Sample records for reactive quinones generation

  1. Quinone Photoreactivity: An Undergraduate Experiment in Photochemistry

    ERIC Educational Resources Information Center

    Vaughan, Pamela P.; Cochran, Michael; Haubrich, Nicole

    2010-01-01

    An experiment exploring the photochemical properties of quinones was developed. Their unique photochemistry and highly reactive nature make them an ideal class of compounds for examining structure-activity relationships. For several substituted quinones, photochemical reactivity was related to structure and ultimately to the Gibbs energy for…

  2. Role of the NAD(P)H quinone oxidoreductase NQR and the cytochrome b AIR12 in controlling superoxide generation at the plasma membrane.

    PubMed

    Biniek, Catherine; Heyno, Eiri; Kruk, Jerzy; Sparla, Francesca; Trost, Paolo; Krieger-Liszkay, Anja

    2017-04-01

    The quinone reductase NQR and the b-type cytochrome AIR12 of the plasma membrane are important for the control of reactive oxygen species in the apoplast. AIR12 and NQR are two proteins attached to the plant plasma membrane which may be important for generating and controlling levels of reactive oxygen species in the apoplast. AIR12 (Auxin Induced in Root culture) is a single gene of Arabidopsis that codes for a mono-heme cytochrome b. The NADPH quinone oxidoreductase NQR is a two-electron-transferring flavoenzyme that contributes to the generation of O 2 •- in isolated plasma membranes. A. thaliana double knockout plants of both NQR and AIR12 generated more O 2 •- and germinated faster than the single mutant affected in AIR12. To test whether NQR and AIR12 are able to interact functionally, recombinant purified proteins were added to plasma membranes isolated from soybean hypocotyls. In vitro NADH-dependent O 2 •- production at the plasma membrane in the presence of NQR was reduced upon addition of AIR12. Electron donation from semi-reduced menadione to AIR12 was shown to take place. Biochemical analysis showed that purified plasma membrane from soybean hypocotyls or roots contained phylloquinone and menaquinone-4 as redox carriers. This is the first report on the occurrence of menaquinone-4 in eukaryotic photosynthetic organisms. We propose that NQR and AIR12 interact via the quinone, allowing an electron transfer from cytosolic NAD(P)H to apoplastic monodehydroascorbate and control thereby the level of reactive oxygen production and the redox state of the apoplast.

  3. [Development of selective determination methods for quinones with fluorescence and chemiluminescence detection and their application to environmental and biological samples].

    PubMed

    Kishikawa, Naoya

    2010-10-01

    Quinones are compounds that have various characteristics such as a biological electron transporter, an industrial product and a harmful environmental pollutant. Therefore, an effective determination method for quinones is required in many fields. This review describes the development of sensitive and selective determination methods for quinones based on some detection principles and their application to analyses in environmental, pharmaceutical and biological samples. Firstly, a fluorescence method was developed based on fluorogenic derivatization of quinones and applied to environmental analysis. Secondly, a luminol chemiluminescence method was developed based on generation of reactive oxygen species through the redox cycle of quinone and applied to pharmaceutical analysis. Thirdly, a photo-induced chemiluminescence method was developed based on formation of reactive oxygen species and fluorophore or chemiluminescence enhancer by the photoreaction of quinones and applied to biological and environmental analyses.

  4. Bioactivation of tamoxifen to metabolite E quinone methide: reaction with glutathione and DNA.

    PubMed

    Fan, P W; Bolton, J L

    2001-06-01

    Despite the beneficial effects of tamoxifen in the treatment and prevention of breast cancer, long-term usage of this popular antiestrogen has been linked to an increased risk of developing endometrial cancer in women. One of the suggested pathways leading to the potential toxicity of tamoxifen involves its oxidative metabolism to 4-hydroxytamoxifen, which may be further oxidized to an electrophilic quinone methide. Alternatively, tamoxifen could undergo O-dealkylation to give cis/trans-1,2-diphenyl-1-(4-hydroxyphenyl)-but-1-ene, which is commonly known as metabolite E. Because of its structural similarity to 4-hydroxytamoxifen, metabolite E could also be biotransformed to a quinone methide, which has the potential to alkylate DNA and may contribute to the genotoxic effects of tamoxifen. To further probe the chemical reactivity/toxicity of such an electrophilic species, we have prepared metabolite E quinone methide chemically and enzymatically and examined its reactivity with glutathione (GSH) and DNA. Like 4-hydroxytamoxifen quinone methide, metabolite E quinone methide is quite stable; its half-life under physiological conditions is around 4 h, and its half-life in the presence of GSH is approximately 4 min. However, unlike the unstable GSH adducts of 4-hydroxytamoxifen quinone methide, metabolite E GSH adducts are stable enough to be isolated and characterized by NMR and liquid chromatography/tandem mass spectrometry (LC/MS/MS). Reaction of metabolite E quinone methide with DNA generated exclusively deoxyguanosine adducts, which were characterized by LC/MS/MS. These data suggest that metabolite E has the potential to cause cytotoxicity/genotoxicity through the formation of a quinone methide.

  5. Benzo(a)pyrene quinones increase cell proliferation, generate reactive oxygen species, and transactivate the epidermal growth factor receptor in breast epithelial cells.

    PubMed

    Burdick, Andrew D; Davis, John W; Liu, Ke Jian; Hudson, Laurie G; Shi, Honglian; Monske, Michael L; Burchiel, Scott W

    2003-11-15

    Polycyclic aromatic hydrocarbons, such as benzo(a)pyrene (BaP), are known mammary carcinogens in rodents and may be involved in human breast cancer. We have reported previously that BaP can mimic growth factor signaling and increase cell proliferation in primary human mammary epithelial cells and the human mammary epithelial cell line MCF-10A. BaP-quinones (BPQs) are important metabolites of BaP that have been associated with the production of reactive oxygen species. Using a model of epidermal growth factor (EGF) withdrawal in MCF-10A, we hypothesized that production of reactive oxygen species by BPQs could lead to the activation of the EGF receptor (EGFR). Here, we demonstrate through electron paramagnetic resonance spectroscopy and flow cytometry that 1,6-BPQ and 3,6-BPQ produce superoxide anion and hydrogen peroxide in MCF-10A cells. Furthermore, we show that BPQs increase EGFR, Akt, and extracellular signal-regulated kinase activity, leading to increased cell number in the absence of EGF. The BPQ-induced EGFR activity and associated cell proliferation were attenuated by the EGFR inhibitor AG1478, as well as by the antioxidant N-acetyl cysteine. Overexpression of catalase, but not Cu/Zn superoxide dismutase, reduced the extent of BPQ-dependent increased cell number and EGFR pathway activation. Moreover, the direct treatment of MCF-10A cells with hydrogen peroxide enhanced EGFR, Akt, and extracellular-regulated kinase phosphorylation that could be similarly inhibited by AG1478, N-acetyl cysteine, and catalase. Taken together, these data indicate that BPQs, through the generation of hydrogen peroxide, activate the EGFR in MCF-10A cells, leading to increased cell number under EGF-deficient conditions.

  6. Quinone Reductase 2 Is a Catechol Quinone Reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Yue; Buryanovskyy, Leonid; Zhang, Zhongtao

    2008-09-05

    The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference betweenmore » quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.« less

  7. Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects

    PubMed Central

    2016-01-01

    Quinones represent a class of toxicological intermediates, which can create a variety of hazardous effects in vivo including, acute cytotoxicity, immunotoxicity, and carcinogenesis. In contrast, quinones can induce cytoprotection through the induction of detoxification enzymes, anti-inflammatory activities, and modification of redox status. The mechanisms by which quinones cause these effects can be quite complex. The various biological targets of quinones depend on their rate and site of formation and their reactivity. Quinones are formed through a variety of mechanisms from simple oxidation of catechols/hydroquinones catalyzed by a variety of oxidative enzymes and metal ions to more complex mechanisms involving initial P450-catalyzed hydroxylation reactions followed by two-electron oxidation. Quinones are Michael acceptors, and modification of cellular processes could occur through alkylation of crucial cellular proteins and/or DNA. Alternatively, quinones are highly redox active molecules which can redox cycle with their semiquinone radical anions leading to the formation of reactive oxygen species (ROS) including superoxide, hydrogen peroxide, and ultimately the hydroxyl radical. Production of ROS can alter redox balance within cells through the formation of oxidized cellular macromolecules including lipids, proteins, and DNA. This perspective explores the varied biological targets of quinones including GSH, NADPH, protein sulfhydryls [heat shock proteins, P450s, cyclooxygenase-2 (COX-2), glutathione S-transferase (GST), NAD(P)H:quinone oxidoreductase 1, (NQO1), kelch-like ECH-associated protein 1 (Keap1), IκB kinase (IKK), and arylhydrocarbon receptor (AhR)], and DNA. The evidence strongly suggests that the numerous mechanisms of quinone modulations (i.e., alkylation versus oxidative stress) can be correlated with the known pathology/cytoprotection of the parent compound(s) that is best described by an inverse U-shaped dose–response curve. PMID:27617882

  8. Electron transfer capacity dependence of quinone-mediated Fe(III) reduction and current generation by Klebsiella pneumoniae L17.

    PubMed

    Li, Xiaomin; Liu, Liang; Liu, Tongxu; Yuan, Tian; Zhang, Wei; Li, Fangbai; Zhou, Shungui; Li, Yongtao

    2013-06-01

    Quinone groups in exogenous electron shuttles can accelerate extracellular electron transfer (EET) from bacteria to insoluble terminal electron acceptors, such as Fe(III) oxides and electrodes, which are important in biogeochemical redox processes and microbial electricity generation. However, the relationship between quinone-mediated EET performance and electron-shuttling properties of the quinones remains incompletely characterized. This study investigates the effects of a series of synthetic quinones (SQs) on goethite reduction and current generation by a fermenting bacterium Klebsiella pneumoniae L17. In addition, the voltammetric behavior and electron transfer capacities (ETCs) of SQ, including electron accepting (EAC) and donating (EDC) capacities, is also examined using electrochemical methods. The results showed that SQ can significantly increase both the Fe(III) reduction rates and current outputs of L17. Each tested SQ reversibly accepted and donated electrons as indicated by the cyclic voltammograms. The EAC and EDC results showed that Carmine and Alizarin had low relative capacities of electron transfer, whereas 9,10-anthraquinone-2,6-disulfonic acid (AQDS), 2-hydroxy-1,4-naphthoquinone (2-HNQ), and 5-hydroxy-1,4-naphthoquinone (5-HNQ) showed stronger relative ETC, and 9,10-anthraquinone-2-carboxylic acid (AQC) and 9,10-anthraquinone-2-sulfonic acid (AQS) had high relative ETC. Enhancement of microbial goethite reduction kinetics and current outputs by SQ had a good linear relationship with their ETC, indicating that the effectiveness of quinone-mediated EET may be strongly dependent on the ETC of the quinones. Therefore, the presence of quinone compounds and fermenting microorganisms may increase the diversity of microbial populations that contribute to element transformation in natural environments. Moreover, ETC determination of different SQ would help to evaluate their performance for microbial EET under anoxic conditions. Copyright © 2013 Elsevier

  9. Oxidative stress and neurodegeneration: The possible contribution of quinone reductase 2.

    PubMed

    Cassagnes, Laure-Estelle; Chhour, Monivan; Pério, Pierre; Sudor, Jan; Gayon, Régis; Ferry, Gilles; Boutin, Jean A; Nepveu, Françoise; Reybier, Karine

    2018-05-20

    There is increasing evidence that oxidative stress is involved in the etiology and pathogenesis of neurodegenerative disorders. Overproduction of reactive oxygen species (ROS) is due in part to the reactivity of catecholamines, such as dopamine, adrenaline, and noradrenaline. These molecules are rapidly converted, chemically or enzymatically, into catechol-quinone and then into highly deleterious semiquinone radicals after 1-electron reduction in cells. Notably, the overexpression of dihydronicotinamide riboside:quinone oxidoreductase (QR2) in Chinese hamster ovary (CHO) cells increases the production of ROS, mainly superoxide radicals, when it is exposed to exogenous catechol-quinones (e.g. dopachrome, aminochrome, and adrenochrome). Here we used electron paramagnetic resonance analysis to demonstrate that the phenomenon observed in CHO cells is also seen in human leukemic cells (K562 cells) that naturally express QR2. Moreover, by manipulating the level of QR2 in neuronal cells, including immortalized neuroblast cells and ex vivo neurons isolated from QR2 knockout animals, we showed that there is a direct relationship between QR2-mediated quinone reduction and ROS overproduction. Supporting this result, the withdraw of the QR2 co-factor (BNAH) or the addition of the specific QR2 inhibitor S29434 suppressed oxidative stress. Taken together, these data suggest that the overexpression of QR2 in brain cells in the presence of catechol quinones might lead to ROS-induced cell death via the rapid conversion of superoxide radicals into hydrogen peroxide and then into highly reactive hydroxyl radicals. Thus, QR2 may be implicated in the early stages of neurodegenerative disorders. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Hurdles to organic quinone flow cells. Electrode passivation by quinone reduction in acetonitrile Li electrolytes

    NASA Astrophysics Data System (ADS)

    Rueda-García, D.; Dubal, D. P.; Huguenin, F.; Gómez-Romero, P.

    2017-05-01

    The uses of quinones in Redox Flow Batteries (RFBs) has been mainly circumscribed to aqueous solutions (of derivatives with polar groups) despite a larger solubility and wider electrochemical window provided by organic media. The redox mechanism of quinones in protic media is simpler and better known than in aprotic media, where radical species are involved. This paper reports the behaviour of methyl-p-benzoquinone (MBQ) under electrochemical reduction conditions in a LiClO4sbnd CH3CN electrolyte and various working electrodes. We detected the reversible generation of a bright green coating on the working electrode and the subsequent formation of a polymer (the nature of which depends on the presence or absence of oxygen). These coatings prevent the regular redox process of methyl-p-benzoquinone from taking place on the surface of the electrode and is generated regardless of the electrode material used or the presence of O2 in solution. In addition to MBQ, the green passivating layer was also found for less sterically hindered quinones such as p-benzoquinone or 1,4-naphthoquinone, but not for anthraquinone. We have also shown the central role of Li+ in the formation of this green layer. This work provides important guidelines for the final use of quinones in RFBs with organic electrolytes.

  11. Quinone-induced protein handling changes: Implications for major protein handling systems in quinone-mediated toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Rui; Siegel, David; Ross, David, E-mail: david.ross@ucdenver.edu

    2014-10-15

    Para-quinones such as 1,4-Benzoquinone (BQ) and menadione (MD) and ortho-quinones including the oxidation products of catecholamines, are derived from xenobiotics as well as endogenous molecules. The effects of quinones on major protein handling systems in cells; the 20/26S proteasome, the ER stress response, autophagy, chaperone proteins and aggresome formation, have not been investigated in a systematic manner. Both BQ and aminochrome (AC) inhibited proteasomal activity and activated the ER stress response and autophagy in rat dopaminergic N27 cells. AC also induced aggresome formation while MD had little effect on any protein handling systems in N27 cells. The effect of NQO1more » on quinone induced protein handling changes and toxicity was examined using N27 cells stably transfected with NQO1 to generate an isogenic NQO1-overexpressing line. NQO1 protected against BQ–induced apoptosis but led to a potentiation of AC- and MD-induced apoptosis. Modulation of quinone-induced apoptosis in N27 and NQO1-overexpressing cells correlated only with changes in the ER stress response and not with changes in other protein handling systems. These data suggested that NQO1 modulated the ER stress response to potentiate toxicity of AC and MD, but protected against BQ toxicity. We further demonstrated that NQO1 mediated reduction to unstable hydroquinones and subsequent redox cycling was important for the activation of the ER stress response and toxicity for both AC and MD. In summary, our data demonstrate that quinone-specific changes in protein handling are evident in N27 cells and the induction of the ER stress response is associated with quinone-mediated toxicity. - Highlights: • Unstable hydroquinones contributed to quinone-induced ER stress and toxicity.« less

  12. The Role of Human Aldo-Keto Reductases in the Metabolic Activation and Detoxication of Polycyclic Aromatic Hydrocarbons: Interconversion of PAH Catechols and PAH o-Quinones

    PubMed Central

    Zhang, Li; Jin, Yi; Huang, Meng; Penning, Trevor M.

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants. They are procarcinogens requiring metabolic activation to elicit their deleterious effects. Aldo-keto reductases (AKR) catalyze the oxidation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active PAH o-quinones. AKRs are also found to be capable of reducing PAH o-quinones to form PAH catechols. The interconversion of o-quinones and catechols results in the redox-cycling of PAH o-quinones to give rise to the generation of reactive oxygen species and subsequent oxidative DNA damage. On the other hand, PAH catechols can be intercepted through phase II metabolism by which PAH o-quinones could be detoxified and eliminated. The aim of the present review is to summarize the role of human AKRs in the metabolic activation/detoxication of PAH and the relevance of phase II conjugation reactions to human lung carcinogenesis. PMID:23162467

  13. 4-Hydroxylated metabolites of the antiestrogens tamoxifen and toremifene are metabolized to unusually stable quinone methides.

    PubMed

    Fan, P W; Zhang, F; Bolton, J L

    2000-01-01

    Tamoxifen is widely prescribed for the treatment of hormone-dependent breast cancer, and it has recently been approved by the Food and Drug Administration for the chemoprevention of this disease. However, long-term usage of tamoxifen has been linked to increased risk of developing endometrial cancer in women. One of the suggested pathways leading to the potential toxicity of tamoxifen involves its oxidative metabolism to 4-hydroxytamoxifen, which may be further oxidized to an electrophilic quinone methide. The resulting quinone methide has the potential to alkylate DNA and may initiate the carcinogenic process. To further probe the chemical reactivity and toxicity of such an electrophilic species, we have prepared the 4-hydroxytamoxifen quinone methide chemically and enzymatically, examined its reactivity under physiological conditions, and quantified its reactivity with GSH. Interestingly, this quinone methide is unusually stable; its half-life under physiological conditions is approximately 3 h, and its half-life in the presence of GSH is approximately 4 min. The reaction between 4-hydroxytamoxifen quinone methide and GSH appears to be a reversible process because the quinone methide GSH conjugates slowly decompose over time, regenerating the quinone methide as indicated by LC/MS/MS data. The tamoxifen GSH conjugates were detected in microsomal incubations with 4-hydroxytamoxifen; however, none were observed in breast cancer cell lines (MCF-7) perhaps because very little quinone methides is formed. Toremifene, which is a chlorinated analogue of tamoxifen, undergoes similar oxidative metabolism to give 4-hydroxytoremifene, which is further oxidized to the corresponding quinone methide. The toremifene quinone methide has a half-life of approximately 1 h under physiological conditions, and its rate of reaction in the presence of excess GSH is approximately 6 min. More detailed analyses have indicated that the 4-hydroxytoremifene quinone methide reacts with two

  14. Lung toxicity and tumor promotion by hydroxylated derivatives of 2,6-di-tert-butyl-4-methylphenol (BHT) and 2-tert-butyl-4-methyl-6-iso-propylphenol: correlation with quinone methide reactivity.

    PubMed

    Kupfer, Rene; Dwyer-Nield, Lori D; Malkinson, Alvin M; Thompson, John A

    2002-08-01

    Acute pulmonary toxicity and tumor promotion by the food additive 2,6-di-tert-butyl-4-methylphenol (BHT) in mice are well documented. These effects have been attributed to either of two quinone methides, 2,6-di-tert-butyl-4-methylenecyclohexa-2,5-dienone (BHT-QM) formed through direct oxidation of BHT by pulmonary cytochrome P450 or a quinone methide formed by hydroxylation of a tert-butyl group of BHT (to form BHTOH) followed by oxidation of this metabolite to BHTOH-QM. BHTOH-QM is a more reactive electrophile compared to BHT-QM due to intramolecular interactions of the side-chain hydroxyl with the carbonyl oxygen. To further examine this bioactivation pathway, an analogue of BHTOH was prepared, 2-tert-butyl-6-(1'-hydroxy-1'-methyl)ethyl-4-methylphenol (BPPOH), that is structurally very similar to BHTOH but forms a quinone methide (BPPOH-QM) capable of more efficient intramolecular hydrogen bonding and, therefore, higher electrophilicity than BHTOH-QM. BPPOH-QM was synthesized and its reactivity with water, methanol, and glutathione determined to be >10-fold higher than that of BHTOH-QM. The conversions of BPPOH and BHTOH to quinone methides in lung microsomes from male BALB/cByJ mice were quantitatively similar, but in vivo the former was pneumotoxic at one-half of the dose required for the latter and one-eighth of the dose required for BHT, as determined by increased lung weight:body weight ratios following a single i.p. injection. Similar differences were found in the doses of BHT, BHTOH, or BPPOH required for tumor promotion after a single initiating dose of 3-methylcholanthrene followed by three weekly injections of the phenol. The downregulaton of calpain II, previously shown to accompany lung tumor promotion by BHT and BHTOH, also occurred with BPPOH. The correlation between biologic activities of these phenols and the reactivities of their corresponding quinone methides provides additional support for the role of BHTOH-QM as the principal metabolite

  15. Removal of bisphenol derivatives through quinone oxidation by polyphenol oxidase and subsequent quinone adsorption on chitosan in the heterogeneous system.

    PubMed

    Kimura, Yuji; Takahashi, Ayumi; Kashiwada, Ayumi; Yamada, Kazunori

    2015-01-01

    In this study, the combined use of a biopolymer chitosan and an oxidoreductase polyphenol oxidase (PPO) was systematically investigated for the removal of bisphenol derivatives from aqueous medium. The process parameters, such as the pH value, temperature, and PPO concentration, were estimated to conduct the enzymatic quinone oxidation of bisphenol derivatives by as little enzyme as possible. Bisphenol derivatives effectively underwent PPO-catalysed quinone oxidation without H2O2 unlike other oxidoreductases, such as peroxidase and tyrosinase, and the optimum conditions were determined to be pH 7.0 and 40°C for bisphenol B, bisphenol E, bisphenol O, and bisphenol Z; pH 7.0 and 30°C for bisphenol C and bisphenol F; and pH 8.0 and 40°C for bisphenol T. They were completely removed through adsorption of enzymatically generated quinone derivatives on chitosan beads or chitosan powders. Quinone adsorption on chitosan beads or chitosan powders in the heterogeneous system was found to be a more effective procedure than generation of aggregates in the homogeneous system with chitosan solution. The removal time was shortened by increasing the amount of chitosan beads or decreasing the size of the chitosan powders.

  16. Biological Reactive Intermediates (BRIs) Formed from Botanical Dietary Supplements

    PubMed Central

    Dietz, Birgit M.; Bolton, Judy L.

    2013-01-01

    The use of botanical dietary supplements is increasingly popular, due to their natural origin and the perceived assumption that they are safer than prescription drugs. While most botanical dietary supplements can be considered safe, a few contain compounds, which can be converted to reactive biological reactive intermediates (BRIs) causing toxicity. For example, sassafras oil contains safrole, which can be converted to a reactive carbocation forming genotoxic DNA adducts. Alternatively, some botanical dietary supplements contain stable BRIs such as simple Michael acceptors that react with chemosensor proteins such as Keap1 resulting in induction of protective detoxification enzymes. Examples include curcumin from turmeric, xanthohumol from hops, and Z-ligustilide from dang gui. Quinones (sassafras, kava, black cohosh), quinone methides (sassafras), and epoxides (pennyroyal oil) represent BRIs of intermediate reactivity, which could generate both genotoxic and/or chemopreventive effects. The biological targets of BRIs formed from botanical dietary supplements and their resulting toxic and/or chemopreventive effects are closely linked to the reactivity of BRIs as well as dose and time of exposure. PMID:20970412

  17. Three-dimensional Structure and Enzymatic Function of Proapoptotic Human p53-inducible Quinone Oxidoreductase PIG3*

    PubMed Central

    Porté, Sergio; Valencia, Eva; Yakovtseva, Evgenia A.; Borràs, Emma; Shafqat, Naeem; Debreczeny, Judit É.; Pike, Ashley C. W.; Oppermann, Udo; Farrés, Jaume; Fita, Ignacio; Parés, Xavier

    2009-01-01

    Tumor suppressor p53 regulates the expression of p53-induced genes (PIG) that trigger apoptosis. PIG3 or TP53I3 is the only known member of the medium chain dehydrogenase/reductase superfamily induced by p53 and is used as a proapoptotic marker. Although the participation of PIG3 in the apoptotic pathway is proven, the protein and its mechanism of action were never characterized. We analyzed human PIG3 enzymatic function and found NADPH-dependent reductase activity with ortho-quinones, which is consistent with the classification of PIG3 in the quinone oxidoreductase family. However, the activity is much lower than that of ζ-crystallin, a better known quinone oxidoreductase. In addition, we report the crystallographic structure of PIG3, which allowed the identification of substrate- and cofactor-binding sites, with residues fully conserved from bacteria to human. Tyr-59 in ζ-crystallin (Tyr-51 in PIG3) was suggested to participate in the catalysis of quinone reduction. However, kinetics of Tyr/Phe and Tyr/Ala mutants of both enzymes demonstrated that the active site Tyr is not catalytic but may participate in substrate binding, consistent with a mechanism based on propinquity effects. It has been proposed that PIG3 contribution to apoptosis would be through oxidative stress generation. We found that in vitro activity and in vivo overexpression of PIG3 accumulate reactive oxygen species. Accordingly, an inactive PIG3 mutant (S151V) did not produce reactive oxygen species in cells, indicating that enzymatically active protein is necessary for this function. This supports that PIG3 action is through oxidative stress produced by its enzymatic activity and provides essential knowledge for eventual control of apoptosis. PMID:19349281

  18. Semiquinone formation and DNA base damage by toxic quinones and inhibition by N-acetylcysteine (NAC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, D.C.; Shibamoto, T.

    1986-03-05

    Toxic, mutagenic, carcinogenic, and teratogenic effects have been reported for some quinones as well as compounds metabolized to quinones. Semiquinone radical formation, thymidine degradation, and protection by NAC were studied in a hypoxanthine/xanthine oxidase (HX/XO) system. Quinone, benzo(a)pyrene-3,6-quinone, danthron, doxorubicin, emodin, juglone, menadione, and moniliformin were tested. Diethylstilbestrolquinone, N-acetylquinoneimine, and benzoquinonediimine, hypothesized toxic metabolites of diethylstilbestrol, acetaminophen and p-phenylenediamine, respectively, were synthesized and studied. Semiquinone radical formation was assessed in a HX/XO system monitoring cytochrome C reduction. Large differences in rates of semiquinone radical formation were noted for different quinones, with V/Vo values ranging from 1.2 to 10.6. DNA basemore » degradation, thymine or thymidine glycol formation, and thiobarbituric acid reactive substance (TBARS) production were measured in a similar system containing thymine, thymidine, calf thymus DNA, or deoxyribose. TBARS formation was observed with deoxyribose, but thymidine degradation without TBARS formation was noted with thymidine. NAC (0.5 to 10 mM) caused dose-dependent inhibition of quinone-induced cytochrome C reduction.« less

  19. The Quinone Based Antitumor Agent Sepantronium Bromide (YM155) Causes Oxygen Independent Redox Activated Oxidative DNA Damage.

    PubMed

    Wani, Tasaduq Hussain; Surendran, Sreeraj; Jana, Anal; Chakrabarty, Anindita; Chowdhury, Goutam

    2018-06-13

    Sepantronium bromide (YM155) is a small molecule antitumor agent currently in phase II clinical trials. Although developed as survivin suppressor, YM155's primary mode of action has recently been found to be DNA damage. However, the mechanism of DNA damage by YM155 is still unknown. Knowing the mechanism of action of an anticancer drug is necessary to formulate a rational drug combination and select a cancer type for achieving maximum clinical efficacy. Using cell-based assays we showed that YM155 cause extensive DNA cleavage and reactive oxygen species generation. DNA cleavage by YM155 was found to be inhibited by radical scavengers and desferal. The reducing agent DTT and the cellular reducing system xanthine/xanthine oxidase were found to reductively activate YM155 and cause DNA cleavage. Unlike quinones, DNA cleavage by YM155 occurs in the presence of catalase and under hypoxic conditions indicating that hydrogen peroxide and oxygen is not necessary. Although YM155 is a quinone, it does not follow a typical quinone mechanism. Consistent with these observations a mechanism has been proposed that suggests that YM155 can cause oxidative DNA cleavage upon two electron reductive activation.

  20. A novel coumarin-quinone derivative SV37 inhibits CDC25 phosphatases, impairs proliferation, and induces cell death.

    PubMed

    Bana, Emilie; Sibille, Estelle; Valente, Sergio; Cerella, Claudia; Chaimbault, Patrick; Kirsch, Gilbert; Dicato, Mario; Diederich, Marc; Bagrel, Denyse

    2015-03-01

    Cell division cycle (CDC) 25 proteins are key phosphatases regulating cell cycle transition and proliferation by regulating CDK/cyclin complexes. Overexpression of these enzymes is frequently observed in cancer and is related to aggressiveness, high-grade tumors and poor prognosis. Thus, targeting CDC25 by compounds, able to inhibit their activity, appears a good therapeutic approach. Here, we describe the synthesis of a new inhibitor (SV37) whose structure is based on both coumarin and quinone moieties. An analytical in vitro approach shows that this compound efficiently inhibits all three purified human CDC25 isoforms (IC50 1-9 µM) in a mixed-type mode. Moreover, SV37 inhibits growth of breast cancer cell lines. In MDA-MB-231 cells, reactive oxygen species generation is followed by pCDK accumulation, a mark of CDC25 dysfunction. Eventually, SV37 treatment leads to activation of apoptosis and DNA cleavage, underlining the potential of this new type of coumarin-quinone structure. © 2013 Wiley Periodicals, Inc.

  1. Quinone-Catalyzed Selective Oxidation of Organic Molecules

    PubMed Central

    Wendlandt, Alison E.

    2016-01-01

    Lead In Quinones are common stoichiometric reagents in organic chemistry. High potential para-quinones, such as DDQ and chloranil, are widely used and typically promote hydride abstraction. In recent years, many catalytic applications of these methods have been achieved by using transition metals, electrochemistry or O2 to regenerate the oxidized quinone in situ. Complementary studies have led to the development of a different class of quinones that resemble the ortho-quinone cofactors in Copper Amine Oxidases and mediate efficient and selective aerobic and/or electrochemical dehydrogenation of amines. The latter reactions typically proceed via electrophilic transamination and/or addition-elimination reaction mechanisms, rather than hydride abstraction pathways. The collective observations show that the quinone structure has a significant influence on the reaction mechanism and have important implications for the development of new quinone reagents and quinone-catalyzed transformations. PMID:26530485

  2. QUINONE METHIDES IN LIGNIFICATION

    USDA-ARS?s Scientific Manuscript database

    Quinone methides play an important role in lignification. They are produced directly, as intermediates, when lignin monomers, be they hydroxycinnamyl alcohols, hydroxycinnamaldehydes, or hydroxycinnamates, couple or cross-couple at their 8-positions. A variety of post-coupling quinone methide rearom...

  3. EXAMINATION OF QUINONE TOXICITY USING YEAST SACCHAROMYCES CEREVISIAE MODEL SYSTEM. (R827352C007)

    EPA Science Inventory

    The toxicity of quinones is generally thought to occur by two mechanisms: the formation of covalent bonds with biological molecules by Michael addition chemistry and the catalytic reduction of oxygen to superoxide and other reactive oxygen species (ROS) (redox cycling). In an ...

  4. NMR Reveals Double Occupancy of Quinone-type Ligands in the Catalytic Quinone Binding Site of the Na+-translocating NADH:Quinone Oxidoreductase from Vibrio cholerae*

    PubMed Central

    Nedielkov, Ruslan; Steffen, Wojtek; Steuber, Julia; Möller, Heiko M.

    2013-01-01

    The sodium ion-translocating NADH:quinone oxidoreductase (Na+-NQR) from the pathogen Vibrio cholerae exploits the free energy liberated during oxidation of NADH with ubiquinone to pump sodium ions across the cytoplasmic membrane. The Na+-NQR consists of four membrane-bound subunits NqrBCDE and the peripheral NqrF and NqrA subunits. NqrA binds ubiquinone-8 as well as quinones with shorter prenyl chains (ubiquinone-1 and ubiquinone-2). Here we show that the quinone derivative 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), a known inhibitor of the bc1 and b6f complexes found in mitochondria and chloroplasts, also inhibits quinone reduction by the Na+-NQR in a mixed inhibition mode. Tryptophan fluorescence quenching and saturation transfer difference NMR experiments in the presence of Na+-NQR inhibitor (DBMIB or 2-n-heptyl-4-hydroxyquinoline N-oxide) indicate that two quinone analog ligands are bound simultaneously by the NqrA subunit with very similar interaction constants as observed with the holoenzyme complex. We conclude that the catalytic site of quinone reduction is located on NqrA. The two ligands bind to an extended binding pocket in direct vicinity to each other as demonstrated by interligand Overhauser effects between ubiquinone-1 and DBMIB or 2-n-heptyl-4-hydroxyquinoline N-oxide, respectively. We propose that a similar spatially close arrangement of the native quinone substrates is also operational in vivo, enhancing the catalytic efficiency during the final electron transfer steps in the Na+-NQR. PMID:24003222

  5. Detection of Free and Protein-Bound ortho-Quinones by Near-Infrared Fluorescence.

    PubMed

    Mazzulli, Joseph R; Burbulla, Lena F; Krainc, Dimitri; Ischiropoulos, Harry

    2016-02-16

    Aging and oxidative stress are two prominent pathological mechanisms for Parkinson's disease (PD) that are strongly associated with the degeneration of dopamine (DA) neurons in the midbrain. DA and other catechols readily oxidize into highly reactive o-quinone species that are precursors of neuromelanin (NM) pigment and under pathological conditions can modify and damage macromolecules. The role of DA oxidation in PD pathogenesis remains unclear in part due to the lack of appropriate disease models and the absence of a simple method for the quantification of DA-derived oxidants. Here, we describe a rapid, simple, and reproducible method for the quantification of o-quinones in cells and tissues that relies on the near-infrared fluorescent properties of these species. Importantly, we demonstrate that catechol-derived oxidants can be quantified in human neuroblastoma cells and midbrain dopamine neurons derived from induced pluripotent stem cells, providing a novel model to study the downstream actions of o-quinones. This method should facilitate further study of oxidative stress and DA oxidation in PD and related diseases that affect the dopaminergic system.

  6. Synthetic Strategies to Terpene Quinones/Hydroquinones

    PubMed Central

    Gordaliza, Marina

    2012-01-01

    The cytotoxic and antiproliferative properties of many natural sesquiterpene-quinones and -hydroquinones from sponges offer promising opportunities for the development of new drugs. A review dealing with different strategies for obtaining bioactive terpenyl quinones/hydroquinones is presented. The different synthetic approches for the preparation of the most relevant quinones/hydroquinones are described. PMID:22412807

  7. Quinone

    Integrated Risk Information System (IRIS)

    Quinone ; CASRN 106 - 51 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  8. A copper-induced quinone degradation pathway provides protection against combined copper/quinone stress in Lactococcus lactis IL1403.

    PubMed

    Mancini, Stefano; Abicht, Helge K; Gonskikh, Yulia; Solioz, Marc

    2015-02-01

    Quinones are ubiquitous in the environment. They occur naturally but are also in widespread use in human and industrial activities. Quinones alone are relatively benign to bacteria, but in combination with copper, they become toxic by a mechanism that leads to intracellular thiol depletion. Here, it was shown that the yahCD-yaiAB operon of Lactococcus lactis IL1403 provides resistance to combined copper/quinone stress. The operon is under the control of CopR, which also regulates expression of the copRZA copper resistance operon as well as other L. lactis genes. Expression of the yahCD-yaiAB operon is induced by copper but not by quinones. Two of the proteins encoded by the operon appear to play key roles in alleviating quinone/copper stress: YaiB is a flavoprotein that converts p-benzoquinones to less toxic hydroquinones, using reduced nicotinamide adenine dinucleotide phosphate (NADPH) as reductant; YaiA is a hydroquinone dioxygenase that converts hydroquinone putatively to 4-hydroxymuconic semialdehyde in an oxygen-consuming reaction. Hydroquinone and methylhydroquinone are both substrates of YaiA. Deletion of yaiB causes increased sensitivity of L. lactis to quinones and complete growth arrest under combined quinone and copper stress. Copper induction of the yahCD-yaiAB operon offers protection to copper/quinone toxicity and could provide a growth advantage to L. lactis in some environments. © 2014 John Wiley & Sons Ltd.

  9. NQO2 Is a Reactive Oxygen Species Generating Off-Target for Acetaminophen

    PubMed Central

    2014-01-01

    The analgesic and antipyretic compound acetaminophen (paracetamol) is one of the most used drugs worldwide. Acetaminophen overdose is also the most common cause for acute liver toxicity. Here we show that acetaminophen and many structurally related compounds bind quinone reductase 2 (NQO2) in vitro and in live cells, establishing NQO2 as a novel off-target. NQO2 modulates the levels of acetaminophen derived reactive oxygen species, more specifically superoxide anions, in cultured cells. In humans, NQO2 is highly expressed in liver and kidney, the main sites of acetaminophen toxicity. We suggest that NQO2 mediated superoxide production may function as a novel mechanism augmenting acetaminophen toxicity. PMID:25313982

  10. Bisphenol A 3,4-quinone induces the conversion of xanthine dehydrogenase into oxidase in vitro.

    PubMed

    Sakuma, Satoru; Nakanishi, Masahiko; Morinaga, Kazuhiro; Fujitake, Mihoyo; Wada, Shun-ichi; Fujimoto, Yohko

    2010-01-01

    In the present study, we assessed the influence of bisphenol A (BPA) and bisphenol A 3,4-quinone (BPAQ) on the conversion of xanthine dehydrogenase (XD) into xanthine oxidase (XO) in the rat liver in vitro. BPA up to 100 micromol/L did not affect the XO and XD activities in the partially purified cytosolic fraction from rat liver, whereas BPAQ (2-10 micromol/L) dose-dependently enhanced the XO activity concomitant with a decrease in the XD activity, implying that BPAQ, but not BPA, can convert XD into the reactive oxygen species (ROS) producing the form XO. Furthermore, it was found that BPAQ could increase the generation of ROS and oxidize the guanine moiety of deoxyguanosine in the DNA of primary rat hepatocyte cultures. These results suggest that BPAQ has the potential to convert XD into XO in the liver, which in turn may lead to ROS generation and oxidative DNA damage in this region. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. Measuring protection of aromatic wine thiols from oxidation by competitive reactions vs wine preservatives with ortho-quinones.

    PubMed

    Nikolantonaki, Maria; Magiatis, Prokopios; Waterhouse, Andrew L

    2014-11-15

    Quinones are central intermediates in wine oxidation that can degrade the quality of wine by reactions with varietal thiols, such as 3-sulfanylhexanol, decreasing desirable aroma. Protection by wine preservatives (sulphur dioxide, glutathione, ascorbic acid and model tannin, phloroglucinol) was assessed by competitive sacrificial reactions with 4-methyl-1,2-benzoquinone, quantifying products and ratios by HPLC-UV-MS. Regioselectivity was assessed by product isolation and identification by NMR spectroscopy. Nucleophilic addition reactions compete with two electron reduction of quinones by sulphur dioxide or ascorbic acid, and both routes serve as effective quenching pathways, but minor secondary products from coupled redox reactions between the products and reactants are also observed. The wine preservatives were all highly reactive and thus all very protective against 3-sulfanylhexanol loss to the quinone, but showed only additive antioxidant effects. Confirmation of these reaction rates and pathways in wine is needed to assess the actual protective action of each tested preservative. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Quinone Reduction by the Na+-Translocating NADH Dehydrogenase Promotes Extracellular Superoxide Production in Vibrio cholerae▿ †

    PubMed Central

    Lin, Po-Chi; Türk, Karin; Häse, Claudia C.; Fritz, Günter; Steuber, Julia

    2007-01-01

    The pathogenicity of Vibrio cholerae is influenced by sodium ions which are actively extruded from the cell by the Na+-translocating NADH:quinone oxidoreductase (Na+-NQR). To study the function of the Na+-NQR in the respiratory chain of V. cholerae, we examined the formation of organic radicals and superoxide in a wild-type strain and a mutant strain lacking the Na+-NQR. Upon reduction with NADH, an organic radical was detected in native membranes by electron paramagnetic resonance spectroscopy which was assigned to ubisemiquinones generated by the Na+-NQR. The radical concentration increased from 0.2 mM at 0.08 mM Na+ to 0.4 mM at 14.7 mM Na+, indicating that the concentration of the coupling cation influences the redox state of the quinone pool in V. cholerae membranes. During respiration, V. cholerae cells produced extracellular superoxide with a specific activity of 10.2 nmol min−1 mg−1 in the wild type compared to 3.1 nmol min−1 mg−1 in the NQR deletion strain. Raising the Na+ concentration from 0.1 to 5 mM increased the rate of superoxide formation in the wild-type V. cholerae strain by at least 70%. Rates of respiratory H2O2 formation by wild-type V. cholerae cells (30.9 nmol min−1 mg−1) were threefold higher than rates observed with the mutant strain lacking the Na+-NQR (9.7 nmol min−1 mg−1). Our study shows that environmental Na+ could stimulate ubisemiquinone formation by the Na+-NQR and hereby enhance the production of reactive oxygen species formed during the autoxidation of reduced quinones. PMID:17322313

  13. The Domestication of ortho-Quinone Methides

    PubMed Central

    2015-01-01

    Conspectus An ortho-quinone methide (o-QM) is a highly reactive chemical motif harnessed by nature for a variety of purposes. Given its extraordinary reactivity and biological importance, it is surprising how few applications within organic synthesis exist. We speculate that their widespread use has been slowed by the complications that surround the preparation of their precursors, the harsh generation methods, and the omission of this stratagem from computer databases due to its ephemeral nature. About a decade ago, we discovered a mild anionic triggering procedure to generate transitory o-QMs at low temperature from readily available salicylaldehydes, particularly OBoc derivatives. This novel reaction cascade included both the o-QM formation and the subsequent consumption reaction. The overall transformation was initiated by the addition of the organometallic reagent, usually a Grignard reagent, which resulted in the formation of a benzyloxy alkoxide. Boc migration from the neighboring phenol produced a magnesium phenoxide that we supposed underwent β-elimination of the transferred Boc residue to form an o-QM for immediate further reactions. Moreover, the cascade proved controllable through careful manipulation of metallic and temperature levers so that it could be paused, stopped, or restarted at various intermediates and stages. This new level of domestication enabled us to deploy o-QMs for the first time in a range of applications including diastereocontrolled reactions. This sequence ultimately could be performed in either multipot or single pot processes. The subsequent reaction of the fleeting o-QM intermediates included the 1,4-conjugate additions that led to unbranched or branched ortho-alkyl substituted phenols and Diels–Alder reactions that provided 4-unsubstituted or 4-substituted benzopyrans and chroman ketals. The latter cycloadducts were obtained for the first time with outstanding diastereocontrol. In addition, the steric effects of the newly

  14. Identifying the Tautomeric Form of a Deoxyguanosine-Estrogen Quinone Intermediate.

    PubMed

    Stack, Douglas E

    2015-09-10

    Mechanistic insights into the reaction of an estrogen o-quinone with deoxyguanosine has been further investigated using high level density functional calculations in addition to the use of 4-hyroxycatecholestrone (4-OHE₁) regioselectivity labeled with deuterium at the C1-position. Calculations using the M06-2X functional with large basis sets indicate the tautomeric form of an estrogen-DNA adduct present when glycosidic bonds cleavage occurs is comprised of an aromatic A ring structure. This tautomeric form was further verified by use of deuterium labelling of the catechol precursor use to form the estrogen o-quinone. Regioselective deuterium labelling at the C1-position of the estrogen A ring allows discrimination between two tautomeric forms of a reaction intermediate either of which could be present during glycosidic bond cleavage. HPLC-MS analysis indicates a reactive intermediate with a m/z of 552.22 consistent with a tautomeric form containing no deuterium. This intermediate is consistent with a reaction mechanism that involves: (1) proton assisted Michael addition; (2) re-aromatization of the estrogen A ring; and (3) glycosidic bond cleavage to form the known estrogen-DNA adduct, 4-OHE₁-1-N7Gua.

  15. Role of chlorogenic acid quinone and interaction of chlorogenic acid quinone and catechins in the enzymatic browning of apple.

    PubMed

    Amaki, Kanako; Saito, Eri; Taniguchi, Kumiko; Joshita, Keiko; Murata, Masatsune

    2011-01-01

    Chlorogenic acid (CQA) is one of the major polyphenols in apple and a good substrate for the polyphenol oxidase (PPO) in apple. Apple contains catechins as well as CQA, and the role of CQA quinone and its interaction with catechins in the enzymatic browning of apple were examined. Browning was repressed and 2-cysteinyl-CQA was formed when cysteine was added to apple juice. CQA quinone was essential for browning to occur. Although catechins and CQA were oxidized by PPO, some catechins seemed to be non-enzymatically oxidized by CQA quinone.

  16. Induction of quinone reductase (QR) by withanolides isolated from Physalis pubescens L. (Solanaceae).

    PubMed

    Ji, Long; Yuan, Yonglei; Ma, Zhongjun; Chen, Zhe; Gan, Lishe; Ma, Xiaoqiong; Huang, Dongsheng

    2013-09-01

    In the present study, it was demonstrated that the dichloromethane extract of Physalis pubescens L. (DEPP) had weak potential quinone reductase (QR) inducing activity, but an UPLC-ESI-MS method with glutathione (GSH) as the substrate revealed that the DEPP had electrophiles (with an α,β-unsaturated ketone moiety). These electrophiles could induce quinone reductase (QR) activity, which might be attributed to the modification of the highly reactive cysteine residues in Keap1. Herein, four withanolides, including three new compounds physapubescin B (2), physapubescin C (3), physapubescin D (4), together with one known steroidal compound physapubescin (1) were isolated. Structures of these compounds were determined by spectroscopic analysis and that of physapubescin C (3) was confirmed by a combination of molecular modeling and quantum chemical DFT-GIAO calculations. Evaluation of the QR inducing activities of all withanolides indicated potent activities of compounds 1 and 2, which had a common α,β-unsaturated ketone moiety. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Kinetic, thermodynamic and X-ray structural insights into the interaction of melatonin and analogues with quinone reductase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calamini, Barbara; Santarsiero, Bernard D.; Boutin, Jean A.

    Melatonin exerts its biological effects through at least two transmembrane G-protein-coupled receptors, MT1 and MT2, and a lower-affinity cytosolic binding site, designated MT3. MT3 has recently been identified as QR2 (quinone reductase 2) (EC 1.10.99.2) which is of significance since it links the antioxidant effects of melatonin to a mechanism of action. Initially, QR2 was believed to function analogously to QR1 in protecting cells from highly reactive quinones. However, recent studies indicate that QR2 may actually transform certain quinone substrates into more highly reactive compounds capable of causing cellular damage. Therefore it is hypothesized that inhibition of QR2 in certainmore » cases may lead to protection of cells against these highly reactive species. Since melatonin is known to inhibit QR2 activity, but its binding site and mode of inhibition are not known, we determined the mechanism of inhibition of QR2 by melatonin and a series of melatonin and 5-hydroxytryptamine (serotonin) analogues, and we determined the X-ray structures of melatonin and 2-iodomelatonin in complex with QR2 to between 1.5 and 1.8 {angstrom} (1 {angstrom} = 0.1 nm) resolution. Finally, the thermodynamic binding constants for melatonin and 2-iodomelatonin were determined by ITC (isothermal titration calorimetry). The kinetic results indicate that melatonin is a competitive inhibitor against N-methyldihydronicotinamide (K{sub i} = 7.2 {mu}M) and uncompetitive against menadione (K{sub i} = 92 {mu}M), and the X-ray structures shows that melatonin binds in multiple orientations within the active sites of the QR2 dimer as opposed to an allosteric site. These results provide new insights into the binding mechanisms of melatonin and analogues to QR2.« less

  18. X-ray structural studies of quinone reductase 2 nanomolar range inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pegan, Scott D.; Sturdy, Megan; Ferry, Gilles

    Quinone reductase 2 (QR2) is one of two members comprising the mammalian quinone reductase family of enzymes responsible for performing FAD mediated reductions of quinone substrates. In contrast to quinone reductase 1 (QR1) which uses NAD(P)H as its co-substrate, QR2 utilizes a rare group of hydride donors, N-methyl or N-ribosyl nicotinamide. Several studies have linked QR2 to the generation of quinone free radicals, several neuronal degenerative diseases, and cancer. QR2 has been also identified as the third melatonin receptor (MT3) through in cellulo and in vitro inhibition of QR2 by traditional MT3 ligands, and through recent X-ray structures of humanmore » QR2 (hQR2) in complex with melatonin and 2-iodomelatonin. Several MT3 specific ligands have been developed that exhibit both potent in cellulo inhibition of hQR2 nanomolar, affinity for MT3. The potency of these ligands suggest their use as molecular probes for hQR2. However, no definitive correlation between traditionally obtained MT3 ligand affinity and hQR2 inhibition exists limiting our understanding of how these ligands are accommodated in the hQR2 active site. To obtain a clearer relationship between the structures of developed MT3 ligands and their inhibitory properties, in cellulo and in vitro IC{sub 50} values were determined for a representative set of MT3 ligands (MCA-NAT, 2-I-MCANAT, prazosin, S26695, S32797, and S29434). Furthermore, X-ray structures for each of these ligands in complex with hQR2 were determined allowing for a structural evaluation of the binding modes of these ligands in relation to the potency of MT3 ligands.« less

  19. NADPH:Quinone Oxidoreductase 1 Regulates Host Susceptibility to Ozone via Isoprostane Generation*

    PubMed Central

    Kummarapurugu, Apparao B.; Fischer, Bernard M.; Zheng, Shuo; Milne, Ginger L.; Ghio, Andrew J.; Potts-Kant, Erin N.; Foster, W. Michael; Soderblom, Erik J.; Dubois, Laura G.; Moseley, M. Arthur; Thompson, J. Will; Voynow, Judith A.

    2013-01-01

    NADPH:quinone oxidoreductase 1 (NQO1) is recognized as a major susceptibility gene for ozone-induced pulmonary toxicity. In the absence of NQO1 as can occur by genetic mutation, the human airway is protected from harmful effects of ozone. We recently reported that NQO1-null mice are protected from airway hyperresponsiveness and pulmonary inflammation following ozone exposure. However, NQO1 regenerates intracellular antioxidants and therefore should protect the individual from oxidative stress. To explain this paradox, we tested whether in the absence of NQO1 ozone exposure results in increased generation of A2-isoprostane, a cyclopentenone isoprostane that blunts inflammation. Using GC-MS, we found that NQO1-null mice had greater lung tissue levels of D2- and E2-isoprostanes, the precursors of J2- and A2-isoprostanes, both at base line and following ozone exposure compared with congenic wild-type mice. We confirmed in primary cultures of normal human bronchial epithelial cells that A2-isoprostane inhibited ozone-induced NF-κB activation and IL-8 regulation. Furthermore, we determined that A2-isoprostane covalently modified the active Cys179 domain in inhibitory κB kinase in the presence of ozone in vitro, thus establishing the biochemical basis for A2-isoprostane inhibition of NF-κB. Our results demonstrate that host factors may regulate pulmonary susceptibility to ozone by regulating the generation of A2-isoprostanes in the lung. These observations provide the biochemical basis for the epidemiologic observation that NQO1 regulates pulmonary susceptibility to ozone. PMID:23275341

  20. LC/MSMS STUDY OF BENZO[A]PYRENE-7,8-QUINONE ADDUCTION TO GLOBIN TRYPTIC PEPTIDES AND N-ACETYLAMINO ACIDS

    EPA Science Inventory

    Benzo[a]pyrene-7,8-quinone (BPQ) is regarded as a reactive genotoxic compound enzymatically formed from a xenobiotic precursor benzo[a]pyrene-7,8-diol by aldo-keto-reductase family of enzymes. Because BPQ, a Michael electrophile, was previously shown to react with oligonucleotide...

  1. Electrophoretic analysis of quinone anion radicals in acetonitrile solutions using an on-line radical generator.

    PubMed

    Esaka, Yukihiro; Okumura, Noriko; Uno, Bunji; Goto, Masashi

    2003-05-01

    We have investigated analysis of anion radicals of phenanthrenequinone (PhQ) and anthraquinone (AQ) using acetonitrile-capillary electrophoresis (CE) under anaerobic conditions. PhQ and AQ have relatively high negative reduction potentials meaning that their anion radicals are re-oxidized quite readily by the surrounding O(2) to disappear during analysis and we failed to detect them with our previous system. In this work, we have developed an on-line system combining a unique electrolysis cell for generation of the radicals and a CE unit to keep the analysis system free from external O(2) molecules and to reduce analysis time remarkably. As a result, electrophoretic detection of the anion radicals of PhQ and AQ has been achieved. Furthermore, we have observed hydrogen-bonding interaction between the anion radicals and dimethylurea (DMU) using the present system and have indicated a characteristic interaction of the anion radical of PhQ as an ortho-quinone with DMU.

  2. Substituents on Quinone Methides Strongly Modulate Formation and Stability of Their Nucleophilic Adducts

    PubMed Central

    Weinert, Emily E.; Dondi, Ruggero; Colloredo-Melz, Stefano; Frankenfield, Kristen N.; Mitchell, Charles H.; Freccero, Mauro; Rokita, Steven E.

    2008-01-01

    Electronic perturbation of quinone methides (QM) greatly influences their stability and in turn alters the kinetics and product profile of QM reaction with deoxynucleosides. Consistent with the electron deficient nature of this reactive intermediate, electron-donating substituents are stabilizing and electron-withdrawing substituents are destabilizing. For example, a dC N3-QM adduct is made stable over the course of observation (7 days) by the presence of an electron-withdrawing ester group that inhibits QM regeneration. Conversely, a related adduct with an electron donating methyl group is very labile and regenerates its QM with a half-life of approximately 5 hr. The generality of these effects is demonstrated with a series of alternative quinone methide precursors (QMP) containing a variety of substituents attached at different positions with respect to the exocyclic methylene. The rates of nucleophilic addition to substituted QMs measured by laser flash photolysis similarly span five orders of magnitude with electron rich species reacting most slowly and electron deficient species reacting most quickly. The reversibility of QM reaction can now be predictably adjusted for any desired application. PMID:16953635

  3. Isoprenoid quinones of the genus Legionella.

    PubMed Central

    Karr, D E; Bibb, W F; Moss, C W

    1982-01-01

    Representative strains of each of the named species of Legionella were examined for isoprenoid quinones by reverse-phase thin-layer chromatography. All strains contained three or more ubiquinones (Q9, Q10, Q11, Q12, Q13) which were useful for placing the species into one of three distinct groups. Group 1 contained L. longbeachae, L. bozemanii, L. dumoffi, and L. gormanii; group 2 contained only L. micdadei; and group 3 contained only L. pneumophila. The identities of the quinones were established by UV spectroscopy and mass spectrometry. PMID:7107837

  4. Loss of quinone reductase 2 function selectively facilitates learning behaviors.

    PubMed

    Benoit, Charles-Etienne; Bastianetto, Stephane; Brouillette, Jonathan; Tse, YiuChung; Boutin, Jean A; Delagrange, Philippe; Wong, TakPan; Sarret, Philippe; Quirion, Rémi

    2010-09-22

    High levels of reactive oxygen species (ROS) are associated with deficits in learning and memory with age as well as in Alzheimer's disease. Using DNA microarray, we demonstrated the overexpression of quinone reductase 2 (QR2) in the hippocampus in two models of learning deficits, namely the aged memory impaired rats and the scopolamine-induced amnesia model. QR2 is a cytosolic flavoprotein that catalyzes the reduction of its substrate and enhances the production of damaging activated quinone and ROS. QR2-like immunostaining is enriched in cerebral structures associated with learning behaviors, such as the hippocampal formation and the temporofrontal cortex of rat, mouse, and human brains. In cultured rat embryonic hippocampal neurons, selective inhibitors of QR2, namely S26695 and S29434, protected against menadione-induced cell death by reversing its proapoptotic action. S26695 (8 mg/kg) also significantly inhibited scopolamine-induced amnesia. Interestingly, adult QR2 knock-out mice demonstrated enhanced learning abilities in various tasks, including Morris water maze, object recognition, and rotarod performance test. Other behaviors related to anxiety (elevated plus maze), depression (forced swim), and schizophrenia (prepulse inhibition) were not affected in QR2-deficient mice. Together, these data suggest a role for QR2 in cognitive behaviors with QR2 inhibitors possibly representing a novel therapeutic strategy toward the treatment of learning deficits especially observed in the aged brain.

  5. Profiling quinones in ambient air samples collected from the Athabasca region (Canada).

    PubMed

    Wnorowski, Andrzej; Charland, Jean-Pierre

    2017-12-01

    This paper presents new findings on polycyclic aromatic hydrocarbon oxidation products-quinones that were collected in ambient air samples in the proximity of oil sands exploration. Quinones were characterized for their diurnal concentration variability, phase partitioning, and molecular size distribution. Gas-phase (GP) and particle-phase (PM) ambient air samples were collected separately in the summer; a lower quinone content was observed in the PM samples from continuous 24-h sampling than from combined 12-h sampling (day and night). The daytime/nocturnal samples demonstrated that nighttime conditions led to lower concentrations and some quinones not being detected. The highest quinone levels were associated with wind directions originating from oil sands exploration sites. The statistical correlation with primary pollutants directly emitted from oil sands industrial activities indicated that the bulk of the detected quinones did not originate directly from primary emission sources and that quinone formation paralleled a reduction in primary source NO x levels. This suggests a secondary chemical transformation of primary pollutants as the origin of the determined quinones. Measurements of 19 quinones included five that have not previously been reported in ambient air or in Standard Reference Material 1649a/1649b and seven that have not been previously measured in ambient air in the underivatized form. This is the first paper to report on quinone characterization in secondary organic aerosols originating from oil sands activities, to distinguish chrysenequinone and anthraquinone positional isomers in ambient air, and to report the requirement of daylight conditions for benzo[a]pyrenequinone and naphthacenequinone to be present in ambient air. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  6. Bioinspired organocatalytic aerobic C-H oxidation of amines with an ortho-quinone catalyst.

    PubMed

    Qin, Yan; Zhang, Long; Lv, Jian; Luo, Sanzhong; Cheng, Jin-Pei

    2015-03-20

    A simple bioinspired ortho-quinone catalyst for the aerobic oxidative dehydrogenation of amines to imines is reported. Without any metal cocatalysts, the identified optimal ortho-quinone catalyst enables the oxidations of α-branched primary amines and cyclic secondary amines. Mechanistic studies have disclosed the origins of different performances of ortho-quinone vs para-quinone in biomimetic amine oxidations.

  7. Quinone-based stable isotope probing for assessment of 13C substrate-utilizing bacteria

    NASA Astrophysics Data System (ADS)

    Kunihiro, Tadao; Katayama, Arata; Demachi, Toyoko; Veuger, Bart; Boschker, Henricus T. S.; van Oevelen, Dick

    2015-04-01

    In this study, we attempted to establish quinone-stable-isotope probing (SIP) technique to link substrate-utilizing bacterial group to chemotaxonomic group in bacterial community. To identify metabolically active bacterial group in various environments, SIP techniques combined with biomarkers have been widely utilized as an attractive method for environmental study. Quantitative approaches of the SIP technique have unique advantage to assess substrate-incorporation into bacteria. As a most major quantitative approach, SIP technique based on phospholipid-derived fatty acids (PLFA) have been applied to simultaneously assess substrate-incorporation rate into bacteria and microbial community structure. This approach is powerful to estimate the incorporation rate because of the high sensitivity due to the detection by a gas chromatograph-combustion interface-isotope ratio mass spectrometer (GC-c-IRMS). However, its phylogenetic resolution is limited by specificity of a compound-specific marker. We focused on respiratory quinone as a biomarker. Our previous study found a good correlation between concentrations of bacteria-specific PLFAs and quinones over several orders of magnitude in various marine sediments, and the quinone method has a higher resolution (bacterial phylum level) for resolving differences in bacterial community composition more than that of bacterial PLFA. Therefore, respiratory quinones are potentially good biomarkers for quantitative approaches of the SIP technique. The LC-APCI-MS method as molecular-mass based detection method for quinone was developed and provides useful structural information for identifying quinone molecular species in environmental samples. LC-MS/MS on hybrid triple quadrupole/linear ion trap, which enables to simultaneously identify and quantify compounds in a single analysis, can detect high molecular compounds with their isotope ions. Use of LC-MS/MS allows us to develop quinone-SIP based on molecular mass differences due to

  8. Computational design of molecules for an all-quinone redox flow battery.

    PubMed

    Er, Süleyman; Suh, Changwon; Marshak, Michael P; Aspuru-Guzik, Alán

    2015-02-01

    Inspired by the electron transfer properties of quinones in biological systems, we recently showed that quinones are also very promising electroactive materials for stationary energy storage applications. Due to the practically infinite chemical space of organic molecules, the discovery of additional quinones or other redox-active organic molecules for energy storage applications is an open field of inquiry. Here, we introduce a high-throughput computational screening approach that we applied to an accelerated study of a total of 1710 quinone (Q) and hydroquinone (QH 2 ) ( i.e. , two-electron two-proton) redox couples. We identified the promising candidates for both the negative and positive sides of organic-based aqueous flow batteries, thus enabling an all-quinone battery. To further aid the development of additional interesting electroactive small molecules we also provide emerging quantitative structure-property relationships.

  9. Induction of quinone reductase (QR) by withanolides isolated from Physalis angulata L. var. villosa Bonati (Solanaceae).

    PubMed

    Ding, Hui; Hu, Zhijuan; Yu, Liyan; Ma, Zhongjun; Ma, Xiaoqiong; Chen, Zhe; Wang, Dan; Zhao, Xiaofeng

    2014-08-01

    In the present study, the EtOAc extract of the persistent calyx of Physalis angulata L. var. villosa Bonati (PA) was tested for its potential quinone reductase (QR) inducing activity with glutathione (GSH) as the substrate using an UPLC-ESI-MS method. The result revealed that the PA had electrophiles that could induce quinone reductase (QR) activity, which might be attributed to the modification of the highly reactive cysteine residues in Keap1. Herein, three new withanolides, compounds 3, 6 and 7, together with four known withanolides, compounds 1, 2, 4 and 5 were isolated from PA extract. Their structures were determined by spectroscopic techniques, including (1)H-, (13)C NMR (DEPT), and 2D-NMR (HMBC, HMQC, (1)H, (1)H-COSY, NOESY) experiments, as well as by HR-MS. All the seven compounds were tested for their QR induction activities towards mouse hepa 1c1c7 cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Enzyme-Initiated Quinone-Chitosan Conjugation Chemistry: Toward A General in Situ Strategy for High-Throughput Photoelectrochemical Enzymatic Bioanalysis.

    PubMed

    Wang, Guang-Li; Yuan, Fang; Gu, Tiantian; Dong, Yuming; Wang, Qian; Zhao, Wei-Wei

    2018-02-06

    Herein we report a general and novel strategy for high-throughput photoelectrochemical (PEC) enzymatic bioanalysis on the basis of enzyme-initiated quinone-chitosan conjugation chemistry (QCCC). Specifically, the strategy was illustrated by using a model quinones-generating oxidase of tyrosinase (Tyr) to catalytically produce 1,2-bezoquinone or its derivative, which can easily and selectively be conjugated onto the surface of the chitosan deposited PbS/NiO/FTO photocathode via the QCCC. Upon illumination, the covalently attached quinones could act as electron acceptors of PbS quantum dots (QDs), improving the photocurrent generation and thus allowing the elegant probing of Tyr activity. Enzyme cascades, such as alkaline phosphatase (ALP)/Tyr and β-galactosidase (Gal)/Tyr, were further introduced into the system for the successful probing of the corresponding targets. This work features not only the first use of QCCC in PEC bioanalysis but also the separation of enzymatic reaction from the photoelectrode as well as the direct signal recording in a split-type protocol, which enables quite convenient and high-throughput detection as compared to previous formats. More importantly, by using numerous other oxidoreductases that involve quinones as reactants/products, this protocol could serve as a common basis for the development of a new class of QCCC-based PEC enzymatic bioanalysis and further extended for general enzyme-labeled PEC bioanalysis of versatile targets.

  11. Quinone-induced Enhancement of DNA Cleavage by Human Topoisomerase IIα: Adduction of Cysteine Residues 392 and 405†

    PubMed Central

    Bender, Ryan P.; Ham, Amy-Joan L.; Osheroff, Neil

    2010-01-01

    Several quinone-based metabolites of drugs and environmental toxins are potent topoisomerase II poisons. These compounds act by adducting the protein, and appear to increase levels of enzyme-DNA cleavage complexes by at least two potentially independent mechanisms. Treatment of topoisomerase IIα with quinones inhibits DNA religation, and blocks the N-terminal gate of the protein by crosslinking its two protomer subunits. It is not known whether these two effects result from quinone adduction to the same amino acid residue(s) in topoisomerase IIα or whether they are mediated by modification of separate residues. Therefore, the present study identified amino acid residues in human topoisomerase IIα that are modified by quinones and determined their role in the actions of these compounds as topoisomerase II poisons. Four cysteine residues were identified by mass spectrometry as sites of quinone adduction: cys170, cys392, cys405, and cys455. Mutations (cys–>ala) were individually generated at each position. Only mutations at cys392 or cys405 reduced sensitivity (~50% resistance) to benzoquinone. Top2αC392A and top2αC405A displayed faster rates (~2–fold) of DNA religation than wild-type topoisomerase IIα in the presence of the quinone. In contrast, as determined by DNA binding, protein clamp closing, and protomer crosslinking experiments, mutations at cys392 and cys405 did not affect the ability of benzoquinone to block the N-terminal gate of topoisomerase IIα. These findings indicate that adduction of cys392 and cys405 is important for the actions of quinones against the enzyme, and increases levels of cleavage complexes primarily by inhibiting DNA religation. PMID:17298034

  12. In vivo exposure of Dreissena polymorpha mussels to the quinones menadione and lawsone: menadione is more toxic to mussels than lawsone.

    PubMed

    Osman, A M; Rotteveel, S; den Besten, P J; van Noort, P C M

    2004-01-01

    The principal aim of this study was to assess whether the two quinones, menadione (2-methyl-1,4-naphthoquinone) and lawsone (2-hydroxy-1,4-naphthoquinone), elicit differential toxicity in mussels as has been reported for higher organisms. Therefore, the effects of short-term (48 h) and long-term (20 days) exposure of the two quinones at concentrations of 0.56 and 1 mg l(-1) to zebra mussels, Dreissena polymorpha, under laboratory conditions were studied. After the short-term exposure, the specific activities of the two-electron quinone oxidoreductase (DT-diaphorase) and the one-electron catalysing quinone reductases NADPH-cytochrome c reductase and NADH-cytochrome c reductase were determined in the gills and the rest of the soft tissues (soft mussel tissues minus the gills) of both treated and control mussels. At the higher concentrations of menadione and lawsone used, a significant reduction of the activity of NADPH-cytochrome c reductase in the gills and in the rest of the soft mussel tissues (by 33-34% and 31-43%, respectively) was observed. The activities of DT-diaphorase and NADH-cytochrome c reductase were not significantly affected. Interestingly, DT-diaphorase was observed in the gills, an organ requiring protection against antioxidants. Furthermore, a single-cell electrophoretic assay (comet assay) performed with gill cells to assess DNA damage by the quinones did not show any significant difference between the treated and the control organisms. This indicates that the formation of reactive species by the quinone metabolism in vivo in the mussels was possibly suppressed through the concerted action of DT-diaphorase and antioxidant enzymes. The results of in vitro experiments with gill extracts confirmed the protective role of DT-diaphorase. The rate of the two-electron quinone reduction was found to be five times that of the one-electron quinone reduction. The results of the long-term exposure unambiguously demonstrated that in mussels menadione, unlike in

  13. Design and synthesis of novel isoxazole tethered quinone-amino Acid hybrids.

    PubMed

    Ravi Kumar, P; Behera, Manoranjan; Sambaiah, M; Kandula, Venu; Payili, Nagaraju; Jaya Shree, A; Yennam, Satyanarayana

    2014-01-01

    A new series of isoxazole tethered quinone-amino acid hybrids has been designed and synthesized involving 1,3-dipolar cycloaddition reaction followed by an oxidation reaction using cerium ammonium nitrate (CAN). Using this method, for the first time various isoxazole tethered quinone-phenyl alanine and quinone-alanine hybrids were synthesized from simple commercially available 4-bromobenzyl bromide, propargyl bromide, and 2,5-dimethoxybenzaldehyde in good yield.

  14. Evaluation of hydrological processes in a mountainous small basin using a quinone biomarker.

    PubMed

    Fujita, M; Haga, H; Nishida, K; Sakamoto, Y

    2006-01-01

    An applicability of quinone biomarker to the analysis of hillslope runoff was investigated. At first, quinone profiles of three streams as well as a hillslope runoff in a forested headwater catchment were compared. The quinone composition of hillslope runoff differed from others. Moreover, there were remarkable differences in quinone profile of hillslope runoff under different rainfall conditions. Then, the behavior of quinone biomarker during the increase and decrease of hillslope runoff after a rainfall event was examined. The fractional changes in Q-9 (H2), Q-10 (H2), Q-11, MK-6 and MK-10 suggested the effect of interflow.

  15. NAD(P)H-dependent quinone oxidoreductase 1 (NQO1) and cytochrome P450 oxidoreductase (CYP450OR) differentially regulate menadione-mediated alterations in redox status, survival and metabolism in pancreatic β-cells.

    PubMed

    Gray, Joshua P; Karandrea, Shpetim; Burgos, Delaine Zayasbazan; Jaiswal, Anil A; Heart, Emma A

    2016-11-16

    NQO1 (NAD(P)H-quinone oxidoreductase 1) reduces quinones and xenobiotics to less-reactive compounds via 2-electron reduction, one feature responsible for the role of NQO1 in antioxidant defense in several tissues. In contrast, NADPH cytochrome P450 oxidoreductase (CYP450OR), catalyzes the 1-electron reduction of quinones and xenobiotics, resulting in enhanced superoxide formation. However, to date, the roles of NQO1 and CYP450OR in pancreatic β-cell metabolism under basal conditions and oxidant challenge have not been characterized. Using NQO1 inhibition, over-expression and knock out, we have demonstrated that, in addition to protection of β-cells from toxic concentrations of the redox cycling quinone menadione, NQO1 also regulates the basal level of reduced-to-oxidized nucleotides, suggesting other role(s) beside that of an antioxidant enzyme. In contrast, over-expression of NADPH cytochrome P450 oxidoreductase (CYP450OR) resulted in enhanced redox cycling activity and decreased cellular viability, consistent with the enhanced generation of superoxide and H 2 O 2 . Basal expression of NQO1 and CYP450OR was comparable in isolated islets and liver. However, NQO1, but not CYP450OR, was strongly induced in β-cells exposed to menadione. NQO1 and CYP450OR exhibited a reciprocal preference for reducing equivalents in β-cells: while CYP450OR preferentially utilized NADPH, NQO1 primarily utilized NADH. Together, these results demonstrate that NQO1 and CYP450OR reciprocally regulate oxidant metabolism in pancreatic β-cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. NAD(P)H-dependent Quinone Oxidoreductase 1 (NQO1) and Cytochrome P450 Oxidoreductase (CYP450OR) differentially regulate menadione-mediated alterations in redox status, survival and metabolism in pancreatic β-cells

    PubMed Central

    Gray, Joshua P.; Karandrea, Shpetim; Burgos, Delaine Zayasbazan; Jaiswal, Anil A; Heart, Emma A.

    2017-01-01

    NQO1 (NAD(P)H-quinone oxidoreductase 1) reduces quinones and xenobiotics to less-reactive compounds via 2-electron reduction, one feature responsible for the role of NQO1 in antioxidant defense in several tissues. In contrast, NADPH cytochrome P450 oxidoreductase (CYP450OR), catalyzes the 1-electron reduction of quinones and xenobiotics, resulting in enhanced superoxide formation. However, to date, the roles of NQO1 and CYP450OR in pancreatic β-cell metabolism under basal conditions and oxidant challenge have not been characterized. Using NQO1 inhibition, over-expression and knock out, we have demonstrated that, in addition to protection of β-cells from toxic concentrations of the redox cycling quinone menadione, NQO1 also regulates the basal level of reduced-to-oxidized nucleotides, suggesting other role(s) beside that of an antioxidant enzyme. In contrast, over-expression of NADPH cytochrome P450 oxidoreductase (CYP450OR) resulted in enhanced redox cycling activity and decreased cellular viability, consistent with the enhanced generation of superoxide and H2O2. Basal expression of NQO1 and CYP450OR was comparable in isolated islets and liver. However, NQO1, but not CYP450OR, was strongly induced in β-cells exposed to menadione. NQO1 and CYP450OR exhibited a reciprocal preference for reducing equivalents in β-cells: while CYP450OR preferentially utilized NADPH, NQO1 primarily utilized NADH. Together, these results demonstrate that NQO1 and CYP450OR reciprocally regulate oxidant metabolism in pancreatic β-cells. PMID:27558805

  17. Design and Synthesis of Novel Isoxazole Tethered Quinone-Amino Acid Hybrids

    PubMed Central

    Ravi Kumar, P.; Sambaiah, M.; Kandula, Venu; Payili, Nagaraju; Jaya Shree, A.; Yennam, Satyanarayana

    2014-01-01

    A new series of isoxazole tethered quinone-amino acid hybrids has been designed and synthesized involving 1,3-dipolar cycloaddition reaction followed by an oxidation reaction using cerium ammonium nitrate (CAN). Using this method, for the first time various isoxazole tethered quinone-phenyl alanine and quinone-alanine hybrids were synthesized from simple commercially available 4-bromobenzyl bromide, propargyl bromide, and 2,5-dimethoxybenzaldehyde in good yield. PMID:25709839

  18. Generation of memory B cells and their reactivation.

    PubMed

    Inoue, Takeshi; Moran, Imogen; Shinnakasu, Ryo; Phan, Tri Giang; Kurosaki, Tomohiro

    2018-05-01

    The successful establishment of humoral memory response depends on at least two layers of defense. Pre-existing protective antibodies secreted by long-lived plasma cells act as a first line of defense against reinfection ("constitutive humoral memory"). Previously, a second line of defense in which pathogen-experienced memory B cells are rapidly reactivated to produce antibodies ("reactive humoral memory"), was considered as simply a back-up system for the first line (particularly for re-infection with homologous viruses). However, in the case of re-infection with similar but different strains of viruses, or in response to viral escape mutants, the reactive humoral memory plays a crucial role. Here, we review recent progress in our understanding of how memory B cells are generated in the pre-GC stage and during the GC reaction, and how these memory B cells are robustly reactivated with the help of memory Tfh cells to generate the secondary antibody response. In addition, we discuss how these advances may be relevant to the quest for a vaccine that can induce broadly reactive antibodies against influenza and HIV. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. On-column reduction of catecholamine quinones in stainless steel columns during liquid chromatography.

    PubMed

    Xu, R; Huang, X; Kramer, K J; Hawley, M D

    1995-10-10

    The chromatographic behavior of quinones derived from the oxidation of dopamine and N-acetyldopamine has been studied using liquid chromatography (LC) with both a diode array detector and an electrochemical detector that has parallel dual working electrodes. When stainless steel columns are used, an anodic peak for the oxidation of the catecholamine is observed at the same retention time as a cathodic peak for the reduction of the catecholamine quinone. In addition, the anodic peak exhibits a tail that extends to a second anodic peak for the catecholamine. The latter peak occurs at the normal retention time of the catecholamine. The origin of this phenomenon has been studied and metallic iron in the stainless steel components of the LC system has been found to reduce the quinones to their corresponding catecholamines. The simultaneous appearance of a cathodic peak for the reduction of catecholamine quinone and an anodic peak for the oxidation of the corresponding catecholamine occurs when metallic iron in the exit frit reduces some of the quinones as the latter exits the column. This phenomenon is designated as the "concurrent anodic-cathodic response." It is also observed for quinones of of 3,4-dihydroxybenzoic acid and probably occurs with o- or p-quinones of other dihydroxyphenyl compounds. The use of nonferrous components in LC systems is recommended to eliminate possible on-column reduction of quinones.

  20. Electron Transfer Between Electrically Conductive Minerals and Quinones

    NASA Astrophysics Data System (ADS)

    Taran, Olga

    2017-07-01

    Long-distance electron transfer in marine environments couples physically separated redox half-reactions, impacting biogeochemical cycles of iron, sulfur and carbon. Bacterial bio-electrochemical systems that facilitate electron transfer via conductive filaments or across man-made electrodes are well known, but the impact of abiotic currents across naturally occurring conductive and semiconducitve minerals is poorly understood. In this paper I use cyclic voltammetry to explore electron transfer between electrodes made of common iron minerals (magnetite, hematite, pyrite, pyrrhotite, mackinawite and greigite), and hydroquinones - a class of organic molecules found in carbon-rich sediments. Of all tested minerals, only pyrite and magnetite showed an increase in electric current in the presence of organic molecules, with pyrite showing excellent electrocatalytic performance. Pyrite electrodes performed better than commercially available glassy carbon electrodes and showed higher peak currents, lower overpotential values and a smaller separation between oxidation and reduction peaks for each tested quinone. Hydroquinone oxidation on pyrite surfaces was reversible, diffusion controlled, and stable over a large number of potential cycles. Given the ubiquity of both pyrite and quinones, abiotic electron transfer between minerals and organic molecules is likely widespread in Nature and may contribute to several different phenomena, including anaerobic respiration of a wide variety of microorganisms in temporally anoxic zones or in the proximity of hydrothermal vent chimneys, as well as quinone cycling and the propagation of anoxic zones in organic rich waters. Finally, interactions between pyrite and quinones make use of electrochemical gradients that have been suggested as an important source of energy for the origins of life on Earth. Ubiquinones and iron sulfide clusters are common redox cofactors found in electron transport chains across all domains of life and

  1. Chemoselective methylation of phenolic hydroxyl group prevents quinone methide formation and repolymerization during lignin depolymerization

    DOE PAGES

    Kim, Kwang Ho; Dutta, Tanmoy; Walter, Eric D.; ...

    2017-03-22

    Chemoselective blocking of the phenolic hydroxyl (Ar–OH) group by methylation was found to suppress secondary repolymerization and charring during lignin depolymerization. Methylation of Ar–OH prevents formation of reactive quinone methide intermediates, which are partly responsible for undesirable secondary repolymerization reactions. Instead, this structurally modified lignin produces more relatively low molecular weight products from lignin depolymerization compared to unmodified lignin. This result demonstrates that structural modification of lignin is desirable for production of low molecular weight phenolic products. Finally, this approach could be directed toward alteration of natural lignification processes to produce biomass that is more amenable to chemical depolymerization.

  2. Quinones from Heliotropium ovalifolium.

    PubMed

    Guntern, A; Ioset, J R; Queiroz, E F; Foggin, C M; Hostettmann, K

    2001-10-01

    Two new benzoquinones, heliotropinones A and B, have been isolated from the aerial parts of Heliotropium ovalifolium. Their structures were elucidated by spectrometric methods including high resolution electrospray ionization (ESI-HR), EI mass spectrometry, 1H, 13C and 2D NMR experiments. The two quinones demonstrated antifungal activities against Cladosporium cucumerinum and Candida albicans as well as antibacterial activity against Bacillus subtilis.

  3. Non-enzymatic oxidation of NADH by quinones

    NASA Astrophysics Data System (ADS)

    Scherbak, Nikolai; Strid, Åke; Eriksson, Leif A.

    2005-10-01

    Non-enzymatic oxidation of NADH by a large number of different quinones has been explored both theoretically and experimentally. It is concluded that the smaller benzo- and naphtho-quinones are capable of oxidising NADH in aqueous solution, whereas the larger anthraquinone is not. The mechanisms of stepwise electron and proton transfers are explored, and ruled out in favour of direct hydride transfer. For menadione (2-methyl-1,4-naphthoquinone), no reaction is observed experimentally; theoretically we find that there is a very close balance between the energetic cost of hydride removal from NADH and the energy gain of formation of the menadione semiquinone radical anion.

  4. High-capacity aqueous zinc batteries using sustainable quinone electrodes

    PubMed Central

    Zhao, Qing; Huang, Weiwei; Luo, Zhiqiang; Liu, Luojia; Lu, Yong; Li, Yixin; Li, Lin; Hu, Jinyan; Ma, Hua; Chen, Jun

    2018-01-01

    Quinones, which are ubiquitous in nature, can act as sustainable and green electrode materials but face dissolution in organic electrolytes, resulting in fast fading of capacity and short cycle life. We report that quinone electrodes, especially calix[4]quinone (C4Q) in rechargeable metal zinc batteries coupled with a cation-selective membrane using an aqueous electrolyte, exhibit a high capacity of 335 mA h g−1 with an energy efficiency of 93% at 20 mA g−1 and a long life of 1000 cycles with a capacity retention of 87% at 500 mA g−1. The pouch zinc batteries with a respective depth of discharge of 89% (C4Q) and 49% (zinc anode) can deliver an energy density of 220 Wh kg−1 by mass of both a C4Q cathode and a theoretical Zn anode. We also develop an electrostatic potential computing method to demonstrate that carbonyl groups are active centers of electrochemistry. Moreover, the structural evolution and dissolution behavior of active materials during discharge and charge processes are investigated by operando spectral techniques such as IR, Raman, and ultraviolet-visible spectroscopies. Our results show that batteries using quinone cathodes and metal anodes in aqueous electrolyte are reliable approaches for mass energy storage. PMID:29511734

  5. High-capacity aqueous zinc batteries using sustainable quinone electrodes.

    PubMed

    Zhao, Qing; Huang, Weiwei; Luo, Zhiqiang; Liu, Luojia; Lu, Yong; Li, Yixin; Li, Lin; Hu, Jinyan; Ma, Hua; Chen, Jun

    2018-03-01

    Quinones, which are ubiquitous in nature, can act as sustainable and green electrode materials but face dissolution in organic electrolytes, resulting in fast fading of capacity and short cycle life. We report that quinone electrodes, especially calix[4]quinone (C4Q) in rechargeable metal zinc batteries coupled with a cation-selective membrane using an aqueous electrolyte, exhibit a high capacity of 335 mA h g -1 with an energy efficiency of 93% at 20 mA g -1 and a long life of 1000 cycles with a capacity retention of 87% at 500 mA g -1 . The pouch zinc batteries with a respective depth of discharge of 89% (C4Q) and 49% (zinc anode) can deliver an energy density of 220 Wh kg -1 by mass of both a C4Q cathode and a theoretical Zn anode. We also develop an electrostatic potential computing method to demonstrate that carbonyl groups are active centers of electrochemistry. Moreover, the structural evolution and dissolution behavior of active materials during discharge and charge processes are investigated by operando spectral techniques such as IR, Raman, and ultraviolet-visible spectroscopies. Our results show that batteries using quinone cathodes and metal anodes in aqueous electrolyte are reliable approaches for mass energy storage.

  6. Electronic transport properties of a quinone-based molecular switch

    NASA Astrophysics Data System (ADS)

    Zheng, Ya-Peng; Bian, Bao-An; Yuan, Pei-Pei

    2016-09-01

    In this paper, we carried out first-principles calculations based on density functional theory and non-equilibrium Green's function to investigate the electronic transport properties of a quinone-based molecule sandwiched between two Au electrodes. The molecular switch can be reversibly switched between the reduced hydroquinone (HQ) and oxidized quinone (Q) states via redox reactions. The switching behavior of two forms is analyzed through their I- V curves, transmission spectra and molecular projected self-consistent Hamiltonian at zero bias. Then we discuss the transmission spectra of the HQ and Q forms at different bias, and explain the oscillation of current according to the transmission eigenstates of LUMO energy level for Q form. The results suggest that this kind of a quinone-based molecule is usable as one of the good candidates for redox-controlled molecular switches.

  7. Hydrolysis of the quinone methide of butylated hydroxytoluene in aqueous solutions.

    PubMed

    Willcockson, Maren Gulsrud; Toteva, Maria M; Stella, Valentino J

    2013-10-01

    Butylated hydroxytoluene or BHT is an antioxidant commonly used in pharmaceutical formulations. BHT upon oxidation forms a quinone methide (QM). QM is a highly reactive electrophilic species that can undergo nucleophilic addition. Here, the kinetic reactivity of QM with water at various apparent pH values in a 50% (v/v) water-acetonitrile solution at constant ionic strength of I = 0.5 (NaCl)4 , was studied. The hydrolysis of QM in the presence of added acid, base, sodium chloride, and phosphate buffer resulted in the formation of only one product--the corresponding 3,5-di-tert-butyl-4-hydroxybenzyl alcohol (BA). The rate of BA formation was catalyzed by the addition of acid and base, but not chloride and phosphate species. Nucleophilic excipients, used in the pharmaceutical formulation, or nucleophilic groups on active pharmaceutical ingredient molecule may form adducts with QM, the immediate oxidative product of BHT degradation, thus having implications for drug product impurity profiles. Because of these considerations, BHT should be used with caution in formulations containing drugs or excipients capable of acting as nucleophiles. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. Redox-active quinones and ascorbate: an innovative cancer therapy that exploits the vulnerability of cancer cells to oxidative stress.

    PubMed

    Verrax, J; Beck, R; Dejeans, N; Glorieux, C; Sid, B; Pedrosa, R Curi; Benites, J; Vásquez, D; Valderrama, J A; Calderon, P Buc

    2011-02-01

    Cancer cells are particularly vulnerable to treatments impairing redox homeostasis. Reactive oxygen species (ROS) can indeed play an important role in the initiation and progression of cancer, and advanced stage tumors frequently exhibit high basal levels of ROS that stimulate cell proliferation and promote genetic instability. In addition, an inverse correlation between histological grade and antioxidant enzyme activities is frequently observed in human tumors, further supporting the existence of a redox dysregulation in cancer cells. This biochemical property can be exploited by using redox-modulating compounds, which represent an interesting approach to induce cancer cell death. Thus, we have developed a new strategy based on the use of pharmacologic concentrations of ascorbate and redox-active quinones. Ascorbate-driven quinone redox cycling leads to ROS formation and provoke an oxidative stress that preferentially kill cancer cells and spare healthy tissues. Cancer cell death occurs through necrosis and the underlying mechanism implies an energetic impairment (ATP depletion) that is likely due to glycolysis inhibition. Additional mechanisms that participate to cell death include calcium equilibrium impairment and oxidative cleavage of protein chaperone Hsp90. Given the low systemic toxicity of ascorbate and the impairment of crucial survival pathways when associated with redox-active quinones, these combinations could represent an original approach that could be combined to standard cancer therapy.

  9. Electronic connection between the quinone and cytochrome C redox pools and its role in regulation of mitochondrial electron transport and redox signaling.

    PubMed

    Sarewicz, Marcin; Osyczka, Artur

    2015-01-01

    Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria. Copyright © 2015 the American Physiological Society.

  10. Electronic Connection Between the Quinone and Cytochrome c Redox Pools and Its Role in Regulation of Mitochondrial Electron Transport and Redox Signaling

    PubMed Central

    Sarewicz, Marcin; Osyczka, Artur

    2015-01-01

    Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria. PMID:25540143

  11. Quinone-induced protein modifications: Kinetic preference for reaction of 1,2-benzoquinones with thiol groups in proteins.

    PubMed

    Li, Yuting; Jongberg, Sisse; Andersen, Mogens L; Davies, Michael J; Lund, Marianne N

    2016-08-01

    Oxidation of polyphenols to quinones serves as an antioxidative mechanism, but the resulting quinones may induce damage to proteins as they react through a Michael addition with nucleophilic groups, such as thiols and amines to give protein adducts. In this study, rate constants for the reaction of 4-methylbenzoquinone (4MBQ) with proteins, thiol and amine compounds were determined under pseudo first-order conditions by UV-vis stopped-flow spectrophotometry. The chemical structures of the adducts were identified by LC-ESI-MS/MS. Proteins with free thiols were rapidly modified by 4MBQ with apparent second order rate constants, k2 of (3.1±0.2)×10(4)M(-1)s(-1) for bovine serum albumin (BSA) and (4.8±0.2)×10(3)M(-1)s(-1) for human serum albumin at pH 7.0. These values are at least 12-fold greater than that for α-lactalbumin (4.0±0.2)×10(2)M(-1)s(-1), which does not contain any free thiols. Reaction of Cys-34 of BSA with N-ethylmaleimide reduced the thiol concentration by ~59%, which resulted in a decrease in k2 by a similar percentage, consistent with rapid adduction at Cys-34. Reaction of 4MBQ with amines (Gly, Nα-acetyl-l-Lys, Nε-acetyl-l-Lys and l-Lys) and the guanidine group of Nα-acetyl-l-Arg was at least 5×10(5) slower than with low-molecular-mass thiols (l-Cys, Nα-acetyl-l-Cys, glutathione). The thiol-quinone interactions formed colorless thiol-phenol products via an intermediate adduct, while the amine-quinone interactions generated colored amine-quinone products that require oxygen involvement. These data provide strong evidence for rapid modification of protein thiols by quinone species which may be of considerable significance for biological and food systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Differential stress-induced regulation of two quinone reductases in the brown rot Basidiomycete Gloeophyllum trabeum

    Treesearch

    Roni Cohen; Melissa R. Suzuki; Kenneth E. Hammel

    2004-01-01

    Quinone reductases (QRDs) have two important functions in the basidiomycete Gloeophyllum trabeum, which causes brown rot of wood. First, a QRD is required to generate biodegradative hydroxyl radicals via redox cycling between two G. trabeum extracellular metabolites, 2,5-dimethoxyhydroquinone (2,5-DMHQ) and 2,5-dimethoxy-1,4-benzoquinone (2,5- DMBQ). Second, because 2,...

  13. In vitro evidence for the formation of reactive intermediates of resveratrol in human liver microsomes.

    PubMed

    Steenwyk, R C; Tan, B

    2010-01-01

    Resveratrol (3,4',5-trihydroxystilbene) is a naturally occurring polyphenolic compound found in a variety of foods and over-the-counter health products. It has gained wide public use due to its potential health properties, and is available over-the-counter at health product stores. Although the safety profile of resveratrol has been minimally investigated in humans, resveratrol has been associated with observations of toxicity in vitro, and has been identified as a mechanism-based inhibitor of cytochrome P450 3A4. In addition, resveratrol has been rationally hypothesized to form reactive quinone methide metabolites, despite experimental evidence supporting this assumption. This work evaluates the potential for resveratrol to form glutathione-trapped reactive intermediates in human liver microsomes utilizing liquid chromatography and electrospray tandem mass spectrometry, and has resulted in the identification of several in vitro products including two hydroxylated metabolites (piceatannol and metabolite 2), and two pairs of regioisomeric glutathione adducts. The parallel metabolism of resveratrol to piceatannol and metabolite 2 (a putative quinone methide) are demonstrated to result in the formation of two putative quinone methide intermediates resulting in divergent mechanisms for formation of each pair of regioisomeric glutathione adducts.

  14. Role of reactive oxygen species and sulfide-quinone oxoreductase in hydrogen sulfide-induced contraction of rat pulmonary arteries

    PubMed Central

    Prieto-Lloret, Jesus; Snetkov, Vladimir A.; Shaifta, Yasin; Docio, Inmaculada; Connolly, Michelle J.; MacKay, Charles E.; Knock, Greg A.

    2018-01-01

    Application of H2S (“sulfide”) elicits a complex contraction in rat pulmonary arteries (PAs) comprising a small transient contraction (phase 1; Ph1) followed by relaxation and then a second, larger, and more sustained contraction (phase 2; Ph2). We investigated the mechanisms causing this response using isometric myography in rat second-order PAs, with Na2S as a sulfide donor. Both phases of contraction to 1,000 μM Na2S were attenuated by the pan-PKC inhibitor Gö6983 (3 μM) and by 50 μM ryanodine; the Ca2+ channel blocker nifedipine (1 μM) was without effect. Ph2 was attenuated by the mitochondrial complex III blocker myxothiazol (1 μM), the NADPH oxidase (NOX) blocker VAS2870 (10 μM), and the antioxidant TEMPOL (3 mM) but was unaffected by the complex I blocker rotenone (1 μM). The bath sulfide concentration, measured using an amperometric sensor, decreased rapidly following Na2S application, and the peak of Ph2 occurred when this had fallen to ~50 μM. Sulfide caused a transient increase in NAD(P)H autofluorescence, the offset of which coincided with development of the Ph2 contraction. Sulfide also caused a brief mitochondrial hyperpolarization (assessed using tetramethylrhodamine ethyl ester), followed immediately by depolarization and then a second more prolonged hyperpolarization, the onset of which was temporally correlated with the Ph2 contraction. Sulfide application to cultured PA smooth muscle cells increased reactive oxygen species (ROS) production (recorded using L012); this was absent when the mitochondrial flavoprotein sulfide-quinone oxoreductase (SQR) was knocked down using small interfering RNA. We propose that the Ph2 contraction is largely caused by SQR-mediated sulfide metabolism, which, by donating electrons to ubiquinone, increases electron production by complex III and thereby ROS production. PMID:29351439

  15. Anti-acne activities of pulsaquinone, hydropulsaquinone, and structurally related 1, 4-quinone derivatives.

    PubMed

    Cho, Soon-Chang; Sultan, Md Zakir; Moon, Surk-Sik

    2009-04-01

    Quinone type compound, pulsaquinone 1, isolated from the aqueous ethanol extract of the roots of Pulsatilla koreana exhibited antimicrobial activities against an anaerobic non-spore-forming gram-positive bacillus, Propionibacterium acnes, which is related with the pathogenesis of the inflamed lesions in a common skin disease, acne vulgaris. Compound 1 was unstable on standing and thus converted to more stable compound 2, namely hydropulsaquinone by hydrogenation, whose activity was comparable to mother compound 1 (MIC for 1 and 2 against P. acnes: 2.0 and 4.0 microg/mL, respectively). Other structurally-related quinone derivatives (3-13) were also tested for structure-activity relationship against anaerobic and aerobic bacteria, and fungi. The antimicrobial activity was fairly good when the quinone moiety was fused with a nonpolar 6- or 7-membered ring on the right side whether or not conjugated (1,4-naphtoquinone derivatives 3-5), while simple quinone compounds 6-9 showed poor activity. It seems that the methoxy groups at the left side of the quinone function deliver no considerable antimicrobial effect.

  16. Michael Additions of Highly Basic Enolates to ortho-Quinone Methides

    PubMed Central

    Lewis, Robert S.; Garza, Christopher J.; Dang, Ann T.; Pedro, Te Kie A.; Chain, William J.

    2015-01-01

    A protocol by which ketone or ester enolates and ortho-quinone methides (o-QMs) are generated in situ in a single reaction flask from silylated precursors under the action of anhydrous fluoride is reported. The reaction partners are joined to give a variety of β-(2-hydroxyphenyl)-carbonyl compounds in 32–94% yield in a single laboratory operation. The intermediacy of o-QMs is supported by control experiments utilizing enolate precursors and conventional alkyl halides as competitive alkylating agents and the isolation of 1,5-dicarbonyl products resulting from conjugate additions that do not restore the aromatic system. PMID:25906358

  17. Reactive oxygen species generation and signaling in plants

    PubMed Central

    Tripathy, Baishnab Charan; Oelmüller, Ralf

    2012-01-01

    The introduction of molecular oxygen into the atmosphere was accompanied by the generation of reactive oxygen species (ROS) as side products of many biochemical reactions. ROS are permanently generated in plastids, peroxisomes, mitochiondria, the cytosol and the apoplast. Imbalance between ROS generation and safe detoxification generates oxidative stress and the accumulating ROS are harmful for the plants. On the other hand, specific ROS function as signaling molecules and activate signal transduction processes in response to various stresses. Here, we summarize the generation of ROS in the different cellular compartments and the signaling processes which are induced by ROS. PMID:23072988

  18. Quinone Methide Signal Amplification: Covalent Reporter Labeling of Cancer Epitopes using Alkaline Phosphatase Substrates.

    PubMed

    Polaske, Nathan W; Kelly, Brian D; Ashworth-Sharpe, Julia; Bieniarz, Christopher

    2016-03-16

    Diagnostic assays with the sensitivity required to improve cancer therapeutics depend on the development of new signal amplification technologies. Herein, we report the development and application of a novel amplification system which utilizes latent quinone methides (QMs) activated by alkaline phosphatase (AP) for signal amplification in solid-phase immunohistochemical (IHC) assays. Phosphate-protected QM precursor substrates were prepared and conjugated to either biotin or a fluorophore through an amine-functionalized linker group. Upon reaction with AP, the phosphate group is cleaved, followed by elimination of the leaving group and formation of the highly reactive and short-lived QM. The QMs either react with tissue nucleophiles in close proximity to their site of generation, or are quenched by nucleophiles in the reaction media. The reporter molecules that covalently bind to the tissue were then detected visually by fluorescence microscopy in the case of fluorophore reporters, or brightfield microscopy using diaminobenzidine (DAB) in the case of biotin reporters. With multiple reporters deposited per enzyme, significant signal amplification was observed utilizing QM precursor substrates containing either benzyl difluoro or benzyl monofluoro leaving group functionalities. However, the benzyl monofluoro leaving group gave superior results with respect to both signal intensity and discretion, the latter of which was found to be imperative for use in diagnostic IHC assays.

  19. Reduction of Clofazimine by Mycobacterial Type 2 NADH:Quinone Oxidoreductase

    PubMed Central

    Yano, Takahiro; Kassovska-Bratinova, Sacha; Teh, J. Shin; Winkler, Jeffrey; Sullivan, Kevin; Isaacs, Andre; Schechter, Norman M.; Rubin, Harvey

    2011-01-01

    The mechanism of action of clofazimine (CFZ), an antimycobacterial drug with a long history, is not well understood. The present study describes a redox cycling pathway that involves the enzymatic reduction of CFZ by NDH-2, the primary respiratory chain NADH:quinone oxidoreductase of mycobacteria and nonenzymatic oxidation of reduced CFZ by O2 yielding CFZ and reactive oxygen species (ROS). This pathway was demonstrated using isolated membranes and purified recombinant NDH-2. The reduction and oxidation of CFZ was measured spectrally, and the production of ROS was measured using a coupled assay system with Amplex Red. Supporting the ROS-based killing mechanism, bacteria grown in the presence of antioxidants are more resistant to CFZ. CFZ-mediated increase in NADH oxidation and ROS production were not observed in membranes from three different Gram-negative bacteria but was observed in Staphylococcus aureus and Saccharomyces cerevisiae, which is consistent with the known antimicrobial specificity of CFZ. A more soluble analog of CFZ, KS6, was synthesized and was shown to have the same activities as CFZ. These studies describe a pathway for a continuous and high rate of reactive oxygen species production in Mycobacterium smegmatis treated with CFZ and a CFZ analog as well as evidence that cell death produced by these agents are related to the production of these radical species. PMID:21193400

  20. Mechanism of pyrogallol red oxidation induced by free radicals and reactive oxidant species. A kinetic and spectroelectrochemistry study.

    PubMed

    Atala, E; Velásquez, G; Vergara, C; Mardones, C; Reyes, J; Tapia, R A; Quina, F; Mendes, M A; Speisky, H; Lissi, E; Ureta-Zañartu, M S; Aspée, A; López-Alarcón, C

    2013-05-02

    Pyrogallol red (PGR) presents high reactivity toward reactive (radical and nonradical) species (RS). This property of PGR, together with its characteristic spectroscopic absorption in the visible region, has allowed developing methodologies aimed at evaluating the antioxidant capacity of foods, beverages, and human fluids. These methods are based on the evaluation of the consumption of PGR induced by RS and its inhibition by antioxidants. However, at present, there are no reports regarding the degradation mechanism of PGR, limiting the extrapolation to how antioxidants behave in different systems comprising different RS. In the present study, we evaluate the kinetics of PGR consumption promoted by different RS (peroxyl radicals, peroxynitrite, nitrogen dioxide, and hypochlorite) using spectroscopic techniques and detection of product by HPLC mass spectrometry. The same pattern of oxidation and spectroscopic properties of the products is observed, independently of the RS employed. Mass analysis indicates the formation of only one product identified as a quinone derivative, excluding the formation of peroxides or hydroperoxides and/or chlorinated compounds, in agreement with FOX's assays and oxygen consumption experiments. Cyclic voltammetry, carried out at different pH's, shows an irreversible oxidation of PGR, indicating the initial formation of a phenoxy radical and a second charge transfer reaction generating an ortho-quinone derivative. Spectroelectrochemical oxidation of PGR shows oxidation products with identical UV-visible absorption properties to those observed in RS-induced oxidation.

  1. H32, a non-quinone sulfone analog of vitamin K3, inhibits human hepatoma cell growth by inhibiting Cdc25 and activating ERK.

    PubMed

    Kar, Siddhartha; Wang, Meifang; Ham, Seung Wook; Carr, Brian I

    2006-10-01

    We previously synthesized a K-vitamin derivative, Cpd 5, which was a potent growth inhibitor of human tumor cells, including Hep3B hepatoma cells. However, being a quinone compound, Cpd 5 has the potential for generating toxic reactive oxygen species (ROS). We therefore synthesized a nonquinone sulfone derivative, H32, which has a sufone group substituting the quinone. The IC50 of H32 for Hep3B cells was found to be 2.5 microM, which was 2.5 and 3.2 times more potent than Cpd 5 and vitamin K3 respectively. It induced apoptosis in Hep3B cells but did not generate ROS when compared to Cpd 5. Interestingly, under similar culture conditions, normal rat hepatocytes were 14-fold more and 7-fold more resistant to the growth inhibitory effects of H32 than Hep3B and PLC/PRF5 cells respectively. H32 preferentially inhibited the activities of the cell cycle controlling Cdc25A phosphatase likely by binding to its catalytic cysteine. As a consequence, it induced inhibitory tyrosine phosphorylation of the Cdc25 substrate kinases Cdk2 and Cdk4 in Hep3B cells and the cells undergo an arrest in the G1 phase of the cell cycle. H32 also induced persistent phosphorylation of the MAPK protein ERK1/2, but marginal JNK1/2 and p38 phosphorylation. The ERK inhibitor U0126, added at least 30 min prior to H32, antagonized the growth inhibition induced by H32. However, the JNK and p38 inhibitors, JNKI-II and SB203580, were not able to antagonize H32 induced growth inhibition. Thus, H32 differentially inhibited growth of normal and liver tumor cells by preferentially inhibiting the actions of Cdc25 phosphatases and inducing persistent ERK phosphorylation.

  2. Intramolecular Aza-Diels-Alder Reactions of ortho-Quinone Methide Imines: Rapid, Catalytic, and Enantioselective Assembly of Benzannulated Quinolizidines.

    PubMed

    Kretzschmar, Martin; Hofmann, Fabian; Moock, Daniel; Schneider, Christoph

    2018-04-16

    Aza-Diels-Alder reactions (ADARs) are powerful processes that furnish N-heterocycles in a straightforward fashion. Intramolecular variants offer the additional possibility of generating bi- and polycyclic systems with high stereoselectivity. We report herein a novel Brønsted acid catalyzed process in which ortho-quinone methide imines tethered to the dienophile via the N substituent react in an intramolecular ADAR to form complex quinolizidines and oxazinoquinolines in a one-step process. The reactions proceed under very mild conditions, with very good yields and good to very good diastereo- and enantioselectivities. Furthermore, the process was extended to a domino reaction that efficiently combines substrate synthesis, ortho-quinone methide imine formation, and ADAR. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Reactive Oxygen Species (ROS) generation by lunar simulants

    NASA Astrophysics Data System (ADS)

    Kaur, Jasmeet; Rickman, Douglas; Schoonen, Martin A.

    2016-05-01

    The current interest in human exploration of the Moon and past experiences of Apollo astronauts has rekindled interest into the possible harmful effects of lunar dust on human health. In comparison to the Apollo-era explorations, human explorers may be weeks on the Moon, which will raise the risk of inhalation exposure. The mineralogical composition of lunar dust is well documented, but its effects on human health are not fully understood. With the aim of understanding the reactivity of dusts that may be encountered on geologically different lunar terrains, we have studied Reactive Oxygen Species (ROS) generation by a suite of lunar simulants of different mineralogical-chemical composition dispersed in water and Simulated Lung Fluid (SLF). To further explore the reactivity of simulants under lunar environmental conditions, we compared the reactivity of simulants both in air and inert atmosphere. As the impact of micrometeorites with consequent shock-induced stresses is a major environmental factor on the Moon, we also studied the effect of mechanical stress on samples. Mechanical stress was induced by hand crushing the samples both in air and inert atmosphere. The reactivity of samples after crushing was analyzed for a period of up to nine days. Hydrogen peroxide (H2O2) in water and SLF was analyzed by an in situ electrochemical probe and hydroxyl radical (•OH) by Electron Spin Resonance (ESR) spectroscopy and Adenine probe. Out of all simulants, CSM-CL-S was found to be the most reactive simulant followed by OB-1 and then JSC-1A simulant. The overall reactivity of samples in the inert atmosphere was higher than in air. Fresh crushed samples showed a higher level of reactivity than uncrushed samples. Simulant samples treated to create agglutination, including the formation of zero-valent iron, showed less reactivity than untreated simulants. ROS generation in SLF is initially slower than in deionized water (DI), but the ROS formation is sustained for as long as 7

  4. Ultrafast Adiabatic Photodehydration of 2-Hydroxymethylphenol and the Formation of Quinone Methide.

    PubMed

    Škalamera, Đani; Antol, Ivana; Mlinarić-Majerski, Kata; Vančik, Hrvoj; Phillips, David Lee; Ma, Jiani; Basarić, Nikola

    2018-04-20

    The photochemical reactivity of 2-hydroxymethylphenol (1) was investigated experimentally by photochemistry under cryogenic conditions, by detecting reactive intermediates by IR spectroscopy, and by using nanosecond and femtosecond transient absorption spectroscopic methods in solution at room temperature. In addition, theoretical studies were performed to facilitate the interpretation of the experimental results and also to simulate the reaction pathway to obtain a better understanding of the reaction mechanism. The main finding of this work is that photodehydration of 1 takes place in an ultrafast adiabatic photochemical reaction without any clear intermediate, delivering quinone methide (QM) in the excited state. Upon photoexcitation to a higher vibrational level of the singlet excited state, 1 undergoes vibrational relaxation leading to two photochemical pathways, one by which synchronous elimination of H 2 O gives QM 2 in its S 1 state and the other by which homolytic cleavage of the phenolic O-H bond produces a phenoxyl radical (S 0 ). Both are ultrafast processes that occur within a picosecond. The excited state of QM 2 (S 1 ) probably deactivates to S 0 through a conical intersection to give QM 2 (S 0 ), which subsequently delivers benzoxete 4. Elucidation of the reaction mechanisms for the photodehydration of phenols by which QMs are formed is important to tune the reactivity of QMs with DNA and proteins for the potential application of QMs in medicine as therapeutic agents. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The Unexpected and Exceptionally Facile Chemical Modification of the Phenolic Hydroxyl Group of Tyrosine by Polyhalogenated Quinones under Physiological Conditions.

    PubMed

    Qu, Na; Li, Feng; Shao, Bo; Shao, Jie; Zhai, Guijin; Wang, Fuyi; Zhu, Ben-Zhan

    2016-10-17

    The phenolic hydroxyl group of tyrosine residue plays a crucial role in the structure and function of many proteins. However, little study has been reported about its modification by chemical agents under physiological conditions. In this study, we found, unexpectedly, that the phenolic hydroxyl group of tyrosine can be rapidly and efficiently modified by tetrafluoro-1,4-benzoquinone and other polyhalogenated quinones, which are the major genotoxic and carcinogenic quinoid metabolites of polyhalogenated aromatic compounds. The modification was found to be mainly due to the formation of a variety of fluoroquinone-O-tyrosine conjugates and their hydroxylated derivatives via nucleophilic substitution pathway. Analogous modifications were observed for tyrosine-containing peptides. Further studies showed that the blockade of the reactive phenolic hydroxyl group of tyrosine in the substrate peptide, even by very low concentration of tetrafluoro-1,4-benzoquinone, can prevent the kinase catalyzed tyrosine phosphorylation. This is the first report showing the exceptionally facile chemical modification of the phenolic hydroxyl group of tyrosine by polyhalogenated quinones under normal physiological conditions, which may have potential biological and toxicological implications.

  6. Bioinspired Aerobic Oxidation of Secondary Amines and Nitrogen Heterocycles with a Bifunctional Quinone Catalyst

    PubMed Central

    Wendlandt, Alison E.; Stahl, Shannon S.

    2014-01-01

    Copper amine oxidases are a family of enzymes with quinone cofactors that oxidize primary amines to aldehydes. The native mechanism proceeds via an iminoquinone intermediate that promotes high selectivity for reactions with primary amines, thereby constraining the scope of potential biomimetic synthetic applications. Here, we report a novel bioinspired quinone catalyst system, consisting of 1,10-phenanthroline-5,6-dione/ZnI2, that bypasses these constraints via an abiological pathway involving a hemiaminal intermediate. Efficient aerobic dehydrogenation of non-native secondary amine substrates, including pharmaceutically relevant nitrogen heterocycles, is demonstrated. The ZnI2 cocatalyst activates the quinone toward amine oxidation and provides a source of iodide, which plays an important redox-mediator role to promote aerobic catalytic turnover. These findings provide a valuable foundation for broader development of aerobic oxidation reactions employing quinone-based catalysts. PMID:24328193

  7. Bioinspired aerobic oxidation of secondary amines and nitrogen heterocycles with a bifunctional quinone catalyst.

    PubMed

    Wendlandt, Alison E; Stahl, Shannon S

    2014-01-08

    Copper amine oxidases are a family of enzymes with quinone cofactors that oxidize primary amines to aldehydes. The native mechanism proceeds via an iminoquinone intermediate that promotes high selectivity for reactions with primary amines, thereby constraining the scope of potential biomimetic synthetic applications. Here we report a novel bioinspired quinone catalyst system consisting of 1,10-phenanthroline-5,6-dione/ZnI2 that bypasses these constraints via an abiological pathway involving a hemiaminal intermediate. Efficient aerobic dehydrogenation of non-native secondary amine substrates, including pharmaceutically relevant nitrogen heterocycles, is demonstrated. The ZnI2 cocatalyst activates the quinone toward amine oxidation and provides a source of iodide, which plays an important redox-mediator role to promote aerobic catalytic turnover. These findings provide a valuable foundation for broader development of aerobic oxidation reactions employing quinone-based catalysts.

  8. Electrochemical study of quinone redox cycling: A novel application of DNA-based biosensors for monitoring biochemical reactions.

    PubMed

    Ensafi, Ali A; Jamei, Hamid Reza; Heydari-Bafrooei, Esmaeil; Rezaei, B

    2016-10-01

    This paper presents the results of an experimental investigation of voltammetric and impedimetric DNA-based biosensors for monitoring biological and chemical redox cycling reactions involving free radical intermediates. The concept is based on associating the amounts of radicals generated with the electrochemical signals produced, using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). For this purpose, a pencil graphite electrode (PGE) modified with multiwall carbon nanotubes and poly-diallydimethlammonium chloride decorated with double stranded fish sperm DNA was prepared to detect DNA damage induced by the radicals generated from a redox cycling quinone (i.e., menadione (MD; 2-methyl-1,4-naphthoquinone)). Menadione was employed as a model compound to study the redox cycling of quinones. A direct relationship was found between free radical production and DNA damage. The relationship between MD-induced DNA damage and free radical generation was investigated in an attempt to identify the possible mechanism(s) involved in the action of MD. Results showed that DPV and EIS were appropriate, simple and inexpensive techniques for the quantitative and qualitative comparisons of different reducing reagents. These techniques may be recommended for monitoring DNA damages and investigating the mechanisms involved in the production of redox cycling compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A cannabinoid anticancer quinone, HU-331, is more potent and less cardiotoxic than doxorubicin: a comparative in vivo study.

    PubMed

    Kogan, Natalya M; Schlesinger, Michael; Peters, Maximilian; Marincheva, Gergana; Beeri, Ronen; Mechoulam, Raphael

    2007-08-01

    Several quinones have been found to be effective in the treatment of some forms of cancer; however, their cumulative heart toxicity limits their use. The cannabinoid quinone HU-331 [3S,4R-p-benzoquinone-3-hydroxy-2-p-mentha-(1,8)-dien-3-yl-5-pentyl] is highly effective against tumor xenografts in nude mice. We report now a comparison of the anticancer activity of HU-331 and its cardiotoxicity with those of doxorubicin in vivo. General toxicity was assayed in Sabra, nude and SCID-NOD mice. The anticancer activity in vivo was assessed by measurement of the tumors with an external caliper in HT-29 and Raji tumor-bearing mice and by weighing the excised tumors. Left ventricular function was evaluated with transthoracic echocardiography. Myelotoxicity was evaluated by blood cell count. Cardiac troponin T (cTnT) plasma levels were determined by immunoassay. HU-331 was found to be much less cardiotoxic than doxorubicin. The control and the HU-331-treated groups gained weight, whereas the doxorubicin-treated group lost weight during the study. In HT-29 colon carcinoma, the tumor weight in the HU-331-treated group was 54% smaller than in the control group and 30% smaller than in the doxorubicin-treated group. In Raji lymphoma, the tumor weight in the HU-331-treated group was 65% smaller than in the control group and 33% smaller than in the doxorubicin-treated group. In contrast to doxorubicin, HU-331 did not generate reactive oxygen species in mice hearts (measured by protein carbonylation levels and malondialdehyde levels). In vivo, HU-331 was more active and less toxic than doxorubicin and thus it has a high potential for development as a new anticancer drug.

  10. Localization of Ubiquinone-8 in the Na+-pumping NADH:Quinone Oxidoreductase from Vibrio cholerae*

    PubMed Central

    Casutt, Marco S.; Nedielkov, Ruslan; Wendelspiess, Severin; Vossler, Sara; Gerken, Uwe; Murai, Masatoshi; Miyoshi, Hideto; Möller, Heiko M.; Steuber, Julia

    2011-01-01

    Na+ is the second major coupling ion at membranes after protons, and many pathogenic bacteria use the sodium-motive force to their advantage. A prominent example is Vibrio cholerae, which relies on the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR) as the first complex in its respiratory chain. The Na+-NQR is a multisubunit, membrane-embedded NADH dehydrogenase that oxidizes NADH and reduces quinone to quinol. Existing models describing redox-driven Na+ translocation by the Na+-NQR are based on the assumption that the pump contains four flavins and one FeS cluster. Here we show that the large, peripheral NqrA subunit of the Na+-NQR binds one molecule of ubiquinone-8. Investigations of the dynamic interaction of NqrA with quinones by surface plasmon resonance and saturation transfer difference NMR reveal a high affinity, which is determined by the methoxy groups at the C-2 and C-3 positions of the quinone headgroup. Using photoactivatable quinone derivatives, it is demonstrated that ubiquinone-8 bound to NqrA occupies a functional site. A novel scheme of electron transfer in Na+-NQR is proposed that is initiated by NADH oxidation on subunit NqrF and leads to quinol formation on subunit NqrA. PMID:21885438

  11. Cr(II) reactivity of taurine/alpha-ketoglutarate dioxygenase.

    PubMed

    Grzyska, Piotr K; Hausinger, Robert P

    2007-11-26

    The interaction of CrII with taurine/alpha-ketoglutarate (alphaKG) dioxygenase (TauD) was examined. CrII replaces FeII and binds stoichiometrically with alphaKG to the FeII/alphaKG binding site of the protein, with additional CrII used to generate a chromophore attributed to a CrIII-semiquinone in a small percentage of the sample. Formation of the latter oxygen-sensitive species requires the dihydroxyphenylalanine (DOPA) quinone form of Tyr-73. This preformed side chain is generated by intracellular self-hydroxylation of Tyr-73 to form DOPA, which is subsequently oxidized to the quinone. No chromophore is generated when using NaBH4-treated sample, protein isolated from anaerobically grown cells, inactive TauD variants that are incapable of self-hydroxylation, or the Y73F active mutant of TauD. A CrIII-DOPA semiquinone also was observed in the herbicide hydroxylase SdpA.

  12. The Na+-Translocating NADH:Quinone Oxidoreductase Enhances Oxidative Stress in the Cytoplasm of Vibrio cholerae

    PubMed Central

    Muras, Valentin; Dogaru-Kinn, Paul; Minato, Yusuke; Häse, Claudia C.

    2016-01-01

    ABSTRACT We searched for a source of reactive oxygen species (ROS) in the cytoplasm of the human pathogen Vibrio cholerae and addressed the mechanism of ROS formation using the dye 2′,7′-dichlorofluorescein diacetate (DCFH-DA) in respiring cells. By comparing V. cholerae strains with or without active Na+-translocating NADH:quinone oxidoreductase (Na+-NQR), this respiratory sodium ion redox pump was identified as a producer of ROS in vivo. The amount of cytoplasmic ROS detected in V. cholerae cells producing variants of Na+-NQR correlated well with rates of superoxide formation by the corresponding membrane fractions. Membranes from wild-type V. cholerae showed increased superoxide production activity (9.8 ± 0.6 μmol superoxide min−1 mg−1 membrane protein) compared to membranes from the mutant lacking Na+-NQR (0.18 ± 0.01 μmol min−1 mg−1). Overexpression of plasmid-encoded Na+-NQR in the nqr deletion strain resulted in a drastic increase in the formation of superoxide (42.6 ± 2.8 μmol min−1 mg−1). By analyzing a variant of Na+-NQR devoid of quinone reduction activity, we identified the reduced flavin adenine dinucleotide (FAD) cofactor of cytoplasmic NqrF subunit as the site for intracellular superoxide formation in V. cholerae. The impact of superoxide formation by the Na+-NQR on the virulence of V. cholerae is discussed. IMPORTANCE In several studies, it was demonstrated that the Na+-NQR in V. cholerae affects virulence in a yet unknown manner. We identified the reduced FAD cofactor in the NADH-oxidizing NqrF subunit of the Na+-NQR as the site of superoxide formation in the cytoplasm of V. cholerae. Our study provides the framework to understand how reactive oxygen species formed during respiration could participate in the regulated expression of virulence factors during the transition from aerobic to microaerophilic (intestinal) habitats. This hypothesis may turn out to be right for many other pathogens which, like V. cholerae, depend on

  13. Structural and Functional insights into the catalytic mechanism of the Type II NADH:quinone oxidoreductase family

    PubMed Central

    Marreiros, Bruno C.; Sena, Filipa V.; Sousa, Filipe M.; Oliveira, A. Sofia F.; Soares, Cláudio M.; Batista, Ana P.; Pereira, Manuela M.

    2017-01-01

    Type II NADH:quinone oxidoreductases (NDH-2s) are membrane proteins involved in respiratory chains. These proteins contribute indirectly to the establishment of the transmembrane difference of electrochemical potential by catalyzing the reduction of quinone by oxidation of NAD(P)H. NDH-2s are widespread enzymes being present in the three domains of life. In this work, we explored the catalytic mechanism of NDH-2 by investigating the common elements of all NDH-2s, based on the rationale that conservation of such elements reflects their structural/functional importance. We observed conserved sequence motifs and structural elements among 1762 NDH-2s. We identified two proton pathways possibly involved in the protonation of the quinone. Our results led us to propose the first catalytic mechanism for NDH-2 family, in which a conserved glutamate residue, E172 (in NDH-2 from Staphylococcus aureus) plays a key role in proton transfer to the quinone pocket. This catalytic mechanism may also be extended to the other members of the two-Dinucleotide Binding Domains Flavoprotein (tDBDF) superfamily, such as sulfide:quinone oxidoreductases. PMID:28181562

  14. CrII Reactivity of Taurine/α-Ketoglutarate Dioxygenase

    PubMed Central

    Grzyska, Piotr K.; Hausinger, Robert P.

    2008-01-01

    The interaction of CrII with taurine/α-ketoglutarate (αKG) dioxygenase (TauD) was examined. CrII replaces FeII and binds stoichiometrically with αKG to the FeII/αKG-binding site of the protein, with additional CrII used to generate a chromophore attributed to a CrIII-semiquinone in a small percentage of the sample. Formation of the latter oxygen -sensitive species requires the dihydroxyphenylalanine (DOPA) quinone form of Tyr-73. This pre-formed side chain is generated by intracellular self-hydroxylation of Tyr-73 to form DOPA, which is subsequently oxidized to the quinone. No chromophore is generated when using NaBH4-treated sample, protein isolated from anaerobically grown cells, inactive TauD variants that are incapable of self-hydroxylation, or the Y73F active mutant of TauD. A CrIII-DOPA semiquinone also was observed in the herbicide hydroxylase SdpA. PMID:17973473

  15. Electron transfer of quinone self-assembled monolayers on a gold electrode.

    PubMed

    Nagata, Morio; Kondo, Masaharu; Suemori, Yoshiharu; Ochiai, Tsuyoshi; Dewa, Takehisa; Ohtsuka, Toshiaki; Nango, Mamoru

    2008-06-15

    Dialkyl disulfide-linked naphthoquinone, (NQ-Cn-S)2, and anthraquinone, (AQ-Cn-S)2, derivatives with different spacer alkyl chains (Cn: n=2, 6, 12) were synthesized and these quinone derivatives were self-assembled on a gold electrode. The formation of self-assembled monolayers (SAMs) of these derivatives on a gold electrode was confirmed by infrared reflection-absorption spectroscopy (IR-RAS). Electron transfer between the derivatives and the gold electrode was studied by cyclic voltammetry. On the cyclic voltammogram a reversible redox reaction between quinone (Q) and hydroquinone (QH2) was clearly observed under an aqueous condition. The formal potentials for NQ and AQ derivatives were -0.48 and -0.58 V, respectively, that did not depend on the spacer length. The oxidation and reduction peak currents were strongly dependent on the spacer alkyl chain length. The redox behavior of quinone derivatives depended on the pH condition of the buffer solution. The pH dependence was in agreement with a theoretical value of E 1/2 (mV)=E'-59pH for 2H+/2e(-) process in the pH range 3-11. In the range higher than pH 11, the value was estimated with E 1/2 (mV)=E'-30pH , which may correspond to H+/2e(-) process. The tunneling barrier coefficients (beta) for NQ and AQ SAMs were determined to be 0.12 and 0.73 per methylene group (CH2), respectively. Comparison of the structures and the alkyl chain length of quinones derivatives on these electron transfers on the electrode is made.

  16. Alpha-tocopherol and alpha-tocopheryl quinone levels in cervical intraepithelial neoplasia and cervical cancer.

    PubMed

    Palan, Prabhudas R; Woodall, Angela L; Anderson, Patrick S; Mikhail, Magdy S

    2004-05-01

    alpha-Tocopherol is a potent antioxidant that protects cell membranes against oxidative damage. Red blood cell alpha-tocopherol levels reflect membrane alpha-tocopherol concentrations, and altered levels may suggest membrane damage. The objective of this study was to determine the levels of alpha-tocopherol and alpha-tocopheryl quinone, the oxidized product of alpha-tocopherol, in plasma and red blood cells that were obtained from control subjects and patients with cervical intraepithelial neoplasia and cervical cancer. In this cross-sectional study, 72 women, (32 African American and 40 Hispanic) were recruited. Among these subjects, 37 women had cervical intraepithelial neoplasia; 14 women had cervical cancer, and 21 women were considered control subjects, who had normal Papanicolaou test results. alpha-Tocopherol and alpha-tocopheryl quinone levels were determined in red blood cell and plasma by high-pressure liquid chromatography. Plasma levels of alpha-tocopherol and alpha-tocopheryl quinone were decreased significantly (P=.012 and=.005, respectively, by Kruskal-Wallis test) in study groups compared with the control group; red blood cell levels of alpha-tocopherol and alpha-tocopheryl quinone were not altered significantly. The lower alpha-tocopherol level that was observed in this study is consistent with our previous reports of decreased antioxidant concentrations and increased oxidative stress in women with cervical intraepithelial neoplasia. Unaltered red blood cell alpha-tocopherol and alpha-tocopheryl quinone levels suggest undamaged cell membrane. Further studies are needed to investigate the potential role of oxidative stress in cervical intraepithelial neoplasia.

  17. A cannabinoid quinone inhibits angiogenesis by targeting vascular endothelial cells.

    PubMed

    Kogan, Natalya M; Blázquez, Cristina; Alvarez, Luis; Gallily, Ruth; Schlesinger, Michael; Guzmán, Manuel; Mechoulam, Raphael

    2006-07-01

    Recent findings on the inhibition of angiogenesis and vascular endothelial cell proliferation by anthracycline antibiotics, which contain a quinone moiety, make this type of compound a very promising lead in cancer research/therapy. We have reported that a new cannabinoid anticancer quinone, cannabidiol hydroxyquinone (HU-331), is highly effective against tumor xenografts in nude mice. For evaluation of the antiangiogenic action of cannabinoid quinones, collagen-embedded rat aortic ring assay was used. The ability of cannabinoids to cause endothelial cell apoptosis was assayed by TUNEL staining and flow cytometry analysis. To examine the genes and pathways targeted by HU-331 in vascular endothelial cells, human cDNA microarrays and polymerase chain reaction were used. Immunostaining with anti-CD31 of tumors grown in nude mice served to indicate inhibition of tumor angiogenesis. HU-331 was found to be strongly antiangiogenic, significantly inhibiting angiogenesis at concentrations as low as 300 nM. HU-331 inhibited angiogenesis by directly inducing apoptosis of vascular endothelial cells without changing the expression of pro- and antiangiogenic cytokines and their receptors. A significant decrease in the total area occupied by vessels in HU-331-treated tumors was also observed. These data lead us to consider HU-331 to have high potential as a new antiangiogenic and anticancer drug.

  18. Reactive Power Compensation Method Considering Minimum Effective Reactive Power Reserve

    NASA Astrophysics Data System (ADS)

    Gong, Yiyu; Zhang, Kai; Pu, Zhang; Li, Xuenan; Zuo, Xianghong; Zhen, Jiao; Sudan, Teng

    2017-05-01

    According to the calculation model of minimum generator reactive power reserve of power system voltage stability under the premise of the guarantee, the reactive power management system with reactive power compensation combined generator, the formation of a multi-objective optimization problem, propose a reactive power reserve is considered the minimum generator reactive power compensation optimization method. This method through the improvement of the objective function and constraint conditions, when the system load growth, relying solely on reactive power generation system can not meet the requirement of safe operation, increase the reactive power reserve to solve the problem of minimum generator reactive power compensation in the case of load node.

  19. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    NASA Astrophysics Data System (ADS)

    Jablonowski, H.; Bussiahn, R.; Hammer, M. U.; Weltmann, K.-D.; von Woedtke, Th.; Reuter, S.

    2015-12-01

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100-400 nm) and, in particular, vacuum ultraviolet (VUV, 10-200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH2O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H2O2) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O2•-) and hydroxyl radicals (•OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.

  20. Redox potential tuning through differential quinone binding in the photosynthetic reaction center of Rhodobacter sphaeroides

    DOE PAGES

    Vermaas, Josh V.; Taguchi, Alexander T.; Dikanov, Sergei A.; ...

    2015-03-03

    Ubiquinone forms an integral part of the electron transport chain in cellular respiration and photosynthesis across a vast number of organisms. Prior experimental results have shown that the photosynthetic reaction center (RC) from Rhodobacter sphaeroides is only fully functional with a limited set of methoxy-bearing quinones, suggesting that specific interactions with this substituent are required to drive electron transport and the formation of quinol. The nature of these interactions has yet to be determined. Through parameterization of a CHARMM-compatible quinone force field and subsequent molecular dynamics simulations of the quinone-bound RC, in this paper we have investigated and characterized themore » interactions of the protein with the quinones in the Q A and Q B sites using both equilibrium simulation and thermodynamic integration. In particular, we identify a specific interaction between the 2-methoxy group of ubiquinone in the Q B site and the amide nitrogen of GlyL225 that we implicate in locking the orientation of the 2-methoxy group, thereby tuning the redox potential difference between the quinones occupying the Q A and Q B sites. Finally, disruption of this interaction leads to weaker binding in a ubiquinone analogue that lacks a 2-methoxy group, a finding supported by reverse electron transfer electron paramagnetic resonance experiments of the Q A–Q B– biradical and competitive binding assays.« less

  1. Redox potential tuning through differential quinone binding in the photosynthetic reaction center of Rhodobacter sphaeroides.

    PubMed

    Vermaas, Josh V; Taguchi, Alexander T; Dikanov, Sergei A; Wraight, Colin A; Tajkhorshid, Emad

    2015-03-31

    Ubiquinone forms an integral part of the electron transport chain in cellular respiration and photosynthesis across a vast number of organisms. Prior experimental results have shown that the photosynthetic reaction center (RC) from Rhodobacter sphaeroides is only fully functional with a limited set of methoxy-bearing quinones, suggesting that specific interactions with this substituent are required to drive electron transport and the formation of quinol. The nature of these interactions has yet to be determined. Through parameterization of a CHARMM-compatible quinone force field and subsequent molecular dynamics simulations of the quinone-bound RC, we have investigated and characterized the interactions of the protein with the quinones in the Q(A) and Q(B) sites using both equilibrium simulation and thermodynamic integration. In particular, we identify a specific interaction between the 2-methoxy group of ubiquinone in the Q(B) site and the amide nitrogen of GlyL225 that we implicate in locking the orientation of the 2-methoxy group, thereby tuning the redox potential difference between the quinones occupying the Q(A) and Q(B) sites. Disruption of this interaction leads to weaker binding in a ubiquinone analogue that lacks a 2-methoxy group, a finding supported by reverse electron transfer electron paramagnetic resonance experiments of the Q(A)⁻Q(B)⁻ biradical and competitive binding assays.

  2. Mechanism and analyses for extracting photosynthetic electrons using exogenous quinones - what makes a good extraction pathway?

    PubMed

    Longatte, G; Rappaport, F; Wollman, F-A; Guille-Collignon, M; Lemaître, F

    2016-08-04

    Plants or algae take many benefits from oxygenic photosynthesis by converting solar energy into chemical energy through the synthesis of carbohydrates from carbon dioxide and water. However, the overall yield of this process is rather low (about 4% of the total energy available from sunlight is converted into chemical energy). This is the principal reason why recently many studies have been devoted to extraction of photosynthetic electrons in order to produce a sustainable electric current. Practically, the electron transfer occurs between the photosynthetic organism and an electrode and can be assisted by an exogenous mediator, mainly a quinone. In this regard, we recently reported on a method involving fluorescence measurements to estimate the ability of different quinones to extract photosynthetic electrons from a mutant of Chlamydomonas reinhardtii. In the present work, we used the same kind of methodology to establish a zone diagram for predicting the most suitable experimental conditions to extract photoelectrons from intact algae (quinone concentration and light intensity) as a function of the purpose of the study. This will provide further insights into the extraction mechanism of photosynthetic electrons using exogenous quinones. Indeed fluorescence measurements allowed us to model the capacity of photosynthetic algae to donate electrons to an exogenous quinone by considering a numerical parameter called "open center ratio" which is related to the Photosystem II acceptor redox state. Then, using it as a proxy for investigating the extraction of photosynthetic electrons by means of an exogenous quinone, 2,6-DCBQ, we suggested an extraction mechanism that was globally found consistent with the experimentally extracted parameters.

  3. Engineering of Pyranose Dehydrogenase for Increased Oxygen Reactivity

    PubMed Central

    Krondorfer, Iris; Lipp, Katharina; Brugger, Dagmar; Staudigl, Petra; Sygmund, Christoph; Haltrich, Dietmar; Peterbauer, Clemens K.

    2014-01-01

    Pyranose dehydrogenase (PDH), a member of the GMC family of flavoproteins, shows a very broad sugar substrate specificity but is limited to a narrow range of electron acceptors and reacts extremely slowly with dioxygen as acceptor. The use of substituted quinones or (organo)metals as electron acceptors is undesirable for many production processes, especially of food ingredients. To improve the oxygen reactivity, site-saturation mutagenesis libraries of twelve amino acids around the active site of Agaricus meleagris PDH were expressed in Saccharomyces cerevisiae. We established high-throughput screening assays for oxygen reactivity and standard dehydrogenase activity using an indirect Amplex Red/horseradish peroxidase and a DCIP/D-glucose based approach. The low number of active clones confirmed the catalytic role of H512 and H556. Only one position was found to display increased oxygen reactivity. Histidine 103, carrying the covalently linked FAD cofactor in the wild-type, was substituted by tyrosine, phenylalanine, tryptophan and methionine. Variant H103Y was produced in Pichia pastoris and characterized and revealed a five-fold increase of the oxygen reactivity. PMID:24614932

  4. Widespread ability of fungi to drive quinone redox cycling for biodegradation.

    PubMed

    Krueger, Martin C; Bergmann, Michael; Schlosser, Dietmar

    2016-06-01

    Wood-rotting fungi possess remarkably diverse extracellular oxidation mechanisms, including enzymes, such as laccase and peroxidases, and Fenton chemistry. The ability to biologically drive Fenton chemistry by the redox cycling of quinones has previously been reported to be present in both ecologically diverging main groups of wood-rotting basidiomycetes. Therefore, we investigated whether it is even more widespread among fungal organisms. Screening of a diverse selection of a total of 18 ascomycetes and basidiomycetes for reduction of the model compound 2,6-dimethoxy benzoquinone revealed that all investigated strains were capable of reducing it to its corresponding hydroquinone. In a second step, depolymerization of the synthetic polymer polystyrene sulfonate was used as a proxy for quinone-dependent Fenton-based biodegradation capabilities. A diverse subset of the strains, including environmentally ubiquitous molds, white-rot fungi, as well as peatland and aquatic isolates, caused substantial depolymerization indicative for the effective employment of quinone redox cycling as biodegradation tool. Our results may also open up new paths to utilize diverse fungi for the bioremediation of recalcitrant organic pollutants. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Luteolin as reactive oxygen generator by X-ray and UV irradiation

    NASA Astrophysics Data System (ADS)

    Toyama, Michiru; Mori, Takashi; Takahashi, Junko; Iwahashi, Hitoshi

    2018-05-01

    Non-toxic X-ray-responsive substances can be used in the radiosensitization of cancer, like porphyrin mediated radiotherapy. However, most X-ray-responsive substances are toxic. To find novel non-toxic X-ray-responsive substances, we studied the X-ray and UV reactivity of 40 non-toxic compounds extracted from plants. Dihydroethidium was used as an indicator to detect reactive oxygen species (ROS) generated by the compounds under X-ray or UV irradiation. We found that 13 of the investigated compounds generated ROS under X-ray irradiation and 17 generated ROS under UV irradiation. Only 4 substances generated ROS under both X-ray and UV. In particular, luteolin exhibited the highest activity among the investigated compounds; therefore, the ROS generated by luteolin were thoroughly characterized. To identify the ROS, we employed a combination of ROS detection reagents and their quenchers. O2·- generation by luteolin was monitored using dihydroethidium and superoxide dismutase (as an O2·- quencher). OH· and 1O2 generation was determined using aminophenyl fluorescein with ethanol (OH· quencher) and Singlet Oxygen Sensor Green® with NaN3 (1O2 quencher), respectively. Generation of O2·- under X-ray and UV irradiation was observed; however, no OH· or 1O2 was detected. The production of ROS from luteolin is surprising, because luteolin is a well-known antioxidant.

  6. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablonowski, H.; Hammer, M. U.; Reuter, S.

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100–400 nm) and, in particular, vacuum ultraviolet (VUV, 10–200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH{sub 2}O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stablemore » reactive oxygen species, hydrogen peroxide (H{sub 2}O{sub 2}) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O{sub 2}{sup •−}) and hydroxyl radicals ({sup •}OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.« less

  7. On the importance of hydroquinone/p-quinone redox system in the photoyellowing of mechanical pulps

    Treesearch

    Umesh P. Agarwal

    1999-01-01

    In the area of photoyellowing of mechanical pulps, recently obtained experimental evidence has shown that hydroquinone/p-quinone redox couple is present in lignin-rich mechanical pulps. It was also noted that compared to a control pulp the concentration of p-quinones was significantly higher in a photoyellowed pulp. Under ambient conditions, upon exposure to light, the...

  8. Identification of Carotenoids and Isoprenoid Quinones from Asaia lannensis and Asaia bogorensis.

    PubMed

    Antolak, Hubert; Oracz, Joanna; Otlewska, Anna; Żyżelewicz, Dorota; Kręgiel, Dorota

    2017-09-25

    The aim of the study was to identify and quantitatively assess of carotenoids and isoprenoid quinones biosynthesized by six different strains of acetic acid bacteria, belonging to genus Asaia , that are common beverage-spoiling bacteria in Europe. Bacterial cultures were conducted in a laboratory liquid culture minimal medium with 2% sucrose. Carotenoids and isoprenoid quinones were investigated using UHPLC-DAD-ESI-MS analysis. In general, tested strains of Asaia spp. were able to produce 10 carotenoids and 3 isoprenoid quinones: menaquinone-7, menaquinone-8, and ubiquinone-10. The main identified carotenoids in Asaia lannensis strains were phytofluene, neurosporene, α-carotene, while for Asaia bogorensis , neurosporene, canthaxanthin, and zeaxanthin were noted. What is more, tested Asaia spp. were able to produce myxoxanthophyll, which has so far been identified primarily in cyanobacteria. The results show that A. lannensis are characterized by statistically higher concentrations of produced carotenoids, as well as a greater variety of these compounds. We have noted that carotenoids were not only accumulated by bacterial cells, but also some strains of A. lannensis produced extracellular carotenoids.

  9. A comparison of free radical formation by quinone antitumour agents in MCF-7 cells and the role of NAD(P)H (quinone-acceptor) oxidoreductase (DT-diaphorase).

    PubMed

    Fisher, G R; Patterson, L H; Gutierrez, P L

    1993-09-01

    Electron paramagnetic resonance (EPR/ESR) spin trapping studies with DMPO revealed that purified rat liver NAD(P)H (quinone-acceptor) oxidoreductase (QAO) mediated hydroxyl radical formation by a diverse range of quinone-based antitumour agents. However, when MCF-7 S9 cell fraction was the source of QAO, EPR studies distinguished four different interactions by these agents and QAO with respect to hydroxyl radical formation: (i) hydroxyl radical formation by diaziquone (AZQ), menadione, 1AQ; 1,5AQ and 1,8AQ was mediated entirely or partially by QAO in MCF-7 S9 fraction; (ii) hydroxyl radical formation by daunorubicin and Adriamycin was not mediated by QAO in MCF-7 S9 fraction; (iii) hydroxyl radical formation by mitomycin C was stimulated in MCF-7 S9 fraction when QAO was inhibited by dicumarol; (iv) no hydroxyl radical formation was detected for 1,4AQ or mitoxantrone in MCF-7 S9 fraction. This study shows that purified rat liver QAO can mediate hydroxyl radical formation by a variety of diverse quinone antitumour agents. However, QAO did not necessarily contribute to hydroxyl radical formation by these agents in MCF-7 S9 fraction and in the case of mitomycin C, QAO played a protective role against hydroxyl radical formation.

  10. Computational design of molecules for an all-quinone redox flow battery† †Electronic supplementary information (ESI) available: The list of computationally predicted candidate quinone molecules with interesting redox properties. See DOI: 10.1039/c4sc03030c Click here for additional data file.

    PubMed Central

    Er, Süleyman; Suh, Changwon; Marshak, Michael P.

    2015-01-01

    Inspired by the electron transfer properties of quinones in biological systems, we recently showed that quinones are also very promising electroactive materials for stationary energy storage applications. Due to the practically infinite chemical space of organic molecules, the discovery of additional quinones or other redox-active organic molecules for energy storage applications is an open field of inquiry. Here, we introduce a high-throughput computational screening approach that we applied to an accelerated study of a total of 1710 quinone (Q) and hydroquinone (QH2) (i.e., two-electron two-proton) redox couples. We identified the promising candidates for both the negative and positive sides of organic-based aqueous flow batteries, thus enabling an all-quinone battery. To further aid the development of additional interesting electroactive small molecules we also provide emerging quantitative structure-property relationships. PMID:29560173

  11. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Satoshi

    2013-07-01

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed.

  12. Reactive power generation in high speed induction machines by continuously occurring space-transients

    NASA Astrophysics Data System (ADS)

    Laithwaite, E. R.; Kuznetsov, S. B.

    1980-09-01

    A new technique of continuously generating reactive power from the stator of a brushless induction machine is conceived and tested on a 10-kw linear machine and on 35 and 150 rotary cage motors. An auxiliary magnetic wave traveling at rotor speed is artificially created by the space-transient attributable to the asymmetrical stator winding. At least two distinct windings of different pole-pitch must be incorporated. This rotor wave drifts in and out of phase repeatedly with the stator MMF wave proper and the resulting modulation of the airgap flux is used to generate reactive VA apart from that required for magnetization or leakage flux. The VAR generation effect increases with machine size, and leading power factor operation of the entire machine is viable for large industrial motors and power system induction generators.

  13. Experimental and Theoretical Reduction Potentials of Some Biologically Active ortho-Carbonyl para-Quinones.

    PubMed

    Martínez-Cifuentes, Maximiliano; Salazar, Ricardo; Ramírez-Rodríguez, Oney; Weiss-López, Boris; Araya-Maturana, Ramiro

    2017-04-04

    The rational design of quinones with specific redox properties is an issue of great interest because of their applications in pharmaceutical and material sciences. In this work, the electrochemical behavior of a series of four p -quinones was studied experimentally and theoretically. The first and second one-electron reduction potentials of the quinones were determined using cyclic voltammetry and correlated with those calculated by density functional theory (DFT) using three different functionals, BHandHLYP, M06-2x and PBE0. The differences among the experimental reduction potentials were explained in terms of structural effects on the stabilities of the formed species. DFT calculations accurately reproduced the first one-electron experimental reduction potentials with R ² higher than 0.94. The BHandHLYP functional presented the best fit to the experimental values ( R ² = 0.957), followed by M06-2x ( R ² = 0.947) and PBE0 ( R ² = 0.942).

  14. Quinone 1 e – and 2 e – /2 H + Reduction Potentials: Identification and Analysis of Deviations from Systematic Scaling Relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huynh, Mioy T.; Anson, Colin W.; Cavell, Andrew C.

    Quinones participate in diverse electron transfer and proton-coupled electron transfer processes in chemistry and biology. An experimental study of common quinones reveals a non-linear correlation between the 1 e – and 2 e –/2 H + reduction potentials. This unexpected observation prompted a computational study of 128 different quinones, probing their 1 e – reduction potentials, pKa values, and 2 e –/2 H + reduction potentials. The density functional theory calculations reveal an approximately linear correlation between these three properties and an effective Hammett constant associated with the quinone substituent(s). However, deviations from this linear scaling relationship are evident formore » quinones that feature halogen substituents, charged substituents, intramolecular hydrogen bonding in the hydroquinone, and/or sterically bulky substituents. These results, particularly the different substituent effects on the 1 e – versus 2 e – /2 H + reduction potentials, have important implications for designing quinones with tailored redox properties.« less

  15. Effects of peptides on generation of reactive oxygen species in subcellular fractions of Drosophila melanogaster.

    PubMed

    Khavinson, V K; Myl'nikov, S V; Oparina, T I; Arutyunyan, A V

    2001-07-01

    We studied the effects of Epithalon (Ala-Glu-Asp-Gly) and Vilon (Lys-Glu) on free radical processes in highly inbred HA(+)line of Drosophila melanogaster. Vilon inhibited generation of reactive oxygen species in mitochondria, but stimulated this process in the cytosol. We found sex- and age-related differences in the generation of reactive oxygen species and cytosol antioxidant activity.

  16. Antioxidant and quinone reductase-inducing constituents of black chokeberry (Aronia melanocarpa) fruits.

    PubMed

    Li, Jie; Deng, Ye; Yuan, Chunhua; Pan, Li; Chai, Heebyung; Keller, William J; Kinghorn, A Douglas

    2012-11-21

    Using in vitro hydroxyl radical-scavenging and quinone reductase-inducing assays, bioactivity-guided fractionation of an ethyl acetate-soluble extract of the fruits of the botanical dietary supplement, black chokeberry (Aronia melanocarpa), led to the isolation of 27 compounds, including a new depside, ethyl 2-[(3,4-dihydroxybenzoyloxy)-4,6-dihydroxyphenyl] acetate (1), along with 26 known compounds (2-27). The structures of the isolated compounds were identified by analysis of their physical and spectroscopic data ([α](D), NMR, IR, UV, and MS). Altogether, 17 compounds (1-4, 9, 15-17, and 19-27) showed significant antioxidant activity in the hydroxyl radical-scavenging assay, with hyperin (24, ED(50) = 0.17 μM) being the most potent. The new compound (1, ED(50) = 0.44 μM) also exhibited potent antioxidant activity in this assay. Three constituents of black chokeberry fruits doubled quinone reductase activity at concentrations <20 μM, namely, protocatechuic acid [9, concentration required to double quinone reductase activity (CD) = 4.3 μM], neochlorogenic acid methyl ester (22, CD = 6.7 μM), and quercetin (23, CD = 3.1 μM).

  17. Redox and non-redox mechanism of in vitro cyclooxygenase inhibition by natural quinones.

    PubMed

    Landa, Premysl; Kutil, Zsofia; Temml, Veronika; Vuorinen, Anna; Malik, Jan; Dvorakova, Marcela; Marsik, Petr; Kokoska, Ladislav; Pribylova, Marie; Schuster, Daniela; Vanek, Tomas

    2012-03-01

    In this study, ten anthra-, nine naphtho-, and five benzoquinone compounds of natural origin and five synthetic naphthoquinones were assessed, using an enzymatic in vitro assay, for their potential to inhibit cyclooxygenase-1 and -2 (COX-1 and COX-2), the key enzymes of the arachidonic acid cascade. IC₅₀ values comparable with COX reference inhibitor indomethacin were recorded for several quinones (primin, alkannin, diospyrin, juglone, 7-methyljuglone, and shikonin). For some of the compounds, we suggest the redox potential of quinones as the mechanism responsible for in vitro COX inhibition because of the quantitative correlation with their pro-oxidant effect. Structure-relationship activity studies revealed that the substitutions at positions 2 and 5 play the key roles in the COX inhibitory and pro-oxidant actions of naphthoquinones. In contrast, the redox mechanism alone could not explain the activity of primin, embelin, alkannin, and diospyrin. For these four quinones, molecular modeling suggested similar binding modes as for conventional nonsteroidal anti-inflammatory drugs (NSAIDs). © Georg Thieme Verlag KG Stuttgart · New York.

  18. Ultrafast above-threshold dynamics of the radical anion of a prototypical quinone electron-acceptor.

    PubMed

    Horke, Daniel A; Li, Quansong; Blancafort, Lluís; Verlet, Jan R R

    2013-08-01

    Quinones feature prominently as electron acceptors in nature. Their electron-transfer reactions are often highly exergonic, for which Marcus theory predicts reduced electron-transfer rates because of a free-energy barrier that occurs in the inverted region. However, the electron-transfer kinetics that involve quinones can appear barrierless. Here, we consider the intrinsic properties of the para-benzoquinone radical anion, which serves as the prototypical electron-transfer reaction product involving a quinone-based acceptor. Using time-resolved photoelectron spectroscopy and ab initio calculations, we show that excitation at 400 and 480 nm yields excited states that are unbound with respect to electron loss. These excited states are shown to decay on a sub-40 fs timescale through a series of conical intersections with lower-lying excited states, ultimately to form the ground anionic state and avoid autodetachment. From an isolated electron-acceptor perspective, this ultrafast stabilization mechanism accounts for the ability of para-benzoquinone to capture and retain electrons.

  19. Phospholipid-derived fatty acids and quinones as markers for bacterial biomass and community structure in marine sediments.

    PubMed

    Kunihiro, Tadao; Veuger, Bart; Vasquez-Cardenas, Diana; Pozzato, Lara; Le Guitton, Marie; Moriya, Kazuyoshi; Kuwae, Michinobu; Omori, Koji; Boschker, Henricus T S; van Oevelen, Dick

    2014-01-01

    Phospholipid-derived fatty acids (PLFA) and respiratory quinones (RQ) are microbial compounds that have been utilized as biomarkers to quantify bacterial biomass and to characterize microbial community structure in sediments, waters, and soils. While PLFAs have been widely used as quantitative bacterial biomarkers in marine sediments, applications of quinone analysis in marine sediments are very limited. In this study, we investigated the relation between both groups of bacterial biomarkers in a broad range of marine sediments from the intertidal zone to the deep sea. We found a good log-log correlation between concentrations of bacterial PLFA and RQ over several orders of magnitude. This relationship is probably due to metabolic variation in quinone concentrations in bacterial cells in different environments, whereas PLFA concentrations are relatively stable under different conditions. We also found a good agreement in the community structure classifications based on the bacterial PLFAs and RQs. These results strengthen the application of both compounds as quantitative bacterial biomarkers. Moreover, the bacterial PLFA- and RQ profiles revealed a comparable dissimilarity pattern of the sampled sediments, but with a higher level of dissimilarity for the RQs. This means that the quinone method has a higher resolution for resolving differences in bacterial community composition. Combining PLFA and quinone analysis as a complementary method is a good strategy to yield higher resolving power in bacterial community structure.

  20. Investigation of the cumulative body burden of estrogen-3,4-quinone in breast cancer patients and controls using albumin adducts as biomarkers.

    PubMed

    Lin, Che; Chen, Dar-Ren; Hsieh, Wei-Chung; Yu, Wen-Fa; Lin, Ching-Chiuan; Ko, Mao-Huei; Juan, Chang-Hsin; Tsuang, Ben-Jei; Lin, Po-Hsiung

    2013-04-26

    Both 17β-estradiol-2,3-quinone (E2-2,3-Q) and 17β-estradiol-3,4-quinone (E2-3,4-Q) are reactive metabolites of estrogen. Elevation of E2-3,4-Q to E2-2,3-Q ratio is thought to be an important indicator of estrogen-induced carcinogenesis. Our current study compared the cumulative body burden of these estrogen quinones in serum samples taken from Taiwanese women with breast cancer (n=152) vs healthy controls (n=75) by using albumin (Alb) adducts as biomarkers. Results clearly demonstrated the presence of cysteinyl adducts of E2-2,3-Q-4-S-Alb and E2-3,4-Q-2-S-Alb in all study population at levels ranging from 61.7-1330 to 66.6-1,590 pmol/g, respectively. Correlation coefficient between E2-2,3-Q-4-S-Alb and E2-3,4-Q-2-S-Alb was 0.610 for controls and 0.767 for breast cancer patients (p<0.001). We also noticed that in premenopausal subjects with body mass index (BMI) less than 27, background levels of E2-3,4-Q-2-S-Alb was inversely proportional to BMI with about 25% increase in E2-3,4-Q-2-S-Alb per 5 kg/m(2) decrease in BMI (p<0.001). In addition, we confirmed that mean levels of E2-3,4-Q-2-S-Alb in breast cancer patients were ∼5-fold greater than in those of controls (p<0.001). Overall, this evidence suggests that disparity in estrogen disposition and the subsequent elevation of cumulative body burden of E2-3,4-Q may play a role in the development of breast cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Accessible reactive surface area and abiotic redox reactivity of iron oxyhydroxides in acidic brines

    NASA Astrophysics Data System (ADS)

    Strehlau, Jennifer H.; Toner, Brandy M.; Arnold, William A.; Penn, R. Lee

    2017-01-01

    The reactivity of iron oxyhydroxide nanoparticles in low pH and high ionic strength solutions was quantified to assess abiotic contributions to oxidation-reduction chemistry in acidic brine environments, such as mine groundwater seepage, lakes in Western Australia, and acid mine drainage settings, which are of global interest for their environmental impacts and unique geomicrobiology. Factors expected to influence accessible and reactive surface area, including Fe(II) adsorption and aggregate size, were measured as a function of pH and CaCl2 concentration and related to the kinetics of redox reactions in aqueous suspensions of synthetic goethite (α-FeOOH), akaganeite (β-FeOOH), and ferrihydrite (Fe10O14(OH)2) nanoparticles. Aqueous conditions and iron oxyhydroxides were chosen based on characterization of natural iron-rich mine microbial mats located in Soudan Underground Mine State Park, Minnesota, USA. Quinone species were used as redox sensors because they are well-defined probes and are present in natural organic matter. Fe(II) adsorption to the iron oxyhydroxide mineral surfaces from aqueous solution was measurable only at pH values above 4 and either decreased or was not affected by CaCl2 concentration. Concentrations at or above 0.020 M CaCl2 in acetate buffer (pH 4.5) induced particle aggregation. Assessment of Fe(II) adsorption and particle aggregation in acidic brine suggested that accessible reactive surface area may be limited in acidic brines. This was supported by observations of decreasing benzoquinone reduction rate by adsorbed Fe(II) at high CaCl2 concentration. In contrast, the hydroquinone oxidation rate increased at high CaCl2 concentrations, which may be due to suppressed adsorption of Fe(II) generated by the reaction. Results suggest that iron geochemical cycling in acidic brine environments will be substantially different than for iron oxyhydroxides in low-saline waters with circumneutral pH. These findings have implications for acidic

  2. Increased Isoprenoid Quinone Concentration Modulates Membrane Fluidity in Listeria monocytogenes at Low Growth Temperatures.

    PubMed

    Seel, Waldemar; Flegler, Alexander; Zunabovic-Pichler, Marija; Lipski, André

    2018-07-01

    Listeria monocytogenes is a food pathogen capable of growing at a broad temperature range from 50°C to refrigerator temperatures. A key requirement for bacterial activity and growth at low temperatures is the ability to adjust the membrane lipid composition to maintain cytoplasmic membrane fluidity. In this study, we confirmed earlier findings that the extents of fatty acid profile adaptation differed between L. monocytogenes strains. We were able to demonstrate for isolates from food that growth rates at low temperatures and resistance to freeze-thaw stress were not impaired by a lower adaptive response of the fatty acid composition. This indicated the presence of a second adaptation mechanism besides temperature-regulated fatty acid synthesis. For strains that showed weaker adaptive responses in their fatty acid profiles to low growth temperature, we could demonstrate a significantly higher concentration of isoprenoid quinones. Three strains even showed a higher quinone concentration after growth at 6°C than at 37°C, which is contradictory to the reduced respiratory activity at lower growth temperatures. Analyses of the membrane fluidity in vivo by measuring generalized polarization and anisotropy revealed modulation of the transition phase. Strains with increased quinone concentrations showed an expanded membrane transition phase in contrast to strains with pronounced adaptations of fatty acid profiles. The correlation between quinone concentration and membrane transition phase expansion was confirmed by suppression of quinone synthesis. A reduced quinone concentration resulted in a narrower transition phase. Expansion of the phase transition zone by increasing the concentration of non-fatty acid membrane lipids is discussed as an additional mechanism improving adaptation to temperature shifts for L. monocytogenes strains. IMPORTANCE Listeria monocytogenes is a foodborne pathogen with an outstanding temperature range for growth. The ability for growth at

  3. Inducible Alkylation of DNA by a Quinone Methide-Peptide Nucleic Acid Conjugate†

    PubMed Central

    Liu, Yang; Rokita, Steven E.

    2012-01-01

    The reversibility of alkylation by a quinone methide intermediate (QM) avoids the irreversible consumption that plagues most reagents based on covalent chemistry and allows for site specific reaction that is controlled by the thermodynamics rather than kinetics of target association. This characteristic was originally examined with an oligonucleotide QM conjugate but broad application depends on alternative derivatives that are compatible with a cellular environment. Now, a peptide nucleic acid (PNA) derivative has been constructed and shown to exhibit an equivalent ability to delivery the reactive QM in a controlled manner. This new conjugate demonstrates high selectivity for a complementary sequence of DNA even when challenged with an alternative sequence containing a single T/T mismatch. Alkylation of non-complementary sequences is only possible when a template strand is present to co-localize the conjugate and its target. For efficient alkylation in this example, a single-stranded region of the target is required adjacent to the QM conjugate. Most importantly, the intrastrand self adducts formed between the PNA and its attached QM remained active and reversible over more than eight days in aqueous solution prior to reaction with a chosen target added subsequently. PMID:22243337

  4. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects

    NASA Astrophysics Data System (ADS)

    Lu, X.; Naidis, G. V.; Laroussi, M.; Reuter, S.; Graves, D. B.; Ostrikov, K.

    2016-05-01

    Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors' vision for the emerging convergence trends across several disciplines and application domains is presented to

  5. Contribution of Quinones and Ketones/Aldehydes to the Optical Properties of Humic Substances (HS) and Chromophoric Dissolved Organic Matter (CDOM).

    PubMed

    Del Vecchio, Rossana; Schendorf, Tara Marie; Blough, Neil V

    2017-12-05

    The molecular basis of the optical properties of chromophoric dissolved organic matter (CDOM) and humic substances (HS) remains poorly understood and yet to be investigated adequately. This study evaluates the relative contributions of two broad classes of carbonyl-containing compounds, ketones/aldehydes versus quinones, to the absorption and emission properties of a representative suite of HS as well as a lignin sample. Selective reduction of quinones to hydroquinones by addition of small molar excesses of dithionite to these samples under anoxic conditions produced small or negligible changes in their optical properties; however, when measurable, these changes were largely reversible upon exposure to air, consistent with the reoxidation of hydroquinones to quinones. With one exception, estimates of quinone content based on dithionite consumption by the HS under anoxic conditions were in good agreement with past electrochemical measurements. In contrast, reduction of ketones/aldehydes to alcohols employing excess sodium borohydride produced pronounced and largely, but not completely, irreversible changes in the optical properties. The results demonstrate that (aromatic) ketones/aldehydes, as opposed to quinones, play a far more prominent role in the optical absorption and emission properties of these HS, consistent with these moieties acting as the primary acceptors in charge-transfer transitions within these samples. As a method, anoxic dithionite titrations may further allow additional insight into the content and impact of quinones/hydroquinones on the optical properties of HS and CDOM.

  6. Behavioral Response Generation and Selection of Rejected-Reactive Aggressive, Rejected-Nonaggressive, and Average Status Children.

    ERIC Educational Resources Information Center

    Wood, C. Nannette; Gross, Alan M.

    2002-01-01

    Examines response decision processes of rejected-reactive aggressive, rejected-nonaggressive and average children in terms of the presence or absence of behavioral response alternatives. Congruent with previous research, rejected-reactive aggressive children made significantly more hostile attributions and generated a higher number of aggressive…

  7. Study of quinones reactions with wine nucleophiles by cyclic voltammetry.

    PubMed

    Oliveira, Carla M; Barros, António S; Ferreira, António C S; Silva, Artur M S

    2016-11-15

    Quinones are electrophilic species which can react with various nucleophiles, like wine antioxidants, such as sulfur dioxide or ascorbic acid, thiols, amino acids, and numerous polyphenols. These reactions are very important in wine aging because they mediate oxygen reactions during both production and bottle aging phases. In this work, the major challenge was to determine the interaction between ortho-quinones and wine nucleophiles (amino acids, thiols, and the antioxidants SO2 and ascorbic acid), by cyclic voltammetry. Wine-model solutions with gallic acid, caffeic acid, or (+)-catechin and nucleophilic compounds were used. To understand the effect of nucleophilic addition in wine, a white wine with the same added nucleophiles was also analysed. Cyclic voltammograms were taken with glassy carbon electrode or screen-printed carbon electrodes, respectively, for wine-model and white wines solutions, in the absence and in the presence of nucleophiles. A nucleophilic order profile related to the cathodic current intensity decrease was observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Docking and molecular dynamics simulation of quinone compounds with trypanocidal activity.

    PubMed

    de Molfetta, Fábio Alberto; de Freitas, Renato Ferreira; da Silva, Albérico Borges Ferreira; Montanari, Carlos Alberto

    2009-10-01

    In this work, two different docking programs were used, AutoDock and FlexX, which use different types of scoring functions and searching methods. The docking poses of all quinone compounds studied stayed in the same region in the trypanothione reductase. This region is a hydrophobic pocket near to Phe396, Pro398 and Leu399 amino acid residues. The compounds studied displays a higher affinity in trypanothione reductase (TR) than glutathione reductase (GR), since only two out of 28 quinone compounds presented more favorable docking energy in the site of human enzyme. The interaction of quinone compounds with the TR enzyme is in agreement with other studies, which showed different binding sites from the ones formed by cysteines 52 and 58. To verify the results obtained by docking, we carried out a molecular dynamics simulation with the compounds that presented the highest and lowest docking energies. The results showed that the root mean square deviation (RMSD) between the initial and final pose were very small. In addition, the hydrogen bond pattern was conserved along the simulation. In the parasite enzyme, the amino acid residues Leu399, Met400 and Lys402 are replaced in the human enzyme by Met406, Tyr407 and Ala409, respectively. In view of the fact that Leu399 is an amino acid of the Z site, this difference could be explored to design selective inhibitors of TR.

  9. An antibacterial ortho-quinone diterpenoid and its derivatives from Caryopteris mongolica.

    PubMed

    Saruul, Erdenebileg; Murata, Toshihiro; Selenge, Erdenechimeg; Sasaki, Kenroh; Yoshizaki, Fumihiko; Batkhuu, Javzan

    2015-06-15

    To identify antibacterial components in traditional Mongolian medicinal plant Caryopteris mongolica, an ortho-quinone abietane caryopteron A (1) and three its derivatives caryopteron B-D (2-4) were isolated from the roots of the plant together with three known abietanes demethylcryptojaponol (5), 6α-hydroxydemethyl cryptojaponol (6), and 14-deoxycoleon U (7). The chemical structures of these abietane derivatives were elucidated on the basis of spectroscopic data. Compounds 1-4 had C-13 methylcyclopropane substructures, and 2-4 had a hexanedioic anhydride ring C instead of ortho-quinone in 1. The stereochemistry of these compound was assumed from NOE spectra and ECD Cotton effects. Compounds 1 and 5-7 showed antibacterial activities against the Gram-positive bacteria Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, and Micrococcus luteus, being 1 the more potent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Phospholipid and Respiratory Quinone Analyses From Extreme Environments

    NASA Astrophysics Data System (ADS)

    Pfiffner, S. M.

    2008-12-01

    Extreme environments on Earth have been chosen as surrogate sites to test methods and strategies for the deployment of space craft in the search for extraterrestrial life. Surrogate sites for many of the NASA astrobiology institutes include the South African gold mines, Canadian subpermafrost, Atacama Desert, and acid rock drainage. Soils, sediments, rock cores, fracture waters, biofilms, and service and drill waters represent the types of samples collected from these sites. These samples were analyzed by gas chromatography mass spectrometry for phospholipid fatty acid methyl esters and by high performance liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry for respiratory quinones. Phospholipid analyses provided estimates of biomass, community composition, and compositional changes related to nutritional limitations or exposure to toxic conditions. Similar to phospholipid analyses, respiratory quinone analyses afforded identification of certain types of microorganisms in the community based on respiration and offered clues to in situ redox conditions. Depending on the number of samples analyzed, selected multivariate statistical methods were applied to relate membrane lipid results with site biogeochemical parameters. Successful detection of life signatures and refinement of methodologies at surrogate sites on Earth will be critical for the recognition of extraterrestrial life. At this time, membrane lipid analyses provide useful information not easily obtained by other molecular techniques.

  11. ARSENIC SPECIES CAUSE RELEASE OF IRON FROM FERRITIN GENERATING REACTIVE OXYGEN SPECIES

    EPA Science Inventory

    ARSENIC SPECIES CAUSE RELEASE OF IRON FROM FERRITIN GENERATING REACTIVE OXYGEN SPECIES

    Arsenic-associated cancer (lung, bladder, skin, liver, kidney) remains a significant world- wide public health problem (e.g., Taiwan, Chile, Bangladesh, India, China and Thailand). Rece...

  12. UV-Vis spectrophotometry of quinone flow battery electrolyte for in situ monitoring and improved electrochemical modeling of potential and quinhydrone formation.

    PubMed

    Tong, Liuchuan; Chen, Qing; Wong, Andrew A; Gómez-Bombarelli, Rafael; Aspuru-Guzik, Alán; Gordon, Roy G; Aziz, Michael J

    2017-12-06

    Quinone-based aqueous flow batteries provide a potential opportunity for large-scale, low-cost energy storage due to their composition from earth abundant elements, high aqueous solubility, reversible redox kinetics and their chemical tunability such as reduction potential. In an operating flow battery utilizing 9,10-anthraquinone-2,7-disulfonic acid, the aggregation of an oxidized quinone and a reduced hydroquinone to form a quinhydrone dimer causes significant variations from ideal solution behavior and of optical absorption from the Beer-Lambert law. We utilize in situ UV-Vis spectrophotometry to establish (a), quinone, hydroquinone and quinhydrone molar attenuation profiles and (b), an equilibrium constant for formation of the quinhydrone dimer (K QHQ ) ∼ 80 M -1 . We use the molar optical attenuation profiles to identify the total molecular concentration and state of charge at arbitrary mixtures of quinone and hydroquinone. We report density functional theory calculations to support the quinhydrone UV-Vis measurements and to provide insight into the dimerization conformations. We instrument a quinone-bromine flow battery with a Pd-H reference electrode in order to demonstrate how complexation in both the negative (quinone) and positive (bromine) electrolytes directly impacts measured half-cell and full-cell voltages. This work shows how accounting for electrolyte complexation improves the accuracy of electrochemical modeling of flow battery electrolytes.

  13. Effect of CoQ homologues on reactive oxygen generation by mitochondria.

    PubMed

    Imada, Isuke; Sato, Eisuke F; Kira, Yukimi; Inoue, Masayasu

    2008-01-01

    Effect of CoQ compounds (Qs) on reactive oxygen (ROS) generation by mitochondrial complex I was studied using rat liver mitochondria and chemiluminescence probe L012. Kinetic analysis revealed that short chain Qs, such as Q2 and idebenone enhanced ROS generation by mitochondrial NADH oxidase system by a succinate-inhibitable mechanism. Lipid peroxidation in mitochondrial membranes induced by NADH and iron was inhibited by short chain Qs. The inhibitory activity was enhanced by co-oxidation of succinate as determined by chemiluminescence method and by electron spin resonance spectroscopy. These results suggested that the reduced form of short chain Qs inhibited mitochondrial ROS generation and lipid peroxidation.

  14. Unexpected Reduction of Iminoquinone and Quinone Derivatives in Positive Electrospray Ionization Mass Spectrometry and Possible Mechanism Exploration

    NASA Astrophysics Data System (ADS)

    Pei, Jiying; Hsu, Cheng-Chih; Zhang, Ruijie; Wang, Yinghui; Yu, Kefu; Huang, Guangming

    2017-08-01

    Unexpected reduction of iminoquinone (IQ) and quinone derivatives was first reported during positive electrospray ionization mass spectrometry. Upon increasing spray voltage, the intensities of IQ and quinone derivatives decreased drastically, accompanying the increase of the intensities of the reduction products, amodiaquine (AQ) and phenol derivatives. To gain more insight into the mechanism of such reduction, we explored the experimental factors that are influential to corona discharge (CD). The results show that experimental parameters that favor severe CD, including metal spray emitter, using water as spray solvent, sheath gas with low dielectric strength (e.g., nitrogen), and shorter spray tip-to-mass spectrometer inlet distance, facilitated the reduction of IQ and quinone derivatives, implying that the reduction should be closely related to CD in the gas phase. [Figure not available: see fulltext.

  15. Crystallization of the Na+-translocating NADH:quinone oxidoreductase from Vibrio cholerae

    PubMed Central

    Casutt, Marco S.; Wendelspiess, Severin; Steuber, Julia; Fritz, Günter

    2010-01-01

    The Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) from the human pathogen Vibrio cholerae couples the exergonic oxidation of NADH by membrane-bound quinone to Na+ translocation across the membrane. Na+-NQR consists of six different subunits (NqrA–NqrF) and contains a [2Fe–2S] cluster, a noncovalently bound FAD, a noncovalently bound riboflavin, two covalently bound FMNs and potentially Q8 as cofactors. Initial crystallization of the entire Na+-NQR complex was achieved by the sitting-drop method using a nanolitre dispenser. Optimization of the crystallization conditions yielded flat yellow-coloured crystals with dimensions of up to 200 × 80 × 20 µm. The crystals diffracted to 4.0 Å resolution and belonged to space group P21, with unit-cell parameters a = 94, b = 146, c = 105 Å, α = γ = 90, β = 111°. PMID:21139223

  16. Process for Preparing Microcapsules Having Gelatin Walls Crosslinked with Quinone.

    DTIC Science & Technology

    A process for conveniently producing microcapsules containing a gelatin wall crosslinked with quinone and a core of an active compound such as a...provides microcapsules of excellent strength, storage stability, and resistance to aqueous exposure, such that the rate of release of the fouling reducing agent can be controlled with precision. jg

  17. Monitoring of BHT-quinone and BHT-CHO in the gas of capsules of Asclepias physocarpa.

    PubMed

    Ma, Bing-Ji; Peng, Hua; Liu, Ji-Kai

    2006-01-01

    Three volatile components, namely benzoic acid ethyl ester (1), 2,6-di-tert-butyl-p-benzoquinone (BHT-quinone) (2), and 3,5-di-tert-butyl-4-hydroxybenzaldehyde (BHT-CHO) (3), were detected from the gas in the capsules of Asclepias physocarpa by means of GC/MS analysis. BHT-quinone and BHT-CHO as organic pollutants are the degradation products of the antioxidant 2,6-di-tert-butyl-4-methylphenol (BHT). Ground water, lake water and/or rain water are a source of BHT metabolites in the plant Asclepias physocarpa.

  18. A mechanism for hot-spot generation in a reactive two-dimensional sheared viscous layer

    NASA Astrophysics Data System (ADS)

    Timms, Robert; Purvis, Richard; Curtis, John P.

    2018-05-01

    A two-dimensional model for the non-uniform melting of a thin sheared viscous layer is developed. An asymptotic solution is presented for both a non-reactive and a reactive material. It is shown that the melt front is linearly stable to small perturbations in the non-reactive case, but becomes linearly unstable upon introduction of an Arrhenius source term to model the chemical reaction. Results demonstrate that non-uniform melting acts as a mechanism to generate hot spots that are found to be sufficient to reduce the time to ignition when compared with the corresponding one-dimensional model of melting.

  19. Magnetic nanoparticles: reactive oxygen species generation and potential therapeutic applications

    NASA Astrophysics Data System (ADS)

    Mai, Trang; Hilt, J. Zach

    2017-07-01

    Magnetic nanoparticles have been demonstrated to produce reactive oxygen species (ROS), which play a major role in various cellular pathways, via Fenton and Haber-Weiss reaction. ROS act as a double-edged sword inside the body. At normal conditions, the generation of ROS is in balance with their elimination by scavenger systems, and they can promote cell proliferation as well as differentiation. However, at an increased level, they can cause damages to protein, lead to cellular apoptosis, and contribute to many diseases including cancer. Many recent studies proposed a variety of strategies to either suppress toxicity of ROS generation or exploit the elevated ROS levels for cancer therapy.

  20. Profiling the NIH Small Molecule Repository for Compounds That Generate H2O2 by Redox Cycling in Reducing Environments

    PubMed Central

    2010-01-01

    We have screened the Library of Pharmacologically Active Compounds (LOPAC) and the National Institutes of Health (NIH) Small Molecule Repository (SMR) libraries in a horseradish peroxidase–phenol red (HRP-PR) H2O2 detection assay to identify redox cycling compounds (RCCs) capable of generating H2O2 in buffers containing dithiothreitol (DTT). Two RCCs were identified in the LOPAC set, the ortho-naphthoquinone β-lapachone and the para-naphthoquinone NSC 95397. Thirty-seven (0.02%) concentration-dependent RCCs were identified from 195,826 compounds in the NIH SMR library; 3 singleton structures, 9 ortho-quinones, 2 para-quinones, 4 pyrimidotriazinediones, 15 arylsulfonamides, 2 nitrothiophene-2-carboxylates, and 2 tolyl hydrazides. Sixty percent of the ortho-quinones and 80% of the pyrimidotriazinediones in the library were confirmed as RCCs. In contrast, only 3.9% of the para-quinones were confirmed as RCCs. Fifteen of the 251 arylsulfonamides in the library were confirmed as RCCs, and since we screened 17,868 compounds with a sulfonamide functional group we conclude that the redox cycling activity of the arylsulfonamide RCCs is due to peripheral reactive enone, aromatic, or heterocyclic functions. Cross-target queries of the University of Pittsburgh Drug Discovery Institute (UPDDI) and PubChem databases revealed that the RCCs exhibited promiscuous bioactivity profiles and have populated both screening databases with significantly higher numbers of active flags than non-RCCs. RCCs were promiscuously active against protein targets known to be susceptible to oxidation, but were also active in cell growth inhibition assays, and against other targets thought to be insensitive to oxidation. Profiling compound libraries or the hits from screening campaigns in the HRP-PR H2O2 detection assay significantly reduce the timelines and resources required to identify and eliminate promiscuous nuisance RCCs from the candidates for lead optimization. PMID:20070233

  1. Reactive uptake of HOCl to laboratory generated sea salt particles and nascent sea-spray aerosol

    NASA Astrophysics Data System (ADS)

    Campbell, N. R.; Ryder, O. S.; Bertram, T. H.

    2013-12-01

    Field observations suggest that the reactive uptake of HOCl on marine aerosol particles is an important source of chlorine radicals, particularly under low NOx conditions. However to date, laboratory measurements disagree on the magnitude of the reactive uptake coefficient for HOCl by a factor of 5 (γ(HOCl) ranges between 0.0004 and 0.0018), and there are no measurements of γ(HOCl) on nascent sea-spray aerosol. Here, we present measurements of the reactive uptake of HOCl to laboratory generated sodium chloride and sea-spray aerosol particles generated in a novel Marine Aerosol Reference Tank (MART), coupled to an entrained aerosol flow reactor and Chemical Ionization Mass Spectrometer (CIMS). Measurements of γ(HOCl) retrieved here are compared against those in the literature, and the role of organic coatings on nascent sea-spray aerosol is explored.

  2. Simulation of the oxidative metabolism of diclofenac by electrochemistry/(liquid chromatography/)mass spectrometry.

    PubMed

    Faber, Helene; Melles, Daniel; Brauckmann, Christine; Wehe, Christoph Alexander; Wentker, Kristina; Karst, Uwe

    2012-04-01

    Diclofenac is a frequently prescribed drug for rheumatic diseases and muscle pain. In rare cases, it may be associated with a severe hepatotoxicity. In literature, it is discussed whether this toxicity is related to the oxidative phase I metabolism, resulting in electrophilic quinone imines, which can subsequently react with nucleophiles present in the liver in form of glutathione or proteins. In this work, electrochemistry coupled to mass spectrometry is used as a tool for the simulation of the oxidative pathway of diclofenac. Using this purely instrumental approach, diclofenac was oxidized in a thin layer cell equipped with a boron doped diamond working electrode. Sum formulae of generated oxidation products were calculated based on accurate mass measurements with deviations below 2 ppm. Quinone imines from diclofenac were detected using this approach. It could be shown for the first time that these quinone imines do not react with glutathione exclusively but also with larger molecules such as the model protein β-lactoglobulin A. A tryptic digest of the generated drug-protein adduct confirms that the protein is modified at the only free thiol-containing peptide. This simple and purely instrumental set-up offers the possibility of generating reactive metabolites of diclofenac and to assess their reactivity rapidly and easily.

  3. Comparison of estrogen-derived ortho-quinone and para-quinol concerning induction of oxidative stress.

    PubMed

    Rivera-Portalatin, Nilka M; Vera-Serrano, José L; Prokai-Tatrai, Katalin; Prokai, Laszlo

    2007-01-01

    Ortho-quinones formed from catechol estrogens are considered prooxidants due to the production of superoxide radical anions through redox cycling via semiquinones. Para-quinols have been identified as novel metabolites of and as the major products of hydroxyl-radical scavenging by estrogens. Cycling of these compounds has also been discovered, because they are converted back to the parent estrogen via reductive aromatization in vitro and in vivo. We hypothesized that, unlike ortho-quinones, para-quinols do not induce oxidative stress due to this cycling. Like the estrogen itself, the 17beta-estradiol-derived para-quinol (10beta,17beta-dihydroxyestra-1,4-diene-3-one) did not induce oxidative stress, as the rate of hydrogen peroxide production during the incubations of the compounds in various tissue homogenates was not significantly different from that of the control experiments performed without the addition of a test compound. We also confirmed that the estrogen metabolite estra-1,5(10)-dien-3,4,17-trione (estrone 3,4-quinone) was a profound prooxidant due to redox cycling, especially in uterine tissue. Therefore, we concluded that para-quinols do not induce oxidative stress.

  4. Comparison of estrogen-derived ortho-quinone and para-quinol concerning induction of oxidative stress

    PubMed Central

    Rivera-Portalatin, Nilka M.; Vera-Serrano, José L.; Prokai-Tatrai, Katalin; Prokai, Laszlo

    2009-01-01

    Ortho-quinones formed from catechol estrogens are considered prooxidants due to the production of superoxide radical anions through redox cycling via semiquinones. Para-quinols have been identified as novel metabolites of and as the major products of hydroxyl-radical scavenging by estrogens. Cycling of these compounds has also been discovered, because they are converted back to the parent estrogen via reductive aromatization in vitro and in vivo. We hypothesized that, unlike ortho-quinones, para-quinols do not induce oxidative stress due to this cycling. Like the estrogen itself, the 17β-estradiol-derived para-quinol (10β,17β-dihydroxyestra-1,4-diene-3-one) did not induce oxidative stress, as the rate of hydrogen peroxide production during the incubations of the compounds in various tissue homogenates was not significantly different from that of the control experiments performed without the addition of a test compound. We also confirmed that the estrogen metabolite estra-1,5(10)-dien-3,4,17-trione (estrone 3,4-quinone) was a profound prooxidant due to redox cycling, especially in uterine tissue. Therefore, we concluded that para-quinols do not induce oxidative stress. PMID:17582759

  5. Universal quinone electrodes for long cycle life aqueous rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Liang, Yanliang; Jing, Yan; Gheytani, Saman; Lee, Kuan-Yi; Liu, Ping; Facchetti, Antonio; Yao, Yan

    2017-08-01

    Aqueous rechargeable batteries provide the safety, robustness, affordability, and environmental friendliness necessary for grid storage and electric vehicle operations, but their adoption is plagued by poor cycle life due to the structural and chemical instability of the anode materials. Here we report quinones as stable anode materials by exploiting their structurally stable ion-coordination charge storage mechanism and chemical inertness towards aqueous electrolytes. Upon rational selection/design of quinone structures, we demonstrate three systems that coupled with industrially established cathodes and electrolytes exhibit long cycle life (up to 3,000 cycles/3,500 h), fast kinetics (>=20C), high anode specific capacity (up to 200-395 mAh g-1), and several examples of state-of-the-art specific energy/energy density (up to 76-92 Wh kg-1/ 161-208 Wh l-1) for several operational pH values (-1 to 15), charge carrier species (H+, Li+, Na+, K+, Mg2+), temperature (-35 to 25 °C), and atmosphere (with/without O2), making them a universal anode approach for any aqueous battery technology.

  6. All three quinone species play distinct roles in ensuring optimal growth under aerobic and fermentative conditions in E. coli K12

    PubMed Central

    Nitzschke, Annika

    2018-01-01

    The electron transport chain of E. coli contains three different quinone species, ubiquinone (UQ), menaquinone (MK) and demethylmenaquinone (DMK). The content and ratio of the different quinone species vary depending on the external conditions. To study the function of the different quinone species in more detail, strains with deletions preventing UQ synthesis, as well as MK and/or DMK synthesis were cultured under aerobic and anaerobic conditions. The strains were characterized with respect to growth and product synthesis. As quinones are also involved in the control of ArcB/A activity, we analyzed the phosphorylation state of the response regulator as well as the expression of selected genes.The data show reduced aerobic growth coupled to lactate production in the mutants defective in ubiquinone synthesis. This confirms the current assumption that ubiquinone is the main quinone under aerobic growth conditions. In the UQ mutant strains the amount of MK and DMK is significantly elevated. The strain synthesizing only DMK is less affected in growth than the strain synthesizing MK as well as DMK. An inhibitory effect of MK on aerobic growth due to increased oxidative stress is postulated.Under fermentative growth conditions the mutant synthesizing only UQ is severely impaired in growth. Obviously, UQ is not able to replace MK and DMK during anaerobic growth. Mutations affecting quinone synthesis have an impact on ArcA phosphorylation only under anaerobic conditions. ArcA phosphorylation is reduced in strains synthesizing only MK or MK plus DMK. PMID:29614086

  7. Isoprenoid quinones resolve the stratification of microbial redox processes in a biogeochemical continuum from the photic zone to deep anoxic sediments of the Black Sea.

    PubMed

    Becker, Kevin W; Elling, Felix J; Schröder, Jan M; Lipp, Julius S; Goldhammer, Tobias; Zabel, Matthias; Elvert, Marcus; Overmann, Jörg; Hinrichs, Kai-Uwe

    2018-03-09

    The stratified water column of the Black Sea serves as a model ecosystem for studying the interactions of microorganisms with major biogeochemical cycles. Here we provide detailed analysis of isoprenoid quinones to study microbial redox processes in the ocean. In a continuum from the photic zone through the chemocline into deep anoxic sediments of the southern Black Sea, diagnostic quinones and inorganic geochemical parameters indicate niche segregation between redox processes and corresponding shifts in microbial community composition. Quinones specific for oxygenic photosynthesis and aerobic respiration dominate oxic waters, while quinones associated with thaumarchaeal ammonia-oxidation and bacterial methanotrophy, respectively, dominate a narrow interval in suboxic waters. Quinone distributions indicate highest metabolic diversity within the anoxic zone, with anoxygenic photosynthesis being a major process in its photic layer. In the dark anoxic layer, quinone profiles indicate occurrence of bacterial sulfur and nitrogen cycling, archaeal methanogenesis, and archaeal methanotrophy. Multiple novel ubiquinone isomers, possibly originating from unidentified intra-aerobic anaerobes, occur in this zone. The respiration modes found in the anoxic zone continue into shallow subsurface sediments, but quinone abundances rapidly decrease within the upper 50 cm below sea floor, reflecting the transition to lower energy availability. In the deep subseafloor sediments, quinone distributions and geochemical profiles indicate archaeal methanogenesis/methanotrophy and potentially bacterial fermentative metabolisms. We observed that sedimentary quinone distributions track lithology, which supports prior hypotheses that deep biosphere community composition and metabolisms are determined by environmental conditions during sediment deposition. Importance Microorganisms play crucial roles in global biogeochemical cycles. Yet, we have only a fragmentary understanding of the diversity

  8. Generator-specific targets of mitochondrial reactive oxygen species.

    PubMed

    Bleier, Lea; Wittig, Ilka; Heide, Heinrich; Steger, Mirco; Brandt, Ulrich; Dröse, Stefan

    2015-01-01

    To understand the role of reactive oxygen species (ROS) in oxidative stress and redox signaling it is necessary to link their site of generation to the oxidative modification of specific targets. Here we have studied the selective modification of protein thiols by mitochondrial ROS that have been implicated as deleterious agents in a number of degenerative diseases and in the process of biological aging, but also as important players in cellular signal transduction. We hypothesized that this bipartite role might be based on different generator sites for "signaling" and "damaging" ROS and a directed release into different mitochondrial compartments. Because two main mitochondrial ROS generators, complex I (NADH:ubiquinone oxidoreductase) and complex III (ubiquinol:cytochrome c oxidoreductase; cytochrome bc1 complex), are known to predominantly release superoxide and the derived hydrogen peroxide (H2O2) into the mitochondrial matrix and the intermembrane space, respectively, we investigated whether these ROS generators selectively oxidize specific protein thiols. We used redox fluorescence difference gel electrophoresis analysis to identify redox-sensitive targets in the mitochondrial proteome of intact rat heart mitochondria. We observed that the modified target proteins were distinctly different when complex I or complex III was employed as the source of ROS. These proteins are potential targets involved in mitochondrial redox signaling and may serve as biomarkers to study the generator-dependent dual role of mitochondrial ROS in redox signaling and oxidative stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Bioactivation of the Cancer Chemopreventive Agent Tamoxifen to Quinone Methides by Cytochrome P4502B6 and Identification of the Modified Residue on the Apoprotein

    PubMed Central

    Sridar, Chitra; D'Agostino, Jaime

    2012-01-01

    The nonsteroidal antiestrogen tamoxifen was introduced as a treatment for breast cancer 3 decades ago. It has also been approved as a chemopreventive agent and is prescribed to women at high risk for this disease. However, several studies have shown that use of tamoxifen leads to increased risk of endometrial cancer in humans. One potential pathway of tamoxifen toxicity could involve metabolism via hydroxylation to give 4-hydroxytamoxifen (4OHtam), which may be further oxidized to form a quinone methide. CYP2B6 is a highly polymorphic drug-metabolizing enzyme, and it metabolizes a number of clinically important drugs. Earlier studies from our laboratory have shown that tamoxifen is a mechanism-based inactivator of CYP2B6. The aim of the current study was to investigate the possible formation of reactive intermediates through detection of protein covalent binding and glutathione ethyl ester adduct (GSHEE) formation. The incubation of tamoxifen with 2B6 gave rise to an adduct of 4OHtam with glutathione, which was characterized as the 4OHtam quinone methide + GSHEE with an m/z value of 719, and the structure was characterized by liquid chromatography-tandem mass spectrometry. The metabolic activation of tamoxifen in the CYP2B6 reconstituted system also resulted in the formation of an adduct to the P4502B6 apoprotein, which was identified using liquid chromatography mass spectrometry. The site responsible for the inactivation of CYP2B6 was determined by proteolytic digestion and identification of the labeled peptide. This revealed a tryptic peptide 188FHYQDQE194 with the site of adduct formation localized to Gln193 as the site modified by the reactive metabolite formed during tamoxifen metabolism. PMID:22942317

  10. Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water

    NASA Astrophysics Data System (ADS)

    Zelong, ZHANG; Jie, SHEN; Cheng, CHENG; Zimu, XU; Weidong, XIA

    2018-04-01

    Atmospheric pressure helium/water dielectric barrier discharge (DBD) plasma is used to investigate the generation of reactive species in a gas-liquid interface and in a liquid. The emission intensity of the reactive species is measured by optical emission spectroscopy (OES) with different discharge powers at the gas-liquid interface. Spectrophotometry is used to analyze the reactive species induced by the plasma in the liquid. The concentration of OH radicals reaches 2.2 μm after 3 min of discharge treatment. In addition, the concentration of primary long-lived reactive species such as H2O2, {{{{NO}}}3}- and O3 are measured based on plasma treatment time. After 5 min of discharge treatment, the concentration of H2O2, {{{{NO}}}3}-, and O3 increased from 0 mg · L-1 to 96 mg · L-1, 19.5 mg · L-1, and 3.5 mg · L-1, respectively. The water treated by plasma still contained a considerable concentration of reactive species after 6 h of storage. The results will contribute to optimizing the DBD plasma system for biological decontamination.

  11. Esculetin-induced protection of human hepatoma HepG2 cells against hydrogen peroxide is associated with the Nrf2-dependent induction of the NAD(P)H: Quinone oxidoreductase 1 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramaniam, Sudhakar R.; Ellis, Elizabeth M., E-mail: elizabeth.ellis@strath.ac.uk

    Esculetin (6,7-dihydroxy coumarin), is a potent antioxidant that is present in several plant species. The aim of this study was to investigate the mechanism of protection of esculetin in human hepatoma HepG2 cells against reactive oxygen species (ROS) induced by hydrogen peroxide. Cell viability, cell integrity, intracellular glutathione levels, generation of reactive oxygen species and expression of antioxidant enzymes were used as markers to measure cellular oxidative stress and response to ROS. The protective effect of esculetin was compared to a well-characterized chemoprotective compound quercetin. Pre-treatment of HepG2 cells with sub-lethal (10-25 {mu}M) esculetin for 8 h prevented cell deathmore » and maintained cell integrity following exposure to 0.9 mM hydrogen peroxide. An increase in the generation of ROS following hydrogen peroxide treatment was significantly attenuated by 8 h pre-treatment with esculetin. In addition, esculetin ameliorated the decrease in intracellular glutathione caused by hydrogen peroxide exposure. Moreover, treatment with 25 {mu}M esculetin for 8 h increased the expression of NAD(P)H: quinone oxidoreductase (NQO1) at both protein and mRNA levels significantly, by 12-fold and 15-fold, respectively. Esculetin treatment also increased nuclear accumulation of Nrf2 by 8-fold indicating that increased NQO1 expression is Nrf2-mediated. These results indicate that esculetin protects human hepatoma HepG2 cells from hydrogen peroxide induced oxidative injury and that this protection is provided through the induction of protective enzymes as part of an adaptive response mediated by Nrf2 nuclear accumulation.« less

  12. Deodorizing Substance in Black Cumin (Nigella sativa L.) Seed Oil.

    PubMed

    Nakasugi, Toru; Murakawa, Takushi; Shibuya, Koji; Morimoto, Masanori

    2017-08-01

    A deodorizing substance in black cumin (Nigella sativa L.), a spice for curry and vegetable foods in Southwest Asia, was examined. The essential oil prepared from the seeds of this plant exhibited strong deodorizing activity against methyl mercaptan, which is a main factor in oral malodor. After purification with silica gel column chromatography, the active substance in black cumin seed oil was identified as thymoquinone. This monoterpenic quinone functions as the main deodorizing substance in this oil against methyl mercaptan. Metabolite analysis suggested that the deodorizing activity may be generated by the addition of a reactive quinone molecule to methyl mercaptan. In the present study, the menthane-type quinone and phenol derivatives exhibited deodorizing activities via this mechanism.

  13. The binding of quinone to the photosynthetic reaction centers: kinetics and thermodynamics of reactions occurring at the QB-site in zwitterionic and anionic liposomes.

    PubMed

    Mavelli, Fabio; Trotta, Massimo; Ciriaco, Fulvio; Agostiano, Angela; Giotta, Livia; Italiano, Francesca; Milano, Francesco

    2014-07-01

    Liposomes represent a versatile biomimetic environment for studying the interaction between integral membrane proteins and hydrophobic ligands. In this paper, the quinone binding to the QB-site of the photosynthetic reaction centers (RC) from Rhodobacter sphaeroides has been investigated in liposomes prepared with either the zwitterionic phosphatidylcholine (PC) or the negatively charged phosphatidylglycerol (PG) to highlight the role of the different phospholipid polar heads. Quinone binding (K Q) and interquinone electron transfer (L AB) equilibrium constants in the two type of liposomes were obtained by charge recombination reaction of QB-depleted RC in the presence of increasing amounts of ubiquinone-10 over the temperature interval 6-35 °C. The kinetic of the charge recombination reactions has been fitted by numerically solving the ordinary differential equations set associated with a detailed kinetic scheme involving electron transfer reactions coupled with quinone release and uptake. The entire set of traces at each temperature was accurately fitted using the sole quinone release constants (both in a neutral and a charge separated state) as adjustable parameters. The temperature dependence of the quinone exchange rate at the QB-site was, hence, obtained. It was found that the quinone exchange regime was always fast for PC while it switched from slow to fast in PG as the temperature rose above 20 °C. A new method was introduced in this paper for the evaluation of constant K Q using the area underneath the charge recombination traces as the indicator of the amount of quinone bound to the QB-site.

  14. Generation of Reactive Oxygen Species from Silicon Nanowires

    PubMed Central

    Leonard, Stephen S; Cohen, Guy M; Kenyon, Allison J; Schwegler-Berry, Diane; Fix, Natalie R; Bangsaruntip, Sarunya; Roberts, Jenny R

    2014-01-01

    Processing and synthesis of purified nanomaterials of diverse composition, size, and properties is an evolving process. Studies have demonstrated that some nanomaterials have potential toxic effects and have led to toxicity research focusing on nanotoxicology. About two million workers will be employed in the field of nanotechnology over the next 10 years. The unknown effects of nanomaterials create a need for research and development of techniques to identify possible toxicity. Through a cooperative effort between National Institute for Occupational Safety and Health and IBM to address possible occupational exposures, silicon-based nanowires (SiNWs) were obtained for our study. These SiNWs are anisotropic filamentary crystals of silicon, synthesized by the vapor–liquid–solid method and used in bio-sensors, gas sensors, and field effect transistors. Reactive oxygen species (ROS) can be generated when organisms are exposed to a material causing cellular responses, such as lipid peroxidation, H2O2 production, and DNA damage. SiNWs were assessed using three different in vitro environments (H2O2, RAW 264.7 cells, and rat alveolar macrophages) for ROS generation and possible toxicity identification. We used electron spin resonance, analysis of lipid peroxidation, measurement of H2O2 production, and the comet assay to assess generation of ROS from SiNW and define possible mechanisms. Our results demonstrate that SiNWs do not appear to be significant generators of free radicals. PMID:25452695

  15. Generation of reactive oxygen species from silicon nanowires.

    PubMed

    Leonard, Stephen S; Cohen, Guy M; Kenyon, Allison J; Schwegler-Berry, Diane; Fix, Natalie R; Bangsaruntip, Sarunya; Roberts, Jenny R

    2014-01-01

    Processing and synthesis of purified nanomaterials of diverse composition, size, and properties is an evolving process. Studies have demonstrated that some nanomaterials have potential toxic effects and have led to toxicity research focusing on nanotoxicology. About two million workers will be employed in the field of nanotechnology over the next 10 years. The unknown effects of nanomaterials create a need for research and development of techniques to identify possible toxicity. Through a cooperative effort between National Institute for Occupational Safety and Health and IBM to address possible occupational exposures, silicon-based nanowires (SiNWs) were obtained for our study. These SiNWs are anisotropic filamentary crystals of silicon, synthesized by the vapor-liquid-solid method and used in bio-sensors, gas sensors, and field effect transistors. Reactive oxygen species (ROS) can be generated when organisms are exposed to a material causing cellular responses, such as lipid peroxidation, H2O2 production, and DNA damage. SiNWs were assessed using three different in vitro environments (H2O2, RAW 264.7 cells, and rat alveolar macrophages) for ROS generation and possible toxicity identification. We used electron spin resonance, analysis of lipid peroxidation, measurement of H2O2 production, and the comet assay to assess generation of ROS from SiNW and define possible mechanisms. Our results demonstrate that SiNWs do not appear to be significant generators of free radicals.

  16. Quinones are growth factors for the human gut microbiota.

    PubMed

    Fenn, Kathrin; Strandwitz, Philip; Stewart, Eric J; Dimise, Eric; Rubin, Sarah; Gurubacharya, Shreya; Clardy, Jon; Lewis, Kim

    2017-12-20

    The human gut microbiome has been linked to numerous components of health and disease. However, approximately 25% of the bacterial species in the gut remain uncultured, which limits our ability to properly understand, and exploit, the human microbiome. Previously, we found that growing environmental bacteria in situ in a diffusion chamber enables growth of uncultured species, suggesting the existence of growth factors in the natural environment not found in traditional cultivation media. One source of growth factors proved to be neighboring bacteria, and by using co-culture, we isolated previously uncultured organisms from the marine environment and identified siderophores as a major class of bacterial growth factors. Here, we employ similar co-culture techniques to grow bacteria from the human gut microbiome and identify novel growth factors. By testing dependence of slow-growing colonies on faster-growing neighboring bacteria in a co-culture assay, eight taxonomically diverse pairs of bacteria were identified, in which an "induced" isolate formed a gradient of growth around a cultivatable "helper." This set included two novel species Faecalibacterium sp. KLE1255-belonging to the anti-inflammatory Faecalibacterium genus-and Sutterella sp. KLE1607. While multiple helper strains were identified, Escherichia coli was also capable of promoting growth of all induced isolates. Screening a knockout library of E. coli showed that a menaquinone biosynthesis pathway was required for growth induction of Faecalibacterium sp. KLE1255 and other induced isolates. Purified menaquinones induced growth of 7/8 of the isolated strains, quinone specificity profiles for individual bacteria were identified, and genome analysis suggests an incomplete menaquinone biosynthetic capability yet the presence of anaerobic terminal reductases in the induced strains, indicating an ability to respire anaerobically. Our data show that menaquinones are a major class of growth factors for bacteria

  17. Hydrogen Peroxide Activated Quinone Methide Precursors with Enhanced DNA Cross-Linking Capability and Cytotoxicity towards Cancer Cells

    PubMed Central

    Wang, Yibin; Fan, Heli; Balakrishnan, Kumudha; Lin, Zechao; Cao, Sheng; Chen, Wenbing; Fan, Yukai; Guthrie, Quibria A.; Sun, Huabing; Teske, Kelly A.; Gandhi, Varsha; Arnold, Leggy A.; Peng, Xiaohua

    2017-01-01

    Quinone methide (QM) formation induced by endogenously generated H2O2 is attractive for biological and biomedical applications. To overcome current limitations due to low biological activity of H2O2-activated QM precursors, we are introducing herein several new arylboronates with electron donating substituents at different positions of benzene ring and/or different neutral leaving groups. The reaction rate of the arylboronate esters with H2O2 and subsequent bisquinone methides formation and DNA cross-linking was accelerated with the application of Br as a leaving group instead of acetoxy groups. Additionally, a donating group placed meta to the nascent exo-methylene group of the quinone methide greatly improves H2O2-induced DNA interstrand cross-link formation as well as enhances the cellular activity. Multiple donating groups decrease the stability and DNA cross-linking capability, which lead to low cellular activity. A cell-based screen demonstrated that compounds 2a and 5a with a OMe or OH group dramatically inhibited the growth of various tissue-derived cancer cells while normal cells were less affected. Induction of H2AX phosphorylation by these compounds in CLL lymphocytes provide evidence for a correlation between cell death and DNA damage. The compounds presented herein showed potent anticancer activities and selectivity, which represent a novel scaffold for anticancer drug development. PMID:28388522

  18. Thiol Reactivity of Curcumin and Its Oxidation Products.

    PubMed

    Luis, Paula B; Boeglin, William E; Schneider, Claus

    2018-04-16

    The polypharmacological effects of the turmeric compound curcumin may be partly mediated by covalent adduction to cellular protein. Covalent binding to small molecule and protein thiols is thought to occur through a Michael-type addition at the enone moiety of the heptadienedione chain connecting the two methoxyphenol rings of curcumin. Here we show that curcumin forms the predicted thiol-Michael adducts with three model thiols, glutathione, N-acetylcysteine, and β-mercaptoethanol. More abundant, however, are respective thiol adducts of the dioxygenated spiroepoxide intermediate of curcumin autoxidation. Two electrophilic sites at the quinone-like ring of the spiroepoxide are identified. Addition of β-mercaptoethanol at the 5'-position of the ring gives a 1,7-dihydroxycyclopentadione-5' thioether, and addition at the 1'-position results in cleavage of the aromatic ring from the molecule, forming methoxyphenol-thioether and a tentatively identified cyclopentadione aldehyde. The curcuminoids demethoxy- and bisdemethoxycurcumin do not form all of the possible thioether adducts, corresponding with their increased stability toward autoxidation. RAW264.7 macrophage-like cells activated with phorbol ester form curcumin-glutathionyl and the 1,7-dihydroxycyclopentadione-5'-glutathionyl adducts. These studies indicate that the enone of the parent compound is not the only functional electrophile in curcumin, and that its oxidation products provide additional electrophilic sites. This suggests that protein binding by curcumin may involve oxidative activation into reactive quinone methide and spiroepoxide electrophiles.

  19. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2002-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime, high frequency, high power bursts of low-duty factor microwaves sufficient to generate a plasma discharge and passing a gas to be treated through the discharge so as to cause dissociative reduction of the exhaust gases and enhanced catalyst reactivity through application of the pulsed microwave fields directly to the catalyst material sufficient to cause a polarizability catastrophe and enhanced heating of the metal crystallite particles of the catalyst, and in the presence or absence of the plasma. The invention also includes a reactor for aftertreatment of exhaust gases.

  20. Inhibition of in vitro leukotriene B4 biosynthesis in human neutrophil granulocytes and docking studies of natural quinones.

    PubMed

    Landa, Premysl; Kutil, Zsofia; Temml, Veronika; Malik, Jan; Kokoska, Ladislav; Widowitz, Ute; Pribylova, Marie; Dvorakova, Marcela; Marsik, Petr; Schuster, Daniela; Bauer, Rudolf; Vanek, Tomas

    2013-01-01

    Quinones are compounds frequently contained in medicinal plants used for the treatment of inflammatory diseases. Therefore, the impact of plant-derived quinones on the arachidonic acid metabolic pathway is worthy of investigation. In this study, twenty-three quinone compounds of plant origin were tested in vitro for their potential to inhibit leukotriene B4 (LTB4) biosynthesis in activated human neutrophil granulocytes with 5-lipoxygenase (5-LOX) activity. The benzoquinones primin (3) and thymohydroquinone (4) (IC50 = 4.0 and 4.1 microM, respectively) showed activity comparable with the reference inhibitor zileuton (1C50 = 4.1 microM). Moderate activity was observed for the benzoquinone thymoquinone (2) (1C50 = 18.2 microM) and the naphthoquinone shikonin (1) (IC50 = 24.3 microM). The anthraquinone emodin and the naphthoquinone plumbagin (5) displayed only weak activities (IC50 > 50 microM). The binding modes of the active compounds were further evaluated in silico by molecular docking to the human 5-LOX crystal structure. This process supports the biological data and suggested that, although the redox potential is responsible for the quinone's activity on multiple targets, in the case of 5-LOX the molecular structure plays a vital role in the inhibition. The obtained results suggest primin as a promising compound for the development of dual COX-2/5-LOX inhibitors.

  1. Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro

    PubMed Central

    Podrez, Eugene A.; Schmitt, David; Hoff, Henry F.; Hazen, Stanley L.

    1999-01-01

    Oxidized LDL is implicated in atherosclerosis; however, the pathways that convert LDL into an atherogenic form in vivo are not established. Production of reactive nitrogen species may be one important pathway, since LDL recovered from human atherosclerotic aorta is enriched in nitrotyrosine. We now report that reactive nitrogen species generated by the MPO-H2O2-NO2– system of monocytes convert LDL into a form (NO2-LDL) that is avidly taken up and degraded by macrophages, leading to massive cholesterol deposition and foam cell formation, essential steps in lesion development. Incubation of LDL with isolated MPO, an H2O2-generating system, and nitrite (NO2–)— a major end-product of NO metabolism—resulted in nitration of apolipoprotein B 100 tyrosyl residues and initiation of LDL lipid peroxidation. The time course of LDL protein nitration and lipid peroxidation paralleled the acquisition of high-affinity, concentration-dependent, and saturable binding of NO2-LDL to human monocyte–derived macrophages and mouse peritoneal macrophages. LDL modification and conversion into a high-uptake form occurred in the absence of free metal ions, required NO2–, occurred at physiological levels of Cl–, and was inhibited by heme poisons, catalase, and BHT. Macrophage binding of NO2-LDL was specific and mediated by neither the LDL receptor nor the scavenger receptor class A type I. Exposure of macrophages to NO2-LDL promoted cholesteryl ester synthesis, intracellular cholesterol and cholesteryl ester accumulation, and foam cell formation. Collectively, these results identify MPO-generated reactive nitrogen species as a physiologically plausible pathway for converting LDL into an atherogenic form. PMID:10359564

  2. Ebselen: A thioredoxin reductase-dependent catalyst for {alpha}-tocopherol quinone reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang Jianguo; Zhong Liangwei; Zhao Rong

    2005-09-01

    The thioredoxin system, composed of thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH, is a powerful protein disulfide reductase system with a broad substrate specificity. Recently the selenazol drug ebselen was shown to be a substrate for both mammalian TrxR and Trx. We examined if {alpha}-tocopherol quinone (TQ), a product of {alpha}-tocopherol oxidation, is reduced by ebselen in the presence of TrxR, since TQ was not a substrate for the enzyme itself. Ebselen reduction of TQ in the presence of TrxR was caused by ebselen selenol, generated from fast reduction of ebselen by the enzyme. TQ has no intrinsic antioxidant activity,more » while the product of reduction of TQ, {alpha}-tocopherolhydroquinone (TQH{sub 2}), is a potent antioxidant. The thioredoxin system dependence of ebselen to catalyze reduction of other oxidized species, such as hydrogen peroxide, dehydroascorbate, and peroxynitrite, is discussed. The ability of ebselen to reduce TQ via the thioredoxin system is a novel mechanism to explain the effects of the drug as an antioxidant in vivo.« less

  3. Liquid Quinones for Solvent-Free Redox Flow Batteries.

    PubMed

    Shimizu, Akihiro; Takenaka, Keisuke; Handa, Naoyuki; Nokami, Toshiki; Itoh, Toshiyuki; Yoshida, Jun-Ichi

    2017-11-01

    Liquid benzoquinone and naphthoquinone having diethylene glycol monomethyl ether groups are designed and synthesized as redox active materials that dissolve supporting electrolytes. The Li-ion batteries based on the liquid quinones using LiBF 4 /PC show good performance in terms of voltage, capacity, energy efficiency, and cyclability in both static and flow modes. A battery is constructed without using intentionally added organic solvent, and its high energy density (264 W h L -1 ) demonstrates the potential of solvent-free organic redox flow batteries using liquid active materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Control of Reactive Species Generated by Low-frequency Biased Nanosecond Pulse Discharge in Atmospheric Pressure Plasma Effluent

    NASA Astrophysics Data System (ADS)

    Takashima, Keisuke; Kaneko, Toshiro

    2016-09-01

    The control of hydroxyl radical and the other gas phase species generation in the ejected gas through air plasma (air plasma effluent) has been experimentally studied, which is a key to extend the range of plasma treatment. Nanosecond pulse discharge is known to produce high reduced electric field (E/N) discharge that leads to efficient generation of the reactive species than conventional low frequency discharge, while the charge-voltage cycle in the low frequency discharge is known to be well-controlled. In this study, the nanosecond pulse discharge biased with AC low frequency high voltage is used to take advantages of these discharges, which allows us to modulate the reactive species composition in the air plasma effluent. The utilization of the gas-liquid interface and the liquid phase chemical reactions between the modulated long-lived reactive species delivered from the air plasma effluent could realize efficient liquid phase chemical reactions leading to short-lived reactive species production far from the air plasma, which is crucial for some plasma agricultural applications.

  5. Differential antioxidant and quinone reductase inducing activity of American, Asian, and Siberian ginseng

    USDA-ARS?s Scientific Manuscript database

    The antioxidant and quinone reductase (QR) inducing activities of American, Asian, and Siberian ginseng have been reported using various plant materials, solvents, and assays. To directly establish their comparative bioactivity, the effects of extracts obtained from acidified methanol (MeOH), a gas...

  6. Compositions comprising a polypeptide having cellulolytic enhancing activity and a quinone compound and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a quinone compound. The present invention also relates to methods of using the compositions.

  7. Compositions comprising a polypeptide having cellulolytic enhancing activity and a quinone compound and uses thereof

    DOEpatents

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2016-03-01

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a quinone compound. The present invention also relates to methods of using the compositions.

  8. Polychlorinated biphenyl quinone induces oxidative DNA damage and repair responses: The activations of NHEJ, BER and NER via ATM-p53 signaling axis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Hui; Shi, Qiong; Song, Xiufang

    2015-07-01

    Our previous studies demonstrated that polychlorinated biphenyl (PCB) quinone induced oxidative DNA damage in HepG2 cells. To promote genomic integrity, DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair and apoptosis. PCB quinone-induced cell cycle arrest and apoptosis have been documented, however, whether PCB quinone insult induce DNA repair signaling is still unknown. In this study, we identified the activation of DDR and corresponding signaling events in HepG2 cells upon the exposure to a synthetic PCB quinone, PCB29-pQ. Our data illustrated that PCB29-pQ induces the phosphorylation of p53, which was mediated by ataxia telangiectasia mutated (ATM) protein kinase. The observedmore » phosphorylated histone H2AX (γ-H2AX) foci and the elevation of 8-hydroxy-2′-deoxyguanosine (8-OHdG) indicated that DDR was stimulated by PCB29-pQ treatment. Additionally, we found PCB29-pQ activates non-homologous end joining (NHEJ), base excision repair (BER) and nucleotide excision repair (NER) signalings. However, these repair pathways are not error-free processes and aberrant repair of DNA damage may cause the potential risk of carcinogenesis and mutagenesis. - Highlights: • Polychlorinated biphenyl quinone induces oxidative DNA damage in HepG2 cells. • The elevation of γ-H2AX and 8-OHdG indicates the activation of DNA damage response. • ATM-p53 signaling acts as the DNA damage sensor and effector. • Polychlorinated biphenyl quinone activates NHEJ, BER and NER signalings.« less

  9. Novel chemistries and materials for grid-scale energy storage: Quinones and halogen catalysis

    NASA Astrophysics Data System (ADS)

    Huskinson, Brian Thomas

    In this work I describe various approaches to electrochemical energy storage at the grid-scale. Chapter 1 provides an introduction to energy storage and an overview of the history and development of flow batteries. Chapter 2 describes work on the hydrogen-chlorine regenerative fuel cell, detailing its development and the record-breaking performance of the device. Chapter 3 dives into catalyst materials for such a fuel cell, focusing on ruthenium oxide based alloys to be used as chlorine redox catalysts. Chapter 4 introduces and details the development of a performance model for a hydrogen-bromine cell. Chapter 5 delves into the more recent work I have done, switching to applications of quinone chemistries in flow batteries. It focuses on the pairing of one particular quinone (2,7-anthraquinone disulfonic acid) with bromine, and highlights the promising performance characteristics of a device based on this type of chemistry.

  10. NQO1 and CYP450 reductase decrease the systemic exposure of rifampicin-quinone and mediate its redox cycle in rats.

    PubMed

    Shi, Fuguo; Li, Xiaobing; Pan, Hong; Ding, Li

    2017-01-05

    Rifampicin (RIF) is used in regimens for infections caused by Mycobacteria accompanied by serious adverse reactions. Rifampicin-quinone (RIF-Q) is a major autoxidation product of RIF. It is not clear whether RIF-Q plays a role in RIF induced adverse reactions. Investigation of the systemic exposure of RIF-Q is helpful to better understand the role of RIF-Q in RIF induced adverse reactions. In this study, a simple and reproducible high performance liquid chromatography-mass spectrometry (LC-MS) method involving a procedure to prevent the RIF from oxidation for simultaneous quantification of RIF and RIF-Q in rat plasma has been developed and validated, and applied to elucidate the systemic exposure of RIF-Q in rats. The pharmacokinetics data showed that the systemic exposure of RIF-Q was very low (0.67% of RIF, AUC 0-24 ) in rats after oral administration of RIF. However, RIF-Q may undergo the redox cycle in vivo by the evidence that the majority of RIF-Q was reduced to RIF after an oral dose of RIF-Q. Pretreatment with the NAD(P)H: quinone oxidoreductase 1 (NQO1) specific inhibitor dicoumarol and/or cytochrome P450 reductase (CPR) inhibitor diphenyleneiodonium suppressed the redox cycle and significantly increased the systemic exposure of RIF-Q. The inhibitors also attenuated the redox cycle induced reactive oxygen species formation and cytotoxicity in RIF-Q-treated HepG2 cells. These results indicate that NQO1 and CPR play an important role in redox cycle of RIF-Q and may thus contribute to RIF-induced adverse reactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Potential gastroprotective effect of novel cyperenoic acid/quinone derivatives in human cell cultures.

    PubMed

    Theoduloz, Cristina; Carrión, Ivanna Bravo; Pertino, Mariano Walter; Valenzuela, Daniela; Schmeda-Hirschmann, Guillermo

    2012-11-01

    The stem bark of Tabebuia species and the rhizomes of Jatropha isabelii are used in Paraguayan traditional medicine to treat gastric lesions and as anti-inflammatory agents. The sesquiterpene cyperenoic acid obtained from J. isabelii has been shown to display a gastroprotective effect in animal models of induced gastric ulcers while the quinone lapachol shows several biological effects associated with the use of the crude drug. The aim of this work was to prepare hybrid molecules presenting a terpene and a quinone moiety and to obtain an assessment of the gastroprotective activity of the new compounds using human cell cultures (MRC-5 fibroblasts and AGS epithelial gastric cells). Eight compounds, including the natural products and semisynthetic derivatives were assessed for proliferation of MRC-5 fibroblasts, protection against sodium taurocholate-induced damage, prostaglandin E2 content, and stimulation of cellular-reduced glutathione synthesis in AGS cells. The following antioxidant assays were performed: DPPH discoloration, scavenging of the superoxide anion, and inhibition of induced lipoperoxidation in erythrocyte membranes. 3-Hydroxy-β-lapachone (3) and cyperenoic acid (4) stimulated fibroblast proliferation. Lapachol (1), dihydroprenyl lapachol (2), 3-hydroxy-β-lapachone (3), and lapachoyl cyperenate (6) protected against sodium taurocholate-induced damage in AGS cells. Lapachol (1) and dihydroprenyl lapachoyl cyperenate (7) significantly stimulated prostaglandin E2 synthesis in AGS cells. Compounds 3, 4, and 7 raised reduced glutathione levels in AGS cells. The hybrid compounds presented activities different than those of the starting sesquiterpene or quinones. Georg Thieme Verlag KG Stuttgart · New York.

  12. A new generation of ferrociphenols leads to a great diversity of reactive metabolites, and exhibits remarkable antiproliferative properties† †Electronic supplementary information (ESI) available: Experimental procedures for syntheses and biological evaluation, supplementary Fig. 1–8 and Tables 1–6, X-ray crystallographic data, cif file. CCDC 1527404. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc04213b

    PubMed Central

    Wang, Yong; Dansette, Patrick M.; Pigeon, Pascal; McGlinchey, Michael J.

    2017-01-01

    Organometallic compounds bearing the redox motif [ferrocenyl-ene-phenol] have very promising antiproliferative properties which have been further improved by incorporating pertinent substituents able to engender new mechanisms. Here we show that novel ferrociphenols bearing a hydroxypropyl chain exhibit strong antiproliferative effects, in most cases much better than those of cisplatin, tamoxifen, or of previously described ferrociphenols devoid of this terminal OH. This is illustrated, in the case of one of these compounds, by its IC50 values of 110 nM for MDA-MB-231 triple negative breast cancer cells and of 300 nM for cisplatin-resistant A2780cisR human ovarian cancer cells, and by its GI50 values lower than 100 nM towards a series of melanoma and renal cancer cell lines of the NCI-60 panel. Interestingly, oxidative metabolism of these hydroxypropyl-ferrociphenols yields two kinds of quinone methides (QMs) that readily react with various nucleophiles, such as glutathione, to give 1,6- and 1,8-adducts. Protonation of these quinone methides generates numerous reactive metabolites leading eventually to many rearrangement and cleavage products. This unprecedented and fully characterized metabolic profile involving a wide range of electrophilic metabolites that should react with cell macromolecules may be linked to the remarkable profile of antiproliferative activities of this new series. Indeed, the great diversity of unexpected reactive metabolites found upon oxidation will allow them to adapt to various situations present in the cancer cell. These data initiate a novel strategy for the rational design of anticancer molecules, thus opening the way to new organometallic potent anticancer drug candidates for the treatment of chemoresistant cancers. PMID:29629075

  13. HU-331, a novel cannabinoid-based anticancer topoisomerase II inhibitor.

    PubMed

    Kogan, Natalya M; Schlesinger, Michael; Priel, Esther; Rabinowitz, Ruth; Berenshtein, Eduard; Chevion, Mordechai; Mechoulam, Raphael

    2007-01-01

    Anthracyclines, a large group of quinonoid compounds, are used to treat some forms of cancer. Although highly effective in cancer therapy, the mechanism of action of these compounds is not specific; they act on cancer and other cells by numerous mechanisms. A new anticancer quinone (HU-331) was synthesized from cannabidiol. It shows significant high efficacy against human cancer cell lines in vitro and against in vivo tumor grafts in nude mice. In this study, we investigated its mode of action and present evidence on its unique mechanism. HU-331 does not cause cancer cell cycle arrest, cell apoptosis, or caspase activation. HU-331-caused cell death of human cancer cell lines is not mediated by reactive oxygen intermediates/species, as exposure to HU-331 failed to elicit the generation of reactive oxygen species. HU-331 inhibits DNA topoisomerase II even at nanomolar concentrations but has only a slight nonsignificant effect on DNA topoisomerase I action. The cannabinoid quinone HU-331 is a highly specific inhibitor of topoisomerase II, compared with most known anticancer quinones. It might represent a new potent anticancer drug.

  14. Chloroquine Binding Reveals Flavin Redox Switch Function of Quinone Reductase 2*

    PubMed Central

    Leung, Kevin K. K.; Shilton, Brian H.

    2013-01-01

    Quinone reductase 2 (NQO2) is an FAD-linked enzyme and the only known human target of two antimalarial drugs, primaquine (PQ) and chloroquine (CQ). The structural differences between oxidized and reduced NQO2 and the structural basis for inhibition by PQ and CQ were investigated by x-ray crystallography. Structures of oxidized NQO2 in complex with PQ and CQ were solved at 1.4 Å resolution. CQ binds preferentially to reduced NQO2, and upon reduction of NQO2-CQ crystals, the space group changed from P212121 to P21, with 1-Å decreases in all three unit cell dimensions. The change in crystal packing originated in the negative charge and 4–5º bend in the reduced isoalloxazine ring of FAD, which resulted in a new mode of CQ binding and closure of a flexible loop (Phe126–Leu136) over the active site. This first structure of a reduced quinone reductase shows that reduction of the FAD cofactor and binding of a specific inhibitor lead to global changes in NQO2 structure and is consistent with a functional role for NQO2 as a flavin redox switch. PMID:23471972

  15. Wide-band, time-resolved photoacoustic study of electron-transfer reactions. Photoexcited magnesium porphyrin and quinones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feitelson, J.; Mauzerall, D.C.

    1993-08-12

    Wide-band, time-resolved, pulsed photoacoustics has been employed to study the electron-transfer reaction between a triplet magnesium porphyrin and various quinones in polar and nonpolar solvents. The reaction rate constants are near encounter limited. The yield of triplet state is 70% in both solvents. The yield of ions is 85% in the former and zero in the latter, in agreement with spin dephasing time and escape times from the Coulomb wells in the two solvents. In methanol the plot of measured heat output versus quinone redox potential is linear. This implies that the entropy of electron transfer is constant through themore » series, but it may not be negligible. 16 refs., 2 figs., 1 tab.« less

  16. A prototype hybrid 7π quinone-fused 1,3,2-dithiazolyl radical.

    PubMed

    Decken, A; Mailman, A; Passmore, J; Rautiainen, J M; Scherer, W; Scheidt, E-W

    2011-01-28

    Reaction of 1,4-naphthoquinone and SNSMF(6) (M = As, Sb) in SO(2) solution in a 1 : 2 molar ratio led to the naphthoquinone fused 1,3,2-dithiazolylium salts, 3MF(6) quantitatively by multinuclear NMR (87% isolated yield of 3SbF(6)) via the cycloaddition and oxidative dehydrogenation chemistry of SNS(+) with formation of NH(4)SbF(6) and S(8). The product 3SbF(6) was fully characterized by IR, Raman, multinuclear {(1)H, (13)C, (14)N} NMR, elemental analysis, cyclic voltammetry and single crystal X-ray crystallography. The reduction of 3SbF(6) with ferrocene (Cp(2)Fe) in refluxing acetonitrile (CH(3)CN) led to the first isolation of a fused quinone-thiazyl radical, 3˙ in 73% yield. The prototype hybrid quinone-thiazyl radical 3˙ was fully characterized by IR, Raman microscopy, EI-MS, elemental analysis, solution and solid state EPR, magnetic susceptibility (2-370 K) and was found to form π*-π* dimers in the solid state as determined by single crystal X-ray crystallography. Furthermore, the thermal decomposition of 3˙ led to a novel quinone-fused 1,2,3,4-tetrathiine, 10 (x = 2) and the known 1,2,5-thiadiazole, 11. The energetics of the cycloadditon and oxidative dehydrogenation chemistry of SNS(+) and 1,4-naphthoquinone leading to 3SbF(6) were estimated in the gas phase and SO(2) solution by DFT calculations (PBE0/6-311G(d)) and lattice enthalpies obtained by the volume based thermodynamic (VBT) approach in the solid state. The gas phase ion energetics (ionization potential (IP) and electron affinity (EA)) of 3˙ are compared to related 1,3,2- and 1,2,3-dithiazolyl radicals.

  17. Metabolism of a Representative Oxygenated Polycyclic Aromatic Hydrocarbon (PAH) Phenanthrene-9,10-quinone in Human Hepatoma (HepG2) Cells

    PubMed Central

    2014-01-01

    Exposure to polycyclic aromatic hydrocarbons (PAHs) in the food chain is the major human health hazard associated with the Deepwater Horizon oil spill. Phenanthrene is a representative PAH present in crude oil, and it undergoes biological transformation, photooxidation, and chemical oxidation to produce its signature oxygenated derivative, phenanthrene-9,10-quinone. We report the downstream metabolic fate of phenanthrene-9,10-quinone in HepG2 cells. The structures of the metabolites were identified by HPLC–UV–fluorescence detection and LC–MS/MS. O-mono-Glucuronosyl-phenanthrene-9,10-catechol was identified, as reported previously. A novel bis-conjugate, O-mono-methyl-O-mono-sulfonated-phenanthrene-9,10-catechol, was discovered for the first time, and evidence for both of its precursor mono conjugates was obtained. The identities of these four metabolites were unequivocally validated by comparison to authentic enzymatically synthesized standards. Evidence was also obtained for a minor metabolic pathway of phenanthrene-9,10-quinone involving bis-hydroxylation followed by O-mono-sulfonation. The identification of 9,10-catechol conjugates supports metabolic detoxification of phenanthrene-9,10-quinone through interception of redox cycling by UGT, COMT, and SULT isozymes and indicates the possible use of phenanthrene-9,10-catechol conjugates as biomarkers of human exposure to oxygenated PAH. PMID:24646012

  18. Immunomodulatory Effects of Diterpene Quinone Derivatives from the Roots of Horminum pyrenaicum in Human PBMC

    PubMed Central

    Becker, K.; Schwaiger, S.; Waltenberger, B.; Pezzei, C. K.; Schennach, H.

    2018-01-01

    Several phytochemicals were shown to interfere with redox biology in the human system. Moreover, redox biochemistry is crucially involved in the orchestration of immunological cascades. When screening for immunomodulatory compounds, the two interferon gamma- (IFN-γ-) dependent immunometabolic pathways of tryptophan breakdown via indoleamine 2,3-dioxygenase-1 (IDO-1) and neopterin formation by GTP-cyclohydrolase 1 (GTP-CH-I) represent prominent targets, as IFN-γ-related signaling is strongly sensitive to oxidative triggers. Herein, the analysis of these pathway activities in human peripheral mononuclear cells was successfully applied in a bioactivity-guided fractionation strategy to screen for anti-inflammatory substances contained in the root of Horminum (H.) pyrenaicum L. (syn. Dragon's mouth), the only representative of the monophyletic genus Horminum. Four abietane diterpene quinone derivatives (horminone, 7-O-acetylhorminone, inuroyleanol and its 15,16-dehydro-derivative, a novel natural product), two nor-abietane diterpene quinones (agastaquinone and 3-deoxyagastaquinone) and two abeo 18 (4 → 3) abietane diterpene quinones (agastol and its 15,16-dehydro-derivative) could be identified. These compounds were able to dose-dependently suppress the above mentioned pathways with different potency. Beside the description of new active compounds, this study demonstrates the feasibility of integrating IDO-1 and GTP-CH-I activity in the search for novel anti-inflammatory compounds, which can then be directed towards a more detailed mode of action analysis. PMID:29576845

  19. Callitriche cophocarpa (water starwort) proteome under chromate stress: evidence for induction of a quinone reductase.

    PubMed

    Kaszycki, Paweł; Dubicka-Lisowska, Aleksandra; Augustynowicz, Joanna; Piwowarczyk, Barbara; Wesołowski, Wojciech

    2018-03-01

    Chromate-induced physiological stress in a water-submerged macrophyte Callitriche cophocarpa Sendtn. (water starwort) was tested at the proteomic level. The oxidative stress status of the plant treated with 1 mM Cr(VI) for 3 days revealed stimulation of peroxidases whereas catalase and superoxide dismutase activities were similar to the control levels. Employing two-dimensional electrophoresis, comparative proteomics enabled to detect five differentiating proteins subjected to identification with mass spectrometry followed by an NCBI database search. Cr(VI) incubation led to induction of light harvesting chlorophyll a/b binding protein with a concomitant decrease of accumulation of ribulose bisphosphate carboxylase (RuBisCO). The main finding was, however, the identification of an NAD(P)H-dependent dehydrogenase FQR1, detectable only in Cr(VI)-treated plants. The FQR1 flavoenzyme is known to be responsive to oxidative stress and to act as a detoxification protein by protecting the cells against oxidative damage. It exhibits the in vitro quinone reductase activity and is capable of catalyzing two-electron transfer from NAD(P)H to several substrates, presumably including Cr(VI). The enhanced accumulation of FQR1 was chromate-specific since other stressful conditions, such as salt, temperature, and oxidative stresses, all failed to induce the protein. Zymographic analysis of chromate-treated Callitriche shoots showed a novel enzymatic protein band whose activity was attributed to the newly identified enzyme. We suggest that Cr(VI) phytoremediation with C. cophocarpa can be promoted by chromate reductase activity produced by the induced quinone oxidoreductase which might take part in Cr(VI) → Cr(III) bioreduction process and thus enable the plant to cope with the chromate-generated oxidative stress.

  20. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Wei; He, Hao, E-mail: haohe@tju.edu.cn; Wang, Yintao

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the verymore » beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca{sup 2+} release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.« less

  1. High efficiency H6 single-phase transformerless grid-tied PV inverter with proposed modulation for reactive power generation

    NASA Astrophysics Data System (ADS)

    Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad

    2017-08-01

    Implementation of transformerless inverters in PV grid-tied system offer great benefits such as high efficiency, light weight, low cost, etc. Most of the proposed transformerless inverters in literature are verified for only real power application. Currently, international standards such as VDE-AR-N 4105 has demanded that PV grid-tied inverters should have the ability of controlling a specific amount of reactive power. Generation of reactive power cannot be accomplished in single phase transformerless inverter topologies because the existing modulation techniques are not adopted for a freewheeling path in the negative power region. This paper enhances a previous high efficiency proposed H6 trnasformerless inverter with SiC MOSFETs and demonstrates new operating modes for the generation of reactive power. A proposed pulse width modulation (PWM) technique is applied to achieve bidirectional current flow through freewheeling state. A comparison of the proposed H6 transformerless inverter using SiC MOSFETs and Si MOSFTEs is presented in terms of power losses and efficiency. The results show that reactive power control is attained without adding any additional active devices or modification to the inverter structure. Also, the proposed modulation maintains a constant common mode voltage (CM) during every operating mode and has low leakage current. The performance of the proposed system verifies its effectiveness in the next generation PV system.

  2. Combined molecular modelling and 3D-QSAR study for understanding the inhibition of NQO1 by heterocyclic quinone derivatives.

    PubMed

    López-Lira, Claudia; Alzate-Morales, Jans H; Paulino, Margot; Mella-Raipán, Jaime; Salas, Cristian O; Tapia, Ricardo A; Soto-Delgado, Jorge

    2018-01-01

    A combination of three-dimensional quantitative structure-activity relationship (3D-QSAR), and molecular modelling methods were used to understand the potent inhibitory NAD(P)H:quinone oxidoreductase 1 (NQO1) activity of a set of 52 heterocyclic quinones. Molecular docking results indicated that some favourable interactions of key amino acid residues at the binding site of NQO1 with these quinones would be responsible for an improvement of the NQO1 activity of these compounds. The main interactions involved are hydrogen bond of the amino group of residue Tyr128, π-stacking interactions with Phe106 and Phe178, and electrostatic interactions with flavin adenine dinucleotide (FADH) cofactor. Three models were prepared by 3D-QSAR analysis. The models derived from Model I and Model III, shown leave-one-out cross-validation correlation coefficients (q 2 LOO ) of .75 and .73 as well as conventional correlation coefficients (R 2 ) of .93 and .95, respectively. In addition, the external predictive abilities of these models were evaluated using a test set, producing the predicted correlation coefficients (r 2 pred ) of .76 and .74, respectively. The good concordance between the docking results and 3D-QSAR contour maps provides helpful information about a rational modification of new molecules based in quinone scaffold, in order to design more potent NQO1 inhibitors, which would exhibit highly potent antitumor activity. © 2017 John Wiley & Sons A/S.

  3. Two generators to produce SI-traceable reference gas mixtures for reactive compounds at atmospheric levels

    NASA Astrophysics Data System (ADS)

    Pascale, C.; Guillevic, M.; Ackermann, A.; Leuenberger, D.; Niederhauser, B.

    2017-12-01

    To answer the needs of air quality and climate monitoring networks, two new gas generators were developed and manufactured at METAS in order to dynamically generate SI-traceable reference gas mixtures for reactive compounds at atmospheric concentrations. The technical features of the transportable generators allow for the realization of such gas standards for reactive compounds (e.g. NO2, volatile organic compounds) in the nmol · mol-1 range (ReGaS2), and fluorinated gases in the pmol ṡ mol-1 range (ReGaS3). The generation method is based on permeation and dynamic dilution. The transportable generators have multiple individual permeation chambers allowing for the generation of mixtures containing up to five different compounds. This mixture is then diluted using mass flow controllers, thus making the production process adaptable to generate the required amount of substance fraction. All parts of ReGaS2 in contact with the gas mixture are coated to reduce adsorption/desorption processes. Each input parameter required to calculate the generated amount of substance fraction is calibrated with SI-primary standards. The stability and reproducibility of the generated amount of substance fractions were tested with NO2 for ReGaS2 and HFC-125 for ReGaS3. They demonstrate stability over 1-4 d better than 0.4% and 0.8%, respectively, and reproducibility better than 0.7% and 1%, respectively. Finally, the relative expanded uncertainty of the generated amount of substance fraction is smaller than 3% with the major contributions coming from the uncertainty of the permeation rate and/or of the purity of the matrix gas. These relative expanded uncertainties meet then the needs of the data quality objectives fixed by the World Meteorological Organization.

  4. Beneficial synergistic effects of microdose lithium with pyrroloquinoline quinone in an Alzheimer's disease mouse model.

    PubMed

    Zhao, Lei; Gong, Neng; Liu, Meng; Pan, Xiaoli; Sang, Shaoming; Sun, Xiaojing; Yu, Zhe; Fang, Qi; Zhao, Na; Fei, Guoqiang; Jin, Lirong; Zhong, Chunjiu; Xu, Tianle

    2014-12-01

    Alzheimer's disease (AD) is a complicated, neurodegenerative disorder involving multifactorial pathogeneses and still lacks effective clinical treatment. Recent studies show that lithium exerts disease-modifying effects against AD. However, the intolerant side effects at conventional effective dosage limit the clinical use of lithium in treating AD. To explore a novel AD treatment strategy with microdose lithium, we designed and synthesized a new chemical, tri-lithium pyrroloquinoline quinone (Li3PQQ), to study the synergistic effects of low-dose lithium and pyrroloquinoline quinone, a native compound with powerful antioxidation and mitochondrial amelioration. The results showed that Li3PQQ at a relative low dose (6 and 12 mg/kg) exhibited more powerful effects in restoring the impairment of learning and memory, facilitating hippocampal long-term potentiation, and reducing cerebral amyloid deposition and phosphorylated tau level in APP/PS1 transgenic mice than that of lithium chloride at both low and high dose (5 and 100 mg/kg). We further found that Li3PQQ inhibited the activity of glycogen synthase kinase-3 and increased the activity of β-amyloid-binding alcohol dehydrogenase, which might underlie the beneficial effects of Li3PQQ on APP/PS1 transgenic mice. Our study demonstrated the efficacy of a novel AD therapeutic strategy targeting at multiple disease-causing mechanisms through the synergistic effects of microdose lithium and pyrroloquinoline quinone. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Comparison of stainless and mild steel welding fumes in generation of reactive oxygen species.

    PubMed

    Leonard, Stephen S; Chen, Bean T; Stone, Samuel G; Schwegler-Berry, Diane; Kenyon, Allison J; Frazer, David; Antonini, James M

    2010-11-03

    Welding fumes consist of a wide range of complex metal oxide particles which can be deposited in all regions of the respiratory tract. The welding aerosol is not homogeneous and is generated mostly from the electrode/wire. Over 390,000 welders were reported in the U.S. in 2008 while over 1 million full-time welders were working worldwide. Many health effects are presently under investigation from exposure to welding fumes. Welding fume pulmonary effects have been associated with bronchitis, metal fume fever, cancer and functional changes in the lung. Our investigation focused on the generation of free radicals and reactive oxygen species from stainless and mild steel welding fumes generated by a gas metal arc robotic welder. An inhalation exposure chamber located at NIOSH was used to collect the welding fume particles. Our results show that hydroxyl radicals (.OH) were generated from reactions with H2O2 and after exposure to cells. Catalase reduced the generation of .OH from exposed cells indicating the involvement of H2O2. The welding fume suspension also showed the ability to cause lipid peroxidation, effect O2 consumption, induce H2O2 generation in cells, and cause DNA damage. Increase in oxidative damage observed in the cellular exposures correlated well with .OH generation in size and type of welding fumes, indicating the influence of metal type and transition state on radical production as well as associated damage. Our results demonstrate that both types of welding fumes are able to generate ROS and ROS-related damage over a range of particle sizes; however, the stainless steel fumes consistently showed a significantly higher reactivity and radical generation capacity. The chemical composition of the steel had a significant impact on the ROS generation capacity with the stainless steel containing Cr and Ni causing more damage than the mild steel. Our results suggest that welding fumes may cause acute lung injury. Since type of fume generated, particle size

  6. Comparison of stainless and mild steel welding fumes in generation of reactive oxygen species

    PubMed Central

    2010-01-01

    Background Welding fumes consist of a wide range of complex metal oxide particles which can be deposited in all regions of the respiratory tract. The welding aerosol is not homogeneous and is generated mostly from the electrode/wire. Over 390,000 welders were reported in the U.S. in 2008 while over 1 million full-time welders were working worldwide. Many health effects are presently under investigation from exposure to welding fumes. Welding fume pulmonary effects have been associated with bronchitis, metal fume fever, cancer and functional changes in the lung. Our investigation focused on the generation of free radicals and reactive oxygen species from stainless and mild steel welding fumes generated by a gas metal arc robotic welder. An inhalation exposure chamber located at NIOSH was used to collect the welding fume particles. Results Our results show that hydroxyl radicals (.OH) were generated from reactions with H2O2 and after exposure to cells. Catalase reduced the generation of .OH from exposed cells indicating the involvement of H2O2. The welding fume suspension also showed the ability to cause lipid peroxidation, effect O2 consumption, induce H2O2 generation in cells, and cause DNA damage. Conclusion Increase in oxidative damage observed in the cellular exposures correlated well with .OH generation in size and type of welding fumes, indicating the influence of metal type and transition state on radical production as well as associated damage. Our results demonstrate that both types of welding fumes are able to generate ROS and ROS-related damage over a range of particle sizes; however, the stainless steel fumes consistently showed a significantly higher reactivity and radical generation capacity. The chemical composition of the steel had a significant impact on the ROS generation capacity with the stainless steel containing Cr and Ni causing more damage than the mild steel. Our results suggest that welding fumes may cause acute lung injury. Since type of

  7. Modification of quinone electrochemistry by the proteins in the biological electron transfer chains: examples from photosynthetic reaction centers

    PubMed Central

    Gunner, M. R.; Madeo, Jennifer; Zhu, Zhenyu

    2009-01-01

    Quinones such as ubiquinone are the lipid soluble electron and proton carriers in the membranes of mitochondria, chloroplasts and oxygenic bacteria. Quinones undergo controlled redox reactions bound to specific sites in integral membrane proteins such as the cytochrome bc1 oxidoreductase. The quinone reactions in bacterial photosynthesis are amongst the best characterized, presenting a model to understand how proteins modulate cofactor chemistry. The free energy of ubiquinone redox reactions in aqueous solution and in the QA and QB sites of the bacterial photosynthetic reaction centers (RCs) are compared. In the primary QA site ubiquinone is reduced only to the anionic semiquinone (Q•−) while in the secondary QB site the product is the doubly reduced, doubly protonated quinol (QH2). The ways in which the protein modifies the relative energy of each reduced and protonated intermediate are described. For example, the protein stabilizes Q•− while destabilizing Q= relative to aqueous solution through electrostatic interactions. In addition, kinetic and thermodynamic mechanisms for stabilizing the intermediate semiquinones are compared. Evidence for the protein sequestering anionic compounds by slowing both on and off rates as well as by binding the anion more tightly is reviewed. PMID:18979192

  8. Biphasic Kinetic Behavior of E. coli WrbA, an FMN-Dependent NAD(P)H:Quinone Oxidoreductase

    PubMed Central

    Kishko, Iryna; Harish, Balasubramanian; Zayats, Vasilina; Reha, David; Tenner, Brian; Beri, Dhananjay; Gustavsson, Tobias; Ettrich, Rüdiger; Carey, Jannette

    2012-01-01

    The E. coli protein WrbA is an FMN-dependent NAD(P)H:quinone oxidoreductase that has been implicated in oxidative defense. Three subunits of the tetrameric enzyme contribute to each of four identical, cavernous active sites that appear to accommodate NAD(P)H or various quinones, but not simultaneously, suggesting an obligate tetramer with a ping-pong mechanism in which NAD departs before oxidized quinone binds. The present work was undertaken to evaluate these suggestions and to characterize the kinetic behavior of WrbA. Steady-state kinetics results reveal that WrbA conforms to a ping-pong mechanism with respect to the constancy of the apparent Vmax to Km ratio with substrate concentration. However, the competitive/non-competitive patterns of product inhibition, though consistent with the general class of bi-substrate reactions, do not exclude a minor contribution from additional forms of the enzyme. NMR results support the presence of additional enzyme forms. Docking and energy calculations find that electron-transfer-competent binding sites for NADH and benzoquinone present severe steric overlap, consistent with the ping-pong mechanism. Unexpectedly, plots of initial velocity as a function of either NADH or benzoquinone concentration present one or two Michaelis-Menten phases depending on the temperature at which the enzyme is held prior to assay. The effect of temperature is reversible, suggesting an intramolecular conformational process. WrbA shares these and other details of its kinetic behavior with mammalian DT-diaphorase, an FAD-dependent NAD(P)H:quinone oxidoreductase. An extensive literature review reveals several other enzymes with two-plateau kinetic plots, but in no case has a molecular explanation been elucidated. Preliminary sedimentation velocity analysis of WrbA indicates a large shift in size of the multimer with temperature, suggesting that subunit assembly coupled to substrate binding may underlie the two-plateau behavior. An additional aim of

  9. Investigating the thermostability of succinate: quinone oxidoreductase enzymes by direct electrochemistry at SWNTs-modified electrodes and FTIR spectroscopy

    PubMed Central

    Melin, Frederic; Noor, Mohamed R.; Pardieu, Elodie; Boulmedais, Fouzia; Banhart, Florian; Cecchini, Gary; Soulimane, Tewfik

    2015-01-01

    Succinate Quinone reductases (SQRs) are the enzymes which couple the oxidation of succinate and the reduction of quinones in the respiratory chain of prokaryotes and eukaryotes. We compare herein the temperature-dependent activity and structural stability of two SQRs, the first one from the mesophilic bacterium E. coli and the second one from the thermophilic bacterium T. thermophilus by a combined electrochemical and infrared spectroscopy approach. Direct electron transfer was achieved with the full membrane protein complexes at SWNTs-modified electrodes. The possible structural factors which contribute to the temperature-dependent activity of the enzymes and to the thermostability of the T. thermophiles SQR in particular, are discussed. PMID:25139263

  10. Activity-guided isolation of the chemical constituents of Muntingia calabura using a quinone reductase induction assay.

    PubMed

    Su, Bao-Ning; Jung Park, Eun; Vigo, Jose Schunke; Graham, James G; Cabieses, Fernando; Fong, Harry H S; Pezzuto, John M; Kinghorn, A Douglas

    2003-06-01

    Activity-guided fractionation of an EtOAc-soluble extract of the leaves of Muntingia calabura collected in Peru, using an in vitro quinone reductase induction assay with cultured Hepa 1c1c7 (mouse hepatoma) cells, resulted in the isolation of a flavanone with an unsubstituted B-ring, (2R,3R)-7-methoxy-3,5,8-trihydroxyflavanone (5), as well as 24 known compounds, which were mainly flavanones and flavones. The structure including absolute stereochemistry of compound 5 was determined by spectroscopic (HRMS, 1D and 2D NMR, and CD spectra) methods. Of the isolates obtained, in addition to 5, (2S)-5-hydroxy-7-methoxyflavanone, 2',4'-dihydroxychalcone, 4,2',4'-trihydroxychalcone, 7-hydroxyisoflavone and 7,3',4'-trimethoxyisoflavone were found to induce quinone reductase activity.

  11. Regulatory interactions in the dimeric cytochrome bc(1) complex: the advantages of being a twin.

    PubMed

    Covian, Raul; Trumpower, Bernard L

    2008-09-01

    The dimeric cytochrome bc(1) complex catalyzes the oxidation-reduction of quinol and quinone at sites located in opposite sides of the membrane in which it resides. We review the kinetics of electron transfer and inhibitor binding that reveal functional interactions between the quinol oxidation site at center P and quinone reduction site at center N in opposite monomers in conjunction with electron equilibration between the cytochrome b subunits of the dimer. A model for the mechanism of the bc(1) complex has emerged from these studies in which binding of ligands that mimic semiquinone at center N regulates half-of-the-sites reactivity at center P and binding of ligands that mimic catalytically competent binding of ubiquinol at center P regulates half-of-the-sites reactivity at center N. An additional feature of this model is that inhibition of quinol oxidation at the quinone reduction site is avoided by allowing catalysis in only one monomer at a time, which maximizes the number of redox acceptor centers available in cytochrome b for electrons coming from quinol oxidation reactions at center P and minimizes the leakage of electrons that would result in the generation of damaging oxygen radicals.

  12. Pyridoxylamine reactivity kinetics as an amine based nucleophile for screening electrophilic dermal sensitizers

    PubMed Central

    Chipinda, Itai; Mbiya, Wilbes; Adigun, Risikat Ajibola; Morakinyo, Moshood K.; Law, Brandon F.; Simoyi, Reuben H.; Siegel, Paul D.

    2015-01-01

    Chemical allergens bind directly, or after metabolic or abiotic activation, to endogenous proteins to become allergenic. Assessment of this initial binding has been suggested as a target for development of assays to screen chemicals for their allergenic potential. Recently we reported a nitrobenzenethiol (NBT) based method for screening thiol reactive skin sensitizers, however, amine selective sensitizers are not detected by this assay. In the present study we describe an amine (pyridoxylamine (PDA)) based kinetic assay to complement the NBT assay for identification of amine-selective and non-selective skin sensitizers. UV-Vis spectrophotometry and fluorescence were used to measure PDA reactivity for 57 chemicals including anhydrides, aldehydes, and quinones where reaction rates ranged from 116 to 6.2 × 10−6 M−1 s−1 for extreme to weak sensitizers, respectively. No reactivity towards PDA was observed with the thiol-selective sensitizers, non-sensitizers and prohaptens. The PDA rate constants correlated significantly with their respective murine local lymph node assay (LLNA) threshold EC3 values (R2 = 0.76). The use of PDA serves as a simple, inexpensive amine based method that shows promise as a preliminary screening tool for electrophilic, amine-selective skin sensitizers. PMID:24333919

  13. Plasmonic photocatalyst-like fluorescent proteins for generating reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Leem, Jung Woo; Kim, Seong-Ryul; Choi, Kwang-Ho; Kim, Young L.

    2018-03-01

    The recent advances in photocatalysis have opened a variety of new possibilities for energy and biomedical applications. In particular, plasmonic photocatalysis using hybridization of semiconductor materials and metal nanoparticles has recently facilitated the rapid progress in enhancing photocatalytic efficiency under visible or solar light. One critical underlying aspect of photocatalysis is that it generates and releases reactive oxygen species (ROS) as intermediate or final products upon light excitation or activation. Although plasmonic photocatalysis overcomes the limitation of UV irradiation, synthesized metal/semiconductor nanomaterial photocatalysts often bring up biohazardous and environmental issues. In this respect, this review article is centered in identifying natural photosensitizing organic materials that can generate similar types of ROS as those of plasmonic photocatalysis. In particular, we propose the idea of plasmonic photocatalyst-like fluorescent proteins for ROS generation under visible light irradiation. We recapitulate fluorescent proteins that have Type I and Type II photosensitization properties in a comparable manner to plasmonic photocatalysis. Plasmonic photocatalysis and protein photosensitization have not yet been compared systemically in terms of ROS photogeneration under visible light, although the phototoxicity and cytotoxicity of some fluorescent proteins are well recognized. A comprehensive understanding of plasmonic photocatalyst-like fluorescent proteins and their potential advantages will lead us to explore new environmental, biomedical, and defense applications.

  14. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species.

    PubMed

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas

    2017-02-10

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters.

  15. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species

    PubMed Central

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas

    2017-01-01

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)-capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters. PMID:28208642

  16. Molecular docking studies of selected tricyclic and quinone derivatives on trypanothione reductase of Leishmania infantum.

    PubMed

    Venkatesan, Santhosh Kannan; Shukla, Anil Kumar; Dubey, Vikash Kumar

    2010-10-01

    Visceral leishmaniasis, most lethal form of Leishmaniasis, is caused by Leishmania infantum in the Old world. Current therapeutics for the disease is associated with a risk of high toxicity and development of drug resistant strains. Thiol-redox metabolism involving trypanothione and trypanothione reductase, key for survival of Leishmania, is a validated target for rational drug design. Recently published structure of trypanothione reductase (TryR) from L. infantum, in oxidized and reduced form along with Sb(III), provides vital clues on active site of the enzyme. In continuation with our attempts to identify potent inhibitors of TryR, we have modeled binding modes of selected tricyclic compounds and quinone derivatives, using AutoDock4. Here, we report a unique binding mode for quinone derivatives and 9-aminoacridine derivatives, at the FAD binding domain. A conserved hydrogen bonding pattern was observed in all these compounds with residues Thr335, Lys60, His461. With the fact that these residues aid in the orientation of FAD towards the active site forming the core of the FAD binding domain, designing selective and potent compounds that could replace FAD in vivo during the synthesis of Trypanothione reductase can be deployed as an effective strategy in designing new drugs towards Leishmaniasis. We also report the binding of Phenothiazine and 9-aminoacridine derivatives at the Z site of the protein. The biological significance and possible mode of inhibition by quinone derivatives, which binds to FAD binding domain, along with other compounds are discussed. (c) 2010 Wiley Periodicals, Inc.

  17. Study on cross-reactivity to the para group.

    PubMed

    Picardo, M; Cannistraci, C; Cristaudo, A; De Luca, C; Santucci, B

    1990-01-01

    In 80 patients, positive to at least one hapten of the para group (para-phenylenediamine, diaminodiphenylmethane, benzocaine, PPD mix), patch tests were carried out with freshly prepared solutions of para-phenylenediamine (PPD) and of 3 selected aromatic compounds related structurally to PPD (para-aminophenol, ortho-aminophenol, hydroquinone). The number of positive reactions correlated with the rate of decomposition of the substances as evaluated by high-pressure liquid chromatography. PPD, which was almost decomposed after 24 h, gave the highest number of positive reactions, followed by ortho-aminophenol and by para-aminophenol, while hydroquinone, which was oxidized to the extent of 35%, did not give any reactions. To evaluate if a different rate of oxidation can modify the patch test response, in the same patients and in 10 normal volunteers, tests were carried out with PPD solutions containing the oxidizing agent silver oxide (0.1%). By this procedure a significant increase in the number of positive responses was observed. The results suggest that the rate of decomposition and therefore the amount of quinone(s) generated, might be the key to eliciting patch test responses to oxidizable aromatic haptens.

  18. NAD(P)H quinone oxidoreductase 1 inhibits the proteasomal degradation of homocysteine-induced endoplasmic reticulum protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeda, Tomoji, E-mail: t-maeda@nichiyaku.ac.jp; Tanabe-Fujimura, Chiaki; Fujita, Yu

    2016-05-13

    Homocysteine-induced endoplasmic reticulum (ER) protein (Herp) is an ER stress-inducible key regulatory component of ER-associated degradation (ERAD) that has been implicated in insulin hypersecretion in diabetic mouse models. Herp expression is tightly regulated. Additionally, Herp is a highly labile protein and interacts with various proteins, which are characteristic features of ubiquitinated protein. Previously, we reported that ubiquitination is not required for Herp degradation. In addition, we found that the lysine residues of Herp (which are ubiquitinated by E3 ubiquitin ligase) are not sufficient for regulation of Herp degradation. In this study, we found that NAD(P)H quinone oxidoreductase 1 (NQO1)-mediated targetingmore » of Herp to the proteasome was involved in Herp degradation. In addition, we found that Herp protein levels were markedly elevated in synoviolin-null cells. The E3 ubiquitin ligase synoviolin is a central component of ERAD and is involved in the degradation of nuclear factor E2-related factor-2 (Nrf2), which regulates cellular reactive oxygen species. Additionally, NQO1 is a target of Nrf2. Thus, our findings indicated that NQO1 could stabilize Herp protein expression via indirect regulation of synoviolin. -- Highlights: •Herp interacts with NQO1. •NQO1 regulates Herp degradation.« less

  19. Crystal structures of 1-hy­droxy-4-prop­yloxy-9,10-anthra­quinone and its acetyl derivative

    PubMed Central

    Nakagawa, Hidemi; Kitamura, Chitoshi

    2017-01-01

    1-Hy­droxy-4-prop­yloxy-9,10-anthra­quinone, C17H14O4, (I), and its acetyl derivative, 4-acet­yloxy-4-prop­yloxy-9,10-anthra­quinone, C19H16O5, (II), were synthesized from the commercially available dye quinizarin. In both compounds, the anthra­quinone frameworks are close to planarity. There is a large difference in the conformation of the prop­yloxy group; the mol­ecule of (I) adopts a gauche conformation [O—C—C—C = −64.4 (2)°], although the mol­ecule of (II) takes a trans-planar conformation (zigzag) [O—C—C—C = 176.1 (3)°]. In the mol­ecule of (I), there is an intra­molecular O—H⋯O hydrogen bond. In both crystals, the mol­ecules are linked by C—H ⋯O hydrogen bonds. A difference in the mol­ecular arrangements of (I) and (II) is found along the stacking directions. PMID:29250400

  20. Dissection of the Voltage Losses of an Acidic Quinone Redox Flow Battery

    DOE PAGES

    Chen, Qing; Gerhardt, Michael R.; Aziz, Michael J.

    2017-03-28

    We measure the polarization characteristics of a quinone-bromide redox flow battery with interdigitated flow fields, using electrochemical impedance spectroscopy and voltammetry of a full cell and of a half cell against a reference electrode. We find linear polarization behavior at 50% state of charge all the way to the short-circuit current density of 2.5 A/cm 2. We uniquely identify the polarization area-specific resistance (ASR) of each electrode, the membrane ASR to ionic current, and the electronic contact ASR. We use voltage probes to deduce the electronic current density through each sheet of carbon paper in the quinone-bearing electrode. By alsomore » interpreting the results using the Newman 1-D porous electrode model, we deduce the volumetric exchange current density of the porous electrode. We uniquely evaluate the power dissipation and identify a correspondence to the contributions to the electrode ASR from the faradaic, electronic, and ionic transport processes. We find that, within the electrode, more power is dissipated in the faradaic process than in the electronic and ionic conduction processes combined, despite the observed linear polarization behavior. We examine the sensitivity of the ASR to the values of the model parameters. The greatest performance improvement is anticipated from increasing the volumetric exchange current density.« less

  1. Controlling Material Reactivity Using Architecture

    DOE PAGES

    Sullivan, Kyle T.; Zhu, Cheng; Duoss, Eric B.; ...

    2015-12-16

    3D-printing methods are used to generate reactive material architectures. We observed several geometric parameters in order to influence the resultant flame propagation velocity, indicating that the architecture can be utilized to control reactivity. Two different architectures, channels and hurdles, are generated, and thin films of thermite are deposited onto the surface. Additionally, the architecture offers a route to control, at will, the energy release rate in reactive composite materials.

  2. Dopamine quinones activate microglia and induce a neurotoxic gene expression profile: relationship to methamphetamine-induced nerve ending damage.

    PubMed

    Kuhn, Donald M; Francescutti-Verbeem, Dina M; Thomas, David M

    2006-08-01

    Methamphetamine (METH) intoxication leads to persistent damage of dopamine (DA) nerve endings of the striatum. Recently, we and others have suggested that the neurotoxicity associated with METH is mediated by extensive microglial activation. DA itself has been shown to play an obligatory role in METH neurotoxicity, possibly through the formation of quinone species. We show presently that DA-quinones (DAQ) cause a time-dependent activation of cultured microglial cells. Microarray analysis of the effects of DAQ on microglial gene expression revealed that 101 genes were significantly changed in expression, with 73 genes increasing and 28 genes decreasing in expression. Among those genes differentially regulated by DAQ were those often associated with neurotoxic conditions including inflammation, cytokines, chemokines, and prostaglandins. In addition, microglial genes associated with a neuronally protective phenotype were among those that were downregulated by DAQ. These results implicate DAQ as one species that could cause early activation of microglial cells in METH intoxication, manifested as an alteration in the expression of a broad biomarker panel of genes. These results also link oxidative stress, chemical alterations in DA to its quinone, and microglial activation as part of a cascade of glial-neuronal crosstalk that can amplify METH-induced neurotoxicity.

  3. Double hetero-Michael addition of N-substituted hydroxylamines to quinone monoketals: synthesis of bridged isoxazolidines.

    PubMed

    Yin, Zhiwei; Zhang, Jinzhu; Wu, Jing; Liu, Che; Sioson, Kate; Devany, Matthew; Hu, Chunhua; Zheng, Shengping

    2013-07-19

    A general synthesis of bridged isoxazolidines from a double hetero-Michael addition of N-substituted hydroxylamines to quinone monoketals has been developed. The different addition order of N-benzylhydroxylamine and N-Boc hydroxylamine is also discussed. Moreover, the various functionalities in the isoxazolidine products allow facile derivatization.

  4. Enhancing the Performance of Vanadium Redox Flow Batteries using Quinones

    NASA Astrophysics Data System (ADS)

    Mulcahy, James W., III

    The global dependence on fossil fuels continues to increase while the supply diminishes, causing the proliferation in demand for renewable energy sources. Intermittent renewable energy sources such as wind and solar, require electrochemical storage devices in order to transfer stored energy to the power grid at a constant output. Redox flow batteries (RFB) have been studied extensively due to improvements in scalability, cyclability and efficiency over conventional batteries. Vanadium redox flow batteries (VRFB) provide one of the most comprehensive solutions to energy storage in relation to other RFBs by alleviating the problem of cross-contamination. Quinones are a class of organic compounds that have been extensively used in chemistry, biochemistry and pharmacology due to their catalytic properties, fast proton-coupled electron transfer, good chemical stability and low cost. Anthraquinones are a subcategory of quinones and have been utilized in several battery systems. Anthraquinone-2, 6-disulfonic acid (AQDS) was added to a VRFB in order to study its effects on cyclical performance. This study utilized carbon paper electrodes and a Nafion 117 ion exchange membrane for the membrane-electrode assembly (MEA). The cycling performance was investigated over multiple charge and discharge cycles and the addition of AQDS was found to increase capacity efficiency by an average of 7.6% over the standard VRFB, while decreasing the overall cycle duration by approximately 18%. It is thus reported that the addition of AQDS to a VRFB electrolyte has the potential to increase the activity and capacity with minimal increases in costs.

  5. Internally Generated Reactivation of Single Neurons in Human Hippocampus During Free Recall

    PubMed Central

    Gelbard-Sagiv, Hagar; Mukamel, Roy; Harel, Michal; Malach, Rafael; Fried, Itzhak

    2009-01-01

    The emergence of memory, a trace of things past, into human consciousness is one of the greatest mysteries of the human mind. Whereas the neuronal basis of recognition memory can be probed experimentally in human and nonhuman primates, the study of free recall requires that the mind declare the occurrence of a recalled memory (an event intrinsic to the organism and invisible to an observer). Here, we report the activity of single neurons in the human hippocampus and surrounding areas when subjects first view cinematic episodes consisting of audiovisual sequences and again later when they freely recall these episodes. A subset of these neurons exhibited selective firing, which often persisted throughout and following specific episodes for as long as 12 seconds. Verbal reports of memories of these specific episodes at the time of free recall were preceded by selective reactivation of the same hippocampal and entorhinal cortex neurons. We suggest that this reactivation is an internally generated neuronal correlate for the subjective experience of spontaneous emergence of human recollection. PMID:18772395

  6. Quinones from plants of northeastern Brazil: structural diversity, chemical transformations, NMR data and biological activities.

    PubMed

    Lemos, Telma L G; Monte, Francisco J Q; Santos, Allana Kellen L; Fonseca, Aluisio M; Santos, Hélcio S; Oliveira, Mailcar F; Costa, Sonia M O; Pessoa, Otilia D L; Braz-Filho, Raimundo

    2007-05-20

    The present review focus in quinones found in species of Brazilian northeastern Capraria biflora, Lippia sidoides, Lippia microphylla and Tabebuia serratifolia. The review cover ethnopharmacological aspects including photography of species, chemical structure feature, NMR datea and biological properties. Chemical transformations of lapachol to form enamine derivatives and biological activities are discussed.

  7. Controlling Material Reactivity Using Architecture.

    PubMed

    Sullivan, Kyle T; Zhu, Cheng; Duoss, Eric B; Gash, Alexander E; Kolesky, David B; Kuntz, Joshua D; Lewis, Jennifer A; Spadaccini, Christopher M

    2016-03-09

    3D-printing methods are used to generate reactive material architectures. Several geometric parameters are observed to influence the resultant flame propagation velocity, indicating that the architecture can be utilized to control reactivity. Two different architectures, channels and hurdles, are generated, and thin films of thermite are deposited onto the surface. The architecture offers an additional route to control, at will, the energy release rate in reactive composite materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Aziridinyl-substituted benzo-1,4-quinones: A preliminary investigation on the theoretical and experimental studies of their structure and spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Šarlauskas, Jonas; Tamulienė, Jelena; Čėnas, Narimantas

    2017-05-01

    The detailed structure, chemical and spectroscopic properties of the derivatives of the selected 2,5-bis(1-aziridinyl)-benzo-1,4-quinone conformers were studied by applying quantum chemical and experimental methods. The relationship between the structure and chemical activity of the selected 3 bifunctional bioreductive quinonic anticancer agents - aziridinyl benzoquinones (AzBQ compounds) was obtained. The results obtained showed that the position of aziridine rings influenced by the chemical activity of the investigated compound were more significant than the substitutions of the benzene ring of the AzBQ compounds. The solvents influencing this activity were obtained, too.

  9. Extraction methods determine the antioxidant capacity and induction of quinone reductase by soy products in vitro

    USDA-ARS?s Scientific Manuscript database

    Gastrointestinal mimic (GI) and organic solvent extracts of whole soybean powder (WSP), soy protein concentrate (SPC), and soy protein isolate (SPI) as well as soy isoflavone concentrate (SIC) were analyzed for total phenols; quinone reductase (QR) induction in hepa1c1c7 cells; antioxidant scavengi...

  10. Evidence for the formation of a quinone methide during the oxidation of the insect cuticular sclerotizing precursor 1,2-dehydro-N-acetyldopamine.

    PubMed

    Sugumaran, M; Semensi, V; Kalyanaraman, B; Bruce, J M; Land, E J

    1992-05-25

    1,2-Dehydro-N-acetyldopamine (dehydro-NADA) is an important catecholamine derivative involved in the cross-linking of insect cuticular components during sclerotization. Since sclerotization is a vital process for the survival of insects, and is closely related to melanogenesis, it is of interest to unravel the chemical mechanisms participating in this process. The present paper reports on the mechanism by which dehydro-NADA is oxidatively activated to form reactive intermediate(s) as revealed by pulse radiolysis, electron spin resonance spectroscopy, high performance liquid chromatography, and ultraviolet-visible spectroscopic analysis. Pulse radiolytic one-electron oxidation of dehydro-NADA by N3. (k = 5.3 x 10(9) M-1 s-1) or Br2.- (k = 7.5 x 10(8) M-1 s-1) at pH6 resulted in the rapid generation of the corresponding semiquinone radical, lambda max 400 nm, epsilon = 20,700 M-1 cm-1. This semiquinone decayed to form a second transient intermediate, lambda max 485 nm, epsilon = 8000 M-1 cm-1, via a second order disproportionation process, k = 6.2 x 10(8) M-1 s-1. At pH 6 in the presence of azide, the first order decay of this second intermediate occurred over milliseconds; the rate decreases at higher pH. At pH 6 in the presence of bromide, the intermediate decayed much more slowly over seconds, k = 0.15 s-1. Under such conditions, the dependence of the first order decay constant upon parent dehydro-NADA concentration led to a second order rate constant of 8.5 x 10(2) M-1 s-1 for reaction of the intermediate with the parent, probably to form benzodioxan "dimers." (The term dimer is used for convenience; the products are strictly bisdehydrodimers of dehydro-NADA (see "Discussion" and Fig. 11)) Rate constants of 5.9 x 10(5), 4.5 x 10(5), 2.8 x 10(4) and 3.5 x 10(4) M-1 s-1 were also obtained for decay of the second intermediate in the presence of cysteine, cysteamine, o-phenylenediamine, and p-aminophenol, respectively. By comparison with the UV-visible spectroscopic

  11. Oxygen control of nif gene expression in Klebsiella pneumoniae depends on NifL reduction at the cytoplasmic membrane by electrons derived from the reduced quinone pool.

    PubMed

    Grabbe, Roman; Schmitz, Ruth A

    2003-04-01

    In Klebsiella pneumoniae, the flavoprotein, NifL regulates NifA mediated transcriptional activation of the N2-fixation (nif) genes in response to molecular O2 and ammonium. We investigated the influence of membrane-bound oxidoreductases on nif-regulation by biochemical analysis of purified NifL and by monitoring NifA-mediated expression of nifH'-'lacZ reporter fusions in different mutant backgrounds. NifL-bound FAD-cofactor was reduced by NADH only in the presence of a redox-mediator or inside-out vesicles derived from anaerobically grown K. pneumoniae cells, indicating that in vivo NifL is reduced by electrons derived from membrane-bound oxidoreductases of the anaerobic respiratory chain. This mechanism is further supported by three lines of evidence: First, K. pneumoniae strains carrying null mutations of fdnG or nuoCD showed significantly reduced nif-induction under derepressing conditions, indicating that NifL inhibition of NifA was not relieved in the absence of formate dehydrogenase-N or NADH:ubiquinone oxidoreductase. The same effect was observed in a heterologous Escherichia coli system carrying a ndh null allele (coding for NADH dehydrogenaseII). Second, studying nif-induction in K. pneumoniae revealed that during anaerobic growth in glycerol, under nitrogen-limitation, the presence of the terminal electron acceptor nitrate resulted in a significant decrease of nif-induction. The final line of evidence is that reduced quinone derivatives, dimethylnaphthoquinol and menadiol, are able to transfer electrons to the FAD-moiety of purified NifL. On the basis of these data, we postulate that under anaerobic and nitrogen-limited conditions, NifL inhibition of NifA activity is relieved by reduction of the FAD-cofactor by electrons derived from the reduced quinone pool, generated by anaerobic respiration, that favours membrane association of NifL. We further hypothesize that the quinol/quinone ratio is important for providing the signal to NifL.

  12. Ecofriendly syntheses of phenothiazones and related structures facilitated by laccase – A comparative study

    DOE PAGES

    Cannatelli, Mark D.; Ragauskas, Arthur J.

    2016-07-06

    The biocatalytic synthesis of phenothiazones and related compounds has been achieved in an aqueous system under mild conditions facilitated by laccase oxidation. It was found that by coupling 2-aminothiophenol directly with 1,4-quinones, the product yields could be significantly increased compared to generating the 1,4-quinones in situ from the corresponding hydroquinones via laccase oxidation. However, laccase still proved to be pivotal for achieving highest product yields by catalyzing the final oxidation step. Furthermore, a difference in reactivity of aromatic and aliphatic amines toward 1,4-naphthoquinone is observed. Furthermore, this study provides a sustainable approach to the synthesis of a biologically important classmore » of compounds.« less

  13. Insight into the kinetics and thermodynamics of the hydride transfer reactions between quinones and lumiflavin: a density functional theory study.

    PubMed

    Reinhardt, Clorice R; Jaglinski, Tanner C; Kastenschmidt, Ashly M; Song, Eun H; Gross, Adam K; Krause, Alyssa J; Gollmar, Jonathan M; Meise, Kristin J; Stenerson, Zachary S; Weibel, Tyler J; Dison, Andrew; Finnegan, Mackenzie R; Griesi, Daniel S; Heltne, Michael D; Hughes, Tom G; Hunt, Connor D; Jansen, Kayla A; Xiong, Adam H; Hati, Sanchita; Bhattacharyya, Sudeep

    2016-09-01

    The kinetics and equilibrium of the hydride transfer reaction between lumiflavin and a number of substituted quinones was studied using density functional theory. The impact of electron withdrawing/donating substituents on the redox potentials of quinones was studied. In addition, the role of these substituents on the kinetics of the hydride transfer reaction with lumiflavin was investigated in detail under the transition state (TS) theory assumption. The hydride transfer reactions were found to be more favorable for an electron-withdrawing substituent. The activation barrier exhibited a quadratic relationship with the driving force of these reactions as derived under the formalism of modified Marcus theory. The present study found a significant extent of electron delocalization in the TS that is stabilized by enhanced electrostatic, polarization, and exchange interactions. Analysis of geometry, bond-orders, and energetics revealed a predominant parallel (Leffler-Hammond) effect on the TS. Closer scrutiny reveals that electron-withdrawing substituents, although located on the acceptor ring, reduce the N-H bond order of the donor fragment in the precursor complex. Carried out in the gas-phase, this is the first ever report of a theoretical study of flavin's hydride transfer reactions with quinones, providing an unfiltered view of the electronic effect on the nuclear reorganization of donor-acceptor complexes.

  14. Site-directed mutagenesis of conserved cysteine residues in NqrD and NqrE subunits of Na+-translocating NADH:quinone oxidoreductase.

    PubMed

    Fadeeva, M S; Bertsova, Y V; Verkhovsky, M I; Bogachev, A V

    2008-02-01

    Each of two hydrophobic subunits of Na+-translocating NADH:quinone oxidoreductase (NQR), NqrD and NqrE, contain a pair of strictly conserved cysteine residues within their transmembrane alpha-helices. Site-directed mutagenesis showed that substitutions of these residues in NQR of Vibrio harveyi blocked the Na+-dependent and 2-n-heptyl-4-hydroxyquinoline N-oxide-sensitive quinone reductase activity of the enzyme. However, these mutations did not affect the interaction of NQR with NADH and menadione. It was demonstrated that these conserved cysteine residues are necessary for the correct folding and/or the stability of the NQR complex. Mass and EPR spectroscopy showed that NQR from V. harveyi bears only a 2Fe-2S cluster as a metal-containing prosthetic group.

  15. Perturbation of the quinone-binding site of complex II alters the electronic properties of the proximal [3Fe-4S] iron-sulfur cluster.

    PubMed

    Ruprecht, Jonathan; Iwata, So; Rothery, Richard A; Weiner, Joel H; Maklashina, Elena; Cecchini, Gary

    2011-04-08

    Succinate-ubiquinone oxidoreductase (SQR) and menaquinol-fumarate oxidoreductase (QFR) from Escherichia coli are members of the complex II family of enzymes. SQR and QFR catalyze similar reactions with quinones; however, SQR preferentially reacts with higher potential ubiquinones, and QFR preferentially reacts with lower potential naphthoquinones. Both enzymes have a single functional quinone-binding site proximal to a [3Fe-4S] iron-sulfur cluster. A difference between SQR and QFR is that the redox potential of the [3Fe-4S] cluster in SQR is 140 mV higher than that found in QFR. This may reflect the character of the different quinones with which the two enzymes preferentially react. To investigate how the environment around the [3Fe-4S] cluster affects its redox properties and catalysis with quinones, a conserved amino acid proximal to the cluster was mutated in both enzymes. It was found that substitution of SdhB His-207 by threonine (as found in QFR) resulted in a 70-mV lowering of the redox potential of the cluster as measured by EPR. The converse substitution in QFR raised the redox potential of the cluster. X-ray structural analysis suggests that placing a charged residue near the [3Fe-4S] cluster is a primary reason for the alteration in redox potential with the hydrogen bonding environment having a lesser effect. Steady state enzyme kinetic characterization of the mutant enzymes shows that the redox properties of the [3Fe-4S] cluster have only a minor effect on catalysis.

  16. β-carboline derivatives and diphenols from soy sauce are in vitro quinone reductase (QR) inducers.

    PubMed

    Li, Ying; Zhao, Mouming; Parkin, Kirk L

    2011-03-23

    A murine hepatoma (Hepa 1c1c7) cellular bioassay was used to guide the isolation of phase II enzyme inducers from fermented soy sauce, using quinone reductase (QR) as a biomarker. A crude ethyl acetate extract, accounting for 8.7% of nonsalt soluble solids of soy sauce, was found to double relative QR specific activity at 25 μg/mL (concentration required to double was defined as a "CD value"). Further silica gel column fractionation yielded 17 fractions, 16 of which exhibited CD values for QR induction of <100 μg/mL. The four most potent fractions were subfractionated by column and preparative thin layer chromatography, leading to the isolation and identification of two phenolic compounds (catechol and daidzein) and two β-carbolines (flazin and perlolyrin), with respective CD values of 8, 35, 42, and 2 μM. Western blots confirmed that the increases in QR activity corresponded to dose-dependent increases in cellular levels of NAD[P]H:quinone oxidoreductase 1 protein by these four QR inducers. To the authors' knowledge, this is the first report on the ability of β-carboline-derived alkaloids to induce phase II enzymes.

  17. Mesenchymal stem cell-conditioned medium triggers neuroinflammation and reactive species generation in organotypic cultures of rat hippocampus.

    PubMed

    Horn, Ana Paula; Bernardi, Andressa; Luiz Frozza, Rudimar; Grudzinski, Patrícia Bencke; Hoppe, Juliana Bender; de Souza, Luiz Fernando; Chagastelles, Pedro; de Souza Wyse, Angela Terezinha; Bernard, Elena Aida; Battastini, Ana Maria Oliveira; Campos, Maria Martha; Lenz, Guido; Nardi, Nance Beyer; Salbego, Christianne

    2011-07-01

    Cell therapy using bone marrow-derived mesenchymal stem cells (MSCs) seems to be a new alternative for the treatment of neurodegenerative diseases. Despite several promising results with their use, possible side effects are still unknown. In a previous work, we have shown that MSC-conditioned medium is toxic to hippocampal slice cultures and aggravates cell death induced by oxygen and glucose deprivation. In this work, we investigated whether the inflammatory response and/or reactive species formation could be involved in that toxicity. Rat organotypic hippocampal cultures were exposed for 24 h to conditioned medium from MSCs isolated from rat bone marrow. A marked glial activation was observed after exposure of cultures to MSC-conditioned medium, as evidenced by glial fibrillary acid protein (GFAP) and isolectin B(4) increase. Tumor necrosis factor-α and interleukin-6 levels were increased in the culture medium, and 2,7-dihydrodichlorofluorescein diacetate oxidation (indicating reactive species generation) and inducible nitric oxide synthase (iNOS) immunocontent were also higher after exposure of cultures to MSC-conditioned medium. Antioxidants (ascorbic acid and TROLOX(®)), N(ω)-nitro-l-arginine methyl ester hydrochloride, and anti-inflammatory drugs (indomethacin and dexamethasone) reduced cell death in hippocampal organotypic cultures after their exposure to MSC-conditioned medium. The results obtained here suggest that MSC-secreted factors trigger reactive species generation and neuroinflammation in organotypic cultures of hippocampus, introducing a note of caution in the use of these cells for neurological application.

  18. Two Distinct Pathways in Mice Generate Antinuclear Antigen-Reactive B Cell Repertoires

    PubMed Central

    Faderl, Martin; Klein, Fabian; Wirz, Oliver F.; Heiler, Stefan; Albertí-Servera, Llucia; Engdahl, Corinne; Andersson, Jan; Rolink, Antonius

    2018-01-01

    The escape of anti-self B cells from tolerance mechanisms like clonal deletion, receptor editing, and anergy results in the production of autoantibodies, which is a hallmark of many autoimmune disorders. In this study, we demonstrate that both germline sequences and somatic mutations contribute to autospecificity of B cell clones. For this issue, we investigated the development of antinuclear autoantibodies (ANAs) and their repertoire in two different mouse models. First, in aging mice that were shown to gain several autoimmune features over time including ANAs. Second, in mice undergoing a chronic graft-versus-host disease (GVHD), thereby developing systemic lupus erythematosus-like symptoms. Detailed repertoire analysis revealed that somatic hypermutations (SHM) were present in all Vh and practically all Vl regions of ANAs generated in these two models. The ANA B cell repertoire in aging mice was restricted, dominated by clonally related Vh1-26/Vk4-74 antibodies. In the collection of GVHD-derived ANAs, the repertoire was less restricted, but the usage of the Vh1-26/Vk4-74 combination was still apparent. Germline conversion showed that the SHM in the 4-74 light chain are deterministic for autoreactivity. Detailed analysis revealed that antinuclear reactivity of these antibodies could be induced by a single amino acid substitution in the CDR1 of the Vk4-74. In both aging B6 and young GVHD mice, conversion of the somatic mutations in the Vh and Vl regions of non Vh1-26/Vk4-74 using antibodies showed that B cells with a germline-encoded V gene could also contribute to the ANA-reactive B cell repertoire. These findings indicate that two distinct pathways generate ANA-producing B cells in both model systems. In one pathway, they are generated by Vh1-26/Vk4-74 expressing B cells in the course of immune responses to an antigen that is neither a nuclear antigen nor any other self-antigen. In the other pathway, ANA-producing B cells are derived from progenitors in the bone

  19. Compensation for Harmonic Currents and Reactive Power in Wind Power Generation System using PWM Inverter

    NASA Astrophysics Data System (ADS)

    Shinohara, Katsuji; Shinhatsubo, Kurato; Iimori, Kenichi; Yamamoto, Kichiro; Saruban, Takamichi; Yamaemori, Takahiro

    In recent year, consciousness of environmental problems is enhancing, and the price of the electric power purchased by an electric power company is established expensive for the power plant utilizing the natural energy. So, the introduction of the wind power generation is promoted in Japan. Generally, squirrel-cage induction machines are widely used as a generator in wind power generation system because of its small size, lightweight and low-cost. However, the induction machines do not have a source of excitation. Thus, it causes the inrush currents and the instantaneous voltage drop when the generator is directly connected to a power grid. To reduce the inrush currents, an AC power regulator is used. Wind power generations are frequently connected to and disconnected from the power grid. However, when the inrush currents are reduced, harmonic currents are caused by phase control of the AC power regulator. And the phase control of AC power regulator cannot control the power factor. Therefore, we propose the use of the AC power regulator to compensate for the harmonic currents and reactive power in the wind power generation system, and demonstrate the validity of its system by simulated and experimental results.

  20. ACTIVATION OF DIOXIN RESPONSE ELEMENT (DRE)-ASSOCIATED GENES BY BENZO(A)PYRENE 3,6-QUINONE AND BENZO(A)PYRENE 1,6-QUINONE IN MCF-10A HUMAN MAMMARY EPITHELIAL CELLS

    PubMed Central

    Burchiel, Scott W.; Thompson, Todd A.; Lauer, Fredine T.; Oprea, Tudor I.

    2007-01-01

    Benzo(a)pyrene (BaP) is a known human carcinogen and a suspected breast cancer complete carcinogen. BaP is metabolized by several metabolic pathways, some having bioactivation and others detoxification properties. BaP-quinones (BPQs) are formed via cytochrome P450 and peroxidase dependent pathways. Previous studies by our laboratory have shown that BPQs have significant growth promoting and anti-apoptotic activities in human MCF-10A mammary epithelial cells examined in vitro. Previous results suggest that BPQs act via redox-cycling and oxidative stress. However, because two specific BPQs (1,6-BPQ and 3,6-BPQ) differed in their ability to produce reactive oxygen species (ROS) and yet both had strong proliferative and EGF receptor activating activity, we utilized mRNA expression arrays and qRT-PCR to determine potential pathways and mechanisms of gene activation. The results of the present studies demonstrated that 1,6-BPQ and 3,6-BPQ activate dioxin response elements (DRE, also known as xenobiotic response elements, XRE) and anti-oxidant response elements (ARE, also known and electrophile response elements, EpRE). 3,6-BPQ had greater DRE activity than 1,6-BPQ, whereas the opposite was true for the activation of ARE. Both 3,6-BPQ and 1,6-BPQ induced oxidative stress associated genes (HMOX1, GCLC, GCLM, and SLC7A11), phase 2 enzyme genes (NQO1, NQO2, ALDH3A1) PAH metabolizing genes (CYP1B1, EPHX1, AKR1C1), and certain EGF receptor associated genes (EGFR, IER3, ING1, SQSTM1 and TRIM16). The results of these studies demonstrate that BPQs activate numerous pathways in human mammary epithelial cells associated with increased cell growth and survival that may play important roles in tumor promotion. PMID:17466351

  1. Absorption spectrometric study of charge transfer complex formation between 4-acetamidophenol (paracetamol) and a series of quinones including Vitamin K 3

    NASA Astrophysics Data System (ADS)

    Saha, Avijit; Mukherjee, Asok K.

    2004-07-01

    The formation of charge transfer (CT) complexes of 4-acetamidophenol (commonly called 'paracetamol') and a series of quinones (including Vitamin K 3) has been studied spectrophotometrically in ethanol medium. The vertical ionisation potential of paracetamol and the degrees of charge transfer of the complexes in their ground state has been estimated from the trends in the charge transfer bands. The oscillator and transition dipole strengths of the complexes have been determined from the CT absorption spectra at 298 K. The complexes have been found by Job's method of continuous variation to have the uncommon 2:1 (paracetamol:quinone) stoichiometry in each case. The enthalpies and entropies of formation of the complexes have been obtained by determining their formation constants at five different temperatures.

  2. Vitamin E and vitamin E-quinone levels in red blood cells and plasma of newborn infants and their mothers.

    PubMed

    Jain, S K; Wise, R; Bocchini, J J

    1996-02-01

    Vitamin E is a physiological antioxidant and protects cell membranes from oxidative damage. This study has determined whether vitamin E level in RBC of newborns has any relationship with its level in their mothers. We have also examined levels of vitamin E and vitamin E-quinone, an oxidized product of vitamin E, in paired samples of red blood cells (RBC) and plasma of newborns and their mothers. Blood was collected from 26 mothers and their full-term placental cords at delivery. Vitamin E and vitamin E-quinone levels were determined in RBC and plasma by HPLC. Newborn-plasma had significantly lower vitamin E levels compared with maternal-plasma both when expressed as nmole/ml (5.5+/-0.4 vs 26.1+/-1.1, p = 0.0001) or nmole/mumole total lipids (1.9+/-0.1 vs 2.6+/-0.1, p = 0.0001). Vitamin E level in the newborn-RBC was similar to that of maternal-RBC when expressed as nmole/ml packed cells (2.77+/-0.14 vs 2.95+/-0.13), but was significantly lower when expressed as nmole/mumole total lipids (0.56+/-0.03 vs 0.64+/-0.04, p = 0.03) from that of maternal-RBC. Vitamin E-quinone levels are significantly elevated in newborns compared with their mothers both in RBC (29.4+/-2.1 vs 24.1+/-1.2, p = 0.04) and plasma (39.9+/-5.3 vs 25.3+/-4.2, p = 0.006) when expressed as nmole/mmole total lipids but not when expressed as nmole/ml. There was a significant correlation of vitamin E between newborn-plasma and newborn-RBC (r = 0.65, p = 0.0002 for nmole per ml packed RBC;r = 0.63, p = 0.0007 for nmole per mumole total lipids). The relationship between maternal plasma and newborn plasma was significant when vitamin E was normalized with nmole/mumole total lipid (r = 0.54, p = 0.007 but not when expressed as nmole/ml (r = 0.09, p = 0.64). However, vitamin E in the RBC of maternal and newborn had significant correlation when expressed as per ml packed cells (r = 0.61, p = 0.001) and per total lipid (r = 0.46, p = 0.02). There was no relationship of vitamin E-quinone levels between RBC and

  3. Late metal carbene complexes generated by multiple C-H activations: examining the continuum of M=C bond reactivity.

    PubMed

    Whited, Matthew T; Grubbs, Robert H

    2009-10-20

    Unactivated C(sp(3))-H bonds are ubiquitous in organic chemicals and hydrocarbon feedstocks. However, these resources remain largely untapped, and the development of efficient homogeneous methods for hydrocarbon functionalization by C-H activation is an attractive and unresolved challenge for synthetic chemists. Transition-metal catalysis offers an attractive possible means for achieving selective, catalytic C-H functionalization given the thermodynamically favorable nature of many desirable partial oxidation schemes and the propensity of transition-metal complexes to cleave C-H bonds. Selective C-H activation, typically by a single cleavage event to produce M-C(sp(3)) products, is possible through myriad reported transition-metal species. In contrast, several recent reports have shown that late transition metals may react with certain substrates to perform multiple C-H activations, generating M=C(sp(2)) complexes for further elaboration. In light of the rich reactivity of metal-bound carbenes, such a route could open a new manifold of reactivity for catalytic C-H functionalization, and we have targeted this strategy in our studies. In this Account, we highlight several early examples of late transition-metal complexes that have been shown to generate metal-bound carbenes by multiple C-H activations and briefly examine factors leading to the selective generation of metal carbenes through this route. Using these reports as a backdrop, we focus on the double C-H activation of ethers and amines at iridium complexes supported by Ozerov's amidophosphine PNP ligand (PNP = [N(2-P(i)Pr(2)-4-Me-C(6)H(3))(2)](-)), allowing isolation of unusual square-planar iridium(I) carbenes. These species exhibit reactivity that is distinct from the archetypal Fischer and Schrock designations. We present experimental and theoretical studies showing that, like the classical square-planar iridium(I) organometallics, these complexes are best described as nucleophilic at iridium. We discuss

  4. Possible roles of two quinone molecules in direct and indirect proton pumps of bovine heart NADH-quinone oxidoreductase (complex I).

    PubMed

    Ohnishi, S Tsuyoshi; Salerno, John C; Ohnishi, Tomoko

    2010-12-01

    In many energy transducing systems which couple electron and proton transport, for example, bacterial photosynthetic reaction center, cytochrome bc(1)-complex (complex III) and E. coli quinol oxidase (cytochrome bo(3) complex), two protein-associated quinone molecules are known to work together. T. Ohnishi and her collaborators reported that two distinct semiquinone species also play important roles in NADH-ubiquinone oxidoreductase (complex I). They were called SQ(Nf) (fast relaxing semiquinone) and SQ(Ns) (slow relaxing semiquinone). It was proposed that Q(Nf) serves as a "direct" proton carrier in the semiquinone-gated proton pump (Ohnishi and Salerno, FEBS Letters 579 (2005) 4555), while Q(Ns) works as a converter between one-electron and two-electron transport processes. This communication presents a revised hypothesis in which Q(Nf) plays a role in a "direct" redox-driven proton pump, while Q(Ns) triggers an "indirect" conformation-driven proton pump. Q(Nf) and Q(Ns) together serve as (1e(-)/2e(-)) converter, for the transfer of reducing equivalent to the Q-pool. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meeran, Syed M.; Katiyar, Suchitra; Katiyar, Santosh K.

    2008-05-15

    Phytochemicals show promise as potential chemopreventive or chemotherapeutic agents against various cancers. Here we report the chemotherapeutic effects of berberine, a phytochemical, on human prostate cancer cells. The treatment of human prostate cancer cells (PC-3) with berberine induced dose-dependent apoptosis but this effect of berberine was not seen in non-neoplastic human prostate epithelial cells (PWR-1E). Berberine-induced apoptosis was associated with the disruption of the mitochondrial membrane potential, release of apoptogenic molecules (cytochrome c and Smac/DIABLO) from mitochondria and cleavage of caspase-9,-3 and PARP proteins. This effect of berberine on prostate cancer cells was initiated by the generation of reactive oxygenmore » species (ROS) irrespective of their androgen responsiveness, and the generation of ROS was through the increased induction of xanthine oxidase. Treatment of cells with allopurinol, an inhibitor of xanthine oxidase, inhibited berberine-induced oxidative stress in cancer cells. Berberine-induced apoptosis was blocked in the presence of antioxidant, N-acetylcysteine, through the prevention of disruption of mitochondrial membrane potential and subsequently release of cytochrome c and Smac/DIABLO. In conclusion, the present study reveals that the berberine-mediated cell death of human prostate cancer cells is regulated by reactive oxygen species, and therefore suggests that berberine may be considered for further studies as a promising therapeutic candidate for prostate cancer.« less

  6. Generation of reactive oxygen species from porous silicon microparticles in cell culture medium.

    PubMed

    Low, Suet Peng; Williams, Keryn A; Canham, Leigh T; Voelcker, Nicolas H

    2010-06-01

    Nanostructured (porous) silicon is a promising biodegradable biomaterial, which is being intensively researched as a tissue engineering scaffold and drug-delivery vehicle. Here, we tested the biocompatibility of non-treated and thermally-oxidized porous silicon particles using an indirect cell viability assay. Initial direct cell culture on porous silicon determined that human lens epithelial cells only poorly adhered to non-treated porous silicon. Using an indirect cell culture assay, we found that non-treated microparticles caused complete cell death, indicating that these particles generated a toxic product in cell culture medium. In contrast, thermally-oxidized microparticles did not reduce cell viability significantly. We found evidence for the generation of reactive oxygen species (ROS) by means of the fluorescent probe 2',7'-dichlorofluorescin. Our results suggest that non-treated porous silicon microparticles produced ROS, which interacted with the components of the cell culture medium, leading to the formation of cytotoxic species. Oxidation of porous silicon microparticles not only mitigated, but also abolished the toxic effects.

  7. Generation of reactive oxygen species and charge carriers in plasmonic photocatalytic Au@TiO2 nanostructures with enhanced activity.

    PubMed

    He, Weiwei; Cai, Junhui; Jiang, Xiumei; Yin, Jun-Jie; Meng, Qingbo

    2018-06-13

    The combination of semiconductor and plasmonic nanostructures, endowed with high efficiency light harvesting and surface plasmon confinement, has been a promising way for efficient utilization of solar energy. Although the surface plasmon resonance (SPR) assisted photocatalysis has been extensively studied, the photochemical mechanism, e.g. the effect of SPR on the generation of reactive oxygen species and charge carriers, is not well understood. In this study, we take Au@TiO2 nanostructures as a plasmonic photocatalyst to address this critical issue. The Au@TiO2 core/shell nanostructures with tunable SPR property were synthesized by the templating method with post annealing thermal treatment. It was found that Au@TiO2 nanostructures exhibit enhanced photocatalytic activity in either sunlight or visible light (λ > 420 nm). Electron spin resonance spectroscopy with spin trapping and spin labeling was used to investigate the enhancing effect of Au@TiO2 on the photo-induced reactive oxygen species and charge carriers. The formation of Au@TiO2 core/shell nanostructures resulted in a dramatic increase in light-induced generation of hydroxyl radicals, singlet oxygen, holes and electrons, as compared with TiO2 alone. This enhancement under visible light (λ > 420 nm) irradiation may be dominated by SPR induced local electrical field enhancement, while the enhancement under sunlight irradiation is dominated by the higher electron transfer from TiO2 to Au. These results unveiled that the superior photocatalytic activity of Au@TiO2 nanostructures correlates with enhanced generation of reactive oxygen species and charge carriers.

  8. Inorganic Polyphosphates Regulate Hexokinase Activity and Reactive Oxygen Species Generation in Mitochondria of Rhipicephalus (Boophilus) microplus Embryo

    PubMed Central

    Fraga, Amanda; Moraes, Jorge; da Silva, José Roberto; Costa, Evenilton P.; Menezes, Jackson; da Silva Vaz Jr, Itabajara; Logullo, Carlos; da Fonseca, Rodrigo Nunes; Campos, Eldo

    2013-01-01

    The physiological roles of polyphosphates (poly P) recently found in arthropod mitochondria remain obscure. Here, the possible involvement of poly P with reactive oxygen species generation in mitochondria of Rhipicephalus microplus embryos was investigated. Mitochondrial hexokinase and scavenger antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione reductase were assayed during embryogenesis of R. microplus. The influence of poly P3 and poly P15 were analyzed during the period of higher enzymatic activity during embryogenesis. Both poly Ps inhibited hexokinase activity by up to 90% and, interestingly, the mitochondrial membrane exopolyphosphatase activity was stimulated by the hexokinase reaction product, glucose-6-phosphate. Poly P increased hydrogen peroxide generation in mitochondria in a situation where mitochondrial hexokinase is also active. The superoxide dismutase, catalase and glutathione reductase activities were higher during embryo cellularization, at the end of embryogenesis and during embryo segmentation, respectively. All of the enzymes were stimulated by poly P3. However, superoxide dismutase was not affected by poly P15, catalase activity was stimulated only at high concentrations and glutathione reductase was the only enzyme that was stimulated in the same way by both poly Ps. Altogether, our results indicate that inorganic polyphosphate and mitochondrial membrane exopolyphosphatase regulation can be correlated with the generation of reactive oxygen species in the mitochondria of R. microplus embryos. PMID:23983617

  9. EGF-receptor phosphorylation and downstream signaling are activated by benzo[a]pyrene 3,6-quinone and benzo[a]pyrene 1,6-quinone in human mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Fragoso, Lourdes; Melendez, Karla; Hudson, Laurie G.

    2009-03-15

    Benzo[a]pyrene (BaP) is activated by xenobiotic-metabolizing enzymes to highly mutagenic and carcinogenic metabolites. Previous studies in this laboratory have shown that benzo[a]pyrene quinones (BPQs), 1,6-BPQ and 3,6-BPQ, are able to induce epidermal growth factor receptor (EGFR) cell signaling through the production of reactive oxygen species. Recently, we have reported that BPQs have the potential to induce the expression of genes involved in numerous pathways associated with cell proliferation and survival in human mammary epithelial cells. In the present study we demonstrated that BPQs not only induced EGFR tyrosine autophosphorylation, but also induced EGFR-dependent tyrosine phosphorylation of phospholipase C-{gamma}1 and severalmore » signal transducers and activators of transcription (STATs). The effects of BPQs were evaluated in a model of EGF withdrawal in MCF10-A cells. We found that BPQs (1 {mu}M), induced EGFR tyrosine phosphorylation at positions Y845, Y992, Y1068, and Y1086. PLC-{gamma}1 phosphorylation correlated with the phosphorylation of tyrosine-Y992, a proposed docking site for PLC-{gamma}1 on the EGFR. Additionally, we found that BPQs induced the activation of STAT-1, STAT-3, STAT-5a and STAT-5b. STAT5 was shown to translocate to the nucleus following 3,6-BPQ and 1,6-BPQ exposures. Although the patterns of phosphorylation at EGFR, PLC-{gamma}1 and STATs were quite similar to those induced by EGF, an important difference between BPQ-mediated signaling of the EGFR was observed. Signaling produced by EGF ligand produced a rapid disappearance of EGFR from the cell surface, whereas BPQ signaling maintained EGFR receptors on the cell membrane. Thus, the results of these studies show that 1,6-BPQ and 3,6-BPQ can produce early events as evidenced by EGFR expression, and a prolonged transactivation of EGFR leading to downstream cell signaling pathways.« less

  10. EGF-Receptor Phosphorylation and Downstream Signaling are Activated by Benzo[a]pyrene 3,6-quinone and Benzo[a]pyrene 1,6-quinone in Human Mammary Epithelial Cells

    PubMed Central

    Rodríguez-Fragoso, Lourdes; Melendez, Karla; Hudson, Laurie; Lauer, Fredine T.; Burchiel, Scott W.

    2013-01-01

    Benzo[a]pyrene (BaP) is activated by xenobiotic-metabolizing enzymes to highly mutagenic and carcinogenic metabolites. Previous studies in this laboratory have shown that benzo(a)pyrene quinones (BPQs), 1,6-BPQ and 3,6-BPQ, are able to induce epidermal growth factor receptor (EGFR) cell signaling through the production of reactive oxygen species. Recently, we have reported that BPQs have the potential to induce the expression of genes involved in numerous pathways associated with cell proliferation and survival in human mammary epithelial cells. In the present study we demonstrated that BPQs not only induced EGFR tyrosine autophosphorylation, but also induced EGFR-dependent tyrosine phosphorylation of phospholipase C-γ1 and several signal transducers and activators of transcription (STATs). The effects of BPQs were evaluated in a model of EGF withdrawal in MCF10-A cells. We found that BPQs (1 μM), induced EGFR tyrosine phosphorylation at positions Y845, Y992, Y1068, and Y1086. PLC-γ1 phosphorylation correlated with the phosphorylation of tyrosine-Y992, a proposed docking site for PLC-γ1 on the EGFR. Additionally, we found that BPQs induced the activation of STAT-1, STAT-3, STAT-5a and STAT-5b. STAT5 was shown to translocate to the nucleus following 3,6-BPQ and 1,6-BPQ exposures. Although the pattern of phosphorylation at EGFR, PLC-γ1 and STATs were quite similar to those induced by EGF, an important difference between BPQ-mediated signaling of the EGFR was observed. Signaling produced by EGF ligand produced a rapid disappearance of EGFR from the cell surface, whereas BPQ signaling maintained EGFR receptors on the cell membrane. Thus, the results of these studies show that 1,6-BPQ and 3,6-BPQ can produce early events as evidenced by EGFR expression, and a prolonged transactivation of EGFR leading to downstream cell signaling pathways. PMID:19166869

  11. EGF-receptor phosphorylation and downstream signaling are activated by benzo[a]pyrene 3,6-quinone and benzo[a]pyrene 1,6-quinone in human mammary epithelial cells.

    PubMed

    Rodríguez-Fragoso, Lourdes; Melendez, Karla; Hudson, Laurie G; Lauer, Fredine T; Burchiel, Scott W

    2009-03-15

    Benzo[a]pyrene (BaP) is activated by xenobiotic-metabolizing enzymes to highly mutagenic and carcinogenic metabolites. Previous studies in this laboratory have shown that benzo[a]pyrene quinones (BPQs), 1,6-BPQ and 3,6-BPQ, are able to induce epidermal growth factor receptor (EGFR) cell signaling through the production of reactive oxygen species. Recently, we have reported that BPQs have the potential to induce the expression of genes involved in numerous pathways associated with cell proliferation and survival in human mammary epithelial cells. In the present study we demonstrated that BPQs not only induced EGFR tyrosine autophosphorylation, but also induced EGFR-dependent tyrosine phosphorylation of phospholipase C-gamma1 and several signal transducers and activators of transcription (STATs). The effects of BPQs were evaluated in a model of EGF withdrawal in MCF10-A cells. We found that BPQs (1 muM), induced EGFR tyrosine phosphorylation at positions Y845, Y992, Y1068, and Y1086. PLC-gamma1 phosphorylation correlated with the phosphorylation of tyrosine-Y992, a proposed docking site for PLC-gamma1 on the EGFR. Additionally, we found that BPQs induced the activation of STAT-1, STAT-3, STAT-5a and STAT-5b. STAT5 was shown to translocate to the nucleus following 3,6-BPQ and 1,6-BPQ exposures. Although the patterns of phosphorylation at EGFR, PLC-gamma1 and STATs were quite similar to those induced by EGF, an important difference between BPQ-mediated signaling of the EGFR was observed. Signaling produced by EGF ligand produced a rapid disappearance of EGFR from the cell surface, whereas BPQ signaling maintained EGFR receptors on the cell membrane. Thus, the results of these studies show that 1,6-BPQ and 3,6-BPQ can produce early events as evidenced by EGFR expression, and a prolonged transactivation of EGFR leading to downstream cell signaling pathways.

  12. In vitro antifungal effect of black cumin seed quinones against dairy spoilage yeasts at different acidity levels.

    PubMed

    Halamova, Katerina; Kokoska, Ladislav; Flesar, Jaroslav; Sklenickova, Olga; Svobodova, Blanka; Marsik, Petr

    2010-12-01

    The antiyeast activity of the black cumin seed (Nigella sativa) quinones dithymoquinone, thymohydroquinone (THQ), and thymoquinone (TQ) were evaluated in vitro with a broth microdilution method against six dairy spoilage yeast species. Antifungal effects of the quinones were compared with those of preservatives commonly used in milk products (calcium propionate, natamycin, and potassium sorbate) at two pH levels (4.0 and 5.5). THQ and TQ possessed significant antiyeast activity and affected the growth of all strains tested at both pH levels, with MICs ranging from 8 to 128 μg/ml. With the exception of the antibiotic natamycin, the inhibitory effects of all food preservatives against the yeast strains tested in this study were strongly affected by differences in pH, with MICs of ≥16 and ≥512 μg/ml at pH 4.0 and 5.5, respectively. These findings suggest that HQ and TQ are effective antiyeast agents that could be used in the dairy industry as chemical preservatives of natural origin.

  13. Nebivolol prevents ethanol-induced reactive oxygen species generation and lipoperoxidation in the rat kidney by regulating NADPH oxidase activation and expression.

    PubMed

    do Vale, Gabriel T; Gonzaga, Natália A; Simplicio, Janaina A; Tirapelli, Carlos R

    2017-03-15

    We studied whether the β 1 -adrenergic antagonist nebivolol would prevent ethanol-induced reactive oxygen species generation and lipoperoxidation in the rat renal cortex. Male Wistar rats were treated with ethanol (20% v/v) for 2 weeks. Nebivolol (10mg/kg/day; p.o. gavage) prevented both the increase in superoxide anion (O 2 - ) generation and thiobarbituric acid reactive substances (TBARS) concentration induced by ethanol in the renal cortex. Ethanol decreased nitrate/nitrite (NOx) concentration in the renal cortex, and nebivolol prevented this response. Nebivolol did not affect the reduction of hydrogen peroxide (H 2 O 2 ) concentration induced by ethanol. Nebivolol prevented the ethanol-induced increase of catalase (CAT) activity. Both SOD activity and the levels of reduced glutathione (GSH) were not affected by treatment with nebivolol or ethanol. Neither ethanol nor nebivolol affected the expression of Nox1, Nox4, eNOS, nNOS, CAT, Nox organizer 1 (Noxo1), c-Src, p47 phox or superoxide dismutase (SOD) isoforms in the renal cortex. On the other hand, treatment with ethanol increased Nox2 expression, and nebivolol prevented this response. Finally, nebivolol reduced the expression of protein kinase (PK) Cδ and Rac1. The major finding of our study is that nebivolol prevented ethanol-induced reactive oxygen species generation and lipoperoxidation in the kidney by a mechanism that involves reduction on the expression of Nox2, a catalytic subunit of NADPH oxidase. Additionally, we demonstrated that nebivolol reduces NADPH oxidase-derived reactive oxygen species by decreasing the expression of PKCδ and Rac1, which are important activators of NADPH oxidase. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Heterophilic interference in specimens yielding false-reactive results on the Abbott 4th generation ARCHITECT HIV Ag/Ab Combo assay.

    PubMed

    Lavoie, S; Caswell, D; Gill, M J; Kadkhoda, K; Charlton, C L; Levett, P N; Hatchette, T; Garceau, R; Maregmen, J; Mazzulli, T; Needle, R; Kadivar, K; Kim, J

    2018-07-01

    False-reactivity in HIV-negative specimens has been detected in HIV fourth-generation antigen/antibody or 'combo' assays which are able to detect both anti-HIV-1/HIV-2 antibodies and HIV-1 antigen. We sought to characterize these specimens and determine the effect of heterophilic interference. Specimens previously testing as false-reactive on the Abbott ARCHITECT HIV Ag/Ab combo assay and re-tested on a different (Siemens ADVIA Centaur HIV Ag/Ab) assay. A subset of these specimens were also pre-treated with heterophilic blocking agents and re-tested on the Abbott assay. Here we report that 95% (252/264) of clinical specimens that were repeatedly reactive on the Abbott ARCHITECT HIV Ag/Ab combo assay (S/Co range, 0.94-678) were negative when re-tested on a different fourth generation HIV combo assay (Siemens ADVIA Centaur HIV Ag/Ab). All 264 samples were subsequently confirmed to be HIV negative. On a small subset (57) of specimens with available volume, pre-treatment with two different reagents (HBT; Heterophilic Blocking Tube, NABT; Non-Specific Blocking Tube) designed to block heterophilic antibody interference either eliminated (HBT) or reduced (NABT) the false reactivity when re-tested on the ARCHITECT HIV Ag/Ab combo assay. Our results suggest that the Abbott ARCHITECT HIV Ag/Ab combo assay can be prone to heterophilic antibody interference. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  15. Oxidation of Levafix CA reactive azo-dyes in industrial wastewater of textile dyeing by electro-generated Fenton's reagent.

    PubMed

    El-Desoky, Hanaa S; Ghoneim, Mohamed M; El-Sheikh, Ragaa; Zidan, Naglaa M

    2010-03-15

    The indirect electrochemical removal of pollutants from effluents has become an attractive method in recent years. Removal (decolorization and mineralization) of Levafix Blue CA and Levafix Red CA reactive azo-dyes from aqueous media by electro-generated Fenton's reagent (Fe(2+)/H(2)O(2)) using a reticulated vitreous carbon cathode and a platinum gauze anode was optimized. Progress of oxidation (decolorization and mineralization) of the investigated azo-dyes with time of electro-Fenton's reaction was monitored by UV-visible absorbance measurements, Chemical oxygen demand (COD) removal and HPLC analysis. The results indicated that the electro-Fenton's oxidation system is efficient for treatment of such types of reactive dyes. Oxidation of each of the investigated azo-dyes by electro-generated Fenton's reagent up to complete decolorization and approximately 90-95% mineralization was achieved. Moreover, the optimized electro-Fenton's oxidation was successfully applied for complete decolorization and approximately 85-90% mineralization of both azo-dyes in real industrial wastewater samples collected from textile dyeing house at El-Mahalla El-Kobra, Egypt. (c) 2009 Elsevier B.V. All rights reserved.

  16. Reactive documentation system

    NASA Astrophysics Data System (ADS)

    Boehnlein, Thomas R.; Kramb, Victoria

    2018-04-01

    Proper formal documentation of computer acquired NDE experimental data generated during research is critical to the longevity and usefulness of the data. Without documentation describing how and why the data was acquired, NDE research teams lose capability such as their ability to generate new information from previously collected data or provide adequate information so that their work can be replicated by others seeking to validate their research. Despite the critical nature of this issue, NDE data is still being generated in research labs without appropriate documentation. By generating documentation in series with data, equal priority is given to both activities during the research process. One way to achieve this is to use a reactive documentation system (RDS). RDS prompts an operator to document the data as it is generated rather than relying on the operator to decide when and what to document. This paper discusses how such a system can be implemented in a dynamic environment made up of in-house and third party NDE data acquisition systems without creating additional burden on the operator. The reactive documentation approach presented here is agnostic enough that the principles can be applied to any operator controlled, computer based, data acquisition system.

  17. Reactive Power Compensating System.

    DOEpatents

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1985-01-04

    The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

  18. Biosynthesis of actinorhodin and related antibiotics: discovery of alternative routes for quinone formation encoded in the act gene cluster.

    PubMed

    Okamoto, Susumu; Taguchi, Takaaki; Ochi, Kozo; Ichinose, Koji

    2009-02-27

    All known benzoisochromanequinone (BIQ) biosynthetic gene clusters carry a set of genes encoding a two-component monooxygenase homologous to the ActVA-ORF5/ActVB system for actinorhodin biosynthesis in Streptomyces coelicolor A3(2). Here, we conducted molecular genetic and biochemical studies of this enzyme system. Inactivation of actVA-ORF5 yielded a shunt product, actinoperylone (ACPL), apparently derived from 6-deoxy-dihydrokalafungin. Similarly, deletion of actVB resulted in accumulation of ACPL, indicating a critical role for the monooxygenase system in C-6 oxygenation, a biosynthetic step common to all BIQ biosyntheses. Furthermore, in vitro, we showed a quinone-forming activity of the ActVA-ORF5/ActVB system in addition to that of a known C-6 monooxygenase, ActVA-ORF6, by using emodinanthrone as a model substrate. Our results demonstrate that the act gene cluster encodes two alternative routes for quinone formation by C-6 oxygenation in BIQ biosynthesis.

  19. Protein lysine-Nζ alkylation and O-phosphorylation mediated by DTT-generated reactive oxygen species

    PubMed Central

    Kumar, Nigam; Ippel, Hans; Weber, Christian; Hackeng, Tilman; Mayo, Kevin H

    2013-01-01

    Reactive oxygen species (ROS) play crucial roles in physiology and pathology. In this report, we use NMR spectroscopy and mass spectrometry (MS) to demonstrate that proteins (galectin-1, ubiquitin, RNase, cytochrome c, myoglobin, and lysozyme) under reducing conditions with dithiothreitol (DTT) become alkylated at lysine-Nζ groups and O-phosphorylated at serine and threonine residues. These adduction reactions only occur in the presence of monophosphate, potassium, trace metals Fe/Cu, and oxygen, and are promoted by reactive oxygen species (ROS) generated via DTT oxidation. Superoxide mediates the chemistry, because superoxide dismutase inhibits the reaction, and hydroxyl and phosphoryl radicals are also likely involved. While lysine alkylation accounts for most of the adduction, low levels of phosphorylation are also observed at some serine and threonine residues, as determined by western blotting and MS fingerprinting. The adducted alkyl group is found to be a fragment of DTT that forms a Schiff base at lysine Nζ groups. Although its exact chemical structure remains unknown, the DTT fragment includes a SH group and a –CHOH–CH2– group. Chemical adduction appears to be promoted in the context of a well-folded protein, because some adducted sites in the proteins studied are considerably more reactive than others and the reaction occurs to a lesser extent with shorter, unfolded peptides and not at all with small organic molecules. A structural signature involving clusters of positively charged and other polar groups appears to facilitate the reaction. Overall, our findings demonstrate a novel reaction for DTT-mediated ROS chemistry with proteins. PMID:23315912

  20. Generation and Role of Reactive Oxygen and Nitrogen Species Induced by Plasma, Lasers, Chemical Agents, and Other Systems in Dentistry

    PubMed Central

    Jha, Nayansi; Ryu, Jae Jun

    2017-01-01

    The generation of reactive oxygen and nitrogen species (RONS) has been found to occur during inflammatory procedures, during cell ischemia, and in various crucial developmental processes such as cell differentiation and along cell signaling pathways. The most common sources of intracellular RONS are the mitochondrial electron transport system, NADH oxidase, and cytochrome P450. In this review, we analyzed the extracellular and intracellular sources of reactive species, their cell signaling pathways, the mechanisms of action, and their positive and negative effects in the dental field. In dentistry, ROS can be found—in lasers, photosensitizers, bleaching agents, cold plasma, and even resin cements, all of which contribute to the generation and prevalence of ROS. Nonthermal plasma has been used as a source of ROS for biomedical applications and has the potential for use with dental stem cells as well. There are different types of dental stem cells, but their therapeutic use remains largely untapped, with the focus currently on only periodontal ligament stem cells. More research is necessary in this area, including studies about ROS mechanisms with dental cells, along with the utilization of reactive species in redox medicine. Such studies will help to provide successful treatment modalities for various diseases. PMID:29204250

  1. 1,6-Conjugate addition of zinc alkyls to para-quinone methides in a continuous-flow microreactor.

    PubMed

    Jadhav, Abhijeet S; Anand, Ramasamy Vijaya

    2016-12-20

    An efficient method for the synthesis of alkyl diarylmethanes through the 1,6-conjugate addition of dialkylzinc reagents to para-quinone methides (p-QMs) has been developed under continuous flow conditions using a microreactor. This protocol allows to access unsymmetrical alkyl diarylmethanes in moderate to excellent yields using a wide range of p-QMs and dialkylzinc reagents. Interestingly, this transformation worked well without the requirement of a catalyst.

  2. Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials

    PubMed Central

    Garza, Kristine M; Soto, Karla F; Murr, Lawrence E

    2008-01-01

    We have investigated the cytotoxicity and reactive oxygen species (ROS) generation for indoor and outdoor soots: candle, wood, diesel, tire, and natural gas burner soots – along with surrogate black carbon, various multiwall carbon nanotube aggregate materials, TiO2 (anatase) and chrysotile asbestos as reference materials. All soots were observed utilizing TEM and FESEM to be composed of aggregated, primary spherules (20–80 nm diameter) forming complex, branched fractal structures. These spherules were composed of intercalated, turbostratic arrangements of curved graphene fragments with varying concentrations of polycyclic aromatic hydrocarbon (PAH) isomers. In vitro cultures with an immortalized human lung epithelial carcinoma cell line (A549) treated with these materials showed decreased cell viability and variations in ROS production, with no correlations to PAH content. The data demonstrate that soots are cytotoxic and that cytotoxicity is not related to PAH content but is related to ROS generation, suggesting that soot induces cellular oxidative stress and that cell viability assays can be indicators of ROS production. PMID:18488419

  3. Effect of the Antioxidant Supplement Pyrroloquinoline Quinone Disodium Salt (BioPQQ™) on Cognitive Functions.

    PubMed

    Itoh, Yuji; Hine, Kyoko; Miura, Hiroshi; Uetake, Tatsuo; Nakano, Masahiko; Takemura, Naohiro; Sakatani, Kaoru

    2016-01-01

    Pyrroloquinoline quinone (PQQ) is a quinone compound first identified in 1979. It has been reported that rats fed a PQQ-supplemented diet showed better learning ability than controls, suggesting that PQQ may be useful for improving memory in humans. In the present study, a randomized, placebo-controlled, double-blinded study to examine the effect of PQQ disodium salt (BioPQQ™) on cognitive functions was conducted with 41 elderly healthy subjects. Subjects were orally given 20 mg of BioPQQ™ per day or placebo, for 12 weeks. For cognitive functions, selective attention by the Stroop and reverse Stroop test, and visual-spatial cognitive function by the laptop tablet Touch M, were evaluated. In the Stroop test, the change of Stroop interference ratios (SIs) for the PQQ group was significantly smaller than for the placebo group. In the Touch M test, the stratification analyses dividing each group into two groups showed that only in the lower group of the PQQ group (initial score<70), did the score significantly increase. Measurements of physiological parameters indicated no abnormal blood or urinary adverse events, nor adverse internal or physical examination findings at any point in the study. The preliminary experiment using near-infrared spectrometry (NIRS) suggests that cerebral blood flow in the prefrontal cortex was increased by the administration of PQQ. The results suggest that PQQ can prevent reduction of brain function in aged persons, especially in attention and working memory.

  4. Urea degradation by electrochemically generated reactive chlorine species: products and reaction pathways.

    PubMed

    Cho, Kangwoo; Hoffmann, Michael R

    2014-10-07

    This study investigated the transformation of urea by electrochemically generated reactive chlorine species (RCS). Solutions of urea with chloride ions were electrolyzed using a bismuth doped TiO2 (BiOx/TiO2) anode coupled with a stainless steel cathode at applied anodic potentials (Ea) of either +2.2 V or +3.0 V versus the normal hydrogen electrode. In NaCl solution, the current efficiency of RCS generation was near 30% at both potentials. In divided cell experiments, the pseudo-first-order rate of total nitrogen decay was an order of magnitude higher at Ea of +3.0 V than at +2.2 V, presumably because dichlorine radical (Cl2(-)·) ions facilitate the urea transformation primary driven by free chlorine. Quadrupole mass spectrometer analysis of the reactor headspace revealed that N2 and CO2 are the primary gaseous products of the oxidation of urea, whose urea-N was completely transformed into N2 (91%) and NO3(-) (9%). The higher reaction selectivity with respect to N2 production can be ascribed to a low operational ratio of free available chlorine to N. The mass-balance analysis recovered urea-C as CO2 at 77%, while CO generation most likely accounts for the residual carbon. In light of these results, we propose a reaction mechanism involving chloramines and chloramides as reaction intermediates, where the initial chlorination is the rate-determining step in the overall sequence of reactions.

  5. Constituents of Musa x paradisiaca cultivar with the potential to induce the phase II enzyme, quinone reductase.

    PubMed

    Jang, Dae Sik; Park, Eun Jung; Hawthorne, Michael E; Vigo, Jose Schunke; Graham, James G; Cabieses, Fernando; Santarsiero, Bernard D; Mesecar, Andrew D; Fong, Harry H S; Mehta, Rajendra G; Pezzuto, John M; Kinghorn, A Douglas

    2002-10-23

    A new bicyclic diarylheptanoid, rel-(3S,4aR,10bR)-8-hydroxy-3-(4-hydroxyphenyl)-9-methoxy-4a,5,6,10b-tetrahydro-3H-naphtho[2,1-b]pyran (1), as well as four known compounds, 1,2-dihydro-1,2,3-trihydroxy-9-(4-methoxyphenyl)phenalene (2), hydroxyanigorufone (3), 2-(4-hydroxyphenyl)naphthalic anhydride (4), and 1,7-bis(4-hydroxyphenyl)hepta-4(E),6(E)-dien-3-one (5), were isolated from an ethyl acetate-soluble fraction of the methanol extract of the fruits of Musa x paradisiaca cultivar, using a bioassay based on the induction of quinone reductase (QR) in cultured Hepa1c1c7 mouse hepatoma cells to monitor chromatographic fractionation. The structure and relative stereochemistry of compound 1 were elucidated unambiguously by one- and two-dimensional NMR experiments ((1)H NMR, (13)C NMR, DEPT, COSY, HMQC, HMBC, and NOESY) and single-crystal X-ray diffraction analysis. Isolates 1-5 were evaluated for their potential cancer chemopreventive properties utilizing an in vitro assay to determine quinone reductase induction and a mouse mammary organ culture assay.

  6. Differences in the binding of the primary quinone receptor in Photosystem I and reaction centres of Rhodobacter sphaeroides-R26 studied with transient EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    van der Est, A.; Sieckmann, I.; Lubitz, W.; Stehlik, D.

    1995-05-01

    The binding of the primary quinone acceptor, Q, in Photosystem I (PS I) and reaction centres (RC's) of Rhodobacter Sphaeroide-R26 in which, the non-heme iron has been replaced by zinc (Zn-bRC's) is studied using transient EPR spectroscopy. In PS I, Q is phylloquinone (vitamin K 1, VK 1) and is referred to as A 1. In Zn-bRC's, it is ubiquinone-10 (UQ 10) and called Q A. Native samples of the two RC's as well as those in which A 1 and Q A have been replaced by perdeuterated napthoquinone (NQ- d6) and duroquinone (DQ- d12) are compared. The spin polarized K-band (24 GHz) spectra of the charge separated state P +.Q -. (P = primary chlorophyll donor) in Zn-bRC's show that substitution of Q A, with NQ- d6 and DQ- d12 does not have a measurable effect on the quinone orientation in the Q A site. In contrast, large differences in the orientation of VK 1, NQ- d6 and DQ- d12 in the A 1 site in PS I are found. In addition, all three quinones in PS I are oriented differently than Q A in Zn-bRC's. Further, the x and y principal values of the g-tensors of VK 1-., NQ -. and DQ -. in PS I are shown to be significantly larger than in frozen alcohol and Zn-bRC's. It is suggested that the differences in the orientation and a g-values of the quinones in the two RC's arise from a weaker binding to the protein in PS I.

  7. Regiospecific attack of nitrogen and sulfur nucleophiles on quinones derived from poison oak/ivy catechols (urushiols) and analogues as models for urushiol-protein conjugate formation.

    PubMed

    Liberato, D J; Byers, V S; Dennick, R G; Castagnoli, N

    1981-01-01

    Attempts to characterize potential biologically important covalent interactions between electrophilic quinones derived from catechols present in poison oak/ivy (urushiol) and biomacromolecules have led to the analysis of model reactions involving sulfur and amino nucleophiles with 3-heptadecylbenzoquinone. Characterization of the reaction products indicates that this quinone undergoes regiospecific attack by (S)-N-acetylcysteine at C-6 and by 1-aminopentane at C-5. The red solid obtained with 1-aminopentane proved to be 3-heptadecyl-5-(pentylamino)-1,2-benzoquinone. Analogous aminobenzoquinones were obtained with the quinones derived from the 4- and 6-methyl analogues of 3-pentadecylcatechol. All three adducts absorbed visible light at different wavelengths. When the starting catechols were incubated with human serum albumin almost identical chromophores were formed. These results establish that cathechols responsible for the production of the poison oak/ivy contact dermatitis in humans undergo a sequence of reactions in the presence of human serum albumin that lead to covalent attachment of the catechols to the protein via carbon-nitrogen bonds. Estimations of the extent of this binding indicate that, at least with human serum albumin, the reaction is quantitative.

  8. Exploring Cancer Therapeutics with Natural Products from African Medicinal Plants, Part I: Xanthones, Quinones, Steroids, Coumarins, Phenolics and other Classes of Compounds.

    PubMed

    Simoben, Conrad V; Ibezim, Akachukwu; Ntie-Kang, Fidele; Nwodo, Justina N; Lifongo, Lydia L

    2015-01-01

    Cancer is known to be the second most common disease-related cause of death among humans. In drug discovery programs anti-cancer chemotherapy remains quite challenging due to issues related to resistance. Plants used in traditional medicine are known to contribute significantly within a large proportion of the African population. A survey of the literature has led to the identification of ~400 compounds from African medicinal plants, which have shown anti-cancer, anti-proliferation, anti-tumor and/or cytotoxic activities, tested by in vitro and in vivo assays (from mildly active to very active), mainly alkaloids, terpenoids, flavonoids, coumarins, phenolics, polyacetylates, xanthones, quinones, steroids and lignans. The first part of this review series focuses on xanthones, quinones, steroids, coumarins, phenolics and other compound classes, while part II is focused on alkaloids, terpenoids, flavonoids.

  9. Efficient generation of cavitation bubbles and reactive oxygen species using triggered high-intensity focused ultrasound sequence for sonodynamic treatment

    NASA Astrophysics Data System (ADS)

    Yasuda, Jun; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    Sonodynamic treatment is a method of treating cancer using reactive oxygen species (ROS) generated by cavitation bubbles in collaboration with a sonosensitizer at a target tissue. In this treatment method, both localized ROS generation and ROS generation with high efficiency are important. In this study, a triggered high-intensity focused ultrasound (HIFU) sequence, which consists of a short, extremely high intensity pulse immediately followed by a long, moderate-intensity burst, was employed for the efficient generation of ROS. In experiments, a solution sealed in a chamber was exposed to a triggered HIFU sequence. Then, the distribution of generated ROS was observed by the luminol reaction, and the amount of generated ROS was quantified using KI method. As a result, the localized ROS generation was demonstrated by light emission from the luminol reaction. Moreover, it was demonstrated that the triggered HIFU sequence has higher efficiency of ROS generation by both the KI method and the luminol reaction emission.

  10. Roles of reactive oxygen species in UVA-induced oxidation of 5,6-dihydroxyindole-2-carboxylic acid-melanin as studied by differential spectrophotometric method.

    PubMed

    Ito, Shosuke; Kikuta, Marina; Koike, Shota; Szewczyk, Grzegorz; Sarna, Michal; Zadlo, Andrzej; Sarna, Tadeusz; Wakamatsu, Kazumasa

    2016-05-01

    Eumelanin photoprotects pigmented tissues from ultraviolet (UV) damage. However, UVA-induced tanning seems to result from the photooxidation of preexisting melanin and does not contribute to photoprotection. We investigated the mechanism of UVA-induced degradation of 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-melanin taking advantage of its solubility in a neutral buffer and using a differential spectrophotometric method to detect subtle changes in its structure. Our methodology is suitable for examining the effects of various agents that interact with reactive oxygen species (ROS) to determine how ROS is involved in the UVA-induced oxidative modifications. The results show that UVA radiation induces the oxidation of DHICA to indole-5,6-quinone-2-carboxylic acid in eumelanin, which is then cleaved to form a photodegraded, pyrrolic moiety and finally to form free pyrrole-2,3,5-tricarboxylic acid. The possible involvement of superoxide radical and singlet oxygen in the oxidation was suggested. The generation and quenching of singlet oxygen by DHICA-melanin was confirmed by direct measurements of singlet oxygen phosphorescence. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Optimization of degradation of Reactive Black 5 (RB5) and electricity generation in solar photocatalytic fuel cell system.

    PubMed

    Khalik, Wan Fadhilah; Ho, Li-Ngee; Ong, Soon-An; Voon, Chun-Hong; Wong, Yee-Shian; Yusoff, NikAthirah; Lee, Sin-Li; Yusuf, Sara Yasina

    2017-10-01

    The photocatalytic fuel cell (PFC) system was developed in order to study the effect of several operating parameters in degradation of Reactive Black 5 (RB5) and its electricity generation. Light irradiation, initial dye concentration, aeration, pH and cathode electrode are the operating parameters that might give contribution in the efficiency of PFC system. The degradation of RB5 depends on the presence of light irradiation and solar light gives better performance to degrade the azo dye. The azo dye with low initial concentration decolorizes faster compared to higher initial concentration and presence of aeration in PFC system would enhance its performance. Reactive Black 5 rapidly decreased at higher pH due to the higher amount of OH generated at higher pH and Pt-loaded carbon (Pt/C) was more suitable to be used as cathode in PFC system compared to Cu foil and Fe foil. The rapid decolorization of RB5 would increase their voltage output and in addition, it would also increase their V oc , J sc and P max . The breakage of azo bond and aromatic rings was confirmed through UV-Vis spectrum and COD analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Kinetic modeling of electron transfer reactions in photosystem I complexes of various structures with substituted quinone acceptors.

    PubMed

    Milanovsky, Georgy E; Petrova, Anastasia A; Cherepanov, Dmitry A; Semenov, Alexey Yu

    2017-09-01

    The reduction kinetics of the photo-oxidized primary electron donor P 700 in photosystem I (PS I) complexes from cyanobacteria Synechocystis sp. PCC 6803 were analyzed within the kinetic model, which considers electron transfer (ET) reactions between P 700 , secondary quinone acceptor A 1 , iron-sulfur clusters and external electron donor and acceptors - methylviologen (MV), 2,3-dichloro-naphthoquinone (Cl 2 NQ) and oxygen. PS I complexes containing various quinones in the A 1 -binding site (phylloquinone PhQ, plastoquinone-9 PQ and Cl 2 NQ) as well as F X -core complexes, depleted of terminal iron-sulfur F A /F B clusters, were studied. The acceleration of charge recombination in F X -core complexes by PhQ/PQ substitution indicates that backward ET from the iron-sulfur clusters involves quinone in the A 1 -binding site. The kinetic parameters of ET reactions were obtained by global fitting of the P 700 + reduction with the kinetic model. The free energy gap ΔG 0 between F X and F A /F B clusters was estimated as -130 meV. The driving force of ET from A 1 to F X was determined as -50 and -220 meV for PhQ in the A and B cofactor branches, respectively. For PQ in A 1A -site, this reaction was found to be endergonic (ΔG 0  = +75 meV). The interaction of PS I with external acceptors was quantitatively described in terms of Michaelis-Menten kinetics. The second-order rate constants of ET from F A /F B , F X and Cl 2 NQ in the A 1 -site of PS I to external acceptors were estimated. The side production of superoxide radical in the A 1 -site by oxygen reduction via the Mehler reaction might comprise ≥0.3% of the total electron flow in PS I.

  13. Heme Amplifies the Innate Immune Response to Microbial Molecules through Spleen Tyrosine Kinase (Syk)-dependent Reactive Oxygen Species Generation*

    PubMed Central

    Fernandez, Patricia L.; Dutra, Fabianno F.; Alves, Letícia; Figueiredo, Rodrigo T.; Mourão-Sa, Diego; Fortes, Guilherme B.; Bergstrand, Sophie; Lönn, David; Cevallos, Ricardo R.; Pereira, Renata M. S.; Lopes, Ulisses G.; Travassos, Leonardo H.; Paiva, Claudia N.; Bozza, Marcelo T.

    2010-01-01

    Infectious diseases that cause hemolysis are among the most threatening human diseases, because of severity and/or global distribution. In these conditions, hemeproteins and heme are released, but whether heme affects the inflammatory response to microorganism molecules remains to be characterized. Here, we show that heme increased the lethality and cytokine secretion induced by LPS in vivo and enhanced the secretion of cytokines by macrophages stimulated with various agonists of innate immune receptors. Activation of nuclear factor κB (NF-κB) and MAPKs and the generation of reactive oxygen species were essential to the increase in cytokine production induced by heme plus LPS. This synergistic effect of heme and LPS was blocked by a selective inhibitor of spleen tyrosine kinase (Syk) and was abrogated in dendritic cells deficient in Syk. Moreover, inhibition of Syk and the downstream molecules PKC and PI3K reduced the reactive oxygen species generation by heme. Our results highlight a mechanism by which heme amplifies the secretion of cytokines triggered by microbial molecule activation and indicates possible pathways for therapeutic intervention during hemolytic infectious diseases. PMID:20729208

  14. Pyrimidine Nucleobase Radical Reactivity in DNA and RNA.

    PubMed

    Greenberg, Marc M

    2016-11-01

    Nucleobase radicals are major products of the reactions between nucleic acids and hydroxyl radical, which is produced via the indirect effect of ionizing radiation. The nucleobase radicals also result from hydration of cation radicals that are produced via the direct effect of ionizing radiation. The role that nucleobase radicals play in strand scission has been investigated indirectly using ionizing radiation to generate them. More recently, the reactivity of nucleobase radicals resulting from formal hydrogen atom or hydroxyl radical addition to pyrimidines has been studied by independently generating the reactive intermediates via UV-photolysis of synthetic precursors. This approach has provided control over where the reactive intermediates are produced within biopolymers and facilitated studying their reactivity. The contributions to our understanding of pyrimidine nucleobase radical reactivity by this approach are summarized.

  15. Pyrimidine nucleobase radical reactivity in DNA and RNA

    NASA Astrophysics Data System (ADS)

    Greenberg, Marc M.

    2016-11-01

    Nucleobase radicals are major products of the reactions between nucleic acids and hydroxyl radical, which is produced via the indirect effect of ionizing radiation. The nucleobase radicals also result from hydration of cation radicals that are produced via the direct effect of ionizing radiation. The role that nucleobase radicals play in strand scission has been investigated indirectly using ionizing radiation to generate them. More recently, the reactivity of nucleobase radicals resulting from formal hydrogen atom or hydroxyl radical addition to pyrimidines has been studied by independently generating the reactive intermediates via UV-photolysis of synthetic precursors. This approach has provided control over where the reactive intermediates are produced within biopolymers and facilitated studying their reactivity. The contributions to our understanding of pyrimidine nucleobase radical reactivity by this approach are summarized.

  16. In situ fluorescence spectroscopy correlates ionomer degradation to reactive oxygen species generation in an operating fuel cell.

    PubMed

    Prabhakaran, Venkateshkumar; Arges, Christopher G; Ramani, Vijay

    2013-11-21

    The rate of generation of reactive oxygen species (ROS) within the polymer electrolyte membrane (PEM) of an operating proton exchange member fuel cell (PEMFC) was monitored using in situ fluorescence spectroscopy. A modified barrier layer was introduced between the PEM and the electrocatalyst layer to eliminate metal-dye interactions and fluorescence resonance energy transfer (FRET) effects during measurements. Standard fuel cell operating parameters (temperature, relative humidity, and electrode potential) were systematically varied to evaluate their influence on the rate of ROS generation during PEMFC operation. Independently, the macroscopic rate of PEM degradation was measured by monitoring the fluoride ion emission rate (FER) in the effluent stream at each operating condition. The ROS generation reaction rate constant (estimated from the in situ fluorescence experiments) correlated perfectly with the measured FER across all conditions, demonstrating unequivocally for the first time that a direct correlation exists between in situ ROS generation and PEM macroscopic degradation. The activation energy for ROS generation within the PEM was estimated to be 12.5 kJ mol(-1).

  17. Product yield-detected ESR on magnetic field-dependent photoreduction of quinones in SDS micellar solution

    NASA Astrophysics Data System (ADS)

    Okazaki, M.; Sakata, S.; Konaka, R.; Shiga, T.

    1987-06-01

    Transient free radicals in the magnetic field-dependent photoreduction of quinones (menadione or anthraquinone) in a sodium dodecyl sulfate (SDS) micellar solution, were converted to stable nitroxide radicals by the ``spin trapping'' technique with or without the microwave irradiation. Upon irradiating the microwave at 160 mW, the product yield (``spin adduct'' of the alkyl radical generated from SDS molecule) decreased by up to 14% at certain magnetic fields in a resonant manner. Although only one component of the postulated radical pair was converted to the spin adduct, the decrease in the yield as a function of external magnetic field revealed the ESR spectra of both component radicals of the radical pair, i.e., the semiquinone radical and the alkyl radical from SDS. This experiment not only gives the direct evidence for the radical pair model, but also suggests the possibility for this method to be applied in controlling the chemical reactions by the microwave. A simple calculation was made to simulate the observed ``product yield-detected ESR.'' Agreements were achieved semiquantitatively between the observed reductions in the spin adduct yields and those calculated. The estimated exchange interaction between the component radicals in the radical pair of the present systems was lower than 0.3 mT.

  18. Exploiting the oxidizing capabilities of laccases exploiting the oxidizing capabilities of laccases for sustainable chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannatelli, Mark D.

    Part one of this dissertation research has focused on harnessing the ability of laccases to generate reactive para-quinones in situ from the corresponding hydroquinones, followed by reaction with a variety of nucleophiles to perform novel carbon-carbon, carbon-nitrogen, and carbon-sulfur bond forming reactions for the synthesis of new and existing compounds. In part two of this dissertation, the fundamental laccase-catalyzed coupling chemistry developed in part one was applied to functionalize the surface of kraft lignin.

  19. Reactive oxygen species generation is not different during isometric and lengthening contractions of mouse muscle

    PubMed Central

    Sloboda, Darcée D.

    2013-01-01

    Skeletal muscles can be injured by lengthening contractions, when the muscles are stretched while activated. Lengthening contractions produce structural damage that leads to the degeneration and regeneration of damaged muscle fibers by mechanisms that have not been fully elucidated. Reactive oxygen species (ROS) generated at the time of injury may initiate degenerative or regenerative processes. In the present study we hypothesized that lengthening contractions that damage the muscle would generate more ROS than isometric contractions that do not cause damage. To test our hypothesis, we subjected muscles of mice to lengthening contractions or isometric contractions and simultaneously monitored intracellular ROS generation with the fluorescent indicator 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein (CM-DCFH), which is oxidized by ROS to form the fluorescent product CM-DCF. We found that CM-DCF fluorescence was not different during or shortly after lengthening contractions compared with isometric controls, regardless of the amount of stretch and damage that occurred during the lengthening contractions. The only exception was that after severe stretches, the increase in CM-DCF fluorescence was impaired. We conclude that lengthening contractions that damage the muscle do not generate more ROS than isometric contractions that do not cause damage. The implication is that ROS generated at the time of injury are not the initiating signals for subsequent degenerative or regenerative processes. PMID:23948772

  20. Reactive oxygen species generation is not different during isometric and lengthening contractions of mouse muscle.

    PubMed

    Sloboda, Darcée D; Brooks, Susan V

    2013-10-01

    Skeletal muscles can be injured by lengthening contractions, when the muscles are stretched while activated. Lengthening contractions produce structural damage that leads to the degeneration and regeneration of damaged muscle fibers by mechanisms that have not been fully elucidated. Reactive oxygen species (ROS) generated at the time of injury may initiate degenerative or regenerative processes. In the present study we hypothesized that lengthening contractions that damage the muscle would generate more ROS than isometric contractions that do not cause damage. To test our hypothesis, we subjected muscles of mice to lengthening contractions or isometric contractions and simultaneously monitored intracellular ROS generation with the fluorescent indicator 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein (CM-DCFH), which is oxidized by ROS to form the fluorescent product CM-DCF. We found that CM-DCF fluorescence was not different during or shortly after lengthening contractions compared with isometric controls, regardless of the amount of stretch and damage that occurred during the lengthening contractions. The only exception was that after severe stretches, the increase in CM-DCF fluorescence was impaired. We conclude that lengthening contractions that damage the muscle do not generate more ROS than isometric contractions that do not cause damage. The implication is that ROS generated at the time of injury are not the initiating signals for subsequent degenerative or regenerative processes.

  1. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chibli, H.; Carlini, L.; Park, S.

    Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to whatmore » is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.« less

  2. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation.

    PubMed

    Chibli, Hicham; Carlini, Lina; Park, Soonhyang; Dimitrijevic, Nada M; Nadeau, Jay L

    2011-06-01

    Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.

  3. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation

    NASA Astrophysics Data System (ADS)

    Chibli, Hicham; Carlini, Lina; Park, Soonhyang; Dimitrijevic, Nada M.; Nadeau, Jay L.

    2011-06-01

    Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.

  4. Lipopolysaccharide treatment reduces rat platelet aggregation independent of intracellular reactive-oxygen species generation.

    PubMed

    Lopes-Pires, M Elisa; Casarin, André L; Pereira-Cunha, Fernanda G; Lorand-Metze, Irene; Antunes, Edson; Marcondes, Sisi

    2012-01-01

    High production of reactive-oxygen species (ROS) by blood cells is involved in damage of the vascular endothelium and multiple organ dysfunction in sepsis. However, little is known about the intraplatelet ROS production in sepsis and its consequences on platelet reactivity. In this study, we evaluated whether the treatment of rats with lipopolysaccharide (LPS) affects platelet aggregation through intraplatelet ROS generation. Rats were injected with LPS (1 mg/kg, i.p.), and at 2 to 72 h thereafter, adenosine diphosphate (ADP) (3-10 µM) induced platelet aggregation was evaluated. Production of ROS in platelets was measured by flow cytometry using 2',7'-dichlorofluorescein diacetate (DCFH-DA). Treatment of rats with LPS time-dependently inhibited ADP-induced platelet aggregation within 72 h. The inhibitory effect of LPS on platelet aggregation was further increased when the platelets were incubated with polyethylene glycol-superoxide dismutase (PEG-SOD; 30 U/mL), polyethylene glycol-catalase (PEG-CAT; 1000 U/mL) or the NADPH oxidase inhibitor diphenyleneiodonium (DPI; 10 µM). The ROS production in non-stimulated platelets did not differ between control and LPS-treated rats. However, in ADP-activated platelets, generation of ROS was increased by 3.0- and 7.0-fold, as evaluated at 8 and 48 h after LPS injection, respectively. This increased ROS production was significantly reduced when platelets were incubated in vitro with DPI, PEG-SOD or PEG-CAT. In contrast, treatment of rats with N-acetylcysteine (150 mg/kg, i.p.) significantly reduced the inhibitory effect of LPS on platelet aggregation, and prevented the increased ROS production by in vivo LPS. Our results indicate that the increased intraplatelet ROS production does not contribute to the inhibitory effect of LPS on platelet aggregation; however, the maintenance of redox balance in LPS-treated rats is fundamental to restore the normal platelet response in these animals.

  5. Second Generation TQ-Ligation for Cell Organelle Imaging.

    PubMed

    Zhang, Xiaoyun; Dong, Ting; Li, Qiang; Liu, Xiaohui; Li, Lin; Chen, She; Lei, Xiaoguang

    2015-07-17

    Bioorthogonal ligations play a crucial role in labeling diverse types of biomolecules in living systems. Herein, we describe a novel class of ortho-quinolinone quinone methide (oQQM) precursors that show a faster kinetic rate in the "click cycloaddition" with thio-vinyl ether (TV) than the first generation TQ-ligation in both chemical and biological settings. We further demonstrate that the second generation TQ-ligation is also orthogonal to the widely used strain-promoted azide-alkyne cycloaddition (SPAAC) both in vitro and in vivo, revealing that these two types of bioorthogonal ligations could be used as an ideal reaction pair for the simultaneous tracking of multiple elements within a single system. Remarkably, the second generation TQ-ligation and SPAAC are effective for selective and simultaneous imaging of two different cell organelles in live cells.

  6. Plasma cell treatment device Plasma-on-Chip: Monitoring plasma-generated reactive species in microwells

    PubMed Central

    Oh, Jun-Seok; Kojima, Shinya; Sasaki, Minoru; Hatta, Akimitsu; Kumagai, Shinya

    2017-01-01

    We have developed a plasma cell treatment device called Plasma-on-Chip that enables the real-time monitoring of a single cell culture during plasma treatment. The device consists of three parts: 1) microwells for cell culture, 2) a microplasma device for generating reactive oxygen and nitrogen species (RONS) for use in cell treatment, and 3) through-holes (microchannels) that connect each microwell with the microplasma region for RONS delivery. Here, we analysed the delivery of the RONS to the liquid culture medium stored in the microwells. We developed a simple experimental set-up using a microdevice and applied in situ ultraviolet absorption spectroscopy with high sensitivity for detecting RONS in liquid. The plasma-generated RONS were delivered into the liquid culture medium via the through-holes fabricated into the microdevice. The RONS concentrations were on the order of 10–100 μM depending on the size of the through-holes. In contrast, we found that the amount of dissolved oxygen was almost constant. To investigate the process of RONS generation, we numerically analysed the gas flow in the through-holes. We suggest that the circulating gas flow in the through-holes promotes the interaction between the plasma (ionised gas) and the liquid, resulting in enhanced RONS concentrations. PMID:28176800

  7. Respiration metabolism of Group B Streptococcus is activated by environmental haem and quinone and contributes to virulence.

    PubMed

    Yamamoto, Yuji; Poyart, Claire; Trieu-Cuot, Patrick; Lamberet, Gilles; Gruss, Alexandra; Gaudu, Philippe

    2005-04-01

    Group B Streptococcus (GBS) is a common constituent of the vaginal microflora, but its transmission to newborns can cause life-threatening sepsis, pneumonia and meningitis. Energy metabolism of this opportunist pathogen has been deduced to be strictly fermentative. We discovered that GBS undergoes respiration metabolism if its environment supplies two essential respiratory components: quinone and haem. Respiration metabolism led to significant changes in growth characteristics, including a doubling of biomass and an altered metabolite profile under the tested conditions. The GBS respiratory chain is inactivated by: (i) withdrawing haem and/or quinone, (ii) treating cultures with a respiration inhibitor or (iii) inactivating the cydA gene product, a subunit of cytochrome bd quinol oxidase, in all cases resulting in exclusively fermentative growth. cydA inactivation reduced GBS growth in human blood and strongly attenuated virulence in a neonatal rat sepsis model, suggesting that the animal host may supply the components that activate GBS respiration. These results suggest a role of respiration metabolism in GBS dissemination. Our findings show that environmental factors can increase the flexibility of GBS metabolism by activating a newly identified respiration chain. The need for two environmental factors may explain why GBS respiration metabolism was not found in previous studies.

  8. Kinetics of the Strain-Promoted Oxidation-Controlled Cycloalkyne-1,2-quinone Cycloaddition: Experimental and Theoretical Studies.

    PubMed

    Escorihuela, Jorge; Das, Anita; Looijen, Wilhelmus J E; van Delft, Floris L; Aquino, Adelia J A; Lischka, Hans; Zuilhof, Han

    2018-01-05

    Stimulated by its success in both bioconjugation and surface modification, we studied the strain-promoted oxidation-controlled cycloalkyne-1,2-quinone cycloaddition (SPOCQ) in three ways. First, the second-order rate constants and activation parameters (ΔH ⧧ ) were determined of various cyclooctynes reacting with 4-tert-butyl-1,2-quinone in a SPOCQ reaction, yielding values for ΔH ⧧ of 4.5, 7.3, and 12.1 kcal/mol, for bicyclo[6.1.0]non-4-yne (BCN), cyclooctyne (OCT), and dibenzoazacyclooctyne (DIBAC), respectively. Second, their reaction paths were investigated in detail by a range of quantum mechanical calculations. Single-configuration theoretical methods, like various DFT and a range of MP2-based methods, typically overestimate this barrier by 3-8 kcal/mol (after inclusion of zero-point energy, thermal, and solvation corrections), whereas MP2 itself underestimates the barrier significantly. Only dispersion-corrected DFT methods like B97D (yielding 4.9, 6.4, and 12.1 kcal/mol for these three reactions) and high-level CCSD(T) and multireference multiconfiguration AQCC ab initio approaches (both yielding 8.2 kcal/mol for BCN) give good approximations of experimental data. Finally, the multireference methods show that the radical character in the TS is rather small, thus rationalizing the use of single-reference methods like B97D and SCS-MP2 as intrinsically valid approaches.

  9. Kinetics of the Strain-Promoted Oxidation-Controlled Cycloalkyne-1,2-quinone Cycloaddition: Experimental and Theoretical Studies

    PubMed Central

    2017-01-01

    Stimulated by its success in both bioconjugation and surface modification, we studied the strain-promoted oxidation-controlled cycloalkyne–1,2-quinone cycloaddition (SPOCQ) in three ways. First, the second-order rate constants and activation parameters (ΔH⧧) were determined of various cyclooctynes reacting with 4-tert-butyl-1,2-quinone in a SPOCQ reaction, yielding values for ΔH⧧ of 4.5, 7.3, and 12.1 kcal/mol, for bicyclo[6.1.0]non-4-yne (BCN), cyclooctyne (OCT), and dibenzoazacyclooctyne (DIBAC), respectively. Second, their reaction paths were investigated in detail by a range of quantum mechanical calculations. Single-configuration theoretical methods, like various DFT and a range of MP2-based methods, typically overestimate this barrier by 3–8 kcal/mol (after inclusion of zero-point energy, thermal, and solvation corrections), whereas MP2 itself underestimates the barrier significantly. Only dispersion-corrected DFT methods like B97D (yielding 4.9, 6.4, and 12.1 kcal/mol for these three reactions) and high-level CCSD(T) and multireference multiconfiguration AQCC ab initio approaches (both yielding 8.2 kcal/mol for BCN) give good approximations of experimental data. Finally, the multireference methods show that the radical character in the TS is rather small, thus rationalizing the use of single-reference methods like B97D and SCS-MP2 as intrinsically valid approaches. PMID:29260879

  10. Method for generating a highly reactive plasma for exhaust gas after treatment and enhanced catalyst reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.

    This patent application describes a method and apparatus of exhaust gas remediation that enhance the reactivity of the material catalysts found within catalytic converters of cars, trucks, and power stations.

  11. Reactive oxygen species generation in aqueous solutions containing GdVO4:Eu3+ nanoparticles and their complexes with methylene blue

    NASA Astrophysics Data System (ADS)

    Hubenko, Kateryna; Yefimova, Svetlana; Tkacheva, Tatyana; Maksimchuk, Pavel; Borovoy, Igor; Klochkov, Vladimir; Kavok, Nataliya; Opolonin, Oleksander; Malyukin, Yuri

    2018-04-01

    It this letter, we report the study of free radicals and reactive oxygen species (ROS) generation in water solutions containing gadolinium orthovanadate GdVO4:Eu3+ nanoparticles (VNPs) and their complexes with methylene blue (MB) photosensitizer. The catalytic activity was studied under UV-Vis and X-ray irradiation by three methods (conjugated dienes test, OH· radical, and singlet oxygen detection). It has been shown that the VNPs-MB complexes reveal high efficiency of ROS generation under UV-Vis irradiation associated with both high efficiency of OH· radicals generation by VNPs and singlet oxygen generation by MB due to nonradiative excitation energy transfer from VNPs to MB molecules. Contrary to that under X-ray irradiation, the strong OH . radicals scavenging by VNPs has been observed.

  12. Reactive oxygen species generation in aqueous solutions containing GdVO4:Eu3+ nanoparticles and their complexes with methylene blue.

    PubMed

    Hubenko, Kateryna; Yefimova, Svetlana; Tkacheva, Tatyana; Maksimchuk, Pavel; Borovoy, Igor; Klochkov, Vladimir; Kavok, Nataliya; Opolonin, Oleksander; Malyukin, Yuri

    2018-04-13

    It this letter, we report the study of free radicals and reactive oxygen species (ROS) generation in water solutions containing gadolinium orthovanadate GdVO 4 :Eu 3+ nanoparticles (VNPs) and their complexes with methylene blue (MB) photosensitizer. The catalytic activity was studied under UV-Vis and X-ray irradiation by three methods (conjugated dienes test, OH· radical, and singlet oxygen detection). It has been shown that the VNPs-MB complexes reveal high efficiency of ROS generation under UV-Vis irradiation associated with both high efficiency of OH· radicals generation by VNPs and singlet oxygen generation by MB due to nonradiative excitation energy transfer from VNPs to MB molecules. Contrary to that under X-ray irradiation, the strong OH . radicals scavenging by VNPs has been observed.

  13. The mechanism of catalysis by type-II NADH:quinone oxidoreductases

    PubMed Central

    Blaza, James N.; Bridges, Hannah R.; Aragão, David; Dunn, Elyse A.; Heikal, Adam; Cook, Gregory M.; Nakatani, Yoshio; Hirst, Judy

    2017-01-01

    Type II NADH:quinone oxidoreductase (NDH-2) is central to the respiratory chains of many organisms. It is not present in mammals so may be exploited as an antimicrobial drug target or used as a substitute for dysfunctional respiratory complex I in neuromuscular disorders. NDH-2 is a single-subunit monotopic membrane protein with just a flavin cofactor, yet no consensus exists on its mechanism. Here, we use steady-state and pre-steady-state kinetics combined with mutagenesis and structural studies to determine the mechanism of NDH-2 from Caldalkalibacillus thermarum. We show that the two substrate reactions occur independently, at different sites, and regardless of the occupancy of the partner site. We conclude that the reaction pathway is determined stochastically, by the substrate/product concentrations and dissociation constants, and can follow either a ping-pong or ternary mechanism. This mechanistic versatility provides a unified explanation for all extant data and a new foundation for the development of therapeutic strategies. PMID:28067272

  14. Laccase-catalyzed synthesis of 2,3-ethylenedithio-1,4-quinones

    DOE PAGES

    Cannatelli, Mark D.; Ragauskas, Arthur J.

    2015-06-05

    Laccases (benzenediol:oxygen oxidoreductase EC 1.10.3.2) are part of a family of multicopper oxidases. These environmentally friendly enzymes require O 2 as their only co-substrate and produce H 2O as their sole by-product. As a result, they have acquired increasing use in biotechnological applications, particularly in the field of organic synthesis. In the current study, laccases have been employed to successfully couple 1,2-ethanedithiol to various substituted hydroquinones to produce novel 2,3-ethylenedithio-1,4-quinones in good yields via an oxidation–addition–oxidation–addition–oxidation mechanism. The reactions proceeded in one-pot under mild conditions (room temperature, pH 5.0). This study further supports the use of laccases as green toolsmore » in organic chemistry. Furthermore, it provides evidence that laccase-catalyzed cross-coupling reactions involving small thiols are possible, in spite of research that suggests small thiols are potent inhibitors of laccases.« less

  15. Water reactive hydrogen fuel cell power system

    DOEpatents

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  16. Water reactive hydrogen fuel cell power system

    DOEpatents

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  17. Kinetics and mechanism of auto- and copper-catalyzed oxidation of 1,4-naphthohydroquinone.

    PubMed

    Yuan, Xiu; Miller, Christopher J; Pham, A Ninh; Waite, T David

    2014-06-01

    Although quinones represent a class of organic compounds that may exert toxic effects both in vitro and in vivo, the molecular mechanisms involved in quinone species toxicity are still largely unknown, especially in the presence of transition metals, which may both induce the transformation of the various quinone species and result in generation of harmful reactive oxygen species. In this study, the oxidation of 1,4-naphthohydroquinone (NH2Q) in the absence and presence of nanomolar concentrations of Cu(II) in 10 mM NaCl solution over a pH range of 6.5-7.5 has been investigated, with detailed kinetic models developed to describe the predominant mechanisms operative in these systems. In the absence of copper, the apparent oxidation rate of NH2Q increased with increasing pH and initial NH2Q concentration, with concomitant oxygen consumption and peroxide generation. The doubly dissociated species, NQ(2-), has been shown to be the reactive species with regard to the one-electron oxidation by O2 and comproportionation with the quinone species, both generating the semiquinone radical (NSQ(·-)). The oxidation of NSQ(·-) by O2 is shown to be the most important pathway for superoxide (O2(·-)) generation with a high intrinsic rate constant of 1.0×10(8)M(-1)s(-1). Both NSQ(·-) and O2(·-) served as chain-propagating species in the autoxidation of NH2Q. Cu(II) is capable of catalyzing the oxidation of NH2Q in the presence of O2 with the oxidation also accelerated by increasing the pH. Both the uncharged (NH2Q(0)) and the mono-anionic (NHQ(-)) species were found to be the kinetically active forms, reducing Cu(II) with an intrinsic rate constant of 4.0×10(4) and 1.2×10(7)M(-1)s(-1), respectively. The presence of O2 facilitated the catalytic role of Cu(II) by rapidly regenerating Cu(II) via continuous oxidation of Cu(I) and also by efficient removal of NSQ(·-) resulting in the generation of O2(·-). The half-cell reduction potentials of various redox couples at neutral p

  18. Secure provision of reactive power ancillary services in competitive electricity markets

    NASA Astrophysics Data System (ADS)

    El-Samahy, Ismael

    The research work presented in this thesis discusses various complex issues associated with reactive power management and pricing in the context of new operating paradigms in deregulated power systems, proposing appropriate policy solutions. An integrated two-level framework for reactive power management is set forth, which is both suitable for a competitive market and ensures a secure and reliable operation of the associated power system. The framework is generic in nature and can be adopted for any electricity market structure. The proposed hierarchical reactive power market structure comprises two stages: procurement of reactive power resources on a seasonal basis, and real-time reactive power dispatch. The main objective of the proposed framework is to provide appropriate reactive power support from service providers at least cost, while ensuring a secure operation of the power system. The proposed procurement procedure is based on a two-step optimization model. First, the marginal benefits of reactive power supply from each provider, with respect to system security, are obtained by solving a loadability-maximization problem subject to transmission security constraints imposed by voltage and thermal limits. Second, the selected set of generators is determined by solving an optimal power flow (OPF)-based auction. This auction maximizes a societal advantage function comprising generators' offers and their corresponding marginal benefits with respect to system security, and considering all transmission system constraints. The proposed procedure yields the selected set of generators and zonal price components, which would form the basis for seasonal contracts between the system operator and the selected reactive power service providers. The main objective of the proposed reactive power dispatch model is to minimize the total payment burden on the Independent System Operator (ISO), which is associated with reactive power dispatch. The real power generation is

  19. Targeting Cancer Cells with Reactive Oxygen and Nitrogen Species Generated by Atmospheric-Pressure Air Plasma

    PubMed Central

    Hoan, Nguyen Ngoc; Kim, Churl Ho; Moon, Eunpyo; Choi, Kyeong Sook; Yang, Sang Sik; Lee, Jong-Soo

    2014-01-01

    The plasma jet has been proposed as a novel therapeutic method for cancer. Anticancer activity of plasma has been reported to involve mitochondrial dysfunction. However, what constituents generated by plasma is linked to this anticancer process and its mechanism of action remain unclear. Here, we report that the therapeutic effects of air plasma result from generation of reactive oxygen/nitrogen species (ROS/RNS) including H2O2, Ox, OH−, •O2, NOx, leading to depolarization of mitochondrial membrane potential and mitochondrial ROS accumulation. Simultaneously, ROS/RNS activate c-Jun NH2-terminal kinase (JNK) and p38 kinase. As a consequence, treatment with air plasma jets induces apoptotic death in human cervical cancer HeLa cells. Pretreatment of the cells with antioxidants, JNK and p38 inhibitors, or JNK and p38 siRNA abrogates the depolarization of mitochondrial membrane potential and impairs the air plasma-induced apoptotic cell death, suggesting that the ROS/RNS generated by plasma trigger signaling pathways involving JNK and p38 and promote mitochondrial perturbation, leading to apoptosis. Therefore, administration of air plasma may be a feasible strategy to eliminate cancer cells. PMID:24465942

  20. The effect of functional groups on reduction and activation of quinone bioreductive agents by DT-diaphorase.

    PubMed

    Fourie, Jeanne; Oleschuk, Curtis J; Guziec, Frank; Guziec, Lynn; Fiterman, Derek J; Monterrosa, Cielo; Begleiter, Asher

    2002-02-01

    rate of reduction by DT-diaphorase. Steric effects on reduction by DT-diaphorase were also influenced by the position of the functional group on the quinone ring moiety, as the reduction of m-PBM was much slower than the reduction of PBM. The electron-donating methoxy and methyl functional groups increased the ability of the reduced products of MBM and MeBM to undergo redox cycling. DT-diaphorase appeared to be an activating enzyme for MBM. This may have resulted in part from increased formation of reactive oxygen species resulting from the increased redox cycling by MBM. In contrast, DT-diaphorase was an inactivating enzyme for BM, and for MeBM in the SK-MEL-28 melanoma cells, possibly because the hydroquinone product of BM and MeBM may be less cytotoxic than the semiquinone produced by one-electron reduction by NADPH:cytochrome P450 reductase.

  1. Temperature controls oxidative phosphorylation and reactive oxygen species production through uncoupling in rat skeletal muscle mitochondria.

    PubMed

    Jarmuszkiewicz, Wieslawa; Woyda-Ploszczyca, Andrzej; Koziel, Agnieszka; Majerczak, Joanna; Zoladz, Jerzy A

    2015-06-01

    Mitochondrial respiratory and phosphorylation activities, mitochondrial uncoupling, and hydrogen peroxide formation were studied in isolated rat skeletal muscle mitochondria during experimentally induced hypothermia (25 °C) and hyperthermia (42 °C) compared to the physiological temperature of resting muscle (35 °C). For nonphosphorylating mitochondria, increasing the temperature from 25 to 42 °C led to a decrease in membrane potential, hydrogen peroxide production, and quinone reduction levels. For phosphorylating mitochondria, no temperature-dependent changes in these mitochondrial functions were observed. However, the efficiency of oxidative phosphorylation decreased, whereas the oxidation and phosphorylation rates and oxidative capacities of the mitochondria increased, with increasing assay temperature. An increase in proton leak, including uncoupling protein-mediated proton leak, was observed with increasing assay temperature, which could explain the reduced oxidative phosphorylation efficiency and reactive oxygen species production. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Vitamins K interact with N-terminus α-synuclein and modulate the protein fibrillization in vitro. Exploring the interaction between quinones and α-synuclein.

    PubMed

    da Silva, Fernanda Luna; Coelho Cerqueira, Eduardo; de Freitas, Mônica Santos; Gonçalves, Daniela Leão; Costa, Lilian Terezinha; Follmer, Cristian

    2013-01-01

    In the last decades, a series of compounds, including quinones and polyphenols, has been described as having anti-fibrillogenic action on α-synuclein (α-syn) whose aggregation is associated to the pathogenesis of Parkinson's disease (PD). Most of these molecules act as promiscuous anti-amyloidogenic agents, interacting with the diverse amyloidogenic proteins (mostly unfolded) through non-specific hydrophobic interactions. Herein we investigated the effect of the vitamins K (phylloquinone, menaquinone and menadione), which are 1,4-naphthoquinone (1,4-NQ) derivatives, on α-syn aggregation, comparing them with other anti-fibrillogenic molecules such as quinones, polyphenols and lipophilic vitamins. Vitamins K delayed α-syn fibrillization in substoichiometric concentrations, leading to the formation of short, sheared fibrils and amorphous aggregates, which are less prone to produce leakage of synthetic vesicles. In seeding conditions, menadione and 1,4-NQ significantly inhibited fibrils elongation, which could be explained by their ability to destabilize preformed fibrils of α-syn. Bidimensional NMR experiments indicate that a specific site at the N-terminal α-syn (Gly31/Lys32) is involved in the interaction with vitamins K, which is corroborated by previous studies suggesting that Lys is a key residue in the interaction with quinones. Together, our data suggest that 1,4-NQ, recently showed up by our group as a potential scaffold for designing new monoamine oxidase inhibitors, is also capable to modulate α-syn fibrillization in vitro. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Reduction of mitomycin C is catalysed by human recombinant NRH:quinone oxidoreductase 2 using reduced nicotinamide adenine dinucleotide as an electron donating co-factor

    PubMed Central

    Jamieson, D; Tung, A T Y; Knox, R J; Boddy, A V

    2006-01-01

    NRH:Quinone Oxidoreductase 2 (NQO2) has been described as having no enzymatic activity with nicotinamide adenine dinucleotide (NADH) or NADPH as electron donating cosubstrates. Mitomycin C (MMC) is both a substrate for and a mechanistic inhibitor of the NQO2 homologue NQO1. NRH:quinone oxidoreductase 2 catalysed the reduction of MMC at pH 5.8 with NADH as a co-factor. This reaction results in species that inhibit the NQO2-mediated metabolism of CB1954. In addition, MMC caused an increase in DNA cross-links in a cell line transfected to overexpress NQO2 to an extent comparable to that observed with an isogenic NQO1-expressing cell line. These data indicate that NQO2 may contribute to the metabolism of MMC to cytotoxic species. PMID:17031400

  4. Oxidation-extraction spectrometry of reactive oxygen species (ROS) generated by chlorophyllin magnesium (Chl-Mg) under ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Guo, Yuwei; Cheng, Chunping; Wang, Jun; Jin, Xudong; Liu, Bin; Wang, Zhiqiu; Gao, Jingqun; Kang, Pingli

    2011-09-01

    In order to examine the mechanism and process of sonodynamic reaction, the chlorophyllin magnesium (Chl-Mg) acting as a sonosensitizer was irradiated by ultrasound, and the generation of reactive oxygen species (ROS) were detected by the method of oxidation-extraction spectrometry (OES). That is, under ultrasonic irradiation in the presence of Chl-Mg, the 1,5-diphenyl carbazide (DPCI) is oxidized by generated ROS into 1,5-diphenyl carbazone (DPCO), which can be extracted by mixed organic solvent and display a obvious visible absorption at 563 nm wavelength. Besides, the generation conditions of ROS were also reviewed. The results demonstrated that the quantities of generated ROS increased with the increase of ultrasonic irradiation time, Chl-Mg concentration and DPCI concentration. Finally, several radical scavengers (l-Histidine (His), 2,6-Di-tert-butyl-methylphenol (BHT) and Vitamin C (VC)) were used to determine the kind of the generated ROS. It was found that at least the hydroxyl radical (OH) and singlet oxygen ( 1O 2) were generated in the presence of Chl-Mg under ultrasonic irradiation. It is wish that this paper might offer some valuable references for the study on the mechanism of SDT and the application of Chl-Mg in tumor treatment.

  5. REACTIONS OF BENZO[A]PYRENE-7,8-QUINONE WITH DEOXYGUANOSINE AND DEOXYADENOSINE AT PHYSIOLOGICAL pH: IDENTIFICATION AND CHARACTERIZATION OF STABLE ADDUCTS

    EPA Science Inventory

    Reactions of Benzo[a]pyrene-7,8-quinone with Deoxyguanosine and Deoxyadenosine at Physiological pH: Identification and Characterization of Stable Adducts

    Narayanan Balu, William T. Padgett, Guy Lambert, Adam E. Swank,
    Ann M. Richard, and Stephen Nesnow

    Environmen...

  6. A comprehensive approach to reactive power scheduling in restructured power systems

    NASA Astrophysics Data System (ADS)

    Shukla, Meera

    Financial constraints, regulatory pressure, and need for more economical power transfers have increased the loading of interconnected transmission systems. As a consequence, power systems have been operated close to their maximum power transfer capability limits, making the system more vulnerable to voltage instability events. The problem of voltage collapse characterized by a severe local voltage depression is generally believed to be associated with inadequate VAr support at key buses. The goal of reactive power planning is to maintain a high level of voltage security, through installation of properly sized and located reactive sources and their optimal scheduling. In case of vertically-operated power systems, the reactive requirement of the system is normally satisfied by using all of its reactive sources. But in case of different scenarios of restructured power systems, one may consider a fixed amount of exchange of reactive power through tie lines. Reviewed literature suggests a need for optimal scheduling of reactive power generation for fixed inter area reactive power exchange. The present work proposed a novel approach for reactive power source placement and a novel approach for its scheduling. The VAr source placement technique was based on the property of system connectivity. This is followed by development of optimal reactive power dispatch formulation which facilitated fixed inter area tie line reactive power exchange. This formulation used a Line Flow-Based (LFB) model of power flow analysis. The formulation determined the generation schedule for fixed inter area tie line reactive power exchange. Different operating scenarios were studied to analyze the impact of VAr management approach for vertically operated and restructured power systems. The system loadability, losses, generation and the cost of generation were the performance measures to study the impact of VAr management strategy. The novel approach was demonstrated on IEEE 30 bus system.

  7. A self-powered glucose biosensor based on pyrolloquinoline quinone glucose dehydrogenase and bilirubin oxidase operating under physiological conditions.

    PubMed

    Kulkarni, Tanmay; Slaughter, Gymama

    2017-07-01

    A novel biosensing system capable of simultaneously sensing glucose and powering portable electronic devices such as a digital glucometer is described. The biosensing system consists of enzymatic glucose biofuel cell bioelectrodes functionalized with pyrolloquinoline quinone glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BOD) at the bioanode and biocathode, respectively. A dual-stage power amplification circuit is integrated with the single biofuel cell to amplify the electrical power generated. In addition, a capacitor circuit was incorporated to serve as the transducer for sensing glucose. The open circuit voltage of the optimized biofuel cell reached 0.55 V, and the maximum power density achieved was 0.23 mW/ cm 2 at 0.29 V. The biofuel cell exhibited a sensitivity of 0.312 mW/mM.cm 2 with a linear dynamic range of 3 mM - 20 mM glucose. The overall self-powered glucose biosensor is capable of selectively screening against common interfering species, such as ascorbate and urate and exhibited an operational stability of over 53 days, while maintaining 90 % of its activity. These results demonstrate the system's potential to replace the current glucose monitoring devices that rely on external power supply, such as a battery.

  8. Immunization with Pneumocystis Cross-Reactive Antigen 1 (Pca1) Protects Mice against Pneumocystis Pneumonia and Generates Antibody to Pneumocystis jirovecii

    PubMed Central

    Wright, Terry W.; Malone, Jane E.; Haidaris, Constantine G.; Harber, Martha; Sant, Andrea J.; Nayak, Jennifer L.

    2016-01-01

    ABSTRACT Pneumocystis pneumonia (PcP) is a life-threatening infection that affects immunocompromised individuals. Nearly half of all PcP cases occur in those prescribed effective chemoprophylaxis, suggesting that additional preventive methods are needed. To this end, we have identified a unique mouse Pneumocystis surface protein, designated Pneumocystis cross-reactive antigen 1 (Pca1), as a potential vaccine candidate. Mice were immunized with a recombinant fusion protein containing Pca1. Subsequently, CD4+ T cells were depleted, and the mice were exposed to Pneumocystis murina. Pca1 immunization completely protected nearly all mice, similar to immunization with whole Pneumocystis organisms. In contrast, all immunized negative-control mice developed PcP. Unexpectedly, Pca1 immunization generated cross-reactive antibody that recognized Pneumocystis jirovecii and Pneumocystis carinii. Potential orthologs of Pca1 have been identified in P. jirovecii. Such cross-reactivity is rare, and our findings suggest that Pca1 is a conserved antigen and potential vaccine target. The evaluation of Pca1-elicited antibodies in the prevention of PcP in humans deserves further investigation. PMID:28031260

  9. Immunization with Pneumocystis Cross-Reactive Antigen 1 (Pca1) Protects Mice against Pneumocystis Pneumonia and Generates Antibody to Pneumocystis jirovecii.

    PubMed

    Tesini, Brenda L; Wright, Terry W; Malone, Jane E; Haidaris, Constantine G; Harber, Martha; Sant, Andrea J; Nayak, Jennifer L; Gigliotti, Francis

    2017-04-01

    Pneumocystis pneumonia (PcP) is a life-threatening infection that affects immunocompromised individuals. Nearly half of all PcP cases occur in those prescribed effective chemoprophylaxis, suggesting that additional preventive methods are needed. To this end, we have identified a unique mouse Pneumocystis surface protein, designated Pneumocystis cross-reactive antigen 1 (Pca1), as a potential vaccine candidate. Mice were immunized with a recombinant fusion protein containing Pca1. Subsequently, CD4 + T cells were depleted, and the mice were exposed to Pneumocystis murina Pca1 immunization completely protected nearly all mice, similar to immunization with whole Pneumocystis organisms. In contrast, all immunized negative-control mice developed PcP. Unexpectedly, Pca1 immunization generated cross-reactive antibody that recognized Pneumocystis jirovecii and Pneumocystis carinii Potential orthologs of Pca1 have been identified in P. jirovecii Such cross-reactivity is rare, and our findings suggest that Pca1 is a conserved antigen and potential vaccine target. The evaluation of Pca1-elicited antibodies in the prevention of PcP in humans deserves further investigation. Copyright © 2017 American Society for Microbiology.

  10. Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System

    PubMed Central

    Griendling, Kathy K.; Touyz, Rhian M.; Zweier, Jay L.; Dikalov, Sergey; Chilian, William; Chen, Yeong-Renn; Harrison, David G.; Bhatnagar, Aruni

    2017-01-01

    Reactive oxygen species and reactive nitrogen species are biological molecules that play important roles in cardiovascular physiology and contribute to disease initiation, progression, and severity. Because of their ephemeral nature and rapid reactivity, these species are difficult to measure directly with high accuracy and precision. In this statement, we review current methods for measuring these species and the secondary products they generate and suggest approaches for measuring redox status, oxidative stress, and the production of individual reactive oxygen and nitrogen species. We discuss the strengths and limitations of different methods and the relative specificity and suitability of these methods for measuring the concentrations of reactive oxygen and reactive nitrogen species in cells, tissues, and biological fluids. We provide specific guidelines, through expert opinion, for choosing reliable and reproducible assays for different experimental and clinical situations. These guidelines are intended to help investigators and clinical researchers avoid experimental error and ensure high-quality measurements of these important biological species. PMID:27418630

  11. Proline dehydrogenase promotes senescence through the generation of reactive oxygen species.

    PubMed

    Nagano, Taiki; Nakashima, Akio; Onishi, Kengo; Kawai, Kosuke; Awai, Yuto; Kinugasa, Mizuki; Iwasaki, Tetsushi; Kikkawa, Ushio; Kamada, Shinji

    2017-04-15

    Cellular senescence is a complex stress response characterized by permanent loss of proliferative capacity and is implicated in age-related disorders. Although the transcriptional activity of p53 (encoded by TP53 ) is known to be vital for senescence induction, the downstream effector genes critical for senescence remain unsolved. Recently, we have identified the proline dehydrogenase gene ( PRODH ) to be upregulated specifically in senescent cells in a p53-dependent manner, and the functional relevance of this to senescence is yet to be defined. Here, we conducted functional analyses to explore the relationship between PRODH and the senescence program. We found that genetic and pharmacological inhibition of PRODH suppressed senescent phenotypes induced by DNA damage. Furthermore, ectopic expression of wild-type PRODH, but not enzymatically inactive forms, induced senescence associated with the increase in reactive oxygen species (ROS) and the accumulation of DNA damage. Treatment with N-acetyl-L-cysteine, a ROS scavenger, prevented senescence induced by PRODH overexpression. These results indicate that PRODH plays a causative role in DNA damage-induced senescence through the enzymatic generation of ROS. © 2017. Published by The Company of Biologists Ltd.

  12. AMELIORATION OF ACID MINE DRAINAGE USING REACTIVE MIXTURES IN PERMEABLE REACTIVE BARRIERS

    EPA Science Inventory

    The generation and release of acidic drainage from mine wastes is an environmental problem of international scale. The use of zero-valent iron and/or iron mixtures in subsurface Permeable Reactive Barriers (PRB) presents a possible passive alternative for remediating acidic grou...

  13. Total OH reactivity in a mediterranean forest of downy oaks

    NASA Astrophysics Data System (ADS)

    Zannoni, Nora; Gros, Valerie; Sarda, Roland; Lanza, Matteo; Bonsang, Bernard; Kalogridis, Cerise; Preunkert, Suzanne; Legrand, Michel; Jambert, Corinne; Boissard, Christophe; Lathiere, Juliette

    2015-04-01

    Forests emit large quantities of reactive molecules which can affect the concentration of the most important oxidizing agent in the atmosphere, the hydroxyl radical OH. There are still many unknowns on how biogenic compounds interact with the atmosphere. Among those, we still lack to fully understand the species that can potentially influence the atmospheric oxidative capacity and thus the OH cleansing effect over several forested areas. We conducted total OH reactivity measurements during spring 2014 inside and above the canopy height of a forest dominated at 80% by downy oaks in the Mediterranean basin (Observatoire Haute Provence site, France). Downy oak trees are capable to emit almost exclusively isoprene (~99%), the most abundant volatile organic compound and among the most reactive towards the OH radical. We measured the total OH reactivity with the Comparative Reactivity Method together with atmospheric concentrations of the primary compounds emitted by the forest, main secondary species generated from the oxidation of isoprene, and main atmospheric constituents. We then compared the OH reactivity inferred by measured compounds and their oxidation rate coefficients with the measured total OH reactivity. This approach permits to identify the presence of any primary emitted biogenic compound, unknown before and relevant for OH oxidation; or any secondary generated compound whose associated chemical mechanism is not well established. Our results show higher OH reactivity inside the canopy, with peaks up to 78 s-1, when isoprene concentration reached ~20 ppb due to temperature and PAR increase. Such high level of OH reactivity has only been observed in the tropics so far. Furthermore, our measured total OH reactivity closes the total amount of reactive species present in this specific forest, suggesting that we quantified precisely both the primary emitted species as well as the secondary generated products.

  14. 77 FR 11109 - Reactive Power Resources; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... options for and cost of installing reactive power equipment at the time of interconnection as well as... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD12-10-000] Reactive Power... the need for reactive power capability among newly interconnecting asynchronous generators and raises...

  15. Development of an electron paramagnetic resonance methodology for studying the photo-generation of reactive species in semiconductor nano-particle assembled films

    NASA Astrophysics Data System (ADS)

    Twardoch, Marek; Messai, Youcef; Vileno, Bertrand; Hoarau, Yannick; Mekki, Djamel E.; Felix, Olivier; Turek, Philippe; Weiss, Jean; Decher, Gero; Martel, David

    2018-06-01

    An experimental approach involving electron paramagnetic resonance is proposed for studying photo-generated reactive species in semiconductor nano-particle-based films deposited on the internal wall of glass capillaries. This methodology is applied here to nano-TiO2 and allows a semi-quantitative analysis of the kinetic evolutions of radical production using a spin scavenger probe.

  16. Organization of the human [zeta]-crystallin/quinone reductase gene (CRYZ)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, P.; Rao, P.V.; Zigler, J.S. Jr.

    1994-05-15

    [zeta]-Crystallin is a protein highly expressed in the lens of guinea pigs and camels, where it comprises about 10% of the total soluble protein. It has recently been characterized as a novel quinone oxidoreductase present in a variety of mammalian tissues. The authors report here the isolation and characterization of the human [zeta]-crystallin gene (CRYZ) and its processed pseudogene. The functional gene is composed of nine exons and spans about 20 kb. The 5[prime]-flanking region of the gene is rich in G and C (58%) and lacks TATA and CAAT boxes. Previous analysis of the guinea pig gene revealed themore » presence of two different promoters, one responsible for the high lens-specific expression and the other for expression at the enzymatic level in numerous tissues. Comparative analysis with the guinea pig gene shows that a region of [approximately]2.5 kb that includes the promoter responsible for the high expression in the lens in guinea pig is not present in the human gene. 34 refs., 6 figs., 1 tab.« less

  17. Photoinduced electron transfer in fixed distance chlorophyll-quinone donor-acceptor molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasielewski, M.R.; Johnson, D.G.; Svec, W.A.

    1987-01-01

    A series of fixed distance chlorophyll-quinone donor-acceptor molecules have been prepared. The donor consists of either methyl pyropheophorbide a or methyl pyrochlorophyllide a, while the acceptor is either benzoquinone or naphthoquinone. The acceptors are fused to a triptycene spacer group, which in turn is attached to the donors at their vinyl groups. Picosecond transient absorption measurements have been used to identify electron transfer from the lowest excited singlet state of the donor to the acceptor as the mechanism of fluorescence quenching in these molecules. The charge separation rate constants increase from 2 x 10/sup 10/ s/sup -1/ to 4 xmore » 10/sup 11/ s/sup -1/ as the free energy of charge separation increases, while the radical pair recombination rate constants decrease from 1.2 x 10/sup 11/ s/sup -1/ to 2 x 10/sup 9/ s/sup -1/ as the free energy of recombination increases. The resulting total reorganization energy lambda = 0.9 eV.« less

  18. Amine quinone polyurethane polymers for improved performance in advanced particulate media

    NASA Astrophysics Data System (ADS)

    Warren, G. W.; Sharma, Rahul; Nikles, D. E.; Hu, Y.; Street, S. C.

    1999-03-01

    The magnetic layer used in commercial, high density, metal particle recording media consists of sub-micron sized Fe particles suspended in a polyurethane polymer binder. New amine-quinone polymers, AQPU15 and AQPU100, have been developed for improving corrosion resistance of the particles. A fundamental study of the nature of the AQ polymer/metal oxide interface and its relationship to corrosion resistance is reported. Electrochemical impedance spectroscopy was used to evaluate corrosion behavior of Fe substrates coated with two different thicknesses of each polymer. The extent of corrosion of Fe particles coated with AQ polymers was also measured via the loss in MS with time of immersion in an acid solution. AQ coated particles showed significant improvement in corrosion resistance. FTIR-RA and XPS data show an interaction between AQM14A, a simple model for a portion of the polymer, and metal (Fe, Cu, Al) surfaces which occurs through the π system of the AQ functional group.

  19. Lysosomal membrane permeabilization: Carbon nanohorn-induced reactive oxygen species generation and toxicity by this neglected mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Mei, E-mail: happy_deercn@163.com; Zhang, Minfang; Tahara, Yoshio

    2014-10-01

    Understanding the molecular mechanisms responsible for the cytotoxic effects of carbon nanomaterials is important for their future biomedical applications. Carbon nanotubular materials induce the generation of reactive oxygen species (ROS), which causes cell death; however, the exact details of this process are still unclear. Here, we identify a mechanism of ROS generation that is involved in the apoptosis of RAW264.7 macrophages caused by excess uptake of carbon nanohorns (CNHs), a typical type of carbon nanotubule. CNH accumulated in the lysosomes, where they induced lysosomal membrane permeabilization (LMP) and the subsequent release of lysosomal proteases, such as cathepsins, which in turnmore » caused mitochondrial dysfunction and triggered the generation of ROS in the mitochondria. The nicotinamide adenine dinucleotide phosphate oxidase was not directly involved in CNH-related ROS production, and the ROS generation cannot be regulated by mitochondrial electron transport chain. ROS fed back to amplify the mitochondrial dysfunction, leading to the subsequent activation of caspases and cell apoptosis. Carbon nanotubules commonly accumulate in the lysosomes after internalization in cells; however, lysosomal dysfunction has not attracted much attention in toxicity studies of these materials. These results suggest that LMP, a neglected mechanism, may be the primary reason for carbon nanotubule toxicity. - Highlights: • We clarify an apoptotic mechanism of RAW264.7 cells caused by carbon nanohorns. • In the meantime, the mechanism of CNH-induced ROS generation is identified. • LMP is the initial factor of CNH-induced ROS generation and cell death. • Cathepsins work as mediators that connect LMP and mitochondrial dysfunction.« less

  20. Supercritical fluid extraction and ultra performance liquid chromatography of respiratory quinones for microbial community analysis in environmental and biological samples.

    PubMed

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-03-05

    Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE) and ultra performance liquid chromatography (UPLC) method for the analysis of bacterial respiratory quinones (RQ) in environmental and biological samples. RQ profile analysis is one of the most widely used culture-independent tools for characterizing microbial community structure. A UPLC equipped with a photo diode array (PDA) detector was successfully applied to the simultaneous determination of ubiquinones (UQ) and menaquinones (MK) without tedious pretreatment. Supercritical carbon dioxide (scCO(2)) extraction with the solid-phase cartridge trap proved to be a more effective and rapid method for extracting respiratory quinones, compared to a conventional organic solvent extraction method. This methodology leads to a successful analytical procedure that involves a significant reduction in the complexity and sample preparation time. Application of the optimized methodology to characterize microbial communities based on the RQ profile was demonstrated for a variety of environmental samples (activated sludge, digested sludge, and compost) and biological samples (swine and Japanese quail feces).

  1. A range of newly developed mobile generators to dynamically produce SI-traceable reference gas mixtures for reactive compounds at atmospheric concentrations

    NASA Astrophysics Data System (ADS)

    Leuenberger, Daiana; Pascale, Céline; Guillevic, Myriam; Ackermann, Andreas; Niederhauser, Bernhard

    2017-04-01

    Three new mobile facilities have been developed at METAS to dynamically generate SI-traceable reference gas mixtures for a variety of reactive compounds at atmospheric amount of substance fractions and at very low levels of uncertainty (Ux < 3%). We present three new portable "Reactive Gas Standard ReGaS" reference gas generators for the realisation of the following substances: ReGaS1: Ammonia and nitrogen dioxide in the nmol/mol (ppb) range ReGaS2: Volatile organic compounds (VOCs), e.g. limonene, alpha-pinene, MVK, MEK in the nmol/mol (ppb) range ReGaS-3: Fluorinated gases (F-gases, i.e. containing fluorine atoms) in the pmol/mol (ppt) range These three mobile generators have been designed and manufactured at METAS in the framework of the three EMRP projects MetNH3, KEY-VOCs and HIGHGAS. The method is based on permeation and subsequent dynamic dilution: A permeation tube containing the pure substance (e.g. NH3) is stored in the permeation chamber at constant temperature, pressure and matrix gas flow (N2, purified air, synthetic air). Under such conditions the pure substance permeates at constant rate into the matrix gas and can be diluted thereafter to the desired amount fractions in one or two subsequent steps. The permeation rate (mass loss over time) of the permeation tube is precisely calibrated in a fully traceable magnetic suspension balance. The carrier gas is previously purified from the compounds of interest using commercially available purification cartridges. The permeation chambers of ReGaS2 and ReGaS3 have multiple individual cells allowing for the generation of mixtures containing up to 5 different components if required. ReGaS1 allows for the generation of one-component mixtures only. These primary mixtures are then diluted to the required amount of substance fractions using thermal mass flow controllers for full flexibility and adaptability of the generation process over the entire range of possible concentrations. In order to considerably reduce

  2. Nucleic acid reactivity: challenges for next-generation semiempirical quantum models.

    PubMed

    Huang, Ming; Giese, Timothy J; York, Darrin M

    2015-07-05

    Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical (QM)/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity to quantify their limitations and guide the development of next-generation quantum models with improved accuracy. Neglect of diatomic differential overlap and self-consistent density-functional tight-binding semiempirical models are evaluated against high-level QM benchmark calculations for seven biologically important datasets. The datasets include: proton affinities, polarizabilities, nucleobase dimer interactions, dimethyl phosphate anion, nucleoside sugar and glycosidic torsion conformations, and RNA phosphoryl transfer model reactions. As an additional baseline, comparisons are made with several commonly used density-functional models, including M062X and B3LYP (in some cases with dispersion corrections). The results show that, among the semiempirical models examined, the AM1/d-PhoT model is the most robust at predicting proton affinities. AM1/d-PhoT and DFTB3-3ob/OPhyd reproduce the MP2 potential energy surfaces of 6 associative RNA phosphoryl transfer model reactions reasonably well. Further, a recently developed linear-scaling "modified divide-and-conquer" model exhibits the most accurate results for binding energies of both hydrogen bonded and stacked nucleobase dimers. The semiempirical models considered here are shown to underestimate the isotropic polarizabilities of neutral molecules by approximately 30%. The semiempirical models also fail to adequately describe torsion profiles for the dimethyl phosphate anion, the nucleoside sugar ring puckers, and the rotations about the nucleoside glycosidic bond. The modeling of pentavalent phosphorus, particularly with thio substitutions often used experimentally as mechanistic

  3. Nucleic acid reactivity : challenges for next-generation semiempirical quantum models

    PubMed Central

    Huang, Ming; Giese, Timothy J.; York, Darrin M.

    2016-01-01

    Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity in order to quantify their limitations and guide the development of next-generation quantum models with improved accuracy. Neglect of diatomic diffierential overlap (NDDO) and self-consistent density-functional tight-binding (SCC-DFTB) semiempirical models are evaluated against high-level quantum mechanical benchmark calculations for seven biologically important data sets. The data sets include: proton affinities, polarizabilities, nucleobase dimer interactions, dimethyl phosphate anion, nucleoside sugar and glycosidic torsion conformations, and RNA phosphoryl transfer model reactions. As an additional baseline, comparisons are made with several commonly used density-functional models, including M062X and B3LYP (in some cases with dispersion corrections). The results show that, among the semiempirical models examined, the AM1/d-PhoT model is the most robust at predicting proton affinities. AM1/d-PhoT and DFTB3-3ob/OPhyd reproduce the MP2 potential energy surfaces of 6 associative RNA phosphoryl transfer model reactions reasonably well. Further, a recently developed linear-scaling “modified divide-and-conquer” model exhibits the most accurate results for binding energies of both hydrogen bonded and stacked nucleobase dimers. The semiempirical models considered here are shown to underestimate the isotropic polarizabilities of neutral molecules by approximately 30%. The semiempirical models also fail to adequately describe torsion profiles within the dimethyl phosphate anion, the nucleoside sugar ring puckers, and the rotations about the nucleoside glycosidic bond. The modeling of pentavalent phosphorus, particularly with thio

  4. Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Goodarzi, M.; Moosavi-Movahedi, A. A.; Habibi-Rezaei, M.; Shourian, M.; Ghourchian, H.; Ahmad, F.; Farhadi, M.; Saboury, A. A.; Sheibani, N.

    2014-09-01

    Protein glycation is a cascade of nonenzymatic reactions between reducing sugars and amino groups of proteins. It is referred to as fructation when the reducing monosaccharide is fructose. Some potential mechanisms have been suggested for the generation of reactive oxygen species (ROS) by protein glycation reactions in the presence of glucose. In this state, glucose autoxidation, ketoamine, and oxidative advance glycation end products (AGEs) formation are considered as major sources of ROS and perhaps heme degradation during hemoglobin glycation. However, whether fructose mediated glycation produces ROS and heme degradation is unknown. Here we report that ROS (H2O2) production occurred during hemoglobin fructation in vitro using chemiluminescence methods. The enhanced heme exposure and degradation were determined using UV-Vis and fluorescence spectrophotometry. Following accumulation of ROS, heme degradation products were accumulated reaching a plateau along with the detected ROS. Thus, fructose may make a significant contribution to the production of ROS, glycation of proteins, and heme degradation during diabetes.

  5. Borylnitrenes: electrophilic reactive intermediates with high reactivity towards C-H bonds.

    PubMed

    Bettinger, Holger F; Filthaus, Matthias

    2010-12-21

    Borylnitrenes (catBN 3a and pinBN 3b; cat = catecholato, pin = pinacolato) are reactive intermediates that show high tendency towards insertion into the C-H bonds of unactivated hydrocarbons. The present article summarizes the matrix isolation investigations that were aimed at identifying, characterizing and investigating the chemical behaviour of 3a by spectroscopic means, and of the experiments in solution and in the gas phase that were performed with 3b. Comparison with the reactivity reported for difluorovinylidene 1a in solid argon indicates that 3a shows by and large similar reactivity, but only after photochemical excitation. The derivative 3b inserts into the C-H bonds of hydrocarbon solvents in high yields and thus allows the formation of primary amines, secondary amines, or amides from "unreactive" hydrocarbons. It can also be used for generation of methylamine or methylamide from methane in the gas phase at room temperature. Remaining challenges in the chemistry of borylnitrenes are briefly summarized.

  6. Metabolic activation of 4-hydroxyanisole by isolated rat hepatocytes.

    PubMed

    Moridani, M Y; Cheon, S S; Khan, S; O'Brien, P J

    2002-10-01

    A tyrosinase-directed therapeutic approach for treating malignant melanoma uses depigmenting phenolic prodrugs such as 4-hydroxyanisole (4-HA) for oxidation by melanoma tyrosinase to form cytotoxic o-quinones. However, in a recent clinical trial, both renal and hepatic toxicity were reported as side effects of 4-HA therapy. In the following, 4-HA (200 mg/kg i.p.) administered to mice caused a 7-fold increase in plasma transaminase toxicity, an indication of liver toxicity. Furthermore, 4-HA induced-cytotoxicity toward isolated hepatocytes was preceded by glutathione (GSH) depletion, which was prevented by cytochrome p450 inhibitors that also partly prevented cytotoxicity. The 4-HA metabolite formed by NADPH/microsomes and GSH was identified as a hydroquinone mono-glutathione conjugate. GSH-depleted hepatocytes were much more prone to cytotoxicity induced by 4-HA or its reactive metabolite hydroquinone (HQ). Dicumarol (an NAD(P)H/quinone oxidoreductase inhibitor) also potentiated 4-HA- or HQ-induced toxicity whereas sorbitol, an NADH-generating nutrient, prevented the cytotoxicity. Ethylenediamine (an o-quinone trap) did not prevent 4-HA-induced cytotoxicity, which suggests that the cytotoxicity was not caused by o-quinone as a result of 4-HA ring hydroxylation. Deferoxamine and the antioxidant pyrogallol/4-hydroxy-2,2,6,6-tetramethylpiperidene-1-oxyl (TEMPOL) did not prevent 4-HA-induced cytotoxicity, therefore excluding oxidative stress as a cytotoxic mechanism for 4-HA. A negligible amount of formaldehyde was formed when 4-HA was incubated with rat microsomal/NADPH. These results suggest that the 4-HA cytotoxic mechanism involves alkylation of cellular proteins by 4-HA epoxide or p-quinone rather than involving oxidative stress.

  7. PKCα promotes generation of reactive oxygen species via DUOX2 in hepatocellular carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiajun; Shao, Miaomiao; Liu, Min

    2015-08-07

    Hepatocellular carcinoma (HCC) remains the second leading cause of cancer-related death worldwide, and elevated rates of reactive oxygen species (ROS) have long been considered as a hallmark of almost all types of cancer including HCC. Protein kinase C alpha (PKCα), a serine/threonine kinase among conventional PKC family, is recognized as a major player in signal transduction and tumor progression. Overexpression of PKCα is commonly observed in human HCC and associated with its poor prognosis. However, how PKCα is involved in hepatocellular carcinogenesis remains not fully understood. In this study, we found that among the members of conventional PKC family, PKCα,more » but not PKCβI or βII, promoted ROS production in HCC cells. PKCα stimulated generation of ROS by up-regulating DUOX2 at post-transcriptional level. Depletion of DUOX2 abrogated PKCα-induced activation of AKT/MAPK pathways as well as cell proliferation, migration and invasion in HCC cells. Moreover, the expression of DUOX2 and PKCα was well positively correlated in both HCC cell lines and patient samples. Collectively, our findings demonstrate that PKCα plays a critical role in HCC development by inducing DUOX2 expression and ROS generation, and propose a strategy to target PKCα/DUOX2 as a potential adjuvant therapy for HCC treatment. - Highlights: • PKCα promotes the generation of ROS in hepatocellular carcinoma. • PKCα induces ROS production by up-regulating DUOX2 at post-transcriptional level. • DUOX2 is required for PKCα-induced AKT/MAPK activation and tumor progression in HCC. • The expression of PKCα is positively correlated with DUOX2 in HCC.« less

  8. Sepiapterin Reductase Mediates Chemical Redox Cycling in Lung Epithelial Cells*

    PubMed Central

    Yang, Shaojun; Jan, Yi-Hua; Gray, Joshua P.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2013-01-01

    In the lung, chemical redox cycling generates highly toxic reactive oxygen species that can cause alveolar inflammation and damage to the epithelium, as well as fibrosis. In this study, we identified a cytosolic NADPH-dependent redox cycling activity in mouse lung epithelial cells as sepiapterin reductase (SPR), an enzyme important for the biosynthesis of tetrahydrobiopterin. Human SPR was cloned and characterized. In addition to reducing sepiapterin, SPR mediated chemical redox cycling of bipyridinium herbicides and various quinones; this activity was greatest for 1,2-naphthoquinone followed by 9,10-phenanthrenequinone, 1,4-naphthoquinone, menadione, and 2,3-dimethyl-1,4-naphthoquinone. Whereas redox cycling chemicals inhibited sepiapterin reduction, sepiapterin had no effect on redox cycling. Additionally, inhibitors such as dicoumarol, N-acetylserotonin, and indomethacin blocked sepiapterin reduction, with no effect on redox cycling. Non-redox cycling quinones, including benzoquinone and phenylquinone, were competitive inhibitors of sepiapterin reduction but noncompetitive redox cycling inhibitors. Site-directed mutagenesis of the SPR C-terminal substrate-binding site (D257H) completely inhibited sepiapterin reduction but had minimal effects on redox cycling. These data indicate that SPR-mediated reduction of sepiapterin and redox cycling occur by distinct mechanisms. The identification of SPR as a key enzyme mediating chemical redox cycling suggests that it may be important in generating cytotoxic reactive oxygen species in the lung. This activity, together with inhibition of sepiapterin reduction by redox-active chemicals and consequent deficiencies in tetrahydrobiopterin, may contribute to tissue injury. PMID:23640889

  9. Collapse of the native structure caused by a single amino acid exchange in human NAD(P)H:quinone oxidoreductase(1.).

    PubMed

    Lienhart, Wolf-Dieter; Gudipati, Venugopal; Uhl, Michael K; Binter, Alexandra; Pulido, Sergio A; Saf, Robert; Zangger, Klaus; Gruber, Karl; Macheroux, Peter

    2014-10-01

    Human quinone oxidoreductase 1 (NQO1) is essential for the antioxidant defense system, stabilization of tumor suppressors (e.g. p53, p33, and p73), and activation of quinone-based chemotherapeutics. Overexpression of NQO1 in many solid tumors, coupled with its ability to convert quinone-based chemotherapeutics into potent cytotoxic compounds, have made it a very attractive target for anticancer drugs. A naturally occurring single-nucleotide polymorphism (C609T) leading to an amino acid exchange (P187S) has been implicated in the development of various cancers and poor survival rates following anthracyclin-based adjuvant chemotherapy. Despite its importance for cancer prediction and therapy, the exact molecular basis for the loss of function in NQO1 P187S is currently unknown. Therefore, we solved the crystal structure of NQO1 P187S. Surprisingly, this structure is almost identical to NQO1. Employing a combination of NMR spectroscopy and limited proteolysis experiments, we demonstrated that the single amino acid exchange destabilized interactions between the core and C-terminus, leading to depopulation of the native structure in solution. This collapse of the native structure diminished cofactor affinity and led to a less competent FAD-binding pocket, thus severely compromising the catalytic capacity of the variant protein. Hence, our findings provide a rationale for the loss of function in NQO1 P187S with a frequently occurring single-nucleotide polymorphism. Structural data are available in the Protein Data Bank under the accession numbers 4cet (P187S variant with dicoumarol) and 4cf6 (P187S variant with Cibacron blue). NQO1 P187S and NQO1 P187S bind by nuclear magnetic resonance (View interaction) NQO1 P187S and NQO1 P187S bind by x-ray crystallography (1, 2) NQO1 and NQO1 bind by molecular sieving (1, 2). © 2014 The Authors. FEBS Journal published by John Wiley & Sons Ltd on behalf of FEBS.

  10. Resveratrol induced inhibition of Escherichia coli proceeds via membrane oxidation and independent of diffusible reactive oxygen species generation.

    PubMed

    Subramanian, Mahesh; Goswami, Manish; Chakraborty, Saikat; Jawali, Narendra

    2014-01-01

    Resveratrol (5-[(E)-2-(4-hydroxyphenyl)ethenyl]benzene-1,3-diol), a redox active phytoalexin with a large number of beneficial activities is also known for antibacterial property. However the mechanism of action of resveratrol against bacteria remains unknown. Due to its extensive redox property it was envisaged if reactive oxygen species (ROS) generation by resveratrol could be a reason behind its antibacterial activity. Employing Escherichia coli as a model organism we have evaluated the role of diffusible reactive oxygen species in the events leading to inhibition of this organism by resveratrol. Evidence for the role of ROS in E. coli treated with resveratrol was investigated by direct quantification of ROS by flow cytometry, supplementation with ROS scavengers, depletion of intracellular glutathione, employing mutants devoid of enzymatic antioxidant defences, induction of adaptive response prior to resveratrol challenge and monitoring oxidative stress response elements oxyR, soxS and soxR upon resveratrol treatment. Resveratrol treatment did not result in scavengable ROS generation in E. coli cells. However, evidence towards membrane damage was obtained by potassium leakage (atomic absorption spectrometry) and propidium iodide uptake (flow cytometry and microscopy) as an early event. Based on the comprehensive evidences this study concludes for the first time the antibacterial property of resveratrol against E. coli does not progress via the diffusible ROS but is mediated by site-specific oxidative damage to the cell membrane as the primary event.

  11. Resveratrol induced inhibition of Escherichia coli proceeds via membrane oxidation and independent of diffusible reactive oxygen species generation

    PubMed Central

    Subramanian, Mahesh; Goswami, Manish; Chakraborty, Saikat; Jawali, Narendra

    2014-01-01

    Resveratrol (5-[(E)-2-(4-hydroxyphenyl)ethenyl]benzene-1,3-diol), a redox active phytoalexin with a large number of beneficial activities is also known for antibacterial property. However the mechanism of action of resveratrol against bacteria remains unknown. Due to its extensive redox property it was envisaged if reactive oxygen species (ROS) generation by resveratrol could be a reason behind its antibacterial activity. Employing Escherichia coli as a model organism we have evaluated the role of diffusible reactive oxygen species in the events leading to inhibition of this organism by resveratrol. Evidence for the role of ROS in E. coli treated with resveratrol was investigated by direct quantification of ROS by flow cytometry, supplementation with ROS scavengers, depletion of intracellular glutathione, employing mutants devoid of enzymatic antioxidant defences, induction of adaptive response prior to resveratrol challenge and monitoring oxidative stress response elements oxyR, soxS and soxR upon resveratrol treatment. Resveratrol treatment did not result in scavengable ROS generation in E. coli cells. However, evidence towards membrane damage was obtained by potassium leakage (atomic absorption spectrometry) and propidium iodide uptake (flow cytometry and microscopy) as an early event. Based on the comprehensive evidences this study concludes for the first time the antibacterial property of resveratrol against E. coli does not progress via the diffusible ROS but is mediated by site-specific oxidative damage to the cell membrane as the primary event. PMID:25009788

  12. Biosynthesis of pyrroloquinoline quinone. 1. Identification of biosynthetic precursors using /sup 13/C labeling and NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houck, D.R.; Hanners, J.L.; Unkefer, C.J.

    The biosynthesis of pyrroloquinoline quinone (PQQ) in the methylotropic bacterium methylobacterium AM1 has been investigated using /sup 13/C-labelling of the products and NMR spectroscopy. The data indicated that the quinoline portion of PQQ is formed by a novel condensation of N-1, C-2, -3, and -4 of glutamate with a symmetrical six-carbon ring derived from the shikimate pathway. It is postulated that tyrosine is the shikimate-derived percursor, since pyrrole could be formed by the internal cyclization of the amino acid backbone. 18 references, 2 figures, 2 tables.

  13. [Induction of NAD(P)H: quinone reductase by anticarcinogenic ingredients of tea].

    PubMed

    Qi, L; Han, C

    1998-09-30

    By assaying the activity of NAD(P)H: quinone reductase (QR) in Hep G2 cells exposed to inducing agents, a variety of ingredients in tea, we compared their abilities on inducing QR and preventing cancer. The results showed that tea polyphenols, tea pigments and mixed tea were all able to induce the activity of QR significantly. The single-component ingredients of tea polyphenols and tea pigments, including thearubigens, EGCG and ECG, also enhanced the activity of QR. But EGC, EC, theaflavins, tea polysaccharide and tea caffeine, showed no apparent induction of QR. We found that among those tea ingredients studied, the multi-component ingredients were more effective than the single-component ones. So we thought that the abilities of antioxidation and cancer prevention of tea depended on the combined effects of several kinds of active ingredients, which mainly include tea polyphenols and tea pigments.

  14. NADPH Oxidase Plays a Role on Ethanol-Induced Hypertension and Reactive Oxygen Species Generation in the Vasculature.

    PubMed

    Marchi, Katia Colombo; Ceron, Carla Speroni; Muniz, Jaqueline J; De Martinis, Bruno S; Tanus-Santos, José E; Tirapelli, Carlos Renato

    2016-09-01

    Investigate the role of NADPH oxidase on ethanol-induced hypertension and vascular oxidative stress. Male Wistar rats were treated with ethanol (20% v/v). Apocynin (10 mg/kg/day, i.p.) prevented ethanol-induced hypertension. The increased contractility of endothelium-intact and endothelium-denuded aortic rings from ethanol-treated rats to phenylephrine was prevented by apocynin. Ethanol consumption increased superoxide anion (O2 (-)) generation and lipid peroxidation and apocynin prevented these responses. The decrease on plasma and vascular nitrate/nitrite (NOx) levels induced by ethanol was not prevented by apocynin. Treatment with ethanol did not affect aortic levels of hydrogen peroxide (H2O2) or reduced glutathione (GSH). Ethanol did not alter the activities of xanthine oxidase (XO), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Ethanol increased the expression of Nox1, PKCδ, nNOS, SAPK/JNK and SOD2 in the rat aorta and apocynin prevented these responses. No difference on aortic expression of Nox2, Nox4, p47phox, Nox organizer 1 (Noxo1), eNOS and iNOS was detected after treatment with ethanol. Ethanol treatment did not alter the phosphorylation of SAPK/JNK, p38MAPK, c-Src, Rac1 or PKCδ. The major new finding of our study is that the increased vascular generation of reactive oxygen species (ROS) induced by ethanol is related to increased vascular Nox1/NADPH oxidase expression. This mechanism is involved in vascular dysfunction and hypertension induced by ethanol. Additionally, we conclude that ethanol consumption induces the expression of different proteins that regulate vascular contraction and growth and that NADPH oxidase-derived ROS play a role in such response. The key findings of our study are that ethanol-induced hypertension is mediated by NADPH oxidase. Moreover, increased vascular Nox1 expression is related to the generation of reactive oxygen species (ROS) by ethanol. Finally, ROS induced by ethanol increase the

  15. Variation in structure of proteins by adjusting reactive oxygen and nitrogen species generated from dielectric barrier discharge jet

    NASA Astrophysics Data System (ADS)

    Park, Ji Hoon; Kim, Minsup; Shiratani, Masaharu; Cho, Art. E.; Choi, Eun Ha; Attri, Pankaj

    2016-10-01

    Over the last few years, the variation in liquid chemistry due to the development of radicals generated by cold atmospheric plasma (CAP) has played an important role in plasma medicine. CAP direct treatment or CAP activated media treatment in cancer cells shows promising anticancer activity for both in vivo and in vitro studies. However, the anticancer activity or antimicrobial activity varies between plasma devices due to the different abilities among plasma devices to generate the reactive oxygen and nitrogen species (RONS) at different ratios and in different concentrations. While the generation of RONS depends on many factors, the feeding gas plays the most important role among the factors. Hence, in this study we used different compositions of feeding gas while fixing all other plasma characteristics. We used Ar, Ar-O2 (at different ratios), and Ar-N2 (at different ratios) as the working gases for CAP and investigated the structural changes in proteins (Hemoglobin (Hb) and Myoglobin (Mb)). We then analyzed the influence of RONS generated in liquid on the conformations of proteins. Additionally, to determine the influence of H2O2 on the Hb and Mb structures, we used molecular dynamic simulation.

  16. Identifying involvement of Lys251/Asp252 pair in electron transfer and associated proton transfer at the quinone reduction site of Rhodobacter capsulatus cytochrome bc1.

    PubMed

    Kuleta, Patryk; Sarewicz, Marcin; Postila, Pekka; Róg, Tomasz; Osyczka, Artur

    2016-10-01

    Describing dynamics of proton transfers in proteins is challenging, but crucial for understanding processes which use them for biological functions. In cytochrome bc1, one of the key enzymes of respiration or photosynthesis, proton transfers engage in oxidation of quinol (QH2) and reduction of quinone (Q) taking place at two distinct catalytic sites. Here we evaluated by site-directed mutagenesis the contribution of Lys251/Asp252 pair (bacterial numbering) in electron transfers and associated with it proton uptake to the quinone reduction site (Qi site). We showed that the absence of protonable group at position 251 or 252 significantly changes the equilibrium levels of electronic reactions including the Qi-site mediated oxidation of heme bH, reverse reduction of heme bH by quinol and heme bH/Qi semiquinone equilibrium. This implicates the role of H-bonding network in binding of quinone/semiquinone and defining thermodynamic properties of Q/SQ/QH2 triad. The Lys251/Asp252 proton path is disabled only when both protonable groups are removed. With just one protonable residue from this pair, the entrance of protons to the catalytic site is sustained, albeit at lower rates, indicating that protons can travel through parallel routes, possibly involving water molecules. This shows that proton paths display engineering tolerance for change as long as all the elements available for functional cooperation secure efficient proton delivery to the catalytic site. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chu-Cheng; Lin, Chuan-En; Lin, Yueh-Chien

    2013-11-01

    Highlights: •LPA induces ROS generation through LPA{sub 1} and LPA{sub 3}. •LPA induces ROS generation by activating PLC. •PKCζ mediates LPA-induced ROS generation. -- Abstract: Prostate cancer is one of the most frequently diagnosed cancers in males, and PC-3 is a cell model popularly used for investigating the behavior of late stage prostate cancer. Lysophosphatidic acid (LPA) is a lysophospholipid that mediates multiple behaviors in cancer cells, such as proliferation, migration and adhesion. We have previously demonstrated that LPA enhances vascular endothelial growth factor (VEGF)-C expression in PC-3 cells by activating the generation of reactive oxygen species (ROS), which ismore » known to be an important mediator in cancer progression. Using flow cytometry, we showed that LPA triggers ROS generation within 10 min and that the generated ROS can be suppressed by pretreatment with the NADPH oxidase (Nox) inhibitor diphenylene iodonium. In addition, transfection with LPA{sub 1} and LPA{sub 3} siRNA efficiently blocked LPA-induced ROS production, suggesting that both receptors are involved in this pathway. Using specific inhibitors and siRNA, phospholipase C (PLC) and protein kinase C (PKC) were also suggested to participate in LPA-induced ROS generation. Overall, we demonstrated that LPA induces ROS generation in PC-3 prostate cancer cells and this is mediated through the PLC/PKC/Nox pathway.« less

  18. Anti-inflammatory and Quinone Reductase Inducing Compounds from Fermented Noni (Morinda citrifolia) Juice Exudates.

    PubMed

    Youn, Ui Joung; Park, Eun-Jung; Kondratyuk, Tamara P; Sang-Ngern, Mayuramas; Wall, Marisa M; Wei, Yanzhang; Pezzuto, John M; Chang, Leng Chee

    2016-06-24

    A new fatty acid ester disaccharide, 2-O-(β-d-glucopyranosyl)-1-O-(2E,4Z,7Z)-deca-2,4,7-trienoyl-β-d-glucopyranose (1), a new ascorbic acid derivative, 2-caffeoyl-3-ketohexulofuranosonic acid γ-lactone (2), and a new iridoid glycoside, 10-dimethoxyfermiloside (3), were isolated along with 13 known compounds (4-16) from fermented noni fruit juice (Morinda citrifolia). The structures of the new compounds, together with 4 and 5, were determined by 1D and 2D NMR experiments, as well as comparison with published values. Compounds 2 and 7 showed moderate inhibitory activities in a TNF-α-induced NF-κB assay, and compounds 4 and 6 exhibited considerable quinone reductase-1 (QR1) inducing effects.

  19. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract

    NASA Astrophysics Data System (ADS)

    Lakey, Pascale S. J.; Berkemeier, Thomas; Tong, Haijie; Arangio, Andrea M.; Lucas, Kurt; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-09-01

    Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air.

  20. Dynein-ADP as a force-generating intermediate revealed by a rapid reactivation of flagellar axoneme.

    PubMed Central

    Tani, T; Kamimura, S

    1999-01-01

    Fragmented flagellar axonemes of sand dollar spermatozoa were reactivated by rapid photolysis of caged ATP. After a time lag of 10 ms, axonemes treated with protease started sliding disintegration. Axonemes without protease digestion started nanometer-scale high-frequency oscillation after a similar time lag. Force development in the sliding disintegration was measured with a flexible glass needle and its time course was corresponded well to that of the dynein-ADP intermediate production estimated using kinetic rates previously reported. However, with a high concentration ( approximately 80 microM) of vanadate, which binds to the dynein-ADP intermediate and forms a stable complex of dynein-ADP-vanadate, the time course of force development in sliding disintegration was not affected at all. In the case of high frequency oscillation, the time lag to start the oscillation, the initial amplitude, and the initial frequency were not affected by vanadate, though the oscillation once started was damped more quickly at higher concentrations of vanadate. These results suggest that during the initial turnover of ATP hydrolysis, force generation of dynein is not blocked by vanadate. A vanadate-insensitive dynein-ADP is postulated as a force-generating intermediate. PMID:10465762

  1. Surface functionalization of titanium dioxide nanoparticles: Photo-stability and reactive oxygen species (ROS) generation

    NASA Astrophysics Data System (ADS)

    Louis, Kacie M.

    Metal oxide nanoparticles are becoming increasingly prevalent in society for applications of sunscreens, cosmetics, paints, biomedical imaging, and photovoltaics. Due to the increased surface area to volume ratio of nanoparticles compared to bulk materials, it is important to know the health and safety impacts of these materials. One mechanism of toxicity of nominally "safe" materials such as TiO 2 is through the photocatalytic generation of reactive oxygen species (ROS). ROS production and ligand degradation can affect the bioavailability of these particles in aqueous organisms. We have investigated ROS generation by functionalized TiO2 nanoparticles and its influence on aggregation and bioavailability and toxicity to zebrafish embryos/larvae. For these studies we investigated anatase TiO2 nanoparticles. For application purposes and solution stability, the TiO2 nanoparticles were functionalized with a variety of ligands such as citrate, 3,4-dihydroxybenzaldehyde, and ascorbate. We quantitatively examined the amount of ROS produced in aqueous solution using fluorescent probes and see that more ROS is produced under UV light than in the dark control. Our measurements show that TiO2 toxicity reaches a maximum for nanoparticles with smaller diameters, and is correlated with surface area dependent changes in ROS generation. In an effort to reduce toxicity through control of the surface and surface ligands, we synthesized anatase nanoparticles of different sizes, functionalized them with different ligands, and examined the resulting ROS generation and ligand stability. Using a modular ligand containing a hydrophobic inner region and a hydrophilic outer region, we synthesized water-stable nanoparticles, via two different chemical reactions, having much-reduced ROS generation and thus reduced toxicity. These results suggest new strategies for making safer nanoparticles while still retaining their desired properties. We also examine the degradation of the different ligands

  2. γ-Tocotrienol prevents 5-FU-induced reactive oxygen species production in human oral keratinocytes through the stabilization of 5-FU-induced activation of Nrf2.

    PubMed

    Takano, Hideyuki; Momota, Yukihiro; Kani, Kouichi; Aota, Keiko; Yamamura, Yoshiko; Yamanoi, Tomoko; Azuma, Masayuki

    2015-04-01

    Chemotherapy-induced oral mucositis is a common adverse event in patients with oral squamous cell carcinoma, and is initiated through a variety of mechanisms, including the generation of reactive oxygen species (ROS). In this study, we examined the preventive effect of γ-tocotrienol on the 5-FU-induced ROS production in human oral keratinocytes (RT7). We treated RT7 cells with 5-FU and γ-tocotrienol at concentrations of 10 µg/ml and 10 nM, respectively. When cells were treated with 5-FU alone, significant growth inhibition was observed as compared to untreated cells. This inhibition was, in part, due to the ROS gene-rated by 5-FU treatment, because N-acetyl cysteine (NAC), a ROS scavenger, significantly ameliorated the growth of RT7 cells. γ-tocotrienol showed no cytotoxic effect on the growth of RT7 cells. Simultaneous treatment of cells with these agents resulted in the significant recovery of cell growth, owing to the suppression of ROS generation by γ-tocotrienol. Whereas 5-FU stimulated the expression of NF-E2-related factor 2 (Nrf2) protein in the nucleus up to 12 h after treatment of RT7 cells, γ-tocotrienol had no obvious effect on the expression of nuclear Nrf2 protein. Of note, the combined treatment with both agents stabilized the 5-FU-induced nuclear Nrf2 protein expression until 24 h after treatment. In addition, expression of Nrf2-dependent antioxidant genes, such as heme oxygenase-1 (HO-1) and quinone oxidoreductase-1 (NQO-1), was significantly augmented by treatment of cells with both agents. These findings suggest that γ-tocotrienol could prevent 5-FU-induced ROS generation by stabilizing Nrf2 activation, thereby leading to ROS detoxification and cell survival in human oral keratinocytes.

  3. γ-tocotrienol prevents 5-FU-induced reactive oxygen species production in human oral keratinocytes through the stabilization of 5-FU-induced activation of Nrf2

    PubMed Central

    TAKANO, HIDEYUKI; MOMOTA, YUKIHIRO; KANI, KOUICHI; AOTA, KEIKO; YAMAMURA, YOSHIKO; YAMANOI, TOMOKO; AZUMA, MASAYUKI

    2015-01-01

    Chemotherapy-induced oral mucositis is a common adverse event in patients with oral squamous cell carcinoma, and is initiated through a variety of mechanisms, including the generation of reactive oxygen species (ROS). In this study, we examined the preventive effect of γ-tocotrienol on the 5-FU-induced ROS production in human oral keratinocytes (RT7). We treated RT7 cells with 5-FU and γ-tocotrienol at concentrations of 10 μg/ml and 10 nM, respectively. When cells were treated with 5-FU alone, significant growth inhibition was observed as compared to untreated cells. This inhibition was, in part, due to the ROS generated by 5-FU treatment, because N-acetyl cysteine (NAC), a ROS scavenger, significantly ameliorated the growth of RT7 cells. γ-tocotrienol showed no cytotoxic effect on the growth of RT7 cells. Simultaneous treatment of cells with these agents resulted in the significant recovery of cell growth, owing to the suppression of ROS generation by γ-tocotrienol. Whereas 5-FU stimulated the expression of NF-E2-related factor 2 (Nrf2) protein in the nucleus up to 12 h after treatment of RT7 cells, γ-tocotrienol had no obvious effect on the expression of nuclear Nrf2 protein. Of note, the combined treatment with both agents stabilized the 5-FU-induced nuclear Nrf2 protein expression until 24 h after treatment. In addition, expression of Nrf2-dependent antioxidant genes, such as heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase-1 (NQO-1), was significantly augmented by treatment of cells with both agents. These findings suggest that γ-tocotrienol could prevent 5-FU-induced ROS generation by stabilizing Nrf2 activation, thereby leading to ROS detoxification and cell survival in human oral keratinocytes. PMID:25625649

  4. Suppression of experimental cerebral malaria by disruption of malate:quinone oxidoreductase.

    PubMed

    Niikura, Mamoru; Komatsuya, Keisuke; Inoue, Shin-Ichi; Matsuda, Risa; Asahi, Hiroko; Inaoka, Daniel Ken; Kita, Kiyoshi; Kobayashi, Fumie

    2017-06-12

    Aspartate, which is converted from oxaloacetate (OAA) by aspartate aminotransferase, is considered an important precursor for purine salvage and pyrimidine de novo biosynthesis, and is thus indispensable for the growth of Plasmodium parasites at the asexual blood stages. OAA can be produced in malaria parasites via two routes: (i) from phosphoenolpyruvate (PEP) by phosphoenolpyruvate carboxylase (PEPC) in the cytosol, or (ii) from fumarate by consecutive reactions catalyzed by fumarate hydratase (FH) and malate:quinone oxidoreductase (MQO) in the mitochondria of malaria parasites. Although PEPC-deficient Plasmodium falciparum and Plasmodium berghei (rodent malaria) parasites show a growth defect, the mutant P. berghei can still cause experimental cerebral malaria (ECM) with similar dynamics to wild-type parasites. In contrast, the importance of FH and MQO for parasite viability, growth and virulence is not fully understood because no FH- and MQO-deficient P. falciparum has been established. In this study, the role of FH and MQO in the pathogenicity of asexual-blood-stage Plasmodium parasites causing cerebral malaria was examined. First, FH- and MQO-deficient parasites were generated by inserting a luciferase-expressing cassette into the fh and mqo loci in the genome of P. berghei ANKA strain. Second, the viability of FH-deficient and MQO-deficient parasites that express luciferase was determined by measuring luciferase activity, and the effect of FH or MQO deficiency on the development of ECM was examined. While the viability of FH-deficient P. berghei was comparable to that of control parasites, MQO-deficient parasites exhibited considerably reduced viability. FH activity derived from erythrocytes was also detected. This result and the absence of phenotype in FH-deficient P. berghei parasites suggest that fumarate can be metabolized to malate by host or parasite FH in P. berghei-infected erythrocytes. Furthermore, although the growth of FH- and MQO

  5. Controlled intracellular generation of reactive oxygen species in human mesenchymal stem cells using porphyrin conjugated nanoparticles.

    PubMed

    Lavado, Andrea S; Chauhan, Veeren M; Zen, Amer Alhaj; Giuntini, Francesca; Jones, D Rhodri E; Boyle, Ross W; Beeby, Andrew; Chan, Weng C; Aylott, Jonathan W

    2015-09-14

    Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(II) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(II) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn(II) porphyrin and high numbers of irradiations of excitation light were found to generate greater amounts of ROS. A novel dye, which is transformed into fluorescent 7-hydroxy-4-trifluoromethyl-coumarin in the presence of hydrogen peroxide, provided an indirect indicator for cumulative ROS production. The mitochondrial membrane potential was monitored to investigate the destructive effect of increased intracellular ROS production. Flow cytometric analysis of nanoparticle treated hMSCs suggested irradiation with excitation light signalled controlled apoptotic cell death, rather than uncontrolled necrotic cell death. Increased intracellular ROS production did not induce phenotypic changes in hMSC subcultures.

  6. Generation of reactive oxygen species and oxidative stress in Escherichia coli and Staphylococcus aureus by a novel semiconductor catalyst

    NASA Astrophysics Data System (ADS)

    Chow, K. L.; Mak, N. K.; Wong, M. H.; Zhou, X. F.; Liang, Y.

    2011-03-01

    The objective of this study was to investigate antimicrobial mechanisms of a new catalytic material (charge transfer auto oxidation-reduction type catalyst, CT catalyst) that may have great potential for application in water/wastewater treatment. Generation of reactive oxygen species (ROS) in bacteria-free solution, induction of ROS and oxidative damage in bacteria (including E. coli and S. aureus) were examined for the CT catalyst. The results showed that significantly higher ( p < 0.05, via t-test) amount of hydroxyl radicals was generated by the CT catalyst compared with the control, particularly after 6 h of contact time that more than twice of the amount of the control was produced. The generation of ROS in the bacteria was greater under higher pH and temperature levels, which closely related with the oxidative damage in cells. The results indicated that CT catalyst induced oxidative damage in the bacteria might serve as an important mechanism interpreting the anti-microbial function of the CT catalyst.

  7. Origin of the Giant Honeycomb Network of Quinones on Cu(111)

    NASA Astrophysics Data System (ADS)

    Einstein, T. L.; Kim, Kwangmoo; Wyrick, Jon; Cheng, Zhihai; Bartels, Ludwig; Berland, Kristian; Hyldgaard, Per

    2011-03-01

    We discuss the factors that lead to the amazing regular giant honeycomb network formed by quinones on Cu(111). Using a related lattice gas model with many characteristic energies, we can reproduce many experimental features. These models require a long-range attraction, which can be attributed to indirect interactions mediated by the Shockley surface state of Cu(111). However, Wyrick's preceding talk gave evidence that the network self-selects for the size of the pore rather than for the periodicity of the superstructure, suggesting that confined states are the key ingredient. We discuss this phenomenon in terms of the magic numbers of 2D quantum dots. We also report calculations of the effects of anthraquinones (AQ) in modifying the surface states by considering a superlattice of AQ chains with various separations. We discuss implications of these results for tuning the electronic states and, thence, superstructures. Supported by (TLE) NSF CHE 07-50334 & UMD MRSEC DMR 05-20471, (JW & LB) NSF CHE NSF CHE 07-49949, (KB & PH) Swedish Vetenskapsrådet VR 621-2008-4346.

  8. Medium-dependent interactions of quinones with cytosine and cytidine: a laser flash photolysis study with magnetic field effect.

    PubMed

    Bose, Adity; Basu, Samita

    2009-03-01

    Laser flash photolysis and an external magnetic field have been used for the study of the interaction of two quinone molecules, namely, 9,10-anthraquinone (AQ) and 2-methyl 1,4-naphthoquinone (or menadione, MQ) with a DNA base, cytosine (C) and its nucleoside cytidine (dC) in two media, a homogeneous one composed of acetonitrile/water (ACN/H(2)O, 9:1, v/v) and a SDS micellar heterogeneous one. We have applied an external magnetic field for the proper identification of the transients formed during the interactions in micellar media. Cytosine exhibits electron transfer (ET) followed by hydrogen abstraction (HA) while dC reveals a reduced ET compared to C, with both quinones in organic homogeneous medium (ACN/H(2)O). Due to a higher electron affinity, AQ supports more faciler ET than MQ with dC in ACN/H(2)O but observations in SDS have been just the reverse. In SDS, ET from dC is completely quenched and a dominant HA is all that could be discerned. This work reveals two main findings: first, a drop in ET on addition of a ribose unit to C, which has been attributed to a role of keto-enol tautomerism in inducing ET from electron-rich nucleus and second, the effect of medium in controlling reaction mechanism by favoring HA with AQ although it is intrinsically more prone towards ET.

  9. Mitochondria and Reactive Oxygen Species: Physiology and Pathophysiology

    PubMed Central

    Bolisetty, Subhashini; Jaimes, Edgar A.

    2013-01-01

    The air that we breathe contains nearly 21% oxygen, most of which is utilized by mitochondria during respiration. While we cannot live without it, it was perceived as a bane to aerobic organisms due to the generation of reactive oxygen and nitrogen metabolites by mitochondria and other cellular compartments. However, this dogma was challenged when these species were demonstrated to modulate cellular responses through altering signaling pathways. In fact, since this discovery of a dichotomous role of reactive species in immune function and signal transduction, research in this field grew at an exponential pace and the pursuit for mechanisms involved began. Due to a significant number of review articles present on the reactive species mediated cell death, we have focused on emerging novel pathways such as autophagy, signaling and maintenance of the mitochondrial network. Despite its role in several processes, increased reactive species generation has been associated with the origin and pathogenesis of a plethora of diseases. While it is tempting to speculate that anti-oxidant therapy would protect against these disorders, growing evidence suggests that this may not be true. This further supports our belief that these reactive species play a fundamental role in maintenance of cellular and tissue homeostasis. PMID:23528859

  10. Generation of reactive oxygen species (ROS) is a key factor for stimulation of macrophage proliferation by ceramide 1-phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arana, Lide; Gangoiti, Patricia; Ouro, Alberto

    2012-02-15

    We previously demonstrated that ceramide 1-phosphate (C1P) is mitogenic for fibroblasts and macrophages. However, the mechanisms involved in this action were only partially described. Here, we demonstrate that C1P stimulates reactive oxygen species (ROS) formation in primary bone marrow-derived macrophages, and that ROS are required for the mitogenic effect of C1P. ROS production was dependent upon prior activation of NADPH oxidase by C1P, which was determined by measuring phosphorylation of the p40phox subunit and translocation of p47phox from the cytosol to the plasma membrane. In addition, C1P activated cytosolic calcium-dependent phospholipase A{sub 2} and protein kinase C-{alpha}, and NADPH oxidasemore » activation was blocked by selective inhibitors of these enzymes. These inhibitors, and inhibitors of ROS production, blocked the mitogenic effect of C1P. By using BHNB-C1P (a photolabile caged-C1P analog), we demonstrate that all of these C1P actions are caused by intracellular C1P. It can be concluded that the enzyme responsible for C1P-stimulated ROS generation in bone marrow-derived macrophages is NADPH oxidase, and that this enzyme is downstream of PKC-{alpha} and cPLA{sub 2}-{alpha} in this pathway. -- Highlights: Black-Right-Pointing-Pointer Ceramide 1-phosphate (C1P) stimulates reactive oxygen species (ROS) formation. Black-Right-Pointing-Pointer The enzyme responsible for ROS generation by C1P in macrophages is NADPH oxidase. Black-Right-Pointing-Pointer NADPH oxidase lies downstream of cPLA{sub 2}-{alpha} and PKC-{alpha} in this pathway. Black-Right-Pointing-Pointer ROS generation is essential for the stimulation of macrophage proliferation by C1P.« less

  11. Trapping para-Quinone Methide Intermediates with Ferrocene: Synthesis and Preliminary Biological Evaluation of New Phenol-Ferrocene Conjugates.

    PubMed

    González-Pelayo, Silvia; López, Enol; Borge, Javier; de-Los-Santos-Álvarez, Noemí; López, Luis A

    2018-06-01

    The reaction of para -hydroxybenzyl alcohols with ferrocene in the presence of a catalytic amount of InCl₃ provided ferrocenyl phenol derivatives, an interesting class of organometallic compounds with potential applications in medicinal chemistry. This transformation exhibited a reasonable substrate scope delivering the desired products in synthetically useful yields. Evidence of involvement of a para -quinone methide intermediate in this coupling process was also provided. Preliminary biological evaluation demonstrated that some of the ferrocene derivatives available by this methodology exhibit significant cytotoxicity against several cancer cell lines with IC 50 values within the range of 1.07⁻4.89 μM.

  12. Cooperation of NAD(P)H:quinone oxidoreductase 1 and UDP-glucuronosyltransferases reduces menadione cytotoxicity in HEK293 cells.

    PubMed

    Nishiyama, Takahito; Izawa, Tadashi; Usami, Mami; Ohnuma, Tomokazu; Ogura, Kenichiro; Hiratsuka, Akira

    2010-04-09

    Previous studies have shown that NAD(P)H:quinone oxidoreductase 1 (NQO1) plays an important role in the detoxification of menadione (2-methyl-1,4-naphthoquinone, also known as vitamin K3). However, menadiol (2-methyl-1,4-naphthalenediol) formed from menadione by NQO1-mediated reduction continues to be an unstable substance, which undergoes the reformation of menadione with concomitant formation of reactive oxygen species (ROS). Hence, we focused on the roles of phase II enzymes, with particular attention to UDP-glucuronosyltransferases (UGTs), in the detoxification process of menadione. In this study, we established an HEK293 cell line stably expressing NQO1 (HEK293/NQO1) and HEK293/NQO1 cell lines with doxycycline (DOX)-regulated expression of UGT1A6 (HEK293/NQO1/UGT1A6) and UGT1A10 (HEK293/NQO1/UGT1A10), and evaluated the role of NQO1 and UGTs against menadione-induced cytotoxicity. Our results differed from those of previous studies. HEK293/NQO1 was the most sensitive cell line to menadione cytotoxicity among cell lines established in this study. These phenomena were also observed in HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells in which the expression of UGT was suppressed by DOX treatment. On the contrary, HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells without DOX treatment were resistant to menadione-induced cytotoxicity. These results demonstrated that NQO1 is not a detoxification enzyme for menadione and that UGT-mediated glucuronidation of menadiol is the most important detoxification process. Copyright 2009 Elsevier Inc. All rights reserved.

  13. Influence of ionic liquid and ionic salt on protein against the reactive species generated using dielectric barrier discharge plasma.

    PubMed

    Attri, Pankaj; Sarinont, Thapanut; Kim, Minsup; Amano, Takaaki; Koga, Kazunori; Cho, Art E; Choi, Eun Ha; Shiratani, Masaharu

    2015-12-10

    The presence of salts in biological solution can affect the activity of the reactive species (RS) generated by plasma, and so they can also have an influence on the plasma-induced sterilization. In this work, we assess the influence that diethylammonium dihydrogen phosphate (DEAP), an ionic liquid (IL), and sodium chloride (NaCl), an ionic salt (IS), have on the structural changes in hemoglobin (Hb) in the presence of RS generated using dielectric barrier discharge (DBD) plasma in the presence of various gases [O2, N2, Ar, He, NO (10%) + N2 and Air]. We carry out fluorescence spectroscopy to verify the generation of (•)OH with or without the presence of DEAP IL and IS, and we use electron spin resonance (ESR) to check the generation of H(•) and (•)OH. In addition, we verified the structural changes in the Hb structure after treatment with DBD in presence and absence of IL and IS. We then assessed the structural stability of the Hb in the presence of IL and IS by using molecular dynamic (MD) simulations. Our results indicate that the IL has a strong effect on the conservation of the Hb structure relative to that of IS against RS generated by plasma.

  14. Influence of ionic liquid and ionic salt on protein against the reactive species generated using dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Attri, Pankaj; Sarinont, Thapanut; Kim, Minsup; Amano, Takaaki; Koga, Kazunori; Cho, Art E.; Ha Choi, Eun; Shiratani, Masaharu

    2015-12-01

    The presence of salts in biological solution can affect the activity of the reactive species (RS) generated by plasma, and so they can also have an influence on the plasma-induced sterilization. In this work, we assess the influence that diethylammonium dihydrogen phosphate (DEAP), an ionic liquid (IL), and sodium chloride (NaCl), an ionic salt (IS), have on the structural changes in hemoglobin (Hb) in the presence of RS generated using dielectric barrier discharge (DBD) plasma in the presence of various gases [O2, N2, Ar, He, NO (10%) + N2 and Air]. We carry out fluorescence spectroscopy to verify the generation of •OH with or without the presence of DEAP IL and IS, and we use electron spin resonance (ESR) to check the generation of H• and •OH. In addition, we verified the structural changes in the Hb structure after treatment with DBD in presence and absence of IL and IS. We then assessed the structural stability of the Hb in the presence of IL and IS by using molecular dynamic (MD) simulations. Our results indicate that the IL has a strong effect on the conservation of the Hb structure relative to that of IS against RS generated by plasma.

  15. An Overview of the Chemistry and Biology of Reactive Aldehydes

    PubMed Central

    Fritz, Kristofer S.; Petersen, Dennis R.

    2012-01-01

    The non-enzymatic free radical generation of reactive aldehydes is known to contribute to diseases of sustained oxidative stress including rheumatoid arthritis, atherosclerosis, neurodegenerative and a number of liver diseases. At the same time, the accumulation of lipid electrophiles has been demonstrated to play a role in cell signaling events through modification of proteins critical for cellular homeostasis. Given the broad scope of reactivity profiles and the ability to modify numerous proteomic and genomic processes, new emphasis is being placed on a systems-based analysis of the consequences of electrophilic adduction. This review focuses on the generation and chemical reactivity of lipid-derived aldehydes with a special focus on the homeostatic responses to electrophilic stress. PMID:22750507

  16. [Modulating Effect of Extracellular HSP70 on Generation of Reactive Oxigen Species in Populations of Phagocytes].

    PubMed

    Troyanova, N I; Shevchenko, M A; Boyko, A A; Mirzoyev, R R; Pertseva, M A; Kovalenko, E I; Sapozhnikov, A M

    2015-01-01

    Reactive oxygen species (ROS) produced by phagocytic cells of the innate immune system play an important role in the first line of defense protecting the host from pathogens. The NADPH oxidase multi-subunit complex is the main source of ROS in all types of the phagocytes. Formation of the membrane-associated enzyme complex and its activity are dependent on many different factors controlling both intensification and suppression of the ROS production rate. However, the evidences are emerging in recent years indicating existence of poorly studied mechanisms of restriction of ROS generation level in phagocytes directed at protection of host tissues in the sites of inflammation from destruction caused by the oxygen free radicals. Our previous data and results of other authors demonstrate that a mechanism of the limitation of ROS production by phagocytes may by connected with immunomodulating activity of extracellular pool. of HSP70. In the present work, we used inhibitors of NADPH oxidase and in vitro cultures of different phagocytes to study a possible relationship between down-regulating effect of exogenous HSP70 on ROS generation and the interaction of the protein with the enzyme subunits. Our results confirmed the literature data concerning the ability of extracellular HSP70 to modulate NADPH oxidase activity and demonstrated for the first time an inhibitory effect of the protein on intracellular ROS generation in phagocytes.

  17. Quinone reduction via secondary B-branch electron transfer in mutant bacterial reaction centers.

    PubMed

    Laible, Philip D; Kirmaier, Christine; Udawatte, Chandani S M; Hofman, Samuel J; Holten, Dewey; Hanson, Deborah K

    2003-02-18

    Symmetry-related branches of electron-transfer cofactors-initiating with a primary electron donor (P) and terminating in quinone acceptors (Q)-are common features of photosynthetic reaction centers (RC). Experimental observations show activity of only one of them-the A branch-in wild-type bacterial RCs. In a mutant RC, we now demonstrate that electron transfer can occur along the entire, normally inactive B-branch pathway to reduce the terminal acceptor Q(B) on the time scale of nanoseconds. The transmembrane charge-separated state P(+)Q(B)(-) is created in this manner in a Rhodobacter capsulatus RC containing the F(L181)Y-Y(M208)F-L(M212)H-W(M250)V mutations (YFHV). The W(M250)V mutation quantitatively blocks binding of Q(A), thereby eliminating Q(B) reduction via the normal A-branch pathway. Full occupancy of the Q(B) site by the native UQ(10) is ensured (without the necessity of reconstitution by exogenous quinone) by purification of RCs with the mild detergent, Deriphat 160-C. The lifetime of P(+)Q(B)(-) in the YFHV mutant RC is >6 s (at pH 8.0, 298 K). This charge-separated state is not formed upon addition of competitive inhibitors of Q(B) binding (terbutryn or stigmatellin). Furthermore, this lifetime is much longer than the value of approximately 1-1.5 s found when P(+)Q(B)(-) is produced in the wild-type RC by A-side activity alone. Collectively, these results demonstrate that P(+)Q(B)(-) is formed solely by activity of the B-branch carriers in the YFHV RC. In comparison, P(+)Q(B)(-) can form by either the A or B branches in the YFH RC, as indicated by the biexponential lifetimes of approximately 1 and approximately 6-10 s. These findings suggest that P(+)Q(B)(-) states formed via the two branches are distinct and that P(+)Q(B)(-) formed by the B side does not decay via the normal (indirect) pathway that utilizes the A-side cofactors when present. These differences may report on structural and energetic factors that further distinguish the functional

  18. Reactivity of Nucleic Acid Radicals

    PubMed Central

    Greenberg, Marc M.

    2016-01-01

    Nucleic acid oxidation plays a vital role in the etiology and treatment of diseases, as well as aging. Reagents that oxidize nucleic acids are also useful probes of the biopolymers’ structure and folding. Radiation scientists have contributed greatly to our understanding of nucleic acid oxidation using a variety of techniques. During the past two decades organic chemists have applied the tools of synthetic and mechanistic chemistry to independently generate and study the reactive intermediates produced by ionizing radiation and other nucleic acid damaging agents. This approach has facilitated resolving mechanistic controversies and lead to the discovery of new reactive processes. PMID:28529390

  19. Tuning cofactor redox potentials: the 2-methoxy dihedral angle generates a redox potential difference of >160 mV between the primary (Q(A)) and secondary (Q(B)) quinones of the bacterial photosynthetic reaction center.

    PubMed

    Taguchi, Alexander T; Mattis, Aidas J; O'Malley, Patrick J; Dikanov, Sergei A; Wraight, Colin A

    2013-10-15

    Only quinones with a 2-methoxy group can act simultaneously as the primary (QA) and secondary (QB) electron acceptors in photosynthetic reaction centers from Rhodobacter sphaeroides. (13)C hyperfine sublevel correlation measurements of the 2-methoxy in the semiquinone states, SQA and SQB, were compared with quantum mechanics calculations of the (13)C couplings as a function of the dihedral angle. X-ray structures support dihedral angle assignments corresponding to a redox potential gap (ΔEm) between QA and QB of ~180 mV. This is consistent with the failure of a ubiquinone analogue lacking the 2-methoxy to function as QB in mutant reaction centers with a ΔEm of ≈160-195 mV.

  20. Inducible Lung Epithelial Resistance Requires Multisource Reactive Oxygen Species Generation To Protect against Viral Infections

    PubMed Central

    2018-01-01

    ABSTRACT Viral pneumonias cause profound worldwide morbidity, necessitating novel strategies to prevent and treat these potentially lethal infections. Stimulation of intrinsic lung defenses via inhalation of synergistically acting Toll-like receptor (TLR) agonists protects mice broadly against pneumonia, including otherwise-lethal viral infections, providing a potential opportunity to mitigate infectious threats. As intact lung epithelial TLR signaling is required for the inducible resistance and as these cells are the principal targets of many respiratory viruses, the capacity of lung epithelial cells to be therapeutically manipulated to function as autonomous antiviral effectors was investigated. Our work revealed that mouse and human lung epithelial cells could be stimulated to generate robust antiviral responses that both reduce viral burden and enhance survival of isolated cells and intact animals. The antiviral protection required concurrent induction of epithelial reactive oxygen species (ROS) from both mitochondrial and dual oxidase sources, although neither type I interferon enrichment nor type I interferon signaling was required for the inducible protection. Taken together, these findings establish the sufficiency of lung epithelial cells to generate therapeutically inducible antiviral responses, reveal novel antiviral roles for ROS, provide mechanistic insights into inducible resistance, and may provide an opportunity to protect patients from viral pneumonia during periods of peak vulnerability. PMID:29764948

  1. Formation and Detoxification of Reactive Oxygen Species

    ERIC Educational Resources Information Center

    Kuciel, Radoslawa; Mazurkiewicz, Aleksandra

    2004-01-01

    A model of reactive oxygen species metabolism is proposed as a laboratory exercise for students. The superoxide ion in this model is generated during the reaction of oxidation of xanthine, catalyzed by xanthine oxidase. The effect of catalase, superoxide dismutase, and allopurinol on superoxide ion generation and removal in this system is also…

  2. Xanthohumol induces generation of reactive oxygen species and triggers apoptosis through inhibition of mitochondrial electron transfer chain complex I.

    PubMed

    Zhang, Bo; Chu, Wei; Wei, Peng; Liu, Ying; Wei, Taotao

    2015-12-01

    Xanthohumol is a prenylflavonoid extracted from hops (Humulus lupulus). It possesses anti-cancer and anti-inflammatory activities in vitro and in vivo, and offers therapeutic benefits for treatment of metabolic syndromes. However, the precise mechanisms underlying its pharmacological effects remain to be elucidated, together with its cellular target. Here, we provide evidence that xanthohumol directly interacts with the mitochondrial electron transfer chain complex I (NADH dehydrogenase), inhibits the oxidative phosphorylation, triggers the production of reactive oxygen species, and induces apoptosis. In addition, we show that as a result of the inhibition of the mitochondrial oxidative phosphorylation, xanthohumol exposure causes a rapid decrease of mitochondrial transmembrane potential. Furthermore, we showed that xanthohumol up-regulates the glycolytic capacity in cells, and thus compensates cellular ATP generation. Dissection of the multiple steps of aerobic respiration by extracellular flux assays revealed that xanthohumol specifically inhibits the activity of mitochondrial complex I, but had little effect on that of complex II, III and IV. Inhibition of complex I by xanthohumol caused the overproduction of reactive oxygen species, which are responsible for the induction of apoptosis in cancer cells. We also found that isoxanthohumol, the structural isomer of xanthohumol, is inactive to cells, suggesting that the reactive 2-hydroxyl group of xanthohumol is crucial for its targeting to the mitochondrial complex I. Together, the remodeling of cell metabolism revealed here has therapeutic potential for the use of xanthohumol. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Use of cephalosporins in patients with immediate penicillin hypersensitivity: cross-reactivity revisited.

    PubMed

    Lee, Q U

    2014-10-01

    A 10% cross-reactivity rate is commonly cited between penicillins and cephalosporins. However, this figure originated from studies in the 1960s and 1970s which included first-generation cephalosporins with similar side-chains to penicillins. Cephalosporins were frequently contaminated by trace amount of penicillins at that time. The side-chain hypothesis for beta-lactam hypersensitivity is supported by abundant scientific evidence. Newer generations of cephalosporins possess side-chains that are dissimilar to those of penicillins, leading to low cross-reactivity. In the assessment of cross-reactivity between penicillins and cephalosporins, one has to take into account the background beta-lactam hypersensitivity, which occurs in up to 10% of patients. Cross-reactivity based on skin testing or in-vitro test occurs in up to 50% and 69% of cases, respectively. Clinical reactivity and drug challenge test suggest an average cross-reactivity rate of only 4.3%. For third- and fourth-generation cephalosporins, the rate is probably less than 1%. Recent international guidelines are in keeping with a low cross-reactivity rate. Despite that, the medical community in Hong Kong remains unnecessarily skeptical. Use of cephalosporins in patients with penicillin hypersensitivity begins with detailed history and physical examination. Clinicians can choose a cephalosporin with a different side-chain. Skin test for penicillin is not predictive of cephalosporin hypersensitivity, while cephalosporin skin test is not sensitive. Drug provocation test by experienced personnel remains the best way to exclude or confirm the diagnosis of drug hypersensitivity and to find a safe alternative for future use. A personalised approach to cross-reactivity is advocated.

  4. Design, synthesis and biological evaluation of diaziridinyl quinone isoxazole hybrids.

    PubMed

    Swapnaja, K Jones M; Yennam, Satyanarayana; Chavali, Murthy; Poornachandra, Y; Kumar, C Ganesh; Muthusamy, Krubakaran; Jayaraman, Venkatesh Babu; Arumugam, Premkumar; Balasubramanian, Sridhar; Sriram, Kiran Kumar

    2016-07-19

    A series of novel diaziridinyl quinone isoxazole hybrids (9a-9j) were synthesized starting from 2, 5-dimethoxy acetophenone 1 via Claisen reaction, cyclisation, alkoxy carbonylation, hydrolysis, oxidation and aziridine insertion. All the compounds were screened for antimicrobial, anti-biofilm and cytotoxic activities. Among the screened compounds, the compound 9h showed good antibacterial and anti-biofilm activities with MIC value of 3.9, 3.9, 3.9 and 7.8 μg/mL, respectively, and IC50 values of 1.9, 2.5, 2.8 and 5.1 μM, respectively, against Staphylococcus aureus MTCC 96, S. aureus MLS-16 MTCC 2940, Bacillus subtilis MTCC 121 and Klebsiella planticola MTCC 530, and also exhibited potent antifungal activity against Candida albicans MTCC 227, C. albicans MTCC 854 and Candida krusei MTCC 3020 equipotent to standard miconazole (MIC value 7.8 μg/mL). All the synthesized compounds exhibited promising cytotoxicity against A549 and PC3 cell lines (IC50 values between 1 and 4 μM). Compounds 9b and 9j exhibited IC50 value of 0.5 μM which was similar to that of Mitomycin C against PC3 cell line. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Pleiotrophin-induced endothelial cell migration is regulated by xanthine oxidase-mediated generation of reactive oxygen species.

    PubMed

    Tsirmoula, Sotiria; Lamprou, Margarita; Hatziapostolou, Maria; Kieffer, Nelly; Papadimitriou, Evangelia

    2015-03-01

    Pleiotrophin (PTN) is a heparin-binding growth factor that induces cell migration through binding to its receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ) and integrin alpha v beta 3 (ανβ3). In the present work, we studied the effect of PTN on the generation of reactive oxygen species (ROS) in human endothelial cells and the involvement of ROS in PTN-induced cell migration. Exogenous PTN significantly increased ROS levels in a concentration and time-dependent manner in both human endothelial and prostate cancer cells, while knockdown of endogenous PTN expression in prostate cancer cells significantly down-regulated ROS production. Suppression of RPTPβ/ζ through genetic and pharmacological approaches, or inhibition of c-src kinase activity abolished PTN-induced ROS generation. A synthetic peptide that blocks PTN-ανβ3 interaction abolished PTN-induced ROS generation, suggesting that ανβ3 is also involved. The latter was confirmed in CHO cells that do not express β3 or over-express wild-type β3 or mutant β3Y773F/Y785F. PTN increased ROS generation in cells expressing wild-type β3 but not in cells not expressing or expressing mutant β3. Phosphoinositide 3-kinase (PI3K) or Erk1/2 inhibition suppressed PTN-induced ROS production, suggesting that ROS production lays down-stream of PI3K or Erk1/2 activation by PTN. Finally, ROS scavenging and xanthine oxidase inhibition completely abolished both PTN-induced ROS generation and cell migration, while NADPH oxidase inhibition had no effect. Collectively, these data suggest that xanthine oxidase-mediated ROS production is required for PTN-induced cell migration through the cell membrane functional complex of ανβ3 and RPTPβ/ζ and activation of c-src, PI3K and ERK1/2 kinases. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Generalized Mulliken-Hush analysis of electronic coupling interactions in compressed pi-stacked porphyrin-bridge-quinone systems.

    PubMed

    Zheng, Jieru; Kang, Youn K; Therien, Michael J; Beratan, David N

    2005-08-17

    Donor-acceptor interactions were investigated in a series of unusually rigid, cofacially compressed pi-stacked porphyrin-bridge-quinone systems. The two-state generalized Mulliken-Hush (GMH) approach was used to compute the coupling matrix elements. The theoretical coupling values evaluated with the GMH method were obtained from configuration interaction calculations using the INDO/S method. The results of this analysis are consistent with the comparatively soft distance dependences observed for both the charge separation and charge recombination reactions. Theoretical studies of model structures indicate that the phenyl units dominate the mediation of the donor-acceptor coupling and that the relatively weak exponential decay of rate with distance arises from the compression of this pi-electron stack.

  7. Hydroquinone and Quinone-Grafted Porous Carbons for Highly Selective CO2 Capture from Flue Gases and Natural Gas Upgrading.

    PubMed

    Wang, Jun; Krishna, Rajamani; Yang, Jiangfeng; Deng, Shuguang

    2015-08-04

    Hydroquinone and quinone functional groups were grafted onto a hierarchical porous carbon framework via the Friedel-Crafts reaction to develop more efficient adsorbents for the selective capture and removal of carbon dioxide from flue gases and natural gas. The oxygen-doped porous carbons were characterized with scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. CO2, CH4, and N2 adsorption isotherms were measured and correlated with the Langmuir model. An ideal adsorbed solution theory (IAST) selectivity for the CO2/N2 separation of 26.5 (298 K, 1 atm) was obtained on the hydroquinone-grafted carbon, which is 58.7% higher than that of the pristine porous carbon, and a CO2/CH4 selectivity value of 4.6 (298 K, 1 atm) was obtained on the quinone-grafted carbon (OAC-2), which represents a 28.4% improvement over the pristine porous carbon. The highest CO2 adsorption capacity on the oxygen-doped carbon adsorbents is 3.46 mmol g(-1) at 298 K and 1 atm. In addition, transient breakthrough simulations for CO2/CH4/N2 mixture separation were conducted to demonstrate the good separation performance of the oxygen-doped carbons in fixed bed adsorbers. Combining excellent adsorption separation properties and low heats of adsorption, the oxygen-doped carbons developed in this work appear to be very promising for flue gas treatment and natural gas upgrading.

  8. Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase.

    PubMed

    Tretter, Laszlo; Adam-Vizi, Vera

    2004-09-08

    Alpha-ketoglutarate dehydrogenase (alpha-KGDH), a key enzyme in the Krebs' cycle, is a crucial early target of oxidative stress (Tretter and Adam-Vizi, 2000). The present study demonstrates that alpha-KGDH is able to generate H(2)O(2) and, thus, could also be a source of reactive oxygen species (ROS) in mitochondria. Isolated alpha-KGDH with coenzyme A (HS-CoA) and thiamine pyrophosphate started to produce H(2)O(2) after addition of alpha-ketoglutarate in the absence of nicotinamide adenine dinucleotide-oxidized (NAD(+)). NAD(+), which proved to be a powerful inhibitor of alpha-KGDH-mediated H(2)O(2) formation, switched the H(2)O(2) forming mode of the enzyme to the catalytic [nicotinamide adenine dinucleotide-reduced (NADH) forming] mode. In contrast, NADH stimulated H(2)O(2) formation by alpha-KGDH, and for this, neither alpha-ketoglutarate nor HS-CoA were required. When all of the substrates and cofactors of the enzyme were present, the NADH/NAD(+) ratio determined the rate of H(2)O(2) production. The higher the NADH/NAD(+) ratio the higher the rate of H(2)O(2) production. H(2)O(2) production as well as the catalytic function of the enzyme was activated by Ca(2+). In synaptosomes, using alpha-ketoglutarate as respiratory substrate, the rate of H(2)O(2) production increased by 2.5-fold, and aconitase activity decreased, indicating that alpha-KGDH can generate H(2)O(2) in in situ mitochondria. Given the NADH/NAD(+) ratio as a key regulator of H(2)O(2) production by alpha-KGDH, it is suggested that production of ROS could be significant not only in the respiratory chain but also in the Krebs' cycle when oxidation of NADH is impaired. Thus alpha-KGDH is not only a target of ROS but could significantly contribute to generation of oxidative stress in the mitochondria.

  9. An autonomous organic reaction search engine for chemical reactivity.

    PubMed

    Dragone, Vincenza; Sans, Victor; Henson, Alon B; Granda, Jaroslaw M; Cronin, Leroy

    2017-06-09

    The exploration of chemical space for new reactivity, reactions and molecules is limited by the need for separate work-up-separation steps searching for molecules rather than reactivity. Herein we present a system that can autonomously evaluate chemical reactivity within a network of 64 possible reaction combinations and aims for new reactivity, rather than a predefined set of targets. The robotic system combines chemical handling, in-line spectroscopy and real-time feedback and analysis with an algorithm that is able to distinguish and select the most reactive pathways, generating a reaction selection index (RSI) without need for separate work-up or purification steps. This allows the automatic navigation of a chemical network, leading to previously unreported molecules while needing only to do a fraction of the total possible reactions without any prior knowledge of the chemistry. We show the RSI correlates with reactivity and is able to search chemical space using the most reactive pathways.

  10. An autonomous organic reaction search engine for chemical reactivity

    NASA Astrophysics Data System (ADS)

    Dragone, Vincenza; Sans, Victor; Henson, Alon B.; Granda, Jaroslaw M.; Cronin, Leroy

    2017-06-01

    The exploration of chemical space for new reactivity, reactions and molecules is limited by the need for separate work-up-separation steps searching for molecules rather than reactivity. Herein we present a system that can autonomously evaluate chemical reactivity within a network of 64 possible reaction combinations and aims for new reactivity, rather than a predefined set of targets. The robotic system combines chemical handling, in-line spectroscopy and real-time feedback and analysis with an algorithm that is able to distinguish and select the most reactive pathways, generating a reaction selection index (RSI) without need for separate work-up or purification steps. This allows the automatic navigation of a chemical network, leading to previously unreported molecules while needing only to do a fraction of the total possible reactions without any prior knowledge of the chemistry. We show the RSI correlates with reactivity and is able to search chemical space using the most reactive pathways.

  11. An autonomous organic reaction search engine for chemical reactivity

    PubMed Central

    Dragone, Vincenza; Sans, Victor; Henson, Alon B.; Granda, Jaroslaw M.; Cronin, Leroy

    2017-01-01

    The exploration of chemical space for new reactivity, reactions and molecules is limited by the need for separate work-up-separation steps searching for molecules rather than reactivity. Herein we present a system that can autonomously evaluate chemical reactivity within a network of 64 possible reaction combinations and aims for new reactivity, rather than a predefined set of targets. The robotic system combines chemical handling, in-line spectroscopy and real-time feedback and analysis with an algorithm that is able to distinguish and select the most reactive pathways, generating a reaction selection index (RSI) without need for separate work-up or purification steps. This allows the automatic navigation of a chemical network, leading to previously unreported molecules while needing only to do a fraction of the total possible reactions without any prior knowledge of the chemistry. We show the RSI correlates with reactivity and is able to search chemical space using the most reactive pathways. PMID:28598440

  12. Terreic acid, a quinone epoxide inhibitor of Bruton’s tyrosine kinase

    PubMed Central

    Kawakami, Yuko; Hartman, Stephen E.; Kinoshita, Eiji; Suzuki, Hidefumi; Kitaura, Jiro; Yao, Libo; Inagaki, Naoki; Franco, Alessandra; Hata, Daisuke; Maeda-Yamamoto, Mari; Fukamachi, Hiromi; Nagai, Hiroichi; Kawakami, Toshiaki

    1999-01-01

    Bruton’s tyrosine kinase (Btk) plays pivotal roles in mast cell activation as well as in B cell development. Btk mutations lead to severe impairments in proinflammatory cytokine production induced by cross-linking of high-affinity IgE receptor on mast cells. By using an in vitro assay to measure the activity that blocks the interaction between protein kinase C and the pleckstrin homology domain of Btk, terreic acid (TA) was identified and characterized in this study. This quinone epoxide specifically inhibited the enzymatic activity of Btk in mast cells and cell-free assays. TA faithfully recapitulated the phenotypic defects of btk mutant mast cells in high-affinity IgE receptor-stimulated wild-type mast cells without affecting the enzymatic activities and expressions of many other signaling molecules, including those of protein kinase C. Therefore, this study confirmed the important roles of Btk in mast cell functions and showed the usefulness of TA in probing into the functions of Btk in mast cells and other immune cell systems. Another insight obtained from this study is that the screening method used to identify TA is a useful approach to finding more efficacious Btk inhibitors. PMID:10051623

  13. Quinone-formaldehyde polymer as an active material in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Pirnat, Klemen; Mali, Gregor; Gaberscek, Miran; Dominko, Robert

    2016-05-01

    A benzoquinone polymer is synthesized by the polymerisation of hydrobenzoquinone and formaldehyde, followed by oxidation process using a hydrogen peroxide to convert hydroquinone to quinone. As prepared materials are characterized with FTIR, 1H-13C CPMAS NMR, pyrolysis coupled with gas chromatography (GC) and mass spectrometer (MS), TGA-MS analysis, EDX, elemental analysis, XRD, SEM and TEM microscopies and BET nitrogen adsorption. The benzoquinone polymer shows an excellent electrochemical performance when used as a positive electrode material in Li-ion secondary batteries. Using an electrolyte consisting 1 M bis(trifluoromethane)-sulfonimide lithium salt dissolved in 1,3-dioxolane and dimethoxyethane in a vol. ratio 1:1 (1 M LiTFSI/DOL + DME = 1:1) a stable capacity close to 150 mAh/g can be obtained. Compared to other electroactive materials based on benzoquinones it has a supreme capacity stability and is prepared by a simple synthesis using easily accessible starting materials. Further improvements in the capacity value (up to the theoretical value of 406 mAh/g) can be foreseen by achieving a higher degree of oxidation and by modification of polymerization process to enhance the electronic and ionic conductivity.

  14. Persistent and widespread occurrence of bioactive quinone pigments during post-Paleozoic crinoid diversification

    PubMed Central

    Wolkenstein, Klaus

    2015-01-01

    Secondary metabolites often play an important role in the adaptation of organisms to their environment. However, little is known about the secondary metabolites of ancient organisms and their evolutionary history. Chemical analysis of exceptionally well-preserved colored fossil crinoids and modern crinoids from the deep sea suggests that bioactive polycyclic quinones related to hypericin were, and still are, globally widespread in post-Paleozoic crinoids. The discovery of hypericinoid pigments both in fossil and in present-day representatives of the order Isocrinida indicates that the pigments remained almost unchanged since the Mesozoic, also suggesting that the original color of hypericinoid-containing ancient crinoids may have been analogous to that of their modern relatives. The persistent and widespread occurrence, spatially as well as taxonomically, of hypericinoid pigments in various orders during the adaptive radiation of post-Paleozoic crinoids suggests a general functional importance of the pigments, contributing to the evolutionary success of the Crinoidea. PMID:25730856

  15. Light-Emitting Photon-Upconversion Nanoparticles in the Generation of Transdermal Reactive-Oxygen Species.

    PubMed

    Prieto, Martin; Rwei, Alina Y; Alejo, Teresa; Wei, Tuo; Lopez-Franco, Maria Teresa; Mendoza, Gracia; Sebastian, Victor; Kohane, Daniel S; Arruebo, Manuel

    2017-12-06

    Common photosensitizers used in photodynamic therapy do not penetrate the skin effectively. In addition, the visible blue and red lights used to excite such photosensitizers have shallow penetration depths through tissue. To overcome these limitations, we have synthesized ultraviolet- and visible-light-emitting, energy-transfer-based upconversion nanoparticles and coencapsulated them inside PLGA-PEG (methoxy poly(ethylene glycol)-b-poly(lactic-co-glycolic acid)) nanoparticles with the photosensitizer protoporphyrin IX. Nd 3+ has been introduced as a sensitizer in the upconversion nanostructure to allow its excitation at 808 nm. The subcytotoxic doses of the hybrid nanoparticles have been evaluated on different cell lines (i.e., fibroblasts, HaCaT, THP-1 monocytic cell line, U251MG (glioblastoma cell line), and mMSCs (murine mesenchymal stem cells). Upon NIR (near infrared)-light excitation, the upconversion nanoparticles emitted UV and VIS light, which consequently activated the generation of reactive-oxygen species (ROS). In addition, after irradiating at 808 nm, the resulting hybrid nanoparticles containing both upconversion nanoparticles and protoporphyrin IX generated 3.4 times more ROS than PLGA-PEG nanoparticles containing just the same dose of protoporphyrin IX. Their photodynamic effect was also assayed on different cell cultures, demonstrating their efficacy in selectively killing treated and irradiated cells. Compared to the topical application of the free photosensitizer, enhanced skin permeation and penetration were observed for the nanoparticulate formulation, using an ex vivo human-skin-permeation experiment. Whereas free protoporphyrin IX remained located at the outer layer of the skin, nanoparticle-encapsulated protoporphyrin IX was able to penetrate through the epidermal layer slightly into the dermis.

  16. Insulin Reverses D-Glucose–Increased Nitric Oxide and Reactive Oxygen Species Generation in Human Umbilical Vein Endothelial Cells

    PubMed Central

    González, Marcelo; Rojas, Susana; Avila, Pía; Cabrera, Lissette; Villalobos, Roberto; Palma, Carlos; Aguayo, Claudio; Peña, Eduardo; Gallardo, Victoria; Guzmán-Gutiérrez, Enrique; Sáez, Tamara; Salsoso, Rocío; Sanhueza, Carlos; Pardo, Fabián; Leiva, Andrea; Sobrevia, Luis

    2015-01-01

    Vascular tone is controlled by the L-arginine/nitric oxide (NO) pathway, and NO bioavailability is strongly affected by hyperglycaemia-induced oxidative stress. Insulin leads to high expression and activity of human cationic amino acid transporter 1 (hCAT-1), NO synthesis and vasodilation; thus, a protective role of insulin on high D-glucose–alterations in endothelial function is likely. Vascular reactivity to U46619 (thromboxane A2 mimetic) and calcitonin gene related peptide (CGRP) was measured in KCl preconstricted human umbilical vein rings (wire myography) incubated in normal (5 mmol/L) or high (25 mmol/L) D-glucose. hCAT-1, endothelial NO synthase (eNOS), 42 and 44 kDa mitogen-activated protein kinases (p42/44mapk), protein kinase B/Akt (Akt) expression and activity were determined by western blotting and qRT-PCR, tetrahydrobiopterin (BH4) level was determined by HPLC, and L-arginine transport (0–1000 μmol/L) was measured in response to 5–25 mmol/L D-glucose (0–36 hours) in passage 2 human umbilical vein endothelial cells (HUVECs). Assays were in the absence or presence of insulin and/or apocynin (nicotinamide adenine dinucleotide phosphate-oxidase [NADPH oxidase] inhibitor), tempol or Mn(III)TMPyP (SOD mimetics). High D-glucose increased hCAT-1 expression and activity, which was biphasic (peaks: 6 and 24 hours of incubation). High D-glucose–increased maximal transport velocity was blocked by insulin and correlated with lower hCAT-1 expression and SLC7A1 gene promoter activity. High D-glucose–increased transport parallels higher reactive oxygen species (ROS) and superoxide anion (O2 •–) generation, and increased U46619-contraction and reduced CGRP-dilation of vein rings. Insulin and apocynin attenuate ROS and O2 •– generation, and restored vascular reactivity to U46619 and CGRP. Insulin, but not apocynin or tempol reversed high D-glucose–increased NO synthesis; however, tempol and Mn(III)TMPyP reversed the high D-glucose–reduced BH4

  17. DIFFERENTIATING MECHANISMS OF REACTIVE CHEMICAL TOXICITY IN ISOLATED TROUT HEPATOCYTES

    EPA Science Inventory

    The toxicity of four quinones, 2,3-dimethoxy-1,4-naphthoquinone (DMONQ), 2-methyl 1,4-naphthoquinone (MNQ ),1,4-naphthoquinone (NQ), and 1,4-benzoquinone (BQ), which redox cycle or arlyate in mammalian cells, was determined in isolated trout (Oncorhynchus mykiss) hepatocytes. Mor...

  18. Novel HLA-B27-restricted epitopes from Chlamydia trachomatis generated upon endogenous processing of bacterial proteins suggest a role of molecular mimicry in reactive arthritis.

    PubMed

    Alvarez-Navarro, Carlos; Cragnolini, Juan J; Dos Santos, Helena G; Barnea, Eilon; Admon, Arie; Morreale, Antonio; López de Castro, José A

    2013-09-06

    Reactive arthritis (ReA) is an HLA-B27-associated spondyloarthropathy that is triggered by diverse bacteria, including Chlamydia trachomatis, a frequent intracellular parasite. HLA-B27-restricted T-cell responses are elicited against this bacterium in ReA patients, but their pathogenetic significance, autoimmune potential, and relevant epitopes are unknown. High resolution and sensitivity mass spectrometry was used to identify HLA-B27 ligands endogenously processed and presented by HLA-B27 from three chlamydial proteins for which T-cell epitopes were predicted. Fusion protein constructs of ClpC, Na(+)-translocating NADH-quinone reductase subunit A, and DNA primase were expressed in HLA-B27(+) cells, and their HLA-B27-bound peptidomes were searched for endogenous bacterial ligands. A non-predicted peptide, distinct from the predicted T-cell epitope, was identified from ClpC. A peptide recognized by T-cells in vitro, NQRA(330-338), was detected from the reductase subunit. This is the second HLA-B27-restricted T-cell epitope from C. trachomatis with relevance in ReA demonstrated to be processed and presented in live cells. A novel peptide from the DNA primase, DNAP(211-223), was also found. This was a larger variant of a known epitope and was highly homologous to a self-derived natural ligand of HLA-B27. All three bacterial peptides showed high homology with human sequences containing the binding motif of HLA-B27. Molecular dynamics simulations further showed a striking conformational similarity between DNAP(211-223) and its homologous and much more flexible human-derived HLA-B27 ligand. The results suggest that molecular mimicry between HLA-B27-restricted bacterial and self-derived epitopes is frequent and may play a role in ReA.

  19. Novel HLA-B27-restricted Epitopes from Chlamydia trachomatis Generated upon Endogenous Processing of Bacterial Proteins Suggest a Role of Molecular Mimicry in Reactive Arthritis*

    PubMed Central

    Alvarez-Navarro, Carlos; Cragnolini, Juan J.; Dos Santos, Helena G.; Barnea, Eilon; Admon, Arie; Morreale, Antonio; López de Castro, José A.

    2013-01-01

    Reactive arthritis (ReA) is an HLA-B27-associated spondyloarthropathy that is triggered by diverse bacteria, including Chlamydia trachomatis, a frequent intracellular parasite. HLA-B27-restricted T-cell responses are elicited against this bacterium in ReA patients, but their pathogenetic significance, autoimmune potential, and relevant epitopes are unknown. High resolution and sensitivity mass spectrometry was used to identify HLA-B27 ligands endogenously processed and presented by HLA-B27 from three chlamydial proteins for which T-cell epitopes were predicted. Fusion protein constructs of ClpC, Na+-translocating NADH-quinone reductase subunit A, and DNA primase were expressed in HLA-B27+ cells, and their HLA-B27-bound peptidomes were searched for endogenous bacterial ligands. A non-predicted peptide, distinct from the predicted T-cell epitope, was identified from ClpC. A peptide recognized by T-cells in vitro, NQRA(330–338), was detected from the reductase subunit. This is the second HLA-B27-restricted T-cell epitope from C. trachomatis with relevance in ReA demonstrated to be processed and presented in live cells. A novel peptide from the DNA primase, DNAP(211–223), was also found. This was a larger variant of a known epitope and was highly homologous to a self-derived natural ligand of HLA-B27. All three bacterial peptides showed high homology with human sequences containing the binding motif of HLA-B27. Molecular dynamics simulations further showed a striking conformational similarity between DNAP(211–223) and its homologous and much more flexible human-derived HLA-B27 ligand. The results suggest that molecular mimicry between HLA-B27-restricted bacterial and self-derived epitopes is frequent and may play a role in ReA. PMID:23867464

  20. Influence of azo dye concentration on activated sludge bacterial community in the presence of functionalized polyurethane foam.

    PubMed

    Lu, Hong; Wang, Jing; Lu, Shuilong; Wang, Ying; Liu, Guangfei; Zhou, Jiti; Quan, Zhexue

    2015-03-01

    Immobilized quinones exhibit good catalytic performance in the biodecolorization of azo dyes. However, in practical activated sludge systems, little is known about the effect of azo dye concentration on microbial communities in the presence of immobilized quinones. 454 Pyrosequencing was used to investigate structural changes and to determine the key microorganisms involved in Reactive Red X-3B decolorization in the presence of anthraquinone-2-sulfonate immobilized on polyurethane foam (AQS-PUF). Our results show that the AQS-PUF-supplemented system exhibited better stability and decolorization performance during a 30-day run than polyurethane-foam-only (PUF-supplemented) and control systems. Analysis of pyrosequencing data showed that the AQS-PUF-supplemented system had the highest bacterial diversity, followed by the control and PUF-supplemented systems during decolorization. Reactive Red X-3B and AQS-PUF significantly influenced bacterial communities at the class level: Erysipelotrichia and the most dominant Deltaproteobacteria showed significant positive correlations with Reactive Red X-3B, while unclassified Firmicutes were found to be significantly correlated with AQS-PUF. At the genus level, Desulfomicrobium, which represents 8-44 % of the total population, displayed a significant positive correlation with Reactive Red X-3B. Some bacteria, including Desulfovibrio, Shewanella, and Clostridium with relative abundances of less than 6 %, were positively correlated with AQS-PUF. These findings provide a novel insight into the changes that occur in the bacterial community during immobilized AQS-mediated decolorization. Less abundant quinone-reducing bacteria play important roles in accelerating the effect of AQS-PUF on biodecolorization.

  1. CHARACTERIZATION OF STABLE BENZO(A)PYRENE-7,8-QUINONE-DNA ADDUCTS IN CALF THYMUS DNA

    EPA Science Inventory

    Benzo[alpyrene-7,8-dione (BPQ) is a reactive aldo-keto reductase-mediated product of B[a]P-7,8-diol, a major P450/epoxide hydrolase metabolite of the multi-species carcinogen, B[a]P. The role of BPQ in B[a]P's genotoxicity and carcinogenesis is evolving. Toxicity pathways involvi...

  2. CHARACTERIZATION OF STABLE BENZOLALPYRENE-7,8-QUINONE-DNA ADDUCTS IN CALF THYMUS DNA AND POLYDEOXYNUCLEOTIDES

    EPA Science Inventory

    Bcnzo[a]pyrene-7,8-dione (BPQ) is a reactive aldo-keto reductase-mediated product of B[a]P-7,8-diol, a major P450/epoxide hydrolase metabolite of the multi-species carcinogen, B[a]P. The role of BPQ in B[a]P's genotoxicity and carcinogenesis is evolving. Toxicity pathways involvi...

  3. Effects of the electrical parameters and gas flow rate on the generation of reactive species in liquids exposed to atmospheric pressure plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek, Eun Jeong; Joh, Hea Min; Kim, Sun Ja

    2016-07-15

    In this work, an atmospheric pressure plasma jet was fabricated and studied for plasma–liquid interactions. The plasma jet consists of a quartz-covered pin electrode and outer quartz tube with a tapered nozzle. Using the current–voltage (I-V) and optical emission characteristics of the plasma jet, the plasma density and the speed of the plume were investigated. The optical emission spectra clearly indicated the excited NO, O, OH, N{sub 2}, and N{sub 2}{sup +} in the plasma plumes. Then the plasma jets were applied to the deionized water. We investigated the effects of the operating parameters such as applied voltage, pulse frequency,more » and gas flow rate on the generation of reactive species in the gas and liquid phases. The densities of reactive species including OH radicals were obtained at the plasma–liquid surface and inside the plasma-treated liquids using ultraviolet absorption spectroscopy and chemical probe method. The nitrite concentration was detected by Griess assay. The data are very suggestive that there is a strong correlation among the production of reactive oxygen and nitrogen species (RONS) in the plasmas and liquids.« less

  4. Reactive power planning under high penetration of wind energy using Benders decomposition

    DOE PAGES

    Xu, Yan; Wei, Yanli; Fang, Xin; ...

    2015-11-05

    This study addresses the optimal allocation of reactive power volt-ampere reactive (VAR) sources under the paradigm of high penetration of wind energy. Reactive power planning (RPP) in this particular condition involves a high level of uncertainty because of wind power characteristic. To properly model wind generation uncertainty, a multi-scenario framework optimal power flow that considers the voltage stability constraint under the worst wind scenario and transmission N 1 contingency is developed. The objective of RPP in this study is to minimise the total cost including the VAR investment cost and the expected generation cost. Therefore RPP under this condition ismore » modelled as a two-stage stochastic programming problem to optimise the VAR location and size in one stage, then to minimise the fuel cost in the other stage, and eventually, to find the global optimal RPP results iteratively. Benders decomposition is used to solve this model with an upper level problem (master problem) for VAR allocation optimisation and a lower problem (sub-problem) for generation cost minimisation. Impact of the potential reactive power support from doubly-fed induction generator (DFIG) is also analysed. Lastly, case studies on the IEEE 14-bus and 118-bus systems are provided to verify the proposed method.« less

  5. Adsorption and separation of reactive aromatic isomers and generation and stabilization of their radicals within cadmium(II)-triazole metal-organic confined space in a single-crystal-to-single-crystal fashion.

    PubMed

    Liu, Qi-Kui; Ma, Jian-Ping; Dong, Yu-Bin

    2010-05-26

    A series of reactive group functionalized aromatics, namely 2-furaldehyde, 3-furaldehyde, 2-thenaldehyde, 3-thenaldehyde, o-toluidine, m-toluidine, p-toluidine, and aniline, can be absorbed by a CdL(2) (1; L = 4-amino-3,5-bis(4-pyridyl-3-phenyl)-1,2,4-triazole) porous framework in both vapor and liquid phases to generate new G(n) [symbol: see text] CdL(2) (n = 1, 2) host-guest complexes. In addition, the CdL(2) framework can be a shield to protect the active functional group (-CHO and -NH(2)) substituted guests from reaction with the outside medium containing their reaction partners. That is, aldehyde-substituted guests within the CdL(2) host become "stable" in the aniline phase and vice versa. Moreover, 1 displays a very strict selectivity for these reactive group substituted aromatic isomers and can completely separate these guest isomers under mild conditions (i.e., 2-furaldehyde vs 3-furaldehyde, 2-thenaldehyde vs 3-thenaldehyde, and o-toluidine vs m-toluidine vs p-toluidine). All adsorptions and separations are directly performed on the single crystals of 1. More interestingly, these reactive group substituted aromatics readily transform to the corresponding radicals within the CdL(2) host upon ambient light or UV light (355 nm) irradiation. Furthermore, the generated organic radicals are alive for 1 month within the interior cavity in air under ambient conditions. Simple organic radicals are highly reactive short-lived species, and they cannot be generally isolated and conserved under ambient conditions. Thus, the CdL(2) host herein could be considered as a radical generator and storage vessel.

  6. Identification of quinone analogues as potential inhibitors of picornavirus 3C protease in vitro.

    PubMed

    Jung, Eunhye; Lee, Joo-Youn; Kim, Ho Jeong; Ryu, Chung-Kyu; Lee, Kee-In; Kim, Meehyein; Lee, Chong-Kyo; Go, Yun Young

    2018-05-29

    Picornaviruses are non-enveloped viruses that represent a large family of positive-sense single-stranded RNA viruses including a number of causative agents of many human and animal diseases such as coxsackievirus B3 (CVB3) and rhinoviruses (HRV). In this study, we performed a high-throughput screening of a compound library composed of ∼6000 small molecules in search of potential picornavirus 3C protease (3C pro ) inhibitors. As results, we identified quinone analogues that effectively inhibited both CVB3 3C pro and HRV 3C pro with IC 50 values in low micromolar range. Together with predicted binding modes of these compounds to the active site of the viral protease, it is implied that structural features of these non-peptidic inhibitors may act as useful scaffold for further anti-picornavirus drug design and development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Generation of Reactive Oxygen Species via NOXa Is Important for Development and Pathogenicity of Mycosphaerella graminicola.

    PubMed

    Choi, Yoon-E; Lee, Changsu; Goodwin, Stephen B

    2016-03-01

    The ascomycete fungus Mycosphaerella graminicola (synonym Zymoseptoria tritici) is an important pathogen of wheat causing economically significant losses. The primary nutritional mode of this fungus is thought to be hemibiotrophic. This pathogenic lifestyle is associated with an early biotrophic stage of nutrient uptake followed by a necrotrophic stage aided possibly by production of a toxin or reactive oxygen species (ROS). In many other fungi, the genes CREA and AREA are important during the biotrophic stage of infection, while the NOXa gene product is important during necrotrophic growth. To test the hypothesis that these genes are important for pathogenicity of M. graminicola, we employed an over-expression strategy for the selected target genes CREA, AREA, and NOXa, which might function as regulators of nutrient acquisition or ROS generation. Increased expressions of CREA, AREA, and NOXa in M. graminicola were confirmed via quantitative real-time PCR and strains were subsequently assayed for pathogenicity. Among them, the NOXa over-expression strain, NO2, resulted in significantly increased virulence. Moreover, instead of the usual filamentous growth, we observed a predominance of yeast-like growth of NO2 which was correlated with ROS production. Our data indicate that ROS generation via NOXa is important to pathogenicity as well as development in M. graminicola.

  8. Reactive behavior, learning, and anticipation

    NASA Technical Reports Server (NTRS)

    Whitehead, Steven D.; Ballard, Dana H.

    1989-01-01

    Reactive systems always act, thinking only long enough to 'look up' the action to execute. Traditional planning systems think a lot, and act only after generating fairly precise plans. Each represents an endpoint on a spectrum. It is argued that primitive forms of reasoning, like anticipation, play an important role in reducing the cost of learning and that the decision to act or think should be based on the uncertainty associated with the utility of executing an action in a particular situation. An architecture for an adaptable reactive system is presented and it is shown how it can be augmented with a simple anticipation mechanism that can substantially reduce the cost and time of learning.

  9. p53 Mutagenesis by Benzo[a]pyrene derived Radical Cations

    PubMed Central

    Sen, Sushmita; Bhojnagarwala, Pratik; Francey, Lauren; Lu, Ding; Jeffrey Field, Trevor M. Penning

    2013-01-01

    Benzo[a]pyrene (B[a]P), a major human carcinogen in combustion products such as cigarette smoke and diesel exhaust, is metabolically activated into DNA-reactive metabolites via three different enzymatic pathways. The pathways are the anti-(+)-benzo[a]pyrene 7,8-diol 9, 10-epoxide pathway (P450/ epoxide hydrolase catalyzed) (B[a]PDE), the benzo[a]pyrene o-quinone pathway (aldo ketose reductase (AKR) catalyzed) and the B[a]P radical cation pathway (P450 peroxidase catalyzed). We used a yeast p53 mutagenesis system to assess mutagenesis by B[a]P radical cations. Because radical cations are short-lived, they were generated in situ by reacting B[a]P with cumene hydroperoxide (CuOOH) and horse radish peroxidase (HRP) and then monitoring the generation of the more stable downstream products, B[a]P-1,6-dione and B[a]P-3,6-dione. Based on the B[a]P-1,6 and 3,6-dione formation, approximately 4µM of radical cation was generated. In the mutagenesis assays, the radical cations produced in situ showed a dose-dependent increase in mutagenicity from 0.25 µM to 10 µM B[a]P with no significant increase seen with further escalation to 50 µM B[a]P. However, mutagenesis was 200-fold less than with the AKR pathway derived B[a]P, 7–8 dione. Mutant p53 plasmids, which yield red colonies, were recovered from the yeast to study the pattern and spectrum of mutations. The mutation pattern observed was G to T (31%) > G to C (29%) > G to A (14%). The frequency of codons mutated by the B[a]P radical cations was essentially random and not enriched at known cancer hotspots. The quinone products of radical cations, B[a]P-1,6-dione and B[a]P-3,6-dione were more mutagenic than the radical cation reactions, but still less mutagenic than AKR derived B[a]P-7,8-dione. We conclude that B[a]P radical cations and their quinone products are weakly mutagenic in this yeast-based system compared to redox cycling PAH o-quinones. PMID:22768918

  10. Controlled intracellular generation of reactive oxygen species in human mesenchymal stem cells using porphyrin conjugated nanoparticles

    NASA Astrophysics Data System (ADS)

    Lavado, Andrea S.; Chauhan, Veeren M.; Alhaj Zen, Amer; Giuntini, Francesca; Jones, D. Rhodri E.; Boyle, Ross W.; Beeby, Andrew; Chan, Weng C.; Aylott, Jonathan W.

    2015-08-01

    Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(ii) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(ii) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn(ii) porphyrin and high numbers of irradiations of excitation light were found to generate greater amounts of ROS. A novel dye, which is transformed into fluorescent 7-hydroxy-4-trifluoromethyl-coumarin in the presence of hydrogen peroxide, provided an indirect indicator for cumulative ROS production. The mitochondrial membrane potential was monitored to investigate the destructive effect of increased intracellular ROS production. Flow cytometric analysis of nanoparticle treated hMSCs suggested irradiation with excitation light signalled controlled apoptotic cell death, rather than uncontrolled necrotic cell death. Increased intracellular ROS production did not induce phenotypic changes in hMSC subcultures.Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(ii) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(ii) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn

  11. Biomimetic trapping cocktail to screen reactive metabolites: use of an amino acid and DNA motif mixture as light/heavy isotope pairs differing in mass shift.

    PubMed

    Hosaka, Shuto; Honda, Takuto; Lee, Seon Hwa; Oe, Tomoyuki

    2018-06-01

    Candidate drugs that can be metabolically transformed into reactive electrophilic products, such as epoxides, quinones, and nitroso compounds, are of special concern because subsequent covalent binding to bio-macromolecules can cause adverse drug reactions, such as allergic reactions, hepatotoxicity, and genotoxicity. Several strategies have been reported for screening reactive metabolites, such as a covalent binding assay with radioisotope-labeled drugs and a trapping method followed by LC-MS/MS analyses. Of these, a trapping method using glutathione is the most common, especially at the early stage of drug development. However, the cysteine of glutathione is not the only nucleophilic site in vivo; lysine, histidine, arginine, and DNA bases are also nucleophilic. Indeed, the glutathione trapping method tends to overlook several types of reactive metabolites, such as aldehydes, acylglucuronides, and nitroso compounds. Here, we introduce an alternate way for screening reactive metabolites as follows: A mixture of the light and heavy isotopes of simplified amino acid motifs and a DNA motif is used as a biomimetic trapping cocktail. This mixture consists of [ 2 H 0 ]/[ 2 H 3 ]-1-methylguanidine (arginine motif, Δ 3 Da), [ 2 H 0 ]/[ 2 H 4 ]-2-mercaptoethanol (cysteine motif, Δ 4 Da), [ 2 H 0 ]/[ 2 H 5 ]-4-methylimidazole (histidine motif, Δ 5 Da), [ 2 H 0 ]/[ 2 H 9 ]-n-butylamine (lysine motif, Δ 9 Da), and [ 13 C 0 , 15 N 0 ]/[ 13 C 1 , 15 N 2 ]-2'-deoxyguanosine (DNA motif, Δ 3 Da). Mass tag triggered data-dependent acquisition is used to find the characteristic doublet peaks, followed by specific identification of the light isotope peak using MS/MS. Forty-two model drugs were examined using an in vitro microsome experiment to validate the strategy. Graphical abstract Biomimetic trapping cocktail to screen reactive metabolites.

  12. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling☆

    PubMed Central

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-01-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2.) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  13. Antiplatelet Aggregation Activity of Walnut Hull Extract via Suppression of Reactive Oxygen Species Generation and Caspase Activation.

    PubMed

    Meshkini, Azadeh; Tahmasbi, Masoumeh

    2017-06-01

    Walnut hull (wal hull) is an agricultural by-product that is widely used in traditional medicine for alleviating pain and treating skin diseases, however, recently it has gained much attention in modern pharmacology due to its antioxidant properties. The current study was aimed to determine the total phenolic, flavonoid, and tannin content of Persian wal hull extract and evaluate its biological effects on platelet function. Experimental data showed that acetone extract of wal hulls has a high content of polyphenolic compounds and antioxidant properties. The analytical study of crude extract by gas chromatography-mass spectrometry demonstrated different types of high- and low-molecular-weight compounds that are basically and biologically important. Moreover, an in vitro study revealed that wal hull extract at a concentration of 50 μg/mL inhibited thrombin-induced platelet aggregation and protein secretion by 50%, without any cytotoxic effects on platelets. The examined extract suppressed reactive oxygen species generation and also caspase activation in thrombin-stimulated platelets. Identically, N-acetylcysteine inhibited the increase of reactive oxygen species level induced by thrombin in platelets, and supported a link between cellular redox status and caspase activation in activated platelets. Presumably, the antiplatelet activity of wal hull extract is related to its polyphenolic compounds and their antioxidant properties. Therefore, wal hulls can be considered as a candidate for thrombotic disorders. Copyright © 2017. Published by Elsevier B.V.

  14. Generation and characterization of anti-MUC4 monoclonal antibodies reactive with normal and cancer cells in humans.

    PubMed

    Moniaux, Nicolas; Varshney, Grish Chandra; Chauhan, Subhash Chand; Copin, Marie Christine; Jain, Maneesh; Wittel, Uwe A; Andrianifahanana, Mahefatiana; Aubert, Jean-Pierre; Batra, Surinder Kumar

    2004-02-01

    We have previously cloned the full-length cDNA (approximately 28 Kb) and established the complete genomic organization (25 exons/introns over 100 kb) of the human MUC4 mucin. This large molecule is predicted to protrude over 2 microm above the cell surface, in which MUC4alpha is an extracellular mucin-type glycoprotein subunit and MUC4beta is the transmembrane subunit. Over two thirds of the encoded protein sequence consists of 16-amino-acid tandem repeats (TR), which are flanked by unique sequences. In this study we generated and characterized monoclonal antibodies (MAbs) directed against the TR region of MUC4. Mice were immunized with a KLH-conjugated MUC4 TR peptide, STGDTTPLPVTDTSSV. Several clones were purified by three rounds of limited dilutions and stable clones presenting a sustained antibody production were selected for subsequent characterization. Antibodies were tested for their reactivity and specificity to recognize the MUC4 peptide and further screened by enzyme-linked immunosorbent assay (ELISA) and Western blotting analyses. One of the MAbs (8G7) was strongly reactive against the MUC4 peptide and with native MUC4 from human tissues or pancreatic cancer cells in Western blotting, immunohistochemistry, and confocal analysis. Anti-MUC4 MAb may represent a powerful tool for the study of MUC4 function under normal and pathological conditions and for diagnosis of solid tumors including those in the breast, pancreas, lungs, and ovaries.

  15. Hyperactivity and reactivity of peripheral blood neutrophils in chronic periodontitis.

    PubMed

    Matthews, J B; Wright, H J; Roberts, A; Cooper, P R; Chapple, I L C

    2007-02-01

    Some evidence exists that peripheral neutrophils from patients with chronic periodontitis generate higher levels of reactive oxygen species (ROS) after Fcgamma-receptor stimulation than those from healthy controls. We hypothesized that peripheral neutrophils in periodontitis also show both hyper-reactivity to plaque organisms and hyperactivity in terms of baseline, unstimulated generation and release of ROS. Peripheral neutrophils from chronic periodontitis patients and age/sex/smoking-matched healthy controls (18 pairs) were assayed for total ROS generation and extracellular ROS release, with and without stimulation (Fcgamma-receptor and Fusobacterium nucleatum), using luminol and isoluminol chemiluminescence. Assays were performed with and without priming with Escherichia coli lipopolysaccharide (LPS) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Phox gene expression (p22, p47, p67, gp91) was investigated using reverse transcription-polymerase chain reaction (RT-PCR). Neutrophils from patients produced higher mean levels of ROS in all assays. Total generation and extracellular release of ROS by patients' cells were significantly greater than those from controls after FcgammaR-stimulation, with (P = 0.023) and without (P < or = 0.023) priming with GM-CSF. Differences in unstimulated total ROS generation were not significant. By contrast, patients' cells demonstrated greater baseline, extracellular ROS release than those from controls (P = 0.004). This difference was maintained after priming with LPS (P = 0.028) but not GM-CSF (P = 0.217). Phox gene expression was similar in patient and control cells at baseline and stimulation with F. nucleatum (3 h) consistently reduced gp91(PHOX) transcripts. Our data demonstrate that peripheral neutrophils from periodontitis patients exhibit hyper-reactivity following stimulation (Fcgamma-receptor and F. nucleatum) and hyperactivity in terms of excess ROS release in the absence of exogenous stimulation. This

  16. Hyperactivity and reactivity of peripheral blood neutrophils in chronic periodontitis

    PubMed Central

    Matthews, J B; Wright, H J; Roberts, A; Cooper, P R; Chapple, I L C

    2007-01-01

    Some evidence exists that peripheral neutrophils from patients with chronic periodontitis generate higher levels of reactive oxygen species (ROS) after Fcγ-receptor stimulation than those from healthy controls. We hypothesized that peripheral neutrophils in periodontitis also show both hyper-reactivity to plaque organisms and hyperactivity in terms of baseline, unstimulated generation and release of ROS. Peripheral neutrophils from chronic periodontitis patients and age/sex/smoking-matched healthy controls (18 pairs) were assayed for total ROS generation and extracellular ROS release, with and without stimulation (Fcγ-receptor and Fusobacterium nucleatum), using luminol and isoluminol chemiluminescence. Assays were performed with and without priming with Escherichia coli lipopolysaccharide (LPS) and granulocyte–macrophage colony-stimulating factor (GM-CSF). Phox gene expression (p22, p47, p67, gp91) was investigated using reverse transcription–polymerase chain reaction (RT–PCR). Neutrophils from patients produced higher mean levels of ROS in all assays. Total generation and extracellular release of ROS by patients' cells were significantly greater than those from controls after FcγR-stimulation, with (P = 0·023) and without (P ≤ 0·023) priming with GM-CSF. Differences in unstimulated total ROS generation were not significant. By contrast, patients' cells demonstrated greater baseline, extracellular ROS release than those from controls (P = 0·004). This difference was maintained after priming with LPS (P = 0·028) but not GM-CSF (P = 0·217). Phox gene expression was similar in patient and control cells at baseline and stimulation with F. nucleatum (3 h) consistently reduced gp91PHOX transcripts. Our data demonstrate that peripheral neutrophils from periodontitis patients exhibit hyper-reactivity following stimulation (Fcγ-receptor and F. nucleatum) and hyperactivity in terms of excess ROS release in the absence of exogenous stimulation. This

  17. Mechanistic aspects of the tyrosinase oxidation of hydroquinone.

    PubMed

    Ramsden, Christopher A; Riley, Patrick A

    2014-06-01

    Contradictory reports on the behaviour of hydroquinone as a tyrosinase substrate are reconciled in terms of the ability of the initially formed ortho-quinone to tautomerise to the thermodynamically more stable para-quinone isomer. Oxidation of phenols by native tyrosinase requires activation by in situ formation of a catechol formed via an enzyme generated ortho-quinone. In the special case of hydroquinone, catechol formation is precluded by rapid tautomerisation of the ortho-quinone precursor to catechol formation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Bioorthogonal Metabolic DNA Labelling using Vinyl Thioether-Modified Thymidine and o-Quinolinone Quinone Methide.

    PubMed

    Gubu, Amu; Li, Long; Ning, Yan; Zhang, Xiaoyun; Lee, Seonghyun; Feng, Mengke; Li, Qiang; Lei, Xiaoguang; Jo, Kyubong; Tang, Xinjing

    2018-04-17

    Bioorthogonal metabolic DNA labeling with fluorochromes is a powerful strategy to visualize DNA molecules and their functions. Here, we report the development of a new DNA metabolic labeling strategy enabled by the catalyst-free bioorthogonal ligation using vinyl thioether modified thymidine and o-quinolinone quinone methide. With the newly designed vinyl thioether-modified thymidine (VTdT), we added labeling tags on cellular DNA, which could further be linked to fluorochromes in cells. Therefore, we successfully visualized the DNA localization within cells as well as single DNA molecules without other staining reagents. In addition, we further characterized this bioorthogonal DNA metabolic labeling using DNase I digestion, MS characterization of VTdT as well as VTdT-oQQF conjugate in cell nuclei or mitochondria. This technique provides a powerful strategy to study DNA in cells, which paves the way to achieve future spatiotemporal deciphering of DNA synthesis and functions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The 2-Methoxy Group Orientation Regulates the Redox Potential Difference between the Primary (QA) and Secondary (QB) Quinones of Type II Bacterial Photosynthetic Reaction Centers.

    PubMed

    de Almeida, Wagner B; Taguchi, Alexander T; Dikanov, Sergei A; Wraight, Colin A; O'Malley, Patrick J

    2014-08-07

    Recent studies have shown that only quinones with a 2-methoxy group can act simultaneously as the primary (Q A ) and secondary (Q B ) electron acceptors in photosynthetic reaction centers from purple bacteria such as Rb. sphaeroides . 13 C HYSCORE measurements of the 2-methoxy group in the semiquinone states, SQ A and SQ B , were compared with DFT calculations of the 13 C hyperfine couplings as a function of the 2-methoxy dihedral angle. X-ray structure comparisons support 2-methoxy dihedral angle assignments corresponding to a redox potential gap (Δ E m ) between Q A and Q B of 175-193 mV. A model having a methyl group substituted for the 2-methoxy group exhibits no electron affinity difference. This is consistent with the failure of a 2-methyl ubiquinone analogue to function as Q B in mutant reaction centers with a Δ E m of ∼160-195 mV. The conclusion reached is that the 2-methoxy group is the principal determinant of electron transfer from Q A to Q B in type II photosynthetic reaction centers with ubiquinone serving as both acceptor quinones.

  20. The Comparative Study of the Effects of Extremely Low Frequency Electromagnetic Fields and Infrasound on Water Molecule Dissociation and Generation of Reactive Oxygen Species

    DTIC Science & Technology

    2008-11-01

    ISTC Project No. #1592P The Comparative Study of The Effects of Extremely Low Frequency Electromagnetic Fields and Infrasound on Water Molecule...performed under the agreement with the International Science and Technology Center ( ISTC ), Moscow. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704...dissociation and generation of reactive oxygen spaces. 5a. CONTRACT NUMBER ISTC Registration No: A-1592p 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  1. Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System: A Scientific Statement From the American Heart Association.

    PubMed

    Griendling, Kathy K; Touyz, Rhian M; Zweier, Jay L; Dikalov, Sergey; Chilian, William; Chen, Yeong-Renn; Harrison, David G; Bhatnagar, Aruni

    2016-08-19

    Reactive oxygen species and reactive nitrogen species are biological molecules that play important roles in cardiovascular physiology and contribute to disease initiation, progression, and severity. Because of their ephemeral nature and rapid reactivity, these species are difficult to measure directly with high accuracy and precision. In this statement, we review current methods for measuring these species and the secondary products they generate and suggest approaches for measuring redox status, oxidative stress, and the production of individual reactive oxygen and nitrogen species. We discuss the strengths and limitations of different methods and the relative specificity and suitability of these methods for measuring the concentrations of reactive oxygen and reactive nitrogen species in cells, tissues, and biological fluids. We provide specific guidelines, through expert opinion, for choosing reliable and reproducible assays for different experimental and clinical situations. These guidelines are intended to help investigators and clinical researchers avoid experimental error and ensure high-quality measurements of these important biological species. © 2016 American Heart Association, Inc.

  2. Carbon nanotube-supported Au-Pd alloy with cooperative effect of metal nanoparticles and organic ketone/quinone groups as a highly efficient catalyst for aerobic oxidation of amines.

    PubMed

    Deng, Weiping; Chen, Jiashu; Kang, Jincan; Zhang, Qinghong; Wang, Ye

    2016-05-21

    Functionalised carbon nanotube (CNT)-supported Au-Pd alloy nanoparticles were highly efficient catalysts for the aerobic oxidation of amines. We achieved the highest turnover frequencies (>1000 h(-1)) for the oxidative homocoupling of benzylamine and the oxidative dehydrogenation of dibenzylamine. We discovered a cooperative effect between Au-Pd nanoparticles and ketone/quinone groups on CNTs.

  3. Insertion and self-diffusion of a monotopic protein, the Aquifex aeolicus sulfide quinone reductase, in supported lipid bilayers.

    PubMed

    Harb, Frédéric; Prunetti, Laurence; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne; Tinland, Bernard

    2015-10-01

    Monotopic proteins constitute a class of membrane proteins that bind tightly to cell membranes, but do not span them. We present a FRAPP (Fluorescence Recovery After Patterned Photobleaching) study of the dynamics of a bacterial monotopic protein, SQR (sulfide quinone oxidoreductase) from the thermophilic bacteria Aquifex aeolicus, inserted into two different types of lipid bilayers (EggPC: L-α-phosphatidylcholine (Egg, Chicken) and DMPC: 1,2-dimyristoyl-sn-glycero-3-phosphocholine) supported on two different types of support (mica or glass). It sheds light on the behavior of a monotopic protein inside the bilayer. The insertion of SQR is more efficient when the bilayer is in the fluid phase than in the gel phase. We observed diffusion of the protein, with no immobile fraction, and deduced from the diffusion coefficient measurements that the resulting inserted object is the same whatever the incubation conditions, i.e. homogeneous in terms of oligomerization state. As expected, the diffusion coefficient of the SQR is smaller in the gel phase than in the fluid phase. In the supported lipid bilayer, the diffusion coefficient of the SQR is smaller than the diffusion coefficient of phospholipids in both gel and fluid phase. SQR shows a diffusion behavior different from the transmembrane protein α-hemolysin, and consistent with its monotopic character. Preliminary experiments in the presence of the substrate of SQR, DecylUbiquinone, an analogue of quinone, component of transmembrane electrons transport systems of eukaryotic and prokaryotic organisms, have been carried out. Finally, we studied the behavior of SQR, in terms of insertion and diffusion, in bilayers formed with lipids from Aquifex aeolicus. All the conclusions that we have found in the biomimetic systems applied to the biological system.

  4. Mechanisms Behind Pyrroloquinoline Quinone Supplementation on Skeletal Muscle Mitochondrial Biogenesis: Possible Synergistic Effects with Exercise.

    PubMed

    Hwang, Paul; Willoughby, Darryn S

    2018-05-01

    There is clear evidence that endurance exercise training elicits intramuscular adaptations that can lead to elevations in mitochondrial biogenesis, oxidative capacity, mitochondrial density, and mitochondrial function. Mitochondrial biogenesis is regulated by the activation of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha. This master regulator of mitochondrial biogenesis activates nuclear respiratory factors (NRF-1, NRF-2) and mitochondrial transcription factor A, which enables the expansion of mitochondrial size and transcription of mitochondrial DNA. Pyrroloquinoline quinone (PQQ) has been identified as a novel supplement that is involved in various physiological processes such as redox modulation, cellular energy metabolism, and mitochondrial biogenesis and is a potent antioxidant. Since both exercise and supplemental PQQ have mechanisms associated with mitochondrial biogenesis, it is plausible that a differential additive ergogenic benefit with PQQ can ensue. However, there is a major paucity of research exploring the role of PQQ in conjunction with exercise. In this respect, the purpose of the critical literature review will be to present a comprehensive overview of PQQ and the proposed mechanisms underlying mitochondrial biogenesis. Because exercise can instigate the molecular responses indicative of mitochondrial biogenesis, it is plausible that PQQ and exercise may instigate a synergistic response. Key teaching points • Endurance exercise training enables skeletal muscle adaptations that can induce increases in mitochondrial biogenesis, improve oxidative capacity, mitochondrial density, and mitochondrial function. • Pyrroloquinoline quinone (PQQ) has been identified as a novel supplement that is involved in physiological processes including redox modulation, cellular energy metabolism, mitochondrial biogenesis, and antioxidant potential. • There is emerging evidence to support that PQQ

  5. Synthesis of SiC/Ag/Cellulose Nanocomposite and Its Antibacterial Activity by Reactive Oxygen Species Generation

    PubMed Central

    Borkowski, Andrzej; Cłapa, Tomasz; Szala, Mateusz; Gąsiński, Arkadiusz; Selwet, Marek

    2016-01-01

    We describe the synthesis of nanocomposites, based on nanofibers of silicon carbide, silver nanoparticles, and cellulose. Silver nanoparticle synthesis was achieved with chemical reduction using hydrazine by adding two different surfactants to obtain a nanocomposite with silver nanoparticles of different diameters. Determination of antibacterial activity was based on respiration tests. Enzymatic analysis indicates oxidative stress, and viability testing was conducted using an epifluorescence microscope. Strong bactericidal activity of nanocomposites was found against bacteria Escherichia coli and Bacillus cereus, which were used in the study as typical Gram-negative and Gram-positive bacteria, respectively. It is assumed that reactive oxygen species generation was responsible for the observed antibacterial effect of the investigated materials. Due to the properties of silicon carbide nanofiber, the obtained nanocomposite may have potential use in technology related to water and air purification. Cellulose addition prevented silver nanoparticle release and probably enhanced bacterial adsorption onto aggregates of the nanocomposite material. PMID:28335299

  6. Roles of the Sodium-Translocating NADH:Quinone Oxidoreductase (Na+-NQR) on Vibrio cholerae Metabolism, Motility and Osmotic Stress Resistance

    PubMed Central

    Minato, Yusuke; Halang, Petra; Quinn, Matthew J.; Faulkner, Wyatt J.; Aagesen, Alisha M.; Steuber, Julia; Stevens, Jan F.; Häse, Claudia C.

    2014-01-01

    The Na+ translocating NADH:quinone oxidoreductase (Na+-NQR) is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Thus, Na+-NQR should significantly contribute to multiple aspects of V. cholerae physiology; however, no detailed characterization of this aspect has been reported so far. In this study, we broadly investigated the effects of loss of Na+-NQR on V. cholerae physiology by using Phenotype Microarray (Biolog), transcriptome and metabolomics analyses. We found that the V. cholerae ΔnqrA-F mutant showed multiple defects in metabolism detected by Phenotype Microarray. Transcriptome analysis revealed that the V. cholerae ΔnqrA-F mutant up-regulates 31 genes and down-regulates 55 genes in both early and mid-growth phases. The most up-regulated genes included the cadA and cadB genes, encoding a lysine decarboxylase and a lysine/cadaverine antiporter, respectively. Increased CadAB activity was further suggested by the metabolomics analysis. The down-regulated genes include sialic acid catabolism genes. Metabolomic analysis also suggested increased reductive pathway of TCA cycle and decreased purine metabolism in the V. cholerae ΔnqrA-F mutant. Lack of Na+-NQR did not affect any of the Na+ pumping-related phenotypes of V. cholerae suggesting that other secondary Na+ pump(s) can compensate for Na+ pumping activity of Na+-NQR. Overall, our study provides important insights into the contribution of Na+-NQR to V. cholerae physiology. PMID:24811312

  7. Circuit mechanisms of hippocampal reactivation during sleep.

    PubMed

    Malerba, Paola; Bazhenov, Maxim

    2018-05-01

    The hippocampus is important for memory and learning, being a brain site where initial memories are formed and where sharp wave - ripples (SWR) are found, which are responsible for mapping recent memories to long-term storage during sleep-related memory replay. While this conceptual schema is well established, specific intrinsic and network-level mechanisms driving spatio-temporal patterns of hippocampal activity during sleep, and specifically controlling off-line memory reactivation are unknown. In this study, we discuss a model of hippocampal CA1-CA3 network generating spontaneous characteristic SWR activity. Our study predicts the properties of CA3 input which are necessary for successful CA1 ripple generation and the role of synaptic interactions and intrinsic excitability in spike sequence replay during SWRs. Specifically, we found that excitatory synaptic connections promote reactivation in both CA3 and CA1, but the different dynamics of sharp waves in CA3 and ripples in CA1 result in a differential role for synaptic inhibition in modulating replay: promoting spike sequence specificity in CA3 but not in CA1 areas. Finally, we describe how awake learning of spatial trajectories leads to synaptic changes sufficient to drive hippocampal cells' reactivation during sleep, as required for sleep-related memory consolidation. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Introducing new reactivity descriptors: "Bond reactivity indices." Comparison of the new definitions and atomic reactivity indices.

    PubMed

    Sánchez-Márquez, Jesús

    2016-11-21

    A new methodology to obtain reactivity indices has been defined. This is based on reactivity functions such as the Fukui function or the dual descriptor and makes it possible to project the information of reactivity functions over molecular orbitals instead of the atoms of the molecule (atomic reactivity indices). The methodology focuses on the molecule's natural bond orbitals (bond reactivity indices) because these orbitals (with physical meaning) have the advantage of being very localized, allowing the reaction site of an electrophile or nucleophile to be determined within a very precise molecular region. This methodology gives a reactivity index for every Natural Bond Orbital (NBO), and we have verified that they have equivalent information to the reactivity functions. A representative set of molecules has been used to test the new definitions. Also, the bond reactivity index has been related with the atomic reactivity one, and complementary information has been obtained from the comparison. Finally, a new atomic reactivity index has been defined and compared with previous definitions.

  9. Fracture Reactivation in Chemically Reactive Rock Systems

    NASA Astrophysics Data System (ADS)

    Eichhubl, P.; Hooker, J. N.

    2013-12-01

    Reactivation of existing fractures is a fundamental process of brittle failure that controls the nucleation of earthquake ruptures, propagation and linkage of hydraulic fractures in oil and gas production, and the evolution of fault and fracture networks and thus of fluid and heat transport in the upper crust. At depths below 2-3 km, and frequently shallower, brittle processes of fracture growth, linkage, and reactivation compete with chemical processes of fracture sealing by mineral precipitation, with precipitation rates similar to fracture opening rates. We recently found rates of fracture opening in tectonically quiescent settings of 10-20 μm/m.y., rates similar to euhedral quartz precipitation under these conditions. The tendency of existing partially or completely cemented fractures to reactivate will vary depending on strain rate, mineral precipitation kinetics, strength contrast between host rock and fracture cement, stress conditions, degree of fracture infill, and fracture network geometry. Natural fractures in quartzite of the Cambrian Eriboll Formation, NW Scotland, exhibit a complex history of fracture formation and reactivation, with reactivation involving both repeated crack-seal opening-mode failure and shear failure of fractures that formed in opening mode. Fractures are partially to completely sealed with crack-seal or euhedral quartz cement or quartz cement fragmented by shear reactivation. Degree of cementation controls the tendency of fractures for later shear reactivation, to interact elastically with adjacent open fractures, and their intersection behavior. Using kinematic, dynamic, and diagenetic criteria, we determine the sequence of opening-mode fracture formation and later shear reactivation. We find that sheared fracture systems of similar orientation display spatially varying sense of slip We attribute these inconsistent directions of shear reactivation to 1) a heterogeneous stress field in this highly fractured rock unit and 2

  10. Crossing the dividing surface of transition state theory. III. Once and only once. Selecting reactive trajectories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorquet, J. C., E-mail: jc.lorquet@ulg.ac.be

    2015-09-14

    The purpose of the present work is to determine initial conditions that generate reacting, recrossing-free trajectories that cross the conventional dividing surface of transition state theory (i.e., the plane in configuration space passing through a saddle point of the potential energy surface and perpendicular to the reaction coordinate) without ever returning to it. Local analytical equations of motion valid in the neighborhood of this planar surface have been derived as an expansion in Poisson brackets. We show that the mere presence of a saddle point implies that reactivity criteria can be quite simply formulated in terms of elements of thismore » series, irrespective of the shape of the potential energy function. Some of these elements are demonstrated to be equal to a sum of squares and thus to be necessarily positive, which has a profound impact on the dynamics. The method is then applied to a three-dimensional model describing an atom-diatom interaction. A particular relation between initial conditions is shown to generate a bundle of reactive trajectories that form reactive cylinders (or conduits) in phase space. This relation considerably reduces the phase space volume of initial conditions that generate recrossing-free trajectories. Loci in phase space of reactive initial conditions are presented. Reactivity is influenced by symmetry, as shown by a comparative study of collinear and bent transition states. Finally, it is argued that the rules that have been derived to generate reactive trajectories in classical mechanics are also useful to build up a reactive wave packet.« less

  11. Photochemical electron transfer in chlorophyll-porphyrin-quinone triads. The role of the porphyrin-bridging molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.G.; Niemczyk, M.P.; Minsek, D.W.

    1993-06-30

    The photochemistry of four chlorophyll-porphyrin-naphthoquinone molecules possessing both fixed distances and orientations between the three components is described. These molecules consist of a methyl pyropheophorbide a or pyrochlorophyllide a that is directly bonded at its 3-position to the 5-position of a 2,8,12,18-tetraethyl-3,7,13,-17-tetramethylporphyrin, which is in turn bonded at its 15-position to a 2-triptycenenaphthoquinone. In addition, porphyrin-quinone compounds in which the chlorins are replaced by a p-tolyl group were also prepared as reference compounds. Selective metalation of the macrocycles with zinc gives the series ZCHPNQ, ZCZPNQ, HCZPNQ, HCHPNQ, HPNQ, and ZPNQ, where H, Z, C, P, and NQ denote free base,more » Zn derivative, chlorophyll, porphyrin, and naphthoquinone, respectively. Selective excitation of ZC in ZCZPNQ and ZCHPNQ, and HC in HCHPNQ dissolved in butyronitrile yields ZC[sup +]ZPNQ[sup [minus

  12. coq7/clk-1 regulates mitochondrial respiration and the generation of reactive oxygen species via coenzyme Q.

    PubMed

    Nakai, Daisuke; Shimizu, Takahiko; Nojiri, Hidetoshi; Uchiyama, Satoshi; Koike, Hideo; Takahashi, Mayumi; Hirokawa, Katsuiku; Shirasawa, Takuji

    2004-10-01

    coq7/clk-1 was isolated from a long-lived mutant of Caenorhabditis elegans, and shows sluggish behaviours and an extended lifespan. In C. elegans and Saccharomyces cerevisiae, coq7/clk-1 is required for the biosynthesis of coenzyme Q (CoQ), an essential co-factor in mitochondrial respiration. The clk-1 mutant contains dietary CoQ(8) from Escherichia coli and demethoxyubiquinone 9 (DMQ9) instead of CoQ(9). In a previous study, we generated COQ7-deficient mice by targeted disruption of the coq7 gene and reported that mouse coq7/clk-1 is also essential for CoQ synthesis, maintenance of mitochondrial integrity and neurogenesis. In the present study, we rescued COQ7-deficient mice from embryonic lethality and established a mouse model with decreased CoQ level by transgene expression of COQ7/CLK-1. A biochemical analysis showed a concomitant decrease in CoQ(9), mitochondrial respiratory enzyme activity and the generation of reactive oxygen species (ROS) in the mitochondria of CoQ-insufficient mice. This implied that the depressed activity of respiratory enzymes and the depressed production of ROS may play a physiological role in the control of lifespan in mammalian species and of C. elegans.

  13. Iodine-catalyzed diazo activation to access radical reactivity.

    PubMed

    Li, Pan; Zhao, Jingjing; Shi, Lijun; Wang, Jin; Shi, Xiaodong; Li, Fuwei

    2018-05-17

    Transition-metal-catalyzed diazo activation is a classical way to generate metal carbene, which are valuable intermediates in synthetic organic chemistry. An alternative iodine-catalyzed diazo activation is disclosed herein under either photo-initiated or thermal-initiated conditions, which represents an approach to enable carbene radical reactivity. This metal-free diazo activation strategy were successfully applied into olefin cyclopropanation and epoxidation, and applying this method to pyrrole synthesis under thermal-initiated conditions further demonstrates the unique reactivity using this method over typical metal-catalyzed conditions.

  14. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    PubMed

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. The Fumarate Reductase of Bacteroides thetaiotaomicron, unlike That of Escherichia coli, Is Configured so that It Does Not Generate Reactive Oxygen Species.

    PubMed

    Lu, Zheng; Imlay, James A

    2017-01-03

    The impact of oxidative stress upon organismal fitness is most apparent in the phenomenon of obligate anaerobiosis. The root cause may be multifaceted, but the intracellular generation of reactive oxygen species (ROS) likely plays a key role. ROS are formed when redox enzymes accidentally transfer electrons to oxygen rather than to their physiological substrates. In this study, we confirm that the predominant intestinal anaerobe Bacteroides thetaiotaomicron generates intracellular ROS at a very high rate when it is aerated. Fumarate reductase (Frd) is a prominent enzyme in the anaerobic metabolism of many bacteria, including B. thetaiotaomicron, and prior studies of Escherichia coli Frd showed that the enzyme is unusually prone to ROS generation. Surprisingly, in this study biochemical analysis demonstrated that the B. thetaiotaomicron Frd does not react with oxygen at all: neither superoxide nor hydrogen peroxide is formed. Subunit-swapping experiments indicated that this difference does not derive from the flavoprotein subunit at which ROS normally arise. Experiments with the related enzyme succinate dehydrogenase discouraged the hypothesis that heme moieties are responsible. Thus, resistance to oxidation may reflect a shift of electron density away from the flavin moiety toward the iron-sulfur clusters. This study shows that the autoxidizability of a redox enzyme can be suppressed by subtle modifications that do not compromise its physiological function. One implication is that selective pressures might enhance the oxygen tolerance of an organism by manipulating the electronic properties of its redox enzymes so they do not generate ROS. Whether in sediments or pathogenic biofilms, the structures of microbial communities are configured around the sensitivities of their members to oxygen. Oxygen triggers the intracellular formation of reactive oxygen species (ROS), and the sensitivity of a microbe to oxygen likely depends upon the rates at which ROS are formed

  16. A DIRECT ROUTE TO ACYLHYDROQUINONES FROM ALPHA-KETO ACIDS AND ALPHA-CARBOXAMIDO ACIDS. (R825330)

    EPA Science Inventory

    Abstract

    The reaction of quinones with in situ generated acyl- or carboxamido radicals provides a direct route to the synthesis of acylhydroquinones not accessible by the photochemical reaction of quinones with aldehydes.

  17. Phenethyl isothiocyanate inhibits growth of human chronic myeloid leukemia K562 cells via reactive oxygen species generation and caspases.

    PubMed

    Wang, Yating; Wei, Sixi; Wang, Jishi; Fang, Qin; Chai, Qixiang

    2014-07-01

    Phenethyl isothiocyanate (PEITC), a potential cancer chemopreventive constituent of cruciferous vegetables, including watercress, has been reported to inhibit cancer cell growth by arresting the cell cycle and inducing apoptosis in various human cancer cell models. However, the role of PEITC in the inhibition of human chronic myeloid leukemia (CML) K562 cell growth and its underlying mechanisms have yet to be elucidated. In the present study, PEITC was found to induce cell death through the induction of reactive oxygen species (ROS) stress and oxidative damage. Heme oxygenase‑1 (HO‑1), which participates in the development of numerous tumors and the sensitivity of these tumors to chemotherapeutic drugs, plays a protective role by modulating oxidative injury. Therefore, the present study assessed the inhibitory effect of PEITC on K562 cells and whether HO‑1 facilitated cell apoptosis and ROS generation. PEITC was found to suppress cell growth and cause apoptosis by promoting Fas and Fas ligand expression, increasing ROS generation and by the successive release of cytochrome c as well as the activation of caspase‑9 and caspase‑3. PEITC was also combined with the HO‑1 inhibitor zinc protoporphyrin IX and the inducer hemin to assess whether HO‑1 determines cell survival and ROS generation. The results of the present study suggest that PEITC may be a potential anti‑tumor compound for CML therapy, and that HO‑1 has a critical function in PEITC‑induced apoptosis and ROS generation.

  18. Phloretin induces cell cycle arrest and apoptosis of human glioblastoma cells through the generation of reactive oxygen species.

    PubMed

    Liu, Yuanyuan; Fan, Chenghe; Pu, Lv; Wei, Cui; Jin, Haiqiang; Teng, Yuming; Zhao, Mingming; Yu, Albert Cheung Hoi; Jiang, Feng; Shu, Junlong; Li, Fan; Peng, Qing; Kong, Jian; Pan, Bing; Zheng, Lemin; Huang, Yining

    2016-06-01

    Phloretin, a flavonoid present in various plants, has been reported to exert anticarcinogenic effects. However, the mechanism of its chemo-preventive effect on human glioblastoma cells is not fully understood. This study aimed to investigate the molecular mechanism of phloretin and its associated chemo-preventive effect in human glioblastoma cells. The results indicate that phloretin inhibited cell proliferation by inducing cell cycle arrest at the G0-G1 phase and induced apoptosis of human glioblastoma cells. Phloretin-induced cell cycle arrest was associated with increased expression of p27 and decreased expression of cdk2, cdk4, cdk6, cyclinD and cyclinE. Moreover, the PI3K/AKT/mTOR signaling cascades were suppressed by phloretin in a dose-dependent manner. In addition, phloretin triggered the mitochondrial apoptosis pathway and generated reactive oxygen species (ROS). This was accompanied by the up-regulation of Bax, Bak and c-PARP and the down-regulation of Bcl-2. The antioxidant agents N-acetyl-L-cysteine and glutathione weakened the effect of phloretin on glioblastoma cells. In conclusion, these results demonstrate that phloretin exerts potent chemo-preventive activity in human glioblastoma cells through the generation of ROS.

  19. CAX1 suppresses Cd-induced generation of reactive oxygen species in Arabidopsis halleri.

    PubMed

    Ahmadi, Hassan; Corso, Massimiliano; Weber, Michael; Verbruggen, Nathalie; Clemens, Stephan

    2018-06-07

    The molecular analysis of metal hyperaccumulation in species such as Arabidopsis halleri offers the chance to gain insights into metal homeostasis and into the evolution of adaptation to extreme habitats. A prerequisite of metal hyperaccumulation is metal hypertolerance. Genetic analysis of a backcross population derived from A. lyrata x A. halleri crosses revealed three quantitative trait loci (QTLs) for Cd hypertolerance. A candidate gene for Cdtol2 is AhCAX1, encoding a vacuolar Ca 2+ /H + antiporter. We developed a method for the transformation of vegetatively propagated A. halleri plants and generated AhCAX1-silenced lines. Upon Cd 2+ exposure several-fold higher accumulation of reactive oxygen species (ROS) was detectable in roots of AhCAX1-silenced plants. In accordance with the dependence of Cdtol2 on external Ca 2+ concentration, this phenotype was exclusively observed in low Ca 2+ conditions. The effects of external Ca 2+ on Cd accumulation cannot explain the phenotype as they were not influenced by the genotype. Our data strongly support the hypothesis that higher expression of CAX1 in A. halleri relative to other Arabidopsis species represents a Cd hypertolerance factor. We propose a function of AhCAX1 in preventing a positive feedback loop of Cd-elicited ROS production triggering further Ca 2+ -dependent ROS accumulation. This article is protected by copyright. All rights reserved.

  20. Catalytic performance of quinone and graphene-modified polyurethane foam on the decolorization of azo dye Acid Red 18 by Shewanella sp. RQs-106.

    PubMed

    Zhou, Yang; Lu, Hong; Wang, Jing; Zhou, Jiti; Leng, Xueying; Liu, Guangfei

    2018-08-15

    Quinone-modified graphene powder is not reusable in bio-treatment systems, and the roles of quinone and graphene during extracellular electron-transfer processes remain unclear. In this study, we prepared anthraquinone-2-sulfonate and reduced graphene-oxide-modified polyurethane foam (AQS-rGO-PUF) and found that AQS-rGO-PUF exhibited higher catalytic performance on Acid Red 18 (AR 18) bio-decolorization compared with AQS-PUF and rGO-PUF. We observed a significant synergistic effect between AQS and rGO in AQS-rGO-PUF-mediated system in the presence of 50 μM AQS and 1.63 mg/L rGO. The synergistic effect was mainly attributed to electron transfer from AQS to rGO either directly or via flavins secreted by strain RQs-106, and ultimately to AR 18, accounting for ∼33.47% of AR 18 removal during AQS-rGO-PUF-mediated decolorization. Additionally, AQS-rGO-PUF exhibited good mechanical properties and maintained its macroporous structure. Furthermore, after eight rounds of experiments using AQS-rGO-PUF, the bio-decolorization efficiency of AR 18 retained >98.18% of its original value. These results indicate that the combination of AQS-rGO-PUF and Shewanella strains show potential efficacy for enhancing the treatment of azo-dye-containing wastewater. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Incorporating Geochemical And Microbial Kinetics In Reactive Transport Models For Generation Of Acid Rock Drainage

    NASA Astrophysics Data System (ADS)

    Andre, B. J.; Rajaram, H.; Silverstein, J.

    2010-12-01

    diffusion model at the scale of a single rock is developed incorporating the proposed kinetic rate expressions. Simulations of initiation, washout and AMD flows are discussed to gain a better understanding of the role of porosity, effective diffusivity and reactive surface area in generating AMD. Simulations indicate that flow boundary conditions control generation of acid rock drainage as porosity increases.

  2. Ascorbate and α-tocopherol differentially modulate reactive oxygen species generation by neutrophils in response to FcγR and TLR agonists.

    PubMed

    Chapple, Iain Lc; Matthews, John B; Wright, Helen J; Scott, Ann E; Griffiths, Helen R; Grant, Melissa M

    2013-01-01

    Periodontitis, a ubiquitous chronic inflammatory disease, is associated with reduced antioxidant defences and neutrophil hyperactivity in terms of reactive oxygen species (ROS) generation. Its phenotype is thus characterized by oxidative stress. We have determined the effect of antioxidant micronutrients ascorbate and α-tocopherol on neutrophil ROS generation. Peripheral neutrophils from periodontally-healthy individuals (n = 20) were challenged with phorbol myristate acetate, IgG-opsonised Staphylococcus aureus, Fusobacterium nucleatum or PBS in the presence and absence of micronutrients (50 µM). Total and extracellular ROS were measured by luminol and isoluminol chemiluminescence respectively. Total and extracellular unstimulated, baseline ROS generation was unaffected by α-tocopherol, but inhibited by ascorbate and a combination of both micronutrients. Fcγ-receptor (Fcγ-R)-stimulated total or extracellular ROS generation was not affected by the presence of individual micronutrients. However, the combination significantly reduced extracellular FcγR-stimulated ROS release. Neither micronutrient inhibited TLR-stimulated total ROS, but the combination caused inhibition. Ascorbate and the micronutrient combination, but not α-tocopherol, inhibited extracellular ROS release by TLR-stimulated cells. Such micronutrient effects in vivo could be beneficial in reducing collateral tissue damage in chronic inflammatory diseases, such as periodontitis, while retaining immune-mediated neutrophil function.

  3. Limonin Methoxylation Influences Induction of Glutathione S-Transferase and Quinone Reductase

    PubMed Central

    PEREZ, JOSE LUIS; JAYAPRAKASHA, G. K.; VALDIVIA, VIOLETA; MUNOZ, DIANA; DANDEKAR, DEEPAK V.; AHMAD, HASSAN; PATIL, BHIMANAGOUDA S.

    2009-01-01

    Previous studies have indicated the chemoprevention potential of citrus limonoids due to the induction of phase II detoxifying enzymes. In the present study, three citrus limonoids were purified and identified from sour orange seeds as limonin, limonin glucoside (LG), deacetylnomilinic acid glucoside (DNAG). In addition, limonin was modified to defuran limonin and limonin 7-methoxime. The structures of these compounds were confirmed by NMR studies. These five compounds were used to investigate the influence of Phase II enzymes in female A/J mice. Our results indicated that the highest induction of Glutathione S-Transferase (GST) activity against 1-chloro-2, 4-dinitrobenzene (CDNB) by DNAG (67%) in lung homogenates followed by limonin-7-methoxime (32%) in treated liver homogenates. Interestingly, the limonin-7-methoxime showed the highest GST activity (270%) in liver against 4-nitroquinoline 1-oxide (4NQO), while the same compound in stomach induced GST by 51% compared to the control. DNAG treated group induced 55% in stomach homogenates. Another Phase II enzyme, quinone reductase (QR), was significantly induced by limonin-7-methoxime by 65 and 32% in liver and lung homogenates, respectively. Defuran limonin, induced QR in lung homogenates by 45%. Our results indicated that modification of the limonin have differential induction of phase II enzymes. These findings are indicative of a possible mechanism for the prevention of cancer by aiding in detoxification of xenobiotics. PMID:19480426

  4. Nanosecond-Pulsed DBD Plasma-Generated Reactive Oxygen Species Trigger Immunogenic Cell Death in A549 Lung Carcinoma Cells through Intracellular Oxidative Stress

    PubMed Central

    Lin, Abraham; Truong, Billy; Patel, Sohil; Kaushik, Nagendra; Choi, Eun Ha; Fridman, Gregory; Fridman, Alexander; Miller, Vandana

    2017-01-01

    A novel application for non-thermal plasma is the induction of immunogenic cancer cell death for cancer immunotherapy. Cells undergoing immunogenic death emit danger signals which facilitate anti-tumor immune responses. Although pathways leading to immunogenic cell death are not fully understood; oxidative stress is considered to be part of the underlying mechanism. Here; we studied the interaction between dielectric barrier discharge plasma and cancer cells for oxidative stress-mediated immunogenic cell death. We assessed changes to the intracellular oxidative environment after plasma treatment and correlated it to emission of two danger signals: surface-exposed calreticulin and secreted adenosine triphosphate. Plasma-generated reactive oxygen and charged species were recognized as the major effectors of immunogenic cell death. Chemical attenuators of intracellular reactive oxygen species successfully abrogated oxidative stress following plasma treatment and modulated the emission of surface-exposed calreticulin. Secreted danger signals from cells undergoing immunogenic death enhanced the anti-tumor activity of macrophages. This study demonstrated that plasma triggers immunogenic cell death through oxidative stress pathways and highlights its potential development for cancer immunotherapy. PMID:28467380

  5. BCI induces apoptosis via generation of reactive oxygen species and activation of intrinsic mitochondrial pathway in H1299 lung cancer cells.

    PubMed

    Shin, Jong-Woon; Kwon, Sae-Bom; Bak, Yesol; Lee, Sang-Ku; Yoon, Do-Young

    2018-03-28

    The compound (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI) is known as an inhibitor of dual specific phosphatase 1/6 and mitogen-activated protein kinase. However, its precise anti-lung cancer mechanism remains unknown. In this study, the effects of BCI on the viability of non-small cell lung cancer cell lines NCI-H1299, A549, and NCI-H460 were evaluated. We confirmed that BCI significantly inhibited the viability of p53(-) NCI-H1299 cells as compared to NCI-H460 and A549 cells, which express wild-type p53. Furthermore, BCI treatment increased the level of cellular reactive oxygen species and pre-treatment of cells with N-acetylcysteine markedly attenuated BCI-mediated apoptosis of NCI-H1299 cells. BCI induced cellular morphological changes, inhibited viability, and produced reactive oxygen species in NCI-H1299 cells in a dose-dependent manner. BCI induced processing of caspase-9, caspase-3, and poly ADP-ribose polymerase as well as the release of cytochrome c from the mitochondria into the cytosol. In addition, BCI downregulated Bcl-2 expression and enhanced Bax expression in a dose-dependent manner in NCI-H1299 cells. However, BCI failed to modulate the expression of the death receptor and extrinsic factor caspase-8 and Bid, a linker between the intrinsic and extrinsic apoptotic pathways in NCI-H1299 cells. Thus, BCI induces apoptosis via generation of reactive oxygen species and activation of the intrinsic pathway in NCI-H1299 cells.

  6. Chemical stability and in chemico reactivity of 24 fragrance ingredients of concern for skin sensitization risk assessment.

    PubMed

    Avonto, Cristina; Wang, Mei; Chittiboyina, Amar G; Vukmanovic, Stanislav; Khan, Ikhlas A

    2018-02-01

    Twenty-four pure fragrance ingredients have been identified as potential concern for skin sensitization. Several of these compounds are chemically unstable and convert into reactive species upon exposure to air or light. In the present work, a systematic investigation of the correlation between chemical stability and reactivity has been undertaken. The compounds were subjected to forced photodegradation for three months and the chemical changes were studied with GC-MS. At the end of the stability study, two-thirds of the samples were found to be unstable. The generation of chemically reactive species was investigated using the in chemico HTS-DCYA assay. Eleven and fourteen compounds were chemically reactive before and after three months, respectively. A significant increase in reactivity upon degradation was found for isoeugenol, linalool, limonene, lyral, citronellol and geraniol; in the same conditions, the reactivity of hydroxycitronellal decreased. The non-reactive compounds α-isomethyl ionone, benzyl alcohol, amyl cinnamal and farnesol became reactive after photo-oxidative degradation. Overall, forced degradation resulted in four non-reactive fragrance compounds to display in chemico thiol reactivity, while ten out of 24 compounds remained inactive. Chemical degradation does not necessarily occur with generation of reactive species. Non-chemical activation may be involved for the 10 stable unreactive compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Understanding Combustion of H2/O2 Gases inside Nanobubbles Generated by Water Electrolysis Using Reactive Molecular Dynamic Simulations.

    PubMed

    Jain, S; Qiao, L

    2018-06-21

    This work explored the mechanism of spontaneous combustion of hydrogen-oxygen mixtures inside nanobubbles (which were generated by water electrolysis) using reactive molecular dynamic simulations based on the first-principles derived reactive force field ReaxFF. The effects of surface-assisted dissociation of H 2 and O 2 gases that produced H and O radicals were examined. Additionally, the ignition outcome and species evolution as a function of the initial system pressure (or bubble size) were studied. A significant amount of hydrogen peroxide (H 2 O 2 ), 6-140 times water (H 2 O), was observed in the combustion products. This was attributed to the low-temperature (∼300 K) and high-pressure (2-80 atm) conditions at which the chemical reactions were taking place. In addition, the rate of consumption of H 2 and O 2 molecules was found to increase with an increase in added H and O radical concentrations and initial system pressure. The rate at which heat was being lost from the combustion chamber (nanobubbles) was also compared to the rate at which heat was being released from the chemical reactions. Only a slight rise in the reaction temperature was observed (∼68 K), signifying that, at such small scales, heat losses dominate. The resulting chemistry was quite different from macroscopic combustion, which usually takes place at a much higher temperatures of above 1000 K.

  8. Spectroscopic and molecular docking studies on the charge transfer complex of bovine serum albumin with quinone in aqueous medium and its influence on the ligand binding property of the protein.

    PubMed

    Satheshkumar, Angupillai; Elango, Kuppanagounder P

    2014-09-15

    The spectral techniques such as UV-Vis, (1)H NMR and fluorescence and electrochemical experiments have been employed to investigate the interaction between 2-methoxy-3,5,6-trichloro-1,4-benzoquinone (MQ; a water soluble quinone) and bovine serum albumin (BSA) in aqueous medium. The fluorescence of BSA was quenched by MQ via formation of a 1:1 BSA-MQ charge transfer adduct with a formation constant of 3.3×10(8) L mol(-1). Based on the Forster's theory the binding distance between them is calculated as 2.65 nm indicating high probability of binding. For the first time, influence of quinone on the binding property of various types of ligands such as aspirin, ascorbic acid, nicotinimide and sodium stearate has also been investigated. The results indicated that the strong and spontaneous binding existing between BSA and MQ, decreased the intensity of binding of these ligands with BSA. Since Tryptophan (Trp) is the basic residue present in BSA, a comparison between binding property of Trp-MQ adduct with that of BSA-MQ with these ligands has also been attempted. 1H NMR titration study indicated that the Trp forms a charge transfer complex with MQ, which reduces the interaction of Trp with the ligands. Molecular docking study supported the fact that the quinone interacts with the Trp212 unit of the BSA and the free energy change of binding (ΔG) for the BSA-MQ complex was found to be -46 kJ mol(-1), which is comparable to our experimental free energy of binding (-49 kJ mol(-1)) obtained from fluorescence study. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Spectroscopic and molecular docking studies on the charge transfer complex of bovine serum albumin with quinone in aqueous medium and its influence on the ligand binding property of the protein

    NASA Astrophysics Data System (ADS)

    Satheshkumar, Angupillai; Elango, Kuppanagounder P.

    2014-09-01

    The spectral techniques such as UV-Vis, 1H NMR and fluorescence and electrochemical experiments have been employed to investigate the interaction between 2-methoxy-3,5,6-trichloro-1,4-benzoquinone (MQ; a water soluble quinone) and bovine serum albumin (BSA) in aqueous medium. The fluorescence of BSA was quenched by MQ via formation of a 1:1 BSA-MQ charge transfer adduct with a formation constant of 3.3 × 108 L mol-1. Based on the Forster’s theory the binding distance between them is calculated as 2.65 nm indicating high probability of binding. For the first time, influence of quinone on the binding property of various types of ligands such as aspirin, ascorbic acid, nicotinimide and sodium stearate has also been investigated. The results indicated that the strong and spontaneous binding existing between BSA and MQ, decreased the intensity of binding of these ligands with BSA. Since Tryptophan (Trp) is the basic residue present in BSA, a comparison between binding property of Trp-MQ adduct with that of BSA-MQ with these ligands has also been attempted. 1H NMR titration study indicated that the Trp forms a charge transfer complex with MQ, which reduces the interaction of Trp with the ligands. Molecular docking study supported the fact that the quinone interacts with the Trp212 unit of the BSA and the free energy change of binding (ΔG) for the BSA-MQ complex was found to be -46 kJ mol-1, which is comparable to our experimental free energy of binding (-49 kJ mol-1) obtained from fluorescence study.

  10. Newly synthesized bis-benzimidazole compound 8 induces apoptosis, autophagy and reactive oxygen species generation in HeLa cells.

    PubMed

    Chu, Naying; Yao, Guodong; Liu, Yuan; Cheng, Maosheng; Ikejima, Takashi

    2016-09-01

    Compound 8 (C8) is a newly synthesized bis-benzimidazole derivative and exerts significant anti-tumor activity in vitro. Previous studies demonstrated that C8 induced apoptosis and autophagy in human promyelocytic leukemia HL60 cells. However, cytotoxicity study on human peripheral blood mononuclear cells (hPBMC) showed that C8 exhibited less toxicity in normal cells. In this study, the molecular mechanism of C8 on human cervical carcinoma HeLa cells was investigated. The results showed that C8 inhibited the growth of HeLa cells and triggered both apoptotic and autophagic cell death. Subsequent experiment also indicated that reactive oxygen species (ROS) generation was induced in C8-treated HeLa cells. Since ROS scavenger decreased the ratio of apoptotic and autophagic cells, ROS generation contributed to C8-induced apoptosis and autophagy. Furthermore, inhibitors of apoptosis and autophagy also reduced ROS generation, respectively. Autophagy inhibition increased cell growth compared to C8-treated group and attenuated apoptotic cell death, indicating that C8-induced autophagy promoted apoptosis for cell death. However, the percentage of autophagic cells was enhanced when limiting apoptosis process. Taken together, C8 induced ROS-mediated apoptosis and autophagy in HeLa cells, autophagy promoted apoptosis but the former was antagonized by the latter. The data also gave us a new perspective on the anti-tumor effect of C8. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode.

    PubMed

    Zhu, Zhiqiang; Hong, Meiling; Guo, Dongsheng; Shi, Jifu; Tao, Zhanliang; Chen, Jun

    2014-11-26

    The cathode capacity of common lithium ion batteries (LIBs) using inorganic electrodes and liquid electrolytes must be further improved. Alternatively, all-solid-state lithium batteries comprising the electrode of organic compounds can offer much higher capacity. Herein, we successfully fabricated an all-solid-state lithium battery based on organic pillar[5]quinone (C35H20O10) cathode and composite polymer electrolyte (CPE). The poly(methacrylate) (PMA)/poly(ethylene glycol) (PEG)-LiClO4-3 wt % SiO2 CPE has an optimum ionic conductivity of 0.26 mS cm(-1) at room temperature. Furthermore, pillar[5]quinine cathode in all-solid-state battery rendered an average operation voltage of ∼2.6 V and a high initial capacity of 418 mAh g(-1) with a stable cyclability (94.7% capacity retention after 50 cycles at 0.2C rate) through the reversible redox reactions of enolate/quinonid carbonyl groups, showing favorable prospect for the device application with high capacity.

  12. Pyrroloquinoline quinone ameliorates l-thyroxine-induced hyperthyroidism and associated problems in rats.

    PubMed

    Kumar, Narendra; Kar, Anand; Panda, Sunanda

    2014-08-01

    Pyrroloquinoline quinone (PQQ) is believed to be a strong antioxidant. In this study, we have evaluated its hitherto unknown role in l-thyroxin (L-T4 )-induced hyperthyroidism considering laboratory rat as a model. Alterations in the serum concentration of thyroxin (T4 ) and triiodothyronine (T3 ); lipid peroxidation (LPO) of liver, kidney, heart, muscles and brain; in the endogenous antioxidants such as superoxide dismutase, catalase and glutathione and in serum total cholesterol, high-density lipoprotien, triglycerides, serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT) and urea were evaluated. Administration of l-T4 (500-µg kg(-1) body weight) enhanced not only the serum T3 and T4 levels but also the tissue LPO, serum SGOT, SGPT and urea with a parallel decrease in the levels of antioxidants and serum lipids. However, on simultaneous administration of PQQ (5 mg kg(-1) for 6 days), all these adverse effects were ameliorated, indicating the potential of PQQ in the amelioration of hyperthyroidism and associated problems. Possibly, the curative effects were mediated through inhibition of oxidative stress. We suggest that PQQ may be considered for therapeutic use for hyperthyroidism after dose standardization. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Succinate dehydrogenase activity regulates PCB3-quinone-induced metabolic oxidative stress and toxicity in HaCaT human keratinocytes.

    PubMed

    Xiao, Wusheng; Sarsour, Ehab H; Wagner, Brett A; Doskey, Claire M; Buettner, Garry R; Domann, Frederick E; Goswami, Prabhat C

    2016-02-01

    Polychlorinated biphenyls (PCBs) and their metabolites are environmental pollutants that are known to have adverse health effects. 1-(4-Chlorophenyl)-benzo-2,5-quinone (4-ClBQ), a quinone metabolite of 4-monochlorobiphenyl (PCB3, present in the environment and human blood) is toxic to human skin keratinocytes, and breast and prostate epithelial cells. This study investigates the hypothesis that 4-ClBQ-induced metabolic oxidative stress regulates toxicity in human keratinocytes. Results from Seahorse XF96 Analyzer showed that the 4-ClBQ treatment increased extracellular acidification rate, proton production rate, oxygen consumption rate and ATP content, indicative of metabolic oxidative stress. Results from a q-RT-PCR assay showed significant increases in the mRNA levels of hexokinase 2 (hk2), pyruvate kinase M2 (pkm2) and glucose-6-phosphate dehydrogenase (g6pd), and decreases in the mRNA levels of succinate dehydrogenase (complex II) subunit C and D (sdhc and sdhd). Pharmacological inhibition of G6PD-activity enhanced the toxicity of 4-ClBQ, suggesting that the protective function of the pentose phosphate pathway is functional in 4-ClBQ-treated cells. The decrease in sdhc and sdhd expression was associated with a significant decrease in complex II activity and increase in mitochondrial levels of ROS. Overexpression of sdhc and sdhd suppressed 4-ClBQ-induced inhibition of complex II activity, increase in mitochondrial levels of ROS, and toxicity. These results suggest that the 4-ClBQ treatment induces metabolic oxidative stress in HaCaT cells, and while the protective function of the pentose phosphate pathway is active, inhibition of complex II activity sensitizes HaCaT cells to 4-ClBQ-induced toxicity.

  14. Cranberry extract-enriched diets increase NAD(P)H:quinone oxidoreductase and catalase activities in obese but not in nonobese mice.

    PubMed

    Boušová, Iva; Bártíková, Hana; Matoušková, Petra; Lněničková, Kateřina; Zappe, Lukáš; Valentová, Kateřina; Szotáková, Barbora; Martin, Jan; Skálová, Lenka

    2015-10-01

    Consumption of antioxidant-enriched diets is 1 method of addressing obesity, which is associated with chronic oxidative stress and changes in the activity/expression of various enzymes. In this study, we hypothesized that the modulation of antioxidant enzymes and redox status through a cranberry extract (CBE)-enriched diet would differ between obese and nonobese mice. The CBE used in this study was obtained from the American cranberry (Vaccinium macrocarpon, Ericaceae), a popular constituent of dietary supplements that is a particularly rich source of (poly)phenols and has strong antioxidant properties. The present study was designed to test and compare the in vivo effects of 28-day consumption of a CBE-enriched diet (2%) on the antioxidant status of nonobese mice and mice with monosodium glutamate-induced obesity. Plasma, erythrocytes, liver, and small intestine were studied concurrently to obtain more complex information. The specific activities, protein, and messenger RNA expression levels of antioxidant enzymes as well as the levels of malondialdehyde and thiol (SH) groups were analyzed. Cranberry extract treatment increased the SH group content in plasma and the glutathione S-transferase activity in the erythrocytes of the obese and nonobese mice. In addition, in the obese animals, the CBE treatment reduced the malondialdehyde content in erythrocytes and increased quinone oxidoreductase (liver) and catalase (erythrocytes and small intestine) activities. The elevation of hepatic quinone oxidoreductase activity was accompanied by an increase in the corresponding messenger RNA levels. The effects of CBE on the activity of antioxidant enzymes and redox status were more pronounced in the obese mice compared with the nonobese mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. [Changes of vascular reactivity and reactive oxygen species in conditions of varying duration of permanent stay in the alienation zone in mice].

    PubMed

    Tkachenko, M M; Kotsiuruba, A V; Baziliuk, O V; Horot', I V; Sahach, V F

    2010-01-01

    Peculiarities of changes in the vascular reactivity and in the content of reactive forms of oxygen and stable metabolites of nitric oxide (NO) were studied in the aorta preparations of C57BL/6 and BALB/c mice of the two age groups (6 and 18 mo.), which were born and permanently kept in the Chernobyl alienation zone. The results obtained showed a disturbance of acetylcholine-induced endothelium-dependent reactions of relaxation of smooth muscles of the thoracic aorta. A lower level of NO synthesis and lower level of oxidative arginase metabolism of arginine corresponded to a higher degree of damage of endothelium-dependent reactions of relaxation of the thoracic aorta smooth muscles. A decrease of NO synthesis in conditions of permanent effects of low doses of radiation was conditioned by an increase of generation of reactive forms of oxygen, namely, superoxide and hydroxyl radicals, which might be formed in mitochondria. In conditions of permanent effects of low doses of radiation a lesser level of protein nitrosothilation, same as lesser one of generation of OH-radical, corresponded to a higher level of damage of endothelium-dependent reactions.

  16. Role of dissolved oxygen on the degradation mechanism of Reactive Green 19 and electricity generation in photocatalytic fuel cell.

    PubMed

    Lee, Sin-Li; Ho, Li-Ngee; Ong, Soon-An; Wong, Yee-Shian; Voon, Chun-Hong; Khalik, Wan Fadhilah; Yusoff, Nik Athirah; Nordin, Noradiba

    2018-03-01

    In this study, a membraneless photocatalytic fuel cell with zinc oxide loaded carbon photoanode and platinum loaded carbon cathode was constructed to investigate the impact of dissolved oxygen on the mechanism of dye degradation and electricity generation of photocatalytic fuel cell. The photocatalytic fuel cell with high and low aeration rate, no aeration and nitrogen purged were investigated, respectively. The degradation rate of diazo dye Reactive Green 19 and the electricity generation was enhanced in photocatalytic fuel cell with higher dissolved oxygen concentration. However, the photocatalytic fuel cell was still able to perform 37% of decolorization in a slow rate (k = 0.033 h -1 ) under extremely low dissolved oxygen concentration (approximately 0.2 mg L -1 ) when nitrogen gas was introduced into the fuel cell throughout the 8 h. However, the change of the UV-Vis spectrum indicates that the intermediates of the dye could not be mineralized under insufficient dissolved oxygen level. In the aspect of electricity generation, the maximum short circuit current (0.0041 mA cm -2 ) and power density (0.00028 mW cm -2 ) of the air purged photocatalytic fuel cell was obviously higher than that with nitrogen purging (0.0015 mA cm -2 and 0.00008 mW cm -2 ). Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Polyphenolic reductants in cane sugar

    USDA-ARS?s Scientific Manuscript database

    Limited information is available to understand the chemical structure of cane sugar extracts responsible for the redox reactivity. This study employed Fremy’s salt to test the hypothesis that hydroquinone/catechol-semiquinone-quinone redox cycle is responsible for the antioxidant activity of sugarc...

  18. Airborne particulate matter PM2.5 from Mexico City affects the generation of reactive oxygen species by blood neutrophils from asthmatics: an in vitro approach.

    PubMed

    Sierra-Vargas, Martha Patricia; Guzman-Grenfell, Alberto Martin; Blanco-Jimenez, Salvador; Sepulveda-Sanchez, Jose David; Bernabe-Cabanillas, Rosa Maria; Cardenas-Gonzalez, Beatriz; Ceballos, Guillermo; Hicks, Juan Jose

    2009-06-29

    The Mexico City Metropolitan Area is densely populated, and toxic air pollutants are generated and concentrated at a higher rate because of its geographic characteristics. It is well known that exposure to particulate matter, especially to fine and ultra-fine particles, enhances the risk of cardio-respiratory diseases, especially in populations susceptible to oxidative stress. The aim of this study was to evaluate the effect of fine particles on the respiratory burst of circulating neutrophils from asthmatic patients living in Mexico City. In total, 6 subjects diagnosed with mild asthma and 11 healthy volunteers were asked to participate. Neutrophils were isolated from peripheral venous blood and incubated with fine particles, and the generation of reactive oxygen species was recorded by chemiluminescence. We also measured plasma lipoperoxidation susceptibility and plasma myeloperoxidase and paraoxonase activities by spectrophotometry. Asthmatic patients showed significantly lower plasma paraoxonase activity, higher susceptibility to plasma lipoperoxidation and an increase in myeloperoxidase activity that differed significantly from the control group. In the presence of fine particles, neutrophils from asthmatic patients showed an increased tendency to generate reactive oxygen species after stimulation with fine particles (PM2.5). These findings suggest that asthmatic patients have higher oxidation of plasmatic lipids due to reduced antioxidant defense. Furthermore, fine particles tended to increase the respiratory burst of blood human neutrophils from the asthmatic group.On the whole, increased myeloperoxidase activity and susceptibility to lipoperoxidation with a concomitant decrease in paraoxonase activity in asthmatic patients could favor lung infection and hence disrupt the control of asthmatic crises.

  19. Airborne particulate matter PM2.5 from Mexico City affects the generation of reactive oxygen species by blood neutrophils from asthmatics: an in vitro approach

    PubMed Central

    Sierra-Vargas, Martha Patricia; Guzman-Grenfell, Alberto Martin; Blanco-Jimenez, Salvador; Sepulveda-Sanchez, Jose David; Bernabe-Cabanillas, Rosa Maria; Cardenas-Gonzalez, Beatriz; Ceballos, Guillermo; Hicks, Juan Jose

    2009-01-01

    Background The Mexico City Metropolitan Area is densely populated, and toxic air pollutants are generated and concentrated at a higher rate because of its geographic characteristics. It is well known that exposure to particulate matter, especially to fine and ultra-fine particles, enhances the risk of cardio-respiratory diseases, especially in populations susceptible to oxidative stress. The aim of this study was to evaluate the effect of fine particles on the respiratory burst of circulating neutrophils from asthmatic patients living in Mexico City. Methods In total, 6 subjects diagnosed with mild asthma and 11 healthy volunteers were asked to participate. Neutrophils were isolated from peripheral venous blood and incubated with fine particles, and the generation of reactive oxygen species was recorded by chemiluminescence. We also measured plasma lipoperoxidation susceptibility and plasma myeloperoxidase and paraoxonase activities by spectrophotometry. Results Asthmatic patients showed significantly lower plasma paraoxonase activity, higher susceptibility to plasma lipoperoxidation and an increase in myeloperoxidase activity that differed significantly from the control group. In the presence of fine particles, neutrophils from asthmatic patients showed an increased tendency to generate reactive oxygen species after stimulation with fine particles (PM2.5). Conclusion These findings suggest that asthmatic patients have higher oxidation of plasmatic lipids due to reduced antioxidant defense. Furthermore, fine particles tended to increase the respiratory burst of blood human neutrophils from the asthmatic group. On the whole, increased myeloperoxidase activity and susceptibility to lipoperoxidation with a concomitant decrease in paraoxonase activity in asthmatic patients could favor lung infection and hence disrupt the control of asthmatic crises. PMID:19563660

  20. The orally active pterocarpanquinone LQB-118 exhibits cytotoxicity in prostate cancer cell and tumor models through cellular redox stress.

    PubMed

    Martino, Thiago; Kudrolli, Tarana A; Kumar, Binod; Salviano, Isis; Mencalha, André; Coelho, Marsen Garcia P; Justo, Graça; Costa, Paulo R Ribeiro; Sabino, Kátia C Carvalho; Lupold, Shawn E

    2018-02-01

    The targeted induction of reactive oxygen species (ROS) is a developing mechanism for cancer therapy. LQB-118 is a pterocarpanquinone and ROS-inducing agent with proven antineoplastic activity. Here, LQB-118 efficacy and mechanism of activity, were examined in Prostate Cancer (PCa) cell and tumor models. PC3, LNCaP, and LAPC4 PCa cells were applied. Dicoumarol treatment was used to inhibit quinone reductase activity. N-acetylcysteine (NAC) was applied as a ROS scavenger. ROS production was quantified by H 2 DCFDA flow cytometry. LQB-118 treated cells were evaluated for changes in lipid peroxidation, viability, and apoptosis. Treatment-induced gene expression was measured by RT-qPCR and Western Blot. SOD1 knockdown was achieved with siRNA or miRNA mimic transfection. MicroRNA specificity was determined by 3'UTR reporter assay. Oral LQB-118 treatment (10 mg/kg/day) efficacy was determined in athymic male nude mice bearing subcutaneous PC3 xenograft tumors. LQB-118 treatment triggered PCa cell death and apoptosis. Therapeutic activity was at least partially dependent upon quinone reduction and ROS generation. LQB-118 treatment caused an increase in cellular ROS and lipid peroxidation. Treated cells exhibited elevated levels of NQO1, Nrf2, and SOD1. The miRNAs miR-206, miR-1, and miR-101 targeted and reduced SOD1 expression. The knockdown of SOD1, by siRNA or miRNA, enhanced LQB-118 cytotoxicity. Orally administered LQB-118 treatment significantly reduced the growth of established PCa xenograft tumors. LQB-118 is a developing and orally active pterocarpanquinone agent that effectively kills PCa cells through quinone reduction and ROS generation. The inhibition SOD1 expression enhances LQB-118 activity, presumably by impairing the cellular antioxidant response. © 2017 Wiley Periodicals, Inc.

  1. Effects of juglone and lawsone on oxidative stress in maize coleoptile cells treated with IAA.

    PubMed

    Kurtyka, Renata; Pokora, Wojciech; Tukaj, Zbigniew; Karcz, Waldemar

    2016-01-01

    Naphthoquinones are secondary metabolites widely distributed in nature and produced by bacteria, fungi and higher plants. Their biological activity may result from induction of oxidative stress, caused by redox cycling or direct interaction with cellular macromolecules, in which quinones act as electrophiles. The redox homeostasis is known as one of factors involved in auxin-mediated plant growth regulation. To date, however, little is known about the crosstalk between reactive oxygen species (ROS) produced by quinones and the plant growth hormone auxin (IAA). In this study, redox cycling properties of two naphthoquinones, juglone (5-hydroxy-1,4-naphthoquinone) and lawsone (2-hydroxy-1,4-naphthoquinone), were compared in experiments performed on maize coleoptile segments incubated with or without the addition of IAA. It was found that lawsone was much more effective than juglone in increasing both H 2 O 2 production and the activity of antioxidative enzymes (SOD, POX and CAT) in coleoptile cells, regardless of the presence of IAA. An increase in the activity of Cu/Zn-SOD isoenzymes induced by both naphthoquinones suggests that juglone- and lawsone-generated H 2 O 2 was primarily produced in the cytosolic and cell wall spaces. The cell potential to neutralize hydrogen peroxide, determined by POX and CAT activity, pointed to activity of catalase as the main enzymatic mechanism responsible for degradation of H 2 O 2 Therefore, we assumed that generation of H 2 O 2 , induced more efficiently by LW than JG, was the major factor accounting for differences in the toxicity of naphthoquinones in maize coleoptiles. The role of auxin in the process appeared negligible. Moreover, the results suggested that oxidative stress imposed by JG and LW was one of mechanisms of allelopathic action of the studied quinones in plants. © The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  2. CLINICALLY RELEVANT IGE-CROSS-REACTIVITY OF NUT ALLERGENS

    EPA Science Inventory

    All data resulting from this study will be catalogued in SDAP .This work will generate important information relating the structure/ physicochemical properties of cross-reactive IgE epitopes to clinical response, and model factors that underlie allergen recognition by the immu...

  3. Reactive Scheduling in Multipurpose Batch Plants

    NASA Astrophysics Data System (ADS)

    Narayani, A.; Shaik, Munawar A.

    2010-10-01

    Scheduling is an important operation in process industries for improving resource utilization resulting in direct economic benefits. It has a two-fold objective of fulfilling customer orders within the specified time as well as maximizing the plant profit. Unexpected disturbances such as machine breakdown, arrival of rush orders and cancellation of orders affect the schedule of the plant. Reactive scheduling is generation of a new schedule which has minimum deviation from the original schedule in spite of the occurrence of unexpected events in the plant operation. Recently, Shaik & Floudas (2009) proposed a novel unified model for short-term scheduling of multipurpose batch plants using unit-specific event-based continuous time representation. In this paper, we extend the model of Shaik & Floudas (2009) to handle reactive scheduling.

  4. The neuroprotective action of pyrroloquinoline quinone against glutamate-induced apoptosis in hippocampal neurons is mediated through the activation of PI3K/Akt pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Qi; Shen Mi; Ding Mei

    2011-04-01

    Pyrroloquinoline quinone (PQQ), a cofactor in several enzyme-catalyzed redox reactions, possesses a potential capability of scavenging reactive oxygen species (ROS) and inhibiting cell apoptosis. In this study, we investigated the effects of PQQ on glutamate-induced cell death in primary cultured hippocampal neurons and the possible underlying mechanisms. We found that glutamate-induced apoptosis in cultured hippocampal neurons was significantly attenuated by the ensuing PQQ treatment, which also inhibited the glutamate-induced increase in Ca2+ influx, caspase-3 activity, and ROS production, and reversed the glutamate-induced decrease in Bcl-2/Bax ratio. The examination of signaling pathways revealed that PQQ treatment activated the phosphorylation of Aktmore » and suppressed the glutamate-induced phosphorylation of c-Jun N-terminal protein kinase (JNK). And inhibition of phosphatidylinositol-3-kinase (PI3K)/Akt cascade by LY294002 and wortmannin significantly blocked the protective effects of PQQ, and alleviated the increase in Bcl-2/Bax ratio. Taken together, our results indicated that PQQ could protect primary cultured hippocampal neurons against glutamate-induced cell damage by scavenging ROS, reducing Ca2+ influx, and caspase-3 activity, and suggested that PQQ-activated PI3K/Akt signaling might be responsible for its neuroprotective action through modulation of glutamate-induced imbalance between Bcl-2 and Bax. - Research Highlights: >PQQ attenuated glutamate-induced cell apoptosis of cultured hippocampal neurons. >PQQ inhibited glutamate-induced Ca{sup 2+} influx and caspase-3 activity. >PQQ reduced glutamate-induced increase in ROS production. >PQQ affected phosphorylation of Akt and JNK signalings after glutamate injury. >PI3K/Akt was required for neuroprotection of PQQ by modulating Bcl-2/Bax ratio.« less

  5. Antiplasmodial, cytotoxic activities and characterization of a new naturally occurring quinone methide pentacyclic triterpenoid derivative isolated from Salacia leptoclada Tul. (Celastraceae) originated from Madagascar

    PubMed Central

    Ruphin, Fatiany Pierre; Baholy, Robijaona; Emmanue, Andrianarivo; Amelie, Raharisololalao; Martin, Marie-Therese; Koto-te-Nyiwa, Ngbolua

    2013-01-01

    Objective To validate scientifically the traditional use of Salacia leptoclada Tul. (Celastraceae) (S. leptoclada) and to isolate and elucidate the structure of the biologically active compound. Methods Bioassay-guided fractionation of the acetonic extract of the stem barks of S. leptoclada was carried out by a combination of chromatography technique and biological experiments in viro using Plasmodium falciparum and P388 leukemia cell lines as models. The structure of the biologically active pure compound was elucidated by 1D and 2D NMR spectroscopy and mass spectrometry. Results Biological screening of S. leptoclada extracts resulted in the isolation of a pentacyclic triterpenic quinone methide. The pure compound exhibited both in vitro a cytotoxic effect on murine P388 leukemia cells with IC50 value of (0.041±0.020) µg/mL and an antiplasmodial activity against the chloroquine-resistant strain FC29 of Plasmodium falciparum with an IC50 value of (0.052±0.030) µg/mL. Despite this interesting anti-malarial property of the lead compound, the therapeutic index was weak (0.788). In the best of our knowledge, the quinone methide pentacyclic triterpenoid derivative compound is reported for the first time in S. leptoclada. Conclusions The results suggest that furthers studies involving antineoplastic activity is needed for the development of this lead compound as anticancer drug. PMID:24075342

  6. Reactive Oxygen Species Generation-Scavenging and Signaling during Plant-Arbuscular Mycorrhizal and Piriformospora indica Interaction under Stress Condition.

    PubMed

    Nath, Manoj; Bhatt, Deepesh; Prasad, Ram; Gill, Sarvajeet S; Anjum, Naser A; Tuteja, Narendra

    2016-01-01

    A defined balance between the generation and scavenging of reactive oxygen species (ROS) is essential to utilize ROS as an adaptive defense response of plants under biotic and abiotic stress conditions. Moreover, ROS are not only a major determinant of stress response but also act as signaling molecule that regulates various cellular processes including plant-microbe interaction. In particular, rhizosphere constitutes the biologically dynamic zone for plant-microbe interactions which forms a mutual link leading to reciprocal signaling in both the partners. Among plant-microbe interactions, symbiotic associations of arbuscular mycorrhizal fungi (AMF) and arbuscular mycorrhizal-like fungus especially Piriformospora indica with plants are well known to improve plant growth by alleviating the stress-impacts and consequently enhance the plant fitness. AMF and P. indica colonization mainly enhances ROS-metabolism, maintains ROS-homeostasis, and thereby averts higher ROS-level accrued inhibition in plant cellular processes and plant growth and survival under stressful environments. This article summarizes the major outcomes of the recent reports on the ROS-generation, scavenging and signaling in biotic-abiotic stressed plants with AMF and P. indica colonization. Overall, a detailed exploration of ROS-signature kinetics during plant-AMF/ P. indica interaction can help in designing innovative strategies for improving plant health and productivity under stress conditions.

  7. A Conformational Change in C-Reactive Protein Enhances Leukocyte Recruitment and Reactive Oxygen Species Generation in Ischemia/Reperfusion Injury.

    PubMed

    Thiele, Jan R; Zeller, Johannes; Kiefer, Jurij; Braig, David; Kreuzaler, Sheena; Lenz, Yvonne; Potempa, Lawrence A; Grahammer, Florian; Huber, Tobias B; Huber-Lang, M; Bannasch, Holger; Stark, G Björn; Peter, Karlheinz; Eisenhardt, Steffen U

    2018-01-01

    C-reactive protein circulates as a pentameric protein (pCRP). pCRP is a well-established diagnostic marker as plasma levels rise in response to tissue injury and inflammation. We recently described pro-inflammatory properties of CRP, which are mediated by conformational changes from pCRP to bioactive isoforms expressing pro-inflammatory neo-epitopes [pCRP* and monomeric C-reactive protein (mCRP)]. Here, we investigate the role of CRP isoforms in renal ischemia/reperfusion injury (IRI). Rat kidneys in animals with and without intraperitoneally injected pCRP were subjected to IRI by the time of pCRP exposure and were subsequently analyzed for monocyte infiltration, caspase-3 expression, and tubular damage. Blood urea nitrogen (BUN) was analyzed pre-ischemia and post-reperfusion. CRP effects on leukocyte recruitment were investigated via intravital imaging of rat-striated muscle IRI. Localized conformational CRP changes were analyzed by immunohistochemistry using conformation specific antibodies. 1,6-bis(phosphocholine)-hexane (1,6-bisPC), which stabilizes CRP in its native pentameric form was used to validate CRP effects. Leukocyte activation was assessed by quantification of reactive oxygen species (ROS) induction by CRP isoforms ex vivo and in vitro through electron spin resonance spectroscopy. Signaling pathways were analyzed by disrupting lipid rafts with nystatin and subsequent ROS detection. In order to confirm the translational relevance of our findings, biopsies of microsurgical human free tissue transfers before and after IRI were examined by immunofluorescence for CRP deposition and co-localization of CD68 + leukocytes. The application of pCRP aggravates tissue damage in renal IRI. 1,6-bisPC reverses these effects via inhibition of the conformational change that leads to exposure of pro-inflammatory epitopes in CRP (pCRP* and mCRP). Structurally altered CRP induces leukocyte-endothelial interaction and induces ROS formation in leukocytes, the latter can be

  8. Reaction of 2-acetylaminofluorene-N-sulfate with RNA and glutathione: evidence for the generation of two reactive intermediates with different reactivities towards RNA and glutathione.

    PubMed

    van den Goorbergh, J A; Meerman, J H; de Wit, H; Mulder, G J

    1985-11-01

    The sulfate ester of N-hydroxy-2-acetylaminofluorene (AAF-N-sulfate) is one of the reactive intermediates of this carcinogen. This ester breaks down spontaneously to a very reactive nitrenium ion, which reacts with nucleophilic groups in protein, DNA, RNA and glutathione (GSH). Reactions involving the nitrenium ion with several nucleophiles under various conditions were studied. The adduct formation to RNA was much higher in Tris-HCI buffer than in phosphate buffer (at pH 7.4), while adduct formation to deoxy-guanosine monomers was the same in both buffers. The presence of 150 mM KCI had the same decreasing effect in both cases. Ionic strength effects may be involved in these phenomena. GSH decreased RNA adduct formation by 20-45%, while other thiols were much more effective. On the other hand, RNA did not decrease the formation of GSH conjugates from AAF-N-sulfate. The decrease in RNA adduct formation by thiols corresponded with an increase in the formation of 2-acetylaminofluorene (AAF) from AAF-N-sulfate, while no N-hydroxy-AAF was formed. These results suggest that two independent reactive intermediates are formed from AAF-N-sulfate, with different reactivities towards RNA and glutathione. Possibly these intermediates are the 'hard' triplet state nitrenium ion and the 'soft' singlet state nitrenium ion. Cysteine, cysteamine and penicillamine were most effective in the inhibition of RNA adduct formation; the extent of inhibition correlated with the extent of AAF formation. The mechanisms involved are discussed.

  9. Development and characterization of a panel of cross-reactive monoclonal antibodies generated using H1N1 influenza virus.

    PubMed

    Guo, Chun-yan; Tang, Yi-gui; Qi, Zong-li; Liu, Yang; Zhao, Xiang-rong; Huo, Xue-ping; Li, Yan; Feng, Qing; Zhao, Peng-hua; Wang, Xin; Li, Yuan; Wang, Hai-fang; Hu, Jun; Zhang, Xin-jian

    2015-08-01

    To characterize the antigenic epitopes of the hemagglutinin (HA) protein of H1N1 influenza virus, a panel consisting of 84 clones of murine monoclonal antibodies (mAbs) were generated using the HA proteins from the 2009 pandemic H1N1 vaccine lysate and the seasonal influenza H1N1(A1) vaccines. Thirty-three (39%) of the 84 mAbs were found to be strain-specific, and 6 (7%) of the 84 mAbs were subtype-specific. Twenty (24%) of the 84 mAbs recognized the common HA epitopes shared by 2009 pandemic H1N1, seasonal A1 (H1N1), and A3 (H3N2) influenza viruses. Twenty-five of the 84 clones recognized the common HA epitopes shared by the 2009 pandemic H1N1, seasonal A1 (H1N1) and A3 (H3N2) human influenza viruses, and H5N1 and H9N2 avian influenza viruses. We found that of the 16 (19%) clones of the 84 mAbs panel that were cross-reactive with human respiratory pathogens, 15 were made using the HA of the seasonal A1 (H1N1) virus and 1 was made using the HA of the 2009 pandemic H1N1 influenza virus. Immunohistochemical analysis of the tissue microarray (TMA) showed that 4 of the 84 mAb clones cross-reacted with human tissue (brain and pancreas). Our results indicated that the influenza virus HA antigenic epitopes not only induce type-, subtype-, and strain-specific monoclonal antibodies against influenza A virus but also cross-reactive monoclonal antibodies against human tissues. Further investigations of these cross-reactive (heterophilic) epitopes may significantly improve our understanding of viral antigenic variation, epidemics, pathophysiologic mechanisms, and adverse effects of influenza vaccines. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Integrating planning and reactive control

    NASA Technical Reports Server (NTRS)

    Wilkins, David E.; Myers, Karen L.

    1994-01-01

    Our research is developing persistent agents that can achieve complex tasks in dynamic and uncertain environments. We refer to such agents as taskable, reactive agents. An agent of this type requires a number of capabilities. The ability to execute complex tasks necessitates the use of strategic plans for accomplishing tasks; hence, the agent must be able to synthesize new plans at run time. The dynamic nature of the environment requires that the agent be able to deal with unpredictable changes in its world. As such, agents must be able to react to unanticipated events by taking appropriate actions in a timely manner, while continuing activities that support current goals. The unpredictability of the world could lead to failure of plans generated for individual tasks. Agents must have the ability to recover from failures by adapting their activities to the new situation, or replanning if the world changes sufficiently. Finally, the agent should be able to perform in the face of uncertainty. The Cypress system, described here, provides a framework for creating taskable, reactive agents. Several features distinguish our approach: (1) the generation and execution of complex plans with parallel actions; (2) the integration of goal-driven and event driven activities during execution; (3) the use of evidential reasoning for dealing with uncertainty; and (4) the use of replanning to handle run-time execution problems. Our model for a taskable, reactive agent has two main intelligent components, an executor and a planner. The two components share a library of possible actions that the system can take. The library encompasses a full range of action representations, including plans, planning operators, and executable procedures such as predefined standard operating procedures (SOP's). These three classes of actions span multiple levels of abstraction.

  11. Integrating planning and reactive control

    NASA Astrophysics Data System (ADS)

    Wilkins, David E.; Myers, Karen L.

    1994-10-01

    Our research is developing persistent agents that can achieve complex tasks in dynamic and uncertain environments. We refer to such agents as taskable, reactive agents. An agent of this type requires a number of capabilities. The ability to execute complex tasks necessitates the use of strategic plans for accomplishing tasks; hence, the agent must be able to synthesize new plans at run time. The dynamic nature of the environment requires that the agent be able to deal with unpredictable changes in its world. As such, agents must be able to react to unanticipated events by taking appropriate actions in a timely manner, while continuing activities that support current goals. The unpredictability of the world could lead to failure of plans generated for individual tasks. Agents must have the ability to recover from failures by adapting their activities to the new situation, or replanning if the world changes sufficiently. Finally, the agent should be able to perform in the face of uncertainty. The Cypress system, described here, provides a framework for creating taskable, reactive agents. Several features distinguish our approach: (1) the generation and execution of complex plans with parallel actions; (2) the integration of goal-driven and event driven activities during execution; (3) the use of evidential reasoning for dealing with uncertainty; and (4) the use of replanning to handle run-time execution problems. Our model for a taskable, reactive agent has two main intelligent components, an executor and a planner. The two components share a library of possible actions that the system can take. The library encompasses a full range of action representations, including plans, planning operators, and executable procedures such as predefined standard operating procedures (SOP's). These three classes of actions span multiple levels of abstraction.

  12. Electron density reactivity indexes of the tautomeric/ionization forms of thiamin diphosphate.

    PubMed

    Jaña, Gonzalo A; Delgado, Eduardo J

    2013-09-01

    The generation of the highly reactive ylide in thiamin diphosphate catalysis is analyzed in terms of the nucleophilicity of key atoms, by means of density functional calculations at X3LYP/6-31++G(d,p) level of theory. The Fukui functions of all tautomeric/ionization forms are calculated in order to assess their reactivity. The results allow to conclude that the highly conserved glutamic residue does not protonate the N1' atom of the pyrimidyl ring, but it participates in a strong hydrogen bonding, stabilizing the eventual negative charge on the nitrogen, in all forms involved in the ylide generation. This condition provides the necessary reactivity on key atoms, N4' and C2, to carry out the formation of the ylide required to initiate the catalytic cycle of ThDP-dependent enzymes. This study represents a new approach for the ylide formation in ThDP catalysis.

  13. Detecting T-cell reactivity to whole cell vaccines

    PubMed Central

    Brusic, Ana; Hainz, Ursula; Wadleigh, Martha; Neuberg, Donna; Su, Mei; Canning, Christine M.; DeAngelo, Daniel J.; Stone, Richard M.; Lee, Jeng-Shin; Mulligan, Richard C.; Ritz, Jerome; Dranoff, Glenn; Sasada, Tetsuro; Wu, Catherine J.

    2012-01-01

    BCR-ABL+ K562 cells hold clinical promise as a component of cancer vaccines, either as bystander cells genetically modified to express immunostimulatory molecules, or as a source of leukemia antigens. To develop a method for detecting T-cell reactivity against K562 cell-derived antigens in patients, we exploited the dendritic cell (DC)-mediated cross-presentation of proteins generated from apoptotic cells. We used UVB irradiation to consistently induce apoptosis of K562 cells, which were then fed to autologous DCs. These DCs were used to both stimulate and detect antigen-specific CD8+ T-cell reactivity. As proof-of-concept, we used cross-presented apoptotic influenza matrix protein-expressing K562 cells to elicit reactivity from matrix protein-reactive T cells. Likewise, we used this assay to detect increased anti-CML antigen T-cell reactivity in CML patients that attained long-lasting clinical remissions following immunotherapy (donor lymphocyte infusion), as well as in 2 of 3 CML patients vaccinated with lethally irradiated K562 cells that were modified to secrete high levels of granulocyte macrophage colony-stimulating factor (GM-CSF). This methodology can be readily adapted to examine the effects of other whole tumor cell-based vaccines, a scenario in which the precise tumor antigens that stimulate immune responses are unknown. PMID:23170257

  14. Acid residues in the transmembrane helices of the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR) from Vibrio cholerae involved in sodium translocation†

    PubMed Central

    Juárez, Oscar; Athearn, Kathleen; Gillespie, Portia; Barquera, Blanca

    2009-01-01

    Vibrio cholerae and many other marine and pathogenic bacteria posses a unique respiratory complex, the Na+-pumping NADH: quinone oxidoreductase (Na+-NQR)1, which pumps Na+ across the cell membrane using the energy released by the redox reaction between NADH and ubiquinone. In order to function as a selective sodium pump, Na+-NQR must contain structures that: 1) allow the sodium ion to pass through the hydrophobic core of the membrane, and 2) provide cation specificity to the translocation system. In other sodium transporting proteins, the structures that carry out these roles frequently include aspartate and glutamate residues. The negative charge of these residues facilitates binding and translocation of sodium. In this study we have analyzed mutants of acid residues located in the transmembrane helices of subunits B, D and E of Na+-NQR. The results are consistent with the participation of seven of these residues in the translocation process of sodium. Mutations at NqrB-D397, NqrD-D133 and NqrE-E95 produced a decrease of approximately ten times or more in the apparent affinity of the enzyme for sodium (Kmapp), which suggests that these residues may form part of a sodium-binding site. Mutation at other residues, including NqrB-E28, NqrB-E144, NqrB-E346 and NqrD-D88, had a large effect on the quinone reductase activity of the enzyme and its sodium sensitivity, but less effect on the apparent sodium affinity, consistent with a possible role in sodium conductance pathways. PMID:19694431

  15. Osimertinib induces autophagy and apoptosis via reactive oxygen species generation in non-small cell lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Zheng-Hai; Cao, Wen-Xiang; Su, Min-Xia

    Osimertinib (OSI), also known as AZD9291, is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has been approved for the treatment of non-small cell lung cancer (NSCLC) patients harboring EGFR T790M mutation. Herein, we indicated for the first time that OSI increased the accumulations of cytoplasmic vacuoles, the expression of phosphatidylethanolamine-modified microtubule-associated protein light-chain 3 (LC3-II), and the formation of GFP-LC3 puncta in various cancer cells. The OSI-induced expression of LC3-II was further increased when combined treatment with chloroquine (CQ), an autophagy inhibitor, and the mRFP-EGFP-LC3 plasmid-transfected cells exposed to OSI led to the production of moremore » red-fluorescent puncta than green-fluorescent puncta, indicating OSI induced autophagic flux in the NSCLC cells. Knockdown of EGFR showed no effect on the OSI-induced expression of LC3-II in NCI-H1975 cells. In addition, OSI increased reactive oxygen species (ROS) generation and scavenge of ROS via pretreatment with N-acetyl-L-cysteine (NAC), catalase (CAT), or vitamin E (Vita E) significantly inhibited OSI-induced the accumulations of cytoplasmic vacuoles, the expression of LC3-II, as well as the formation of GFP-LC3 puncta. Combinative treatment with CQ could not remarkably change the OSI-induced cell viability decrease, whereas the OSI-induced cell viability decrease and apoptosis could be reversed through pretreatment with NAC, CAT, and Vita E, respectively. Taken together, this is the first report that OSI induces an accompanied autophagy and the generation of ROS is critical for the OSI-induced autophagy, cell viability decrease, and apoptosis in NSCLC cells. - Highlights: • Osimertinib induced the expressions of cytoplasmic vacuoles and autophagic markers in different cancer cells. • Osimertinib induced autophagic flux in NSCLC NCI-H1975 and HCC827 cell lines. • ROS generation contributed to osimertinib

  16. A new algorithm for real-time optimal dispatch of active and reactive power generation retaining nonlinearity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, L.; Rao, N.D.

    1983-04-01

    This paper presents a new method for optimal dispatch of real and reactive power generation which is based on cartesian coordinate formulation of economic dispatch problem and reclassification of state and control variables associated with generator buses. The voltage and power at these buses are classified as parametric and functional inequality constraints, and are handled by reduced gradient technique and penalty factor approach respectively. The advantage of this classification is the reduction in the size of the equality constraint model, leading to less storage requirement. The rectangular coordinate formulation results in an exact equality constraint model in which the coefficientmore » matrix is real, sparse, diagonally dominant, smaller in size and need be computed and factorized once only in each gradient step. In addition, Lagragian multipliers are calculated using a new efficient procedure. A natural outcome of these features is the solution of the economic dispatch problem, faster than other methods available to date in the literature. Rapid and reliable convergence is an additional desirable characteristic of the method. Digital simulation results are presented on several IEEE test systems to illustrate the range of application of the method visa-vis the popular Dommel-Tinney (DT) procedure. It is found that the proposed method is more reliable, 3-4 times faster and requires 20-30 percent less storage compared to the DT algorithm, while being just as general. Thus, owing to its exactness, robust mathematical model and less computational requirements, the method developed in the paper is shown to be a practically feasible algorithm for on-line optimal power dispatch.« less

  17. Autoantigen cross-reactive environmental antigen can trigger multiple sclerosis-like disease.

    PubMed

    Reynolds, Catherine J; Sim, Malcolm J W; Quigley, Kathryn J; Altmann, Daniel M; Boyton, Rosemary J

    2015-05-13

    Multiple sclerosis is generally considered an autoimmune disease resulting from interaction between predisposing genes and environmental factors, together allowing immunological self-tolerance to be compromised. The precise nature of the environmental inputs has been elusive, infectious agents having received considerable attention. A recent study generated an algorithm predicting naturally occurring T cell receptor (TCR) ligands from the proteome database. Taking the example of a multiple sclerosis patient-derived anti-myelin TCR, the study identified a number of stimulatory, cross-reactive peptide sequences from environmental and human antigens. Having previously generated a spontaneous multiple sclerosis (MS) model through expression of this TCR, we asked whether any of these could indeed function in vivo to trigger CNS disease by cross-reactive activation. A number of myelin epitope cross-reactive epitopes could stimulate T cell immunity in this MS anti-myelin TCR transgenic model. Two of the most stimulatory of these 'environmental' epitopes, from Dictyostyelium slime mold and from Emiliania huxleyi, were tested for the ability to induce MS-like disease in the transgenics. We found that immunization with cross-reactive peptide from Dictyostyelium slime mold (but not from E. huxleyi) induces severe disease. These specific environmental epitopes are unlikely to be common triggers of MS, but this study suggests that our search for the cross-reactivity triggers of autoimmune activation leading to MS should encompass epitopes not just from the 'infectome' but also from the full environmental 'exposome.'

  18. High-dose catecholamine treatment decreases polymorphonuclear leukocyte phagocytic capacity and reactive oxygen production.

    PubMed Central

    Wenisch, C; Parschalk, B; Weiss, A; Zedwitz-Liebenstein, K; Hahsler, B; Wenisch, H; Georgopoulos, A; Graninger, W

    1996-01-01

    Flow cytometry was used to study phagocytic function (uptake of fluorescein isothiocyanate-labeled bacteria) and release of reactive oxygen products (dihydrorhodamine 123 converted to rhodamine 123) following phagocytosis by neutrophil granulocytes of heparinized whole blood treated with adrenaline, noradrenaline, dopamine, dobutamine, or orciprenaline. Reduced neutrophil phagocytosis and reactive oxygen production were seen at 12 micrograms of adrenaline per liter (72% each compared with control values); at 120 micrograms of noradrenaline (72% each), dobutamine (83 and 80%, respectively), and orciprenaline (81 and 80%, respectively) per liter; and at 100 micrograms of dopamine per liter (66 and 70%) (P < 0.05 for all). At these dosages, neutrophil chemotaxis was reduced to < 50% of control values for all catecholamines. Treatment with catecholamines at lower dosages had no significant effect on phagocytosis or generation of reactive oxygen products or chemotaxis. The phagocytic capacity of granulocytes was related to the generation of reactive oxygen products (r = 0.789; P < 0.05). The results demonstrate that catecholamines have a suppressive effect on the response of phagocytic cells to bacterial pathogens at high therapeutic levels in blood. PMID:8807207

  19. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2001-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime (about 40 ps), high frequency (about 5G hz), high power bursts of low-duty factor microwaves sufficient to generate a dielectric barrier discharge and passing a gas to treated through the discharge so as to cause dissociative reduction of the exhaust gases. The invention also includes a reactor for generating the non-thermal plasma.

  20. Redox signaling regulated by an electrophilic cyclic nucleotide and reactive cysteine persulfides.

    PubMed

    Fujii, Shigemoto; Sawa, Tomohiro; Nishida, Motohiro; Ihara, Hideshi; Ida, Tomoaki; Motohashi, Hozumi; Akaike, Takaaki

    2016-04-01

    Reactive oxygen (oxidant) and free radical species are known to cause nonspecific damage of various biological molecules. The oxidant toxicology is developing an emerging concept of the physiological functions of reactive oxygen species in cell signaling regulation. Redox signaling is precisely modulated by endogenous electrophilic substances that are generated from reactive oxygen species during cellular oxidative stress responses. Among diverse electrophilic molecular species that are endogenously generated, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) is a unique second messenger whose formation, signaling, and metabolism in cells was recently clarified. Most important, our current studies revealed that reactive cysteine persulfides that are formed abundantly in cells are critically involved in the metabolism of 8-nitro-cGMP. Modern redox biology involves frontiers of cell research and stem cell research; medical and clinical investigations of infections, cancer, metabolic syndrome, aging, and neurodegenerative diseases; and other fields. 8-Nitro-cGMP-mediated signaling and metabolism in cells may therefore be potential targets for drug development, which may lead to discovery of new therapeutic agents for many diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Cells with dysfunctional telomeres are susceptible to reactive oxygen species hydrogen peroxide via generation of multichromosomal fusions and chromosomal fragments bearing telomeres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Seon Rang; Department of Biochemistry, College of Medicine, Korea University, Seoul 136-705; Park, Jeong-Eun

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Under conditions of telomere erosion, cells become extremely sensitive to H{sub 2}O{sub 2}. Black-Right-Pointing-Pointer Chromosomal regions adjacent to telomeres are cleaved by H{sub 2}O{sub 2} under such conditions. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} thus causes multichromosomal fusions and generation of small chromosomal fragments. Black-Right-Pointing-Pointer N-acetylcysteine prevents H{sub 2}O{sub 2}-induced chromosomal aberrations. -- Abstract: During genotoxic stress, reactive oxygen species hydrogen peroxide (H{sub 2}O{sub 2}) is a prime mediator of the DNA damage response. Telomeres function both to assist in DNA damage repair and to inhibit chromosomal end-to-end fusion. Here, we show that telomere dysfunction renders cells susceptible to H{submore » 2}O{sub 2}, via generation of multichromosomal fusion and chromosomal fragments. H{sub 2}O{sub 2} caused formation of multichromosomal end-to-end fusions involving more than three chromosomes, preferentially when telomeres were erosive. Interestingly, extensive chromosomal fragmentation (yielding small-sized fragments) occurred only in cells exhibiting such multichromosomal fusions. Telomeres were absent from fusion points, being rather present in the small fragments, indicating that H{sub 2}O{sub 2} cleaves chromosomal regions adjacent to telomeres. Restoration of telomere function or addition of the antioxidant N-acetylcysteine prevented development of chromosomal aberrations and rescued the observed hypersensitivity to H{sub 2}O{sub 2}. Thus, chromosomal regions adjacent to telomeres become sensitive to reactive oxygen species hydrogen peroxide when telomeres are dysfunctional, and are cleaved to produce multichromosomal fusions and small chromosomal fragments bearing the telomeres.« less

  2. Sources and Fate of Reactive Carbon over North America

    NASA Astrophysics Data System (ADS)

    Chen, X.; Millet, D. B.; Singh, H. B.; Wisthaler, A.

    2016-12-01

    We apply a high-resolution chemical transport model (GEOS-Chem CTM at 0.25°×0.3125°) to generate, a comprehensive gas-phase reactive carbon budget over North America. Based on state-of-science source inventories and known chemistry, we find in the model that biogenic sources dominate the overall reactive carbon budget, with 49, 15, 4, and 39 TgC, respectively, introduced to the North American atmosphere from the biosphere, anthropogenic sources, fires, and from methane oxidation in 2013. Biogenic and anthropogenic non-methane volatile organic compounds contribute 60% and 10%, respectively, to the total OH reactivity over the Southeast US, along with other contributions from methane and inorganics. Oxidation to CO and CO2 then represents the overwhelming fate of that reactive carbon, with 65, 15, 7 and 5 TgC, respectively, oxidized to produce CO/CO2, dry deposited, wet deposited and transported (net) out of North America. We confront this simulation with an ensemble of recent airborne measurements over North America (SEAC4RS, SENEX, DISCOVER-AQ, DC3) and interpret the model-measurement comparisons in terms of their implications for current understanding of atmospheric reactive carbon and the processes driving its distribution.

  3. Identification of a multi-protein reductive dehalogenase complex in Dehalococcoides mccartyi strain CBDB1 suggests a protein-dependent respiratory electron transport chain obviating quinone involvement.

    PubMed

    Kublik, Anja; Deobald, Darja; Hartwig, Stefanie; Schiffmann, Christian L; Andrades, Adarelys; von Bergen, Martin; Sawers, R Gary; Adrian, Lorenz

    2016-09-01

    Dehalococcoides mccartyi strain CBDB1 is an obligate organohalide-respiring bacterium using only hydrogen as electron donor and halogenated organics as electron acceptor. Here, we studied proteins involved in the respiratory chain under non-denaturing conditions. Using blue native gel electrophoresis (BN-PAGE), gel filtration and ultrafiltration an active dehalogenating protein complex with a molecular mass of 250-270 kDa was identified. The active subunit of reductive dehalogenase (RdhA) colocalised with a complex iron-sulfur molybdoenzyme (CISM) subunit (CbdbA195) and an iron-sulfur cluster containing subunit (CbdbA131) of the hydrogen uptake hydrogenase (Hup). No colocalisation between the catalytically active subunits of hydrogenase and reductive dehalogenase was found. By two-dimensional BN/SDS-PAGE the stability of the complex towards detergents was assessed, demonstrating stepwise disintegration with increasing detergent concentrations. Chemical cross-linking confirmed the presence of a higher molecular mass reductive dehalogenase protein complex composed of RdhA, CISM I and Hup hydrogenase and proved to be a potential tool for stabilising protein-protein interactions of the dehalogenating complex prior to membrane solubilisation. Taken together, the identification of the respiratory dehalogenase protein complex and the absence of indications for quinone participation in the respiration suggest a quinone-independent protein-based respiratory electron transfer chain in D. mccartyi. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Phenolic derivatives from soy flour ethanol extract are potent in vitro quinone reductase (QR) inducing agents.

    PubMed

    Bolling, Bradley W; Parkin, Kirk L

    2008-11-26

    The fractionation of soy flour directed by a cellular bioassay for induction of phase 2 detoxification enzymes was used to identify quinone reductase (QR) inducing agents. A phospholipid-depleted, 80% methanol-partitioned isolate from a crude ethanol extract of soy flour was resolved using normal phase medium-pressure liquid chromatography (MPLC). Early eluting fractions were found to be the most potent QR inducing agents among the separated fractions. Fraction 2 was the most potent, doubling QR at <2 mug/mL. Further fractionation of this isolate led to the identification of several constituents. Fatty acids and sn-1 and sn-2 monoacylglycerols were identified, but were not highly potent QR inducers. Benzofuran-3-carbaldehyde, 4-hydroxybenzaldeyde, 4-ethoxybenzoic acid, 4-ethoxycinnamic acid, benzofuran-2-carboxylic ethyl ester, and ferulic acid ethyl ester (FAEE) were also identified as QR inducing constituents of this fraction. FAEE was the most potent of the identified constituents, doubling QR specific activity at 3.2 muM in the cellular bioassay.

  5. Combination of Aryl Diselenides/Hydrogen Peroxide and Carbon Nanotube-Rhodium Nanohybrid for Naphthols Oxidation: An Efficient Route towards Trypanocidal Quinones.

    PubMed

    de Carvalho, Renato L; Jardim, Guilherme A M; Santos, Augusto; Araujo, Maria H; Oliveira, Willian X C; Bombaça, Ana Cristina; Menna-Barreto, Rubem F S; Gopi, Elumalai; Gravel, Edmond; Doris, Eric; da Silva Júnior, Eufrânio Nunes

    2018-06-14

    We report a combination of aryl diselenides/hydrogen peroxide and carbon nanotube-rhodium nanohybrid for naphthols oxidation towards synthesis of 1,4-naphthoquinones and evaluation of their relevant trypanocidal activity. Under a combination of (PhSe)2/H2O2 in the presence of O2 in i-PrOH/Hexane, several benzenoid (A-ring) substituted quinones were prepared in moderate to high yields. We also studied the contribution of RhCNT as co-catalyst in this process and, in some cases, yields were improved. This method provides an efficient and versatile alternative for preparing A-ring modified naphthoquinonoid compounds with relevant biological profile. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Exogenous Methyl Jasmonate Treatment Increases Glucosinolate Biosynthesis and Quinone Reductase Activity in Kale Leaf Tissue

    PubMed Central

    Ku, Kang-Mo; Jeffery, Elizabeth H.; Juvik, John A.

    2014-01-01

    Methyl jasmonate (MeJA) spray treatments were applied to the kale varieties ‘Dwarf Blue Curled Vates’ and ‘Red Winter’ in replicated field plantings in 2010 and 2011 to investigate alteration of glucosinolate (GS) composition in harvested leaf tissue. Aqueous solutions of 250 µM MeJA were sprayed to saturation on aerial plant tissues four days prior to harvest at commercial maturity. The MeJA treatment significantly increased gluconasturtiin (56%), glucobrassicin (98%), and neoglucobrassicin (150%) concentrations in the apical leaf tissue of these genotypes over two seasons. Induction of quinone reductase (QR) activity, a biomarker for anti-carcinogenesis, was significantly increased by the extracts from the leaf tissue of these two cultivars. Extracts of apical leaf tissues had greater MeJA mediated increases in phenolics, glucosinolate concentrations, GS hydrolysis products, and QR activity than extracts from basal leaf tissue samples. The concentration of the hydrolysis product of glucoraphanin, sulforphane was significantly increased in apical leaf tissue of the cultivar ‘Red Winter’ in both 2010 and 2011. There was interaction between exogenous MeJA treatment and environmental conditions to induce endogenous JA. Correlation analysis revealed that indole-3-carbanol (I3C) generated from the hydrolysis of glucobrassicin significantly correlated with QR activity (r = 0.800, P<0.001). Concentrations required to double the specific QR activity (CD values) of I3C was calculated at 230 µM, which is considerably weaker at induction than other isothiocyanates like sulforphane. To confirm relationships between GS hydrolysis products and QR activity, a range of concentrations of MeJA sprays were applied to kale leaf tissues of both cultivars in 2011. Correlation analysis of these results indicated that sulforaphane, NI3C, neoascorbigen, I3C, and diindolylmethane were all significantly correlated with QR activity. Thus, increased QR activity may be due to

  7. Osimertinib induces autophagy and apoptosis via reactive oxygen species generation in non-small cell lung cancer cells.

    PubMed

    Tang, Zheng-Hai; Cao, Wen-Xiang; Su, Min-Xia; Chen, Xiuping; Lu, Jin-Jian

    2017-04-15

    Osimertinib (OSI), also known as AZD9291, is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has been approved for the treatment of non-small cell lung cancer (NSCLC) patients harboring EGFR T790M mutation. Herein, we indicated for the first time that OSI increased the accumulations of cytoplasmic vacuoles, the expression of phosphatidylethanolamine-modified microtubule-associated protein light-chain 3 (LC3-II), and the formation of GFP-LC3 puncta in various cancer cells. The OSI-induced expression of LC3-II was further increased when combined treatment with chloroquine (CQ), an autophagy inhibitor, and the mRFP-EGFP-LC3 plasmid-transfected cells exposed to OSI led to the production of more red-fluorescent puncta than green-fluorescent puncta, indicating OSI induced autophagic flux in the NSCLC cells. Knockdown of EGFR showed no effect on the OSI-induced expression of LC3-II in NCI-H1975 cells. In addition, OSI increased reactive oxygen species (ROS) generation and scavenge of ROS via pretreatment with N-acetyl-l-cysteine (NAC), catalase (CAT), or vitamin E (Vita E) significantly inhibited OSI-induced the accumulations of cytoplasmic vacuoles, the expression of LC3-II, as well as the formation of GFP-LC3 puncta. Combinative treatment with CQ could not remarkably change the OSI-induced cell viability decrease, whereas the OSI-induced cell viability decrease and apoptosis could be reversed through pretreatment with NAC, CAT, and Vita E, respectively. Taken together, this is the first report that OSI induces an accompanied autophagy and the generation of ROS is critical for the OSI-induced autophagy, cell viability decrease, and apoptosis in NSCLC cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Plasma & reactive ion etching to prepare ohmic contacts

    DOEpatents

    Gessert, Timothy A.

    2002-01-01

    A method of making a low-resistance electrical contact between a metal and a layer of p-type CdTe surface by plasma etching and reactive ion etching comprising: a) placing a CdS/CdTe layer into a chamber and evacuating said chamber; b) backfilling the chamber with Argon or a reactive gas to a pressure sufficient for plasma ignition; and c) generating plasma ignition by energizing a cathode which is connected to a power supply to enable the plasma to interact argon ions alone or in the presence of a radio-frequency DC self-bias voltage with the p-CdTe surface.

  9. Becoming Reactive by Concretization

    NASA Technical Reports Server (NTRS)

    Prieditis, Armand; Janakiraman, Bhaskar

    1992-01-01

    One way to build a reactive system is to construct an action table indexed by the current situation or stimulus. The action table describes what course of action to pursue for each situation or stimulus. This paper describes an incremental approach to constructing the action table through achieving goals with a hierarchical search system. These hierarchies are generated with transformations called concretizations, which add constraints to a problem and which can reduce the search space. The basic idea is that an action for a state is looked up in the action table and executed whenever the action table has an entry for that state; otherwise, a path is found to the nearest (cost-wise in a graph with costweighted arcs) state that has a mappring from a state in the next highest hierarchy. For each state along the solution path, the successor state in the path is cached in the action table entry for that state. Without caching, the hierarchical search system can logarithmically reduce search. When the table is complete the system no longer searches: it simply reacts by proceeding to the state listed in the table for each state. Since the cached information is specific only to the nearest state in the next highest hierarchy and not the goal, inter-goal transfer of reactivity is possible. To illustrate our approach, we show how an implemented hierarchical search system can completely reactive.

  10. Mechanistic insights into the bleaching of melanin by alkaline hydrogen peroxide.

    PubMed

    Smith, R A W; Garrett, B; Naqvi, K R; Fülöp, A; Godfrey, S P; Marsh, J M; Chechik, V

    2017-07-01

    This work aims to determine the roles of reactive oxygen species HO∙ and HO 2 - in the bleaching of melanins by alkaline hydrogen peroxide. Experiments using melanosomes isolated from human hair indicated that the HO∙ radical generated in the outside solution does not contribute significantly to bleaching. However, studies using soluble Sepia melanin demonstrated that both HO 2 - and HO∙ will individually bleach melanin. Additionally, when both oxidants are present, bleaching is increased dramatically in both rate and extent. Careful experimental design enabled the separation of the roles and effects of these key reactive species, HO∙ and HO 2 - . Rationalisation of the results presented, and review of previous literature, allowed the postulation of a simplified general scheme whereby the strong oxidant HO∙ is able to pre-oxidise melanin units to o-quinones enabling more facile ring opening by the more nucleophilic HO 2 - . In this manner the efficiency of the roles of both species is maximised. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Antiplasmodial, cytotoxic activities and characterization of a new naturally occurring quinone methide pentacyclic triterpenoid derivative isolated from Salacia leptoclada Tul. (Celastraceae) originated from Madagascar.

    PubMed

    Ruphin, Fatiany Pierre; Baholy, Robijaona; Emmanue, Andrianarivo; Amelie, Raharisololalao; Martin, Marie-Therese; Koto-te-Nyiwa, Ngbolua

    2013-10-01

    To validate scientifically the traditional use of Salacia leptoclada Tul. (Celastraceae) (S. leptoclada) and to isolate and elucidate the structure of the biologically active compound. Bioassay-guided fractionation of the acetonic extract of the stem barks of S. leptoclada was carried out by a combination of chromatography technique and biological experiments in viro using Plasmodium falciparum and P388 leukemia cell lines as models. The structure of the biologically active pure compound was elucidated by 1D and 2D NMR spectroscopy and mass spectrometry. Biological screening of S. leptoclada extracts resulted in the isolation of a pentacyclic triterpenic quinone methide. The pure compound exhibited both in vitro a cytotoxic effect on murine P388 leukemia cells with IC50 value of (0.041±0.020) μg/mL and an antiplasmodial activity against the chloroquine-resistant strain FC29 of Plasmodium falciparum with an IC50 value of (0.052±0.030) μg/mL. Despite this interesting anti-malarial property of the lead compound, the therapeutic index was weak (0.788). In the best of our knowledge, the quinone methide pentacyclic triterpenoid derivative compound is reported for the first time in S. leptoclada. The results suggest that furthers studies involving antineoplastic activity is needed for the development of this lead compound as anticancer drug. Copyright © 2013 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.

  12. Catalytic therapy of cancer by ascorbic acid involves redox cycling of exogenous/endogenous copper ions and generation of reactive oxygen species.

    PubMed

    Hadi, S M; Ullah, M F; Shamim, U; Bhatt, S H; Azmi, A S

    2010-01-01

    Catalytic therapy is a cancer treatment modality based on the generation of reactive oxygen species (ROS) through administration of ascorbate/medicinal herbal extracts and copper. It is known that antioxidants such as ascorbate also exhibit prooxidant activity in the presence of transition metals such as copper. Based on our work and that in the literature, in this review we propose a mechanism for the cytotoxic action of ascorbate against cancer cells. It involves redox cycling of exogenous/endogenous copper ions and the consequent generation of ROS leading to oxidative DNA breakage. Using human peripheral lymphocytes and the Comet assay, we have shown that ascorbic acid is able to cause oxidative breakage in cellular DNA. Such DNA degradation is inhibited by neocuproine (a Cu(I) sequestering agent) and scavengers of ROS indicating that the cellular DNA breakage involves the generation of Cu(I) and formation of ROS. Similar results are also obtained with plant polyphenol antioxidants that are important constituents of medicinal herbal extracts. Copper is an essential component of chromatin and can take part in redox reactions. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Therefore, cancer cells may be more subject to electron transfer between copper ions and ascorbate/plant polyphenols to generate ROS. In this review we cite evidence to indicate that in catalytic therapy cytotoxic action against cancer cells involves redox cycling of exogenous/endogenous copper ions. Copyright © 2010 S. Karger AG, Basel.

  13. Quinone reductase (QR) inducers from Andrographis paniculata and identification of molecular target of andrographolide.

    PubMed

    Yuan, Yonglei; Ji, Long; Luo, Liping; Lu, Juan; Ma, Xiaoqiong; Ma, Zhongjun; Chen, Zhe

    2012-12-01

    In the present study, it was demonstrated that the petroleum extract of Andrographis paniculata (AP) had quinone reductase (QR) inducing activity, which might be attributed to the modification of key cysteine residues in Keap1 by Michael addition acceptors (MAAs) in it. To screen MAAs in AP, glutathione (GSH) was employed, and a LC/MS/MS method was implied. Three compounds, andrographoside, andrographolide, 14-deoxy-14,15-dehydroandrographolide were revealed could well conjugated with GSH. Then, andrographolide along with 4 new and 14 known compounds were isolated to conduct QR induction evaluation, and the CD (the concentration required to double the activity of QR) value of andrographolide is 1.43μM. The QR induce activity of andrographolide might be attributed to its targeting multiple cysteine residues in Keap1, therefore, the alkylation of Keap1 by andrographolide was further studied and the result showed that four cysteine residues: Cys77, Cys151, Cys273 and Cys368 were alkylated, which indicated that Keap1 is a potential target for the QR induce activity of andrographolide. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Effects of reactive oxygen species and interplay of antioxidants during physical exercise in skeletal muscles.

    PubMed

    Thirupathi, Anand; Pinho, Ricardo A

    2018-05-01

    A large number of researches have led to a substantial growth of knowledge about exercise and oxidative stress. Initial investigations reported that physical exercise generates free radical-mediated damages to cells; however, in recent years, studies have shown that regular exercise can upregulate endogenous antioxidants and reduce oxidative damage. Yet, strenuous exercise perturbs the antioxidant system by increasing the reactive oxygen species (ROS) content. These alterations in the cellular environment seem to occur in an exercise type-dependent manner. The source of ROS generation during exercise is debatable, but now it is well established that both contracting and relaxing skeletal muscles generate reactive oxygen species and reactive nitrogen species. In particular, exercises of higher intensity and longer duration can cause oxidative damage to lipids, proteins, and nucleotides in myocytes. In this review, we summarize the ROS effects and interplay of antioxidants in skeletal muscle during physical exercise. Additionally, we discuss how ROS-mediated signaling influences physical exercise in antioxidant system.

  15. Hyper-reactive cloned mice generated by direct nuclear transfer of antigen-specific CD4+ T cells.

    PubMed

    Kaminuma, Osamu; Katayama, Kazufumi; Inoue, Kimiko; Saeki, Mayumi; Nishimura, Tomoe; Kitamura, Noriko; Shimo, Yusuke; Tofukuji, Soichi; Ishida, Satoru; Ogonuki, Narumi; Kamimura, Satoshi; Oikawa, Mami; Katoh, Shigeki; Mori, Akio; Shichijo, Michitaka; Hiroi, Takachika; Ogura, Atsuo

    2017-06-01

    T-cell receptor (TCR)-transgenic mice have been employed for evaluating antigen-response mechanisms, but their non-endogenous TCR might induce immune response differently than the physiologically expressed TCR Nuclear transfer cloning produces animals that retain the donor genotype in all tissues including germline and immune systems. Taking advantage of this feature, we generated cloned mice that carry endogenously rearranged TCR genes from antigen-specific CD4 + T cells. We show that T cells of the cloned mice display distinct developmental pattern and antigen reactivity because of their endogenously pre-rearranged TCRα (rTα) and TCRβ (rTβ) alleles. These alleles were transmitted to the offspring, allowing us to establish a set of mouse lines that show chronic-type allergic phenotypes, that is, bronchial and nasal inflammation, upon local administrations of the corresponding antigens. Intriguingly, the existence of either rTα or rTβ is sufficient to induce in vivo hypersensitivity. These cloned mice expressing intrinsic promoter-regulated antigen-specific TCR are a unique animal model with allergic predisposition for investigating CD4 + T-cell-mediated pathogenesis and cellular commitment in immune diseases. © 2017 The Authors.

  16. Cyanide as a copper and quinone-directed inhibitor of amine oxidases from pea seedlings ( Pisum sativum) and Arthrobacter globiformis: evidence for both copper coordination and cyanohydrin derivatization of the quinone cofactor.

    PubMed

    Shepard, Eric M; Juda, Gregory A; Ling, Ke-Qing; Sayre, Lawrence M; Dooley, David M

    2004-04-01

    The interactions of cyanide with two copper-containing amine oxidases (CuAOs) from pea seedlings (PSAO) and the soil bacterium Arthrobacter globiformis (AGAO) have been investigated by spectroscopic and kinetic techniques. Previously, we rationalized the effects of azide and cyanide for several CuAOs in terms of copper coordination by these exogenous ligands and their effects on the internal redox equilibrium TPQ(amr)-Cu(II) right harpoon over left harpoon TPQ(sq)-Cu(I). The mechanism of cyanide inhibition was proposed to occur through complexation to Cu(I), thereby directly competing with O(2) for reoxidation of TPQ. Although cyanide readily and reversibly reacts with quinones, no direct spectroscopic evidence for cyanohydrin derivatization of TPQ has been previously documented for CuAOs. This work describes the first direct spectroscopic evidence, using both model and enzyme systems, for cyanohydrin derivatization of TPQ. K(d) values for Cu(II)-CN(-) and Cu(I)-CN(-), as well as the K(i) for cyanide inhibition versus substrate amine, are reported for PSAO and AGAO. In spite of cyanohydrin derivatization of the TPQ cofactor in these enzymes, the uncompetitive inhibition of amine oxidation is determined to arise almost exclusively through CN(-) complexation of Cu(I).

  17. Reactivation of Latent Tuberculosis: Variations on the Cornell Murine Model

    PubMed Central

    Scanga, Charles A.; Mohan, V. P.; Joseph, Heather; Yu, Keming; Chan, John; Flynn, JoAnne L.

    1999-01-01

    Mycobacterium tuberculosis causes active tuberculosis in only a small percentage of infected persons. In most cases, the infection is clinically latent, although immunosuppression can cause reactivation of a latent M. tuberculosis infection. Surprisingly little is known about the biology of the bacterium or the host during latency, and experimental studies on latent tuberculosis suffer from a lack of appropriate animal models. The Cornell model is a historical murine model of latent tuberculosis, in which mice infected with M. tuberculosis are treated with antibiotics (isoniazid and pyrazinamide), resulting in no detectable bacilli by organ culture. Reactivation of infection during this culture-negative state occurred spontaneously and following immunosuppression. In the present study, three variants of the Cornell model were evaluated for their utility in studies of latent and reactivated tuberculosis. The antibiotic regimen, inoculating dose, and antibiotic-free rest period prior to immunosuppression were varied. A variety of immunosuppressive agents, based on immunologic factors known to be important to control of acute infection, were used in attempts to reactivate the infection. Although reactivation of latent infection was observed in all three variants, these models were associated with characteristics that limit their experimental utility, including spontaneous reactivation, difficulties in inducing reactivation, and the generation of altered bacilli. The results from these studies demonstrate that the outcome of Cornell model-based studies depends critically upon the parameters used to establish the model. PMID:10456896

  18. Caspase inhibition augmented oridonin-induced cell death in murine fibrosarcoma l929 by enhancing reactive oxygen species generation.

    PubMed

    Wu, Jin-Nan; Huang, Jian; Yang, Jia; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2008-09-01

    Oridonin, a diterpenoid isolated from Rabdosia rubescences, has been reported to have antitumor effects. In this study, the growth-inhibitory activity of oridonin for L929 cells was exerted in a time-and dose-dependent manner. After treatment with oridonin for 24 h, L929 cells underwent both apoptosis and necrosis as measured by an lactate dehydrogenase (LDH) activity-based assay. A rapid generation of reactive oxygen species (ROS) was triggered by oridonin, and subsequently up-regulation of phospho-p53 (ser 15) expression and an increased expression ratio of Bax/Bcl-2 was observed. Furthermore, there was a significant fall in mitochondrial membrane potential (MMP) and increase in caspase-3 activity after exposure to oridonin for 24 h. Surprisingly, the pan-caspase inhibitor z-VAD-fmk and caspase3 inhibitor z-DEVD-fmk rendered L929 cells more sensitive to oridonin, rather than preventing oridonin-induced cell death. Oridonin and z-VAD-fmk co-treatment not only resulted in an even higher ROS production, but also made a more significant reduction in the MMP. Pretreatment of ROS scavenger N-acetylcysteine (NAC) led to a complete inhibition of oridonin-induced cell death, intracellular ROS generation, and MMP collapse. NAC treatment also reversed the potentiation of cell death by the pan-caspase inhibitor z-VAD-fmk. Taken together, these observations showed that oridonin-induced cell death in L929 cells involved intracellular ROS generation, activation of phospho-p53 (ser 15), and up-regulation of the Bax/Bcl-2 ratio; and the augmented cell death by z-VAD-fmk was dependent on an increased ROS production.

  19. Molecular mechanism of metal-independent decomposition of lipid hydroperoxide 13-HPODE by halogenated quinoid carcinogens.

    PubMed

    Qin, Hao; Huang, Chun-Hua; Mao, Li; Xia, Hai-Ying; Kalyanaraman, Balaraman; Shao, Jie; Shan, Guo-Qiang; Zhu, Ben-Zhan

    2013-10-01

    Halogenated quinones are a class of carcinogenic intermediates and newly identified chlorination disinfection by-products in drinking water. 13-Hydroperoxy-9,11-octadecadienoic acid (13-HPODE) is the most extensively studied endogenous lipid hydroperoxide. Although it is well known that the decomposition of 13-HPODE can be catalyzed by transition metal ions, it is not clear whether halogenated quinones could enhance its decomposition independent of metal ions and, if so, what the unique characteristics and similarities are. Here we show that 2,5-dichloro-1,4-benzoquinone (DCBQ) could markedly enhance the decomposition of 13-HPODE and formation of reactive lipid alkyl radicals such as pentyl and 7-carboxyheptyl radicals, and the genotoxic 4-hydroxy-2-nonenal (HNE), through the complementary application of ESR spin trapping, HPLC-MS, and GC-MS methods. Interestingly, two chloroquinone-lipid alkoxyl conjugates were also detected and identified from the reaction between DCBQ and 13-HPODE. Analogous results were observed with other halogenated quinones. This represents the first report that halogenated quinoid carcinogens can enhance the decomposition of the endogenous lipid hydroperoxide 13-HPODE and formation of reactive lipid alkyl radicals and genotoxic HNE via a novel metal-independent nucleophilic substitution coupled with homolytic decomposition mechanism, which may partly explain their potential genotoxicity and carcinogenicity. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Ultraviolet B preconditioning enhances the hair growth-promoting effects of adipose-derived stem cells via generation of reactive oxygen species.

    PubMed

    Jeong, Yun-Mi; Sung, Young Kwan; Kim, Wang-Kyun; Kim, Ji Hye; Kwack, Mi Hee; Yoon, Insoo; Kim, Dae-Duk; Sung, Jong-Hyuk

    2013-01-01

    Hypoxia induces the survival and regenerative potential of adipose-derived stem cells (ASCs), but there are tremendous needs to find alternative methods for ASC preconditioning. Therefore, this work investigated: (1) the ability of low-dose ultraviolet B (UVB) radiation to stimulate the survival, migration, and tube-forming activity of ASCs in vitro; (2) the ability of UVB preconditioning to enhance the hair growth-promoting capacity of ASCs in vivo; and (3) the mechanism of action for ASC stimulation by UVB. Although high-dose UVB decreased the proliferation of ASCs, low-dose (10 or 20 mJ/cm(2)) treatment increased their survival, migration, and tube-forming activity. In addition, low-dose UVB upregulated the expression of ASC-derived growth factors, and a culture medium conditioned by UVB-irradiated ASCs increased the proliferation of dermal papilla and outer root sheet cells. Notably, injection of UVB-preconditioned ASCs into C(3)H/HeN mice significantly induced the telogen-to-anagen transition and increased new hair weight in vivo. UVB treatment significantly increased the generation of reactive oxygen species (ROS) in cultured ASCs, and inhibition of ROS generation by diphenyleneiodonium chloride (DPI) significantly attenuated UVB-induced ASC stimulation. Furthermore, NADPH oxidase 4 (Nox4) expression was induced in ASCs by UVB irradiation, and Nox4 silencing by small interfering RNA, like DPI, significantly reduced UVB-induced ROS generation. These results suggest that the primary involvement of ROS generation in UVB-mediated ASC stimulation occurs via the Nox4 enzyme. This is the first indication that a low dose of UVB radiation and/or the control of ROS generation could potentially be incorporated into a novel ASC preconditioning method for hair regeneration.

  1. Unifying Model-Based and Reactive Programming within a Model-Based Executive

    NASA Technical Reports Server (NTRS)

    Williams, Brian C.; Gupta, Vineet; Norvig, Peter (Technical Monitor)

    1999-01-01

    Real-time, model-based, deduction has recently emerged as a vital component in AI's tool box for developing highly autonomous reactive systems. Yet one of the current hurdles towards developing model-based reactive systems is the number of methods simultaneously employed, and their corresponding melange of programming and modeling languages. This paper offers an important step towards unification. We introduce RMPL, a rich modeling language that combines probabilistic, constraint-based modeling with reactive programming constructs, while offering a simple semantics in terms of hidden state Markov processes. We introduce probabilistic, hierarchical constraint automata (PHCA), which allow Markov processes to be expressed in a compact representation that preserves the modularity of RMPL programs. Finally, a model-based executive, called Reactive Burton is described that exploits this compact encoding to perform efficIent simulation, belief state update and control sequence generation.

  2. Genotype differences in anxiety and fear learning and memory of WT and ApoE4 mice associated with enhanced generation of hippocampal reactive oxygen species.

    PubMed

    Villasana, Laura E; Weber, Sydney; Akinyeke, Tunde; Raber, Jacob

    2016-09-01

    Apolipoprotein E (apoE), involved in cholesterol and lipid metabolism, also influences cognitive function and injury repair. In humans, apoE is expressed in three isoforms. E4 is a risk factor for age-related cognitive decline and Alzheimer's disease, particularly in women. E4 might also be a risk factor for developing behavioral and cognitive changes following (56) Fe irradiation, a component of the space environment astronauts are exposed to during missions. These changes might be related to enhanced generation of reactive oxygen species (ROS). In this study, we compared the behavioral and cognitive performance of sham-irradiated and irradiated wild-type (WT) mice and mice expressing the human E3 or E4 isoforms, and assessed the generation of ROS in hippocampal slices from these mice. E4 mice had greater anxiety-like and conditioned fear behaviors than WT mice, and these genotype differences were associated with greater levels of ROS in E4 than WT mice. The greater generation of ROS in the hippocampus of E4 than WT mice might contribute to their higher anxiety levels and enhanced fear conditioning. In E4, but not WT, mice, phorbol-12-myristate-13-acetate-treated hippocampal slices showed more dihydroxy ethidium oxidation in sham-irradiated than irradiated mice and hippocampal heme oxygenase-1 levels were higher in irradiated than sham-irradiated E4 mice. Mice with apolipoprotein E4 (E4), a risk factor for Alzheimer's disease, have greater anxiety-like and conditioned fear behaviors than wild-type (WT) mice. Generation of reactive oxygen species (ROS, in red) 3 months following (56) Fe irradiation, a component of the space environment astronauts are exposed to, is more pronounced in the hippocampus of E4 than WT mice. In E4, but not WT, mice, hippocampal levels of the oxidative stress-relevant marker heme oxygenase-1 are higher in irradiated than sham-irradiated E4 mice. © 2016 International Society for Neurochemistry.

  3. A new cytotoxic sesquiterpene quinone produced by Penicillium sp. F00120 isolated from a deep sea sediment sample.

    PubMed

    Lin, Xiuping; Zhou, Xuefeng; Wang, Fazuo; Liu, Kaisheng; Yang, Bin; Yang, Xianwen; Peng, Yan; Liu, Juan; Ren, Zhe; Liu, Yonghong

    2012-01-01

    A new fungal strain, displaying strong toxic activity against brine shrimp larvae, was isolated from a deep sea sediment sample collected at a depth of 1300 m. The strain, designated as F00120, was identified as a member of the genus Penicillium on the basis of morphology and ITS sequence analysis. One new sesquiterpene quinone, named penicilliumin A (1), along with two known compounds ergosterol (2) and ergosterol peroxide (3), were isolated and purified from the cultures of F00120 by silica gel column, Sephadex LH-20 column, and preparative thin layer chromatography. Their structures were elucidated by detailed nuclear magnetic resonance (NMR) and mass spectroscopic (MS) analysis as well as comparison with literature data. The new compound penicilliumin A inhibited in vitro proliferation of mouse melanoma (B16), human melanoma (A375), and human cervical carcinoma (Hela) cell lines moderately.

  4. Emodin Inhibits Homocysteine-Induced C-Reactive Protein Generation in Vascular Smooth Muscle Cells by Regulating PPARγ Expression and ROS-ERK1/2/p38 Signal Pathway

    PubMed Central

    Pang, Xiaoming; Liu, Juntian; Li, Yuxia; Zhao, Jingjing; Zhang, Xiaolu

    2015-01-01

    Atherosclerosis is an inflammatory disease. As an inflammatory molecule, C-reactive protein (CRP) plays a direct role in atherogenesis. It is known that the elevated plasma homocysteine (Hcy) level is an independent risk factor for atherosclerosis. We previously reported that Hcy produces a pro-inflammatory effect by inducing CRP expression in vascular smooth muscle cells (VSMCs). In the present study, we observed effect of emodin on Hcy-induced CRP expression in rat VSMCs and molecular mechanisms. The in vitro results showed that pretreatment of VSMCs with emodin inhibited Hcy-induced mRNA and protein expression of CRP in a concentration-dependent manner. The in vivo experiments displayed that emodin not only inhibited CRP expression in the vessel walls in mRNA and protein levels, but also reduced the circulating CRP level in hyperhomocysteinemic rats. Further study revealed that emodin diminished Hcy-stimulated generation of reactive oxygen species (ROS), attenuated Hcy-activated phosphorylation of ERK1/2 and p38, and upregulated Hcy-inhibited expression of peroxisome proliferator-activated receptor gamma (PPARγ) in VSMCs. These demonstrate that emodin is able to inhibit Hcy-induced CRP generation in VSMCs, which is related to interfering with ROS-ERK1/2/p38 signal pathway and upregulating PPARγ expression. The present study provides new evidence for the anti-inflammatory and anti-atherosclerotic effects of emodin. PMID:26131983

  5. Cell uptake, intracellular distribution, fate and reactive oxygen species generation of polymer brush engineered CeO2-x NPs

    NASA Astrophysics Data System (ADS)

    Qiu, Yuan; Rojas, Elena; Murray, Richard A.; Irigoyen, Joseba; Gregurec, Danijela; Castro-Hartmann, Pablo; Fledderman, Jana; Estrela-Lopis, Irina; Donath, Edwin; Moya, Sergio E.

    2015-04-01

    Cerium Oxide nanoparticles (CeO2-x NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO2-x NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO2-x NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO2-x NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell endosomes and lysosomes after 24 h of incubation. They also show higher co-localisation with lipid bodies when compared to unmodified CeO2-x NPs. The brush coating does not prevent CeO2-x NPs from displaying antioxidant properties.Cerium Oxide nanoparticles (CeO2-x NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO2-x NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO2-x NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO2-x NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell

  6. Cross-sectional population associations between detailed adiposity measures and C-reactive protein levels at age 6 years: the Generation R Study.

    PubMed

    Toemen, L; Gishti, O; Vogelezang, S; Gaillard, R; Hofman, A; Franco, O H; Felix, J F; Jaddoe, V W V

    2015-07-01

    High body mass index is associated with increased C-reactive protein levels in childhood and adulthood. Little is known about the associations of detailed adiposity measures with C-reactive protein levels in childhood. We examined the associations of general and abdominal adiposity measures with C-reactive protein levels at school age. To gain insight into the direction of causality, we used genetic risk scores based on known genetic variants in adults as proxies for child adiposity measures and C-reactive protein levels. Within a population-based cohort study among 4338 children at the median age of 6.2 years, we measured body mass index, fat mass percentage, android/gynoid fat mass ratio and preperitoneal abdominal fat mass. We also measured C-reactive protein blood levels and defined increased levels as ⩾3.0 mg l(-1). Single-nucleotide polymorphisms (SNPs) for the weighted genetic risk scores were extracted from large genome-wide association studies on adult body mass index, waist-hip ratio and C-reactive protein levels. All fat mass measures were associated with increased C-reactive protein levels, even after adjusting for multiple confounders. Fat mass percentage was most strongly associated with increased C-reactive protein levels (odds ratio 1.46 (95% confidence interval 1.30-1.65) per increase standard deviation scores in fat mass percentage). The association was independent of body mass index. The genetic risk score based on adult body mass index SNPs, but not adult waist-hip ratio SNPs, tended to be associated with increased C-reactive protein levels at school age. The genetic risk score based on adult C-reactive protein level SNPs was not associated with adiposity measures at school age. Our results suggest that higher general and abdominal fat mass may lead to increased C-reactive protein levels at school age. Further studies are needed to replicate these results and explore the causality and long-term consequences.

  7. Generation of B-cell chronic lymphocytic leukemia (B-CLL)-reactive T-cell lines and clones from HLA class I-matched donors using modified B-CLL cells as stimulators: implications for adoptive immunotherapy.

    PubMed

    Hoogendoorn, M; Wolbers, J Olde; Smit, W M; Schaafsma, M R; Barge, R M Y; Willemze, R; Falkenburg, J H F

    2004-07-01

    Allogeneic stem cell transplantation following reduced-intensity conditioning is being evaluated in patients with advanced B-cell chronic lymphocytic leukemia (B-CLL). The curative potential of this procedure is mediated by donor-derived alloreactive T cells, resulting in a graft-versus-leukemia effect. However, B-CLL may escape T-cell-mediated immune reactivity since these cells lack expression of costimulatory molecules. We examined the most optimal method to transform B-CLL cells into efficient antigen-presenting cells (APC) using activating cytokines, by triggering toll-like receptors (TLRs) using microbial pathogens and by CD40 stimulation with CD40L-transfected fibroblasts. CD40 activation in the presence of IL-4 induced strongest upregulation of costimulatory and adhesion molecules on B-CLL cells and induced the production of high amounts of IL-12 by the leukemic cells. In contrast to primary B-CLL cells as stimulator cells, these malignant APCs were capable of inducing the generation of B-CLL-reactive CD8(+) CTL lines and clones from HLA class I-matched donors. These CTL lines and clones recognized and killed primary B-CLL as well as patient-derived lymphoblasts, but not donor cells. These results show the feasibility of ex vivo generation of B-CLL-reactive CD8(+) CTLs. This opens new perspectives for adoptive immunotherapy, following allogeneic stem cell transplantation in patients with advanced B-CLL.

  8. Reactivation of model cholinesterases by oximes and intermediate phosphyloximes: A computational study

    PubMed Central

    Vyas, Shubham; Hadad, Christopher M.

    2008-01-01

    Phosphyloximes (POX) are generated upon the reactivation of organophosphorus (OP) inhibited cholinesterases (ChEs) by pyridinium oximes. These POXs are known to be potent inhibitors of the ChEs following reactivation. However, they can also decompose to give an OP derivative and a cyano derivative of the oxime when a base abstracts the benzylic proton. Using density functional theory, thermodynamic properties were calculated for the reactivation and decomposition pathways of three different oximes (2-PAM, 3-PAM and 4-PAM) with six different OPs (cyclosarin, paraoxon, sarin, tabun, VR and VX). For reactivation purposes, 2-PAM is predicted to be more efficient than 3- and 4-PAM. Based on atomic charges and relative energies, 2-POXs were found to be more inclined towards the decomposition process. PMID:18582852

  9. Reactivity Coefficient Calculation for AP1000 Reactor Using the NODAL3 Code

    NASA Astrophysics Data System (ADS)

    Pinem, Surian; Malem Sembiring, Tagor; Tukiran; Deswandri; Sunaryo, Geni Rina

    2018-02-01

    The reactivity coefficient is a very important parameter for inherent safety and stability of nuclear reactors operation. To provide the safety analysis of the reactor, the calculation of changes in reactivity caused by temperature is necessary because it is related to the reactor operation. In this paper, the temperature reactivity coefficients of fuel and moderator of the AP1000 core are calculated, as well as the moderator density and boron concentration. All of these coefficients are calculated at the hot full power condition (HFP). All neutron diffusion constant as a function of temperature, water density and boron concentration were generated by the SRAC2006 code. The core calculations for determination of the reactivity coefficient parameter are done by using NODAL3 code. The calculation results show that the fuel temperature, moderator temperature and boron reactivity coefficients are in the range between -2.613 pcm/°C to -4.657pcm/°C, -1.00518 pcm/°C to 1.00649 pcm/°C and -9.11361 pcm/ppm to -8.0751 pcm/ppm, respectively. For the water density reactivity coefficients, the positive reactivity occurs at the water temperature less than 190 °C. The calculation results show that the reactivity coefficients are accurate because the results have a very good agreement with the design value.

  10. Reactive power management and voltage control in deregulated power markets

    NASA Astrophysics Data System (ADS)

    Spangler, Robert G.

    The research that is the subject of this dissertation is about the management of reactive power and voltage support in the wholesale open access power markets in the United States (US). The purpose of this research is to place decisions about open access market structures, as they relate to reactive power and voltage control, on a logical and consistent economic basis, given the engineering needs of a commercial electric power system. An examination of the electricity markets operating in the US today reveals that current approaches to reactive power management and voltage support are extensions of those based on historical, regulated monopoly electric service. A case for change is built by first looking at the subject of reactive power from an engineering viewpoint and then from an economic perspective. Ultimately, a set of market rules for managing reactive power and voltage support is proposed. The proposal suggests that cost recovery for static and dynamic VARs is appropriately accomplished through the regulated transmission cost of service. Static VAR cost recovery should follow traditional rate recovery methodologies. In the case of dynamic VARs, this work provides a methodology based on the microeconomic theory of the firm for determining such cost. It further suggests that an operational strategy that reduces and limits the use of dynamic VARs, during normal operations, is appropriate. This latter point leads to an increase in the fixed cost of the transmission network but prevents price spikes and short supply situations from affecting, or being affected by, the reactive capability limitations associated with dynamic VARs supplied from synchronous generators. The rules are consistent with a market structure that includes competitive generation and their application will result in the communication of a clear understanding of the responsibilities, related to voltage control, of each type of market entity. In this sense, their application will contribute to

  11. Responses of Solid Tumor Cells in DMEM to Reactive Oxygen Species Generated by Non-Thermal Plasma and Chemically Induced ROS Systems

    PubMed Central

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-01-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2−), hydroxyl radical (HO·), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO· (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma. PMID:25715710

  12. Responses of Solid Tumor Cells in DMEM to Reactive Oxygen Species Generated by Non-Thermal Plasma and Chemically Induced ROS Systems

    NASA Astrophysics Data System (ADS)

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-02-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2-), hydroxyl radical (HO.), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO. (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma.

  13. Taming the Reactivity of Glycosyl Iodides To Achieve Stereoselective Glycosidation.

    PubMed

    Gervay-Hague, Jacquelyn

    2016-01-19

    Although glycosyl iodides have been known for more than 100 years, it was not until the 21st century that their full potential began to be harnessed for complex glycoconjugate synthesis. Mechanistic studies in the late 1990s probed glycosyl iodide formation by NMR spectroscopy and revealed important reactivity features embedded in protecting-group stereoelectronics. Differentially protected sugars having an anomeric acetate were reacted with trimethylsilyl iodide (TMSI) to generate the glycosyl iodides. In the absence of C-2 participation, generation of the glycosyl iodide proceeded by inversion of the starting anomeric acetate stereochemistry. Once formed, the glycosyl iodide readily underwent in situ anomerization, and in the presence of excess iodide, equilibrium concentrations of α- and β-iodides were established. Reactivity profiles depended upon the identity of the sugar and the protecting groups adorning it. Consistent with the modern idea of disarmed versus armed sugars, ester protecting groups diminished the reactivity of glycosyl iodides and ether protecting groups enhanced the reactivity. Thus, acetylated sugars were slower to form the iodide and anomerize than their benzylated analogues, and these disarmed glycosyl iodides could be isolated and purified, whereas armed ether-protected iodides could only be generated and reacted in situ. All other things being equal, the β-iodide was orders of magnitude more reactive than the thermodynamically more stable α-iodide, consistent with the idea of in situ anomerization introduced by Lemieux in the mid-20th century. Glycosyl iodides are far more reactive than the corresponding bromides, and with the increased reactivity comes increased stereocontrol, particularly when forming α-linked linear and branched oligosaccharides. Reactions with per-O-silylated glycosyl iodides are especially useful for the synthesis of α-linked glycoconjugates. Silyl ether protecting groups make the glycosyl iodide so reactive

  14. Correlation of quinone reductase activity and allyl isothiocyanate formation among different genotypes and grades of horseradish roots.

    PubMed

    Ku, Kang-Mo; Jeffery, Elizabeth H; Juvik, John A; Kushad, Mosbah M

    2015-03-25

    Horseradish (Armoracia rusticana) is a perennial crop and its ground root tissue is used in condiments because of the pungency of the glucosinolate (GS)-hydrolysis products allyl isothiocyanate (AITC) and phenethyl isothiocyanate (PEITC) derived from sinigrin and gluconasturtiin, respectively. Horseradish roots are sold in three grades: U.S. Fancy, U.S. No. 1, and U.S. No. 2 according to the USDA standards. These grading standards are primarily based on root diameter and length. There is little information on whether root grades vary in their phytochemical content or potential health promoting properties. This study measured GS, GS-hydrolysis products, potential anticancer activity (as quinone reductase inducing activity), total phenolic content, and antioxidant activities from different grades of horseradish accessions. U.S. Fancy showed significantly higher sinigrin and AITC concentrations than U.S. No. 1 ,whereas U.S. No. 1 showed significantly higher concentrations of 1-cyano 2,3-epithiopropane, the epithionitrile hydrolysis product of sinigrin, and significantly higher total phenolic concentrations than U.S. Fancy.

  15. Mice selected for high versus low stress reactivity: a new animal model for affective disorders.

    PubMed

    Touma, Chadi; Bunck, Mirjam; Glasl, Lisa; Nussbaumer, Markus; Palme, Rupert; Stein, Hendrik; Wolferstätter, Michael; Zeh, Ramona; Zimbelmann, Marina; Holsboer, Florian; Landgraf, Rainer

    2008-07-01

    Affective disorders such as major depression are among the most prevalent and costly diseases of the central nervous system, but the underlying mechanisms are still poorly understood. In recent years, it has become evident that alterations of the stress hormone system, in particular dysfunctions (hyper- or hypo-activity) of the hypothalamic-pituitary-adrenal (HPA) axis, play a prominent role in the development of major depressive disorders. Therefore, we aimed to generate a new animal model comprising these neuroendocrine core symptoms in order to unravel parameters underlying increased or decreased stress reactivity. Starting from a population of outbred mice (parental generation: 100 males and 100 females of the CD-1 strain), two breeding lines were established according to the outcome of a 'stress reactivity test' (SRT), consisting of a 15-min restraint period and tail blood samplings immediately before and after exposure to the stressor. Mice showing a very high or a very low secretion of corticosterone in the SRT, i.e. animals expressing a hyper- or a hypo-reactivity of the HPA axis, were selected for the 'high reactivity' (HR) and the 'low reactivity' (LR) breeding line, respectively. Additionally, a third breeding line was established consisting of animals with an 'intermediate reactivity' (IR) in the SRT. Already in the first generation, i.e. animals derived from breeding pairs selected from the parental generation, significant differences in the reactivity of the HPA axis between HR, IR, and LR mice were observed. Moreover, these differences were found across all subsequent generations and could be increased by selective breeding, which indicates a genetic basis of the respective phenotype. Repeated testing of individuals in the SRT furthermore proved that the observed differences in stress responsiveness are present already early in life and can be regarded as a robust genetic predisposition. Tests investigating the animal's emotionality including anxiety

  16. Urinary biomarkers of trimethoprim bioactivation in vivo following therapeutic dosing in children.

    PubMed

    van Haandel, Leon; Goldman, Jennifer L; Pearce, Robin E; Leeder, J Steven

    2014-02-17

    The antimicrobial trimethoprim-sulfamethoxazole (TMP-SMX) is widely used for the treatment of skin and soft-tissue infections in the outpatient setting. Despite its therapeutic benefits, TMP-SMX has been associated with a number of adverse drug reactions, which have been primarily attributed to the formation of reactive metabolites from SMX. Recently, in vitro experiments have demonstrated that TMP may form reactive intermediates as well. However, evidence of TMP bioactivation in patients has not yet been demonstrated. In this study, we performed in vitro trapping experiments with N-acetyl-l-cysteine (NAC) to determine stable markers of reactive TMP intermediates, focusing on eight potential markers (NAC-TMP adducts), some of which were previously identified in vitro. We developed a specific and sensitive assay involving liquid chromatography followed by tandem mass spectrometry for measurement of these adducts in human liver microsomal samples and expanded the methodology toward the detection of these analytes in human urine. Urine samples from four patients receiving TMP-SMX treatment were analyzed, and all samples demonstrated the presence of six NAC-TMP adducts, which were also detected in vitro. These adducts are consistent with the formation of imino-quinone-methide and para-quinone-methide reactive intermediates in vivo. As a result, the TMP component of TMP-SMX should be considered as well when evaluating adverse drug reactions to TMP-SMX.

  17. In vivo relevance of two critical levels for NAD(P)H:quinone oxidoreductase (NQO1)-mediated cellular protection against electrophile toxicity found in vitro.

    PubMed

    de Haan, Laura H J; Pot, Gerda K; Aarts, Jac M M J G; Rietjens, Ivonne M C M; Alink, Gerrit M

    2006-08-01

    NAD(P)H:quinone oxidoreductase (NQO1)-mediated detoxification of quinones is suggested to be involved in cancer prevention. In the present study, using transfected CHO cells, it was demonstrated that the relation between NQO1 activity and the resulting protection against the cytotoxicity of menadione shows a steep dose-response curve revealing a 'lower protection threshold' of 0.5mumol DCPIP/min/mg protein and an 'upper protection threshold' at 1mumol DCPIP/min/mg protein. In an additional in vivo experiment it was investigated how both in vitro critical activity levels of NQO1, relate to NQO1 activities in mice and man, either without or upon induction of the enzyme by butylated hydroxyanisol (BHA) or indole-3-carbinol (I(3)C). Data from an experiment with CD1 mice revealed that base-line NQO1 levels in liver, kidney, small intestine, colon and lung are generally below the observed 'lower protection threshold' in vitro, this also holds for most human tissue S-9 samples. To achieve NQO1 levels above this 'lower protection threshold' will require 5-20 fold NQO1 induction. Discussion focuses on the relevance of the in vitro NQO1 activity thresholds for the in vivo situation. We conclude that increased protection against menadione toxicity can probably not be achieved by NQO1 induction but should be achieved by other mechanisms. Whether this conclusion also holds for other electrophiles and the in vivo situation awaits further definition of their NQO1 protection thresholds.

  18. System for reactivating catalysts

    DOEpatents

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2010-03-02

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  19. Mesoporous Polymer Frameworks from End-Reactive Bottlebrush Copolymers

    DOE PAGES

    Altay, Esra; Nykypanchuk, Dmytro; Rzayev, Javid

    2017-08-07

    Reticulated nanoporous materials generated by versatile molecular framework approaches are limited to pore dimensions on the scale of the utilized rigid molecular building blocks (<5 nm). The inherent flexibility of linear polymers precludes their utilization as long framework connectors for the extension of this strategy to larger length scales. We report a method for the fabrication of mesoporous frameworks by using bottlebrush copolymers with reactive end blocks serving as rigid macromolecular interconnectors with directional reactivity. End-reactive bottlebrush copolymers with pendant alkene functionalities were synthesized by a combination of controlled radical polymerization and polymer modification protocols. Ru-catalyzed cross-metathesis cross-linking of bottlebrushmore » copolymers with two reactive end blocks resulted in the formation of polymer frameworks where isolated cross-linked domains were interconnected with bottlebrush copolymer bridges. The resulting materials were characterized by a continuous network pore structure with average pore sizes of 9–50 nm, conveniently tunable by the length of the utilized bottlebrush copolymer building blocks. As a result, the materials fabrication strategy described in this work expands the length scale of molecular framework materials and provides access to mesoporous polymers with a molecularly tunable reticulated pore structure without the need for templating, sacrificial component etching, or supercritical fluid drying.« less

  20. The reactivity of 1,3-butadiene with butadiene-derived popcorn polymer.

    PubMed

    Levin, M E; Hill, A D; Zimmerman, L W; Paxson, T E

    2004-11-11

    Adiabatic calorimetry performed on butadiene-derived popcorn polymer samples from industrial facilities has revealed exothermic behavior accompanied by non-condensible gas production, indicative of possible decomposition, at elevated temperatures. In the presence of low concentrations of 1,3-butadiene, reactivity is observed at temperatures of 60-70 degrees C; that is, 20-30 degrees C below those usually seen for butadiene alone. Once the butadiene is consumed, the reaction behavior reverts to that of the popcorn polymer alone. At higher butadiene concentrations, the low temperature reaction persists, eventually merging with typical butadiene behavior. The butadiene reactivity with popcorn polymer is attributed to polymerization reaction at free radical sites in the popcorn polymer. Different popcorn polymer samples exhibit distinct extents of reactivity, presumably depending on the nature and concentration of the free radical sites and the structure of the material. Uninhibited butadiene exposed to 100 psia air, which may act to generate peroxide species, shows a small, additional exotherm around 50-80 degrees C. Contact of butadiene with lauroyl peroxide, providing free radicals upon decomposition, generates an exotherm at temperatures as low as 60 degrees C.

  1. Ehrlichia chaffeensis and Its Invasin EtpE Block Reactive Oxygen Species Generation by Macrophages in a DNase X-Dependent Manner.

    PubMed

    Teymournejad, Omid; Lin, Mingqun; Rikihisa, Yasuko

    2017-11-21

    The obligatory intracellular pathogen Ehrlichia chaffeensis lacks most genes that confer resistance to oxidative stress but can block reactive oxygen species (ROS) generation by host monocytes-macrophages. Bacterial and host molecules responsible for this inhibition have not been identified. To infect host cells, Ehrlichia uses the C terminus of its surface invasin, entry-triggering protein of Ehrlichia (EtpE; EtpE-C), which directly binds the mammalian cell surface receptor glycosylphosphatidylinositol-anchored protein DNase X. We investigated whether EtpE-C binding to DNase X blocks ROS production by mouse bone marrow-derived macrophages (BMDMs). On the basis of a luminol-dependent chemiluminescence assay, E. chaffeensis inhibited phorbol myristate acetate (PMA)-induced ROS generation by BMDMs from wild-type, but not DNase X -/- , mice. EtpE-C is critical for inhibition, as recombinant EtpE-C (rEtpE-C)-coated latex beads, but not recombinant N-terminal EtpE-coated or uncoated beads, inhibited PMA-induced ROS generation by BMDMs from wild-type mice. DNase X is required for this inhibition, as none of these beads inhibited PMA-induced ROS generation by BMDMs from DNase X -/- mice. Previous studies showed that E. chaffeensis does not block ROS generation in neutrophils, a cell type that is a potent ROS generator but is not infected by E. chaffeensis Human and mouse peripheral blood neutrophils did not express DNase X. Our findings point to a unique survival mechanism of ROS-sensitive obligate intramonocytic bacteria that involves invasin EtpE binding to DNase X on the host cell surface. This is the first report of bacterial invasin having such a subversive activity on ROS generation. IMPORTANCE Ehrlichia chaffeensis preferentially infects monocytes-macrophages and causes a life-threatening emerging tick-transmitted infectious disease called human monocytic ehrlichiosis. Ehrlichial infection, and hence the disease, depends on the ability of this bacterium to avoid

  2. Reactive arthritis

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000440.htm Reactive arthritis To use the sharing features on this page, please enable JavaScript. Reactive arthritis is a group of conditions that may ...

  3. Phase separation in NiCrN coatings induced by N2 addition in the gas phase: A way to generate magnetic thin films by reactive sputtering of a non-magnetic NiCr target

    NASA Astrophysics Data System (ADS)

    Luciu, I.; Duday, D.; Choquet, P.; Perigo, E. A.; Michels, A.; Wirtz, T.

    2016-12-01

    Magnetic coatings are used for a lot of applications from data storage in hard discs, spintronics and sensors. Meanwhile, magnetron sputtering is a process largely used in industry for the deposition of thin films. Unfortunately, deposition of magnetic coatings by magnetron sputtering is a difficult task due to the screening effect of the magnetic target lowering the magnetic field strength of the magnet positioned below the target, which is used to generate and trap ions in the vicinity of the target surface to be sputtered. In this work we present an efficient method to obtain soft magnetic thin films by reactive sputtering of a non-magnetic target. The aim is to recover the magnetic properties of Ni after dealloying of Ni and Cr due to the selective reactivity of Cr with the reactive nitrogen species generated during the deposition process. The effects of nitrogen content on the dealloying and DC magnetron sputtering (DCMS) deposition processes are studied here. The different chemical compositions, microstructures and magnetic properties of DCMS thin films obtained by sputtering in reactive gas mixtures with different ratios of Ar/N2 from a non-magnetic Ni-20Cr target have been determined. XPS data indicate that the increase of nitrogen content in the films has a strong influence on the NiCr phase decomposition into Ni and CrN, leading to ferromagnetic coatings due to the Ni phase. XRD results show that the obtained Ni-CrN films consist of a metallic fcc cubic Ni phase mixed with fcc cubic CrN. The lattice parameter decreases with the N2 content and reaches the theoretical value of the pure fcc-Ni, when Cr is mostly removed from the Ni-Cr phase. Dealloying of Cr from a Ni80-Cr20 solid solution is achieved in our experimental conditions and the deposition of Ni ferromagnetic coatings embedding CrN from a non-magnetic target is possible with reactive DC magnetron sputtering.

  4. Complex thiolated mannose/quinone film modified on EQCM/Au electrode for recognizing specific carbohydrate-proteins.

    PubMed

    Zeng, Hongjuan; Yu, Junsheng; Jiang, Yadong; Zeng, Xiangqun

    2014-05-15

    A complex thiolated mannose (TM)/quinone functionalised polythiophene (QFPT) thin film was modified on EQCM/Au electrode for recognition of specific carbohydrate-proteins. Different lectins such as those from Sambucus nigra (elder berry), Arachis hypogaea (peanut), Ulex europaeus (gorse, furze), Triticum vulgaris and Concanavalin A (ConA) was used for probes to evaluate bio-sensing performance of the TM/QFPT film. A specific response was observed for ConA from lectins when using the TM/QFPT film as sensing material and employing either elelctrochemical or the QCM method. No response was detected between thiolated mannose and other lectins. The linear relationship between current and ConA concentration is in the range of 0.5-17.5 nM by the elelctrochemical method and the linear relationship between frequency change and ConA concentration is in the range of 0.5-4.5 nM by the QCM method. This shows that the TM/QFPT-modified EQCM biosensor presents a paralleled determination by using electrochemical and the QCM method. The elelctrochemical method of the biosensor can be applicable in a large concentration range and its frequency change can be more precise. © 2013 Published by Elsevier B.V.

  5. Reactive Hypoglycemia

    MedlinePlus

    ... can I do? I think I have reactive hypoglycemia. How can I address my symptoms? Answers from M. Regina Castro, M.D. Reactive hypoglycemia (postprandial hypoglycemia) refers to low blood sugar that ...

  6. What Is Reactive Arthritis?

    MedlinePlus

    ... Breadcrumb Home Health Topics Reactive Arthritis English Español Reactive Arthritis Basics In-Depth Download Download EPUB Download PDF What is it? Points To Remember About Reactive Arthritis Reactive arthritis is pain or swelling in ...

  7. The formation of reactive species having hydroxyl radical-like reactivity from UV photolysis of N-nitrosodimethylamine (NDMA): kinetics and mechanism.

    PubMed

    Kwon, Bum Gun; Kim, Jong-Oh; Namkung, Kyu Cheol

    2012-10-15

    This study focuses on the detailed mechanism by which N-nitrosodimethylamine (NDMA) is photolyzed to form oxidized products, i.e., NO(2)(-) and NO(3)(-), and reveals a key reactive species produced during the photolysis of NDMA. Under acidic conditions, NO(2)(-) formed from the photodecomposition of NDMA was more prevalent than NO(3)(-). In this result, key species for the formation of NO(2)(-) are presumably N(2)O(3) and N(2)O(4) as termination products as well as NO and O(2) as reactants. Conversely, under alkaline conditions, NO(3)(-) was more prevalent than NO(2)(-). For this result, a key species for NO(3)(-) formation is presumably peroxynitrite (ONOO(-)). A detailed mechanistic study was performed with a competition reaction (or kinetics) between NDMA and p-nitrosodimethylaniline (PNDA) probe for hydroxyl radical (OH). It is fortuitous that the second-order rate constant for NDMA with an unknown reactive species (URS) was 5.13×10(8) M(-1) s(-1), which was similar to its published value for the reaction of NDMA+OH. Our study results showed that a key reactive species generated during NDMA photo-decomposition had hydroxyl radical-like reactivity and in particular, under alkaline conditions, it is most likely ONOO(-) as a source of nitrate ion. Therefore, for the first time, we experimentally report that an URS having OH-like reactivity can be formed during photochemical NDMA decomposition. This URS could contribute to the formations of NO(2)(-) and NO(3)(-). Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Diversion of HIV-1 Vaccine-induced Immunity by gp41-Microbiota Cross-reactive Antibodies

    PubMed Central

    Williams, Wilton B; Liao, Hua-Xin; Moody, M. Anthony; Kepler, Thomas B.; Alam, S Munir; Gao, Feng; Wiehe, Kevin; Trama, Ashley M.; Jones, Kathryn; Zhang, Ruijun; Song, Hongshuo; Marshall, Dawn J; Whitesides, John F; Sawatzki, Kaitlin; Hua, Axin; Liu, Pinghuang; Tay, Matthew Z; Seaton, Kelly; Shen, Xiaoying; Foulger, Andrew; Lloyd, Krissey E.; Parks, Robert; Pollara, Justin; Ferrari, Guido; Yu, Jae-Sung; Vandergrift, Nathan; Montefiori, David C.; Sobieszczyk, Magdalena E; Hammer, Scott; Karuna, Shelly; Gilbert, Peter; Grove, Doug; Grunenberg, Nicole; McElrath, Julie; Mascola, John R.; Koup, Richard A; Corey, Lawrence; Nabel, Gary J.; Morgan, Cecilia; Churchyard, Gavin; Maenza, Janine; Keefer, Michael; Graham, Barney S.; Baden, Lindsey R.; Tomaras, Georgia D.; Haynes, Barton F.

    2015-01-01

    A HIV-1 DNA prime-recombinant Adenovirus Type 5 (rAd5) boost vaccine failed to protect from HIV-1 acquisition. We studied the nature of the vaccine-induced antibody (Ab) response to HIV-1 envelope (Env). HIV-1-reactive plasma Ab titers were higher to Env gp41 than gp120, and repertoire analysis demonstrated that 93% of HIV-1-reactive Abs from memory B cells was to Env gp41. Vaccine-induced gp41-reactive monoclonal antibodies (mAbs) were non-neutralizing, and frequently polyreactive with host and environmental antigens including intestinal microbiota (IM). Next generation sequencing of an IGHV repertoire prior to vaccination revealed an Env-IM cross-reactive Ab that was clonally-related to a subsequent vaccine-induced gp41-reactive Ab. Thus, HIV-1 Env DNA-rAd5 vaccine induced a dominant IM-polyreactive, non-neutralizing gp41-reactive Ab repertoire response that was associated with no vaccine efficacy. PMID:26229114

  9. TMEM16A Contributes to Endothelial Dysfunction by Facilitating Nox2 NADPH Oxidase-Derived Reactive Oxygen Species Generation in Hypertension.

    PubMed

    Ma, Ming-Ming; Gao, Min; Guo, Kai-Min; Wang, Mi; Li, Xiang-Yu; Zeng, Xue-Lin; Sun, Lu; Lv, Xiao-Fei; Du, Yan-Hua; Wang, Guan-Lei; Zhou, Jia-Guo; Guan, Yong-Yuan

    2017-05-01

    Ca 2+ -activated Cl - channels play a crucial role in various physiological processes. However, the role of TMEM16A in vascular endothelial dysfunction during hypertension is unclear. In this study, we investigated the specific involvement of TMEM16A in regulating endothelial function and blood pressure and the underlying mechanism. Reverse transcription-polymerase chain reaction, Western blotting, coimmunoprecipitation, confocal imaging, patch-clamp recordings, and TMEM16A endothelial-specific transgenic and knockout mice were used. We found that TMEM16A was expressed abundantly and functioned as a Ca 2+ -activated Cl - channel in endothelial cells. Angiotensin II induced endothelial dysfunction with an increase in TMEM16A expression. The knockout of endothelial-specific TMEM16A significantly lowered the blood pressure and ameliorated endothelial dysfunction in angiotensin II-induced hypertension, whereas the overexpression of endothelial-specific TMEM16A resulted in the opposite effects. These results were related to the increased reactive oxygen species production, Nox2-containing NADPH oxidase activation, and Nox2 and p22phox protein expression that were facilitated by TMEM16A on angiotensin II-induced hypertensive challenge. Moreover, TMEM16A directly bound with Nox2 and reduced the degradation of Nox2 through the proteasome-dependent degradation pathway. Therefore, TMEM16A is a positive regulator of endothelial reactive oxygen species generation via Nox2-containing NADPH oxidase, which induces endothelial dysfunction and hypertension. Modification of TMEM16A may be a novel therapeutic strategy for endothelial dysfunction-associated diseases. © 2017 American Heart Association, Inc.

  10. Cryptococcus neoformans capsule protects cell from oxygen reactive species generated by antimicrobial photodynamic inactivation

    NASA Astrophysics Data System (ADS)

    Prates, Renato Araujo; Hamblin, Michael R.; Kato, Ilka T.; Fuchs, Beth; Mylonakis, Eleytherios; Simões Ribeiro, Martha; Tegos, George

    2011-03-01

    Antimicrobial photodynamic inactivation (APDI) is based on the utilization of substances that can photosensitize biological tissues and are capable of being activated in the presence of light. Cryptococcus neoformans is an yeast surrounded by a capsule composed primarily of glucoronoxylomannan that plays an important role in its virulence. This yeast causes infection on skin, lungs and brain that can be associated with neurological sequelae and neurosurgical interventions, and its conventional treatment requires prolonged antifungal therapy, which presents important adverse effects. The aim of this study was to evaluate the protective effect of Cryptococcus neoformans capsule against reactive oxygen species generated by APDI. Cryptococcus neoformans KN99α, which is a strain able to produce capsule, and CAP59 that does not present capsule production were submitted to APDI using methylene blue (MB), rose bengal (RB), and pL-ce6 as photosensitizers (PS). Then microbial inactivation was evaluated by counting colony form units following APDI and confocal laser scanning microscopy (CLSM) illustrated localization as well as the preferential accumulation of PS into the fungal cells. C. neoformans KN99α was more resistant to APDI than CAP59 for all PSs tested. CLSM showed incorporation of MB and RB into the cytoplasm and a preferential uptake in mitochondria. A nuclear accumulation of MB was also observed. Contrarily, pL-ce6 appears accumulated in cell wall and cell membrane and minimal florescence was observed inside the fungal cells. In conclusion, the ability of C. neoformans to form capsule enhances survival following APDI.

  11. Study of DT-diaphorase in pigment-producing cells.

    PubMed

    Smit, N P; Hoogduijn, M J; Riley, P A; Pavel, S

    1999-11-01

    DT-diaphorase is an FAD-containing enzyme capable of a two-electron reduction of ortho- and paraquinones. Nicotinamide coenzymes (NADH + H+ and NADPH + H+) serve as hydrogen sources in these reactions. The role of DT-diaphorase has been thoroughly investigated in situations when the enzyme is able to reduce exogenous and endogenous quinones, hence protecting the cells against these reactive intermediates. The enzyme has also been studied in connection with its ability to activate some quinoid cytostatics. It is surprising that DT-diaphorase has never been investigated in pigment-producing cells that are known to generate considerable amounts of ortho-quinones. Using a spectrophotometric method we could readily measure the activity of DT-diaphorase in epidermis and various cultured pigment cells. The melanocytes isolated from dark skin showed generally higher DT-diaphorase activity than those from fair skin samples. Also, darkly pigmented congenital naevus cells exhibited higher activity of this enzyme. The most striking was the high DT-diaphorase activity in melanoma cell cultures. In these cells DT-diaphorase activity could be induced by incubation of the cells with 4-hydroxyanisole. A similar effect was seen when a catechol-O-methyltransferase (COMT) inhibitor (3-(3,4-dihydroxy-5-nitrobenzylidene)-2,4-pentanedione (OR-462) was utilised. The induction was inhibited by cyclohexidine.

  12. Reactive Power Compensation Using an Energy Management System

    DTIC Science & Technology

    2014-09-01

    bulk power grid or independent of the grid in islanded mode using various DG sources ( photovoltaic panels, fuel cells, gas generators, batteries...developed in order to forecast the system’s response to both capacitive and inductive power demands on the grid. The process was then confirmed in a...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited REACTIVE POWER

  13. Platelet granule release is associated with reactive oxygen species generation during platelet storage: A direct link between platelet pro-inflammatory and oxidation states.

    PubMed

    Ghasemzadeh, Mehran; Hosseini, Ehteramolsadat

    2017-08-01

    Upon platelet stimulation with agonists, reactive oxygen species (ROS) generation enhances platelet activation and granule release. Whether ROS generation during platelet storage could be directly correlated with the expression of proinflammatory molecules and granule release has been investigated in this study. PRP-platelet concentrates were subjected to flowcytometry analysis to assess the expression of platelet activation marker, P-selectin and CD40L during storage. Intracellular ROS generation was also detected in platelet by flowcytometry using dihydrorhodamine (DHR) 123. Through the dual staining, ROS production was analyzed in either P-selectin positive or negative populations. ROS formation in platelet population was significantly increased by either TRAP (a potent agonist that induces granule release) or PMA (a classic inducer of ROS generation), while the effects of each agonists on P-selectin expression and ROS generation in platelets were comparable. Platelet storage was also associated with the increasing levels of ROS (day 0 vs. day 5; p<0.001) while this increasing pattern was directly correlated with the either expressed P-selectin or CD40L. In addition, in 5 day-stored platelets, samples with ROS levels above 40% showed significantly higher levels of P-selectin and CD40L expression. P-selectin negative population of platelet did not show significant amount of ROS. Our data demonstrated decreased levels of important platelet pro-inflammatory molecules in stored platelets with lower levels of intraplatelet ROS. However, whether quenching of ROS generation during platelet storage can attenuate adverse transfusion reactions raised by platelet pro-inflammatory status is required to be further studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. NqrM (DUF539) Protein Is Required for Maturation of Bacterial Na+-Translocating NADH:Quinone Oxidoreductase

    PubMed Central

    Kostyrko, Vitaly A.; Bertsova, Yulia V.; Serebryakova, Marina V.; Baykov, Alexander A.

    2015-01-01

    ABSTRACT Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) catalyzes electron transfer from NADH to ubiquinone in the bacterial respiratory chain, coupled with Na+ translocation across the membrane. Na+-NQR maturation involves covalent attachment of flavin mononucleotide (FMN) residues, catalyzed by flavin transferase encoded by the nqr-associated apbE gene. Analysis of complete bacterial genomes has revealed another putative gene (duf539, here renamed nqrM) that usually follows the apbE gene and is present only in Na+-NQR-containing bacteria. Expression of the Vibrio harveyi nqr operon alone or with the associated apbE gene in Escherichia coli, which lacks its own Na+-NQR, resulted in an enzyme incapable of Na+-dependent NADH or reduced nicotinamide hypoxanthine dinucleotide (dNADH) oxidation. However, fully functional Na+-NQR was restored when these genes were coexpressed with the V. harveyi nqrM gene. Furthermore, nqrM lesions in Klebsiella pneumoniae and V. harveyi prevented production of functional Na+-NQR, which could be recovered by an nqrM-containing plasmid. The Na+-NQR complex isolated from the nqrM-deficient strain of V. harveyi lacks several subunits, indicating that nqrM is necessary for Na+-NQR assembly. The protein product of the nqrM gene, NqrM, contains a single putative transmembrane α-helix and four conserved Cys residues. Mutating one of these residues (Cys33 in V. harveyi NqrM) to Ser completely prevented Na+-NQR maturation, whereas mutating any other Cys residue only decreased the yield of the mature protein. These findings identify NqrM as the second specific maturation factor of Na+-NQR in proteobacteria, which is presumably involved in the delivery of Fe to form the (Cys)4[Fe] center between subunits NqrD and NqrE. IMPORTANCE Na+-translocating NADH:quinone oxidoreductase complex (Na+-NQR) is a unique primary Na+ pump believed to enhance the vitality of many bacteria, including important pathogens such as Vibrio cholerae, Vibrio

  15. Efficient and Safe Chemical Gas Generators with Nanocomposite Reactive Materials

    DTIC Science & Technology

    2015-11-30

    ammonia borane has been developed that involves the reaction of mechanically alloyed Al·Mg powder with water as a source of heat for ammonia borane...Edward L. Dreizin, Evgeny Shafirovich. Hydrogen generation from ammonia borane and water through combustion reactions with mechanically alloyed...on combustion of hydrogen-generating mixtures It is known that ammonia borane (AB) forms combustible mixtures with gelled water and nanoscale

  16. Improving TCO-Conjugated Antibody Reactivity for Bioorthogonal Pretargeting

    NASA Astrophysics Data System (ADS)

    Chu, Tina Tingyi

    Cancer remains a major cause of death because of its unpredictable progression. Utilizing bioorthogonal chemistry between trans-cyclooctene (TCO) and tetrazine to target imaging agents to tumors in two subsequent steps offers a more versatile platform for molecular imaging. This is accomplished by pretargeting TCO-modified primary antibody to cell surface biomarkers, followed by delivery of tetrazine-modified imaging probes. In previous work, it has been established that TCO-tetrazine chemistry can be applied to in vivo imaging, resulting in precise tumor detection. However, most TCO modifications on an antibody are not reactive because they are buried within hydrophobic domains. To expose and improve the reactivity, Rahim et al. incorporated a polyethylene glycol (PEG) linker through a two-step reaction with DBCO-azide, which successfully maintained 100% TCO functionality. In this project, various types of linkers were studied to improve the reactivity in a single step. Three primary types of linkers were studied: hydrophilic PEG chains, hydrophobic short linkers, and amphiphilic linkers. Our results show that PEG chain alone can only maintain 40% TCO reactivity. Unexpectedly, a short alkyl chain (valeric acid) provided superior results, with 60% TCO reactivity. Lengthening the alkyl chain did not improve results further. Finally, an amphiphilic linker containing valeric acid and PEG performed worse than either linker type alone, at ˜30% functionality. We conclude that our previous 100% functional TCO result obtained with the two-step coupling may have stemmed from generation of the DBCO/azide cycloaddition product. Future work will explore factors such as rigidity of linker structure, polarity, or charges.

  17. Highly oriented photosynthetic reaction centers generate a proton gradient in synthetic protocells

    PubMed Central

    Altamura, Emiliano; Milano, Francesco; Tangorra, Roberto R.; Trotta, Massimo; Omar, Omar Hassan; Stano, Pasquale

    2017-01-01

    Photosynthesis is responsible for the photochemical conversion of light into the chemical energy that fuels the planet Earth. The photochemical core of this process in all photosynthetic organisms is a transmembrane protein called the reaction center. In purple photosynthetic bacteria a simple version of this photoenzyme catalyzes the reduction of a quinone molecule, accompanied by the uptake of two protons from the cytoplasm. This results in the establishment of a proton concentration gradient across the lipid membrane, which can be ultimately harnessed to synthesize ATP. Herein we show that synthetic protocells, based on giant lipid vesicles embedding an oriented population of reaction centers, are capable of generating a photoinduced proton gradient across the membrane. Under continuous illumination, the protocells generate a gradient of 0.061 pH units per min, equivalent to a proton motive force of 3.6 mV⋅min−1. Remarkably, the facile reconstitution of the photosynthetic reaction center in the artificial lipid membrane, obtained by the droplet transfer method, paves the way for the construction of novel and more functional protocells for synthetic biology. PMID:28320948

  18. The Fumarate Reductase of Bacteroides thetaiotaomicron, unlike That of Escherichia coli, Is Configured so that It Does Not Generate Reactive Oxygen Species

    PubMed Central

    Lu, Zheng

    2017-01-01

    ABSTRACT The impact of oxidative stress upon organismal fitness is most apparent in the phenomenon of obligate anaerobiosis. The root cause may be multifaceted, but the intracellular generation of reactive oxygen species (ROS) likely plays a key role. ROS are formed when redox enzymes accidentally transfer electrons to oxygen rather than to their physiological substrates. In this study, we confirm that the predominant intestinal anaerobe Bacteroides thetaiotaomicron generates intracellular ROS at a very high rate when it is aerated. Fumarate reductase (Frd) is a prominent enzyme in the anaerobic metabolism of many bacteria, including B. thetaiotaomicron, and prior studies of Escherichia coli Frd showed that the enzyme is unusually prone to ROS generation. Surprisingly, in this study biochemical analysis demonstrated that the B. thetaiotaomicron Frd does not react with oxygen at all: neither superoxide nor hydrogen peroxide is formed. Subunit-swapping experiments indicated that this difference does not derive from the flavoprotein subunit at which ROS normally arise. Experiments with the related enzyme succinate dehydrogenase discouraged the hypothesis that heme moieties are responsible. Thus, resistance to oxidation may reflect a shift of electron density away from the flavin moiety toward the iron-sulfur clusters. This study shows that the autoxidizability of a redox enzyme can be suppressed by subtle modifications that do not compromise its physiological function. One implication is that selective pressures might enhance the oxygen tolerance of an organism by manipulating the electronic properties of its redox enzymes so they do not generate ROS. PMID:28049145

  19. Curcumin enhances the effects of irinotecan on colorectal cancer cells through the generation of reactive oxygen species and activation of the endoplasmic reticulum stress pathway.

    PubMed

    Huang, Yan-Feng; Zhu, Da-Jian; Chen, Xiao-Wu; Chen, Qi-Kang; Luo, Zhen-Tao; Liu, Chang-Chun; Wang, Guo-Xin; Zhang, Wei-Jie; Liao, Nv-Zhu

    2017-06-20

    Although initially effective against metastatic colorectal cancer (CRC), irinotecan-based chemotherapy leads to resistance and adverse toxicity. Curcumin is well known for its anti-cancer effects in many cancers, including CRC. Here, we describe reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress as important mechanisms by which curcumin enhances irinotecan's effects on CRC cells. CRC cell lines were treated with curcumin and/or irinotecan for 24 h, and then evaluated using cell proliferation assays, cell apoptosis assays, cell cycle analysis, intracellular Ca2+ measurements, ROS measurements and immunoblotting for key ER stress-related proteins. We found that cell viability was inhibited and apoptosis was increased, accompanied by ROS generation and ER stress activation in CRC cells treated with curcumin alone or in combination with irinotecan. Blocking ROS production attenuated the expression of two markers of ER stress: binding of immunoglobulin protein (BIP) and CCAAT/enhancer-binding protein homologous protein (CHOP). Blocking CHOP expression using RNA interference also inhibited ROS generation. These results demonstrated that curcumin could enhance the effects of irinotecan on CRC cells by inhibiting cell viability and inducing cell cycle arrest and apoptosis, and that these effects may be mediated, in part, by ROS generation and activation of the ER stress pathway.

  20. Cell protein cross-linking by erbstatin and related compounds | Center for Cancer Research

    Cancer.gov

    The scheme depicts a possible mechanism of cross-linking by erbstatin and related analogues. A mechanism of action is proposed which involves initial oxidation to reactive quinone intermediates that subsequently cross-link protein nucleophiles via multiple 1,4-Michael-type additions. Similar alkylation of protein by protein-tyrosine kinase inhibitors, such as herbimycin A, has