the position of one of the two targets and doping material in the position of the other of the two targets. Zn and Cd may be placed in separate targets while a dopant is placed in the third target. Another possibility is to place an alloy of Zn and dopant, or Zn, Cd and dopant in one target, thus using only one target. A flow of the inert gas is ionized and directed toward said targets, while a flow of a reactant gas consisting of hydrides of the group VI elements is directed toward a substrate on the holder. The targets are biased to attract negatively ionized inert gas. The desired stochiometry for high conductivity is achieved by controlling the temperature of the substrate, and partial pressures of the gases, and the target power and total pressure of the gases in the chamber.

  14. High-sensitivity C-reactive protein and atherosclerosis: from theory to therapy.

    PubMed

    Yu, H; Rifai, N

    2000-11-01

    Atherosclerosis remains the leading cause of morbidity and mortality in Western countries. Recent evidence has demonstrated that atherosclerosis is not simply a disease of lipid deposition. Inflammation plays a major role in the initiation, progression, and destabilization of atheromas. High-sensitivity C-reactive protein (hs-CRP) is a circulating acute-phase reactant that reflects active systemic inflammation. Large prospective trials have shown hs-CRP to be a strong predictor of future cardiovascular events. Increased hs-CRP concentration is in fact associated with higher cardiovascular events in individuals with and without clinical evidence of atherosclerotic disease. The relative risk associated with hs-CRP is independent of other cardiovascular disease risk factors. Assays for hs-CRP measurement are currently available but must be standardized because patients' results will be interpreted by using population-based cutpoints. A risk-stratifying algorithm incorporating hs-CRP and total cholesterol to high-density lipoprotein cholesterol ratio has been proposed. Further research into the mechanisms and pharmacological treatment of vascular disease will provide novel management strategies in the very near future. PMID:11166006

  15. Incorporating Non-Linear Sorption into High Fidelity Subsurface Reactive Transport Models

    NASA Astrophysics Data System (ADS)

    Matott, L. S.; Rabideau, A. J.; Allen-King, R. M.

    2014-12-01

    A variety of studies, including multiple NRC (National Research Council) reports, have stressed the need for simulation models that can provide realistic predictions of contaminant behavior during the groundwater remediation process, most recently highlighting the specific technical challenges of "back diffusion and desorption in plume models". For a typically-sized remediation site, a minimum of about 70 million grid cells are required to achieve desired cm-level thickness among low-permeability lenses responsible for driving the back-diffusion phenomena. Such discretization is nearly three orders of magnitude more than is typically seen in modeling practice using public domain codes like RT3D (Reactive Transport in Three Dimensions). Consequently, various extensions have been made to the RT3D code to support efficient modeling of recently proposed dual-mode non-linear sorption processes (e.g. Polanyi with linear partitioning) at high-fidelity scales of grid resolution. These extensions have facilitated development of exploratory models in which contaminants are introduced into an aquifer via an extended multi-decade "release period" and allowed to migrate under natural conditions for centuries. These realistic simulations of contaminant loading and migration provide high fidelity representation of the underlying diffusion and sorption processes that control remediation. Coupling such models with decision support processes is expected to facilitate improved long-term management of complex remediation sites that have proven intractable to conventional remediation strategies.

  16. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans.

    PubMed

    Hawkings, Jon R; Wadham, Jemma L; Tranter, Martyn; Raiswell, Rob; Benning, Liane G; Statham, Peter J; Tedstone, Andrew; Nienow, Peter; Lee, Katherine; Telling, Jon

    2014-01-01

    The Greenland and Antarctic Ice Sheets cover ~ 10% of global land surface, but are rarely considered as active components of the global iron cycle. The ocean waters around both ice sheets harbour highly productive coastal ecosystems, many of which are iron limited. Measurements of iron concentrations in subglacial runoff from a large Greenland Ice Sheet catchment reveal the potential for globally significant export of labile iron fractions to the near-coastal euphotic zone. We estimate that the flux of bioavailable iron associated with glacial runoff is 0.40-2.54 Tg per year in Greenland and 0.06-0.17 Tg per year in Antarctica. Iron fluxes are dominated by a highly reactive and potentially bioavailable nanoparticulate suspended sediment fraction, similar to that identified in Antarctic icebergs. Estimates of labile iron fluxes in meltwater are comparable with aeolian dust fluxes to the oceans surrounding Greenland and Antarctica, and are similarly expected to increase in a warming climate with enhanced melting. PMID:24845560

  17. Subsurface Multiphase Flow and Multicomponent Reactive Transport Modeling using High-Performance Computing

    SciTech Connect

    Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan

    2007-07-16

    Numerical modeling has become a critical tool to the U.S. Department of Energy for evaluating the environmental impact of alternative energy sources and remediation strategies for legacy waste sites. Unfortunately, the physical and chemical complexity of many sites overwhelms the capabilities of even most “state of the art” groundwater models. Of particular concern are the representation of highly-heterogeneous stratified rock/soil layers in the subsurface and the biological and geochemical interactions of chemical species within multiple fluid phases. Clearly, there is a need for higher-resolution modeling (i.e. more spatial, temporal, and chemical degrees of freedom) and increasingly mechanistic descriptions of subsurface physicochemical processes. We present SciDAC-funded research being performed in the development of PFLOTRAN, a parallel multiphase flow and multicomponent reactive transport model. Written in Fortran90, PFLOTRAN is founded upon PETSc data structures and solvers. We are employing PFLOTRAN in the simulation of uranium transport at the Hanford 300 Area, a contaminated site of major concern to the Department of Energy, the State of Washington, and other government agencies. By leveraging the billions of degrees of freedom available through high-performance computation using tens of thousands of processors, we can better characterize the release of uranium into groundwater and its subsequent transport to the Columbia River, and thereby better understand and evaluate the effectiveness of various proposed remediation strategies.

  18. Subsurface multiphase flow and multicomponent reactive transport modeling using high-performance computing

    NASA Astrophysics Data System (ADS)

    Hammond, Glenn; Lichtner, Peter; Lu, Chuan

    2007-07-01

    Numerical modeling is a critical tool to the U.S. Department of Energy for evaluating the environmental impact of remediation strategies for subsurface legacy waste sites. Unfortunately, the physical and chemical complexity of many sites overwhelms the capabilities of even most state of the art groundwater models. Of particular concern is the representation of highly-heterogeneous stratified rock/soil layers in the subsurface and the biological and geochemical interactions of chemical species within multiple fluid phases. There is clearly a need for higher-resolution modeling (i.e. increased spatial and temporal resolution) and increasingly mechanistic descriptions of subsurface physicochemical processes (i.e. increased chemical degrees of freedom). We present SciDAC-funded research being performed in furthering the development of PFLOTRAN, a parallel multiphase flow and multicomponent reactive transport model. Written in Fortran90, PFLOTRAN is founded upon PETSc data structures and solvers. We are employing PFLOTRAN to simulate uranium transport at the Hanford 300 Area, a contaminated site of major concern to the Department of Energy, the State of Washington, and other government agencies. By leveraging the billions of degrees of freedom available through high-performance computation using tens of thousands of processors, we can better characterize the release of uranium into groundwater and its subsequent transport to the Columbia River, and thereby better understand and evaluate the effectiveness of various proposed remediation strategies.

  19. Additive Manufacturing of Reactive In Situ Zr Based Ultra-High Temperature Ceramic Composites

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, Himanshu; Bandyopadhyay, Amit

    2016-03-01

    Reactive in situ multi-material additive manufacturing of ZrB2-based ultra-high-temperature ceramics in a Zr metal matrix was demonstrated using LENS™. Sound metallurgical bonding was achieved between the Zr metal and Zr-BN composites with Ti6Al4V substrate. Though the feedstock Zr power had α phase, LENS™ processing of the Zr powder and Zr-BN premix powder mixture led to the formation of some β phase of Zr. Microstructure of the Zr-BN composite showed primary grains of zirconium diboride phase in zirconium metal matrix. The presence of ZrB2 ceramic phase was confirmed by X-ray diffraction (XRD) analysis. Hardness of pure Zr was measured as 280 ± 12 HV and, by increasing the BN content in the feedstock, the hardness was found to increase. In Zr-5%BN composite, the hardness was 421 ± 10 HV and the same for Zr-10%BN composite was 562 ± 10 HV. It is envisioned that such multi-materials additive manufacturing will enable products in the future that cannot be manufactured using traditional approaches particularly in the areas of high-temperature metal-ceramic composites with compositional and functional gradation.

  20. Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors

    SciTech Connect

    Peterson, Per; Greenspan, Ehud

    2015-02-09

    This report documents the work completed on the X-PREX facility under NEUP Project 11- 3172. This project seeks to demonstrate the viability of pebble fuel handling and reactivity control for fluoride salt-cooled high-temperature reactors (FHRs). The research results also improve the understanding of pebble motion in helium-cooled reactors, as well as the general, fundamental understanding of low-velocity granular flows. Successful use of pebble fuels in with salt coolants would bring major benefits for high-temperature reactor technology. Pebble fuels enable on-line refueling and operation with low excess reactivity, and thus simpler reactivity control and improved fuel utilization. If fixed fuel designs are used, the power density of salt- cooled reactors is limited to 10 MW/m3 to obtain adequate duration between refueling, but pebble fuels allow power densities in the range of 20 to 30 MW/m3. This can be compared to the typical modular helium reactor power density of 5 MW/m3. Pebble fuels also permit radial zoning in annular cores and use of thorium or graphite pebble blankets to reduce neutron fluences to outer radial reflectors and increase total power production. Combined with high power conversion efficiency, compact low-pressure primary and containment systems, and unique safety characteristics including very large thermal margins (>500°C) to fuel damage during transients and accidents, salt-cooled pebble fuel cores offer the potential to meet the major goals of the Advanced Reactor Concepts Development program to provide electricity at lower cost than light water reactors with improved safety and system performance.This report presents the facility description, experimental results, and supporting simulation methods of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X

  1. Distinction of brain tissue, low grade and high grade glioma with time-resolved fluorescence spectroscopy.

    PubMed

    Yong, William H; Butte, Pramod V; Pikul, Brian K; Jo, Javier A; Fang, Qiyin; Papaioannou, Thanassis; Black, Keith; Marcu, Laura

    2006-01-01

    Neuropathology frozen section diagnoses are difficult in part because of the small tissue samples and the paucity of adjunctive rapid intraoperative stains. This study aims to explore the use of time-resolved laser-induced fluorescence spectroscopy as a rapid adjunctive tool for the diagnosis of glioma specimens and for distinction of glioma from normal tissues intraoperatively. Ten low grade gliomas, 15 high grade gliomas without necrosis, 6 high grade gliomas with necrosis and/or radiation effect, and 14 histologically uninvolved "normal" brain specimens are spectroscopicaly analyzed and contrasted. Tissue autofluorescence was induced with a pulsed Nitrogen laser (337 nm, 1.2 ns) and the transient intensity decay profiles were recorded in the 370-500 nm spectral range with a fast digitized (0.2 ns time resolution). Spectral intensities and time-dependent parameters derived from the time-resolved spectra of each site were used for tissue characterization. A linear discriminant analysis diagnostic algorithm was used for tissue classification. Both low and high grade gliomas can be distinguished from histologically uninvolved cerebral cortex and white matter with high accuracy (above 90%). In addition, the presence or absence of treatment effect and/or necrosis can be identified in high grade gliomas. Taking advantage of tissue autofluorescence, this technique facilitates a direct and rapid investigation of surgically obtained tissue. PMID:16368511

  2. Pulsed laser activated cell sorter (PLACS) for high-throughput fluorescent mammalian cell sorting

    NASA Astrophysics Data System (ADS)

    Chen, Yue; Wu, Ting-Hsiang; Chung, Aram; Kung, Yu-Chung; Teitell, Michael A.; Di Carlo, Dino; Chiou, Pei-Yu

    2014-09-01

    We present a Pulsed Laser Activated Cell Sorter (PLACS) realized by exciting laser induced cavitation bubbles in a PDMS microfluidic channel to create high speed liquid jets to deflect detected fluorescent samples for high speed sorting. Pulse laser triggered cavitation bubbles can expand in few microseconds and provide a pressure higher than tens of MPa for fluid perturbation near the focused spot. This ultrafast switching mechanism has a complete on-off cycle less than 20 μsec. Two approaches have been utilized to achieve 3D sample focusing in PLACS. One is relying on multilayer PDMS channels to provide 3D hydrodynamic sheath flows. It offers accurate timing control of fast (2 m sec-1) passing particles so that synchronization with laser bubble excitation is possible, an critically important factor for high purity and high throughput sorting. PLACS with 3D hydrodynamic focusing is capable of sorting at 11,000 cells/sec with >95% purity, and 45,000 cells/sec with 45% purity using a single channel in a single step. We have also demonstrated 3D focusing using inertial flows in PLACS. This sheathless focusing approach requires 10 times lower initial cell concentration than that in sheath-based focusing and avoids severe sample dilution from high volume sheath flows. Inertia PLACS is capable of sorting at 10,000 particles sec-1 with >90% sort purity.

  3. A preliminary study of cortisol and norepinephrine reactivity to psychosocial stress in borderline personality disorder with high and low dissociation.

    PubMed

    Simeon, Daphne; Knutelska, Margaret; Smith, Lisa; Baker, Bryann R; Hollander, Eric

    2007-01-15

    The goal of the current study was to investigate subjective and neurohormonal reactivity to acute psychosocial stress in borderline personality disorder (BPD) as a function of dissociative symptoms. Five BPD subjects with high dissociation, 8 BPD subjects with low dissociation, and 11 healthy control subjects were compared in basal urinary cortisol and norepinephrine, as well as in plasma cortisol and norepinephrine reactivity to the Trier Social Stress Test (TSST). Subjective stress rating and emotional response to the TSST were also measured. The three groups differed significantly in cortisol stress reactivity, with the high-dissociation BPD group demonstrating the most robust response. The three groups did not significantly differ in norepinephrine stress reactivity. In the combined BPD sample, dissociation severity tended to be inversely correlated with basal urinary norepinephrine, was positively correlated with norepinephrine stress reactivity. Childhood trauma was inversely correlated with basal urinary cortisol. In conclusion, despite its small sample size this pilot study suggests that dissociative symptomatology may be a marker of heightened biological vulnerability to stress in BPD, and merits further study. PMID:17169436

  4. Visual and fluorescent detection of tyrosinase activity by using a dual-emission ratiometric fluorescence probe.

    PubMed

    Yan, Xu; Li, Hongxia; Zheng, Weishi; Su, Xingguang

    2015-09-01

    In this work, we designed a dual-emission ratiometric fluorescence probe by hybridizing two differently colored quantum dots (QDs), which possess a built-in correction that eliminates the environmental effects and increases sensor accuracy. Red emissive QDs were embedded in the silica nanoparticle as reference while the green emissive QDs were covalently linked to the silica nanoparticle surface to form ratiometric fluorescence probes (RF-QDs). Dopamine (DA) was then conjugated to the surface of RF-QDs via covalent bonding. The ratiometric fluorescence probe functionalized with dopamine (DA) was highly reactive toward tyrosinase (TYR), which can catalyze the oxidization of DA to dopamine quinine and therefore quenched the fluorescence of the green QDs on the surface of ratiometric fluorescence probe. With the addition of different amounts of TYR, the ratiometric fluorescence intensity of the probe continually varied, leading to color changes from yellow-green to red. So the ratiometric fluorescence probe could be utilized for sensitive and selective detection of TYR activity. There was a good linear relationship between the ratiometric fluorescence intensity and TYR concentration in the range of 0.05-5.0 μg mL(-1), with the detection limit of 0.02 μg mL(-1). Significantly, the ratiometric fluorescence probe has been used to fabricate paper-based test strips for visual detection of TYR activity, which validates the potential on-site application. PMID:26249217

  5. Development of a highly sensitive, high-throughput assay for glycosyltransferases using enzyme-coupled fluorescence detection.

    PubMed

    Kumagai, Kazuo; Kojima, Hirotatsu; Okabe, Takayoshi; Nagano, Tetsuo

    2014-02-15

    Glycosyltransferases catalyze transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Identification of selective modulators of glycosyltransferases is important both to provide new tools for investigating pathophysiological roles of glycosylation reactions in cells and tissues, and as new leads in drug discovery. Here we describe a universal enzyme-coupled fluorescence assay for glycosyltransferases, based on quantification of nucleotides produced in the glycosyl transfer reaction. GDP, UDP, and CMP are phosphorylated with nucleotide kinase in the presence of excess ATP, generating ADP. Via coupled enzyme reactions involving ADP-hexokinase, glucose-6-phosphate dehydrogenase, and diaphorase, the ADP is utilized for conversion of resazurin to resorufin, which is determined by fluorescence measurement. The method was validated by comparison with an HPLC method, and employed to screen the LOPAC1280 library for inhibitors in a 384-well plate format. The assay performed well, with a Z'-factor of 0.80. We identified 12 hits for human galactosyltransferase B4GALT1 after elimination of false positives that inhibited the enzyme-coupled assay system. The assay components are all commercially available and the reagent cost is only 2 to 10 US cents per well. This method is suitable for low-cost, high-throughput assay of various glycosyltransferases and screening of glycosyltransferase modulators. PMID:24299989

  6. Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization

    NASA Astrophysics Data System (ADS)

    Ong, Wee-Jun; Tan, Lling-Lling; Chai, Siang-Piao; Yong, Siek-Ting; Mohamed, Abdul Rahman

    2014-01-01

    Titanium dioxide (TiO2) is one of the most widely investigated metal oxides due to its extraordinary surface, electronic and catalytic properties. However, the large band gap of TiO2 and massive recombination of photogenerated electron-hole pairs limit its photocatalytic and photovoltaic efficiency. Therefore, increasing research attention is now being directed towards engineering the surface structure of TiO2 at the most fundamental and atomic level namely morphological control of {001} facets in the range of microscale and nanoscale to fine-tune its physicochemical properties, which could ultimately lead to the optimization of its selectivity and reactivity. The synthesis of {001}-faceted TiO2 is currently one of the most active interdisciplinary research areas and demonstrations of catalytic enhancement are abundant. Modifications such as metal and non-metal doping have also been extensively studied to extend its band gap to the visible light region. This steady progress has demonstrated that TiO2-based composites with {001} facets are playing and will continue to play an indispensable role in the environmental remediation and in the search for clean and renewable energy technologies. This review encompasses the state-of-the-art research activities and latest advancements in the design of highly reactive {001} facet-dominated TiO2via various strategies, including hydrothermal/solvothermal, high temperature gas phase reactions and non-hydrolytic alcoholysis methods. The stabilization of {001} facets using fluorine-containing species and fluorine-free capping agents is also critically discussed in this review. To overcome the large band gap of TiO2 and rapid recombination of photogenerated charge carriers, modifications are carried out to manipulate its electronic band structure, including transition metal doping, noble metal doping, non-metal doping and incorporating graphene as a two-dimensional (2D) catalyst support. The advancements made in these aspects are

  7. A highly reactive chalcogenide precursor for the synthesis of metal chalcogenide quantum dots

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Zhu, Dong-Liang; Zhu, Chun-Nan; Zhang, Zhi-Ling; Zhang, Guo-Jun; Pang, Dai-Wen

    2015-11-01

    Metal chalcogenide semiconductor nanocrystals (NCs) are ideal inorganic materials for solar cells and biomedical labeling. In consideration of the hazard and instability of alkylphosphines, the phosphine-free synthetic route has become one of the most important trends in synthesizing selenide QDs. Here we report a novel phase transfer strategy to prepare phosphine-free chalcogenide precursors. The anions in aqueous solution were transferred to toluene via electrostatic interactions between the anions and didodecyldimethylammonium bromide (DDAB). The obtained chalcogenide precursors show high reactivity with metal ions in the organic phase and could be applied to the low-temperature synthesis of various metal chalcogenide NCs based on a simple reaction between metal ions (e.g. Ag+, Pb2+, Cd2+) and chalcogenide anions (e.g. S2-) in toluene. In addition to chalcogenide anions, other anions such as BH4- ions and AuCl4- ions can also be transferred to the organic phase for synthesizing noble metal NCs (such as Ag and Au NCs).Metal chalcogenide semiconductor nanocrystals (NCs) are ideal inorganic materials for solar cells and biomedical labeling. In consideration of the hazard and instability of alkylphosphines, the phosphine-free synthetic route has become one of the most important trends in synthesizing selenide QDs. Here we report a novel phase transfer strategy to prepare phosphine-free chalcogenide precursors. The anions in aqueous solution were transferred to toluene via electrostatic interactions between the anions and didodecyldimethylammonium bromide (DDAB). The obtained chalcogenide precursors show high reactivity with metal ions in the organic phase and could be applied to the low-temperature synthesis of various metal chalcogenide NCs based on a simple reaction between metal ions (e.g. Ag+, Pb2+, Cd2+) and chalcogenide anions (e.g. S2-) in toluene. In addition to chalcogenide anions, other anions such as BH4- ions and AuCl4- ions can also be transferred to

  8. Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization.

    PubMed

    Ong, Wee-Jun; Tan, Lling-Lling; Chai, Siang-Piao; Yong, Siek-Ting; Mohamed, Abdul Rahman

    2014-02-21

    Titanium dioxide (TiO2) is one of the most widely investigated metal oxides due to its extraordinary surface, electronic and catalytic properties. However, the large band gap of TiO2 and massive recombination of photogenerated electron-hole pairs limit its photocatalytic and photovoltaic efficiency. Therefore, increasing research attention is now being directed towards engineering the surface structure of TiO2 at the most fundamental and atomic level namely morphological control of {001} facets in the range of microscale and nanoscale to fine-tune its physicochemical properties, which could ultimately lead to the optimization of its selectivity and reactivity. The synthesis of {001}-faceted TiO2 is currently one of the most active interdisciplinary research areas and demonstrations of catalytic enhancement are abundant. Modifications such as metal and non-metal doping have also been extensively studied to extend its band gap to the visible light region. This steady progress has demonstrated that TiO2-based composites with {001} facets are playing and will continue to play an indispensable role in the environmental remediation and in the search for clean and renewable energy technologies. This review encompasses the state-of-the-art research activities and latest advancements in the design of highly reactive {001} facet-dominated TiO2via various strategies, including hydrothermal/solvothermal, high temperature gas phase reactions and non-hydrolytic alcoholysis methods. The stabilization of {001} facets using fluorine-containing species and fluorine-free capping agents is also critically discussed in this review. To overcome the large band gap of TiO2 and rapid recombination of photogenerated charge carriers, modifications are carried out to manipulate its electronic band structure, including transition metal doping, noble metal doping, non-metal doping and incorporating graphene as a two-dimensional (2D) catalyst support. The advancements made in these aspects are

  9. Alexandrite as a high-temperature pressure calibrant, and implications for the ruby-fluorescence scale

    NASA Technical Reports Server (NTRS)

    Jahren, A. H.; Kruger, M. B.; Jeanloz, Raymond

    1992-01-01

    The wavelength shifts of the R1 and R2 fluorescence lines of alexandrite (BeAl2O4:Cr(+3)) have been experimentally calibrated against the ruby-fluorescence scale as a function of both hydrostatic and nonhydrostatic pressures between 0 and 50 GPa, and simultaneously as a function of temperatures between 290 and 550 K. It is found that the pressure-temperature cross derivative of the fluorescence wavelength shifts are negligible for both ruby and alexandrite.

  10. Alpha reactivity to first names differs in subjects with high and low dream recall frequency

    PubMed Central

    Ruby, Perrine; Blochet, Camille; Eichenlaub, Jean-Baptiste; Bertrand, Olivier; Morlet, Dominique; Bidet-Caulet, Aurélie

    2013-01-01

    Studies in cognitive psychology showed that personality (openness to experience, thin boundaries, absorption), creativity, nocturnal awakenings, and attitude toward dreams are significantly related to dream recall frequency (DRF). These results suggest the possibility of neurophysiological trait differences between subjects with high and low DRF. To test this hypothesis we compared sleep characteristics and alpha reactivity to sounds in subjects with high and low DRF using polysomnographic recordings and electroencephalography (EEG). We acquired EEG from 21 channels in 36 healthy subjects while they were presented with a passive auditory oddball paradigm (frequent standard tones, rare deviant tones and very rare first names) during wakefulness and sleep (intensity, 50 dB above the subject's hearing level). Subjects were selected as High-recallers (HR, DRF = 4.42 ± 0.25 SEM, dream recalls per week) and Low-recallers (LR, DRF = 0.25 ± 0.02) using a questionnaire and an interview on sleep and dream habits. Despite the disturbing setup, the subjects' quality of sleep was generally preserved. First names induced a more sustained decrease in alpha activity in HR than in LR at Pz (1000–1200 ms) during wakefulness, but no group difference was found in REM sleep. The current dominant hypothesis proposes that alpha rhythms would be involved in the active inhibition of the brain regions not involved in the ongoing brain operation. According to this hypothesis, a more sustained alpha decrease in HR would reflect a longer release of inhibition, suggesting a deeper processing of complex sounds than in LR during wakefulness. A possibility to explain the absence of group difference during sleep is that increase in alpha power in HR may have resulted in awakenings. Our results support this hypothesis since HR experienced more intra sleep wakefulness than LR (30 ± 4 vs. 14 ± 4 min). As a whole our results support the hypothesis of neurophysiological trait differences in high

  11. Alpha reactivity to first names differs in subjects with high and low dream recall frequency.

    PubMed

    Ruby, Perrine; Blochet, Camille; Eichenlaub, Jean-Baptiste; Bertrand, Olivier; Morlet, Dominique; Bidet-Caulet, Aurélie

    2013-01-01

    Studies in cognitive psychology showed that personality (openness to experience, thin boundaries, absorption), creativity, nocturnal awakenings, and attitude toward dreams are significantly related to dream recall frequency (DRF). These results suggest the possibility of neurophysiological trait differences between subjects with high and low DRF. To test this hypothesis we compared sleep characteristics and alpha reactivity to sounds in subjects with high and low DRF using polysomnographic recordings and electroencephalography (EEG). We acquired EEG from 21 channels in 36 healthy subjects while they were presented with a passive auditory oddball paradigm (frequent standard tones, rare deviant tones and very rare first names) during wakefulness and sleep (intensity, 50 dB above the subject's hearing level). Subjects were selected as High-recallers (HR, DRF = 4.42 ± 0.25 SEM, dream recalls per week) and Low-recallers (LR, DRF = 0.25 ± 0.02) using a questionnaire and an interview on sleep and dream habits. Despite the disturbing setup, the subjects' quality of sleep was generally preserved. First names induced a more sustained decrease in alpha activity in HR than in LR at Pz (1000-1200 ms) during wakefulness, but no group difference was found in REM sleep. The current dominant hypothesis proposes that alpha rhythms would be involved in the active inhibition of the brain regions not involved in the ongoing brain operation. According to this hypothesis, a more sustained alpha decrease in HR would reflect a longer release of inhibition, suggesting a deeper processing of complex sounds than in LR during wakefulness. A possibility to explain the absence of group difference during sleep is that increase in alpha power in HR may have resulted in awakenings. Our results support this hypothesis since HR experienced more intra sleep wakefulness than LR (30 ± 4 vs. 14 ± 4 min). As a whole our results support the hypothesis of neurophysiological trait differences in high and

  12. Sequence-Dependent Conformational Heterogeneity and Proton-Transfer Reactivity of the Fluorescent Guanine Analogue 6-Methyl Isoxanthopterin (6-MI) in DNA.

    PubMed

    Johnson, Neil P; Ji, Huiying; Steinberg, Thomas H; von Hippel, Peter H; Marcus, Andrew H

    2015-10-01

    The local conformations of individual nucleic acid bases in DNA are important components in processes fundamental to gene regulation. Fluorescent nucleic acid base analogues, which can be substituted for natural bases in DNA, can serve as useful spectroscopic probes of average local base conformation and conformational heterogeneity. Here we report excitation-emission peak shift (EES) measurements of the fluorescent guanine (G) analogue 6-methyl isoxanthoptherin (6-MI), both as a ribonucleotide monophosphate (NMP) in solution and as a site-specific substituent for G in various DNA constructs. Changes in the peak positions of the fluorescence spectra as a function of excitation energy indicate that distinct subpopulations of conformational states exist in these samples on time scales longer than the fluorescence lifetime. Our pH-dependent measurements of the 6-MI NMP in solution show that these states can be identified as protonated and deprotonated forms of the 6-MI fluorescent probe. We implement a simple two-state model, which includes four vibrationally coupled electronic levels to estimate the free energy change, the free energy of activation, and the equilibrium constant for the proton transfer reaction. These parameters vary in single-stranded and duplex DNA constructs, and also depend on the sequence context of flanking bases. Our results suggest that proton transfer in 6-MI-substituted DNA constructs is coupled to conformational heterogeneity of the probe base, and can be interpreted to suggest that Watson-Crick base pairing between 6-MI and its complementary cytosine in duplex DNA involves a "low-barrier-hydrogen-bond". These findings may be important in using the 6-MI probe to understand local base conformational fluctuations, which likely play a central role in protein-DNA and ligand-DNA interactions. PMID:26368400

  13. Near-infrared fluorescent imaging of metastatic ovarian cancer using folate receptor-targeted high-density lipoprotein nanocarriers

    PubMed Central

    Corbin, Ian R; Ng, Kenneth K; Ding, Lili; Jurisicova, Andrea; Zheng, Gang

    2013-01-01

    Aim The targeting efficiency of folate receptor-α (FR-α)-targeted high-density lipoprotein nanoparticles (HDL NPs) was evaluated in a syngeneic mouse model of ovarian cancer. Materials & methods Folic acid was conjugated to the surface of fluorescent-labeled HDL NPs. In vivo tumor targeting of folic acid-HDL NPs and HDL NPs were evaluated in mice with metastatic ovarian cancer following intravenous or intraperitoneal (ip.) administration. Results & discussion Intravenous FR-α-targeted HDL resulted in high uptake of the fluorescent nanoparticle in host liver and spleen. The ip. injection of fluorescent HDL produced moderate fluorescence throughout the abdomen. Conversely, animals receiving the ip. FR-α-targeted HDL showed a high fluorescence signal in ovarian tumors, surpassing that seen in all of the host tissues. Conclusion The authors' findings demonstrate that the combination of local–regional ip. administration and FR-α-directed nanoparticles provides an enhanced approach to selectively targeting ovarian cancer cells for drug treatment. PMID:23067398

  14. High temperature monitoring of silicon carbide ceramics by confocal energy dispersive X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi

    2016-04-01

    In the present work, we presented an alternative method for monitoring of the oxidation situation of silicon carbide (SiC) ceramics at various high temperatures in air by measuring the Compton-to-Rayleigh intensity ratios (ICo/IRa) and effective atomic numbers (Zeff) of SiC ceramics with the confocal energy dispersive X-ray fluorescence (EDXRF) spectrometer. A calibration curve of the relationship between ICo/IRa and Zeff was established by using a set of 8 SiC calibration samples. The sensitivity of this approach is so high that it can be easily distinguished samples of Zeff differing from each other by only 0.01. The linear relationship between the variation of Zeff and the variations of contents of C, Si and O of SiC ceramics were found, and the corresponding calculation model of the relationship between the ΔZ and the ΔCC, ΔCSi, and ΔCO were established. The variation of contents of components of the tested SiC ceramics after oxidation at high temperature was quantitatively calculated based on the model. It was shown that the results of contents of carbon, silicon and oxygen obtained by this method were in good agreement with the results obtained by XPS, giving values of relative deviation less than 1%. It was concluded that the practicality of this proposed method for monitoring of the oxidation situation of SiC ceramics at high temperatures was acceptable.

  15. Brain Iron Detected by SWI High Pass Filtered Phase Calibrated with Synchrotron X-Ray Fluorescence

    PubMed Central

    Hopp, Karla; Popescu, Bogdan F.Gh.; McCrea, Richard P.E.; Harder, Sheri L.; Robinson, Christopher A.; Haacke, Mark E.; Rajput, Ali H.; Rajput, Alex; Nichol, Helen

    2013-01-01

    Purpose To test the ability of susceptibility weighted images (SWI) and high pass filtered phase images to localize and quantify brain iron. Materials and Methods Magnetic resonance (MR) images of human cadaver brain hemispheres were collected using a gradient echo based SWI sequence at 1.5T. For X-ray fluorescence (XRF) mapping, each brain was cut to obtain slices that reasonably matched the MR images and iron was mapped at the iron K-edge at 50 or 100 μm resolution. Iron was quantified using XRF calibration foils. Phase and iron XRF were averaged within anatomic regions of one slice, chosen for its range of iron concentrations and nearly perfect anatomic correspondence. X-ray absorption spectroscopy (XAS) was used to determine if the chemical form of iron was different in regions with poorer correspondence between iron and phase. Results Iron XRF maps, SWI, and high pass filtered phase data in nine brain slices from five subjects were visually very similar, particularly in high iron regions. The chemical form of iron could not explain poor matches. The correlation between the concentration of iron and phase in the cadaver brain was estimated as cFe [μg/g tissue] = 850Δφ + 110. Conclusion The phase shift Δφ was found to vary linearly with iron concentration with the best correspondence found in regions with high iron content. PMID:20512886

  16. Synthesis of highly fluorescent nitrogen and phosphorus doped carbon dots for the detection of Fe(3+) ions in cancer cells.

    PubMed

    Chandra, Soumen; Laha, Dipranjan; Pramanik, Arindam; Ray Chowdhuri, Angshuman; Karmakar, Parimal; Sahu, Sumanta Kumar

    2016-02-01

    Highly fluorescent nitrogen and phosphorus-doped carbon dots with a quantum yield 59% have been successfully synthesized from citric acid and di-ammonium hydrogen phosphate by single step hydrothermal method. The synthesized carbon dots have high solubility as well as stability in aqueous medium. The as-obtained carbon dots are well monodispersed with particle sizes 1.5-4 nm. Owing to a good tunable fluorescence property and biocompatibility, the carbon dots were applied for intercellular sensing of Fe(3+) ions as well as cancer cell imaging. PMID:25964146

  17. Regulatory Behaviors and Stress Reactivity among Infants at High Risk for Fetal Alcohol Spectrum Disorders: An Exploratory Study

    ERIC Educational Resources Information Center

    Jirikowic, Tracy; Chen, Maida; Nash, Jennifer; Gendler, Beth; Olson, Heather Carmichael

    2016-01-01

    Introduction: This article examines regulatory behaviors and physiological stress reactivity among 6-15 month-old infants with moderate to heavy prenatal alcohol exposure (PAE), a group at very high risk for fetal alcohol spectrum disorders and self-regulation impairments, compared to low risk infants with no/low exposure. Participants: Eighteen…

  18. The Complementary Role of High Sensitivity C-Reactive Protein in the Diagnosis and Severity Assessment of Autism

    ERIC Educational Resources Information Center

    Khakzad, Mohammad Reza; Javanbakht, Maryam; Shayegan, Mohammad Reza; Kianoush, Sina; Omid, Fatemeh; Hojati, Maryam; Meshkat, Mojtaba

    2012-01-01

    C-reactive protein (CRP) is a beneficial diagnostic test for the evaluation of inflammatory response. Extremely low levels of CRP can be detected using high-sensitivity CRP (hs-CRP) test. A considerable body of evidence has demonstrated that inflammatory response has an important role in the pathophysiology of autism. In this study, we evaluated…

  19. Changes in cerebral vascular reactivity and structure following prolonged exposure to high altitude in humans.

    PubMed

    Foster, Glen E; Davies-Thompson, Jodie; Dominelli, Paolo B; Heran, Manraj K S; Donnelly, Joseph; duManoir, Gregory R; Ainslie, Philip N; Rauscher, Alexander; Sheel, A William

    2015-12-01

    Although high-altitude exposure can lead to neurocognitive impairment, even upon return to sea level, it remains unclear the extent to which brain volume and regional cerebral vascular reactivity (CVR) are altered following high-altitude exposure. The purpose of this study was to simultaneously determine the effect of 3 weeks at 5050 m on: (1) structural brain alterations; and (2) regional CVR after returning to sea level for 1 week. Healthy human volunteers (n = 6) underwent baseline and follow-up structural and functional magnetic resonance imaging (MRI) at rest and during a CVR protocol (end-tidal PCO2 reduced by -10, -5 and increased by +5, +10, and +15 mmHg from baseline). CVR maps (% mmHg(-1)) were generated using BOLD MRI and brain volumes were estimated. Following return to sea level, whole-brain volume and gray matter volume was reduced by 0.4 ± 0.3% (P < 0.01) and 2.6 ± 1.0% (P < 0.001), respectively; white matter was unchanged. Global gray matter CVR and white matter CVR were unchanged following return to sea level, but CVR was selectively increased (P < 0.05) in the brainstem (+30 ± 12%), hippocampus (+12 ± 3%), and thalamus (+10 ± 3%). These changes were the result of improvement and/or reversal of negative CVR to positive CVR in these regions. Three weeks of high-altitude exposure is reflected in loss of gray matter volume and improvements in negative CVR. PMID:26660556

  20. High metal reactivity and environmental risks at a site contaminated by glass waste.

    PubMed

    Augustsson, A; Åström, M; Bergbäck, B; Elert, M; Höglund, L O; Kleja, D B

    2016-07-01

    This study addresses the reactivity and risks of metals (Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn, As and Sb) at a Swedish site with large glass waste deposits. Old glassworks sites typically have high total metal concentrations, but as the metals are mainly bound within the glass waste and considered relatively inert, environmental investigations at these kinds of sites are limited. In this study, soil and landfill samples were subjected to a sequential chemical extraction procedure. Data from batch leaching tests and groundwater upstream and downstream of the waste deposits were also interpreted. The sequential extraction revealed that metals in <2 mm soil/waste samples were largely associated with geochemically active fractions, indicating that metals are released from pristine glass and subsequently largely retained in the surrounding soil and/or on secondary mineral coatings on fine glass particles. From the approximately 12,000 m(3) of coarse glass waste at the site, almost 4000 kg of Pb is estimated to have been lost through corrosion, which, however, corresponds to only a small portion of the total amount of Pb in the waste. Metal sorption within the waste deposits or in underlying soil layers is supported by fairly low metal concentrations in groundwater. However, elevated concentrations in downstream groundwater and in leachates of batch leaching tests were observed for several metals, indicating on-going leaching. Taken together, the high metal concentrations in geochemically active forms and the high amounts of as yet uncorroded metal-rich glass, indicate considerable risks to human health and the environment. PMID:27077538