Science.gov

Sample records for reactively scattered products

  1. Quantum reactive scattering on innovative computing platforms

    NASA Astrophysics Data System (ADS)

    Pacifici, Leonardo; Nalli, Danilo; Laganà, Antonio

    2013-05-01

    The possibility of implementing quantum reactive scattering programs on cheap platforms, originally used for graphic purposes only, has been investigated using a NVIDIA GPU. After a conversion of the code considered from Fortran to C and its deep restructuring for exploiting the GPU key features, significant speedups have been obtained for RWAVEPR, a time dependent quantum reactive scattering code propagating in time a complex wavepacket. As benchmark calculations those concerned with the evaluation of the reactive probabilities of the Cl+H2 and the N+N2 reactions have been considered.

  2. A Chebyshev method for state-to-state reactive scattering using reactant-product decoupling: OH + H2 → H2O + H

    NASA Astrophysics Data System (ADS)

    Cvitaš, Marko T.; Althorpe, Stuart C.

    2013-08-01

    We extend a recently developed wave packet method for computing the state-to-state quantum dynamics of AB + CD → ABC + D reactions [M. T. Cvitaš and S. C. Althorpe, J. Phys. Chem. A 113, 4557 (2009)], 10.1021/jp8111974 to include the Chebyshev propagator. The method uses the further partitioned approach to reactant-product decoupling, which uses artificial decoupling potentials to partition the coordinate space of the reaction into separate reactant, product, and transition-state regions. Separate coordinates and basis sets can then be used that are best adapted to each region. We derive improved Chebyshev partitioning formulas which include Mandelshtam-and-Taylor-type decoupling potentials, and which are essential for the non-unitary discrete variable representations that must be used in 4-atom reactive scattering calculations. Numerical tests on the fully dimensional OH + H2 → H2O + H reaction for J = 0 show that the new version of the method is as efficient as the previously developed split-operator version. The advantages of the Chebyshev propagator (most notably the ease of parallelization for J > 0) can now be fully exploited in state-to-state reactive scattering calculations on 4-atom reactions.

  3. Production of a Biomimetic Fe(I)-S Phase on Pyrite by Atomic-Hydrogen Beam-Surface Reactive Scattering

    PubMed Central

    Che, Li; Gardenghi, David J.; Szilagyi, Robert K.; Minton, Timothy K.

    2011-01-01

    Molecular beam-surface scattering and X-ray absorption spectroscopic experiments were employed to study the reaction of deuterium atoms with a pyrite, FeS2 (100), surface and to investigate the electronic and geometric structures of the resulting Fe-S phases. Incident D atoms, produced by a radio frequency plasma and expanded in an effusive beam, were directed at a pyrite surface held at various temperatures from ambient up to 200 °C. During exposure to the D-atom beam, D2S products were released with a thermal distribution of molecular speeds, indicating that the D atoms likely reacted in thermal equilibrium with the surface. The yield of D2S from the surface decreased approximately exponentially with exposure duration, suggesting that the surface accessible sulfur atoms were depleted, thus leaving an iron-rich surface. This conclusion is consistent with X-ray absorption measurements of the exposed surfaces, which indicated the formation of a layered structure, with elemental iron as the outermost layer on top of a formally Fe(I)-S phase as an intermediate layer and a formally Fe(II)-S2 bulk pyrite layer at lower depths. The reduced Fe(I)-S phase is particularly remarkable because of its similarity to the catalytically active sites of small molecule metalloenzymes, such as FeFe-hydrogenases and MoFe-nitrogenases. PMID:21526811

  4. State-to-state inelastic and reactive molecular beam scattering from surfaces

    SciTech Connect

    Lykke, K.R. ); Kay, B.D. )

    1990-01-01

    Resonantly enhanced multiphoton ionization (REMPI) laser spectroscopic and molecular beam-surface scattering techniques are coupled to study inelastic and reactive gas-surface scattering with state-to-state specificity. Rotational, vibrational, translational and angular distributions have been measured for the inelastic scattering of HCI and N {sub 2} from Au(111). In both cases the scattering is direct-inelastic in nature and exhibits interesting dynamical features such as rotational rainbow scattering. In an effort to elucidate the dynamics of chemical reactions occurring on surfaces we have extended our quantum-resolved scattering studies to include the reactive scattering of a beam of gas phase H-atoms from a chlorinated metal surface M-CI. The nascent rotational and vibrational distributions of the HCI product are determined using REMPI. The thermochemistry for this reaction on Au indicates that the product formation proceeding through chemisorbed H-atoms is slightly endothermic while direct reaction of a has phase H-atom with M-CI is highly exothermic (ca. 50 kcal/mole). Details of the experimental techniques, results and implications regarding the scattering dynamics are discussed. 55 ref., 8 fig.

  5. Non-partial wave treatment of reactive and non-reactive scattering Coupled integral equation formalism.

    NASA Technical Reports Server (NTRS)

    Hayes, E. F.; Kouri, D. J.

    1971-01-01

    Coupled integral equations are derived for the full scattering amplitudes for both reactive and nonreactive channels. The equations do not involve any partial wave expansion and are obtained using channel operators for reactive and nonreactive collisions. These coupled integral equations are similar in nature to equations derived for purely nonreactive collisions of structureless particles. Using numerical quadrature techniques, these equations may be reduced to simultaneous algebraic equations which may then be solved.

  6. Inelastic and reactive scattering of hyperthermal atomic oxygen from amorphous carbon

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K.; Nelson, Christine M.; Brinza, David E.; Liang, Ranty H.

    1991-01-01

    The reaction of hyperthermal oxygen atoms with an amorphous carbon-13 surface was studied using a modified universal crossed molecular beams apparatus. Time-of-flight distributions of inelastically scattered O-atoms and reactively scattered CO-13 and CO2-13 were measured with a rotatable mass spectrometer detector. Two inelastic scattering channels were observed, corresponding to a direct inelastic process in which the scattered O-atoms retain 20 to 30 percent of their initial kinetic energy and to a trapping desorption process whereby O-atoms emerge from the surface at thermal velocities. Reactive scattering data imply the formation of two kinds of CO products, slow products whose translational energies are determined by the surface temperature and hyperthermal (Approx. 3 eV) products with translational energies comprising roughly 30 percent of the total available energy (E sub avl), where E sub avl is the sum of the collision energy and the reaction exothermicity. Angular data show that the hyperthermal CO is scattered preferentially in the specular direction. CO2 product was also observed, but at much lower intensities than CO and with only thermal velocities.

  7. Seemingly anomalous angular distributions in H + D₂ reactive scattering.

    PubMed

    Jankunas, Justin; Zare, Richard N; Bouakline, Foudhil; Althorpe, Stuart C; Herráez-Aguilar, Diego; Aoiz, F Javier

    2012-06-29

    When a hydrogen (H) atom approaches a deuterium (D(2)) molecule, the minimum-energy path is for the three nuclei to line up. Consequently, nearly collinear collisions cause HD reaction products to be backscattered with low rotational excitation, whereas more glancing collisions yield sideways-scattered HD products with higher rotational excitation. Here we report that measured cross sections for the H + D(2) → HD(v' = 4, j') + D reaction at a collision energy of 1.97 electron volts contradict this behavior. The anomalous angular distributions match closely fully quantum mechanical calculations, and for the most part quasiclassical trajectory calculations. As the energy available in product recoil is reduced, a rotational barrier to reaction cuts off contributions from glancing collisions, causing high-j' HD products to become backward scattered. PMID:22745425

  8. Crossed-molecular-beams reactive scattering of oxygen atoms

    SciTech Connect

    Baseman, R.J.

    1982-11-01

    The reactions of O(/sup 3/P) with six prototypical unsaturated hydrocarbons, and the reaction of O(/sup 1/D) with HD, have been studied in high-resolution crossed-molecular-beams scattering experiments with mass-spectrometric detection. The observed laboratory-product angular and velocity distributions unambiguously identify parent-daughter ion pairs, distinguish different neutral sources of the same ion, and have been used to identify the primary products of the reactions. The derived center-of-mass product angular and translational energy distributions have been used to elucidate the detailed reaction dynamics. These results demonstrate that O(/sup 3/P)-unsaturated hydrocarbon chemistry is dominated by single bond cleavages, leading to radical products exclusively.

  9. Modern integral equation techniques for quantum reactive scattering theory

    SciTech Connect

    Auerbach, S.M.

    1993-11-01

    Rigorous calculations of cross sections and rate constants for elementary gas phase chemical reactions are performed for comparison with experiment, to ensure that our picture of the chemical reaction is complete. We focus on the H/D+H{sub 2} {yields} H{sub 2}/DH + H reaction, and use the time independent integral equation technique in quantum reactive scattering theory. We examine the sensitivity of H+H{sub 2} state resolved integral cross sections {sigma}{sub v{prime}j{prime},vj}(E) for the transitions (v = 0,j = 0) to (v{prime} = 1,j{prime} = 1,3), to the difference between the Liu-Siegbahn-Truhlar-Horowitz (LSTH) and double many body expansion (DMBE) ab initio potential energy surfaces (PES). This sensitivity analysis is performed to determine the origin of a large discrepancy between experimental cross sections with sharply peaked energy dependence and theoretical ones with smooth energy dependence. We find that the LSTH and DMBE PESs give virtually identical cross sections, which lends credence to the theoretical energy dependence.

  10. Modern Integral Equation Techniques for Quantum Reactive Scattering Theory.

    NASA Astrophysics Data System (ADS)

    Auerbach, Scott Michael

    Rigorous calculations of cross sections and rate constants for elementary gas phase chemical reactions are performed for comparison with experiment, to ensure that our picture of the chemical reaction is complete. We focus on the H/D + H_2 to H _2/DH + H reaction, and use the time independent integral equation technique in quantum reactive scattering theory. We examine the sensitivity of H + H_2 state resolved integral cross sections sigma_{v^' j^ ',vj}(E) for the transitions (v = 0, j = 0) to (v^' = 1,j^ ' = 1,3), to the difference between the Liu-Siegbahn-Truhlar-Horowitz (LSTH) and double many body expansion (DMBE) ab initio potential energy surfaces (PES). This sensitivity analysis is performed to determine the origin of a large discrepancy between experimental cross sections with sharply peaked energy dependence and theoretical ones with smooth energy dependence. We find that the LSTH and DMBE PESs give virtually identical cross sections, which lends credence to the theoretical energy dependence. To facilitate quantum calculations on more complex reactive systems, we develop a new method to compute the energy Green's function with absorbing boundary conditions (ABC), for use in calculating the cumulative reaction probability. The method is an iterative technique to compute the inverse of a non-Hermitian matrix which is based on Fourier transforming time dependent dynamics, and which requires very little core memory. The Hamiltonian is evaluated in a sinc-function based discrete variable representation (DVR) which we argue may often be superior to the fast Fourier transform method for reactive scattering. We apply the resulting power series Green's function to the benchmark collinear H + H_2 system over the energy range 3.37 to 1.27 eV. The convergence of the power series is stable at all energies, and is accelerated by the use of a stronger absorbing potential. The practicality of computing the ABC-DVR Green's function in a polynomial of the Hamiltonian is

  11. Electroweak boson production in double parton scattering

    NASA Astrophysics Data System (ADS)

    Golec-Biernat, Krzysztof; Lewandowska, Emilia

    2014-11-01

    We study the W+W- and Z0Z0 electroweak boson production in double parton scattering using QCD evolution equations for double parton distributions. In particular, we analyze the impact of splitting terms in the evolution equations on the double parton scattering cross sections. Unlike the standard terms, the splitting terms are not suppressed for large values of the relative momentum of two partons in the double parton scattering. Thus, they play an important role which we discuss in detail for the single splitting contribution to the cross sections under the study.

  12. Quantum Theory of (H,H{Sub 2}) Scattering: Approximate Treatments of Reactive Scattering

    DOE R&D Accomplishments Database

    Tang, K. T.; Karplus, M.

    1970-10-01

    A quantum mechanical study is made of reactive scattering in the (H, H{sub 2}) system. The problem is formulated in terms of a form of the distorted-wave Born approximation (DWBA) suitable for collisions in which all particles have finite mass. For certain incident energies, differential and total cross sections, as well as other attributes of the reactive collisions, (e.g. reaction configuration), are determined. Two limiting models in the DWBA formulation are compared; in one, the molecule is unperturbed by the incoming atom and in the other, the molecule adiabatically follows the incoming atom. For thermal incident energies and semi-empirical interaction potential employed, the adiabatic model seems to be more appropriate. Since the DWBA method is too complicated for a general study of the (H, H{sub 2}) reaction, a much simpler approximation method, the “linear model” is developed. This model is very different in concept from treatments in which the three atoms are constrained to move on a line throughout the collision. The present model includes the full three-dimensional aspect of the collision and it is only the evaluation of the transition matrix element itself that is simplified. It is found that the linear model, when appropriately normalized, gives results in good agreement with that of the DWBA method. By application of this model, the energy dependence, rotational state of dependence and other properties of the total and differential reactions cross sections are determined. These results of the quantum mechanical treatment are compared with the classical calculation for the same potential surface. The most important result is that, in agreement with the classical treatment, the differential cross sections are strongly backward peaked at low energies and shifts in the forward direction as the energy increases. Finally, the implications of the present calculations for a theory of chemical kinetics are discussed.

  13. Tetraquark production in double parton scattering

    NASA Astrophysics Data System (ADS)

    Carvalho, F.; Cazaroto, E. R.; Gonçalves, V. P.; Navarra, F. S.

    2016-02-01

    We develop a model to study tetraquark production in hadronic collisions. We focus on double parton scattering and formulate a version of the color evaporation model for the production of the X (3872 ) and of the T4 c tetraquark, a state composed by the c c ¯c c ¯ quarks. We find that the production cross section grows rapidly with the collision energy √{s } and make predictions for the forthcoming higher energy data of the LHC.

  14. Inelastic and Reactive Scattering Dynamics of Hyperthermal Oxygen Atoms on Ionic Liquid Surfaces: [emim][NTf{sub 2}] and [C{sub 12}mim][NTf{sub 2}

    SciTech Connect

    Wu Bohan; Zhang Jianming; Minton, Timothy K.; McKendrick, Kenneth G.; Slattery, John M.; Yockel, Scott; Schatz, George C.

    2011-05-20

    Collisions of hyperthermal oxygen atoms, with an average translational energy of 520 kJ mol{sup -1}, on continuously refreshed ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([emim][NTf{sub 2}]) and 1-dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([C{sub 12}mim][NTf{sub 2}]), were studied with the use of a beam-surface scattering technique. Time-of-flight and angular distributions of inelastically scattered O and reactively scattered OH and H{sub 2}O were collected for various angles of incidence with the use of a rotatable mass spectrometer detector. For both O and OH, two distinct scattering processes were identified, which can be empirically categorized as thermal and non-thermal. Non-thermal scattering is more probable for both O and OH products. The observation of OH confirms that at least some reactive sites, presumably alkyl groups, must be exposed at the surface. The ionic liquid with the longer alkyl chain, [C{sub 12}mim][NTf{sub 2}], is substantially more reactive than the liquid with the shorter alkyl chain, [emim][NTf{sub 2}], and proportionately much more so than would be predicted simply from stoichiometry based on the number of abstractable hydrogen atoms. Molecular dynamics models of these surfaces shed light on this change in reactivity. The scattering behavior of O is distinctly different from that of OH. However, no such differences between inelastic and reactive scattering dynamics have been seen in previous work on pure hydrocarbon liquids, in particular the benchmark, partially branched hydrocarbon, squalane (C{sub 30}H{sub 62}). The comparison between inelastic and reactive scattering dynamics indicates that inelastic scattering from the ionic liquid surfaces takes place predominantly at non-reactive sites that are effectively stiffer than the reactive alkyl chains, with a higher proportion of collisions sampling such sites for [emim][NTf{sub 2}] than for [C{sub 12}mim][NTf{sub 2}].

  15. Theoretical Studies of Direct and Resonant Reactive Scattering Involving Three-Body Systems.

    NASA Astrophysics Data System (ADS)

    Lutrus, Chen Kwee

    The validity of DWBA method is checked to study the direct process for atom-diatomic molecule collisions. The DWBA results for the relative product rotational state distribution for H + D_2 to HD + D are demonstrated to be in good agreement with experimental observations and quasi-classical calculations. Direct comparison between the DWBA and exact close-coupling calculations for the reactive scattering angular distributions of H + H_2 to H_2 + H shows that the structures of angular distribution between the two methods are similar, and the effect of coupling strongly affects the absolute magnitude of cross sections but not the structure of normalized angular distributions. Information theoretic analysis of rotational surprisal is presented for the reactive collision process of H + D_2 to HD + D. Propensity of near linear surprisal at low collision energies and of deviation from linearity at higher collision energies is found. The theoretical formalism of resonance involving three-body systems is presented. Mathematically the three-body quasi-bound state is represented as a linear combination two-body quasi-bound states in terms of each arrangement. Its reduction to the effective two-body representation of the transition amplitude leads to Feshbach's theory of resonance, thus validating our three-body resonant scattering theory. A rigorous derivation of the T matrix is presented to study the effects of direct and resonant reactive scattering processes of e + AB to A + B^-. Analysis of dissociative attachment processes e + H_2 to H + H^- and e + HCl to H + Cl^- is presented, with emphasis on the roles of the direct and resonant processes in the total cross sections. Furthermore, Argand diagram analysis of the transition amplitude for the two dissociative attachment processes is performed. It is found that strong resonance is present in e + HClto H + Cl^-, but not in e + H_2 to H + H^ -. A new recursion relation for the evaluation of overlap between the Morse

  16. Light scattering measurement of sodium polyacrylate products

    NASA Astrophysics Data System (ADS)

    Lama, Nisha; Norwood, David; Boone, Steven; Massie-Boyer, Valerie

    2015-03-01

    In the presentation, we will describe the use of a multi-detector HPLC incorporating the DAWN EOS multi-angle laser light scattering (MALLS) detector to measure the properties such as molecular weight, RMS radius, contour and persistence length and polydispersity of sodium polyacrylate products. The samples of sodium polyacrylate are used in various industries as thickening agents, coating dispersants, artificial snow, laundry detergent and disposable diapers. Data and results obtained from the experiment will be presented.

  17. S-matrix decomposition, natural reaction channels, and the quantum transition state approach to reactive scattering.

    PubMed

    Manthe, Uwe; Ellerbrock, Roman

    2016-05-28

    A new approach for the quantum-state resolved analysis of polyatomic reactions is introduced. Based on the singular value decomposition of the S-matrix, energy-dependent natural reaction channels and natural reaction probabilities are defined. It is shown that the natural reaction probabilities are equal to the eigenvalues of the reaction probability operator [U. Manthe and W. H. Miller, J. Chem. Phys. 99, 3411 (1993)]. Consequently, the natural reaction channels can be interpreted as uniquely defined pathways through the transition state of the reaction. The analysis can efficiently be combined with reactive scattering calculations based on the propagation of thermal flux eigenstates. In contrast to a decomposition based straightforwardly on thermal flux eigenstates, it does not depend on the choice of the dividing surface separating reactants from products. The new approach is illustrated studying a prototypical example, the H + CH4 → H2 + CH3 reaction. The natural reaction probabilities and the contributions of the different vibrational states of the methyl product to the natural reaction channels are calculated and discussed. The relation between the thermal flux eigenstates and the natural reaction channels is studied in detail. PMID:27250291

  18. S-matrix decomposition, natural reaction channels, and the quantum transition state approach to reactive scattering

    NASA Astrophysics Data System (ADS)

    Manthe, Uwe; Ellerbrock, Roman

    2016-05-01

    A new approach for the quantum-state resolved analysis of polyatomic reactions is introduced. Based on the singular value decomposition of the S-matrix, energy-dependent natural reaction channels and natural reaction probabilities are defined. It is shown that the natural reaction probabilities are equal to the eigenvalues of the reaction probability operator [U. Manthe and W. H. Miller, J. Chem. Phys. 99, 3411 (1993)]. Consequently, the natural reaction channels can be interpreted as uniquely defined pathways through the transition state of the reaction. The analysis can efficiently be combined with reactive scattering calculations based on the propagation of thermal flux eigenstates. In contrast to a decomposition based straightforwardly on thermal flux eigenstates, it does not depend on the choice of the dividing surface separating reactants from products. The new approach is illustrated studying a prototypical example, the H + CH4 → H2 + CH3 reaction. The natural reaction probabilities and the contributions of the different vibrational states of the methyl product to the natural reaction channels are calculated and discussed. The relation between the thermal flux eigenstates and the natural reaction channels is studied in detail.

  19. Entanglement of Quasielastic Scattering and Pion Production

    SciTech Connect

    Mosel, Ulrich; Lalakulich, Olga; Leitner, Tina

    2011-11-23

    The extraction of neutrino oscillation parameters requires the determination of the neutrino energy from observations of the hadronic final state. Here we discuss the difficulties connected with this energy reconstruction for the ongoing experiments MiniBooNE and T2K. We point out that a lower limit to the uncertainty in the reconstructed energy from Fermi motion alone amounts to about 15%. The entanglement of very different elementary processes, in this case quasielastic scattering and pion production, in the actual observables leads to considerably larger errors. We discuss the sensitivity of the energy reconstruction to detection techniques and experimental acceptances. We also calculate the misidentification cross section for electron appearance in the T2K experiment due to neutral pion production.

  20. Production of reactive sintered nickel aluminide

    SciTech Connect

    1995-10-01

    This is the final report pertaining to the development of aluminides by reactive synthesis. Included in this report is an overview of results during the scope of this effort, details on specific task accomplishments, and a summary of customer evaluations. Opportunities for future work are also included at the end of this report.

  1. Production and Consumption of Reactive Oxygen Species by Fullerenes

    EPA Science Inventory

    Reactive oxygen species (ROS) are one of the most important intermediates in chemical, photochemical, and biological processes. To understand the environmental exposure and toxicity of fullerenes better, the production and consumption of ROS (singlet oxygen, superoxide, hydrogen ...

  2. Rovibrational excitation of H2 and HD due to H: the contribution of reactive scattering

    NASA Astrophysics Data System (ADS)

    Watson Cook, Alexander; Yang, Benhui H.; Stancil, Phillip C.; Forrey, Robert C.; Naduvalath, Balakrishnan

    2016-06-01

    Utilizing the hyperspherical method as implemented in the ABC computational suite of codes (Skouteris et al. 2000), the time-independent Schroedinger equation is solved for the reactive and inelastic scattering probabilities for interactions between hydrogen and its isotopes, particularly H, H2, and HD. A high quality potential energy surface (Miekle et all 2002) was adopted in the scattering Hamiltonian construction. Additionally, we aim to explore uses of GPU-centric computing to increase the efficiency of this method (Baraglia et al.) in order to obtain collisional rate coefficients for the full range of rovibrationally excited H2 and HD, extending the recent study of Lique (2015).Baraglia, R. et al. 2011, in Computational Science and Its ApplicationsLique, F. 2015, MNRAS, 453, 810Mielke, S. L. et al., 2002, J. Chem. Phys., 116, 4142Skouteris, D. et al., 2000, Comp. Phys. Comm., 133, 128The work at UGA is partially support by grant HST-AR-13899.

  3. Jet production in muon scattering at Fermilab E665

    SciTech Connect

    Salgado, C.W.; E665 Collaboration

    1993-11-01

    Measurements of multi-jet production rates from Muon-Nucleon and Muon-Nuclei scattering at Fermilab-E665 are presented. Jet rates are defined by the JADE clustering algorithm. Rates in Muon-Nucleon deep-inelastic scattering are compared to Monte Carlo model predictions. Preliminary results from jet production on heavy targets, in the shadowing region, show a higher suppression of two-forward jets as compared to one-forward jet production.

  4. Production of reactive sintered nickel aluminide

    SciTech Connect

    Cooper, R.M.

    1993-01-01

    Effort over the past 3 months was directed at increasing manufacturing capacity (ball milling) and improving product quality. Orders for the powder have increased, mainly for plasma spray powders. NiAl is an excellent coat between a metal and a ceramic, and its use instead of cobalt should extending operating range for carbide tools. The feather phase in the sintered Ni[sub 3]Al was identified to be a Ni-rich phase nucleated on the grain boundaries with 10 wt % Al composition. The ductile to brittle temperature of powder extruded NiAl was found to be between 500 and 600 C, and shows a 50% elongation at 600 C.

  5. Sensitive skin and stratum corneum reactivity to household cleaning products.

    PubMed

    Goffin, V; Piérard-Franchimont, C; Piérard, G E

    1996-02-01

    Products intended for individuals with sensitive skin are being increasingly developed by formulators of household cleaning products. However, there is currently no consensus about the definition and recognition of the biological basis of sensitive skin. We sought to determine the relation between the nature of environmental threat perceived as aggressive by panelists, and the stratum corneum reactivity to household cleaning products as measured by the corneosurfametry test. Results indicate substantial differences in irritancy potential between proprietary products. Corneosurfametry data show significant differences in stratum corneum reactivity between, on the one hand, individuals with either non-sensitive skin or skin sensitive to climate/fabrics, and, on the other hand, individuals with detergent-sensitive skin. It is concluded that sensitive skin is not one single condition. Sound information in rating detergent-sensitive skin may be gained by corneosurfametry. PMID:8681562

  6. Reactive ion etching-assisted surface-enhanced Raman scattering measurements on the single nanoparticle level

    SciTech Connect

    Wang, Si-Yi; Jiang, Xiang-Xu; Wei, Xin-Pan; Lee, Shuit-Tong E-mail: yaohe@suda.edu.cn; He, Yao E-mail: yaohe@suda.edu.cn; Xu, Ting-Ting

    2014-06-16

    Single-nanoparticle surface-enhanced Raman scattering (SERS) measurement is of essential importance for both fundamental research and practical applications. In this work, we develop a class of single-particle SERS approaches, i.e., reactive ion etching (RIE)-assisted SERS measurements correlated with scanning electron microscopy (SEM) strategy (RIE/SERS/SEM), enabling precise and high-resolution identification of single gold nanoparticle (AuNP) in facile and reliable manners. By using AuNP-coated silicon wafer and quartz glass slide as models, we further employ the developed RIE/SERS/SEM method for interrogating the relationship between SERS substrates and enhancement factor (EF) on the single particle level. Together with theoretical calculation using an established finite-difference-time-domain (FDTD) method, we demonstrate silicon wafer as superior SERS substrates, facilitating improvement of EF values.

  7. Quantum and classical dynamics of reactive scattering of H2 from metal surfaces.

    PubMed

    Kroes, Geert-Jan; Díaz, Cristina

    2016-06-27

    We review the state-of-the art in dynamics calculations on the reactive scattering of H2 from metal surfaces, which is an important model system of an elementary reaction that is relevant to heterogeneous catalysis. In many applications, quantum dynamics and classical trajectory calculations are performed within the Born-Oppenheimer static surface model. However, ab initio molecular dynamics (AIMD) is finding increased use in applications aimed at modeling the effect of surface phonons on the dynamics. Molecular dynamics with electronic friction has been used to model the effect of electron-hole pair excitation. Most applications are still based on potential energy surfaces (PESs) or forces computed with density functional theory (DFT), using a density functional within the generalized gradient approximation to the exchange-correlation energy. A new development is the use of a semi-empirical version of DFT (the specific reaction parameter (SRP) approach to DFT). We also discuss the accurate methods that have become available to represent electronic structure data for the molecule-surface interaction in global PESs. It has now become possible to describe highly activated H2 + metal surface reactions with chemical accuracy using the SRP-DFT approach, as has been shown for H2 + Cu(111) and Cu(100). However, chemical accuracy with SRP-DFT has yet to be demonstrated for weakly activated systems like H2 + Ru(0001) and non-activated systems like H2 + Pd(111), for which SRP DFs are not yet available. There is now considerable evidence that electron-hole pair (ehp) excitation does not need to be modeled to achieve the (chemically) accurate calculation of dissociative chemisorption and scattering probabilities. Dynamics calculations show that phonons can be safely neglected in the chemically accurate calculation of sticking probabilities on cold metal surfaces for activated systems, and in the calculation of a number of other observables. However, there is now sufficient

  8. A MATLAB-based finite-element visualization of quantum reactive scattering. I. Collinear atom-diatom reactions

    SciTech Connect

    Warehime, Mick; Alexander, Millard H.

    2014-07-14

    We restate the application of the finite element method to collinear triatomic reactive scattering dynamics with a novel treatment of the scattering boundary conditions. The method provides directly the reactive scattering wave function and, subsequently, the probability current density field. Visualizing these quantities provides additional insight into the quantum dynamics of simple chemical reactions beyond simplistic one-dimensional models. Application is made here to a symmetric reaction (H+H{sub 2}), a heavy-light-light reaction (F+H{sub 2}), and a heavy-light-heavy reaction (F+HCl). To accompany this article, we have written a MATLAB code which is fast, simple enough to be accessible to a wide audience, as well as generally applicable to any problem that can be mapped onto a collinear atom-diatom reaction. The code and user's manual are available for download from http://www2.chem.umd.edu/groups/alexander/FEM.

  9. A MATLAB-based finite-element visualization of quantum reactive scattering. I. Collinear atom-diatom reactions

    NASA Astrophysics Data System (ADS)

    Warehime, Mick; Alexander, Millard H.

    2014-07-01

    We restate the application of the finite element method to collinear triatomic reactive scattering dynamics with a novel treatment of the scattering boundary conditions. The method provides directly the reactive scattering wave function and, subsequently, the probability current density field. Visualizing these quantities provides additional insight into the quantum dynamics of simple chemical reactions beyond simplistic one-dimensional models. Application is made here to a symmetric reaction (H+H2), a heavy-light-light reaction (F+H2), and a heavy-light-heavy reaction (F+HCl). To accompany this article, we have written a MATLAB code which is fast, simple enough to be accessible to a wide audience, as well as generally applicable to any problem that can be mapped onto a collinear atom-diatom reaction. The code and user's manual are available for download from http://www2.chem.umd.edu/groups/alexander/FEM.

  10. Reactive oxygen species production and discontinuous gas exchange in insects

    PubMed Central

    Boardman, Leigh; Terblanche, John S.; Hetz, Stefan K.; Marais, Elrike; Chown, Steven L.

    2012-01-01

    While biochemical mechanisms are typically used by animals to reduce oxidative damage, insects are suspected to employ a higher organizational level, discontinuous gas exchange mechanism to do so. Using a combination of real-time, flow-through respirometry and live-cell fluorescence microscopy, we show that spiracular control associated with the discontinuous gas exchange cycle (DGC) in Samia cynthia pupae is related to reactive oxygen species (ROS). Hyperoxia fails to increase mean ROS production, although minima are elevated above normoxic levels. Furthermore, a negative relationship between mean and mean ROS production indicates that higher ROS production is generally associated with lower . Our results, therefore, suggest a possible signalling role for ROS in DGC, rather than supporting the idea that DGC acts to reduce oxidative damage by regulating ROS production. PMID:21865257

  11. Reactive oxygen species production and discontinuous gas exchange in insects.

    PubMed

    Boardman, Leigh; Terblanche, John S; Hetz, Stefan K; Marais, Elrike; Chown, Steven L

    2012-03-01

    While biochemical mechanisms are typically used by animals to reduce oxidative damage, insects are suspected to employ a higher organizational level, discontinuous gas exchange mechanism to do so. Using a combination of real-time, flow-through respirometry and live-cell fluorescence microscopy, we show that spiracular control associated with the discontinuous gas exchange cycle (DGC) in Samia cynthia pupae is related to reactive oxygen species (ROS). Hyperoxia fails to increase mean ROS production, although minima are elevated above normoxic levels. Furthermore, a negative relationship between mean and mean ROS production indicates that higher ROS production is generally associated with lower . Our results, therefore, suggest a possible signalling role for ROS in DGC, rather than supporting the idea that DGC acts to reduce oxidative damage by regulating ROS production. PMID:21865257

  12. Three dimensional quantum mechanical studies of D+H2→HD+H reactive scattering. III. On the ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Yung, Y. Y.; Choi, B. H.; Tang, K. T.

    1980-01-01

    Three dimensional quantum mechanical calculations are carried out for the reactive scattering of D+H2→DH+H on the ab initio potential energy surface calculated by Liu and Siegbahn and fitted by Truhlar and Horowitz. The differential and total cross sections as well as the S matrix elements are obtained from the adiabatic distorted wave method. Threshold energy, cross sections and product distributions over final states are all in good agreement with experimental measurements. Results are also compared with the corresponding ones obtained on the Porter-Karplus and the Yates-Lester semi-empirical surfaces.

  13. Reactive oxygen species in bovine embryo in vitro production.

    PubMed

    Dalvit, G C; Cetica, P D; Pintos, L N; Beconi, M T

    2005-08-01

    Oxidative modifications of cell components due to the action of reactive oxygen species (ROS) is one of the most potentially damaging processes for proper cell function. However, in the last few years it has been observed that ROS participate in physiological processes. The aim of this work was to determine ROS generation during in vitro production of bovine embryos. Cumulus-oocyte complexes were recovered by aspiration of antral follicles from ovaries obtained from slaughtered cows and cultured in medium 199 for 22 h at 39 degrees C in 5% CO2: 95% humidified air. In vitro fertilization was carried out in IVF-mSOF with frozen-thawed semen in the same culture conditions and embryo in vitro culture in IVC-mSOF at 90% N2: 5% CO2: 5% O2. ROS was determined in denuded oocytes and embryos at successive stages of development by the 2',7'-dichlorodihydrofluorescein diacetate fluorescent assay. ROS production was not modified during oocyte maturation. However, a gradual increase in ROS production was observed up to the late morula stage during embryo in vitro culture (P < 0.05). In expanded blastocysts, ROS level decreased to reach values similar to the corresponding in oocytes. In the bovine species, the variation in ROS level during the complete process of embryo in vitro production was determined for the first time. PMID:16187501

  14. Gamma ray polarimetry. [compton scattering and pair production

    NASA Technical Reports Server (NTRS)

    Long, K. S.; Novick, R.

    1978-01-01

    Spectroscopic instruments currently being proposed may possess polarimetric capabilities which sould be nurtured and enhanced to permit characterization of basic emission mechanisms which are impossible using other techniques. Compton scattering and pair production detected the polarization of high energy (E is greater than 50 keV) protons in laboratory experiments. The polarization properties of a detection system consisting of 19 germanium crystals in a closed packed array are examined and the advantages of such a detector over Thompson scattering are discussed. The possiblity of using pair production to detect polarization of high energy gamma rays, and the associated modulation factors are discussed. The central difficulty involved in using pair production polarimeters in astrophysical applications is that the typical opening of the electron or positron direction with respect to the incident photon aircitron is small, of order E/sq mc. Multiple scattering in the material used to convert the photons to an electron positron pair causes deviations in the direction of the electron and positron.

  15. Enzymatic Production of Extracellular Reactive Oxygen Species by Marine Microorganisms

    NASA Astrophysics Data System (ADS)

    Diaz, J. M.; Andeer, P. F.; Hansel, C. M.

    2014-12-01

    Reactive oxygen species (ROS) serve as intermediates in a myriad of biogeochemically important processes, including cell signaling pathways, cellular oxidative stress responses, and the transformation of both nutrient and toxic metals such as iron and mercury. Abiotic reactions involving the photo-oxidation of organic matter were once considered the only important sources of ROS in the environment. However, the recent discovery of substantial biological ROS production in marine systems has fundamentally shifted this paradigm. Within the last few decades, marine phytoplankton, including diatoms of the genus Thalassiosira, were discovered to produce ample extracellular quantities of the ROS superoxide. Even more recently, we discovered widespread production of extracellular superoxide by phylogenetically and ecologically diverse heterotrophic bacteria at environmentally significant levels (up to 20 amol cell-1 hr-1), which has introduced the revolutionary potential for substantial "dark" cycling of ROS. Despite the profound biogeochemical importance of extracellular biogenic ROS, the cellular mechanisms underlying the production of this ROS have remained elusive. Through the development of a gel-based assay to identify extracellular ROS-producing proteins, we have recently found that enzymes typically involved in antioxidant activity also produce superoxide when molecular oxygen is the only available electron acceptor. For example, large (~3600 amino acids) heme peroxidases are involved in extracellular superoxide production by a bacterium within the widespread Roseobacter clade. In Thalassiosira spp., extracellular superoxide is produced by flavoproteins such as glutathione reductase and ferredoxin NADP+ reductase. Thus, extracellular ROS production may occur via secreted and/or cell surface enzymes that modulate between producing and degrading ROS depending on prevailing geochemical and/or ecological conditions.

  16. DYNAMICS OF THE REACTION OF N{sup +} WITH H{sub 2}. V. REACTIVE AND NON-REACTIVE SCATTERING OF N{sup +}({sup 3}p) AT RELATIVE ENERGIES BELOW 3.6 eV.

    SciTech Connect

    Hansen, Steven G.; Farrar, James M.; Mahan, Bruce H.

    1980-05-01

    We have measured product velocity vector distributions for the processes N{sup +}({sup 3}P)(H{sub 2},H)NH{sup +} and N{sup +}({sup 3}P)(H{sub 2},H{sub 2})N+ in the initial relative energy ranges of 0.98~3.60 eV and 0.66~ 2.50 eV respectively using the crossed beam technique. At energies below about 1.9 eV the predominance of a long-lived NH{sub 2}{sup +} complex is inferred from isotropic reactive scattering and a backscattered peak in the non-reactive distributions. Above 1.9 eV there is still a substantial interaction between all three atoms. The dynamics are adequately explained by a mechanism which involves accessing the deep {sup 3}B{sub 1} potential well through an avoided crossing with the {sup 3}A{sub 2} surface when the ·symmetry is relaxed from C{sub 2v} to C{sub s}. The reaction of electronically excited metastable ions, probably N{sup +}({sup 1}D), is seen as a forward peak in the reactive distributions.

  17. Reactivity Impact of 2H and 16O Elastic Scattering Nuclear Data on Critical Systems with Heavy Water

    NASA Astrophysics Data System (ADS)

    Roubtsov, D.; Kozier, K. S.; Chow, J. C.; Plompen, A. J. M.; Kopecky, S.; Svenne, J. P.; Canton, L.

    2014-04-01

    The accuracy of deuterium nuclear data is important for reactor physics simulations of heavy water (D2O) reactors. The elastic neutron scattering cross section data at thermal energies, σs,th, have been observed to have noticeable impact on the reactivity values in simulations of critical systems involving D2O. We discuss how the uncertainties in the thermal scattering cross sections of 2H(n,n)2H and 16O(n,n)16O propagate to the uncertainty of the calculated neutron multiplication factor, keff, in thermal critical assemblies with heavy water neutron moderator/reflector. The method of trial evaluated nuclear data files, in which specific cross sections are individually perturbed, is used to calculate the sensitivity coefficients of keff to the microscopic nuclear data, such as σs(E) characterized by σs,th. Large reactivity differences of up to ≃ 5-10 mk (500-1000 pcm) were observed using 2H and 16O data files with different elastic scattering data in MCNP5 simulations of the LANL HEU heavy-water solution thermal critical experiments included in the ICSBEP handbook.

  18. Argand-diagram representation of transition amplitudes for resonant reactive scattering: e+HCl and e+H2

    NASA Astrophysics Data System (ADS)

    Lutrus, C. K.; Suck Salk, S. H.

    1989-01-01

    Resonances for rearrangement collisions (reactive scattering) involving the two dissociative attachment processes, e+HCl-->H+Cl- and e+H2-->H+H-, are examined. It is shown from the Argand-diagram representation of transition amplitudes that strong resonance is present in the former but not in the latter. That is, the strong resonance is evidenced by the clear exhibition of a phase change by π in a counterclockwise direction in the Argand diagram as the collision energy increases. Such a manifest phase change is absent in the dissociative attachment process of e+H2-->H+H-. This is attributed to the presence of equally strong, direct, and resonant scattering processes, and to the strong influence of mutually destructive interference.

  19. Oxidation of Reactive Nitrogen and Ozone Production in Tokyo

    NASA Astrophysics Data System (ADS)

    Fukuda, M.; Kondo, Y.; Miyazaki, Y.; Morino, Y.; Takegawa, N.; Miyakawa, T.; Komazaki, Y.; Tanimoto, H.; Yokouchi, Y.; Kanaya, Y.; McKenzie, R.; Johnston, P.

    2005-12-01

    Ground based measurements of NOx (NO + NO2), nitric acid (HNO3), particulate nitrate (NO3-), peroxyacyl nitrates (PANs), and total reactive nitrogen (NOy) were conducted in Tokyo in winter (January-February 2004), summer (July-August 2003 and 2004), and fall (October 2003). Carbon monoxide (CO), ozone (O3), non-methane hydrocarbons (NMHCs) and actinic flux were also measured during these periods. Average mixing ratios of these species and the NOx/NOy, HNO3/NOy, NO3-/NOy, and PANs/NOy ratios showed distinct diurnal-seasonal variations. The NOx/NOy ratios were 0.63-0.95 on high J(O1D) days, and 0.77-0.94 on low J(O1D) days. In summer and winter, total nitrate (TN = HNO3 + NO3-) was the dominant form of the NOx oxidation products (NOz = NOy - NOx) during the daytime on high J(O1D) days, and PANs were minor component species. The partitioning of TN was controlled mainly by temperature and the shit of the partitioning to NO3- at low temperature suppressed removal of NOy by dry deposition of HNO3. Removal rate of NOy is estimated using CO as a tracer. The estimated loss of NOy (LNOy) was largest during the daytime in summer (35%), while smallest (0%) in winter. The corrected ozone production efficiency (OPEx), which is defined as the linear regression slope of the observed Ox (= O3 + NO2) versus NOz* (= NOz + LNOy), is estimated to be 2.5. The estimated OPEx is slightly lower than those obtained in the U.S. urban air, which is probably due to lower ratios of NMHCs to NOx in this study. Possible factors controlling the OPEx will be discussed in detail.

  20. Multiple photon production in double parton scattering at the LHC

    NASA Astrophysics Data System (ADS)

    Palota da Silva, R.; Brenner Mariotto, C.; Goncalves, V. P.

    2016-04-01

    The high density of gluons in the initial state of hadronic collisions at LHC implies that the probability of multiple parton interactions within one proton-proton collision increases. In particular, the probability of having two or more hard interactions in a collision is not significantly suppressed with respect to the single interaction probability. In this contribution we study for the first time the production of prompt photons in double parton scattering processes. In particular, we estimate the rapidity distribution for the double Compton process, which leads to two photons plus two jets in the final state. Besides, we study the production of three and four photons in the final state, which are backgrounds to physics beyond the Standard Model.

  1. Azimuthal angle dependence of dijet production in unpolarized hadron scattering

    SciTech Connect

    Lu Zhun; Schmidt, Ivan

    2008-08-01

    We study the azimuthal angular dependence of back-to-back dijet production in unpolarized hadron scattering H{sub A}+H{sub B}{yields}J{sub 1}+J{sub 2}+X, arising from the product of two Boer-Mulders functions, which describe the transverse spin distribution of quarks inside an unpolarized hadron. We find that when the dijet is of two identical quarks (J{sub q}+J{sub q}) or a quark-antiquark pair (J{sub q}+J{sub q}), there is a cos{delta}{phi} angular dependence of the dijet, with {delta}{phi}={phi}{sub 1}-{phi}{sub 2}, and {phi}{sub 1} and {phi}{sub 2} are the azimuthal angles of the two individual jets. In the case of J{sub q}+J{sub q} production, we find that there is a color factor enhancement in the gluonic cross section, compared with the result from the standard generalized parton model. We estimate the cos{delta}{phi} asymmetry of dijet production at RHIC, showing that the color factor enhancement in the angular dependence of J{sub q}+J{sub q} production will reverse the sign of the asymmetry.

  2. Reactivity impact of {sup 16}O thermal elastic-scattering nuclear data for some numerical and critical benchmark systems

    SciTech Connect

    Kozier, K. S.; Roubtsov, D.; Plompen, A. J. M.; Kopecky, S.

    2012-07-01

    The thermal neutron-elastic-scattering cross-section data for {sup 16}O used in various modern evaluated-nuclear-data libraries were reviewed and found to be generally too high compared with the best available experimental measurements. Some of the proposed revisions to the ENDF/B-VII.0 {sup 16}O data library and recent results from the TENDL system increase this discrepancy further. The reactivity impact of revising the {sup 16}O data downward to be consistent with the best measurements was tested using the JENDL-3.3 {sup 16}O cross-section values and was found to be very small in MCNP5 simulations of the UO{sub 2} and reactor-recycle MOX-fuel cases of the ANS Doppler-defect numerical benchmark. However, large reactivity differences of up to about 14 mk (1400 pcm) were observed using {sup 16}O data files from several evaluated-nuclear-data libraries in MCNP5 simulations of the Los Alamos National Laboratory HEU heavy-water solution thermal critical experiments, which were performed in the 1950's. The latter result suggests that new measurements using HEU in a heavy-water-moderated critical facility, such as the ZED-2 zero-power reactor at the Chalk River Laboratories, might help to resolve the discrepancy between the {sup 16}O thermal elastic-scattering cross-section values and thereby reduce or better define its uncertainty, although additional assessment work would be needed to confirm this. (authors)

  3. Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel

    SciTech Connect

    Herrmann, Steven Douglas

    2014-05-27

    Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.

  4. Probability densities for quantum-mechanical collision resonances in reactive scattering

    NASA Astrophysics Data System (ADS)

    Thompson, Todd C.; Truhlar, Donald G.

    1983-10-01

    We present contour maps of probability density |ψ| 2 for reactive compound-state resonances in two collinear reactions: H+ FH → HF + H on a model low-barrier surface and H + H 2 → H 2 + H on the Porter-Karplus surface no. 2. The maps clearly show the Fermi-resonance schizoid character of the compound states.

  5. D* production in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Breitweg, J.; Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Yoshida, R.; Zhang, H.; Mattingly, M. C. K.; Anselmo, F.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Romeo, G. Cara; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; de Pasquale, S.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Polini, A.; Sartorelli, G.; Garcia, Y. Zamora; Zichichi, A.; Amelung, C.; Bornheim, A.; Brock, I.; Coböken, K.; Crittenden, J.; Deffner, R.; Eckert, M.; Feld, L.; Grothe, M.; Hartmann, H.; Heinloth, K.; Heinz, L.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Stamm, J.; Wedemeyer, R.; Bailey, D. S.; Campbell-Robson, S.; Cottingham, W. N.; Foster, B.; Hall-Wilton, R.; Hayes, M. E.; Heath, G. P.; Heath, H. F.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Arneodo, M.; Ayad, R.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Kim, J. Y.; Lee, J. H.; Lim, I. T.; Pac, M. Y.; Caldwell, A.; Cartiglia, N.; Jing, Z.; Liu, W.; Parsons, J. A.; Ritz, S.; Sampson, S.; Sciulli, F.; Straub, P. B.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Jakubowski, Z.; Przybycień, M. B.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajac, J.; Duliński, Z.; Kotański, A.; Abbiendi, G.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Cases, G.; Deppe, O.; Desler, K.; Drews, G.; Fricke, U.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Haas, T.; Hain, W.; Hasell, D.; Johnson, K. F.; Kasemann, M.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Lindemann, L.; Löhr, B.; Löwe, M.; Mańczak, O.; Milewski, J.; Monteiro, T.; Ng, J. S. T.; Notz, D.; Ohrenberg, K.; Park, I. H.; Pellegrino, A.; Pelucchi, F.; Piotrzkowski, K.; Roco, M.; Rohde, M.; Roldán, J.; Ryan, J. J.; Savin, A. A.; Schneekloth, U.; Selonke, F.; Surrow, B.; Tassi, E.; Voß, T.; Westphal, D.; Wolf, G.; Wollmer, U.; Youngman, C.; Żarnecki, A. F.; Zeuner, W.; Burow, B. D.; Grabosch, H. J.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Markun, P.; Trefzger, T.; Wölfle, S.; Bromley, J. T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Saxon, D. H.; Sinclair, L. E.; Strickland, E.; Utley, M. L.; Waugh, R.; Wilson, A. S.; Bohnet, I.; Gendner, N.; Holm, U.; Meyer-Larsen, A.; Salehi, H.; Wick, K.; Gladilin, L. K.; Horstmann, D.; Kçira, D.; Klanner, R.; Lohrmann, E.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Cole, J. E.; Harris, V. L.; Howell, G.; Hung, B. H. Y.; Lamberti, L.; Long, K. R.; Miller, D. B.; Pavel, N.; Prinias, A.; Sedgbeer, J. K.; Sideris, D.; Whitfield, A. F.; Mallik, U.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; Fleck, J. I.; Ishii, T.; Kuze, M.; Nakao, M.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; An, S. H.; Lee, S. B.; Nam, S. W.; Park, H. S.; Park, S. K.; Barreiro, F.; Fernández, J. P.; García, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martínez, M.; del Peso, J.; Puga, J.; Terrón, J.; de Trocóniz, J. F.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Murray, W. N.; Ochs, A.; Riveline, M.; Stairs, D. G.; St-Laurent, M.; Ullmann, R.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Golubkov, Yu. A.; Khein, L. A.; Korotkova, N. A.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Shumilin, A. V.; Solomin, A. N.; Zotkin, S. A.; Bokel, C.; Botje, M.; Brümmer, N.; Chlebana, F.; Engelen, J.; Kooijman, P.; Kruse, A.; van Sighem, A.; Tiecke, H.; Verkerke, W.; Vossebeld, J.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Nylander, P.; Romanowski, T. A.; Blaikley, H. E.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Edmonds, J. K.; Harnew, N.; Lancaster, M.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Ruske, O.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Bertolin, A.; Brugnera, R.; Carlin, R.; dal Corso, F.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Feild, R. G.; Oh, B. Y.; Okrasiński, J. R.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Raso, M.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Barberis, E.; Dubbs, T.; Heusch, C.; van Hook, M.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Schwarzer, O.; Walenta, A. H.; Abramowicz, H.; Briskin, G.; Dagan, S.; Doeker, T.; Kananov, S.; Levy, A.; Abe, T.; Fusayasu, T.; Inuzuka, M.; Nagano, K.; Suzuki, I.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Matsushita, T.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Petrucci, M. C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Brkic, M.; Fagerstroem, C.-P.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sampson, C. R.; Simmons, D.; Teuscher, R. J.; Butterworth, J. M.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Sutton, M. R.; Lu, B.; Mo, L. W.; Ciborowski, J.; Grzelak, G.; Kasprzak, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Pawlak, R.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Adamus, M.; Coldewey, C.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Revel, D.; Badgett, W. F.; Chapin, D.; Cross, R.; Dasu, S.; Foudas, C.; Loveless, R. J.; Mattingly, S.; Reeder, D. D.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Bhadra, S.; Frisken, W. R.; Khakzad, M.; Schmidke, W. B.

    1997-02-01

    This paper presents measurements of D*+/- production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel D*+ -> (D0 -> K- π+) π+ (+c.c.) has been used in the study. The e+p cross section for inclusive D*+/- production with 5 < Q2 < 100 GeV2 and y < 0.7 is 5.3 +/- 1.0 +/- 0.8 nb in the kinematic region 1.3 < pT(D*+/-) < 9.0 GeV and η(D*+/-) < 1.5. Differential cross sections as functions of pT(D*+/-), η(D*+/-), W and Q2 are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in pT(D*+/-) and η(D*+/-), the charm contribution Fcc2 (x, Q2) to the proton structure function is determined for Bjorken x between 2.10-4 and 5.10-3.

  6. Reactive oxygen species production by catechol stabilized copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Ahmed, Ishtiaq; Fruk, Ljiljana

    2013-11-01

    Stable Cu nanoparticles (NPs) prepared using catechol containing dopamine-based linkers could generate reactive oxygen species (ROS) that can activate peroxidase enzymes and catalyze the degradation of fluorescent dye pollutants.Stable Cu nanoparticles (NPs) prepared using catechol containing dopamine-based linkers could generate reactive oxygen species (ROS) that can activate peroxidase enzymes and catalyze the degradation of fluorescent dye pollutants. Electronic supplementary information (ESI) available: Details of the synthesis of dopamine linkers and Cu NPs, peroxidase activity tests, H2O2 calibration and degradation tests for resorufin, RB and MB. See DOI: 10.1039/c3nr03563h

  7. Time resolved small angle x-ray scattering reactivity studies on coals, asphaltenes, and polymers.

    SciTech Connect

    Seifert, S.; Thiyagarajan, P.; Winans, R. E.

    1999-07-02

    The objective of this study is to examine changes in the structures of coals, asphaltenes, and polymers in situ with small angle X-ray scattering (SAXS) during thermal treatments. We have built a SAXS instrument at the Basic Energy Sciences Synchrotrons Radiation Center at the Advanced Photon Source that allows us to obtain scattering data on very small samples and in the millisecond time domain. The Argonne Premium Coal samples, petroleum derived asphaltenes, and polymers with functionality to model fossil fuels were used in this study. The information that can be derived from these experiments includes: changes in fractal dimensionality, surface topology, and size and type of porosity. The information is correlated with other methods on the same samples.

  8. Solar light-induced production of reactive oxygen species by single walled carbon nanotubes in water

    EPA Science Inventory

    Photosensitizing processes of engineered nanomaterials (ENMs) which include photo-induced production of reactive oxygen species (ROS) convert light energy into oxidizing chemical energy that mediates transformations of nanomaterials. The oxidative stress associated with ROS may p...

  9. Atmospheric OH reactivity in central London: observations, model predictions and estimates of in situ ozone production

    NASA Astrophysics Data System (ADS)

    Whalley, Lisa K.; Stone, Daniel; Bandy, Brian; Dunmore, Rachel; Hamilton, Jacqueline F.; Hopkins, James; Lee, James D.; Lewis, Alastair C.; Heard, Dwayne E.

    2016-02-01

    Near-continuous measurements of hydroxyl radical (OH) reactivity in the urban background atmosphere of central London during the summer of 2012 are presented. OH reactivity behaviour is seen to be broadly dependent on air mass origin, with the highest reactivity and the most pronounced diurnal profile observed when air had passed over central London to the east, prior to measurement. Averaged over the entire observation period of 26 days, OH reactivity peaked at ˜ 27 s-1 in the morning, with a minimum of ˜ 15 s-1 during the afternoon. A maximum OH reactivity of 116 s-1 was recorded on one day during morning rush hour. A detailed box model using the Master Chemical Mechanism was used to calculate OH reactivity, and was constrained with an extended measurement data set of volatile organic compounds (VOCs) derived from a gas chromatography flame ionisation detector (GC-FID) and a two-dimensional GC instrument which included heavier molecular weight (up to C12) aliphatic VOCs, oxygenated VOCs and the biogenic VOCs α-pinene and limonene. Comparison was made between observed OH reactivity and modelled OH reactivity using (i) a standard suite of VOC measurements (C2-C8 hydrocarbons and a small selection of oxygenated VOCs) and (ii) a more comprehensive inventory including species up to C12. Modelled reactivities were lower than those measured (by 33 %) when only the reactivity of the standard VOC suite was considered. The difference between measured and modelled reactivity was improved, to within 15 %, if the reactivity of the higher VOCs (⩾ C9) was also considered, with the reactivity of the biogenic compounds of α-pinene and limonene and their oxidation products almost entirely responsible for this improvement. Further improvements in the model's ability to reproduce OH reactivity (to within 6 %) could be achieved if the reactivity and degradation mechanism of unassigned two-dimensional GC peaks were estimated. Neglecting the contribution of the higher VOCs (⩾ C

  10. Atmospheric OH reactivity in central London: observations, model predictions and estimates of in situ ozone production

    NASA Astrophysics Data System (ADS)

    Whalley, L. K.; Stone, D.; Bandy, B.; Dunmore, R.; Hamilton, J. F.; Hopkins, J.; Lee, J. D.; Lewis, A. C.; Heard, D. E.

    2015-11-01

    Near-continuous measurements of OH reactivity in the urban background atmosphere of central London during the summer of 2012 are presented. OH reactivity behaviour is seen to be broadly dependent on airmass origin with the highest reactivity and the most pronounced diurnal profile observed when air had passed over central London to the East, prior to measurement. Averaged over the entire observation period of 26 days, OH reactivity peaked at ~ 27 s-1 in the morning with a minimum of ~ 15 s-1 during the afternoon. A maximum OH reactivity of 116 s-1 was recorded on one day during morning rush hour. A detailed box model using the Master Chemical Mechanism was used to calculate OH reactivity, and was constrained with an extended measurement dataset of volatile organic compounds (VOCs) derived from GC-FID and a two-dimensional GC instrument which included heavier molecular weight (up to C12) aliphatic VOCs, oxygenated VOCs and the biogenic VOCs of α pinene and limonene. Comparison was made between observed OH reactivity and modelled OH reactivity using (i) a standard suite of VOC measurements (C2-C8 hydrocarbons and a small selection of oxygenated VOCs) and (ii) a more comprehensive inventory including species up to C12. Modelled reactivities were lower than those measured (by 33 %) when only the reactivity of the standard VOC suite was considered. The difference between measured and modelled reactivity was improved, to within 15 %, if the reactivity of the higher VOCs (≥ C9) was also considered, with the reactivity of the biogenic compounds of α pinene and limonene and their oxidation products almost entirely responsible for this improvement. Further improvements in the model's ability to reproduce OH reactivity (to within 6 %) could be achieved if the reactivity and degradation mechanism of unassigned two-dimensional GC peaks were estimated. Neglecting the contribution of the higher VOCs (≥ C9) (particularly α pinene and limonene) and model

  11. Force Production and Reactive Strength Capabilities After Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Flanagan, Eamonn P; Galvin, Lorcan; Harrison, Andrew J

    2008-01-01

    Context: Ambiguity exists in the literature regarding whether individuals can restore function to 100% after anterior cruciate ligament (ACL) reconstruction. The response of force production and reactive strength in stretch-shortening cycle activities after surgery has not been established. Objective: To compare reactive strength and force production capabilities between the involved and uninvolved legs of participants who had undergone ACL reconstruction and rehabilitation with the reactive strength and force production capabilities of a control group. Design: Repeated measures, cross-sectional. Setting: Research laboratory. Patients or Other Participants: Ten participants with ACL reconstructions who had returned to their chosen sports and 10 age-matched and activity-matched control subjects. Intervention(s): We screened the ACL group with the International Knee Documentation Committee Subjective Knee Evaluation Form and functional performance tests to measure a basic level of function. We assessed force production capabilities and reactive strength using squat, countermovement, drop, and rebound jump protocols on a force sledge apparatus. Main Outcome Measure(s): The dependent variables were flight time, peak vertical ground reaction force, leg spring stiffness, and reactive strength index. Results: No participant in the ACL group exhibited functional deficits in comparison with normative values or the control group. Using the force sledge apparatus, we found no notable differences in force production capabilities and reactive strength in the ACL group when comparing the involved with uninvolved legs or the degree of difference between legs with the control group. Conclusions: After ACL reconstruction, rehabilitated participants did not exhibit deficits in force production or reactive strength capabilities. Our results suggest that force production and reactive strength capabilities can be restored to levels comparable with the uninjured control limb and may not

  12. Gas-Microjet Reactive Scattering: Collisions of HCl and DCl with Cool Salty Water.

    PubMed

    Faust, Jennifer A; Sobyra, Thomas B; Nathanson, Gilbert M

    2016-02-18

    Liquid microjets provide a powerful means to investigate reactions of gases with salty water in vacuum while minimizing gas-vapor collisions. We use this technique to explore the fate of gaseous HCl and DCl molecules impinging on 8 molal LiCl and LiBr solutions at 238 K. The experiments reveal that HCl or DCl evaporate infrequently if they become thermally accommodated at the surface of either solution. In particular, we observe minimal thermal desorption of HCl following HCl collisions and no distinct evidence for rapid, interfacial DCl→HCl exchange following DCl collisions. These results imply that surface thermal motions are not generally strong enough to propel momentarily trapped HCl or DCl back into the gas phase before they ionize and disappear into solution. Instead, only HCl and DCl molecules that scatter directly from the surface escape entry. These recoiling molecules transfer less energy upon collision to LiBr/H2O than to LiCl/H2O, reflecting the heavier mass of Br(-) than of Cl(-) in the interfacial region. PMID:26828574

  13. State-to-state dynamics of the H{sup *}(n) + HD → D{sup *}(n{sup ′}) + H{sub 2} reactive scattering

    SciTech Connect

    Yu, Shengrui; Su, Shu; Dai, Dongxu; Yuan, Kaijun E-mail: xmyang@dicp.ac.cn; Yang, Xueming E-mail: xmyang@dicp.ac.cn

    2014-01-21

    The state-to-state dynamics of the H{sup *}(n) + HD → D{sup *}(n{sup ′}) + H{sub 2} reactive scattering at the collision energy of 0.5 eV have been carried out for the first time by using H-atom Rydberg tagging time-of-flight technique. Experimental results show that the angular distribution of the total H{sub 2} products presents clearly forward-backward asymmetric, which considerably differs from that of the corresponding H{sup +} + HD → D{sup +} + H{sub 2} reaction predicted by previously theoretical calculations. Such disagreement between these two processes suggests that the Fermi independent-collider model is also not valid in describing the dynamics of isotopic variants of the H{sup *} + H{sub 2} reaction. The rotational state distribution of the H{sub 2} products demonstrates a saw-toothed distribution with odd-j{sup ′} > even-j{sup ′}. This interesting observation is strongly influenced by nuclear spin statistics.

  14. Towards a specific reaction parameter density functional for reactive scattering of H{sub 2} from Pd(111)

    SciTech Connect

    Boereboom, J. M.; Wijzenbroek, M.; Somers, M. F.; Kroes, G. J.

    2013-12-28

    Recently, an implementation of the specific reaction parameter (SRP) approach to density functional theory (DFT) was used to study several reactive scattering experiments of H{sub 2} on Cu(111). It was possible to obtain chemical accuracy (1 kcal/mol ≈ 4.2 kJ/mol), and therefore, accurately model this paradigmatic example of activated H{sub 2} dissociation on a metal surface. In this work, the SRP-DFT methodology is applied to the dissociation of hydrogen on a Pd(111) surface, in order to test whether the SRP-DFT approach is also applicable to non-activated H{sub 2}-metal systems. In the calculations, the Born–Oppenheimer static surface approximations are used. A comparison to molecular beam sticking experiments, performed at incidence energies ⩾125 meV, on H{sub 2} + Pd(111) suggested the PBE-vdW [where the Perdew, Burke, and Ernzerhof (PBE) correlation is replaced by van der Waals correlation] functional as a candidate SRP density functional describing the reactive scattering of H{sub 2} on Pd(111). Unfortunately, quantum dynamics calculations are not able to reproduce the molecular beam sticking results for incidence energies <125 meV. From a comparison to initial state-resolved (degeneracy averaged) sticking probabilities it seems clear that for H{sub 2} + Pd(111) dynamic trapping and steering effects are important, and that these effects are not yet well modeled with the potential energy surfaces considered here. Applying the SRP-DFT method to systems where H{sub 2} dissociation is non-activated remains difficult. It is suggested that a density functional that yields a broader barrier distribution and has more non-activated pathways than PBE-vdW (i.e., non-activated dissociation at some sites but similarly high barriers at the high energy end of the spectrum) should allow a more accurate description of the available experiments. Finally, it is suggested that new and better characterized molecular beam sticking experiments be done on H{sub 2} + Pd(111

  15. 40 CFR Table 1 to Subpart E of... - Product-Weighted Reactivity Limits by Coating Category

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Product-Weighted Reactivity Limits by Coating Category 1 Table 1 to Subpart E of Part 59 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS...

  16. 40 CFR Table 1 to Subpart E of... - Product-Weighted Reactivity Limits by Coating Category

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Product-Weighted Reactivity Limits by Coating Category 1 Table 1 to Subpart E of Part 59 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS...

  17. 40 CFR Table 1 to Subpart E of... - Product-Weighted Reactivity Limits by Coating Category

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Product-Weighted Reactivity Limits by Coating Category 1 Table 1 to Subpart E of Part 59 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS...

  18. Chemical Characterization and Reactivity of Fuel-Oxidizer Reaction Product

    NASA Technical Reports Server (NTRS)

    David, Dennis D.; Dee, Louis A.; Beeson, Harold D.

    1997-01-01

    Fuel-oxidizer reaction product (FORP), the product of incomplete reaction of monomethylhydrazine and nitrogen tetroxide propellants prepared under laboratory conditions and from firings of Shuttle Reaction Control System thrusters, has been characterized by chemical and thermal analysis. The composition of FORP is variable but falls within a limited range of compositions that depend on three factors: the fuel-oxidizer ratio at the time of formation; whether the composition of the post-formation atmosphere is reducing or oxidizing; and the reaction or post-reaction temperature. A typical composition contains methylhydrazinium nitrate, ammonium nitrate, methylammonium nitrate, and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. Thermal decomposition reactions of the FORP compositions used in this study were unremarkable. Neither the various compositions of FORP, the pure major components of FORP, nor mixtures of FORP with propellant system corrosion products showed any unusual thermal activity when decomposed under laboratory conditions. Off-limit thruster operations were simulated by rapid mixing of liquid monomethylhydrazine and liquid nitrogen tetroxide in a confined space. These tests demonstrated that monomethylhydrazine, methylhydrazinium nitrate, ammonium nitrate, or Inconel corrosion products can induce a mixture of monomethylhydrazine and nitrogen tetroxide to produce component-damaging energies. Damaging events required FORP or metal salts to be present at the initial mixing of monomethylhydrazine and nitrogen tetroxide.

  19. An application of distributed approximating functional-wavelets to reactive scattering

    SciTech Connect

    Wei, G.W.; Althorpe, S.C.; Kouri, D.J.; Hoffman, D.K.

    1998-05-01

    A newly developed distributed approximating functional (DAF)-wavelet, the Dirichlet{endash}Gabor DAF-wavelet (DGDW), is applied in a calculation of the state-to-state reaction probabilities for the three-dimensional (3-D) (J=0)H+H{sub 2} reaction, using the time-independent wave-packet reactant-product decoupling (TIWRPD) method. The DGDWs are reconstructed from a rigorous mathematical sampling theorem, and are shown to be DAF-wavelet generalizations of both the sine discrete variable representation (sinc-DVR) and the Fourier distributed approximating functionals (DAFs). An important feature of the generalized sinc-DVR representation is that the grid points are distributed at equally spaced intervals and the kinetic energy matrix has a banded, Toeplitz structure. Test calculations show that, in accordance with mathematical sampling theory, the DAF-windowed sinc-DVR converges much more rapidly and to higher accuracy with bandwidth, 2W+1. The results of the H+H{sub 2} calculation are in very close agreement with the results of previous TIWRPD calculations, demonstrating that the DGDW representation is an accurate and efficient representation for use in FFT wave-packet propagation methods, and that, more generally, the theory of wavelets and related techniques have great potential for the study of molecular dynamics. {copyright} {ital 1998 American Institute of Physics.}

  20. An application of distributed approximating functional-wavelets to reactive scattering

    NASA Astrophysics Data System (ADS)

    Wei, G. W.; Althorpe, S. C.; Kouri, D. J.; Hoffman, D. K.

    1998-05-01

    A newly developed distributed approximating functional (DAF)-wavelet, the Dirichlet-Gabor DAF-wavelet (DGDW), is applied in a calculation of the state-to-state reaction probabilities for the three-dimensional (3-D) (J=0)H+H2 reaction, using the time-independent wave-packet reactant-product decoupling (TIWRPD) method. The DGDWs are reconstructed from a rigorous mathematical sampling theorem, and are shown to be DAF-wavelet generalizations of both the sine discrete variable representation (sinc-DVR) and the Fourier distributed approximating functionals (DAFs). An important feature of the generalized sinc-DVR representation is that the grid points are distributed at equally spaced intervals and the kinetic energy matrix has a banded, Toeplitz structure. Test calculations show that, in accordance with mathematical sampling theory, the DAF-windowed sinc-DVR converges much more rapidly and to higher accuracy with bandwidth, 2W+1. The results of the H+H2 calculation are in very close agreement with the results of previous TIWRPD calculations, demonstrating that the DGDW representation is an accurate and efficient representation for use in FFT wave-packet propagation methods, and that, more generally, the theory of wavelets and related techniques have great potential for the study of molecular dynamics.

  1. NEANSC international evaluation cooperation SG10 activities on inelastic scattering cross sections for weakly absorbing fission-product nuclides

    SciTech Connect

    Kawai, Masayoshi; Chiba, Satoshi; Nakagawa, Tsuneo; Nakajima, Yutaka; Zukeran, Atsushi; Gruppelaar, H.; Hogenbirk, A.; Salvatores, M.; Dietze, K.

    1994-12-31

    An evaluation method of inelastic scattering cross sections of FP nuclides is investigated. The origins of the discrepancy found in the calculated and measured sample reactivity worths are also discussed emphasizing the effect of ambiguity in inelastic scattering cross sections and neutron spectra.

  2. Quantum dynamics with real wave packets, including application to three-dimensional (J=0)D+H{sub 2}{r_arrow}HD+H reactive scattering

    SciTech Connect

    Gray, S.K.; Balint-Kurti, G.G.

    1998-01-01

    We show how to extract {bold S} matrix elements for reactive scattering from just the real part of an evolving wave packet. A three-term recursion scheme allows the real part of a wave packet to be propagated without reference to its imaginary part, so {bold S} matrix elements can be calculated efficiently. Our approach can be applied not only to the usual time-dependent Schr{umlt o}dinger equation, but to a modified form with the Hamiltonian operator {cflx H} replaced by f({cflx H}), where f is chosen for convenience. One particular choice for f, a cos{sup {minus}1} mapping, yields the Chebyshev iteration that has proved to be useful in several other recent studies. We show how reactive scattering can be studied by following time-dependent wave packets generated by this mapping. These ideas are illustrated through calculation of collinear H+H{sub 2}{r_arrow}H{sub 2}+H and three-dimensional (J=0)D+H{sub 2}{r_arrow}HD+D reactive scattering probabilities on the Liu{endash}Siegbahn{endash}Truhlar{endash}Horowitz (LSTH) potential energy surface. {copyright} {ital 1998 American Institute of Physics.}

  3. Biodiesel production from integration between reaction and separation system: reactive distillation process.

    PubMed

    da Silva, Nívea de Lima; Santander, Carlos Mario Garcia; Batistella, César Benedito; Filho, Rubens Maciel; Maciel, Maria Regina Wolf

    2010-05-01

    Biodiesel is a clean burning fuel derived from a renewable feedstock such as vegetable oil or animal fat. It is biodegradable, non-inflammable, non-toxic, and produces lesser carbon monoxide, sulfur dioxide, and unburned hydrocarbons than petroleum-based fuel. The purpose of the present work is to present an efficient process using reactive distillation columns applied to biodiesel production. Reactive distillation is the simultaneous implementation of reaction and separation within a single unit of column. Nowadays, it is appropriately called "Intensified Process". This combined operation is especially suited for the chemical reaction limited by equilibrium constraints, since one or more of the products of the reaction are continuously separated from the reactants. This work presents the biodiesel production from soybean oil and bioethanol by reactive distillation. Different variables affect the conventional biodiesel production process such as: catalyst concentration, reaction temperature, level of agitation, ethanol/soybean oil molar ratio, reaction time, and raw material type. In this study, the experimental design was used to optimize the following process variables: the catalyst concentration (from 0.5 wt.% to 1.5 wt.%), the ethanol/soybean oil molar ratio (from 3:1 to 9:1). The reactive column reflux rate was 83 ml/min, and the reaction time was 6 min. PMID:20221864

  4. Relating multichannel scattering and production amplitudes in a microscopic OZI-based model

    SciTech Connect

    Beveren, Eef van Rupp, George

    2008-05-15

    Relations between scattering and production amplitudes are studied in a microscopic multichannel model for meson-meson scattering, with coupling to confined quark-antiquark channels. Overlapping resonances and a proper threshold behaviour are treated exactly in the model. Under the spectator assumption, it is found that the two-particle production amplitude shares a common denominator with the elastic scattering amplitude, besides a numerator consisting of a linear combination of all elastic and some inelastic matrix elements. The coefficients in these linear combinations are shown to be generally complex. Finally, the standard operator expressions relating production and scattering amplitudes, viz. A=T/VandIm(A)=T*A, are fulfilled, while in the small-coupling limit the usual isobar model is recovered.

  5. Analysis of a reactive extraction process for biodiesel production using a lipase immobilized on magnetic nanostructures.

    PubMed

    Dussan, K J; Cardona, C A; Giraldo, O H; Gutiérrez, L F; Pérez, V H

    2010-12-01

    Magnetic nanoparticles were prepared by coprecipitating Fe(2+) and Fe(3+) ions in a sodium hydroxide solution and used as support for lipase. The lipase-coated particles were applied in a reactive extraction process that allowed separation of the products formed during transesterification. Kinetics data for triolein and ethanol consumption during biodiesel (ethyl oleate) synthesis together with a thermodynamic phase equilibrium model (liquid-liquid) were used for simulation of batch and continuous processes. The analysis demonstrated the possibility of applying this biocatalytic system in the reactive zone using external magnetic fields. This approach implies new advantages in efficient location and use of lipases in column reactors for producing biodiesel. PMID:20716486

  6. Evidence of Phenotypic and Genetic Relationships between Sociality, Emotional Reactivity and Production Traits in Japanese Quail

    PubMed Central

    Recoquillay, Julien; Leterrier, Christine; Calandreau, Ludovic; Bertin, Aline; Pitel, Frédérique; Gourichon, David; Vignal, Alain; Beaumont, Catherine; Le Bihan-Duval, Elisabeth; Arnould, Cécile

    2013-01-01

    The social behavior of animals, which is partially controlled by genetics, is one of the factors involved in their adaptation to large breeding groups. To understand better the relationships between different social behaviors, fear behaviors and production traits, we analyzed the phenotypic and genetic correlations of these traits in Japanese quail by a second generation crossing of two lines divergently selected for their social reinstatement behavior. Analyses of results for 900 individuals showed that the phenotypic correlations between behavioral traits were low with the exception of significant correlations between sexual behavior and aggressive pecks both at phenotypic (0.51) and genetic (0.90) levels. Significant positive genetic correlations were observed between emotional reactivity toward a novel object and sexual (0.89) or aggressive (0.63) behaviors. The other genetic correlations were observed mainly between behavioral and production traits. Thus, the level of emotional reactivity, estimated by the duration of tonic immobility, was positively correlated with weight at 17 and 65 days of age (0.76 and 0.79, respectively) and with delayed egg laying onset (0.74). In contrast, a higher level of social reinstatement behavior was associated with an earlier egg laying onset (-0.71). In addition, a strong sexual motivation was correlated with an earlier laying onset (-0.68) and a higher number of eggs laid (0.82). A low level of emotional reactivity toward a novel object and also a higher aggressive behavior were genetically correlated with a higher number of eggs laid (0.61 and 0.58, respectively). These results bring new insights into the complex determinism of social and emotional reactivity behaviors in birds and their relationships with production traits. Furthermore, they highlight the need to combine animal welfare and production traits in selection programs by taking into account traits of sociability and emotional reactivity. PMID:24324761

  7. Mechanisms Underlying Interferon-γ-Induced Priming of Microglial Reactive Oxygen Species Production.

    PubMed

    Spencer, Nicholas G; Schilling, Tom; Miralles, Francesc; Eder, Claudia

    2016-01-01

    Microglial priming and enhanced reactivity to secondary insults cause substantial neuronal damage and are hallmarks of brain aging, traumatic brain injury and neurodegenerative diseases. It is, thus, of particular interest to identify mechanisms involved in microglial priming. Here, we demonstrate that priming of microglia with interferon-γ (IFN γ) substantially enhanced production of reactive oxygen species (ROS) following stimulation of microglia with ATP. Priming of microglial ROS production was substantially reduced by inhibition of p38 MAPK activity with SB203580, by increases in intracellular glutathione levels with N-Acetyl-L-cysteine, by blockade of NADPH oxidase subunit NOX2 activity with gp91ds-tat or by inhibition of nitric oxide production with L-NAME. Together, our data indicate that priming of microglial ROS production involves reduction of intracellular glutathione levels, upregulation of NADPH oxidase subunit NOX2 and increases in nitric oxide production, and suggest that these simultaneously occurring processes result in enhanced production of neurotoxic peroxynitrite. Furthermore, IFNγ-induced priming of microglial ROS production was reduced upon blockade of Kir2.1 inward rectifier K+ channels with ML133. Inhibitory effects of ML133 on microglial priming were mediated via regulation of intracellular glutathione levels and nitric oxide production. These data suggest that microglial Kir2.1 channels may represent novel therapeutic targets to inhibit excessive ROS production by primed microglia in brain pathology. PMID:27598576

  8. Multiple-scattering model for inclusive proton production in heavy ion collisions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1994-01-01

    A formalism is developed for evaluating the momentum distribution for proton production in nuclear abrasion during heavy ion collisions using the Glauber multiple-scattering series. Several models for the one-body density matrix of nuclei are considered for performing numerical calculations. Calculations for the momentum distribution of protons in abrasion are compared with experimental data for inclusive proton production.

  9. Induced reactive oxygen species improve enzyme production from Aspergillus niger cultivation.

    PubMed

    Sahoo, Susmita; Rao, K Krishnamurthy; Suraishkumar, G K

    2003-05-01

    Intracellular reactive oxygen species (iROS) induction by HOCl was used as a novel strategy to improve enzyme productivities in Aspergillus niger growing in a bioreactor. With induced iROS, the specific intracellular activities of alpha-amylase, protease, catalase, and glucose oxidase were increased by about 170%, 250%, 320%, and 260%, respectively. The optimum specific iROS level for achieving maximum cell concentration and enzyme production was about 15 mmol g cell-1. The type of iROS inducing the enzyme production was identified to be a derivative of the superoxide radical. PMID:12882014

  10. A Numerical Model for Plasma Production and Scattering from Micrometeoroids

    NASA Astrophysics Data System (ADS)

    Colestock, P. L.; Zinn, J.; Close, S.

    2009-12-01

    The flux of micrometeors (< 1 microgram) has long been an important unknown in the assessment of spacecraft hazards. Many efforts have been undertaken to determine the density and velocity of this population, particularly based on radar scattering using large aperture radars. Such instruments are required to produce a sufficient return from these small, though potentially overdense objects. Uncertainties remain, however, in tying the observed radar cross-sections to specific meteor parameters such as mass an density. To understand this phenomenon better, we have undertaken a theoretical and an observational campaign that is designed to determine empirically the mass flux coupled with a detailed simulation of the ablating material as the meteors disintegrate in the ionosphere. In particular, we have developed a collisional Monte Carlo simulation together with a Particle-in-Cell model to determine the self-consistent plasma profiles that occur during various stages of the meteor burn-up. We find the scaling associated with given ablation coefficients, velocities and meteoroid mass values. The implications of this work for determining meteoroid parameters empirically will be discussed.

  11. Reactive oxygen product formation by human neutrophils as an early marker for biocompatibility of dialysis membranes.

    PubMed Central

    Rosenkranz, A R; Templ, E; Traindl, O; Heinzl, H; Zlabinger, G J

    1994-01-01

    Production of reactive oxygen intermediates (ROI) by neutrophils (PMN) in vivo was examined by a whole blood assay using dichlorofluorescein-diacetate (DCFH-DA) in 10 patients each dialysed consecutively with two different dialyser membranes. Haemodialysis (HD) with cuprophan membrane (CM) led to a significantly (P < 0.001) more pronounced ROI production by PMN (2.4 +/- 0.5-fold increase in intracellular oxidation of DCFH-DA) compared with HD with polysulfone membranes (PM; 1.5 +/- 0.2-fold). HD with CM induced a decrease in PMN count by about 90%, whereas PM induced a decrease by only 25% (P < 0.001). In CM patients maximal ROI production coincided with the nadir in PMN count. All patients dialysed with CM showed a clear increase in serum levels of Bb fragments, whereas PM-dialysed patients did not. In this respect, however, no clear time relationship was seen to the kinetics of ROI production, nor to the disappearance of neutrophils from the circulation. Evaluating a direct effect of the dialysis membranes on PMN demonstrated that incubation of neutrophils with hollow fibres of the CM but not of the PM in the absence of plasma induces significant ROI production by PMN. Our study thus indicates that ROI production by PMN during HD correlates to membrane biocompatibility. Furthermore, one might speculate that also independently from but perhaps in addition to complement activation, reactive oxygen products are critically involved in the generation of haemodialysis-associated neutrophil emigration. PMID:7955536

  12. Extensive Dark Biological Production of Reactive Oxygen Species in Brackish and Freshwater Ponds.

    PubMed

    Zhang, Tong; Hansel, Colleen M; Voelker, Bettina M; Lamborg, Carl H

    2016-03-15

    Within natural waters, photodependent processes are generally considered the predominant source of reactive oxygen species (ROS), a suite of biogeochemically important molecules. However, recent discoveries of dark particle-associated ROS production in aquatic environments and extracellular ROS production by various microorganisms point to biological activity as a significant source of ROS in the absence of light. Thus, the objective of this study was to explore the occurrence of dark biological production of the ROS superoxide (O2(-)) and hydrogen peroxide (H2O2) in brackish and freshwater ponds. Here we show that the ROS superoxide and hydrogen peroxide were present in dark waters at comparable concentrations as in sunlit waters. This suggests that, at least for the short-lived superoxide species, light-independent processes were an important control on ROS levels in these natural waters. Indeed, we demonstrated that dark biological production of ROS extensively occurred in brackish and freshwater environments, with greater dark ROS production rates generally observed in the aphotic relative to the photic zone. Filtering and formaldehyde inhibition confirmed the biological nature of a majority of this dark ROS production, which likely involved phytoplankton, particle-associated heterotrophic bacteria, and NADH-oxidizing enzymes. We conclude that biological ROS production is widespread, including regions devoid of light, thereby expanding the relevance of these reactive molecules to all regions of our oxygenated global habit. PMID:26854358

  13. Proton and antiproton production in deep inelastic muon-nucleon scattering at 280 GeV

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jansco, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, A.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Poensgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schouten, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.

    1987-12-01

    New results on proton and antiproton production in the target and current fragmentation regions of high energy muon-nucleon scattering are presented. Proton and antiproton production is investigated as a function of Feynman x and rapidity. No significant difference is observed between production on hydrogen and deuterium targets. Correlations between pp,pbar p andbar pbar p pairs are analysed and the results are compared with the predictions of the Lund fragmentation model.

  14. Jet production in muon-proton and muon-nuclei scattering at Fermilab-E665

    SciTech Connect

    Salgado, C.W.; E665 Collaboration

    1993-08-01

    Measurements of multi-jet production rates from Muon-Proton Muon- Nuclei scattering at Fermilab-E665 are presented. Jet rates are defined by the JADE clustering algorithm. Rates in Muon-Proton deep-inelastic scattering are compared to perturbative Quantum Chromodynamics (PQCD) and Monte Carlo model predictions. We observe hadronic (2+1)-jet rates which are a factor of two higher than PQCD predictions at the partonic level. Preliminary results from jet production on heavy targets, in the shadowing region, show a suppression of the jet rates as compared to deuterium. The two- forward jet sample present higher suppression as compared to the one-forward jet sample.

  15. Production characteristics of reactive oxygen/nitrogen species in water using atmospheric pressure discharge plasmas

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazuhiro; Satoh, Kohki; Itoh, Hidenori; Kawaguchi, Hideki; Timoshkin, Igor; Given, Martin; MacGregor, Scott

    2016-07-01

    A pulsed discharge, a DC corona discharge, and a plasma jet are separately generated above a water surface, and reactive oxygen species and reactive nitrogen species (ROS/RNS) in the water are investigated. ROS/RNS in water after the sparging of the off-gas of a packed-bed dielectric barrier discharge (PB-DBD) are also investigated. H2O2, NO2 ‑, and NO3 ‑ are detected after plasma exposure and only NO3 ‑ after off-gas sparging. Short-lifetime species in plasma are found to play an important role in H2O2 and NO2 ‑ production and long-lifetime species in NO3 ‑ production. NO x may inhibit H2O2 production through OH consumption to produce HNO2 and HNO3. O3 does not contribute to ROS/RNS production. The pulsed plasma exposure is found to be effective for the production of H2O2 and NO2 ‑, and the off-gas sparging of the PB-DBD for the production of NO3 ‑.

  16. Coherent pion production by neutrino scattering off nuclei

    SciTech Connect

    Kartavtsev, A.; Paschos, E. A.; Gounaris, G. J.

    2006-09-01

    The main part of coherent pion production by neutrinos on nuclei is essentially determined by partial conservation of the axial current (PCAC), provided that the leptonic momentum transferred square Q{sup 2} remains sufficiently small. We give the formulas for the charged and neutral current cross sections, including also the small non-PCAC transverse current contributions and taking into account the effect of the {mu}{sup -}-mass. Our results are compared with the experimental ones and other theoretical treatments.

  17. IL-10 reduces Th2 cytokine production and eosinophilia but augments airway reactivity in allergic mice.

    PubMed

    van Scott, M R; Justice, J P; Bradfield, J F; Enright, E; Sigounas, A; Sur, S

    2000-04-01

    We investigated the effects of interleukin (IL)-10 administration on allergen-induced Th2 cytokine production, eosinophilic inflammation, and airway reactivity. Mice were sensitized by intraperitoneal injection of ragweed (RW) adsorbed to Alum and challenged by intratracheal instillation of the allergen. Sensitization and challenge with RW increased concentrations of IL-10 in bronchoalveolar lavage (BAL) fluid from undetectable levels to 60 pg/ml over 72 h. Intratracheal instillation of 25 ng of recombinant murine IL-10 at the time of RW challenge further elevated BAL fluid IL-10 concentration to 440 pg/ml but decreased BAL fluid IL-4, IL-5, and interferon-gamma levels by 40-85% and eosinophil numbers by 70% (P < 0.0001). Unexpectedly, the same IL-10 treatment increased airway reactivity to methacholine in spontaneously breathing mice that had been sensitized and challenged with RW (P < 0.001). IL-10 treatment in naive animals or RW-sensitized mice challenged with PBS failed to increase airway reactivity, demonstrating that IL-10 induces an increase in airway reactivity only when it is administered in conjunction with allergic sensitization and challenge. The results demonstrate that IL-10 reduces Th2 cytokine levels and eosinophilic inflammation but augments airway hyperreactivity. Thus, despite its potent anti-inflammatory activity, IL-10 could contribute to the decline in pulmonary function observed in asthma. PMID:10749743

  18. Surface area and chemical reactivity characteristics of uranium metal corrosion products.

    SciTech Connect

    Totemeier, T. C.

    1998-02-17

    The results of an initial characterization of hydride-containing corrosion products from uranium metal Zero Power Physics Reactor (ZPPR) fuel plates are presented. Sorption analyses using the BET method with a Kr adsorbate were performed to measure the specific areas of corrosion product samples. The specific surface areas of the corrosion products varied from 0.66 to 1.01 m{sup 2}/g. The reactivity of the products in Ar-9%O{sub 2} and Ar-20%O{sub 2} were measured at temperatures between 35 C and 150 C using a thermo-gravimetric analyzer. Ignition of the products occurred at temperatures of 150 C and above. The oxidation rates below ignition were comparable to rates observed for uranium metal.

  19. Deoxyamphimedine, a pyridoacridine alkaloid, damages DNA via the production of reactive oxygen species.

    PubMed

    Marshall, Kathryn M; Andjelic, Cynthia D; Tasdemir, Deniz; Concepción, Gisela P; Ireland, Chris M; Barrows, Louis R

    2009-01-01

    Marine pyridoacridines are a class of aromatic chemicals that share an 11H-pyrido[4,3,2-mn]acridine skeleton. Pyridoacridine alkaloids display diverse biological activities including cytotoxicity, fungicidal and bactericidal properties, production of reactive oxygen species (ROS) and topoisomerase inhibition. These activities are often dependent on slight modifications to the pyridoacridine skeleton. Here we demonstrate that while structurally similar to neoamphimedine and amphimedine, the biological activity of deoxyamphimedine differs greatly. Deoxyamphimedine damages DNA in vitro independent of topoisomerase enzymes through the generation of reactive oxygen species. Its activity was decreased in low oxygen, with the removal of a reducing agent and in the presence of anti-oxidants. Deoxyamphimedine also showed enhanced toxicity in cells sensitive to single or double strand DNA breaks, consistent with the in vitro activity. PMID:19597581

  20. Catalytic reactive separation system for energy-efficient production of cumene

    DOEpatents

    Buelna, Genoveva; Nenoff, Tina M.

    2009-07-28

    The present invention relates to an atmospheric pressure, reactive separation column packed with a solid acid zeolite catalyst for producing cumene from the reaction of benzene with propylene. Use of this un-pressurized column, where simultaneous reaction and partial separation occur during cumene production, allow separation of un-reacted, excess benzene from other products as they form. This high-yielding, energy-efficient system allows for one-step processing of cumene, with reduced need for product purification. Reacting propylene and benzene in the presence of beta zeolite catalysts generated a selectivity greater than 85% for catalytic separation reactions at a reaction temperature of 115 degrees C and at ambient pressure. Simultaneously, up to 76% of un-reacted benzene was separated from the product; which could be recycled back to the reactor for re-use.

  1. Modeling single arm electron scattering and nucleon production from nuclei by GeV electrons

    SciTech Connect

    Lightbody J.W. Jr.; O'Connell, J.S.

    1988-05-01

    Nuclear reaction data for the doubly differential cross sections of inelastic electron scattering and of electronucleon and electropion production are parametrized by analytic models of the major reaction mechanisms. Predictive FORTRAN codes for the yields of reaction products have been developed for all nuclei interacting with electrons and bremsstrahlung beams in the energy range 0.5--5 GeV. Comparison with a variety of electromagnetic reaction data is shown.

  2. The Dubna-Mainz-Taipei Dynamical Model for πN Scattering and π Electromagnetic Production

    NASA Astrophysics Data System (ADS)

    Yang, Shin Nan

    Some of the featured results of the Dubna-Mainz-Taipei (DMT) dynamical model for πN scattering and π0 electromagnetic production are summarized. These include results for threshold π0 production, deformation of Δ(1232),and the extracted properties of higher resonances below 2 GeV. The excellent agreement of DMT model's predictions with threshold π0 production data, including the recent precision measurements from MAMI establishes results of DMT model as a benchmark for experimentalists and theorists in dealing with threshold pion production.

  3. Imaging the proton via hard exclusive production in diffractive pp scattering

    SciTech Connect

    Charles Hyde; Leonid Frankfurt; Mark Strikman; Christian Weiss

    2007-05-21

    We discuss the prospects for probing Generalized Parton Distributions (GPDs) via exclusive production of a high-mass system (H = heavy quarkonium, di-photon, di-jet, Higgs boson) in diffractive pp scattering, pp -> p + H + p. In such processes the interplay of hard and soft interactions gives rise to a diffraction pattern in the final-state proton transverse momenta, which is sensitive to the transverse spatial distribution of partons in the colliding protons. We comment on the plans for diffractive pp measurements at RHIC and LHC. Such studies could complement future measurements of GPDs in hard exclusive ep scattering (JLab, COMPASS, EIC).

  4. Mechanisms that Regulate Production of Reactive Oxygen Species by Cytochrome P450

    SciTech Connect

    Zangar, Richard C.; Davydov, Dmitri R.; Verma, Seema

    2004-09-15

    Mammalian cytochromes P450 (P450) are a family of heme-thiolate enzymes involved in the oxidative metabolism of a variety of endogenous and exogenous lipophilic compounds. Poor coupling of the P450 catalytic cycle results in continuous production of reactive oxygen species (ROS), which affect signaling pathways and other cellular functions. P450 generation of ROS is tightly controlled by regulation of gene transcription, as well as by modulation of interactions between protein constituents of the monooxygenase that affects its activity, coupling and stability. Malfunction of these mechanisms may result in a burst of ROS production, which can cause lipid peroxidation and oxidative stress. In turn, oxidative stress downregulates P450 levels by a variety of feedback mechanisms. This review provides an overview of recent advances in our understanding of these feedback mechanisms that serve to limit P450 production of ROS. Some of the more likely physiological and cellular effects of P450 generation of ROS are also discussed.

  5. Modulation of Crassostrea virginica hemocyte reactive oxygen species production by Listonella anguillarum.

    PubMed

    Bramble, L; Anderson, R S

    1997-01-01

    Luminol- and lucigenin-augmented chemiluminescence (CL) were used to evaluate the ability of Listonella (formerly Vibrio) anguillarum to stimulate the production of reactive oxygen species (ROS) by Crassostrea virginica hemocytes. Whereas heat-killed L. anguillarum stimulated hemocyte CL in the lucigenin system, viable L. anguillarum did not. Neither viable nor heat-killed bacteria stimulated hemocyte production of luminol CL. Metabolically active L. anguillarum generated ROS, as indicated by luminol and lucigenin CL. It is proposed that bacterial catalase suppressed hemocyte-derived luminol CL. L. anguillarum, which possesses the antioxidant enzyme catalase, suppressed luminol CL generated by zymosan-stimulated hemocytes. Conversely, the catalase negative bacterium Carnobacterium piscicola had no effect on hemocyte-derived luminol CL elicited by zymosan. The inability of viable L. anguillarum to stimulate hemocyte ROS production, as measured by CL, does not support the proposed role for ROS in hemocyte-mediated bactericidal activity. PMID:9303272

  6. Reactive scattering of H2 from Cu(100): Comparison of dynamics calculations based on the specific reaction parameter approach to density functional theory with experiment

    NASA Astrophysics Data System (ADS)

    Sementa, L.; Wijzenbroek, M.; van Kolck, B. J.; Somers, M. F.; Al-Halabi, A.; Busnengo, H. F.; Olsen, R. A.; Kroes, G. J.; Rutkowski, M.; Thewes, C.; Kleimeier, N. F.; Zacharias, H.

    2013-01-01

    We present new experimental and theoretical results for reactive scattering of dihydrogen from Cu(100). In the new experiments, the associative desorption of H2 is studied in a velocity resolved and final rovibrational state selected manner, using time-of-flight techniques in combination with resonance-enhanced multi-photon ionization laser detection. Average desorption energies and rotational quadrupole alignment parameters were obtained in this way for a number of (v = 0, 1) rotational states, v being the vibrational quantum number. Results of quantum dynamics calculations based on a potential energy surface computed with a specific reaction parameter (SRP) density functional, which was derived earlier for dihydrogen interacting with Cu(111), are compared with the results of the new experiments and with the results of previous molecular beam experiments on sticking of H2 and on rovibrationally elastic and inelastic scattering of H2 and D2 from Cu(100). The calculations use the Born-Oppenheimer and static surface approximations. With the functional derived semi-empirically for dihydrogen + Cu(111), a chemically accurate description is obtained of the molecular beam experiments on sticking of H2 on Cu(100), and a highly accurate description is obtained of rovibrationally elastic and inelastic scattering of D2 from Cu(100) and of the orientational dependence of the reaction of (v = 1, j = 2 - 4) H2 on Cu(100). This suggests that a SRP density functional derived for H2 interacting with a specific low index face of a metal will yield accurate results for H2 reactively scattering from another low index face of the same metal, and that it may also yield accurate results for H2 interacting with a defected (e.g., stepped) surface of that same metal, in a system of catalytic interest. However, the description that was obtained of the average desorption energies, of rovibrationally elastic and inelastic scattering of H2 from Cu(100), and of the orientational dependence of

  7. Scale-up of the production of highly reactive biogenic magnetite nanoparticles using Geobacter sulfurreducens.

    PubMed

    Byrne, J M; Muhamadali, H; Coker, V S; Cooper, J; Lloyd, J R

    2015-06-01

    Although there are numerous examples of large-scale commercial microbial synthesis routes for organic bioproducts, few studies have addressed the obvious potential for microbial systems to produce inorganic functional biomaterials at scale. Here we address this by focusing on the production of nanoscale biomagnetite particles by the Fe(III)-reducing bacterium Geobacter sulfurreducens, which was scaled up successfully from laboratory- to pilot plant-scale production, while maintaining the surface reactivity and magnetic properties which make this material well suited to commercial exploitation. At the largest scale tested, the bacterium was grown in a 50 l bioreactor, harvested and then inoculated into a buffer solution containing Fe(III)-oxyhydroxide and an electron donor and mediator, which promoted the formation of magnetite in under 24 h. This procedure was capable of producing up to 120 g of biomagnetite. The particle size distribution was maintained between 10 and 15 nm during scale-up of this second step from 10 ml to 10 l, with conserved magnetic properties and surface reactivity; the latter demonstrated by the reduction of Cr(VI). The process presented provides an environmentally benign route to magnetite production and serves as an alternative to harsher synthetic techniques, with the clear potential to be used to produce kilogram to tonne quantities. PMID:25972437

  8. Scale-up of the production of highly reactive biogenic magnetite nanoparticles using Geobacter sulfurreducens

    PubMed Central

    Byrne, J. M.; Muhamadali, H.; Coker, V. S.; Cooper, J.; Lloyd, J. R.

    2015-01-01

    Although there are numerous examples of large-scale commercial microbial synthesis routes for organic bioproducts, few studies have addressed the obvious potential for microbial systems to produce inorganic functional biomaterials at scale. Here we address this by focusing on the production of nanoscale biomagnetite particles by the Fe(III)-reducing bacterium Geobacter sulfurreducens, which was scaled up successfully from laboratory- to pilot plant-scale production, while maintaining the surface reactivity and magnetic properties which make this material well suited to commercial exploitation. At the largest scale tested, the bacterium was grown in a 50 l bioreactor, harvested and then inoculated into a buffer solution containing Fe(III)-oxyhydroxide and an electron donor and mediator, which promoted the formation of magnetite in under 24 h. This procedure was capable of producing up to 120 g of biomagnetite. The particle size distribution was maintained between 10 and 15 nm during scale-up of this second step from 10 ml to 10 l, with conserved magnetic properties and surface reactivity; the latter demonstrated by the reduction of Cr(VI). The process presented provides an environmentally benign route to magnetite production and serves as an alternative to harsher synthetic techniques, with the clear potential to be used to produce kilogram to tonne quantities. PMID:25972437

  9. Variation of the reactivity of solids near the interface reagent-product of the topochemical reaction

    NASA Astrophysics Data System (ADS)

    Boldyrev, V. V.; Lomovsky, O. I.; Zaikova, T. O.; Gavrilov, E. F.

    1984-01-01

    During the topochemical decomposition of ammonium perchlorate and copper hypophosphite an enhanced acid concentration occurs near the reagent-product interface. Concentration profiles of the acid were observed after the treatment of the partially decomposed crystals by indicator solution and by microphotometry. Profiles exhibit the diffusive characteristics. The diffusion coefficient is 10 -10 cm 2/sec for ammonium perchlorate and 10 -9 cm 2/sec for copper hypophosphite at 20°C. It is concluded that the variation of the reactivity near the interface is due to the enhanced acid concentration.

  10. Fingerprinting the reactive toxicity pathways of 50 drinking water disinfection by-products.

    PubMed

    Stalter, Daniel; O'Malley, Elissa; von Gunten, Urs; Escher, Beate I

    2016-03-15

    A set of nine in vitro cellular bioassays indicative of different stages of the cellular toxicity pathway was applied to 50 disinfection by-products (DBPs) to obtain a better understanding of the commonalities and differences in the molecular mechanisms of reactive toxicity of DBPs. An Eschericia coli test battery revealed reactivity towards proteins/peptides for 64% of the compounds. 98% activated the NRf2-mediated oxidative stress response and 68% induced an adaptive stress response to genotoxic effects as indicated by the activation of the tumor suppressor protein p53. All DBPs reactive towards DNA in the E. coli assay and activating p53 also induced oxidative stress, confirming earlier studies that the latter could trigger DBP's carcinogenicity. The energy of the lowest unoccupied molecular orbital ELUMO as reactivity descriptor was linearly correlated with oxidative stress induction for trihalomethanes (r(2)=0.98) and haloacetamides (r(2)=0.58), indicating that potency of these DBPs is connected to electrophilicity. However, the descriptive power was poor for haloacetic acids (HAAs) and haloacetonitriles (r(2) (<) 0.06). For HAAs, we additionally accounted for speciation by including the acidity constant with ELUMO in a two-parameter multiple linear regression model. This increased r(2) to >0.80, indicating that HAAs' potency is connected to both, electrophilicity and speciation. Based on the activation of oxidative stress response and the soft electrophilic character of most tested DBPs we hypothesize that indirect genotoxicity-e.g., through oxidative stress induction and/or enzyme inhibition-is more plausible than direct DNA damage for most investigated DBPs. The results provide not only a mechanistic understanding of the cellular effects of DBPs but the effect concentrations may also serve to evaluate mixture effects of DBPs in water samples. PMID:26773486

  11. Analytical Expressions for the Hard-Scattering Production of Massive Partons

    SciTech Connect

    Wong, Cheuk-Yin

    2016-01-01

    We obtain explicit expressions for the two-particle differential cross section $E_c E_\\kappa d\\sigma (AB \\to c\\kappa X) /d\\bb c d \\bb \\kappa$ and the two-particle angular correlation function \\break $d\\sigma(AB$$ \\to$$ c\\kappa X)/d\\Delta \\phi \\, d\\Delta y$ in the hard-scattering production of massive partons in order to exhibit the ``ridge" structure on the away side in the hard-scattering process. The single-particle production cross section $d\\sigma(AB \\to cX) /dy_c c_T dc_T $ is also obtained and compared with the ALICE experimental data for charm production in $pp$ collisions at 7 TeV at LHC.

  12. Mitochondrial uncoupling does not decrease reactive oxygen species production after ischemia-reperfusion.

    PubMed

    Quarrie, Ricardo; Lee, Daniel S; Reyes, Levy; Erdahl, Warren; Pfeiffer, Douglas R; Zweier, Jay L; Crestanello, Juan A

    2014-10-01

    Cardiac ischemia-reperfusion (IR) leads to myocardial dysfunction by increasing production of reactive oxygen species (ROS). Mitochondrial H(+) leak decreases ROS formation; it has been postulated that increasing H(+) leak may be a mechanism of decreasing ROS production after IR. Ischemic preconditioning (IPC) decreases ROS formation after IR, but the mechanism is unknown. We hypothesize that pharmacologically increasing mitochondrial H(+) leak would decrease ROS production after IR. We further hypothesize that IPC would be associated with an increase in the rate of H(+) leak. Isolated male Sprague-Dawley rat hearts were subjected to either control or IPC. Mitochondria were isolated at end equilibration, end ischemia, and end reperfusion. Mitochondrial membrane potential (mΔΨ) was measured using a tetraphenylphosphonium electrode. Mitochondrial uncoupling was achieved by adding increasing concentrations of FCCP. Mitochondrial ROS production was measured by fluorometry using Amplex-Red. Pyridine dinucleotide levels were measured using HPLC. Before IR, increasing H(+) leak decreased mitochondrial ROS production. After IR, ROS production was not affected by increasing H(+) leak. H(+) leak increased at end ischemia in control mitochondria. IPC mitochondria showed no change in the rate of H(+) leak throughout IR. NADPH levels decreased after IR in both IPC and control mitochondria while NADH increased. Pharmacologically, increasing H(+) leak is not a method of decreasing ROS production after IR. Replenishing the NADPH pool may be a means of scavenging the excess ROS thereby attenuating oxidative damage after IR. PMID:25085966

  13. Studying re-scattering effect in heavy-ion collision through K* production

    NASA Astrophysics Data System (ADS)

    Singha, Subhash; Mohanty, Bedangadas; Lin, Zi-Wei

    2015-05-01

    We have studied the K* production within a multi-phase transport model (AMPT) for Au+Au collisions at √ {sNN} = 200 GeV to understand the hadronic re-scattering effect on the measured yields of the resonance. The hadronic re-scattering of the K* decay daughter particles (π and K) will alter their momentum distribution thereby making it difficult to reconstruct the K* signal through the invariant mass method. An increased hadronic re-scattering effect thus leads to a decrease in the reconstructed yield of K* in the heavy-ion collisions. Through this simulation study, we argue that a decrease in K*/K ratio with the increase in collision centrality necessarily reflects the hadronic re-scattering effect. Since the re-scattering occurs in the hadronic phase and K* has a lifetime of 4 fm/c, we present a toy model-based discussion on using measured K*/K to put a lower limit on the hadronic phase lifetime in high energy nuclear collisions.

  14. Detection of irradiation induced reactive oxygen species production in live cells

    NASA Astrophysics Data System (ADS)

    Gao, Bo; Zhu, Debin

    2006-09-01

    Reactive oxygen species (ROS) is thought to play an important role in cell signaling of apoptosis, necrosis, and proliferation. Light irradiation increases mitochondrial reactive oxygen species (ROS) production and mediates its intracellular signaling by adjusting the redox potential in tumor cells. Mitochondria are the main source of ROS in the living cell. Superoxide anions (0 II - are likely the first ROS generated in the mitochondria following radiation damage, and then convert to hydrogen peroxide (H II0 II), hydroxyl radical (•OH), and singlet oxygen (10 II), etc. Conventional methods for research ROS production in mitochondria mostly use isolated mitochondria rather than mitochondria in living cells. In this study, a highly selective probe to detect mitochondrial 0 II - in live cells, MitoSOX TM Red, was applied to quantify the mitochondrial ROS production in human lung adenocarcinoma cells (ASTC-a-1) with laser scanning microscope (LSM) after ultraviolet C (UVC) and He-Ne laser irradiation. Dichiorodihydrofluoresein diacetate (DCFHDA), a common used fluorescent probe for ROS detection without specificity, were used as a comparison to image the ROS production. The fluorescent image of MItoSOX TM Red counterstained with MitoTracker Deep Red 633, a mitochondria selective probe, shows that the mitochondrial ROS production increases distinctly after UVC and He-Ne laser irradiation. DCFH-DA diffuses labeling throughout the cell though its fluorescence increases markedly too. In conclusion, the fluorescent method with MitoSOX TM Red reagent is proved to be a promising technique to research the role of ROS in radiation induced apoptosis.

  15. An index for quantifying the aerobic reactivity of municipal solid wastes and derived waste products.

    PubMed

    Scaglia, Barbara; Adani, Fabrizio

    2008-05-01

    The organic matter contained in municipal solid waste (MSW) and in the MSW fractions obtained by mechanical separation has strong environmental impact when the waste is used as landfill. This is partly due to the biological activity that occurs under anaerobic conditions. Negative effects on the environment include unpleasant odors, biogas, leachate and biomass self-heating. Measuring the biological reactivity of waste with the help of indicators is an important tool to prevent waste impact. The aim of this study was to develop an index capable of describing the aerobic reactivity of waste, using both biological and chemical indicators. To develop this index, 71 MSW and MSW-product samples, including biologically treated MSW and mechanically separated MSW fractions, were analyzed. Fifty of the 71 samples analyzed represented MSWs and their derived products collected from a number of Italian waste plants and sites. The remaining 21 were MSW samples collected at different times during 8 different full-scale aerobic biological processes in four treatment plants used to reduce the biological reactivity of wastes. Five of these processes used the entire (unsorted) MSW, while the remaining three used the organic fraction of the MSW obtained by mechanical pre-treatment (waste sieving). Respirometric activity (Dynamic Respiration Index, DRI) and eluates characterization (chemical oxygen demand--COD, and 5 days biological oxygen demand--BOD5) were used as indicators of waste strength, as they had previously been reported to be indirect measures of waste impact on landfill. Summarizing all studied indicators, Principal Component Analysis (PCA) was used to develop the Putrescibility Index (Ip). The results revealed Ip index of 204+/-33 (mean+/-standard deviation) and 159+/-14 for the organic fraction of MSW and MSW untreated waste respectively, and of 106+/-16 and 101+/-22 for the corresponding biologically treated waste. PMID:18280541

  16. Live Candida albicans Suppresses Production of Reactive Oxygen Species in Phagocytes▿ †

    PubMed Central

    Wellington, Melanie; Dolan, Kristy; Krysan, Damian J.

    2009-01-01

    Production of reactive oxygen species (ROS) is an important aspect of phagocyte-mediated host responses. Since phagocytes play a crucial role in the host response to Candida albicans, we examined the ability of Candida to modulate phagocyte ROS production. ROS production was measured in the murine macrophage cell line J774 and in primary phagocytes using luminol-enhanced chemiluminescence. J774 cells, murine polymorphonuclear leukocytes (PMN), human monocytes, and human PMN treated with live C. albicans produced significantly less ROS than phagocytes treated with heat-killed C. albicans. Live C. albicans also suppressed ROS production in murine bone marrow-derived macrophages from C57BL/6 mice, but not from BALB/c mice. Live C. albicans also suppressed ROS in response to external stimuli. C. albicans and Candida glabrata suppressed ROS production by phagocytes, whereas Saccharomyces cerevisiae stimulated ROS production. The cell wall is the initial point of contact between Candida and phagocytes, but isolated cell walls from both heat-killed and live C. albicans stimulated ROS production. Heat-killed C. albicans has increased surface exposure of 1,3-β-glucan, a cell wall component that can stimulate phagocytes. To determine whether surface 1,3-β-glucan exposure accounted for the difference in ROS production, live C. albicans cells were treated with a sublethal dose of caspofungin to increase surface 1,3-β-glucan exposure. Caspofungin-treated C. albicans was fully able to suppress ROS production, indicating that suppression of ROS overrides stimulatory signals from 1,3-β-glucan. These studies indicate that live C. albicans actively suppresses ROS production in phagocytes in vitro, which may represent an important immune evasion mechanism. PMID:18981256

  17. Oxidative Stress in the Developing Rat Brain due to Production of Reactive Oxygen and Nitrogen Species

    PubMed Central

    Wilhelm, Jiří; Vytášek, Richard; Uhlík, Jiří; Vajner, Luděk

    2016-01-01

    Oxidative stress after birth led us to localize reactive oxygen and nitrogen species (RONS) production in the developing rat brain. Brains were assessed a day prenatally and on postnatal days 1, 2, 4, 8, 14, 30, and 60. Oxidation of dihydroethidium detected superoxide; 6-carboxy-2′,7′-dichlorodihydrofluorescein diacetate revealed hydrogen peroxide; immunohistochemical proof of nitrotyrosine and carboxyethyllysine detected peroxynitrite formation and lipid peroxidation, respectively. Blue autofluorescence detected protein oxidation. The foetuses showed moderate RONS production, which changed cyclically during further development. The periods and sites of peak production of individual RONS differed, suggesting independent generation. On day 1, neuronal/glial RONS production decreased indicating that increased oxygen concentration after birth did not cause oxidative stress. Dramatic changes in the amount and the sites of RONS production occurred on day 4. Nitrotyrosine detection reached its maximum. Day 14 represented other vast alterations in RONS generation. Superoxide production in arachnoidal membrane reached its peak. From this day on, the internal elastic laminae of blood vessels revealed the blue autofluorescence. The adult animals produced moderate levels of superoxide; all other markers reached their minimum. There was a strong correlation between detection of nitrotyrosine and carboxyethyllysine probably caused by lipid peroxidation initiated with RONS. PMID:27190574

  18. Structure-reactivity relationship of Amadori rearrangement products compared to related ketoses.

    PubMed

    Kaufmann, Martin; Meissner, Philipp M; Pelke, Daniel; Mügge, Clemens; Kroh, Lothar W

    2016-06-16

    Structure-reactivity relationships of Amadori rearrangement products compared to their related ketoses were derived from multiple NMR spectroscopic techniques. Besides structure elucidation of six Amadori rearrangement products derived from d-glucose and d-galactose with l-alanine, l-phenylalanine and l-proline, especially quantitative (13)C selective saturation transfer NMR spectroscopy was applied to deduce information on isomeric systems. It could be shown exemplarily that the Amadori compound N-(1-deoxy-d-fructos-1-yl)-l-proline exhibits much higher isomerisation rates than d-fructose, which can be explained by C-1 substituent mediated intramolecular catalysis. In combination with a reduced carbonyl activity of Amadori compounds compared to their related ketoses which results in an increased acyclic keto isomer concentration, the results on isomerisation dynamics lead to a highly significant increased reactivity of Amadori compounds. This can be clearly seen, comparing approximated carbohydrate milieu stability time constants (ACuSTiC) which is 1 s for N-(1-deoxy-d-fructos-1-yl)-l-proline and 10 s for d-fructose at pD 4.20 ± 0.05 at 350 K. In addition, first NMR spectroscopic data are provided, which prove that α-pyranose of (amino acid substituted) d-fructose adopts both, (2)C5 and (5)C2 conformation. PMID:27152632

  19. Reactive oxygen species production and antioxidant enzyme activity during epididymal sperm maturation in Corynorhinus mexicanus bats.

    PubMed

    Arenas-Ríos, Edith; Rosado García, Adolfo; Cortés-Barberena, Edith; Königsberg, Mina; Arteaga-Silva, Marcela; Rodríguez-Tobón, Ahiezer; Fuentes-Mascorro, Gisela; León-Galván, Miguel Angel

    2016-03-01

    Prolonged sperm storage in the epididymis of Corynorhinus mexicanus bats after testicular regression has been associated with epididymal sperm maturation in the caudal region, although the precise factors linked with this phenomenon are unknown. The aim of this work is to determine the role of reactive oxygen species (ROS) and changes in antioxidant enzymatic activity occurring in the spermatozoa and epididymal fluid over time, in sperm maturation and storage in the caput, corpus and cauda of the bat epididymis. Our data showed that an increment in ROS production coincided with an increase in superoxide dismutase (SOD) activity in epididymal fluid and with a decrease in glutathione peroxidase (GPX) activity in the spermatozoa in at different time points and epididymal regions. The increase in ROS production was not associated with oxidative damage measured by lipid peroxidation. The results of the current study suggest the existence of a shift in the redox balance, which might be associated with sperm maturation and storage. PMID:26952757

  20. Quantum reactive scattering studies of the CN + H 2 → HCN + H reaction: the role of the non-reactive CN bond

    NASA Astrophysics Data System (ADS)

    Takayanagi, Toshiyuki; Schatz, George C.

    1997-02-01

    An extended version of the rotating-bond approximation (RBA) has been developed to study the title reaction, in which CN stretching is added to usual CH stretching and bend degrees of freedom in a coupled channel expansion. Calculations have been done on potential energy surfaces developed by Sun and Bowman (SB) and by ter Horst, Schatz, and Harding (TSH). The HCN vibrational product state distribution calculated on TSH surface shows significant population in both CH and CN stretching, indicating that the CN bond is not a spectator.

  1. Spin Biochemistry Modulates Reactive Oxygen Species (ROS) Production by Radio Frequency Magnetic Fields

    PubMed Central

    Usselman, Robert J.; Hill, Iain; Singel, David J.; Martino, Carlos F.

    2014-01-01

    The effects of weak magnetic fields on the biological production of reactive oxygen species (ROS) from intracellular superoxide (O2•−) and extracellular hydrogen peroxide (H2O2) were investigated in vitro with rat pulmonary arterial smooth muscle cells (rPASMC). A decrease in O2•− and an increase in H2O2 concentrations were observed in the presence of a 7 MHz radio frequency (RF) at 10 μTRMS and static 45 μT magnetic fields. We propose that O2•− and H2O2 production in some metabolic processes occur through singlet-triplet modulation of semiquinone flavin (FADH•) enzymes and O2•− spin-correlated radical pairs. Spin-radical pair products are modulated by the 7 MHz RF magnetic fields that presumably decouple flavin hyperfine interactions during spin coherence. RF flavin hyperfine decoupling results in an increase of H2O2 singlet state products, which creates cellular oxidative stress and acts as a secondary messenger that affects cellular proliferation. This study demonstrates the interplay between O2•− and H2O2 production when influenced by RF magnetic fields and underscores the subtle effects of low-frequency magnetic fields on oxidative metabolism, ROS signaling, and cellular growth. PMID:24681944

  2. Enhanced nitric oxide and reactive oxygen species production and damage after inhalation of silica.

    PubMed

    Porter, Dale W; Millecchia, Lyndell; Robinson, Victor A; Hubbs, Ann; Willard, Patsy; Pack, Donna; Ramsey, Dawn; McLaurin, Jeff; Khan, Amir; Landsittel, Douglas; Teass, Alexander; Castranova, Vincent

    2002-08-01

    In previous reports from this study, measurements of pulmonary inflammation, bronchoalveolar lavage cell cytokine production and nuclear factor-kappa B activation, cytotoxic damage, and fibrosis were detailed. In this study, we investigated the temporal relationship between silica inhalation, nitric oxide (NO), and reactive oxygen species (ROS) production, and damage mediated by these radicals in the rat. Rats were exposed to a silica aerosol (15 mg/m(3) silica, 6 h/day, 5 days/wk) for 116 days. We report time-dependent changes in 1) activation of alveolar macrophages and concomitant production of NO and ROS, 2) immunohistochemical localization of inducible NO synthase and the NO-induced damage product nitrotyrosine, 3) bronchoalveolar lavage fluid NO(x) and superoxide dismutase concentrations, and 4) lung lipid peroxidation levels. The major observations made in this study are as follows: 1) NO and ROS production and resultant damage increased during silica exposure, and 2) the sites of inducible NO synthase activation and NO-mediated damage are associated anatomically with pathological lesions in the lungs. PMID:12114212

  3. Multi-jet production rates in deep-inelastic muon-proton scattering

    SciTech Connect

    Salgado, C.W. )

    1992-02-01

    Measurements of forward multi-jet production rates in deep-inelastic muon-proton scattering are presented. Data were taken with a 490 GeV muon beam incident on a hydrogen target. Jets were defined using the JADE jet finding algorithm. The measured rates are presented as function of W, the hadronic center-of-mass energy and the jet resolution parameter, [ital y][sub [ital cut

  4. Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. IV. Discrete variable representation (DVR) basis functions and the analysis of accurate results for F+H2

    NASA Astrophysics Data System (ADS)

    Bačić, Z.; Kress, J. D.; Parker, G. A.; Pack, R. T.

    1990-02-01

    Accurate 3D coupled channel calculations for total angular momentum J=0 for the reaction F+H2→HF+H using a realistic potential energy surface are analyzed. The reactive scattering is formulated using the hyperspherical (APH) coordinates of Pack and Parker. The adiabatic basis functions are generated quite efficiently using the discrete variable representation method. Reaction probabilities for relative collision energies of up to 17.4 kcal/mol are presented. To aid in the interpretation of the resonances and quantum structure observed in the calculated reaction probabilities, we analyze the phases of the S matrix transition elements, Argand diagrams, time delays and eigenlifetimes of the collision lifetime matrix. Collinear (1D) and reduced dimensional 3D bending corrected rotating linear model (BCRLM) calculations are presented and compared with the accurate 3D calculations.

  5. Reduced dimensionality diatom--diatom reactive scattering: Application to a model H sub 2 +A sub 2 r arrow H+HA sub 2 reaction

    SciTech Connect

    Sun, Q.; Bowman, J.M. )

    1990-01-15

    We apply a recently formulated quantum theory of diatom--diatom reactions (Q. Sun and J. M. Bowman, Int. J. Quant. Chem., Quant. Chem. Symp. {bold 23}, 9 (1989)) to a model collinear H{sub 2}+A{sub 2}{r arrow}H+HA{sub 2} reaction, where A has the mass of a hydrogen atom. The theory assumes one diatom bond is nonreactive, and the reactive scattering Hamiltonian is written in terms of hyperspherical and cylindrical coordinates. The potential-energy surface used is the PK2 H+H{sub 2} surface augmented by a harmonic degree of freedom describing the nonreactive A{sub 2}. Details of the formulation and solution of the coupled-channel equations are given, along with convergence tests, and a discussion of the new state-to-state transition probabilities. In particular, the partial quenching of the well-known collinear H+H{sub 2} resonances is noted.

  6. Quantum reactive scattering of O({sup 3}P)+H{sub 2} at collision energies up to 4.4 eV

    SciTech Connect

    Gacesa, Marko; Kharchenko, Vasili

    2014-10-28

    We report the results of quantum scattering calculations for the O({sup 3}P)+H{sub 2} reaction for a range of collision energies from 0.4 to 4.4 eV, important for astrophysical and atmospheric processes. The total and state-to-state reactive cross sections are calculated using a fully quantum time-independent coupled-channel approach on recent potential energy surfaces of {sup 3}A{sup ′} and {sup 3}A{sup ″} symmetry. A larger basis set than in the previous studies was used to ensure single-surface convergence at higher energies. Our results agree well with the published data at lower energies and indicate the breakdown of reduced dimensionality approach at collision energies higher than 1.5 eV. Differential cross sections and momentum transfer cross sections are also reported.

  7. Occurrence, pathways and implications of biological production of reactive oxygen species in natural waters

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Hansel, C. M.; Voelker, B. M.; Lamborg, C. H.

    2014-12-01

    Reactive oxygen species (ROS), such as superoxide (O2-) and hydrogen peroxide (H2O2) play a critical role in the redox cycling of both toxic (e.g., Hg) and nutrient (e.g., Fe) metals. Despite the discovery of extracellular ROS production in various microbial cultures, including fungi, algae and bacteria, photo-dependent processes are generally considered as the predominant source of ROS in natural waters. Here we show that biological production of ROS is ubiquitous and occurs at a significant rate in freshwater and brackish water environments. Water samples were collected from three freshwater and one brackish water ponds in Cape Cod, Massachusetts, USA, periodically from 2012 to 2014. Production of O2- and H2O2 were measured in dark incubations of natural water using a chemiluminescent and a colorimetric probe, respectively. Rates of biological ROS production were obtained by comparing unfiltered with 0.2-μm filtered samples. The role of biological activity in ROS production was confirmed by the cessation of ROS production upon addition of formaldehyde. In surface water, production rates of O2- ranged from undetectable to 96.0 ± 30.0 nmol L-1 h-1, and production rates of H2O2 varied between 9.9 ± 1.3 nmol L-1 h-1 and 145.6 ± 11.2 nmol L-1 h-1. The maximum production rates of both ROS were observed in mid-summer 2013, which coincides with peak biological activity. ROS production in the water from aphotic zone was greater than in the water from photic zone. Thus, non-light dependent biological processes are likely the major contributors to ROS production in this system. Moreover, O2- production appeared to be enhanced by NADH and inhibited by proteinase-K, suggesting the possible involvement of NADH oxidoreductases in this process. The potential role of different microbial communities in ROS production, and the implications of biological ROS production for mercury speciation will also be discussed.

  8. Measurement of diffractive production of D*+/-(2010) mesons in deep-inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    ZEUS Collaboration; Chekanov, S.; Krakauer, D.; Magill, S.; Musgrave, B.; Repond, J.; Yoshida, R.; Mattingly, M. C. K.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; de Pasquale, S.; Giusti, P.; Iacobucci, G.; Margotti, A.; Nania, R.; Palmonari, F.; Pesci, A.; Sartorelli, G.; Zichichi, A.; Aghuzumtsyan, G.; Bartsch, D.; Brock, I.; Crittenden, J.; Goers, S.; Hartmann, H.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U. F.; Kerger, R.; Kind, O.; Paul, E.; Rautenberg, J.; Renner, R.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K. C.; Weber, A.; Bailey, D. S.; Brook, N. H.; Cole, J. E.; Foster, B.; Heath, G. P.; Heath, H. F.; Robins, S.; Rodrigues, E.; Scott, J.; Tapper, R. J.; Wing, M.; Capua, M.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Kim, J. Y.; Kim, Y. K.; Lee, J. H.; Lim, I. T.; Pac, M. Y.; Caldwell, A.; Helbich, M.; Liu, X.; Mellado, B.; Paganis, S.; Schmidke, W. B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Olkiewicz, K.; Piotrzkowski, K.; Przybycień, M. B.; Stopa, P.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Grabowska-Bold, I.; Jeleń, K.; Kisielewska, D.; Kowal, A. M.; Kowal, M.; Kowalski, T.; Mindur, B.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Szuba, D.; Szuba, J.; Kotański, A.; Slomiński, W.; Bauerdick, L. A. T.; Behrens, U.; Borras, K.; Chiochia, V.; Dannheim, D.; Derrick, M.; Drews, G.; Fourletova, J.; Fox-Murphy, A.; Fricke, U.; Geiser, A.; Goebel, F.; Göttlicher, P.; Gutsche, O.; Haas, T.; Hain, W.; Hartner, G. F.; Hillert, S.; Kötz, U.; Kowalski, H.; Labes, H.; Lelas, D.; Löhr, B.; Mankel, R.; Martínez, M.; Moritz, M.; Notz, D.; Pellmann, I.-A.; Petrucci, M. C.; Polini, A.; Raval, A.; Schneekloth, U.; Selonke, F.; Surrow, B.; Wessoleck, H.; Wichmann, R.; Wolf, G.; Youngman, C.; Zeuner, W.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Genta, C.; Pelfer, P. G.; Bamberger, A.; Benen, A.; Coppola, N.; Raach, H.; Bell, M.; Bussey, P. J.; Doyle, A. T.; Glasman, C.; Hanlon, S.; Lee, S. W.; Lupi, A.; McCance, G. J.; Saxon, D. H.; Skillicorn, I. O.; Gialas, I.; Bodmann, B.; Carli, T.; Holm, U.; Klimek, K.; Krumnack, N.; Lohrmann, E.; Milite, M.; Salehi, H.; Stonjek, S.; Wick, K.; Ziegler, A.; Ziegler, Ar.; Collins-Tooth, C.; Foudas, C.; Gonçalo, R.; Long, K. R.; Metlica, F.; Miller, D. B.; Tapper, A. D.; Walker, R.; Cloth, P.; Filges, D.; Kuze, M.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.; Lim, H.; Son, D.; Barreiro, F.; González, O.; Labarga, L.; del Peso, J.; Redondo, I.; Terrón, J.; Vázquez, M.; Barbi, M.; Bertolin, A.; Corriveau, F.; Ochs, A.; Padhi, S.; Stairs, D. G.; St-Laurent, M.; Tsurugai, T.; Antonov, A.; Bashkirov, V.; Danilov, P.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Suchkov, S.; Dementiev, R. K.; Ermolov, P. F.; Golubkov, Yu. A.; Katkov, I. I.; Khein, L. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Vlasov, N. N.; Zotkin, S. A.; Bokel, C.; Engelen, J.; Grijpink, S.; Koffeman, E.; Kooijman, P.; Maddox, E.; Pellegrino, A.; Schagen, S.; Tassi, E.; Tiecke, H.; Tuning, N.; Velthuis, J. J.; Wiggers, L.; de Wolf, E.; Brümmer, N.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Boogert, S.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Grzelak, G.; Matsushita, T.; Rigby, M.; Ruske, O.; Sutton, M. R.; Walczak, R.; Brugnera, R.; Carlin, R.; dal Corso, F.; Dusini, S.; Garfagnini, A.; Limentani, S.; Longhin, A.; Parenti, A.; Posocco, M.; Stanco, L.; Turcato, M.; Heaphy, E. A.; Oh, B. Y.; Saull, P. R. B.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cormack, C.; Hart, J. C.; McCubbin, N. A.; Heusch, C.; Park, I. H.; Pavel, N.; Abramowicz, H.; Dagan, S.; Gabareen, A.; Kananov, S.; Kreisel, A.; Levy, A.; Abe, T.; Fusayasu, T.; Kohno, T.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Inuzuka, M.; Kitamura, S.; Matsuzawa, K.; Nishimura, T.; Arneodo, M.; Cartiglia, N.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Galea, R.; Koop, T.; Levman, G. M.; Martin, J. F.; Mirea, A.; Sabetfakhri, A.; Butterworth, J. M.; Gwenlan, C.; Hall-Wilton, R.; Jones, T. W.; Lane, J. B.; Lightwood, M. S.; Loizides, J. H.; West, B. J.; Ciborowski, J.; Ciesielski, R.; Nowak, R. J.; Pawlak, J. M.; Smalska, B.; Sztuk, J.; Tymieniecka, T.; Ukleja, A.; Ukleja, J.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Plucinski, P.; Eisenberg, Y.; Gladilin, L. K.; Hochman, D.; Karshon, U.; Kçira, D.; Lammers, S.; Li, L.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Deshpande, A.; Dhawan, S.; Hughes, V. W.; Straub, P. B.; Bhadra, S.; Catterall, C. D.; Fourletov, S.; Menary, S.; Soares, M.; Standage, J.

    2002-10-01

    Diffractive production of D*+/-(2010) mesons in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 44.3pb-1. Diffractive charm production is identified by the presence of a large rapidity gap in the final state of events in which a D*+/-(2010) meson is reconstructed in the decay channel D*+-->(D0-->K- π+)π+s (/+ charge conjugate). Differential cross sections when compared with theoretical predictions indicate the importance of gluons in such diffractive interactions.

  9. Ratio between two Λ and Λ bar production mechanisms in p scattering

    NASA Astrophysics Data System (ADS)

    Hoeneisen, B.

    2016-09-01

    We consider Λ and Λ bar production in a wide range of proton scattering experiments. The produced Λ and Λ bar may or may not contain a diquark remnant of the beam proton. The ratio of these two production mechanisms is found to be a simple universal function r =[ κ / (yp - y) ] i of the rapidity difference yp - y of the beam proton and the produced Λ or Λ bar , valid over four orders of magnitude, from r ≈ 0.01 to r ≈ 100, with κ = 2.86 ± 0.03 ± 0.07, and i = 4.39 ± 0.06 ± 0.15.

  10. Ratio between two Λ and Λ bar production mechanisms in p scattering

    NASA Astrophysics Data System (ADS)

    Hoeneisen, B.

    2016-09-01

    We consider Λ and Λ bar production in a wide range of proton scattering experiments. The produced Λ and Λ bar may or may not contain a diquark remnant of the beam proton. The ratio of these two production mechanisms is found to be a simple universal function r =[ κ / (yp - y) ] i of the rapidity difference yp - y of the beam proton and the produced Λ or Λ bar, valid over four orders of magnitude, from r ≈ 0.01 to r ≈ 100, with κ = 2.86 ± 0.03 ± 0.07, and i = 4.39 ± 0.06 ± 0.15.

  11. Spreading the news: subcellular and organellar reactive oxygen species production and signalling.

    PubMed

    Mignolet-Spruyt, Lorin; Xu, Enjun; Idänheimo, Niina; Hoeberichts, Frank A; Mühlenbock, Per; Brosché, Mikael; Van Breusegem, Frank; Kangasjärvi, Jaakko

    2016-06-01

    As plants are sessile organisms that have to attune their physiology and morphology continuously to varying environmental challenges in order to survive and reproduce, they have evolved complex and integrated environment-cell, cell-cell, and cell-organelle signalling circuits that regulate and trigger the required adjustments (such as alteration of gene expression). Although reactive oxygen species (ROS) are essential components of this network, their pathways are not yet completely unravelled. In addition to the intrinsic chemical properties that define the array of interaction partners, mobility, and stability, ROS signalling specificity is obtained via the spatiotemporal control of production and scavenging at different organellar and subcellular locations (e.g. chloroplasts, mitochondria, peroxisomes, and apoplast). Furthermore, these cellular compartments may crosstalk to relay and further fine-tune the ROS message. Hence, plant cells might locally and systemically react upon environmental or developmental challenges by generating spatiotemporally controlled dosages of certain ROS types, each with specific chemical properties and interaction targets, that are influenced by interorganellar communication and by the subcellular location and distribution of the involved organelles, to trigger the suitable acclimation responses in association with other well-established cellular signalling components (e.g. reactive nitrogen species, phytohormones, and calcium ions). Further characterization of this comprehensive ROS signalling matrix may result in the identification of new targets and key regulators of ROS signalling, which might be excellent candidates for engineering or breeding stress-tolerant plants. PMID:26976816

  12. The essential oil of bergamot stimulates reactive oxygen species production in human polymorphonuclear leukocytes.

    PubMed

    Cosentino, Marco; Luini, Alessandra; Bombelli, Raffaella; Corasaniti, Maria T; Bagetta, Giacinto; Marino, Franca

    2014-08-01

    Bergamot (Citrus aurantium L. subsp. bergamia) essential oil (BEO) is used in folk medicine as an antiseptic and anthelminthic and to facilitate wound healing. Evidence indicates that BEO has substantial antimicrobial activity; however its effects on immunity have never been examined. We studied the effects of BEO on reactive oxygen species (ROS) production in human polymorphonuclear leukocytes (PMN) and the role of Ca(2+) in the functional responses evoked by BEO in these cells. Results show that BEO increased intracellular ROS production in human PMN, an effect that required the contribution of extracellular (and, to a lesser extent, of intracellular) Ca(2+) . Bergamot essential oil also significantly increased ROS production induced by the chemotactic peptide N-formyl-Met-Leu-Phe and reduced the response to the protein kinase C activator phorbol myristate acetate. In conclusion, this is the first report showing the ability of BEO to increase ROS production in human PMN. This effect could both contribute to the activity of BEO in infections and in tissue healing as well as underlie an intrinsic proinflammatory potential. The relevance of these findings for the clinical uses of BEO needs careful consideration. PMID:24458921

  13. First measurement of Z/γ* production in compton scattering of quasi-real photons

    NASA Astrophysics Data System (ADS)

    OPAL Collaboration; Abbiendi, G.; Ackerstaff, K.; Alexander, G.; Allison, J.; Altekamp, N.; Anderson, K. J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S. F.; Axen, D.; Azuelos, G.; Ball, A. H.; Barberio, E.; Barlow, R. J.; Bartoldus, R.; Batley, J. R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, K. W.; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bird, S. D.; Blobel, V.; Bloodworth, I. J.; Bobinski, M.; Bock, P.; Böhme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, R. M.; Burckhart, H. J.; Burgard, C.; Bürgin, R.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrisman, D.; Ciocca, C.; Clarke, P. E. L.; Clay, E.; Cohen, I.; Conboy, J. E.; Cooke, O. C.; Couyoumtzelis, C.; Coxe, R. L.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Davis, R.; de Jong, S.; del Pozo, L. A.; de Roeck, A.; Desch, K.; Dienes, B.; Dixit, M. S.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I. P.; Eatough, D.; Estabrooks, P. G.; Etzion, E.; Evans, H. G.; Fabbri, F.; Fanti, M.; Faust, A. A.; Fiedler, F.; Fierro, M.; Fleck, I.; Folman, R.; Fürtjes, A.; Futyan, D. I.; Gagnon, P.; Gary, J. W.; Gascon, J.; Gascon-Shotkin, S. M.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gibson, V.; Gibson, W. R.; Gingrich, D. M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwé, M.; Hanson, G. G.; Hansroul, M.; Hapke, M.; Harder, K.; Hargrove, C. K.; Hartmann, C.; Hauschild, M.; Hawkes, C. M.; Hawkings, R.; Hemingway, R. J.; Herndon, M.; Herten, G.; Heuer, R. D.; Hildreth, M. D.; Hill, J. C.; Hillier, S. J.; Hobson, P. R.; Hocker, A.; Homer, R. J.; Honma, A. K.; Horváth, D.; Hossain, K. R.; Howard, R.; Hüntemeyer, P.; Igo-Kemenes, P.; Imrie, D. C.; Ishii, K.; Jacob, F. R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C. R.; Jovanovic, P.; Junk, T. R.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P. I.; Keeler, R. K.; Kellogg, R. G.; Kennedy, B. W.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D. S.; Kokott, T. P.; Kolrep, M.; Komamiya, S.; Kowalewski, R. V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kyberd, P.; Lafferty, G. D.; Lanske, D.; Lauber, J.; Lautenschlager, S. R.; Lawson, I.; Layter, J. G.; Lazic, D.; Lee, A. M.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; List, B.; Littlewood, C.; Lloyd, A. W.; Lloyd, S. L.; Loebinger, F. K.; Long, G. D.; Losty, M. J.; Ludwig, J.; Liu, D.; Macchiolo, A.; MacPherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Martin, A. J.; Martin, J. P.; Martinez, G.; Mashimo, T.; Mättig, P.; McDonald, W. J.; McKenna, J.; McKigney, E. A.; McMahon, T. J.; McPherson, R. A.; Meijers, F.; Menke, S.; Merritt, F. S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D. J.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H. A.; Nellen, B.; Nisius, R.; O'Neale, S. W.; Oakham, F. G.; Odorici, F.; Ogren, H. O.; Oreglia, M. J.; Orito, S.; Pálinkás, J.; Pásztor, G.; Pater, J. R.; Patrick, G. N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J. E.; Pinfold, J.; Plane, D. E.; Poffenberger, P.; Polok, J.; Przybycień , M.; Rembser, C.; Rick, H.; Robertson, S.; Robins, S. A.; Rodning, N.; Roney, J. M.; Roscoe, K.; Rossi, A. M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D. R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W. M.; Sarkisyan, E. K. G.; Sbarra, C.; Schaile, A. D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schieck, J.; Schmitt, B.; Schmitt, S.; Schöning, A.; Schröder, M.; Schumacher, M.; Schwick, C.; Scott, W. G.; Seiler, T.; Seuster, R.; Shears, T. G.; Shen, B. C.; Shepherd-Themistocleous, C. H.; Sherwood, P.; Siroli, G. P.; Sittler, A.; Skuja, A.; Smith, A. M.; Snow, G. A.; Sobie, R.; Söldner-Rembold, S.; Sproston, M.; Stahl, A.; Stephens, K.; Steuerer, J.; Stoll, K.; Strom, D.; Ströhmer, R.; Surrow, B.; Talbot, S. D.; Tanaka, S.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomson, M. A.; von Törne, E.; Torrence, E.; Towers, S.; Trigger, I.; Trócsányi, Z.; Tsur, E.; Turcot, A. S.; Turner-Watson, M. F.; van Kooten, R.; Vannerem, P.; Verzocchi, M.; Voss, H.; Wäckerle, F.; Wagner, A.; Ward, C. P.; Ward, D. R.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Wells, P. S.; Wermes, N.; White, J. S.; Wilson, G. W.; Wilson, J. A.; Wyatt, T. R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.

    1998-10-01

    We report the first observation of Z/γ* production in Compton scattering of quasi-real photons. This is a subprocess of the reaction e+e--->e+e- Z/γ*, where one of the final state electrons is undetected. Approximately 55 pb-1 of data collected in the year 1997 at an e+e- centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been analysed. The Z/γ* from Compton scattering has been detected in the hadronic decay channel. Within well defined kinematic bounds, we measure the product of cross-section and Z/γ* branching ratio to hadrons to be (0.9+/-0.3+/-0.1) pb for events with a hadronic mass larger than 60 GeV, dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60 GeV, dominated by (e)eγ* production, this product is found to be (4.1+/-1.6+/-0.6) pb. Our results agree with the predictions of two Monte Carlo event generators, grc4f and PYTHIA.

  14. Juglone induces cell death of Acanthamoeba through increased production of reactive oxygen species.

    PubMed

    Jha, Bijay Kumar; Jung, Hui-Jung; Seo, Incheol; Suh, Seong-Il; Suh, Min-Ho; Baek, Won-Ki

    2015-12-01

    Juglone (5-hydroxy-1,4-naphthoquinone) is a major chemical constituent of Juglans mandshruica Maxim. Recent studies have demonstrated that juglone exhibits anti-cancer, anti-bacterial, anti-viral, and anti-parasitic properties. However, its effect against Acanthamoeba has not been defined yet. The aim of this study was to investigate the effect of juglone on Acanthamoeba. We demonstrate that juglone significantly inhibits the growth of Acanthamoeba castellanii at 3-5 μM concentrations. Juglone increased the production of reactive oxygen species (ROS) and caused cell death of A. castellanii. Inhibition of ROS by antioxidant N-acetyl-l-cysteine (NAC) restored the cell viability. Furthermore, our results show that juglone increased the uptake of mitochondrial specific dye. Collectively, these results indicate that ROS played a significant role in the juglone-induced cell death of Acanthamoeba. PMID:26358271

  15. Electron-beam stimulation of the reactivity of cellulose pulps for production of derivatives

    NASA Astrophysics Data System (ADS)

    Iller, Edward; Kukiełka, Aleksandra; Stupińska, Halina; Mikołajczyk, Włodzimierz

    2002-03-01

    New alternative technologies for manufacture of cellulose fibers are currently under development. The effect of electron beam irradiation on various types of cellulose pulps have been studied in order to improve the reactivity of raw material for production of cellulose derivatives. Three different types of textile pulps, Alicell (Canada), Borregaard (Norwegian), Ketchikan (USA) and Kraft softwood as well as Kraft hardwood pulps, have been irradiated with 10 MeV electron beam from LAE 13/g linear accelerator with dose 10, 15, 20, 25 and 50 kGy. Electron paramagnetic resonance spectroscopy (ESR) and gel permeation chromatography (GPC) were applied for determination of structural changes in irradiated pulps. Such parameters as viscosity, average degree of polymerization and α-cellulose contents were determinated by means of analytical methods. Results of there investigations are presented and discussed.

  16. Interactions of U.S. Agricultural Production with Climatic Stresses and Reactive Nitrogen

    NASA Astrophysics Data System (ADS)

    Gehl, R. J.; Robertson, G. P.; Bruulsema, T. W.; Kanter, D.; Mauzerall, D. L.; Rotz, C. A.; Williams, C. O.

    2011-12-01

    . Here we summarize reactive nitrogen (Nr)-climate interactions as they relate to U.S. agricultural production.

  17. Sivers asymmetries for inclusive pion and kaon production in deep-inelastic scattering

    SciTech Connect

    Ellis, John; Hwang, Dae Sung; Kotzinian, Aram

    2009-10-01

    We calculate the Sivers distribution functions induced by the final-state interaction due to one-gluon exchange in diquark models of a nucleon structure, treating the cases of scalar and axial-vector diquarks with both dipole and Gaussian form factors. We use these distribution functions to calculate the Sivers single-spin asymmetries for inclusive pion and kaon production in deep-inelastic scattering. We compare our calculations with the results of HERMES and COMPASS, finding good agreement for {pi}{sup +} production at HERMES, and qualitative agreement for {pi}{sup 0} and K{sup +} production. Our predictions for pion and kaon production at COMPASS could be probed with increased statistics. The successful comparison of our calculations with the HERMES data constitutes prima facie evidence that the quarks in the nucleon have some orbital angular momentum in the infinite-momentum frame.

  18. Sivers asymmetries for inclusive pion and kaon production in deep-inelastic scattering

    NASA Astrophysics Data System (ADS)

    Ellis, John; Hwang, Dae Sung; Kotzinian, Aram

    2009-10-01

    We calculate the Sivers distribution functions induced by the final-state interaction due to one-gluon exchange in diquark models of a nucleon structure, treating the cases of scalar and axial-vector diquarks with both dipole and Gaussian form factors. We use these distribution functions to calculate the Sivers single-spin asymmetries for inclusive pion and kaon production in deep-inelastic scattering. We compare our calculations with the results of HERMES and COMPASS, finding good agreement for π+ production at HERMES, and qualitative agreement for π0 and K+ production. Our predictions for pion and kaon production at COMPASS could be probed with increased statistics. The successful comparison of our calculations with the HERMES data constitutes prima facie evidence that the quarks in the nucleon have some orbital angular momentum in the infinite-momentum frame.

  19. A study of scattering, production, and stimulated emission of sound by vortex flows. [Bernouli enthalpy

    NASA Technical Reports Server (NTRS)

    Yates, J. E.

    1979-01-01

    The basic theory of aeroacoustics of homentropic fluid media is applied to the problems of sound scattering, production, and stimulated emission. A general theory of scattering from low speed three-dimensional vortex flows is presented. Specific results are given for the horseshoe vortex and vortex ring. The noise of an elementary corotating vortex pair in various flows is calculated. It is shown that a potential flow and shear flow can substantially increase the basic pair noise. Small reverse shears can annihilate vortex pairs and eliminate the pair noise mechanism. The pair results are used to explain qualitatively the operation of noise suppression devices. The stimulated emission of a single vortex pair and four and six vortex arrays is demonstrated. The results for six vortices illustrate how external pure tones can amplify the broadband noise of a jet in agreement with recent experimental evidence.

  20. D^* production in deep-inelastic scattering at low Q^2

    SciTech Connect

    Jung, Andreas W.; /Fermilab

    2011-07-01

    Inclusive production of D* mesons in deep-inelastic scattering at HERA is studied in the range 5 < Q{sup 2} < 100 GeV{sup 2} of the photon virtuality and 0.02 < y < 0.70 of the inelasticity of the scattering process. The visible range for the D* meson is p{sub T} (D*) > 1.25 GeV and |{eta}(D*)| < 1.8. The data were taken with the H1 detector in the years 2004 to 2007 and correspond to an integrated luminosity of 347 pb{sup -1}. Single and double differential cross sections are measured. The results are compared to QCD predictions.

  1. Increased Reactive Oxygen Species Production During Reductive Stress: The Roles of Mitochondrial Glutathione and Thioredoxin Reductases

    PubMed Central

    Korge, Paavo; Calmettes, Guillaume; Weiss, James N.

    2015-01-01

    Both extremes of redox balance are known to cause cardiac injury, with mounting evidence revealing that the injury induced by both oxidative and reductive stress is oxidative in nature. During reductive stress, when electron acceptors are expected to be mostly reduced, some redox proteins can donate electrons to O2 instead, which increases reactive oxygen species (ROS) production. However, the high level of reducing equivalents also concomitantly enhances ROS scavenging systems involving redox couples such as NADPH/NADP+ and GSH/GSSG. Here our objective was to explore how reductive stress paradoxically increases net mitochondrial ROS production despite the concomitant enhancement of ROS scavenging systems. Using recombinant enzymes and isolated permeabilized cardiac mitochondria, we show that two normally antioxidant matrix NADPH reductases, glutathione reductase and thioredoxin reductase, generate H2O2 by leaking electrons from their reduced flavoprotein to O2 when electron flow is impaired by inhibitors or because of limited availability of their natural electron acceptors, GSSG and oxidized thioredoxin. The spillover of H2O2 under these conditions depends on H2O2 reduction by peroxiredoxin activity, which may regulate redox signaling in response to endogenous or exogenous factors. These findings may explain how ROS production during reductive stress overwhelms ROS scavenging capability, generating the net mitochondrial ROS spillover causing oxidative injury. These enzymes could potentially targeted to increase cancer cell death or modulate H2O2-induced redox signaling to protect the heart against ischemia/reperfusion damage. PMID:25701705

  2. Reactive transport modelling of the interaction of fission product ground contamination with alkaline and cementitious leachates

    SciTech Connect

    Kwong, S.; Small, J.

    2007-07-01

    The fission products Cs-137 and Sr-90 are amongst the most common radionuclides occurring in ground contamination at the UK civil nuclear sites. Such contamination is often associated with alkaline liquids and the mobility of these fission products may be affected by these chemical conditions. Similar geochemical effects may also result from cementitious leachate associated with building foundations and the use of grouts to remediate ground contamination. The behaviour of fission products in these scenarios is a complex interaction of hydrogeological and geochemical processes. A suite of modelling tools have been developed to investigate the behaviour of a radioactive plume containing Cs and Sr. Firstly the effects of sorption due to cementitious groundwater is modelled using PHREEQC. This chemical model is then incorporated into PHAST for the 3-D reactive solute transport modeling. Results are presented for a generic scenario including features and processes that are likely to be relevant to a number of civil UK nuclear sites. Initial results show that modelling can be a very cost-effective means to study the complex hydrogeological and geochemical processes involved. Modelling can help predict the mobility of contaminants in a range of site end point scenarios, and in assessing the consequences of decommissioning activities. (authors)

  3. Species-level variability in extracellular production rates of reactive oxygen species by diatoms

    NASA Astrophysics Data System (ADS)

    Schneider, Robin; Roe, Kelly; Hansel, Colleen; Voelker, Bettina

    2016-03-01

    Biological production and decay of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) and superoxide (O2-) likely have significant effects on the cycling of trace metals and carbon in marine systems. In this study, extracellular production rates of H2O2 and O2- were determined for five species of marine diatoms in the presence and absence of light. Production of both ROS was measured in parallel by suspending cells on filters and measuring the ROS downstream using chemiluminescence probes. In addition, the ability of these organisms to break down O2- and H2O2 was examined by measuring recovery of O2- and H2O2 added to the influent medium. O2- production rates ranged from undetectable to 7.3 x 10-16 mol cell-1 hr-1, while H2O2 production rates ranged from undetectable to 3.4 x 10-16 mol cell-1 hr-1. Results suggest that extracellular ROS production occurs through a variety of pathways even amongst organisms of the same genus. Thalassiosira spp. produced more O2- in light than dark, even when the organisms were killed, indicating that O2- is produced via a passive photochemical process on the cell surface. The ratio of H2O¬2 to O2- production rates was consistent with production of H2O2 solely through dismutation of O2- for T. oceanica, while T. pseudonana made much more H2O2 than O2 . T. weissflogii only produced H2O2 when stressed or killed. P. tricornutum cells did not make cell-associated ROS, but did secrete H2O2-producing substances into the growth medium. In all organisms, recovery rates for killed cultures (94-100% H2O2; 10-80% O2-) were consistently higher than those for live cultures (65-95% H2O2; 10-50% O2-). While recovery rates for killed cultures in H2O2 indicate that nearly all H2O2 was degraded by active cell processes, O2- decay appeared to occur via a combination of active and passive processes. Overall, this study shows that the rates and pathways for ROS production and decay vary greatly among diatom species, even between those that are

  4. Species-Level Variability in Extracellular Production Rates of Reactive Oxygen Species by Diatoms

    PubMed Central

    Schneider, Robin J.; Roe, Kelly L.; Hansel, Colleen M.; Voelker, Bettina M.

    2016-01-01

    Biological production and decay of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) and superoxide (O2-) likely have significant effects on the cycling of trace metals and carbon in marine systems. In this study, extracellular production rates of H2O2 and O2- were determined for five species of marine diatoms in the presence and absence of light. Production of both ROS was measured in parallel by suspending cells on filters and measuring the ROS downstream using chemiluminescence probes. In addition, the ability of these organisms to break down O2- and H2O2 was examined by measuring recovery of O2- and H2O2 added to the influent medium. O2- production rates ranged from undetectable to 7.3 × 10−16 mol cell−1 h−1, while H2O2 production rates ranged from undetectable to 3.4 × 10−16 mol cell−1 h−1. Results suggest that extracellular ROS production occurs through a variety of pathways even amongst organisms of the same genus. Thalassiosira spp. produced more O2- in light than dark, even when the organisms were killed, indicating that O2- is produced via a passive photochemical process on the cell surface. The ratio of H2O2 to O2- production rates was consistent with production of H2O2 solely through dismutation of O2- for T. oceanica, while T. pseudonana made much more H2O2 than O2-. T. weissflogii only produced H2O2 when stressed or killed. P. tricornutum cells did not make cell-associated ROS, but did secrete H2O2-producing substances into the growth medium. In all organisms, recovery rates for killed cultures (94–100% H2O2; 10–80% O2-) were consistently higher than those for live cultures (65–95% H2O2; 10–50% O2-). While recovery rates for killed cultures in H2O2 indicate that nearly all H2O2 was degraded by active cell processes, O2- decay appeared to occur via a combination of active and passive processes. Overall, this study shows that the rates and pathways for ROS production and decay vary greatly among diatom species, even

  5. Species-Level Variability in Extracellular Production Rates of Reactive Oxygen Species by Diatoms.

    PubMed

    Schneider, Robin J; Roe, Kelly L; Hansel, Colleen M; Voelker, Bettina M

    2016-01-01

    Biological production and decay of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) and superoxide (O[Formula: see text]) likely have significant effects on the cycling of trace metals and carbon in marine systems. In this study, extracellular production rates of H2O2 and O[Formula: see text] were determined for five species of marine diatoms in the presence and absence of light. Production of both ROS was measured in parallel by suspending cells on filters and measuring the ROS downstream using chemiluminescence probes. In addition, the ability of these organisms to break down O[Formula: see text] and H2O2 was examined by measuring recovery of O[Formula: see text] and H2O2 added to the influent medium. O[Formula: see text] production rates ranged from undetectable to 7.3 × 10(-16) mol cell(-1) h(-1), while H2O2 production rates ranged from undetectable to 3.4 × 10(-16) mol cell(-1) h(-1). Results suggest that extracellular ROS production occurs through a variety of pathways even amongst organisms of the same genus. Thalassiosira spp. produced more O[Formula: see text] in light than dark, even when the organisms were killed, indicating that O[Formula: see text] is produced via a passive photochemical process on the cell surface. The ratio of H2O2 to O[Formula: see text] production rates was consistent with production of H2O2 solely through dismutation of O[Formula: see text] for T. oceanica, while T. pseudonana made much more H2O2 than O[Formula: see text]. T. weissflogii only produced H2O2 when stressed or killed. P. tricornutum cells did not make cell-associated ROS, but did secrete H2O2-producing substances into the growth medium. In all organisms, recovery rates for killed cultures (94-100% H2O2; 10-80% O[Formula: see text]) were consistently higher than those for live cultures (65-95% H2O2; 10-50% O[Formula: see text]). While recovery rates for killed cultures in H2O2 indicate that nearly all H2O2 was degraded by active cell processes, O

  6. Coherent anti-Stokes Raman scattering (CARS) detection or hot atom reaction product internal energy distributions

    SciTech Connect

    Quick, C.R. Jr.; Moore, D.S.

    1983-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is being utilized to investigate the rovibrational energy distributions produced by reactive and nonreactive collisions of translationally hot atoms with simple molecules. Translationally hot H atoms are produced by ArF laser photolysis of HBr. Using CARS we have monitored, in a state-specific and time-resolved manner, rotational excitation of HBr (v = 0), vibrational excitation of HBr and H/sub 2/, rovibrational excitation of H/sub 2/ produced by the reaction H + HBr ..-->.. H/sub 2/ + Br, and Br atom production by photolysis of HBr.

  7. Analysis of acidity production during enhanced reductive dechlorination using a simplified reactive transport model

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Barry, D. A.; Robinson, C.; Gerhard, J. I.

    2012-07-01

    Build-up of fermentation products and hydrochloric acid at a contaminated site undergoing enhanced reductive dechlorination can result in groundwater acidification. Sub-optimal pH conditions can inhibit microbial activity and lead to reduced dechlorination rates. The extent of acidification likely to occur is site-specific and depends primarily on the extent of fermentation and dechlorination, the geochemical composition of soil and groundwater, and the pH-sensitivity of the active microbial populations. Here, the key chemical and physical mechanisms that control the extent of groundwater acidification in a contaminated site were examined, and the extent to which the remediation efficiency was affected by variations in groundwater pH was evaluated using a simplified process-based reactive-transport model. This model was applied successfully to a well-documented field site and was then employed in a sensitivity analysis to identify the processes likely to significantly influence acidity production and subsequent microbial inhibition. The accumulation of organic acids produced from the fermentation of the injected substrate was the main cause of the pH change. The concentration of dissolved sulphates controlled substrate utilisation efficiency because sulphate-reducing biomass competed with halo-respiring biomass for the fermentation products. It was shown further that increased groundwater velocity increases dilution and reduces the accumulation of acidic products. As a consequence, the flow rate corresponding to the highest remediation efficiency depends on the fermentation and dechlorination rates. The model enables investigation and forecasting of the extent and areal distribution of pH change, providing a means to optimise the application of reductive dechlorination for site remediation.

  8. Photon production from the scattering of axions out of a solenoidal magnetic field

    SciTech Connect

    Guendelman, Eduardo I.; Shilon, Idan; Cantatore, Giovanni; Zioutas, Konstantin E-mail: silon@bgu.ac.il E-mail: Konstantin.Zioutas@cern.ch

    2010-06-01

    We calculate the total cross section for the production of photons from the scattering of axions by a strong inhomogeneous magnetic field in the form of a 2D δ-function, a cylindrical step function and a 2D Gaussian distribution, which can be approximately produced by a solenoidal current. The theoretical result is used to estimate the axion-photon conversion probability which could be expected in a reasonable experimental situation. Comparison between the 2D conversion probabilities for QCD inspired axions and those derived by applying the celebrated 1D calculation of the (inverse) coherent Primakoff effect is made using an averaging prescription procedure of the 1D case. We also consider scattering at a resonance E{sub axion} ∼ m{sub axion}, which corresponds to the scattering from a δ-function and gives the most enhanced results. Finally, we analyze the results of this work in the astrophysical extension to suggest a way in which they may be directed to a solution to some basic solar physics problems and, in particular, the coronal heating problem.

  9. Production of bacterial cellulose with controlled deuterium-hydrogen substitution for neutron scattering studies.

    PubMed

    O'Neill, Hugh; Shah, Riddhi; Evans, Barbara R; He, Junhong; Pingali, Sai Venkatesh; Chundawat, Shishir P S; Jones, A Daniel; Langan, Paul; Davison, Brian H; Urban, Volker

    2015-01-01

    Isotopic enrichment of biomacromolecules is a widely used technique that enables the investigation of the structural and dynamic properties to provide information not accessible with natural abundance isotopic composition. This study reports an approach for deuterium incorporation into bacterial cellulose. A media formulation for growth of Acetobacter xylinus subsp. sucrofermentans and Gluconacetobacter hansenii was formulated that supports cellulose production in deuterium (D) oxide. The level of D incorporation can be varied by altering the ratio of deuterated and protiated glycerol used during cell growth in the D2O-based growth medium. Spectroscopic analysis and mass spectrometry show that the level of deuterium incorporation is high (>90%) for the perdeuterated form of bacterial cellulose. The small-angle neutron scattering profiles of the cellulose with different amounts of D incorporation are all similar indicating that there are no structural changes in the cellulose due to substitution of deuterium for hydrogen. In addition, by varying the amount of deuterated glycerol in the media it was possible to vary the scattering length density of the deuterated cellulose. The ability to control deuterium content of cellulose extends the range of experiments using techniques such as neutron scattering to reveal information about the structure and dynamics of cellulose, and its interactions with other biomacromolecules as well as synthetic polymers used for development of composite materials. PMID:26577730

  10. [FEATURES OF CHANGES IN THE IMMUNE REACTIVITY IN EMPLOYEES IN MODERN PRODUCTION OF SULPHATE CELLULOSE].

    PubMed

    Meshchakova, N M; Bodienkova, G M

    2015-01-01

    There are reported changes in the indices of the immunoreactivity of the body in employees in modern productions of sulphate cellulose in dependence on the specificity of exposing factors of the production environment. At that the main adverse factor affecting the state of the immune reactivity of workers was found to be is air pollution of the working area with methyl-sulfur compounds in the pulping process, with chlorine and chlorine dioxide--in the process of bleaching, lime and limestone dust--in the process of caustic regeneration. There were shown differences in the character and severity of the immune response to the impact of different chemical compounds. The exertion of protective immune mechanisms is most pronounced in workers employed in the process of boiling and bleaching, in whom there were revealed significant changes in humoral compartment of immunity (pronounced inhibition of the IgA synthesis, which plays an important role in the state of broncho-pulmonary immunity). At the same time, the inhibition of the functional activity of phagocytic neutrophils was the most significant in workers who was experienced to the exposure to lime and limestone dust, testifying about the depression of nonspecific mechanisms of anti-infectious protection. The revealed changes in the immune system are the basis for the formation in workers certain health disorders, mainly with broncho-pulmonary pathology. PMID:26625622

  11. Reactive oxygen products in heterologous anti-glomerular basement membrane nephritis in rats.

    PubMed Central

    Birtwistle, R. J.; Michael, J.; Howie, A. J.; Adu, D.

    1989-01-01

    The effect of 'scavengers' of reactive oxygen products (ROPs) was studied in the heterologous phase of anti-glomerular basement (anti-GBM) nephritis induced in rats. Glomerulonephritis was induced by the intravenous administration of sheep anti-GBM antibody (5 mg/100 g) to rats on day 0. The intraperitoneal administration of superoxide dismutase (SOD) 30 mg/kg/day or 150 mg/kg/day leads to a significant reduction in proteinuria on day 1 and also on day 3 in animals given SOD 30 mg/kg/day. Proteinuria was not significantly reduced by the intraperitoneal administration of inactivated SOD (150 mg/kg/day). In rats given polyethylene glycol coupled catalase (PEG-catalase) intraperitoneally at a dose of 10,000 iu/kg/day and 100,000 iu/kg/day proteinuria was lower than in rats with unmodified anti-GBM nephritis. These differences were significant on day 1 (P less than 0.05) in rats given PEG-catalase 100,000 iu/kg/day and on days 3 and 5 in rats treated with either dose of PEG-catalase (P less than 0.01). These data suggest a role for superoxide anion and hydrogen peroxide, or a product of their interaction such as hydroxyl radical, in glomerular injury induced by anti-GBM antibody. PMID:2786425

  12. Urea degradation by electrochemically generated reactive chlorine species: products and reaction pathways.

    PubMed

    Cho, Kangwoo; Hoffmann, Michael R

    2014-10-01

    This study investigated the transformation of urea by electrochemically generated reactive chlorine species (RCS). Solutions of urea with chloride ions were electrolyzed using a bismuth doped TiO2 (BiOx/TiO2) anode coupled with a stainless steel cathode at applied anodic potentials (Ea) of either +2.2 V or +3.0 V versus the normal hydrogen electrode. In NaCl solution, the current efficiency of RCS generation was near 30% at both potentials. In divided cell experiments, the pseudo-first-order rate of total nitrogen decay was an order of magnitude higher at Ea of +3.0 V than at +2.2 V, presumably because dichlorine radical (Cl2(-)·) ions facilitate the urea transformation primary driven by free chlorine. Quadrupole mass spectrometer analysis of the reactor headspace revealed that N2 and CO2 are the primary gaseous products of the oxidation of urea, whose urea-N was completely transformed into N2 (91%) and NO3(-) (9%). The higher reaction selectivity with respect to N2 production can be ascribed to a low operational ratio of free available chlorine to N. The mass-balance analysis recovered urea-C as CO2 at 77%, while CO generation most likely accounts for the residual carbon. In light of these results, we propose a reaction mechanism involving chloramines and chloramides as reaction intermediates, where the initial chlorination is the rate-determining step in the overall sequence of reactions. PMID:25219459

  13. Study of Σ(1385) and Ξ(1321) hyperon and antihyperon production in deep inelastic muon scattering

    NASA Astrophysics Data System (ADS)

    Adolph, C.; Alekseev, M. G.; Alexakhin, V. Y.; Alexandrov, Y.; Alexeev, G. D.; Amoroso, A.; Austregesilo, A.; Badełek, B.; Balestra, F.; Barth, J.; Baum, G.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bertini, R.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Büchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S. U.; Cicuttin, A.; Crespo, M. L.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Y.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Grabmüller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Guthörl, T.; Haas, F.; von Harrach, D.; Heinsius, F. H.; Herrmann, F.; Heß, C.; Hinterberger, F.; Höppner, C.; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanshin, Y.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Joosten, R.; Kabuß, E.; Kang, D.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Y. A.; Kisselev, Y.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Krämer, M.; Kroumchtein, Z. V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G. K.; Mann, A.; Marchand, C.; Martin, A.; Marzec, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Y. V.; Miyachi, Y.; Morreale, A.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V. I.; Novy, J.; Nowak, W.-D.; Nunes, A. S.; Olshevsky, A. G.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Reicherz, G.; Rocco, E.; Rodionov, V.; Rondio, E.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Samoylenko, V. D.; Sandacz, A.; Sapozhnikov, M. G.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlüter, T.; Schmidt, A.; Schmidt, K.; Schmitt, L.; Schmïden, H.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O. Y.; Silva, L.; Sinha, L.; Sirtl, S.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Sznajder, P.; Takekawa, S.; Ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wiślicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.

    2013-10-01

    Large samples of Λ, Σ(1385) and Ξ(1321) hyperons produced in the deep-inelastic muon scattering off a 6LiD target were collected with the COMPASS experimental setup at CERN. The relative yields of Σ(1385)+, Σ(1385)-, , , Ξ(1321)-, and hyperons decaying into were measured. The ratios of heavy-hyperon to Λ and heavy-antihyperon to were found to be in the range 3.8 % to 5.6 % with a relative uncertainty of about 10 %. They were used to tune the parameters relevant for strange particle production of the LEPTO Monte Carlo generator.

  14. Single Spin Asymmetry in Inclusive Hadron Production in pp Scattering from Collins Mechanism

    SciTech Connect

    Yuan, Feng; Yuan, Feng

    2008-04-14

    We study the Collins mechanism contribution to the single transverse spin asymmetry in inclusive hadron production in pp scattering p{up_arrow}p {yields} {pi}X from the leading jet fragmentation. The azimuthal asymmetric distribution of hadron in the jet leads to a single spin asymmetry for the produced hadron in the Lab frame. The effect is evaluated in a transverse momentum dependent model that takes into account the transverse momentum dependence in the fragmentation process. We find the asymmetry is comparable in size to the experimental observation at RHIC at {radical}s = 200GeV.

  15. Jet production in deep-inelastic muon scattering at 490 GeV

    SciTech Connect

    Melanson, H.L.

    1993-06-01

    Measurements of jet rates in deep-inelastic muon scattering are presented. The JADE algorithm is used to define jets in the kinematic region 9 < W < 33 GeV. Data taken on a proton target are analyzed within the QCD framework, with the goal of extracting [alpha][sub s]. Results on the Q[sup 2] dependence of the average transverse momentum of jets are used to demonstrate the running of the strong coupling constant [alpha][sub s]. In addition, first measurements of the production of jets from heavy nuclei in the region x[sub B[sub j

  16. A phenomenological study of photon production in low energy neutrino nucleon scattering

    SciTech Connect

    Jenkins, James P; Goldman, Terry J

    2009-01-01

    Low energy photon production is an important background to many current and future precision neutrino experiments. We present a phenomenological study of t-channel radiative corrections to neutral current neutrino nucleus scattering. After introducing the relevant processes and phenomenological coupling constants, we will explore the derived energy and angular distributions as well as total cross-section predictions along with their estimated uncertainties. This is supplemented throughout with comments on possible experimental signatures and implications. We conclude with a general discussion of the analysis in the context of complimentary methodologies. This is based on a talk presented at the DPF 2009 meeting in Detroit MI.

  17. QCD CORRECTIONS TO DILEPTON PRODUCTION NEAR PARTONIC THRESHOLD IN PP SCATTERING.

    SciTech Connect

    SHIMIZU, H.; STERMAN, G.; VOGELSANG, W.; YOKOYA, H.

    2005-10-02

    We present a recent study of the QCD corrections to dilepton production near partonic threshold in transversely polarized {bar p}p scattering, We analyze the role of the higher-order perturbative QCD corrections in terms of the available fixed-order contributions as well as of all-order soft-gluon resummations for the kinematical regime of proposed experiments at GSI-FAIR. We find that perturbative corrections are large for both unpolarized and polarized cross sections, but that the spin asymmetries are stable. The role of the far infrared region of the momentum integral in the resummed exponent and the effect of the NNLL resummation are briefly discussed.

  18. Precise QCD Predictions for the Production of Dijet Final States in Deep Inelastic Scattering.

    PubMed

    Currie, James; Gehrmann, Thomas; Niehues, Jan

    2016-07-22

    The production of two-jet final states in deep inelastic scattering is an important QCD precision observable. We compute it for the first time to next-to-next-to-leading order (NNLO) in perturbative QCD. Our calculation is fully differential in the lepton and jet variables and allows one to impose cuts on the jets in both the laboratory and the Breit frame. We observe that the NNLO corrections are moderate in size, except at kinematical edges, and that their inclusion leads to a substantial reduction of the scale variation uncertainty on the predictions. Our results will enable the inclusion of deep inelastic dijet data in precision phenomenology studies. PMID:27494466

  19. Precise QCD Predictions for the Production of Dijet Final States in Deep Inelastic Scattering

    NASA Astrophysics Data System (ADS)

    Currie, James; Gehrmann, Thomas; Niehues, Jan

    2016-07-01

    The production of two-jet final states in deep inelastic scattering is an important QCD precision observable. We compute it for the first time to next-to-next-to-leading order (NNLO) in perturbative QCD. Our calculation is fully differential in the lepton and jet variables and allows one to impose cuts on the jets in both the laboratory and the Breit frame. We observe that the NNLO corrections are moderate in size, except at kinematical edges, and that their inclusion leads to a substantial reduction of the scale variation uncertainty on the predictions. Our results will enable the inclusion of deep inelastic dijet data in precision phenomenology studies.

  20. Quantum wave packet method for state-to-state reactive scattering calculations on AB + CD --> ABC + D reactions.

    PubMed

    Cvitas, Marko T; Althorpe, Stuart C

    2009-04-23

    We describe a quantum wave packet method for computing the state-to-state quantum dynamics of 4-atom AB + CD --> ABC + D reactions. The approach is an extension to 4-atom reactions of a version of the reactant-product decoupling (RPD) approach, applied previously to 3-atom reactions ( J. Chem. Phys. 2001, 114 , 1601 ). The approach partitions the coordinate space of the reaction into separate reagent, strong-interaction, and product regions, using a system of artificial absorbing and reflecting potentials. It employs a partitioned version of the split-operator propagator, which is more efficient than partitioning the (exact) time-dependent Schrodinger equation. The wave packet bounces off a reflecting potential in the entrance channel, which generates a source term; this is transformed efficiently from reagent to product Jacobi coordinates by exploiting some simple angular momentum properties. The efficiency and accuracy of the method is demonstrated by numerical tests on the benchmark OH + H(2) --> H(2)O + H reaction. PMID:19298045

  1. Extending cassava root shelf life via reduction of reactive oxygen species production.

    PubMed

    Zidenga, Tawanda; Leyva-Guerrero, Elisa; Moon, Hangsik; Siritunga, Dimuth; Sayre, Richard

    2012-08-01

    One of the major constraints facing the large-scale production of cassava (Manihot esculenta) roots is the rapid postharvest physiological deterioration (PPD) that occurs within 72 h following harvest. One of the earliest recognized biochemical events during the initiation of PPD is a rapid burst of reactive oxygen species (ROS) accumulation. We have investigated the source of this oxidative burst to identify possible strategies to limit its extent and to extend cassava root shelf life. We provide evidence for a causal link between cyanogenesis and the onset of the oxidative burst that triggers PPD. By measuring ROS accumulation in transgenic low-cyanogen plants with and without cyanide complementation, we show that PPD is cyanide dependent, presumably resulting from a cyanide-dependent inhibition of respiration. To reduce cyanide-dependent ROS production in cassava root mitochondria, we generated transgenic plants expressing a codon-optimized Arabidopsis (Arabidopsis thaliana) mitochondrial alternative oxidase gene (AOX1A). Unlike cytochrome c oxidase, AOX is cyanide insensitive. Transgenic plants overexpressing AOX exhibited over a 10-fold reduction in ROS accumulation compared with wild-type plants. The reduction in ROS accumulation was associated with a delayed onset of PPD by 14 to 21 d after harvest of greenhouse-grown plants. The delay in PPD in transgenic plants was also observed under field conditions, but with a root biomass yield loss in the highest AOX-expressing lines. These data reveal a mechanism for PPD in cassava based on cyanide-induced oxidative stress as well as PPD control strategies involving inhibition of ROS production or its sequestration. PMID:22711743

  2. Increased effectiveness of carbon ions in the production of reactive oxygen species in normal human fibroblasts

    PubMed Central

    Dettmering, Till; Zahnreich, Sebastian; Colindres-Rojas, Miriam; Durante, Marco; Taucher-Scholz, Gisela; Fournier, Claudia

    2015-01-01

    The production of reactive oxygen species (ROS), especially superoxide anions (O2·–), is enhanced in many normal and tumor cell types in response to ionizing radiation. The influence of ionizing radiation on the regulation of ROS production is considered as an important factor in the long-term effects of irradiation (such as genomic instability) that might contribute to the development of secondary cancers. In view of the increasing application of carbon ions in radiation therapy, we aimed to study the potential impact of ionizing density on the intracellular production of ROS, comparing photons (X-rays) with carbon ions. For this purpose, we used normal human cells as a model for irradiated tissue surrounding a tumor. By quantifying the oxidization of Dihydroethidium (DHE), a fluorescent probe sensitive to superoxide anions, we assessed the intracellular ROS status after radiation exposure in normal human fibroblasts, which do not show radiation-induced chromosomal instability. After 3–5 days post exposure to X-rays and carbon ions, the level of ROS increased to a maximum that was dose dependent. The maximum ROS level reached after irradiation was specific for the fibroblast type. However, carbon ions induced this maximum level at a lower dose compared with X-rays. Within ∼1 week, ROS decreased to control levels. The time-course of decreasing ROS coincides with an increase in cell number and decreasing p21 protein levels, indicating a release from radiation-induced growth arrest. Interestingly, radiation did not act as a trigger for chronically enhanced levels of ROS months after radiation exposure. PMID:25304329

  3. Mitochondrial Reactive Oxygen Species Production in Excitable Cells: Modulators of Mitochondrial and Cell Function

    PubMed Central

    Camara, Amadou K. S.

    2009-01-01

    Abstract The mitochondrion is a major source of reactive oxygen species (ROS). Superoxide (O2•−) is generated under specific bioenergetic conditions at several sites within the electron-transport system; most is converted to H2O2 inside and outside the mitochondrial matrix by superoxide dismutases. H2O2 is a major chemical messenger that, in low amounts and with its products, physiologically modulates cell function. The redox state and ROS scavengers largely control the emission (generation scavenging) of O2•−. Cell ischemia, hypoxia, or toxins can result in excess O2•− production when the redox state is altered and the ROS scavenger systems are overwhelmed. Too much H2O2 can combine with Fe2+ complexes to form reactive ferryl species (e.g., Fe(IV) = O•). In the presence of nitric oxide (NO•), O2•− forms the reactant peroxynitrite (ONOO−), and ONOOH-induced nitrosylation of proteins, DNA, and lipids can modify their structure and function. An initial increase in ROS can cause an even greater increase in ROS and allow excess mitochondrial Ca2+ entry, both of which are factors that induce cell apoptosis and necrosis. Approaches to reduce excess O2•− emission include selectively boosting the antioxidant capacity, uncoupling of oxidative phosphorylation to reduce generation of O2•− by inducing proton leak, and reversibly inhibiting electron transport. Mitochondrial cation channels and exchangers function to maintain matrix homeostasis and likely play a role in modulating mitochondrial function, in part by regulating O2•− generation. Cell-signaling pathways induced physiologically by ROS include effects on thiol groups and disulfide linkages to modify posttranslationally protein structure to activate/inactivate specific kinase/phosphatase pathways. Hypoxia-inducible factors that stimulate a cascade of gene transcription may be mediated physiologically by ROS. Our knowledge of the role played by ROS and their scavenging systems in

  4. Four-jet production in single- and double-parton scattering within high-energy factorization

    NASA Astrophysics Data System (ADS)

    Kutak, Krzysztof; Maciula, Rafal; Serino, Mirko; Szczurek, Antoni; van Hameren, Andreas

    2016-04-01

    We perform a first study of 4-jet production in a complete high-energy factorization (HEF) framework. We include and discuss contributions from both single-parton scattering (SPS) and double-parton scattering (DPS). The calculations are performed for kinematical situations relevant for two experimental measurements (ATLAS and CMS) at the LHC. We compare our results to those reported by the ATLAS and CMS collaborations for different sets of kinematical cuts. The results of the HEF approach are compared with their counterparts for collinear factorization. For symmetric cuts the DPS HEF result is considerably smaller than the one obtained with collinear factorization. The mechanism leading to this difference is of kinematical nature. We conclude that an analysis of inclusive 4-jet production with asymmetric p T -cuts below 50 GeV would be useful to enhance the DPS contribution relative to the SPS contribution. In contrast to the collinear approach, the HEF approach nicely describes the distribution of the Δ S variable, which involves all four jets and their angular correlations.

  5. Evidence of coherent $$K^{+}$$ meson production in neutrino-nucleus scattering

    DOE PAGESBeta

    Wang, Z.

    2016-08-05

    Neutrino-induced charged-current coherent kaon production νμA→μ-K+A is a rare, inelastic electroweak process that brings a K+ on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than the neutrino-induced charged-current coherent pion production because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K+, μ-, and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which ismore » a model-independent characteristic of coherent scattering. Furthermore, we find the first experimental evidence for the process at 3σ significance.« less

  6. Evidence of Coherent K+ Meson Production in Neutrino-Nucleus Scattering

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Marshall, C. M.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Endress, E.; Felix, J.; Fields, L.; Fine, R.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Schmitz, D. W.; Simon, C.; Solano Salinas, C. J.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Minerva Collaboration

    2016-08-01

    Neutrino-induced charged-current coherent kaon production νμA →μ-K+A is a rare, inelastic electroweak process that brings a K+ on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than the neutrino-induced charged-current coherent pion production because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K+, μ-, and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which is a model-independent characteristic of coherent scattering. We find the first experimental evidence for the process at 3 σ significance.

  7. Multi-jet production rates in deep-inelastic muon-proton scattering

    SciTech Connect

    Salgado, C.W.

    1992-10-01

    Measurements of forward multi-jet production rates in deep-inelastic muonproton scattering are presented. Data were taken with a 490 GeV muon beam incident on a hydrogen target. Jets were defined using the JADE jet finding algorithm. The measured rates are presented as function of W, the hadronic center-of-mass energy and the jet resolution parameter, y[sub cut], in energies up to W=33 GeV. Good agreement is found in comparisons with predictions of the QCD-inspired Lund Monte Carlo models. Non-perturbative QCD production mechanisms, inside the Lund Model, can not reproduce the results for energies greater than W [approx equal] 20 GeV. Sensitivities of the jet rate measurements to the low x (x [approx equal] 0.02) gluon content of the nucleon and the evolution of [alpha][sub s], are studied.

  8. Multi-jet production rates in deep-inelastic muon-proton scattering

    SciTech Connect

    Salgado, C.W.; E665 Collaboration

    1992-10-01

    Measurements of forward multi-jet production rates in deep-inelastic muonproton scattering are presented. Data were taken with a 490 GeV muon beam incident on a hydrogen target. Jets were defined using the JADE jet finding algorithm. The measured rates are presented as function of W, the hadronic center-of-mass energy and the jet resolution parameter, y{sub cut}, in energies up to W=33 GeV. Good agreement is found in comparisons with predictions of the QCD-inspired Lund Monte Carlo models. Non-perturbative QCD production mechanisms, inside the Lund Model, can not reproduce the results for energies greater than W {approx_equal} 20 GeV. Sensitivities of the jet rate measurements to the low x (x {approx_equal} 0.02) gluon content of the nucleon and the evolution of {alpha}{sub s}, are studied.

  9. First evidence of coherent $$K^{+}$$ meson production in neutrino-nucleus scattering

    DOE PAGESBeta

    Wang, Z.; et al.

    2016-08-05

    Neutrino-induced charged-current coherent kaon production νμA→μ-K+A is a rare, inelastic electroweak process that brings a K+ on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than the neutrino-induced charged-current coherent pion production because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K+, μ-, and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which ismore » a model-independent characteristic of coherent scattering. We find the first experimental evidence for the process at 3σ significance.« less

  10. Exclusive meson pair production in {gamma}*{gamma} scattering at small momentum transfer

    SciTech Connect

    Lansberg, J.P.; Pire, B.; Szymanowski, L.

    2006-04-01

    We study the exclusive production of {pi}{pi} and {rho}{pi} in hard {gamma}*{gamma} scattering in the forward kinematical region where the virtuality of one photon provides us with a hard scale in the process. The newly introduced concept of Transition Distribution Amplitudes (TDA) is used to perform a QCD calculation of these reactions thanks to two simple models for TDAs. Cross sections for {rho}{pi} and {pi}{pi} production are evaluated and compared to the possible background from the Bremsstrahlung process. This picture may be tested at intense electron-positron colliders such as CLEO and B factories. The cross section e{gamma}{yields}e{sup '}{pi}{sup 0}{pi}{sup 0} is finally shown to provide a possible determination of the {pi}{sup 0} axial form factor, F{sub A}{sup {pi}{sup 0}}, at small t, which seems not to be measurable elsewhere.

  11. Evidence of Coherent K^{+} Meson Production in Neutrino-Nucleus Scattering.

    PubMed

    Wang, Z; Marshall, C M; Aliaga, L; Altinok, O; Bellantoni, L; Bercellie, A; Betancourt, M; Bodek, A; Bravar, A; Budd, H; Cai, T; Carneiro, M F; da Motta, H; Dytman, S A; Díaz, G A; Eberly, B; Endress, E; Felix, J; Fields, L; Fine, R; Galindo, R; Gallagher, H; Ghosh, A; Golan, T; Gran, R; Harris, D A; Higuera, A; Hurtado, K; Kiveni, M; Kleykamp, J; Kordosky, M; Le, T; Maher, E; Manly, S; Mann, W A; Martinez Caicedo, D A; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfín, J G; Mousseau, J; Naples, D; Nelson, J K; Norrick, A; Nuruzzaman; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Rakotondravohitra, L; Ramirez, M A; Ransome, R D; Ray, H; Ren, L; Rimal, D; Rodrigues, P A; Ruterbories, D; Schellman, H; Schmitz, D W; Simon, C; Solano Salinas, C J; Tice, B G; Valencia, E; Walton, T; Wolcott, J; Wospakrik, M; Zavala, G; Zhang, D

    2016-08-01

    Neutrino-induced charged-current coherent kaon production ν_{μ}A→μ^{-}K^{+}A is a rare, inelastic electroweak process that brings a K^{+} on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than the neutrino-induced charged-current coherent pion production because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K^{+}, μ^{-}, and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which is a model-independent characteristic of coherent scattering. We find the first experimental evidence for the process at 3σ significance. PMID:27541459

  12. Reactive scattering of O and H2 and quenching of OH at collision energies up to 4.4 eV

    NASA Astrophysics Data System (ADS)

    Gacesa, Marko; Kharchenko, Vasili

    2016-05-01

    We report new cross sections for the O(3 P) + H2 reactive scattering as well as quenching rates for rotationally and vibrationally excited OH by H atoms for a range of collision energies from 0.4 and 4.4 eV. These processes are important for understanding non-local thermal equilibrium (non-LTE) regime in astrophysical environment such as photon-dominated regions (PDRs) and evolution of planetary atmospheres in time, including the atmospheres of Earth and Mars. The cross sections were calculated quantum mechanically using coupled-channel formalism implemented in MOLSCAT and ABC computer codes on refitted recent potential energy surfaces for 3A' and 3A'' , while the surface-hopping effects were estimated from models and similar atom-molecule reactions. A large basis set was used to ensure the convergence at higher energies. Our results agree well with the published data at lower energies and indicate that reduced-dimensionality approach at collision energies higher than about 1.5 eV may not be adequate. Differential cross sections and diffusion cross sections, of interest in transport calculations, are also reported. This work was been supported by NASA grant NNX10AB88G.

  13. Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species

    PubMed Central

    Lee, Mi Jin; Lee, Seung Jun; Yun, Su Jin; Jang, Ji-Young; Kang, Hangoo; Kim, Kyongmin; Choi, In-Hong; Park, Sun

    2016-01-01

    The silver nanoparticle (AgNP) is a candidate for anticancer therapy because of its effects on cell survival and signaling. Although numerous reports are available regarding their effect on cell death, the effect of AgNPs on metabolism is not well understood. In this study, we investigated the effect of AgNPs on glucose metabolism in hepatoma cell lines. Lactate release from both HepG2 and Huh7 cells was reduced with 5 nm AgNPs as early as 1 hour after treatment, when cell death did not occur. Treatment with 5 nm AgNPs decreased glucose consumption in HepG2 cells but not in Huh7 cells. Treatment with 5 nm AgNPs reduced nuclear factor erythroid 2-like 2 expression in both cell types without affecting its activation at the early time points after AgNPs’ treatment. Increased reactive oxygen species (ROS) production was detected 1 hour after 5 nm AgNPs’ treatment, and lactate release was restored in the presence of an ROS scavenger. Our results suggest that 5 nm AgNPs affect glucose metabolism by producing ROS. PMID:26730190

  14. Photoreactivity of Metal-Organic Frameworks in Aqueous Solutions: Metal Dependence of Reactive Oxygen Species Production.

    PubMed

    Liu, Kai; Gao, Yanxin; Liu, Jing; Wen, Yifan; Zhao, Yingcan; Zhang, Kunyang; Yu, Gang

    2016-04-01

    Promising applications of metal-organic frameworks (MOFs) in various fields have raised concern over their environmental fate and safety upon inevitable discharge into aqueous environments. Currently, no information regarding the transformation processes of MOFs is available. Due to the presence of repetitive π-bond structure and semiconductive property, photochemical transformations are an important fate process that affects the performance of MOFs in practical applications. In the current study, the generation of reactive oxygen species (ROS) in isoreticular MIL-53s was studied. Scavengers were employed to probe the production of (1)O2, O2(•-), and •OH, respectively. In general, MIL-53(Cr) and MIL-53(Fe) are dominated by type I and II photosensitization reactions, respectively, and MIL-53(Al) appears to be less photoreactive. The generation of ROS in MIL-53(Fe) may be underestimated due to dismutation. Further investigation of MIL-53(Fe) encapsulated diclofenac transformation revealed that diclofenac can be easily transformed by MIL-53(Fe) generated ROS. However, the cytotoxicity results implied that the ROS generated from MIL-53s have little effect on the viability of the human hepatocyte (HepG2) cell line. These results suggest that the photogeneration of ROS by MOFs may be metal-node dependent, and the application of MIL-53s as drug carriers needs to be carefully considered due to their high photoreactivity. PMID:26942867

  15. Autophagy proteins control goblet cell function by potentiating reactive oxygen species production

    PubMed Central

    Patel, Khushbu K; Miyoshi, Hiroyuki; Beatty, Wandy L; Head, Richard D; Malvin, Nicole P; Cadwell, Ken; Guan, Jun-Lin; Saitoh, Tatsuya; Akira, Shizuo; Seglen, Per O; Dinauer, Mary C; Virgin, Herbert W; Stappenbeck, Thaddeus S

    2013-01-01

    Delivery of granule contents to epithelial surfaces by secretory cells is a critical physiologic process. In the intestine, goblet cells secrete mucus that is required for homeostasis. Autophagy proteins are required for secretion in some cases, though the mechanism and cell biological basis for this requirement remain unknown. We found that in colonic goblet cells, proteins involved in initiation and elongation of autophagosomes were required for efficient mucus secretion. The autophagy protein LC3 localized to intracellular multi-vesicular vacuoles that were consistent with a fusion of autophagosomes and endosomes. Using cultured intestinal epithelial cells, we found that NADPH oxidases localized to and enhanced the formation of these LC3-positive vacuoles. Both autophagy proteins and endosome formation were required for maximal production of reactive oxygen species (ROS) derived from NADPH oxidases. Importantly, generation of ROS was critical to control mucin granule accumulation in colonic goblet cells. Thus, autophagy proteins can control secretory function through ROS, which is in part generated by LC3-positive vacuole-associated NADPH oxidases. These findings provide a novel mechanism by which autophagy proteins can control secretion. PMID:24185898

  16. Paclitaxel induces vascular endothelial growth factor expression through reactive oxygen species production.

    PubMed

    Kim, Hyun Sun; Oh, Jin Mi; Jin, Dong Hoon; Yang, Kyu-Hwan; Moon, Eun-Yi

    2008-01-01

    The antineoplastic drug paclitaxel is known to block cells in the G2/M phase of the cell cycle through stabilization of microtubules. The development of paclitaxel resistance in tumors is one of the most significant obstacles to successful therapy. Vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1 (HIF-1) are important regulators of neovascularization. HIF-1 regulates VEGF expression at the transcriptional level. Here, we investigated whether paclitaxel treatment affects VEGF expression for the development of paclitaxel resistance. Paclitaxel treatment induced dose-dependent cell death and increased VEGF expression. Paclitaxel also induced nuclear factor-kappaB activation and stabilized HIF-1alpha, which stimulated luciferase activity of HIF-1alpha response element on VEGF gene. As paclitaxel treatment produced reactive oxygen species (ROS), VEGF expression was increased by H2O2 treatment and reduced by various ROS scavengers such as N-acetyl-L-cysteine, pyrrolidine dithiocarbamate and diphenylene iodonium. Paclitaxel-induced cell death was aggravated by incubation with those ROS scavengers. Collectively, this suggests that paclitaxel-induced VEGF expression could be mediated by paclitaxel-induced ROS production through nuclear factor-kappaB activation and HIF-1alpha stabilization, which could affect resistance induction to antitumor therapeutics during cancer treatment. PMID:18322419

  17. New Method for Production of High-Energy Neutral Molecules of Reactive Gases

    NASA Astrophysics Data System (ADS)

    Metel, Alexander; Bolbukov, Vasily; Volosova, Marina; Grigoriev, Sergei; Melnik, Yury

    2015-09-01

    For the surface modification of dielectric substrates by reactive gas molecules with energy of 100 keV they are usually produced due to charge exchange collisions of ions extracted from a plasma emitter and accelerated by high-voltage pulses. As generation of the ion plasma emitter at a 100-kV potential is quite difficult, it was proposed to extract the ions from a ground potential emitter, accelerate them by high voltage between the emitter and a negatively biased high-transparency grid and transform them into fast neutral molecules in the positive space charge sheaths of the grid. As the energy of fast molecules is defined by potentials of charge exchange collision points inside the sheath their spectrum ranges from zero to a value corresponding to the pulse amplitude. A reverse beam is always generated due to acceleration of ions from the plasma on the other side of the grid. The lower the latter density, the higher the ratio of the primary to the reverse beam currents. When the grid is composed of parallel flat plates, the charge exchange due to reflections from the plates substantially contributes at low gas pressure to production of molecules with the energy corresponding to the pulse amplitude. The work was supported by the Grant No. 14-29-00297 of the Russian Science Foundation.

  18. Ultraviolet irradiation induces autofluorescence enhancement via production of reactive oxygen species and photodecomposition in erythrocytes

    SciTech Connect

    Wu, Xian; Pan, Leiting; Wang, Zhenhua; Liu, Xiaoli; Zhao, Dan; Zhang, Xinzheng; Rupp, Romano A.; Xu, Jingjun

    2010-06-11

    Ultraviolet (UV) light has a significant influence on human health. In this study, human erythrocytes were exposed to UV light to investigate the effects of UV irradiation (UVI) on autofluorescence. Our results showed that high-dose continuous UVI enhanced erythrocyte autofluorescence, whereas low-dose pulsed UVI alone did not have this effect. Further, we found that H{sub 2}O{sub 2}, one type of reactive oxygen species (ROS), accelerated autofluorescence enhancement under both continuous and pulsed UVI. In contrast, continuous and pulsed visible light did not result in erythrocyte autofluorescence enhancement in the presence or absence of H{sub 2}O{sub 2}. Moreover, NAD(P)H had little effect on UVI-induced autofluorescence enhancement. From these studies, we conclude that UVI-induced erythrocyte autofluorescence enhancement via both UVI-dependent ROS production and photodecomposition. Finally, we present a theoretical study of this autofluorescence enhancement using a rate equation model. Notably, the results of this theoretical simulation agree well with the experimental data further supporting our conclusion that UVI plays two roles in the autofluorescence enhancement process.

  19. Mitochondrial physiology and reactive oxygen species production are altered by hypoxia acclimation in killifish (Fundulus heteroclitus).

    PubMed

    Du, Sherry N N; Mahalingam, Sajeni; Borowiec, Brittney G; Scott, Graham R

    2016-04-15

    Many fish encounter hypoxia in their native environment, but the role of mitochondrial physiology in hypoxia acclimation and hypoxia tolerance is poorly understood. We investigated the effects of hypoxia acclimation on mitochondrial respiration, O2kinetics, emission of reactive oxygen species (ROS), and antioxidant capacity in the estuarine killifish ( ITALIC! Fundulus heteroclitus). Killifish were acclimated to normoxia, constant hypoxia (5 kPa O2) or intermittent diel cycles of nocturnal hypoxia (12 h:12 h normoxia:hypoxia) for 28-33 days and mitochondria were isolated from liver. Neither pattern of hypoxia acclimation affected the respiratory capacities for oxidative phosphorylation or electron transport, leak respiration, coupling control or phosphorylation efficiency. Hypoxia acclimation also had no effect on mitochondrial O2kinetics, but ITALIC! P50(the O2tension at which hypoxia inhibits respiration by 50%) was lower in the leak state than during maximal respiration, and killifish mitochondria endured anoxia-reoxygenation without any impact on mitochondrial respiration. However, both patterns of hypoxia acclimation reduced the rate of ROS emission from mitochondria when compared at a common O2tension. Hypoxia acclimation also increased the levels of protein carbonyls and the activities of superoxide dismutase and catalase in liver tissue (the latter only occurred in constant hypoxia). Our results suggest that hypoxia acclimation is associated with changes in mitochondrial physiology that decrease ROS production and may help improve hypoxia tolerance. PMID:26896545

  20. Azimuthal angle dependence of di-jet production in unpolarized hadron scattering

    SciTech Connect

    Lu Zhun; Schmidt, Ivan

    2009-08-04

    We study the azimuthal asymmetry of back-to-back di-jet production in unpolarized hadron scattering, arising from the product of two Boer-Mulders functions, which describe the transverse spin distribution of quarks inside an unpolarized hadron. We find that there is a cos {delta}{phi} angular dependence of the di-jet, with {delta}{phi} the difference of the azimuthal angle of tow jets respectively. In the case of J{sub q}+J{sub q} production, we find that there is a color factor enhancement in the gluonic cross-section due to the multiple initial-/final-state interactions, compared with the result from the standard generalized parton model. We estimate the cos {delta}{phi} asymmetry of the total di-jet production at RHIC, showing that the color factor enhancement in the azimuthal asymmetric cross section of J{sub q}+J{sub q} production will reverse the sign of the asymmetry.

  1. Reactivity of chlorine radical with submicron palmitic acid particles: kinetic measurements and products identification

    NASA Astrophysics Data System (ADS)

    Mendez, M.; Ciuraru, R.; Gosselin, S.; Batut, S.; Visez, N.; Petitprez, D.

    2013-06-01

    The heterogeneous reaction of Cl. radicals with sub-micron palmitic acid (PA) particles was studied in an aerosol flow tube in the presence or in the absence of O2. Fine particles were generated by homogeneous condensation of PA vapors and introduced in the reactor where chlorine atoms are produced by photolysis of Cl2 using UV lamps surrounding the reactor. The effective reactive uptake coefficient (γ) has been determined from the rate loss of PA measured by GC/MS analysis of reacted particles as a function of the chlorine exposure. In the absence of O2, γ = 14 ± 5 indicates efficient secondary chemistry involving Cl2. GC/MS analyses have shown the formation of monochlorinated and polychlorinated compounds in the oxidized particles. Although, the PA particles are solid, the complete mass can be consumed. In the presence of oxygen, the reaction is still dominated by secondary chemistry but the propagation chain length is smaller than in the absence of O2 which leads to an uptake coefficient γ = 3 ± 1. In the particulate phase, oxocarboxylic acids and dicarboxylic acids are identified by GC/MS. Formation of alcohols and monocarboxylic acids are also suspected. All these results show that solid organic particles could be efficiently oxidized by gas-phase radicals not only on their surface, but also in bulk by mechanisms which are still unclear. Furthermore the identified reaction products are explained by a chemical mechanism showing the pathway of the formation of more functionalized products. They help to understand the aging of primary tropospheric aerosol containing fatty acids.

  2. Non-thermal Plasma Induces Apoptosis in Melanoma Cells via Production of Intracellular Reactive Oxygen Species

    PubMed Central

    Sensenig, Rachel; Kalghatgi, Sameer; Cerchar, Ekaterina; Fridman, Gregory; Shereshevsky, Alexey; Torabi, Behzad; Arjunan, Krishna Priya; Podolsky, Erica; Fridman, Alexander; Friedman, Gary; Azizkhan-Clifford, Jane; Brooks, Ari D.

    2012-01-01

    Non-thermal atmospheric pressure dielectric barrier discharge (DBD) plasma may provide a novel approach to treat malignancies via induction of apoptosis. The purpose of this study was to evaluate the potential of DBD plasma to induce apoptosis in melanoma cells. Melanoma cells were exposed to plasma at doses that did not induce necrosis, and cell viability and apoptotic activity were evaluated by Trypan blue exclusion test, Annexin-V/PI staining, caspase-3 cleavage, and TUNEL® analysis. Trypan blue staining revealed that non-thermal plasma treatment significantly decreased the viability of cells in a dose-dependent manner 3 and 24 h after plasma treatment. Annexin-V/PI staining revealed a significant increase in apoptosis in plasma-treated cells at 24, 48, and 72 h post-treatment (p<0.001). Caspase-3 cleavage was observed 48 h post-plasma treatment at a dose of 15 J/cm2. TUNEL® analysis of plasma-treated cells demonstrated an increase in apoptosis at 48 and 72 h post-treatment (p<0.001) at a dose of 15 J/cm2. Pre-treatment with N-acetyl-L-cysteine (NAC), an intracellular reactive oxygen species (ROS) scavenger, significantly decreased apoptosis in plasma-treated cells at 5 and 15 J/cm2. Plasma treatment induces apoptosis in melanoma cells through a pathway that appears to be dependent on production of intracellular ROS. DBD plasma production of intracellular ROS leads to dose-dependent DNA damage in melanoma cells, detected by γ-H2AX, which was completely abrogated by pre-treating cells with ROS scavenger, NAC. Plasma-induced DNA damage in turn may lead to the observed plasma-induced apoptosis. Since plasma is non-thermal, it may be used to selectively treat malignancies. PMID:21046465

  3. METAL-INDUCED REACTIVE OXYGEN SPECIES PRODUCTION IN CHLAMYDOMONAS REINHARDTII (CHLOROPHYCEAE)(1).

    PubMed

    Szivák, Ilona; Behra, Renata; Sigg, Laura

    2009-04-01

    Toxic effects of metals appear to be partly related to the production of reactive oxygen species (ROS), which can cause oxidative damage to cells. The ability of several redox active metals [Fe(III), Cu(II), Ag(I), Cr(III), Cr(VI)], nonredox active metals [Pb(II), Cd(II), Zn(II)], and the metalloid As(III) and As(V) to produce ROS at environmentally relevant metal concentrations was assessed. Cells of the freshwater alga Chlamydomonas reinhardtii P. A. Dang. were exposed to various metal concentrations for 2.5 h. Intracellular ROS accumulation was detected using an oxidation-sensitive reporter dye, 5-(and-6)-carboxy-2',7'-dihydrodifluorofluorescein diacetate (H2 DFFDA), and changes in the fluorescence signal were quantified by flow cytometry (FCM). In almost all cases, low concentrations of both redox and nonredox active metals enhanced intracellular ROS levels. The hierarchy of maximal ROS induction indicated by the increased number of stained cells compared to the control sample was as follows: Pb(II) > Fe(III) > Cd(II) > Ag(I) > Cu(II) > As(V) > Cr(VI) > Zn(II). As(III) and Cr(III) had no detectable effect. The effective free metal ion concentrations ranged from 10(-6) to 10(-9)  M, except in the case of Fe(III), which was effective at 10(-18)  M. These metal concentrations did not affect algal photosynthesis. Therefore, a slightly enhanced ROS production is a general and early response to elevated, environmentally relevant metal concentrations. PMID:27033821

  4. Scoparone attenuates RANKL-induced osteoclastic differentiation through controlling reactive oxygen species production and scavenging

    SciTech Connect

    Lee, Sang-Hyun; Jang, Hae-Dong

    2015-02-15

    Scoparone, one of the bioactive components of Artemisia capillaris Thunb, has various biological properties including immunosuppressive, hepatoprotective, anti-allergic, anti-inflammatory, and antioxidant effects. This study aims at evaluating the anti-osteoporotic effect of scoparone and its underlying mechanism in vitro. Scoparone demonstrated potent cellular antioxidant capacity. It was also found that scoparone inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and suppressed cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression via c-jun N-terminal kinase (JNK)/extracellular signal-regulated kinase (ERK)/p38-mediated c-Fos–nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) signaling pathway. During osteoclast differentiation, the production of general reactive oxygen species (ROS) and superoxide anions was dose-dependently attenuated by scoparone. In addition, scoparone diminished NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 1 (Nox1) expression and activation via the tumor necrosis factor receptor-associated factor 6 (TRAF6)–cSrc–phosphatidylinositol 3-kinase (PI3k) signaling pathway and prevented the disruption of mitochondrial electron transport chain system. Furthermore, scoparone augmented the expression of superoxide dismutase 1 (SOD1) and catalase (CAT). The overall results indicate that the inhibitory effect of scoparone on RANKL-induced osteoclast differentiation is attributed to the suppressive effect on ROS and superoxide anion production by inhibiting Nox1 expression and activation and protecting the mitochondrial electron transport chain system and the scavenging effect of ROS resulting from elevated SOD1 and CAT expression. - Highlights: • Scoparone dose-dependently inhibited RANKL-induced osteoclast differentiation. • Scoparone diminished general ROS and superoxide anions in a dose-dependent manner. • Scoparone inhibited Nox1 expression and

  5. The development of the super-biodiesel production continuously from Sunan pecan oil through the process of reactive distillation

    NASA Astrophysics Data System (ADS)

    Yohana, Eflita; Yulianto, Moh. Endy; Ikhsan, Diyono; Nanta, Aditya Marga; Puspitasari, Ristiyanti

    2016-06-01

    In general, a vegetable oil-based biodiesel production commercially operates a batch process with high investments and operational costs. Thus, it is necessary to develop super-biodiesel production from sunan pecan oil continuously through the process of reactive distillation. There are four advantages of the reactive distillation process for the biodiesel production, as follows: (i) it incorporates the process of transesterification reaction, and product separation of residual reactants become one stage of the process, so it saves the investment and operation costs, (ii) it reduces the need for raw materials because the methanol needed corresponds to the stoichiometry, so it also reduces the operation costs, (iii) the holdup time in the column is relatively short (5±0,5 minutes) compared to the batch process (1-2 hours), so it will reduce the operational production costs, and (iv) it is able to shift the reaction equilibrium, because the products and reactants that do not react are instantly separated (based on Le Chatelier's principles) so the conversion will be increased. However, the very crucial problem is determining the design tools and process conditions in order to maximize the conversion of the transesterification reaction in both phases. Thus, the purpose of this research was to design a continuous reactive distillation process by using a recycled condensate to increase the productivity of the super-biodiesel from sunan pecan oil. The research was carried out in three stages including (i) designing and fabricating the reactive distillation equipment, (ii) testing the tool performance and the optimization of the biodiesel production, and (iii) biodiesel testing on the diesel engine. These three stages were needed in designing and scaling-up the process tools and the process operation commercially. The reactive distillation process tools were designed and manufactured with reference to the design system tower by Kitzer, et.al. (2008). The manufactured

  6. HIV antiretroviral drug combination induces endothelial mitochondrial dysfunction and reactive oxygen species production, but not apoptosis

    SciTech Connect

    Jiang Bo; Hebert, Valeria Y.; Li, Yuchi; Mathis, J. Michael; Alexander, J. Steven; Dugas, Tammy R.

    2007-10-01

    Numerous reports now indicate that HIV patients administered long-term antiretroviral therapy (ART) are at a greater risk for developing cardiovascular diseases. Endothelial dysfunction is an initiating event in atherogenesis and may contribute to HIV-associated atherosclerosis. We previously reported that ART induces direct endothelial dysfunction in rodents. In vitro treatment of human umbilical vein endothelial cells (HUVEC) with ART indicated endothelial mitochondrial dysfunction and a significant increase in the production of reactive oxygen species (ROS). In this study, we determined whether ART-induced endothelial dysfunction is mediated via mitochondria-derived ROS and whether this mitochondrial injury culminates in endothelial cell apoptosis. Two major components of ART combination therapy, a nucleoside reverse transcriptase inhibitor and a protease inhibitor, were tested, using AZT and indinavir as representatives for each. Microscopy utilizing fluorescent indicators of ROS and mitochondria demonstrated the mitochondrial localization of ART-induced ROS. MnTBAP, a cell-permeable metalloporphyrin antioxidant, abolished ART-induced ROS production. As a final step in confirming the mitochondrial origin of the ART-induced ROS, HUVEC were transduced with a cytosolic- compared to a mitochondria-targeted catalase. Transduction with the mitochondria-targeted catalase was more effective than cytoplasmic catalase in inhibiting the ROS and 8-isoprostane (8-iso-PGF{sub 2{alpha}}) produced after treatment with either AZT or indinavir. However, both mitochondrial and cytoplasmic catalase attenuated ROS and 8-iso-PGF{sub 2{alpha}} production induced by the combination treatment, suggesting that in this case, the formation of cytoplasmic ROS may also occur, and thus, that the mechanism of toxicity in the combination treatment group may be different compared to treatment with AZT or indinavir alone. Finally, to determine whether ART-induced mitochondrial dysfunction and

  7. Production and immunological analysis of IgE reactive recombinant egg white allergens expressed in Escherichia coli.

    PubMed

    Dhanapala, Pathum; Doran, Tim; Tang, Mimi L K; Suphioglu, Cenk

    2015-05-01

    IgE-mediated allergy to chicken egg affects a large number of children and adults worldwide. The current management strategy for egg allergy is strict avoidance, however this is impractical due to the presence of eggs in a range of foods and pharmaceutical products including vaccines. Strict avoidance also poses nutritional disadvantages due to high nutritional value of eggs. Allergen specific immunotherapy is being pursued as a curative treatment, in which an allergic individual is gradually exposed to the allergen to induce tolerance. Use of recombinant proteins for immunotherapy has been beneficial due to the purity of the recombinant proteins compared to natural proteins. In this study, we produced IgE reactive recombinant egg white proteins that can be used for future immunotherapy. Using E. coli as an expression system, we successfully produced recombinant versions of Gal d 1, 2 and 3, that were IgE reactive when tested against a pool of egg allergic patients' sera. The IgE reactivity indicates that these recombinant proteins are capable of eliciting an immune response, thus being potential candidates for immunotherapy. We have, for the first time, attempted to produce recombinant versions of all 4 major egg white allergens in E. coli, and successfully produced 3, with only Gal d 4 showing loss of IgE reactivity in the recombinant version. The results suggest that egg allergy in Australian populations may mainly be due to IgE reactivity to Gal d 3 and 4, while Gal d 1 shows higher IgE reactivity. This is the first report of a collective and comparative immunological analysis of all 4 egg white allergens. The significance of this study is the potential use of the IgE reactive recombinant egg white proteins in immunotherapy to treat egg allergic patients. PMID:25656803

  8. Effects of Pectic Polysaccharides Isolated from Leek on the Production of Reactive Oxygen and Nitrogen Species by Phagocytes

    PubMed Central

    Nikolova, Mariana; Ambrozova, Gabriela; Kratchanova, Maria; Denev, Petko; Kussovski, Veselin; Ciz, Milan

    2013-01-01

    Abstract The current survey investigates the effect of four polysaccharides isolated from fresh leek or alcohol insoluble substances (AIS) of leek on the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) from phagocytes. The ability of the polysaccharides to activate serum complement was also investigated. Despite the lack of antioxidant activity, the pectic polysaccharides significantly decreased the production of ROS by human neutrophils. Polysaccharides isolated from AIS markedly activated RAW 264.7 macrophages for RNS production in a concentration-dependent manner. The Western blot analysis revealed that this effect was due to the stimulation of the inducible nitric oxide synthase protein expression of macrophages. The polysaccharides extracted from AIS with water showed the ability to fix serum complement, especially through the alternative pathway. It was found that the polysaccharide that has the highest complement-fixing effect is characterized by the highest content of uronic acids and the highest molecular weight. PMID:23905651

  9. γ production and neutron inelastic scattering cross sections for 76Ge

    NASA Astrophysics Data System (ADS)

    Rouki, C.; Domula, A. R.; Drohé, J. C.; Koning, A. J.; Plompen, A. J. M.; Zuber, K.

    2013-11-01

    The 2040.7-keV γ ray from the 69th excited state of 76Ge was investigated in the interest of Ge-based double-β-decay experiments like the Germanium Detector Array (GERDA) experiment. The predicted transition could interfere with valid 0νββ events at 2039.0 keV, creating false signals in large-volume 76Ge enriched detectors. The measurement was performed with the Gamma Array for Inelastic Neutron Scattering (GAINS) at the Geel Electron Linear Accelerator (GELINA) white neutron source, using the (n,n'γ) technique and focusing on the strongest γ rays originating from the level. Upper limits obtained for the production cross section of the 2040.7-keV γ ray showed no possible influence on GERDA data. Additional analysis of the data yielded high-resolution cross sections for the low-lying states of 76Ge and related γ rays, improving the accuracy and extending existing data for five transitions and five levels. The inelastic scattering cross section for 76Ge was determined for incident neutron energies up to 2.23 MeV, significantly increasing the energy range for which experimental data are available. Comparisons with model calculations using the talys code are presented indicating that accounting for the recently established asymmetric rotor structure should lead to an improved description of the data.

  10. Single-inclusive production of hadrons and jets in lepton-nucleon scattering at NLO

    NASA Astrophysics Data System (ADS)

    Hinderer, Patriz; Schlegel, Marc; Vogelsang, Werner

    2015-07-01

    We present next-to-leading order (NLO) perturbative-QCD calculations of the cross sections for ℓN →h X and ℓN →jet X . The main feature of these processes is that the scattered lepton is not observed, so that the hard scale that makes them perturbative is set by the transverse momentum of the hadron or jet. Kinematically, the two processes thus become direct analogs of single-inclusive production in hadronic collisions which, as has been pointed out in the literature, makes them promising tools for exploring transverse spin phenomena in QCD when the incident nucleon is transversely polarized. We find that the NLO corrections are sizable for the spin-averaged cross section. We also investigate in how far the scattering is dominated by the exchange of almost real (Weizsäcker-Williams) photons. We present numerical estimates of the cross sections for present-day fixed target experiments and for a possible future electron-ion collider.

  11. Reactivity of chlorine radical with submicron palmitic acid particles: kinetic measurements and product identification

    NASA Astrophysics Data System (ADS)

    Mendez, M.; Ciuraru, R.; Gosselin, S.; Batut, S.; Visez, N.; Petitprez, D.

    2013-12-01

    The heterogeneous reaction of Cl• radicals with submicron palmitic acid (PA) particles was studied in an aerosol flow tube in the presence or in the absence of O2. Fine particles were generated by homogeneous condensation of PA vapours and introduced into the reactor, where chlorine atoms were produced by photolysis of Cl2 using UV lamps surrounding the reactor. The effective reactive uptake coefficient (γ) has been determined from the rate loss of PA measured by gas chromatography-mass spectrometer (GC/MS) analysis of reacted particles as a function of the chlorine exposure. In the absence of O2, γ = 14 ± 5 indicates efficient secondary chemistry involving Cl2. GC/MS analysis has shown the formation of monochlorinated and polychlorinated compounds in the oxidized particles. Although the PA particles are solid, the complete mass can be consumed. In the presence of oxygen, the reaction is still dominated by secondary chemistry but the propagation chain length is smaller than in the absence of O2, which leads to an uptake coefficient γ = 3 ± 1. In the particulate phase, oxocarboxylic acids and dicarboxylic acids were identified by GC/MS. The formation of alcohols and monocarboxylic acids is also suspected. A reaction pathway for the main products and more functionalized species is proposed. All these results show that solid organic particles could be efficiently oxidized by gas-phase radicals not only on their surface but also in bulk by mechanisms which are still unclear. They help to understand the aging of primary tropospheric aerosol containing fatty acids.

  12. NADPH Oxidases: A Perspective on Reactive Oxygen Species Production in Tumor Biology

    PubMed Central

    Meitzler, Jennifer L.; Antony, Smitha; Wu, Yongzhong; Juhasz, Agnes; Liu, Han; Jiang, Guojian; Lu, Jiamo; Roy, Krishnendu

    2014-01-01

    Abstract Significance: Reactive oxygen species (ROS) promote genomic instability, altered signal transduction, and an environment that can sustain tumor formation and growth. The NOX family of NADPH oxidases, membrane-bound epithelial superoxide and hydrogen peroxide producers, plays a critical role in the maintenance of immune function, cell growth, and apoptosis. The impact of NOX enzymes in carcinogenesis is currently being defined and may directly link chronic inflammation and NOX ROS-mediated tumor formation. Recent Advances: Increased interest in the function of NOX enzymes in tumor biology has spurred a surge of investigative effort to understand the variability of NOX expression levels in tumors and the effect of NOX activity on tumor cell proliferation. These initial efforts have demonstrated a wide variance in NOX distribution and expression levels across numerous cancers as well as in common tumor cell lines, suggesting that much remains to be discovered about the unique role of NOX-related ROS production within each system. Progression from in vitro cell line studies toward in vivo tumor tissue screening and xenograft models has begun to provide evidence supporting the importance of NOX expression in carcinogenesis. Critical Issues: A lack of universally available, isoform-specific antibodies and animal tumor models of inducible knockout or over-expression of NOX isoforms has hindered progress toward the completion of in vivo studies. Future Directions: In vivo validation experiments and the use of large, existing gene expression data sets should help define the best model systems for studying the NOX homologues in the context of cancer. Antioxid. Redox Signal. 20, 2873–2889. PMID:24156355

  13. The control of reactive oxygen species production by SHP-1 in oligodendrocytes.

    PubMed

    Gruber, Ross C; LaRocca, Daria; Minchenberg, Scott B; Christophi, George P; Hudson, Chad A; Ray, Alex K; Shafit-Zagardo, Bridget; Massa, Paul T

    2015-10-01

    We have previously described reduced myelination and corresponding myelin basic protein (MBP) expression in the central nervous system of Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) deficient motheaten (me/me) mice compared with normal littermate controls. Deficiency in myelin and MBP expression in both brains and spinal cords of motheaten mice correlated with reduced MBP mRNA expression levels in vivo and in purified oligodendrocytes in vitro. Therefore, SHP-1 activity seems to be a critical regulator of oligodendrocyte gene expression and function. Consistent with this role, this study demonstrates that oligodendrocytes of motheaten mice and SHP-1-depleted N20.1 cells produce higher levels of reactive oxygen species (ROS) and exhibit corresponding markers of increased oxidative stress. In agreement with these findings, we demonstrate that increased production of ROS coincides with ROS-induced signaling pathways known to affect myelin gene expression in oligodendrocytes. Antioxidant treatment of SHP-1-deficient oligodendrocytes reversed the pathological changes in these cells, with increased myelin protein gene expression and decreased expression of nuclear factor (erythroid-2)-related factor 2 (Nrf2) responsive gene, heme oxygenase-1 (HO-1). Furthermore, we demonstrate that SHP-1 is expressed in human white matter oligodendrocytes, and there is a subset of multiple sclerosis subjects that demonstrate a deficiency of SHP-1 in normal-appearing white matter. These studies reveal critical pathways controlled by SHP-1 in oligodendrocytes that relate to susceptibility of SHP-1-deficient mice to both developmental defects in myelination and to inflammatory demyelinating diseases. PMID:25919645

  14. Regulation of Rac1 and Reactive Oxygen Species Production in Response to Infection of Gastrointestinal Epithelia

    PubMed Central

    Ablack, Amber; Hall, Emily H.; Butcher, Lindsay D.; Bhattacharyya, Asima; Eckmann, Lars; Harris, Paul R.; Das, Soumita; Ernst, Peter B.; Crowe, Sheila E.

    2016-01-01

    Generation of reactive oxygen species (ROS) during infection is an immediate host defense leading to microbial killing. APE1 is a multifunctional protein induced by ROS and after induction, protects against ROS-mediated DNA damage. Rac1 and NAPDH oxidase (Nox1) are important contributors of ROS generation following infection and associated with gastrointestinal epithelial injury. The purpose of this study was to determine if APE1 regulates the function of Rac1 and Nox1 during oxidative stress. Gastric or colonic epithelial cells (wild-type or with suppressed APE1) were infected with Helicobacter pylori or Salmonella enterica and assessed for Rac1 and NADPH oxidase-dependent superoxide production. Rac1 and APE1 interactions were measured by co-immunoprecipitation, confocal microscopy and proximity ligation assay (PLA) in cell lines or in biopsy specimens. Significantly greater levels of ROS were produced by APE1-deficient human gastric and colonic cell lines and primary gastric epithelial cells compared to control cells after infection with either gastric or enteric pathogens. H. pylori activated Rac1 and Nox1 in all cell types, but activation was higher in APE1 suppressed cells. APE1 overexpression decreased H. pylori-induced ROS generation, Rac1 activation, and Nox1 expression. We determined that the effects of APE1 were mediated through its N-terminal lysine residues interacting with Rac1, leading to inhibition of Nox1 expression and ROS generation. APE1 is a negative regulator of oxidative stress in the gastrointestinal epithelium during bacterial infection by modulating Rac1 and Nox1. Our results implicate APE1 in novel molecular interactions that regulate early stress responses elicited by microbial infections. PMID:26761793

  15. Mechanism of pion production in {alpha}p scattering at 1 GeV/nucleon

    SciTech Connect

    Alkhazov, G. D.; Prokofiev, A. N. Smirnov, I. B.; Strokovsky, E. A.

    2012-09-15

    An analysis of the experimental data on one-pion and two-pion production in the p({alpha}, {alpha} Prime )X reaction studied in a semi-exclusive experiment at an energy of E{sub {alpha}} = 4.2 GeV has been performed. The obtained results demonstrate that the inelastic {alpha}-particle scattering on the proton at the energy of the experiment proceeds either through excitation and decay of the {Delta} resonance in the projectile {alpha} particle, or through excitation in the target proton of the Roper resonance, which decays into a nucleon and a pion, or a nucleon and a {sigma} meson-a system of two pions in the isospin I = 0, S-wave state.

  16. Jet production in deep-inelastic muon scattering at 490 GeV

    SciTech Connect

    Melanson, H.L.; E665 Collaboration

    1993-06-01

    Measurements of jet rates in deep-inelastic muon scattering are presented. The JADE algorithm is used to define jets in the kinematic region 9 < W < 33 GeV. Data taken on a proton target are analyzed within the QCD framework, with the goal of extracting {alpha}{sub s}. Results on the Q{sup 2} dependence of the average transverse momentum of jets are used to demonstrate the running of the strong coupling constant {alpha}{sub s}. In addition, first measurements of the production of jets from heavy nuclei in the region x{sub B{sub j}} > 0.001 are discussed. Initial results indicate a suppression in the rate of two forward jets in carbon, calcium and lead as compared to deuterium. All results presented are preliminary.

  17. Strangeness production in deep inelastic muon nucleon scattering at 280 GeV

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckhardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmifz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schouten, M.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.

    1987-09-01

    The production of strange particles has been studied in a 280 GeV muon nucleon scattering experiment with acceptance and particle identification over a large kinematical range. The data show that at large values of x Bj the interactions take place mostly on a u valence quark in agreement with the basic quarkparton model predictions. This feature results in a strong forward-backward asymmetry in the distribution of strangeness along the rapidity axis. The data are compatible with a strange to non-strange quark suppression factor of ≈0.3 and with a strong suppression of strange diquarks. The distributions of K + K - pairs show that the two kaons are preferentially produced at neighbouring values of rapidity.

  18. Production of exclusive dijets in diffractive deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Antonelli, S.; Aushev, V.; Aushev, Y.; Behnke, O.; Behrens, U.; Bertolin, A.; Bloch, I.; Boos, E. G.; Borras, K.; Brock, I.; Brook, N. H.; Brugnera, R.; Bruni, A.; Bussey, P. J.; Caldwell, A.; Capua, M.; Catterall, C. D.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cooper-Sarkar, A. M.; Corradi, M.; Corriveau, F.; Dementiev, R. K.; Devenish, R. C. E.; Dolinska, G.; Dusini, S.; Figiel, J.; Foster, B.; Gach, G.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Golubkov, Yu. A.; Grebenyuk, J.; Gregor, I.; Grzelak, G.; Gueta, O.; Guzik, M.; Hain, W.; Hochman, D.; Hori, R.; Ibrahim, Z. A.; Iga, Y.; Ishitsuka, M.; Iudin, A.; Januschek, F.; Jomhari, N. Z.; Kadenko, I.; Kananov, S.; Karshon, U.; Kaur, M.; Kaur, P.; Kisielewska, D.; Klanner, R.; Klein, U.; Kondrashova, N.; Kononenko, O.; Korol, Ie.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Krupa, B.; Kuprash, O.; Kuze, M.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Lisovyi, M.; Lobodzinska, E.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Makarenko, I.; Malka, J.; Mergelmeyer, S.; Mohamad Idris, F.; Mohammad Nasir, N.; Myronenko, V.; Nagano, K.; Nobe, T.; Notz, D.; Nowak, R. J.; Onishchuk, Yu.; Paul, E.; Perlański, W.; Pokrovskiy, N. S.; Przybycień, M.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Saxon, D. H.; Schioppa, M.; Schmidke, W. B.; Schneekloth, U.; Schörner-Sadenius, T.; Shcheglova, L. M.; Shevchenko, R.; Shkola, O.; Shyrma, Yu.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Solano, A.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stopa, P.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tassi, E.; Tokushuku, K.; Tomaszewska, J.; Trofymov, A.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Verbytskyi, A.; Viazlo, O.; Walczak, R.; Wan Abdullah, W. A. T.; Wichmann, K.; Wing, M.; Wolf, G.; Yamada, S.; Yamazaki, Y.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhautykov, B. O.; Zhmak, N.; Zotkin, D. S.

    2016-01-01

    Production of exclusive dijets in diffractive deep inelastic e^± p scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 372 pb^{-1}. The measurement was performed for γ ^{*}- p centre-of-mass energies in the range 90< W < {250} {GeV} and for photon virtualities Q^2 > {25} {GeV2}. Energy flows around the jet axis are presented. The cross section is presented as a function of β and φ , where β =x/x_IP, x is the Bjorken variable and x_IP is the proton fractional longitudinal momentum loss. The angle φ is defined by the γ ^{*}-dijet plane and the γ ^{*}-e^± plane in the rest frame of the diffractive final state. The φ cross section is measured in bins of β . The results are compared to predictions from models based on different assumptions about the nature of the diffractive exchange.

  19. Chemical Characterization and Reactivity Testing of Fuel-Oxidizer Reaction Product (Test Report)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The product of incomplete reaction of monomethylhydrazine (MMH) and nitrogen tetroxide (NTO) propellants, or fuel-oxidizer reaction product (FORP), has been hypothesized as a contributory cause of an anomaly which occurred in the chamber pressure (PC) transducer tube on the Reaction Control Subsystem (RCS) aft thruster 467 on flight STS-51. A small hole was found in the titanium-alloy PC tube at the first bend below the pressure transducer. It was surmised that the hole may have been caused by heat and pressure resulting from ignition of FORP. The NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) was requested to define the chemical characteristics of FORP, characterize its reactivity, and simulate the events in a controlled environment which may have lead to the Pc-tube failure. Samples of FORP were obtained from the gas-phase reaction of MMH with NTO under laboratory conditions, the pulsed firings of RCS thrusters with modified PC tubes using varied oxidizer or fuel lead times, and the nominal RCS thruster firings at WSTF and Kaiser-Marquardt. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), accelerating rate calorimetry (ARC), ion chromatography (IC), inductively coupled plasma (ICP) spectrometry, thermogravimetric analysis (TGA) coupled to FTIR (TGA/FTIR), and mechanical impact testing were used to qualitatively and quantitatively characterize the chemical, thermal, and ignition properties of FORP. These studies showed that the composition of FORP is variable but falls within a limited range of compositions that depends on the fuel loxidizer ratio at the time of formation, composition of the post-formation atmosphere (reducing or oxidizing), and reaction or postreaction temperature. A typical composition contains methylhydrazinium nitrate (MMHN), ammonium nitrate (AN), methylammonium nitrate (MAN), and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. The thermal decomposition

  20. In situ self-catalyzed reactive extraction of germinated oilseed with short-chained dialkyl carbonates for biodiesel production.

    PubMed

    Jiang, Yanjun; Li, Dan; Li, Yang; Gao, Jing; Zhou, Liya; He, Ying

    2013-12-01

    In order to eliminate the expense associated with solvent extraction and oil cleanup, and reduce the processing steps in biodiesel production, reactive extraction has become a focus of research in recent years. In this study, germinated castor seed was used as substrate and catalyst, dimethyl carbonate (DMC) was used as acyl acceptor and oil extractant to produce biodiesel. The optimum conditions were as follows: the germination time of castor seed was 72 h, DMC/germinated seed ratio was 12.5 ml/g, reaction temperature was 35°C, and water content was 2.11%. The biodiesel yield could reach as much as 87.41% under the optimized conditions. This germinated oilseed self-catalyzed reactive extraction can be a promising route for biodiesel production. PMID:24144599

  1. Structural Evolution of Iron Antimonides from Amorphous Precursors to Crystalline Products Studied by Total Scattering Techniques.

    PubMed

    Bauers, Sage R; Wood, Suzannah R; Jensen, Kirsten M Ø; Blichfeld, Anders B; Iversen, Bo B; Billinge, Simon J L; Johnson, David C

    2015-08-01

    Homogeneous reaction precursors may be used to form several solid-state compounds inaccessible by traditional synthetic routes, but there has been little development of techniques that allow for a priori prediction of what may crystallize in a given material system. Here, the local structures of FeSbx designed precursors are determined and compared with the structural motifs of their crystalline products. X-ray total scattering and atomic pair distribution function (PDF) analysis are used to show that precursors that first nucleate a metastable FeSb3 compound share similar local structure to the product. Interestingly, precursors that directly crystallize to thermodynamically stable FeSb2 products also contain local structural motifs of the metastable phase, despite their compositional disagreement. While both crystalline phases consist of distorted FeSb6 octahedra with Sb shared between either two or three octahedra as required for stoichiometry, a corner-sharing arrangement indicative of AX3-type structures is the only motif apparent in the PDF of either precursor. Prior speculation was that local composition controlled which compounds nucleate from amorphous intermediates, with different compositions favoring different local arrangements and hence different products. This data suggests that local environments in these amorphous intermediates may not be very sensitive to overall composition. This can provide insight into potential metastable phases which may form in a material system, even with a precursor that does not crystallize to the kinetically stabilized product. Determination of local structure in homogeneous amorphous reaction intermediates from techniques such as PDF can be a valuable asset in the development of systematic methods to prepare targeted solid-state compounds from designed precursors. PMID:26161946

  2. Charm-Quark Production in Deep-Inelastic Neutrino Scattering at Next-to-Next-to-Leading Order in QCD

    NASA Astrophysics Data System (ADS)

    Berger, Edmond L.; Gao, Jun; Li, Chong Sheng; Liu, Ze Long; Zhu, Hua Xing

    2016-05-01

    We present a fully differential next-to-next-to-leading order calculation of charm-quark production in charged-current deep-inelastic scattering, with full charm-quark mass dependence. The next-to-next-to-leading order corrections in perturbative quantum chromodynamics are found to be comparable in size to the next-to-leading order corrections in certain kinematic regions. We compare our predictions with data on dimuon production in (anti)neutrino scattering from a heavy nucleus. Our results can be used to improve the extraction of the parton distribution function of a strange quark in the nucleon.

  3. Charm-Quark Production in Deep-Inelastic Neutrino Scattering at Next-to-Next-to-Leading Order in QCD.

    PubMed

    Berger, Edmond L; Gao, Jun; Li, Chong Sheng; Liu, Ze Long; Zhu, Hua Xing

    2016-05-27

    We present a fully differential next-to-next-to-leading order calculation of charm-quark production in charged-current deep-inelastic scattering, with full charm-quark mass dependence. The next-to-next-to-leading order corrections in perturbative quantum chromodynamics are found to be comparable in size to the next-to-leading order corrections in certain kinematic regions. We compare our predictions with data on dimuon production in (anti)neutrino scattering from a heavy nucleus. Our results can be used to improve the extraction of the parton distribution function of a strange quark in the nucleon. PMID:27284650

  4. Patterns of accumulation of miRNAs encoded by herpes simplex virus during productive infection, latency, and on reactivation

    PubMed Central

    Du, Te; Han, Zhiyuan; Zhou, Guoying; Roizman, Bernard

    2015-01-01

    The key events in herpes simplex virus (HSV) infections are (i) replication at a portal of entry into the body modeled by infection of cultured cells; (ii) establishment of a latent state characterized by a sole latency-associated transcript and microRNAs (miRNAs) modeled in murine peripheral ganglia 30 d after inoculation; and (iii) reactivation from the latent state modeled by excision and incubation of ganglia in medium containing anti-NGF antibody for a timespan of a single viral replicative cycle. In this report, we examine the pattern of synthesis and accumulation of 18 HSV-1 miRNAs in the three models. We report the following: (i) H2-3P, H3-3P, H4-3P, H5-3P, H6-3P, and H7-5P accumulated in ganglia harboring latent virus. All but H4-3P were readily detected in productively infected cells, and most likely they originate from three transcriptional units. (ii) H8-5P, H15, H17, H18, H26, and H27 accumulated during reactivation. Of this group, only H26 and H27 could be detected in productively infected cells. (iii) Of the 18 we have examined, only 10 miRNAs were found to accumulate above background levels in productively infected cells. The disparity in the accumulation of miRNAs in cell culture and during reactivation may reflect differences in the patterns of regulation of viral gene expression during productive infection and during reactivation from the latent state. PMID:25535379

  5. Effects of moderate electrical stimulation on reactive species production by primary rat skeletal muscle cells: cross talk between superoxide and nitric oxide production.

    PubMed

    Lambertucci, Rafael Herling; Silveira, Leonardo Dos Reis; Hirabara, Sandro Massao; Curi, Rui; Sweeney, Gary; Pithon-Curi, Tania Cristina

    2012-06-01

    The effects of a moderate electrical stimulation on superoxide and nitric oxide production by primary cultured skeletal muscle cells were evaluated. The involvement of the main sites of these reactive species production and the relationship between superoxide and nitric oxide production were also examined. Production of superoxide was evaluated by cytochrome c reduction and dihydroethidium oxidation assays. Electrical stimulation increased superoxide production after 1 h incubation. A xanthine oxidase inhibitor caused a partial decrease of superoxide generation and a significant amount of mitochondria-derived superoxide was also observed. Nitric oxide production was assessed by nitrite measurement and by using 4,5-diaminofluorescein diacetate (DAF-2-DA) assay. Using both methods an increased production of nitric oxide was obtained after electrical stimulation, which was also able to induce an increase of iNOS content and NF-κB activation. The participation of superoxide in nitric oxide production was investigated by incubating cells with DAF-2-DA in the presence or absence of electrical stimulation, a superoxide generator system (xanthine-xanthine oxidase), a mixture of NOS inhibitors and SOD-PEG. Our data show that the induction of muscle contraction by a moderate electrical stimulation protocol led to an increased nitric oxide production that can be controlled by superoxide generation. The cross talk between these reactive species likely plays a role in exercise-induced maintenance and adaptation by regulating muscular glucose metabolism, force of contraction, fatigue, and antioxidant systems activities. PMID:21898396

  6. Evidence for photochemical production of reactive oxygen species in desert soils.

    PubMed

    Georgiou, Christos D; Sun, Henry J; McKay, Christopher P; Grintzalis, Konstantinos; Papapostolou, Ioannis; Zisimopoulos, Dimitrios; Panagiotidis, Konstantinos; Zhang, Gaosen; Koutsopoulou, Eleni; Christidis, George E; Margiolaki, Irene

    2015-01-01

    The combination of intense solar radiation and soil desiccation creates a short circuit in the biogeochemical carbon cycle, where soils release significant amounts of CO2 and reactive nitrogen oxides by abiotic oxidation. Here we show that desert soils accumulate metal superoxides and peroxides at higher levels than non-desert soils. We also show the photogeneration of equimolar superoxide and hydroxyl radical in desiccated and aqueous soils, respectively, by a photo-induced electron transfer mechanism supported by their mineralogical composition. Reactivity of desert soils is further supported by the generation of hydroxyl radical via aqueous extracts in the dark. Our findings extend to desert soils the photogeneration of reactive oxygen species by certain mineral oxides and also explain previous studies on desert soil organic oxidant chemistry and microbiology. Similar processes driven by ultraviolet radiation may be operating in the surface soils on Mars. PMID:25960012

  7. On the Temperature Dependence of Organic Reactivity, Ozone Production, and the Impact of Emissions Controls in San Joaquin Valley California

    NASA Astrophysics Data System (ADS)

    Pusede, S. E.; Gentner, D. R.; Wooldridge, P. J.; Browne, E. C.; Min, K.; Rollins, D. W.; Russell, A.; Thomas, J.; Zhang, L.; Brune, W. H.; Henry, S. B.; DiGangi, J. P.; Keutsch, F. N.; Harrold, S.; Thornton, J. A.; Beaver, M. R.; St Clair, J. M.; Wennberg, P. O.; Ren, X.; Sanders, J.; VandenBoer, T. C.; Markovic, M. Z.; Guha, A.; Weber, R.; Goldstein, A. H.; Cohen, R. C.

    2013-12-01

    The San Joaquin Valley (SJV) experiences some of the worst ozone air quality in the U.S., frequently exceeding the California 8-h standard of 70.4 ppb. To improve our understanding of trends in the number of ozone violations in the SJV, we investigate observed relationships between organic reactivity, nitrogen oxides (NOx), and daily maximum temperature in the southern SJV using measurements made as part of California at the Nexus of Air Quality and Climate Change in 2010 (CalNex-SJV). We find the daytime speciated organic reactivity with respect OH during CalNex-SJV has a temperature-independent portion with molecules typically associated with motor vehicles being the major component. At high temperatures, characteristic of days with high ozone, the majority of the organic reactivity increases exponentially with temperature and is dominated by small oxygenated organics and molecules that are unidentified. We use this simple temperature classification to consider changes in organic emissions over the last and next decade. With the CalNex-SJV observations as constraints, we examine the sensitivity of ozone production (PO3) to future NOx and organic reactivity controls, finding that PO3 is NOx-limited at all temperatures on weekends and on weekdays when daily maximum temperatures are greater than 28oC. As a consequence, we show NOx reductions are the most effective control option for reducing the frequency of ozone violations in the southern SJV.

  8. Momentum space saturation model for deep inelastic scattering and single inclusive hadron production

    NASA Astrophysics Data System (ADS)

    Basso, E. A. F.; Gay Ducati, M. B.; de Oliveira, E. G.

    2011-08-01

    We show how the Santana Amaral-Gay Ducati-Betemps-Soyez (AGBS) model, originally developed for deep inelastic scattering applied to HERA data on the proton structure function, can also describe the RHIC data on single inclusive hadron yield for d+Au and p+p collisions through a new simultaneous fit. The single inclusive hadron production is modeled through the color glass condensate, which uses the quark (and gluon) condensate amplitudes in momentum space. The AGBS model is also a momentum space model based on the asymptotic solutions of the Balitsky-Kovchegov equation, although a different definition of the Fourier transform is used. This aspect is overcome, and a description entirely in transverse momentum of both processes arises for the first time. The small difference between the simultaneous fit and the one for HERA data alone suggests that the AGBS model describes very well both kinds of processes and thus emerges as a good tool to investigate the inclusive hadron production data. We use this model for predictions at LHC energies, which agrees very well with available experimental data.

  9. In situ lipase-catalyzed reactive extraction of oilseeds with short-chained dialkyl carbonates for biodiesel production.

    PubMed

    Su, Erzheng; You, Pengyong; Wei, Dongzhi

    2009-12-01

    Dimethyl/diethyl carbonate was adopted as extraction solvent and transesterification reagent at the same time for in situ lipase-catalyzed reactive extraction of oilseeds for biodiesel production in this work. Fatty acid methyl esters and ethyl esters were respectively obtained with higher yields than those achieved by conventional two-step extraction/transesterification. The augment ranged from 15.7% to 31.7%. The key parameters such as solvent/seed ratio and water content were further investigated to find their effects on the in situ reactive extraction. The highest yields of Pistacia chinensis Bunge methyl ester, P. chinensis Bunge ethyl ester, Jatropha curcas L methyl ester and J. curcas L ethyl ester could attain 89.6%, 90.7%, 95.9% and 94.5%, respectively under the optimized conditions. PMID:19615896

  10. Room-Temperature Reactivity Of Silicon Nanocrystals With Solvents: The Case Of Ketone And Hydrogen Production From Secondary Alcohols: Catalysis?

    PubMed

    El-Demellawi, Jehad K; Holt, Christopher R; Abou-Hamad, Edy; Al-Talla, Zeyad A; Saih, Youssef; Chaieb, Sahraoui

    2015-07-01

    Although silicon nanoparticles dispersed in liquids are used in various applications ranging from biolabeling to hydrogen production, their reactivities with their solvents and their catalytic properties remain still unexplored. Here, we discovered that, because of their surface structures and mechanical strain, silicon nanoparticles react strongly with their solvents and may act as catalysts for the dehydrogenation, at room temperature, of secondary alcohols (e.g., isopropanol) into ketones and hydrogen. This catalytic reaction was monitored by gas chromatography, pH measurements, mass spectroscopy, and solid-state NMR. This discovery provides new understanding of the role played by silicon nanoparticles, and nanosilicon in general, in their reactivity in solvents in general, as well as being candidates in catalysis. PMID:26024366

  11. Uric acid and transforming growth factor in fructose-induced production of reactive oxygen species in skeletal muscle.

    PubMed

    Madlala, Hlengiwe P; Maarman, Gerald J; Ojuka, Edward

    2016-04-01

    The consumption of fructose, a major constituent of the modern diet, has raised increasing concern about the effects of fructose on health. Research suggests that excessive intake of fructose (>50 g/d) causes hyperuricemia, insulin resistance, mitochondrial dysfunction, de novo lipogenesis by the liver, and increased production of reactive oxygen species (ROS) in muscle. In a number of tissues, uric acid has been shown to stimulate the production of ROS via activation of transforming growth factor β1 and NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4. The role of uric acid in fructose-induced production of ROS in skeletal muscle, however, has not been investigated. This review examines the evidence for fructose-induced production of ROS in skeletal muscle, highlights proposed mechanisms, and identifies gaps in current knowledge. PMID:26946251

  12. Computational Benchmark for Estimation of Reactivity Margin from Fission Products and Minor Actinides in PWR Burnup Credit

    SciTech Connect

    Wagner, J.C.

    2001-08-02

    This report proposes and documents a computational benchmark problem for the estimation of the additional reactivity margin available in spent nuclear fuel (SNF) from fission products and minor actinides in a burnup-credit storage/transport environment, relative to SNF compositions containing only the major actinides. The benchmark problem/configuration is a generic burnup credit cask designed to hold 32 pressurized water reactor (PWR) assemblies. The purpose of this computational benchmark is to provide a reference configuration for the estimation of the additional reactivity margin, which is encouraged in the U.S. Nuclear Regulatory Commission (NRC) guidance for partial burnup credit (ISG8), and document reference estimations of the additional reactivity margin as a function of initial enrichment, burnup, and cooling time. Consequently, the geometry and material specifications are provided in sufficient detail to enable independent evaluations. Estimates of additional reactivity margin for this reference configuration may be compared to those of similar burnup-credit casks to provide an indication of the validity of design-specific estimates of fission-product margin. The reference solutions were generated with the SAS2H-depletion and CSAS25-criticality sequences of the SCALE 4.4a package. Although the SAS2H and CSAS25 sequences have been extensively validated elsewhere, the reference solutions are not directly or indirectly based on experimental results. Consequently, this computational benchmark cannot be used to satisfy the ANS 8.1 requirements for validation of calculational methods and is not intended to be used to establish biases for burnup credit analyses.

  13. Degradation of reactive dyes in wastewater from the textile industry by ozone: analysis of the products by accurate masses.

    PubMed

    Constapel, Marc; Schellenträger, Marc; Marzinkowski, Joachim Michael; Gäb, Siegmar

    2009-02-01

    The present work describes the use of ozone to degrade selected reactive dyes from the textile industry and the analysis of the resulting complex mixture by liquid chromatography/mass spectrometry (LC-MS). To allow certain identification of the substances detected in the wastewater, the original dyes were also investigated either separately or in a synthetic mixture of three dyes (trichromie). Since the reactive dyes are hydrolyzed during the dyeing process, procedures for the hydrolysis were worked out first for the individual dyes. The ozonated solutions were concentrated by solid-phase extraction, which separated very polar or ionic substances from moderately polar degradation products. The latter, which are the primary degradation products, were investigated by liquid chromatography/mass spectrometry with a tandem quadrupole time-of-flight mass analyzer. Accurate masses, which in most cases could be determined with a deviation of products in the same run. With retention times, mass spectra, accurate masses, UV-vis spectra and, of course, knowledge of the structures of the original dyes, plausible structures could be proposed for most of the components of the moderately polar fraction. These structures were confirmed by 1H NMR in cases where it was practical to isolate the degradation products by preparative HPLC. PMID:19110293

  14. Interaction of insulin with methyl tert-butyl ether promotes molten globule-like state and production of reactive oxygen species.

    PubMed

    Valipour, Masoumeh; Maghami, Parvaneh; Habibi-Rezaei, Mehran; Sadeghpour, Mostafa; Khademian, Mohamad Ali; Mosavi, Khadijeh; Sheibani, Nader; Moosavi-Movahedi, Ali Akbar

    2015-09-01

    Interaction of methyl tert-butyl ether (MTBE) with proteins is a new look at its potential adverse biological effects. When MTBE is released to the environment it enters the blood stream through inhalation, and could affect the properties of various proteins. Here we investigated the interaction of MTBE with insulin and its effect on insulin structural changes. Our results showed that insulin formed a molten globule (MG)-like structure in the presence of 8 μM MTBE under physiological pH. The insulin structural changes were studied using spectroscopy methods, viscosity calculation, dynamic light scattering and differential scanning calorimetry. To delineate the mechanisms involved in MTBE-protein interactions, the formation of reactive oxygen specious (ROS) and formation of protein aggregates were measured. The chemiluminscence experiments revealed an increase in ROS production in the presence of MTBE especially in the MG-like state. These results were further confirmed by the aggregation tests, which indicated more aggregation of insulin at 40 μM MTBE compared with 8 μM. Thus, the formation of initial aggregates and exposure of the hydrophobic patches upon formation of the MG-like state in the presence of MTBE drives protein oxidation and ROS generation. PMID:26193678

  15. Effects of β-endorphin on the production of reactive oxygen species, IL-1β, Tnf-Α, and IL-10 by murine peritoneal macrophages in vivo.

    PubMed

    Gein, S V; Baeva, T A; Nebogatikov, V O

    2016-07-01

    It has been demonstrated that β-endorphin stimulates the zymosan-induced secretion of reactive oxygen species and suppresses the spontaneous production of IL-1β and IL-10 by murine peritoneal macrophages in vivo. PMID:27595832

  16. Production and characterization of mouse monoclonal antibodies reactive to Chikungunya envelope E2 glycoprotein.

    PubMed

    Bréhin, Anne-Claire; Rubrecht, Laetitia; Navarro-Sanchez, Martha Erika; Maréchal, Valérie; Frenkiel, Marie-Pascale; Lapalud, Priscilla; Laune, Daniel; Sall, Amadou Alpha; Desprès, Philippe

    2008-02-01

    Chikungunya fever is an arbovirosis of major impact in public health in Asia and Africa. Chikungunya (CHIK) virus is member of the genus Alphavirus and belongs to the Semliki Forest (SF) antigenic complex. We describe for the first time a panel of monoclonal antibodies (MAbs) reactive to CHIK envelope E2 glycoprotein. For the screening of E2-specific MAbs, we expressed a recombinant soluble CHIK E2 protein in Drosophila S2 cells. Analyzed by immunological methods, MAbs 3C3, 3E4, and 8A4 were selected on the basis of their reactivity. Their epitopes are located to the outer surface of CHIK virion. These MAbs have no cross reactivity with related members of SF antigenic complex with the notable exception of Igbo-Ora virus. Anti-CHIK E2 MAbs 3C3, 3E4, and 8A4 should be helpful for studying the biology of CHIK virus and pathogenesis of disease. The combination of 8A4 and 3E4 is suitable for developing a specific antigen-capture ELISA. PMID:17949772

  17. CT14QED parton distribution functions from isolated photon production in deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Schmidt, Carl; Pumplin, Jon; Stump, Daniel; Yuan, C.-P.

    2016-06-01

    We describe the implementation of quantum electrodynamic (QED) evolution at leading order (LO) along with quantum chromodynamic (QCD) evolution at next-to-leading order (NLO) in the CTEQ-TEA global analysis package. The inelastic contribution to the photon parton distribution function (PDF) is described by a two-parameter ansatz, coming from radiation off the valence quarks, and based on the CT14 NLO PDFs. Setting the two parameters to be equal allows us to completely specify the inelastic photon PDF in terms of the inelastic momentum fraction carried by the photon, p0γ, at the initial scale Q0=1.295 GeV . We obtain constraints on the photon PDF by comparing with ZEUS data [S. Chekanov et al. (ZEUS Collaboration), Phys. Lett. B 687, 16 (2010)] on the production of isolated photons in deep inelastic scattering, e p →e γ +X . For this comparison we present a new perturbative calculation of the process that consistently combines the photon-initiated contribution with the quark-initiated contribution. Comparison with the data allows us to put a constraint at the 90% confidence level of p0γ≲0.14 % for the inelastic photon PDF at the initial scale of Q0=1.295 GeV in the one-parameter radiative ansatz. The resulting inelastic CT14QED PDFs will be made available to the public. In addition, we also provide CT14QEDinc PDFs, in which the inclusive photon PDF at the scale Q0 is defined by the sum of the inelastic photon PDF and the elastic photon distribution obtained from the equivalent photon approximation.

  18. Production, characterization, and cross-reactivity studies of monoclonal antibodies against the coccidiostat nicarbazin.

    PubMed

    Beier, R C; Ripley, L H; Young, C R; Kaiser, C M

    2001-10-01

    A cELISA was developed for the coccidiostat nicarbazin. On the basis of previous computer-assisted molecular modeling studies, p-nitrosuccinanilic acid (PNA-S) was selected as a hapten to produce antibodies to 4,4'-dinitrocarbanilide (DNC), the active component of the coccidiostat nicarbazin. Synthesis is described for the hapten [p-nitro-cis-1,2-cyclohexanedicarboxanilic acid (PNA-C)] used in a BSA conjugate as a plate coating antigen. Monoclonal antibodies (Mabs) were isolated that compete with nicarbazin, having IgM(kappa) isotype. Because of the lack of water solubility of nicarbazin, N,N-dimethylformamide (DMF) (3%, v/v) and acetonitrile (ACN) (10%, v/v) were added to the assay buffer to achieve solubility of nicarbazin and related compounds. The Nic 6 Mabs had an IC(35) value for nicarbazin of 0.92 nmol/mL, with a limit of detection of 0.33 nmol/mL. Nic 6 exhibited high cross-reactivity for PNA-S and PNA-C, and 3-nitrophenol, 4-nitrophenol, and 1-(4-chlorophenyl)-3-(4-nitrophenyl) urea. However, Nic 6 had little or no cross-reactivity with 15 other related compounds. PMID:11599986

  19. Optimizing Pulse Waveforms in Plasma Jets for Reactive Oxygen Species (ROS) Production

    NASA Astrophysics Data System (ADS)

    Norberg, Seth; Babaeva, Natalia Yu.; Kushner, Mark J.

    2012-10-01

    Reactive oxygen species (ROS) are desired in numerous applications from the destruction of harmful proteins and bacteria for sterilization in the medical field to taking advantage of the metastable characteristics of O2(^1δ) to transfer energy to other species. Advances in atmospheric pressure plasma jets in recent years show the possibility of using this application as a source of reactive oxygen species. In this paper, we report on results from a computational investigation of atmospheric pressure plasma jets in a dielectric barrier discharge (DBD) configuration. The computer model used in this study, nonPDPSIM, solves transport equations for charged and neutral species, Poisson's equation for the electric potential, the electron energy conservation equation for the electron temperature, and Navier-Stokes equations for the neutral gas flow. A Monte Carlo simulation is used to track sheath accelerated secondary electrons emitted from surfaces and the energy of ions incident onto surfaces. Rate coefficients and transport coefficients for the bulk plasma are obtained from local solutions of Boltzmann's equation for the electron energy distribution. Radiation transport is addressed using a Green's function approach. Various waveforms for the voltage source were examined in analogy to spiker-sustainer systems used at lower gas pressures.

  20. Glutathione prevents preterm parturition and fetal death by targeting macrophage-induced reactive oxygen species production in the myometrium.

    PubMed

    Hadi, Tarik; Bardou, Marc; Mace, Guillaume; Sicard, Pierre; Wendremaire, Maeva; Barrichon, Marina; Richaud, Sarah; Demidov, Oleg; Sagot, Paul; Garrido, Carmen; Lirussi, Frédéric

    2015-06-01

    Preterm birth is an inflammatory process resulting from the massive infiltration of innate immune cells and the production of proinflammatory cytokines in the myometrium. However, proinflammatory cytokines, which induce labor in vivo, fail to induce labor-associated features in human myometrial cells (MCs). We thus aimed to investigate if reactive oxygen species (ROS) production could be the missing step between immune cell activation and MC response. Indeed, we found that ROS production is increased in the human preterm laboring myometrium (27% ROS producing cells, respectively, versus 2% in nonlaboring controls), with 90% ROS production in macrophages. Using LPS-stimulated myometrial samples and cell coculture experiments, we demonstrated that ROS production is required for labor onset. Furthermore, we showed that ROS are required first in the NADPH oxidase (NADPHox)-2/NF-κB-dependent macrophage response to inflammatory stimuli but, more importantly, to trigger macrophage-induced MCs transactivation. Remarkably, in a murine model of LPS-induced preterm labor (inducing delivery within 17 hours, with no pup survival), cotreatment with glutathione delayed labor onset up to 94 hours and prevented in utero fetal distress, allowing 46% pups to survive. These results suggest that targeting ROS production with the macrophage-permeable antioxidant glutathione could constitute a promising strategy to prevent preterm birth. PMID:25757563

  1. A Reactive-Transport Model Describing Methanogen Growth and Methane Production in Diffuse Flow Vents at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Algar, C. K.

    2015-12-01

    Hydrogenotrophic methanogenesis is an important mode of metabolism in deep-sea hydrothermal vents. Diffuse vent fluids often show a depletion in hydrogen with a corresponding increase in methane relative to pure-mixing of end member fluid and seawater, and genomic surveys show an enrichment in genetic sequences associated with known methanogens. However, because we cannot directly sample the subseafloor habitat where these organisms are living, constraining the size and activity of these populations remains a challenge and limits our ability to quantify the role they play in vent biogeochemistry. Reactive-transport modeling may provide a useful tool for approaching this problem. Here we present a reactive-transport model describing methane production along the flow-path of hydrothermal fluid from its high temperature end-member to diffuse venting at the seafloor. The model is set up to reflect conditions at several diffuse vents in the Axial Seamount. The model describes the growth of the two dominant thermophilic methanogens, Methanothermococcus and Methanocaldococcus, observed at Axial seamount. Monod and Arrhenius constants for Methanothermococcus thermolithotrophicus and Methanocaldococcus jannaschii were obtained for the model using chemostat and bottle experiments at varying temperatures. The model is used to investigate the influence of different mixing regimes on the subseafloor populations of these methanogens. By varying the model flow path length and subseafloor cell concentrations, and fitting to observed hydrogen and methane concentrations in the venting fluid, the subseafloor biomass, fluid residence time, and methane production rate can be constrained.

  2. Distribution of Linearly Polarized Gluons and Elliptic Azimuthal Anisotropy in Deep Inelastic Scattering Dijet Production at High Energy

    NASA Astrophysics Data System (ADS)

    Dumitru, Adrian; Lappi, Tuomas; Skokov, Vladimir

    2015-12-01

    We determine the distribution of linearly polarized gluons of a dense target at small x by solving the Balitsky-Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner rapidity evolution equations. From these solutions, we estimate the amplitude of ˜cos 2 ϕ azimuthal asymmetries in deep inelastic scattering dijet production at high energies. We find sizable long-range in rapidity azimuthal asymmetries with a magnitude in the range of v2=⟨cos 2 ϕ ⟩˜10 % .

  3. Production and reactivity of the hydroxyl radical in homogeneous high pressure plasmas of atmospheric gases containing traces of light olefins

    NASA Astrophysics Data System (ADS)

    Magne, L.; Pasquiers, S.; Blin-Simiand, N.; Postel, C.

    2007-05-01

    A photo-triggered discharge has been used to study the production kinetic mechanisms and the reactivity of the hydroxyl radical in a N2/O2 mixture (5% oxygen) containing ethane or ethene for hydrocarbon concentration values in the range 1000-5000 ppm, at 460 mbar total pressure. The discharge (current pulse duration of 60 ns) has allowed the generation of a transient homogeneous non-equilibrium plasma, and the time evolution of the OH density has been measured (relative value) in the afterglow (up to 200 µs) by laser induced fluorescence (LIF). Experimental results have been explained using predictions of a self-consistent 0D discharge and plasma reactivity modelling, and reduced kinetic schemes for OH have been validated. It has been shown that recombination of H- and O-atoms, as well as reaction of O with the hydroperoxy radical HO2, plays a very important role in the production of OH radicals in the mixture with ethane. H is a key species for production of OH and HO2 radicals. As for ethane, O, H and HO2 are key species for the production of OH in the case of ethene, but carbonated radicals, following the partial oxidation of the hydrocarbon molecule by O, also play a non-negligible role. The rate constant for O- and H-atom recombination has been estimated to be 3 × 10-30 cm6 s-1 at near ambient temperature, consistent with LIF measurements on OH for both mixtures with ethane and ethene.

  4. Production and characterization of thin film group IIIB, IVB and rare earth hydrides by reactive evaporation

    SciTech Connect

    Provo, James L.

    2015-07-15

    A recent short history of reactive evaporation by D. M. Mattox [History Corner—A Short History of Reactive Evaporation, SVC Bulletin (Society of Vacuum Coaters, Spring 2014), p. 50–51] describes various methods for producing oxides, nitrides, carbides, and some compounds, but hydrides were not mentioned. A study was performed in the mid-1970s at the General Electric Company Neutron Devices Department in Largo, FL, by the author to study preparation of thin film hydrides using reactive evaporation and to determine their unique characteristics and properties. Films were produced of scandium (Sc), yttrium (Y), titanium (Ti), zirconium (Zr), and the rare earth praseodymium (Pr), neodymium (Nd), gadolinium (Gd), dysprosium (Dy), and erbium (Er) hydrides by hot crucible filament and electron beam evaporation in atmospheres of deuterium and tritium gases. All-metal vacuum systems were used and those used with tritium were dedicated for this processing. Thin film test samples 1000 nm thick were prepared on 1.27 cm diameter molybdenum disk substrates for each occluder (i.e., an element that can react with hydrogen to form a hydride) material. Loading characteristics as determined by gas-to-metal atomic ratios, oxidation characteristics as determined by argon–sputter Auger analysis, film structure as determined by scanning electron microscope analysis, and film stress properties as determined by a double resonator technique were used to define properties of interest. Results showed hydrogen-to-metal atomic ratios varied from 1.5 to 2.0 with near maximum loading for all but Pr and Nd occluders which correlated with the oxidation levels observed, with all occluder oxidation levels being variable due to vacuum system internal processing conditions and the materials used. Surface oxide levels varied from ∼80 Å to over 1000 Å. For most films studied, results showed that a maximum loading ratio of near 2.0 and a minimum surface oxide level of ∼80 Å could be

  5. Reactive oxygen species production in single cells following laser irradiation (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Duquette, Michelle L.; Kim, Justine; Shi, Linda Z.; Berns, Michael W.

    2015-08-01

    Region specific DNA breaks can be created in single cells using laser light that damages DNA but does not directly generate reactive oxygen species (ROS). We have examined the cellular response to directly generated DNA breaks in single cells. Using a combination of ROS specific dyes and oxidase inhibitors we have found that the oxidase and chromatin remodeling protein Lysine demethylase I (LSD1) generates detectable ROS as a byproduct of its chromatin remodeling activity during the initial DNA damage response. ROS is produced at detectable amounts primarily within the first 3 minutes post irradiation. LSD1 activity has been previously associated with transcriptional regulation therefore these findings have implications for regulation of gene expression following DNA damage particularly in cells with altered redox states.

  6. Estimating production and consumption of solid reactive Fe phases in marine sediments from concentration profiles

    EPA Science Inventory

    1D diffusion models may be used to estimate rates of production and consumption of dissolved metabolites in marine sediments, but are applied less often to the solid phase. Here we used a numerical inverse method to estimate solid phase Fe(III) and Fe(II) consumption and product...

  7. Measurement of diffractive production of D ∗±(2010) mesons in deep-inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Chekanov, S.; Krakauer, D.; Magill, S.; Musgrave, B.; Repond, J.; Yoshida, R.; Mattingly, M. C. K.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Margotti, A.; Nania, R.; Palmonari, F.; Pesci, A.; Sartorelli, G.; Zichichi, A.; Aghuzumtsyan, G.; Bartsch, D.; Brock, I.; Crittenden, J.; Goers, S.; Hartmann, H.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U. F.; Kerger, R.; Kind, O.; Paul, E.; Rautenberg, J.; Renner, R.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K. C.; Weber, A.; Bailey, D. S.; Brook, N. H.; Cole, J. E.; Foster, B.; Heath, G. P.; Heath, H. F.; Robins, S.; Rodrigues, E.; Scott, J.; Tapper, R. J.; Wing, M.; Capua, M.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Kim, J. Y.; Kim, Y. K.; Lee, J. H.; Lim, I. T.; Pac, M. Y.; Caldwell, A.; Helbich, M.; Liu, X.; Mellado, B.; Paganis, S.; Schmidke, W. B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Olkiewicz, K.; Piotrzkowski, K.; Przybycień, M. B.; Stopa, P.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Grabowska-Bold, I.; Jeleń, K.; Kisielewska, D.; Kowal, A. M.; Kowal, M.; Kowalski, T.; Mindur, B.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Szuba, D.; Szuba, J.; Kotański, A.; Słomiński, W.; Bauerdick, L. A. T.; Behrens, U.; Borras, K.; Chiochia, V.; Dannheim, D.; Derrick, M.; Drews, G.; Fourletova, J.; Fox-Murphy, A.; Fricke, U.; Geiser, A.; Goebel, F.; Göttlicher, P.; Gutsche, O.; Haas, T.; Hain, W.; Hartner, G. F.; Hillert, S.; Kötz, U.; Kowalski, H.; Labes, H.; Lelas, D.; Löhr, B.; Mankel, R.; Martínez, M.; Moritz, M.; Notz, D.; Pellmann, I.-A.; Petrucci, M. C.; Polini, A.; Raval, A.; Schneekloth, U.; Selonke, F.; Surrow, B.; Wessoleck, H.; Wichmann, R.; Wolf, G.; Youngman, C.; Zeuner, W.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Genta, C.; Pelfer, P. G.; Bamberger, A.; Benen, A.; Coppola, N.; Raach, H.; Bell, M.; Bussey, P. J.; Doyle, A. T.; Glasman, C.; Hanlon, S.; Lee, S. W.; Lupi, A.; McCance, G. J.; Saxon, D. H.; Skillicorn, I. O.; Gialas, I.; Bodmann, B.; Carli, T.; Holm, U.; Klimek, K.; Krumnack, N.; Lohrmann, E.; Milite, M.; Salehi, H.; Stonjek, S.; Wick, K.; Ziegler, A.; Ziegler, Ar; Collins-Tooth, C.; Foudas, C.; Gonçalo, R.; Long, K. R.; Metlica, F.; Miller, D. B.; Tapper, A. D.; Walker, R.; Cloth, P.; Filges, D.; Kuze, M.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.; Lim, H.; Son, D.; Barreiro, F.; González, O.; Labarga, L.; del Peso, J.; Redondo, I.; Terrón, J.; Vázquez, M.; Barbi, M.; Bertolin, A.; Corriveau, F.; Ochs, A.; Padhi, S.; Stairs, D. G.; St-Laurent, M.; Tsurugai, T.; Antonov, A.; Bashkirov, V.; Danilov, P.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Suchkov, S.; Dementiev, R. K.; Ermolov, P. F.; Golubkov, Yu. A.; Katkov, I. I.; Khein, L. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu; Proskuryakov, A. S.; Shcheglova, L. M.; Vlasov, N. N.; Zotkin, S. A.; Bokel, C.; Engelen, J.; Grijpink, S.; Koffeman, E.; Kooijman, P.; Maddox, E.; Pellegrino, A.; Schagen, S.; Tassi, E.; Tiecke, H.; Tuning, N.; Velthuis, J. J.; Wiggers, L.; de Wolf, E.; Brümmer, N.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Boogert, S.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Grzelak, G.; Matsushita, T.; Rigby, M.; Ruske, O.; Sutton, M. R.; Walczak, R.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Garfagnini, A.; Limentani, S.; Longhin, A.; Parenti, A.; Posocco, M.; Stanco, L.; Turcato, M.; Heaphy, E. A.; Oh, B. Y.; Saull, P. R. B.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cormack, C.; Hart, J. C.; McCubbin, N. A.; Heusch, C.; Park, I. H.; Pavel, N.; Abramowicz, H.; Dagan, S.; Gabareen, A.; Kananov, S.; Kreisel, A.; Levy, A.; Abe, T.; Fusayasu, T.; Kohno, T.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Inuzuka, M.; Kitamura, S.; Matsuzawa, K.; Nishimura, T.; Arneodo, M.; Cartiglia, N.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Galea, R.; Koop, T.; Levman, G. M.; Martin, J. F.; Mirea, A.; Sabetfakhri, A.; Butterworth, J. M.; Gwenlan, C.; Hall-Wilton, R.; Jones, T. W.; Lane, J. B.; Lightwood, M. S.; Loizides, J. H.; West, B. J.; Ciborowski, J.; Ciesielski, R.; Nowak, R. J.; Pawlak, J. M.; Smalska, B.; Sztuk, J.; Tymieniecka, T.; Ukleja, A.; Ukleja, J.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Plucinski, P.; Eisenberg, Y.; Gladilin, L. K.; Hochman, D.; Karshon, U.; Kçira, D.; Lammers, S.; Li, L.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Deshpande, A.; Dhawan, S.; Hughes, V. W.; Straub, P. B.; Bhadra, S.; Catterall, C. D.; Fourletov, S.; Menary, S.; Soares, M.; Standage, J.; ZEUS Collaboration

    2002-10-01

    Diffractive production of D∗±(2010) mesons in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 44.3 pb-1. Diffractive charm production is identified by the presence of a large rapidity gap in the final state of events in which a D∗±(2010) meson is reconstructed in the decay channel D∗+→(D0→K-π+)π+s (+ charge conjugate). Differential cross sections when compared with theoretical predictions indicate the importance of gluons in such diffractive interactions.

  8. Low-energy reactive ion scattering as a probe of surface femtochemical reaction: H+ and H- formation on ionic compound surfaces

    NASA Astrophysics Data System (ADS)

    Souda, R.; Suzuki, T.; Kawanowa, H.; Asari, E.

    1999-01-01

    Capture and loss of valence electrons during low-energy (50-500 eV) proton scattering from some alkali-halide surfaces such as LiCl, NaCl, and KF have been investigated in comparison with those from the TiO2(110) and Cs-adsorbed Si(100) surfaces. The primary H+ ion survives neutralization when scattered from the highly ionized target species existing on the surface. For H- ion formation, a close atomic encounter with individual target ions is found to be important; the H- ion is formed more efficiently on the cationic site than on the anionic site despite the fact that the valence electron is spacially localized on the latter. This is because the charge state of scattered hydrogen is determined during a transient chemisorption state and amphoteric hydrogen tends to be coordinated negatively (positively) on the cationic site (the anionic site). The final charge state of scattered hydrogen is fixed at a certain bond-breaking distance (˜5.0 a.u.) from the surface where the well-defined atomic orbital of hydrogen evolves. The competing nonlocal resonance tunneling is suppressed at the ionic-compound surfaces due to the existence of a large band gap, so that hydrogen is scattered without losing the memory of such a transient chemisorption state.

  9. Area production in supercritical, transitional mixing layers for reactive flow applications

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Okong'o, N.

    2002-01-01

    An investigation of surface area production is conducted for supercritical mixing layers; the results are relevant to flame area evolution and fluid disintegration. In this study, the surface is chosen perpendicular to the mass fraction gradient.

  10. Continuous Production of Biodiesel Via an Intensified Reactive/Extractive Process

    SciTech Connect

    Tsouris, Costas; McFarlane, Joanna; Birdwell Jr, Joseph F; Jennings, Hal L

    2008-01-01

    Biodiesel is considered as a means to diversify our supply of transportation fuel, addressing the goal of reducing our dependence on oil. For a number of reasons ranging from production issues to end use, biodiesel represents only a small fraction of the transportation fuel used worldwide. This work addresses the aspect of biodiesel production that limits it to a slow batch process. Conventional production methods are batch in nature, based on the assumption that the rates of the key chemical reactions are slow. The hypothesis motivating this work is that the reaction kinetics for the transesterification of the reagent triglyceride is sufficiently fast, particularly in an excess of catalyst, and that interfacial mass transfer and phase separation control the process. If this is the case, an intensified two-phase reactor adapted from solvent extraction equipment may be utilized to greatly increase biodiesel production rates by increasing interphase transport and phase separation. To prove this idea, we are investigating two aspects: (1) determining the rate-limiting step in biodiesel production by evaluating the reaction kinetics, and (2) enhancing biodiesel production rates by using an intensified reactor. A centrifugal contactor combining interphase mass transfer, chemical reaction, and phase separation is employed for process intensification.

  11. Ingredients contribute to variation in production of reactive oxygen species by areca quid.

    PubMed

    Chen, Ping-Ho; Tsai, Chi-Cheng; Lin, Ying-Chu; Ko, Ying-Chin; Yang, Yi-Hsin; Shieh, Tien-Yu; Ho, Pei-Shan; Li, Chien-Ming; Min-Shan Ko, Albert; Chen, Chung-Ho

    2006-06-01

    Areca quid (AQ) chewing has been implicated an independent risk factor for the development of oral cancer. Taiwanese areca quid (AQ) refers to a combination of areca nut (AN), lime, and inflorescence of Piper betle Linn. (IPB) or Piper betle leaf (PBL). Studies of AQ in other countries reported that AN extract combined with lime generates reactive oxygen species (ROS), such as hydroxyl radical (HO.), known to be a contributing factor in oral mucosa damage. To determine whether HO. is formed in the oral cavity during AQ chewing, the formation of meta-tyrosine (m-Tyr) and ortho-tyrosine (o-Tyr) from l-phenylalanine (Phe) was confirmed. It was demonstrated that combined aqueous extracts of AN, lime, metal ions (such as Cu2+ and Fe2+), and IPB or PBL produced HO.. Thus, the yield of HO. significantly increases when higher amounts of IPB or lime are added and also when Cu2+ and Fe2+ are increased. Further, the omission of any one of these ingredients significantly reduces the formation of HO.. Our results found that chewing AQ with IPB generated significantly higher HO. than chewing AQ with PBL, and may result in greater oxidative damage to the surrounding oral mucosa. PMID:16840253

  12. Alteration of Neutrophil Reactive Oxygen Species Production by Extracts of Devil's Claw (Harpagophytum)

    PubMed Central

    Muzila, Mbaki; Wright, Helen; Roberts, Helen; Grant, Melissa; Nybom, Hilde; Sehic, Jasna; Ekholm, Anders

    2016-01-01

    Harpagophytum, Devil's Claw, is a genus of tuberiferous xerophytic plants native to southern Africa. Some of the taxa are appreciated for their medicinal effects and have been traditionally used to relieve symptoms of inflammation. The objectives of this pilot study were to investigate the antioxidant capacity and the content of total phenols, verbascoside, isoverbascoside, and selected iridoids, as well as to investigate the capacity of various Harpagophytum taxa in suppressing respiratory burst in terms of reactive oxygen species produced by human neutrophils challenged with phorbol myristate acetate (PMA), opsonised Staphylococcus aureus, and Fusobacterium nucleatum. Harpagophytum plants were classified into different taxa according to morphology, and DNA analysis was used to confirm the classification. A putative new variety of H. procumbens showed the highest degree of antioxidative capacity. Using PMA, three Harpagophytum taxa showed anti-inflammatory effects with regard to the PBS control. A putative hybrid between H. procumbens and H. zeyheri in contrast showed proinflammatory effect on the response of neutrophils to F. nucleatum in comparison with treatment with vehicle control. Harpagophytum taxa were biochemically very variable and the response in suppressing respiratory burst differed. Further studies with larger number of subjects are needed to corroborate anti-inflammatory effects of different taxa of Harpagophytum. PMID:27429708

  13. Frequency effects on the production of reactive oxygen species in atmospheric radio frequency helium-oxygen discharges

    SciTech Connect

    Zhang, Yuantao T.; He Jin

    2013-01-15

    Several experimental and computational studies have shown that increasing frequency can effectively enhance the discharge stability in atmospheric radio-frequency (rf) discharges, but the frequency effects on the reactivity of rf discharges, represented by the densities of reactive oxygen species (ROS), are still far from fully understood. In this paper, a one-dimensional fluid model with 17 species and 65 reactions taken into account is used to explore the influences of the driving frequency on the production and destruction of ROS in atmospheric rf helium-oxygen discharges. From the computational results, with an increase in the frequency the densities of ROS decrease always at a constant power density, however, in the relatively higher frequency discharges the densities of ROS can be effectively improved by increasing the input power density with an expanded oxygen admixture range, while the discharges operate in the {alpha} mode, and the numerical data also show the optimal oxygen admixture for ground state atomic oxygen, at which the peak atomic oxygen density can be obtained, increases with the driving frequency.

  14. Cellular Stress Induced by Resazurin Leads to Autophagy and Cell Death Via Production of Reactive Oxygen Species and Mitochondrial Impairment

    PubMed Central

    Erikstein, Bjarte Skoe; Hagland, Hanne Røland; Nikolaisen, Julie; Kulawiec, Mariola; Singh, Keshav K.; Gjertsen, Bjørn Tore; Tronstad, Karl Johan

    2010-01-01

    Mitochondrial bioenergetics and reactive oxygen species (ROS) often play important roles in cellular stress mechanisms. In this study we investigated how these factors are involved in the stress response triggered by resazurin (Alamar Blue) in cultured cancer cells. Resazurin is a redox reactive compound widely used as reporter agent in assays of cell biology (e.g. cell viability and metabolic activity) due to its colorimetric and fluorimetric properties. In order to investigate resazurin-induced stress mechanisms we employed cells affording different metabolic and regulatory phenotypes. In HL-60 and Jurkat leukemia cells resazurin caused mitochondrial disintegration, respiratory dysfunction, reduced proliferation, and cell death. These effects were preceded by a burst of ROS, especially in HL-60 cells which also were more sensitive and contained autophagic vesicles. Studies in Rho0 cells (devoid of mitochondrial DNA) indicated that the stress response does not depend on the rates of mitochondrial respiration. The anti-proliferative effect of resazurin was confirmed in native acute myelogenous leukemia (AML) blasts. In conclusion, the data suggest that resazurin triggers cellular ROS production and thereby initiates a stress response leading to mitochondrial dysfunction, reduced proliferation, autophagy and cell degradation. The ability of cells to tolerate this type of stress may be important in toxicity and chemoresistance. PMID:20568117

  15. Production of γγ+2 jets from double parton scattering in proton-proton collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Tao, Jun-Quan; Zhang, Si-Jing; Shen, Yu-Qiao; Fan, Jia-Wei; Chen, Guo-Ming; Chen, He-Sheng

    2015-12-01

    Cross sections for the production of pairs of photons plus two additional jets produced from double parton scattering in high-energy proton-proton collisions at the LHC are calculated for the first time. The estimates are based on the theoretical perturbative QCD predictions for the productions of γγ at next-to-next-to-leading-order, jet+jet and γ+jet at next-to-leading-order, for their corresponding single-scattering cross sections. The cross sections and expected event rates for γγ+2 jets from double parton scattering, after typical acceptance and selections, are given for proton-proton collisions with the collision energy \\sqrt{s}=13 TeV and integrated luminosity of 100 fb-1 planned for the following years, and also \\sqrt{s}=14 TeV with 3000 fb-1 of integrated luminosity as the LHC design. Supported by National Natural Science Foundation of China (11061140514, 11505208), China Ministry of Science and Technology (2013CB838700) and CAS Center for Excellence in Particle Physics (CCEPP)

  16. A new High-level Gridded Madrigal Data Product for IPY Incoherent Scatter Radar Data and Model Output.

    NASA Astrophysics Data System (ADS)

    Holt, J. M.

    2008-12-01

    The World's high-latitude incoherent scatter radars are contributing to the International Polar Year (IPY) through an unprecedented set of long-duration runs. From March, 2007 through February, 2008 he EISCAT Svalbard Radar and the Poker Flat Incoherent Scatter Radar operated almost continuously and the Sondrestromfjord and Millstone Hill Radars ran on a regular biweekly schedule. These extensive data sets present a major data handling challenge as do the physics-based model runs covering this period. The radar data are all available through the distributed Madrigal Database. However, the radars employ different, sometimes complex, operating modes which can present a significant challenge to modelers and other users who are not experts in the incoherent scatter radar technique. We have addressed this problem by developing a higher level data product which casts the data from all the radars into an identical gridded form. Several modelers are also providing model output through Madrigal in the same format. For the radar data, tensor product cubic spline fits to the measured electron density, ion temperature and electron temperature are computed and output in Madrigal format at 15 minute intervals and a standard set of altitudes from 100 to 548 km. In addition, hmF2, integrated electron content and the neutral temperature are computed and included in the output Madrigal file. As an aid to studying day-to-day variability, files have been produced both for individual days of the year and monthly averages.

  17. Piperlongumine Suppresses Dendritic Cell Maturation by Reducing Production of Reactive Oxygen Species and Has Therapeutic Potential for Rheumatoid Arthritis.

    PubMed

    Xiao, Youjun; Shi, Maohua; Qiu, Qian; Huang, Mingcheng; Zeng, Shan; Zou, Yaoyao; Zhan, Zhongping; Liang, Liuqin; Yang, Xiuyan; Xu, Hanshi

    2016-06-15

    Piperlongumine (PLM) is a natural product from the plant Piper longum that inhibits platelet aggregation, atherosclerosis plaque formation, and tumor cell growth. It has potential value in immunomodulation and the management of autoimmune diseases. In this study, we investigated the role of PLM in regulating the differentiation and maturation of dendritic cells (DCs), a critical regulator of immune tolerance, and evaluated its clinical effects in a rheumatoid arthritis mouse model. We found that PLM treatment reduced LPS-induced murine bone marrow-derived DC maturation, characterized by reduced expression of CD80/86, secretion of MCP-1, IL-12p70, IL-6, TNFα, IFN-γ, and IL-23, and reduced alloproliferation of T cells; however, PLM does not affect cell differentiation. Furthermore, PLM reduced intracellular reactive oxygen species (ROS) production by DCs and inhibited the activation of p38, JNK, NF-κB, and PI3K/Akt signaling pathways. Conversely, PLM increased the expression of GSTP1 and carbonyl reductase 1, two enzymes that counteract ROS effects. ROS inhibition by exogenous N-acetyl-l-cysteine suppressed DC maturation. PLM treatment improved the severity of arthritis and reduced in vivo splenic DC maturation, collagen-specific CD4(+) T cell responses, and ROS production in mice with collagen-induced arthritis. Taken together, these results suggest that PLM inhibits DC maturation by reducing intracellular ROS production and has potential as a therapeutic agent for rheumatoid arthritis. PMID:27183580

  18. Arylhydrocarbon receptor (AhR) activation in airway epithelial cells induces MUC5AC via reactive oxygen species (ROS) production.

    PubMed

    Chiba, Takahito; Uchi, Hiroshi; Tsuji, Gaku; Gondo, Hisaki; Moroi, Yoichi; Furue, Masutaka

    2011-02-01

    The dioxins and dioxin-like compounds in cigarette smoke regulate various immunological responses via the arylhydrocarbon receptor (AhR). These environmental toxicants are known to cause bronchitis, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. Recent studies have demonstrated that AhR activation upregulates the expression of mucin 5AC, oligomeric mucus/gel-forming (MUC5AC) in the airway epithelial cell line. However, the mechanism for the production of mucin has not been clarified. In this study, we investigated the role and pathway of AhR in airway epithelial cells by using selective agonists and antagonists. After stimulation with or without benzopyrene (B[a]P), an AhR agonist, MUC5AC expression was measured by real-time RT-PCR. The mechanism of AhR-induced MUC5AC expression in airway epithelial cells was studied in terms of the production of cytokine and reactive oxygen species (ROS). Treatment with B[a]P increased ROS generation in NCI-H₂₉₂ cells. Furthermore, B[a]P-induced MUC5AC upregulation and mucin production were inhibited by AhR siRNA or the use of an antioxidative agent. These results suggest that the AhR-induced increase of mucin production is partially mediated by ROS generation. An antioxidant therapy approach may help to cure AhR-induced mucus hypersecretory diseases. PMID:20709182

  19. Effect of an inhaled glucocorticoid on reactive oxygen species production by bronchoalveolar lavage cells from smoking COPD patients.

    PubMed Central

    Verhoeven, G T; Wijkhuijs, A J; Hooijkaas, H; Hoogsteden, H C; Sluiter, W

    2000-01-01

    Oxidative stress in the lung is important in the pathogenesis of COPD. Published data indicate that glucocorticoids inhibit blood cells in their capacity to produce reactive oxygen species (ROS). We investigated the effect of Fluticasone propionate (FP) on the ROS production capabilities of pulmonary cells. Bronchoalveolar lavage (BAL) was performed in smoking COPD patients, before and after a six month, placebo-controlled treatment with FP. BAL cells were stimulated with phorbol myristrate acetate (PMA) alone, and together with superoxide dismutase (SOD). From kinetic plots of ferricytochrome-c conversion we calculated the maximal rate of superoxide production: V(max). We also examined BAL cell subsets and performed correlation analyses on ROS production and relevant clinical determinants. Paired results were obtained from 6 FP- and 9 placebo-treated patients. No significant change of V(max) was found in both patient groups. Also BAL cellularity was unchanged. Correlation analyses showed a significant (inverse) association of V(max) with the number of cigarettes smoked per day. We concluded that a potent inhaled glucocorticoid had no effect on the ROS production capability of BAL cells from smoking COPD patients. Apparently, heavy smoking impaired the ability of alveolar macrophages to produce ROS, which was not further decreased by FP. PMID:10958384

  20. Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: surface tension depression and secondary organic products

    NASA Astrophysics Data System (ADS)

    Li, Z.; Schwier, A. N.; Sareen, N.; McNeill, V. F.

    2011-11-01

    The reactive uptake of carbonyl-containing volatile organic compounds (cVOCs) by aqueous atmospheric aerosols is a likely source of particulate organic material. The aqueous-phase secondary organic products of some cVOCs are surface-active. Therefore, cVOC uptake can lead to organic film formation at the gas-aerosol interface and changes in aerosol surface tension. We examined the chemical reactions of two abundant cVOCs, formaldehyde and acetaldehyde, in water and aqueous ammonium sulfate (AS) solutions mimicking tropospheric aerosols. Secondary organic products were identified using Aerosol Chemical Ionization Mass Spectrometry (Aerosol-CIMS), and changes in surface tension were monitored using pendant drop tensiometry. Hemiacetal oligomers and aldol condensation products were identified using Aerosol-CIMS. Acetaldehyde depresses surface tension to 65(±2) dyn cm-1 in pure water (a 10% surface tension reduction from that of pure water) and 62(±1) dyn cm-1 in AS solutions (a 20.6% reduction from that of a 3.1 M AS solution). Surface tension depression by formaldehyde in pure water is negligible; in AS solutions, a 9% reduction in surface tension is observed. Mixtures of these species were also studied in combination with methylglyoxal in order to evaluate the influence of cross-reactions on surface tension depression and product formation in these systems. We find that surface tension depression in the solutions containing mixed cVOCs exceeds that predicted by an additive model based on the single-species isotherms.

  1. Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: surface tension depression and secondary organic products

    NASA Astrophysics Data System (ADS)

    Li, Z.; Schwier, A. N.; Sareen, N.; McNeill, V. F.

    2011-07-01

    The reactive uptake of carbonyl-containing volatile organic compounds (cVOCs) by aqueous atmospheric aerosols is a likely source of particulate organic material. The aqueous-phase secondary organic products of some cVOCs are surface-active. Therefore, cVOC uptake can lead to organic film formation at the gas-aerosol interface and changes in aerosol surface tension. We examined the chemical reactions of two abundant cVOCs, formaldehyde and acetaldehyde, in water and aqueous ammonium sulfate (AS) solutions mimicking tropospheric aerosols. Secondary organic products were identified using Aerosol Chemical Ionization Mass Spectrometry (Aerosol-CIMS), and changes in surface tension were monitored using pendant drop tensiometry. Hemiacetal oligomers and aldol condensation products were identified using Aerosol-CIMS. A hemiacetal sulfate ester was tentatively identified in the formaldehyde-AS system. Acetaldehyde depresses surface tension to 65(±2) dyn cm-1 in pure water and 62(±1) dyn cm-1 in AS solutions. Surface tension depression by formaldehyde in pure water is negligible; in AS solutions, a 9 % reduction in surface tension is observed. Mixtures of these species were also studied in combination with methylglyoxal in order to evaluate the influence of cross-reactions on surface tension depression and product formation in these systems. We find that surface tension depression in the solutions containing mixed cVOCs exceeds that predicted by an additive model based on the single-species isotherms.

  2. beta-aminobutyric acid primes an NADPH oxidase-dependent reactive oxygen species production during grapevine-triggered immunity.

    PubMed

    Dubreuil-Maurizi, Carole; Trouvelot, Sophie; Frettinger, Patrick; Pugin, Alain; Wendehenne, David; Poinssot, Benoît

    2010-08-01

    The molecular mechanisms underlying the process of priming are poorly understood. In the present study, we investigated the early signaling events triggered by beta-aminobutyric acid (BABA), a well-known priming-mediated plant resistance inducer. Our results indicate that, in contrast to oligogalacturonides (OG), BABA does not elicit typical defense-related early signaling events nor defense-gene expression in grapevine. However, in OG-elicited cells pretreated with BABA, production of reactive oxygen species (ROS) and expression of the respiratory-burst oxidase homolog RbohD gene were primed. In response to the causal agent of downy mildew Plasmopara viticola, a stronger ROS production was specifically observed in BABA-treated leaves. This process was correlated with an increased resistance. The NADPH oxidase inhibitor diphenylene iodonium (DPI) abolished this primed ROS production and reduced the BABA-induced resistance (BABA-IR). These results suggest that priming of an NADPH oxidase-dependent ROS production contributes to BABA-IR in the Vitis-Plasmopara pathosystem. PMID:20615112

  3. NADPH oxidase-dependent production of reactive oxygen species induces endoplasmatic reticulum stress in neutrophil-like HL60 cells.

    PubMed

    Kuwabara, Wilson Mitsuo Tatagiba; Zhang, Liling; Schuiki, Irmgard; Curi, Rui; Volchuk, Allen; Alba-Loureiro, Tatiana Carolina

    2015-01-01

    Reactive oxygen species (ROS) primarily produced via NADPH oxidase play an important role for killing microorganisms in neutrophils. In this study we examined if ROS production in Human promyelocytic leukemia cells (HL60) differentiated into neutrophil-like cells (dHL60) induces ER stress and activates the unfolded protein response (UPR). To cause ROS production cells were treated with PMA or by chronic hyperglycemia. Chronic hyperglycemia failed to induce ROS production and did not cause activation of the UPR in dHL60 cells. PMA, a pharmacologic NADPH oxidase activator, induced ER stress in dHL60 cells as monitored by IRE-1 and PERK pathway activation, and this was independent of calcium signaling. The NADPH oxidase inhibitor, DPI, abolished both ROS production and UPR activation. These results show that ROS produced by NADPH oxidase induces ER stress and suggests a close association between the redox state of the cell and the activation of the UPR in neutrophil-like HL60 cells. PMID:25668518

  4. Search for optimal conditions for exploring double-parton scattering in four-jet production: kT -factorization approach

    NASA Astrophysics Data System (ADS)

    Kutak, Krzysztof; Maciuła, Rafał; Serino, Mirko; Szczurek, Antoni; van Hameren, Andreas

    2016-07-01

    In the present paper, we discuss how to maximize the double-parton scattering (DPS) contribution in four-jet production by selecting kinematical cuts. Here both single-parton and double-parton scattering effects are calculated in the kT -factorization approach, following our recent developments of relevant methods and tools. Several differential distributions are shown and discussed in the context of future searches for DPS effects, such as rapidity of jets, rapidity distance, and azimuthal correlations between jets. The dependence of the relative DPS amount is studied as a function of those observables. The regions with an enhanced DPS contribution are identified. Future experimental explorations could extract more precise values of σeff and its potential dependence on kinematical variables.

  5. Reactive Oxygen Species Production by Potato Tuber Mitochondria Is Modulated by Mitochondrially Bound Hexokinase Activity1

    PubMed Central

    Camacho-Pereira, Juliana; Meyer, Laudiene Evangelista; Machado, Lilia Bender; Oliveira, Marcus Fernandes; Galina, Antonio

    2009-01-01

    Potato tuber (Solanum tuberosum) mitochondria (PTM) have a mitochondrially bound hexokinase (HK) activity that exhibits a pronounced sensitivity to ADP inhibition. Here we investigated the role of mitochondrial HK activity in PTM reactive oxygen species generation. Mitochondrial HK has a 10-fold higher affinity for glucose (Glc) than for fructose (KMGlc = 140 μm versus KMFrc = 1,375 μm). Activation of PTM respiration by succinate led to an increase in hydrogen peroxide (H2O2) release that was abrogated by mitochondrial HK activation. Mitochondrial HK activity caused a decrease in the mitochondrial membrane potential and an increase in oxygen consumption by PTM. Inhibition of Glc phosphorylation by mannoheptulose or GlcNAc induced a rapid increase in H2O2 release. The blockage of H2O2 release sustained by Glc was reverted by oligomycin and atractyloside, indicating that ADP recycles through the adenine nucleotide translocator and F0F1ATP synthase is operative during the mitochondrial HK reaction. Inhibition of mitochondrial HK activity by 60% to 70% caused an increase of 50% in the maximal rate of H2O2 release. Inhibition in H2O2 release by mitochondrial HK activity was comparable to, or even more potent, than that observed for StUCP (S. tuberosum uncoupling protein) activity. The inhibition of H2O2 release in PTM was two orders of magnitude more selective for the ADP produced from the mitochondrial HK reaction than for that derived from soluble yeast (Saccharomyces cerevisiae) HK. Modulation of H2O2 release and oxygen consumption by Glc and mitochondrial HK inhibitors in potato tuber slices shows that hexoses and mitochondrial HK may act as a potent preventive antioxidant mechanism in potato tubers. PMID:19109413

  6. The Stimulated Innate Resistance Event in Bordetella pertussis Infection Is Dependent on Reactive Oxygen Species Production

    PubMed Central

    Zurita, E.; Moreno, G.; Errea, A.; Ormazabal, M.; Rumbo, M.

    2013-01-01

    The exacerbated induction of innate immune responses in airways can abrogate diverse lung infections by a phenomenon known as stimulated innate resistance (StIR). We recently demonstrated that the enhancement of innate response activation can efficiently impair Bordetella pertussis colonization in a Toll-like receptor 4 (TLR4)-dependent manner. The aim of this work was to further characterize the effect of lipopolysaccharide (LPS) on StIR and to identify the mechanisms that mediate this process. Our results showed that bacterial infection was completely abrogated in treated mice when the LPS of B. pertussis (1 μg) was added before (48 h or 24 h), after (24 h), or simultaneously with the B. pertussis challenge (107 CFU). Moreover, we detected that LPS completely cleared bacterial infection as soon as 2 h posttreatment. This timing suggests that the observed StIR phenomenon should be mediated by fast-acting antimicrobial mechanisms. Although neutrophil recruitment was already evident at this time point, depletion assays using an anti-GR1 antibody showed that B. pertussis clearance was achieved even in the absence of neutrophils. To evaluate the possible role of free radicals in StIR, we performed animal assays using the antioxidant N-acetyl cysteine (NAC), which is known to inactivate oxidant species. NAC administration blocked the B. pertussis clearance induced by LPS. Nitrite concentrations were also increased in the LPS-treated mice; however, the inhibition of nitric oxide synthetases did not suppress the LPS-induced bacterial clearance. Taken together, our results show that reactive oxygen species (ROS) play an essential role in the TLR4-dependent innate clearance of B. pertussis. PMID:23630952

  7. Mechanotransduction Drives Post Ischemic Revascularization Through KATP Channel Closure and Production of Reactive Oxygen Species

    PubMed Central

    Browning, Elizabeth; Wang, Hui; Hong, Nankang; Yu, Kevin; Buerk, Donald G.; DeBolt, Kristine; Gonder, Daniel; Sorokina, Elena M.; Patel, Puja; De Leon, Diva D.; Feinstein, Sheldon I.; Fisher, Aron B.

    2014-01-01

    Abstract Aims: We reported earlier that ischemia results in the generation of reactive oxygen species (ROS) via the closure of a KATP channel which causes membrane depolarization and NADPH oxidase 2 (NOX2) activation. This study was undertaken to understand the role of ischemia-mediated ROS in signaling. Results: Angiogenic potential of pulmonary microvascular endothelial cells (PMVEC) was studied in vitro and in the hind limb in vivo. Flow adapted PMVEC injected into a Matrigel matrix showed significantly higher tube formation than cells grown under static conditions or cells from mice with knockout of KATP channels or the NOX2. Blocking of hypoxia inducible factor-1 alpha (HIF-1α) accumulation completely abrogated the tube formation in wild-type (WT) PMVEC. With ischemia in vivo (femoral artery ligation), revascularization was high in WT mice and was significantly decreased in mice with knockout of KATP channel and in mice orally fed with a KATP channel agonist. In transgenic mice with endothelial-specific NOX2 expression, the revascularization observed was intermediate between that of WT and knockout of KATP channel or NOX2. Increased HIF-1α activation and vascular endothelial growth factor (VEGF) expression was observed in ischemic tissue of WT mice but not in KATP channel and NOX2 null mice. Revascularization could be partially rescued in KATP channel null mice by delivering VEGF into the hind limb. Innovation: This is the first report of a mechanosensitive ion channel (KATP channel) initiating endothelial signaling that drives revascularization. Conclusion: The KATP channel responds to the stop of flow and activates signals for revascularization to restore the impeded blood flow. Antioxid. Redox Signal. 20, 872–886. PMID:23758611

  8. Production of a High-affinity Monoclonal Antibody Reactive with Folate Receptors Alpha and Beta.

    PubMed

    Nagai, Taku; Furusho, Yuko; Li, Hua; Hasui, Kazuhisa; Matsukita, Sumika; Sueyoshi, Kazunobu; Yanagi, Masakazu; Hatae, Masaki; Takao, Sonshin; Matsuyama, Takami

    2015-06-01

    Folate receptors α (FRα) and β (FRβ) are two isoforms of the cell surface glycoprotein that binds folate. The expression of FRα is rare in normal cells and elevated in cancer cells. Thus, FRα-based tumor-targeted therapy has been a focus area of laboratory research and clinical trials. Recently, it was shown that a significant fraction of tumor-associated macrophages expresses FRβ and that these cells can enhance tumor growth. Although FRα and FRβ share 70% identity in their deduced amino acid sequence, a monoclonal antibody (MAb) reactive with both receptors has not been developed. A MAb that can target both FRα-expressing cancer cells and FRβ-expressing tumor-associated macrophages may provide a more potent therapeutic tool for cancer than individual anti-FRα or anti-FRβ MAbs. In this study, we developed a MAb that recognizes both FRα and FRβ (anti-FRαβ). The anti-FRαβ specifically stained trophoblasts and macrophages from human placenta, synovial macrophages from rheumatoid arthritis patient, liver macrophages from cynomolgus monkey and common marmoset, and cancer cells and tumor-associated macrophages from ovary and lung carcinomas. Surface plasmon resonance showed that the anti-FRαβ bound to soluble forms of the FRα and FRβ proteins with high affinity (KD=6.26×10(-9) M and 4.33×10(-9) M, respectively). In vitro functional analysis of the anti-FRαβ showed that this MAb mediates complement-dependent cytotoxicity, antibody-dependent cellular cytotoxicity, and antibody-dependent cellular phagocytosis of FRα-expressing and FRβ-expressing cell lines. The anti-FRαβ MAb is a promising therapeutic candidate for cancers in which macrophages promote tumor progression. PMID:26090596

  9. Ischemic Preconditioning Preserves Mitochondrial Membrane Potential and Limits Reactive Oxygen Species Production

    PubMed Central

    Quarrie, Ricardo; Lee, Daniel S.; Steinbaugh, Gregory; Cramer, Brandon; Erdahl, Warren; Pfeiffer, Douglas R.; Zweier, Jay L.; Crestanello, Juan A.

    2012-01-01

    Background Mitochondrial superoxide radical (O2•−) production increases after cardiac ischemia-reperfusion (IR). Ischemic preconditioning (IPC) preserves mitochondrial function and attenuates O2•− production, but the mechanism is unknown. Mitochondrial membrane potential (mΔΨ) is known to affect O2•− production; mitochondrial depolarization decreases O2•− formation. We examined the relationship between O2•− production and mΔΨ during IR and IPC. Materials/Methods Rat hearts were subjected to Control or IPC. Mitochondria were isolated at end-equilibration (End EQ), end-ischemia (End I) and end-reperfusion (End RP). mΔΨ was measured using a tetraphenylphosphonium electrode. Mitochondrial O2•− production was measured by electron paramagnetic resonance (EPR) using DMPO spin trap. Cytochrome c levels were measured using high pressure liquid chromatography. Results IPC preserved mΔΨ at End I (−156±5 vs. −131±6 mV, p<0.001) and End RP (−168±2 vs. −155±2 mV, p<0.05). At End RP, IPC attenuated O2•− production (2527±221 vs. 3523±250 AU/mg protein, p<0.05). IPC preserved cytochrome c levels (351±14 vs. 269±16 picomoles/mg protein, p<0.05) at End RP, and decreased mitochondrial cristae disruption (10±4 vs. 33±7%, p<0.05) and amorphous density formation (18±4 vs. 28±1%, p<0.05). Conclusion We conclude that IPC preserves mΔΨ, possibly by limiting disruption of mitochondrial inner membrane. IPC also decreases mitochondrial O2•− production and preserves mitochondrial ultrastructure after IR. While it was previously held that slight decreases in mΔΨ decrease O2•− production, our results indicate that preservation of mΔΨ is associated with decreased O2•− and preservation of cardiac function in IPC. These findings indicate that the mechanism of IPC may not involve mΔΨ depolarization, but rather preservation of mitochondrial electrochemical potential. PMID:22763215

  10. Hypoxia dysregulates the production of adiponectin and plasminogen activator inhibitor-1 independent of reactive oxygen species in adipocytes

    SciTech Connect

    Chen Baoying; Lam, Karen S.L.; Wang Yu; Wu Donghai; Lam, Michael C.; Shen Jiangang; Wong Laiching; Hoo, Ruby L.C.; Zhang Jialiang; Xu Aimin . E-mail: amxu@hkucc.hku.hk

    2006-03-10

    Low plasma levels of adiponectin (hypoadiponectinemia) and elevated circulating concentrations of plasminogen activator inhibitor (PAI)-1 are causally associated with obesity-related insulin resistance and cardiovascular disease. However, the mechanism that mediates the aberrant production of these two adipokines in obesity remains poorly understood. In this study, we investigated the effects of hypoxia and reactive oxygen species (ROS) on production of adiponectin and PAI-1 in 3T3-L1 adipocytes. Quantitative PCR and immunoassays showed that ambient hypoxia markedly suppressed adiponectin mRNA expression and its protein secretion, and increased PAI-1 production in mature adipocytes. Dimethyloxallyl glycine, a stabilizer of hypoxia-inducible factor 1{alpha} (HIF-1{alpha}), mimicked the hypoxia-mediated modulations of these two adipokines. Hypoxia caused a modest elevation of ROS in adipocytes. However, ablation of intracellular ROS by antioxidants failed to alleviate hypoxia-induced aberrant production of adiponectin and PAI-1. On the other hand, the antioxidants could reverse hydrogen peroxide (H{sub 2}O{sub 2})-induced dysregulation of adiponectin and PAI-1 production. H{sub 2}O{sub 2} treatment decreased the expression levels of peroxisome proliferator-activated receptor gamma (PPAR{gamma}) and CCAAT/enhancer binding protein (C/EBP{alpha}), but had no effect on HIF-1{alpha}, whereas hypoxia stabilized HIF-1{alpha} and decreased expression of C/EBP{alpha}, but not PPAR{gamma}. Taken together, these data suggest that hypoxia and ROS decrease adiponectin production and augment PAI-1 expression in adipocytes via distinct signaling pathways. These effects may contribute to hypoadiponectinemia and elevated PAI-1 levels in obesity, type 2 diabetes, and cardiovascular diseases.

  11. Photosensitized Production of Atmospherically Reactive Organic Compounds at the Air/Aqueous Interface

    PubMed Central

    2015-01-01

    We report on experiments that probe photosensitized chemistry at the air/water interface, a region that does not just connect the two phases but displays its own specific chemistry. Here, we follow reactions of octanol, a proxy for environmentally relevant soluble surfactants, initiated by an attack by triplet-state carbonyl compounds, which are themselves concentrated at the interface by the presence of this surfactant. Gas-phase products are determined using PTR-ToF-MS, and those remaining in the organic layer are determined by ATR-FTIR spectroscopy and HPLC-HRMS. We observe the photosensitized production of carboxylic acids as well as unsaturated and branched-chain oxygenated products, compounds that act as organic aerosol precursors and had been thought to be produced solely by biological activity. A mechanism that is consistent with the observations is detailed here, and the energetics of several key reactions are calculated using quantum chemical methods. The results suggest that the concentrating nature of the interface leads to its being a favorable venue for radical reactions yielding complex and functionalized products that themselves could initiate further secondary chemistry and new particle formation in the atmospheric environment. PMID:26068588

  12. ORGANIC MATTER REACTIVITY SURROGATE FOR THE ESTIMATION OF DISINFECTION BY-PRODUCTS FORMATION POTENTIAL

    EPA Science Inventory

    The EPA Office of Ground Water and Drinking Water must have a total organic carbon (TOC) method that can meet the monitoring requirements as originally proposed in the Stage 1, Disinfection By-Products (D/DBP) Rule, as stated in the Federal Register. Research under this task, th...

  13. Photosensitized Production of Atmospherically Reactive Organic Compounds at the Air/Aqueous Interface.

    PubMed

    Fu, Hongbo; Ciuraru, Raluca; Dupart, Yoan; Passananti, Monica; Tinel, Liselotte; Rossignol, Stéphanie; Perrier, Sebastien; Donaldson, D James; Chen, Jianmin; George, Christian

    2015-07-01

    We report on experiments that probe photosensitized chemistry at the air/water interface, a region that does not just connect the two phases but displays its own specific chemistry. Here, we follow reactions of octanol, a proxy for environmentally relevant soluble surfactants, initiated by an attack by triplet-state carbonyl compounds, which are themselves concentrated at the interface by the presence of this surfactant. Gas-phase products are determined using PTR-ToF-MS, and those remaining in the organic layer are determined by ATR-FTIR spectroscopy and HPLC-HRMS. We observe the photosensitized production of carboxylic acids as well as unsaturated and branched-chain oxygenated products, compounds that act as organic aerosol precursors and had been thought to be produced solely by biological activity. A mechanism that is consistent with the observations is detailed here, and the energetics of several key reactions are calculated using quantum chemical methods. The results suggest that the concentrating nature of the interface leads to its being a favorable venue for radical reactions yielding complex and functionalized products that themselves could initiate further secondary chemistry and new particle formation in the atmospheric environment. PMID:26068588

  14. Stable bio-oil production from proteinaceous cyanobacteria: tail gas reactive pyrolysis of spirulina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrolysis of Spirulina, a cyanobacteria with high levels of protein (74 wt %) and low levels of lipid (0.8 wt %) content, has the potential to produce fuels and platform chemicals that differ from those produced from lignocellulosic materials. The yields and product distribution from fluidized-bed p...

  15. Spatial Coordination of Aluminum Uptake, Production of Reactive Oxygen Species, Callose Production and Wall Rigidification in Maize Roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum toxicity associated with acid soils represents one of the biggest limitations to crop production worldwide. Although Al specifically inhibits the elongation of root cells, the exact mechanism by which this growth reduction occurs remains controversial. The aim of this study was to investiga...

  16. Production seismology: The use of shear waves to monitor and mode production in a poro-reactive and interactive reservoir

    SciTech Connect

    Crampin, S.; Zatsepin, S.V.

    1995-12-31

    A new understanding of stressed fluid-saturated porous rock shows that rock responds to small changes in stress, pressure, and other phenomena, by modifying the micro-scale geometry of intergranular microcracks and pores. We show that shear-wave propagation is directly coupled to this internal fluid/rock geometry, so that the micro-scale deformation can be monitored by analyzing the behavior of seismic shear waves. The shear waves carry three-dimensional information and are much more sensitive than P-waves to the possibly-marginal anisotropic changes in reservoirs during hydrocarbon production. These fluid/rock changes can be numerically modeled, and can be monitored in detail by analyzing shear waves along a few appropriate ray paths. Consequently, shear-wave technology could provide a feedback mechanism for production engineers for controlling the progress of production fronts and in the development of hydrocarbon reservoirs. In order to implement such techniques, high-frequency shear waves need to be recorded along comparatively short ray paths within the reservoir itself. This a new requirement for seismology which existing exploration technologies cannot meet. Possible techniques for production seismology are suggested.

  17. Reactive oxygen species (ROS) production in human peripheral blood neutrophils exposed in vitro to static magnetic field.

    PubMed

    Poniedziałek, Barbara; Rzymski, Piotr; Karczewski, Jacek; Jaroszyk, Feliks; Wiktorowicz, Krzysztof

    2013-12-01

    The aim of this study was to determine the effect of gradient static magnetic field (SMF) on reactive oxygen species (ROS) production in human neutrophils in peripheral blood in vitro. Blood samples collected from healthy individuals were incubated in an inhomogeneous SMF (in a south or north pole of the field) for 15, 30 or 45 minutes. The maximum value of induction (B max) amounted to ≈ 60 mT. To determine the strength of the ROS production, dihydrorhodamine (123DHR) as fluorophore and phorbol 12-myristate 13-acetate (PMA) as respiratory burst stimulator were used. 123DHR oxidation by ROS was measured by flow cytometry. The exposure of blood samples to SMF induced statistically significant changes in ROS production in unstimulated and PMA-stimulated neutrophils. The observed effects were highly correlated with the exposure time and depended on the orientation of the field. Although intracellular mechanisms underlying such interactions are not thoroughly understood, it could be presumed that SMF affects ROS metabolic oscillations and their formation and inactivation. This study emphasizes the importance of proper adjustment of exposure time to SMF for any potential therapeutic applications. PMID:23631724

  18. A quantitative method to monitor reactive oxygen species production by electron paramagnetic resonance in physiological and pathological conditions.

    PubMed

    Mrakic-Sposta, Simona; Gussoni, Maristella; Montorsi, Michela; Porcelli, Simone; Vezzoli, Alessandra

    2014-01-01

    The growing interest in the role of Reactive Oxygen Species (ROS) and in the assessment of oxidative stress in health and disease clashes with the lack of consensus on reliable quantitative noninvasive methods applicable. The study aimed at demonstrating that a recently developed Electron Paramagnetic Resonance microinvasive method provides direct evidence of the "instantaneous" presence of ROS returning absolute concentration levels that correlate with "a posteriori" assays of ROS-induced damage by means of biomarkers. The reliability of the choice to measure ROS production rate in human capillary blood rather than in plasma was tested (step I). A significant (P < 0.01) linear relationship between EPR data collected on capillary blood versus venous blood (R (2) = 0.95), plasma (R (2) = 0.82), and erythrocytes (R (2) = 0.73) was found. Then (step II) ROS production changes of various subjects' categories, young versus old and healthy versus pathological at rest condition, were found significantly different (range 0.0001-0.05 P level). The comparison of the results with antioxidant capacity and oxidative damage biomarkers concentrations showed that all changes indicating increased oxidative stress are directly related to ROS production increase. Therefore, the adopted method may be an automated technique for a lot of routine in clinical trials. PMID:25374651

  19. Entropy and chemical change. 1: Characterization of product (and reactant) energy distributions in reactive molecular collisions: Information and enthropy deficiency

    NASA Technical Reports Server (NTRS)

    Bernstein, R. B.; Levine, R. D.

    1972-01-01

    Optimal means of characterizing the distribution of product energy states resulting from reactive collisions of molecules with restricted distributions of initial states are considered, along with those for characterizing the particular reactant state distribution which yields a given set of product states at a specified total energy. It is suggested to represent the energy-dependence of global-type results in the form of square-faced bar plots, and of data for specific-type experiments as triangular-faced prismatic plots. The essential parameters defining the internal state distribution are isolated, and the information content of such a distribution is put on a quantitative basis. The relationship between the information content, the surprisal, and the entropy of the continuous distribution is established. The concept of an entropy deficiency, which characterizes the specificity of product state formation, is suggested as a useful measure of the deviance from statistical behavior. The degradation of information by experimental averaging is considered, leading to bounds on the entropy deficiency.

  20. A Quantitative Method to Monitor Reactive Oxygen Species Production by Electron Paramagnetic Resonance in Physiological and Pathological Conditions

    PubMed Central

    Mrakic-Sposta, Simona; Gussoni, Maristella; Montorsi, Michela; Porcelli, Simone; Vezzoli, Alessandra

    2014-01-01

    The growing interest in the role of Reactive Oxygen Species (ROS) and in the assessment of oxidative stress in health and disease clashes with the lack of consensus on reliable quantitative noninvasive methods applicable. The study aimed at demonstrating that a recently developed Electron Paramagnetic Resonance microinvasive method provides direct evidence of the “instantaneous” presence of ROS returning absolute concentration levels that correlate with “a posteriori” assays of ROS-induced damage by means of biomarkers. The reliability of the choice to measure ROS production rate in human capillary blood rather than in plasma was tested (step I). A significant (P < 0.01) linear relationship between EPR data collected on capillary blood versus venous blood (R2 = 0.95), plasma (R2 = 0.82), and erythrocytes (R2 = 0.73) was found. Then (step II) ROS production changes of various subjects' categories, young versus old and healthy versus pathological at rest condition, were found significantly different (range 0.0001–0.05 P level). The comparison of the results with antioxidant capacity and oxidative damage biomarkers concentrations showed that all changes indicating increased oxidative stress are directly related to ROS production increase. Therefore, the adopted method may be an automated technique for a lot of routine in clinical trials. PMID:25374651

  1. Galangin prevents aminoglycoside-induced ototoxicity by decreasing mitochondrial production of reactive oxygen species in mouse cochlear cultures.

    PubMed

    Kim, Ye-Ri; Kim, Min-A; Cho, Hyun-Ju; Oh, Se-Kyung; Lee, In-Kyu; Kim, Un-Kyung; Lee, Kyu-Yup

    2016-03-14

    Amikacin is a semi-synthetic aminoglycoside widely used to treat infections caused by gentamicin-resistant gram-negative organisms and nontuberculous mycobacteria. However, the use of this agent often results in ototoxicity due to the overproduction of reactive oxygen species (ROS). Galangin, a natural flavonoid, has been shown to play a protective role against mitochondrial dysfunction by reducing mitochondrial ROS production. In this study, the effect of galangin on amikacin-induced ototoxicity was examined using cultures of cochlear explants. Immunofluorescent staining showed that treatment of inner hair cells (IHCs) and outer hair cells (OHCs) with galangin significantly decreased damage induced by amikacin. Moreover, pretreatment with galangin resulted in decreased amikacin-provoked increase in ROS production in both types of hair cells by MitoSOX-red staining. Attenuation of apoptotic cell death was assessed immunohistochemically using active caspase-3 antibody and with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, compared to explants exposed to amikacin alone (P<0.05). These results indicate that galangin protects hair cells in the organ of Corti from amikacin-induced toxicity by reducing the production of mitochondrial ROS. The results of this study suggest that galangin can potentially be used as an antioxidant and antiapoptotic agent to prevent hearing loss caused by aminoglycoside induced-oxidative stress. PMID:26778349

  2. Optimization of supercritical methanol reactive extraction by response surface methodology and product characterization from Jatropha curcas L. seeds.

    PubMed

    Lim, Steven; Lee, Keat Teong

    2013-08-01

    In this study, optimization of supercritical reactive extraction directly from Jatropha seeds in a high pressure batch reactor using Response Surface Methodology (RSM) coupled with Central Composite Rotatable Design (CCRD) was performed. Four primary variables (methanol to solid ratio (SSR), reaction temperature, time and CO2 initial pressure) were investigated under the proposed constraints. It was found that all variables had significant effects towards fatty acid methyl esters (FAME) yield. Moreover, three interaction effects between the variables also played a major role in influencing the final FAME yield. Optimum FAME yield at 92.0 wt.% was achieved under the following conditions: 5.9 SSR, 300°C, 12.3 min and 20 bar CO2. Final FAME product was discovered to fulfil existing international standard. Preliminary characterization analysis proved that the solid residue can be burnt as solid fuel in the form of biochar while the liquid product can be separated as specialty chemicals or burned as bio-oil for energy production. PMID:23735793

  3. Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States.

    PubMed

    Eshel, Gidon; Shepon, Alon; Makov, Tamar; Milo, Ron

    2014-08-19

    Livestock production impacts air and water quality, ocean health, and greenhouse gas (GHG) emissions on regional to global scales and it is the largest use of land globally. Quantifying the environmental impacts of the various livestock categories, mostly arising from feed production, is thus a grand challenge of sustainability science. Here, we quantify land, irrigation water, and reactive nitrogen (Nr) impacts due to feed production, and recast published full life cycle GHG emission estimates, for each of the major animal-based categories in the US diet. Our calculations reveal that the environmental costs per consumed calorie of dairy, poultry, pork, and eggs are mutually comparable (to within a factor of 2), but strikingly lower than the impacts of beef. Beef production requires 28, 11, 5, and 6 times more land, irrigation water, GHG, and Nr, respectively, than the average of the other livestock categories. Preliminary analysis of three staple plant foods shows two- to sixfold lower land, GHG, and Nr requirements than those of the nonbeef animal-derived calories, whereas irrigation requirements are comparable. Our analysis is based on the best data currently available, but follow-up studies are necessary to improve parameter estimates and fill remaining knowledge gaps. Data imperfections notwithstanding, the key conclusion--that beef production demands about 1 order of magnitude more resources than alternative livestock categories--is robust under existing uncertainties. The study thus elucidates the multiple environmental benefits of potential, easy-to-implement dietary changes, and highlights the uniquely high resource demands of beef. PMID:25049416

  4. Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States

    PubMed Central

    Eshel, Gidon; Shepon, Alon; Makov, Tamar; Milo, Ron

    2014-01-01

    Livestock production impacts air and water quality, ocean health, and greenhouse gas (GHG) emissions on regional to global scales and it is the largest use of land globally. Quantifying the environmental impacts of the various livestock categories, mostly arising from feed production, is thus a grand challenge of sustainability science. Here, we quantify land, irrigation water, and reactive nitrogen (Nr) impacts due to feed production, and recast published full life cycle GHG emission estimates, for each of the major animal-based categories in the US diet. Our calculations reveal that the environmental costs per consumed calorie of dairy, poultry, pork, and eggs are mutually comparable (to within a factor of 2), but strikingly lower than the impacts of beef. Beef production requires 28, 11, 5, and 6 times more land, irrigation water, GHG, and Nr, respectively, than the average of the other livestock categories. Preliminary analysis of three staple plant foods shows two- to sixfold lower land, GHG, and Nr requirements than those of the nonbeef animal-derived calories, whereas irrigation requirements are comparable. Our analysis is based on the best data currently available, but follow-up studies are necessary to improve parameter estimates and fill remaining knowledge gaps. Data imperfections notwithstanding, the key conclusion—that beef production demands about 1 order of magnitude more resources than alternative livestock categories—is robust under existing uncertainties. The study thus elucidates the multiple environmental benefits of potential, easy-to-implement dietary changes, and highlights the uniquely high resource demands of beef. PMID:25049416

  5. Double-parton scattering contribution to production of jet pairs with large rapidity separation at the LHC

    NASA Astrophysics Data System (ADS)

    Maciuła, Rafał; Szczurek, Antoni

    2014-07-01

    For the first time in the literature, we discuss the production of a four-jet final state in proton-proton collisions at the LHC through the mechanism of double-parton scattering (DPS), in the context of jets with large rapidity separation. This is the region where searches for a Balitsky-Fadin-Kuraev-Lipatov (BFKL) signal are planned and/or being performed. The DPS contributions are calculated within the so-called factorized ansatz, and each step of DPS is calculated in the leading order (LO) collinear approximation. The LO pQCD calculations are shown to give a reasonably good description of recent CMS and ATLAS data on inclusive jet production; therefore, this formalism can be used to estimate the DPS effects. We demonstrate that the relative contribution (with respect to single parton scattering dijets and to the BFKL Mueller-Navelet jets) of DPS is growing at large rapidity distance between jets. This is consistent with our experience from previous studies of DPS effects in the case of open and hidden charm production. The calculated differential cross sections, as a function of rapidity distance between the jets that are the most remote in rapidity, are compared with recent results of leading logarithm and next-to-leading logarithm BFKL calculations for the Mueller-Navelet jet production at √s =7 TeV. The DPS contribution to widely rapidity separated jet production is carefully studied for the present energy √s =7 TeV, and also at the nominal LHC energy √s =14 TeV and in different ranges of jet transverse momenta. The differential cross section as a function of dijet transverse momenta as well as two-dimensional (pT(ymin)×pT(ymax))-plane correlations for DPS mechanism are also presented. Some ideas as to how the DPS effects could be studied in the case of four-jet production are suggested.

  6. A Production System Model of Capturing Reactive Moving Targets. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Jagacinski, R. J.; Plamondon, B. D.; Miller, R. A.

    1984-01-01

    Subjects manipulated a control stick to position a cursor over a moving target that reacted with a computer-generated escape strategy. The cursor movements were described at two levels of abstraction. At the upper level, a production system described transitions among four modes of activity; rapid acquisition, close following, a predictive mode, and herding. Within each mode, differential equations described trajectory-generating mechanisms. A simulation of this two-level model captures the targets in a manner resembling the episodic time histories of human subjects.

  7. Probing the Small-x Gluon Tomography in Correlated Hard Diffractive Dijet Production in Deep Inelastic Scattering.

    PubMed

    Hatta, Yoshitaka; Xiao, Bo-Wen; Yuan, Feng

    2016-05-20

    We investigate the close connection between the quantum phase space Wigner distribution of small-x gluons and the color dipole scattering amplitude, and we propose studying it experimentally in the hard diffractive dijet production at the planned electron-ion collider. The angular correlation between the nucleon recoiled momentum and the dijet transverse momentum probes the nontrivial correlation in the phase space Wigner distribution. This experimental study not only provides us with three-dimensional tomographic pictures of gluons inside high energy protons-it gives a unique and interesting signal for the small-x dynamics with QCD evolution effects. PMID:27258865

  8. The Bacterial Fermentation Product Butyrate Influences Epithelial Signaling via Reactive Oxygen Species-Mediated Changes in Cullin-1 Neddylation1

    PubMed Central

    Kumar, Amrita; Wu, Huixia; Collier-Hyams, Lauren S.; Kwon, Young-Man; Hanson, Jason M.; Neish, Andrew S.

    2010-01-01

    The human enteric flora plays a significant role in intestinal health and disease. Populations of enteric bacteria can inhibit the NF-κB pathway by blockade of IκB-α ubiquitination, a process catalyzed by the E3-SCFβ-TrCP ubiquitin ligase. The activity of this ubiquitin ligase is regulated via covalent modification of the Cullin-1 subunit by the ubiquitin-like protein NEDD8. We previously reported that interaction of viable commensal bacteria with mammalian intestinal epithelial cells resulted in a rapid and reversible generation of reactive oxygen species (ROS) that modulated neddylation of Cullin-1 and resulted in suppressive effects on the NF-κB pathway. Herein, we demonstrate that butyrate and other short chain fatty acids supplemented to model human intestinal epithelia in vitro and human tissue ex vivo results in loss of neddylated Cul-1 and show that physiological concentrations of butyrate modulate the ubiquitination and degradation of a target of the E3-SCFβ-TrCP ubiquitin ligase, the NF-κB inhibitor IκB-α. Mechanistically, we show that physiological concentrations of butyrate induces reactive oxygen species that transiently alters the intracellular redox balance and results in inactivation of the NEDD8-conjugating enzyme Ubc12 in a manner similar to effects mediated by viable bacteria. Because the normal flora produces significant amounts of butyrate and other short chain fatty acids, these data provide a functional link between a natural product of the intestinal normal flora and important epithelial inflammatory and proliferative signaling pathways. PMID:19109186

  9. Efficient transformation of DDT by peroxymonosulfate activated with cobalt in aqueous systems: Kinetics, products, and reactive species identification.

    PubMed

    Qin, Wenxiu; Fang, Guodong; Wang, Yujun; Wu, Tongliang; Zhu, Changyin; Zhou, Dongmei

    2016-04-01

    Recently, sulfate radical ( [Formula: see text] ) based-advanced oxidation technologies (AOTs) have been attracted great attention in the remediation of contaminated soil and groundwater. In the present study, Co(2+) ions activated peroxymonosulfate (PMS) system was used to degrade 1, 1, 1-trichloro-2, 2'bis(p-chlorophenyl) ethane (DDT) in aqueous solutions. It was found that DDT was efficiently degraded in the PMS/Co(II) solutions within several hours, and the degradation efficiency of DDT was dependent on the concentrations of PMS and Co(II), and the optimum molar ratio of PMS and Co(II) was 50:1. The degradation kinetics of DDT were well described with pseudo-first-order equations over a range of temperature (10-40 °C), and the activation energy that was calculated with Arrhenius equation was 72.3 ± 2.6 kJ/mol. Electron paramagnetic resonance (EPR) and GC-MS techniques were applied to identify the intermediates and reactive species for DDT degradation. The results indicated that [Formula: see text] and OH were the main reactive species accounting for DDT degradation. Dichlorobenzophenone, 4-chlorobenzoic acid and benzylalcohol were the dominant intermediates for DDT degradation, and the likely degradation pathway of DDT was proposed on the basis of these identified products. Increasing pH inhibited the formation of [Formula: see text] and OH, and thus decreased the catalytic degradation of DDT. Cl(-) ion was found to significantly inhibit, while [Formula: see text] and dissolved oxygen had limited effects on DDT degradation. PMID:26802265

  10. Low CD3+CD28-induced interleukin-2 production correlates with decreased reactive oxygen intermediate formation in neonatal T cells.

    PubMed Central

    Kilpinen, S; Hurme, M

    1998-01-01

    The capacity of neonatal T cells to secrete interleukin-2 (IL-2) has been reported to be variable. We analysed IL-2 production in purified neonatal and adult T cells using polyclonal activator phorbol ester + calcium ionophore (PDBu + iono) or receptor-mediated anti-CD3/anti-CD3+ anti-CD28 stimulation. PDBu + iono induced equally high IL-2 levels in both groups and, when stimulated with plate-bound anti-CD3 monoclonal antibody (mAb), the IL-2 secretion by neonatal cells was undetectable and adult cells produced low amounts of IL-2 (mean 331 +/- 86 pg/ml). The addition of anti-CD28 mAb to anti-CD3-stimulated cells markedly increased IL-2 production in both cell types, but levels of IL-2 in neonatal T cells remained clearly lower than those of adult T cells (respective mean values: 385 +/- 109 pg/ml and 4494 +/- 1199 pg/ml). As NF-kappa B is a critical transcription factor in the control of IL-2 expression, we next analysed its nuclear translocation in neonatal and adult T cells using the electrophoretic mobility shift assay and, because induction of reactive oxygen intermediates (ROI) is required for the activation of NF-kappa B, we also analysed levels of intracellular ROI in these cells using the ROI-reactive fluorochrome DCFH-DA and flow cytometry. In neonatal T cells NF-kappa B activation and ROI formation after anti-CD3 stimulation were low compared with adult T cells and, although addition of anti-CD28 mAb increased induction of NF-kappa B and ROI formation, levels similar to those of adults were not achieved. After PDBu + iono stimulation, the cells showed similar ROI formation and IL-2 secretion. Our results suggest that reduced IL-2 production by neonatal T cells is specific for anti-CD3 and anti-CD3+ anti-CD28-mediated stimulation and that these activators cannot effectively activate the ROI-NF-kappa B signalling pathway in neonatal T cells. Images Figure 3 PMID:9741337

  11. Induction of mitochondrial reactive oxygen species production by GSH mediated S-glutathionylation of 2-oxoglutarate dehydrogenase.

    PubMed

    Mailloux, Ryan J; Craig Ayre, D; Christian, Sherri L

    2016-08-01

    2-Oxoglutarate dehydrogenase (Ogdh) is an important mitochondria redox sensor that can undergo S-glutathionylation following an increase in H2O2 levels. Although S-glutathionylation is required to protect Ogdh from irreversible oxidation while simultaneously modulating its activity it remains unknown if glutathione can also modulate reactive oxygen species (ROS) production by the complex. We report that reduced (GSH) and oxidized (GSSG) glutathione control O2(∙-)/H2O2 formation by Ogdh through protein S-glutathionylation reactions. GSSG (1mM) induced a modest decrease in Ogdh activity which was associated with a significant decrease in O2(∙-)/H2O2 formation. GSH had the opposite effect, amplifying O2(∙-)/H2O2 formation by Ogdh. Incubation of purified Ogdh in 2.5mM GSH led to significant increase in O2(∙-)/H2O2 formation which also lowered NADH production. Inclusion of enzymatically active glutaredoxin-2 (Grx2) in reaction mixtures reversed the GSH-mediated amplification of O2(∙-)/H2O2 formation. Similarly pre-incubation of permeabilized liver mitochondria from mouse depleted of GSH showed an approximately ~3.5-fold increase in Ogdh-mediated O2(∙-)/H2O2 production that was matched by a significant decrease in NADH formation which could be reversed by Grx2. Taken together, our results demonstrate GSH and GSSG modulate ROS production by Ogdh through S-glutathionylation of different subunits. This is also the first demonstration that GSH can work in the opposite direction in mitochondria-amplifying ROS formation instead of quenching it. We propose that this regulatory mechanism is required to modulate ROS emission from Ogdh in response to variations in glutathione redox buffering capacity. PMID:26928132

  12. Nitric oxide and reactive oxygen species production causes progressive damage in rats after cessation of silica inhalation.

    PubMed

    Porter, Dale W; Millecchia, Lyndell L; Willard, Patsy; Robinson, Victor A; Ramsey, Dawn; McLaurin, Jeffery; Khan, Amir; Brumbaugh, Kurt; Beighley, Christoper M; Teass, Alexander; Castranova, Vincent

    2006-03-01

    Our laboratory has previously reported results from a rat silica inhalation study which determined that, even after silica exposure ended, pulmonary inflammation and damage progressed with subsequent fibrosis development. In the present study, the relationship between silica exposure, nitric oxide (NO) and reactive oxygen species (ROS) production, and the resultant pulmonary damage is investigated in this model. Rats were exposed to silica (15 mg/m3, 6 h/day) for either 20, 40, or 60 days. A portion of the rats from each exposure were sacrificed at 0 days postexposure, while another portion was maintained without further exposure for 36 days to examine recovery or progression. The major findings of this study are: (1) silica-exposed rat lungs were in a state of oxidative stress, the severity of which increased during the postexposure period, (2) silica-exposed rats had significant increase in lung NO production which increased in magnitude during the postexposure period, and (3) the presence of silica particle(s) in an alveolar macrophage (AM) was highly associated with inducible nitric oxide synthase (iNOS) protein. These data indicate that, even after silica exposure has ended, and despite declining silica lung burden, silica-induced pulmonary NO and ROS production increases, thus producing a more severe oxidative stress. A quantitative association between silica and expression of iNOS protein in AMs was also determined, which adds to our previous observation that iNOS and NO-mediated damage are associated anatomically with silica-induced pathological lesions. Future studies will be needed to determine whether the progressive oxidative stress, and iNOS activation and NO production, is a direct result of silica lung burden or a consequence of silica-induced biochemical mediators. PMID:16339787

  13. Induction of mitochondrial reactive oxygen species production by GSH mediated S-glutathionylation of 2-oxoglutarate dehydrogenase

    PubMed Central

    Mailloux, Ryan J.; Craig Ayre, D.; Christian, Sherri L.

    2016-01-01

    2-Oxoglutarate dehydrogenase (Ogdh) is an important mitochondria redox sensor that can undergo S-glutathionylation following an increase in H2O2 levels. Although S-glutathionylation is required to protect Ogdh from irreversible oxidation while simultaneously modulating its activity it remains unknown if glutathione can also modulate reactive oxygen species (ROS) production by the complex. We report that reduced (GSH) and oxidized (GSSG) glutathione control O2∙-/H2O2 formation by Ogdh through protein S-glutathionylation reactions. GSSG (1 mM) induced a modest decrease in Ogdh activity which was associated with a significant decrease in O2∙-/H2O2 formation. GSH had the opposite effect, amplifying O2∙-/H2O2 formation by Ogdh. Incubation of purified Ogdh in 2.5 mM GSH led to significant increase in O2∙-/H2O2 formation which also lowered NADH production. Inclusion of enzymatically active glutaredoxin-2 (Grx2) in reaction mixtures reversed the GSH-mediated amplification of O2∙-/H2O2 formation. Similarly pre-incubation of permeabilized liver mitochondria from mouse depleted of GSH showed an approximately ~3.5-fold increase in Ogdh-mediated O2∙-/H2O2 production that was matched by a significant decrease in NADH formation which could be reversed by Grx2. Taken together, our results demonstrate GSH and GSSG modulate ROS production by Ogdh through S-glutathionylation of different subunits. This is also the first demonstration that GSH can work in the opposite direction in mitochondria-amplifying ROS formation instead of quenching it. We propose that this regulatory mechanism is required to modulate ROS emission from Ogdh in response to variations in glutathione redox buffering capacity. PMID:26928132

  14. Eicosanoids up-regulate production of reactive oxygen species by NADPH-dependent oxidase in Spodoptera exigua phagocytic hemocytes.

    PubMed

    Park, Youngjin; Stanley, David W; Kim, Yonggyun

    2015-08-01

    Eicosanoids mediate cellular immune responses in insects, including phagocytosis of invading microbes. Phagocytosis entails two major steps, the internalization of microbes and the subsequent killing of them via formation of reactive oxygen species (ROS). Here, we posed the hypothesis that eicosanoids mediate ROS production by activating NADPH-dependent oxidase (NOX) and tested the idea in the model insect, Spodoptera exigua. A NOX gene (we named SeNOX4) was identified and cloned, yielding a full open reading frame encoding 547 amino acid residues with a predicted molecular weight of 63,410Da and an isoelectric point at 9.28. A transmembrane domain and a large intracellular domain containing NADPH and FAD-binding sites were predicted. Phylogenetic analysis indicated SeNOX4 clusters with other NOX4 genes. SeNOX4 was expressed in all life stages except eggs, and exclusively in hemocytes. Bacterial challenge and, separately, arachidonic acid (AA, a precursor of eicosanoid biosynthesis) injection increased its expression. The internalization step was assessed by counting hemocytes engulfing fluorescence-labeled bacteria. The phagocytic behavior was inhibited by dsRNA suppression of SeNOX4 expression and, separately by dexamethasone (DEX, a specific inhibitor of eicosanoid biosynthesis) treatments. However, injecting AA to dsSeNOX4-treated larvae did not rescue the phagocytic activity. Hemocytic ROS production increased following bacterial challenge, which was sharply reduced in dsSeNOX4-treated, and separately, in DEX-treated larvae. AA partially reversed the suppressed ROS production in dsSeNOX4-treated larvae. Treating larvae with either the ROS-suppressing dsSeNOX4 construct or DEX rendered experimental larvae unable to inhibit bacterial proliferation in their hemocoels. We infer that eicosanoids mediate ROS production during phagocytosis by inducing expression of SeNOX4. PMID:26071791

  15. Isochoric Burn, an Internally Consistent Method for the Reactant to Product Transformation in Reactive Flow

    SciTech Connect

    Reaugh, J E; Lee, E L

    2002-07-01

    Mixture rules for partially reacted explosives differ amongst various models. For instance, JWL++ uses a partial pressure addition to compute an average zonal pressure, Ignition and Growth requires pressure equilibration and thermal equilibration of temperature dependent JWL EOSs, CHEETAH In Line RF also assumes temperature and pressure equilibration. It has been suggested in the past that a more realistic equilibration scheme should comprise isentropic pressure equilibration of the separate reacted and unreacted phases. This turns out not to be a proper path for equilibration. Rather, we find that the only internally consistent method is the evaluation of the equilibrium pressure that satisfies the particular conditions of reactant and product resulting from deflagration in a fixed volume.

  16. Liver Fibrosis Can Be Induced by High Salt Intake through Excess Reactive Oxygen Species (ROS) Production.

    PubMed

    Wang, Guang; Yeung, Cheung-kwan; Wong, Wing-Yan; Zhang, Nuan; Wei, Yi-fan; Zhang, Jing-li; Yan, Yu; Wong, Ching-yee; Tang, Jun-jie; Chuai, Manli; Lee, Kenneth Ka Ho; Wang, Li-jing; Yang, Xuesong

    2016-02-24

    High salt intake has been known to cause hypertension and other side effects. However, it is still unclear whether it also affects fibrosis in the mature or developing liver. This study demonstrates that high salt exposure in mice (4% NaCl in drinking water) and chick embryo (calculated final osmolality of the egg was 300 mosm/L) could lead to derangement of the hepatic cords and liver fibrosis using H&E, PAS, Masson, and Sirius red staining. Meanwhile, Desmin immunofluorescent staining of mouse and chick embryo livers indicated that hepatic stellate cells were activated after the high salt exposure. pHIS3 and BrdU immunohistological staining of mouse and chick embryo livers indicated that cell proliferation decreased; as well, TUNEL analyses indicated that cell apoptosis increased in the presence of high salt exposure. Next, dihydroethidium staining on the cultured chick hepatocytes indicated the excess ROS was generated following high salt exposure. Furthermore, AAPH (a known inducer of ROS production) treatment also induced the liver fibrosis in chick embryo. Positive Nrf2 and Keap1 immunohistological staining on mouse liver suggested that Nrf2/Keap1 signaling was involved in high salt induced ROS production. Finally, the CCK8 assay was used to determine whether or not the growth inhibitory effect induced by high salt exposure can be rescued by antioxidant vitamin C. Meanwhile, the RT-PCR result indicated that the Nrf2/Keap1 downsteam genes including HO-1, NQO-1, and SOD2 were involved in this process. In sum, these experiments suggest that high salt intake would lead to high risk of liver damage and fibrosis in both adults and developing embryos. The pathological mechanism may be the result from an imbalance between oxidative stress and the antioxidant system. PMID:26843032

  17. Perfluorooctane sulfonate (PFOS) induces reactive oxygen species (ROS) production in human microvascular endothelial cells: role in endothelial permeability

    PubMed Central

    Qian, Yong; Ducatman, Alan; Ward, Rebecca; Leonard, Steve; Bukowski, Valerie; Guo, Nancy Lan; Shi, Xianglin; Vallyathan, Val; Castranova, Vincent

    2011-01-01

    Perfluorooctane sulfonate (PFOS) is a member of perfluoroalkyl acids (PFAA) containing an 8-carbon backbone. PFOS is a man-made chemical with carbon-fluorine bonds that are one of the strongest in organic chemistry and widely used in industry. Human occupational and environmental exposure to PFOS occurs globally. PFOS is non-biodegradable and persistent in the human body and environment. In this study, data demonstrated that exposure of human microvascular endothelial cells (HMVEC) to PFOS induced the production of reactive oxygen species (ROS) at both high and low concentrations. Morphologically, it was found that exposure to PFOS induced actin filament remodeling and endothelial permeability changes in HMVEC. Furthermore, data demonstrated the production of ROS plays a regulatory role in PFOS-induced actin filament remodeling and the increase in endothelial permeability. Our results indicate that the generation of ROS may play a role in PFOS-induced aberrations of the endothelial permeability barrier. The results generated from this study may provide a new insight into the potential adverse effects of PFOS exposure on humans at the cellular level. PMID:20391123

  18. Neurofibromin is a novel regulator of Ras-induced reactive oxygen species production in mice and humans.

    PubMed

    Bessler, Waylan K; Hudson, Farlyn Z; Zhang, Hanfang; Harris, Valerie; Wang, Yusi; Mund, Julie A; Downing, Brandon; Ingram, David A; Case, Jamie; Fulton, David J; Stansfield, Brian K

    2016-08-01

    Neurofibromatosis type 1 (NF1) predisposes individuals to early and debilitating cardiovascular disease. Loss of function mutations in the NF1 tumor suppressor gene, which encodes the protein neurofibromin, leads to accelerated p21(Ras) activity and phosphorylation of multiple downstream kinases, including Erk and Akt. Nf1 heterozygous (Nf1(+/-)) mice develop a robust neointima that mimics human disease. Monocytes/macrophages play a central role in NF1 arterial stenosis as Nf1 mutations in myeloid cells alone are sufficient to reproduce the enhanced neointima observed in Nf1(+/-) mice. Though the molecular mechanisms underlying NF1 arterial stenosis remain elusive, macrophages are important producers of reactive oxygen species (ROS) and Ras activity directly regulates ROS production. Here, we use compound mutant and lineage-restricted mice to demonstrate that Nf1(+/-) macrophages produce excessive ROS, which enhance Nf1(+/-) smooth muscle cell proliferation in vitro and in vivo. Further, use of a specific NADPH oxidase-2 inhibitor to limit ROS production prevents neointima formation in Nf1(+/-) mice. Finally, mononuclear cells from asymptomatic NF1 patients have increased oxidative DNA damage, an indicator of chronic exposure to oxidative stress. These data provide genetic and pharmacologic evidence that excessive exposure to oxidant species underlie NF1 arterial stenosis and provide a platform for designing novels therapies and interventions. PMID:27266634

  19. Effects of nitrogen dioxide and its acid mist on reactive oxygen species production and antioxidant enzyme activity in Arabidopsis plants.

    PubMed

    Liu, Xiaofang; Hou, Fen; Li, Guangke; Sang, Nan

    2015-08-01

    Nitrogen dioxide (NO2) is one of the most common and harmful air pollutants. To analyze the response of plants to NO2 stress, we investigated the morphological change, reactive oxygen species (ROS) production and antioxidant enzyme activity in Arabidopsis thaliana (Col-0) exposed to 1.7, 4, 8.5, and 18.8 mg/m(3) NO2. The results indicate that NO2 exposure affected plant growth and chlorophyll (Chl) content, and increased oxygen free radical (O2(-)) production rate in Arabidopsis shoots. Furthermore, NO2 elevated the levels of lipid peroxidation and protein oxidation, accompanied by the induction of antioxidant enzyme activities and change of ascorbate (AsA) and glutathione (GSH) contents. Following this, we mimicked nitric acid mist under experimental conditions, and confirmed the antioxidant mechanism of the plant to the stress. Our results imply that NO2 and its acid mist caused pollution risk to plant systems. During the process, increased ROS acted as a signal to induce a defense response, and antioxidant status played an important role in plant protection against NO2/nitric acid mist-caused oxidative damage. PMID:26257351

  20. First measurements of jet production rates in deep-inelastic lepton-proton scattering

    SciTech Connect

    Adams, M.R.; Aied, S.; Anthony, P.L.; Baker, M.D.; Bartlett, J.; Bhatti, A.A.; Braun, H.M.; Busza, W.; Conrad, J.M.; Coutrakon, G.; Davisson, R.; Derado, I.; Dhawan, S.K.; Dougherty, W.; Dreyer, T.; Dziunikowska, K.; Eckardt, V.; Ecker, U.; Erdmann, M.; Eskreys, A.; Figiel, J.; Gebauer, H.J.; Geesaman, D.F.; Gilman, R.; Green, M.C.; Haas, J.; Halliwell, C.; Hanlon, J.; Hantke, D.; Hughes, V.W.; Jackson, H.E.; Jaffe, D.E.; Jancso, G.; Jansen, D.M.; Kaufman, S.; Kennedy, R.D.; Kobrak, H.G.E.; Krzywdzinski, S.; Kunori, S.; Lord, J.J.; Lubatti, H.J.; McLeod, D.; Magill, S.; Malecki, P.; Manz, A.; Michael, D.G.; Mohr, W.; Montgomery, H.E.; Morfin, J.G.; Nickerson, R.B.; O'Day, S.; Olkiewicz, K.; Osborne, L.; Papavassiliou, V.; Pawlik, B.; Pipkin, F.M.; Ramberg, E.J.; Roeser, A.; Ryan, J.; Salgado, C.W.; Salvarani, A.; Schellman, H.; Schmitz, N.; Schueler, K.P.; Seyerlein, H.J.; Skuja, A.; Snow, G.A.; Soeldner-Rembold, S.; Steinberg, P.H.; Stier, H.E.; Stopa, P.; Swanson, R.A.; Talaga, R.; T

    1992-08-17

    The first measurements of forward multijet rates in deep-inelastic lepton scattering are presented. Data were taken with a 490-GeV muon beam incident on a hydrogen target. The jets were defined using the GADE algorithm. The measured rates are presented as a function of the jet resolution parameter {ital y}{sub cut}, and as a function of the virtual-photon--proton center-of-momentum energy {ital W}, in the range 13{le}{ital W}{le}33 GeV. Comparisons are made to the predictions of the Lund Monte Carlo programs and good agreement is obtained when QCD corrections are included in the model.

  1. First measurements of jet production rates in deep-inelastic lepton-proton scattering

    NASA Astrophysics Data System (ADS)

    Adams, M. R.; Aïd, S.; Anthony, P. L.; Baker, M. D.; Bartlett, J.; Bhatti, A. A.; Braun, H. M.; Busza, W.; Conrad, J. M.; Coutrakon, G.; Davisson, R.; Derado, I.; Dhawan, S. K.; Dougherty, W.; Dreyer, T.; Dziunikowska, K.; Eckardt, V.; Ecker, U.; Erdmann, M.; Eskreys, A.; Figiel, J.; Gebauer, H. J.; Geesaman, D. F.; Gilman, R.; Green, M. C.; Haas, J.; Halliwell, C.; Hanlon, J.; Hantke, D.; Hughes, V. W.; Jackson, H. E.; Jaffe, D. E.; Jancso, G.; Jansen, D. M.; Kaufman, S.; Kennedy, R. D.; Kobrak, H. G.; Krzywdzinski, S.; Kunori, S.; Lord, J. J.; Lubatti, H. J.; McLeod, D.; Magill, S.; Malecki, P.; Manz, A.; Michael, D. G.; Mohr, W.; Montgomery, H. E.; Morfin, J. G.; Nickerson, R. B.; O'day, S.; Olkiewicz, K.; Osborne, L.; Papavassiliou, V.; Pawlik, B.; Pipkin, F. M.; Ramberg, E. J.; Röser, A.; Ryan, J.; Salgado, C. W.; Salvarani, A.; Schellman, H.; Schmitz, N.; Schüler, K. P.; Seyerlein, H. J.; Skuja, A.; Snow, G. A.; Söldner-Rembold, S.; Steinberg, P. H.; Stier, H. E.; Stopa, P.; Swanson, R. A.; Talaga, R.; Tentindo-Repond, S.; Trost, H.-J.; Venkataramania, H.; Vidal, M.; Wilhelm, M.; Wilkes, J.; Wilson, Richard; Wittek, W.; Wolbers, S. A.; Zhao, T.

    1992-08-01

    The first measurements of forward multijet rates in deep-inelastic lepton scattering are presented. Data were taken with a 490-GeV muon beam incident on a hydrogen target. The jets were defined using the gade algorithm. The measured rates are presented as a function of the jet resolution parameter ycut, and as a function of the virtual-photon-proton center-of-momentum energy W, in the range 13<=W<=33 GeV. Comparisons are made to the predictions of the Lund Monte Carlo programs and good agreement is obtained when QCD corrections are included in the model.

  2. Soft X-ray production by photon scattering in pulsating binary neutron star sources

    NASA Technical Reports Server (NTRS)

    Bussard, R. W.; Meszaros, P.; Alexander, S.

    1985-01-01

    A new mechanism is proposed as a source of soft (less than 1 keV) radiation in binary pulsating X-ray sources, in the form of photon scattering which leaves the electron in an excited Landau level. In a plasma with parameters typical of such sources, the low-energy X-ray emissivity of this mechanism far exceeds that of bremsstrahlung. This copious source of soft photons is quite adequate to provide the seed photons needed to explain the power-law hard X-ray spectrum by inverse Comptonization on the hot electrons at the base of the accretion column.

  3. Effect of phenolic acids of microbial origin on production of reactive oxygen species in mitochondria and neutrophils

    PubMed Central

    2012-01-01

    Background Several low-molecular-weight phenolic acids are present in the blood of septic patients at high levels. The microbial origin of the most of phenolic acids in the human body was shown previously, but pathophysiological role of the phenolic acids is not clear. Sepsis is associated with the excessive production of reactive oxygen species (ROS) in both the circulation and the affected organs. In this work the influence of phenolic acids on ROS production in mitochondria and neutrophils was investigated. Methods ROS production in mitochondria and neutrophils was determined by MCLA- and luminol-dependent chemiluminescence. The rate of oxygen consumption by mitochondria was determined polarographically. The difference of electric potentials on the inner mitochondrial membrane was registered using a TPP+-selective electrode. The formation of phenolic metabolites in monocultures by the members of the main groups of the anaerobic human microflora and aerobic pathogenic bacteria was investigated by the method of gas chromatography–mass spectrometry. Results All phenolic acids had impact on mitochondria and neutrophils, the main producers of ROS in tissues and circulation. Phenolic acids (benzoic and cinnamic acids) producing the pro-oxidant effect on mitochondria inhibited ROS formation in neutrophils. Their effect on mitochondria was abolished by dithiothreitol (DTT). Phenyllactate and p-hydroxyphenyllactate decreased ROS production in both mitochondria and neutrophils. Bifidobacteria and lactobacilli produced in vitro considerable amounts of phenyllactic and p-hydroxyphenyllactic acids, Clostridia s. produced great quantities of phenylpropionic and p-hydroxyphenylpropionic acids, p-hydroxyphenylacetic acid was produced by Pseudomonas aeruginosa and Acinetobacter baumanii; and benzoic acid, by Serratia marcescens. Conclusions The most potent activators of ROS production in mitochondria are phenolic acids whose effect is mediated via the interaction with thiol

  4. Relation between cell death progression, reactive oxygen species production and mitochondrial membrane potential in fermenting Saccharomyces cerevisiae cells under heat-shock conditions.

    PubMed

    Pyatrikas, Darya V; Fedoseeva, Irina V; Varakina, Nina N; Rusaleva, Tatyana M; Stepanov, Alexei V; Fedyaeva, Anna V; Borovskii, Gennadii B; Rikhvanov, Eugene G

    2015-06-01

    Moderate heat shock increased reactive oxygen species (ROS) production that led to cell death in glucose-grown Saccharomyces cerevisiae cells. Conditions that disturb mitochondrial functions such as treatment by uncouplers and petite mutation were shown to inhibit ROS production and protects cell from thermal death. Hence, mitochondria are responsible for ROS production and play an active role in cell death. An increase in ROS production was accompanied by hyperpolarization of inner mitochondrial membrane. All agents suppressing hyperpolarization also suppressed heat-induced ROS production. It was supposed that generation of ROS under moderate heat shock in glucose-grown S. cerevisiae cells is driven by the mitochondrial membrane potential. PMID:25991811

  5. Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying.

    PubMed

    Glavas, Lidija; Odelius, Karin; Albertsson, Ann-Christine

    2016-09-12

    A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 μm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry. PMID:27445061

  6. Advanced glycation end products delay corneal epithelial wound healing through reactive oxygen species generation.

    PubMed

    Shi, Long; Chen, Hongmei; Yu, Xiaoming; Wu, Xinyi

    2013-11-01

    Delayed healing of corneal epithelial wounds is a serious complication in diabetes. Advanced glycation end products (AGEs) are intimately associated with the diabetic complications and are deleterious to the wound healing process. However, the effect of AGEs on corneal epithelial wound healing has not yet been evaluated. In the present study, we investigated the effect of AGE-modified bovine serum albumin (BSA) on corneal epithelial wound healing and its underlying mechanisms. Our data showed that AGE-BSA significantly increased the generation of intracellular ROS in telomerase-immortalized human corneal epithelial cells. However, the generation of intracellular ROS was completely inhibited by antioxidant N-acetylcysteine (NAC), anti-receptor of AGEs (RAGE) antibodies, or the inhibitor of NADPH oxidase. Moreover, AGE-BSA increased NADPH oxidase activity and protein expression of NADPH oxidase subunits, p22phox and Nox4, but anti-RAGE antibodies eliminated these effects. Furthermore, prevention of intracellular ROS generation using NAC or anti-RAGE antibodies rescued AGE-BSA-delayed epithelial wound healing in porcine corneal organ culture. In conclusion, our results demonstrated that AGE-BSA impaired corneal epithelial wound healing ex vivo. AGE-BSA increased intracellular ROS generation through NADPH oxidase activation, which accounted for the delayed corneal epithelial wound healing. These results may provide better insights for understanding the mechanism of delayed healing of corneal epithelial wounds in diabetes. PMID:23955437

  7. The Use of HRP in Decolorization of Reactive Dyes and Toxicological Evaluation of Their Products

    PubMed Central

    da Silva, Michelle Reis; de Sá, Lívian Ribeiro Vasconcelos; Russo, Carlos; Scio, Elita; Ferreira-Leitão, Viridiana Santana

    2010-01-01

    This work studied the potential use of horseradish peroxidase (HRP) in the decolorization of the following textile dyes: Drimarene Blue X-3LR (DMBLR), Drimarene Blue X-BLN (DMBBLN), Drimarene Rubinol X-3LR (DMR), and Drimarene Blue CL-R (RBBR). Dyes were individually tested in the reaction media containing 120 mg·L−1, considering the following parameters: temperature (20–45°C), H2O2 concentration (0–4.44 mmol·L−1), and reaction time (5 minutes, 1 and 24 h). The following conditions: 35°C, 0.55 mmol·L−1, and 1h, provided the best set of results of color removal for DMBLR (99%), DMBBLN (77%), DMR (94%), and RBBR (97%). It should be mentioned that only 5 minutes of reaction was enough to obtain 96% of decolorization for DMBLR and RBBR. After the decolorization reactions of DMBLR, DMR, and RBBR, it was possible to observe the reduction of Artemia salina mortality and the no significant increase in toxicity for the products generated from DMBBLN. PMID:21318147

  8. The effect of conglutinin on production of reactive oxygen species in bovine granulocytes

    PubMed Central

    Wernicki, Andrzej; Puchalski, Andrzej; Urban-Chmiel, Renata; Waśko, Adam

    2012-01-01

    Conglutinin is a high molecular-weight lectin originally detected in bovine serum. It belongs to the family of collectins that bind sugar residues in a Ca2+-dependent manner and are effector molecules in innate immunity. Conglutinin appears to play an important role in immune defense mechanisms, showing antiviral and antibacterial activities when tested in vivo and in vitro. The present study evaluated the effect of conglutinin on the respiratory bursts in bovine peripheral phagocytes. Using nitroblue tetrazolium and hydrogen peroxide assays, we showed that sugar ligand-bound conglutinin stimulated the production of superoxide and H2O2 in granulocytes whereas the non-sugar-bound form of conglutinin inhibited these processes. These results indicate that both forms of conglutinin are able to interact with surface leukocyte receptors but have opposite effects on phagocytic activity. Our findings suggest that conglutinin bound to sugar residues on microbial surfaces can induce oxygen burst in phagocytes, and thereby mediates the elimination of pathogens and prevents the spread of infection. PMID:22437533

  9. Peptide Ozonolysis: Product Structures and Relative Reactivities for Oxidation of Tyrosine and Histidine Residues

    SciTech Connect

    Lloyd, J A.; Spraggins, Jeffrey M.; Johnston, Murray V.; Laskin, Julia

    2006-08-31

    Angiotensin II (DRVYIHPF) and two analogs (DRVYIAPA, and DRVAIHPA) were used as model systems to study the ozonolysis of peptides containing tyrosine and histidine residues. The ESI mass spectrum of angiotensin II following exposure to ozone showed the formation of adducts containing one, three and four oxygen atoms. CID and SID spectra of these adducts were consistent with formation of Tyr + O and His + 3O as expected from previous work with amino acids. Additional ions in the CID and SID spectra suggested formation of Tyr + 3O and a small amount of Phe + O. Two analogs were also studied, one in which His and Phe were replaced by Ala (DRVYIAPA) and the other in which Tyr and Phe were replaced by Ala (DRVAIHPA). Exposure of DRVYIAPA to ozone resulted in the addition of one and three oxygen atoms, while DRVAIHPA showed only the addition of three oxygen atoms. Tandem mass spectra of these adducts confirmed the formation of Tyr + 3O in addition to Tyr + O and His + 3O. Other noteworthy minor oxidation products were observed from these analogs including Tyr + 34 u, His + 34 u, and His + 82 u. Modified reaction schemes for peptide ozonolysis are proposed which account for each of these newly observed adducts.

  10. Exercise improves endothelial function: a local analysis of production of nitric oxide and reactive oxygen species.

    PubMed

    Tanaka, Leonardo Yuji; Bechara, Luiz Roberto Grassmann; dos Santos, Adriana Marques; Jordão, Camila Paixão; de Sousa, Luís Gustavo Oliveira; Bartholomeu, Teresa; Ventura, Laura Inês; Laurindo, Francisco Rafael Martins; Ramires, Paulo Rizzo

    2015-02-15

    This study aimed at investigating the acute effects of aerobic exercise on endothelium-dependent vasomotor function of rat aorta, as well as mechanisms involved in endothelial nitric oxide (NO) bioactivity. Wistar rats were assigned to either a resting control (C, n = 21) or acutely exercised (E, n = 21) groups (60 min, 55-60% of maximum speed). After exercise, thoracic aorta was excised and cut into rings. Two rings were promptly applied to evaluate vasomotor function and the rest of aorta was used for additional measurements. Acute exercise significantly improved maximum ACh-induced relaxation (C, 91.6 ± 1.2 vs. E, 102.4 ± 1.7%, p < 0.001) and sensitivity to ACh (C, -7.3 ± 0.06 vs. E, -7.3 ± 0.02 log M, p < 0.01), and was accompanied by significantly increases on serine1177 eNOS phosphorylation, reflecting its enhanced activation. However, acute exercise also enhanced both superoxide and hydrogen peroxide production, as assayed by dihydroethidium oxidation, lucigenin chemiluminescence and Amplex Red assays. We also provided evidence for Nox2 NADPH oxidase (Nox) activation through gp91dstat-mediated inhibition of superoxide signals. Enhanced arterial relaxations associated with acute exercise were nearly-completely prevented by catalase, suggesting a role for paracrine hydrogen peroxide. Despite increased detectable oxidant generation, cellular oxidative stress was not evident, as suggested by unaltered GSH:GSSG ratio and lipid hydroperoxides. Collectively, these results demonstrate that one bout of moderate aerobic exercise improves endothelial function by increasing NO bioavailability, while superoxide and hydrogen peroxide are generated in a controlled fashion. PMID:25619203

  11. Methyl-thiophanate increases reactive oxygen species production and induces genotoxicity in rat peripheral blood.

    PubMed

    Ben Amara, Ibtissem; Ben Saad, Hajer; Cherif, Boutheina; Elwej, Awatef; Lassoued, Saloua; Kallel, Choumous; Zeghal, Najiba

    2014-12-01

    Methylthiophanate is one of the widely used fungicides to control important fungal diseases of crops. The aim of this study was to elucidate the short-term hematoxicity and genotoxicity effects of methylthiophanate administered by intraperitoneal way at three doses (300, 500 and 700 mg/kg of body weight) after 24, 48 and 72 h. Our results showed, 24 h after methylthiophanate injection, a hematological perturbation such as red blood cells (p < 0.05, p < 0.05 and p < 0.01) and hemoglobin content (p < 0.05), respectively, and a noticeable genotoxic effect in WBC evidenced by a significant increase in the frequency of the micronuclei and a decrease in cell viability. An increase in erythrocyte osmotic fragility was also noted after 24 and 48 h of methylthiophanate treatment at graded doses. A significant increase in hydrogen peroxide, advanced oxidation of protein products and malondialdehyde levels, in erythrocytes of methylthiophanate-treated rats with 300, 500 and 700 mg/kg of body weight, was also observed after 24 h of treatment (p < 0.05, p < 0.01 and p < 0.001, respectively), suggesting the implication of oxidative stress in its toxicity. Antioxidants activities of superoxide dismutase and glutathione peroxidase in erythrocytes significantly increased (p < 0.001) 24 h after the highest dose injected. While all these parameters were improved after 72 h of methylthiophanate injection (300, 500 and 700 mg/kg body weight). In conclusion, these data showed that the exposure of adult rats to methylthiophanate resulted in oxidative stress leading to hematotoxicity and the impairment of defence system, confirming the pro-oxidant and genotoxic effects of this fungicide. PMID:25179310

  12. Reactivity of β-blockers/agonists with aqueous permanganate. Kinetics and transformation products of salbutamol.

    PubMed

    Rodríguez-Álvarez, Tania; Rodil, Rosario; Quintana, José Benito; Cela, Rafael

    2015-08-01

    The possible oxidation of two β-blockers, atenolol and propranolol, and one β-agonist, salbutamol, with aqueous potassium permanganate (KMnO4) was investigated by liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-QTOF-MS). Under strong oxidation conditions (2 mg L(-1) KMnO4, 24 h), only salbutamol did significantly react. In this way, the oxidation kinetics of salbutamol was further investigated at different concentrations of KMnO4, chloride, phosphate and sample pH by means of a full factorial experimental design. Depending on these factors, half-lives were in the range 1-144 min for drug and it was observed that KMnO4 concentration was the most significant factor, resulting in increased reaction rate as it is increased. Moreover, the reaction of salbutamol is also enhanced at basic pH and to a minor extent by the presence of phosphates, being both factors more relevant at low KMnO4 concentrations. The use of an accurate-mass LC-QTOF-MS system permitted the identification of a total of seven transformation products (TPs). The transformation path of the drug begins by the attack of KMnO4 on two double bonds of the aromatic ring of salbutamol via 3 + 2 and 2 + 2 addition reactions, which resulted in the ring opening and that continues with oxidative reactions to finally produce smaller size TPs, ending with tert-butyl-formamide, as the smallest TP identified. Reaction in real samples showed a slower and partial oxidation of the pharmaceutical, due to other competing water organic constituents, but still exceeding 60%. Moreover, the software predicted toxicity of TPs indicates that they are expected not to be more toxic than salbutamol, in contrast to the results obtained for the predicted toxicity of chlorination TPs, excepting predicted developmental toxicity. PMID:25965887

  13. Investigation of the photochemical reactivity of soot particles derived from biofuels toward NO2. A kinetic and product study.

    PubMed

    Romanías, Manolis N; Dagaut, Philippe; Bedjanian, Yuri; Andrade-Eiroa, Auréa; Shahla, Roya; Emmanouil, Karafas S; Papadimitriou, Vassileios C; Spyros, Apostolos

    2015-03-12

    In the current study, the heterogeneous reaction of NO2 with soot and biosoot surfaces was investigated in the dark and under illumination relevant to atmospheric conditions (J(NO2) = 0.012 s(-1)). A flat-flame burner was used for preparation and collection of soot samples from premixed flames of liquid fuels. The biofuels were prepared by mixing 20% v/v of (i) 1-butanol (CH3(CH2)3OH), (ii) methyl octanoate (CH3(CH2)6COOCH3), (iii) anhydrous diethyl carbonate (C2H5O)2CO and (iv) 2,5 dimethyl furan (CH3)2C4H2O additive compounds in conventional kerosene fuel (JetA-1). Experiments were performed at 293 K using a low-pressure flow tube reactor (P = 9 Torr) coupled to a quadrupole mass spectrometer. The initial and steady-state uptake coefficients, γ0 and γ(ss), respectively, as well as the surface coverage, N(s), were measured under dry and humid conditions. Furthermore, the branching ratios of the gas-phase products NO (∼80-100%) and HONO (<20%) were determined. Soot from JetA-1/2,5-dimethyl furan was the most reactive [γ0 = (29.1 ± 5.8) × 10(-6), γ(ss)(dry) = (9.09 ± 1.82) × 10(-7) and γ(ss)(5.5%RH) = (14.0 ± 2.8)(-7)] while soot from JetA-1/1-butanol [γ0 = (2.72 ± 0.544) × 10(-6), γ(ss)(dry) = (4.57 ± 0.914) × 10(-7), and γ(ss)(5.5%RH) = (3.64 ± 0.728) × 10(-7)] and JetA-1/diethyl carbonate [γ0 = (2.99 ± 0.598) × 10(-6), γ(ss)(dry) = (3.99 ± 0.798) × 10(-7), and γ(ss)(5.5%RH) = (4.80 ± 0.960) × 10(-7)] were less reactive. To correlate the chemical reactivity with the physicochemical properties of the soot samples, their chemical composition was analyzed employing Raman spectroscopy, NMR, and high-performance liquid chromatography. In addition, the Brunauer-Emmett-Teller adsorption isotherms and the particle size distributions were determined employing a Quantachrome Nova 2200e gas sorption analyzer. The analysis of the results showed that factors such as (i) soot mass collection rate, (ii) porosity of the particles formed, (iii

  14. Greenhouse gas emissions and reactive nitrogen releases from rice production with simultaneous incorporation of wheat straw and nitrogen fertilizer

    NASA Astrophysics Data System (ADS)

    Xia, Longlong; Xia, Yongqiu; Ma, Shutan; Wang, Jinyang; Wang, Shuwei; Zhou, Wei; Yan, Xiaoyuan

    2016-08-01

    Impacts of simultaneous inputs of crop straw and nitrogen (N) fertilizer on greenhouse gas (GHG) emissions and N losses from rice production are not well understood. A 2-year field experiment was established in a rice-wheat cropping system in the Taihu Lake region (TLR) of China to evaluate the GHG intensity (GHGI) as well as reactive N intensity (NrI) of rice production with inputs of wheat straw and N fertilizer. The field experiment included five treatments of different N fertilization rates for rice production: 0 (RN0), 120 (RN120), 180 (RN180), 240 (RN240), and 300 kg N ha-1 (RN300, traditional N application rate in the TLR). Wheat straws were fully incorporated into soil before rice transplantation. The meta-analytic technique was employed to evaluate various Nr losses. Results showed that the response of rice yield to N rate successfully fitted a quadratic model, while N fertilization promoted Nr discharges exponentially (nitrous oxide emission, N leaching, and runoff) or linearly (ammonia volatilization). The GHGI of rice production ranged from 1.20 (RN240) to 1.61 kg CO2 equivalent (CO2 eq) kg-1 (RN0), while NrI varied from 2.14 (RN0) to 10.92 g N kg-1 (RN300). Methane (CH4) emission dominated the GHGI with a proportion of 70.2-88.6 % due to direct straw incorporation, while ammonia (NH3) volatilization dominated the NrI with proportion of 53.5-57.4 %. Damage costs to environment incurred by GHG and Nr releases from current rice production (RN300) accounted for 8.8 and 4.9 % of farmers' incomes, respectively. Cutting N application rate from 300 (traditional N rate) to 240 kg N ha-1 could improve rice yield and nitrogen use efficiency by 2.14 and 10.30 %, respectively, while simultaneously reducing GHGI by 13 %, NrI by 23 %, and total environmental costs by 16 %. Moreover, the reduction of 60 kg N ha-1 improved farmers' income by CNY 639 ha-1, which would provide them with an incentive to change the current N application rate. Our study suggests that GHG

  15. The role of NADPH-derived reactive oxygen species production in the pathogenesis of endometriosis: a novel mechanistic approach.

    PubMed

    Nassif, J; Abbasi, S A; Nassar, A; Abu-Musa, A; Eid, A A

    2016-01-01

    Endometriosis is defined as endometriotic tissue growing outside the uterine cavity. It is a common gynecological disorder in women of reproductive age and is associated with chronic pelvic pain and infertility. Despite several studies and theories to explain its cause, the exact pathogenesis of endometriosis remains unclear. Retrograde menstruation is the most plausible theory, however, it is not exclusive. The disparity between the actual prevalence of retrograde menstruation and the prevalence of endometriosis suggests that other factors may determine the susceptibility to endometriosis development. Oxidative stress has been associated with endometriosis. This study aimed to explore the role of NADPH oxidase family in the production of reactive oxygen species (ROS) and to determine whether ROS induce the proliferation of endometriotic implants via mammalian target of rapamycin (mTOR) signaling. Anonymous endometriotic tissue samples were collected from women undergoing laparoscopy for endometriosis. The samples were stained with dihydroethidium and fluorescent images of the slides were taken to detect ROS production. After extraction of RNA from the samples and c-DNA generation, quantitative real-time PCR, protein extraction and Western blot were performed to study gene and protein expression of NADPH oxidase 1 (NOX 1), mTOR and fibronectin. The results showed an increase in ROS levels and NOX 1 gene and protein expression in the endometriotic tissues compared to the normal surrounding tissue control. Also, mTOR and fibronectin, gene expression was found to be increased. Up regulation of NOX at gene and protein level leads to increased production of ROS in the endometriotic tissue, which in turn causes proliferation of the ectopic tissue via alteration of the mTOR signaling pathway. Increased fibronectin gene expression points towards tissue injury in endometriosis as compared to the normal surrounding tissue. This manuscript adds a new insight into the

  16. Chronic Aldosterone Administration Causes NOX2-Mediated Increases In Reactive Oxygen Species Production and Endothelial Dysfunction in the Cerebral Circulation

    PubMed Central

    CHRISSOBOLIS, Sophocles; DRUMMOND, Grant R.; FARACI, Frank M.; SOBEY, Christopher G.

    2014-01-01

    Objective An elevated plasma aldosterone level is an independent cardiovascular risk factor. Although excess aldosterone promotes cardiovascular disease, no studies have examined the effect of increased plasma aldosterone on the cerebral circulation. A major source of vascular reactive oxygen species (ROS) during cardiovascular disease is the NADPH oxidases. Because NOX2-containing NADPH oxidase (NOX2 oxidase) is highly expressed in cerebral endothelium, we postulated that it might contribute to ROS generation and vascular dysfunction in response to aldosterone. Here we examined the effect of aldosterone and NOX2 oxidase on ROS production and endothelial dysfunction in the cerebral circulation, and whether the effects of aldosterone are exacerbated in aged mice. Methods and Results In adult (average age ~24–25 wk) wild-type (WT) and Nox2-deficient (Nox2−/y) mice, neither vehicle nor aldosterone (0.28 mg/kg/day for 14 days) affected blood pressure (measured using tail-cuff). By contrast, aldosterone treatment reduced dilation of the basilar artery (measured using myography) to the endothelium-dependent agonist acetylcholine in WT mice (P<0.05), but had no such effect in NOX2−/y mice (P>0.05). Aldosterone increased basal and phorbol-dibutyrate stimulated superoxide production (measured using L-012-enhanced chemiluminesence) in cerebral arteries from WT but not Nox2−/y mice. In aged WT mice (average age ~70 wk), aldosterone treatment increased blood pressure, but had a similar effect on cerebral artery superoxide levels as in adult WT mice. Conclusions These data indicate that NOX2 oxidase mediates aldosterone-induced increases in ROS production and endothelial dysfunction in cerebral arteries from adult mice independently of blood pressure changes. Aldosterone-induced hypertension is augmented during aging. PMID:24991871

  17. The production of reactive oxygen species by irradiated camphorquinone-related photosensitizers and their effect on cytotoxicity.

    PubMed

    Atsumi, T; Iwakura, I; Fujisawa, S; Ueha, T

    2001-05-01

    Camphorquinone (CQ) is widely used as an initiator in modern light-cured resin systems but there are few reports about its effects on living cells. To clarify the mechanism of photosensitizer-induced cytotoxicity, the production of initiator radicals and subsequent reactive oxygen species (ROS) by CQ, benzil (BZ), benzophenone (BP), 9-fluorenone (9-F) in the presence of the reducing agent (2-dimethylaminoethyl methacrylate or N,N-dimethyl-p-toluidine, DMT) with visible-light irradiation was examined in a cell or cell-free system. Initiator radical production was estimated by the reduction rate of 1,1-diphenyl-2-picrylhydrazyl and by the conversion of poly-triethyleneglycol dimethacrylate; the results indicated that CQ/DMT had the highest activity among them. The cytotoxic effects of the photosensitizers on both human submandibular gland (HSG) adenocarcinoma cell line and primary human gingival fibroblast (HGF) showed that the 50% toxic concentration (TC(50)) declined in the order: CQ>BP>9-F>BZ. ROS produced in HSG or HGF cells by elicited, irradiated photosensitizers were evaluated in two different assays, one using adherent cell analysis and sorting cytometry against adherent cells and the other, flow cytometry against floating cells, with fluorescent probes. ROS production was dose- and time- dependent, and declined in the order: BZ>9-F>BP>CQ. Cytotoxic activity was correlated with the amount of ROS. Cytotoxicity and ROS generation in HGF cells was significantly lower than in HSG cells. ROS induced by aliphatic ketones (CQ) were efficiently scavenged by hydroquinone and vitamin E, whereas those by aromatic ketones (9-F) were diminished by mannitol and catalase, suggesting that OH radicals were involved in ROS derived from 9-F. A possible link between the cytotoxic activity and ROS is suggested. PMID:11286804

  18. Sorafenib-induced hepatocellular carcinoma cell death depends on reactive oxygen species production in vitro and in vivo.

    PubMed

    Coriat, Romain; Nicco, Carole; Chéreau, Christiane; Mir, Olivier; Alexandre, Jérôme; Ropert, Stanislas; Weill, Bernard; Chaussade, Stanislas; Goldwasser, François; Batteux, Frédéric

    2012-10-01

    Sorafenib is presently the only effective therapy in advanced hepatocellular carcinoma (HCC). Because most anticancer drugs act, at least in part, through the generation of reactive oxygen species, we investigated whether sorafenib can induce an oxidative stress. The effects of sorafenib on intracellular ROS production and cell death were assessed in vitro in human (HepG2) and murine (Hepa 1.6) HCC cell lines and human endothelial cells (HUVEC) as controls. In addition, 26 sera from HCC patients treated by sorafenib were analyzed for serum levels of advanced oxidation protein products (AOPP). Sorafenib significantly and dose-dependently enhanced in vitro ROS production by HCC cells. The SOD mimic MnTBAP decreased sorafenib-induced lysis of HepG2 cells by 20% and of Hepa 1.6 cells by 75% compared with HCC cells treated with 5 mg/L sorafenib alone. MnTBAP significantly enhanced by 25% tumor growth in mice treated by sorafenib. On the other hand, serum levels of AOPP were higher in HCC patients treated by sorafenib than in sera collected before treatment (P < 0.001). An increase in serum AOPP concentration ≥0.2 μmol/L chloramine T equivalent after 15 days of treatment is a predictive factor for sorafenib response with higher progression free survival (P < 0.05) and overall survival rates (P < 0.05). As a conclusion, sorafenib dose-dependently induces the generation of ROS in tumor cells in vitro and in vivo. The sera of Sorafenib-treated HCC patients contain increased AOPP levels that are correlated with the clinical effectiveness of sorafenib and can be used as a marker of effectiveness of the drug. . PMID:22902857

  19. PROBING REACTIVITY OF DISSOLVED ORGANIC MATTER FOR DISINFECTION BY-PRODUCT FORMATION USING XAD-8 RESIN ADSORPTION AND ULTRAFILTRATION FRACTIONATION. (R828045)

    EPA Science Inventory

    The disinfection by-product (DBP) reactivity (yield and speciation upon reaction with chlorine) of dissolved organic matter (DOM) isolated from two surface waters was investigated. The source waters, each having significantly different specific ultraviolet absorbance (SUVA

  20. Tip-enhanced Raman scattering microscopy: Recent advance in tip production

    NASA Astrophysics Data System (ADS)

    Fujita, Yasuhiko; Walke, Peter; De Feyter, Steven; Uji-i, Hiroshi

    2016-08-01

    Tip-enhanced Raman scattering (TERS) microscopy is a technique that combines the chemical sensitivity of Raman spectroscopy with the resolving power of scanning probe microscopy. The key component of any TERS setup is a plasmonically-active noble metal tip, which serves to couple far-field incident radiation with the near-field. Thus, the design and implementation of reproducible probes are crucial for the continued development of TERS as a tool for nanoscopic analysis. Here we discuss conventional methods for the fabrication of TERS-ready tips, highlighting the problems therein, as well as detailing more recent developments to improve reducibility. In addition, the idea of remote excitation-TERS is enlightened upon, whereby TERS sensitivity is further improved by using propagating surface plasmons to separate the incident radiation from the tip apex, as well as how this can be incorporated into the fabrication process.

  1. Phenylethynyl reactive diluents

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor)

    1995-01-01

    A composition of matter having a specified general structure is employed to terminate a nucleophilic reagent, resulting in the exclusive production of phenylethynyl terminated reactive oligomers which display unique thermal characteristics. A reactive diluent having a specified general structure is employed to decrease the melt viscosity of a phenylethynyl terminated reactive oligomer and to subsequently react with to provide a thermosetting material of enhanced density. These materials have features which make them attractive candidates for use as composite matrices and adhesives.

  2. Production and Scavenging of Reactive Oxygen Species and Redox Signaling during Leaf and Flower Senescence: Similar But Different.

    PubMed

    Rogers, Hilary; Munné-Bosch, Sergi

    2016-07-01

    Reactive oxygen species (ROS) play a key role in the regulation of many developmental processes, including senescence, and in plant responses to biotic and abiotic stresses. Several mechanisms of ROS generation and scavenging are similar, but others differ between senescing leaves and petals, despite these organs sharing a common evolutionary origin. Photosynthesis-derived ROS, nutrient remobilization, and reversibility of senescence are necessarily distinct features of the progression of senescence in the two organs. Furthermore, recent studies have revealed specific redox signaling processes that act in concert with phytohormones and transcription factors to regulate senescence-associated genes in leaves and petals. Here, we review some of the recent advances in our understanding of the mechanisms underpinning the production and elimination of ROS in these two organs. We focus on unveiling common and differential aspects of redox signaling in leaf and petal senescence, with the aim of linking physiological, biochemical, and molecular processes. We conclude that the spatiotemporal impact of ROS in senescing tissues differs between leaves and flowers, mainly due to the specific functionalities of these organs. PMID:27208233

  3. Anethole induces apoptotic cell death accompanied by reactive oxygen species production and DNA fragmentation in Aspergillus fumigatus and Saccharomyces cerevisiae.

    PubMed

    Fujita, Ken-Ichi; Tatsumi, Miki; Ogita, Akira; Kubo, Isao; Tanaka, Toshio

    2014-02-01

    trans-Anethole (anethole), a major component of anise oil, has a broad antimicrobial spectrum, and antimicrobial activity that is weaker than that of other antibiotics on the market. When combined with polygodial, nagilactone E, and n-dodecanol, anethole has been shown to possess significant synergistic antifungal activity against a budding yeast, Saccharomyces cerevisiae, and a human opportunistic pathogenic yeast, Candida albicans. However, the antifungal mechanism of anethole has not been completely determined. We found that anethole stimulated cell death of a human opportunistic pathogenic fungus, Aspergillus fumigatus, in addition to S. cerevisiae. The anethole-induced cell death was accompanied by reactive oxygen species production, metacaspase activation, and DNA fragmentation. Several mutants of S. cerevisiae, in which genes related to the apoptosis-initiating execution signals from mitochondria were deleted, were resistant to anethole. These results suggest that anethole-induced cell death could be explained by oxidative stress-dependent apoptosis via typical mitochondrial death cascades in fungi, including A. fumigatus and S. cerevisiae. PMID:24393541

  4. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis.

    PubMed

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik; Jeong, Soyeon; Shin, Soyeon; Lim, Kyu; Heo, Jun Young; Kweon, Gi Ryang

    2015-01-30

    Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson's disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson's disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis. PMID:25545062

  5. Laser phototherapy triggers the production of reactive oxygen species in oral epithelial cells without inducing DNA damage.

    PubMed

    Dillenburg, Caroline Siviero; Almeida, Luciana Oliveira; Martins, Manoela Domingues; Squarize, Cristiane Helena; Castilho, Rogerio Moraes

    2014-04-01

    Laser phototherapy (LPT) is widely used in clinical practice to accelerate healing. Although the use of LPT has advantages, the molecular mechanisms involved in the process of accelerated healing and the safety concerns associated with LPT are still poorly understood. We investigated the physiological effects of LPT irradiation on the production and accumulation of reactive oxygen species (ROS), genomic instability, and deoxyribose nucleic acid (DNA) damage in human epithelial cells. In contrast to a high energy density (20  J/cm²), laser administered at a low energy density (4  J/cm²) resulted in the accumulation of ROS. Interestingly, 4  J/cm² of LPT did not induce DNA damage, genomic instability, or nuclear influx of the BRCA1 DNA damage repair protein, a known genome protective molecule that actively participates in DNA repair. Our results suggest that administration of low energy densities of LPT induces the accumulation of safe levels of ROS, which may explain the accelerated healing results observed in patients. These findings indicate that epithelial cells have an endowed molecular circuitry that responds to LPT by physiologically inducing accumulation of ROS, which triggers accelerated healing. Importantly, our results suggest that low energy densities of LPT can serve as a safe therapy to accelerate epithelial healing. PMID:24781593

  6. Constitutive NF-κB activation and tumor-growth promotion by Romo1-mediated reactive oxygen species production

    SciTech Connect

    Chung, Jin Sil; Lee, Sora; Yoo, Young Do

    2014-08-08

    Highlights: • Romo1 expression is required for constitutive nuclear DNA-binding activity of NF-κB. • Romo1 depletion suppresses tumor growth in vivo. • Romo1 presents a potential therapeutic target for diseases. - Abstract: Deregulation of nuclear factor-κB (NF-κB) and related pathways contribute to tumor cell proliferation and invasion. Mechanisms for constitutive NF-κB activation are not fully explained; however, the underlying defects appear to generate and maintain pro-oxidative conditions. In hepatocellular carcinoma (HCC) tissues, up-regulation of reactive oxygen species modulator 1 (Romo1) correlates positively with tumor size. In the present study, we showed that Romo1 expression is required to maintain constitutive nuclear DNA-binding activity of NF-κB and transcriptional activity through constitutive IκBα phosphorylation. Overexpression of Romo1 promoted p65 nuclear translocation and DNA-binding activity. We also show that Romo1 depletion suppressed anchorage-independent colony formation by HCC cells and suppressed tumor growth in vivo. Based on these findings, Romo1 may be a principal regulatory factor in the maintenance of constitutive NF-κB activation in tumor cells. In the interest of anti-proliferative treatments for cancer, Romo1 may also present a productive target for drug development.

  7. Reactivity of Tannic Acid with Common Corrosion Products and Its Influence on the Hydrolysis of Iron in Alkaline Solutions

    NASA Astrophysics Data System (ADS)

    Jaén, J. A.; Araúz, E. Y.; Iglesias, J.; Delgado, Y.

    2003-06-01

    To ascertain the role of tannic acid in the anticorrosive protection of steels, the reaction between 5% tannic acid aqueous solutions with lepidocrocite, goethite, superparamagnetic goethite, akaganeite, poorly crystalline maghemite, magnetite and hematite was studied using color changes, infrared and Mössbauer spectroscopy. After three months of interaction with lepidocrocite, the formation of an iron tannate complex was detected by its dark blue color and confirmed by infrared and Mössbauer analysis. Evidence for the chemical transformation was obtained for goethite in nanoparticles and poorly crystalline maghemite after reaction for six months. The other iron compounds do not transform to another oxide or phase upon treatment with the tannic acid solution. These results showed that lepidocrocite is the most reactive phase and that the size and degree of crystallinity have strong influence on the formation of the tannate complexes. The precipitation of iron phases from alkaline solutions of iron (II) sulfate heptahydrate containing different amount of tannic acid and potassium nitrate as oxidative agent was also studied. Mössbauer and infrared results show that in the absence of tannic acid some common rust components are obtained (viz. goethite, superparamagnetic goethite, maghemite and non-stoichiometric magnetite). The presence of 0.1% tannic acid in a low alkalinity solution results in the precipitation of iron oxyhydroxides and some iron tannates. Concentrations of 1% tannic acid are required for the formation of the tannates complexes as main reaction product.

  8. Production and Scavenging of Reactive Oxygen Species and Redox Signaling during Leaf and Flower Senescence: Similar But Different1[OPEN

    PubMed Central

    2016-01-01

    Reactive oxygen species (ROS) play a key role in the regulation of many developmental processes, including senescence, and in plant responses to biotic and abiotic stresses. Several mechanisms of ROS generation and scavenging are similar, but others differ between senescing leaves and petals, despite these organs sharing a common evolutionary origin. Photosynthesis-derived ROS, nutrient remobilization, and reversibility of senescence are necessarily distinct features of the progression of senescence in the two organs. Furthermore, recent studies have revealed specific redox signaling processes that act in concert with phytohormones and transcription factors to regulate senescence-associated genes in leaves and petals. Here, we review some of the recent advances in our understanding of the mechanisms underpinning the production and elimination of ROS in these two organs. We focus on unveiling common and differential aspects of redox signaling in leaf and petal senescence, with the aim of linking physiological, biochemical, and molecular processes. We conclude that the spatiotemporal impact of ROS in senescing tissues differs between leaves and flowers, mainly due to the specific functionalities of these organs. PMID:27208233

  9. Pigment epithelium-derived factor stimulates skeletal muscle glycolytic activity through NADPH oxidase-dependent reactive oxygen species production.

    PubMed

    Carnagarin, Revathy; Carlessi, Rodrigo; Newsholme, Philip; Dharmarajan, Arun M; Dass, Crispin R

    2016-09-01

    Pigment epithelium-derived factor is a multifunctional serpin implicated in insulin resistance in metabolic disorders. Recent evidence suggests that exposure of peripheral tissues such as skeletal muscle to PEDF has profound metabolic consequences with predisposition towards chronic conditions such as obesity, type 2 diabetes, metabolic syndrome and polycystic ovarian syndrome. Chronic inflammation shifts muscle metabolism towards increased glycolysis and decreased oxidative metabolism. In the present study, we demonstrate a novel effect of PEDF on cellular metabolism in mouse cell line (C2C12) and human primary skeletal muscle cells. PEDF addition to skeletal muscle cells induced enhanced phospholipase A2 activity. This was accompanied with increased production of reactive oxygen species in a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent manner that triggered a shift towards a more glycolytic phenotype. Extracellular flux analysis and glucose consumption assays demonstrated that PEDF treatment resulted in enhanced glycolysis but did not change mitochondrial respiration. Our results demonstrate that skeletal muscle cells express a PEDF-inducible oxidant generating system that enhances glycolysis but is sensitive to antioxidants and NADPH oxidase inhibition. PMID:27343430

  10. Effects of lead on growth, photosynthetic characteristics and production of reactive oxygen species of two freshwater green algae.

    PubMed

    Dao, Ly H T; Beardall, John

    2016-03-01

    In the natural environment, heavy metal contamination can occur as long-term pollution of sites or as pulses of pollutants from wastewater disposal. In this study two freshwater green algae, Chlorella sp. FleB1 and Scenedesmus YaA6, were isolated from lead-polluted water samples and the effects of 24 h vs 4 and 8 d exposure of cultures to lead on growth, photosynthetic physiology and production of reactive oxygen species (ROS) of these algae were investigated. In Chlorella sp. FleB1, there was agreement between lead impacts on chlorophyll content, photosynthesis and growth in most case. However, in Scenedesmus acutus YaA6 growth was inhibited at lower lead concentrations (0.03-0.87 × 10(-9) M), under which ROS, measured by 2',7' dichlorodihydrofluorescein diacetate fluorescence, were 4.5 fold higher than in controls but photosynthesis was not affected, implying that ROS had played a role in the growth inhibition that did not involve direct effects on photosynthesis. Effects of short-term (5 h, 24 h) vs long-term (4 d and 8 d) exposure to lead were also compared between the two algae. The results contribute to our understanding of the mechanisms of lead toxicity to algae. PMID:26774308

  11. Production of hybrid diesel fuel precursors from carbohydrates and petrochemicals using formic acid as a reactive solvent.

    PubMed

    Zhou, Xiaoyuan; Rauchfuss, Thomas B

    2013-02-01

    We report the one-pot alkylation of mesitylene with carbohydrate-derived 5-(hydroxymethyl)furfural (HMF) as a step toward diesel-range liquids. Using FeCl(3) as a catalyst, HMF is shown to alkylate toluene, xylene, and mesitylene in high yields in CH(2)Cl(2) and MeNO(2) solvents. Efforts to extend this reaction to greener or safer solvents showed that most ether-based solvents are unsatisfactory. Acid catalysts (e.g, p-TsOH) also proved to be ineffective. Using formic acid as a reactive solvent, mesitylene could be alkylated to give mesitylmethylfurfural (MMF) starting from fructose with yields up to approximately 70 %. The reaction of fructose with formic acid in the absence of mesitylene gave rise to low yields of the formate ester of HMF, which indicates the stabilizing effect of replacing the hydroxyl substituent with mesityl. The arene also serves as a second phase into which the product is extracted. Even by using formic acid, the mesitylation of less expensive precursors such as glucose and cellulose proceeded only in modest yields (ca. 20 %). These simpler substrates were found to undergo mesitylation by using hydrogen chloride/formic acid via the intermediate chloromethylfurfural. PMID:23281330

  12. Hypothesis on Skeletal Muscle Aging: Mitochondrial Adenine Nucleotide Translocator Decreases Reactive Oxygen Species Production While Preserving Coupling Efficiency

    PubMed Central

    Diolez, Philippe; Bourdel-Marchasson, Isabelle; Calmettes, Guillaume; Pasdois, Philippe; Detaille, Dominique; Rouland, Richard; Gouspillou, Gilles

    2015-01-01

    Mitochondrial membrane potential is the major regulator of mitochondrial functions, including coupling efficiency and production of reactive oxygen species (ROS). Both functions are crucial for cell bioenergetics. We previously presented evidences for a specific modulation of adenine nucleotide translocase (ANT) appearing during aging that results in a decrease in membrane potential - and therefore ROS production—but surprisingly increases coupling efficiency under conditions of low ATP turnover. Careful study of the bioenergetic parameters (oxidation and phosphorylation rates, membrane potential) of isolated mitochondria from skeletal muscles (gastrocnemius) of aged and young rats revealed a remodeling at the level of the phosphorylation system, in the absence of alteration of the inner mitochondrial membrane (uncoupling) or respiratory chain complexes regulation. We further observed a decrease in mitochondrial affinity for ADP in aged isolated mitochondria, and higher sensitivity of ANT to its specific inhibitor atractyloside. This age-induced modification of ANT results in an increase in the ADP concentration required to sustain the same ATP turnover as compared to young muscle, and therefore in a lower membrane potential under phosphorylating—in vivo—conditions. Thus, for equivalent ATP turnover (cellular ATP demand), coupling efficiency is even higher in aged muscle mitochondria, due to the down-regulation of inner membrane proton leak caused by the decrease in membrane potential. In the framework of the radical theory of aging, these modifications in ANT function may be the result of oxidative damage caused by intra mitochondrial ROS and may appear like a virtuous circle where ROS induce a mechanism that reduces their production, without causing uncoupling, and even leading in improved efficiency. Because of the importance of ROS as therapeutic targets, this new mechanism deserves further studies. PMID:26733871

  13. Reactive transport model of growth and methane production by high-temperature methanogens in hydrothermal regions of the subseafloor

    NASA Astrophysics Data System (ADS)

    Stewart, L. C.; Algar, C. K.; Topçuoğlu, B. D.; Fortunato, C. S.; Larson, B. I.; Proskurowski, G. K.; Butterfield, D. A.; Vallino, J. J.; Huber, J. A.; Holden, J. F.

    2014-12-01

    Hydrogenotrophic methanogens are keystone high-temperature autotrophs in deep-sea hydrothermal vents and tracers of habitability and biogeochemical activity in the hydrothermally active subseafloor. At Axial Seamount, nearly all thermophilic methanogens are Methanothermococcus and Methanocaldococcus species, making this site amenable to modeling through pure culture laboratory experiments coupled with field studies. Based on field microcosm incubations with 1.2 mM, 20 μM, or no hydrogen, the growth of methanogens at 55°C and 80°C is limited primarily by temperature and hydrogen availability, with ammonium amendment showing no consistent effect on total methane output. The Arrhenius constants for methane production by Methanocaldococcus jannaschii (optimum 82°C) and Methanothermococcus thermolithotrophicus (optimum 65°C) were determined in pure culture bottle experiments. The Monod constants for hydrogen concentration were measured by growing both organisms in a 2-liter chemostat at two dilution rates; 55°C, 65°C and 82°C; and variable hydrogen concentrations. M. jannaschii showed higher ks and Vmax constants than M. thermolithotrophicus. In the field, hydrogen and methane concentrations in hydrothermal end-member and low-temperature diffuse fluids were measured, and the concentrations of methanogens that grow at 55°C and 80°C in diffuse fluids were determined using most-probable-number estimates. Methane concentration anomalies in diffuse fluids relative to end-member hydrothermal concentrations and methanogen cell concentrations are being used to constrain a 1-D reactive transport model using the laboratory-determined Arrhenius and Monod constants for methane production by these organisms. By varying flow path length and subseafloor cell concentrations in the model, our goal is to determine solutions for the potential depth of the subseafloor biosphere coupled with the amount of methanogenic biomass it contains.

  14. p47phox and reactive oxygen species production modulate expression of microRNA-451 in macrophages

    PubMed Central

    Ranjan, R.; Lee, Y. G.; Karpurapu, M.; Syed, M. A.; Chung, S.; Deng, J.; Jeong, J. J.; Zhao, G.; Xiao, L.; Sadikot, R. T.; Weiss, M. J.; Christman, J. W.; Park, G. Y.

    2015-01-01

    The production of microRNAs (miRNA) is influenced by various stimuli, including environmental stresses. We hypothesized that reactive oxygen species (ROS)-associated stress could regulate macrophage miRNA synthesis. miRNAs undergo unique steps of maturation processing through either one of two pathways of cytoplasmic processing. Unlike the canonical pathway, the regulation of alternative cytoplasmic processing of miRNA has not been fully elucidated yet. We cultured bone marrow derived macrophages (BMDM) from wild type (WT) and p47phox−/− mice and profiled miRNA expression using microarrays. We analyzed 375 miRNAs including four endogenous controls to normalize the data. At resting state, p47phox−/− BMDM has the markedly reduced expression of miR-451 compared to WT BMDM, without other significant differences. Unlike majority of miRNAs, miR-451 goes through the unique alternative processing pathway, in which Ago2 plays a key role. In spite of significant reduction of mature miR-451, however, its precursor form, pre-mir-451, was similar in both BMDMs, suggesting that the processing of pre-mir-451 is impaired in p47phox−/− BMDM. Moreover, p47phox−/− BMDM expressed significantly reduced level of Ago2. In contrast, Ago2 mRNA levels were similar in WT and p47phox−/− BMDM, suggesting a post-transcriptional defect of Ago2 production in p47phox−/− macrophages, which resulted in impaired processing of pre-miR-451. In order to examine the functional significance of miR-451 in macrophages, we cultured BMDMs from miR-451 knock-out mice. Of interest, miR-451-deficient BMDM exhibited reduced ROS generation upon zymosan stimulation, compared to WT BMDM. Our studies suggest functional crosstalk between ROS and miR-451 in the regulation of macrophage oxidant stress. PMID:25287330

  15. Chlamydia muridarum infection of macrophages elicits bactericidal nitric oxide production via reactive oxygen species and cathepsin B.

    PubMed

    Rajaram, Krithika; Nelson, David E

    2015-08-01

    The ability of certain species of Chlamydia to inhibit the biogenesis of phagolysosomes permits their survival and replication within macrophages. The survival of macrophage-adapted chlamydiae correlates with the multiplicity of infection (MOI), and optimal chlamydial growth occurs in macrophages infected at an MOI of ≤1. In this study, we examined the replicative capacity of Chlamydia muridarum in the RAW 264.7 murine macrophage cell line at different MOIs. C. muridarum productively infected these macrophages at low MOIs but yielded few viable elementary bodies (EBs) when macrophages were infected at a moderate (10) or high (100) MOI. While high MOIs caused cytotoxicity and irreversible host cell death, macrophages infected at a moderate MOI did not show signs of cytotoxicity until late in the infectious cycle. Inhibition of host protein synthesis rescued C. muridarum in macrophages infected at a moderate MOI, implying that chlamydial growth was blocked by activated defense mechanisms. Conditioned medium from these macrophages was antichlamydial and contained elevated levels of interleukin 1β (IL-1β), IL-6, IL-10, and beta interferon (IFN-β). Macrophage activation depended on Toll-like receptor 2 (TLR2) signaling, and cytokine production required live, transcriptionally active chlamydiae. A hydroxyl radical scavenger and inhibitors of inducible nitric oxide synthase (iNOS) and cathepsin B also reversed chlamydial killing. High levels of reactive oxygen species (ROS) led to an increase in cathepsin B activity, and pharmacological inhibition of ROS and cathepsin B reduced iNOS expression. Our data demonstrate that MOI-dependent TLR2 activation of macrophages results in iNOS induction via a novel ROS- and cathepsin-dependent mechanism to facilitate C. muridarum clearance. PMID:26015483

  16. Spatio-temporal relief from hypoxia and production of reactive oxygen species during bud burst in grapevine (Vitis vinifera)

    PubMed Central

    Meitha, Karlia; Konnerup, Dennis; Colmer, Timothy D.; Considine, John A.; Foyer, Christine H.; Considine, Michael J.

    2015-01-01

    Background and Aims Plants regulate cellular oxygen partial pressures (pO2), together with reduction/oxidation (redox) state in order to manage rapid developmental transitions such as bud burst after a period of quiescence. However, our understanding of pO2 regulation in complex meristematic organs such as buds is incomplete and, in particular, lacks spatial resolution. Methods The gradients in pO2 from the outer scales to the primary meristem complex were measured in grapevine (Vitis vinifera) buds, together with respiratory CO2 production rates and the accumulation of superoxide and hydrogen peroxide, from ecodormancy through the first 72 h preceding bud burst, triggered by the transition from low to ambient temperatures. Key Results Steep internal pO2 gradients were measured in dormant buds with values as low as 2·5 kPa found in the core of the bud prior to bud burst. Respiratory CO2 production rates increased soon after the transition from low to ambient temperatures and the bud tissues gradually became oxygenated in a patterned process. Within 3 h of the transition to ambient temperatures, superoxide accumulation was observed in the cambial meristem, co-localizing with lignified cellulose associated with pro-vascular tissues. Thereafter, superoxide accumulated in other areas subtending the apical meristem complex, in the absence of significant hydrogen peroxide accumulation, except in the cambial meristem. By 72 h, the internal pO2 gradient showed a biphasic profile, where the minimum pO2 was external to the core of the bud complex. Conclusions Spatial and temporal control of the tissue oxygen environment occurs within quiescent buds, and the transition from quiescence to bud burst is accompanied by a regulated relaxation of the hypoxic state and accumulation of reactive oxygen species within the developing cambium and vascular tissues of the heterotrophic grapevine buds. PMID:26337519

  17. A Novel Nontoxic Inhibitor of the Activation of NADPH Oxidase Reduces Reactive Oxygen Species Production in Mouse LungS⃞

    PubMed Central

    Lee, Intae; Dodia, Chandra; Chatterjee, Shampa; Zagorski, John; Mesaros, Clementina; Blair, Ian A.; Feinstein, Sheldon I.; Jain, Mahendra

    2013-01-01

    1-Hexadecyl-3-trifluoroethylglycero-sn-2-phosphomethanol (MJ33) is a fluorinated phospholipid analog that inhibits the phospholipase A2 (PLA2) activity of peroxiredoxin 6 (Prdx6). Prdx6 PLA2 activity is required for activation of NADPH oxidase 2 and subsequent generation of reactive oxygen species (ROS). In vitro, MJ33 inhibited agonist-stimulated production of ROS by the isolated perfused mouse lung, lung microvascular endothelial cells, and polymorphonuclear leukocytes. MJ33 (0.02–0.5 µmol MJ33/kg body weight) in mixed unilamellar liposomes was administered to C57BL/6 mice by either intratracheal (i.t.) or i.v. routes. Lung MJ33 content, measured by liquid chromatography/mass spectroscopy, showed uptake of 67–87% of the injected dose for i.t. and 23–42% for i.v. administration at 4 hours postinjection. PLA2 activity of lung homogenates was markedly inhibited (>85%) at 4 hours postadministration. Both MJ33 content and PLA2 activity gradually returned to near control levels over the subsequent 24–72 hours. Mice treated with MJ33 at 12.5–25 µmol/kg did not show changes (compared with control) in clinical symptomatology, body weight, hematocrit, and histology of lung, liver, and kidney during a 30- to 50-day observation period. Thus, the toxic dose of MJ33 was >25 µmol/kg, whereas the PLA2 inhibitory dose was approximately 0.02 µmol/kg, indicating a high margin of safety. MJ33 administered to mice prior to lung isolation markedly reduced ROS production and tissue lipid and protein oxidation during ischemia followed by reperfusion. Thus, MJ33 could be useful as a therapeutic agent to prevent ROS-mediated tissue injury associated with lung inflammation or in harvested lungs prior to transplantation. PMID:23475902

  18. Measuring nuclear transparency from exclusive vector meson production in lepton-nucleus scattering

    SciTech Connect

    Fang, G.Y.

    1994-04-01

    Preliminary results on the measurement of nuclear transparencies from exclusive {rho}{sup 0} meson production from E665 at Fermilab are reported. The data were collected on hydrogen, deuterium, carbon, calcium, and lead targets with a mean beam energy of 470 GeV. Increases in the transparencies are observed in both coherent and incoherent production channels as the virtuality of the photon increases, as expected of color transparency. Ideas of systematic studies of color transparency in exclusive vector meson production at CEBAF are discussed.

  19. Barth Syndrome: From Mitochondrial Dysfunctions Associated with Aberrant Production of Reactive Oxygen Species to Pluripotent Stem Cell Studies

    PubMed Central

    Saric, Ana; Andreau, Karine; Armand, Anne-Sophie; Møller, Ian M.; Petit, Patrice X.

    2016-01-01

    Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present cardiomyopathy (CM) (often dilated), skeletal muscle weakness, neutropenia, growth retardation, and 3-methylglutaconic aciduria. Biopsies of the heart, liver and skeletal muscle of patients have revealed mitochondrial malformations and dysfunctions. It is the purpose of this review to summarize recent results of studies on various animal or cell models of Barth syndrome, which have characterized biochemically the strong cellular defects associated with TAZ mutations. Tafazzin is a mitochondrial phospholipidlysophospholipid transacylase that shuttles acyl groups between phospholipids and regulates the remodeling of cardiolipin (CL), a unique inner mitochondrial membrane phospholipid dimer consisting of two phosphatidyl residues linked by a glycerol bridge. After their biosynthesis, the acyl chains of CLs may be modified in remodeling processes involving up to three different enzymes. Their characteristic acyl chain composition depends on the function of tafazzin, although the enzyme itself surprisingly lacks acyl specificity. CLs are crucial for correct mitochondrial structure and function. In addition to their function in the basic mitochondrial function of ATP production, CLs play essential roles in cardiac function, apoptosis, autophagy, cell cycle regulation and Fe-S cluster biosynthesis. Recent developments in tafazzin research have provided strong insights into the link between mitochondrial dysfunction and the production of reactive oxygen species (ROS). An important tool has been the generation of BTHS-specific induced pluripotent stem cells (iPSCs) from BTHS patients. In a complementary approach, disease-specific mutations have been introduced into wild-type iPSC lines enabling direct comparison with isogenic controls. iPSC-derived cardiomyocytes were then characterized using biochemical and classical bioenergetic

  20. Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production.

    PubMed

    Li, Fengmin; Liang, Zhi; Zheng, Xiang; Zhao, Wei; Wu, Miao; Wang, Zhenyu

    2015-01-01

    Given the extensive use of nanomaterials, they may enter aquatic environments and harm the growth of algae, which are primary producers in an aquatic ecosystem. Thus, the balance of an aquatic ecosystem may be destroyed. In this study, Karenia brevis and Skeletonema costatum were exposed to nano-TiO2 (anatase, average particle size of 5-10 nm, specific surface area of 210±10 m(2) g(-1)) to assess the effects of nano-TiO2 on algae. The findings of transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDX) and scanning electron microscopy (SEM) demonstrate aggregation of nano-TiO2 in the algal suspension. Nano-TiO2 was also found to be inside algal cells. The growth of the two species of algae was inhibited under nano-TiO2 exposure. The 72 h EC50 values of nano-TiO2 to K. brevis and S. costatum were 10.69 and 7.37 mg L(-1), respectively. TEM showed that the cell membrane of K. brevis was destroyed and its organelles were almost undistinguished under nano-TiO2 exposure. The malondialdehyde (MDA) contents of K. brevis and S. costatum significantly increased compared with those of the control (p<0.05). Meanwhile, superoxide dismutase (SOD) and catalase activities (CAT) of K. brevis and S. costatum changed in different ways. The reactive oxygen species (ROS) levels in both species were significantly higher than those of the control (p<0.05). The site of ROS production and accumulation in K. brevis and S. costatum under nano-TiO2 exposure was explored with the addition of inhibitors of different electron transfer chains. This study indicated that nano-TiO2 in algal suspensions inhibited the growth of K. brevis and S. costatum. This effect was attributed to oxidative stress caused by ROS production inside algal cells. The levels of anti-oxidative enzymes changed, which destroyed the balance between oxidation and anti-oxidation. Thus, algae were damaged by ROS accumulation, resulting in lipid oxidation and inhibited algae growth. The inhibitors of the

  1. Barth Syndrome: From Mitochondrial Dysfunctions Associated with Aberrant Production of Reactive Oxygen Species to Pluripotent Stem Cell Studies.

    PubMed

    Saric, Ana; Andreau, Karine; Armand, Anne-Sophie; Møller, Ian M; Petit, Patrice X

    2015-01-01

    Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present cardiomyopathy (CM) (often dilated), skeletal muscle weakness, neutropenia, growth retardation, and 3-methylglutaconic aciduria. Biopsies of the heart, liver and skeletal muscle of patients have revealed mitochondrial malformations and dysfunctions. It is the purpose of this review to summarize recent results of studies on various animal or cell models of Barth syndrome, which have characterized biochemically the strong cellular defects associated with TAZ mutations. Tafazzin is a mitochondrial phospholipidlysophospholipid transacylase that shuttles acyl groups between phospholipids and regulates the remodeling of cardiolipin (CL), a unique inner mitochondrial membrane phospholipid dimer consisting of two phosphatidyl residues linked by a glycerol bridge. After their biosynthesis, the acyl chains of CLs may be modified in remodeling processes involving up to three different enzymes. Their characteristic acyl chain composition depends on the function of tafazzin, although the enzyme itself surprisingly lacks acyl specificity. CLs are crucial for correct mitochondrial structure and function. In addition to their function in the basic mitochondrial function of ATP production, CLs play essential roles in cardiac function, apoptosis, autophagy, cell cycle regulation and Fe-S cluster biosynthesis. Recent developments in tafazzin research have provided strong insights into the link between mitochondrial dysfunction and the production of reactive oxygen species (ROS). An important tool has been the generation of BTHS-specific induced pluripotent stem cells (iPSCs) from BTHS patients. In a complementary approach, disease-specific mutations have been introduced into wild-type iPSC lines enabling direct comparison with isogenic controls. iPSC-derived cardiomyocytes were then characterized using biochemical and classical bioenergetic

  2. A process for enhancing the accessibility and reactivity of hardwood kraft-based dissolving pulp for viscose rayon production by cellulase treatment.

    PubMed

    Miao, Qingxian; Chen, Lihui; Huang, Liulian; Tian, Chao; Zheng, Linqiang; Ni, Yonghao

    2014-02-01

    The commercial pre-hydrolysis kraft-based dissolving pulp production process can be a typical example for the demonstration/implementation of the integrated forest biorefinery concept. In this study, the concept of cellulase treatment of this dissolving pulp for enhancement of accessibility/reactivity in terms of viscose rayon production was demonstrated. The cellulase treatment resulted in the formation of additional openings/surface areas in the fiber structure via the possible action of "etching". As a result, the pore volume of pulp fibers increased, which led to the increase in the accessibility to xanthation, and thus Fock reactivity. Results showed that the cellulase treatment was effective in increasing the Fock reactivity, at a cellulase dosage of 2u/g (based on the dry weight of pulp), the Fock reactivity increased from 47.67% to 79.9%. The adoption of cellulase treatment to hardwood kraft-based dissolving pulp can provide an efficient approach for enhancing its performance in the commercial viscose-rayon process. PMID:24384317

  3. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system

    PubMed Central

    Pérez-Andújar, Angélica; Newhauser, Wayne D; DeLuca, Paul M

    2014-01-01

    In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient. PMID:19147903

  4. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system.

    PubMed

    Pérez-Andújar, Angélica; Newhauser, Wayne D; Deluca, Paul M

    2009-02-21

    In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient. PMID:19147903

  5. Diffractive dijet production in deep inelastic scattering and photon-hadron collisions in the color glass condensate

    NASA Astrophysics Data System (ADS)

    Altinoluk, Tolga; Armesto, Néstor; Beuf, Guillaume; Rezaeian, Amir H.

    2016-07-01

    We study exclusive dijet production in coherent diffractive processes in deep inelastic scattering and real (and virtual) photon-hadron (γ (*)-h) collisions in the Color Glass Condensate formalism at leading order. We show that the diffractive dijet cross section is sensitive to the color-dipole orientation in the transverse plane, and is a good probe of possible correlations between the q q bar -dipole transverse separation vector r and the dipole impact parameter b. We also investigate the diffractive dijet azimuthal angle correlations and t-distributions in γ (*)-h collisions and show that they are sensitive to gluon saturation effects in the small-x region. In particular, we show that the t-distribution of diffractive dijet photo-production off a proton target exhibits a dip-type structure in the saturation region. This effect is similar to diffractive vector meson production. Besides, at variance with the inclusive case, the effect of saturation leads to stronger azimuthal correlations between the jets.

  6. Climate and topographic controls on pasture production in a semiarid Mediterranean watershed with scattered tree cover

    NASA Astrophysics Data System (ADS)

    Lozano-Parra, J.; Maneta, M. P.; Schnabel, S.

    2013-12-01

    Natural grasses in semiarid rangelands constitute an effective protection against soil erosion and degradation, are a source of natural food for livestock and play a critical role in the hydrologic cycle by contributing to the uptake and transpiration of water. However, natural pastures are threatened by land abandonment and the consequent encroachment of shrubs and trees as well as by changing climatic conditions. In spite of their ecological and economic importance, the spatio-temporal variations of pasture production at the decadal to century scales over whole watersheds are poorly known. We used a physics-based, spatially-distributed ecohydrologic model applied to a 99.5 ha semiarid watershed in western Spain to investigate the sensitivity of pasture production to climate variability. The ecohydrologic model was run using a 300 yr long synthetic daily climate dataset generated using a stochastic weather generator. The data set reproduced the range of climatic variations observed under current climate. Results indicated that variation of pasture production largely depended on factors that also determined the availability of soil moisture such as the temporal distribution of precipitation, topography, and tree canopy cover. The latter is negatively related with production, reflecting the importance of rainfall and light interception, as well as water consumption by trees. Valley bottoms and flat areas in the lower parts of the catchment are characterized by higher pasture production. A quantitative assessment of the quality of the simulations showed that ecohydrologic models are a valuable tool to investigate long term (century scale) water and energy fluxes, as well as vegetation dynamics, in semiarid rangelands.

  7. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    SciTech Connect

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik; Jeong, Soyeon; Shin, Soyeon; Lim, Kyu; Heo, Jun Young; Kweon, Gi Ryang

    2015-01-30

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis.

  8. Contributions of reactive oxygen species and mitogen-activated protein kinase signaling in arsenite-stimulated hemeoxygenase-1 production

    SciTech Connect

    Cooper, Karen L.; Liu, Ke Jian; Hudson, Laurie G. . E-mail: lhudson@salud.unm.edu

    2007-01-15

    Hemeoxygenase-1 (HO-1) is an oxidative stress responsive gene upregulated by various physiological and exogenous stimuli. HO-1 has cytoprotective activities and arsenite is a potent inducer of HO-1 in many cell types and tissues, including epidermal keratinocytes. We investigated the potential contributions of reactive oxygen species (ROS) generation and mitogen-activated protein kinase (MAPK) activation to arsenite-dependent regulation of HO-1 in HaCaT cells, an immortalized human keratinocyte line. Both epidermal growth factor (EGF) and arsenite stimulated ROS production was detected by dihydroethidium (DHE) staining and fluorescence microscopy. Arsenite induced HO-1 in a time- and concentration-dependent manner, while HO-1 expression in response to EGF was modest and evident at extended time points (48-72 h). Inhibition of EGF receptor, MEK I/II or Src decreased arsenite-stimulated HO-1 expression by 20-30%. In contrast, addition of a superoxide scavenger or inhibition of p38 activity decreased the arsenite-dependent response by 80-90% suggesting that ROS and p38 are required for HO-1 induction. However, ROS generation alone was insufficient for the observed arsenite-dependent response as use of a xanthine/xanthine oxidase system to generate ROS did not produce an equivalent upregulation of HO-1. Cooperation between ERK signaling and ROS generation was demonstrated by synergistic induction of HO-1 in cells co-treated with EGF and xanthine/xanthine oxidase resulting in a response nearly equivalent to that observed with arsenite. These findings suggest that the ERK/MAPK activation is necessary but not sufficient for optimal arsenite-stimulated HO-1 induction. The robust and persistent upregulation of HO-1 may have a role in cellular adaptation to chronic arsenic exposure.

  9. Enhanced charged Higgs production through W -Higgs fusion in W - b scattering

    NASA Astrophysics Data System (ADS)

    Arhrib, Abdesslam; Cheung, Kingman; Lee, Jae Sik; Lu, Chih-Ting

    2016-05-01

    We study the associated production of a charged Higgs boson with a bottom quark and a light quark at the LHC via pp → H ± b j in the Two Higgs Doublet Models (2HDMs). Using the effective W approximation, we show that there is exact cancellation among various Feynman diagrams in high energy limit. This may imply that the production of charged Higgs can be significantly enhanced in the presence of large mass differences among the neutral Higgs bosons via W ±-Higgs fusion in the pp → H ± b j process. Particularly, we emphasize the potential enhancement due to a light pseudoscalar boson A, which is still allowed by the current data by which we explicitly calculate the allowed regions in ( M A , tan β) plane, and show that the production cross section can be as large as 0.1 pb for large tan β. We also show that the transverse momentum distribution of the b quark can potentially distinguish the W ± - A fusion diagram from the top diagram. Finally, we point out further enhancement when we go beyond the 2HDMs.

  10. Production of neutral strange particles in muon-nucleon scattering at 490 GeV

    NASA Astrophysics Data System (ADS)

    Adams, M. R.; Aderholz, M.; Aïd, S.; Anthony, P. L.; Baker, M. D.; Bartlett, J.; Bhatti, A. A.; Braun, H. M.; Busza, W.; Conrad, J. M.; Coutrakon, G.; Davisson, R.; Derado, I.; Dhawan, S. K.; Dougherty, W.; Dreyer, T.; Dziunikowska, K.; Eckardt, V.; Ecker, U.; Erdmann, M.; Eskreys, A.; Figiel, J.; Gebauer, H. J.; Geesaman, D. F.; Gilman, R.; Green, M. C.; Haas, J.; Halliwell, C.; Hanlon, J.; Hantke, D.; Hughes, V. W.; Jackson, H. E.; Jaffe, D. E.; Jancso, G.; Jansen, D. M.; Kadija, K.; Kaufman, S.; Kennedy, R. D.; Kirk, T.; Kobrak, H. G. E.; Krzywdzinski, S.; Kunori, S.; Lord, J. J.; Lubatti, H. J.; McLeod, D.; Magill, S.; Malecki, P.; Manz, A.; Melanson, H.; Michael, D. G.; Mohr, W.; Montgomery, H. E.; Morfin, J. G.; Nickerson, R. B.; O'Day, S.; Olkiewicz, K.; Osborne, L.; Papavassiliou, V.; Pawlik, B.; Pipkin, F. M.; Ramberg, E. J.; Röser, A.; Ryan, J. J.; Salgado, C. W.; Salvarani, A.; Schellman, H.; Schmitt, M.; Schmitz, N.; Schüler, K. P.; Seyerlein, H. J.; Skuja, A.; Snow, G. A.; Söldner-Rembold, S.; Steinberg, P. H.; Stier, H. E.; Stopa, P.; Swanson, R. A.; Talaga, R.; Tentindo-Repond, S.; Trost, H. J.; Venkataramania, H.; Wilhelm, M.; Wilkes, J.; Wilson, R.; Wittek, W.; Wolbers, S. A.; Zhao, T.

    1994-12-01

    The production of K 0, Λ andbar Λ particles is studied in the E665 muon-nucleon experiment at Fermilab. The average multiplicities and squared transverse momenta are measured as a function of x F and W 2. Most features of the data can be well described by the Lund model. Within this model, the data on the K0/π± ratios and on the average K 0 multiplicity in the forward region favor a strangeness suppression factor s/u in the fragmentation process near 0.20. Clear evidence for QCD effects is seen in the average squared transverse momentum of K 0 and Λ particles.

  11. Anesthetic agent propofol inhibits myeloid differentiation factor 88-dependent and independent signaling and mitigates lipopolysaccharide-mediated reactive oxygen species production in human neutrophils in vitro.

    PubMed

    Ren, Xuli; Lv, Fei; Fang, Bo; Liu, Song; Lv, Huangwei; He, Guannan; Ma, Hong; Cao, Yaming; Wang, Yue

    2014-12-01

    Engagement of toll-like receptor 4 (TLR4) can activate the myeloid differentiation factor 88 (MyD88)/toll-interleukin-1-resistance domain-containing adapter-inducing interferon-β (TRIF) dependent pathways, inducing production of reactive oxygen species (ROS) in neutrophils. Propofol (PPF) has both anti-oxidant and anti-inflammatory properties. However, the molecular mechanism by which PPF influences human neutrophil function is yet to be elucidated. This study aimed to investigate the influence of PPF on lipopolysaccharide (LPS)-induced reactive oxygen species production in human neutrophils. We isolated neutrophils from the peripheral blood of 10 healthy male donors. Neither 1 µg/ml LPS nor 10-150 μmol/L PPF influenced the rate of neutrophil apoptosis, but PPF significantly inhibited LPS-mediated reactive oxygen species production in a dose-dependent manner. PPF inhibited LPS-induced expression of MyD88, tumor necrosis factor receptor-associated factor 6, and TRIF, but not the expression of interferon regulatory factor 3 or phosphorylation of p47(phox), p38-mitogen-activated protein kinase, and nuclear factor (NF)-κB, particularly in the neutrophils in which MyD88 or TRIF had been silenced by siRNA. The inhibitory effect of PPF on LPS-induced activation of p47(phox), p38-mitogen-activated protein kinase, and NF-κB was partially antagonized by over-expression of MyD88 or TRIF in neutrophils. These observations provide insights into the mechanisms responsible for the anti-inflammatory properties of PPF. PPF reduces LPS-induced production of reactive oxygen species in neutrophils via inhibiting expression of MyD88 and TRIF signaling. PMID:25446563

  12. Systematic development of a group quantification method using evaporative light scattering detector for relative quantification of ginsenosides in ginseng products.

    PubMed

    Lee, Gwang Jin; Shin, Byong-Kyu; Yu, Yun-Hyun; Ahn, Jongsung; Kwon, Sung Won; Park, Jeong Hill

    2016-09-01

    The determination for the contents of multi-components in ginseng products has come to the fore by demands of in-depth information, but the associated industries confront the high cost of securing pure standards for the continuous quality evaluation of the products. This study aimed to develop a prospective high-performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD) method for relative quantification of ginsenosides in ginseng products without a considerable change from the conventional gradient analysis. We investigated the effects of mobile phase composition and elution bandwidth, which are potential variables affecting the ELSD response in the gradient analysis. Similar ELSD response curves of nine major ginsenosides were obtained under the identical flow injection conditions, and the response increased as the percentage of organic solvent increased. The nine ginsenosides were divided into three groups to confirm the effect of elution bandwidth. The ELSD response significantly decreased in case of the late eluted ginsenoside in the individual groups under the isocratic conditions. With the consideration of the two important effects, stepwise changes of the gradient condition were carried out to reach a group quantification method. The inconsistent responses of the nine ginsenosides were reconstituted to three normalized responses by the stepwise changes of the gradient condition, and this result actualized relative quantification in the individual groups. The availability was confirmed by comparing the ginsenoside contents in a base material of ginseng products determined by the direct and group quantification method. The largest difference in the determination results from the two methods was 8.26%, and the difference of total contents was only 0.91%. PMID:27262109

  13. Label-free surface-enhanced Raman scattering strategy for rapid detection of penicilloic acid in milk products.

    PubMed

    Qi, Meihui; Huang, Xiaoyan; Zhou, Yujie; Zhang, Liying; Jin, Yang; Peng, Yan; Jiang, Huijun; Du, Shuhu

    2016-04-15

    A label-free surface-enhanced Raman scattering (SERS) strategy based on silver-coated gold nanoparticles (Au@Ag NPs) was developed for rapid detection of penicilloic acid (PA) in milk products. It has been demonstrated that core size and shell thickness of Au@Ag NPs are two critical variants affecting enhancement of Raman signals by coupling of two plasma resonance absorption. The Au@Ag NPs with 26-nm core and 9-nm Ag shell exhibit excellent Raman enhancement, in particular, upon the formation of hot spots through NPs aggregation induced by interaction between target molecules and Au@Ag NPs. Compared to the early studies limited to laboratory settings, our analytical approach is simple (without sample pretreatment), less time-consuming (within ∼3 min) and inexpensive. The limit of detection of PA is 3.00 ppm, 3.00 ppm and 4.00 ppm in liquid milk, yogurt and milk powder, respectively. The label-free SERS technique offers a potential for the on-site monitoring of chemical contaminants in milk products. PMID:26617009

  14. Aging Enhances the Production of Reactive Oxygen Species and Bactericidal Activity in Peritoneal Macrophages by Upregulating Classical Activation Pathways

    SciTech Connect

    Smallwood, Heather S.; López-Ferrer, Daniel; Squier, Thomas C.

    2011-10-07

    Maintenance of macrophages in their basal state and their rapid activation in response to pathogen detection are central to the innate immune system, acting to limit nonspecific oxidative damage and promote pathogen killing following infection. To identify possible age-related alterations in macrophage function, we have assayed the function of peritoneal macrophages from young (3–4 months) and aged (14–15 months) Balb/c mice. In agreement with prior suggestions, we observe age-dependent increases in the extent of recruitment of macrophages into the peritoneum, as well as ex vivo functional changes involving enhanced nitric oxide production under resting conditions that contribute to a reduction in the time needed for full activation of senescent macrophages following exposure to lipopolysaccharides (LPS). Further, we observe enhanced bactericidal activity following Salmonella uptake by macrophages isolated from aged Balb/c mice in comparison with those isolated from young animals. Pathways responsible for observed phenotypic changes were interrogated using tandem mass spectrometry, which identified age-dependent increases in levels of proteins linked to immune cell pathways under basal conditions and following LPS activation. Immune pathways upregulated in macrophages isolated from aged mice include proteins critical to the formation of the immunoproteasome. Detection of these latter proteins is dramatically enhanced following LPS exposure for macrophages isolated from aged animals; in comparison, the identification of immunoproteasome subunits is insensitive to LPS exposure for macrophages isolated from young animals. Consistent with observed global changes in the proteome, quantitative proteomic measurements indicate that there are age-dependent abundance changes involving specific proteins linked to immune cell function under basal conditions. LPS exposure selectively increases the levels of many proteins involved in immune cell function in aged Balb/c mice

  15. Three-jet production in diffractive deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    ZEUS Collaboration; Chekanov, S.; Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Pellegrino, A.; Repond, J.; Yoshida, R.; Mattingly, M. C. K.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Sartorelli, G.; Zichichi, A.; Aghuzumtsyan, G.; Brock, I.; Goers, S.; Hartmann, H.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U. F.; Kerger, R.; Kind, O.; Paul, E.; Rautenberg, J.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K. C.; Weber, A.; Wieber, H.; Bailey, D. S.; Brook, N. H.; Cole, J. E.; Foster, B.; Heath, G. P.; Heath, H. F.; Robins, S.; Rodrigues, E.; Scott, J.; Tapper, R. J.; Wing, M.; Capua, M.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Jeoung, H. Y.; Kim, J. Y.; Lee, J. H.; Lim, I. T.; Ma, K. J.; Pac, M. Y.; Caldwell, A.; Helbich, M.; Liu, W.; Liu, X.; Mellado, B.; Paganis, S.; Sampson, S.; Schmidke, W. B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Klimek, K.; Olkiewicz, K.; Przybycień, M. B.; Stopa, P.; Zawiejski, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowal, A. M.; Kowal, M.; Kowalski, T.; Mindur, B.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Szuba, D.; Kotański, A.; Bauerdick, L. A. T.; Behrens, U.; Borras, K.; Chiochia, V.; Crittenden, J.; Dannheim, D.; Desler, K.; Drews, G.; Fox-Murphy, A.; Fricke, U.; Geiser, A.; Goebel, F.; Göttlicher, P.; Graciani, R.; Haas, T.; Hain, W.; Hartner, G. F.; Hebbel, K.; Hillert, S.; Koch, W.; Kötz, U.; Kowalski, H.; Labes, H.; Löhr, B.; Mankel, R.; Martens, J.; Martínez, M.; Milite, M.; Moritz, M.; Notz, D.; Petrucci, M. C.; Polini, A.; Schneekloth, U.; Selonke, F.; Stonjek, S.; Wolf, G.; Wollmer, U.; Whitmore, J. J.; Wichmann, R.; Youngman, C.; Zeuner, W.; Coldewey, C.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Pelfer, P. G.; Bamberger, A.; Benen, A.; Coppola, N.; Markun, P.; Raach, H.; Wölfle, S.; Bell, M.; Bussey, P. J.; Doyle, A. T.; Glasman, C.; Lee, S. W.; Lupi, A.; McCance, G. J.; Saxon, D. H.; Skillicorn, I. O.; Bodmann, B.; Gendner, N.; Holm, U.; Salehi, H.; Wick, K.; Yildirim, A.; Ziegler, A.; Carli, T.; Garfagnini, A.; Gialas, I.; Lohrmann, E.; Foudas, C.; Gonçalo, R.; Long, K. R.; Metlica, F.; Miller, D. B.; Tapper, A. D.; Walker, R.; Cloth, P.; Filges, D.; Kuze, M.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.; Ahn, S. H.; Lee, S. B.; Park, S. K.; Lim, H.; Son, D.; Barreiro, F.; García, G.; González, O.; Labarga, L.; del Peso, J.; Redondo, I.; Terrón, J.; Vázquez, M.; Barbi, M.; Bertolin, A.; Corriveau, F.; Ochs, A.; Padhi, S.; Stairs, D. G.; Tsurugai, T.; Antonov, A.; Bashkirov, V.; Danilov, P.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Suchkov, S.; Dementiev, R. K.; Ermolov, P. F.; Golubkov, Y. A.; Katkov, I. I.; Khein, L. A.; Korotkova, N. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Y.; Proskuryakov, A. S.; Shcheglova, L. M.; Solomin, A. N.; Vlasov, N. N.; Zotkin, S. A.; Bokel, C.; Engelen, J.; Grijpink, S.; Maddox, E.; Koffeman, E.; Kooijman, P.; Schagen, S.; Tassi, E.; Tiecke, H.; Tuning, N.; Velthuis, J. J.; Wiggers, L.; de Wolf, E.; Brümmer, N.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Boogert, S.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Große-Knetter, J.; Matsushita, T.; Rigby, M.; Ruske, O.; Sutton, M. R.; Walczak, R.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Limentani, S.; Longhin, A.; Parenti, A.; Posocco, M.; Stanco, L.; Turcato, M.; Adamczyk, L.; Iannotti, L.; Oh, B. Y.; Saull, P. R. B.; Toothacker, W. S.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cormack, C.; Hart, J. C.; McCubbin, N. A.; Epperson, D.; Heusch, C.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Park, I. H.; Pavel, N.; Abramowicz, H.; Dagan, S.; Gabareen, A.; Kananov, S.; Kreisel, A.; Levy, A.; Abe, T.; Fusayasu, T.; Kohno, T.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Inuzuka, M.; Kitamura, S.; Matsuzawa, K.; Nishimura, T.; Arneodo, M.; Cartiglia, N.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Bailey, D. C.; Fagerstroem, C.-P.; Galea, R.; Koop, T.; Levman, G. M.; Martin, J. F.; Mirea, A.; Sabetfakhri, A.; Butterworth, J. M.; Gwenlan, C.; Hall-Wilton, R.; Hayes, M. E.; Heaphy, E. A.; Jones, T. W.; Lane, J. B.; Lightwood, M. S.; West, B. J.; Ciborowski, J.; Ciesielski, R.; Grzelak, G.; Nowak, R. J.; Pawlak, J. M.; Smalska, B.; Tymieniecka, T.; Ukleja, J.; Zakrzewski, J. A.; Z˙arnecki, A. F.; Adamus, M.; Plucinski, P.; Sztuk, J.; Deppe, O.; Eisenberg, Y.; Gladilin, L. K.; Hochman, D.; Karshon, U.; Breitweg, J.; Chapin, D.; Cross, R.; Kçira, D.; Lammers, S.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Deshpande, A.; Dhawan, S.; Hughes, V. W.; Straub, P. B.; Bhadra, S.; Catterall, C. D.; Frisken, W. R.; Khakzad, M.; Menary, S.

    2001-09-01

    Three-jet production in the reaction /ep-->eXp has been studied with the ZEUS detector at HERA using an integrated luminosity of 42.74 pb-1.The data were measured in the kinematic region 5

  16. Three-jet production in diffractive deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Chekanov, S.; Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Pellegrino, A.; Repond, J.; Yoshida, R.; Mattingly, M. C. K.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Sartorelli, G.; Zichichi, A.; Aghuzumtsyan, G.; Brock, I.; Goers, S.; Hartmann, H.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U. F.; Kerger, R.; Kind, O.; Paul, E.; Rautenberg, J.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K. C.; Weber, A.; Wieber, H.; Bailey, D. S.; Brook, N. H.; Cole, J. E.; Foster, B.; Heath, G. P.; Heath, H. F.; Robins, S.; Rodrigues, E.; Scott, J.; Tapper, R. J.; Wing, M.; Capua, M.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Jeoung, H. Y.; Kim, J. Y.; Lee, J. H.; Lim, I. T.; Ma, K. J.; Pac, M. Y.; Caldwell, A.; Helbich, M.; Liu, W.; Liu, X.; Mellado, B.; Paganis, S.; Sampson, S.; Schmidke, W. B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Klimek, K.; Olkiewicz, K.; Przybycień, M. B.; Stopa, P.; Zawiejski, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowal, A. M.; Kowal, M.; Kowalski, T.; Mindur, B.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Szuba, D.; Kotański, A.; Bauerdick, L. A. T.; Behrens, U.; Borras, K.; Chiochia, V.; Crittenden, J.; Dannheim, D.; Desler, K.; Drews, G.; Fox-Murphy, A.; Fricke, U.; Geiser, A.; Goebel, F.; Göttlicher, P.; Graciani, R.; Haas, T.; Hain, W.; Hartner, G. F.; Hebbel, K.; Hillert, S.; Koch, W.; Kötz, U.; Kowalski, H.; Labes, H.; Löhr, B.; Mankel, R.; Martens, J.; Martínez, M.; Milite, M.; Moritz, M.; Notz, D.; Petrucci, M. C.; Polini, A.; Schneekloth, U.; Selonke, F.; Stonjek, S.; Wolf, G.; Wollmer, U.; Whitmore, J. J.; Wichmann, R.; Youngman, C.; Zeuner, W.; Coldewey, C.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Pelfer, P. G.; Bamberger, A.; Benen, A.; Coppola, N.; Markun, P.; Raach, H.; Wölfle, S.; Bell, M.; Bussey, P. J.; Doyle, A. T.; Glasman, C.; Lee, S. W.; Lupi, A.; McCance, G. J.; Saxon, D. H.; Skillicorn, I. O.; Bodmann, B.; Gendner, N.; Holm, U.; Salehi, H.; Wick, K.; Yildirim, A.; Ziegler, A.; Carli, T.; Garfagnini, A.; Gialas, I.; Lohrmann, E.; Foudas, C.; Gonçalo, R.; Long, K. R.; Metlica, F.; Miller, D. B.; Tapper, A. D.; Walker, R.; Cloth, P.; Filges, D.; Kuze, M.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.; Ahn, S. H.; Lee, S. B.; Park, S. K.; Lim, H.; Son, D.; Barreiro, F.; García, G.; González, O.; Labarga, L.; del Peso, J.; Redondo, I.; Terrón, J.; Vázquez, M.; Barbi, M.; Bertolin, A.; Corriveau, F.; Ochs, A.; Padhi, S.; Stairs, D. G.; Tsurugai, T.; Antonov, A.; Bashkirov, V.; Danilov, P.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Suchkov, S.; Dementiev, R. K.; Ermolov, P. F.; Golubkov, Yu. A.; Katkov, I. I.; Khein, L. A.; Korotkova, N. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Solomin, A. N.; Vlasov, N. N.; Zotkin, S. A.; Bokel, C.; Engelen, J.; Grijpink, S.; Maddox, E.; Koffeman, E.; Kooijman, P.; Schagen, S.; Tassi, E.; Tiecke, H.; Tuning, N.; Velthuis, J. J.; Wiggers, L.; de Wolf, E.; Brümmer, N.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Boogert, S.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Große-Knetter, J.; Matsushita, T.; Rigby, M.; Ruske, O.; Sutton, M. R.; Walczak, R.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Limentani, S.; Longhin, A.; Parenti, A.; Posocco, M.; Stanco, L.; Turcato, M.; Adamczyk, L.; Iannotti, L.; Oh, B. Y.; Saull, P. R. B.; Toothacker, W. S.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cormack, C.; Hart, J. C.; McCubbin, N. A.; Epperson, D.; Heusch, C.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Park, I. H.; Pavel, N.; Abramowicz, H.; Dagan, S.; Gabareen, A.; Kananov, S.; Kreisel, A.; Levy, A.; Abe, T.; Fusayasu, T.; Kohno, T.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Inuzuka, M.; Kitamura, S.; Matsuzawa, K.; Nishimura, T.; Arneodo, M.; Cartiglia, N.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Bailey, D. C.; Fagerstroem, C.-P.; Galea, R.; Koop, T.; Levman, G. M.; Martin, J. F.; Mirea, A.; Sabetfakhri, A.; Butterworth, J. M.; Gwenlan, C.; Hall-Wilton, R.; Hayes, M. E.; Heaphy, E. A.; Jones, T. W.; Lane, J. B.; Lightwood, M. S.; West, B. J.; Ciborowski, J.; Ciesielski, R.; Grzelak, G.; Nowak, R. J.; Pawlak, J. M.; Smalska, B.; Tymieniecka, T.; Ukleja, J.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Plucinski, P.; Sztuk, J.; Deppe, O.; Eisenberg, Y.; Gladilin, L. K.; Hochman, D.; Karshon, U.; Breitweg, J.; Chapin, D.; Cross, R.; Kçira, D.; Lammers, S.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Deshpande, A.; Dhawan, S.; Hughes, V. W.; Straub, P. B.; Bhadra, S.; Catterall, C. D.; Frisken, W. R.; Khakzad, M.; Menary, S.; ZEUS Collaboration

    2001-09-01

    Three-jet production in the reaction ep→eXp has been studied with the ZEUS detector at HERA using an integrated luminosity of 42.74 pb-1.The data were measured in the kinematic region 5

  17. Ultracold-neutron production and up-scattering in superfluid helium between 1.1 K and 2.4 K

    NASA Astrophysics Data System (ADS)

    Leung, K. K. H.; Ivanov, S.; Piegsa, F. M.; Simson, M.; Zimmer, O.

    2016-02-01

    Ultracold neutrons (UCNs) were produced in superfluid helium using the PF1B cold-neutron beam facility at the Institut Laue-Langevin. A 4-liter beryllium-coated converter volume with a mechanical valve and windowless stainless-steel extraction system were used to accumulate and guide UCNs to a detector at room temperature. At a converter temperature of 1.08 K the total storage time constant in the vessel was (20.3 ±1.2 )s and the number of UCNs counted after accumulated was 91 700 ±300 . From this, we derive a volumetric UCN production rate of (6.9 ±1.7 ) cm-3s-1 , which includes a correction for losses in the converter during UCN extraction caused by the short storage time, but not accounting for UCN transport and detection efficiencies. The up-scattering rate of UCNs caused by excitations in the superfluid was studied by scanning the temperature between 1.2 K and 2.4 K . Using the temperature-dependent UCN production rate calculated from inelastic neutron scattering data, the only UCN up-scattering process found to occur was from two-phonon scattering. Our analysis for T <1.95 K rules out the contributions from roton-phonon scattering to <29 % (95% C.I.) and from one-phonon absorption to <47 % (95% C.I.) of their predicted levels.

  18. Eicosanoids up-regulate production of reactive oxygen species by NADPH-dependent oxidase in Spodoptera exigua phagocytic hemocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eicosanoids mediate cellular immune responses in insects, including phagocytosis of invading microbes. Phagocytosis entails two major steps, the internalization of microbes and the subsequent killing of them via formation of reactive oxygen species (ROS). Here, we posed the hypothesis that eicosanoi...

  19. Fracture Reactivation in Chemically Reactive Rock Systems

    NASA Astrophysics Data System (ADS)

    Eichhubl, P.; Hooker, J. N.

    2013-12-01

    Reactivation of existing fractures is a fundamental process of brittle failure that controls the nucleation of earthquake ruptures, propagation and linkage of hydraulic fractures in oil and gas production, and the evolution of fault and fracture networks and thus of fluid and heat transport in the upper crust. At depths below 2-3 km, and frequently shallower, brittle processes of fracture growth, linkage, and reactivation compete with chemical processes of fracture sealing by mineral precipitation, with precipitation rates similar to fracture opening rates. We recently found rates of fracture opening in tectonically quiescent settings of 10-20 μm/m.y., rates similar to euhedral quartz precipitation under these conditions. The tendency of existing partially or completely cemented fractures to reactivate will vary depending on strain rate, mineral precipitation kinetics, strength contrast between host rock and fracture cement, stress conditions, degree of fracture infill, and fracture network geometry. Natural fractures in quartzite of the Cambrian Eriboll Formation, NW Scotland, exhibit a complex history of fracture formation and reactivation, with reactivation involving both repeated crack-seal opening-mode failure and shear failure of fractures that formed in opening mode. Fractures are partially to completely sealed with crack-seal or euhedral quartz cement or quartz cement fragmented by shear reactivation. Degree of cementation controls the tendency of fractures for later shear reactivation, to interact elastically with adjacent open fractures, and their intersection behavior. Using kinematic, dynamic, and diagenetic criteria, we determine the sequence of opening-mode fracture formation and later shear reactivation. We find that sheared fracture systems of similar orientation display spatially varying sense of slip We attribute these inconsistent directions of shear reactivation to 1) a heterogeneous stress field in this highly fractured rock unit and 2

  20. Characterization of warm-reactive IgG anti-lymphocyte antibodies in systemic lupus erythematosus. Relative specificity for mitogen-activated T cells and their soluble products.

    PubMed

    Litvin, D A; Cohen, P L; Winfield, J B

    1983-01-01

    In addition to previously described cold-reactive IgM anti-lymphocyte antibodies maximally cytotoxic for resting cells at 15 degrees C, sera from patients with systemic lupus erythematosus (SLE) were found to contain a new type of antibody preferentially reactive at physiologic temperatures with mitogen-activated lymphocytes. This antibody lacked specificity for unstimulated lymphocytes, and was shown to be of the IgG class both by indirect immunofluorescence and in immunochemical experiments. Certain SLE sera also contained IgG antibodies with the capacity to develop plaques with mitogen-activated T lymphocyte preparations used in a reverse hemolytic plaque assay, indicating reactivity with products released by activated cells. The elimination of the ability of SLE sera to develop plaques after absorption with viable mitogen-stimulated lymphocytes, but not with resting cells, suggested that these antibodies were directed toward activation "neoantigen(s)" shed from the cell surface membrane. Surface membrane phenotype analyses performed by using a variety of monoclonal antibody reagents indicated that the plaque-forming cells (PFC) detected with SLE sera were activated T lymphocytes not restricted to single OKT4+, OKT8+, or Ia antigen+ subpopulations. Essentially all PFC expressed transferrin receptors. The present data raise the possibility that certain of the interesting effects of anti-lymphocyte antibodies on immunologic function in SLE may be mediated by interactions of these new type(s) of antibodies with activated lymphocytes or their products, rather than through blocking or depletion effects on resting precursor cells. PMID:6600174

  1. Species difference in reactivity to lignin-like enzymatically polymerized polyphenols on interferon-γ synthesis and involvement of interleukin-2 production in mice.

    PubMed

    Yamanaka, Daisuke; Ishibashi, Ken-Ichi; Adachi, Yoshiyuki; Ohno, Naohito

    2016-09-01

    Recent studies have revealed that lignin-like polymerized polyphenols can activate innate immune systems. In this study, we aimed to evaluate whether these polymerized polyphenols could activate leukocytes from different murine strains. Splenocytes from 12 mouse strains were investigated. Our results revealed species differences in reactivity to phenolic polymers on interferon-γ (IFN-γ) release. Mice that possessed the H2(a) or H2(k) haplotype antigens were the highly responsive strains. To clarify these different points in soluble factors, multiplex cytokine profiling analysis was carried out and we identified interleukin (IL)-2 as a key molecule for IFN-γ induction by polymerized polyphenols. Furthermore, inhibition of IL-2 and IL-2Rα by neutralizing antibodies significantly decreased cytokine production in the highly responsive mice strains. Our results indicate that species difference in reactivity to phenolic polymers is mediated by adequate release of IL-2 and its receptor, IL-2Rα. PMID:27376855

  2. Measurement of dijet production in neutral current deep inelastic scattering at high Q2 and determination of αs

    NASA Astrophysics Data System (ADS)

    ZEUS Collaboration; Breitweg, J.; Chekanov, S.; Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Pellegrino, A.; Repond, J.; Stanek, R.; Yoshida, R.; Mattingly, M. C. K.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Sartorelli, G.; Zichichi, A.; Aghuzumtsyan, G.; Amelung, C.; Brock, I.; Coböken, K.; Goers, S.; Hartmann, H.; Heinloth, K.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U. F.; Kerger, R.; Kind, O.; Paul, E.; Rautenberg, J.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K. C.; Weber, A.; Wieber, H.; Bailey, D. S.; Barret, O.; Brook, N. H.; Cole, J. E.; Foster, B.; Heath, G. P.; Heath, H. F.; Robins, S.; Rodrigues, E.; Scott, J.; Tapper, R. J.; Capua, M.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Jeoung, H. Y.; Kim, J. Y.; Lee, J. H.; Lim, I. T.; Ma, K. J.; Pac, M. Y.; Caldwell, A.; Liu, W.; Liu, X.; Mellado, B.; Paganis, S.; Sampson, S.; Schmidke, W. B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Klimek, K.; Olkiewicz, K.; Przybycień, M. B.; Stopa, P.; Zawiejski, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowal, A. M.; Kowalski, T.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Szuba, D.; Kotański, A.; Bauerdick, L. A. T.; Behrens, U.; Bienlein, J. K.; Borras, K.; Chiochia, V.; Crittenden, J.; Dannheim, D.; Desler, K.; Drews, G.; Fox-Murphy, A.; Fricke, U.; Goebel, F.; Göttlicher, P.; Graciani, R.; Haas, T.; Hain, W.; Hartner, G. F.; Hebbel, K.; Hillert, S.; Koch, W.; Kötz, U.; Kowalski, H.; Labes, H.; Löhr, B.; Mankel, R.; Martens, J.; Martínez, M.; Milite, M.; Moritz, M.; Notz, D.; Petrucci, M. C.; Polini, A.; Rohde, M.; Savin, A. A.; Schneekloth, U.; Selonke, F.; Stonjek, S.; Wolf, G.; Wollmer, U.; Youngman, C.; Zeuner, W.; Coldewey, C.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.; Straub, P. B.; Barbagli, G.; Gallo, E.; Parenti, A.; Pelfer, P. G.; Bamberger, A.; Benen, A.; Coppola, N.; Eisenhardt, S.; Markun, P.; Raach, H.; Wölfle, S.; Bell, M.; Bussey, P. J.; Doyle, A. T.; Glasman, C.; Lee, S. W.; Lupi, A.; Macdonald, N.; McCance, G. J.; Saxon, D. H.; Sinclair, L. E.; Skillicorn, I. O.; Waugh, R.; Bodmann, B.; Gendner, N.; Holm, U.; Salehi, H.; Wick, K.; Yildirim, A.; Ziegler, A.; Carli, T.; Garfagnini, A.; Geiser, A.; Gialas, I.; Kçira, D.; Lohrmann, E.; Gonçalo, R.; Long, K. R.; Miller, D. B.; Tapper, A. D.; Walker, R.; Cloth, P.; Filges, D.; Ishii, T.; Kuze, M.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.; Ahn, S. H.; Lee, S. B.; Park, S. K.; Lim, H.; Son, D.; Barreiro, F.; García, G.; González, O.; Labarga, L.; del Peso, J.; Redondo, I.; Terrón, J.; Vázquez, M.; Barbi, M.; Corriveau, F.; Padhi, S.; Stairs, D. G.; Wing, M.; Tsurugai, T.; Antonov, A.; Bashkirov, V.; Danilov, P.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Suchkov, S.; Dementiev, R. K.; Ermolov, P. F.; Golubkov, Y. A.; Katkov, I. I.; Khein, L. A.; Korotkova, N. A.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Y.; Proskuryakov, A. S.; Shcheglova, L. M.; Solomin, A. N.; Vlasov, N. N.; Zotkin, S. A.; Bokel, C.; Botje, M.; Engelen, J.; Grijpink, S.; Koffeman, E.; Kooijman, P.; Schagen, S.; van Sighem, A.; Tassi, E.; Tiecke, H.; Tuning, N.; Velthuis, J. J.; Vossebeld, J.; Wiggers, L.; de Wolf, E.; Brümmer, N.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Boogert, S.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Große-Knetter, J.; Matsushita, T.; Ruske, O.; Sutton, M. R.; Walczak, R.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Limentani, S.; Longhin, A.; Posocco, M.; Stanco, L.; Turcato, M.; Adamczyk, L.; Iannotti, L.; Oh, B. Y.; Okrasiński, J. R.; Saull, P. R. B.; Toothacker, W. S.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cormack, C.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Epperson, D.; Heusch, C.; Sadrozinski, H. F.-W.; Seiden, A.; Wichmann, R.; Williams, D. C.; Park, I. H.; Pavel, N.; Abramowicz, H.; Dagan, S.; Gabareen, A.; Kananov, S.; Kreisel, A.; Levy, A.; Abe, T.; Fusayasu, T.; Kohno, T.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Inuzuka, M.; Kitamura, S.; Matsuzawa, K.; Nishimura, T.; Arneodo, M.; Cartiglia, N.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Bailey, D. C.; Fagerstroem, C.-P.; Galea, R.; Koop, T.; Levman, G. M.; Martin, J. F.; Mirea, A.; Sabetfakhri, A.; Butterworth, J. M.; Gwenlan, C.; Hayes, M. E.; Heaphy, E. A.; Jones, T. W.; Lane, J. B.; West, B. J.; Ciborowski, J.; Ciesielski, R.; Grzelak, G.; Nowak, R. J.; Pawlak, J. M.; Pawlak, R.; Smalska, B.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Z˙arnecki, A. F.; Adamus, M.; Gadaj, T.; Deppe, O.; Eisenberg, Y.; Gladilin, L. K.; Hochman, D.; Karshon, U.; Badgett, W. F.; Chapin, D.; Cross, R.; Foudas, C.; Mattingly, S.; Reeder, D. D.; Smith, W. H.; Vaiciulis, A.; Wildschek, T.; Wodarczyk, M.; Deshpande, A.; Dhawan, S.; Hughes, V. W.; Bhadra, S.; Catterall, C. D.; Frisken, W. R.; Hall-Wilton, R.; Khakzad, M.; Menary, S.

    2001-05-01

    Dijet production has been studied in neutral current deep inelastic e+p scattering for 470

  3. Mechanism of inhibition of human leucocyte elastase by beta-lactams. 2. Stability, reactivation kinetics, and products of beta-lactam-derived E-I complexes.

    PubMed

    Green, B G; Chabin, R; Mills, S; Underwood, D J; Shah, S K; Kuo, D; Gale, P; Maycock, A L; Liesch, J; Burgey, C S

    1995-11-01

    The monocyclic beta-lactams reported by Knight et al. [Knight, W. B., et al. (1992) Biochemistry 31, 8160; Chabin, R., et al. (1993) Biochemistry 32, 8970] as inhibitors of human leucocyte elastase (HLE) produce stable HLE-inhibitor complexes that slowly reactivate with half-lives ranging from less than 1 to 15 h at 37 degrees C. The complexes produced between PPE and two C-3 dimethyl-substituted beta-lactams are less stable than those produced between HLE and analogous C-3 diethyl-substituted lactams. The stability of the HLE-I complexes is governed primarily by the structure of the substituted urea portion of the inhibitors and not by the identity or presence of a leaving group at C-4 of the lactam ring. In some cases substitutions on the urea portion of the inhibitors yielded complexes that displayed biphasic reactivation kinetics. This suggests the presence of at least two different complexes. The stereochemistry of the leaving group at C-4 has a small effect on the stability of the final complex (1.3-2-fold); therefore, the identity of the final complex is dependent upon the initial stereochemistry at that position. The stability of the complexes was relatively insensitive to hydroxylamine, which suggests that the acyl-enzymes are protected from nucleophilic "rescue". The rate of reactivation of the complex derived from L-680,833,[S-R*,S*)]-4-[(1-(((1-(4- methylphenyl)butyl)amino)carbonyl)-3,3-diethyl-2-oxo-4-azetidinyl)ben zeneacetic acid, was pH independent, while the L-684,481, (R)-(1-(((1-(4-methylphenyl)butyl)amino)carbonyl)-3,3-diethyl-2-azeti din one generated complex displayed a pH-dependent reactivation rate. In the latter case, the increase in reactivation rate with pH displayed a pKa of 7.2. This is consistent with the requirement for base catalysis by the active site histidine to regenerate enzymatic activity. Reactivation of the L-680,833-derived complex produced different products as a function of pH, suggesting two different pH-dependent routes

  4. Rayleigh Scattering.

    ERIC Educational Resources Information Center

    Young, Andrew T.

    1982-01-01

    The correct usage of such terminology as "Rayleigh scattering,""Rayleigh lines,""Raman lines," and "Tyndall scattering" is resolved during an historical excursion through the physics of light-scattering by gas molecules. (Author/JN)

  5. Direct Carbon Conversion: Review of Production and Electrochemical Conversion of Reactive Carbons, Economics and Potential Impact on the Carbon Cycle

    SciTech Connect

    Cooper, J F; Cherepy, N; Upadhye, R; Pasternak, A; Steinberg, M

    2000-12-12

    Concerns over global warning have motivated the search for more efficient technologies for electric power generation from fossil fuels. Today, 90% of electric power is produced from coal, petroleum or natural gas. Higher efficiency reduces the carbon dioxide emissions per unit of electric energy. Exercising an option of deep geologic or ocean sequestration for the CO{sub 2} byproduct would reduce emissions further and partially forestall global warming. We introduce an innovative concept for conversion of fossil fuels to electricity at efficiencies in the range of 70-85% (based on standard enthalpy of the combustion reaction). These levels exceed the performance of common utility plants by up to a factor of two. These levels are also in excess of the efficiencies of combined cycle plants and of advanced fuel cells now operated on the pilot scale. The core of the concept is direct carbon conversion a process that is similar to that a fuel cell but differs in that synthesized forms of carbon, not hydrogen, are used as fuel. The cell sustains the reaction, C + O{sub 2} = CO{sub 2} (E {approx} 1.0 V, T = 800 C). The fuel is in the form of fine particulates ({approx}100 nm) distributed by entrainment in a flow of CO{sub 2} to the cells to form a slurry of carbon in the melt. The byproduct stream of CO{sub 2} is pure. It affords the option of sequestration without additional separation costs, or can be reused in secondary oil or gas recovery. Our experimental program has discovered carbon materials with orders of magnitude spreads in anode reactivity reflected in cell power density. One class of materials yields energy at about 1 kW/m{sup 2} sufficiently high to make practical the use of the cell in electric utility applications. The carbons used in such cells are highly disordered on the nanometer scale (2-30 nm), relative to graphite. Such disordered or turbostratic carbons can be produced by controlled pyrolysis (thermal decomposition) of hydrocarbons extracted from

  6. Antiviral antibodies stimulate production of reactive oxygen species in cultured canine brain cells infected with canine distemper virus.

    PubMed Central

    Bürge, T; Griot, C; Vandevelde, M; Peterhans, E

    1989-01-01

    Canine distemper is characterized mainly by respiratory, enteric, and nervous symptoms. Infection of the central nervous system results in demyelination, to which inflammation has been shown to contribute significantly. It has been proposed that macrophages play a major role as effector cells in this process. We report that cultured dog brain cells contain a population of macrophages capable of producing reactive oxygen species as measured by luminol-dependent chemiluminescence. In cultures infected with canine distemper virus, a burst of reactive oxygen is triggered by antiviral antibody. This response depends on the presence of viral antigens on the surfaces of infected cells and is mediated by the interaction of antigen-bound antibody with Fc receptors on the macrophages. Since there is no evidence in vitro or in vivo that oligodendrocytes, the cells forming myelin, are infected, our observation supports the hypothesis that "innocent bystander killing" is important in demyelination caused by canine distemper virus. Reactive oxygen species released from macrophages may contribute to destruction of myelin. Images PMID:2724413

  7. Production and characterization of activated carbon prepared from safflower seed cake biochar and its ability to absorb reactive dyestuff

    NASA Astrophysics Data System (ADS)

    Angın, Dilek; Köse, T. Ennil; Selengil, Uğur

    2013-09-01

    The use of activated carbon obtained from biochar for the removal of reactive dyestuff from aqueous solutions at various contact times, pHs and temperatures was investigated. The biochar was chemically modified with potassium hydroxide. The surface area and micropore volume of activated carbon was 1277 m2/g and 0.4952 cm3/g, respectively. The surface characterization of both biochar and activated carbon was undertaken using by Fourier transform infrared spectroscopy and scanning electron microscopy. The experimental data indicated that the adsorption isotherms are well described by the Dubinin-Radushkevich (DR) isotherm equation. The adsorption kinetics of reactive dyestuff obeys the pseudo second-order kinetic model. The thermodynamic parameters such as ΔG̊, ΔH̊ and ΔS̊ were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 1.12 kJ/mol. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal reactive dyestuff from wastewater.

  8. Reactive arthritis

    MedlinePlus

    Reactive arthritis is a group of conditions that may involve the joints, eyes, and urinary and genital systems. ... The exact cause of reactive arthritis is unknown. It occurs most often in men younger than age 40. It may follow an infection in the urethra ...

  9. Enhancement by tumor necrosis factor alpha of dengue virus-induced endothelial cell production of reactive nitrogen and oxygen species is key to hemorrhage development.

    PubMed

    Yen, Yu-Ting; Chen, Hsuen-Chin; Chen, Hseun-Chin; Lin, Yang-Ding; Shieh, Chi-Chang; Wu-Hsieh, Betty A

    2008-12-01

    Hemorrhage is a severe manifestation of dengue disease. Virus strain and host immune response have been implicated as the risk factors for hemorrhage development. To delineate the complex interplay between the virus and the host, we established a dengue hemorrhage model in immune-competent mice. Mice inoculated intradermally with dengue virus develop hemorrhage within 3 days. In the present study, we showed by the presence of NS1 antigen and viral nuclei acid that dengue virus actively infects the endothelium at 12 h and 24 h after inoculation. Temporal studies showed that beginning at day 2, there was macrophage infiltration into the vicinity of the endothelium, increased tumor necrosis factor alpha (TNF-alpha) production, and endothelial cell apoptosis in the tissues. In the meantime, endothelial cells in the hemorrhage tissues expressed inducible nitric oxide synthase (iNOS) and nitrotyrosine. In vitro studies showed that primary mouse and human endothelial cells were productively infected by dengue virus. Infection by dengue virus induced endothelial cell production of reactive nitrogen and oxygen species and apoptotic cell death, which was greatly enhanced by TNF-alpha. N(G)-nitro-L-arginine methyl ester and N-acetyl cysteine reversed the effects of dengue virus and TNF-alpha on endothelial cells. Importantly, hemorrhage development and the severity of hemorrhage were greatly reduced in mice lacking iNOS or p47(phox) or treatment with oxidase inhibitor, pointing to the critical roles of reactive nitrogen and oxygen species in dengue hemorrhage. PMID:18842737

  10. Exendin-4 Suppresses Src Activation and Reactive Oxygen Species Production in Diabetic Goto-Kakizaki Rat Islets in an Epac-Dependent Manner

    PubMed Central

    Mukai, Eri; Fujimoto, Shimpei; Sato, Hiroki; Oneyama, Chitose; Kominato, Rieko; Sato, Yuichi; Sasaki, Mayumi; Nishi, Yuichi; Okada, Masato; Inagaki, Nobuya

    2011-01-01

    OBJECTIVE Reactive oxygen species (ROS) is one of most important factors in impaired metabolism secretion coupling in pancreatic β-cells. We recently reported that elevated ROS production and impaired ATP production at high glucose in diabetic Goto-Kakizaki (GK) rat islets are effectively ameliorated by Src inhibition, suggesting that Src activity is upregulated. In the present study, we investigated whether the glucagon-like peptide-1 signal regulates Src activity and ameliorates endogenous ROS production and ATP production in GK islets using exendin-4. RESEARCH DESIGN AND METHODS Isolated islets from GK and control Wistar rats were used for immunoblotting analyses and measurements of ROS production and ATP content. Src activity was examined by immunoprecipitation of islet lysates followed by immunoblotting. ROS production was measured with a fluorescent probe using dispersed islet cells. RESULTS Exendin-4 significantly decreased phosphorylation of Src Tyr416, which indicates Src activation, in GK islets under 16.7 mmol/l glucose exposure. Glucose-induced ROS production (16.7 mmol/l) in GK islet cells was significantly decreased by coexposure of exendin-4 as well as PP2, a Src inhibitor. The Src kinase–negative mutant expression in GK islets significantly decreased ROS production induced by high glucose. Exendin-4, as well as PP2, significantly increased impaired ATP elevation by high glucose in GK islets. The decrease in ROS production by exendin-4 was not affected by H-89, a PKA inhibitor, and an Epac-specific cAMP analog (8CPT-2Me-cAMP) significantly decreased Src Tyr416 phosphorylation and ROS production. CONCLUSIONS Exendin-4 decreases endogenous ROS production and increases ATP production in diabetic GK rat islets through suppression of Src activation, dependently on Epac. PMID:20978090

  11. Fully quantum state-resolved inelastic scattering of NO(X) + Kr: differential cross sections and product rotational alignment.

    PubMed

    Brouard, M; Chadwick, H; Gordon, S D S; Hornung, B; Nichols, B; Kłos, J; Aoiz, F J; Stolte, S

    2014-10-28

    Fully quantum state selected and resolved inelastic scattering of NO(X) by krypton has been investigated. Initial Λ-doublet state selection is achieved using an inhomogeneous hexapole electric field. Differential cross sections and even-moment polarization dependent differential cross sections have been obtained at a collision energy of 514 cm(-1) for both spin-orbit and parity conserving and changing collisions. Experimental results are compared with those obtained from quantum scattering calculations and are shown to be in very good agreement. Hard shell quantum scattering calculations are also performed to determine the effects of the different parts of the potential on the scattering dynamics. Comparisons are also made with the NO(X) + Ar system. PMID:25362298

  12. Fully quantum state-resolved inelastic scattering of NO(X) + Kr: Differential cross sections and product rotational alignment

    SciTech Connect

    Brouard, M. Chadwick, H.; Gordon, S. D. S.; Hornung, B.; Nichols, B.; Kłos, J.; Aoiz, F. J.; Stolte, S.

    2014-10-28

    Fully quantum state selected and resolved inelastic scattering of NO(X) by krypton has been investigated. Initial Λ-doublet state selection is achieved using an inhomogeneous hexapole electric field. Differential cross sections and even-moment polarization dependent differential cross sections have been obtained at a collision energy of 514 cm{sup −1} for both spin-orbit and parity conserving and changing collisions. Experimental results are compared with those obtained from quantum scattering calculations and are shown to be in very good agreement. Hard shell quantum scattering calculations are also performed to determine the effects of the different parts of the potential on the scattering dynamics. Comparisons are also made with the NO(X) + Ar system.

  13. Production and characterization of thermoplastic cassava starch, functionalized poly(lactic acid), and their reactive compatibilized blends

    NASA Astrophysics Data System (ADS)

    Detyothin, Sukeewan

    Cassava starch was blended with glycerol using a co-rotating twin-screw extruder (TSE). Thermoplastic cassava starch (TPCS) at a ratio of 70/30 by weight of cassava/glycerol was selected and further blended with other polymers. TPCS sheets made from compression molding had low tensile strength (0.45 +/- 0.05 MPa) and Young's modulus (1.24 +/- 0.58 MPa), but moderate elongation at break (83.0 +/- 0.18.6%), medium level of oxygen permeability, and high water vapor permeability with a very high rate of water absorption. TPCS was blended with poly(lactic acid) (PLA) at various ratios by using a TSE. The blend resins exhibited good properties such as increased thermal stability (Tmax) and crystallinity of PLA, and improved water sensitivity and processability of TPCS. PLA and TPCS exhibited a high interfacial tension between the two phases of 7.9 mJ·m -2, indicating the formation of an incompatible, immiscible blend. SEM micrographs showed a non-homogeneous distribution of TPCS droplets in the PLA continuous phase. TEM micrographs of the blend films made by cast-film extrusion showed coalescence of the TPCS droplets in the PLA continuous phase of the blend, indicating that the compatibility between the polymer pair needs to be improved. A response surface methodology (RSM) design was used to analyze the effects of maleic anhydride (MA) and 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane (Luperox or L101) contents, and TSE screw speed on the degree of grafted MA and number average molecular weight (Mn) of functionalized PLA (PLA-g-MA), a reactive compatibilizer. PLA-g- MA made by reactive extrusion had an array of colors depending on the content of L101 and MA used. New FTIR peaks suggested that MA was grafted onto the PLA backbone and oligomeric MA may occur. Increasing L101 increased the degree of grafting and decreased Mn, but the Mn of the PLA-g-MA's produced with a high amount of L101 was stable during storage. MA exhibited an optimum concentration for maximizing the

  14. Observation by flow sup 1 H NMR and dimerization kinetics and products of reactive ortho-quinodimethanes and benzocyclobutadiene

    SciTech Connect

    Fischer, D.

    1990-09-21

    The reactive o-quinodimethanes, 1,2-dimethylene-1,2-dihydronaphthalene (9) and o-xylylene (1) were observed by flow {sup 1}H NMR spectroscopy at room temperature. The {sup 1}H NMR spectrum of 9 was obtained in the absence of precursor and dimers. However, the {sup 1}H NMR spectrum of the more reactive 1, generated in a similar manner from (o-((trimethylsilyl)methyl)benzyl)trimethylammonium iodide (5.) could be obtained only in the presence of its stable (4 + 2) and (4 + 4) dimers. The dimerization kinetics of 3-methyl- (5{prime}), 3,6-dimethyl- (11), 3-isopropyl- (12), and 3,6-diisoproply-1,2-xylylene (13) in acetonitrile (CH{sub 3}CN) were studied by stopped-flow UV-visible spectroscopy. Fluoride ion induced 1,2-elimination from 2-elimination from 2-trimethylsilylbenzocyclobutenyl-1 mesylate (26) was used to generate the reactive molecule benzocyclobutadiene (1{prime}) in CD{sub 3}CN, which was observed by flow {sup 1}H NMR spectroscopy at room temperature. The {sup 1}H NMR spectrum (in CD{sub 3}CN) of 1,2-dimethylene-1,2-dihydrothiophene (1{double prime}), obtained by fluoride ion induced 1,4-elimination from 3-(trimethylammoniummethyl)-2-(trimethylsilylmethyl)thiophene iodine was observed by flow {sup 1}H NMR spectroscopy at room temperature. The dimerization rate of 1{double prime} in CH{sub 3}CN, generated in the same manner, was measured by UV-visible spectroscopy. 166 refs., 7 figs., 7 tabs.

  15. Measurement of “pretzelosity” asymmetry of charged pion production in semi-inclusive deep inelastic scattering on a polarized He3 target

    DOE PAGESBeta

    Zhang, Y.; Qian, X.; Allada, K.; Dutta, C.; Huang, J.; Katich, J.; Wang, Y.; Aniol, K.; Annand, J. R. M.; Averett, T.; et al

    2014-11-24

    An experiment to measure single-spin asymmetries in semi-inclusive production of charged pions in deep-inelastic scattering on a transversely polarized ³He target was performed at Jefferson Lab in the kinematic region of 0.16 < x < 0.35 and 1.4 < Q² < 2.7 GeV². Our results show that both π± on 3He and on neutron pretzelosity asymmetries are consistent with zero within experimental uncertainties.

  16. Reactivity of vinca alkaloids during water chlorination processes: Identification of their disinfection by-products by high-resolution quadrupole-Orbitrap mass spectrometry.

    PubMed

    Negreira, Noelia; Regueiro, Jorge; López de Alda, Miren; Barceló, Damià

    2016-02-15

    Concerns about the presence of anticancer drugs in the environment are rapidly increasing mainly due to their growing use in the developed countries and their known cytotoxic effects. Vinca alkaloids are widely used in cancer therapy; however, very scarce information is available on their occurrence, environmental fate and toxicological effects on aquatic organisms. Even less attention has been paid to their potential transformation products, which can exert higher toxicity than the parent compounds. Thus, in the present work, the reactivity of vincristine, vinblastine, vinorelbine and its metabolite 4-O-deacetyl vinorelbine during water chlorination processes has been investigated for the first time. Under the studied chlorination conditions, vincristine was fairly stable whereas vinblastine, vinorelbine and 4-O-deacetyl vinorelbine were quickly degraded. A total of sixty-five disinfection by-products were tentatively identified by ultra-high performance liquid chromatography coupled to high-resolution hybrid quadrupole-Orbitrap tandem mass spectrometry. Among them, twenty by-products corresponded to mono-chlorinated compounds, eight to di-chlorinated compounds and two to tri-chlorinated compounds, which may be of major environmental concern. Other disinfection by-products involved hydroxylation and oxidation reactions. Although the structures of these by-products could not be positively confirmed due to lack of commercial standards, their chemical formulas and product ions can be added to databases, which will allow their screening in future monitoring studies. PMID:26674693

  17. Niobium sputtered Havar foils for the high-power production of reactive [18F]fluoride by proton irradiation of [18O]H2O targets.

    PubMed

    Wilson, J S; Avila-Rodriguez, M A; Johnson, R R; Zyuzin, A; McQuarrie, S A

    2008-05-01

    Niobium sputtered Havar entrance foils were used for the production of reactive [(18)F]fluoride by proton irradiation of [(18)O]H(2)O targets under pressurized conditions. The synthesis yield in the routine production of 2-[(18)F]fluoro-2-deoxy-glucose (FDG) was used as an indicative parameter of the reactivity of (18)F. The yield of FDG obtained with (18)F produced in a target with Havar foil was used as a baseline. No statistically significant difference was found in the saturated yields of (18)F when using Havar or Havar-Nb sputtered entrance foils. However, the amount of long-lived radionuclidic impurities decreased more than 10-fold using the Havar-Nb entrance foil. The average decay corrected synthesis yield of FDG, evaluated over a period of more than 2 years, was found to be approximately 5% higher when using a Havar-Nb entrance foil and a marked improvement on the FDG yield consistency was noted. In addition, the frequency of target rebuilding was greatly diminished when using the Nb sputtered entrance foil. PMID:18242099

  18. TCDD decreases ATP levels and increases reactive oxygen production through changes in mitochondrial F F{sub 1}-ATP synthase and ubiquinone

    SciTech Connect

    Shertzer, Howard G. . E-mail: shertzhg@ucmail.uc.edu; Genter, Mary Beth; Shen, Dongxiao; Nebert, Daniel W.; Chen, Ying; Dalton, Timothy P.

    2006-12-15

    Mitochondria generate ATP and participate in signal transduction and cellular pathology and/or cell death. TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) decreases hepatic ATP levels and generates mitochondrial oxidative DNA damage, which is exacerbated by increasing mitochondrial glutathione redox state and by inner membrane hyperpolarization. This study identifies mitochondrial targets of TCDD that initiate and sustain reactive oxygen production and decreased ATP levels. One week after treating mice with TCDD, liver ubiquinone (Q) levels were significantly decreased, while rates of succinoxidase and Q-cytochrome c oxidoreductase activities were increased. However, the expected increase in Q reduction state following TCDD treatment did not occur; instead, Q was more oxidized. These results could be explained by an ATP synthase defect, a premise supported by the unusual finding that TCDD lowers ATP/O ratios without concomitant changes in respiratory control ratios. Such results suggest either a futile cycle in ATP synthesis, or hydrolysis of newly synthesized ATP prior to release. The TCDD-mediated decrease in Q, concomitant with an increase in respiration, increases complex 3 redox cycling. This acts in concert with glutathione to increase membrane potential and reactive oxygen production. The proposed defect in ATP synthase explains both the greater respiratory rates and the lower tissue ATP levels.

  19. Effect of olive mill wastewater phenol compounds on reactive carbonyl species and Maillard reaction end-products in ultrahigh-temperature-treated milk.

    PubMed

    Troise, Antonio Dario; Fiore, Alberto; Colantuono, Antonio; Kokkinidou, Smaro; Peterson, Devin G; Fogliano, Vincenzo

    2014-10-15

    Thermal processing and Maillard reaction (MR) affect the nutritional and sensorial qualities of milk. In this paper an olive mill wastewater phenolic powder (OMW) was tested as a functional ingredient for inhibiting MR development in ultrahigh-temperature (UHT)-treated milk. OMW was added to milk at 0.1 and 0.05% w/v before UHT treatment, and the concentration of MR products was monitored to verify the effect of OMW phenols in controlling the MR. Results revealed that OMW is able to trap the reactive carbonyl species such as hydroxycarbonyls and dicarbonyls, which in turn led to the increase of Maillard-derived off-flavor development. The effect of OMW on the formation of Amadori products and N-ε-(carboxymethyl)-lysine (CML) showed that oxidative cleavage, C2-C6 cyclization, and the consequent reactive carbonyl species formation were also inhibited by OMW. Data indicated that OMW is a functional ingredient able to control the MR and to improve the nutritional and sensorial attributes of milk. PMID:25280240

  20. Polyphosphate-enhanced production of reactive oxidants by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen: Yield and nature of oxidants.

    PubMed

    Kim, Hak-Hyeon; Lee, Hongshin; Kim, Hyung-Eun; Seo, Jiwon; Hong, Seok Won; Lee, Jeong-Yong; Lee, Changha

    2015-12-01

    The production of reactive oxidants from nanoparticulate zero-valent iron (nZVI) and ferrous ion (Fe(II)) in the presence of oxygen was greatly enhanced by the addition of tetrapolyphosphate (TPP) as an iron-chelating agent. Compared to other ligands, TPP exhibited superior activity in improving the oxidant yields. The nZVI/TPP/O2 and the Fe(II)/TPP/O2 systems showed similar oxidant yields with respect to the iron consumed, indicating that nZVI only serves as a source of Fe(II). The degradation efficacies of selected organic compounds were also similar in the two systems. It appeared that both hydroxyl radical (OH) and ferryl ion (Fe(IV)) are produced, and OH dominates at acidic pH. However, at pH > 6, little occurrence of hydroxylated oxidation products suggests that Fe(IV) is a dominant oxidant. The degradation rates of selected organic compounds by the Fe(II)/TPP/O2 system had two optimum points at pH 6 and 9, and these pH-dependent trends are likely attributed to the speciation of Fe(IV) with different reactivities. PMID:26093796

  1. TCDD decreases ATP levels and increases reactive oxygen production through changes in mitochondrial F0F1-ATP synthase and ubiquinone

    PubMed Central

    Shertzer, Howard G.; Genter, Mary Beth; Shen, Dongxiao; Nebert, Daniel W.; Chen, Ying; Dalton, Timothy P.

    2007-01-01

    Mitochondria generate ATP and participate in signal transduction and cellular pathology and/or cell death. TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) decreases hepatic ATP levels and generates mitochondrial oxidative DNA damage, which is exacerbated by increasing mitochondrial glutathione redox state and by inner-membrane hyperpolarization. This study identifies mitochondrial targets of TCDD that initiate and sustain reactive oxygen production and decreased ATP levels. One week after treating mice with TCDD, liver ubiquinone (Q) levels were significantly decreased, while rates of succinoxidase and Q-cytochrome c oxidoreductase activities were increased. However, the expected increase in Q reduction state following TCDD treatment did not occur; instead, Q was more oxidized. These results could be explained by an ATP synthase defect, a premise supported by the unusual finding that TCDD lowers ATP/O ratios without concomitant changes in respiratory control ratios. Such results suggest either a futile cycle in ATP synthesis, or hydrolysis of newly-synthesized ATP prior to release. The TCDD-mediated decrease in Q, concomitant with an increase in respiration, increases complex 3 redox-cycling. This acts in concert with glutathione to increase membrane potential and reactive oxygen production. The proposed defect in ATP synthase explains both the greater respiratory rates and the lower tissue ATP levels. PMID:17109908

  2. Reactive Arthritis

    MedlinePlus

    ... with treatment and may cause joint damage. What Research Is Being Conducted on Reactive Arthritis? Researchers continue ... such as methotrexate and sulfasalazine. More information on research is available from the following websites: National Institutes ...

  3. Epstein-Barr virus infection induces bone resorption in apical periodontitis via increased production of reactive oxygen species.

    PubMed

    Jakovljevic, Aleksandar; Andric, Miroslav; Miletic, Maja; Beljic-Ivanovic, Katarina; Knezevic, Aleksandra; Mojsilovic, Slavko; Milasin, Jelena

    2016-09-01

    Chronic inflammatory processes in periapical tissues caused by etiological agents of endodontic origin lead to apical periodontitis. Apart from bacteria, two herpesviruses, Epstein-Barr virus (EBV) and Human cytomegalovirus (HCMV) are recognized as putative pathogens in apical periodontitis. Although previous reports suggest the involvement of EBV in the pathogenesis of apical periodontitis, its exact role in periapical bone resorption has not yet been fully elucidated. We hypothesize that EBV infection in apical periodontitis is capable of inducing periapical bone resorption via stimulation of reactive oxygen species (ROS) overproduction. Increased levels of ROS induce expression of receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL). RANKL binding to receptor activator of nuclear factor κB (RANK) present on the surface of preosteoclasts induces their maturation and activation which consequently leads to bone resorption. The potential benefit of antiviral and antioxidant-based therapies in periapical bone resorption treatment remains to be assessed. PMID:27515196

  4. Photosensitization of CdSe/ZnS QDs and reliability of assays for reactive oxygen species production.

    PubMed

    Cooper, Daniel R; Dimitrijevic, Nada M; Nadeau, Jay L

    2010-01-01

    CdSe/ZnS quantum dots (QDs) conjugated to biomolecules that can act as electron donors are said to be "photosensitized": that is, they are able to oxidize or reduce molecules whose redox potential lies inside their band edges, in particular molecular oxygen and water. This leads to the formation of reactive oxygen species (ROS) and phototoxicity. In this work, we quantify the generation of different forms of ROS from as-synthesized QDs in toluene; water-solubilized, unconjugated QDs; QDs conjugated to the neurotransmitter dopamine; and dopamine alone. Results of indirect fluorescent ROS assays, both in solution and inside cells, are compared with those of spin-trap electron paramagnetic resonance spectroscopy (EPR). The effect of these particles on the metabolism of mammalian cells is shown to be dependent upon light exposure and proportional to the amount of ROS generated. PMID:20648372

  5. Photosensitization of CdSe/ZnS QDs and reliability of assays for reactive oxygen species production.

    SciTech Connect

    Cooper, D. R.; Dimitrijevic, N. M.; Nadeau, J. L.; McGill Univ.

    2010-01-01

    CdSe/ZnS quantum dots (QDs) conjugated to biomolecules that can act as electron donors are said to be 'photosensitized': that is, they are able to oxidize or reduce molecules whose redox potential lies inside their band edges, in particular molecular oxygen and water. This leads to the formation of reactive oxygen species (ROS) and phototoxicity. In this work, we quantify the generation of different forms of ROS from as-synthesized QDs in toluene; water-solubilized, unconjugated QDs; QDs conjugated to the neurotransmitter dopamine; and dopamine alone. Results of indirect fluorescent ROS assays, both in solution and inside cells, are compared with those of spin-trap electron paramagentic resonance spectroscopy (EPR). The effect of these particles on the metabolism of mammalian cells is shown to be dependent upon light exposure and proportional to the amount of ROS generated.

  6. Impulsive model for reactive collisions

    NASA Technical Reports Server (NTRS)

    Marron, M. T.; Bernstein, R. B.

    1972-01-01

    A simple classical mechanical model of the reactive scattering of a structureless atom A and a quasi-diatomic BC is developed which takes full advantage of energy, linear and angular momentum conservation relations but introduces a minimum of further assumptions. These are as follows: (1) the vibrational degree of freedom of the reactant (BC) and product (AB) molecules is suppressed, so the change in vibrational energy is simply a parameter; (2) straight-line trajectories are assumed outside of a reaction shell; (3) within this zone, momentum transfer occurs impulsively (essentially instantaneously) following mass transfer; (4) the impulse, which may be either positive or negative, is directed along the BC axis, which may, however, assume all orientations with respect to the incident relative velocity. The model yields differential and total cross sections and product rotational energy distributions for a given collision exoergicity Q, or for any known distribution over Q. Numerical results are presented for several prototype reactions whose dynamics have been well-studied.

  7. Precise measurement of dimuon production cross-sections in muon neutrino iron and anti-muon neutrino iron deep inelastic scattering at the Tevatron

    NASA Astrophysics Data System (ADS)

    Goncharov, Maxim T.

    2001-10-01

    This dissertation presents the measurement of the semi- inclusive cross-sections for nm and nm -nucleon deep inelastic scattering interactions with two oppositely charged muons in the final state. These events dominantly arise from production of a charm quark during the scattering process. The measurement is obtained from the analysis of 5102 nm induced and 1458 nm induced events collected with the NuTeV detector exposed to a sign selected beam at the Fermilab Tevatron. A leading-order QCD analysis is used to predict charm production cross-section parameters such as the charm mass mc, strange and anti- strange sea quark probability distribution functions s(x, q2), semi-leptonic charm decay branching ratio Bc, and charm fragmentation function parameter ɛ. The result is presented as a nearly model-independent dimuon production cross-section table. I also extract cross-section measurements from a re-analysis of 5030 nm induced and 1060 nm induced events collected from the exposure of the same detector to a quad-triplet beam by the CCFR experiment. The resulting cross-section tables are the most statistically precise measurements of neutrino- induced dimuon production cross-sections to date. These measurements should be of broad use to phenomenologists interested in the dynamics of charm production, the strangeness content of the nucleon, and the CKM matrix element Vcd.

  8. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio.

    PubMed

    Korge, Paavo; Calmettes, Guillaume; Weiss, James N

    2016-07-01

    Reactive oxygen species (ROS) production by isolated complex I is steeply dependent on the NADH/NAD(+) ratio. We used alamethicin-permeabilized mitochondria to study the substrate-dependence of matrix NADH and ROS production when complex I is inhibited by piericidin or rotenone. When complex I was inhibited in the presence of malate/glutamate, membrane permeabilization accelerated O2 consumption and ROS production due to a rapid increase in NADH generation that was not limited by matrix NAD(H) efflux. In the presence of inhibitor, both malate and glutamate were required to generate a high enough NADH/NAD(+) ratio to support ROS production through the coordinated activity of malate dehydrogenase (MDH) and aspartate aminotransferase (AST). With malate and glutamate present, the rate of ROS production was closely related to local NADH generation, whereas in the absence of substrates, ROS production was accelerated by increase in added [NADH]. With malate alone, oxaloacetate accumulation limited NADH production by MDH unless glutamate was also added to promote oxaloacetate removal via AST. α-ketoglutarate (KG) as well as AST inhibition also reversed NADH generation and inhibited ROS production. If malate and glutamate were provided before rather than after piericidin or rotenone, ROS generation was markedly reduced due to time-dependent efflux of CoA. CoA depletion decreased KG oxidation by α-ketoglutarate dehydrogenase (KGDH), such that the resulting increase in [KG] inhibited oxaloacetate removal by AST and NADH generation by MDH. These findings were largely obscured in intact mitochondria due to robust H2O2 scavenging and limited ability to control substrate concentrations in the matrix. We conclude that in mitochondria with inhibited complex I, malate/glutamate-stimulated ROS generation depends strongly on oxaloacetate removal and on the ability of KGDH to oxidize KG generated by AST. PMID:27068062

  9. Design of gas targets for the production of medically used radionuclides with the help of Monte-Carlo simulation of small angle multiple scattering of charged particles.

    PubMed

    Helmeke, H J; Hundeshagen, H

    1995-08-01

    Due to scattering of protons or deuterons in the target gas the radius of beams increases with increasing penetration depth of the particles. The increase depends on the kind of beam particle, the energy, the target gas and its temperature and pressure. A Monte-Carlo program was developed for stimulation of multiple scattering. The initial beam has a particle distribution of variable sinusoidal shape behind the entrance window and may be cut off by the simulation of a collimator. The beam distribution is calculated for up to 14 planes representing energy values of the particles due to a predefined range from one plane to the next. The energy loss is calculated with the help of an integrated Bethe-Bloch routine. The distribution of the particles within the plane may be rearranged into profiles and transferred to a spreadsheet for further manipulation and graphical printout. Simulations are carried out for radionuclide production routes, commonly used for position emission tomography (PET). PMID:7633390

  10. Electron and Muon production cross-sections in quasielastic ν(ν¯)-Nucleus scattering for Eν < 1GeV

    NASA Astrophysics Data System (ADS)

    Akbar, F.; Alam, M. Rafi; Athar, M. Sajjad; Chauhan, S.; Singh, S. K.; Zaidi, F.

    2015-10-01

    In this paper, we have studied (anti)neutrino induced charged current quasielastic (CCQE) scattering from some nuclear targets in the energy region of Eν < 1GeV. Our aim is to confront electron and muon production cross-sections relevant for νμ↔νe or ν¯μ↔ν¯e oscillation experiments. The effects due to lepton mass and its kinematic implications, radiative corrections, second class currents (SCCs) and uncertainties in the axial and pseudoscalar form factors are calculated for (anti)neutrino induced reaction cross-sections on free nucleon as well as the nucleons bound in a nucleus where nuclear medium effects influence the cross-section. For the nuclear medium effects, we have taken some versions of Fermi gas model (FGM) available in the literature. The results for (anti)neutrino-nucleus scattering cross-section per interacting nucleons are compared with the corresponding results in free nucleon case.

  11. Measurement of parton distributions of strange quarks in the nucleon from charged-kaon production in deep-inelastic scattering on the dueteron.

    SciTech Connect

    Airapetian, A.; Akopov, N.; Akopov, Z.; Andrus, A.; Aschenauer, E. C.; Jackson, H. E.; Reimer, P. E.; HERMES Collaboration; Physics; Univ. of Michigan; Yerevan Physics Inst.; Univ. of Illinois; DESY Lab.

    2008-01-01

    The momentum and helicity density distributions of the strange quark sea in the nucleon are obtained in leading order from charged-kaon production in deep-inelastic scattering on the deuteron. The distributions are extracted from spin-averaged K{sup {+-}} multiplicities, and from K{sup {+-}} and inclusive double-spin asymmetries for scattering of polarized positrons by a polarized deuterium target. The shape of the momentum distribution is softer than that of the average of the {bar u} and {bar d} quarks. In the region of measurement 0.02 < x < 0.6 and Q{sup 2} > 1.0 GeV{sup 2}, the helicity distribution is zero within experimental uncertainties.

  12. Inhibition of Reactive Oxygen Species Production Ameliorates Inflammation Induced by Influenza A Viruses via Upregulation of SOCS1 and SOCS3

    PubMed Central

    Lowther, Sue; Stambas, John

    2014-01-01

    ABSTRACT Highly pathogenic avian influenza virus infection is associated with severe mortality in both humans and poultry. The mechanisms of disease pathogenesis and immunity are poorly understood although recent evidence suggests that cytokine/chemokine dysregulation contributes to disease severity following H5N1 infection. Influenza A virus infection causes a rapid influx of inflammatory cells, resulting in increased reactive oxygen species production, cytokine expression, and acute lung injury. Proinflammatory stimuli are known to induce intracellular reactive oxygen species by activating NADPH oxidase activity. We therefore hypothesized that inhibition of this activity would restore host cytokine homeostasis following avian influenza virus infection. A panel of airway epithelial and immune cells from mammalian and avian species were infected with A/Puerto Rico/8/1934 H1N1 virus, low-pathogenicity avian influenza H5N3 virus (A/duck/Victoria/0305-2/2012), highly pathogenic avian influenza H5N1 virus (A/chicken/Vietnam/0008/2004), or low-pathogenicity avian influenza H7N9 virus (A/Anhui/1/2013). Quantitative real-time reverse transcriptase PCR showed that H5N1 and H7N9 viruses significantly stimulated cytokine (interleukin-6, beta interferon, CXCL10, and CCL5) production. Among the influenza-induced cytokines, CCL5 was identified as a potential marker for overactive immunity. Apocynin, a Nox2 inhibitor, inhibited influenza-induced cytokines and reactive oxygen species production, although viral replication was not significantly altered in vitro. Interestingly, apocynin treatment significantly increased influenza virus-induced mRNA and protein expression of SOCS1 and SOCS3, enhancing negative regulation of cytokine signaling. These findings suggest that apocynin or its derivatives (targeting host responses) could be used in combination with antiviral strategies (targeting viruses) as therapeutic agents to ameliorate disease severity in susceptible species

  13. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron

    NASA Technical Reports Server (NTRS)

    Furukawa, Yoko; Kim, Jin-Wook; Watkins, Janet; Wilkin, Richard T.

    2002-01-01

    Ferrihydrite, which is known to form in the presence of oxygen and to be stabilized by the adsorption of Si, PO4 and SO4, is ubiquitous in the fine-grained fractions of permeable reactive barrier (PRB) samples from the U.S. Coast Guard Support Center (Elizabeth City, NC) and the Denver Federal Center (Lakewood, CO) studied by high-resolution transmission electron microscopy and selected area electron diffraction. The concurrent energy-dispersive X-ray data indicate a strong association between ferrihydrite and metals such as Si, Ca, and Cr. Magnetite, green rust 1, aragonite, calcite, mackinawite, greigite and lepidocrocite were also present, indicative of a geochemical environment that is temporally and spatially heterogeneous. Whereas magnetite, which is known to form due to anaerobic Fe0 corrosion, passivates the Fe0 surface, ferrihydrite precipitation occurs away from the immediate Fe0 surface, forming small (<0.1 microm) discrete clusters. Consequently, Fe0-PRBs may remain effective for a longer period of time in slightly oxidized groundwater systems where ferrihydrite formation occurs compared to oxygen-depleted systems where magnetite passivation occurs. The ubiquitous presence of ferrihydrite suggests that the use of Fe0-PRBs may be extended to applications that require contaminant adsorption rather than, or in addition to, redox-promoted contaminant degradation.

  14. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron.

    PubMed

    Furukawa, Yoko; Kim, Jin-Wook; Watkins, Janet; Wilkin, Richard T

    2002-12-15

    Ferrihydrite, which is known to form in the presence of oxygen and to be stabilized by the adsorption of Si, PO4 and SO4, is ubiquitous in the fine-grained fractions of permeable reactive barrier (PRB) samples from the U.S. Coast Guard Support Center (Elizabeth City, NC) and the Denver Federal Center (Lakewood, CO) studied by high-resolution transmission electron microscopy and selected area electron diffraction. The concurrent energy-dispersive X-ray data indicate a strong association between ferrihydrite and metals such as Si, Ca, and Cr. Magnetite, green rust 1, aragonite, calcite, mackinawite, greigite and lepidocrocite were also present, indicative of a geochemical environment that is temporally and spatially heterogeneous. Whereas magnetite, which is known to form due to anaerobic Fe0 corrosion, passivates the Fe0 surface, ferrihydrite precipitation occurs away from the immediate Fe0 surface, forming small (<0.1 microm) discrete clusters. Consequently, Fe0-PRBs may remain effective for a longer period of time in slightly oxidized groundwater systems where ferrihydrite formation occurs compared to oxygen-depleted systems where magnetite passivation occurs. The ubiquitous presence of ferrihydrite suggests that the use of Fe0-PRBs may be extended to applications that require contaminant adsorption rather than, or in addition to, redox-promoted contaminant degradation. PMID:12521177

  15. Production and utilization of detyrosinated tubulin in developing Artemia larvae: evidence for a tubulin-reactive carboxypeptidase.

    PubMed

    Xiang, H; MacRae, T H

    1995-01-01

    The reversible, enzymatically driven removal and readdition of its carboxy-terminal tyrosine are major posttranslational modifications of alpha-tubulin. To study these processes isoform-specific antibodies were produced and subsequently used to characterize tyrosinated and detyrosinated tubulin in the brine shrimp, Artemia. Tyrosinated tubulin existed in relatively constant amounts on western blots of cell-free protein extracts from Artemia at all developmental stages examined, whereas detyrosinated tubulin was present after 20-24 h of postgastrula growth. In agreement with the blots, the detyrosinated isoform was observed in immunofluorescently stained larvae after 24 h of incubation, appearing first in structures of a transient nature, namely spindles and midbodies. The elongated muscle cells encircling the gut and the epithelium bordering the gut lumen were stained extensively with antibody to detyrosinated tubulin. Detyrosination was accompanied by the appearance of a tubulin-reactive carboxypeptidase, which used both nonpolymerized and polymerized tubulin as substrate. The enzyme bound to microtubules very poorly, if at all, under conditions used in this work. Several inhibitors of carboxypeptidase A had no effect on the carboxypeptidase from Artemia and revealed similarities between this enzyme and others thought to be tubulin specific. The use of inhibitors also indicated that the carboxypeptidase from Artemia recognized aspects of tubulin structure in addition to the carboxy-terminal tyrosine. Our results support the idea that detyrosinated tubulin appears in microtubules of varying stability, and they demonstrate that Artemia possess a carboxypeptidase with the potential to detyrosinate tubulin during growth of larvae. PMID:8714688

  16. Production a monoclonal antibody specific to granulocytes of swimming crab (Portunus trituberculatus) and its cross reactivity with other crustaceans.

    PubMed

    Cheng, Shun-Feng; Wu, Xiao-Chun; Zhang, Min

    2016-10-01

    In this study, a monoclonal antibody (mAb) 3F4 specific to granulocytes of swimming crab, Portunus trituberculatus, was obtained by immunizing mice with whole haemocytes. mAb 3F4 showed strong immunofluorescent reaction with granulocytes, but no reaction with hyalinocytes. The positive cell percentage of granulocytes was 86.3% detected by Flow cytometry (FCM). A special antigen with molecular weight of about 26kDa was further recognized by mAb 3F4 in haemocytes of P. trituberculatus. mAb 3F4 also showed strong cross-reactivity with haemocytes of Eriocheir sinensis and Petalomera japonica, but no reaction with other crustaceans tested. In E. sinensis, the positive cell percentage was 73.4% for granulocytes and 59.8% for hyalinocytes; while in P. japonica, the positive cell percentage was 81.2% for granulocytes and 7.1% for hyalinocytes. There was also a special antigen with molecular weight of about 31kDa identified by mAb 3F4 in haemocytes of E.sinensis, but no corresponding protein band in P. japonica haemocytes. These results demonstrated that mAb 3F4 can be used as a marker for granulocytes of crabs. PMID:27496746

  17. Groundwater dynamics in wetland soils control the production and transfer mechanisms of dissolved reactive phosphorus in an agricultural landscape

    NASA Astrophysics Data System (ADS)

    Dupas, Rémi; Gu, Sen; Gruau, Gérard; Gascuel-Odoux, Chantal

    2015-04-01

    Because of its high sorption affinity on soils solid phase, mitigation options to reduce diffuse P transfer usually focus on trapping particulate P forms delivered via surface flowpaths. Therefore, vegetated buffer zones placed between croplands and watercourses have been promoted worldwide, sometimes in wetland areas. To investigate the risk of such P trapping riparian wetlands (RWs) releasing dissolved P to rivers, we monitored molybdate reactive P (MRP) in the free soil solution of two RWs in an intensively farmed catchment. Two main mechanisms causing MRP release were identified in light of the geochemical and hydrological conditions in the RWs, controlled by groundwater dynamics. First, soil rewetting after the dry summer was associated with the presence of a pool of mobile P, limited in size. Its mobilization started under conditions of water saturation caused by groundwater uprise in RW organo-mineral soil horizons. Second, the establishment of anoxic conditions in the end of the winter caused reductive solubilization of Fe oxide-hydroxide, along with release of P. Comparison between sites revealed that the first MRP release occurred only in a RW with P enriched soils, whereas the second was recorded even in a RW with a low soil P status. Seasonal variations in MRP concentrations in the stream were synchronized with those in RW soils. Hence, enriched and/or periodically anoxic RWs can act as a key component of the P transfer continuum in agricultural landscapes by converting particulate P from croplands into MRP released to rivers.

  18. Honokiol induces caspase-independent paraptosis via reactive oxygen species production that is accompanied by apoptosis in leukemia cells.

    PubMed

    Wang, Yao; Zhu, Xiuping; Yang, Zehong; Zhao, Xiaojun

    2013-01-18

    Our previous report has shown that honokiol (HNK), a constituent of Magnolia officinalis, induces a novel form of non-apoptotic programmed cell death in human leukemia NB4 and K562 cells. In this study, we further explored the relationship between the cell death pathway and cytoplasmic vacuolization and studied the underlying mechanism of leukemia cell death mediated by honokiol. The results showed that low concentrations of honokiol activated an novel alternative cell death fitted the criteria of paraptosis, such as cytoplasmic vacuolization derived from endoplasmic reticulum swelling, lack of caspase activation, and lack of apoptotic morphology. Results further indicated that the cell death was time- and concentration-dependent. In addition, honokiol-induced paraptosis did not involve membrane blebbing, chromatin condensation and phosphatidylserine exposure at the outer of the plasma membrane. The mechanism of the cell death may be associated, at least in part, with the increased generation of reactive oxygen species. Further analysis showed that honokiol induces cell death predominantly via paraptosis and to a certain extent via apoptosis in NB4 cells, and predominantly via apoptosis and to a certain extent via paraptosis in K562 cells. These observations suggest that cell death occurs via more than one pathway in leukemia cells and targeting paraptosis may be an alternative and promising avenue for honokiol in leukemia therapy. PMID:23262230

  19. Transient Influx of Nickel in Root Mitochondria Modulates Organic Acid and Reactive Oxygen Species Production in Nickel Hyperaccumulator Alyssum murale*

    PubMed Central

    Agrawal, Bhavana; Czymmek, Kirk J.; Sparks, Donald L.; Bais, Harsh P.

    2013-01-01

    Mitochondria are important targets of metal toxicity and are also vital for maintaining metal homeostasis. Here, we examined the potential role of mitochondria in homeostasis of nickel in the roots of nickel hyperaccumulator plant Alyssum murale. We evaluated the biochemical basis of nickel tolerance by comparing the role of mitochondria in closely related nickel hyperaccumulator A. murale and non-accumulator Alyssum montanum. Evidence is presented for the rapid and transient influx of nickel in root mitochondria of nickel hyperaccumulator A. murale. In an early response to nickel treatment, substantial nickel influx was observed in mitochondria prior to sequestration in vacuoles in the roots of hyperaccumulator A. murale compared with non-accumulator A. montanum. In addition, the mitochondrial Krebs cycle was modulated to increase synthesis of malic acid and citric acid involvement in nickel hyperaccumulation. Furthermore, malic acid, which is reported to form a complex with nickel in hyperaccumulators, was also found to reduce the reactive oxygen species generation induced by nickel. We propose that the interaction of nickel with mitochondria is imperative in the early steps of nickel uptake in nickel hyperaccumulator plants. Initial uptake of nickel in roots results in biochemical responses in the root mitochondria indicating its vital role in homeostasis of nickel ions in hyperaccumulation. PMID:23322782

  20. Comparative study between atmospheric microwave and low-frequency plasmas: Production efficiency of reactive species and their effectiveness

    NASA Astrophysics Data System (ADS)

    Won, Im Hee; Kim, Myoung Soo; Kim, Ho Young; Shin, Hyun Kook; Kwon, Hyoung Cheol; Sim, Jae Yoon; Lee, Jae Koo

    2014-01-01

    The characteristics of low-frequency (LF) and microwave-powered plasmas were investigated. The optical emission of these two plasmas indicated that more chemicals were generated by microwave plasma than by LF plasma with the intensities being higher by factors of about 9, 3, 5, and 1.6 for OH (309 nm), O (777 nm), NO (247 nm), and Ca2+ (290 nm), respectively. Application experiments were also conducted. A steel plate became hydrophilic after 45 s of microwave plasma treatment. This is more than ten times faster than in the case of LF plasma treatment, an action related to the generation of reactive species (e.g., OH, O, and NO) as measured by optical emission spectroscopy (OES). Ca2+ generation was verified by blood coagulation experiment. Microwave-plasma-induced coagulation was twice faster than LF-plasma-induced coagulation. Simulation results that explain the chemical generation in microwave plasma were also included. High-energy electrons were considered a major factor for microwave plasma characteristics.

  1. Azoxystrobin-induced excessive reactive oxygen species (ROS) production and inhibition of photosynthesis in the unicellular green algae Chlorella vulgaris.

    PubMed

    Liu, Lei; Zhu, Bin; Wang, Gao-Xue

    2015-05-01

    This study investigated the short-term toxicity of azoxystrobin (AZ), one of strobilurins used as an effective fungicidal agent to control the Asian soybean rust, on aquatic unicellular algae Chlorella vulgaris. The median percentile inhibition concentration (IC₅₀) of AZ for C. vulgaris was found to be 510 μg L(-1). We showed that the algal cells were obviously depressed or shrunk in 300 and 600 μg L(-1) AZ treatments by using the electron microscopy. Furthermore, 19, 75, and 300 μg L(-1) AZ treatments decreased the soluble protein content and chlorophyll concentrations in C. vulgaris and altered the energy-photosynthesis-related mRNA expression levels in 48- and 96-h exposure periods. Simultaneously, our results showed that AZ could increase the total antioxidant capacity (T-AOC) level and compromise superoxide dismutase (SOD), peroxidase (POD), glutathione S transferase (GST), glutathione peroxidase (GPx) activities, and glutathione (GSH) content. These situations might render C. vulgaris more vulnerable to oxidative damage. Overall, the present study indicated that AZ might be toxic to the growth of C. vulgaris, affect energy-photosynthesis-related mRNA expressions, and induce reactive oxygen species (ROS) overproduction in C. vulgaris. PMID:25672875

  2. Production of reactive oxygen and nitrogen species by light irradiation of a nitrosyl phthalocyanine ruthenium complex as a strategy for cancer treatment.

    PubMed

    Heinrich, Tassiele A; Tedesco, Antonio Claudio; Fukuto, Jon M; da Silva, Roberto Santana

    2014-03-14

    Production of reactive oxygen species has been used in clinical therapy for cancer treatment in a technique known as Photodynamic Therapy (PDT). The success of this therapy depends on oxygen concentration since hypoxia limits the formation of reactive oxygen species with consequent clinical failure of PDT. Herein, a possible synergistic effect between singlet oxygen and nitric oxide (NO) is examined since this scenario may display increased tumoricidal activity. To this end, the trinuclear species [Ru(pc)(pz)2{Ru(bpy)2(NO)}2](PF6)6 (pc = phthalocyanine; pz = pyrazine; bpy = bipyridine) was synthesized to be a combined NO and singlet oxygen photogenerator. Photobiological assays using at 4 × 10(-6) M in the B16F10 cell line result in the decrease of cell viability to 21.78 ± 0.29% of normal under light irradiation at 660 nm. However, in the dark and at the same concentration of compound , viability was 91.82 ± 0.37% of normal. The potential application of a system like in clinical therapy against cancer may be as an upgrade to normal photodynamic therapy. PMID:24452093

  3. Left Ventricular Transmural Gradient in Mitochondrial Respiration Is Associated with Increased Sub-Endocardium Nitric Oxide and Reactive Oxygen Species Productions

    PubMed Central

    Kindo, Michel; Gerelli, Sébastien; Bouitbir, Jamal; Hoang Minh, Tam; Charles, Anne-Laure; Mazzucotelli, Jean-Philippe; Zoll, Joffrey; Piquard, François; Geny, Bernard

    2016-01-01

    Objective: Left ventricle (LV) transmural gradient in mitochondrial respiration has been recently reported. However, to date, the physiological mechanisms involved in the lower endocardium mitochondrial respiration chain capacity still remain to be determined. Since, nitric oxide (NO) synthase expression in the heart has spatial heterogeneity and might impair mitochondrial function, we investigated a potential association between LV transmural NO and mitochondrial function gradient. Methods: Maximal oxidative capacity (VMax) and relative contributions of the respiratory chain complexes II, III, IV (VSucc) and IV (VTMPD), mitochondrial content (citrate synthase activity), coupling, NO (electron paramagnetic resonance), and reactive oxygen species (ROS) production (H2O2 and dihydroethidium (DHE) staining) were determined in rat sub-endocardium (Endo) and sub-epicardium (Epi). Further, the effect of a direct NO donor (MAHMA NONOate) on maximal mitochondrial respiratory rates (Vmax) was determined. Results: Mitochondrial respiratory chain activities were reduced in the Endo compared with the Epi (−16.92%; P = 0.04 for Vmax and –18.73%; P = 0.02, for Vsucc, respectively). NO production was two-fold higher in the Endo compared with the Epi (P = 0.002) and interestingly, increasing NO concentration reduced Vmax. Mitochondrial H2O2 and LV ROS productions were significantly increased in Endo compared to Epi, citrate synthase activity and mitochondrial coupling being similar in the two layers. Conclusions: LV mitochondrial respiration transmural gradient is likely related to NO and possibly ROS increased production in the sub-endocardium. PMID:27582709

  4. Relationships between human vitality and mitochondrial respiratory parameters, reactive oxygen species production and dNTP levels in peripheral blood mononuclear cells

    PubMed Central

    Gram, Martin; Desler, Claus; Bendix, Laila; Budtz-Jørgensen, Esben; Molbo, Drude; Croteau, Deborah L.; Osler, Merete; Stevnsner, Tinna; Rasmussen, Lene Juel; Dela, Flemming; Avlund, Kirsten; Bohr, Vilhelm A.

    2013-01-01

    Low vitality (a component of fatigue) in middle-aged and older adults is an important complaint often identified as a symptom of a disease state or side effect of a treatment. No studies to date have investigated the potential link between dysfunctional mitochondrial ATP production and low vitality. Therefore, we measured a number of cellular parameters related to mitochondrial activity in peripheral blood mononuclear cells (PBMCs) isolated from middle-aged men, and tested for association with vitality. These parameters estimate mitochondrial respiration, reactive oxygen species (ROS) production, and deoxyribonucleotide (dNTP) balance in PBMCs. The population was drawn from the Metropolit cohort of men born in 1953. Vitality level was estimated from the Medical Outcomes Study Short Form 36 (SF-36) vitality scale. We found that vitality score had no association with any of the mitochondrial respiration parameters. However, vitality score was inversely associated with cellular ROS production and cellular deoxythymidine triphosphate (dTTP) levels and positively associated with deoxycytidine triphosphate (dCTP) levels. We conclude that self-reported persistent low vitality is not associated with specific aspects of mitochondrial oxidative phosphorylation capacity in PBMCs, but may have other underlying cellular dysfunctions that contribute to dNTP imbalance and altered ROS production. PMID:24304678

  5. Winery by-products: extraction optimization, phenolic composition and cytotoxic evaluation to act as a new source of scavenging of reactive oxygen species.

    PubMed

    Melo, Priscilla Siqueira; Massarioli, Adna Prado; Denny, Carina; dos Santos, Luciana Ferracini; Franchin, Marcelo; Pereira, Giuliano Elias; Vieira, Thais Maria Ferreira de Souza; Rosalen, Pedro Luiz; de Alencar, Severino Matias

    2015-08-15

    Nearly 20 million tons of winery by-products, with many biological activities, are discarded each year in the world. The extraction of bioactive compounds from Chenin Blanc, Petit Verdot, and Syrah grape by-products, produced in the semi-arid region in Brazil, was optimized by a Central Composite Rotatable Design. The phenolic compounds profile, antioxidant capacity against synthetic free radicals (DPPH and ABTS), reactive oxygen species (ROS; peroxyl radical, superoxide radical, hypochlorous acid), cytotoxicity assay (MTT) and quantification of TNF-α production in RAW 264.7 cells were conducted. Gallic acid, syringic acid, procyanidins B1 and B2, catechin, epicatechin, epicatechin gallate, quercetin 3-β-d-glucoside, delfinidin 3-glucoside, peonidin 3-O-glucoside, and malvidin 3-glucoside were the main phenolic compounds identified. In general, rachis showed higher antioxidant capacity than pomace extract, especially for Chenin Blanc. All extracts showed low cytotoxicity against RAW 264.7 cells and Petit Verdot pomace suppressed TNF-α liberation in vitro. Therefore, these winery by-products can be considered good sources of bioactive compounds, with great potential for application in the food and pharmaceutical industries. PMID:25794735

  6. Working Memory and Reactivity

    ERIC Educational Resources Information Center

    Goo, Jaemyung

    2010-01-01

    The present study explores the relationship between working memory capacity (WMC) and think-alouds, focusing on the issue of reactivity. Two WM span tasks (listening span and operation span) were administered to 42 English-speaking learners of Spanish. Learner performance on reading comprehension and written production was measured under two…

  7. Reactive arthritis.

    PubMed

    Keat, A

    1999-01-01

    Reactive arthritis is one of the spondyloarthropathy family of clinical syndromes. The clinical features are those shared by other members of the spondyloarthritis family, though it is distinguished by a clear relationship with a precipitating infection. Susceptibility to reactive arthritis is closely linked with the class 1 HLA allele B27; it is likely that all sub-types pre-dispose to this condition. The link between HLA B27 and infection is mirrored by the development of arthritis in HLA B27-transgenic rats. In this model, arthritis does not develop in animals maintained in a germ-free environment. Infections of the gastrointestinal, genitourinary and respiratory tract appear to provoke reactive arthritis and a wide range of pathogens has now been implicated. Although mechanistic parallels may exist, reactive arthritis is distinguished from Lyme disease, rheumatic fever and Whipple's disease by virtue of the distinct clinical features and the link with HLA B27. As in these conditions both antigens and DNA of several micro-organisms have been detected in joint material from patients with reactive arthritis. The role of such disseminated microbial elements in the provocation or maintenance of arthritis remains unclear. HLA B27-restricted T-cell responses to microbial antigens have been demonstrated and these may be important in disease pathogenesis. The importance of dissemination of bacteria from sites of mucosal infection and their deposition in joints has yet to be fully understood. The role of antibiotic therapy in the treatment of reactive arthritis is being explored; in some circumstances, both the anti-inflammatory and anti-microbial effects of certain antibiotics appear to be valuable. The term reactive arthritis should be seen as a transitory one, reflecting a concept which may itself be on the verge of replacement, as our understanding of the condition develops. Nevertheless it appropriately describes arthritis that is associated with demonstrable

  8. Leghemoglobin green derivatives with nitrated hemes evidence production of highly reactive nitrogen species during aging of legume nodules.

    PubMed

    Navascués, Joaquín; Pérez-Rontomé, Carmen; Gay, Marina; Marcos, Manuel; Yang, Fei; Walker, F Ann; Desbois, Alain; Abián, Joaquín; Becana, Manuel

    2012-02-14

    Globins constitute a superfamily of proteins widespread in all kingdoms of life, where they fulfill multiple functions, such as efficient O(2) transport and modulation of nitric oxide bioactivity. In plants, the most abundant Hbs are the symbiotic leghemoglobins (Lbs) that scavenge O(2) and facilitate its diffusion to the N(2)-fixing bacteroids in nodules. The biosynthesis of Lbs during nodule formation has been studied in detail, whereas little is known about the green derivatives of Lbs generated during nodule senescence. Here we characterize modified forms of Lbs, termed Lba(m), Lbc(m), and Lbd(m), of soybean nodules. These green Lbs have identical globins to the parent red Lbs but their hemes are nitrated. By combining UV-visible, MS, NMR, and resonance Raman spectroscopies with reconstitution experiments of the apoprotein with protoheme or mesoheme, we show that the nitro group is on the 4-vinyl. In vitro nitration of Lba with excess nitrite produced several isomers of nitrated heme, one of which is identical to those found in vivo. The use of antioxidants, metal chelators, and heme ligands reveals that nitration is contingent upon the binding of nitrite to heme Fe, and that the reactive nitrogen species involved derives from nitrous acid and is most probably the nitronium cation. The identification of these green Lbs provides conclusive evidence that highly oxidizing and nitrating species are produced in nodules leading to nitrosative stress. These findings are consistent with a previous report showing that the modified Lbs are more abundant in senescing nodules and have aberrant O(2) binding. PMID:22308405

  9. Leghemoglobin green derivatives with nitrated hemes evidence production of highly reactive nitrogen species during aging of legume nodules

    PubMed Central

    Navascués, Joaquín; Pérez-Rontomé, Carmen; Gay, Marina; Marcos, Manuel; Yang, Fei; Walker, F. Ann; Desbois, Alain; Abián, Joaquín; Becana, Manuel

    2012-01-01

    Globins constitute a superfamily of proteins widespread in all kingdoms of life, where they fulfill multiple functions, such as efficient O2 transport and modulation of nitric oxide bioactivity. In plants, the most abundant Hbs are the symbiotic leghemoglobins (Lbs) that scavenge O2 and facilitate its diffusion to the N2-fixing bacteroids in nodules. The biosynthesis of Lbs during nodule formation has been studied in detail, whereas little is known about the green derivatives of Lbs generated during nodule senescence. Here we characterize modified forms of Lbs, termed Lbam, Lbcm, and Lbdm, of soybean nodules. These green Lbs have identical globins to the parent red Lbs but their hemes are nitrated. By combining UV-visible, MS, NMR, and resonance Raman spectroscopies with reconstitution experiments of the apoprotein with protoheme or mesoheme, we show that the nitro group is on the 4-vinyl. In vitro nitration of Lba with excess nitrite produced several isomers of nitrated heme, one of which is identical to those found in vivo. The use of antioxidants, metal chelators, and heme ligands reveals that nitration is contingent upon the binding of nitrite to heme Fe, and that the reactive nitrogen species involved derives from nitrous acid and is most probably the nitronium cation. The identification of these green Lbs provides conclusive evidence that highly oxidizing and nitrating species are produced in nodules leading to nitrosative stress. These findings are consistent with a previous report showing that the modified Lbs are more abundant in senescing nodules and have aberrant O2 binding. PMID:22308405

  10. β-Cell Uncoupling Protein 2 Regulates Reactive Oxygen Species Production, Which Influences Both Insulin and Glucagon Secretion

    PubMed Central

    Robson-Doucette, Christine A.; Sultan, Sobia; Allister, Emma M.; Wikstrom, Jakob D.; Koshkin, Vasilij; Bhatacharjee, Alpana; Prentice, Kacey J.; Sereda, Samuel B.; Shirihai, Orian S.; Wheeler, Michael B.

    2011-01-01

    OBJECTIVE The role of uncoupling protein 2 (UCP2) in pancreatic β-cells is highly debated, partly because of the broad tissue distribution of UCP2 and thus limitations of whole-body UCP2 knockout mouse models. To investigate the function of UCP2 in the β-cell, β-cell–specific UCP2 knockout mice (UCP2BKO) were generated and characterized. RESEARCH DESIGN AND METHODS UCP2BKO mice were generated by crossing loxUCP2 mice with mice expressing rat insulin promoter-driven Cre recombinase. Several in vitro and in vivo parameters were measured, including respiration rate, mitochondrial membrane potential, islet ATP content, reactive oxygen species (ROS) levels, glucose-stimulated insulin secretion (GSIS), glucagon secretion, glucose and insulin tolerance, and plasma hormone levels. RESULTS UCP2BKO β-cells displayed mildly increased glucose-induced mitochondrial membrane hyperpolarization but unchanged rates of uncoupled respiration and islet ATP content. UCP2BKO islets had elevated intracellular ROS levels that associated with enhanced GSIS. Surprisingly, UCP2BKO mice were glucose-intolerant, showing greater α-cell area, higher islet glucagon content, and aberrant ROS-dependent glucagon secretion under high glucose conditions. CONCLUSIONS Using a novel β-cell–specific UCP2KO mouse model, we have shed light on UCP2 function in primary β-cells. UCP2 does not behave as a classical metabolic uncoupler in the β-cell, but has a more prominent role in the regulation of intracellular ROS levels that contribute to GSIS amplification. In addition, β-cell UCP2 contributes to the regulation of intraislet ROS signals that mediate changes in α-cell morphology and glucagon secretion. PMID:21984579

  11. Production of intracellular reactive oxygen species and change of cell viability induced by atmospheric pressure plasma in normal and cancer cells

    NASA Astrophysics Data System (ADS)

    Ja Kim, Sun; Min Joh, Hea; Chung, T. H.

    2013-10-01

    The effects of atmospheric pressure plasma jet on cancer cells (human lung carcinoma cells) and normal cells (embryonic kidney cells and bronchial epithelial cells) were investigated. Using a detection dye, the production of intracellular reactive oxygen species (ROS) was found to be increased in plasma-treated cells compared to non-treated and gas flow-treated cells. A significant overproduction of ROS and a reduction in cell viability were induced by plasma exposure on cancer cells. Normal cells were observed to be less affected by the plasma-mediated ROS, and cell viability was less changed. The selective effect on cancer and normal cells provides a promising prospect of cold plasma as a cancer therapy.

  12. Amyloid β oligomers induce interleukin-1β production in primary microglia in a cathepsin B- and reactive oxygen species-dependent manner

    SciTech Connect

    Taneo, Jun; Adachi, Takumi; Yoshida, Aiko; Takayasu, Kunio; Takahara, Kazuhiko; Inaba, Kayo

    2015-03-13

    Amyloid β (Aβ) peptide, a causative agent of Alzheimer's disease, forms two types of aggregates: oligomers and fibrils. These aggregates induce inflammatory responses, such as interleukin-1β (IL-1β) production by microglia, which are macrophage-like cells located in the brain. In this study, we examined the effect of the two forms of Aβ aggregates on IL-1β production in mouse primary microglia. We prepared Aβ oligomer and fibril from Aβ (1–42) peptide in vitro. We analyzed the characteristics of these oligomers and fibrils by electrophoresis and atomic force microscopy. Interestingly, Aβ oligomers but not Aβ monomers or fibrils induced robust IL-1β production in the presence of lipopolysaccharide. Moreover, Aβ oligomers induced endo/phagolysosome rupture, which released cathepsin B into the cytoplasm. Aβ oligomer-induced IL-1β production was inhibited not only by the cathepsin B inhibitor CA-074-Me but also by the reactive oxygen species (ROS) inhibitor N-acetylcysteine. Random chemical crosslinking abolished the ability of the oligomers to induce IL-1β. Thus, multimerization and fibrillization causes Aβ oligomers to lose the ability to induce IL-1β. These results indicate that Aβ oligomers, but not fibrils, induce IL-1β production in primary microglia in a cathepsin B- and ROS-dependent manner. - Highlights: • We prepared amyloid β (Aβ) fibrils with minimum contamination of Aβ oligomers. • Primary microglia (MG) produced IL-1β in response to Aβ oligomers, but not fibrils. • Only Aβ oligomers induced leakage of cathepsin B from endo/phagolysosomes. • IL-1β production in response to Aβ oligomers depended on both cathepsin B and ROS. • Crosslinking reduced the ability of the Aβ oligomers to induce IL-1β from MG.

  13. Atmospheric photochemical reactivity and ozone production at two sites in Hong Kong: Application of a Master Chemical Mechanism-photochemical box model

    NASA Astrophysics Data System (ADS)

    Ling, Z. H.; Guo, H.; Lam, S. H. M.; Saunders, S. M.; Wang, T.

    2014-09-01

    A photochemical box model incorporating the Master Chemical Mechanism (v3.2), constrained with a full suite of measurements, was developed to investigate the photochemical reactivity of volatile organic compounds at a semirural site (Mount Tai Mo Shan (TMS)) and an urban site (Tsuen Wan (TW)) in Hong Kong. The levels of ozone (O3) and its precursors, and the magnitudes of the reactivity of O3 precursors, revealed significant differences in the photochemistry at the two sites. Simulated peak hydroperoxyl radical (HO2) mixing ratios were similar at TW and TMS (p = 0.05), while the simulated hydroxyl radical (OH) mixing ratios were much higher at TW (p < 0.05), suggesting different cycling processes between OH and HO2 at the two sites. The higher OH at TW was due to high-NO mixing ratios, which shifted the HOx (OH + HO2) balance toward OH by the propagation of HO2 and alkyl peroxy radicals (RO2) with NO. HOx production was dominated by O3 photolysis at TMS, but at TW, both HCHO and O3 photolyses were found to be major contributors. By contrast, radical-radical reactions governed HOx radical losses at TMS, while at TW, the OH + NO2 reaction was found to dominate in the morning and the radical-radical reactions at noon. Overall, the conversion of NO to NO2 by HO2 dictated the O3 production at the two sites, while O3 destruction was dominated by the OH + NO2 reaction at TW, and at TMS, O3 photolysis and the O3 + HO2 reaction were the major mechanisms. The longer OH chain length at TMS indicated that more O3 was produced for each radical that was generated at this site.

  14. Production of reactive oxygen species by freezing stress and the protective roles of antioxidant enzymes in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As one of the most severe environmental stresses, freezing stress can determine the distribution range of native flora in nature and severely reduce crop production. Many mechanisms have been proposed to explain the damage induced by freezing-thawing cycle, and oxidative stress caused by uncontrolla...

  15. Optimization of reactive simulated moving bed systems with modulation of feed concentration for production of glycol ether ester.

    PubMed

    Agrawal, Gaurav; Oh, Jungmin; Sreedhar, Balamurali; Tie, Shan; Donaldson, Megan E; Frank, Timothy C; Schultz, Alfred K; Bommarius, Andreas S; Kawajiri, Yoshiaki

    2014-09-19

    In this article, we extend the simulated moving bed reactor (SMBR) mode of operation to the production of propylene glycol methyl ether acetate (DOWANOL™ PMA glycol ether) through the esterification of 1-methoxy-2-propanol (DOWANOL™ PM glycol ether) and acetic acid using AMBERLYST™ 15 as a catalyst and adsorbent. In addition, for the first time, we integrate the concept of modulation of the feed concentration (ModiCon) to SMBR operation. The performance of the conventional (constant feed) and ModiCon operation modes of SMBR are analyzed and compared. The SMBR processes are designed using a model based on a multi-objective optimization approach, where a transport dispersive model with a linear driving force for the adsorption rate has been used for modeling the SMBR system. The adsorption equilibrium and kinetics parameters are estimated from the batch and single column injection experiments by the inverse method. The multiple objectives are to maximize the production rate of DOWANOL™ PMA glycol ether, maximize the conversion of the esterification reaction and minimize the consumption of DOWANOL™ PM glycol ether which also acts as the desorbent in the chromatographic separation. It is shown that ModiCon achieves a higher productivity by 12-36% over the conventional operation with higher product purity and recovery. PMID:25127692

  16. Structural Insights into 2,2′-Azino-Bis(3-Ethylbenzothiazoline-6-Sulfonic Acid) (ABTS)-Mediated Degradation of Reactive Blue 21 by Engineered Cyathus bulleri Laccase and Characterization of Degradation Products

    PubMed Central

    Kenzom, T.; Srivastava, P.

    2014-01-01

    Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated. PMID:25261507

  17. Production of associated Y and open charm hadrons in pp collisions at √{s}=7 and 8 TeV via double parton scattering

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Abellán Beteta, C.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borisyak, M.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fohl, K.; Fol, P.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefkova, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zucchelli, S.

    2016-07-01

    Associated production of bottomonia and open charm hadrons in pp collisions at √{s}=7 and 8 TeV is observed using data corresponding to an integrated luminosity of 3 fb-1 accumulated with the LHCb detector. The observation of five combinations, Y(1S)D0, Y(2S)D0, Y(1S)D+, Y(2S)D+ and Y(1S)D s + , is reported. Production crosssections are measured for Y(1S)D0 and Y(1S)D+ pairs in the forward region. The measured cross-sections and the differential distributions indicate the dominance of double parton scattering as the main production mechanism. [Figure not available: see fulltext.

  18. Reactive oxygen species production by human dendritic cells involves TLR2 and dectin-1 and is essential for efficient immune response against Mycobacteria.

    PubMed

    Romero, María Mercedes; Basile, Juan Ignacio; Corra Feo, Laura; López, Beatriz; Ritacco, Viviana; Alemán, Mercedes

    2016-06-01

    Tuberculosis remains the single largest infectious disease with 10 million new cases and two million deaths that are estimated to occur yearly, more than any time in history. The intracellular replication of Mycobacterium tuberculosis (Mtb) and its spread from the lungs to other sites occur before the development of adaptive immune responses. Dendritic cells (DC) are professional antigen-presenting cells whose maturation is critical for the onset of the protective immune response against tuberculosis disease and may vary depending on the nature of the cell wall of Mtb strain. Here, we describe the role of the endogenous production of reactive oxygen species (ROS) on DC maturation and expansion of Mtb-specific lymphocytes. Here, we show that Mtb induces DC maturation through TLR2/dectin-1 by generating of ROS and through Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN) in a ROS independently manner. Based on the differences observed in the ability to induce DC maturation, ROS production and lymphocyte proliferation by those Mtb families widespread in South America, i.e., Haarlem and Latin American Mediterranean and the reference strain H37Rv, we propose that variance in ROS production might contribute to immune evasion affecting DC maturation and antigen presentation. PMID:26709456

  19. Notch1 Pathway Protects against Burn-Induced Myocardial Injury by Repressing Reactive Oxygen Species Production through JAK2/STAT3 Signaling

    PubMed Central

    Cai, Weixia; Yang, Xuekang; Han, Shichao; Guo, Haitao; Zheng, Zhao; Wang, Hongtao; Guan, Hao; Jia, Yanhui; Gao, Jianxin; Yang, Tao; Zhu, Xiongxiang; Hu, Dahai

    2016-01-01

    Oxidative stress plays an important role in burn-induced myocardial injury, but the cellular mechanisms that control reactive oxygen species (ROS) production and scavenging are not fully understood. This study demonstrated that blockade of Notch signaling via knockout of the transcription factor RBP-J or a pharmacological inhibitor aggravated postburn myocardial injury, which manifested as deteriorated serum CK, CK-MB, and LDH levels and increased apoptosis in vitro and in vivo. Interruption of Notch signaling increased intracellular ROS production, and a ROS scavenger reversed the exacerbated myocardial injury after Notch signaling blockade. These results suggest that Notch signaling deficiency aggravated postburn myocardial injury through increased ROS levels. Notch signaling blockade also decreased MnSOD expression in vitro and in vivo. Notably, Notch signaling blockade downregulated p-JAK2 and p-STAT3 expression. Inhibition of JAK2/STAT3 signaling with AG490 markedly decreased MnSOD expression, increased ROS production, and aggravated myocardial injury. AG490 plus GSI exerted no additional effects. These results demonstrate that Notch signaling protects against burn-induced myocardial injury through JAK2/STAT3 signaling, which activates the expression of MnSOD and leads to decreased ROS levels. PMID:27057278

  20. Protection of hypoglycemia-induced neuronal death by β-hydroxybutyrate involves the preservation of energy levels and decreased production of reactive oxygen species.

    PubMed

    Julio-Amilpas, Alberto; Montiel, Teresa; Soto-Tinoco, Eva; Gerónimo-Olvera, Cristian; Massieu, Lourdes

    2015-05-01

    Glucose is the main energy substrate in brain but in certain circumstances such as prolonged fasting and the suckling period alternative substrates can be used such as the ketone bodies (KB), beta-hydroxybutyrate (BHB), and acetoacetate. It has been shown that KB prevent neuronal death induced during energy limiting conditions and excitotoxicity. The protective effect of KB has been mainly attributed to the improvement of mitochondrial function. In the present study, we have investigated the protective effect of D-BHB against neuronal death induced by severe noncoma hypoglycemia in the rat in vivo and by glucose deprivation (GD) in cortical cultures. Results show that systemic administration of D-BHB reduces reactive oxygen species (ROS) production in distinct cortical areas and subregions of the hippocampus and efficiently prevents neuronal death in the cortex of hypoglycemic animals. In vitro results show that D-BHB stimulates ATP production and reduces ROS levels, while the nonphysiologic isomer of BHB, L-BHB, has no effect on energy production but reduces ROS levels. Data suggest that protection by BHB, not only results from its metabolic action but is also related to its capability to reduce ROS, rendering this KB as a suitable candidate for the treatment of ischemic and traumatic injury. PMID:25649993

  1. Neutrophils from patients with SAPHO syndrome show no signs of aberrant NADPH oxidase-dependent production of intracellular reactive oxygen species

    PubMed Central

    Wekell, Per; Björnsdottir, Halla; Björkman, Lena; Sundqvist, Martina; Christenson, Karin; Osla, Veronica; Berg, Stefan; Fasth, Anders; Welin, Amanda; Bylund, Johan

    2016-01-01

    Objective. We aimed to investigate if aberrant intracellular production of NADPH oxidase-derived reactive oxygen species (ROS) in neutrophils is a disease mechanism in the autoinflammatory disease SAPHO syndrome, characterized by synovitis, acne, pustulosis, hyperostosis and osteitis, as has previously been suggested based on a family with SAPHO syndrome-like disease. Methods. Neutrophil function was explored in a cohort of four patients with SAPHO syndrome, two of whom were sampled during both inflammatory and non-inflammatory phase. Intracellular neutrophil ROS production was determined by luminol-amplified chemiluminescence in response to phorbol myristate acetate. Results. Cells from all patients produced normal amounts of ROS, both intra- and extracellularly, when compared with internal controls as well as with a large collection of healthy controls assayed in the laboratory over time (showing an extensive inter-personal variability in a normal population). Further, intracellular production of ROS increased during the inflammatory phase. Neutrophil activation markers were comparable between patients and controls. Conclusion. Dysfunctional generation of intracellular ROS in neutrophils is not a generalizable feature in SAPHO syndrome. Secondly, serum amyloid A appears to be a more sensitive inflammatory marker than CRP during improvement and relapses in SAPHO syndrome. PMID:27121779

  2. Antitumor activity of balsam fir oil: production of reactive oxygen species induced by alpha-humulene as possible mechanism of action.

    PubMed

    Legault, Jean; Dahl, Wivecke; Debiton, Eric; Pichette, André; Madelmont, Jean-Claude

    2003-05-01

    The antitumor activity of the essential oil of Abies balsamea (balsam fir oil) was evaluated against several solid tumor cell lines including MCF-7, PC-3, A-549, DLD-1, M4BEU and CT-26. Balsam fir oil was found to be active against all the solid tumor cell lines tested, with GI 50 values ranging between 0.76 and 1.7 mg/mL. The oil was analyzed by GC-MS and the cytotoxicity of each oil constituent was determined. Balsam fir oil is essentially constituted of monoterpenes tau; 96 %) and some sesquiterpenes. All the compounds tested were inactive (tau; 250 microM) except for alpha-humulene (GI50 = 55 to 73 microM) which thus seems responsible for the cytotoxicity of the oil. We also tested the cytotoxicity of caryophyllene oxide, which proved inactive, and gamma-caryophyllene which was found to be active against all solid tumor cell lines tested. We evaluated the effects of balsam fir oil and alpha-humulene on the cellular glutathione (GSH) content and on the production of reactive oxygen species (ROS). Balsam fir oil and alpha-humulene induced a dose- and time-dependent decrease in cellular GSH content and an increase in ROS production. These results suggest that GSH depletion and ROS production may be implicated in the cytotoxicity of alpha-humulene and balsam fir oil. PMID:12802719

  3. Protection of hypoglycemia-induced neuronal death by β-hydroxybutyrate involves the preservation of energy levels and decreased production of reactive oxygen species

    PubMed Central

    Julio-Amilpas, Alberto; Montiel, Teresa; Soto-Tinoco, Eva; Gerónimo-Olvera, Cristian; Massieu, Lourdes

    2015-01-01

    Glucose is the main energy substrate in brain but in certain circumstances such as prolonged fasting and the suckling period alternative substrates can be used such as the ketone bodies (KB), beta-hydroxybutyrate (BHB), and acetoacetate. It has been shown that KB prevent neuronal death induced during energy limiting conditions and excitotoxicity. The protective effect of KB has been mainly attributed to the improvement of mitochondrial function. In the present study, we have investigated the protective effect of D-BHB against neuronal death induced by severe noncoma hypoglycemia in the rat in vivo and by glucose deprivation (GD) in cortical cultures. Results show that systemic administration of D-BHB reduces reactive oxygen species (ROS) production in distinct cortical areas and subregions of the hippocampus and efficiently prevents neuronal death in the cortex of hypoglycemic animals. In vitro results show that D-BHB stimulates ATP production and reduces ROS levels, while the nonphysiologic isomer of BHB, L-BHB, has no effect on energy production but reduces ROS levels. Data suggest that protection by BHB, not only results from its metabolic action but is also related to its capability to reduce ROS, rendering this KB as a suitable candidate for the treatment of ischemic and traumatic injury. PMID:25649993

  4. H2S production by reactive oxygen species in the carotid body triggers hypertension in a rodent model of sleep apnea.

    PubMed

    Yuan, Guoxiang; Peng, Ying-Jie; Khan, Shakil A; Nanduri, Jayasri; Singh, Amritha; Vasavda, Chirag; Semenza, Gregg L; Kumar, Ganesh K; Snyder, Solomon H; Prabhakar, Nanduri R

    2016-01-01

    Sleep apnea is a prevalent respiratory disease in which episodic cessation of breathing causes intermittent hypoxia. Patients with sleep apnea and rodents exposed to intermittent hypoxia exhibit hypertension. The carotid body senses changes in blood O2 concentrations, and an enhanced carotid body chemosensory reflex contributes to hypertension in sleep apnea patients. A rodent model of intermittent hypoxia that mimics blood O2 saturation profiles of patients with sleep apnea has shown that increased generation of reactive oxygen species (ROS) in the carotid body enhances the chemosensory reflex and triggers hypertension. CO generated by heme oxygenase-2 (HO-2) induces a signaling pathway that inhibits hydrogen sulfide (H2S) production by cystathionine γ-lyase (CSE), leading to suppression of carotid body activity. We found that ROS inhibited CO generation by HO-2 in the carotid body and liver through a mechanism that required Cys(265) in the heme regulatory motif of heterologously expressed HO-2. We showed that ROS induced by intermittent hypoxia inhibited CO production and increased H2S concentrations in the carotid body, which stimulated its neural activity. In rodents, blockade of H2S synthesis by CSE, by either pharmacologic or genetic approaches, inhibited carotid body activation and hypertension induced by intermittent hypoxia. Thus, our results indicate that oxidant-induced inactivation of HO-2, which leads to increased CSE-dependent H2S production in the carotid body, is a critical trigger of hypertension in rodents exposed to intermittent hypoxia. PMID:27531649

  5. Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species

    PubMed Central

    Mailloux, Ryan J.

    2015-01-01

    Mitochondria fulfill a number of biological functions which inherently depend on ATP and O2−•/H2O2 production. Both ATP and O2−•/H2O2 are generated by electron transfer reactions. ATP is the product of oxidative phosphorylation whereas O2−• is generated by singlet electron reduction of di-oxygen (O2). O2−• is then rapidly dismutated by superoxide dismutase (SOD) producing H2O2. O2−•/H2O2 were once viewed as unfortunately by-products of aerobic respiration. This characterization is fitting considering over production of O2−•/H2O2 by mitochondria is associated with range of pathological conditions and aging. However, O2−•/H2O2 are only dangerous in large quantities. If produced in a controlled fashion and maintained at a low concentration, cells can benefit greatly from the redox properties of O2−•/H2O2. Indeed, low rates of O2−•/H2O2 production are required for intrinsic mitochondrial signaling (e.g. modulation of mitochondrial processes) and communication with the rest of the cell. O2−•/H2O2 levels are kept in check by anti-oxidant defense systems that sequester O2−•/H2O2 with extreme efficiency. Given the importance of O2−•/H2O2 in cellular function, it is imperative to consider how mitochondria produce O2−•/H2O2 and how O2−•/H2O2 genesis is regulated in conjunction with fluctuations in nutritional and redox states. Here, I discuss the fundamentals of electron transfer reactions in mitochondria and emerging knowledge on the 11 potential sources of mitochondrial O2−•/H2O2 in tandem with their significance in contributing to overall O2−•/H2O2 emission in health and disease. The potential for classifying these different sites in isopotential groups, which is essentially defined by the redox properties of electron donator involved in O2−•/H2O2 production, as originally suggested by Brand and colleagues is also surveyed in detail. In addition, redox signaling mechanisms that control O2−•/H2O2

  6. New calculations of cross-sections and charge asymmetries for lepton pair production and wide angle Bhabha scattering in e+e- collisions near the Z-peak

    NASA Astrophysics Data System (ADS)

    Field, J. H.

    1994-03-01

    A new event generator for lepton pair production and wide angle Bhabha scattering, BHAGENE3, is presented. Both electroweak and higher order (beyond O(α) QED corrections are included. Comparisons are made with results from the programs, based on the structure function formalism, ALIBABA, TOPAZ0 and ZFITTER. For the case of the final states l+l-γγ ( l = e, μ, τ) BHAGENE3 results are compared with those of Monte Carlo generators that use the exact O( α2) amplitudes.

  7. Biogenic Production of Reactive Bromocarbons: New Field Data and sea-air Fluxes in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Dunk, R. M.; Jones, C. E.; Hornsby, K. E.; Keely, B. J.; Poulton, A. J.; Carpenter, L. J.

    2007-12-01

    Biogenic bromine production by phytoplankton and macroalgae is thought to represent an important link between ocean biology, climate and atmospheric composition. Models of atmospheric bromine chemistry suggest that natural sources of bromocarbons such as CHBr3 and CH2Br2 may account for up to 30% of stratospheric and tropospheric O3 depletion. However, at present these models are limited by the accuracy to which the bromine source terms can be described. In particular, simultaneous measurements of ocean surface water and marine boundary layer bromocarbon concentrations are lacking, limiting the ability to estimate sea to air fluxes to a reasonable degree of accuracy. Furthermore, little is known regarding the factors that control biogenic bromine production, or the temporal and spatial variability of the bromine source term at the regional scale. We present new data from two research cruises during which we measured a range of bromocarbons, including CHBr3, CH2Br2 and CH2IBr, in both surface seawater and the marine boundary layer using two GC-MS systems. The first cruise was to the North Eastern Atlantic (latitudinal range 53-59°N) in summer 2006, while the second cruise was to the Tropical and Subtropical Atlantic and the Mauritanian Upwelling (latitudinal range 16-30°N) in spring 2007. Concentration data and resulting sea air fluxes generally decrease in the order coastal > shelf > upwelling ~ open ocean. Although a broad trend of elevated seawater concentrations in waters with high chlorophyll a (phytoplankton productivity proxy) is observed, the relationship is not simple. We explore this complex relationship between phytoplankton and bromocarbon production in more detail, examining changes in phytoplankton assemblage and health as indicated by cell counts and pigment distributions. We then use these relationships to present a revised regional estimate for the North Atlantic sea to air flux of biogenic bromine.

  8. DNAs from Brucella strains activate efficiently murine immune system with production of cytokines, reactive oxygen and nitrogen species.

    PubMed

    Tavakoli, Zahra; Ardestani, Sussan K; Lashkarbolouki, Taghi; Kariminia, Amina; Zahraei Salehi, Taghi; Tavassoli, Nasser

    2009-09-01

    Brucellosis is an infectious disease with high impact on innate immune responses which is induced partly by its DNA. In the present study the potential differences of wild type and patients isolates versus attenuated vaccine strains in terms of cytokines, ROS and NO induction on murine splenocytes and peritoneal macrophages were investigated. This panel varied in base composition and included DNA from B. abortus, B. melitensis, B.abortus strain S19 and melitensis strain Rev1, as attenuated live vaccine. Also we included Escherichia coli DNA, calf thymus DNA (a mammalian DNA), as controls. These DNA were evaluated for their ability to stimulate IL-12, TNF-alpha, IL-10, IFN-gamma and ROS production from spleenocytes as well as NO production from peritoneal macrophages. Spleen cells were cultured in 24 well at a concentration of 106 cells/ ml with subsequent addition of 10 microg/ml of Brucella or Ecoli DNAs. These cultures were incubated at 37 degrees C with 5% CO2 for 5 days. Supernatants were harvested and cytokines, ROS and NOx were evaluated. It was observed that TNF-alpha was induced in days 1,3,5 by all Brucella strains DNAs and E. coli DNA, IL-10 only was induced in day 1, IFN- gamma was induced only in day 5 and IL-12 not induced. ROS and NOx were produced by all strains; however, we observed higher production of NOx which were stimulated by DNA of B. melitensis. PMID:20124603

  9. D-Galacturonic Acid: A Highly Reactive Compound in Nonenzymatic Browning. 2. Formation of Amino-Specific Degradation Products.

    PubMed

    Wegener, Steffen; Bornik, Maria-Anna; Kroh, Lothar W

    2015-07-22

    Thermal treatment of aqueous solutions of D-galacturonic acid and L-alanine at pH 3, 5, and 8 led to rapid and more intensive nonenzymatic browning reactions compared to similar solutions of other uronic acids and to Maillard reactions of reducing sugars. The hemiacetal ring structures of uronic acids had a high impact on browning behavior and reaction pathways. Besides reductic acid (1,2-dihydroxy-2-cyclopenten-1-one), 4,5-dihydroxy-2-cyclopenten-1-one (DHCP), furan-2-carboxaldehyde, and norfuraneol (4-hydroxy-5-methyl-3-(2H)-furanone) could be detected as typical products of nonenzymatic uronic acid browning reactions. 2-(2-Formyl-1H-pyrrole-1-yl)propanoic acid (FPA) and 1-(1-carboxyethyl)-3-hydroxypyridin-1-ium (HPA) were identified as specific reaction products of uronic acids with amine participation like l-alanine. In contrast, the structurally related D-galacturonic acid methyl ester showed less browning activity and degradation under equal reaction conditions. Pectin-specific degradation products such as 5-formyl-2-furanoic acid and 2-furanoic acid were found but could not be verified for d-galacturonic acid monomers alone. PMID:26111613

  10. Shear-Induced Reactive Gelation.

    PubMed

    Brand, Bastian; Morbidelli, Massimo; Soos, Miroslav

    2015-11-24

    In this work, we describe a method for the production of porous polymer materials in the form of particles characterized by narrow pore size distribution using the principle of shear-induced reactive gelation. Poly(styrene-co-divinylbenzene) primary particles with diameter ranging from 80 to 200 nm are used as building blocks, which are assembled into fractal-like clusters when exposed to high shear rates generated in a microchannel. It was found that independent of the primary particle size, it is possible to modulate the internal structure of formed fractal-like aggregates having fractal dimension ranging from 2.4 to 2.7 by varying the residence time in the microchannel. Thermally induced postpolymerization was used to increase the mechanical resilience of such formed clusters. Primary particle interpenetration was observed by SEM and confirmed by light scattering resulting in an increase of fractal dimension. Nitrogen sorption measurements and mercury porosimetry confirmed formation of a porous material with surface area ranging from 20 to 40 m(2)/g characterized by porosity of 70% and narrow pore size distribution with an average diameter around 700 nm without the presence of any micropores. The strong perfusive character of the synthesized material was confirmed by the existence of a plateau of the height equivalent to a theoretical plate measured at high reduced velocities using a chromatographic column packed with the synthesized microclusters. PMID:26488233

  11. Production of reactive oxygen species in decoupled, Ca(2+)-depleted PSII and their use in assigning a function to chloride on both sides of PSII.

    PubMed

    Semin, Boris K; Davletshina, Lira N; Timofeev, Kirill N; Ivanov, Il'ya I; Rubin, Andrei B; Seibert, Michael

    2013-11-01

    Extraction of Ca(2+) from the oxygen-evolving complex of photosystem II (PSII) in the absence of a chelator inhibits O2 evolution without significant inhibition of the light-dependent reduction of the exogenous electron acceptor, 2,6-dichlorophenolindophenol (DCPIP) on the reducing side of PSII. The phenomenon is known as "the decoupling effect" (Semin et al. Photosynth Res 98:235-249, 2008). Extraction of Cl(-) from Ca(2+)-depleted membranes (PSII[-Ca]) suppresses the reduction of DCPIP. In the current study we investigated the nature of the oxidized substrate and the nature of the product(s) of the substrate oxidation. After elimination of all other possible donors, water was identified as the substrate. Generation of reactive oxygen species HO, H2O2, and O 2 (·-) , as possible products of water oxidation in PSII(-Ca) membranes was examined. During the investigation of O 2 (·-) production in PSII(-Ca) samples, we found that (i) O 2 (·-) is formed on the acceptor side of PSII due to the reduction of O2; (ii) depletion of Cl(-) does not inhibit water oxidation, but (iii) Cl(-) depletion does decrease the efficiency of the reduction of exogenous electron acceptors. In the absence of Cl(-) under aerobic conditions, electron transport is diverted from reducing exogenous acceptors to reducing O2, thereby increasing the rate of O 2 (·-) generation. From these observations we conclude that the product of water oxidation is H2O2 and that Cl(-) anions are not involved in the oxidation of water to H2O2 in decoupled PSII(-Ca) membranes. These results also indicate that Cl(-) anions are not directly involved in water oxidation by the Mn cluster in the native PSII membranes, but possibly provide access for H2O molecules to the Mn4CaO5 cluster and/or facilitate the release of H(+) ions into the lumenal space. PMID:23794169

  12. The role of local renin-angiotensin system on high glucose-induced cell toxicity, apoptosis and reactive oxygen species production in PC12 cells

    PubMed Central

    Shahveisi, Kaveh; Mousavi, Seyed Hadi; Hosseini, Mahmoud; Rad, Abolfazl Khajavi; Jalali, Seyed Amir; Rajaei, Ziba; Sadeghnia, Hamid Reza; Hadjzadeh, Mousa-Al-Reza

    2014-01-01

    Objective(s): Hyperglycemia, oxidative stress and apoptosis have key roles in pathogenesis of diabetic neuropathy. There are local renin-angiotensin systems (RASs) in different tissues such as neural tissue. Local RASs are involved in physiological and pathophysiological processes such as inflammation, proliferation and apoptosis. This study aimed to investigate the role of local renin-angiotensin system on high glucose-induced cell toxicity, apoptosis and reactive oxygen species (ROS) production in PC12 cells, as a cell model of diabetic neuropathy. Materials and Methods: PC12 cells were exposed to a high glucose concentration (27 mg/ml), captopril (ACE inhibitor), telmisartan and losartan (AT1 antagonists), and also PD123319 (AT2 antagonist) were administered before and after induction of high glucose toxicity. Then cell viability was assessed by MTT assay and apoptotic cells and intracellular ROS production were detected by annexin V-propidium iodide and DCFDA, respectively, using flow cytometry. Results: High glucose concentration decreased cell viability, and increased apoptotic cells. Intracellular ROS production was also increased. In PC12 cells pretreatment and treatment by the drugs showed a significant improvement in cell viability and reduced apoptosis in captopril, telmisartan and PD123319 but only captopril and telmisartan were able to reduce ROS production. Losrtan significantly lowered ROS but didn't show any improvements in cell viability and apoptotic cells. Conclusion: The results of the present study showed that RAS inhibitors reduced cell toxicity and apoptosis and ROS production was induced by high glucose. It may be suggested that local RAS has a role in high glucose toxicity. PMID:25422756

  13. Phenylethynyl terminated reactive oligomer

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor)

    1995-01-01

    A composition of matter having the general structure: ##STR1## (wherein X is F, Cl, or NO.sub.2, and Y is CO, SO.sub.2 or C(CF.sub.3).sub.2) is employed to terminate a nucleophilic reagent, resulting in the exclusive production of phenylethynyl terminated reactive oligomers which display unique thermal characteristics. A reactive diluent having the general structure: ##STR2## (wherein R is any aliphatic or aromatic moiety) is employed to decrease the melt viscosity of a phenylethynyl terminated reactive oligomer and to subsequently react therewith to provide a thermosetting material of enhanced density. These materials have features which make them attractive candidates for use as composite matrices and adhesives.

  14. Areca nut components stimulate ADAM17, IL-1α, PGE2 and 8-isoprostane production in oral keratinocyte: role of reactive oxygen species, EGF and JAK signaling

    PubMed Central

    Chang, Mei-Chi; Chan, Chiu-Po; Chen, Yi-Jane; Hsien, Hsiang-Chi; Chang, Ya-Ching; Yeung, Sin-Yuet; Jeng, Po-Yuan; Cheng, Ru-Hsiu; Hahn, Liang-Jiunn; Jeng, Jiiang-Huei

    2016-01-01

    Betel quid (BQ) chewing is an etiologic factor of oral submucous fibrosis (OSF) and oral cancer. There are 600 million BQ chewers worldwide. The mechanisms for the toxic and inflammatory responses of BQ are unclear. In this study, both areca nut (AN) extract (ANE) and arecoline stimulated epidermal growth factor (EGF) and interleukin-1α (IL-1α) production of gingival keratinocytes (GKs), whereas only ANE can stimulate a disintegrin and metalloproteinase 17 (ADAM17), prostaglandin E2 (PGE2) and 8-isoprostane production. ANE-induced EGF production was inhibited by catalase. Addition of anti-EGF neutralizing antibody attenuated ANE-induced cyclooxygenase-2 (COX-2), mature ADAM9 expression and PGE2 and 8-isoprostane production. ANE-induced IL-1α production was inhibited by catalase, anti-EGF antibody, PD153035 (EGF receptor antagonist) and U0126 (MEK inhibitor) but not by α-naphthoflavone (cytochrome p450-1A1 inhibitor). ANE-induced ADAM17 production was inhibited by pp2 (Src inhibitor), U0126, α-naphthoflavone and aspirin. AG490 (JAK inhibitor) prevented ANE-stimulated ADAM17, IL-1α, PGE2 production, COX-2 expression, ADAM9 maturation, and the ANE-induced decline in keratin 5 and 14, but showed little effect on cdc2 expression and EGF production. Moreover, ANE-induced 8-isoprostane production by GKs was inhibited by catalase, anti-EGF antibody, AG490, pp2, U0126, α-naphthoflavone, Zinc protoporphyrin (ZnPP) and aspirin. These results indicate that AN components may involve in BQ-induced oral cancer by induction of reactive oxygen species, EGF/EGFR, IL-1α, ADAMs, JAK, Src, MEK/ERK, CYP1A1, and COX signaling pathways, and the aberration of cell cycle and differentiation. Various blockers against ROS, EGF, IL-1α, ADAM, JAK, Src, MEK, CYP1A1, and COX can be used for prevention or treatment of BQ chewing-related diseases. PMID:26919242

  15. Areca nut components stimulate ADAM17, IL-1α, PGE2 and 8-isoprostane production in oral keratinocyte: role of reactive oxygen species, EGF and JAK signaling.

    PubMed

    Chang, Mei-Chi; Chan, Chiu-Po; Chen, Yi-Jane; Hsien, Hsiang-Chi; Chang, Ya-Ching; Yeung, Sin-Yuet; Jeng, Po-Yuan; Cheng, Ru-Hsiu; Hahn, Liang-Jiunn; Jeng, Jiiang-Huei

    2016-03-29

    Betel quid (BQ) chewing is an etiologic factor of oral submucous fibrosis (OSF) and oral cancer. There are 600 million BQ chewers worldwide. The mechanisms for the toxic and inflammatory responses of BQ are unclear. In this study, both areca nut (AN) extract (ANE) and arecoline stimulated epidermal growth factor (EGF) and interleukin-1α (IL-1α) production of gingival keratinocytes (GKs), whereas only ANE can stimulate a disintegrin and metalloproteinase 17 (ADAM17), prostaglandin E2 (PGE2) and 8-isoprostane production. ANE-induced EGF production was inhibited by catalase. Addition of anti-EGF neutralizing antibody attenuated ANE-induced cyclooxygenase-2 (COX-2), mature ADAM9 expression and PGE2 and 8-isoprostane production. ANE-induced IL-1α production was inhibited by catalase, anti-EGF antibody, PD153035 (EGF receptor antagonist) and U0126 (MEK inhibitor) but not by α-naphthoflavone (cytochrome p450-1A1 inhibitor). ANE-induced ADAM17 production was inhibited by pp2 (Src inhibitor), U0126, α-naphthoflavone and aspirin. AG490 (JAK inhibitor) prevented ANE-stimulated ADAM17, IL-1α, PGE2 production, COX-2 expression, ADAM9 maturation, and the ANE-induced decline in keratin 5 and 14, but showed little effect on cdc2 expression and EGF production. Moreover, ANE-induced 8-isoprostane production by GKs was inhibited by catalase, anti-EGF antibody, AG490, pp2, U0126, α-naphthoflavone, Zinc protoporphyrin (ZnPP) and aspirin. These results indicate that AN components may involve in BQ-induced oral cancer by induction of reactive oxygen species, EGF/EGFR, IL-1α, ADAMs, JAK, Src, MEK/ERK, CYP1A1, and COX signaling pathways, and the aberration of cell cycle and differentiation. Various blockers against ROS, EGF, IL-1α, ADAM, JAK, Src, MEK, CYP1A1, and COX can be used for prevention or treatment of BQ chewing-related diseases. PMID:26919242

  16. Antiplatelet Effect of Catechol Is Related to Inhibition of Cyclooxygenase, Reactive Oxygen Species, ERK/p38 Signaling and Thromboxane A2 Production

    PubMed Central

    Wang, Tong-Mei; Lin, Bor-Ru; Yeung, Sin-Yuet; Yeh, Chien-Yang; Cheng, Ru-Hsiu; Jeng, Jiiang-Huei

    2014-01-01

    Catechol (benzenediol) is present in plant-derived products, such as vegetables, fruits, coffee, tea, wine, areca nut and cigarette smoke. Because platelet dysfunction is a risk factor of cardiovascular diseases, including stroke, atherosclerosis and myocardial infarction, the purpose of this study was to evaluate the anti-platelet and anti-inflammatory effect of catechol and its mechanisms. The effects of catechol on cyclooxygenase (COX) activity, arachidonic acid (AA)-induced aggregation, thromboxane B2 (TXB2) production, lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) production and extracellular signal-regulated kinase (ERK)/p38 phosphorylation were determined in rabbit platelets. In addition, its effect on IL-1β-induced prostaglandin E2 (PGE2) production by fibroblasts was determined. The ex vivo effect of catechol on platelet aggregation was also measured. Catechol (5-25 µM) suppressed AA-induced platelet aggregation and inhibited TXB2 production at concentrations of 0.5–5 µM; however, it showed little cytotoxicity and did not alter U46619-induced platelet aggregation. Catechol (10–50 µM) suppressed COX-1 activity by 29–44% and COX-2 activity by 29–50%. It also inhibited IL-1β-induced PGE2 production, but not COX-2 expression of fibroblasts. Moreover, catechol (1–10 µM) attenuated AA-induced ROS production in platelets and phorbol myristate acetate (PMA)-induced ROS production in human polymorphonuclear leukocytes. Exposure of platelets to catechol decreased AA-induced ERK and p38 phosphorylation. Finally, intravenous administration of catechol (2.5–5 µmole/mouse) attenuated ex vivo AA-induced platelet aggregation. These results suggest that catechol exhibited anti-platelet and anti-inflammatory effects, which were mediated by inhibition of COX, ROS and TXA2 production as well as ERK/p38 phosphorylation. The anti-platelet effect of catechol was confirmed by ex vivo analysis. Exposure to catechol may affect platelet

  17. Production of reactive sintered nickel aluminide. Fifth quarterly technical progress report, February 22, 1993--May 22, 1993

    SciTech Connect

    Cooper, R.M.

    1993-06-01

    Effort over the past 3 months was directed at increasing manufacturing capacity (ball milling) and improving product quality. Orders for the powder have increased, mainly for plasma spray powders. NiAl is an excellent coat between a metal and a ceramic, and its use instead of cobalt should extending operating range for carbide tools. The feather phase in the sintered Ni{sub 3}Al was identified to be a Ni-rich phase nucleated on the grain boundaries with 10 wt % Al composition. The ductile to brittle temperature of powder extruded NiAl was found to be between 500 and 600 C, and shows a 50% elongation at 600 C.

  18. Production and characterization of a recombinant anti-MUC1 scFv reactive with human carcinomas.

    PubMed Central

    Denton, G.; Sekowski, M.; Spencer, D. I.; Hughes, O. D.; Murray, A.; Denley, H.; Tendler, S. J.; Price, M. R.

    1997-01-01

    Recombinant single-chain fragments (scFv) of the murine anti-MUC1 monoclonal antibody C595 have been produced using the original hybridoma cells as a source of variable heavy (V(H))- and variable light (V(L))-chain-encoding antibody genes. The use of the polymerase chain reaction (PCR), bacteriophage (phage) display technology and gene expression systems in E. coli has led to the production of soluble C595 scFv. The scFv has been purified from the bacterial supernatant by peptide epitope affinity chromatography, leading to the recovery of immunoreactive C595 scFv, which was similar in activity to the C595 parent antibody. Analysis by DNA sequencing, SDS-PAGE and Western blotting has demonstrated the integrity of the scFv, while ELISA, FACScan analysis, fluorescence quenching, quantitative immunoreactivity experiments and immunohistochemistry confirm that the activity of the scFv compares favourably with that of the parent antibody. The retention of binding activity to MUC1 antigen on human bladder and breast carcinoma tissue specimens illustrates the potential application of this novel product as an immunodiagnostic and immunotherapeutic reagent. Images Figure 1 Figure 2 Figure 3 Figure 7 PMID:9303360

  19. Effects of Selected Dietary Secondary Metabolites on Reactive Oxygen Species Production Caused by Iron(II) Autoxidation

    PubMed Central

    Chobot, Vladimir; Hadacek, Franz; Kubicova, Lenka

    2015-01-01

    Iron is an essential co-factor for many enzymes that catalyze electron transfer reactions. It is well known that so-called “poorly liganded” iron can increase ROS concentrations and trigger oxidative stress that is capable of initiating apoptosis. Conversely, controlled ROS production has been recognized as an integral part of cellular signaling. Elevated ROS concentrations are associated with aging, inflammatory and degenerative diseases. Anti-aging properties have been attributed especially to antioxidant phenolic plant metabolites that represent food additives in our diet. Consequently, this study explores the effects of flavonoids (quercetin and rutin), several phenolic acids (caffeic, chlorogenic, and protocatechuic acid), and the alkaloid caffeine on iron(II) autoxidation and ROS production in comparison to the standard antioxidants ascorbic acid and Trolox. The iron(II) autoxidation assay was carried out in pH 6.0 (plant apoplast and inflamed human tissue) and 7.4 (cell cytoplasm and human blood plasma). The obtained results accentuate phenolic acids as the more specific antioxidants compared to ascorbic acid and Trolox. Flavonoid redox chemistry depends more on the chemical milieu, specifically on pH. In vivo, the presence of iron cannot be ruled out and “wrongly” or “poorly” complexed iron has been pointed out as causative agent of various age-related diseases. PMID:25470272

  20. Reactive oxygen species (ROS) induced cytokine production and cytotoxicity of PAMAM dendrimers in J774A.1 cells

    SciTech Connect

    Naha, Pratap C.; Davoren, Maria; Lyng, Fiona M.; Byrne, Hugh J.

    2010-07-15

    The immunotoxicity of three generations of polyamidoamine (PAMAM) dendrimers (G-4, G-5 and G-6) was evaluated in mouse macrophage cells in vitro. Using the Alamar blue and MTT assays, a generation dependent cytotoxicity of the PAMAM dendrimers was found whereby G-6 > G-5 > G-4. The toxic response of the PAMAM dendrimers correlated well with the number of surface primary amino groups, with increasing number resulting in an increase in toxic response. An assessment of intracellular ROS generation by the PAMAM dendrimers was performed by measuring the increased fluorescence as a result of intracellular oxidation of Carboxy H{sub 2}DCFDA to DCF both quantitatively using plate reader and qualitatively by confocal laser scanning microscopy. The inflammatory mediators macrophage inflammatory protein-2 (MIP-2), tumour necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6, (IL-6) were measured by the enzyme linked immunosorbant assay (ELISA) following exposure of mouse macrophage cells to PAMAM dendrimers. A generation dependent ROS and cytokine production was found, which correlated well with the cytotoxicological response and therefore number of surface amino groups. A clear time sequence of increased ROS generation (maximum at {approx} 4 h), TNF-{alpha} and IL-6 secretion (maximum at {approx} 24 h), MIP-2 levels and cell death ({approx} 72 h) was observed. The intracellular ROS generation and cytokine production induced cytotoxicity point towards the mechanistic pathway of cell death upon exposure to PAMAM dendrimers.

  1. Reactive uptake of ozone by proxies for organic aerosols: Surface-bound and gas-phase products

    NASA Astrophysics Data System (ADS)

    Thomas, Elan R.; Frost, Gregory J.; Rudich, Yinon

    2001-02-01

    Gas-phase and surface-bound products were determined for the reaction of ozone with self assembled monolayers of alkanes and terminal alkenes serving as proxies for atmospheric organic aerosols. The organic surfaces were characterized using infrared (IR) spectroscopy (direct absorption and attenuated total reflection) as well as contact angle measurements with water before and after the reaction with ozone. The contact angle of the organic surfaces was reduced by ˜20° owing to the reaction. Following the reaction, IR absorption due to the presence of carbonyls and carboxylic acids was observed on the surface. Gas-phase products were determined using infrared spectroscopy immediately above the reaction surface. Under dry conditions, gas-phase formaldehyde yields of 0.5±0.1 for organic monolayers of allyltrichlorosilane (C3=) and octenyltrichlorosilane (C8=) terminal alkenes were observed, in good agreement with the yields observed for gas phase ozonolysis of terminal alkenes. Surfaces of n-octane (C8) as well as processed alkene surfaces were nonreactive toward ozone. The reaction mechanism of ozone with the surface alkenes is discussed. Finally, the possible implications for the chemistry of organic aerosols are discussed and studied using a box model and realistic atmospheric scenarios.

  2. Pycnogenol® inhibits lipid accumulation in 3T3-L1 adipocytes with the modulation of reactive oxygen species (ROS) production associated with antioxidant enzyme responses.

    PubMed

    Lee, Ok-Hwan; Seo, Min-Jung; Choi, Hyeon-Son; Lee, Boo-Yong

    2012-03-01

    Pycnogenol® is a group of flavonoids with antioxidant effects. Adipogenesis is the process of adipocyte differentiation. It causes the increase of lipids as well as ROS (reactive oxygen species). Lipid accumulation and ROS production were determined in 3 T3-L1 adipocyte, and the effect of Pycnogenol® was evaluated. Lipid accumulation was elevated in adipocyte treated with hydrogen peroxide, one of the ROS. Pycnogenol® showed an inhibitory effect on the lipid accumulation and ROS production during the adipogenesis. We also investigated the molecular events associated with ROS production and lipid accumulation. Our results showed that Pycnogenol® inhibited the mRNA expression of pro-oxidant enzymes, such as NOX4 (NADPH (nicotinamide adenine dinucleotide phosphate hydrogen) oxidase 4), and the NADPH-producing G6PDH (glucose-6-phosphate dehydrogenase) enzyme. In addition, Pycnogenol® suppressed the mRNA abundance of adipogenic transcription factors, PPAR-γ (peroxisome proliferator-activated receptor γ) and C/EBP-α (CCAAT/enhancer binding protein α), and their target gene, aP2 (adipocyte protein 2) responsible for fatty acid transportation. On the other hand, Pycnogenol® increased the abundance of antioxidant proteins such as Cu/Zn-SOD (copper-zinc superoxide dismutase), Mn-SOD (manganese superoxide dismutase), GPx (glutathione peroxidase) and GR (glutathione reductase). Our results suggest that Pycnogenol® inhibits lipid accumulation and ROS production by regulating adipogenic gene expression and pro-/antioxidant enzyme responses in adipocytes. PMID:21796705

  3. Atmospheric reactivity of hydroxyl radicals with guaiacol (2-methoxyphenol), a biomass burning emitted compound: Secondary organic aerosol formation and gas-phase oxidation products

    NASA Astrophysics Data System (ADS)

    Lauraguais, Amélie; Coeur-Tourneur, Cécile; Cassez, Andy; Deboudt, Karine; Fourmentin, Marc; Choël, Marie

    2014-04-01

    Methoxyphenols are low molecular weight semi-volatile polar aromatic compounds produced from the pyrolysis of wood lignin. The reaction of guaiacol (2-methoxyphenol) with hydroxyl radicals has been studied in the LPCA simulation chamber at (294 ± 2) K, atmospheric pressure, low relative humidity (RH < 1%) and under high-NOx conditions using CH3ONO as OH source. The aerosol production was monitored using a SMPS (Scanning Mobility Particle Sizer); the SOA yields were in the range from 0.003 to 0.87 and the organic aerosol formation can be expressed by a one-product gas/particle partitioning absorption model. Transmission (TEM) and Scanning (SEM) Electron Microscopy observations were performed to characterize the physical state of SOA produced from the OH reaction with guaiacol; they display both liquid and solid particles (in an amorphous state). GC-FID (Gas Chromatography - Flame Ionization Detection) and GC-MS (Gas Chromatography - Mass Spectrometry) analysis show the formation of nitroguaiacol isomers as main oxidation products in the gas- and aerosol-phases. In the gas-phase, the formation yields were (10 ± 2) % for 4-nitroguaiacol (1-hydroxy-2-methoxy-4-nitrobenzene; 4-NG) and (6 ± 2) % for 3- or 6-nitroguaiacol (1-hydroxy-2-methoxy-3-nitrobenzene or 1-hydroxy-2-methoxy-6-nitrobenzene; 3/6-NG; the standards are not commercially available so both isomers cannot be distinguished) whereas in SOA their yield were much lower (≤0.1%). To our knowledge, this work represents the first identification of nitroguaiacols as gaseous oxidation products of the OH reaction with guaiacol. As the reactivity of nitroguaiacols with atmospheric oxidants is probably low, we suggest using them as biomass burning emission gas tracers. The atmospheric implications of the guaiacol + OH reaction are also discussed.

  4. Seed Priming Alters the Production and Detoxification of Reactive Oxygen Intermediates in Rice Seedlings Grown under Sub-optimal Temperature and Nutrient Supply

    PubMed Central

    Hussain, Saddam; Khan, Fahad; Cao, Weidong; Wu, Lishu; Geng, Mingjian

    2016-01-01

    The production and detoxification of reactive oxygen intermediates (ROIs) play an important role in the plant response to nutrient and environmental stresses. The present study demonstrated the behavior of growth, ROIs-production and their detoxification in primed and non-primed rice seedlings under chilling stress (18°C) and nitrogen-(N), phosphorus-(P), or potassium-(K) deprivation. The results revealed that chilling stress as well as deprivation of any mineral nutrient severely hampered the seedling growth of rice, however, seed priming treatments (particularly selenium- or salicylic acid-priming), were effective in enhancing the rice growth under stress conditions. The N-deprivation caused the maximum reduction in shoot growth, while the root growth was only decreased by P- or K-deprivation. Although, N-deprivation enhanced the root length of rice, the root fresh weight was unaffected. Rate of lipid peroxidation as well as the production of ROIs, was generally increased under stress conditions; the K-deprived seedlings recorded significantly lower production of ROIs than N- or P-deprived seedlings. The responses of enzymatic and non-enzymatic antioxidants in rice seedlings to chilling stress were variable with nutrient management regime. All the seed priming were found to trigger or at least maintain the antioxidant defense system of rice seedlings. Notably, the levels of ROIs were significantly reduced by seed priming treatments, which were concomitant with the activities of ROIs-producing enzymes (monoamine oxidase and xanthine oxidase), under all studied conditions. Based on these findings, we put forward the hypothesis that along with role of ROIs-scavenging enzymes, the greater tolerance of primed rice seedlings can also be due to the reduced activity of ROIs-producing enzymes. PMID:27092157

  5. Production of two charm quark-antiquark pairs in single-parton scattering within the kt-factorization approach

    NASA Astrophysics Data System (ADS)

    van Hameren, Andreas; Maciuła, Rafał; Szczurek, Antoni

    2015-09-01

    We present first results for the 2 → 4 single-parton scattering gg → c c bar c c bar subprocess for the first time fully within the kt-factorization approach. In this calculation we have used the Kimber-Martin-Ryskin unintegrated gluon distribution which effectively includes some class of higher-order gluon emissions, and an off-shell matrix element squared calculated using recently developed techniques. The results are compared with our earlier result obtained within the collinear-factorization approach. Only slightly larger cross sections are obtained than in the case of the collinear approach. Inclusion of transverse momenta of gluons entering the hard process leads to a much stronger azimuthal decorrelation between cc and c bar c bar than in the collinear-factorization approach. A comparison to predictions of double parton scattering (DPS) results and the LHCb data strongly suggests that the assumption of two fully independent DPS (gg → c c bar ⊗ gg → c c bar) may be too approximate.

  6. ESEEM of industrial silica-bearing powders: reactivity of defects during wet processing in the ceramics production

    NASA Astrophysics Data System (ADS)

    Romanelli, Maurizio; Di Benedetto, Francesco; Fornaciai, Gabriele; Innocenti, Massimo; Montegrossi, Giordano; Pardi, Luca A.; Zoleo, Alfonso; Capacci, Fabio

    2015-05-01

    A study is undertaken to ascertain whether changes in the speciation of inorganic radicals are occurring during the ceramic industrial production that involves abundant silica powders as raw material. Industrial dusts were sampled in two ceramic firms, immediately after the wet mixing stage, performed with the aid of a relevant pressure. The dusts were then characterised by means of X-ray diffraction, analysis of the trace elements through chemical methods, granulometry, continuous-wave electron paramagnetic resonance (EPR) and pulsed electron spin echo envelope modulation (ESEEM) spectroscopies. The results of the characterisation point to a relevant change in the speciation of the two samples; namely, a prevailing contribution due to an inorganic radical different from that pertaining to pure quartz is pointed out. The combined interpretation of EPR and ESEEM data suggests the attribution of the main paramagnetic contribution to the A-centre in kaolinite, a constituent that is added to pure quartz at the initial stage of the ceramic production. In one of the two samples, a second weak EPR signal is attributed to the quartz's hAl species. By taking into account the relative quantities of quartz and kaolinite mixed in the two samples, and the relative abundances of the two radical species, we propose that the partial or complete suppression of the hAl species in favour of the A-centre of kaolinite has occurred. Although this change is apparently fostered by the mixture between quartz and another radical-bearing raw material, kaolinite, the suppression of the hAl centre of quartz is ascribed to the role played by the pressure and the wet environment during the industrial mixing procedure. This suppression provides a net change of radical speciation associated with quartz, when this phase is in contact with workers' respiratory system.

  7. Intravenous Immunoglobulin Prevents Murine Antibody-Mediated Acute Lung Injury at the Level of Neutrophil Reactive Oxygen Species (ROS) Production

    PubMed Central

    Semple, John W.; Kim, Michael; Hou, Jing; McVey, Mark; Lee, Young Jin; Tabuchi, Arata; Kuebler, Wolfgang M.; Chai, Zhong-Wei; Lazarus, Alan H.

    2012-01-01

    Transfusion-related acute lung injury (TRALI) is a leading cause of transfusion-associated mortality that can occur with any type of transfusion and is thought to be primarily due to donor antibodies activating pulmonary neutrophils in recipients. Recently, a large prospective case controlled clinical study of cardiac surgery patients demonstrated that despite implementation of male donors, a high incidence of TRALI still occurred and suggested a need for additional interventions in susceptible patient populations. To examine if intravenous immunoglobulin (IVIg) may be effective, a murine model of antibody-mediated acute lung injury that approximates human TRALI was examined. When BALB/c mice were injected with the anti-major histocompatibility complex class I antibody 34-1-2s, mild shock (reduced rectal temperature) and respiratory distress (dyspnea) were observed and pre-treatment of the mice with 2 g/kg IVIg completely prevented these symptoms. To determine IVIg's usefulness to affect severe lung damage, SCID mice, previously shown to be hypersensitive to 34-1-2s were used. SCID mice treated with 34-1-2s underwent severe shock, lung damage (increased wet/dry ratios) and 40% mortality within 2 hours. Treatment with 2 g/kg IVIg 18 hours before 34-1-2s administration completely protected the mice from all adverse events. Treatment with IVIg after symptoms began also reduced lung damage and mortality. While the prophylactic IVIg administration did not affect 34-1-2s-induced pulmonary neutrophil accumulation, bone marrow-derived neutrophils from the IVIg-treated mice displayed no spontaneous ROS production nor could they be stimulated in vitro with fMLP or 34-1-2s. These results suggest that IVIg prevents murine antibody-mediated acute lung injury at the level of neutrophil ROS production and thus, alleviating tissue damage. PMID:22363629

  8. Atorvastatin reduces vascular endothelial growth factor (VEGF) expression in human non-small cell lung carcinomas (NSCLCs) via inhibition of reactive oxygen species (ROS) production.

    PubMed

    Chen, Jie; Liu, Bing; Yuan, Jiayi; Yang, Jie; Zhang, Jingjie; An, Yu; Tie, Lu; Pan, Yan; Li, Xuejun

    2012-02-01

    The high metastatic potential of non-small cell lung cancers (NSCLCs) is closely correlated with the elevated expression of vascular endothelial growth factor (VEGF) and resultant tumor angiogenesis. However, no effective strategies against VEGF expression have been available in NSCLCs therapy. This study demonstrated that elevated reactive oxygen species (ROS) levels derived from both mitochondria and NADPH oxidase were required for VEGF expression in NSCLC cells. Atorvastatin administration could significantly inhibit VEGF expression both in vitro and in vivo via inhibition of ROS production. Atorvastatin inhibited ROS generation partly through suppression of Rac1/NADPH oxidase activity. Specifically, atorvastatin could upregulate the activity of glutathione peroxidase (GPx) and catalase, which are responsible for elimination of hydrogen peroxide (H(2)O(2)) in the mitochondria and peroxisomes, respectively. Thus, inhibition of ROS production by concomitant suppression of Rac1/NADPH oxidase activity and upregulation of the activity of GPx and catalase contributes critically to atorvastatin-reduced VEGF expression in NSCLCs. Atorvastatin may be a potential alternative against VEGF expression and angiogenesis in NSCLCs therapy. PMID:22153388

  9. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production.

    PubMed

    Mustilli, Anna-Chiara; Merlot, Sylvain; Vavasseur, Alain; Fenzi, Francesca; Giraudat, Jérôme

    2002-12-01

    During drought, the plant hormone abscisic acid (ABA) triggers stomatal closure, thus reducing water loss. Using infrared thermography, we isolated two allelic Arabidopsis mutants (ost1-1 and ost1-2) impaired in the ability to limit their transpiration upon drought. These recessive ost1 mutations disrupted ABA induction of stomatal closure as well as ABA inhibition of light-induced stomatal opening. By contrast, the ost1 mutations did not affect stomatal regulation by light or CO(2), suggesting that OST1 is involved specifically in ABA signaling. The OST1 gene was isolated by positional cloning and was found to be expressed in stomatal guard cells and vascular tissue. In-gel assays indicated that OST1 is an ABA-activated protein kinase related to the Vicia faba ABA-activated protein kinase (AAPK). Reactive oxygen species (ROS) were shown recently to be an essential intermediate in guard cell ABA signaling. ABA-induced ROS production was disrupted in ost1 guard cells, whereas applied H(2)O(2) or calcium elicited the same degree of stomatal closure in ost1 as in the wild type. These results suggest that OST1 acts in the interval between ABA perception and ROS production. The relative positions of ost1 and the other ABA-insensitive mutations in the ABA signaling network (abi1-1, abi2-1, and gca2) are discussed. PMID:12468729

  10. Suppressive effects of sirtinol on human cytomegalovirus (hCMV) infection and hCMV-induced activation of molecular mechanisms of senescence and production of reactive oxygen species.

    PubMed

    Mao, Genxiang; Li, Huifen; Ding, Xiang; Meng, Xin; Wang, Guofu; Leng, Sean X

    2016-09-01

    Substantial evidence suggests that chronic human cytomegalovirus (hCMV) infection contributes significantly to T-cell immunosenescence and adverse health outcomes in older adults. As such, it is important to search for compounds with anti-hCMV properties. Studies have shown that resveratrol, a sirtuin activator, suppresses hCMV infection. Here we report suppressive effects of sirtinol, a sirtuin antagonist, on hCMV infection and its cellular and molecular consequences. Human diploid fibroblast WI-38 cells were infected by hCMV Towne strain in the absence or presence of sirtinol. hCMV replication was measured using qPCR. Senescent phenotype was determined by senescence-associated β galactosidase (SA-β-Gal) activity. Expression of hCMV immediate early (IE) and early (E) proteins and senescence-associated proteins (pRb and Rb, p16(INK4), and p53) and production of reactive oxygen species (ROS) were assessed using standard laboratory assays. The results demonstrated that sirtinol suppressed hCMV infection as well as hCMV-induced activation of molecular mechanisms of senescence and ROS production. While underlying molecular mechanisms remain to be elucidated, these findings indicate sirtinol as a novel and potent anti-hCMV agent with the potential to be developed as an effective treatment for chronic hCMV infection and its cellular and molecular consequences that are important to ageing and health of older adults. PMID:26763147

  11. Insights on the antitumor effects of kahweol on human breast cancer: Decreased survival and increased production of reactive oxygen species and cytotoxicity

    SciTech Connect

    Cárdenas, Casimiro; Quesada, Ana R.; Medina, Miguel Ángel

    2014-05-09

    Highlights: • Kahweol inhibits growth and attachment-independent proliferation of tumor cells. • Kahweol induces apoptosis in MDA-MB231 human breast cancer cells. • Kahweol-induced apoptosis involves caspase activation and cytochrome c release. • Kahweol does not protect against hydrogen peroxide cytotoxicity. • Kahweol increases hydrogen peroxide production by human breast cancer cells. - Abstract: The present study aims to identify the modulatory effects of kahweol, an antioxidant diterpene present in coffee beans, on a panel of human tumor cell lines. Kahweol inhibits tumor cell proliferation and clonogenicity and induces apoptosis in several kinds of human tumor cells. In the estrogen receptor-negative MDA-MB231 human breast cancer, the mentioned effects are accompanied by caspases 3/7 and 9 activation and cytochrome c release. On the other hand, kahweol increases the production of reactive oxygen species and their cytotoxicity in human breast cancer cells but not in normal cells. Taken together, our data suggest that kahweol is an antitumor compound with inhibitory effects on tumor cell growth and survival, especially against MDA-MB231 breast cancer cells.

  12. Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells

    SciTech Connect

    Kobashigawa, Shinko; Suzuki, Keiji; Yamashita, Shunichi

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer We report first time that ionizing radiation induces mitochondrial dynamic changes. Black-Right-Pointing-Pointer Radiation-induced mitochondrial fission was caused by Drp1 localization. Black-Right-Pointing-Pointer We found that radiation causes delayed ROS from mitochondria. Black-Right-Pointing-Pointer Down regulation of Drp1 rescued mitochondrial dysfunction after radiation exposure. -- Abstract: Ionizing radiation is known to increase intracellular level of reactive oxygen species (ROS) through mitochondrial dysfunction. Although it has been as a basis of radiation-induced genetic instability, the mechanism involving mitochondrial dysfunction remains unclear. Here we studied the dynamics of mitochondrial structure in normal human fibroblast like cells exposed to ionizing radiation. Delayed mitochondrial O{sub 2}{sup {center_dot}-} production was peaked 3 days after irradiation, which was coupled with accelerated mitochondrial fission. We found that radiation exposure accumulated dynamin-related protein 1 (Drp1) to mitochondria. Knocking down of Drp1 expression prevented radiation induced acceleration of mitochondrial fission. Furthermore, knockdown of Drp1 significantly suppressed delayed production of mitochondrial O{sub 2}{sup {center_dot}-}. Since the loss of mitochondrial membrane potential, which was induced by radiation was prevented in cells knocking down of Drp1 expression, indicating that the excessive mitochondrial fission was involved in delayed mitochondrial dysfunction after irradiation.

  13. Rac1 Modulates Stimulus-evoked Ca2+ Release in Neuronal Growth Cones via Parallel Effects on Microtubule/Endoplasmic Reticulum Dynamics and Reactive Oxygen Species Production

    PubMed Central

    Zhang, Xiao-Feng

    2009-01-01

    The small G protein Rac regulates cytoskeletal protein dynamics in neuronal growth cones and has been implicated in axon growth, guidance, and branching. Intracellular Ca2+ is another well known regulator of growth cone function; however, effects of Rac activity on intracellular Ca2+ metabolism have not been well characterized. Here, we investigate how Rac1 activity affects release of Ca2+ from intracellular endoplasmic reticulum (ER) stores stimulated by application of serotonin (5-hydroxytriptamine). We also address how Rac1 effects on microtubule assembly dynamics affect distribution of Ca2+ release sites. Multimode fluorescent microscopy was used to correlate microtubule and ER behavior, and ratiometric imaging was used to assess intracellular Ca2+ dynamics. We report that Rac1 activity both promotes Ca2+ release and affects its spatial distribution in neuronal growth cones. The underlying mechanism involves synergistic Rac1 effects on microtubule assembly and reactive oxygen species (ROS) production. Rac1 activity modulates Ca2+ by 1) enhancing microtubule assembly which in turn promotes spread of the ER-based Ca2+ release machinery into the growth cone periphery, and 2) by increasing ROS production which facilitated inositol 1,4,5-trisphosphate-dependent Ca2+ release. These results cast Rac1 as a key modulator of intracellular Ca2+ function in the neuronal growth cone. PMID:19570918

  14. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential.

    PubMed

    Xia, Longlong; Ti, Chaopu; Li, Bolun; Xia, Yongqiu; Yan, Xiaoyuan

    2016-06-15

    Life-cycle analysis of staple food (rice, flour and corn-based fodder) production and assessments of the associated greenhouse gas (GHG) and reactive nitrogen (Nr) releases, from environmental and economic perspectives, help to develop effective mitigation options. However, such evaluations have rarely been executed in China. We evaluated the GHG and Nr releases per kilogram of staple food production (carbon and Nr footprints) and per unit of net economic benefit (CO2-NEB and Nr-NEB), and explored their mitigation potential. Carbon footprints of food production in China were obviously higher than those in some developed countries. There was a high spatial variation in the footprints, primarily attributable to differences in synthetic N use (or CH4 emissions) per unit of food production. Provincial carbon footprints had a significant linear relationship with Nr footprints, attributed to large contribution of N fertilizer use to both GHG and Nr releases. Synthetic N fertilizer applications and CH4 emissions dominated the carbon footprints, while NH3 volatilization and N leaching were the main contributors to the Nr footprints. About 564 (95% uncertainty range: 404-701) TgCO2eqGHG and 10 (7.4-12.4) Tg Nr-N were released every year during 2001-2010 from staple food production. This caused the total damage costs of 325 (70-555) billion ¥, equivalent to nearly 1.44% of the Gross Domestic Product of China. Moreover, the combined damage costs and economic input costs, accounted for 66%-80% of the gross economic benefit generated from food production. A reduction of 92.7TgCO2eqyr(-1) and 2.2TgNr-Nyr(-1) could be achieved by reducing synthetic N inputs by 20%, increasing grain yields by 5% and implementing off-season application of straw and mid-season drainage practices for rice cultivation. In order to realize these scenarios, an ecological compensation scheme should be established to incentivize farmers to gradually adopt knowledge-based managements. PMID:26971213

  15. Control of Insulin Secretion by Production of Reactive Oxygen Species: Study Performed in Pancreatic Islets from Fed and 48-Hour Fasted Wistar Rats

    PubMed Central

    Riva, Patrícia; Simões, Daniel; Curi, Rui; Carpinelli, Angelo Rafael

    2016-01-01

    Mitochondria and NADPH oxidase are important sources of reactive oxygen species in particular the superoxide radical (ROS) in pancreatic islets. These molecules derived from molecular oxygen are involved in pancreatic β-cells signaling and control of insulin secretion. We examined the involvement of ROS produced through NADPH oxidase in the leucine- and/or glucose-induced insulin secretion by pancreatic islets from fed or 48-hour fasted rats. Glucose-stimulated insulin secretion (GSIS) in isolated islets was evaluated at low (2.8 mM) or high (16.7 mM) glucose concentrations in the presence or absence of leucine (20 mM) and/or NADPH oxidase inhibitors (VAS2870–20 μM or diphenylene iodonium—DPI—5 μM). ROS production was determined in islets treated with dihydroethidium (DHE) or MitoSOX Red reagent for 20 min and dispersed for fluorescence measurement by flow cytometry. NADPH content variation was examined in INS-1E cells (an insulin secreting cell line) after incubation in the presence of glucose (2.8 or 16.7 mM) and leucine (20 mM). At 2.8 mM glucose, VAS2870 and DPI reduced net ROS production (by 30%) and increased GSIS (by 70%) in a negative correlation manner (r = -0.93). At 16.7 mM glucose or 20 mM leucine, both NADPH oxidase inhibitors did not alter insulin secretion neither net ROS production. Pentose phosphate pathway inhibition by treatment with DHEA (75 μM) at low glucose led to an increase in net ROS production in pancreatic islets from fed rats (by 40%) and induced a marked increase (by 144%) in islets from 48-hour fasted rats. The NADPH/NADP+ ratio was increased when INS-1E cells were exposed to high glucose (by 4.3-fold) or leucine (by 3-fold). In conclusion, increased ROS production through NADPH oxidase prevents the occurrence of hypoglycemia in fasting conditions, however, in the presence of high glucose or high leucine levels, the increased production of NADPH and the consequent enhancement of the activity of the antioxidant defenses

  16. Control of Insulin Secretion by Production of Reactive Oxygen Species: Study Performed in Pancreatic Islets from Fed and 48-Hour Fasted Wistar Rats.

    PubMed

    Munhoz, Ana Cláudia; Riva, Patrícia; Simões, Daniel; Curi, Rui; Carpinelli, Angelo Rafael

    2016-01-01

    Mitochondria and NADPH oxidase are important sources of reactive oxygen species in particular the superoxide radical (ROS) in pancreatic islets. These molecules derived from molecular oxygen are involved in pancreatic β-cells signaling and control of insulin secretion. We examined the involvement of ROS produced through NADPH oxidase in the leucine- and/or glucose-induced insulin secretion by pancreatic islets from fed or 48-hour fasted rats. Glucose-stimulated insulin secretion (GSIS) in isolated islets was evaluated at low (2.8 mM) or high (16.7 mM) glucose concentrations in the presence or absence of leucine (20 mM) and/or NADPH oxidase inhibitors (VAS2870-20 μM or diphenylene iodonium-DPI-5 μM). ROS production was determined in islets treated with dihydroethidium (DHE) or MitoSOX Red reagent for 20 min and dispersed for fluorescence measurement by flow cytometry. NADPH content variation was examined in INS-1E cells (an insulin secreting cell line) after incubation in the presence of glucose (2.8 or 16.7 mM) and leucine (20 mM). At 2.8 mM glucose, VAS2870 and DPI reduced net ROS production (by 30%) and increased GSIS (by 70%) in a negative correlation manner (r = -0.93). At 16.7 mM glucose or 20 mM leucine, both NADPH oxidase inhibitors did not alter insulin secretion neither net ROS production. Pentose phosphate pathway inhibition by treatment with DHEA (75 μM) at low glucose led to an increase in net ROS production in pancreatic islets from fed rats (by 40%) and induced a marked increase (by 144%) in islets from 48-hour fasted rats. The NADPH/NADP+ ratio was increased when INS-1E cells were exposed to high glucose (by 4.3-fold) or leucine (by 3-fold). In conclusion, increased ROS production through NADPH oxidase prevents the occurrence of hypoglycemia in fasting conditions, however, in the presence of high glucose or high leucine levels, the increased production of NADPH and the consequent enhancement of the activity of the antioxidant defenses mitigate

  17. A high-statistics measurement of transverse spin effects in dihadron production from muon-proton semi-inclusive deep-inelastic scattering

    NASA Astrophysics Data System (ADS)

    Adolph, C.; Akhunzyanov, R.; Alekseev, M. G.; Alexandrov, Yu.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badełek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bertini, R.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Büchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S. U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grube, B.; Guskov, A.; Guthörl, T.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F. H.; Herrmann, F.; Hinterberger, F.; Höppner, Ch.; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Joerg, P.; Joosten, R.; Kabuß, E.; Kang, D.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Kral, Z.; Krämer, M.; Kroumchtein, Z. V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G. K.; Marchand, C.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V. I.; Novy, J.; Nowak, W.-D.; Nunes, A. S.; Orlov, I.; Olshevsky, A. G.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pesek, M.; Peshekhonov, D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Reicherz, G.; Rocco, E.; Rodionov, V.; Rondio, E.; Rychter, A.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Samoylenko, V. D.; Sandacz, A.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlüter, T.; Schmidt, A.; Schmidt, K.; Schmieden, H.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Vondra, J.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wiślicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.

    2014-09-01

    A measurement of the azimuthal asymmetry in dihadron production in deep-inelastic scattering of muons on transversely polarised proton (NH3) targets is presented. They provide independent access to the transversity distribution functions through the measurement of the Collins asymmetry in single hadron production. The data were taken in the year 2010 with the COMPASS spectrometer using a 160 GeV/c muon beam of the CERN SPS, increasing by a factor of about four the overall statistics with respect to the previously published data taken in the year 2007. The measured sizeable asymmetry is in good agreement with the published data. An approximate equality of the Collins asymmetry and the dihadron asymmetry is observed, suggesting a common physical mechanism in the underlying fragmentation.

  18. Measurement of the 477.6-keV γ -ray production cross section following inelastic neutron scattering by 7Li

    NASA Astrophysics Data System (ADS)

    Nyman, M.; Belloni, F.; Ichinkhorloo, D.; Pirovano, E.; Plompen, A. J. M.; Rouki, C.

    2016-02-01

    The γ -ray production cross section for the 477.6-keV 1 /2-→3 /2g.s . - transition in 7Li following inelastic neutron scattering has been measured from the reaction threshold up to 18 MeV. This cross section is interesting as a possible standard for other γ -ray production cross-section measurements. The experiment was conducted at the GELINA pulsed white neutron source with the GAINS spectrometer consisting of 12 high-purity germanium detectors. The time-of-flight method was used for neutron energy determination. The sample was an optical-quality lithium fluoride disk and the neutron flux was monitored using a 235U fission chamber. Previous measurements of this cross section are reviewed and compared with our results. Recently, the examined cross section has been calculated using the continuum-discretized coupled-channels method. The results are found to be in reasonable agreement with the experimental data.

  19. Acupuncture elicits neuroprotective effect by inhibiting NAPDH oxidase-mediated reactive oxygen species production in cerebral ischaemia

    PubMed Central

    Shi, Guang-Xia; Wang, Xue-Rui; Yan, Chao-Qun; He, Tian; Yang, Jing-Wen; Zeng, Xiang-Hong; Xu, Qian; Zhu, Wen; Du, Si-Qi; Liu, Cun-Zhi

    2015-01-01

    In the current study, we aimed to investigate whether NADPH oxidase, a major ROS-producing enzyme, was involved in the antioxidant effect of acupuncture on cognitive impairment after cerebral ischaemia. The cognitive function, infract size, neuron cell loss, level of superoxide anion and expression of NADPH oxidase subunit in hippocampus of two-vessel occlusion (2VO) rats were determined after 2-week acupuncture. Furthermore, the cognitive function and production of O2− were determined in the presence and absence of NADPH oxidase agonist (TBCA) and antagonist (Apocynin). The effect of acupuncture on cognitive function after cerebral ischaemia in gp91phox-KO mice was evaluated by Morris water maze. Acupuncture reduced infarct size, attenuated overproduction of O2−, and reversed consequential cognitive impairment and neuron cell loss in 2VO rats. The elevations of gp91phox and p47phox after 2VO were significantly decreased after acupuncture treatment. However, no differences of gp91phox mRNA were found among any experimental groups. Furthermore, these beneficial effects were reversed by TBCA, whereas apocynin mimicked the effect of acupuncture by improving cognitive function and decreasing O2− generation. Acupuncture failed to improve the memory impairment in gp91phox KO mice. Full function of the NADPH oxidase enzyme plays an important role in neuroprotective effects against cognitive impairment via inhibition of NAPDH oxidase-mediated oxidative stress. PMID:26656460

  20. Reactive scattering calculations for {sup 87}Rb+{sup 87}RbHe→Rb{sub 2}({sup 3}Σ{sub u}{sup +},v)+He from ultralow to intermediate energies

    SciTech Connect

    Rodríguez-Cantano, Rocío; González-Lezana, Tomás; Prosmiti, Rita; Delgado-Barrio, Gerardo; Villarreal, Pablo; Jellinek, Julius

    2015-04-28

    We investigate atom-diatom reactive collisions, as a preliminary step, in order to assess the possibility of forming Rb{sub 2} molecules in their lowest triplet electronic state by cold collisions of rubidium atoms on the surface of helium nanodroplets. A simple model related to the well-known Rosen treatment of linear triatomic molecules [N. Rosen, J. Chem. Phys. 1, 319 (1933)] in relative coordinates is used, allowing to estimate reactive probabilities for different values of the total angular momentum. The best available full dimensional potential energy surface [Guillon et al., J. Chem. Phys. 136, 174307 (2012)] is employed through the calculations. Noticeable values of the probabilities in the ultracold regime, which numerically fulfill the Wigner threshold law, support the feasibility of the process. The rubidium dimer is mainly produced at high vibrational states, and the reactivity is more efficient for a bosonic helium partner than when the fermion species is considered.

  1. Sensitivities in the production of spread-out Bragg peak dose distributions by passive scattering with beam current modulation

    SciTech Connect

    Lu, H.-M.; Brett, Robert; Engelsman, Martijn; Slopsema, Roelf; Kooy, Hanne; Flanz, Jay

    2007-10-15

    A spread-out Bragg peak (SOBP) is used in proton beam therapy to create a longitudinal conformality of the required dose to the target. In order to create this effect in a passive beam scattering system, a variety of components must operate in conjunction to produce the desired beam parameters. We will describe how the SOBP is generated and will explore the tolerances of the various components and their subsequent effect on the dose distribution. A specific aspect of this investigation includes a case study involving the use of a beam current modulated system. In such a system, the intensity of the beam current can be varied in synchronization with the revolution of the range-modulator wheel. As a result, the weights of the pulled-back Bragg peaks can be individually controlled to produce uniform dose plateaus for a large range of treatment depths using only a small number of modulator wheels.

  2. What Is Reactive Arthritis?

    MedlinePlus

    ... Arthritis PDF Version Size: 69 KB November 2014 What is Reactive Arthritis? Fast Facts: An Easy-to- ... Information About Reactive Arthritis and Other Related Conditions What Causes Reactive Arthritis? Sometimes, reactive arthritis is set ...

  3. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase.

    PubMed

    Sorescu, George P; Song, Hannah; Tressel, Sarah L; Hwang, Jinah; Dikalov, Sergey; Smith, Debra A; Boyd, Nolan L; Platt, Manu O; Lassègue, Bernard; Griendling, Kathy K; Jo, Hanjoong

    2004-10-15

    Atherosclerosis is an inflammatory disease occurring preferentially in arterial regions exposed to disturbed flow conditions including oscillatory shear stress (OS). OS exposure induces endothelial expression of bone morphogenic protein 4 (BMP4), which in turn may activate intercellular adhesion molecule-1 (ICAM-1) expression and monocyte adhesion. OS is also known to induce monocyte adhesion by producing reactive oxygen species (ROS) from reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, raising the possibility that BMP4 may stimulate the inflammatory response by ROS-dependent mechanisms. Here we show that ROS scavengers blocked ICAM-1 expression and monocyte adhesion induced by BMP4 or OS in endothelial cells (ECs). Similar to OS, BMP4 stimulated H2O2 and O2- production in ECs. Next, we used ECs obtained from p47phox-/- mice (MAE-p47-/-), which do not produce ROS in response to OS, to determine the role of NADPH oxidases. Similar to OS, BMP4 failed to induce monocyte adhesion in MAE-p47-/-, but it was restored when the cells were transfected with p47phox plasmid. Moreover, OS-induced O2- production was blocked by noggin (a BMP antagonist), suggesting a role for BMP. Furthermore, OS increased gp91phox (nox2) and nox1 mRNA levels while decreasing nox4. In contrast, BMP4 induced nox1 mRNA expression, whereas nox2 and nox4 were decreased or not affected, respectively. Also, OS-induced monocyte adhesion was blocked by knocking down nox1 with the small interfering RNA (siRNA). Finally, BMP4 siRNA inhibited OS-induced ROS production and monocyte adhesion. Together, these results suggest that BMP4 produced in ECs by OS stimulates ROS release from the nox1-dependent NADPH oxidase leading to inflammation, a critical early atherogenic step. PMID:15388638

  4. Preventive effect of Daiokanzoto (TJ-84) on 5-fluorouracil-induced human gingival cell death through the inhibition of reactive oxygen species production.

    PubMed

    Yoshida, Kaya; Yoshioka, Masami; Okamura, Hirohiko; Moriyama, Satomi; Kawazoe, Kazuyoshi; Grenier, Daniel; Hinode, Daisuke

    2014-01-01

    Daiokanzoto (TJ-84) is a traditional Japanese herbal medicine (Kampo formulation). While many Kampo formulations have been reported to regulate inflammation and immune responses in oral mucosa, there is no evidence to show that TJ-84 has beneficial effects on oral mucositis, a disease resulting from increased cell death induced by chemotherapeutic agents such as 5-fluorouracil (5-FU). In order to develop effective new therapeutic strategies for treating oral mucositis, we investigated (i) the mechanisms by which 5-FU induces the death of human gingival cells and (ii) the effects of TJ-84 on biological events induced by 5-FU. 5-FU-induced lactate dehydrogenase (LDH) release and pore formation in gingival cells (Sa3 cell line) resulted in cell death. Incubating the cells with 5-FU increased the expression of nucleotide-binding domain and leucine-rich repeat containing PYD-3 (NLRP3) and caspase-1. The cleavage of caspase-1 was observed in 5-FU-treated cells, which was followed by an increased secretion of interleukin (IL)-1β. The inhibition of the NLRP3 pathway slightly decreased the effects of 5-FU on cell viability and LDH release, suggesting that NLRP3 may be in part involved in 5-FU-induced cell death. TJ-84 decreased 5-FU-induced LDH release and cell death and also significantly inhibited the depolarization of mitochondria and the up-regulation of 5-FU-induced reactive oxygen species (ROS) and nitric oxide (NO) production. The transcriptional factor, nuclear factor-κB (NF-κB) was not involved in the 5-FU-induced cell death in Sa3 cells. In conclusion, we provide evidence suggesting that the increase of ROS production in mitochondria, rather than NLRP3 activation, was considered to be associated with the cell death induced by 5-FU. The results also suggested that TJ-84 may attenuate 5-FU-induced cell death through the inhibition of mitochondrial ROS production. PMID:25389767

  5. Hyperbaric Oxygen Reduces Production of Reactive Oxygen Species in Neutrophils from Polytraumatized Patients Yielding in the Inhibition of p38 MAP Kinase and Downstream Pathways

    PubMed Central

    Windolf, Joachim; Wahlers, Thorsten

    2016-01-01

    Trauma represents the leading cause of death among young people in western countries. Among the beneficial role of neutrophils in host defence, excessive priming and activation of neutrophils after major trauma lead to an overwhelming inflammatory response and secondary host tissue injury due to the release of toxic metabolites and enzymes. Hyperbaric oxygen (HBO) therapy has been proposed to possess antiinflammatory effects and might represent an appropriate therapeutic option to lower inflammation in a broad range of patients. Here, we studied the effects of HBO on the activity of neutrophils isolated from severely injured patients (days 1–2 after trauma), in fact on the production of reactive oxygen species (ROS) and release of neutrophil extracellular traps (NETs). We found exposure to HBO therapy to significantly diminish phorbol-12-myristate-13-acetate (PMA)-induced ROS production in neutrophils isolated from patients and healthy volunteers. At the same time, marked decrease in NETs release was found in control cells and a less pronounced reduction in patient neutrophils. Impaired ability to produce ROS following exposure to HBO was demonstrated to be linked to a strong downregulation of the activity of p38 MAPK. Only slight suppression of ERK activity could be found. In addition, HBO did not influence neutrophil chemotaxis or apoptosis, respectively. Collectively, this study shows for the first time that HBO therapy suppresses ROS production in inflammatory human neutrophils, and thus might impair ROS-dependent pathways, e.g. kinases activation and NETs release. Thus, HBO might represent a feasible therapy for patients suffering from systemic inflammation, including those with multiple trauma. PMID:27529549

  6. Induction of necrosis and apoptosis to KB cancer cells by sanguinarine is associated with reactive oxygen species production and mitochondrial membrane depolarization

    SciTech Connect

    Chang, M.-C.; Chan, C.-P.; Wang, Y.-J.; Lee, P.-H.; Chen, L.-I; Tsai, Y.-L.; Lin, B.-R.; Wang, Y.-L.; Jeng, J.-H. . E-mail: huei@ha.mc.ntu.edu.tw

    2007-01-15

    Sanguinarine is a benzopheanthridine alkaloid present in the root of Sanguinaria canadensis L. and Chellidonium majus L. In this study, sanguinarine (2 and 3 {mu}M) exhibited cytotoxicity to KB cancer cells by decreasing MTT reduction to 83% and 52% of control after 24-h of exposure. Sanguinarine also inhibited the colony forming capacity (> 52-58%) and growth of KB cancer cells at concentrations higher than 0.5-1 {mu}M. Short-term exposure to sanguinarine (> 0.5 {mu}M) effectively suppressed the adhesion of KB cells to collagen and fibronectin (FN). Sanguinarine (2 and 3 {mu}M) induced evident apoptosis as indicated by an increase in sub-G0/G1 populations, which was detected after 6-h of exposure. Only a slight increase in cells arresting in S-phase and G2/M was noted. Induction of KB cell apoptosis and necrosis by sanguinarine (2 and 3 {mu}M) was further confirmed by Annexin V-PI dual staining flow cytometry and the presence of DNA fragmentation. The cytotoxicity by sanguinarine was accompanied by an increase in production of reactive oxygen species (ROS) and depolarization of mitochondrial membrane potential as indicated by single cell flow cytometric analysis of DCF and rhodamine fluorescence. NAC (1 and 3 mM) and catalase (2000 U/ml) prevented the sanguinarine-induced ROS production and cytotoxicity, whereas dimethylthiourea (DMT) showed no marked preventive effect. These results suggest that sanguinarine has anticarcinogenic properties with induction of ROS production and mitochondrial membrane depolarization, which mediate cancer cell death.

  7. Involvement of Lysosome Membrane Permeabilization and Reactive Oxygen Species Production in the Necrosis Induced by Chlamydia muridarum Infection in L929 Cells.

    PubMed

    Chen, Lixiang; Wang, Cong; Li, Shun; Yu, Xin; Liu, Xue; Ren, Rongrong; Liu, Wenwen; Zhou, Xiaojing; Zhang, Xiaonan; Zhou, Xiaohui

    2016-04-28

    Chlamydiae, obligate intracellular bacteria, are associated with a variety of human diseases. The chlamydial life cycle undergoes a biphasic development: replicative reticulate bodies (RBs) phase and infectious elementary bodies (EBs) phase. At the end of the chlamydial intracellular life cycle, EBs have to be released to the surrounded cells. Therefore, the interactions between Chlamydiae and cell death pathways could greatly influence the outcomes of Chlamydia infection. However, the underlying molecular mechanisms remain elusive. Here, we investigated host cell death after Chlamydia infection in vitro, in L929 cells, and showed that Chlamydia infection induces cell necrosis, as detected by the propidium iodide (PI)-Annexin V double-staining flow-cytometric assay and Lactate dehydrogenase (LDH) release assay. The production of reactive oxygen species (ROS), an important factor in induction of necrosis, was increased after Chlamydia infection, and inhibition of ROS with specific pharmacological inhibitors, diphenylene iodonium (DPI) or butylated hydroxyanisole (BHA), led to significant suppression of necrosis. Interestingly, live-cell imaging revealed that Chlamydia infection induced lysosome membrane permeabilization (LMP). When an inhibitor upstream of LMP, CA-074-Me, was added to cells, the production of ROS was reduced with concomitant inhibition of necrosis. Taken together, our results indicate that Chlamydia infection elicits the production of ROS, which is dependent on LMP at least partially, followed by induction of host-cell necrosis. To our best knowledge, this is the first live-cell-imaging observation of LMP post Chlamydia infection and report on the link of LMP to ROS to necrosis during Chlamydia infection. PMID:26838343

  8. Central role of endogenous Toll-like receptor-2 activation in regulating inflammation, reactive oxygen species production, and subsequent neointimal formation after vascular injury

    SciTech Connect

    Shishido, Tetsuro . E-mail: Tetsuro_Shishido@URMC.Rochester.edu; Nozaki, Naoki; Takahashi, Hiroki; Arimoto, Takanori; Niizeki, Takeshi; Koyama, Yo; Abe, Jun-ichi; Takeishi, Yasuchika; Kubota, Isao

    2006-07-14

    Background: It is now evident that inflammation after vascular injury has significant impact on the restenosis after revascularization procedures such as angioplasty, stenting, and bypass grafting. However, the mechanisms that regulate inflammation and repair after vascular injury are incompletely understood. Here, we report that vascular injury-mediated cytokine expression, reactive oxygen species (ROS) production, as well as subsequent neointimal formation requires Toll-like receptor-2 (TLR-2) mediated signaling pathway in vivo. Methods and results: Vascular injury was induced by cuff-placement around the femoral artery in non-transgenic littermates (NLC) and TLR-2 knockout (TLR-2KO) mice. After cuff-placement in NLC mice, expression of TLR-2 was significantly increased in both smooth muscle medial layer and adventitia. Interestingly, we found that inflammatory genes expression such as tumor necrosis factor-{alpha}, interleukin-1{beta} (IL-1{beta}), IL-6, and monocyte chemoattractant protein-1 were markedly decreased in TLR-2KO mice compared with NLC mice. In addition, ROS production after vascular injury was attenuated in TLR-2KO mice compared with NLC mice. Since we observed the significant role of endogenous TLR-2 activation in regulating inflammatory responses and ROS production after vascular injury, we determined whether inhibition of endogenous TLR-2 activation can inhibit neointimal proliferation after vascular injury. Neointimal hyperplasia was markedly suppressed in TLR-2KO mice compared with WT mice at both 2 and 4 weeks after vascular injury. Conclusions: These findings suggested that endogenous TLR-2 activation might play a central role in the regulation of vascular inflammation as well as subsequent neointimal formation in injured vessels.

  9. Hyperbaric Oxygen Reduces Production of Reactive Oxygen Species in Neutrophils from Polytraumatized Patients Yielding in the Inhibition of p38 MAP Kinase and Downstream Pathways.

    PubMed

    Grimberg-Peters, Deborah; Büren, Carina; Windolf, Joachim; Wahlers, Thorsten; Paunel-Görgülü, Adnana

    2016-01-01

    Trauma represents the leading cause of death among young people in western countries. Among the beneficial role of neutrophils in host defence, excessive priming and activation of neutrophils after major trauma lead to an overwhelming inflammatory response and secondary host tissue injury due to the release of toxic metabolites and enzymes. Hyperbaric oxygen (HBO) therapy has been proposed to possess antiinflammatory effects and might represent an appropriate therapeutic option to lower inflammation in a broad range of patients. Here, we studied the effects of HBO on the activity of neutrophils isolated from severely injured patients (days 1-2 after trauma), in fact on the production of reactive oxygen species (ROS) and release of neutrophil extracellular traps (NETs). We found exposure to HBO therapy to significantly diminish phorbol-12-myristate-13-acetate (PMA)-induced ROS production in neutrophils isolated from patients and healthy volunteers. At the same time, marked decrease in NETs release was found in control cells and a less pronounced reduction in patient neutrophils. Impaired ability to produce ROS following exposure to HBO was demonstrated to be linked to a strong downregulation of the activity of p38 MAPK. Only slight suppression of ERK activity could be found. In addition, HBO did not influence neutrophil chemotaxis or apoptosis, respectively. Collectively, this study shows for the first time that HBO therapy suppresses ROS production in inflammatory human neutrophils, and thus might impair ROS-dependent pathways, e.g. kinases activation and NETs release. Thus, HBO might represent a feasible therapy for patients suffering from systemic inflammation, including those with multiple trauma. PMID:27529549

  10. Preventive Effect of Daiokanzoto (TJ-84) on 5-Fluorouracil-Induced Human Gingival Cell Death through the Inhibition of Reactive Oxygen Species Production

    PubMed Central

    Yoshida, Kaya; Yoshioka, Masami; Okamura, Hirohiko; Moriyama, Satomi; Kawazoe, Kazuyoshi; Grenier, Daniel; Hinode, Daisuke

    2014-01-01

    Daiokanzoto (TJ-84) is a traditional Japanese herbal medicine (Kampo formulation). While many Kampo formulations have been reported to regulate inflammation and immune responses in oral mucosa, there is no evidence to show that TJ-84 has beneficial effects on oral mucositis, a disease resulting from increased cell death induced by chemotherapeutic agents such as 5-fluorouracil (5-FU). In order to develop effective new therapeutic strategies for treating oral mucositis, we investigated (i) the mechanisms by which 5-FU induces the death of human gingival cells and (ii) the effects of TJ-84 on biological events induced by 5-FU. 5-FU-induced lactate dehydrogenase (LDH) release and pore formation in gingival cells (Sa3 cell line) resulted in cell death. Incubating the cells with 5-FU increased the expression of nucleotide-binding domain and leucine-rich repeat containing PYD-3 (NLRP3) and caspase-1. The cleavage of caspase-1 was observed in 5-FU-treated cells, which was followed by an increased secretion of interleukin (IL)-1β. The inhibition of the NLRP3 pathway slightly decreased the effects of 5-FU on cell viability and LDH release, suggesting that NLRP3 may be in part involved in 5-FU-induced cell death. TJ-84 decreased 5-FU-induced LDH release and cell death and also significantly inhibited the depolarization of mitochondria and the up-regulation of 5-FU-induced reactive oxygen species (ROS) and nitric oxide (NO) production. The transcriptional factor, nuclear factor-κB (NF-κB) was not involved in the 5-FU-induced cell death in Sa3 cells. In conclusion, we provide evidence suggesting that the increase of ROS production in mitochondria, rather than NLRP3 activation, was considered to be associated with the cell death induced by 5-FU. The results also suggested that TJ-84 may attenuate 5-FU-induced cell death through the inhibition of mitochondrial ROS production. PMID:25389767

  11. Reactive Nitrogen, Ozone and Ozone Production in the Arctic Troposphere and the Impact of Stratosphere-Troposphere Exchange

    NASA Technical Reports Server (NTRS)

    Liang, Q.; Rodriquez, J. M.; Douglass, A. R.; Crawford, J. H.; Apel, E.; Bian, H.; Blake, D. R.; Brune, W.; Chin, M.; Colarco, P. R.; daSilva, A.; Diskin, G. S.; Duncan, B. N.; Huey, L. C.; Knapp, D. J.; Montzka, D. D.; Nielsen, J. E.; Olson, J. R.; Pawson, S.; Weinheimer, A. J.

    2011-01-01

    We analyze the aircraft observations obtained during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellite (ARCTAS) mission together with the GEOS-5 CO simulation to examine O3 and NOy in the Arctic and sub-Arctic region and their source attribution. Using a number of marker tracers and their probability density distributions, we distinguish various air masses from the background troposphere and examine their contribution to NOx, O3, and O3 production in the Arctic troposphere. The background Arctic troposphere has mean O3 of approximately 60 ppbv and NOx of approximately 25 pptv throughout spring and summer with CO decreases from approximately 145 ppbv in spring to approximately 100 ppbv in summer. These observed CO, NOx and O3 mixing ratios are not notably different from the values measured during the 1988 ABLE-3A and the 2002 TOPSE field campaigns despite the significant changes in the past two decades in processes that could have changed the Arctic tropospheric composition. Air masses associated with stratosphere-troposphere exchange are present throughout the mid and upper troposphere during spring and summer. These air masses with mean O3 concentration of 140-160 ppbv are the most important direct sources of O3 in the Arctic troposphere. In addition, air of stratospheric origin is the only notable driver of net O3 formation in the Arctic due to its sustainable high NOx (75 pptv in spring and 110 pptv in summer) and NOy (approximately 800 pptv in spring and approximately 1100 pptv in summer) levels. The ARCTAS measurements present observational evidence suggesting significant conversion of nitrogen from HNO3 to NOx and then to PAN (a net formation of approximately 120 pptv PAN) in summer when air of stratospheric origin is mixed with tropospheric background during stratosphere-to-troposphere transport. These findings imply that an adequate representation of stratospheric O3 and NOy input are essential in accurately simulating O3

  12. Reactive oxygen species generated by a heat shock protein (Hsp) inducing product contributes to Hsp70 production and Hsp70-mediated protective immunity in Artemia franciscana against pathogenic vibrios.

    PubMed

    Baruah, Kartik; Norouzitallab, Parisa; Linayati, Linayati; Sorgeloos, Patrick; Bossier, Peter

    2014-10-01

    The cytoprotective role of heat shock protein (Hsp70) described in a variety of animal disease models, including vibriosis in farmed aquatic animals, suggests that new protective strategies relying upon the use of compounds that selectively turn on Hsp genes could be developed. The product Tex-OE® (hereafter referred to as Hspi), an extract from the skin of the prickly pear fruit, Opuntia ficus indica, was previously shown to trigger Hsp70 synthesis in a non-stressful situation in a variety of animals, including in a gnotobiotically (germ-free) cultured brine shrimp Artemia franciscana model system. This model system offers great potential for carrying out high-throughput, live-animal screens of compounds that have health benefit effects. By using this model system, we aimed to disclose the underlying cause behind the induction of Hsp70 by Hspi in the shrimp host, and to determine whether the product affects the shrimp in inducing resistance towards pathogenic vibrios. We provide unequivocal evidences indicating that during the pretreatment period with Hspi, there is an initial release of reactive oxygen species (hydrogen peroxide and/or superoxide anion), generated by the added product, in the rearing water and associated with the host. The reactive molecules generated are the triggering factors responsible for causing Hsp70 induction within Artemia. We have also shown that Hspi acts prophylactically at an optimum dose regimen to confer protection against pathogenic vibrios. This salutary effect was associated with upregulation of two important immune genes, prophenoloxidase and transglutaminase of the innate immune system. These findings suggest that inducers of stress protein (e.g. Hsp70) are potentially important modulator of immune responses and might be exploited to confer protection to cultured shrimp against Vibrio infection. PMID:24950414

  13. Inclusive production of the Δ(1232) resonance in muon-proton scattering at 280 GEV/c

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; De Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Giubellino, P.; Graftström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Hoppe, C.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schouten, M.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; De La Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.; European Muon Collaboration

    1986-01-01

    Inclusive production of the Δ (1232) resonance has been measured in 280 GeV/ c muon-proton interactions. The production of the Δ++ as a function of the variables χBJ, W, Q2, χF and pT2 is investigated. The average Δ++ multiplicity is found to be smaller, by a factor of 6.2 ± 1.2, than the average multiplicity of protons. An upper limit for Δ0 production is obtained. The net hadronic charge distribution for events with a Δ++ is presented. The results are compared to the predictions of the Lund and Fire string models.

  14. Surface reactivity and in vitro toxicity on human bronchial epithelial cells (BEAS-2B) of nanomaterials intermediates of the production of titania-based composites.

    PubMed

    Vergaro, Viviana; Aldieri, Elisabetta; Fenoglio, Ivana; Marucco, Arianna; Carlucci, Claudia; Ciccarella, Giuseppe

    2016-08-01

    Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. Evaluating the hazards associated with TiO2 NPs is crucial as it enables risk assessment related to human and environmental exposure. In this study the in vitro human toxicity of a set of TiO2 NPs modified with acetic, oleic and boric acids were studied in order to assess the hazard in view of a future scale-up of the synthesis. The surface reactivity of the powders under simulated solar illumination and in the dark has been evaluated by means of EPR spectroscopy. Human bronchial epithelial cells (BEAS-2B) have been chosen as a model for lung epithelium. Cytotoxicity has been assessed by measuring the cells membrane integrity by lactate dehydrogenase (LDH) assay, and the inflammatory response evaluated as nitric oxide (NO) and TNF-α production, and oxidative stress measured as intracellular reduced glutathione (GSH) levels, and induced lipoperoxidation. Aeroxide P25 was used for comparison. The results demonstrated a low photoreactivity and toxic effects lower than Aeroxide P25 of the nano-TiO2 powders, probably as a consequence of the presence of acidic moieties at the surface. PMID:27075777

  15. Jaridonin, a novel ent-kaurene diterpenoid from Isodon rubescens, inducing apoptosis via production of reactive oxygen species in esophageal cancer cells.

    PubMed

    Ma, Yong-Cheng; Ke, Yu; Zi, Xiaolin; Zhao, Wen; Shi, Xiao-Jing; Liu, Hong-Min

    2013-07-01

    Isodon rubescens, a Chinese herb, has been used as a folk, botanical medicine in China for inflammatory diseases and cancer treatment for many years. Recently, we isolated a new ent-kaurene diterpenoid, named Jaridonin, from Isodon rubescens. The chemical structure of Jaridonin was verified by infrared (IR), nuclear magnetic resonance (NMR), and mass spectrum (MS) data as well as X-ray spectra. Jaridonin potently reduced viabilities of several esophageal cancer cell lines, including EC109, EC9706 and EC1. Jaridonin treatment resulted in typical apoptotic morphological characteristics, increased the number of annexin V-positive staining cells, as well as caused a G2/M arrest in cell cycle progression. Furthermore, Jaridonin resulted in a significant loss of mitochondrial membrane potential, release of cytochrome c into the cytosol, and then activation of Caspase-9 and -3, leading to activation of the mitochondria mediated apoptosis. Furthermore, these effects of Jaridonin were accompanied by marked reactive oxygen species (ROS) production and increased expression of p53, p21(waf1/Cip1) and Bax, whereas two ROS scavengers, N-acetyl-L-cysteine (LNAC) and Vitamin C, significantly attenuated the effects of Jaridonin on the mitochondrial membrane potential, DNA damage, expression of p53 and p21(waf1/Cip1) and reduction of cell viabilities. Taken together, our results suggest that a natural ent-kaurenoid diterpenoid, Jaridonin, is a novel apoptosis inducer and deserves further investigation as a new chemotherapeutic strategy for patients with esophageal cancer. PMID:23597192

  16. Coumestrol induces senescence through protein kinase CKII inhibition-mediated reactive oxygen species production in human breast cancer and colon cancer cells.

    PubMed

    Lee, Young-Hoon; Yuk, Heung Joo; Park, Ki-Hun; Bae, Young-Seuk

    2013-11-01

    An inhibitor of the protein kinase CKII (CKII) was purified from leaves of Glycine max (L.) Merrill and was identified as coumestrol by structural analysis. Coumestrol inhibited the phosphotransferase activity of CKII toward β-casein, with an IC50 of about 5 μM. It acted as a competitive inhibitor with respect to ATP as a substrate, with an apparent Ki value of 7.67 μM. Coumestrol at 50μM resulted in 50% and 30% growth inhibition of human breast cancer MCF-7 and colorectal cancer HCT116 cells, respectively. Coumestrol promoted senescence through the p53-p21(Cip1/WAF1) pathway by inducing reactive oxygen species (ROS) production in MCF-7 and HCT116 cells. The ROS scavenger N-acetyl-l-cysteine (NAC), NADPH oxidase inhibitor apocynin and p22(phox) siRNA almost completely abolished this event. Overexpression of CKIIα antagonised cellular senescence mediated by coumestrol, indicating that this compound induced senescence via a CKII-dependent pathway. Since senescence is an important tumour suppression process in vivo, these results suggest that coumestrol can function by inhibiting oncogenic disease, at least in part, through CKII inhibition-mediated cellular senescence. PMID:23768371

  17. Reactive oxygen production induced by near-infrared radiation in three strains of the Chl d-containing cyanobacterium Acaryochloris marina

    PubMed Central

    Behrendt, Lars; Staal, Marc; Cristescu, Simona M; Harren, Frans JM; Schliep, Martin; Larkum, Anthony WD; Kühl, Michael

    2013-01-01

    Cyanobacteria in the genus Acaryochloris have largely exchanged Chl a with Chl d, enabling them to harvest near-infrared-radiation (NIR) for oxygenic photosynthesis, a biochemical pathway prone to generate reactive oxygen species (ROS). In this study, ROS production under different light conditions was quantified in three Acaryochloris strains (MBIC11017, HICR111A and the novel strain CRS) using a real-time ethylene detector in conjunction with addition of 2-keto-4-thiomethylbutyric acid, a substrate that is converted to ethylene when reacting with certain types of ROS. In all strains, NIR was found to generate less ROS than visible light (VIS). More ROS was generated if strains MBIC11017 and HICR111A were adapted to NIR and then exposed to VIS, while strain CRS demonstrated the opposite behavior. This is the very first study of ROS generation and suggests that Acaryochloris can avoid a considerable amount of light-induced stress by using NIR instead of VIS for its photosynthesis, adding further evolutionary arguments to their widespread appearance. PMID:24555034

  18. Reactivation of IgG-switched memory B cells by BCR-intrinsic signal amplification promotes IgG antibody production.

    PubMed

    Lutz, Johannes; Dittmann, Kai; Bösl, Michael R; Winkler, Thomas H; Wienands, Jürgen; Engels, Niklas

    2016-01-01

    Secondary antibody responses are marked by faster kinetics, improved antibody affinity and a switch from IgM to other immunoglobulin isotypes, most notably IgG, compared with primary responses. These changes protect from reinfection and represent the principle of most vaccination strategies. Yet, the molecular mechanisms that underlie B-cell memory responses are unclear. Here we show, by inactivating the immunoglobulin tail tyrosine (ITT) signalling motif of membrane-bound IgG1 in the mouse, that the ITT facilitates maintenance and reactivation of IgG-switched memory B cells in vivo. The ITT motif equips IgG-switched cells with enhanced BCR signalling capacity, which supports their competitiveness in secondary immune reactions and drives the formation of IgG-secreting plasma cells even in the absence of T-cell help. Our results demonstrate that ITT signalling promotes the vigorous production of IgG antibodies and thus provide a molecular basis for humoral immunological memory. PMID:26815242

  19. Reactivation of IgG-switched memory B cells by BCR-intrinsic signal amplification promotes IgG antibody production

    PubMed Central

    Lutz, Johannes; Dittmann, Kai; Bösl, Michael R; Winkler, Thomas H; Wienands, Jürgen; Engels, Niklas

    2015-01-01

    Secondary antibody responses are marked by faster kinetics, improved antibody affinity and a switch from IgM to other immunoglobulin isotypes, most notably IgG, compared with primary responses. These changes protect from reinfection and represent the principle of most vaccination strategies. Yet, the molecular mechanisms that underlie B-cell memory responses are unclear. Here we show, by inactivating the immunoglobulin tail tyrosine (ITT) signalling motif of membrane-bound IgG1 in the mouse, that the ITT facilitates maintenance and reactivation of IgG-switched memory B cells in vivo. The ITT motif equips IgG-switched cells with enhanced BCR signalling capacity, which supports their competitiveness in secondary immune reactions and drives the formation of IgG-secreting plasma cells even in the absence of T-cell help. Our results demonstrate that ITT signalling promotes the vigorous production of IgG antibodies and thus provide a molecular basis for humoral immunological memory. PMID:26815242

  20. Small angle x-ray scattering: Instrument development and studies of protein aggregation, cellulose hydrolysis, and the production of nanoporous metals using surfactact templates

    NASA Astrophysics Data System (ADS)

    Banuelos, Jose Leobardo

    Small angle x-ray scattering (SAXS) was used to obtain structural insights into protein aggregation, the enzymatic hydrolysis of cellulose, and the structural evolution of surfactant-templated nanoporous palladium and platinum systems during their synthesis. SAXS is bulk technique that allows probing the nanometer-scale morphology, interactions, density, and distribution of a variety of nonperiodic systems in the solid, liquid, or gaseous state. A 10-meter Small Angle Scattering camera, originally at ORNL, was assembled. During its re-commissioning, several upgrades were made including new data acquisition software built using National Instrument's Labview development environment, as well as portability to use analysis tools in wide use in scattering community. The Multiple Energy Diffractometer Using Small, medium and wide Angles (MEDUSA) was designed and built, its development will be discussed. The ability of proteins to change their conformation in response to changes in pressure, temperature, the presence of other molecular species, and ionic concentration in the solvents they are found, is a remarkable phenomenon that allows living cells to function properly. When proteins irreversibly unfold or mis-fold and aggregate this gives rise to severely debilitating diseases such as Alzheimer's and prion diseases. Protein aggregation was measured using SAXS on aqueous solutions of bovine serum albumin, myoglobin, and cellulase enzymes. Understanding how cellulose can be broken down into fermentable sugars is an important step in the development of strategies for producing alternative energy from biomass. The enzymatic hydrolysis of cellulose was studied using both small angle neutron scattering and SAXS. One result from these investigations was finding supporting evidence that nanopores within the cellulose fibril matrix allow biologically active enzymes access to digest parts of the fibers. The production of mesoporous materials for hydrogen storage applications was

  1. Arachidonic acid stimulates TNFα production in Kupffer cells via a reactive oxygen species-pERK1/2-Egr1-dependent mechanism.

    PubMed

    Cubero, Francisco Javier; Nieto, Natalia

    2012-07-15

    Kupffer cells are a key source of mediators of alcohol-induced liver damage such as reactive oxygen species, chemokines, growth factors, and eicosanoids. Since diets rich in polyunsaturated fatty acids are a requirement for the development of alcoholic liver disease, we hypothesized that polyunsaturated fatty acids could synergize with ethanol to promote Kupffer cell activation and TNFα production, hence, contributing to liver injury. Primary Kupffer cells from control and from ethanol-fed rats incubated with arachidonic acid showed similar proliferation rates than nontreated cells; however, arachidonic acid induced phenotypic changes, lipid peroxidation, hydroperoxides, and superoxide radical generation. Similar effects occurred in human Kupffer cells. These events were greater in Kupffer cells from ethanol-fed rats, and antioxidants and inhibitors of arachidonic acid metabolism prevented them. Arachidonic acid treatment increased NADPH oxidase activity. Inhibitors of NADPH oxidase and of arachidonic acid metabolism partially prevented the increase in oxidant stress. Upon arachidonic acid stimulation, there was a rapid and sustained increase in TNFα, which was greater in Kupffer cells from ethanol-fed rats than in Kupffer cells from control rats. Arachidonic acid induced ERK1/2 phosphorylation and nuclear translocation of early growth response-1 (Egr1), and ethanol synergized with arachidonic acid to promote this effect. PD98059, a mitogen extracellular kinase 1/2 inhibitor, and curcumin, an Egr1 inhibitor, blocked the arachidonic acid-mediated upregulation of TNFα in Kupffer cells. This study unveils the mechanism whereby arachidonic acid and ethanol increase TNFα production in Kupffer cells, thus contributing to alcoholic liver disease. PMID:22538404

  2. Reducing Cytoplasmic Polyamine Oxidase Activity in Arabidopsis Increases Salt and Drought Tolerance by Reducing Reactive Oxygen Species Production and Increasing Defense Gene Expression

    PubMed Central

    Sagor, G. H. M.; Zhang, Siyuan; Kojima, Seiji; Simm, Stefan; Berberich, Thomas; Kusano, Tomonobu

    2016-01-01

    The link between polyamine oxidases (PAOs), which function in polyamine catabolism, and stress responses remains elusive. Here, we address this issue using Arabidopsis pao mutants in which the expression of the five PAO genes is knocked-out or knocked-down. As the five single pao mutants and wild type (WT) showed similar response to salt stress, we tried to generate the mutants that have either the cytoplasmic PAO pathway (pao1 pao5) or the peroxisomal PAO pathway (pao2 pao3 pao4) silenced. However, the latter triple mutant was not obtained. Thus, in this study, we used two double mutants, pao1 pao5 and pao2 pao4. Of interest, pao1 pao5 mutant was NaCl- and drought-tolerant, whereas pao2 pao4 showed similar sensitivity to those stresses as WT. To reveal the underlying mechanism of salt tolerance, further analyses were performed. Na uptake of the mutant (pao1 pao5) decreased to 75% of WT. PAO activity of the mutant was reduced to 62% of WT. The content of reactive oxygen species (ROS) such as hydrogen peroxide, a reaction product of PAO action, and superoxide anion in the mutant became 81 and 72% of the levels in WT upon salt treatment. The mutant contained 2.8-fold higher thermospermine compared to WT. Moreover, the mutant induced the genes of salt overly sensitive-, abscisic acid (ABA)-dependent- and ABA-independent- pathways more strongly than WT upon salt treatment. The results suggest that the Arabidopsis plant silencing cytoplasmic PAOs shows salinity tolerance by reducing ROS production and strongly inducing subsets of stress-responsive genes under stress conditions. PMID:26973665

  3. The Production of Reactive Oxygen Species Is a Universal Action Mechanism of Amphotericin B against Pathogenic Yeasts and Contributes to the Fungicidal Effect of This Drug

    PubMed Central

    Mesa-Arango, Ana Cecilia; Trevijano-Contador, Nuria; Román, Elvira; Sánchez-Fresneda, Ruth; Casas, Celia; Herrero, Enrique; Argüelles, Juan Carlos; Pla, Jesús; Cuenca-Estrella, Manuel

    2014-01-01

    Amphotericin B (AMB) is an antifungal drug that binds to ergosterol and forms pores at the cell membrane, causing the loss of ions. In addition, AMB induces the accumulation of reactive oxygen species (ROS), and although these molecules have multiple deleterious effects on fungal cells, their specific role in the action mechanism of AMB remains unknown. In this work, we studied the role of ROS in the action mechanism of AMB. We determined the intracellular induction of ROS in 44 isolates of different pathogenic yeast species (Candida albicans, Candida parapsilosis, Candida glabrata, Candida tropicalis, Candida krusei, Cryptococcus neoformans, and Cryptococcus gattii). We also characterized the production of ROS in AMB-resistant isolates. We found that AMB induces the formation of ROS in all the species tested. The inhibition of the mitochondrial respiratory chain by rotenone blocked the induction of ROS by AMB and provided protection from the killing action of the antifungal. Moreover, this phenomenon was absent in strains that displayed resistance to AMB. These strains showed an alteration in the respiration rate and mitochondrial membrane potential and also had higher catalase activity than that of the AMB-susceptible strains. Consistently, AMB failed to induce protein carbonylation in the resistant strains. Our data demonstrate that the production of ROS by AMB is a universal and important action mechanism that is correlated with the fungicidal effect and might explain the low rate of resistance to the molecule. Finally, these data provide an opportunity to design new strategies to improve the efficacy of this antifungal. PMID:25155595

  4. Reducing Cytoplasmic Polyamine Oxidase Activity in Arabidopsis Increases Salt and Drought Tolerance by Reducing Reactive Oxygen Species Production and Increasing Defense Gene Expression.

    PubMed

    Sagor, G H M; Zhang, Siyuan; Kojima, Seiji; Simm, Stefan; Berberich, Thomas; Kusano, Tomonobu

    2016-01-01

    The link between polyamine oxidases (PAOs), which function in polyamine catabolism, and stress responses remains elusive. Here, we address this issue using Arabidopsis pao mutants in which the expression of the five PAO genes is knocked-out or knocked-down. As the five single pao mutants and wild type (WT) showed similar response to salt stress, we tried to generate the mutants that have either the cytoplasmic PAO pathway (pao1 pao5) or the peroxisomal PAO pathway (pao2 pao3 pao4) silenced. However, the latter triple mutant was not obtained. Thus, in this study, we used two double mutants, pao1 pao5 and pao2 pao4. Of interest, pao1 pao5 mutant was NaCl- and drought-tolerant, whereas pao2 pao4 showed similar sensitivity to those stresses as WT. To reveal the underlying mechanism of salt tolerance, further analyses were performed. Na uptake of the mutant (pao1 pao5) decreased to 75% of WT. PAO activity of the mutant was reduced to 62% of WT. The content of reactive oxygen species (ROS) such as hydrogen peroxide, a reaction product of PAO action, and superoxide anion in the mutant became 81 and 72% of the levels in WT upon salt treatment. The mutant contained 2.8-fold higher thermospermine compared to WT. Moreover, the mutant induced the genes of salt overly sensitive-, abscisic acid (ABA)-dependent- and ABA-independent- pathways more strongly than WT upon salt treatment. The results suggest that the Arabidopsis plant silencing cytoplasmic PAOs shows salinity tolerance by reducing ROS production and strongly inducing subsets of stress-responsive genes under stress conditions. PMID:26973665

  5. Trastuzumab, but Not Pertuzumab, Dysregulates HER2 Signaling to Mediate Inhibition of Autophagy and Increase in Reactive Oxygen Species Production in Human Cardiomyocytes.

    PubMed

    Mohan, Nishant; Shen, Yi; Endo, Yukinori; ElZarrad, M Khair; Wu, Wen Jin

    2016-06-01

    Dysregulation of autophagy has been implicated in various cardiovascular diseases. Trastuzumab, a humanized monoclonal antibody, binds to HER2 domain IV and is approved for the treatment of HER2-positive breast cancer. Trastuzumab therapy is associated with considerable cardiotoxicity, the mechanism of which remains unclear. HER2 signaling plays a pivotal role in cardiomyocyte development and survival and is essential for the prevention of cardiomyopathy. However, a direct link has not been confirmed between trastuzumab-induced cardiomyopathy and impaired HER2 signaling. Our data reveal a novel mechanism by which trastuzumab dysregulates HER2 signaling and impairs basal autophagic process in human primary cardiomyocytes. Specifically, trastuzumab treatment leads to the phosphorylation of HER1-Y845 and HER2-Y1248 and the activation of Erk. This in turn results in upregulation of mTOR signaling pathway and subsequently inhibition of autophagy in primary cardiomyocytes and C57BL/6 mice. Trastuzumab-induced downregulation of autophagy is further supported by the fact that trastuzumab treatment reduces protein levels of autophagosome-associated signaling molecules such as Atg 5-12, Atg 7, Atg 14, and Beclin 1. We further demonstrated that trastuzumab-mediated inhibition of autophagy resulted in the increased production of reactive oxygen species (ROS) in cardiomyocytes. Pertuzumab, another anti-HER2 therapeutic mAb binding to HER2 domain II, fails to modulate HER2 signaling and is unable to inhibit autophagy and to increase ROS production in cardiomyocytes. This study provides novel mechanistic insights into trastuzumab-induced cardiotoxicity, which may assist in formulating novel approaches for clinical management of trastuzumab-induced cardiomyopathy. Mol Cancer Ther; 15(6); 1321-31. ©2016 AACR. PMID:27197303

  6. Stimulation of production of reactive oxygen and nitrogen species in endothelial cells by unmodified and Fenton-modified ultradisperse detonation diamond.

    PubMed

    Solarska-Ściuk, K; Gajewska, A; Skolimowski, J; Mitura, K; Bartosz, G

    2013-01-01

    In recent years, the development of nanotechnology opens up new prospects for biomedical applications of unmodified and chemically modified diamond nanoparticles (DNPs). The problem of biocompatibility of DNPs is thus of primary importance. The first step in the modification of DNPs is usually the introduction of -OH groups, which can bind other functional groups. One of the basic methods to introduce -OH groups onto DNPs is the Fenton reaction. The aim of this study was to compare the effect of unmodified DNPs and nanoparticles modified by the Fenton reaction on human endothelial cells. Ultradisperse diamond (UDD) was modified by the Fenton reaction introducing surface -OH groups. Immortalized human umbilical cord endothelial cells (HUVEC-ST) were incubated with 2-100 µg/mL nanopowders in the opti-MEM medium. For comparison, graphite powder (GRAF and GRAF+OH) was also employed. UDD and GRAF augmented generation of reactive oxygen species in the cells after 24 H incubation, estimated by oxidation of 2',7'-dichlorofluorescin diacetate (H2DCF-DA). Cellular production of nitric oxide, estimated with DAF-FM-DA (3-amino-4-aminomethyl 2',7'-dichlorofluorescein diacetate), was also affected by UDD and GRAF after 24 H. Fenton-modified OH, in contrast to unmodified diamond, decreased NO production. Detonation nanoparticles also affected the cellular content of glutathione and activities of main antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase). This article was published online on 5 February 2013. Errors in the byline and affiliation line were subsequently identified. This notice is included in the online and print versions to indicate that both have been corrected 18 April 2013. PMID:23586587

  7. Effect of chromium oxide (III) nanoparticles on the production of reactive oxygen species and photosystem II activity in the green alga Chlamydomonas reinhardtii.

    PubMed

    Costa, Cristina Henning da; Perreault, François; Oukarroum, Abdallah; Melegari, Sílvia Pedroso; Popovic, Radovan; Matias, William Gerson

    2016-09-15

    With the growth of nanotechnology and widespread use of nanomaterials, there is an increasing risk of environmental contamination by nanomaterials. However, the potential implications of such environmental contamination are hard to evaluate since the toxicity of nanomaterials if often not well characterized. The objective of this study was to evaluate the toxicity of a chromium-based nanoparticle, Cr2O3-NP, used in a wide diversity of industrial processes and commercial products, on the unicellular green alga Chlamydomonas reinhardtii. The deleterious impacts of Cr2O3-NP were characterized using cell density measurements, production of reactive oxygen species (ROS), esterase enzymes activity, and photosystem II electron transport as indicators of toxicity. Cr2O3-NP exposure inhibited culture growth and significantly lowered cellular Chlorophyll a content. From cell density measurements, EC50 values of 2.05±0.20 and 1.35±0.06gL(-1) Cr2O3-NP were obtained after 24 and 72h of exposure, respectively. In addition, ROS levels were increased to 160.24±2.47% and 59.91±0.15% of the control value after 24 and 72h of exposition to 10gL(-1) Cr2O3-NP. At 24h of exposure, the esterase activity increased to 160.24% of control value, revealing a modification of the short-term metabolic response of algae to Cr2O3-NP exposure. In conclusion, the metabolism of C. reinhardtii was the most sensitive to Cr2O3-NP after 24h of treatment. PMID:26803219

  8. The production of reactive oxygen species is a universal action mechanism of Amphotericin B against pathogenic yeasts and contributes to the fungicidal effect of this drug.

    PubMed

    Mesa-Arango, Ana Cecilia; Trevijano-Contador, Nuria; Román, Elvira; Sánchez-Fresneda, Ruth; Casas, Celia; Herrero, Enrique; Argüelles, Juan Carlos; Pla, Jesús; Cuenca-Estrella, Manuel; Zaragoza, Oscar

    2014-11-01

    Amphotericin B (AMB) is an antifungal drug that binds to ergosterol and forms pores at the cell membrane, causing the loss of ions. In addition, AMB induces the accumulation of reactive oxygen species (ROS), and although these molecules have multiple deleterious effects on fungal cells, their specific role in the action mechanism of AMB remains unknown. In this work, we studied the role of ROS in the action mechanism of AMB. We determined the intracellular induction of ROS in 44 isolates of different pathogenic yeast species (Candida albicans, Candida parapsilosis, Candida glabrata, Candida tropicalis, Candida krusei, Cryptococcus neoformans, and Cryptococcus gattii). We also characterized the production of ROS in AMB-resistant isolates. We found that AMB induces the formation of ROS in all the species tested. The inhibition of the mitochondrial respiratory chain by rotenone blocked the induction of ROS by AMB and provided protection from the killing action of the antifungal. Moreover, this phenomenon was absent in strains that displayed resistance to AMB. These strains showed an alteration in the respiration rate and mitochondrial membrane potential and also had higher catalase activity than that of the AMB-susceptible strains. Consistently, AMB failed to induce protein carbonylation in the resistant strains. Our data demonstrate that the production of ROS by AMB is a universal and important action mechanism that is correlated with the fungicidal effect and might explain the low rate of resistance to the molecule. Finally, these data provide an opportunity to design new strategies to improve the efficacy of this antifungal. PMID:25155595

  9. Insulin improves in vitro survival of equine preantral follicles enclosed in ovarian tissue and reduces reactive oxygen species production after culture.

    PubMed

    Aguiar, F L N; Lunardi, F O; Lima, L F; Rocha, R M P; Bruno, J B; Magalhães-Padilha, D M; Cibin, F W S; Rodrigues, A P R; Gastal, M O; Gastal, E L; Figueiredo, J R

    2016-04-01

    This study investigated the effect of insulin concentration on the in vitro culture of equine preantral follicles enclosed in ovarian tissue. Ovarian tissue samples were immediately fixed (noncultured control) or cultured for 1 or 7 days in α-MEM(+) supplemented with 0 ng/mL, 10 ng/mL, or 10 μg/mL insulin. Ovarian tissues were processed and analyzed by classical histology. Culture medium samples were collected after 1 and 7 days of culture for steroid and reactive oxygen species (ROS) analyses. The percentage of morphologically normal follicles was greater (P < 0.001) in insulin-treated groups after 1 day of culture; likewise, more (P < 0.02) normal follicles were observed after 7 days of culture in medium supplemented with 10-ng/mL insulin. Furthermore, an increase (P < 0.01) in developing (transition, primary, and secondary) follicles between Days 1 and 7 of culture was observed only with the 10-ng/mL insulin treatment. ROS production after 1 or 7 days of culture was lower (P < 0.0001) in medium with 10-ng/mL insulin than the other treatments. Ovarian tissues containing preantral follicles were able to produce estradiol and progesterone after 1 and 7 days of culture; however, treatments did not differ in steroid production. In conclusion, the use of a physiological concentration (10 ng/mL) of insulin rather than the previously reported concentration (10 μg/mL) for in vitro culture of equine preantral follicles improved follicular survival and growth and lowered oxidative stress. Results from this study shed light on new perspectives for producing an appropriate medium to improve equine preantral follicle in vitro survival and growth. PMID:26777561

  10. p-Cresol Affects Reactive Oxygen Species Generation, Cell Cycle Arrest, Cytotoxicity and Inflammation/Atherosclerosis-Related Modulators Production in Endothelial Cells and Mononuclear Cells

    PubMed Central

    Chan, Chiu-Po; Yeung, Sin-Yuet; Hsien, Hsiang-Chi; Lin, Bor-Ru; Yeh, Chien-Yang; Tseng, Wan-Yu; Tseng, Shui-Kuan; Jeng, Jiiang-Huei

    2014-01-01

    Aims Cresols are present in antiseptics, coal tar, some resins, pesticides, and industrial solvents. Cresol intoxication leads to hepatic injury due to coagulopathy as well as disturbance of hepatic circulation in fatal cases. Patients with uremia suffer from cardiovascular complications, such as atherosclerosis, thrombosis, hemolysis, and bleeding, which may be partly due to p-cresol toxicity and its effects on vascular endothelial and mononuclear cells. Given the role of reactive oxygen species (ROS) and inflammation in vascular thrombosis, the objective of this study was to evaluate the effect of p-cresol on endothelial and mononuclear cells. Methods EA.hy926 (EAHY) endothelial cells and U937 cells were exposed to different concentrations of p-cresol. Cytotoxicity was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5 -diphenyltetrazolium bromide (MTT) assay and trypan blue dye exclusion technique, respectively. Cell cycle distribution was analyzed by propidium iodide flow cytometry. Endothelial cell migration was studied by wound closure assay. ROS level was measured by 2′,7′-dichlorofluorescein diacetate (DCF) fluorescence flow cytometry. Prostaglandin F2α (PGF2α), plasminogen activator inhibitor-1 (PAI-1), soluble urokinase plasminogen activator receptor (suPAR), and uPA production were determined by Enzyme-linked immunosorbant assay (ELISA). Results Exposure to 100–500 µM p-cresol decreased EAHY cell number by 30–61%. P-cresol also decreased the viability of U937 mononuclear cells. The inhibition of EAHY and U937 cell growth by p-cresol was related to induction of S-phase cell cycle arrest. Closure of endothelial wounds was inhibited by p-cresol (>100 µM). P-cresol (>50 µM) also stimulated ROS production in U937 cells and EAHY cells but to a lesser extent. Moreover, p-cresol markedly stimulated PAI-1 and suPAR, but not PGF2α, and uPA production in EAHY cells. Conclusions p-Cresol may contribute to atherosclerosis and thrombosis in patients with

  11. Single spin asymmetries in charged kaon production from semi-inclusive deep inelastic scattering on a transversely polarized He3 target

    DOE PAGESBeta

    Zhao, Y. X.; Wang, Y.; Allada, K.; Aniol, K.; Annand, J. R.M.; Averett, T.; Benmokhtar, F.; Bertozzi, W.; Bradshaw, P. C.; Bosted, P.; et al

    2014-11-03

    We report the first measurement of target single spin asymmetries of charged kaons produced in semi-inclusive deep inelastic scattering of electrons off a transversely polarized 3He target. Both the Collins and Sivers moments, which are related to the nucleon transversity and Sivers distributions, respectively, are extracted over the kinematic range of 0.1 < xbj<0.4 for K+ and K– production. While the Collins and Sivers moments for K+ are consistent with zero within the experimental uncertainties, both moments for K– favor negative values. The Sivers moments are compared to the theoretical prediction from a phenomenological fit to the world data. Whilemore » the K+ Sivers moments are consistent with the prediction, the K– results differ from the prediction at the 2-sigma level.« less

  12. Single spin asymmetries in charged kaon production from semi-inclusive deep inelastic scattering on a transversely polarized 3He target

    NASA Astrophysics Data System (ADS)

    Zhao, Y. X.; Wang, Y.; Allada, K.; Aniol, K.; Annand, J. R. M.; Averett, T.; Benmokhtar, F.; Bertozzi, W.; Bradshaw, P. C.; Bosted, P.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, C.; Chen, J.-P.; Chen, W.; Chirapatpimol, K.; Chudakov, E.; Cisbani, E.; Cornejo, J. C.; Cusanno, F.; Dalton, M. M.; Deconinck, W.; de Jager, C. W.; De Leo, R.; Deng, X.; Deur, A.; Ding, H.; Dolph, P. A. M.; Dutta, C.; Dutta, D.; El Fassi, L.; Frullani, S.; Gao, H.; Garibaldi, F.; Gaskell, D.; Gilad, S.; Gilman, R.; Glamazdin, O.; Golge, S.; Guo, L.; Hamilton, D.; Hansen, O.; Higinbotham, D. W.; Holmstrom, T.; Huang, J.; Huang, M.; Ibrahim, H. F.; Iodice, M.; Jiang, X.; Jin, G.; Jones, M. K.; Katich, J.; Kelleher, A.; Kim, W.; Kolarkar, A.; Korsch, W.; LeRose, J. J.; Li, X.; Li, Y.; Lindgren, R.; Liyanage, N.; Long, E.; Lu, H.-J.; Margaziotis, D. J.; Markowitz, P.; Marrone, S.; McNulty, D.; Meziani, Z.-E.; Michaels, R.; Moffit, B.; Muñoz Camacho, C.; Nanda, S.; Narayan, A.; Nelyubin, V.; Norum, B.; Oh, Y.; Osipenko, M.; Parno, D.; Peng, J.-C.; Phillips, S. K.; Posik, M.; Puckett, A. J. R.; Qian, X.; Qiang, Y.; Rakhman, A.; Ransome, R.; Riordan, S.; Saha, A.; Sawatzky, B.; Schulte, E.; Shahinyan, A.; Shabestari, M. H.; Širca, S.; Stepanyan, S.; Subedi, R.; Sulkosky, V.; Tang, L.-G.; Tobias, A.; Urciuoli, G. M.; Vilardi, I.; Wang, K.; Wojtsekhowski, B.; Yan, X.; Yao, H.; Ye, Y.; Ye, Z.; Yuan, L.; Zhan, X.; Zhang, Y.; Zhang, Y.-W.; Zhao, B.; Zheng, X.; Zhu, L.; Zhu, X.; Zong, X.; Jefferson Lab Hall A Collaboration

    2014-11-01

    We report the first measurement of target single spin asymmetries of charged kaons produced in semi-inclusive deep inelastic scattering of electrons off a transversely polarized 3He target. Both the Collins and Sivers moments, which are related to the nucleon transversity and Sivers distributions, respectively, are extracted over the kinematic range of 0.1 production. While the Collins and Sivers moments for K+ are consistent with zero within the experimental uncertainties, both moments for K- favor negative values. The Sivers moments are compared to the theoretical prediction from a phenomenological fit to the world data. While the K+ Sivers moments are consistent with the prediction, the K- results differ from the prediction at the 2-sigma level.

  13. Measurement of "pretzelosity" asymmetry of charged pion production in semi-inclusive deep inelastic scattering on a polarized 3He target

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Qian, X.; Allada, K.; Dutta, C.; Huang, J.; Katich, J.; Wang, Y.; Aniol, K.; Annand, J. R. M.; Averett, T.; Benmokhtar, F.; Bertozzi, W.; Bradshaw, P. C.; Bosted, P.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, C.; Chen, J.-P.; Chen, W.; Chirapatpimol, K.; Chudakov, E.; Cisbani, E.; Cornejo, J. C.; Cusanno, F.; Dalton, M. M.; Deconinck, W.; de Jager, C. W.; De Leo, R.; Deng, X.; Deur, A.; Ding, H.; Dolph, P. A. M.; Dutta, D.; El Fassi, L.; Frullani, S.; Gao, H.; Garibaldi, F.; Gaskell, D.; Gilad, S.; Gilman, R.; Glamazdin, O.; Golge, S.; Guo, L.; Hamilton, D.; Hansen, O.; Higinbotham, D. W.; Holmstrom, T.; Huang, M.; Ibrahim, H. F.; Iodice, M.; Jiang, X.; Jin, G.; Jones, M. K.; Kelleher, A.; Kim, W.; Kolarkar, A.; Korsch, W.; LeRose, J. J.; Li, X.; Li, Y.; Lindgren, R.; Liyanage, N.; Long, E.; Lu, H.-J.; Margaziotis, D. J.; Markowitz, P.; Marrone, S.; McNulty, D.; Meziani, Z.-E.; Michaels, R.; Moffit, B.; Muñoz Camacho, C.; Nanda, S.; Narayan, A.; Nelyubin, V.; Norum, B.; Oh, Y.; Osipenko, M.; Parno, D.; Peng, J. C.; Phillips, S. K.; Posik, M.; Puckett, A. J. R.; Qiang, Y.; Rakhman, A.; Ransome, R. D.; Riordan, S.; Saha, A.; Sawatzky, B.; Schulte, E.; Shahinyan, A.; Shabestari, M. H.; Širca, S.; Stepanyan, S.; Subedi, R.; Sulkosky, V.; Tang, L.-G.; Tobias, W. A.; Urciuoli, G. M.; Vilardi, I.; Wang, K.; Wojtsekhowski, B.; Yan, X.; Yao, H.; Ye, Y.; Ye, Z.; Yuan, L.; Zhan, X.; Zhang, Y.-W.; Zhao, B.; Zheng, X.; Zhu, L.; Zhu, X.; Zong, X.; Jefferson Lab Hall A Collaboration

    2014-11-01

    An experiment to measure single-spin asymmetries of semi-inclusive production of charged pions in deep-inelastic scattering on a transversely polarized 3He target was performed at Jefferson Laboratory in the kinematic region of 0.16

  14. Gamma ray production cross section from energetic neutron inelastic scattering for methodical improvements in planetary gamma-ray spectroscopy

    SciTech Connect

    Castaneda, C.M.; Gearhart, R.; Sanii, B.; Englert, P.A.J.; Drake, D.M.; Reedy, R.C.

    1991-12-31

    Planetary Gamma ray spectroscopy can be used to chemically analyze the top soil from planets in future planetary missions. The production from inelastic neutron interaction plays an effective role in the determination on the C and H at the surface. The gamma ray production cross section from the strongest lines excited in the neutron bombardment of Fe have been measured by the use of a time analyzed quasi-mono-energetic neutron beam and a high purity germanium detector. The results from En=6.5, 32, 43, and 65 MeV are presented.

  15. Climate and topographic controls on simulated pasture production in a semiarid Mediterranean watershed with scattered tree cover

    NASA Astrophysics Data System (ADS)

    Lozano-Parra, J.; Maneta, M. P.; Schnabel, S.

    2014-04-01

    Natural grasses in semiarid rangelands constitute an effective protection against soil erosion and degradation, are a source of natural food for livestock and play a critical role in the hydrologic cycle by contributing to the uptake and transpiration of water. However, natural pastures are threatened by land abandonment and the consequent encroachment of shrubs and trees as well as by changing climatic conditions. In spite of their ecological and economic importance, the spatiotemporal variations of pasture production at the decadal-century scales over whole watersheds are poorly known. We used a physically based, spatially distributed ecohydrologic model applied to a 99.5 ha semiarid watershed in western Spain to investigate the sensitivity of pasture production to climate variability. The ecohydrologic model was run using a 300-year-long synthetic daily climate data set generated using a stochastic weather generator. The data set reproduced the range of climatic variations observed under the current climate. Results indicated that variation of pasture production largely depended on factors that also determined the availability of soil moisture such as the temporal distribution of precipitation, topography, and tree canopy cover. The latter is negatively related with production, reflecting the importance of rainfall and light interception, as well as water consumption by trees. Valley bottoms and flat areas in the lower parts of the catchment are characterized by higher pasture production but more interannual variability. A quantitative assessment of the quality of the simulations showed that ecohydrologic models are a valuable tool to investigate long-term (century scale) water and energy fluxes, as well as vegetation dynamics, in semiarid rangelands.

  16. A Tariff for Reactive Power

    SciTech Connect

    Kueck, John D; Kirby, Brendan J; Li, Fangxing; Tufon, Christopher; Isemonger, Alan

    2008-07-01

    Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would reduce

  17. Comparative embryotoxicity and genotoxicity of the herbicide diuron and its metabolites in early life stages of Crassostrea gigas: Implication of reactive oxygen species production.

    PubMed

    Behrens, Daphné; Rouxel, Julien; Burgeot, Thierry; Akcha, Farida

    2016-06-01

    Herbicides are one of the major classes of pollutants contaminating coastal waters over the world. Among them, diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) is a phenylurea herbicide frequently detected in oyster-producing area, known to be toxic for this important exploited non-target species. With the aim to investigate the mechanisms by which diuron displays its toxicity in oyster, the implication of both biotransformation and oxygen reactive species (ROS) production was studied considering embryotoxicity and genotoxicity as endpoints. Comparative embryotoxicity and genotoxicity of diuron and its main metabolites (DCPMU, DCPU and 3,4-DCA) were thus studied on oyster larvae by the embryo-larval bioassay on D larvae and the comet assay on trochophore larvae, respectively. Exposures were also performed in presence and absence of known ROS scavenger compounds - ascorbic acid and N-acetylcysteine, to evaluate the involvement of oxyradicals in the toxic responses. In the case of diuron, the production of ROS on exposed oyster larvae was also measured using 2',7'-dichlorodihydrofluorescein diacetate as a probe for flow cytometric analysis. The results we obtained showed the embryotoxicity and genotoxicity of diuron and its metabolites in early life stages of the Pacific oyster. For concentrations ranging from 0.05 to 0.5μgL(-1), diuron appeared significantly more embryotoxic than DCPMU and DCPU (p<0.001). Embryotoxicity decreased with diuron metabolism as follows: diuron≥DCPMU=DCPU, highlighting that biotransformation can constitute a true detoxication pathways in oyster larvae by decreasing the toxicity of the parent compound. In the opposite, no difference was observed between diuron and its metabolites concerning larval development when considering a lower and more environmentally realistic range of concentrations (0.002-0.050μgL(-1)). 3,4-DCA was the only compound that did not show any sign of embryotoxicity, even at concentrations up to 5μgL(-1

  18. Measurement of the nu(mu) Charged Current pi+ Production to Quasi-elastic Scattering Cross Section

    SciTech Connect

    Nowak, Jaroslaw A.; /Louisiana State U.

    2009-09-01

    Using high statistics samples of charged current interactions, MiniBooNE reports a model independent measurement of the single charged pion production to quasi-elastic cross section ratio on mineral oil without corrections for pion re-interactions in the target nucleus [1]. The result is provided as a function of neutrino energy in the range 0.4 GeV < E < 2.4 GeV with 11% precision in the region of highest statistics.

  19. Reactive nitrogen emissions from agricultural operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reactive nitrogen is essential to the growth of plants and animals and is typically the most limiting nutrient in agricultural production. While reactive nitrogen in fertilizer has enabled the growing global population to maintain food production, the inefficient and sometimes excessive use of nitro...

  20. The 'reactive

    NASA Astrophysics Data System (ADS)

    Battista Piccardo, Giovanni; Guarnieri, Luisa

    2010-05-01

    The Ligurian ophiolitic peridotites [South Lanzo, Erro-Tobbio, Internal Ligurides and Corsica] are characterized by the abundance of spinel(Sp) peridotites showing depleted compositions and ranging from Cpx-poor Sp lherzolites to Sp harzburgites. They were recognized in the last decades as refractory residua by MORB-forming partial melting of the asthenosphere, and were similar to abyssal peridotites. Recent structural and compositional studies promoted a better understanding of their structural and compositional features and their genetic processes. In the field these depleted peridotites replace with primary contacts pyroxenite-bearing fertile Sp lherzolites that have been recognized as sub-continental lithospheric mantle. Field relationships evidence that decametric-hectometric bodies of pristine pyroxenite-veined lithospheric Sp lherzolites are preserved as structural remnants within the km-scale masses of depleted peridotites. The depleted peridotites show coarse-grained recrystallized textures and reaction micro-structures indicating pyroxene dissolution and olivine precipitation that have been considered as records of melt/peridotite interaction during reactive diffuse porous flow of undersaturated melts. They show, moreover, contrasting bulk and mineral chemistries that cannot be produced by simple partial melting and melt extraction. In particular, their bulk compositions are depleted in SiO2 and enriched in FeO with respect to refractory residua after any kind of partial melting, as calculated by Niu (1997), indicating that they cannot be formed by simple partial melting and melt extraction processes. Moreover, TiO2 content in Sp is usually significantly higher (up to 0.8-1.0 wt%) than typical TiO2 contents of spinels (usually < 0.1-0.2 wt %) in fertile mantle peridotites and melting refractory residua, indicating that spinel attained element equilibration with a Ti-bearing basaltic melt. The depleted peridotites usually show strongly variable Cpx modal

  1. Prostate-associated gene 4 (PAGE4) protects cells against stress by elevating p21 and suppressing reactive oxygen species production

    PubMed Central

    Zeng, Yu; Gao, Dong; Kim, John J; Shiraishi, Takumi; Terada, Naoki; Kakehi, Yoshiyuki; Kong, Chuize; Getzenberg, Robert H; Kulkarni, Prakash

    2013-01-01

    Background: It is now widely recognized that there is a strong correlation between oxidative stress and the risk of benign and malignant diseases of the prostate. Prostate-associated gene 4 (PAGE4) is a Cancer/Testis Antigen (CTA) that was previously shown to be up-regulated in prostate cancer (PCa) and symptomatic as opposed to histologic benign prostatic hyperplasia (BPH). However, its functional role in these diseases is not fully understood. Methods: The mRNA level of PAGE4 was detected in isolated cell types in PCa tissues that were obtained from 8 men with PCa. PAGE4 protein expression profile was analyzed in a prostate disease tissue microarray. PAGE4 was overexpressed by pCMV-PAGE4-GFP transfection and cell viability was determined using the WST-1 assay. Results: PAGE4 expression is highly dynamic; while its expression is very high in fetal prostate it is drastically decreased in the normal adult prostate but is up-regulated both in symptomatic BPH and PCa. However, in the diseased prostate, PAGE4 is highly expressed in the epithelial cells of Proliferative Inflammatory Atrophy (PIA) lesions alluding to a potential stress response function of PAGE4. Consistent with such a role, PAGE4 protein levels are up-regulated when prostate cancer (PCa) cell lines are treated with various stress factors including the proinflammatory cytokine TNFα. Interestingly, in cells challenged with stress there is increased translocation of the PAGE4 protein to the mitochondrion and production of reactive oxygen species is suppressed . Furthermore, p21 is elevated in a p53-independent manner in PAGE4-overexpressing cells which results in impeded cell cycle progression, attenuated stress-induced DNA damage, and decreased cell death. Conclusions: PAGE4 may be contributing to the development of PCa by playing a stress-protective and anti-apoptotic role. PMID:25374899

  2. Effect of Penicillium mycotoxins on the cytokine gene expression, reactive oxygen species production, and phagocytosis of bovine macrophage (BoMacs) function.

    PubMed

    Oh, Se-Young; Mead, Philip J; Sharma, Bhawani S; Quinton, V Margaret; Boermans, Herman J; Smith, Trevor K; Swamy, H V L N; Karrow, Niel A

    2015-12-25

    Bovine macrophages (BoMacs) were exposed to the following Penicillium mycotoxins (PM): citrinin (CIT), ochratoxin A (OTA), patulin (PAT), mycophenolic acid (MPA) and penicillic acid (PA). PM exposure at the concentration that inhibits proliferation by 25% (IC25) differentially for 24h altered the gene expression of various cytokines. OTA significantly induced IL-1α expression (p<0.05), while the expression of IL-6 was suppressed (p<0.01). MPA significantly induced the expression of IL-1α (p<0.05) and reduced the expression of IL-12α (p<0.01) and IL-10 (p<0.01). PAT significantly suppressed the expression of IL-23 (p<0.01), IL-10 (p<0.05) and TGF-β (p<0.05). Some PMs also affected reactive oxygen species (ROS) and phagocytosis of Mycobacterium avium ssp. Paratuberculosis (MAP) at higher concentrations.