Science.gov

Sample records for reactivity transients simulation

  1. Regulatory Analysis of Reactivity Transients

    SciTech Connect

    Beyer, Carl E.; Clifford, Paul M.; Geelhood, Kenneth J.; Voglewede, John C.

    2009-08-01

    This paper will describe modifications made to the FRAPCON-3 and FRAPTRAN fuel performance codes and models that impact reactivity initiated accident (RIA) analyses. The modified models include an upper bound empirical and best estimate release models for fast transients, and a revised fuel failure model that accounts for ductile and brittle failure. Because experimental data exists for discrete test conditions, the codes and models are used to interpolate and to some extent, to extrapolate these test conditions. An upper bound empirical model for release is used to establish new recommended release fractions for long-lived and short lived (radioactive) isotopes for RIA events in Regulatory Guide 1.183. A best estimate release model is used in FRAPTRAN 1.4 based on grain boundary gas concentrations from FRAPCON-3.4 to predict release for RIA events. Code and model predictions will be compared to failure and release data from RIA tests to demonstrate accuracy.

  2. Reactivity Transients in Nuclear Research Reactors

    Energy Science and Technology Software Center (ESTSC)

    2015-01-01

    Version 01 AIREMOD-RR is a point kinetics code which can simulate fast transients in nuclear research reactor cores. It can also be used for theoretical reactor dynamics studies. It is used for research reactor kinetic analysis and provides a point neutron kinetic capability. The thermal hydraulic behavior is governed by a one-dimensional heat balance equation. The calculations are restricted to a single equivalent unit cell which consists of fuel, clad and coolant.

  3. Transient simulation of absorption machines

    NASA Astrophysics Data System (ADS)

    Anand, D. K.; Allen, R. W.; Kumar, B.

    A model for a water-cooled Lithium-Bromide/water absorption chiller is presented. Its transient response both during the start-up phase and during the shut-off period is predicted. The simulation model incorporates such influencing factors as the thermodynamic properties of the working fluid, the absorbent, the heat-transfer configuration of different components of the chiller and related physical data. The time constants of different components are controlled by a set of key parameters that have been identified. The results show a variable but at times significant amount of time delay before the chiller capacity gets close to its steady-state value. The model is intended to provide an insight into the mechanism of build-up to steady-state performance. By recognizing the significant factors contributing to transient degradation, steps can be taken to reduce such degradation.

  4. Transient simulation of absorption machines

    SciTech Connect

    Anand, D.K.; Allen, R.W.; Kumar, B.

    1982-08-01

    This paper presents a model for a water-cooled Lithium-Bromide/water absorption chiller and predicts its transient response both during the start-up phase and during the shutoff period. The simulation model incorporates such influencing factors as the thermodynamic properties of the working fluid, the absorbent, the heat-transfer configuration of different components of the chiller and related physical data. The time constants of different components are controlled by a set of key parameters that have been identified in this study. The results show a variable but at times significant amount of time delay before the chiller capacity gets close to its steadystate value. The model is intended to provide an insight into the mechanism of build-up to steady-state performance. By recognizing the significant factors contributing to transient degradation, steps can be taken to reduce such degradation. The evaluation of the residual capacity in the shut-off period will yield more realistic estimates of chiller COP for a chiller satisfying dynamic space cooling load.

  5. Transient simulation of absorption machines

    NASA Astrophysics Data System (ADS)

    Anand, D. K.; Allen, R. W.; Kumar, B.

    1982-08-01

    This paper presents a model for a water-cooled Lithium-Bromide/water absorption chiller and predicts its transient response both during the start-up phase and during the shutoff period. The simulation model incorporates such influencing factors as the thermodynamic properties of the working fluid, the absorbent, the heat-transfer configuration of different components of the chiller and related physical data. The time constants of different components are controlled by a set of key parameters that have been identified in this study. The results show a variable but at times significant amount of time delay before the chiller capacity gets close to its steady-state value. The model is intended to provide an insight into the mechanism of build-up to steady-state performance. By recognizing the significant factors contributing to transient degradation, steps can be taken to reduce such degradation. The evaluation of the residual capacity in the shut-off period will yield more realistic estimates of chiller COP for a chiller satisfying dynamic space cooling load.

  6. Interest of the non linear fitting method for reactivity assessment using flux transient experiments

    SciTech Connect

    Geslot, B.; Jammes, C.

    2006-07-01

    Flux transient measurements, meaning rod drop or source jerk experiments, are useful to estimate subcritical core reactivity or control rod worth. Among numerous analysis methods, the most widely used is the so called 'inverse kinetics' method (IK). Based on the inversion of the counting rates, this method gives very good results when counting rates are high. When assessing far subcritical levels with low counting rates, it appears that results are biased and very imprecise. In order to overcome those problems in the case of measurements performed in the framework of the first phase of the RACE-T program, we used a non linear fitting method (NF) to analyse transient experiments. In this paper, we present the NF method reactivity estimator and study its behaviour, in terms of bias and uncertainties, on simulated transients. Then, RACE-T results on experimental source jerk measurements, obtained using IK and NF, are compared and discussed. (authors)

  7. General Reactive Atomistic Simulation Program

    Energy Science and Technology Software Center (ESTSC)

    2004-09-22

    GRASP (General Reactive Atomistic Simulation Program) is primarily intended as a molecular dynamics package for complex force fields, The code is designed to provide good performance for large systems, either in parallel or serial execution mode, The primary purpose of the code is to realistically represent the structural and dynamic properties of large number of atoms on timescales ranging from picoseconds up to a microsecond. Typically the atoms form a representative sample of some material,more » such as an interface between polycrystalline silicon and amorphous silica. GRASP differs from other parallel molecular dynamics codes primarily due to it’s ability to handle relatively complicated interaction potentials and it’s ability to use more than one interaction potential in a single simulation. Most of the computational effort goes into the calculation of interatomic forces, which depend in a complicated way on the positions of all the atoms. The forces are used to integrate the equations of motion forward in time using the so-called velocity Verlet integration scheme. Alternatively, the forces can be used to find a minimum energy configuration, in which case a modified steepest descent algorithm is used.« less

  8. Transient simulation of ram accelerator flowfields

    NASA Astrophysics Data System (ADS)

    Drabczuk, Randall P.; Rolader, G.; Dash, S.; Sinha, N.; York, B.

    1993-01-01

    This paper describes the development of an advanced computational fluid dynamic (CFD) simulation capability in support of the USAF Armament Directorate ram accelerator research initiative. The state-of-the-art CRAFT computer code has been specialized for high fidelity, transient ram accelerator simulations via inclusion of generalized dynamic gridding, solution adaptive grid clustering, and high pressure thermo-chemistry. Selected ram accelerator simulations are presented that serve to exhibit the CRAFT code capabilities and identify some of the principle research/design Issues.

  9. Transient simulation of ram accelerator flowfields

    NASA Astrophysics Data System (ADS)

    Sinha, N.; York, B. J.; Dash, S. M.; Drabczuk, R.; Rolader, G. E.

    1992-10-01

    This paper describes the development of an advanced computational fluid dynamic (CFD) simulation capability in support of the U.S. Air Force Armament Directorate's ram accelerator research initiative. The state-of-the-art CRAFT computer code has been specialized for high fidelity, transient ram accelerator simulations via inclusion of generalized dynamic gridding, solution adaptive grid clustering, high pressure thermochemistry, etc. Selected ram accelerator simulations are presented which serve to exhibit the CRAFT code's capabilities and identify some of the principal research/design issues.

  10. Transient simulation of molten salt central receiver

    NASA Astrophysics Data System (ADS)

    Doupis, Dimitri; Wang, Chuan; Carcorze-Soto, Jorge; Chen, Yen-Ming; Maggi, Andrea; Losito, Matteo; Clark, Michael

    2016-05-01

    Alstom is developing concentrated solar power (CSP) utilizing 60/40wt% NaNO3-KNO3 molten salt as the working fluid in a tower receiver for the global renewable energy market. In the CSP power generation cycle, receivers undergo a daily cyclic operation due to the transient nature of solar energy. Development of robust and efficient start-up and shut-down procedures is critical to avoiding component failures due to mechanical fatigue resulting from thermal transients, thus maintaining the performance and availability of the CSP plant. The Molten Salt Central Receiver (MSCR) is subject to thermal transients during normal daily operation, a cycle that includes warmup, filling, operation, draining, and shutdown. This paper describes a study to leverage dynamic simulation and finite element analysis (FEA) in development of start-up, shutdown, and transient operation concepts for the MSCR. The results of the FEA also verify the robustness of the MSCR design to the thermal transients anticipated during the operation of the plant.

  11. Reactive Simulations for Biochemical Processes

    NASA Astrophysics Data System (ADS)

    Boero, M.

    After a brief review of the hybrid QM/MM molecular dynamics scheme and its coupling to the metadynamics method, I will show how such a combination of computational tools can be used to study chemical reactions of general biological interest. Specifically, by using such a reactive hybrid paradigm, where the QM driver is a Car-Parrinello Lagrangian dynamics, we have inspected the ATP hydrolysis reaction in the anti-freezing protein known as heat shock cognate protein (Hsc70) and the unconventional propagation of protons across peptide groups in the H-path of the bovine cytochrome c oxidase. While the former represents a fundamental reaction operated by all living beings in a wealth of processes and functions, the second one is involved in cell respiration. For both systems accurate X-ray data are available, yet the actual reaction mechanism escapes experimental probes. The simulations presented here provide the complementary information missing in experiments, offer a direct insight into the reaction mechanisms at a molecular level, and allow to understand which pathways nature can follow to realize these processes fundamental to living organisms.

  12. COYOTE: A computer program for 2-D reactive flow simulations

    SciTech Connect

    Cloutman, L.D.

    1990-04-01

    We describe the numerical algorithm used in the COYOTE two- dimensional, transient, Eulerian hydrodynamics program for reactive flows. The program has a variety of options that provide capabilities for a wide range of applications, and it is designed to be robust and relatively easy to use while maintaining adequate accuracy and efficiency to solve realistic problems. It is based on the ICE method, and it includes a general species and chemical reaction network for simulating reactive flows. It also includes swirl, turbulence transport models, and a nonuniform mesh capability. We describe several applications of the program. 33 refs., 4 figs.

  13. Transient aero-thermal simulations for TMT

    NASA Astrophysics Data System (ADS)

    Vogiatzis, Konstantinos

    2014-08-01

    Aero-thermal simulations are an integral part of the design process for the Thirty Meter Telescope (TMT). These simulations utilize Computational Solid-Fluid Dynamics (CSFD) to estimate wind jitter and blur, dome and mirror seeing, telescope pointing error due to thermal drift, and to predict thermal effects on performance of components such as the primary mirror segments. Design guidance obtained from these simulations is provided to the Telescope, Enclosure, Facilities and Adaptive Optics groups. Computational advances allow for model enhancements and inclusion of phenomena not previously resolved, such as transient effects on wind loading and thermal seeing due to vent operation while observing or long exposure effects, with potentially different flow patterns corresponding to the beginning and end of observation. Accurate knowledge of the Observatory aero-thermal environment will result in developing reliable look-up tables for effective open loop correction of key active optics system elements, and cost efficient operation of the Observatory.

  14. Sensitivity analysis of conservative and reactive stream transient storage models applied to field data from multiple-reach experiments

    USGS Publications Warehouse

    Gooseff, M.N.; Bencala, K.E.; Scott, D.T.; Runkel, R.L.; McKnight, Diane M.

    2005-01-01

    The transient storage model (TSM) has been widely used in studies of stream solute transport and fate, with an increasing emphasis on reactive solute transport. In this study we perform sensitivity analyses of a conservative TSM and two different reactive solute transport models (RSTM), one that includes first-order decay in the stream and the storage zone, and a second that considers sorption of a reactive solute on streambed sediments. Two previously analyzed data sets are examined with a focus on the reliability of these RSTMs in characterizing stream and storage zone solute reactions. Sensitivities of simulations to parameters within and among reaches, parameter coefficients of variation, and correlation coefficients are computed and analyzed. Our results indicate that (1) simulated values have the greatest sensitivity to parameters within the same reach, (2) simulated values are also sensitive to parameters in reaches immediately upstream and downstream (inter-reach sensitivity), (3) simulated values have decreasing sensitivity to parameters in reaches farther downstream, and (4) in-stream reactive solute data provide adequate data to resolve effective storage zone reaction parameters, given the model formulations. Simulations of reactive solutes are shown to be equally sensitive to transport parameters and effective reaction parameters of the model, evidence of the control of physical transport on reactive solute dynamics. Similar to conservative transport analysis, reactive solute simulations appear to be most sensitive to data collected during the rising and falling limb of the concentration breakthrough curve. ?? 2005 Elsevier Ltd. All rights reserved.

  15. Reactive multiphase flow simulation workshop summary

    SciTech Connect

    VanderHeyden, W.B.

    1995-09-01

    A workshop on computer simulation of reactive multiphase flow was held on May 18 and 19, 1995 in the Computational Testbed for Industry at Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. Approximately 35 to 40 people attended the workshop. This included 21 participants from 12 companies representing the petroleum, chemical, environmental and consumer products industries, two representatives from the DOE Office of Industrial Technologies and several from Los Alamos. The dialog at the meeting suggested that reactive multiphase flow simulation represents an excellent candidate for government/industry/academia collaborative research. A white paper on a potential consortium for reactive multiphase flow with input from workshop participants will be issued separately.

  16. Simulation of SBWR startup transient and stability

    SciTech Connect

    Cheng, H.S.; Khan, H.J.; Rohatgi, U.S.

    1998-06-01

    The Simplified Boiling Water Reactor (SBWR) designed by General Electric is a natural circulation reactor with enhanced safety features for potential accidents. It has a strong coupling between power and flow in the reactor core, hence the neutronic coupling with thermal-hydraulics is specially important. The potential geysering instability during the early part of a SBWR startup at low flow, low power and low pressure is of particular concern. The RAMONA-4B computer code developed at Brookhaven National Laboratory (BNL) for the SBWR has been used to simulate a SBWR startup transient and evaluate its stability, using a simplified four-channel representation of the reactor core for the thermal-hydraulics. This transient was run for 20,000 sec (5.56 hrs) in order to cover the essential aspect of the SBWR startup. The simulation showed that the SBWR startup was a very challenging event to analyze as it required accurate modeling of the thermal-hydraulics at low pressures. This analysis did not show any geysering instability during the startup, following the startup procedure as proposed by GE.

  17. Direct Numerical Simulations of Transient Dispersion

    NASA Astrophysics Data System (ADS)

    Porter, M.; Valdes-Parada, F.; Wood, B.

    2008-12-01

    Transient dispersion is important in many engineering applications, including transport in porous media. A common theoretical approach involves upscaling the micro-scale mass balance equations for convection- diffusion to macro-scale equations that contain effective medium quantities. However, there are a number of assumptions implicit in the various upscaling methods. For example, results obtained from volume averaging are often dependent on a given set of length and time scale constraints. Additionally, a number of the classical models for dispersion do not fully capture the early-time dispersive behavior of the solute for a general set of initial conditions. In this work, we present direct numerical simulations of micro-scale transient mass balance equations for convection-diffusion in both capillary tubes and porous media. Special attention is paid to analysis of the influence of a new time- decaying coefficient that filters the effects of the initial conditions. The direct numerical simulations were compared to results obtained from solving the closure problem associated with volume averaging. These comparisons provide a quantitative measure of the significance of (1) the assumptions implicit in the volume averaging method and (2) the importance of the early-time dispersive behavior of the solute due to various initial conditions.

  18. Buckybomb: Reactive Molecular Dynamics Simulation.

    PubMed

    Chaban, Vitaly V; Fileti, Eudes Eterno; Prezhdo, Oleg V

    2015-03-01

    Energetic materials, such as explosives, propellants, and pyrotechnics, are widely used in civilian and military applications. Nanoscale explosives represent a special group because of the high density of energetic covalent bonds. The reactive molecular dynamics (ReaxFF) study of nitrofullerene decomposition reported here provides a detailed chemical mechanism of explosion of a nanoscale carbon material. Upon initial heating, C60(NO2)12 disintegrates, increasing temperature and pressure by thousands of Kelvins and bars within tens of picoseconds. The explosion starts with NO2 group isomerization into C-O-N-O, followed by emission of NO molecules and formation of CO groups on the buckyball surface. NO oxidizes into NO2, and C60 falls apart, liberating CO2. At the highest temperatures, CO2 gives rise to diatomic carbon. The study shows that the initiation temperature and released energy depend strongly on the chemical composition and density of the material. PMID:26262672

  19. Simulation of centrifugal compressor transient performance for process plant applications

    SciTech Connect

    MacDougal, I.; Elder, R.L.

    1983-01-01

    The development of a theoretical model capable of simulating centrifugal compressor transient performance (including compressor surge) is detailed. Simulation results from a Fortran computer program are compared with measured compressor transient data. Good simulation of compressor transients between stable operating points, and compressor presurge flow oscillations has been obtained. General application criteria are presented for the geometric distribution of model elements within a compressor system. Model applications and future work are outlined.

  20. Simulation Prediction of Transient Dropwise Condensation

    NASA Astrophysics Data System (ADS)

    Macner, Ashley; Daniel, Susan; Steen, Paul

    2014-11-01

    In order to design effective surfaces for large-scale dropwise condensation, an understanding of how surface functionalization affects drop growth and coalescence is needed. The long term technological goal is a set of design conditions to help NASA achieve maximum heat transfer rates of waste heat generated from electronics and habitable environments under microgravity conditions. Prediction of condenser surface heat transfer performance requires accurate simulation and modeling of the evolution of populations of drops in time. At shorter times, drops are primarily isolated and grow mainly by condensation onto the liquid-gas interface. At longer times, drops grow mainly by coalescence with neighbors. Simulation of dropwise condensation on a neutrally wetting surface and comparison with our previous experimental results is reported. A steady-state single drop conduction model is empirically fitted to determine a temperature profile that captures the drop size evolution. The simulation accurately predicts the continuous time evolution of number-density of drops, drop-size distributions, total condensate volume, fractional coverage, and median drop-size for both transient and steady states, all with no free parameters. This work was supported by a NASA Office of the Chief Technologist's Space Technology Research Fellowship.

  1. Assessment of reactivity transient experiments with high burnup fuel

    SciTech Connect

    Ozer, O.; Yang, R.L.; Rashid, Y.R.; Montgomery, R.O.

    1996-03-01

    A few recent experiments aimed at determining the response of high-burnup LWR fuel during a reactivity initiated accident (RIA) have raised concerns that existing failure criteria may be inappropriate for such fuel. In particular, three experiments (SPERT CDC-859, NSRR HBO-1 and CABRI REP Na-1) appear to have resulted in fuel failures at only a fraction of the anticipated enthalpy levels. In evaluating the results of such RIA simulation experiments, however, it is necessary that the following two key considerations be taken into account: (1) Are the experiments representative of conditions that LWR fuel would experience during an in-reactor RIA event? (2) Is the fuel that is being utilized in the tests representative of the present (or anticipated) population of LWR fuel? Conducting experiments under conditions that can not occur in-reactor can trigger response modes that could not take place during in-reactor operation. Similarly, using unrepresentative fuel samples for the tests will produce failure information that is of limited relevance to commercial LWR fuel. This is particularly important for high-burnup fuel since the manner under which the test samples are base-irradiated prior to the test will impact the mechanical properties of the cladding and will therefore affect the RIA response. A good example of this effect can be seen in the results of the SPERT CDC-859 test and in the NSRR JM-4 and JM-5 tests. The conditions under which the fuel used for these tests was fabricated and/or base-irradiated prior to the RIA pulse resulted in the formation of multiple cladding defects in the form of hydride blisters. When this fuel was subjected to the RIA power pulse, it failed by developing multiple cracks that were closely correlated with the locations of the pre-existing hydride blisters. In the case of the JM tests, many of the cracks formed within the blisters themselves and did not propagate beyond the heavily hydrided regions.

  2. Interpretation of TRIGA reactivity transients with RELAP5/PARCS coupled-code

    SciTech Connect

    Bandini, G.; Meloni, P.; Polidori, M.

    2006-07-01

    In the frame of future experiments to carried out upon TRIGA reactors, which aim to verify the real feasibility of the ADS (Accelerator Driven System) concept, it is essential to build a numerical tool able to simulate the dynamic behaviour of the reactor in subcritical configuration. This model developed to support the design of subcritical experiments and the safety analysis of the reactor, as a first step has to be assessed against the experimental data available for the critical reactor. To this purpose the thermal-hydraulic/ neutronic numerical model based on the RELAP5/PARCS coupled-code is been tested against the experimental reactivity transients conducted on the RC1-TRIGA reactor at the ENEA Casaccia Research Center in forecast of the TRADE (TRIGA Accelerator Driven Experiment) subcritical experience. The results of the calculations already performed show a qualitative good agreement with the experimental data and allow to address the future developments and improvements of the numerical model. (authors)

  3. Automated Fluid Feature Extraction from Transient Simulations

    NASA Technical Reports Server (NTRS)

    Haimes, Robert; Lovely, David

    1999-01-01

    In the past, feature extraction and identification were interesting concepts, but not required to understand the underlying physics of a steady flow field. This is because the results of the more traditional tools like iso-surfaces, cuts and streamlines were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of much interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snap-shot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments like pV3). And methods must be developed to abstract the feature and display it in a manner that physically makes sense. The following is a list of the important physical phenomena found in transient (and steady-state) fluid flow: (1) Shocks, (2) Vortex cores, (3) Regions of recirculation, (4) Boundary layers, (5) Wakes. Three papers and an initial specification for the (The Fluid eXtraction tool kit) FX Programmer's guide were included. The papers, submitted to the AIAA Computational Fluid Dynamics Conference, are entitled : (1) Using Residence Time for the Extraction of Recirculation Regions, (2) Shock Detection from Computational Fluid Dynamics results and (3) On the Velocity Gradient Tensor and Fluid Feature Extraction.

  4. Automated Fluid Feature Extraction from Transient Simulations

    NASA Technical Reports Server (NTRS)

    Haimes, Robert

    1998-01-01

    In the past, feature extraction and identification were interesting concepts, but not required to understand the underlying physics of a steady flow field. This is because the results of the more traditional tools like iso-surfaces, cuts and streamlines were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of much interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one 'snap-shot' of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments like pV3). And methods must be developed to abstract the feature and display it in a manner that physically makes sense. The following is a list of the important physical phenomena found in transient (and steady-state) fluid flow: Shocks; Vortex ores; Regions of Recirculation; Boundary Layers; Wakes.

  5. Exploring the transient sky: from surveys to simulations

    NASA Astrophysics Data System (ADS)

    Carbone, Dario

    2016-01-01

    The transient sky is very important to study the dynamics of the Universe on human timescales. Transient sources are seen in every band of the electromagnetic spectrum, from low radio frequencies to gamma-ray energies, and produced by nearby flare stars to cosmological gamma-ray bursts.We have performed a transient survey of four different fields with the LOw Frequency Array (LOFAR) at 150 MHz. LOFAR is a new generation radio interferometer which is observing at very low radio frequencies, a so far relatively unexplored frequency domain for transient searches. No credible transients were detected in our survey, but we were able to set stringent upper limits on the transient surface density using three new statistical methods. We also calculated the transient surface density as a function of the timescale of the transients, and established that the upper limits we can set vary up to two orders of magnitude for different timescales.We have explored the complex relation between flux density, timescale and transient surface density, and developed a simulation method to calculate the transient rate as a function of both the flux and the duration of transients for different shapes of their lightcurves and for a given observing strategy. This method is independent of the nature of transient sources, and the instrument or the frequency of the observations. Therefore, this provides a tool for transient surveys carried out by current and future observatories across the electromagnetic spectrum.

  6. Reactive programming of simulations in physics

    NASA Astrophysics Data System (ADS)

    Boussinot, Frédéric; Monasse, Bernard; Susini, Jean-Ferdy

    2015-04-01

    We consider the Reactive Programming (RP) approach to simulate physical systems. The choice of RP is motivated by the fact that RP genuinely offers logical parallelism, instantaneously broadcast events, and dynamic creation/destruction of parallel components and events. To illustrate our approach, we consider the implementation of a system of Molecular Dynamics, in the context of Java with the Java3D library for 3D visualization.

  7. Numerical simulations of reactive flows in ram accelerators

    NASA Astrophysics Data System (ADS)

    Li, C.; Landsberg, A. M.; Kailasanath, K.; Oran, E. S.; Boris, J. P.

    1992-10-01

    Reactive flows around accelerating projectiles in ram accelerators are numerically simulated using a newly developed code for time-dependent flows in noninertial frames. Two different modes of operations, the thermally choked mode and the superdetonative mode have been investigated. The simulations show that, in both modes, a significant acceleration (up to 10(exp 5) g) can be achieved with projectiles of different shapes in various hydrogen-oxygen-nitrogen mixtures. However, the flow field is highly transient and the thrust on the projectile is unsteady. In the thermally choked mode, the unsteadiness is caused by the rapid acceleration of the projectile and large-scale, vortical flow structures generated in or near the recirculation region behind the projectile. In the superdetonative mode, the unsteadiness is mainly caused by the accelerating projectile.

  8. Code System For Calculating Reactivity Transients In a LWR.

    Energy Science and Technology Software Center (ESTSC)

    1999-03-16

    Version 00 RETRANS is appropriate to calculate power excursions in light water reactors initiated by reactivity insertions due to withdrawal of control elements. The neutron physical model is based on the time-dependent two-group neutron diffusion equations. The equation of state of the coolant is approximated by a table built into the code. RETRANS solves the heat conduction equation and calculates the heat transfer coefficient for representative fuel rods at each time-step.

  9. A Monolithic Multi-Time-Step Computational Framework for Transient Advective-Diffusive-Reactive Systems

    NASA Astrophysics Data System (ADS)

    Karimi, S.; Nakshatrala, K. B.

    2014-12-01

    Advection-Diffusion-Reaction (ADR) equations play a crucial role in simulating numerous geo- physical phenomena. It is well-known that the solution to these equations exhibit disparate spatial and temporal scales. These mathematical scales occur due to relative dominance of either advec- tion, diffusion, or reaction processes. Hence, in a careful simulation, one has to choose appropriate time-integrators, time-steps, and numerical formulations for spatial discretization. Multi-time-step coupling methods allow specific choice of integration methods (either temporal or spatial) in dif- ferent regions of the spatial domain. In recent years, most of the attempts to design monolithic multi-time-step frameworks favored second-order transient systems in structural dynamics. In this presentation, we will introduce monolithic multi-time-step computational frameworks for ADR equations. These methods are based on the theory of differential/algebraic equations. We shall also provide an overview of results from stability analysis, study of drift from compatibility con- straints, and analysis of influence of perturbations. Several benchmark problems will be utilized to demonstrate the theoretical findings and features of the proposed frameworks. Finally, application of the proposed methods to fast bimolecular reactive systems will be shown.

  10. Large liquid rocket engine transient performance simulation system

    NASA Technical Reports Server (NTRS)

    Mason, J. R.; Southwick, R. D.

    1991-01-01

    A simulation system, ROCETS, was designed and developed to allow cost-effective computer predictions of liquid rocket engine transient performance. The system allows a user to generate a simulation of any rocket engine configuration using component modules stored in a library through high-level input commands. The system library currently contains 24 component modules, 57 sub-modules and maps, and 33 system routines and utilities. FORTRAN models from other sources can be operated in the system upon inclusion of interface information on comment cards. Operation of the simulation is simplified for the user by run, execution, and output processors. The simulation system makes available steady-state trim balance, transient operation, and linear partial generation. The system utilizes a modern equation solver for efficient operation of the simulations. Transient integration methods include integral and differential forms for the trapezoidal, first order Gear, and second order Gear corrector equations. A detailed technology test bed engine (TTBE) model was generated to be used as the acceptance test of the simulation system. The general level of model detail was that reflected in the Space Shuttle Main Engine DTM. The model successfully obtained steady-state balance in main stage operation and simulated throttle transients, including engine starts and shutdown. A NASA FORTRAN control model was obtained, ROCETS interface installed in comment cards, and operated with the TTBE model in closed-loop transient mode.

  11. Advanced simulation study on bunch gap transient effect

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tetsuya; Akai, Kazunori

    2016-06-01

    Bunch phase shift along the train due to a bunch gap transient is a concern in high-current colliders. In KEKB operation, the measured phase shift along the train agreed well with a simulation and a simple analytical form in most part of the train. However, a rapid phase change was observed at the leading part of the train, which was not predicted by the simulation or by the analytical form. In order to understand the cause of this observation, we have developed an advanced simulation, which treats the transient loading in each of the cavities of the three-cavity system of the accelerator resonantly coupled with energy storage (ARES) instead of the equivalent single cavities used in the previous simulation, operating in the accelerating mode. In this paper, we show that the new simulation reproduces the observation, and clarify that the rapid phase change at the leading part of the train is caused by a transient loading in the three-cavity system of ARES. KEKB is being upgraded to SuperKEKB, which is aiming at 40 times higher luminosity than KEKB. The gap transient in SuperKEKB is investigated using the new simulation, and the result shows that the rapid phase change at the leading part of the train is much larger due to higher beam currents. We will also present measures to mitigate possible luminosity reduction or beam performance deterioration due to the rapid phase change caused by the gap transient.

  12. Reactive transport benchmarks for subsurface environmental simulation

    SciTech Connect

    Steefel, Carl I.; Yabusaki, Steven B.; Mayer, K. U.

    2015-06-01

    Over the last 20 years, we have seen firsthand the evolution of multicomponent reactive transport modeling and the expanding range and increasing complexity of subsurface applications it is being used to address. There is a growing reliance on reactive transport modeling (RTM) to address some of the most compelling issues facing our planet: climate change, nuclear waste management, contaminant remediation, and pollution prevention. While these issues are motivating the development of new and improved capabilities for subsurface environmental modeling using RTM (e.g., biogeochemistry from cell-scale physiology to continental-scale terrestrial ecosystems, nonisothermal multiphase conditions, coupled geomechanics), there remain longstanding challenges in characterizing the natural variability of hydrological, biological, and geochemical properties in subsurface environments and limited success in transferring models between sites and across scales. An equally important trend over the last 20 years is the evolution of modeling from a service sought out after data has been collected to a multifaceted research approach that provides (1) an organizing principle for characterization and monitoring activities; (2) a systematic framework for identifying knowledge gaps, developing and integrating new knowledge; and (3) a mechanistic understanding that represents the collective wisdom of the participating scientists and engineers. There are now large multidisciplinary projects where the research approach is model-driven, and the principal product is a holistic predictive simulation capability that can be used as a test bed for alternative conceptualizations of processes, properties, and conditions. Much of the future growth and expanded role for RTM will depend on its continued ability to exploit technological advancements in the earth and environmental sciences. Advances in measurement technology, particularly in molecular biology (genomics), isotope fractionation, and high

  13. Transient analysis and startup simulation of a thermionic space nuclear reactor system

    SciTech Connect

    El-Genk, M.S.; Xue, Huimin; Paramonov, D. . Dept. of Chemical and Nuclear Engineering)

    1994-01-01

    The thermionic transient analysis model is used to simulate the startup of the TOPAZ-2 space nuclear power system in orbit. The simulated startup procedures are assumed for the purpose of demonstrating the capabilities of the model and may not represent an accurate account of the actual startup procedures of the TOPAZ-2 system. The temperature reactivity feedback effects of the moderator, UO[sub 2] fuel, electrodes, coolant, and other components in the core are calculated, and their effects on the thermal and criticality conditions of the reactor are investigated. Also, estimates of the time constants of the temperature reactivity feedback for the UO[sub 2] fuel and the ZrH moderator during startup, as well as of the total temperature reactivity feedback as a function of the reactor steady-state thermal power, are obtained.

  14. An example of neutronic penalizations in reactivity transient analysis using 3D coupled chain HEMERA

    SciTech Connect

    Dubois, F.; Normand, B.; Sargeni, A.

    2012-07-01

    HEMERA (Highly Evolutionary Methods for Extensive Reactor Analyses), is a fully coupled 3D computational chain developed jointly by IRSN and CEA. It is composed of CRONOS2 (core neutronics, cross sections library from APOLLO2), FLICA4 (core thermal-hydraulics) and the system code CATHARE. Multi-level and multi-dimensional models are developed to account for neutronics, core thermal-hydraulics, fuel thermal analysis and system thermal-hydraulics, dedicated to best-estimate, conservative simulations and sensitivity analysis. In IRSN, the HEMERA chain is widely used to study several types of reactivity accidents and for sensitivity studies. Just as an example of the HEMERA possibilities, we present here two types of neutronic penalizations and their impact on a power transient due to a REA (Rod Ejection Accident): in the first one, we studied a bum-up distribution modification and in the second one, a delayed-neutron fraction modification. Both modifications are applied to the whole core or localized in a few assemblies. Results show that it is possible to use global or local changes but 1) in case of bum-up modification, the total core power can increase when assembly peak power decrease so, care has to be taken if the goal is to maximize a local power peak and 2) for delayed-neutron fraction, a local modification can have the same effect as the one on the whole core, provided that it is large enough. (authors)

  15. Simulation of SEU transients in CMOS ICs

    SciTech Connect

    Kaul, N.; Bhuva, B.L.; Kerns, S.E. )

    1991-12-01

    This paper reports that available analytical models of the number of single-event-induced errors (SEU) in combinational logic systems are not easily applicable to real integrated circuits (ICs). An efficient computer simulation algorithm set, SITA, predicts the vulnerability of data stored in and processed by complex combinational logic circuits to SEU. SITA is described in detail to allow researchers to incorporate it into their error analysis packages. Required simulation algorithms are based on approximate closed-form equations modeling individual device behavior in CMOS logic units. Device-level simulation is used to estimate the probability that ion-device interactions produce erroneous signals capable of propagating to a latch (or n output node), and logic-level simulation to predict the spread of such erroneous, latched information through the IC. Simulation results are compared to those from SPICE for several circuit and logic configurations. SITA results are comparable to this established circuit-level code, and SITA can analyze circuits with state-of-the-art device densities (which SPICE cannot). At all IC complexity levels, SITAS offers several factors of 10 savings in simulation time over SPICE.

  16. Automated Fluid Feature Extraction from Transient Simulations

    NASA Technical Reports Server (NTRS)

    Haimes, Robert

    2000-01-01

    In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like iso-surfaces, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one 'snap-shot' of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments like pV3). And methods must be developed to abstract the feature and display it in a manner that physically makes sense.

  17. Expression of neuron specific phosphatase, striatal enriched phosphatase (STEP) in reactive astrocytes after transient forebrain ischemia.

    PubMed

    Hasegawa, S; Morioka, M; Goto, S; Korematsu, K; Okamura, A; Yano, S; Kai, Y; Hamada, J I; Ushio, Y

    2000-02-15

    We studied the distribution and change of striatal enriched phosphatase (STEP) in the gerbil hippocampus after transient forebrain ischemia. STEP was expressed in the perikarya and in neuronal processes; it was not detected in non-neuronal cells of control animals. After 5-min forebrain ischemia, STEP immunoreactivity (STEP-IR) was preserved for 2 days; it disappeared 4 and more days after ischemia with completion of delayed neuronal death (DND) in the CA1 subfield. Furthermore, only in the CA1 after ischemia, STEP was expressed in reactive astrocytes for 4 to 28 days, showing different patterns of glial fibrillary acidic protein (GFAP)-positive reactive astrocytes. After non-or less-than lethal ischemia, STEP expression in reactive astrocytes corresponded with the degree of neuronal degeneration. Immunoblot analysis of the CA1 subfield revealed the expression of three isoforms, STEP45, -56 and -61; their expression patterns changed with time after ischemia. These data suggest that neuronal STEP is preserved until cell degeneration after ischemia and that STEP is expressed in reactive astrocytes only after lethal ischemia, with different expression patterns for its isoforms. Of STEP45, -56 and -61, STEP61 was the most strongly expressed in the reactive astrocytes; both STEP45 and -61 were expressed in neurons and the expression of STEP56 was weak. STEP may play an important role not only in neurons but also in reactive astrocytes after ischemia, depending on neuronal degeneration. PMID:10652442

  18. Experimental Validation of a Closed Brayton Cycle System Transient Simulation

    NASA Technical Reports Server (NTRS)

    Johnson, Paul K.; Hervol, David S.

    2006-01-01

    The Brayton Power Conversion Unit (BPCU) located at NASA Glenn Research Center (GRC) in Cleveland, Ohio was used to validate the results of a computational code known as Closed Cycle System Simulation (CCSS). Conversion system thermal transient behavior was the focus of this validation. The BPCU was operated at various steady state points and then subjected to transient changes involving shaft rotational speed and thermal energy input. These conditions were then duplicated in CCSS. Validation of the CCSS BPCU model provides confidence in developing future Brayton power system performance predictions, and helps to guide high power Brayton technology development.

  19. Experimental Validation of a Closed Brayton Cycle System Transient Simulation

    NASA Astrophysics Data System (ADS)

    Johnson, Paul K.; Hervol, David S.

    2006-01-01

    The Brayton Power Conversion Unit (BPCU) located at NASA Glenn Research Center (GRC) in Cleveland, OH was used to validate the results of a computational code known as Closed Cycle System Simulation (CCSS). Conversion system thermal transient behavior was the focus of this validation. The BPCU was operated at various steady state points and then subjected to transient changes involving shaft rotational speed and thermal energy input. These conditions were then duplicated in CCSS. Validation of the CCSS BPCU model provides confidence in developing future Brayton power system performance predictions, and helps to guide high power Brayton technology development.

  20. Accelerating transient simulation of linear reduced order models.

    SciTech Connect

    Thornquist, Heidi K.; Mei, Ting; Keiter, Eric Richard; Bond, Brad

    2011-10-01

    Model order reduction (MOR) techniques have been used to facilitate the analysis of dynamical systems for many years. Although existing model reduction techniques are capable of providing huge speedups in the frequency domain analysis (i.e. AC response) of linear systems, such speedups are often not obtained when performing transient analysis on the systems, particularly when coupled with other circuit components. Reduced system size, which is the ostensible goal of MOR methods, is often insufficient to improve transient simulation speed on realistic circuit problems. It can be shown that making the correct reduced order model (ROM) implementation choices is crucial to the practical application of MOR methods. In this report we investigate methods for accelerating the simulation of circuits containing ROM blocks using the circuit simulator Xyce.

  1. Advanced simulation of hydroelectric transient process with Comsol/Simulink

    NASA Astrophysics Data System (ADS)

    Li, L.; Yang, J. D.

    2010-08-01

    In the study of hydroelectric system, the research of its transient process and the improvement of its simulation accuracy are restricted mainly by the precision mismatch among the hydraulic and power system models. Simulink provides a very rich control and automation model library system, thus electrical and mechanical conditioning control systems can be accurately simulated. However, it can only solve time but spatial integral problem. Due to that cause, the hydraulic system model often needs to be simplified in course of the simulation of hydroelectric transient process. Comsol, a partial differential equation (PDEs)-based multi-physics finite element analysis software, can precisely simulate the hydraulic system model. Being developed in the Matlab environment, it also can seamlessly integrate with Simulink. In this paper, based on the individual component model, an integral hydraulic-mechanical-electric system model is established by implementing Comsol code into the Simulink S-Function. This model helps to study the interaction between the hydraulic system and the electric system, and analyze the transients of a hydro plant. Meanwhile the calculation results are compared and analyzed with the general simulation system only by using Simulink.

  2. Testing of an Integrated Reactor Core Simulator and Power Conversion System with Simulated Reactivity Feedback

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.

    2010-01-01

    A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, Ohio. This is a closed-cycle system that incorporates an electrically heated reactor core module, turboalternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.

  3. Testing of an Integrated Reactor Core Simulator and Power Conversion System with Simulated Reactivity Feedback

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.

    2009-01-01

    A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, OH. This is a closed-cycle system that incorporates an electrically heated reactor core module, turbo alternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.

  4. High-speed simulation of transients in nuclear power plants

    SciTech Connect

    Wulff, W.; Cheng, H.S.; Lekach, S.V.; Mallen, A.N.

    1984-01-01

    A combination of advanced modeling techniques and modern, special-purpose peripheral minicomputer technology is presented which affords realistic predictions of plant transient and severe off-normal events in LWR power plants through on-line simulations at a speed ten times greater than actual process speeds. Results are shown for a BWR plant simulation. Results are shown to demonstrate computing capacity, accuracy, and speed. Simulation speeds have been achieved which are 110 times larger than those of a CDC-7600 mainframe computer or ten times greater than real-time speed.

  5. Transient optical diffraction of GaN/aqueous interfaces: Interfacial carrier mobility dependence on surface reactivity

    NASA Astrophysics Data System (ADS)

    Doan, Hoang Q.; Pollock, Kevin L.; Cuk, Tanja

    2016-04-01

    While charge transport and surface reactivity have thus far been treated as independent phenomena, the interfacial carrier mobility could be highly dependent on reaction intermediates that carry localized charge and can hop from site to site along the surface. Here, we demonstrate the use of surface sensitive transient optical grating spectroscopy to measure this lateral, interfacial carrier diffusivity at surfaces with different reactivity. We find that for n-GaN, for which substantial charge transfer occurs during equilibration with the water oxidation reaction, the interfacial hole diffusivity increases from air by a factor greater than two under 0.1 M HBr and 0.1 M Na2SO4 aqueous electrolytes.

  6. Reactive Oxygen Species (ROS) generation by lunar simulants

    NASA Astrophysics Data System (ADS)

    Kaur, Jasmeet; Rickman, Douglas; Schoonen, Martin A.

    2016-05-01

    The current interest in human exploration of the Moon and past experiences of Apollo astronauts has rekindled interest into the possible harmful effects of lunar dust on human health. In comparison to the Apollo-era explorations, human explorers may be weeks on the Moon, which will raise the risk of inhalation exposure. The mineralogical composition of lunar dust is well documented, but its effects on human health are not fully understood. With the aim of understanding the reactivity of dusts that may be encountered on geologically different lunar terrains, we have studied Reactive Oxygen Species (ROS) generation by a suite of lunar simulants of different mineralogical-chemical composition dispersed in water and Simulated Lung Fluid (SLF). To further explore the reactivity of simulants under lunar environmental conditions, we compared the reactivity of simulants both in air and inert atmosphere. As the impact of micrometeorites with consequent shock-induced stresses is a major environmental factor on the Moon, we also studied the effect of mechanical stress on samples. Mechanical stress was induced by hand crushing the samples both in air and inert atmosphere. The reactivity of samples after crushing was analyzed for a period of up to nine days. Hydrogen peroxide (H2O2) in water and SLF was analyzed by an in situ electrochemical probe and hydroxyl radical (•OH) by Electron Spin Resonance (ESR) spectroscopy and Adenine probe. Out of all simulants, CSM-CL-S was found to be the most reactive simulant followed by OB-1 and then JSC-1A simulant. The overall reactivity of samples in the inert atmosphere was higher than in air. Fresh crushed samples showed a higher level of reactivity than uncrushed samples. Simulant samples treated to create agglutination, including the formation of zero-valent iron, showed less reactivity than untreated simulants. ROS generation in SLF is initially slower than in deionized water (DI), but the ROS formation is sustained for as long as 7

  7. Transient Climate Simulation of the last deglaciation in CCSM3

    SciTech Connect

    He, Feng; Erickson III, David J; Jacob, Robert L.

    2009-12-01

    We conducted the first synchronously coupled atmosphere-ocean general circulation model simulation of global climate evolution of the last deglaciation (21,000-10,000 years ago) using the NCAR CCSM3. With realistic climate forcings associated with greenhouse gasses, orbital forcing and continental ice sheet, as well as a reasonable melting water forcing, our model reproduces some major deglacial climate features, such as the H1 event, the BA warming and the YD event. A preliminary model-data comparison shows a global climate evolution largely consistent with the reconstruction. The magnitude of our model climate responses are largely consistent with the reconstruction, suggesting a good agreement between observed and modeled climate sensitivity. In contrast to previous simulations of intermediate climate models, our model AMOC has little hysteresis. As a result, the model simulates the abrupt onset of the BA warming and the abrupt termination of the YD cooling as transient responses of the Atlantic meridional overturning circulation (AMOC) to abrupt terminations of freshwater discharges. Further implications to transient model-data comparison will also be discussed.

  8. Simulator predicts transient flow for Malaysian subsea pipeline

    SciTech Connect

    Inayat-Hussain, A.A.; Ayob, M.S.; Zain, A.B.M.

    1996-04-15

    In a step towards acquiring in-house capability in multiphase flow technology, Petronas Research and Scientific Services Sdn. Bhd., Kuala Lumpur, has developed two-phase flow simulation software for analyzing slow gas-condensate transient flow. Unlike its general-purpose contemporaries -- TACITE, OLGA, Traflow (OGJ, Jan. 3, 1994, p. 42; OGJ, Jan. 10, 1994, p. 52), and PLAC (AEA Technology, U.K.) -- ABASs is a dedicated software for slow transient flows generated during pigging operations in the Duyong network, offshore Malaysia. This network links the Duyong and Bekok fields to the onshore gas terminal (OGT) on the east coast of peninsular Malaysia. It predicts the steady-state pressure drop vs. flow rates, condensate volume in the network, pigging dynamics including volume of produced slug, and the condensate build-up following pigging. The predictions of ABASs have been verified against field data obtained from the Duyong network. Presented here is an overview of the development, verification, and application of the ABASs software. Field data are presented for verification of the software, and several operational scenarios are simulated using the software. The field data and simulation study documented here will provide software users and developers with a further set of results on which to benchmark their own software and two-phase pipeline operating guidelines.

  9. Simulation of transient infrared spectra of a photoswitchable peptide.

    PubMed

    Kobus, Maja; Lieder, Martin; Nguyen, Phuong H; Stock, Gerhard

    2011-12-14

    In transient infrared (IR) experiments, a molecular system may be photoexcited in a nonstationary conformational state, whose time evolution is monitored via IR spectroscopy with high temporal and structural resolution. As a theoretical formulation of these experiments, this work derives explicit expressions for transient one- and two-dimensional IR spectra and discusses various levels of approximation and sampling strategies. Adopting a photoswitchable octapeptide in water as a representative example, nonequilibrium molecular dynamics simulations are performed and the photoinduced conformational dynamics and associated IR spectra are discussed in detail. Interestingly, it is found that the time scales of dynamics and spectra may differ from residue to residue by up to an order of magnitude. Considering merely the cumulative spectrum of all residues, the contributions of the individual residues largely compensate each other, which may explain the surprisingly small frequency shifts and short photoproduct rise times found in experiment. Even when a localized amide I mode is probed (e.g., via isotope labeling), the vibrational frequency shift is shown to depend in a complicated way on the conformation of the entire peptide as well as on the interaction with the solvent. In this context, various issues concerning the interpretation of transient IR spectra and conformational dynamics in terms of a few exponential time scales are discussed. PMID:22168727

  10. Thermodynamic and kinetic simulation of transient liquid-phase bonding

    NASA Astrophysics Data System (ADS)

    Lindner, Brad

    The use of numeric computational methods for the simulation of materials systems is becoming more prevalent and an understanding of these tools may soon be a necessity for Materials Engineers and Scientists. The applicability of numerical simulation methods to transient liquid-phase (TLP) bonding is evaluated using a type 316L/MBF-51 material system. The comparisons involve the calculation of bulk diffusivities, tracking of interface positions during dissolution, widening, and isothermal solidification stages, as well as comparison of elemental composition profiles. The simulations were performed with Thermo-Calc and DICTRA software packages and the experiments with differential scanning calorimetry (DSC), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and optical microscopic methods. Analytical methods are also discussed to enhance understanding. The results of the investigation show that while general agreement between simulations and experiments can be obtained, assumptions made with the simulation programs may cause difficulty in interpretation of the results unless the user has sufficient, mathematical, thermodynamic, kinetic, and simulation background.

  11. Numerical simulation of transient hypervelocity flow in an expansion tube

    NASA Technical Reports Server (NTRS)

    Jacobs, P. A.

    1992-01-01

    Several numerical simulations of the transient flow of helium in an expansion tube are presented. The aim of the exercise is to provide further information on the operational problems of the NASA Langley expansion tube. The calculations were performed with an axisymmetric Navier-Stokes code based on a finite-volume formulation and upwinding techniques. Although laminar flow and ideal bursting of the diaphragms was assumed, the simulations showed some of the important features seen in the experiments. In particular, the discontinuity in the tube diameter at the primary diaphragm station introduced a transverse perturbation to the expanding driver gas, and this perturbation was seen to propagate into the test gas under some flow conditions. The disturbances seen in the test flow can be characterized as either 'small-amplitude' noise possibly introduced during shock compression or 'large-amplitude' noise associated with the passage of the reflected head of the unsteady expansion.

  12. Numerical simulation of transient hypervelocity flow in an expansion tube

    NASA Technical Reports Server (NTRS)

    Jacobs, P. A.

    1992-01-01

    Several numerical simulations of the transient flow of helium in an expansion tube are presented in an effort to identify some of the basic mechanisms which cause the noisy test flows seen in experiments. The calculations were performed with an axisymmetric Navier-Stokes code based on a finite volume formulation and upwinding techniques. Although laminar flow and ideal bursting of the diaphragms was assumed, the simulations showed some of the important features seen in experiments. In particular, the discontinuity in tube diameter of the primary diaphragm station introduced a transverse perturbation to the expanding driver gas and this perturbation was seen to propagate into the test gas under some flow conditions. The disturbances seen in the test flow can be characterized as either small amplitude, low frequency noise possibly introduced during shock compression or large amplitude, high frequency noise associated with the passage of the reflected head of the unsteady expansion.

  13. Simulations of Transient Phenomena in Liquid Rocket Feed Systems

    NASA Technical Reports Server (NTRS)

    Ahuja, V.; Hosangadi, A.; Cavallo, P. A.; Daines, R.

    2006-01-01

    Valve systems in rocket propulsion systems and testing facilities are constantly subject to dynamic events resulting from the timing of valve motion leading to unsteady fluctuations in pressure and mass flow. Such events can also be accompanied by cavitation, resonance, system vibration leading to catastrophic failure. High-fidelity dynamic computational simulations of valve operation can yield important information of valve response to varying flow conditions. Prediction of transient behavior related to valve motion can serve as guidelines for valve scheduling, which is of crucial importance in engine operation and testing. Feed components operating in cryogenic regimes can also experience cavitation based instabilities leading to large scale shedding of vapor clouds and pressure oscillations. In this paper, we present simulations of the diverse unsteady phenomena related to valve and feed systems that include valve stall, valve timing studies as well as two different forms of cavitation instabilities in components utilized in the test loop.

  14. Network Flow Simulation of Fluid Transients in Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, Alak; Hamill, Brian; Ramachandran, Narayanan; Majumdar, Alok

    2011-01-01

    Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicle propulsion systems. These transients often occur at system activation and shutdown. The pressure rise due to sudden opening and closing of valves of propulsion feed lines can cause serious damage during activation and shutdown of propulsion systems. During activation (valve opening) and shutdown (valve closing), pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. In the current work, a network flow simulation software (Generalized Fluid System Simulation Program) based on Finite Volume Method has been used to predict the pressure surges in the feed line due to both valve closing and valve opening using two separate geometrical configurations. The valve opening pressure surge results are compared with experimental data available in the literature and the numerical results compared very well within reasonable accuracy (< 5%) for a wide range of inlet-to-initial pressure ratios. A Fast Fourier Transform is preformed on the pressure oscillations to predict the various modal frequencies of the pressure wave. The shutdown problem, i.e. valve closing problem, the simulation results are compared with the results of Method of Characteristics. Most rocket engines experience a longitudinal acceleration, known as "pogo" during the later stage of engine burn. In the shutdown example problem, an accumulator has been used in the feed system to demonstrate the "pogo" mitigation effects in the feed system of propellant. The simulation results using GFSSP compared very well with the results of Method of Characteristics.

  15. Coke Reactivity in Simulated Blast Furnace Shaft Conditions

    NASA Astrophysics Data System (ADS)

    Haapakangas, Juho; Suopajärvi, Hannu; Iljana, Mikko; Kemppainen, Antti; Mattila, Olli; Heikkinen, Eetu-Pekka; Samuelsson, Caisa; Fabritius, Timo

    2016-08-01

    Despite the fact that H2 and H2O are always present in the gas atmosphere of a blast furnace shaft, their role in the solution-loss reactions of coke has not been thoroughly examined. This study focuses on how H2 and H2O affect the reaction behavior and whether a strong correlation can be found between reactivity in the conditions of the CRI test (Coke Reactivity Index) and various simulated blast furnace shaft gas atmospheres. Partial replacement of CO/CO2 with H2/H2O was found to significantly increase the reactivity of all seven coke grades at 1373 K (1100 °C). H2 and H2O, however, did not have a significant effect on the threshold temperature of gasification. The reactivity increasing effect was found to be temperature dependent and clearly at its highest at 1373 K (1100 °C). Mathematical models were used to calculate activation energies for the gasification, which were notably lower for H2O gasification compared to CO2 indicating the higher reactivity of H2O. The reactivity results in gas atmospheres with CO2 as the sole gasifying component did not directly correlate with reactivity results in gases also including H2O, which suggests that the widely used CRI test is not entirely accurate for estimating coke reactivity in the blast furnace.

  16. Coke Reactivity in Simulated Blast Furnace Shaft Conditions

    NASA Astrophysics Data System (ADS)

    Haapakangas, Juho; Suopajärvi, Hannu; Iljana, Mikko; Kemppainen, Antti; Mattila, Olli; Heikkinen, Eetu-Pekka; Samuelsson, Caisa; Fabritius, Timo

    2016-04-01

    Despite the fact that H2 and H2O are always present in the gas atmosphere of a blast furnace shaft, their role in the solution-loss reactions of coke has not been thoroughly examined. This study focuses on how H2 and H2O affect the reaction behavior and whether a strong correlation can be found between reactivity in the conditions of the CRI test (Coke Reactivity Index) and various simulated blast furnace shaft gas atmospheres. Partial replacement of CO/CO2 with H2/H2O was found to significantly increase the reactivity of all seven coke grades at 1373 K (1100 °C). H2 and H2O, however, did not have a significant effect on the threshold temperature of gasification. The reactivity increasing effect was found to be temperature dependent and clearly at its highest at 1373 K (1100 °C). Mathematical models were used to calculate activation energies for the gasification, which were notably lower for H2O gasification compared to CO2 indicating the higher reactivity of H2O. The reactivity results in gas atmospheres with CO2 as the sole gasifying component did not directly correlate with reactivity results in gases also including H2O, which suggests that the widely used CRI test is not entirely accurate for estimating coke reactivity in the blast furnace.

  17. Cerebral vasomotor reactivity: steady-state versus transient changes in carbon dioxide tension.

    PubMed

    Brothers, R Matthew; Lucas, Rebekah A I; Zhu, Yong-Sheng; Crandall, Craig G; Zhang, Rong

    2014-11-01

    Cerebral vasomotor reactivity (CVMR) to changes in arterial carbon dioxide tension (P aCO 2) is assessed during steady-state or transient changes in P aCO 2. This study tested the following two hypotheses: (i) that CVMR during steady-state changes differs from that during transient changes in P aCO 2; and (ii) that CVMR during rebreathing-induced hypercapnia would be blunted when preceded by a period of hyperventilation. For each hypothesis, end-tidal carbon dioxide tension (P ET , CO 2) middle cerebral artery blood velocity (CBFV), cerebrovascular conductance index (CVCI; CBFV/mean arterial pressure) and CVMR (slope of the linear regression between changes in CBFV and CVCI versus P ET , CO 2) were assessed in eight individuals. To address the first hypothesis, measurements were made during the following two conditions (randomized): (i) steady-state increases in P ET , CO 2 of 5 and 10 Torr above baseline; and (ii) rebreathing-induced transient breath-by-breath increases in P ET , CO 2. The linear regression for CBFV versus P ET , CO 2 (P = 0.65) and CVCI versus P ET , CO 2 (P = 0.44) was similar between methods; however, individual variability in CBFV or CVCI responses existed among subjects. To address the second hypothesis, the same measurements were made during the following two conditions (randomized): (i) immediately following a brief period of hypocapnia induced by hyperventilation for 1 min followed by rebreathing; and (ii) during rebreathing only. The slope of the linear regression for CBFV versus P ET , CO 2 (P < 0.01) and CVCI versus P ET , CO 2 (P < 0.01) was reduced during hyperventilation plus rebreathing relative to rebreathing only. These results indicate that cerebral vasomotor reactivity to changes in P aCO 2 is similar regardless of the employed methodology to induce changes in P aCO 2 and that hyperventilation-induced hypocapnia attenuates the cerebral vasodilatory responses during a subsequent period of rebreathing

  18. Reactivity of simulated lunar material with fluorine

    NASA Technical Reports Server (NTRS)

    Odonnell, P. M.

    1972-01-01

    Simulated lunar surface material was caused to react with fluorine to determine the feasibility of producing oxygen by this method. The maximum total fluorine pressure used was 53.3 kilonewtons per square meter (400 torr) at temperatures up to 523 K (250 C). Postreaction analysis of both the gas and solid phases indicated that the reaction is feasible but that the efficiency is only about 4 percent of that predicted by theory.

  19. Optimal subinterval selection approach for power system transient stability simulation

    DOE PAGESBeta

    Kim, Soobae; Overbye, Thomas J.

    2015-10-21

    Power system transient stability analysis requires an appropriate integration time step to avoid numerical instability as well as to reduce computational demands. For fast system dynamics, which vary more rapidly than what the time step covers, a fraction of the time step, called a subinterval, is used. However, the optimal value of this subinterval is not easily determined because the analysis of the system dynamics might be required. This selection is usually made from engineering experiences, and perhaps trial and error. This paper proposes an optimal subinterval selection approach for power system transient stability analysis, which is based on modalmore » analysis using a single machine infinite bus (SMIB) system. Fast system dynamics are identified with the modal analysis and the SMIB system is used focusing on fast local modes. An appropriate subinterval time step from the proposed approach can reduce computational burden and achieve accurate simulation responses as well. As a result, the performance of the proposed method is demonstrated with the GSO 37-bus system.« less

  20. Optimal subinterval selection approach for power system transient stability simulation

    SciTech Connect

    Kim, Soobae; Overbye, Thomas J.

    2015-10-21

    Power system transient stability analysis requires an appropriate integration time step to avoid numerical instability as well as to reduce computational demands. For fast system dynamics, which vary more rapidly than what the time step covers, a fraction of the time step, called a subinterval, is used. However, the optimal value of this subinterval is not easily determined because the analysis of the system dynamics might be required. This selection is usually made from engineering experiences, and perhaps trial and error. This paper proposes an optimal subinterval selection approach for power system transient stability analysis, which is based on modal analysis using a single machine infinite bus (SMIB) system. Fast system dynamics are identified with the modal analysis and the SMIB system is used focusing on fast local modes. An appropriate subinterval time step from the proposed approach can reduce computational burden and achieve accurate simulation responses as well. As a result, the performance of the proposed method is demonstrated with the GSO 37-bus system.

  1. The Multiscale Material Point Method for Simulating Transient Responses

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Su, Yu-Chen; Zhang, Hetao; Jiang, Shan; Sewell, Thomas

    2015-06-01

    To effectively simulate multiscale transient responses such as impact and penetration without invoking master/slave treatment, the multiscale material point method (Multi-MPM) is being developed in which molecular dynamics at nanoscale and dissipative particle dynamics at mesoscale might be concurrently handled within the framework of the original MPM at microscale (continuum level). The proposed numerical scheme for concurrently linking different scales is described in this paper with simple examples for demonstration. It is shown from the preliminary study that the mapping and re-mapping procedure used in the original MPM could coarse-grain the information at fine scale and that the proposed interfacial scheme could provide a smooth link between different scales. Since the original MPM is an extension from computational fluid dynamics to solid dynamics, the proposed Multi-MPM might also become robust for dealing with multiphase interactions involving failure evolution. This work is supported in part by DTRA and NSFC.

  2. Transient productivity index for numerical well test simulations

    SciTech Connect

    Blanc, G.; Ding, D.Y.; Ene, A.

    1997-08-01

    The most difficult aspect of numerical simulation of well tests is the treatment of the Bottom Hole Flowing (BHF) Pressure. In full field simulations, this pressure is derived from the Well-block Pressure (WBP) using a numerical productivity index which accounts for the grid size and permeability, and for the well completion. This productivity index is calculated assuming a pseudo-steady state flow regime in the vicinity of the well and is therefore constant during the well production period. Such a pseudo-steady state assumption is no longer valid for the early time of a well test simulation as long as the pressure perturbation has not reached several grid-blocks around the well. This paper offers two different solutions to this problem: (1) The first one is based on the derivation of a Numerical Transient Productivity Index (NTPI) to be applied to Cartesian grids; (2) The second one is based on the use of a Corrected Transmissibility and Accumulation Term (CTAT) in the flow equation. The representation of the pressure behavior given by both solutions is far more accurate than the conventional one as shown by several validation examples which are presented in the following pages.

  3. Simulations of reactive transport and precipitation with smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Tartakovsky, Alexandre M.; Meakin, Paul; Scheibe, Timothy D.; Eichler West, Rogene M.

    2007-03-01

    A numerical model based on smoothed particle hydrodynamics (SPH) was developed for reactive transport and mineral precipitation in fractured and porous materials. Because of its Lagrangian particle nature, SPH has several advantages for modeling Navier-Stokes flow and reactive transport including: (1) in a Lagrangian framework there is no non-linear term in the momentum conservation equation, so that accurate solutions can be obtained for momentum dominated flows and; (2) complicated physical and chemical processes such as surface growth due to precipitation/dissolution and chemical reactions are easy to implement. In addition, SPH simulations explicitly conserve mass and linear momentum. The SPH solution of the diffusion equation with fixed and moving reactive solid-fluid boundaries was compared with analytical solutions, Lattice Boltzmann [Q. Kang, D. Zhang, P. Lichtner, I. Tsimpanogiannis, Lattice Boltzmann model for crystal growth from supersaturated solution, Geophysical Research Letters, 31 (2004) L21604] simulations and diffusion limited aggregation (DLA) [P. Meakin, Fractals, scaling and far from equilibrium. Cambridge University Press, Cambridge, UK, 1998] model simulations. To illustrate the capabilities of the model, coupled three-dimensional flow, reactive transport and precipitation in a fracture aperture with a complex geometry were simulated.

  4. Assessment of controlling processes for field-scale uranium reactive transport under highly transient flow conditions

    NASA Astrophysics Data System (ADS)

    Ma, Rui; Zheng, Chunmiao; Liu, Chongxuan; Greskowiak, Janek; Prommer, Henning; Zachara, John M.

    2014-02-01

    This paper presents the results of a comprehensive model-based analysis of a uranyl [U(VI)] tracer test conducted at the U.S. DOE Hanford 300 Area (300A) IFRC. Despite the highly complex field conditions the numerical three-dimensional multicomponent reactive transport model was able to capture most of the spatiotemporal variations of the observed U(VI) concentrations. A multimodel analysis was performed to interrogate the relative importance of various processes and factors for controlling field-scale reactive transport during the uranyl tracer test. The results indicate that multirate sorption/desorption, surface complexation reactions, and initial concentration distributions were the most important processes and factors controlling U(VI) migration. On the other hand, cation exchange reactions, the choice of the surface complexation model, and dual-domain mass transfer processes played less important roles under the prevailing field-test conditions. Further analysis of the modeling results demonstrates that these findings are conditioned to the relatively stable groundwater chemistry and the selected length of the field experimental duration (16 days). The model analysis also revealed the crucial role of the intraborehole flow that occurred within the long-screened monitoring wells and thus affected both field measurements and simulated U(VI) concentrations as a combined effect of aquifer heterogeneity and dynamic flow conditions. This study provides the first highly data-constrained uranium transport simulations under highly dynamic flow conditions. It illustrates the value of reactive transport modeling for elucidating the relative importance of individual processes in controlling uranium transport under specific field-scale conditions.

  5. Production of Nitrogen Oxides by Laboratory Simulated Transient Luminous Events

    NASA Astrophysics Data System (ADS)

    Peterson, H.; Bailey, M.; Hallett, J.; Beasley, W.

    2007-12-01

    Restoration of the polar stratospheric ozone layer has occurred at rates below those originally expected following reductions in chlorofluorocarbon (CFC) usage. Additional reactions affecting ozone depletion now must also be considered. This research examines nitrogen oxides (NOx) produced in the middle atmosphere by transient luminous events (TLEs), with NOx production in this layer contributing to the loss of stratospheric ozone. In particular, NOx produced by sprites in the mesosphere would be transported to the polar stratosphere via the global meridional circulation and downward diffusion. A pressure-controlled vacuum chamber was used to simulate middle atmosphere pressures, while a power supply and in-chamber electrodes were used to simulate TLEs in the pressure controlled environment. Chemiluminescence NOx analyzers were used to sample NOx produced by the chamber discharges- originally a Monitor Labs Model 8440E, later a Thermo Environment Model 42. Total NOx production for each discharge as well as NOx per ampere of current and NOx per Joule of discharge energy were plotted. Absolute NOx production was greatest for discharge environments with upper tropospheric pressures (100-380 torr), while NOx/J was greatest for discharge environments with stratospheric pressures (around 10 torr). The different production efficiencies in NOx/J as a function of pressure pointed to three different production regimes, each with its own reaction mechanisms: one for tropospheric pressures, one for stratospheric pressures, and one for upper stratospheric to mesospheric pressures (no greater than 1 torr).

  6. Experimental Validation of a Closed Brayton Cycle System Transient Simulation

    NASA Technical Reports Server (NTRS)

    Johnson, Paul K.; Hervol, David S.

    2006-01-01

    The Brayton Power Conversion Unit (BPCU) is a closed cycle system with an inert gas working fluid. It is located in Vacuum Facility 6 at NASA Glenn Research Center. Was used in previous solar dynamic technology efforts (SDGTD). Modified to its present configuration by replacing the solar receiver with an electrical resistance heater. The first closed-Brayton-cycle to be coupled with an ion propulsion system. Used to examine mechanical dynamic characteristics and responses. The focus of this work was the validation of a computer model of the BPCU. Model was built using the Closed Cycle System Simulation (CCSS) design and analysis tool. Test conditions were then duplicated in CCSS. Various steady-state points. Transients involving changes in shaft rotational speed and heat input. Testing to date has shown that the BPCU is able to generate meaningful, repeatable data that can be used for computer model validation. Results generated by CCSS demonstrated that the model sufficiently reproduced the thermal transients exhibited by the BPCU system. CCSS was also used to match BPCU steady-state operating points. Cycle temperatures were within 4.1% of the data (most were within 1%). Cycle pressures were all within 3.2%. Error in alternator power (as much as 13.5%) was attributed to uncertainties in the compressor and turbine maps and alternator and bearing loss models. The acquired understanding of the BPCU behavior gives useful insight for improvements to be made to the CCSS model as well as ideas for future testing and possible system modifications.

  7. Rapid and transient stimulation of intracellular reactive oxygen species by melatonin in normal and tumor leukocytes

    SciTech Connect

    Radogna, Flavia; Paternoster, Laura; De Nicola, Milena; Cerella, Claudia; Ammendola, Sergio; Bedini, Annalida; Tarzia, Giorgio; Aquilano, Katia; Ciriolo, Maria; Ghibelli, Lina

    2009-08-15

    Melatonin is a modified tryptophan with potent biological activity, exerted by stimulation of specific plasma membrane (MT1/MT2) receptors, by lower affinity intracellular enzymatic targets (quinone reductase, calmodulin), or through its strong anti-oxidant ability. Scattered studies also report a perplexing pro-oxidant activity, showing that melatonin is able to stimulate production of intracellular reactive oxygen species (ROS). Here we show that on U937 human monocytes melatonin promotes intracellular ROS in a fast (< 1 min) and transient (up to 5-6 h) way. Melatonin equally elicits its pro-radical effect on a set of normal or tumor leukocytes; intriguingly, ROS production does not lead to oxidative stress, as shown by absence of protein carbonylation, maintenance of free thiols, preservation of viability and regular proliferation rate. ROS production is independent from MT1/MT2 receptor interaction, since a) requires micromolar (as opposed to nanomolar) doses of melatonin; b) is not contrasted by the specific MT1/MT2 antagonist luzindole; c) is not mimicked by a set of MT1/MT2 high affinity melatonin analogues. Instead, chlorpromazine, the calmodulin inhibitor shown to prevent melatonin-calmodulin interaction, also prevents melatonin pro-radical effect, suggesting that the low affinity binding to calmodulin (in the micromolar range) may promote ROS production.

  8. Rotating cylindrical magnetron sputtering: Simulation of the reactive process

    SciTech Connect

    Depla, D.; Mahieu, S.; Van Aeken, K.; Leroy, W. P.; Haemers, J.; De Gryse, R.; Li, X. Y.; Bogaerts, A.

    2010-06-15

    A rotating cylindrical magnetron consists of a cylindrical tube, functioning as the cathode, which rotates around a stationary magnet assembly. In stationary mode, the cylindrical magnetron behaves similar to a planar magnetron with respect to the influence of reactive gas addition to the plasma. However, the transition from metallic mode to poisoned mode and vice versa depends on the rotation speed. An existing model has been modified to simulate the influence of target rotation on the well known hysteresis behavior during reactive magnetron sputtering. The model shows that the existing poisoning mechanisms, i.e., chemisorption, direct reactive ion implantation and knock on implantation, are insufficient to describe the poisoning behavior of the rotating target. A better description of the process is only possible by including the deposition of sputtered material on the target.

  9. Quadrature Moments Method for the Simulation of Turbulent Reactive Flows

    NASA Technical Reports Server (NTRS)

    Raman, Venkatramanan; Pitsch, Heinz; Fox, Rodney O.

    2003-01-01

    A sub-filter model for reactive flows, namely the DQMOM model, was formulated for Large Eddy Simulation (LES) using the filtered mass density function. Transport equations required to determine the location and size of the delta-peaks were then formulated for a 2-peak decomposition of the FDF. The DQMOM scheme was implemented in an existing structured-grid LES solver. Simulations of scalar shear layer using an experimental configuration showed that the first and second moments of both reactive and inert scalars are in good agreement with a conventional Lagrangian scheme that evolves the same FDF. Comparisons with LES simulations performed using laminar chemistry assumption for the reactive scalar show that the new method provides vast improvements at minimal computational cost. Currently, the DQMOM model is being implemented for use with the progress variable/mixture fraction model of Pierce. Comparisons with experimental results and LES simulations using a single-environment for the progress-variable are planned. Future studies will aim at understanding the effect of increase in environments on predictions.

  10. Assessment of Controlling Processes for Field-Scale Uranium Reactive Transport under Highly Transient Flow Conditions

    SciTech Connect

    Ma, Rui; Zheng, Chunmiao; Liu, Chongxuan; Greskowiak, Janek; Prommer, Henning; Zachara, John M.

    2014-02-06

    This paper presents the results of a comprehensive model-based analysis of a uranium tracer test conducted at the U.S Department of Energy Hanford 300 Area (300A) IFRC site. A three-dimensional multi-component reactive transport model was employed to assess the key factors and processes that control the field-scale uranium reactive transport. Taking into consideration of relevant physical and chemical processes, the selected conceptual/numerical model replicates the spatial and temporal variations of the observed U(VI) concentrations reasonably well in spite of the highly complex field conditions. A sensitivity analysis was performed to interrogate the relative importance of various processes and factors for reactive transport of U(VI) at the field-scale. The results indicate that multi-rate U(VI) sorption/desorption, U(VI) surface complexation reactions, and initial U(VI) concentrations were the most important processes and factors controlling U(VI) migration. On the other hand, cation exchange reactions, the choice of the surface complexation model, and dual-domain mass transfer processes, which were previously identified to be important in laboratory experiments, played less important roles under the field-scale experimental condition at the 300A site. However, the model simulations also revealed that the groundwater chemistry was relatively stable during the uranium tracer experiment and therefore presumably not dynamic enough to appropriately assess the effects of ion exchange reaction and the choice of surface complexation models on U(VI) sorption and desorption. Furthermore, it also showed that the field experimental duration (16 days) was not sufficiently long to precisely assess the role of a majority of the sorption sites that were accessed by slow kinetic processes within the dual domain model. The sensitivity analysis revealed the crucial role of the intraborehole flow that occurred within the long-screened monitoring wells and thus significantly

  11. Transient Analysis Generator /TAG/ simulates behavior of large class of electrical networks

    NASA Technical Reports Server (NTRS)

    Thomas, W. J.

    1967-01-01

    Transient Analysis Generator program simulates both transient and dc steady-state behavior of a large class of electrical networks. It generates a special analysis program for each circuit described in an easily understood and manipulated programming language. A generator or preprocessor and a simulation system make up the TAG system.

  12. Modular High-Temperature Gas-Cooled Reactor short term thermal response to flow and reactivity transients

    SciTech Connect

    Cleveland, J.C.

    1988-01-01

    The analyses reported here have been conducted at the Oak Ridge National Laboratory (ORNL) for the US Nuclear Regulatory Commission's (NRC's) Division of Regulatory Applications of the Office of Nuclear Regulatory Research. The short-term thermal response of the Modular High-Temperature Gas-Cooled Reactor (MHTGR) is analyzed for a range of flow and reactivity transients. These include loss of forced circulation (LOFC) without scram, moisture ingress, spurious withdrawal of a control rod group, hypothetical large and rapid positive reactivity insertion, and a rapid core cooling event. The coupled heat transfer-neutron kinetics model is also described.

  13. Transient state kinetics tutorial using the kinetics simulation program, KINSIM.

    PubMed Central

    Wachsstock, D H; Pollard, T D

    1994-01-01

    This article provides an introduction to a computer tutorial on transient state kinetics. The tutorial uses our Macintosh version of the computer program, KINSIM, that calculates the time course of reactions. KINSIM is also available for other popular computers. This program allows even those investigators not mathematically inclined to evaluate the rate constants for the transitions between the intermediates in any reaction mechanism. These rate constants are one of the insights that are essential for understanding how biochemical processes work at the molecular level. The approach is applicable not only to enzyme reactions but also to any other type of process of interest to biophysicists, cell biologists, and molecular biologists in which concentrations change with time. In principle, the same methods could be used to characterize time-dependent, large-scale processes in ecology and evolution. Completion of the tutorial takes students 6-10 h. This investment is rewarded by a deep understanding of the principles of chemical kinetics and familiarity with the tools of kinetics simulation as an approach to solve everyday problems in the laboratory. PMID:7811941

  14. Large liquid rocket engine transient performance simulation system

    NASA Technical Reports Server (NTRS)

    Mason, J. R.; Southwick, R. D.

    1989-01-01

    Phase 1 of the Rocket Engine Transient Simulation (ROCETS) program consists of seven technical tasks: architecture; system requirements; component and submodel requirements; submodel implementation; component implementation; submodel testing and verification; and subsystem testing and verification. These tasks were completed. Phase 2 of ROCETS consists of two technical tasks: Technology Test Bed Engine (TTBE) model data generation; and system testing verification. During this period specific coding of the system processors was begun and the engineering representations of Phase 1 were expanded to produce a simple model of the TTBE. As the code was completed, some minor modifications to the system architecture centering on the global variable common, GLOBVAR, were necessary to increase processor efficiency. The engineering modules completed during Phase 2 are listed: INJTOO - main injector; MCHBOO - main chamber; NOZLOO - nozzle thrust calculations; PBRNOO - preburner; PIPE02 - compressible flow without inertia; PUMPOO - polytropic pump; ROTROO - rotor torque balance/speed derivative; and TURBOO - turbine. Detailed documentation of these modules is in the Appendix. In addition to the engineering modules, several submodules were also completed. These submodules include combustion properties, component performance characteristics (maps), and specific utilities. Specific coding was begun on the system configuration processor. All functions necessary for multiple module operation were completed but the SOLVER implementation is still under development. This system, the Verification Checkout Facility (VCF) allows interactive comparison of module results to store data as well as provides an intermediate checkout of the processor code. After validation using the VCF, the engineering modules and submodules were used to build a simple TTBE.

  15. Multi-petaflop/s quantum and reactive molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Nakano, Aiichiro

    We have developed a divide-conquer-recombine algorithmic framework for large quantum molecular dynamics (QMD) and reactive molecular dynamics (RMD) simulations. The algorithms have achieved parallel efficiency over 0.98 on 786,432 IBM Blue Gene/Q processors for 39.8 trillion electronic degrees-of-freedom QMD in the framework of density functional theory and 67.6 billion-atom RMD. We will discuss several applications including (1) 16,616-atom QMD simulation of rapid hydrogen production from water using metallic alloy nanoparticles, (2) 6,400-atom nonadiabatic QMD simulation of exciton dynamics for efficient solar cells, and (3) 112 million-atom RMD simulation of nanocarbon synthesis by high temperature oxidation of SiC nanoparticles.

  16. Computational identification of a transiently open L1/S3 pocket for reactivation of mutant p53

    PubMed Central

    Wassman, Christopher D.; Baronio, Roberta; Demir, Özlem; Wallentine, Brad D.; Chen, Chiung-Kuang; Hall, Linda V.; Salehi, Faezeh; Lin, Da-Wei; Chung, Benjamin P.; Wesley Hatfield, G.; Richard Chamberlin, A.; Luecke, Hartmut; Lathrop, Richard H.; Kaiser, Peter; Amaro, Rommie E.

    2013-01-01

    The tumour suppressor p53 is the most frequently mutated gene in human cancer. Reactivation of mutant p53 by small molecules is an exciting potential cancer therapy. Although several compounds restore wild-type function to mutant p53, their binding sites and mechanisms of action are elusive. Here computational methods identify a transiently open binding pocket between loop L1 and sheet S3 of the p53 core domain. Mutation of residue Cys124, located at the centre of the pocket, abolishes p53 reactivation of mutant R175H by PRIMA-1, a known reactivation compound. Ensemble-based virtual screening against this newly revealed pocket selects stictic acid as a potential p53 reactivation compound. In human osteosarcoma cells, stictic acid exhibits dose-dependent reactivation of p21 expression for mutant R175H more strongly than does PRIMA-1. These results indicate the L1/S3 pocket as a target for pharmaceutical reactivation of p53 mutants. PMID:23360998

  17. Voltage equilibration for reactive atomistic simulations of electrochemical processes

    SciTech Connect

    Onofrio, Nicolas; Strachan, Alejandro

    2015-08-07

    We introduce electrochemical dynamics with implicit degrees of freedom (EChemDID), a model to describe electrochemical driving force in reactive molecular dynamics simulations. The method describes the equilibration of external electrochemical potentials (voltage) within metallic structures and their effect on the self-consistent partial atomic charges used in reactive molecular dynamics. An additional variable assigned to each atom denotes the local potential in its vicinity and we use fictitious, but computationally convenient, dynamics to describe its equilibration within connected metallic structures on-the-fly during the molecular dynamics simulation. This local electrostatic potential is used to dynamically modify the atomic electronegativities used to compute partial atomic changes via charge equilibration. Validation tests show that the method provides an accurate description of the electric fields generated by the applied voltage and the driving force for electrochemical reactions. We demonstrate EChemDID via simulations of the operation of electrochemical metallization cells. The simulations predict the switching of the device between a high-resistance to a low-resistance state as a conductive metallic bridge is formed and resistive currents that can be compared with experimental measurements. In addition to applications in nanoelectronics, EChemDID could be useful to model electrochemical energy conversion devices.

  18. Numerical simulation of combined natural and forced convection during thermal-hydraulic transients. [LMFBR

    SciTech Connect

    Domanus, H.M.; Sha, W.T.

    1981-01-01

    The single-phase COMMIX (COMponent MIXing) computer code performs fully three-dimensional, transient, thermal-hydraulic analyses of liquid-sodium LMFBR components. It solves the conservation equations of mass, momentum, and energy as a boundary-value problem in space and as an initial-value problem in time. The concepts of volume porosity, surface permeability and distributed resistance, and heat source have been employed in quasi-continuum (rod-bundle) applications. Results from three transient simulations involving forced and natural convection are presented: (1) a sodium-filled horizontal pipe initially of uniform temperature undergoing an inlet velocity rundown transient, as well as an inlet temperature transient; (2) a 19-pin LMFBR rod bundle undergoing a velocity transient; and, (3) a simulation of a water test of a 1/10-scale outlet plenum undergoing both velocity and temperature transients.

  19. Programmable AC power supply for simulating power transient expected in fusion reactor

    SciTech Connect

    Halimi, B.; Suh, K. Y.

    2012-07-01

    This paper focus on control engineering of the programmable AC power source which has capability to simulate power transient expected in fusion reactor. To generate the programmable power source, AC-AC power electronics converter is adopted to control the power of a set of heaters to represent the transient phenomena of heat exchangers or heat sources of a fusion reactor. The International Thermonuclear Experimental Reactor (ITER) plasma operation scenario is used as the basic reference for producing this transient power source. (authors)

  20. Development of predictive simulation capability for reactive multiphase flow

    SciTech Connect

    VanderHeyden, W.B.; Kendrick, B.K.

    1998-12-31

    This is the final report of a Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to develop a self-sustained research program for advanced computer simulation of industrial reactive multiphase flows. The prototype research problem was a three-phase alumina precipitator used in the Bayer process, a key step in aluminum refining. Accomplishments included the development of an improved reaction mechanism of the alumina precipitation growth process, the development of an efficient methods for handling particle size distribution in multiphase flow simulation codes, the incorporation of precipitation growth and agglomeration kinetics in LANL's CFDLIB multiphase flow code library and the evaluation of multiphase turbulence closure models for bubbly flow simulations.

  1. Attempting to link hydro-morphology, transient storage and metabolism in streams: Insights from reactive tracer experiments

    NASA Astrophysics Data System (ADS)

    Kurz, Marie J.; Schmidt, Christian; Blaen, Phillip; Knapp, Julia L. A.; Drummond, Jennifer D.; Martí, Eugenia; Zarnetske, Jay P.; Ward, Adam S.; Krause, Stefan

    2016-04-01

    In-stream transient storage zones, including the hyporheic zone and vegetation beds, can be hotspots of biogeochemical processing in streams, enhancing ecosystem functions such as metabolism and nutrient uptake. The spatio-temporal dynamics and reactivity of these storage zones are influenced by multiple factors, including channel geomorphology, substrate composition and hydrology, and by anthropogenic modifications to flow regimes and nutrient loads. Tracer injections are a commonly employed method to evaluate solute transport and transient storage in streams; however, reactive tracers are needed to differentiate between metabolically active and inactive transient storage zones. The reactive stream tracer resazurin (Raz), a weakly fluorescent dye which irreversibly transforms to resorufin (Rru) under mildly reducing conditions, provides a proxy for aerobic respiration and an estimate of the metabolic activity associated with transient storage zones. Across a range of lotic ecosystems, we try to assess the influence of stream channel hydro-morphology, morphologic heterogeneity, and substrate type on reach (103 m) and sub-reach (102 m) scale transient storage, respiration, and nutrient uptake. To do so, we coupled injections of Raz and conservative tracers (uranine and/or salt) at each study site. The study sites included: vegetated mesocosms controlled for water depth; vegetated and un-vegetated sediment-filled mesocosms fed by waste-water effluent; a contrasting sand- vs. gravel-bedded lowland stream (Q = 0.08 m3/s); and a series of upland streams with varying size (Q = 0.1 - 1.5 m3/s) and prevalence of morphologic features. Continuous time-series of tracer concentrations were recorded using in-situ fluorometers and EC loggers. At the stream sites, time-series were recorded at multiple downstream locations in order to resolve sub-reach dynamics. Analyses yielded highly variable transport metrics and Raz-Rru transformation between study sites and between sub

  2. Numerical simulations of unsteady reactive flows in a combustion chamber

    NASA Astrophysics Data System (ADS)

    Kailasanath, K.; Gardner, J. H.; Oran, E. S.; Boris, J. P.

    1991-07-01

    Time-dependent, compressible numerical simulations have been performed for the flowfield in an idealized ramjet that consists of an axisymmetric inlet and combustor and a choked nozzle, in order to study the instability induced by the interactions between large-scale vortex structures, acoustic waves, and chemical energy release. Nonreactive flow calculations show complex interactions; vortex shedding occurs at the natural instability frequency of the shear layer, although vortex mergings are affected by the acoustic frequencies of the system. For the particular reactive-flow case studied, energy release substantially alters the flowfield.

  3. Rotor response for transient unbalance changes in a nonlinear simulation

    NASA Technical Reports Server (NTRS)

    Hine, M. J.; Landis, C. E.; Beatty, R. F.

    1985-01-01

    Transient unbalance shifts were determined not to excite a rotor instability in the high pressure turbomachinery of the Space Shuttle Main Engine using the current rotor dynamic models. Sudden unbalance changes of relatively small magnitudes during fast-speed ramps showed stable nonsynchronous motion depending on the resultant unbalance distribution at subsequent high speed dwells. Transient moment unbalance may initiate a limit cycle subsynchronous response that shortly decays, but a persistent subsynchronous with large amplitudes was never achieved. These limit cycle subsynchronous amplitudes appear to be minimized with lower unbalance magnitudes, which indicates improved rotor balancing would sustain synchronous motion only. The transient unbalance phenomenon was determined to be an explanation for synchronous response shifts often observed during engine tests.

  4. Reactive Molecular Dynamics Simulations at the Petascale (Invited)

    NASA Astrophysics Data System (ADS)

    Nakano, A.

    2013-12-01

    We are developing a divide-conquer-recombine algorithmic framework into a metascalable (or 'design once, scale on new architectures') parallelization scheme to perform large spatiotemporal-scale reactive molecular dynamics simulations. The scheme has achieved parallel efficiency well over 0.9 on 786,432 IBM BlueGene/Q processors for 8.5 trillion-atom molecular dynamics and 1.9 trillion electronic degrees-of-freedom quantum molecular dynamics in the framework of density functional theory. Simulation results reveal intricate interplay between photoexcitation, mechanics, flow, and chemical reactions at the nanoscale. Specifically, we will discuss atomistic mechanisms of: (1) rapid hydrogen production from water using metallic alloy nanoparticles; (2) molecular control of charge transfer, charge recombination, and singlet fission for efficient solar cells; and (3) mechanically enhanced reaction kinetics in nanobubbles and nanojets.

  5. Development of predictive simulation capability for reactive multiphase flow

    SciTech Connect

    VanderHeyden, W.B.; Kendrick, B.K.

    1998-12-31

    This is the final report of a proposed three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project was terminated after the first year due to changes in funding priorities. The objective of the project was to develop a self-sustained research program for advanced computer simulation of industrial reactive multiphase flows. The prototype research problem was a three-phase alumina precipitator used in the Bayer process, a key step in aluminum refining. Accomplishments in the first year included the development of an improved reaction mechanism of the alumina precipitation growth process, the development of an efficient method for handling particle size distribution in multiphase flow simulation codes and finally the incorporation of precipitation growth and agglomeration kinetics in LANL`s CFDLIB multiphase flow code library.

  6. Transient Stability Simulation of Wind Generator Expressed by Two-Mass Model

    NASA Astrophysics Data System (ADS)

    Shima, Yoshikazu; Takahashi, Rion; Murata, Toshiaki; Tamura, Junji; Tomaki, Yuichi; Tominaga, Shinobu; Sakahara, Atsushi

    Recently, wind power generation is increasing in the world. In the wind power stations, induction machines are mostly used as generators. Since induction generators have a stability problem similar to the transient stability of synchronous machines, it is important to analyze the transient stability of power systems including wind generators. Although there have been some reports analyzing the transient stability problem, wind turbine and wind generator are, in most cases, modeled as one mass shaft system having total inertia constant. This paper presents simulation analyses of transient stability of power system including induction generator which is expressed by a two-mass shaft model and analyzes an effect of shaft system modeling on the transient stability characteristics. Simulations are performed by PSCAD/EMTDC in this study.

  7. Parallel climate model (PCM) control and transient simulations

    NASA Astrophysics Data System (ADS)

    Washington, W. M.; Weatherly, J. W.; Meehl, G. A.; Semtner, A. J., Jr.; Bettge, T. W.; Craig, A. P.; Strand, W. G., Jr.; Arblaster, J.; Wayland, V. B.; James, R.; Zhang, Y.

    The Department of Energy (DOE) supported Parallel Climate Model (PCM) makes use of the NCAR Community Climate Model (CCM3) and Land Surface Model (LSM) for the atmospheric and land surface components, respectively, the DOE Los Alamos National Laboratory Parallel Ocean Program (POP) for the ocean component, and the Naval Postgraduate School sea-ice model. The PCM executes on several distributed and shared memory computer systems. The coupling method is similar to that used in the NCAR Climate System Model (CSM) in that a flux coupler ties the components together, with interpolations between the different grids of the component models. Flux adjustments are not used in the PCM. The ocean component has 2/3° average horizontal grid spacing with 32 vertical levels and a free surface that allows calculation of sea level changes. Near the equator, the grid spacing is approximately 1/2° in latitude to better capture the ocean equatorial dynamics. The North Pole is rotated over northern North America thus producing resolution smaller than 2/3° in the North Atlantic where the sinking part of the world conveyor circulation largely takes place. Because this ocean model component does not have a computational point at the North Pole, the Arctic Ocean circulation systems are more realistic and similar to the observed. The elastic viscous plastic sea ice model has a grid spacing of 27km to represent small-scale features such as ice transport through the Canadian Archipelago and the East Greenland current region. Results from a 300year present-day coupled climate control simulation are presented, as well as for a transient 1% per year compound CO2 increase experiment which shows a global warming of 1.27°C for a 10year average at the doubling point of CO2 and 2.89°C at the quadrupling point. There is a gradual warming beyond the doubling and quadrupling points with CO2 held constant. Globally averaged sea level rise at the time of CO2 doubling is approximately 7cm and at the

  8. Massively Parallel Reactive and Quantum Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Vashishta, Priya

    2015-03-01

    In this talk I will discuss two simulations: Cavitation bubbles readily occur in fluids subjected to rapid changes in pressure. We use billion-atom reactive molecular dynamics simulations on a 163,840-processor BlueGene/P supercomputer to investigate chemical and mechanical damages caused by shock-induced collapse of nanobubbles in water near silica surface. Collapse of an empty nanobubble generates high-speed nanojet, resulting in the formation of a pit on the surface. The gas-filled bubbles undergo partial collapse and consequently the damage on the silica surface is mitigated. Quantum molecular dynamics (QMD) simulations are performed on 786,432-processor Blue Gene/Q to study on-demand production of hydrogen gas from water using Al nanoclusters. QMD simulations reveal rapid hydrogen production from water by an Al nanocluster. We find a low activation-barrier mechanism, in which a pair of Lewis acid and base sites on the Aln surface preferentially catalyzes hydrogen production. I will also discuss on-demand production of hydrogen gas from water using and LiAl alloy particles. Research reported in this lecture was carried in collaboration with Rajiv Kalia, Aiichiro Nakano and Ken-ichi Nomura from the University of Southern California, and Fuyuki Shimojo and Kohei Shimamura from Kumamoto University, Japan.

  9. Analysis of reactivity and temperature transient experiments at the AVR high-temperature reactor

    SciTech Connect

    Scherer, W.; Gerwin, H.; Kindt, T.; Patscher, W.

    1987-09-01

    In the Arbeitsgemeinschaft Versuchsreaktor high-temperature reactor low-enriched fuel elements have been loaded for several years, replacing about half of the initial highly enriched uranium-thorium fuel. This changeover is accompanied by an elaborate experimental program wherein changes in the neutronic and thermohydraulics behavior of the system are monitored. Within this program reactor transients are induced by means of either circulator speed reduction or control rod movement. The resulting transients in neutron flux and temperatures are recorded and used as a basis for detailed theoretical analysis. Working groups at several institutions have carried out transient calculations using different dynamic codes. The results are presented and differences are discussed. In general, the experimental values were reproduced in a very satisfactory way.

  10. Coupling a reactive potential with a harmonic approximation for atomistic simulations of material failure

    NASA Astrophysics Data System (ADS)

    Tejada, Ignacio G.; Brochard, Laurent; Lelièvre, Tony; Stoltz, Gabriel; Legoll, Frédéric; Cancès, Eric

    2016-06-01

    Molecular dynamics (MD) simulations involving reactive potentials can be used to model material failure. The empirical potentials which are used in such simulations are able to adapt to the atomic environment, at the expense of a significantly higher computational cost than non-reactive potentials. However, during a simulation of failure, the reactive ability is needed only in some limited parts of the system, where bonds break or form and the atomic environment changes. Therefore, simpler non-reactive potentials can be used in the remainder of the system, provided that such potentials reproduce correctly the behavior of the reactive potentials in this region, and that seamless coupling is ensured at the interface between the reactive and non-reactive regions. In this article, we propose a methodology to combine a reactive potential with a non-reactive approximation thereof, made of a set of harmonic pair and angle interactions and whose parameters are adjusted to predict the same energy, geometry and Hessian in the ground state of the potential. We present a methodology to construct the non-reactive approximation of the reactive potential, and a way to couple these two potentials. We also propose a criterion for on-the-fly substitution of the reactive potential by its non-reactive approximation during a simulation. We illustrate the correctness of this hybrid technique for the case of MD simulation of failure in two-dimensional graphene originally modeled with REBO potential.

  11. Transient CFD simulation of a Francis turbine startup

    NASA Astrophysics Data System (ADS)

    Nicolle, J.; Morissette, J. F.; Giroux, A. M.

    2012-11-01

    To assess the life expectancy of hydraulic turbines, it is essential to obtain the loading on the blades, especially during transient operations known to be the most damaging. This paper presents a simplified CFD setup to model the startup phase of a Francis turbine while it goes from rest to speed no-load condition. The fluid domain included one distributor sector coupled with one runner passage. The guide vane motion and change in the angular velocity were included in a commercial code with user functions. Comparisons between numerical results and measurements acquired on a full-size turbine showed that most of the flow physics occurring during startup were captured.

  12. Manipulations to reduce simulator-related transient adverse health effects during simulated driving.

    PubMed

    Jäger, M; Gruber, N; Müri, R; Mosimann, U P; Nef, T

    2014-07-01

    User comfort during simulated driving is of key importance, since reduced comfort can confound the experiment and increase dropout rates. A common comfort-affecting factor is simulator-related transient adverse health effect (SHE). In this study, we propose and evaluate methods to adapt a virtual driving scene to reduce SHEs. In contrast to the manufacturer-provided high-sensory conflict scene (high-SCS), we developed a low-sensory conflict scene (low-SCS). Twenty young, healthy participants drove in both the high-SCS and the low-SCS scene for 10 min on two different days (same time of day, randomized order). Before and after driving, participants rated SHEs by completing the Simulator Sickness Questionnaire (SSQ). During driving, several physiological parameters were recorded. After driving in the high-SCS, the SSQ score increased in average by 129.4 (122.9 %, p = 0.002) compared to an increase of 5.0 (3.4 %, p = 0.878) after driving in the low-SCS. In the low-SCS, skin conductance decreased by 13.8 % (p < 0.01) and saccade amplitudes increased by 16.1 % (p < 0.01). Results show that the investigated methods reduce SHEs in a younger population, and the low-SCS is well accepted by the users. We expect that these measures will improve user comfort. PMID:24888755

  13. Numerical simulation on influence of bonding temperature in transient liquid phase bonding

    NASA Astrophysics Data System (ADS)

    Hynes, N. Rajesh Jesudoss; Raja, M. Karthick

    2016-05-01

    In this article, numerical simulation of transient liquid phase bonding of ceramic/metal joint has been carried out by using Finite Element Analysis (FEA) software. To increase the wettability, aluminium sheet was used as an interlayer. Hence, numerical simulation of TLP bonding process is done by varying the bonding temperature. Transient thermal analysis had been carried out for each cases and temperature distribution was predicted by the developed numerical model. From the simulation studies, it is found that the decrease in bonding temperature enhances favourable temperature distribution and eventually improves the joint efficiency of graphite/copper joints.

  14. Mathematical simulation application for research of nonuniform distributed-parameter circuit transients

    NASA Astrophysics Data System (ADS)

    Kuleshova, E. O.; Plyusnin, A. A.; Shandarova, E. B.; Tikhomirova, O. V.

    2016-04-01

    This paper considers the simulation capability of nonuniform distributed-parameter circuit transients by using MatLab Simulink. This approach is capable of determining currents and voltages of nodes for power networks of any configurations and modes. The paper contains results of nonuniform line simulations in idle, short-circuit and load modes.

  15. Transient Reversal of Episome Silencing Precedes VP16-Dependent Transcription during Reactivation of Latent HSV-1 in Neurons

    PubMed Central

    Kim, Ju Youn; Mandarino, Angelo; Chao, Moses V.; Mohr, Ian; Wilson, Angus C.

    2012-01-01

    Herpes simplex virus type-1 (HSV-1) establishes latency in peripheral neurons, creating a permanent source of recurrent infections. The latent genome is assembled into chromatin and lytic cycle genes are silenced. Processes that orchestrate reentry into productive replication (reactivation) remain poorly understood. We have used latently infected cultures of primary superior cervical ganglion (SCG) sympathetic neurons to profile viral gene expression following a defined reactivation stimulus. Lytic genes are transcribed in two distinct phases, differing in their reliance on protein synthesis, viral DNA replication and the essential initiator protein VP16. The first phase does not require viral proteins and has the appearance of a transient, widespread de-repression of the previously silent lytic genes. This allows synthesis of viral regulatory proteins including VP16, which accumulate in the cytoplasm of the host neuron. During the second phase, VP16 and its cellular cofactor HCF-1, which is also predominantly cytoplasmic, concentrate in the nucleus where they assemble an activator complex on viral promoters. The transactivation function supplied by VP16 promotes increased viral lytic gene transcription leading to the onset of genome amplification and the production of infectious viral particles. Thus regulated localization of de novo synthesized VP16 is likely to be a critical determinant of HSV-1 reactivation in sympathetic neurons. PMID:22383875

  16. Characterization and Simulation of Transient Vibrations Using Band Limited Temporal Moments

    DOE PAGESBeta

    Smallwood, David O.

    1994-01-01

    A method is described to characterize shocks (transient time histories) in terms of the Fourier energy spectrum and the temporal moments of the shock passed through a contiguous set of band pass filters. The product model is then used to generate of a random process as simulations that in the mean will have the same energy and moments as the characterization of the transient event.

  17. On the behavior of approaches to simulate reactive transport.

    PubMed

    Saaltink, M W; Carrera, J; Ayora, C

    2001-04-01

    Two families of approaches exist to simulate reactive transport in groundwater: The Direct Substitution Approach (DSA), based on Newton-Raphson and the Picard or Sequential Iteration Approach (SIA). We applied basic versions of both methods to several test cases and compared both computational demands and quality of the solution for varying grid size. Results showed that the behavior of the two approaches is sensitive to both grid size and chemistry. As a general rule, the DSA is more robust than the SIA, in the sense that its convergence is less sensitive to time step size (any approach will converge given a sufficiently small time step). Moreover, the DSA leads to a better simulation of sharp fronts, which can only be reproduced with fine grids after many iterations when the SIA is used. As a consequence, the DSA runs faster than SIA in chemically difficult cases (i.e., highly non-linear and/or very retarded), because the SIA may require very small time steps to converge. On the other hand, the size of the system of equations is much larger for the DSA than for the SIA, so that its CPU time and memory requirements tend to be less favorable with increasing grid size. As a result, the SIA may become faster than the DSA for very large, chemically simple problems. The use of an iterative linear solver for the DSA makes its CPU time less sensitive to grid size. PMID:11285932

  18. Simulation of thermal-transient-induced-pipe-flow stratification using COMMIX-2

    SciTech Connect

    Shah, V.L.; Domanus, H.M.; Miao, C.C.; Schmitt, R.C.; Sha, W.T.

    1982-01-01

    At low-flow (high Richardson number) in a piping system with thermal transient, thermal-buoyancy-induced secondary flows exist. Three-dimensional computer codes are, therefore, necessary to model correctly the non-axisymmetric, thermally stratified flow through a piping system. This paper presents the results of the numerical simulation of thermal-hydraulic behavior in a pipe during a thermal transient. The particular transient considered was the experimental test No. PIPE2, and carried out at the Mixing Components Test Facility (MCTF). The numerical simulation was performed using COMMIX-2. COMMIX-2 is a computer code for steady/unsteady, three-dimensional, two-phase thermal-hydraulic analysis of reactor components under normal and off-normal operating conditions. The results of simulation are compared with the experimental measurements and they are in reasonable agreement with experimental data.

  19. Effects of Estrogen on Platelet Reactivity After Transient Forebrain Ischemia in Rats

    PubMed Central

    Littleton-Kearney, Marguerite T.; Gaines, Jessica M.; Callahan, Kevin P.; Murphy, Stephanie J.; Hurn, Patricia D.

    2009-01-01

    Estrogen’s prothrombotic effects are of increasing concern, particularly in stroke risk and recovery. Using an ischemic rodent model, the authors sought to determine (a) if estrogen replacement increases post-ischemic platelet reactivity, (b) if changes in estrogen status alter intraplatelet endothelial nitric oxide synthase (eNOS) synthesis, and (c) if estrogen-mediated effects on platelets alter cerebral blood flow during reperfusion. Intact (I), ovariectomized (OVX), and OVX + 17β-estradiol (E50) rats were subjected to 30 min of forebrain ischemia and 60 min of reperfusion. Using the platelet activation marker P-selectin, postischemic platelet reactivity was quantified by flow cytometry. In a separate cohort (I, OVX, E50), the authors quantified platelet eNOS by Western blot. Another cohort (OVX, E50) was subjected to ischemia/reperfusion, and cerebral blood flow was determined using the iodoantipyrine technique. Collagen-stimulated platelet P-selectin expression was increased in the OVX rats at 60 min of reperfusion, and this effect was reversed by estrogen treatment. No differences in platelet eNOS expression were detected among groups. Cerebral blood flow at 60 min reperfusion was comparable between the OVX and the E50 rats. The authors conclude that during reperfusion, estrogen deficiency increases postischemic platelet sensitivity to stimuli in estrogen-deficient rats. Estrogen treatment mitigates effects of estrogen loss on platelets, but this early effect is apparently not caused by intraplatelet eNOS depression. Neither estrogen deficiency nor estrogen treatment changes early postischemic regional brain blood flow. In this rodent global cerebral ischemic model, physiologic doses of estrogen are not deleterious to platelet reactivity and may initially reduce postischemic platelet reactivity. PMID:16267375

  20. Transient computer simulation of a CZ crystal growth process

    NASA Astrophysics Data System (ADS)

    Dornberger, E.; von Ammon, W.; Van den Bogaert, N.; Dupret, F.

    1996-09-01

    The use of numerical simulation for improving the bulk growth process is illustrated by means of two sets of investigations. On the one hand, the time dependent heat transfer during CZ silicon growth has been numerically simulated and compared to experiments for an industrial furnace. An excellent agreement between simulation and experiment is observed for both heater power and crucible temperature. On the other hand, 4″, 6″ and 8″ CZ crystals were grown with different heat shields. It has been found that the critical pull rate Vcrit, under which the oxidation induced stacking fault (OSF) ring vanishes in the wafer center, varies with the crystal diameter and the type of heat shield. A calculation of the axial temperature gradient at the solid/liquid interface for each combination reveals that the critical pull rate is proportional to this axial temperature gradient, which, in turn, is a function of the crystal diameter and heat shield. A precise law governing OSF ring formation has been established. In addition, improved processing conditions can be determined by an extensive use of simulation results.

  1. VALIDATION OF TRANSIENT STRUCTURAL DYNAMICS SIMULATIONS: AN EXAMPLE

    SciTech Connect

    J. SCHULTZ; F. HEMEZ; ET AL

    2001-03-01

    The field of computational structural dynamics is on the threshold of revolutionary change. The ever-increasing costs of physical experiments coupled with advances in massively parallel computer architecture are steering the engineering analyst to be more and more reliant on numerical calculations with little to no data available for experimental confirmation. New areas of research in engineering analysis have come about as a result of the changing roles of computations and experiments. Whereas in the past the primary function of physical experiments has been to confirm or ''prove'' the accuracy of a computational simulation, the new environment of engineering is forcing engineers to allocate precious experimental resources differently. Rather than trying to ''prove'' whether a calculation is correct, the focus is on learning how to use experimental data to ''improve'' the accuracy of computational simulations. This process of improving the accuracy of calculations through the use of experimental data is termed ''model validation.'' Model validation emphasizes the need for quantitative techniques of assessing the accuracy of a computational prediction with respect to experimental measurements, taking into account that both the prediction and the measurement have uncertainties associated with them. The ''vugraph norm,'' where one overlays transparencies of simulated data and experimental data in an attempt to show consistency, is no longer an adequate means of demonstrating validity of predictions. To approach this problem, a paradigm from the field of statistical pattern recognition has been adopted [1]. This paradigm generalizes the extraction of corresponding ''features'' from the experimental data and the simulated data, and treats the comparison of these sets of features as a statistical test. The parameters that influence the output of the simulation (such as equation parameters, initial and boundary conditions, etc.) can then be adjusted to minimize the

  2. Transient deformation properties of Zircaloy for LOCA simulation. Final report

    SciTech Connect

    Hann, C. R.; Mohr, C. L.; Busness, K. M.; Olson, N. J.; Reich, F. R.; Stewart, K. B.

    1980-05-01

    This experimental data report is Volume 4 of a series of 5 volumes describing the oxidation and deformation rate behavior of Zircaloy cladding under simulated LOCA conditions. It contains listings of strain versus stress, time, and temperature evaluated from the numerical constitutive relationships and the original data used to develop them. This volume also contains listings of the ramp load, pressure, and temperature test data from both current and previous phases of the series, as well as material describing applications of the data.

  3. Numerical simulation of non-equilibrium transient flow during inhalation

    NASA Astrophysics Data System (ADS)

    Marxen, Olaf; Magin, Thierry

    2012-11-01

    The flow in human upper airways may be laminar, transitional, or turbulent. Breadth-by-breadth and patient-specific variability is expected to have a significant influence on laminar-turbulent transition. The flow path of therapeutic drug aerosols may be strongly affected by the transition-induced unsteady structures. The unsteady Navier-Stokes equations are solved numerically to simulate the flow through a channel-flow geometry representative of an airway segment. In order to trigger transition, small-amplitude disturbances are forced via wall blowing/suction. We perform multiple simulations with varying phase of the forced disturbances. Ensemble averaging then allows to compute mean and RMS values. A time-dependent channel center-line velocity serves to model the change in flow velocity during inhalation. The uncertainty associated with variability during breathing is quantified using non-intrusive stochastic collocation. Simulation results reveal that we have intervals in time and space with quasi-steady equilibrium and with strong non-equilibrium flow. The uncertainty associated with the breathing pattern may strongly affect the occurrence of laminar-turbulent transition, leading to large uncertainties when RMS values are peaking.

  4. Peach Bottom Turbine Trip Simulations with RETRAN Using INER/TPC BWR Transient Analysis Method

    SciTech Connect

    Kao Lainsu; Chiang, Show-Chyuan

    2005-03-15

    The work described in this paper is benchmark calculations of pressurization transient turbine trip tests performed at the Peach Bottom boiling water reactor (BWR). It is part of an overall effort in providing qualification basis for the INER/TPC BWR transient analysis method developed for the Kuosheng and Chinshan plants. The method primarily utilizes an advanced system thermal hydraulics code, RETRAN02/MOD5, for transient safety analyses. Since pressurization transients would result in a strong coupling effect between core neutronic and system thermal hydraulics responses, the INER/TPC method employs the one-dimensional kinetic model in RETRAN with a cross-section data library generated by the Studsvik-CMS code package for the transient calculations. The Peach Bottom Turbine Trip (PBTT) tests, including TT1, TT2, and TT3, have been successfully performed in the plant and assigned as standards commonly for licensing method qualifications for years. It is an essential requirement for licensing purposes to verify integral capabilities and accuracies of the codes and models of the INER/TPC method in simulating such pressurization transients. Specific Peach Bottom plant models, including both neutronics and thermal hydraulics, are developed using modeling approaches and experiences generally adopted in the INER/TPC method. Important model assumptions in RETRAN for the PBTT test simulations are described in this paper. Simulation calculations are performed with best-estimated initial and boundary conditions obtained from plant test measurements. The calculation results presented in this paper demonstrate that the INER/TPC method is capable of calculating accurately the core and system transient behaviors of the tests. Excellent agreement, both in trends and magnitudes between the RETRAN calculation results and the PBTT measurements, shows reliable qualifications of the codes/users/models involved in the method. The RETRAN calculated peak neutron fluxes of the PBTT

  5. Transient simulation of hydropower station with consideration of three-dimensional unsteady flow in turbine

    NASA Astrophysics Data System (ADS)

    Huang, W. D.; Fan, H. G.; Chen, N. X.

    2012-11-01

    To study the interaction between the transient flow in pipe and the unsteady turbulent flow in turbine, a coupled model of the transient flow in the pipe and three-dimensional unsteady flow in the turbine is developed based on the method of characteristics and the fluid governing equation in the accelerated rotational relative coordinate. The load-rejection process under the closing of guide vanes of the hydraulic power plant is simulated by the coupled method, the traditional transient simulation method and traditional three-dimensional unsteady flow calculation method respectively and the results are compared. The pressure, unit flux and rotation speed calculated by three methods show a similar change trend. However, because the elastic water hammer in the pipe and the pressure fluctuation in the turbine have been considered in the coupled method, the increase of pressure at spiral inlet is higher and the pressure fluctuation in turbine is stronger.

  6. Simulation of reactive processes related to biodegradation in aquifers. 1. Structure of the three-dimensional reactive transport model

    NASA Astrophysics Data System (ADS)

    Schäfer, Dirk; Schäfer, Wolfgang; Kinzelbach, Wolfgang

    1998-05-01

    The reactive transport model TBC (transport, biochemistry, and chemistry) numerically solves the equations for reactive transport in three-dimensional saturated groundwater flow. A finite element approximation and a standard Galerkin method are used. Solute transport is coupled to microbially mediated organic carbon degradation. Microbial growth is assumed to follow Monod-type kinetics. Substrate consumption and release of metabolic products is coupled to microbial growth via yield coefficients and stoichiometric relations. Additionally, the effects of microbial activity on selected inorganic chemical species in the aquifer can be considered. TBC allows the user to specify a wide range of possible biochemical and chemical reactions in the input file. This makes TBC a powerful and flexible simulation tool. It was developed to simulate reactive processes related to in situ bioremediation, but further fields of application are laboratory column studies on redox processes coupled to organic carbon degradation, field cases of intrinsic biodegradation, and early diagenetic processes in sediments.

  7. Lunar Dust Chemical, Electrical, and Mechanical Reactivity: Simulation and Characterization

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.

    2008-01-01

    Lunar dust is recognized to be a highly reactive material in its native state. Many, if not all Constellation systems will be affected by its adhesion, abrasion, and reactivity. A critical requirement to develop successful strategies for dealing with lunar dust and designing tolerant systems will be to produce similar material for ground-based testing.

  8. Computer simulation of magnetization-controlled shunt reactors for calculating electromagnetic transients in power systems

    SciTech Connect

    Karpov, A. S.

    2013-01-15

    A computer procedure for simulating magnetization-controlled dc shunt reactors is described, which enables the electromagnetic transients in electric power systems to be calculated. It is shown that, by taking technically simple measures in the control system, one can obtain high-speed reactors sufficient for many purposes, and dispense with the use of high-power devices for compensating higher harmonic components.

  9. FORMATION OF TRANSIENT PUFFS FROM CONTAINED LIQUID WASTES IN A ROTARY KILN SIMULATOR

    EPA Science Inventory

    The paper gives results of a study of the generation of transient puffs resulting from the batch incineration of liquid waste into a 73 kW rotary kiln incinerator simulator. Liquid wastes investigated included toluene, methylene chloride, carbon tetrachloride, and No. 5 fuel oil....

  10. OCCURRENCE OF TRANSIENT PUFFS IN A ROTARY KILN INCINERATOR SIMULATOR. 2. CONTAINED LIQUID WASTES ON SORBENT

    EPA Science Inventory

    The paper gives results of a study of the generation of transient puffs resulting from the batch incineration of liquid waste into a 73 kW rotary kiln incinerator simulator. The liquid was added onto a sorbent, enclosed in cardboard cylinders that are introduced into the combusti...

  11. Simulation of transient fluid flow in mold region during steel continuous casting

    NASA Astrophysics Data System (ADS)

    Liu, R.; Thomas, B. G.; Sengupta, J.

    2012-07-01

    A system of models has been developed to study transient flow during continuous casting and applied to simulate an event of multiple stopper-rod movements. It includes four sub-models to incorporate different aspects in this transient event. A three-dimensional (3-D) porous-flow model of the nozzle wall calculates the rate argon gas flow into the liquid steel, and the initial mean bubble size is estimated. Transient CFD models simulate multiphase flow of steel and gas bubbles in the Submerged Entry Nozzle (SEN) and mold and have been validated with experimental data from both nail dipping and Sub-meniscus Velocity Control (SVC) measurements. To obtain the transient inlet boundary conditions for the simulation, two semi-empirical models, a stopper-rod-position based model and a metal-level-based model, predict the liquid steel flow rate through the SEN based on recorded plant data. Finally the model system was applied to study the effects of stopper rod movements on SEN/mold flow patterns. Meniscus level fluctuations were calculated using a simple pressure method and compared well with plant measurements. Insights were gained from the simulation results to explain the cause of meniscus level fluctuations and the formation of sliver defects during stopper rod movements.

  12. Numerical simulation of transient moisture transfer into an electronic enclosure

    NASA Astrophysics Data System (ADS)

    Nasirabadi, P. Shojaee; Jabbari, M.; Hattel, J. H.

    2016-06-01

    Electronic systems are sometimes exposed to harsh environmental conditions of temperature and humidity. Moisture transfer into electronic enclosures and condensation can cause several problems such as corrosion and alteration in thermal stresses. It is therefore essential to study the local climate inside the enclosures to be able to protect the electronic systems. In this work, moisture transfer into a typical electronic enclosure is numerically studied using CFD. In order to reduce the CPU-time and make a way for subsequent factorial design analysis, a simplifying modification is applied in which the real 3D geometry is approximated by a 2D axial symmetry one. The results for 2D and 3D models were compared in order to calibrate the 2D representation. Furthermore, simulation results were compared with experimental data and good agreement was found.

  13. SPECT study of cerebral blood flow reactivity after acetazolamide in patients with transient ischemic attacks

    SciTech Connect

    Chollet, F.; Celsis, P.; Clanet, M.; Guiraud-Chaumeil, B.; Rascol, A.; Marc-Vergnes, J.P.

    1989-04-01

    We investigated 15 patients with one or more transient ischemic attacks (TIAs) in the internal carotid artery territory within the month following the most recent TIA. Cerebral blood flow (CBF) was measured by single-photon emission computed tomography, using intravenous xenon-133 before and after injection of 1 g acetazolamide. Six patients had severe carotid stenosis or occlusion; the other nine patients had no significant carotid lesions. Twenty age-matched volunteers free of neurologic symptoms or history were used as controls. Mean CBF in the sylvian region was not significantly different between patients and controls. Seven patients exhibited a focal hypoperfusion at rest in the symptomatic hemisphere, and their hypoperfused areas were hyporeactive after administration of acetazolamide. Seven other patients exhibited hyporeactive areas after acetazolamide administration while their CBF tomograms at rest were normal. Thus, CBF abnormalities were detected in 14 of the 15 patients. Our findings suggest that CBF measured early after acetazolamide administration could be useful to confirm the clinical diagnosis of TIA. In the nine patients with no significant lesion of the internal carotid artery, the areas of hypoperfusion were small and were probably related to the focal ischemic event. In the six patients with severe lesions of the internal carotid artery, abnormalities were of variable size and intensity but were often large and pronounced. The discrepancy between these two subgroups of patients could be ascribed to the hemodynamic influence of the internal carotid artery lesions. Moreover, our findings may provide some insight into the pathophysiology of TIAs.

  14. Transient simulation in interior flow field of lobe pump

    NASA Astrophysics Data System (ADS)

    Li, Y. B.; Sang, X. H.; Meng, Q. W.; Shen, H.; Jia, K.

    2013-12-01

    The subject of this paper is mainly focused on the development and control of the double folium and trifolium lobe pump profiles by using the principle of involute engagement and use CAD to get an accurate involute profile. We use the standard k-ε turbulence model and PISO algorithm based on CFD software FLUENT. The dynamic mesh and UDF technology is introduced to simulate the interior flow field inside a lobe pump, and the variation of interior flow field under the condition of the lobe rotating is analyzed. We also analyse the influence produced by the difference in lobes, and then reveal which lobe is best. The results show that dynamic variation of the interior flow field is easily obtained by dynamic mesh technology and the distribution of its pressure and velocity. Because of the small gaps existing between the rotors and pump case, the higher pressure area will flow into the lower area though the small gaps which cause the working area keep with higher pressure all the time. Both of the double folium and trifolium are existing the vortex during the rotting time and its position, size and shape changes all the time. The vortexes even disappear in a circle period and there are more vortexes in double folium lobe pump. The velocity and pressure pulsation of trifolium pump are lower than that of the double folium.

  15. Transient Simulation of Accumulating Particle Deposition in Pipe Flow

    NASA Astrophysics Data System (ADS)

    Hewett, James; Sellier, Mathieu

    2015-11-01

    Colloidal particles that deposit in pipe systems can lead to fouling which is an expensive problem in both the geothermal and oil & gas industries. We investigate the gradual accumulation of deposited colloids in pipe flow using numerical simulations. An Euler-Lagrangian approach is employed for modelling the fluid and particle phases. Particle transport to the pipe wall is modelled with Brownian motion and turbulent diffusion. A two-way coupling exists between the fouled material and the pipe flow; the local mass flux of depositing particles is affected by the surrounding fluid in the near-wall region. This coupling is modelled by changing the cells from fluid to solid as the deposited particles exceed each local cell volume. A similar method has been used to model fouling in engine exhaust systems (Paz et al., Heat Transfer Eng., 34(8-9):674-682, 2013). We compare our deposition velocities and deposition profiles with an experiment on silica scaling in turbulent pipe flow (Kokhanenko et al., 19th AFMC, 2014).

  16. One- and two-dimensional STEALTH simulations of fuel-pin transient response. Final report. [BWR; PWR

    SciTech Connect

    Wahi, K.K.

    1980-08-01

    This report presents an assessment of the adaptability of EPRI's one- and two-dimensional STEALTH computer codes to perform transient fuel rod analysis. The ability of the STEALTH code to simulate transient mechanical or thermomechanical loss-of-coolant accident is described. Analytic models of one- and two-dimensional formulations and features included in the two-dimensional simulation are discussed.

  17. Experiments in sensing transient rotational acceleration cues on a flight simulator

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.

    1979-01-01

    Results are presented for two transient motion sensing experiments which were motivated by the identification of an anomalous roll cue (a 'jerk' attributed to an acceleration spike) in a prior investigation of realistic fighter motion simulation. The experimental results suggest the consideration of several issues for motion washout and challenge current sensory system modeling efforts. Although no sensory modeling effort is made it is argued that such models must incorporate the ability to handle transient inputs of short duration (some of which are less than the accepted latency times for sensing), and must represent separate channels for rotational acceleration and velocity sensing.

  18. Transient difference solutions of the inhomogeneous wave equation - Simulation of the Green's function

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1983-01-01

    A time-dependent finite difference formulation to the inhomogeneous wave equation is derived for plane wave propagation with harmonic noise sources. The difference equation and boundary conditions are developed along with the techniques to simulate the Dirac delta function associated with a concentrated noise source. Example calculations are presented for the Green's function and distributed noise sources. For the example considered, the desired Fourier transformed acoustic pressures are determined from the transient pressures by use of a ramping function and an integration technique, both of which eliminates the nonharmonic pressure associated with the initial transient.

  19. Mars atmospheric dynamics as simulated by the NASA AMES General Circulation Model. II - Transient baroclinic eddies

    NASA Astrophysics Data System (ADS)

    Barnes, J. R.; Pollack, J. B.; Haberle, R. M.; Leovy, C. B.; Zurek, R. W.; Lee, H.; Schaeffer, J.

    1993-02-01

    A large set of experiments performed with the NASA Ames Mars General Circulation Model is analyzed to determine the properties, structure, and dynamics of the simulated transient baroclinic eddies. There is strong transient baroclinic eddy activity in the extratropics of the Northern Hemisphere during the northern autumn, winter, and spring seasons. The eddy activity remains strong for very large dust loadings, though it shifts northward. The eastward propagating eddies are characterized by zonal wavenumbers of 1-4 and periods of about 2-10 days. The properties of the GCM baroclinic eddies in the northern extratropics are compared in detail with analogous properties inferred from Viking Lander meteorology observations.

  20. Numerical simulation of transient inviscid gas flows in a shock tube

    NASA Technical Reports Server (NTRS)

    Yang, J. Y.; Lombard, C. K.; Nagaraj, N.; Bershader, D.

    1985-01-01

    Time-dependent upwind high resolution schemes for solving the Euler equations were developed and applied to simulate 1-D and 2-D transient inviscid gas flows in a shock tube. Using obstacles of different geometries, a series of calculations were carried out to investigate the transient complex shock-wave diffraction phenomena. Shock-wave and objects interactions with shock Mach-number Ms ranging from 2 to 20 were considered. Comparison with analytical and available experimental results indicate good agreement. Display of detailed flow structures including multiple Mach shocks, slip surfaces, and vortex are also given.

  1. Response of standard and high-capacity HEPA filters to simulated tornado and explosive transients

    SciTech Connect

    Gregory, W.S.; Smith, P.R.

    1982-03-01

    An investigation was performed to determine the response of standard and high-capacity high-efficiency particulate air filters to simulated tornado and explosive transients. Most of the tests were directed toward evaluating the structural response of high-capacity filters to explosive transients. Selected tests were performed to evaluate the effects of particulate loading on filtration efficiencies. Also, several of the high-capacity filters were subjected to simulated toronado transients. The results indicate that the upper structural limits of high-capacity filters for explosive loading is 6.89-kPa (1-psi) peak pressure and 100-kPa-ms (14.51-psi-ms) impulse. These limits are below the approximately 13.78-kPa (2-psi) peak pressure loadings found for standard HEPA filters. Tests of high-capacity filters preloaded with aerosol indicated that the structural limits were further degraded by approximately 40%. The filtration efficiencies were degraded to approximately 70% when the filters were subjected to aerosol entrained within the shock pulse. The effect of simulated tornado transients on high-capacity filters resulted in an upper structural limit of 11.02 kPa (1.6 psi) for peak pressure.

  2. Low Dissipative High Order Numerical Simulations of Supersonic Reactive Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, B.; Yee, H. C.; Mansour, Nagi (Technical Monitor)

    2001-01-01

    The objective of this paper is to evaluate the performance of a newly developed low dissipative sixth-order spatial and fourth-order temporal scheme for viscous reactive flows interacting with shock waves that contain fine scale flow structures. The accuracy and efficiency of the scheme, and to what degree the scheme can capture the correct physical wave speeds of stiff reactive flows will be included.

  3. Modeling and simulation of interactions of transient ionizing radiation with electronics

    SciTech Connect

    Ishaque, A.N.; Howard, J.W.; Becker, M.; Block, R.C.

    1988-01-01

    Electronic devices frequently are designed to withstand environments in which transient ionizing radiation may be present. Devices so designed must be tested to determine whether they indeed can withstand such radiation. Electron linear accelerators, including Rensselaer Polytechnic Institute's (RPI) Linac, are used for such testing. To understand the interactions that take place, it is desirable to model and simulate the phenomena involved. At RPI, there is an ongoing effort in modeling and simulation to complement and support the experimental program at the Linac. Modeling and simulation at RPI is directed toward predicting the types of radiation effects that occur when transient measurements are made at the RPI Linac. The combination of device and circuit modeling provides both insight and confidence in the merits of the models developed.

  4. Enhancing the ABAQUS thermomechanics code to simulate multipellet steady and transient LWR fuel rod behavior

    NASA Astrophysics Data System (ADS)

    Williamson, R. L.

    2011-08-01

    A powerful multidimensional fuels performance analysis capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO 2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth, gap heat transfer, and gap/plenum gas behavior during irradiation. This new capability is demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multipellet fuel rod, during both steady and transient operation. Comparisons are made between discrete and smeared-pellet simulations. Computational results demonstrate the importance of a multidimensional, multipellet, fully-coupled thermomechanical approach. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermomechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.

  5. Comparison of the Accuracy and Speed of Transient Mobile A/C System Simulation Models: Preprint

    SciTech Connect

    Kiss, T.; Lustbader, J.

    2014-03-01

    The operation of air conditioning (A/C) systems is a significant contributor to the total amount of fuel used by light- and heavy-duty vehicles. Therefore, continued improvement of the efficiency of these mobile A/C systems is important. Numerical simulation has been used to reduce the system development time and to improve the electronic controls, but numerical models that include highly detailed physics run slower than desired for carrying out vehicle-focused drive cycle-based system optimization. Therefore, faster models are needed even if some accuracy is sacrificed. In this study, a validated model with highly detailed physics, the 'Fully-Detailed' model, and two models with different levels of simplification, the 'Quasi-Transient' and the 'Mapped- Component' models, are compared. The Quasi-Transient model applies some simplifications compared to the Fully-Detailed model to allow faster model execution speeds. The Mapped-Component model is similar to the Quasi-Transient model except instead of detailed flow and heat transfer calculations in the heat exchangers, it uses lookup tables created with the Quasi-Transient model. All three models are set up to represent the same physical A/C system and the same electronic controls. Speed and results of the three model versions are compared for steady state and transient operation. Steady state simulated data are also compared to measured data. The results show that the Quasi-Transient and Mapped-Component models ran much faster than the Fully-Detailed model, on the order of 10- and 100-fold, respectively. They also adequately approach the results of the Fully-Detailed model for steady-state operation, and for drive cycle-based efficiency predictions

  6. Transient simulation of global changes of the hydrological cycle during the last deglaciation (Invited)

    NASA Astrophysics Data System (ADS)

    He, F.; Shakun, J. D.; Clark, P. U.

    2013-12-01

    The future changes of the hydrological cycle caused by the anthropogenic carbon emission have great impact on regional water management, national food security and global health. The IPCC AR4 report concluded that it is very likely that the frequency of heavy rainfall will increase over most of the land area, while area affected by drought will likely increase as well. However, the level of the scientific understanding of the hydrological changes is hindered by the short instrumental records and the inherent delay of the response of climate system to greenhouse gas forcing. The last deglaciation witnessed the last natural global warming and represents the unique opportunity to overcome the above challenges when carbon dioxide concentrations rose from 185 ppm to 260 ppm over the approximately 10,000 years. Clark et al. [2012, PNAS] has compiled the changes of the global hydrological cycle during the last deglaciation with 39 high-resolution precipitation proxies over the land area. Here we compare the transient simulation of the last deglaciation in fully coupled Community Climate System Model version 3 (CCSM3) with the reconstructed hydrological changes to check whether the current climate models used to predict the future is capable of reproducing the evolution of global hydrological cycle in the past. Over Greenland, the transient simulation reproduces the abrupt increase of precipitation during the Bølling and the reduction of precipitation during the Younger Dryas (YD). The transient simulation also reproduces the global impacts of these abrupt climate events. In the Arabian Sea, the transient simulation produces the decrease of precipitation during the Oldest Dryas (OD) and YD, and the increase of precipitation during the Bølling. In South America, the transient simulation reproduces the meridional shifts of the ITCZ, with increase of precipitation over Brazil and Bolivia during the OD and YD and decrease of precipitation during the Bølling. The transient

  7. Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold

    NASA Astrophysics Data System (ADS)

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa

    2014-07-01

    The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.

  8. Fluid-solid coupled simulation of the ignition transient of solid rocket motor

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Liu, Peijin; He, Guoqiang

    2015-05-01

    The first period of the solid rocket motor operation is the ignition transient, which involves complex processes and, according to chronological sequence, can be divided into several stages, namely, igniter jet injection, propellant heating and ignition, flame spreading, chamber pressurization and solid propellant deformation. The ignition transient should be comprehensively analyzed because it significantly influences the overall performance of the solid rocket motor. A numerical approach is presented in this paper for simulating the fluid-solid interaction problems in the ignition transient of the solid rocket motor. In the proposed procedure, the time-dependent numerical solutions of the governing equations of internal compressible fluid flow are loosely coupled with those of the geometrical nonlinearity problems to determine the propellant mechanical response and deformation. The well-known Zeldovich-Novozhilov model was employed to model propellant ignition and combustion. The fluid-solid coupling interface data interpolation scheme and coupling instance for different computational agents were also reported. Finally, numerical validation was performed, and the proposed approach was applied to the ignition transient of one laboratory-scale solid rocket motor. For the application, the internal ballistics were obtained from the ground hot firing test, and comparisons were made. Results show that the integrated framework allows us to perform coupled simulations of the propellant ignition, strong unsteady internal fluid flow, and propellant mechanical response in SRMs with satisfactory stability and efficiency and presents a reliable and accurate solution to complex multi-physics problems.

  9. Large Eddy Simulations of Double-Ruler Electromagnetic Field Effect on Transient Flow During Continuous Casting

    NASA Astrophysics Data System (ADS)

    Singh, Ramnik; Thomas, Brian G.; Vanka, Surya P.

    2014-06-01

    Transient flow during nominally steady conditions is responsible for many intermittent defects during the continuous casting of steel. The double-ruler electromagnetic field configuration, or "FC-Mold EMBr," is popular in commercial slab casting as it provides independent control of the applied static field near the jet and free surface regions of the mold. In the current study, transient flow in a typical commercial caster is simulated in the absence and in the presence of a double-ruler magnetic field, with rulers of equal strengths. Large eddy simulations with the in-house code CU-FLOW resolve the important transient behavior, using grids of over five million cells with a fast parallel solver. In the absence of a magnetic field, a double-roll pattern is observed, with transient unbalanced behavior, high surface velocities (~0.5 m/s), surface vortex formation, and very large surface-level fluctuations (~±12 mm). Applying the magnetic field suppresses the unbalanced behavior, producing a more complex mold flow pattern, but with much lower surface velocities (~0.1 m/s), and a flat surface level with small level fluctuations (<±1 mm). Nail board measurements taken at this commercial caster, in the absence of the field, matched reasonably well with the calculated results, both quantitatively and qualitatively.

  10. Transient Influx of Nickel in Root Mitochondria Modulates Organic Acid and Reactive Oxygen Species Production in Nickel Hyperaccumulator Alyssum murale*

    PubMed Central

    Agrawal, Bhavana; Czymmek, Kirk J.; Sparks, Donald L.; Bais, Harsh P.

    2013-01-01

    Mitochondria are important targets of metal toxicity and are also vital for maintaining metal homeostasis. Here, we examined the potential role of mitochondria in homeostasis of nickel in the roots of nickel hyperaccumulator plant Alyssum murale. We evaluated the biochemical basis of nickel tolerance by comparing the role of mitochondria in closely related nickel hyperaccumulator A. murale and non-accumulator Alyssum montanum. Evidence is presented for the rapid and transient influx of nickel in root mitochondria of nickel hyperaccumulator A. murale. In an early response to nickel treatment, substantial nickel influx was observed in mitochondria prior to sequestration in vacuoles in the roots of hyperaccumulator A. murale compared with non-accumulator A. montanum. In addition, the mitochondrial Krebs cycle was modulated to increase synthesis of malic acid and citric acid involvement in nickel hyperaccumulation. Furthermore, malic acid, which is reported to form a complex with nickel in hyperaccumulators, was also found to reduce the reactive oxygen species generation induced by nickel. We propose that the interaction of nickel with mitochondria is imperative in the early steps of nickel uptake in nickel hyperaccumulator plants. Initial uptake of nickel in roots results in biochemical responses in the root mitochondria indicating its vital role in homeostasis of nickel ions in hyperaccumulation. PMID:23322782

  11. Transient simulation of last deglaciation with a new mechanism for Bolling-Allerod warming.

    PubMed

    Liu, Z; Otto-Bliesner, B L; He, F; Brady, E C; Tomas, R; Clark, P U; Carlson, A E; Lynch-Stieglitz, J; Curry, W; Brook, E; Erickson, D; Jacob, R; Kutzbach, J; Cheng, J

    2009-07-17

    We conducted the first synchronously coupled atmosphere-ocean general circulation model simulation from the Last Glacial Maximum to the Bølling-Allerød (BA) warming. Our model reproduces several major features of the deglacial climate evolution, suggesting a good agreement in climate sensitivity between the model and observations. In particular, our model simulates the abrupt BA warming as a transient response of the Atlantic meridional overturning circulation (AMOC) to a sudden termination of freshwater discharge to the North Atlantic before the BA. In contrast to previous mechanisms that invoke AMOC multiple equilibrium and Southern Hemisphere climate forcing, we propose that the BA transition is caused by the superposition of climatic responses to the transient CO(2) forcing, the AMOC recovery from Heinrich Event 1, and an AMOC overshoot. PMID:19608916

  12. Transient Simulation of Last Deglaciation with a New Mechanism for B lling-Aller d Warming

    SciTech Connect

    Erickson, David J

    2009-01-01

    We conducted the first synchronously coupled atmosphere-ocean general circulation model simulation from the Last Glacial Maximum to the Boelling-Alleroed (BA) warming. Our model reproduces several major features of the deglacial climate evolution, suggesting a good agreement in climate sensitivity between the model and observations. In particular, our model simulates the abrupt BA warming as a transient response of the Atlantic meridional overturning circulation (AMOC) to a sudden termination of freshwater discharge to the North Atlantic before the BA. In contrast to previous mechanisms that invoke AMOC multiple equilibrium and Southern Hemisphere climate forcing, we propose that the BA transition is caused by the superposition of climatic responses to the transient CO{sub 2} forcing, the AMOC recovery from Heinrich Event 1, and an AMOC overshoot.

  13. Transient thermal simulation of uncooled microbolometer detectors and their performance analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Junju; Sun, Lianjun; Chang, Benkang; Qian, Yunsheng; Qiu, Yafeng; Tian, Si

    2007-07-01

    Recent advances in MEMS and focal plane array (FPA) technologies have led to the development of manufacturing microbolometers monolithically on a readout integrated circuit (ROIC). Since the response of microbolometer detectors depends on the modification of temperature in micromachined bridge structures, it is useful to model and simulate thermally the corresponding structures in order to predict their performance parameters. In this work, finite element methods are performed to simulate the transient temperature field of thermistor films of microbolometer detectors. The varisized supporting legs' impacts on the performance of detectors are discussed and the transient response for three microbolometer configurations was investigated. At the same time, variation of the operation temperature's impacts on total noise, noise equivalent to temperature difference (NETD) and detectivity (D*) are also discussed in details. These performance analyses are helpful for optimum design of microbolometer infrared detectors' structure and rational choice of operation temperature of infrared focal plane arrays.

  14. Rotor dynamic state and parameter identification from simulated forward flight transients, part 1

    NASA Technical Reports Server (NTRS)

    Hohenemser, K. H.; Banerjee, D.; Yin, S. K.

    1976-01-01

    State and parameter identifications from simulated forward flight blade flapping measurements are presented. The transients were excited by progressing cyclic pitch stirring or by hub stirring with constant stirring acceleration. Rotor dynamic inflow models of varying degree of sophistication were used from a one parameter inflow model (equivalent Lock number) to an eight parameter inflow model. The maximum likelihood method with assumed fixed measurement error covariance matrix was applied. The rotor system equations for both fixed hub and tilting hub are given. The identified models were verified by comparing true responses with predicted responses. An optimum utilization of the simulated measurement data can be defined. From the numerical results it can be anticipated that brief periods of either accelerated cyclic pitch stirring or of hub stirring are sufficient to extract with adequate accuracy up to 8 rotor dynamic inflow parameters plus the blade Lock number from the transients.

  15. Waterhammer Transient Simulation and Model Anchoring for the Robotic Lunar Lander Propulsion System

    NASA Technical Reports Server (NTRS)

    Stein, William B.; Trinh, Huu P.; Reynolds, Michael E.; Sharp, David J.

    2011-01-01

    Waterhammer transients have the potential to adversely impact propulsion system design if not properly addressed. Waterhammer can potentially lead to system plumbing, and component damage. Multi-thruster propulsion systems also develop constructive/destructive wave interference which becomes difficult to predict without detailed models. Therefore, it is important to sufficiently characterize propulsion system waterhammer in order to develop a robust design with minimal impact to other systems. A risk reduction activity was performed at Marshall Space Flight Center to develop a tool for estimating waterhammer through the use of anchored simulation for the Robotic Lunar Lander (RLL) propulsion system design. Testing was performed to simulate waterhammer surges due to rapid valve closure and consisted of twenty-two series of waterhammer tests, resulting in more than 300 valve actuations. These tests were performed using different valve actuation schemes and three system pressures. Data from the valve characterization tests were used to anchor the models that employed MSCSoftware.EASY5 v.2010 to model transient fluid phenomena by using transient forms of mass and energy conservation. The anchoring process was performed by comparing initial model results to experimental data and then iterating the model input to match the simulation results with the experimental data. The models provide good correlation with experimental results, supporting the use of EASY5 as a tool to model fluid transients and provide a baseline for future RLL system modeling. This paper addresses tasks performed during the waterhammer risk reduction activity for the RLL propulsion system. The problem of waterhammer simulation anchoring as applied to the RLL system is discussed with results from the corresponding experimental valve tests. Important factors for waterhammer mitigation are discussed along with potential design impacts to the RLL propulsion system.

  16. An Introduction to Transient Engine Applications Using the Numerical Propulsion System Simulation (NPSS) and MATLAB

    NASA Technical Reports Server (NTRS)

    Chin, Jeffrey C.; Csank, Jeffrey T.; Haller, William J.; Seidel, Jonathan A.

    2016-01-01

    This document outlines methodologies designed to improve the interface between the Numerical Propulsion System Simulation framework and various control and dynamic analyses developed in the Matlab and Simulink environment. Although NPSS is most commonly used for steady-state modeling, this paper is intended to supplement the relatively sparse documentation on it's transient analysis functionality. Matlab has become an extremely popular engineering environment, and better methodologies are necessary to develop tools that leverage the benefits of these disparate frameworks. Transient analysis is not a new feature of the Numerical Propulsion System Simulation (NPSS), but transient considerations are becoming more pertinent as multidisciplinary trade-offs begin to play a larger role in advanced engine designs. This paper serves to supplement the relatively sparse documentation on transient modeling and cover the budding convergence between NPSS and Matlab based modeling toolsets. The following sections explore various design patterns to rapidly develop transient models. Each approach starts with a base model built with NPSS, and assumes the reader already has a basic understanding of how to construct a steady-state model. The second half of the paper focuses on further enhancements required to subsequently interface NPSS with Matlab codes. The first method being the simplest and most straightforward but performance constrained, and the last being the most abstract. These methods aren't mutually exclusive and the specific implementation details could vary greatly based on the designer's discretion. Basic recommendations are provided to organize model logic in a format most easily amenable to integration with existing Matlab control toolsets.

  17. Analog-digital simulation of transient-induced logic errors and upset susceptibility of an advanced control system

    NASA Technical Reports Server (NTRS)

    Carreno, Victor A.; Choi, G.; Iyer, R. K.

    1990-01-01

    A simulation study is described which predicts the susceptibility of an advanced control system to electrical transients resulting in logic errors, latched errors, error propagation, and digital upset. The system is based on a custom-designed microprocessor and it incorporates fault-tolerant techniques. The system under test and the method to perform the transient injection experiment are described. Results for 2100 transient injections are analyzed and classified according to charge level, type of error, and location of injection.

  18. Importance of thermal nonequilibrium considerations for the simulation of nuclear reactor LOCA transients. [PWR

    SciTech Connect

    Fischer, S.R.; Nelson, R.A.; Sullivan, L.H.

    1980-01-01

    The purpose of this paper is to show the importance of considering thermal nonequilibrium effects in computer simulations of the refill and reflood portions of pressurized water reactor (PWR) loss-of-coolnat accident (LOCA) transients. Although RELAP4 assumes thermodynamic equilibrium between phases, models that account for the nonequilibrium phenomena associated with the mixing of subcooled emergency cooling water with steam and the superheating of vapor in the presence of liquid droplets have recently been incorporated into the code. Code calculated results, both with and without these new models, have been compared with experimental test data to assess the importance of including thermal nonequilibrium phenomena in computer code simulations.

  19. Reactive Oxygen Species Generation by Lunar Simulants in Simulated Lung Fluid

    NASA Astrophysics Data System (ADS)

    Schoonen, M. A.; Kaur, J.; Rickman, D.

    2015-12-01

    The current interest in human exploration of the Moon and other airless planetary bodies has rekindled research into the harmful effects of Lunar dust on human health. Our team has evaluated the spontaneous formation of Reactive Oxygen Species (ROS; hydroxyl radicals, superoxide, and hydrogen peroxide) of a suite of lunar simulants when dispersed in deionized water. Of these species, hydroxyl radical reacts almost immediately with any biomolecule leading to oxidative damage. Sustained production of OH radical as a result of mineral exposure can initiate or enhance disease. The results in deionized water indicate that mechanical stress and the absence of molecular oxygen and water, important environmental characteristics of the lunar environment, can lead to enhanced production of ROS in general. On the basis of the results with deionized water, a few of the simulants were selected for additional studies to evaluate the formation of hydrogen peroxide, a precursor of hydroxyl radical in Simulated Lung Fluid. These simulants dispersed in deionized water typically produce a maximum in H2O2 within 10 to 40 minutes. However, experiments in SLF show a slow steady increase in H2O2 concentration that has been documented to continue for as long as 7 hours. Control experiments with one simulant demonstrate that the rise in H2O2 depends on the availability of dissolved O2. We speculate that this continuous rise in oxygenated SLF might be a result of metal ion-mediated oxidation of organic components, such as glycine in SLF. Ion-mediated oxidation essentially allows dissolved molecular oxygen to react with dissolved organic compounds by forming a metal-organic complex. Results of separate experiments with dissolved Fe, Ni, and Cu and speciation calculations support this notion.

  20. Heterogeneous reactive transport under unsaturated transient conditions characterized by 3D electrical resistivity tomography and advanced lysimeter methods

    NASA Astrophysics Data System (ADS)

    Wehrer, Markus; Slater, Lee

    2015-04-01

    Our ability to predict flow and transport processes in the unsaturated critical zone is considerably limited by two characteristics: heterogeneity of flow and transience of boundary conditions. The causes of heterogeneous flow and transport are fairly well understood, yet the characterization and quantification of such processes in natural profiles remains challenging. This is due to current methods of observation, such as staining and isotope tracers, being unable to observe multiple events on the same profile and offering limited spatial information. In our study we demonstrate an approach to characterize preferential flow and transport processes applying a combination of geoelectrical methods and advanced lysimeter techniques. On an agricultural soil profile, which was transferred undisturbed into a lysimeter container, we systematically applied a variety of input flow boundary conditions, resembling natural precipitation events. We measured breakthroughs of a conservative tracer and of nitrate, originating from the application of a slow release fertilizer and serving as a reactive tracer. Flow and transport in the soil column were observed using electrical resistivity tomography (ERT), tensiometers, water content probes and a multicompartment suction plate (MSP). These techniques allowed a direct validation of water content dynamics and tracer breakthrough under transient boundary conditions characterized noninvasively by ERT. We were able to image the advancing infiltration front and the advancing front of tracer and nitrate using time lapse ERT. Water content changes associated with the advancing infiltration front dominated over pore fluid conductivity changes during short term precipitation events. Conversely, long-term displacement of the solute fronts was monitored during periods of constant water content in between infiltration events. We observed preferential flow phenomena through ERT and through the MSP, which agreed in general terms. The preferential

  1. A parallel algorithm for transient solid dynamics simulations with contact detection

    SciTech Connect

    Attaway, S.; Hendrickson, B.; Plimpton, S.; Gardner, D.; Vaughan, C.; Heinstein, M.; Peery, J.

    1996-06-01

    Solid dynamics simulations with Lagrangian finite elements are used to model a wide variety of problems, such as the calculation of impact damage to shipping containers for nuclear waste and the analysis of vehicular crashes. Using parallel computers for these simulations has been hindered by the difficulty of searching efficiently for material surface contacts in parallel. A new parallel algorithm for calculation of arbitrary material contacts in finite element simulations has been developed and implemented in the PRONTO3D transient solid dynamics code. This paper will explore some of the issues involved in developing efficient, portable, parallel finite element models for nonlinear transient solid dynamics simulations. The contact-detection problem poses interesting challenges for efficient implementation of a solid dynamics simulation on a parallel computer. The finite element mesh is typically partitioned so that each processor owns a localized region of the finite element mesh. This mesh partitioning is optimal for the finite element portion of the calculation since each processor must communicate only with the few connected neighboring processors that share boundaries with the decomposed mesh. However, contacts can occur between surfaces that may be owned by any two arbitrary processors. Hence, a global search across all processors is required at every time step to search for these contacts. Load-imbalance can become a problem since the finite element decomposition divides the volumetric mesh evenly across processors but typically leaves the surface elements unevenly distributed. In practice, these complications have been limiting factors in the performance and scalability of transient solid dynamics on massively parallel computers. In this paper the authors present a new parallel algorithm for contact detection that overcomes many of these limitations.

  2. Transient dynamics simulations: Parallel algorithms for contact detection and smoothed particle hydrodynamics

    SciTech Connect

    Hendrickson, B.; Plimpton, S.; Attaway, S.; Swegle, J.

    1996-09-01

    Transient dynamics simulations are commonly used to model phenomena such as car crashes, underwater explosions, and the response of shipping containers to high-speed impacts. Physical objects in such a simulation are typically represented by Lagrangian meshes because the meshes can move and deform with the objects as they undergo stress. Fluids (gasoline, water) or fluid-like materials (earth) in the simulation can be modeled using the techniques of smoothed particle hydrodynamics. Implementing a hybrid mesh/particle model on a massively parallel computer poses several difficult challenges. One challenge is to simultaneously parallelize and load-balance both the mesh and particle portions of the computation. A second challenge is to efficiently detect the contacts that occur within the deforming mesh and between mesh elements and particles as the simulation proceeds. These contacts impart forces to the mesh elements and particles which must be computed at each timestep to accurately capture the physics of interest. In this paper we describe new parallel algorithms for smoothed particle hydrodynamics and contact detection which turn out to have several key features in common. Additionally, we describe how to join the new algorithms with traditional parallel finite element techniques to create an integrated particle/mesh transient dynamics simulation. Our approach to this problem differs from previous work in that we use three different parallel decompositions, a static one for the finite element analysis and dynamic ones for particles and for contact detection. We have implemented our ideas in a parallel version of the transient dynamics code PRONTO-3D and present results for the code running on a large Intel Paragon.

  3. Unstructured grid methods for the simulation of 3D transient flows

    NASA Technical Reports Server (NTRS)

    Morgan, K.; Peraire, J.; Peiro, J.

    1994-01-01

    A description of the research work undertaken under NASA Research Grant NAGW-2962 has been given. Basic algorithmic development work, undertaken for the simulation of steady three dimensional inviscid flow, has been used as the basis for the construction of a procedure for the simulation of truly transient flows in three dimensions. To produce a viable procedure for implementation on the current generation of computers, moving boundary components are simulated by fixed boundaries plus a suitably modified boundary condition. Computational efficiency is increased by the use of an implicit time stepping scheme in which the equation system is solved by explicit multistage time stepping with multigrid acceleration. The viability of the proposed approach has been demonstrated by considering the application of the procedure to simulation of a transonic flow over an oscillating ONERA M6 wing.

  4. Transient reactive papulotranslucent acrokeratoderma in a 50-year-old woman: case report and review of the literature.

    PubMed

    Adişen, Esra; Karaca, Fulya; Gürer, Mehmet Ali

    2008-01-01

    A 50-year-old woman who presented with intermittent symmetric edema and wrinkling of the palms after soaking in water was found to have transient reactive papulotranslucent acrokeratoderma (TRPA). This is the oldest patient ever reported to have this condition. The patient was advised to avoid water exposure as much as possible and to wear gloves. Topical treatment with 5% salicylic acid in Vaseline also provided some relief. TRPA presents with translucent, white, confluent papules that become evident on the palms after 3-5 minutes' exposure to water (the so-called 'hand-in-the-bucket' sign) and resolve within a short time after drying. It is a rare disorder with fewer than 40 cases having been reported in the world literature. The disease is seen mostly in female patients, with ages ranging from 6 to 44 years prior to our case in a 50-year-old woman. The most common histologic findings are hyperkeratosis and dilated eccrine ostia. The etiopathogenesis of the disease remains unknown but a transitory structural or functional alteration of components of the stratum corneum or aberration of the sweat duct have been considered. TRPA has been reported in patients with cystic fibrosis and more recently, in patients taking selective cyclo-oxygenase-2 inhibitors. Therefore, the pathogenesis of the condition appears to be related to increased water absorption as a result of an increased epidermal sodium level. Treatment with barrier creams such as hydrophilic petrolatum, glycerin emollients, 5-20% salicylic acid in Vaseline, 10% urea cream, and 12% ammonium lactate cream have been reported. Cases with associated hyperhidrosis respond well to aluminum chloride-containing products. PMID:18973409

  5. Reactivity-controlled compression ignition drive cycle emissions and fuel economy estimations using vehicle system simulations

    DOE PAGESBeta

    Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.

    2014-12-22

    In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NOX and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustion whenmore » speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.« less

  6. Reactivity-controlled compression ignition drive cycle emissions and fuel economy estimations using vehicle system simulations

    SciTech Connect

    Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.

    2014-12-22

    In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NOX and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustion when speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.

  7. On the start-up transient simulation of a turbo fuel cell system

    NASA Astrophysics Data System (ADS)

    Lin, Po-Hsu; Hong, Che-Wun

    The start-up transient behavior is an important issue in a turbo fuel cell system design. This paper developed a general dynamic model of the hybrid fuel cell/micro-gas turbine (MGT) system to investigate the transient behavior during cold start. The unsteady flow process through components of the turbo fuel cell system, which includes a solid oxide fuel cell (SOFC) stack, an afterburner, a turbo generator and heat exchangers, was modeled using a filling-and-emptying approach. Each major component was treated as a function block in the coded model. Computer simulations were performed on a Matlab/Simulink platform based on the block-diagram concept. The main focus of this study is on the start-up transient behavior of a basic turbo fuel cell system. The simulation results show that the start-up time for the example turbo fuel cell system (200 kW SOFC plus 50 kW MGT) can be up to about a few hours. Preliminary parametric investigations with different operating conditions show that the start-up duration can be reduced to less than 1 h.

  8. Reactively and Anticipatory Behaving Agents for Artificial Life Simulations

    NASA Astrophysics Data System (ADS)

    Kohout, Karel; Nahodil, Pavel

    2010-11-01

    Reactive behavior is still considered and the exact opposite for the anticipatory one. Despite the advances on the field of anticipation there are little thoughts on relation with the reactive behavior, the similarities and where the boundary is. In this article we will present our viewpoint and we will try to show that reactive and anticipatory behavior can be combined. This is the basic ground of our unified theory for anticipatory behavior architecture. We still miss such compact theory, which would integrate multiple aspects of anticipation. My multi-level anticipatory behavior approach is based on the current understanding of anticipation from both the artificial intelligence and biology point of view. As part of the explanation we will also elaborate on the topic of weak and strong artificial life. Anticipation is not matter of a single mechanism in a living organism. It was noted already that it happens on many different levels even in the very simple creatures. What we consider to be important for our work and what is our original though is that it happens even without voluntary control. We believe that this is novelty though for the anticipation theory. Naturally research of anticipation was in the beginning of this decade focused on the anticipatory principles bringing advances on the field itself. This allowed us to build on those, look at them from higher perspective, and use not one but multiple levels of anticipation in a creature design. This presents second original though and that is composition of the agent architecture that has anticipation built in almost every function. In this article we will focus only on first two levels within the 8-factor anticipation framework. We will introduce them as defined categories of anticipation and describe them from theory and implementation algorithm point of view. We will also present an experiment conducted, however this experiment serves more as explanatory example. These first two levels may seem trivial

  9. Response of centrifugal blowers to simulated tornado transients, July-September 1981

    SciTech Connect

    Idar, E S; Gregory, W S; Martin, R A; Littleton, P E

    1982-03-01

    During this quarter, quasi-steady and dynamic testing of the 24-in. centrifugal blower was completed using the blowdown facility located at New Mexico State University. The data were obtained using a new digital data-acquisition system. Software was developed at the Los Alamos National Laboratory to reduce the dynamic test data and create computer-generated movies showing the dynamic performance of the blower under simulated tornado transient pressure conditions relative to its quasi-steady-state performance. Currently, quadrant-four (outrunning flow) data have been reduced for the most severe and a less severe tornado pressure transient. The results indicate that both the quasi-steady and dynamic blower performance are very similar. Some hysteresis in the dynamic performance occurs because of rotational inertia effects in the blower rotor and drive system. Currently quadrant-two (backflow) data are being transferred to the LTSS computer system at Los Alamos and will be reduced shortly.

  10. Surrogate model approach for improving the performance of reactive transport simulations

    NASA Astrophysics Data System (ADS)

    Jatnieks, Janis; De Lucia, Marco; Sips, Mike; Dransch, Doris

    2016-04-01

    Reactive transport models can serve a large number of important geoscientific applications involving underground resources in industry and scientific research. It is common for simulation of reactive transport to consist of at least two coupled simulation models. First is a hydrodynamics simulator that is responsible for simulating the flow of groundwaters and transport of solutes. Hydrodynamics simulators are well established technology and can be very efficient. When hydrodynamics simulations are performed without coupled geochemistry, their spatial geometries can span millions of elements even when running on desktop workstations. Second is a geochemical simulation model that is coupled to the hydrodynamics simulator. Geochemical simulation models are much more computationally costly. This is a problem that makes reactive transport simulations spanning millions of spatial elements very difficult to achieve. To address this problem we propose to replace the coupled geochemical simulation model with a surrogate model. A surrogate is a statistical model created to include only the necessary subset of simulator complexity for a particular scenario. To demonstrate the viability of such an approach we tested it on a popular reactive transport benchmark problem that involves 1D Calcite transport. This is a published benchmark problem (Kolditz, 2012) for simulation models and for this reason we use it to test the surrogate model approach. To do this we tried a number of statistical models available through the caret and DiceEval packages for R, to be used as surrogate models. These were trained on randomly sampled subset of the input-output data from the geochemical simulation model used in the original reactive transport simulation. For validation we use the surrogate model to predict the simulator output using the part of sampled input data that was not used for training the statistical model. For this scenario we find that the multivariate adaptive regression splines

  11. Simulations of the transient flow generated from a started flat plate

    NASA Astrophysics Data System (ADS)

    Wang, Leqin; Ma, Xudan; Li, Zhifeng; Wu, Peng; Wu, Dazhuan

    2012-11-01

    Transient operations are commonly founded in fluid machineries such as the starting, stopping, and variations of rotor speeds, etc. Flow generated from a started flat plate is of fundamental importance. Experiments have been done to observe the flow evolution in current researches. And in order to explore the flow in more detailed scale, some vortex methods with high resolution and other numerical methods were developed to solve various related problems by some researchers. But the promotion of vortex method to engineering application is rare due to its complexity and difficulty in specifying the boundary conditions. In order to build up a method of numerical study for such problems, a simplified model is built up with a flat plate. The development of two-dimensional viscous incompressible flow generated from an impulsively started and uniformly accelerated infinitesimally thin flat plate is simulated numerically. A dynamic mesh(DM) method based on the spring analogue and local remeshing is applied to realize the mesh motion caused by the started plate. Researches show that the mesh quality will decline under large grid shear force during the updating process. To conquer this problem, a region near the plate is separated to guarantee the mesh quality at location of interest which is the innovation of the present paper. All computations at least cover a period during which the plate translates 6 times its length. The simulated instantaneous velocity profiles, flow structures and drag coefficients under several Reynolds numbers (20⩽ Re⩽126) and accelerations (20 m/s2⩽ a⩽152 m/s2) are presented and compared with existing results in literatures. Comparisons are found to be satisfactory, confirming the validity of the current proposed method(region separated DM). The proposed DM method is firstly used to study the transient flow generated from a started flat plate and can be used in further study of transient characteristics during transient operations of turbo

  12. Polyethylene glygol conjugated superoxide dismutase (PEG-SOD) improves recovery of hypercapnia cerebral blood flow (CBF) reactivity following transient global ischemia in piglets

    SciTech Connect

    Traystman, R.J.; Kirsch, J.R.; Helfaer, M.A.; Haun, S.E. )

    1991-03-15

    This study tested the hypothesis that alteration in hypercapnic cerebral blood flow (CBF) reactivity is due to oxygen-derived free radical mediated vascular damage and therefore could be inhibited by treatment with PEG-SOD. Pentobarbital anesthetized piglets were mechanically ventilated and hemodynamically monitored. CBF was measured at PaCO{sub 2} of approximately 25, 40 and 55 mmHg. Reactivity was tested in all piglets prior to and 2 hours following reperfusion from global ischemia. Control piglets received PEG prior to ischemia and at reperfusion. Experimental piglets received either PEG-SOD prior to ischemia and PEG at reperfusion or PEG prior to ischemia and PEG-SOD at reperfusion. During reperfusion cerebral perfusion pressure was maintained constant between groups by intravenous infusion of epinephrine. Pre-ischemic hypercapnic reactivity was not different between groups. At 2 hr reperfusion hypercapnic CBF reactivity in control piglets was diminished to forebrain and brainstem but hypercapnic reactivity was not different than preischemic values in either group receiving PEG-SOD. The authors conclude that administration of PEG-SOD, either prior to or following transient global ischemia, improves recovery of post-ischemic hypercapnic reactivity in piglets. This implicates oxygen-derived free radicals as important mediators of reperfusion injury in brain.

  13. Groundwater recharge simulation under the steady-state and transient climate conditions

    NASA Astrophysics Data System (ADS)

    Pozdniakov, S.; Lykhina, N.

    2010-03-01

    Groundwater recharge simulation under the steady-state and transient climate conditions Diffusive groundwater recharge is a vertical water flux through the water table, i.e. through the boundary between the unsaturated and saturated zones. This flux features temporal and spatial changes due to variations in the climatic conditions, landscape the state of vegetation, and the spatial variability of vadoze zone characteristics. In a changing climate the non-steady state series of climatic characteristics will affect on the groundwater recharge.. A well-tested approach to calculating water flux through the vadoze zone is the application of Richard’s equations for a heterogeneous one-domain porosity continuum with specially formulated atmospheric boundary conditions at the ground surface. In this approach the climatic parameters are reflected in upper boundary conditions, while the recharge series is the flux through the low boundary. In this work developed by authors code Surfbal that simulates water cycle at surface of topsoil to take into account the various condition of precipitation transformation at the surface in different seasons under different vegetation cover including snow accumulation in winter and melting in spring is used to generate upper boundary condition at surface of topsoil for world-wide known Hydrus-1D code (Simunek et al, 2008). To estimate the proposal climate change effect we performed Surfbal and Hydrus simulation using the steady state climatic condition and transient condition due to global warming on example of Moscow region, Russia. The following scenario of climate change in 21 century in Moscow region was selected: the annual temperature will increase on 4C during 100 year and annual precipitation will increase on 10% (Solomon et al, 2007). Within the year the maximum increasing of temperature and precipitation falls on winter time, while in middle of summer temperature will remain almost the same as observed now and monthly

  14. Kinetic modelling and simulation of laccase catalyzed degradation of reactive textile dyes.

    PubMed

    Cristóvão, Raquel O; Tavares, Ana P M; Ribeiro, Adriano S; Loureiro, José M; Boaventura, Rui A R; Macedo, Eugénia A

    2008-07-01

    A kinetic model based on Michaelis-Menten equation was developed to simulate the dye decolourisation of Reactive Black 5 (RB5), Reactive Blue 114 (RB114), Reactive Yellow 15 (RY15), Reactive Red 239 (RR239) and Reactive Red 180 (RR180) dyes by commercial laccase. The unusual kinetic behavior of some of these reactions suggests that the kinetic model must consider the activation of the laccase-mediator system. Several reactions at different concentrations of each dye were performed in batch reactors and time courses were obtained. A LSODE code to solve the differential equation obtained from the batch reactor was combined with an optimization Fortran program to obtain the theoretical time courses. The time courses obtained from the developed program were compared with the experimentally obtained ones to estimate the kinetic constants that minimized the difference between them. The close correlation between the predicted and the experimental results seems to support the reliability of the established models. PMID:17986393

  15. A Dynamic Transient Model to Simulate the Time Dependent Pultrusion Process of Glass/Polyester Composites

    NASA Astrophysics Data System (ADS)

    Shokrieh, Mahmood M.; Mahmoud Aghdami, Ashkan

    2011-12-01

    The objective of this paper is to introduce a novel dynamic transient model to simulate the time dependent pultrusion process of glass/polyester composites. The model is able to simulate the resin curing process systematically. The resin curing process is divided in two liquid and gel-solid phases. Physical properties of the resin including resin specific heat, viscosity and thermal conductivity change by altering the resin temperature and the degree of cure. It is shown that in liquid and gel-solid phases, some of the resin physical properties have significant role in heat transfer phenomenon and affect simulation results. The physical and mechanical properties of fibers do not change during the curing process of composites; therefore, an equivalent material is introduced instead of the resin-fiber compound. The model simulates the heat generation during the resin curing process. The degree of cure of the resin, used for the resin viscosity calculation, is an important parameter indicating the final stage of simulation of resin curing process. The components of the model are integrated in a finite element method. As case studies, the process of pultrusion of circular, rectangular and I cross-sections are simulated by the model. The results show that the model is able to simulate the pultrusion process very well.

  16. Transient Solid Dynamics Simulations on the Sandia/Intel Teraflop Computer

    SciTech Connect

    Attaway, S.; Brown, K.; Gardner, D.; Hendrickson, B.; Barragy, T.

    1997-12-31

    Transient solid dynamics simulations are among the most widely used engineering calculations. Industrial applications include vehicle crashworthiness studies, metal forging, and powder compaction prior to sintering. These calculations are also critical to defense applications including safety studies and weapons simulations. The practical importance of these calculations and their computational intensiveness make them natural candidates for parallelization. This has proved to be difficult, and existing implementations fail to scale to more than a few dozen processors. In this paper we describe our parallelization of PRONTO, Sandia`s transient solid dynamics code, via a novel algorithmic approach that utilizes multiple decompositions for different key segments of the computations, including the material contact calculation. This latter calculation is notoriously difficult to perform well in parallel, because it involves dynamically changing geometry, global searches for elements in contact, and unstructured communications among the compute nodes. Our approach scales to at least 3600 compute nodes of the Sandia/Intel Teraflop computer (the largest set of nodes to which we have had access to date) on problems involving millions of finite elements. On this machine we can simulate models using more than ten- million elements in a few tenths of a second per timestep, and solve problems more than 3000 times faster than a single processor Cray Jedi.

  17. Calendar effect on phase study in paleoclimate transient simulation with orbital forcing

    NASA Astrophysics Data System (ADS)

    Chen, Guang-Shan; Kutzbach, J. E.; Gallimore, R.; Liu, Zhengyu

    2011-11-01

    Several studies have shown that the use of different calendars in paleoclimate simulations can cause artificial phase shifts on insolation forcing and climatic responses. However, these important calendar corrections are still often neglected. In this paper, the phase shifts at the precession band is quantitatively assessed by converting the model data of the transient GCM climate simulation of Kutzbach et al. (Clim Dyn 30:567-579, 2008) from the "fixed-day" calendar to the "fixed-angular" calendar with a new and efficient approach. We find that insolation has a big phase shift in September-October-November (SON) when the vernal equinox (VE) is fixed to March 21. At high latitude, the phase bias is up to 60° (about 3650 years). The insolation phase bias in SON in Southern Hemisphere (SH) is especially important because it can influence the timing of the SH summer monsoon response due to the large heat capacity of ocean. The calendar correction has minor effect (±2°) on the phase relationships between forcing and precipitation responses of the six global summer monsoons studied in Kutzbach et al. (2008). After correcting the calendar effect, especial on SH ocean temperature, the new phase wheel results are more similar for both hemispheres. The results suggest that the calendar effect should be corrected before discussing the dynamics between orbital forcing and climatic responses in phase studies of transient simulations.

  18. Transient Schrödinger-Poisson simulations of a high-frequency resonant tunneling diode oscillator

    NASA Astrophysics Data System (ADS)

    Mennemann, Jan-Frederik; Jüngel, Ansgar; Kosina, Hans

    2013-04-01

    Transient simulations of a resonant tunneling diode oscillator are presented. The semiconductor model for the diode consists of a set of time-dependent Schrödinger equations coupled to the Poisson equation for the electric potential. The one-dimensional Schrödinger equations are discretized by the finite-difference Crank-Nicolson scheme using memory-type transparent boundary conditions which model the injection of electrons from the reservoirs. This scheme is unconditionally stable and reflection-free at the boundary. An efficient recursive algorithm due to Arnold, Ehrhardt, and Sofronov is used to implement the transparent boundary conditions, enabling simulations which involve a very large number of time steps. Special care has been taken to provide a discretization of the boundary data which is completely compatible with the underlying finite-difference scheme. The transient regime between two stationary states and the self-oscillatory behavior of an oscillator circuit, containing a resonant tunneling diode, is simulated for the first time.

  19. Transient thermal behaviour of a compressor rotor with ventilation: Test results under simulated engine conditions

    NASA Astrophysics Data System (ADS)

    Reile, E.; Radons, U.; Hennecke, D. K.

    1985-09-01

    The development of advanced compressors for modern aero-engines requires detailed knowledge of the transient thermal behavior of the rotor disks to enable accurate prediction of rotor life and, additionally, of the thermal growth of the rotor for the evaluation of tip clearances. In the quest for longer life and higher reliability of the parts as well as reduced clearances even at transient conditions, the designer has to be able to influence the thermal behavior of the rotor. A very effective way is to vent small amounts of air through the rotor cavities. The design of such a vented rotor is presented. The main emphasis is placed on a detailed description of a test rig specially built for this purpose. The testing was carried out under simulated engine conditions for a wide range of parameters. The results are compared with those obtained with a theoretical model derived from fundamental tests at the University of Sussex, where heat transfer in rotating cavities is investigated. Good agreement is observed. Some final tests were done in an engine. The results also exhibit good agreement with the rig results under simulated conditions, when the proper dimensionless parameters are considered, providing the validity of the simulation.

  20. Numerical Simulation of Roughness-Induced Transient Growth in a Laminar Boundary Layer

    NASA Technical Reports Server (NTRS)

    Fischer, Paul; Choudhari, Meelan

    2004-01-01

    Numerical simulations are used to examine the roughness-induced transient growth in a laminar boundary-layer flow. Based on the spectral element method, these simulations model the stationary disturbance field associated with a nonsmooth roughness geometry, such as the spanwise periodic array of circular disks used by White and co-workers during a series of wind tunnel experiments at Case Western Reserve University. Besides capturing the major trends from the recent measurements by White and Ergin, the simulations provide additional information concerning the relative accuracy of the experimental findings derived from two separate wall-finding procedures. The paper also explores the dependence of transient growth on geometric characteristics of the roughness distribution, including the height and planform shape of the roughness element and the ratio of roughness due to spacing between an adjacent pair of elements. Results are used for a preliminary assessment of the differences between recently reported theoretical results of Tumin and Reshotko and the measurements by White and Ergin.

  1. Transient Simulation of the DLR M3.1 Testbench: Methods and First Results

    NASA Astrophysics Data System (ADS)

    Manfletti, C.; Sender, J.

    2009-01-01

    Analysis of transient phases in liquid rocket engines play a major role in the design of the engines, as well as in the configuration and tailoring of the transient phases themselves. Testing of existing as well as future rocket engines, must therefore consider transient aspects, such as pre-cooling, priming, as well as ignition both experimentally as well as numerically. The flow behaviour within the various engine components is strongly dictated by the existing pressure and temperature fields. Ideally the flow through the engine feed lines is a one phase-flow. This is however not necessarily the case and a two-phase flow may lead to drastic changes in the behaviour. The application of the program TLRE to the simulation of the DLR test bench M3.1 is presented. The focus lies on the two-phase flow associated phenomena and the numerical resolution of these phenomena with the implementation of the lumped parameter method (LPM). A brief introduction of the relevant LPM characteristics is given. This is followed by a description of the relevant and observed two-phase flow phenomena and regimes and the numerical solution method. In conclusion both the main results of the work performed so far, which highlights the importance of the measurement system and how this needs to be taken into account during analysis processes, and a future roadmap for subsequent program evolution and applications are outlined.

  2. Simulating Subsurface Reactive Flows on Ultrascale Computers with PFLOTRAN

    NASA Astrophysics Data System (ADS)

    Mills, R. T.; Hammond, G. E.; Lichtner, P. C.; Lu, C.; Smith, B. F.; Philip, B.

    2009-12-01

    To provide true predictive utility, subsurface simulations often must accurately resolve--in three dimensions--complicated, multi-phase flow fields in highly heterogeneous geology with numerous chemical species and complex chemistry. This task is especially daunting because of the wide range of spatial scales involved--from the pore scale to the field scale--ranging over six orders of magnitude, and the wide range of time scales ranging from seconds or less to millions of years. This represents a true "Grand Challenge" computational problem, requiring not only the largest-scale ("ultrascale") supercomputers, but accompanying advances in algorithms for the efficient numerical solution of systems of PDEs using these machines, and in mathematical modeling techniques that can adequately capture the truly multi-scale nature of these problems. We describe some of the specific challenges involved and present the software and algorithmic approaches that are being using in the computer code PFLOTRAN to provide scalable performance for such simulations on tens of thousands of processors. We focus particularly on scalable techniques for solving the large (up to billions of total degrees of freedom), sparse algebraic systems that arise. We also describe ongoing work to address disparate time and spatial scales by both the development of adaptive mesh refinement methods and the use of multiple continuum formulations. Finally, we present some examples from recent simulations conducted on Jaguar, the 150152 processor core Cray XT5 system at Oak Ridge National Laboratory that is currently one of the most powerful supercomputers in the world.

  3. A fixed-grid method for transient simulations of dopant segregation in VGF-RMF growth

    NASA Astrophysics Data System (ADS)

    Nikrityuk, Petr A.; Pätzold, Olf; Stelter, Michael

    2012-01-01

    In this work a fixed-grid, virtual-front tracking model originally developed for modeling dendritic growth has been adopted for transient simulations of dopant segregation in vertical gradient freeze (VGF) melt growth of Ga-doped germanium under the influence of a rotating magnetic field (RMF). The interfacial Stefan conditions for temperature and solute are formulated in volumetric terms in energy and solute conservation equations, which allow the interface to be tracked implicitly with no need to calculate the growth velocity. The model and the code are validated against an analytical solution for the transient solidification of a binary alloy at constant velocity. The numerical results show the strong relationship between the melt flow pattern and the dopant concentration in the crystal grown. The better melt mixing during growth under the influence of RMF is found to have a significant impact on the axial and radial macrosegregation of dopants. Simulation results are in good qualitative agreement with previous experimental observations of the dopant segregation in VGF-RMF growth, which now are seen ass a direct consequence of the mixing state of the melt.

  4. Interactive simulations of gas-turbine modular HTGR transients and heatup accidents

    SciTech Connect

    Ball, S.J.; Nypaver, D.J.

    1994-06-01

    An interactive workstation-based simulator has been developed for performing analyses of modular high-temperature gas-cooled reactor (MHTGR) core transients and accidents. It was originally developed at Oak Ridge National Laboratory for the US Nuclear Regulatory Commission to assess the licensability of the US Department of Energy (DOE) steam cycle design 350-MW(t) MHTGR. Subsequently, the code was modified under DOE sponsorship to simulate the 450-MW(t) Gas Turbine (GT) design and to aid in development and design studies. Features of the code (MORECA-GT) include detailed modeling of 3-D core thermal-hydraulics, interactive workstation capabilities that allow user/analyst or ``operator`` involvement in accident scenarios, and options for studying anticipated transients without scram (ATWS) events. In addition to the detailed models for the core, MORECA includes models for the vessel, Shutdown Cooling System (SCS), and Reactor Cavity Cooling System (RCCS), and core point kinetics to accommodate ATWS events. The balance of plant (BOP) is currently not modeled. The interactive workstation features include options for on-line parameter plots and 3-D graphic temperature profiling. The studies to date show that the proposed MHTGR designs are very robust and can generally withstand the consequences of even the extremely low probability postulated accidents with little or no damage to the reactor`s fuel or metallic components.

  5. Reactivity landscape of pyruvate under simulated hydrothermal vent conditions

    PubMed Central

    Novikov, Yehor; Copley, Shelley D.

    2013-01-01

    Pyruvate is an important “hub” metabolite that is a precursor for amino acids, sugars, cofactors, and lipids in extant metabolic networks. Pyruvate has been produced under simulated hydrothermal vent conditions from alkyl thiols and carbon monoxide in the presence of transition metal sulfides at 250 °C [Cody GD et al. (2000) Science 289(5483):1337–1340], so it is plausible that pyruvate was formed in hydrothermal systems on the early earth. We report here that pyruvate reacts readily in the presence of transition metal sulfide minerals under simulated hydrothermal vent fluids at more moderate temperatures (25–110 °C) that are more conducive to survival of biogenic molecules. We found that pyruvate partitions among five reaction pathways at rates that depend upon the nature of the mineral present; the concentrations of H2S, H2, and NH4Cl; and the temperature. In most cases, high yields of one or two primary products are found due to preferential acceleration of certain pathways. Reactions observed include reduction of ketones to alcohols and aldol condensation, both reactions that are common in extant metabolic networks. We also observed reductive amination to form alanine and reduction to form propionic acid. Amino acids and fatty acids formed by analogous processes may have been important components of a protometabolic network that allowed the emergence of life. PMID:23872841

  6. Reactivity landscape of pyruvate under simulated hydrothermal vent conditions.

    PubMed

    Novikov, Yehor; Copley, Shelley D

    2013-08-13

    Pyruvate is an important "hub" metabolite that is a precursor for amino acids, sugars, cofactors, and lipids in extant metabolic networks. Pyruvate has been produced under simulated hydrothermal vent conditions from alkyl thiols and carbon monoxide in the presence of transition metal sulfides at 250 °C [Cody GD et al. (2000) Science 289(5483):1337-1340], so it is plausible that pyruvate was formed in hydrothermal systems on the early earth. We report here that pyruvate reacts readily in the presence of transition metal sulfide minerals under simulated hydrothermal vent fluids at more moderate temperatures (25-110 °C) that are more conducive to survival of biogenic molecules. We found that pyruvate partitions among five reaction pathways at rates that depend upon the nature of the mineral present; the concentrations of H2S, H2, and NH4Cl; and the temperature. In most cases, high yields of one or two primary products are found due to preferential acceleration of certain pathways. Reactions observed include reduction of ketones to alcohols and aldol condensation, both reactions that are common in extant metabolic networks. We also observed reductive amination to form alanine and reduction to form propionic acid. Amino acids and fatty acids formed by analogous processes may have been important components of a protometabolic network that allowed the emergence of life. PMID:23872841

  7. Molecular simulation of shocked materials using the reactive Monte Carlo method.

    PubMed

    Brennan, John K; Rice, Betsy M

    2002-08-01

    We demonstrate the applicability of the reactive Monte Carlo (RxMC) simulation method [J. K. Johnson, A. Z. Panagiotopoulos, and K. E. Gubbins, Mol. Phys. 81, 717 (1994); W. R. Smith and B. Tríska, J. Chem. Phys. 100, 3019 (1994)] for calculating the shock Hugoniot properties of a material. The method does not require interaction potentials that simulate bond breaking or bond formation; it requires only the intermolecular potentials and the ideal-gas partition functions for the reactive species that are present. By performing Monte Carlo sampling of forward and reverse reaction steps, the RxMC method provides information on the chemical equilibria states of the shocked material, including the density of the reactive mixture and the mole fractions of the reactive species. We illustrate the methodology for two simple systems (shocked liquid NO and shocked liquid N2), where we find excellent agreement with experimental measurements. The results show that the RxMC methodology provides an important simulation tool capable of testing models used in current detonation theory predictions. Further applications and extensions of the reactive Monte Carlo method are discussed. PMID:12241148

  8. A Multi-scale Thermomechanical-Solidification Model to Simulate the Transient Force Field Deforming an Aluminum 6061 Semisolid Weld

    NASA Astrophysics Data System (ADS)

    Zareie Rajani, H. R.; Phillion, A. B.

    2015-08-01

    Formation of hot cracks is strongly affected by the transient force field acting on the semisolid weld-base metal interface. This paper presents a model that numerically simulates such a transient force field as a function of welding parameters. The model consists of two modules: (1) By means of a granular model of solidification, the microstructure of the semisolid area within the weld is reconstructed in three dimensions; (2) Since the transient force field is developed through the mechanical interaction between the semisolid weld and its base metal, the mechanical response of the base metal to the solidification of the weld is then simulated through finite element analysis. The results show that changing welding parameters and welding constraints varies the transient force field. Based on the obtained force fields, a qualitative study is also conducted to predict the susceptibility of various welds to hot cracking.

  9. A Reactive Transport Simulator for Biogeochemical Processes in Subsurface System

    Energy Science and Technology Software Center (ESTSC)

    2003-04-01

    BIOGEOCHEM is a Fortran code that mumerically simulates the coupled processes of solute transport, microbial population dynamics, microbial metabolism, and geochemical reactions. The potential applications of the code include, but not limited to, (a) sensitivity and uncertainty analyses for assessing the impact of microbial activity on subsurface geochemical systems; (b) extraction of biogeochemical parameter values from field observations or laboratory measurements, (c) helping to design and optimize laboratory biogeochemical experiments, and (d) data integration. Methodmore » of Solution: A finite difference method and a Newton-Raphson technique are used to solve a set of coupled nonlinear partial differential equations and algebraic equations. Practical Application: Environmental analysis, bioremediation performance assessments of radioactive or non-radioactive wase disposal, and academic research.« less

  10. Simulation of transients in natural gas pipelines using hybrid TVD schemes

    NASA Astrophysics Data System (ADS)

    Zhou, Junyang; Adewumi, Michael A.

    2000-02-01

    The mathematical model describing transients in natural gas pipelines constitutes a non-homogeneous system of non-linear hyperbolic conservation laws. The time splitting approach is adopted to solve this non-homogeneous hyperbolic model. At each time step, the non-homogeneous hyperbolic model is split into a homogeneous hyperbolic model and an ODE operator. An explicit 5-point, second-order-accurate total variation diminishing (TVD) scheme is formulated to solve the homogeneous system of non-linear hyperbolic conservation laws. Special attention is given to the treatment of boundary conditions at the inlet and the outlet of the pipeline. Hybrid methods involving the Godunov scheme (TVD/Godunov scheme) or the Roe scheme (TVD/Roe scheme) or the Lax-Wendroff scheme (TVD/LW scheme) are used to achieve appropriate boundary handling strategy. A severe condition involving instantaneous closure of a downstream valve is used to test the efficacy of the new schemes. The results produced by the TVD/Roe and TVD/Godunov schemes are excellent and comparable with each other, while the TVD/LW scheme performs reasonably well. The TVD/Roe scheme is applied to simulate the transport of a fast transient in a short pipe and the propagation of a slow transient in a long transmission pipeline. For the first example, the scheme produces excellent results, which capture and maintain the integrity of the wave fronts even after a long time. For the second example, comparisons of computational results are made using different discretizing parameters. Copyright

  11. A transient SI engine model for vehicle dynamic simulation. Ph.D. Thesis

    SciTech Connect

    Huang, R.W.

    1994-01-01

    This study details an investigation into the modeling and simulation of spark-ignition (SI) engines, engine components, and vehicle powertrain systems. The work expands on previous studies in three areas: the description of powertrain system and its components, the formulation of SI engine component models and overall engine model, and lastly, the sensitivity analysis of the engine model and the simulation of powertrain systems. A mathematical model of SI engines, with either carburator, single-port fuel injection, or multi-port fuel injection systems, is derived. In the present engine model, the engine internal torque is a function of air/fuel ratio, engine speed, and throttle plate position. This engine model can account for the sudden change in throttle plate angle and estimate the engine transient behavior. The powertrain subsystems are also described to a certain extent, and the integration of the present engine model and a specific powertrain system is verified by further computer simulation. The Taguchi method is applied in sensitivity analysis (constant engine speed) which allows for an understanding of the engine parameters that are necessary to include in the model. In addition, the control variables which affect the engine dynamics and states can be examined. Using the simulation results, a simple fuel enrichment strategy is derived in order to compensate air-fuel mixture lean/rich tendency when the throttle plate is opened/closed rapidly. This confirms the controllability of the present engine model. Furthermore, a flywheel is attached to the engine crankshaft to emulate a powertrain system and account for the change in engine speed. Finally, the present engine model and a specific powertrain system are integrated and simulated to demonstrate their application in full-vehicle simulation.

  12. Transient Climate Simulation of DMS in the Marine Ocean - Atmosphere System.

    NASA Astrophysics Data System (ADS)

    Kloster, S.; Feichter, J.; Maier-Reimer, E.; Six, K.; Stier, P.; Roeckner, E.

    2005-12-01

    Dimethylsulphide (DMS) is thought to be the major biogenic component of the global atmospheric sulphur burden. Phytoplankton produces dimethylsulphoniopropionate, which via enzymatic cleavage forms DMS in the seawater. Through sea-air exchange oceanic DMS enters the atmosphere. DMS in the atmosphere is oxidized to sulphate aerosols, which may impact climate directly through light scattering or indirectly through their role as cloud condensation nuclei (CCN), thereby affecting the cloud albedo. It has been postulated that the Earth's climate is partly regulated by variation in DMS emissions through this DMS-CCN-albedo feedback. A reduced version of the "Hamburg Earth System Model" is used to study the feedback of DMS on climate in a transient climate simulation running from 1860 to 2100. The model includes a scheme of the DMS cycle in the ocean linked to the explicit simulation of plankton dynamics in the marine biogeochemistry model (MPI-OM/HAMOCC5). The DMS emissions are passed interactively to the atmosphere model (ECHAM5). The atmosphere model is extended by the microphysical aerosol model (HAM), which predicts the size distribution, the composition and mixing state of the aerosol components sulfate, black carbon, organic carbon, sea salt and dust. These parameters are necessary for an inclusion of the radiative perturbations caused by aerosols in the radiation scheme of the atmospheric model. The transient evolution of black carbon, organic carbon and sulfur dioxide emissions are prescribed assuming for the future the IPCC SRES A1B scenario. DMS, dust and sea salt emissions are calculated interactively. Iron contained in dust deposited onto the ocean surface serves as a micronutrient for phytoplankton in the ocean and therefore influences the DMS production in the ocean. Phytoplankton growth is simulated to be light and temperature dependent. The simulated global warming between 1860 and 2100 affects the marine ecosystem and alters the DMS sea surface

  13. Embrittlement of pre-hydrided Zircaloy-4 by steam oxidation under simulated LOCA transients

    NASA Astrophysics Data System (ADS)

    Desquines, J.; Drouan, D.; Guilbert, S.; Lacote, P.

    2016-02-01

    During a Loss Of Coolant Accident (LOCA), the mechanical behavior of high temperature steam oxidized fuel rods is an important issue. In this study, as-received and pre-hydrided axial tensile samples were steam oxidized in a vertical furnace and water quenched in order to simulate a LOCA transient. The samples were then subjected to a mechanical test to determine the failure conditions. Two different rupture modes were evidenced; the first one associated to linear elastic fracture mechanics and the second one is associated to sample failure without applied load. The oxidized cladding fracture toughness was determined relying on intensive metallographic analysis. The sample failure conditions were then back predicted confirming that the main rupture parameters are well captured.

  14. Transient Simulation of Oxygen Stable Isotopes over the Asian Monsoon Region with the Iloveclim Model

    NASA Astrophysics Data System (ADS)

    Caley, T.; Roche, D. M.; Renssen, H.

    2014-12-01

    The Asian summer monsoon affects the economical prosperity of vast, heavily populated regions (almost two-third of humanity). Asian summer monsoon dynamics at the orbital scale is a subject of considerable debate. Central in this debate is the interpretation of the Asian speleothem δ18O record as a valid proxy for summer monsoon intensity. In this study, we present a transient simulation of the last 150,000 years, performed with a numerical isotope-enabled fully coupled atmosphere-ocean-vegetation model (iLOVECLIM). This enables us to assess the nature of the δ18O signal in South Asian speleothems. We discuss the validity of Asian speleothem δ18O records as a proxy for summer monsoon intensity and the ultimate forcings of Asian monsoon precipitations at orbital scale.

  15. Hybrid parallel strategy for the simulation of fast transient accidental situations at reactor scale

    NASA Astrophysics Data System (ADS)

    Faucher, V.; Galon, P.; Beccantini, A.; Crouzet, F.; Debaud, F.; Gautier, T.

    2014-06-01

    This contribution is dedicated to the latest methodological developments implemented in the fast transient dynamics software EUROPLEXUS (EPX) to simulate the mechanical response of fully coupled fluid-structure systems to accidental situations to be considered at reactor scale, among which the Loss of Coolant Accident, the Core Disruptive Accident and the Hydrogen Explosion. Time integration is explicit and the search for reference solutions within the safety framework prevents any simplification and approximations in the coupled algorithm: for instance, all kinematic constraints are dealt with using Lagrange Multipliers, yielding a complex flow chart when non-permanent constraints such as unilateral contact or immersed fluid-structure boundaries are considered. The parallel acceleration of the solution process is then achieved through a hybrid approach, based on a weighted domain decomposition for distributed memory computing and the use of the KAAPI library for self-balanced shared memory processing inside subdomains.

  16. Finite-element simulation of transient heat response in ultrasonic transducers.

    PubMed

    Ando, E; Kagawa, Y

    1992-01-01

    The application of the finite-element method to a transient heat response problem in electrostrictive ultrasonic transducers during their pulsed operation is described. The temperature and thermal stress distribution are of practical importance for the design of the ultrasonic transducers when they are operated at intense levels. Mechanical vibratory loss is responsible for heat in the elastic parts, while dielectric loss is responsible in the ferroelectric parts. A finite-element computer model is proposed for the temperature change evaluation in the transducers with time. Natural and forced cooling convection and heat radiation from the transducers' boundaries are included. Simulation is made for Langevin-type transducer models, for which comparison is made with experimental data. PMID:18267653

  17. Finite-element simulation of transient heat response in ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Ando, Ei'ichi; Kagawa, Yukio

    1992-05-01

    The application of the finite-element method to a transient heat response problem in electrostrictive ultrasonic transducers during their pulsed operation is described. The temperature and thermal stress distribution are of practical importance for the design of the ultrasonic transducers when they are operated at intense levels. Mechanical vibratory loss is responsible for heat in the elastic parts while dielectric loss in the ferroelectric parts. A finite-element computer model is proposed for the temperature change evaluation in the transducers with time. Natural and forced cooling convection and heat radiation from the transducers' boundaries are included. Simulation is made for Langevin-type transducer models, for which comparison is made with experimental data.

  18. Numerical simulation of the transient shape of the red blood cell in microcapillary flow

    NASA Astrophysics Data System (ADS)

    Shi, Xing; Wang, Shuanglian; Zhang, Shuai

    2013-01-01

    The transient shape of a red blood cell (RBC) in a microcapillary flow is simulated under different initial conditions, including various axis orientations and centroid locations, using the LBM-DLM/FD method, which is derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain method. Although the terminal velocity is not sensitive to the initial configuration, the evolution of the velocity and the shape are determined by the initial conditions. The parachute and the slipper shape are the most probable shapes for a deformed RBC in the flow. An RBC with an initial axis orientation of 90 degrees exhibits a more complicated deformation. RBCs have a tendency to move to the centerline of a tube if an offset between the RBC centroid and the centerline exists. Our numerical results are validated by experiments, and some details beyond the experiment are provided.

  19. Simulating transient dynamics of the time-dependent time fractional Fokker-Planck systems

    NASA Astrophysics Data System (ADS)

    Kang, Yan-Mei

    2016-09-01

    For a physically realistic type of time-dependent time fractional Fokker-Planck (FP) equation, derived as the continuous limit of the continuous time random walk with time-modulated Boltzmann jumping weight, a semi-analytic iteration scheme based on the truncated (generalized) Fourier series is presented to simulate the resultant transient dynamics when the external time modulation is a piece-wise constant signal. At first, the iteration scheme is demonstrated with a simple time-dependent time fractional FP equation on finite interval with two absorbing boundaries, and then it is generalized to the more general time-dependent Smoluchowski-type time fractional Fokker-Planck equation. The numerical examples verify the efficiency and accuracy of the iteration method, and some novel dynamical phenomena including polarized motion orientations and periodic response death are discussed.

  20. Transient simulations of historical climate change including interactive carbon emissions from land-use change.

    NASA Astrophysics Data System (ADS)

    Matveev, A.; Matthews, H. D.

    2009-04-01

    Carbon fluxes from land conversion are among the most uncertain variables in our understanding of the contemporary carbon cycle, which limits our ability to estimate both the total human contribution to current climate forcing and the net effect of terrestrial biosphere changes on atmospheric CO2 increases. The current generation of coupled climate-carbon models have made significant progress in simulating the coupled climate and carbon cycle response to anthropogenic CO2 emissions, but do not typically include land-use change as a dynamic component of the simulation. In this work we have incorporated a book-keeping land-use carbon accounting model into the University of Victoria Earth System Climate Model (UVic ESCM), and intermediate-complexity coupled climate-carbon model. The terrestrial component of the UVic ESCM allows an aerial competition of five plant functional types (PFTs) in response to climatic conditions and area availability, and tracks the associated changes in affected carbon pools. In order to model CO2 emissions from land conversion in the terrestrial component of the model, we calculate the allocation of carbon to short and long-lived wood products following specified land-cover change, and use varying decay timescales to estimate CO2 emissions. We use recently available spatial datasets of both crop and pasture distributions to drive a series of transient simulations and estimate the net contribution of human land-use change to historical carbon emissions and climate change.

  1. CFD transient simulation of an isolator shock train in a scramjet engine

    NASA Astrophysics Data System (ADS)

    Hoeger, Troy Christopher

    For hypersonic flight, the scramjet engine uses an isolator to contain the pre-combustion shock train formed by the pressure difference between the inlet and the combustion chamber. If this shock train were to reach the inlet, it would cause an engine unstart, disrupting the flow through the engine and leading to a loss of thrust and potential loss of the vehicle. Prior to this work, a Computational Fluid Dynamics (CFD) simulation of the isolator was needed for simulating and characterizing the isolator flow and for finding the relationship between back pressure and changes in the location of the leading edge of the shock train. In this work, the VULCAN code was employed with back pressure as an input to obtain the time history of the shock train leading location. Results were obtained for both transient and steady-state conditions. The simulation showed a relationship between back-to-inlet pressure ratios and final locations of the shock train. For the 2-D runs, locations were within one isolator duct height of experimental results while for 3-D runs, the results were within two isolator duct heights.

  2. Flow path oscillations in transient ground-water simulations of large peatland systems

    USGS Publications Warehouse

    Reeve, A.S.; Evensen, R.; Glaser, P.H.; Siegel, D.I.; Rosenberry, D.

    2006-01-01

    Transient numerical simulations of the Glacial Lake Agassiz Peatland near the Red Lakes in Northern Minnesota were constructed to evaluate observed reversals in vertical ground-water flow. Seasonal weather changes were introduced to a ground-water flow model by varying evapotranspiration and recharge over time. Vertical hydraulic reversals, driven by changes in recharge and evapotranspiration were produced in the simulated peat layer. These simulations indicate that the high specific storage associated with the peat is an important control on hydraulic reversals. Seasonally driven vertical flow is on the order of centimeters in the deep peat, suggesting that seasonal vertical advective fluxes are not significant and that ground-water flow into the deep peat likely occurs on decadal or longer time scales. Particles tracked within the ground-water flow model oscillate over time, suggesting that seasonal flow reversals will enhance vertical mixing in the peat column. The amplitude of flow path oscillations increased with increasing peat storativity, with amplitudes of about 5 cm occurring when peat specific storativity was set to about 0.05 m-1. ?? 2005 Elsevier B.V. All rights reserved.

  3. Patient-Specific Simulations of Reactivity in Models of the Pulmonary Vasculature: A 3-D Numerical Study with Fluid-Structure Interaction

    NASA Astrophysics Data System (ADS)

    Hunter, Kendall; Zhang, Yanhang; Lanning, Craig

    2005-11-01

    Insight into the progression of pulmonary hypertension may be obtained from thorough study of vascular flow during reactivity testing, an invasive diagnostic procedure which can dramatically alter vascular hemodynamics. Diagnostic imaging methods, however, are limited in their ability to provide extensive data. Here we present detailed flow and wall deformation results from simulations of pulmonary arteries undergoing this procedure. Patient-specific 3-D geometric reconstructions of the first four branches of the pulmonary vasculature were obtained clinically and meshed for use with computational software. Transient simulations in normal and reactive states were obtained from four such models were completed with patient-specific velocity inlet conditions and flow impedance exit conditions. A microstructurally based orthotropic hyperelastic model that simulates pulmonary artery mechanics under normotensive and hypoxic hypertensive conditions treated wall constitutive changes due to pressure reactivity and arterial remodeling. Pressure gradients, velocity fields, arterial deformation, and complete topography of shear stress were obtained. These models provide richer detail of hemodynamics than can be obtained from current imaging techniques, and should allow maximum characterization of vascular function in the clinical situation.

  4. Reactive Flow Modeling of Liquid Explosives via ALE3D/Cheetah Simulations

    SciTech Connect

    Kuo, I W; Bastea, S; Fried, L E

    2010-03-10

    We carried out reactive flow simulations of liquid explosives such as nitromethane using the hydrodynamic code ALE3D coupled with equations of state and reaction kinetics modeled by the thermochemical code Cheetah. The simulation set-up was chosen to mimic cylinder experiments. For pure unconfined nitromethane we find that the failure diameter and detonation velocity dependence on charge diameter are in agreement with available experimental results. Such simulations are likely to be useful for determining detonability and failure behavior for a wide range of experimental conditions and explosive compounds.

  5. Transient supersensitivity to α-adrenoceptor agonists, and distinct hyper-reactivity to vasopressin and angiotensin II after denervation of rat tail artery

    PubMed Central

    Tripovic, Diana; Pianova, Svetlana; McLachlan, Elspeth M; Brock, James A

    2010-01-01

    Background and purpose: Vascular ‘denervation’ hyper-reactivity has generally been investigated 1–2 weeks after administration of chemicals that temporarily prevent transmitter release, but do not necessarily inactivate the neuronal noradrenaline transporters (NETs). We have investigated the reactivity of rat tail arteries over longer periods after removing the terminals by surgical denervation. Experimental approach: Two and 7 weeks after denervation, myography was used to assess contractions of isolated arterial segments to phenylephrine, methoxamine, clonidine, vasopressin and angiotensin II (AII). Denervation was confirmed by lack of tyrosine hydroxylase immunoreactive nerve terminals. Key results: The NET inhibitor, desmethylimipramine, increased the pEC50 for phenylephrine in control, but not denervated arteries after both 2 and 7 weeks. Relative to controls, pEC50s for phenylephrine (with desmethylimipramine), methoxamine, clonidine and vasopressin were increased at 2 but not 7 weeks after denervation. The pEC50 for phenylephrine in the absence of desmethylimipramine was greater than control after both 2 and 7 weeks' denervation. The maximum contraction to vasopressin was larger than in controls at 2 but not 7 weeks after denervation, whereas contractions to AII were markedly enhanced at both time points. Conclusions and implications: Increased vascular reactivity to α1- and α2-adrenoceptor agonists, and vasopressin is transient following denervation. After 7 weeks, increased reactivity to phenylephrine can be entirely accounted for by the loss of NETs. Maintained supersensitivity to AII indicates that denervation differentially and selectively affects vascular reactivity to circulating vasoconstrictor agents. This might explain persistent vasoconstriction in denervated skin of humans after nerve injuries. PMID:20002103

  6. Parametric Study of ReaxFF Simulation Parameters for Molecular Dynamics Modeling of Reactive Carbon Gases.

    PubMed

    Jensen, Benjamin D; Bandyopadhyay, Ananyo; Wise, Kristopher E; Odegard, Gregory M

    2012-09-11

    The development of innovative carbon-based materials can be greatly facilitated by molecular modeling techniques. Although the Reax Force Field (ReaxFF) can be used to simulate the chemical behavior of carbon-based systems, the simulation settings required for accurate predictions have not been fully explored. Using the ReaxFF, molecular dynamics (MD) simulations are used to simulate the chemical behavior of pure carbon and hydrocarbon reactive gases that are involved in the formation of carbon structures such as graphite, buckyballs, amorphous carbon, and carbon nanotubes. It is determined that the maximum simulation time step that can be used in MD simulations with the ReaxFF is dependent on the simulated temperature and selected parameter set, as are the predicted reaction rates. It is also determined that different carbon-based reactive gases react at different rates, and that the predicted equilibrium structures are generally the same for the different ReaxFF parameter sets, except in the case of the predicted formation of large graphitic structures with the Chenoweth parameter set under specific conditions. PMID:26605713

  7. Transient climate changes in a perturbed parameter ensemble of emissions-driven earth system model simulations

    NASA Astrophysics Data System (ADS)

    Murphy, James M.; Booth, Ben B. B.; Boulton, Chris A.; Clark, Robin T.; Harris, Glen R.; Lowe, Jason A.; Sexton, David M. H.

    2014-11-01

    We describe results from a 57-member ensemble of transient climate change simulations, featuring simultaneous perturbations to 54 parameters in the atmosphere, ocean, sulphur cycle and terrestrial ecosystem components of an earth system model (ESM). These emissions-driven simulations are compared against the CMIP3 multi-model ensemble of physical climate system models, used extensively to inform previous assessments of regional climate change, and also against emissions-driven simulations from ESMs contributed to the CMIP5 archive. Members of our earth system perturbed parameter ensemble (ESPPE) are competitive with CMIP3 and CMIP5 models in their simulations of historical climate. In particular, they perform reasonably well in comparison with HadGEM2-ES, a more sophisticated and expensive earth system model contributed to CMIP5. The ESPPE therefore provides a computationally cost-effective tool to explore interactions between earth system processes. In response to a non-intervention emissions scenario, the ESPPE simulates distributions of future regional temperature change characterised by wide ranges, and warm shifts, compared to those of CMIP3 models. These differences partly reflect the uncertain influence of global carbon cycle feedbacks in the ESPPE. In addition, the regional effects of interactions between different earth system feedbacks, particularly involving physical and ecosystem processes, shift and widen the ESPPE spread in normalised patterns of surface temperature and precipitation change in many regions. Significant differences from CMIP3 also arise from the use of parametric perturbations (rather than a multimodel ensemble) to represent model uncertainties, and this is also the case when ESPPE results are compared against parallel emissions-driven simulations from CMIP5 ESMs. When driven by an aggressive mitigation scenario, the ESPPE and HadGEM2-ES reveal significant but uncertain impacts in limiting temperature increases during the second half

  8. Large-Eddy Simulation of Chemically Reactive Pollutant Transport from a Point Source in Urban Area

    NASA Astrophysics Data System (ADS)

    Du, Tangzheng; Liu, Chun-Ho

    2013-04-01

    Most air pollutants are chemically reactive so using inert scalar as the tracer in pollutant dispersion modelling would often overlook their impact on urban inhabitants. In this study, large-eddy simulation (LES) is used to examine the plume dispersion of chemically reactive pollutants in a hypothetical atmospheric boundary layer (ABL) in neutral stratification. The irreversible chemistry mechanism of ozone (O3) titration is integrated into the LES model. Nitric oxide (NO) is emitted from an elevated point source in a rectangular spatial domain doped with O3. The LES results are compared well with the wind tunnel results available in literature. Afterwards, the LES model is applied to idealized two-dimensional (2D) street canyons of unity aspect ratio to study the behaviours of chemically reactive plume over idealized urban roughness. The relation among various time scales of reaction/turbulence and dimensionless number are analysed.

  9. Consistent Simulation of Pulse-Like Conservative and Reactive Stream-Tracer Experiments on Multiple Scales

    NASA Astrophysics Data System (ADS)

    Liao, Z.; Gritsch, M.; Knapp, J.; Lemke, D.; Cirpka, O. A.

    2012-12-01

    The redox-sensitive compound resazurin (Raz) has recently been introduced as reactive tracer for streams undergoing hyporheic exchange. Resazurin is converted to resorufin (Rru) in viable cells so that the Raz-Rru system acts as a probe for the metabolic activity of a stream, which is believed to be concentrated in the hyporheic zone. The reactive tracers, however, can also be sorbed. Advective-dispersive transport in the stream, potentially non-conventional transient storage in the hyporheic zone, sorption at the riverbed material, and transformation of the compounds leads to a coupled system that needs to be considered when analyzing pulse-like tracer experiments with the Raz-Rru system and a conservative tracer. We present a consistent model formulation of the reactive-transport system and apply it in the interpretation of experiments on multiple scales. (1) Column experiments with a length of about 10cm indicate that Raz and Rru undergo two-site sorption and chemical transformation during the passage through riverbed material. (2) We have analyzed breakthrough curves of the conservative and reactive tracers in piezometers within gravel bars during stream-tracer experiments. The conservative-tracer breakthrough curves in the gravel bar and in the stream directly beside it were deconvoluted to obtain the stream-to-piezometer travel-time distribution. Fitting the reactive tracer breakthrough curves, while accounting for the conservative travel-time distribution and the input signal in the stream, confirmed the two-site-sorption plus decay model of the Raz-Rru system in the hyporheic zone. (3) On the scale of entire stream reaches, we have jointly analyzed the conservative and reactive tracer breakthrough curves using a shape-free approach for the hyporheic travel-time distribution, two-site sorption of Raz and Rru in the hyporheic zone, and the Raz-to-Rru transformation. By this, we could identify the stream velocity, in-stream dispersion coefficient, the

  10. The Simulation of Stationary and Transient Geopotential-Height Eddies in January and July with a Spectral General Circulation Model.

    NASA Astrophysics Data System (ADS)

    Malone, Robert C.; Pitcher, Eric J.; Blackmon, Maurice L.; Puri, Kamal; Bourke, William

    1984-04-01

    We examine the characteristics of stationary and transient eddies in the geopotential-height field as simulated by a spectral general circulation model. The model possesses a realistic distribution of continents and oceans and realistic, but smoothed, topography. Two simulations with perpetual January and July forcing by climatological sea surface temperatures, sea ice, and insulation were extended to 1200 days, of which the final 600 days were used for the results in this study.We find that the stationary waves are well simulated in both seasons in the Northern Hemisphere, where strong forcing by orography and land-sea thermal contrasts exists. However, in the Southern Hemisphere, where no continents are present in midlatitudes, the stationary waves have smaller amplitude than that observed in both seasons.In both hemispheres, the transient eddies are well simulated in the winter season but are too weak in the summer season. The model fails to generate a sufficiently intense summertime midlatitude jet in either hemisphere, and this results in a low level of transient activity. The variance in the tropical troposphere is very well simulated. We examine the geographical distribution and vertical structure of the transient eddies. Fourier analysis in zonal wavenumber and temporal filtering am used to display the wavelength and frequency characteristics of the eddies.

  11. Simulations of the transient climate response to climate engineering in the form of cirrus cloud seeding

    NASA Astrophysics Data System (ADS)

    Storelvmo, Trude; Boos, William R.

    2015-04-01

    We present a global modeling study of a so far understudied climate engineering mechanism (CEM), namely the seeding of cirrus clouds to reduce their lifetimes in the upper troposphere, and hence their greenhouse effect. Different from most CEMs, the intention of cirrus seeding is not to reduce the amount of solar radiation reaching Earth's surface. This particular CEM rather targets the greenhouse effect, by reducing the trapping of infrared radiation by high clouds. This avoids some of the caveats that have been identified for solar radiation management, for example the delayed recovery of stratospheric ozone or drastic changes to Earth's hydrological cycle. Here, we contrast transient simulations of the 21st century, using a modified version of the Community Earth System Model (CESM). We simulate three future scenarios: (i) A simulation with the conventional high emission scenario RCP8.5, (ii) A simulation in which climate engineering in the form of high-latitude cirrus seeding is introduced in the middle of the century without any accompanying emission reductions, and (iii) The same as (ii), but with emissions that are reduced by 50% over the period 2050 to 2100. We consider the last scenario to be one in which climate engineering is used to buy time for mitigation efforts to become effective, while scenario (iii) is one in which high emissions are allowed to continue due to the naïve belief that climate engineering can be used to prevent global warming in perpetuity. Our analysis focuses on the contrasts between the regional and global climates of year 2100 produced by the three scenarios.

  12. Pseudo-transient Continuation Based Variable Relaxation Solve in Nonlinear Magnetohydrodynamic Simulations

    SciTech Connect

    Jin Chen

    2009-12-07

    Efficient and robust Variable Relaxation Solver, based on pseudo-transient continuation, is developed to solve nonlinear anisotropic thermal conduction arising from fusion plasma simulations. By adding first and/or second order artificial time derivatives to the system, this type of method advances the resulting time-dependent nonlinear PDEs to steady state, which is the solution to be sought. In this process, only the stiffness matrix itself is involved so that the numerical complexity and errors can be greatly reduced. In fact, this work is an extension of integrating efficient linear elliptic solvers for fusion simulation on Cray XIE. Two schemes are derived in this work, first and second order Variable Relaxations. Four factors are observed to be critical for efficiency and preservation of solution's symmetric structure arising from periodic boundary condition: refining meshes in different coordinate directions, initializing nonlinear process, varying time steps in both temporal and spatial directions, and accurately generating nonlinear stiffness matrix. First finer mesh scale should be taken in strong transport direction; Next the system is carefully initialized by the solution with linear conductivity; Third, time step and relaxation factor are vertex-based varied and optimized at each time step; Finally, the nonlinear stiffness matrix is updated by just scaling corresponding linear one with the vector generated from nonlinear thermal conductivity.

  13. TRACE Model for Simulation of Anticipated Transients Without Scram in a BWR

    SciTech Connect

    Cheng L. Y.; Baek J.; Cuadra,A.; Aronson, A.; Diamond, D.; Yarsky, P.

    2013-11-10

    A TRACE model has been developed for using theTRACE/PARCS computational package [1, 2] to simulate anticipated transients without scram (ATWS) events in a boiling water reactor (BWR). The model represents a BWR/5 housed in a Mark II containment. The reactor and the balance of plant systems are modeled in sufficient detail to enable the evaluation of plant responses and theeffectiveness of automatic and operator actions tomitigate this beyond design basis accident.The TRACE model implements features thatfacilitate the simulation of ATWS events initiated by turbine trip and closure of the main steam isolation valves (MSIV). It also incorporates control logic to initiate actions to mitigate the ATWS events, such as water levelcontrol, emergency depressurization, and injection of boron via the standby liquid control system (SLCS). Two different approaches have been used to model boron mixing in the lower plenum of the reactor vessel: modulate coolant flow in the lower plenum by a flow valve, and use control logic to modular.

  14. Numerical Simulation of Transient and Steady State Nonlinear Beam-Cavity Dynamics in High Power Klystrons.

    NASA Astrophysics Data System (ADS)

    Zambre, Yadunath Bhagvantrao

    1988-03-01

    A 2-1over2 dimensional analysis of klystrons, assuming cylindrical space symmetry but retaining all velocity effects, is presented. The model handles all relativistic, electromagnetic, and non-linear effects. The klystron geometry is viewed as a conducting cylinder (the tube) to which are attached a number of resonant cavities at various locations. Within this tube, particle in cell plasma simulation techniques are used to model the electron beam dynamics and electromagnetic fields. The effects of the cavities are then "patched in" by the use of eigenmode expansions over the cavity geometries. These expansions reduce the effects of the cavity fields into relatively simple time varying boundary conditions on the tube. The plasma simulation in the tube is carried out using a number of "macroparticles," each representing many electrons and each obeying the equations of motion for an electron. A time centered cycloid fitting algorithm is used to move the particles. A time centered spectral method using Fourier series in z and Chebyschev polynomials in r is used to advance the fields. A non-uniform grid permits the use of FFT's to carry out the Chebyschev expansions. A method for finding time periodic solutions is also presented. This method will compute a qualitatively correct transient solution and yield a quantitatively correct steady state solution.

  15. Simulation of reactive nanolaminates using reduced models: III. Ingredients for a general multidimensional formulation

    SciTech Connect

    Salloum, Maher; Knio, Omar M.

    2010-06-15

    A transient multidimensional reduced model is constructed for the simulation of reaction fronts in Ni/Al multilayers. The formulation is based on the generalization of earlier methodologies developed for quasi-1D axial and normal propagation, specifically by adapting the reduced formalism for atomic mixing and heat release. This approach enables us to focus on resolving the thermal front structure, whose evolution is governed by thermal diffusion and heat release. A mixed integration scheme is used for this purpose, combining an extended-stability, Runge-Kutta-Chebychev (RKC) integration of the diffusion term with exact treatment of the chemical source term. Thus, a detailed description of atomic mixing within individual layers is avoided, which enables transient modeling of the reduced equations of motion in multiple dimensions. Two-dimensional simulations are first conducted of front propagation in composites combining two bilayer periods. Results are compared with the experimental measurements of Knepper et al., which reveal that the reaction velocity can depend significantly on layering frequency. The comparison indicates that, using a concentration-dependent conductivity model, the transient 2D computations can reasonably reproduce the experimental behavior. Additional tests are performed based on 3D computations of surface initiated reactions. Comparison of computed predictions with laser ignition measurements indicates that the computations provide reasonable estimates of ignition thresholds. A detailed discussion is finally provided of potential generalizations and associated hurdles. (author)

  16. Transient rolling friction model for discrete element simulations of sphere assemblies

    NASA Astrophysics Data System (ADS)

    Kuhn, Matthew R.

    2014-03-01

    The rolling resistance between a pair of contacting particles can be modeled with two mechanisms. The first mechanism, already widely addressed in the DEM literature, involves a contact moment between the particles. The second mechanism involves a reduction of the tangential contact force, but without a contact moment. This type of rotational resistance, termed creep-friction, is the subject of the paper. Within the creep-friction literature, the term “creep” does not mean a viscous mechanism, but rather connotes a slight slip that accompanies rolling. Two extremes of particle motions bound the range of creep-friction behaviors: a pure tangential translation is modeled as a Cattaneo-Mindlin interaction, whereas prolonged steady-state rolling corresponds to the traditional wheel-rail problem described by Carter, Poritsky, and others. DEM simulations, however, are dominated by the transient creep-friction rolling conditions that lie between these two extremes. A simplified model is proposed for the three-dimensional transient creep-friction rolling of two spheres. The model is an extension of the work of Dahlberg and Alfredsson, who studied the two-dimensional interactions of disks. The proposed model is applied to two different systems: a pair of spheres and a large dense assembly of spheres. Although creep-friction can reduce the tangential contact force that would otherwise be predicted with Cattaneo-Mindlin theory, a significant force reduction occurs only when the rate of rolling is much greater than the rate of translational sliding and only after a sustained period of rolling. When applied to the deviatoric loading of an assembly of spheres, the proposed creep-friction model has minimal effect on macroscopic strength or stiffness. At the micro-scale of individual contacts, creep-friction does have a modest influence on the incremental contact behavior, although the aggregate effect on the assembly's behavior is minimal.

  17. Reactive Molecular Dynamics Simulations of the Silanization of Silica Substrates by Methoxysilanes and Hydroxysilanes.

    PubMed

    Deetz, Joshua D; Ngo, Quynh; Faller, Roland

    2016-07-19

    We perform reactive molecular dynamics simulations of monolayer formation by silanes on hydroxylated silica substrates. Solutions composed of alkylmethoxysilanes or alkylhydroxysilanes in hexane are placed in contact with a hydroxylated silica surface and simulated using a reactive force field (ReaxFF). In particular, we have modeled the deposition of butyl-, octyl-, and dodecyltrimethoxysilane to observe the dependence of alkylsilyl chain length on monolayer formation. We additionally modeled silanization using dodecyltrihydroxysilane, which allows for the comparison of two grafting mechanisms of alkoxysilanes: (1) direct condensation of alkoxysilane with surface-bound silanols and (2) a two-step hydrolysis-condensation mechanism. To emulate an infinite reservoir of reactive solution far away from the substrate, we have developed a method in which new precursor molecules are periodically added to a region of the simulation box located away from the surface. It is determined that the contact angle of alkyl tails bound to the surface is dependent on their grafting density. During the early stages of grafting alkoxy- and hydroxysilanes to the substrate, a preference is shown for silanes to condense with silanols further from the substrate surface and also close to neighboring surface-bound silanols. The kinetics of silica silanization by hydroxysilanes was observed to be much faster than for methoxysilanes. However, the as-deposited hydroxysilane monolayers show similar morphological characteristics to those formed by methoxysilanes. PMID:27351376

  18. RAFT: A simulator for ReActive Flow and Transport of groundwater contaminants

    SciTech Connect

    Chilakapati, A

    1995-07-01

    This report documents the use of the simulator RAFT for the ReActive flow and Transport of groundwater contaminants. RAFT can be used as a predictive tool in the design and analysis of laboratory and field experiments or it can be used for the estimation of model/process parameters from experiments. RAFT simulates the reactive transport of groundwater contaminants in one, two-, or three-dimensions and it can model user specified source/link configurations and arbitrary injection strategies. A suite of solvers for transport, reactions and regression are employed so that a combination of numerical methods best suited for a problem can be chosen. User specified coupled equilibrium and kinetic reaction systems can be incorporated into RAFT. RAFT is integrated with a symbolic computational language MAPLE, to automate code generation for arbitrary reaction systems. RAFT is expected to be used as a simulator for engineering design for field experiments in groundwater remediation including bioremediation, reactive barriers and redox manipulation. As an integrated tool with both the predictive ability and the ability to analyze experimental data, RAFT can help in the development of remediation technologies, from laboratory to field.

  19. Simulation studies of plasma waves in the electron foreshock - The transition from reactive to kinetic instability

    NASA Astrophysics Data System (ADS)

    Dum, C. T.

    1990-06-01

    Particle simulation experiments were used to analyze the electron beam-plasma instability. It is shown that there is a transition from the reactive state of the electron beam-plasma instability to the kinetic instability of Langmuir waves. Quantitative tests, which include an evaluation of the dispersion relation for the evolving non-Maxwellian beam distribution, show that a quasi-linear theory describes the onset of this transition and applies again fully to the kinetic stage. This stage is practically identical to the late stage seen in simulations of plasma waves in the electron foreshock described by Dum (1990).

  20. Simulation studies of plasma waves in the electron foreshock - The transition from reactive to kinetic instability

    NASA Technical Reports Server (NTRS)

    Dum, C. T.

    1990-01-01

    Particle simulation experiments were used to analyze the electron beam-plasma instability. It is shown that there is a transition from the reactive state of the electron beam-plasma instability to the kinetic instability of Langmuir waves. Quantitative tests, which include an evaluation of the dispersion relation for the evolving non-Maxwellian beam distribution, show that a quasi-linear theory describes the onset of this transition and applies again fully to the kinetic stage. This stage is practically identical to the late stage seen in simulations of plasma waves in the electron foreshock described by Dum (1990).

  1. Simulation of reactive transport of uranium(VI) in groundwater with variable chemical conditions

    USGS Publications Warehouse

    Curtis, G.P.; Davis, J.A.; Naftz, D.L.

    2006-01-01

    The reactive transport of U(VI) in a shallow alluvial aquifer beneath a former U(VI) mill located near Naturita, CO, was simulated using a surface complexation model (SCM) to describe U(VI) adsorption. The groundwater had variable U(VI) concentrations (0.01-20 ??M), variable alkalinity (2.5-18 meq/L), and a nearly constant pH equal to 7.1. U(VI) KD values decreased with increasing U(VI) and alkalinity, and these parameters were more important than sediment variability in controlling KD values. Reactive transport simulations were fit to the observed U(VI) and alkalinity by varying the concentration of U(VI) and alkalinity in recharge at the source area. Simulated KD values varied temporally and spatially because of the differential transport of U(VI) and alkalinity and the nonlinearity of U(VI) adsorption. The model also simulated the observed U(VI) tailing, which would not be expected from a constant KD model. The simulated U(VI) concentrations were sensitive to the recharge flux because of the increased flux of U(VI) to the aquifer. The geochemical behavior of U(VI) was most sensitive to the alkalinity and was relatively insensitive to pH.

  2. An extended-Lagrangian scheme for charge equilibration in reactive molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Nomura, Ken-ichi; Small, Patrick E.; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2015-07-01

    Reactive molecular dynamics (RMD) simulations describe chemical reactions at orders-of-magnitude faster computing speed compared with quantum molecular dynamics (QMD) simulations. A major computational bottleneck of RMD is charge-equilibration (QEq) calculation to describe charge transfer between atoms. Here, we eliminate the speed-limiting iterative minimization of the Coulombic energy in QEq calculation by adapting an extended-Lagrangian scheme that was recently proposed in the context of QMD simulations, Souvatzis and Niklasson (2014). The resulting XRMD simulation code drastically improves energy conservation compared with our previous RMD code, Nomura et al. (2008), while substantially reducing the time-to-solution. The XRMD code has been implemented on parallel computers based on spatial decomposition, achieving a weak-scaling parallel efficiency of 0.977 on 786,432 IBM Blue Gene/Q cores for a 67.6 billion-atom system.

  3. Development of a New and Fast Linear Solver for Multi-component Reactive Transport Simulation

    NASA Astrophysics Data System (ADS)

    Qiao, C.; Li, L.; Bao, C.; Hu, X.; Johns, R.; Xu, J.

    2013-12-01

    Reactive transport models (RTM) have been extensively used to understand the coupling between solute transport and (bio) geochemical reactions in complex earth systems. RTM typically involves a large number of primary and secondary species with a complex reaction network in large domains. The computational expenses increase significantly with the number of grid blocks and the number of chemical species. Within both the operator splitting approach (OS) and the global implicit approach (GI) that are commonly used, the steps that involve Newton-Raphson method are typically one of the most time-consuming parts (up to 80% to 90% of CPU times). Under such circumstances, accelerating reactive transport simulation is very essential. In this research, we present a physics-based linear system solution strategy for general reactive transport models with many species. We observed up to five times speed up for the linear solver portion of the simulations in our test cases. Our new linear solver takes advantage of the sparsity of the Jacobian matrix arising from the reaction network. The Jacobian matrix for the speciation problem is typically considered as a dense matrix and solved with a direct method such as Gaussian elimination. For the reactive transport problem, the graph of the local Jacobian matrix has a one-to-one correspondence to the reaction network graph. The Jacobian matrix is commonly sparse and has the same sparsity structure for the same reaction network. We developed a strategy that performs a minimum degree of reordering and symbolic factorization to determine the non-zero pattern at the beginning of the OS and GI simulation. During the speciation calculation in OS, we calculate the L and U factors and solve the triangular matrices according to the non-zero pattern. For GI, our strategy can be applied to inverse the diagonal blocks in the block-Jacobi preconditioner and smoothers of the multigrid preconditioners in iterative solvers. Our strategy is naturally

  4. Uncertainty of simulated groundwater levels arising from stochastic transient climate change scenarios

    NASA Astrophysics Data System (ADS)

    Goderniaux, Pascal; Brouyère, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley; Dassargues, Alain

    2010-05-01

    The evaluation of climate change impact on groundwater reserves represents a difficult task because both hydrological and climatic processes are complex and difficult to model. In this study, we present an innovative methodology that combines the use of integrated surface - subsurface hydrological models with advanced stochastic transient climate change scenarios. This methodology is applied to the Geer basin (480 km²) in Belgium, which is intensively exploited to supply the city of Liège (Belgium) with drinking water. The physically-based, spatially-distributed, surface-subsurface flow model has been developed with the finite element model HydroGeoSphere . The simultaneous solution of surface and subsurface flow equations in HydroGeoSphere, as well as the internal calculation of the actual evapotranspiration as a function of the soil moisture at each node of the evaporative zone, enables a better representation of interconnected processes in all domains of the catchment (fully saturated zone, partially saturated zone, surface). Additionally, the use of both surface and subsurface observed data to calibrate the model better constrains the calibration of the different water balance terms. Crucially, in the context of climate change impacts on groundwater resources, the evaluation of groundwater recharge is improved. . This surface-subsurface flow model is combined with advanced climate change scenarios for the Geer basin. Climate change simulations were obtained from six regional climate model (RCM) scenarios assuming the SRES A2 greenhouse gases emission (medium-high) scenario. These RCM scenarios were statistically downscaled using a transient stochastic weather generator technique, combining 'RainSim' and the 'CRU weather generator' for temperature and evapotranspiration time series. This downscaling technique exhibits three advantages compared with the 'delta change' method usually used in groundwater impact studies. (1) Corrections to climate model output are

  5. Atomistic Simulations of Chemical Reactivity of TATB Under Thermal and Shock Conditions

    SciTech Connect

    Manaa, M R; Reed, E J; Fried, L E

    2009-09-23

    The study of chemical transformations that occur at the reactive shock front of energetic materials provides important information for the development of predictive models at the grain-and continuum scales. A major shortcoming of current high explosives models is the lack of chemical kinetics data of the reacting explosive in the high pressure and temperature regimes. In the absence of experimental data, long-time scale atomistic molecular dynamics simulations with reactive chemistry become a viable recourse to provide an insight into the decomposition mechanism of explosives, and to obtain effective reaction rate laws. These rates can then be incorporated into thermo-chemical-hydro codes (such as Cheetah linked to ALE3D) for accurate description of the grain and macro scales dynamics of reacting explosives. In this talk, I will present quantum simulations of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) crystals under thermal decomposition (high density and temperature) and shock compression conditions. This is the first time that condensed phase quantum methods have been used to study the chemistry of insensitive high explosives. We used the quantum-based, self-consistent charge density functional tight binding method (SCC{_}DFTB) to calculate the interatomic forces for reliable predictions of chemical reactions, and to examine electronic properties at detonation conditions for a relatively long time-scale on the order of several hundreds of picoseconds. For thermal decomposition of TATB, we conducted constant volume-temperature simulations, ranging from 0.35 to 2 nanoseconds, at {rho} = 2.87 g/cm{sup 3} at T = 3500, 3000, 2500, and 1500 K, and {rho} = 2.9 g/cm{sup 3} and 2.72 g/cm{sup 3}, at T = 3000 K. We also simulated crystal TATB's reactivity under steady overdriven shock compression using the multi-scale shock technique. We conducted shock simulations with specified shock speeds of 8, 9, and 10 km/s for up to 0.43 ns duration, enabling us to track the

  6. Transient Simulation of Speed-No Load Conditions With An Open-Source Based C++ Code

    NASA Astrophysics Data System (ADS)

    Casartelli, E.; Mangani, L.; Romanelli, G.; Staubli, T.

    2014-03-01

    Modern reversible pump-turbines can start in turbine operation very quickly, i.e. within few minutes. Unfortunately no clear design rules for runners with a stable start-up are available, so that certain machines can present unstable characteristics which lead to oscillations in the hydraulic system during synchronization. The so-called S-shape, i.e. the unstable characteristic in turbine brake operation, is defined by the change of sign of the slope of the head curve. In order to assess and understand this kind of instabilities with CFD, fast and reliable methods are needed. Using a 360 degrees model including the complete machine from spiral casing to draft tube the capabilities of a newly developed in-house tool are presented. An ad-hoc simulation is performed from no-load conditions into the S-shape in transient mode and using moving-mesh capabilities, thus being able to capture the opening process of the wicket gates, for example like during start-up. Beside the presentation of the computational methodology, various phenomena encounterd are analyzed and discussed, comparing them with measured and previously computed data, in order to show the capabilities of the developed procedure. Insight in detected phenomena is also given for global data like frequencies of vortical structures and local flow patterns.

  7. Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection

    NASA Astrophysics Data System (ADS)

    Seifert, Axel; Heus, Thijs; Pincus, Robert; Stevens, Bjorn

    2015-12-01

    Large-eddy simulation is used to study the sensitivity of trade wind cumulus clouds to perturbations in cloud droplet number concentrations. We find that the trade wind cumulus system approaches a radiative-convective equilibrium state, modified by net warming and drying from imposed large-scale advective forcing. The system requires several days to reach equilibrium when cooling rates are specified but much less time, and with less sensitivity to cloud droplet number density, when radiation depends realistically on the vertical distribution of water vapor. The transient behavior and the properties of the near-equilibrium cloud field depend on the microphysical state and therefore on the cloud droplet number density, here taken as a proxy for the ambient aerosol. The primary response of the cloud field to changes in the cloud droplet number density is deepening of the cloud layer. This deepening leads to a decrease in relative humidity and a faster evaporation of small clouds and cloud remnants constituting a negative lifetime effect. In the near-equilibrium regime, the decrease in cloud cover compensates much of the Twomey effect, i.e., the brightening of the clouds, and the overall aerosol effect on the albedo of the organized precipitating cumulus cloud field is small.

  8. Simulation of LMFBR pump transients and comparison to LOF that occurred at EBR-II

    SciTech Connect

    Koenig, F.F.; Dean, E.M.

    1985-01-01

    In a large LMFBR plant design, a number of pumps in parallel will feed the core. It must be demonstrated that the plant can continue to operate with the loss of one of the primary pumps. It is desirable not to have check valves in the loop from a reliability and economic standpoint. Simulations have been made to determine the consequences of a loss of one pump in a four-loop pool plant in which no plant protection action is taken. This analysis would be used to determine the required power rundown that would accompany pump loss. The two primary centrifugal pumps in EBR-II feed the core and blanket plenums in two parallel flow paths. The loss of one pump will result in decrease core flow and reverse flow through the down pump since no check valves are present in the system. For a large pool plant with four primary pumps, the loss of one pump will also result in reverse flow through the down pump if check valves of flow diodes are not included. The resulting flow transient has been modeled for EBR-II and the large plant using the DNSP program.

  9. An 8-node tetrahedral finite element suitable for explicit transient dynamic simulations

    SciTech Connect

    Key, S.W.; Heinstein, M.W.; Stone, C.M.

    1997-12-31

    Considerable effort has been expended in perfecting the algorithmic properties of 8-node hexahedral finite elements. Today the element is well understood and performs exceptionally well when used in modeling three-dimensional explicit transient dynamic events. However, the automatic generation of all-hexahedral meshes remains an elusive achievement. The alternative of automatic generation for all-tetrahedral finite element is a notoriously poor performer, and the 10-node quadratic tetrahedral finite element while a better performer numerically is computationally expensive. To use the all-tetrahedral mesh generation extant today, the authors have explored the creation of a quality 8-node tetrahedral finite element (a four-node tetrahedral finite element enriched with four midface nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping and the element`s performance in applications are presented. In particular, they examine the 80node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element only samples constant strain states and, therefore, has 12 hourglass modes. In this regard, it bears similarities to the 8-node, mean-quadrature hexahedral finite element. Given automatic all-tetrahedral meshing, the 8-node, constant-strain tetrahedral finite element is a suitable replacement for the 8-node hexahedral finite element and handbuilt meshes.

  10. Transient Simulation of Liquid Rocket Engines: A Step Towards a More Educated Propellant Choice between Kerosene and Methane

    NASA Astrophysics Data System (ADS)

    Manfletti, C.

    2004-10-01

    It is renowned that transient simulation is a powerful tool which reveals fundamental characteristics of any liquid engine. Using the program TLR-Sim (Transient Liquid Rocket Engine Simulator), whose development has recently begun, both LOX/Kerosene and LOX/Methane engine components have been closer examined whilst seeking for a clear indication of advantages associated with the use of one or the other in a number of potential engine applications. Results of the performed simulations are presented and commented. The program TLR-Sim and its development are shortly presented. A short summary of the program structure and main characteristics precedes the detailed engine analysis and comparison. A brief conclusion will follow, outlining both the main results of the inspection and a future roadmap for a subsequent program evolution.

  11. An RL10A-3-3A rocket engine model using the rocket engine transient simulator (ROCETS) software

    NASA Technical Reports Server (NTRS)

    Binder, Michael

    1993-01-01

    Steady-state and transient computer models of the RL10A-3-3A rocket engine have been created using the Rocket Engine Transient Simulation (ROCETS) code. These models were created for several purposes. The RL10 engine is a critical component of past, present, and future space missions; the model will give NASA an in-house capability to simulate the performance of the engine under various operating conditions and mission profiles. The RL10 simulation activity is also an opportunity to further validate the ROCETS program. The ROCETS code is an important tool for modeling rocket engine systems at NASA Lewis. ROCETS provides a modular and general framework for simulating the steady-state and transient behavior of any desired propulsion system. Although the ROCETS code is being used in a number of different analysis and design projects within NASA, it has not been extensively validated for any system using actual test data. The RL10A-3-3A has a ten year history of test and flight applications; it should provide sufficient data to validate the ROCETS program capability. The ROCETS models of the RL10 system were created using design information provided by Pratt & Whitney, the engine manufacturer. These models are in the process of being validated using test-stand and flight data. This paper includes a brief description of the models and comparison of preliminary simulation output against flight and test-stand data.

  12. Comparing transient, accelerated, and equilibrium simulations of the last 30 000 years with the GENIE-1 model

    NASA Astrophysics Data System (ADS)

    Lunt, D. J.; Williamson, M. S.; Valdes, P. J.; Lenton, T. M.

    2006-06-01

    We examine several aspects of the ocean-atmosphere system over the last 30 000 years, by carrying out simulations with prescribed ice-sheets, atmospheric CO2 concentration, and orbital parameters. We use the GENIE-1 model with a geostrophic ocean, dynamic sea-ice, an energy balance atmosphere, and a land-surface scheme with fixed vegetation. A transient simulation, with boundary conditions derived from ice-core records and ice-sheet reconstructions, is compared with equilibrium snapshot simulations, including the Last Glacial Maximum (21 000 years before present; 21 kyrBP), mid-Holocene (6 kyrBP) and pre-industrial. The equilibrium snapshot surface temperatures are all very similar to their corresponding time period in the transient simulation, suggesting that in the last 30 000 years, the ocean-atmosphere system has been close to equilibrium with its boundary conditions. We investigate the method of accelerating the boundary conditions of a transient simulation and find that the Southern Ocean is the region most affected by the acceleration. The Northern Hemisphere, even with a factor of 10 acceleration, is relatively unaffected.

  13. Investigation of the groundwater system at Masaya Caldera, Nicaragua, using transient electromagnetics and numerical simulation

    USGS Publications Warehouse

    MacNeil, R.E.; Sanford, W.E.; Connor, C.B.; Sandberg, S.K.; Diez, M.

    2007-01-01

    The distribution of groundwater beneath Masaya Volcano, in Nicaragua, and its surrounding caldera was characterized using the transient electromagnetic method (TEM). Multiple soundings were conducted at 30 sites. Models of the TEM data consistently indicate a resistive layer that is underlain by one or more conductive layers. These two layers represent the unsaturated and saturated zones, respectively, with the boundary between them indicating the water-table elevation. A map of the TEM data shows that the water table in the caldera is a subdued replica of the topography, with higher elevations beneath the edifice in the south-central caldera and lower elevations in the eastern caldera, coinciding with the elevation of Laguna de Masaya. These TEM data, combined with regional hydrologic data, indicate that the caldera in hydrologically isolated from the surrounding region, with as much as 60??m of difference in elevation of the groundwater table across caldera-bounding faults. The water-table information and estimates of fluxes of water through the system were used to constrain a numerical simulation of groundwater flow. The simulation results indicate that basalt flows in the outer parts of the caldera have a relatively high transmissivity, whereas the central edifice has a substantially lower transmissivity. A layer of relatively high transmissivity must be present at depth within the edifice in order to deliver the observed flux of water and steam to the active vent. This hydrologic information about the caldera provides a baseline for assessing the response of this isolated groundwater system to future changes in magmatic activity. ?? 2007.

  14. Analytical resolution of the reactive diffusion equation for transient electronics including materials whose porosity value changes in terms of their thickness

    NASA Astrophysics Data System (ADS)

    Vargas Toro, Agustín.

    2014-05-01

    Transient electronic devices are a new technology development whose main characteristic is that its components can disappear in a programmed and controlled way, which means such devices have a pre-engineered service life. Nowadays, transient electronics have a large application field, involving from the reduction of e-waste in the planet until the development of medical instruments and implants that can be discarded when the patients do not need it anymore, avoiding the trouble of having an extra procedure for them. These devices must be made from biocompatible materials avoiding long-term adverse effects in the environment and patients. It is fundamental to develop an analytical model that allows describing the behavior of these materials considering cases which its porosity may be constant or not, in presence of water or any other biofluid. In order to accomplish this analysis was solve the reactive diffusion equation based on Bromwich's integral and the Residue theorem for two material cases, those whose porosity is constant, and those whose porosity increases linearly in terms of its thickness, where was found a general expression. This allows to the analysis of the relation of the electric resistance (per unit length) and the rate of dissolution of the material.

  15. THC-MP: High performance numerical simulation of reactive transport and multiphase flow in porous media

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu

    2015-07-01

    The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.

  16. Reactive simulation of the chemistry behind the condensed-phase ignition of RDX from hot spots.

    PubMed

    Joshi, Kaushik L; Chaudhuri, Santanu

    2015-07-28

    Chemical events that lead to thermal initiation and spontaneous ignition of the high-pressure phase of RDX are presented using reactive molecular dynamics simulations. In order to initiate the chemistry behind thermal ignition, approximately 5% of RDX crystal is subjected to a constant temperature thermal pulse for various time durations to create a hot spot. After application of the thermal pulse, the ensuing chemical evolution of the system is monitored using reactive molecular dynamics under adiabatic conditions. Thermal pulses lasting longer than certain time durations lead to the spontaneous ignition of RDX after an incubation period. For cases where the ignition is observed, the incubation period is dominated by intermolecular and intramolecular hydrogen transfer reactions. Contrary to the widely accepted unimolecular models of initiation chemistry, N-N bond dissociations that produce NO2 species are suppressed in the condensed phase. The gradual temperature and pressure increase in the incubation period is accompanied by the accumulation of short-lived, heavier polyradicals. The polyradicals contain intact triazine rings from the RDX molecules. At certain temperatures and pressures, the polyradicals undergo ring-opening reactions, which fuel a series of rapid exothermic chemical reactions leading to a thermal runaway regime with stable gas-products such as N2, H2O and CO2. The evolution of the RDX crystal throughout the thermal initiation, incubation and thermal runaway phases observed in the reactive simulations contains a rich diversity of condensed-phase chemistry of nitramines under high-temperature/pressure conditions. PMID:26123323

  17. Numerical simulation of reactive processes in an experiment with partially saturated bentonite.

    PubMed

    Xie, Mingliang; Bauer, Sebastian; Kolditz, Olaf; Nowak, Thomas; Shao, Hua

    2006-02-01

    Bentonites are preferred materials for use as engineered barriers for high-level nuclear waste repositories. Simulation of geochemical processes in bentonite is therefore important for long-term safety assessment of those repositories. In this work, the porewater chemistry of a bentonite sample subject to simultaneous heating and hydration, as studied by Cuevas et al. [Cuevas, J., Villar, M., Fernández, A., Gómez, P., Martín, P., 1997. Porewaters extracted from compacted bentonite subjected to simultaneous heating and hydration. Applied Geochemistry 12, 473-481.], was assessed with a non-isothermal reactive transport model by coupling the geochemical software PHREEQC2 with the object-oriented FEM simulator GeoSys/RockFlow. Reactive transport modelling includes heat transport, two-phase flow, multicomponent transport and geochemical reactions in the liquid phase, i.e. ion exchange, mineral dissolution/precipitation and equilibrium reactions. Simulations show that the easily soluble minerals in bentonite determine the porewater chemistry. Temperature affects both two-phase flow and geochemical reactions. Porosity change due to dissolution/precipitation is low during the experiment. However, changes of the effective porosity caused by bentonite swelling can be very large. The simulated results agree well with the experimental data. PMID:16377027

  18. Simulating MODFLOW-based reactive transport under radially symmetric flow conditions.

    PubMed

    Wallis, Ilka; Prommer, Henning; Post, Vincent; Vandenbohede, Alexander; Simmons, Craig T

    2013-01-01

    Radially symmetric flow and solute transport around point sources and sinks is an important specialized topic of groundwater hydraulics. Analysis of radial flow fields is routinely used to determine heads and flows in the vicinity of point sources or sinks. Increasingly, studies also consider solute transport, biogeochemical processes, and thermal changes that occur in the vicinity of point sources/sinks. Commonly, the analysis of hydraulic processes involves numerical or (semi-) analytical modeling methods. For the description of solute transport, analytical solutions are only available for the most basic transport phenomena. Solving advanced transport problems numerically is often associated with a significant computational burden. However, where axis-symmetry applies, computational cost can be decreased substantially in comparison with full three-dimensional (3D) solutions. In this study, we explore several techniques of simulating conservative and reactive transport within radial flow fields using MODFLOW as the flow simulator, based on its widespread use and ability to be coupled with multiple solute and reactive transport codes of different complexity. The selected transport simulators are MT3DMS and PHT3D. Computational efficiency and accuracy of the approaches are evaluated through comparisons with full 2D/3D model simulations, analytical solutions, and benchmark problems. We demonstrate that radial transport models are capable of accurately reproducing a wide variety of conservative and reactive transport problems provided that an adequate spatial discretization and advection scheme is selected. For the investigated test problems, the computational load was substantially reduced, with the improvement varying, depending on the complexity of the considered reaction network. PMID:22900478

  19. Otolith Growth and macular Carbonic Anhydrase Reactivity in larval Fish after Development at simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Baur, U.; Hilbig, R.; Anken, R.

    Otolith growth in terms of mineralisation mainly depends on the enzyme carbonic anhydrase (CA). CA is located in specialized, mitochondria-rich macular cells (ionocytes), which are involved in the endolymphatic ion exchange, and the enzyme is responsible for the provision of the pH-value necessary for otolithic calcium carbonate deposition. Since it has been shown earlier that hypergravity slows down inner ear otolith growth in developing fish via a down-regulation of CA reactivity, we were prompted to elucidate whether (simulated) microgravity would possibly yield opposite effects. Therefore, larval siblings of cichlid fish (Oreochromis mossambicus) were housed in a submersed, two-dimensional clinostat (tube) during their development. Subsequently, the "physical capacity" (i.e., size) of the otoliths was measured, CA was histochemically demonstrated in ionocytes, and enzyme reactivity was determined densitometrically. The respective data will be communicated at the meeting. Acknowledgement: This work was financially supported by the German Aerospace Center (DLR) (FKZ: 50 WB 9997).

  20. A hybrid model for coupling kinetic corrections of fusion reactivity to hydrodynamic implosion simulations

    NASA Astrophysics Data System (ADS)

    Tang, Xian-Zhu; McDevitt, C. J.; Guo, Zehua; Berk, H. L.

    2014-03-01

    Inertial confinement fusion requires an imploded target in which a central hot spot is surrounded by a cold and dense pusher. The hot spot/pusher interface can take complicated shape in three dimensions due to hydrodynamic mix. It is also a transition region where the Knudsen and inverse Knudsen layer effect can significantly modify the fusion reactivity in comparison with the commonly used value evaluated with background Maxwellians. Here, we describe a hybrid model that couples the kinetic correction of fusion reactivity to global hydrodynamic implosion simulations. The key ingredient is a non-perturbative treatment of the tail ions in the interface region where the Gamow ion Knudsen number approaches or surpasses order unity. The accuracy of the coupling scheme is controlled by the precise criteria for matching the non-perturbative kinetic model to perturbative solutions in both configuration space and velocity space.

  1. Comparing approaches for simulating the reactive transport of U(VI) in ground water

    USGS Publications Warehouse

    Curtis, G.P.; Kohler, M.; Davis, J.A.

    2009-01-01

    The reactive transport of U(VI) in a well-characterized shallow alluvial aquifer at a former U(VI) mill located near Naturita, CO, was predicted for comparative purposes using a surface complexation model (SCM) and a constant K d approach to simulate U(VI) adsorption. The ground water at the site had U(VI) concentrations that ranged from 0.01 to 20 ??M, alkalinities that ranged from 2.5 to 18 meq/L, and a nearly constant pH of 7.1. The SCM used to simulate U(VI) adsorption was previously determined independently using laboratory batch adsorption experiments. Simulations obtained using the SCM approach were compared with simulations that used a constant K d approach to simulate adsorption using previously determined site-specific K d values. In both cases, the ground water flow and transport models used a conceptual model that was previously calibrated to a chloride plume present at the site. Simulations with the SCM approach demonstrated that the retardation factor varied temporally and spatially because of the differential transport of alkalinity and dissolved U(VI) and the nonlinearity of the U(VI) adsorption. The SCM model also simulated a prolonged slow decline in U(VI) concentration, which was not simulated using a constant K d model. Simulations using the SCM approach and the constant K d approach were similar after 20 years of transport but diverged significantly after 60 years. The simulations demonstrate the need for site-specific geochemical information on U(VI) adsorption to produce credible simulations of future transport. ?? 2009 Springer-Verlag.

  2. Effect of simulated gastro-duodenal digestion on the allergenic reactivity of beta-lactoglobulin

    PubMed Central

    2011-01-01

    Background Cow's milk (CM) allergy affects about 2% of infants. The allergenicity of dietary proteins, including those from CM, has been related to their digestibility although the generality of the link and its causality remains to be demonstrated. In this study we use an in vitro digestion system, to investigate the digestibility of β-lactoglobulin (blg) during gastrointestinal transit and to assess the impact of this process on blg allergenic reactivity in CM allergic children. Methods Blg digesta were prepared using an in vitro digestion protocol simulating either gastric digestion alone or followed by duodenal digestion with or without phosphatidylcholine (PC). Biochemical analysis of blg digesta was performed by SDS-PAGE and their concentration was measured by a sandwich ELISA. Assessment of their allergenic reactivity was done in vitro by EAST inhibition, specific basophil activation (basotest) and lymphocyte proliferation (PCNA-flow cytometry) assays using sera and cells from patients allergic to blg and in vivo by skin prick testing (SPT) of these patients. Results Blg was only broken down to smaller peptides after gastro-duodenal digestion although a sizeable amount of intact protein still remained. Digestion did not modify the IgE binding capacity of blg except for gastro-duodenal digestion performed in the absence of PC. These results are consistent with the quantity of intact blg remaining in the digesta. Overall both gastric and gastroduodenal digestion enhanced activation of sensitized basophils and proliferation of sensitized lymphocytes by blg. However, there was a tendency towards reduction in mean diameter of SPT following digestion, the PC alone during phase 1 digestion causing a significant increase in mean diameter. Conclusions Digestion did not reduce the allergenic reactivity of blg to a clinically insignificant extent, PC inhibiting digestion and thereby protecting blg allergenic reactivity. SPT reactivity was reduced compared to blg

  3. High-Performance Reactive Fluid Flow Simulations Using Adaptive Mesh Refinement on Thousands of Processors

    NASA Astrophysics Data System (ADS)

    Calder, A. C.; Curtis, B. C.; Dursi, L. J.; Fryxell, B.; Henry, G.; MacNeice, P.; Olson, K.; Ricker, P.; Rosner, R.; Timmes, F. X.; Tufo, H. M.; Truran, J. W.; Zingale, M.

    We present simulations and performance results of nuclear burning fronts in supernovae on the largest domain and at the finest spatial resolution studied to date. These simulations were performed on the Intel ASCI-Red machine at Sandia National Laboratories using FLASH, a code developed at the Center for Astrophysical Thermonuclear Flashes at the University of Chicago. FLASH is a modular, adaptive mesh, parallel simulation code capable of handling compressible, reactive fluid flows in astrophysical environments. FLASH is written primarily in Fortran 90, uses the Message-Passing Interface library for inter-processor communication and portability, and employs the PARAMESH package to manage a block-structured adaptive mesh that places blocks only where the resolution is required and tracks rapidly changing flow features, such as detonation fronts, with ease. We describe the key algorithms and their implementation as well as the optimizations required to achieve sustained performance of 238 GLOPS on 6420 processors of ASCI-Red in 64-bit arithmetic.

  4. Decoration of gold nanoparticles with cysteine in solution: reactive molecular dynamics simulations.

    PubMed

    Monti, Susanna; Carravetta, Vincenzo; Ågren, Hans

    2016-07-14

    The dynamics of gold nanoparticle functionalization by means of adsorption of cysteine molecules in water solution is simulated through classical reactive molecular dynamics simulations based on an accurately parametrized force field. The adsorption modes of the molecules are characterized in detail disclosing the nature of the cysteine-gold interactions and the stability of the final material. The simulation results agree satisfactorily with recent experimental and theoretical data and confirm previous findings for a similar system. The covalent attachments of the molecules to the gold support are all slow physisorptions followed by fast chemisorptions. However, a great variety of binding arrangements can be observed. Interactions with the adsorbate caused surface modulations in terms of adatoms and dislocations which contributed to strengthen the cysteine adsorption. PMID:27305447

  5. Cerebral blood flow and CO/sub 2/ reactivity in transient ischemic attacks: comparison between TIAs due to the ICA occlusion and ICA mild stenosis

    SciTech Connect

    Tsuda, Y.; Kimura, K.; Yoneda, S.; Etani, H.; Asai, T.; Nakamura, M.; Abe, H.

    1983-01-01

    Hemispheric mean cerebral blood flow (CBF), together with its CO2 reactivity in response to hyperventilation, was investigated in 18 patients with transient ischemic attacks (TIAs) by intraarterial 133Xe injection method in a subacute-chronic stage of the clinical course. In 8 patients, the lesion responsible for symptoms was regarded as unilateral internal carotid artery (ICA) occlusion, and in 10 patients, it was regarded as unilateral ICA mild stenosis (less than 50% stenosis in diameter). Resting flow values were significantly decreased in the affected hemisphere of TIA due to the ICA occlusion as compared with the unaffected hemisphere of the same patient, regarded as the relative control. It was not decreased in the affected hemisphere of TIA due to the ICA mild stenosis as compared with the control. With respect to the responsiveness of CBF to changes in PaCO2, it was preserved in both TIAs, due to the ICA occlusion and ICA mild stenosis. Vasoparalysis was not observed in either types of TIAs in the subacute-chronic stage. However, in the relationship of blood pressure and CO2 reactivity, expressed as delta CBF(%)/delta PaCO2, pressure-dependent CO2 reactivity as a group was observed with significance in 8 cases of TIA due to the ICA occlusion, while no such relationship was noted in 10 cases of TIA due to the ICA mild stenosis. Moreover, clinical features were different between TIAs due to the ICA occlusion and ICA mild stenosis, i.e., more typical, repeatable TIA (6.3 +/- 3.7 times) with shorter duration (less than 30 minutes) was observed in TIAs due to the ICA mild stenosis, while more prolonged, less repeatable TIA (2.4 +/- 1.4 times) was observed in TIAs due to fixed obstruction of the ICA. From these observations, two different possible mechanisms as to the pathogenesis of TIA might be expected.

  6. Decoration of gold nanoparticles with cysteine in solution: reactive molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Monti, Susanna; Carravetta, Vincenzo; Ågren, Hans

    2016-06-01

    The dynamics of gold nanoparticle functionalization by means of adsorption of cysteine molecules in water solution is simulated through classical reactive molecular dynamics simulations based on an accurately parametrized force field. The adsorption modes of the molecules are characterized in detail disclosing the nature of the cysteine-gold interactions and the stability of the final material. The simulation results agree satisfactorily with recent experimental and theoretical data and confirm previous findings for a similar system. The covalent attachments of the molecules to the gold support are all slow physisorptions followed by fast chemisorptions. However, a great variety of binding arrangements can be observed. Interactions with the adsorbate caused surface modulations in terms of adatoms and dislocations which contributed to strengthen the cysteine adsorption.The dynamics of gold nanoparticle functionalization by means of adsorption of cysteine molecules in water solution is simulated through classical reactive molecular dynamics simulations based on an accurately parametrized force field. The adsorption modes of the molecules are characterized in detail disclosing the nature of the cysteine-gold interactions and the stability of the final material. The simulation results agree satisfactorily with recent experimental and theoretical data and confirm previous findings for a similar system. The covalent attachments of the molecules to the gold support are all slow physisorptions followed by fast chemisorptions. However, a great variety of binding arrangements can be observed. Interactions with the adsorbate caused surface modulations in terms of adatoms and dislocations which contributed to strengthen the cysteine adsorption. Electronic supplementary information (ESI) available: Different views of the AuNP surface coverage. Distance map describing the position of each molecule in relation to the others on the AuNP (alpha carbon distances). See DOI: 10.1039/C

  7. Simulation of geochemical localization using a multi-porosity reactive transport approach

    NASA Astrophysics Data System (ADS)

    Soler, Joaquim; Luquot, Linda; Martinez-Perez, Laura; Saaltink, Maarten; De Gaspari, Francesca; Carrera, Jesus

    2016-04-01

    Results of reactive transport laboratory experiments often suggest that pore scale heterogeneity induces localization of reactions (the generation of local micro environments favoring reactions that would not occur in a well-mixed Representative Elementary Volume, REV). Multi-Rate Mass Transfer (MRMT), which has been employed to reproduce hydrodynamic heterogeneity, may also be used to simulate geochemical localization. We extended the Water Mixing Approach (WMA) designed for single porosity media, to simulate chemical reactions caused by the mixing of mobile and immobile zones. The method is termed Multi-Rate Water Mixing (MRWM). The MRWM approach was employed to simulate laboratory experiments of CO2-rich brine transport through carbonate rich samples (Luquot et al. 2016). Chemical heterogeneity in space was reproduced by varying the mineral assemblages in immobile regions. This enabled us to reproduce the generally low pH environment while allowing for high pH local zones required for the localized precipitation of kaolinite, which has been observed in reality, but cannot be modeled with conventional reactive transport formulations. The resulting model is very rich, in that it can reproduce a broad range of pore scale processes in a Darcy scale model, and complex, in that the interaction between chemical kinetics and immobile zones physical parameters is non-trivial.

  8. Compressible, diffusive, reactive flow simulations of the double Mach reflection phenomenon

    NASA Astrophysics Data System (ADS)

    Ziegler, J. L.; Deiterding, R.; Shepherd, J. E.; Pullin, D. I.

    2010-11-01

    We describe direct numerical simulations of the multi-component, compressible, reactive Navier-Stokes equations in two spatial dimensions. The simulations utilize a hybrid, WENO/centered-difference numerical method, with low numerical dissipation, high-order shock-capturing, and structured adaptive mesh refinement (SAMR). These features enable resolution of diffusive processes within reaction zones. A series of one- and two-dimensional test problems are used to verify the implementation, specifically the high-order accuracy of the diffusion terms, including a viscous shock wave, the decaying Lamb-Oseen vortex, laminar flame and unstable ZND detonation. High-resolution simulations are discussed of the reactive double Mach reflection phenomenon. The diffusive scales (shear/mixing/boundary layers and flame thicknesses) and weak shocks are resolved while the strong shocks emanating from the triple points are captured. Additionally, a minimally reduced chemistry and transport model for hydrocarbon detonation is used to accurately capture the induction time, chemical relaxation, and the diffusive mixing within vortical structures evolving from the triple-point shear layer.

  9. Multicomponent reactive transport simulation of the Elder problem: Effects of chemical reactions on salt plume development

    NASA Astrophysics Data System (ADS)

    Post, V. E. A.; Prommer, H.

    2007-10-01

    A numerical modeling approach was used to investigate the relevancy of the feedback mechanisms between geochemical reactions and variable density flow during free convection. The problem was studied by reformulating the classic Elder problem as a reactive multicomponent transport problem. It was found that for the studied system, the importance of this feedback decreased with increasing density contrast between intruding salinized water and the ambient fresh water body. For the smaller density contrasts, the flow patterns that develop during intrusion in the reactive simulations are characterized by different convection cells, higher rates of plume descent, and an increase in the total mass of solutes by up to 22% at the end of the simulation compared to the nonreactive simulations. For field situations, the results suggest that it may be necessary to consider the feedback between reactions and variable density flow where subtle density variations drive flow such as in contaminant plumes. For seawater intrusion problems, however, the feedback mechanism appears to be negligible for most cases.

  10. Early stage oxynitridation process of Si(001) surface by NO gas: Reactive molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Cao, Haining; Srivastava, Pooja; Choi, Keunsu; Kim, Seungchul; Lee, Kwang-Ryeol

    2016-03-01

    Initial stage of oxynitridation process of Si substrate is of crucial importance in fabricating the ultrathin gate dielectric layer of high quality in advanced MOSFET devices. The oxynitridation reaction on a relaxed Si(001) surface is investigated via reactive molecular dynamics (MD) simulation. A total of 1120 events of a single nitric oxide (NO) molecule reaction at temperatures ranging from 300 to 1000 K are statistically analyzed. The observed reaction kinetics are consistent with the previous experimental or calculation results, which show the viability of the reactive MD technique to study the NO dissociation reaction on Si. We suggest the reaction pathway for NO dissociation that is characterized by the inter-dimer bridge of a NO molecule as the intermediate state prior to NO dissociation. Although the energy of the inter-dimer bridge is higher than that of the intra-dimer one, our suggestion is supported by the ab initio nudged elastic band calculations showing that the energy barrier for the inter-dimer bridge formation is much lower. The growth mechanism of an ultrathin Si oxynitride layer is also investigated via consecutive NO reactions simulation. The simulation reveals the mechanism of self-limiting reaction at low temperature and the time evolution of the depth profile of N and O atoms depending on the process temperature, which would guide to optimize the oxynitridation process condition.

  11. Experimental Study and Simulation of W7-AS Transient MHD Modes

    SciTech Connect

    Pokol, G.; Papp, G.; Por, G.; Zoletnik, S.; Weller, A.

    2008-03-19

    Transient MHD modes present in pure ECRH W7-AS plasmas have been shown to be in correlation with transient transport events (ELM-like modes). Here the spatial structure of the individual transients is analyzed using short-time Fourier transform and continuous analytical wavelet transform based techniques. Processing of Mirnov coil data partly confirms the properties derived from earlier, simpler analyses. Theoretical explanation of the properties of these modes (spatial structure and rapid damping) is attempted by models based involving drift-Alfven turbulence or shear Alfven waves.

  12. Comparing transient, accelerated, and equilibrium simulations of the last 30 000 years with the GENIE-1 model

    NASA Astrophysics Data System (ADS)

    Lunt, D. J.; Williamson, M. S.; Valdes, P. J.; Lenton, T. M.; Marsh, R.

    2006-11-01

    We examine several aspects of the ocean-atmosphere system over the last 30 000 years, by carrying out simulations with prescribed ice sheets, atmospheric CO2 concentration, and orbital parameters. We use the GENIE-1 model with a frictional geostrophic ocean, dynamic sea ice, an energy balance atmosphere, and a land-surface scheme with fixed vegetation. A transient simulation, with boundary conditions derived from ice-core records and ice sheet reconstructions, is compared with equilibrium snapshot simulations, including the Last Glacial Maximum (21 000 years before present; 21 kyrBP), mid-Holocene (6 kyrBP) and pre-industrial. The equilibrium snapshot simulations are all very similar to their corresponding time period in the transient simulation, indicating that over the last 30 000 years, the model's ocean-atmosphere system is close to equilibrium with its boundary conditions. However, our simulations neglect the transfer of fresh water from and to the ocean, resulting from the growth and decay of ice sheets, which would, in reality, lead to greater disequilibrium. Additionally, the GENIE-1 model exhibits a rather limited response in terms of its Atlantic Meridional Overturning Circulation (AMOC) over the 30 000 years; a more sensitive AMOC would also be likely to lead to greater disequilibrium. We investigate the method of accelerating the boundary conditions of a transient simulation and find that the Southern Ocean is the region most affected by the acceleration. The Northern Hemisphere, even with a factor of 10 acceleration, is relatively unaffected. The results are robust to changes to several tunable parameters in the model. They also hold when a higher vertical resolution is used in the ocean.

  13. Nanobubble collapse on a silica surface in water: billion-atom reactive molecular dynamics simulations.

    PubMed

    Shekhar, Adarsh; Nomura, Ken-ichi; Kalia, Rajiv K; Nakano, Aiichiro; Vashishta, Priya

    2013-11-01

    Cavitation bubbles occur in fluids subjected to rapid changes in pressure. We use billion-atom reactive molecular dynamics simulations on a 163,840-processor BlueGene/P supercomputer to investigate damage caused by shock-induced collapse of nanobubbles in water near an amorphous silica surface. Collapse of an empty bubble generates a high-speed nanojet, which causes pitting on the silica surface. We find pit radii are close to bubble radii, and experiments also indicate linear scaling between them. The gas-filled bubbles undergo partial collapse and, consequently, the damage on the silica surface is mitigated. PMID:24237524

  14. Nanobubble Collapse on a Silica Surface in Water: Billion-Atom Reactive Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Shekhar, Adarsh; Nomura, Ken-ichi; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2013-11-01

    Cavitation bubbles occur in fluids subjected to rapid changes in pressure. We use billion-atom reactive molecular dynamics simulations on a 163 840-processor BlueGene/P supercomputer to investigate damage caused by shock-induced collapse of nanobubbles in water near an amorphous silica surface. Collapse of an empty bubble generates a high-speed nanojet, which causes pitting on the silica surface. We find pit radii are close to bubble radii, and experiments also indicate linear scaling between them. The gas-filled bubbles undergo partial collapse and, consequently, the damage on the silica surface is mitigated.

  15. Mesoscopic simulations of shock-to-detonation transition in reactive liquid high explosive

    NASA Astrophysics Data System (ADS)

    Maillet, J. B.; Bourasseau, E.; Desbiens, N.; Vallverdu, G.; Stoltz, G.

    2011-12-01

    An extension of the model described in a previous work (see Maillet J. B. et al., EPL, 78 (2007) 68001) based on Dissipative Particle Dynamics is presented and applied to a liquid high explosive (HE), with thermodynamic properties mimicking those of liquid nitromethane. Large scale nonequilibrium simulations of reacting liquid HE with model kinetic under sustained shock conditions allow a better understanding of the shock-to-detonation transition in homogeneous explosives. Moreover, the propagation of the reactive wave appears discontinuous since ignition points in the shocked material can be activated by the compressive waves emitted from the onset of chemical reactions.

  16. Numerical simulation of fracture permeability evolution due to reactive transport and pressure solution processes

    NASA Astrophysics Data System (ADS)

    Watanabe, N.; Sun, Y.; Taron, J.; Shao, H.; Kolditz, O.

    2013-12-01

    Modeling fracture permeability evolution is of great interest in various geotechnical applications including underground waste repositories, carbon capture and storage, and engineered geothermal systems where fractures dominate transport behaviors. In this study, a numerical model is presented to simulate fracture permeability evolution due to reactive transport and pressure solution processes in single fractures. The model was developed within the international benchmarking project for radioactive waste disposals, DECOVALEX 2015 (Task C1). The model combines bulk behavior in pore spaces with intergranular process at asperity contacts. Hydraulic flow and reactive transport including mineral dissolution and precipitation in fracture pore space are simulated using the Galerkin finite element method. A pressure solution model developed by Taron and Elsworth (2010 JGR) is applied to simulating stress-enhanced dissolution, solute exchange with pore space, and volume removal at grain contacts. Fracture aperture and contact area ratio are updated as a result of the pore-space reaction and intergranular dissolution. In order to increase robustness and time step size, relevant processes are monolithically coupled with the simulations. The model is implemented in a scientific open-source project OpenGeoSys (www.opengeosys.org) for numerical simulation of thermo-hydro-mechanical/chemical processes in porous and fractured media. Numerical results are compared to previous experiment performed by Yasuhara et al. (2006) on flow through fractures in the Arkansas novaculite sample. The novaculite is approximated as pure quartz aggregates. Only with fitted quartz dissolution rate constants and solubility is the current model capable of reproducing observed hydraulic aperture reduction and aqueous silicate concentrations. Future work will examine reaction parameters and further validate the model against experimental results.

  17. Decolourisation of simulated reactive dyebath effluents by electrochemical oxidation assisted by UV light.

    PubMed

    López-Grimau, V; Gutiérrez, M C

    2006-01-01

    This study is focused on the optimisation of the electrochemical decolourisation of textile effluents containing reactive dyes with the aim of making feasible-technically and economically-this method at industrial scale. Coloured waters were treated in continuous at low current density, to reduce the electrical consumption. Ti/PtO(x) electrodes were used to oxidize simulated dyebaths prepared with an azo/dichlorotriazine reactive dye (C.I. Reactive Orange 4). The decolourisation yield was dependent on the dyeing electrolyte (NaCl or Na(2)SO(4)). Dyeing effluents which contained from 0.5 to 20 gl(-1) of NaCl reached a high decolourisation yield, depending on the current density, immediately after the electrochemical process. These results were improved when the effluents were stored for several hours under solar light. After the electrochemical treatment the effluents were stored in a tank and exposed under different lighting conditions: UV light, solar light and darkness. The evolution of the decolourisation versus the time of storage was reported and kinetic constants were calculated. The time of storage was significantly reduced by the application of UV light. A dye mineralization study was also carried out on a concentrated dyebath. A TOC removal of 81% was obtained when high current density was applied for a prolonged treatment with recirculation. This treatment required a high electrical consumption. PMID:15893798

  18. One-dimensional-turbulence simulations of reactive Rayleigh-Taylor turbulence

    NASA Astrophysics Data System (ADS)

    Gonzalez, Esteban; Kerstein, Alan; Lignell, David

    2011-11-01

    We consider the problem of reactive Rayleigh-Taylor turbulence in the Boussinesq framework, and model combustion with a reaction-progress-variable method, and a KPP reaction. The interesting feature of this problem is that the interface (flame) between heavy/cold reactants and light/hot products moves against gravity. Such problem is challenging because of the delicate interplay between turbulence, buoyancy, and reactions, and the wide separation between large and small scales. One model that has the capabilities to deal with these challenges is the one-dimensional-turbulence (ODT) model. In this talk, we discuss ODT results for non-reactive and reactive Rayleigh-Taylor turbulence, and compare them with those from direct numerical simulations (DNS). Here, the key advantage of ODT over DNS is that it can be used to explore larger parameter spaces. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

  19. Numerical Simulation of Oblique Impacts: Impact Melt and Transient Cavity Size

    NASA Technical Reports Server (NTRS)

    Artemieva, N. A.; Ivanov, B. A.

    2001-01-01

    We present 3D hydrocode numerical modeling for oblique impacts (i) to estimate the melt production and (ii) to trace the evolution of the transient cavity shape till the crater collapse. Additional information is contained in the original extended abstract.

  20. eReaxFF: A Pseudoclassical Treatment of Explicit Electrons within Reactive Force Field Simulations.

    PubMed

    Islam, Md Mahbubul; Kolesov, Grigory; Verstraelen, Toon; Kaxiras, Efthimios; van Duin, Adri C T

    2016-08-01

    We present a computational tool, eReaxFF, for simulating explicit electrons within the framework of the standard ReaxFF reactive force field method. We treat electrons explicitly in a pseudoclassical manner that enables simulation several orders of magnitude faster than quantum chemistry (QC) methods, while retaining the ReaxFF transferability. We delineate here the fundamental concepts of the eReaxFF method and the integration of the Atom-condensed Kohn-Sham DFT approximated to second order (ACKS2) charge calculation scheme into the eReaxFF. We trained our force field to capture electron affinities (EA) of various species. As a proof-of-principle, we performed a set of molecular dynamics (MD) simulations with an explicit electron model for representative hydrocarbon radicals. We establish a good qualitative agreement of EAs of various species with experimental data, and MD simulations with eReaxFF agree well with the corresponding Ehrenfest dynamics simulations. The standard ReaxFF parameters available in the literature are transferrable to the eReaxFF method. The computationally economic eReaxFF method will be a useful tool for studying large-scale chemical and physical systems with explicit electrons as an alternative to computationally demanding QC methods. PMID:27399177

  1. A Modular Computer Code for Simulating Reactive Multi-Species Transport in 3-Dimensional Groundwater Systems

    SciTech Connect

    TP Clement

    1999-06-24

    RT3DV1 (Reactive Transport in 3-Dimensions) is computer code that solves the coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in three-dimensional saturated groundwater systems. RT3D is a generalized multi-species version of the US Environmental Protection Agency (EPA) transport code, MT3D (Zheng, 1990). The current version of RT3D uses the advection and dispersion solvers from the DOD-1.5 (1997) version of MT3D. As with MT3D, RT3D also requires the groundwater flow code MODFLOW for computing spatial and temporal variations in groundwater head distribution. The RT3D code was originally developed to support the contaminant transport modeling efforts at natural attenuation demonstration sites. As a research tool, RT3D has also been used to model several laboratory and pilot-scale active bioremediation experiments. The performance of RT3D has been validated by comparing the code results against various numerical and analytical solutions. The code is currently being used to model field-scale natural attenuation at multiple sites. The RT3D code is unique in that it includes an implicit reaction solver that makes the code sufficiently flexible for simulating various types of chemical and microbial reaction kinetics. RT3D V1.0 supports seven pre-programmed reaction modules that can be used to simulate different types of reactive contaminants including benzene-toluene-xylene mixtures (BTEX), and chlorinated solvents such as tetrachloroethene (PCE) and trichloroethene (TCE). In addition, RT3D has a user-defined reaction option that can be used to simulate any other types of user-specified reactive transport systems. This report describes the mathematical details of the RT3D computer code and its input/output data structure. It is assumed that the user is familiar with the basics of groundwater flow and contaminant transport mechanics. In addition, RT3D users are expected to have some experience in

  2. An RL10A-3-3A rocket engine model using the Rocket Engine Transient Simulator (ROCETS) software

    NASA Technical Reports Server (NTRS)

    Binder, Michael

    1993-01-01

    The RL10 engine is a critical component of past, present, and future space missions. The paper discusses the RL10A-3-3A engine system and its model created using the ROCETS computer code. The simulation model will give NASA an in-house capability to simulate the performance of the engine under various operating conditions and mission profiles. A comparison of steady-state model predictions with test-stand data is presented together with a comparison of predicted start transient behavior with flight data.

  3. Severe Accident Sequence Analysis Program: Anticipated transient without scram simulations for Browns Ferry Nuclear Plant Unit 1

    SciTech Connect

    Dallman, R J; Gottula, R C; Holcomb, E E; Jouse, W C; Wagoner, S R; Wheatley, P D

    1987-05-01

    An analysis of five anticipated transients without scram (ATWS) was conducted at the Idaho National Engineering Laboratory (INEL). The five detailed deterministic simulations of postulated ATWS sequences were initiated from a main steamline isolation valve (MSIV) closure. The subject of the analysis was the Browns Ferry Nuclear Plant Unit 1, a boiling water reactor (BWR) of the BWR/4 product line with a Mark I containment. The simulations yielded insights to the possible consequences resulting from a MSIV closure ATWS. An evaluation of the effects of plant safety systems and operator actions on accident progression and mitigation is presented.

  4. Amaranth peptides from simulated gastrointestinal digestion: antioxidant activity against reactive species.

    PubMed

    Delgado, María C Orsini; Galleano, Mónica; Añón, María C; Tironi, Valeria A

    2015-03-01

    We evaluated the capacity of simulated gastrointestinal digests or alcalase hydrolysates of protein isolates from amaranth to scavenge diverse physiologically relevant reactive species. The more active hydrolysate was obtained with the former method. Moreover, a prior alcalase treatment of the isolate followed by the same simulated gastrointestinal digestion did not improve the antioxidant capacity in any of the assays performed and even produced a negative effect under some conditions. Gastrointestinal digestion produced a strong increment in the scavenging capacity against peroxyl radicals (ORAC assay), hydroxyl radicals (ESR-OH assay), and peroxynitrites; thus decreasing the IC50 values to approximately 20, 25, and 20%, respectively, of the levels attained with the nonhydrolyzed proteins. Metal chelation (HORAC assay) also enhanced respect to isolate levels, but to a lesser extent (decreasing IC50 values to only 50%). The nitric-oxide- and superoxide-scavenging capacities of the digests were not relevant with respect to the methodologies used. The gastrointestinal digests from amaranth proteins acted against reactive species by different mechanisms, thus indicating the protein isolate to be a potential polyfunctional antioxidant ingredient. PMID:25577328

  5. Large Eddy Simulation of Transient Flow and Inclusions Transport in Continuous Casting Mold under Different Electromagnetic Brakes

    NASA Astrophysics Data System (ADS)

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan

    2016-06-01

    A mathematical model has been developed to analyze transient fluid flow and inclusions transport in a slab continuous casting mold, considering the effects of electromagnetic brake (EMBr) arrangement and magnetic field strength. Transient flow of molten steel in the mold is calculated by using the large eddy simulation. The electromagnetic force is incorporated into the Navier-Stokes equation. The transport of inclusion inside the mold is calculated using the Lagrangian approach based on the transient flow field. The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern and inclusion transport inside the mold exhibits satisfactory agreement with the corresponding measurements. With electromagnetic brake effect, the velocities around the braking region are significantly suppressed, and the recirculating flow in the lower part drops and tends to develop a plug-like flow. The EMBr arrangement has an insignificant effect on the overall removal fraction of inclusions, especially for larger inclusions. The inclusion removal rate for the flow-control mold (FCM arrangement) reduces instead compared with no EMBr, especially for smaller inclusions.

  6. Reactive transport simulation in a tropical horizontal subsurface flow constructed wetland treating domestic wastewater.

    PubMed

    Mburu, N; Rousseau, D P L; van Bruggen, J J A; Thumbi, G; Llorens, E; García, J; Lens, P N L

    2013-04-01

    A promising approach to the simulation of flow and conversions in the complex environment of horizontal subsurface flow constructed wetlands (HSSF-CWs) is the use of reactive transport models, in which the transport equation is solved together with microbial growth and mass-balance equations for substrate transformation and degradation. In this study, a tropical pilot scale HSSF-CW is simulated in the recently developed CWM1-RETRASO mechanistic model. The model predicts organic matter, nitrogen and sulfur effluent concentrations and their reaction rates within the HSSF-CW. Simulations demonstrated that these reactions took place simultaneously in the same (fermentation, methanogenesis and sulfate reduction) or at different (aerobic, anoxic and anaerobic) locations. Anaerobic reactions occurred over large areas of the simulated HSSF-CW and contributed (on average) to the majority (68%) of the COD removal, compared to aerobic (38%) and anoxic (1%) reactions. To understand the effort and compare computing resources needed for the application of a mechanistic model, the CWM1-RETRASO simulation is compared to a process-based, semi-mechanistic model, run with the same data. CWM1-RETRASO demonstrated the interaction of components within the wetland in a better way, i.e. concentrations of microbial functional groups, their competition for substrates and the formation of intermediary products within the wetland. The CWM1-RETRASO model is thus suitable for simulations aimed at a better understanding of the CW system transformation and degradation processes. However, the model does not support biofilm-based modeling, and it is expensive in computing and time resources required to perform the simulations. PMID:23434579

  7. Tracking reactive pollutants in large groundwater systems by particle-based simulations

    NASA Astrophysics Data System (ADS)

    Kalbacher, T.; Sun, Y.; He, W.; Jang, E.; Delfs, J.; Shao, H.; Park, C.; Kolditz, O.

    2013-12-01

    Worldwide, great amounts of human and financial resources are being invested to protect and secure clean water resources. Especially in arid and semi-arid regions civilization depends on the availability of freshwater from the underlying aquifer systems where water quality and quantity are often dramatically deteriorating. Main reasons for the mitigation of water quality are extensive fertilizer use in agriculture and waste water from cities and various industries. It may be assumed that climate and demographic changes will add further stress to this situation in the future. One way to assess water quality is to model the coupled groundwater and chemical system, e.g.to assess the impact of possible contaminant precipitation, absorption and migration in subsurface media. Currently, simulating such scenarios at large scales is a challenging task due to the extreme computational load, numerical stability issues, scale-dependencies and spatially and temporally infrequently distributed or missing data, which can lead e.g. to in appropriate model simplifications and additionally uncertainties in the results. The simulation of advective-dispersive mass transport is usually solved by standard finite differences, finite element or finite volume methods. Particle tracking is an alternative method and commonly used e.g. to delineate contaminant travel times, with the advantage of being numerically more stable and computational less expensive. Since particle tracking is used to evaluate groundwater residence times, it seems natural and straightforward to include reactive processes to track geochemical changes as well. The main focus of the study is the evaluation of reactive transport processes at large scales. Therefore, a number of new methods have been developed and implemented into the OpenGeoSys project, which is a scientific, FEM-based, open source code for numerical simulation of thermo-hydro-mechanical-chemical processes in porous and fractured media (www

  8. Reactive wetting properties of TiO2 nanoparticles predicted by ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Brandt, Erik G.; Agosta, Lorenzo; Lyubartsev, Alexander P.

    2016-07-01

    Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity.Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity. Electronic supplementary information (ESI) available: Simulation data on equilibration of energies and structures (root-mean-square-deviations and

  9. Particle swarm optimization-based continuous cellular automaton for the simulation of deep reactive ion etching

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Gosálvez, Miguel A.; Pal, Prem; Sato, Kazuo; Xing, Yan

    2015-05-01

    We combine the particle swarm optimization (PSO) method and the continuous cellular automaton (CCA) in order to simulate deep reactive ion etching (DRIE), also known as the Bosch process. By considering a generic growth/etch process, the proposed PSO-CCA method provides a general, integrated procedure to optimize the parameter values of any given theoretical model conceived to describe the corresponding experiments, which are simulated by the CCA method. To stress the flexibility of the PSO-CCA method, two different theoretical models of the DRIE process are used, namely, the ballistic transport and reaction (BTR) model, and the reactant concentration (RC) model. DRIE experiments are designed and conducted to compare the simulation results with the experiments on different machines and process conditions. Previously reported experimental data are also considered to further test the flexibility of the proposed method. The agreement between the simulations and experiments strongly indicates that the PSO-CCA method can be used to adjust the theoretical parameters by using a limited amount of experimental data. The proposed method has the potential to be applied on the modeling and optimization of other growth/etch processes.

  10. PuReMD-GPU: A reactive molecular dynamics simulation package for GPUs

    SciTech Connect

    Kylasa, S.B.; Aktulga, H.M.; Grama, A.Y.

    2014-09-01

    We present an efficient and highly accurate GP-GPU implementation of our community code, PuReMD, for reactive molecular dynamics simulations using the ReaxFF force field. PuReMD and its incorporation into LAMMPS (Reax/C) is used by a large number of research groups worldwide for simulating diverse systems ranging from biomembranes to explosives (RDX) at atomistic level of detail. The sub-femtosecond time-steps associated with ReaxFF strongly motivate significant improvements to per-timestep simulation time through effective use of GPUs. This paper presents, in detail, the design and implementation of PuReMD-GPU, which enables ReaxFF simulations on GPUs, as well as various performance optimization techniques we developed to obtain high performance on state-of-the-art hardware. Comprehensive experiments on model systems (bulk water and amorphous silica) are presented to quantify the performance improvements achieved by PuReMD-GPU and to verify its accuracy. In particular, our experiments show up to 16× improvement in runtime compared to our highly optimized CPU-only single-core ReaxFF implementation. PuReMD-GPU is a unique production code, and is currently available on request from the authors.