Science.gov

Sample records for reactor accident conditions

  1. The TOPAZ II space reactor response under accident conditions

    SciTech Connect

    Voss, S.S.

    1993-12-31

    The TOPAZ II is a single-cell thermionic space reactor power system developed by the Russians during the period of time from {approximately}1969 to 1989. The TOPAZ II has never been flight demonstrated, but the system was extensively tested on the ground. As part of the development and test program, the response of the TOPAZ II under accident conditions was analyzed and characterized. The US TOPAZ II team has been working closely with the Russian specialists to understand the TOPAZ II system, its operational characteristics, and its response under potential accident conditions. The purpose of the technical exchange is to enable a potential launch of a TOPAZ II by the US. The information is required to integrate the system with a US spacecraft and to support the safety review process. The purpose of this paper is to provide a brief overview of the system and its response under actual and postulated accident conditions.

  2. Chemistry of fission product iodine under nuclear reactor accident conditions

    SciTech Connect

    Malinauskas, A.P.; Bell, J.T.

    1986-01-01

    The radioisotopes of iodine are generally acknowledged to be the species whose release into the biosphere as a result of a nuclear reactor accident is of the greatest concern. In the course of its release, the fission product is subjected to differing chemical environments; these can alter the physicochemical form of the fission product and thus modify the manner and extent to which release occurs. Both the chemical environments which are characteristic of reactor accidents and their effect in determining physical and chemical form of fission product iodine have been studied extensively, and are reviewed in this report. 76 refs.

  3. Thermalhydraulic processes in the reactor coolant system of a BWR (boiling water reactor) under severe accident conditions

    SciTech Connect

    Hodge, S.A.

    1989-01-01

    Boiling water reactors (BWRs) incorporate many unique structural features that make their expected response under accident conditions very different from that predicted in the case of pressurized water reactor accident sequences. Automatic main steam isolation valve (MSIV) closure as the vessel water level approaches the top of the core would cause reactor vessel isolation while automatic recirculation pump trip would limit the in-vessel flows to those characteristic of natural circulation (as disturbed by vessel relief valve actuation). This paper provides a brief discussion of the BWR control blade, channel box, core plate, control rod guide tube, and reactor vessel safety relief valve (SRV) configuration and the effects of these structural components upon thermalhydraulic processes within the reactor vessel under severe accident conditions. The dominant BWR severe accident sequences as determined by probabilistic risk assessment are briefly described and the expected timing of events for the unmitigated short-term station blackout severe accident sequence at the Peach Bottom Atomic Power Station is presented. 12 refs., 4 figs., 1 tab.

  4. Material distribution in light water reactor-type bundles tested under severe accident conditions

    SciTech Connect

    Noack, V.; Hagen, S.J.L.; Hofmann, P.; Schanz, G.; Sepold, L.K.

    1997-02-01

    Severe fuel damage experiments simulating small-break loss-of-coolant accidents have been carried out in the CORA out-of-pile test facility at Forschungszentrum Karlsruhe. Rod bundles with electrically heated fuel rod simulators containing annular UO{sub 2} pellets, UO{sub 2} full pellet rods, and absorber rods of two kinds (Ag/In/Cd to represent pressurized water reactor conditions and B{sub 4}C to represent boiling water reactor and VVER-1000 fuel elements) were subjected to temperature transients up to 2,300 K. A special method was applied to determine the axial mass distribution of bundle materials. The low-temperature melt formation by various interactions between zirconium and components of absorber and spacer grids strongly influences the bundle degradation and material relocation. Absorber materials can separate from the fuel by a noncoherent relocation of the materials at different temperatures. The distributions of solidified materials in the different test bundles show a clear dependence on the axial temperature profile. Coolant channel blockages are observed mainly at the lower end of the bundle, i.e., near the lowest elevation at which an oxidation excursion resulting from the highly exothermic zirconium-steam reaction had been experienced. This elevation corresponds with a steep axial temperature gradient in the maximum temperature attained. Oxide layers on Zircaloy result in reduced melt formation.

  5. Whole-Pin Furnace system: An experimental facility for studying irradiated fuel pin behavior under potential reactor accident conditions

    SciTech Connect

    Liu, Y.Y.; Tsai, H.C.; Donahue, D.A.; Pushis, D.O.; Savoie, F.E.; Holland, J.W.; Wright, A.E.; August, C.; Bailey, J.L.; Patterson, D.R.

    1990-05-01

    The whole-pin furnace system is a new in-cell experimental facility constructed to investigate how irradiated fuel pins may fail under potential reactor accident conditions. Extensive checkouts have demonstrated excellent performance in remote operation, temperature control, pin breach detection, and fission gas handling. The system is currently being used in testing of EBIR-II-irradiated Integral Fast Reactor (IFR) metal fuel pins; future testing will include EBR-II-irradiated mixed-oxide fuel pins. 7 refs., 4 figs.

  6. Study of light water reactor containments under important severe accident conditions

    SciTech Connect

    Hofmayer, C.H.; Pratt, W.T.; Bagchi, G.; Noonan, V.S.

    1985-01-01

    The US Nuclear Regulatory Commission has sponsored studies to develop a ''LEAKAGE-BEFORE-FAILURE'' model for use in severe accident risk assessments to provide a means of accounting for significant containment leakage prior to reaching the containment threshold pressure. Six containment types have been studied (large dry, subatmospheric, ice condenser, Mark I, II, and III). Potential leak paths through major containment penetration assemblies were investigated and upper-bound estimates of leak areas established. These leak areas may result from increasing internal pressure and degradation of nonmetallic seal materials due to severe accident conditions. This paper describes the approach and summarizes the results and conclusions of this study.

  7. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions

    SciTech Connect

    Heames, T.J. ); Williams, D.A.; Johns, N.A.; Chown, N.M. ); Bixler, N.E.; Grimley, A.J. ); Wheatley, C.J. )

    1990-10-01

    This document provides a description of a model of the radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident. This document serves as the user's manual for the computer code called VICTORIA, based upon the model. The VICTORIA code predicts fission product release from the fuel, chemical reactions between fission products and structural materials, vapor and aerosol behavior, and fission product decay heating. This document provides a detailed description of each part of the implementation of the model into VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided. The VICTORIA code was developed upon a CRAY-XMP at Sandia National Laboratories in the USA and a CRAY-2 and various SUN workstations at the Winfrith Technology Centre in England. 60 refs.

  8. Reactor Accident Consequence Code

    SciTech Connect

    2015-11-02

    MACCS1.5 performs probabilistic calculations of potential off site consequences of the atmospheric releases of radioactive material in reactor accidents. The principal phenomena considered in MACCS are atmospheric transport, environmental contamination, emergency response, long term mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. MACCS can be used for a variety of applications including probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, sensitivity studies to gain a better understanding of the parameters important to PRA, and cost benefit analysis. The time scale after the accident is divided into three phases: emergency, intermediate, and long term. The region surrounding the reactor is divided into a polar-coordinate grid, with the reactor located at the center, for the calculations. Two preprocessors, MAXGC and DOSFAC, are included. MAXGC generates the maximum allowable ground concentrations based on protective action guide (PAG) dose levels. DOSFAC generates the dose conversion data used by MACCS.

  9. Reactor Accident Consequence Code

    Energy Science and Technology Software Center (ESTSC)

    2015-11-02

    MACCS1.5 performs probabilistic calculations of potential off site consequences of the atmospheric releases of radioactive material in reactor accidents. The principal phenomena considered in MACCS are atmospheric transport, environmental contamination, emergency response, long term mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. MACCS can be used for a variety of applications including probabilistic risk assessment (PRA) ofmore » nuclear power plants and other nuclear facilities, sensitivity studies to gain a better understanding of the parameters important to PRA, and cost benefit analysis. The time scale after the accident is divided into three phases: emergency, intermediate, and long term. The region surrounding the reactor is divided into a polar-coordinate grid, with the reactor located at the center, for the calculations. Two preprocessors, MAXGC and DOSFAC, are included. MAXGC generates the maximum allowable ground concentrations based on protective action guide (PAG) dose levels. DOSFAC generates the dose conversion data used by MACCS.« less

  10. Creep failure of a reactor pressure vessel lower head under severe accident conditions

    SciTech Connect

    Pilch, M.M.; Ludwigsen, J.S.; Chu, T.Y.; Rashid, Y.R.

    1998-08-01

    A severe accident in a nuclear power plant could result in the relocation of large quantities of molten core material onto the lower head of he reactor pressure vessel (RPV). In the absence of inherent cooling mechanisms, failure of the RPV ultimately becomes possible under the combined effects of system pressure and the thermal heat-up of the lower head. Sandia National Laboratories has performed seven experiments at 1:5th scale simulating creep failure of a RPV lower head. This paper describes a modeling program that complements the experimental program. Analyses have been performed using the general-purpose finite-element code ABAQUS-5.6. In order to make ABAQUS solve the specific problem at hand, a material constitutive model that utilizes temperature dependent properties has been developed and attached to ABAQUS-executable through its UMAT utility. Analyses of the LHF-1 experiment predict instability-type failure. Predicted strains are delayed relative to the observed strain histories. Parametric variations on either the yield stress, creep rate, or both (within the range of material property data) can bring predictions into agreement with experiment. The analysis indicates that it is necessary to conduct material property tests on the actual material used in the experimental program. The constitutive model employed in the present analyses is the subject of a separate publication.

  11. Containment performance of prototypical reactor containments subjected to severe accident conditions

    SciTech Connect

    Klamerus, E.W.; Bohn, M.P.; Wesley, D.A.; Krishnaswamy, C.N.

    1996-12-01

    In SECY-90-016, the NTRC proposed a safety goal of a conditional containment failure probability (CCFP) of 0.1 and the alternative acceptance criteria allowed for steel containments, which specifies that the stresses should not exceed ASNE Level C allowables for severe accident pressures and temperatures. In this work, the need for an equivalent criterion for concrete containments was studied. Six surrogate containments were designed and analyzed in order to compare the margins between design pressure, pressure resulting in exceedance of Level C (or yield) stress limits, and ultimate pressure. For comparability, each containment has an identical internal volume and design pressure. Results from the analysis showed margins to yield are comparable and display a similar margin for both steel and concrete containments. In addition, the margin to failure, although slightly higher in the steel containments, were also comparable. Finally, a CCFP for code design was determined based on general membrane behavior and imposing an upper bound severe accident curve developed in the DCH studies. The resulting CCFP`s were less then 0.02 (or 2%) for all the surrogate containments studied, showing that these containment designs all achieved the NRC safety goal.

  12. Activity ratios in soil contaminated by the source of different reactor condition in the FDNPP accident

    NASA Astrophysics Data System (ADS)

    Satou, Yukihiko; Sueki, Keisuke; Sasa, Kimikazu; Matsunaka, Tetsuya; Shibayama, Nao; Takahashi, Tsutomu; Kinoshita, Norikazu

    2014-05-01

    The Fukushima Dai-ichi Nuclear power plant (FDNPP) accident caused radioactive contamination on the surface soil at Fukushima and its adjacent prefectures. Substantial contamination has been found in the northwestern area from the FDNPP, according to the airborne monitoring and ground base survey by the Japanese government. Activity ratios would have characteristic information on emission sources because each relevant reactor had different amount of radionuclide and different activity ratio. The ratios can be used to clarify more detailed source and process in the contamination. We have addressed to consider them in Namie town, northwestern region from the FDNPP. This study focused on the gamma-ray emitting radionuclides of 134Cs, 137Cs, and 110mAg. The activities were decay-corrected as of 11th March, 2011 when all nuclear reactors scrammed. Data of activity ratios by our results and the Japanese official report classified the investigated northwestern region into 3 groups. Ratios of 0.02 for 110mAg/137Cs and 0.90 for 134Cs/137Cs were observed in the northern region of 15 km inside from the FDNPP. On the other hand, two kinds of 110mAg/137Cs ratios of 0.005 and 0.002 were distributed broadly in the region 60 km away from the plant. The 134Cs/137Cs ratio was 0.98 there. The activity ratios of 110mAg/137Cs and 134Cs/137Cs in the northern region from the FDNPP correspond to those of nuclear fuel in Unit 1 according to estimation using the ORIGEN code. The 134Cs/137Cs in the northwestern area from FDNPP agrees with that of Unit 2 and 3. The 110mAg/137Cs ratios of 0.005 and0.002 are 1/5 - 1/10 of the Unit 2 and 3. Official report has announced that discharges of the radionuclides from Unit 2 and 3 occurred on 14th March, 2011. It is known that contamination in the northwestern region from the FDNPP took place on 15th March, 2011. Plausible species for silver in reactor core, metal, and halide etc. have higher boiling point than those species for cesium. The core would

  13. Liquid metal reactions under postulated accident conditions for fission and fusion reactors

    SciTech Connect

    Muhlestein, L.D.

    1980-04-01

    Sodium and lithium reactions are considered in the context of a postulated breach of a coolant boundary. Specific topics addressed are coolant-atmosphere and coolant-material reactions which may contribute to the overall consequence of a postulated accident scenario, and coolant reaction extinguishment and effluent control which may be desirable for containment of the spilled coolant.

  14. The foaming of U-Al fuel under simulated reactor accident conditions

    SciTech Connect

    Neimark, L.A.; Liu, Y.Y.

    1993-03-01

    Postirradiation heating tests were conducted on segments of UAl{sub 4}/Al dispersion fuel plates clad with Al to scope the foaming (rapid swelling) behavior of such fuels during beyond-design-basis accident scenarios. Four tests investigated maximum temperature, ramp rate, and duration with a liquid phase as parameters in foam formation and stability. Real-time fission-gas release was also determined during the foaming process. Ramp-rate had the most noticeable effect of foam formation and collapse.

  15. Criticality safety assessment of a TRIGA reactor spent-fuel pool under accident conditions

    SciTech Connect

    Glumac, B; Ravnik, M.; Logar, M.

    1997-02-01

    Additional criticality safety analysis of a pool-type storage for TRIGA spent fuel at the Jozef Stefan Institute in Ljubljana, Slovenia, is presented. Previous results have shown that subcriticality is not guaranteed for some postulated accidents (earthquake with subsequent fuel rack disintegration resulting in contact fuel pitch) under the assumption that the fuel rack is loaded with fresh 12 wt% standard fuel. To mitigate this deficiency, a study was done on replacing a certain number of fuel elements in the rack with cadmium-loaded absorber rods. The Monte Carlo computer code MCNP4A with an ENDF/B-V library and detailed three-dimensional geometrical model of the spent-fuel rack was used for this purpose. First, a minimum critical number of fuel elements was determined for contact pitch, and two possible geometries of rack disintegration were considered. Next, it was shown that subcriticality can be ensured when pitch is decreased from a rack design pitch of 8 cm to contact, if a certain number of fuel elements (8 to 20 out of 70) are replaced by absorber rods, which are uniformly mixed into the lattice. To account for the possibility that random mixing of fuel elements and absorber rods can occur during rack disintegration and result in a supercritical configuration, a probabilistic study was made to sample the probability density functions for random absorber rod lattice loadings. Results of the calculations show that reasonably low probabilities for supercriticality can be achieved (down to 10{sup {minus}6} per severe earthquake, which would result in rack disintegration and subsequent maximum possible pitch decrease) even in the case where fresh 12 wt% standard TRIGA fuel would be stored in the spent-fuel pool.

  16. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions. Revision 1

    SciTech Connect

    Heams, T J; Williams, D A; Johns, N A; Mason, A; Bixler, N E; Grimley, A J; Wheatley, C J; Dickson, L W; Osborn-Lee, I; Domagala, P; Zawadzki, S; Rest, J; Alexander, C A; Lee, R Y

    1992-12-01

    The VICTORIA model of radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident is described. It has been developed by the USNRC to define the radionuclide phenomena and processes that must be considered in systems-level models used for integrated analyses of severe accident source terms. The VICTORIA code, based upon this model, predicts fission product release from the fuel, chemical reactions involving fission products, vapor and aerosol behavior, and fission product decay heating. Also included is a detailed description of how the model is implemented in VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided.

  17. Thermal state of the safety system, reactor, side reflector and shielding of the {open_quote}{open_quote}TOPAZ-2{close_quote}{close_quote} system under conditions of fire caused by a launcher accident at the launch pad

    SciTech Connect

    Grinberg, E.I.; Doschatov, V.V.; Nikolaev, V.S.; Sokolov, N.S.; Usov, V.A.

    1996-03-01

    The paper presents some results of calculational analyses performed to determine thermal state of the TOPAZ II safety system structure, radiation shielding, reactor without the side reflector, rods and inserts of the side reflector under conditions of fire at the launch pad when an accident occurs to a launch vehicle. {copyright} {ital 1996 American Institute of Physics.}

  18. Accident progression event tree analysis for postulated severe accidents at N Reactor

    SciTech Connect

    Wyss, G.D.; Camp, A.L.; Miller, L.A.; Dingman, S.E.; Kunsman, D.M. ); Medford, G.T. )

    1990-06-01

    A Level II/III probabilistic risk assessment (PRA) has been performed for N Reactor, a Department of Energy (DOE) production reactor located on the Hanford reservation in Washington. The accident progression analysis documented in this report determines how core damage accidents identified in the Level I PRA progress from fuel damage to confinement response and potential releases the environment. The objectives of the study are to generate accident progression data for the Level II/III PRA source term model and to identify changes that could improve plant response under accident conditions. The scope of the analysis is comprehensive, excluding only sabotage and operator errors of commission. State-of-the-art methodology is employed based largely on the methods developed by Sandia for the US Nuclear Regulatory Commission in support of the NUREG-1150 study. The accident progression model allows complex interactions and dependencies between systems to be explicitly considered. Latin Hypecube sampling was used to assess the phenomenological and systemic uncertainties associated with the primary and confinement system responses to the core damage accident. The results of the analysis show that the N Reactor confinement concept provides significant radiological protection for most of the accident progression pathways studied.

  19. Full-length fuel rod behavior under severe accident conditions

    SciTech Connect

    Lombardo, N J; Lanning, D D; Panisko, F E

    1992-12-01

    This document presents an assessment of the severe accident phenomena observed from four Full-Length High-Temperature (FLHT) tests that were performed by the Pacific Northwest Laboratory (PNL) in the National Research Universal (NRU) reactor at Chalk River, Ontario, Canada. These tests were conducted for the US Nuclear Regulatory Commission (NRC) as part of the Severe Accident Research Program. The objectives of the test were to simulate conditions and provide information on the behavior of full-length fuel rods during hypothetical, small-break, loss-of-coolant severe accidents, in commercial light water reactors.

  20. Accident analysis of heavy water cooled thorium breeder reactor

    NASA Astrophysics Data System (ADS)

    Yulianti, Yanti; Su'ud, Zaki; Takaki, Naoyuki

    2015-04-01

    power reactor has a peak value before reactor has new balance condition. The analysis showed that temperatures of fuel and claddings during accident are still below limitations which are in secure condition.

  1. Accident analysis of heavy water cooled thorium breeder reactor

    SciTech Connect

    Yulianti, Yanti; Su’ud, Zaki; Takaki, Naoyuki

    2015-04-16

    power reactor has a peak value before reactor has new balance condition. The analysis showed that temperatures of fuel and claddings during accident are still below limitations which are in secure condition.

  2. Analysis of Credible Accidents for Argonaut Reactors

    SciTech Connect

    Hawley, S. C.; Kathern, R. L.; Robkin, M. A.

    1981-04-01

    Five areas of potential accidents have been evaluated for the Argonaut-UTR reactors. They are: • insertion of excess reactivity • catastrophic rearrangement of the core • explosive chemical reaction • graphite fire • fuel-handling accident. A nuclear excursion resulting from the rapid insertion of the maximum available excess reactivity would produce only 12 MWs which is insufficient to cause fuel melting even with conservative assumptions. Although precise structural rearrangement of the core would create a potential hazard, it is simply not credible to assume that such an arrangement would result from the forces of an earthquake or other catastrophic event. Even damage to the fuel from falling debris or other objects is unlikely given the normal reactor structure. An explosion from a metal-water reaction could not occur because there is no credible source of sufficient energy to initiate the reaction. A graphite fire could conceivably create some damage to the reactor but not enough to melt any fuel or initiate a metal-water reaction. The only credible accident involving offsite doses was determined to be a fuel-handling accident which, given highly conservative assumptions, would produce a whole-body dose equivalent of 2 rem from noble gas immersion and a lifetime dose equivalent commitment to the thyroid of 43 rem from radioiodines.

  3. Accident analysis for US fast burst reactors

    SciTech Connect

    Paternoster, R.; Flanders, M.; Kazi, H.

    1994-09-01

    In the US fast burst reactor (FBR) community there has been increasing emphasis and scrutiny on safety analysis and understanding of possible accident scenarios. This paper summarizes recent work in these areas that is going on at the different US FBR sites. At this time, all of the FBR facilities have or in the process of updating and refining their accident analyses. This effort is driven by two objectives: to obtain a more realistic scenario for emergency response procedures and contingency plans, and to determine compliance with changing regulatory standards.

  4. (Severe accident technology of BWR (Boiling Water Reactor) reactors)

    SciTech Connect

    Ott, L.J.

    1989-10-23

    The traveler attended the 1989 CORA Workshop at KfK, FRG. Participation included the presentation included the presentation of three papers on work performed by the Boiling Water Reactor Severe Accident Technology (BWRSAT) program at Oak Ridge National Laboratory (ORNL) in Boiling Water Reactor (BWR) severe accident analyses. The Statement of Work (June 1989) for the BWRSAT Program provides for code analyses of the BWR CORA experiments performed at KfK. Additionally, it is intended that BWRSAT personnel participate in the planning process for future CORA BWR experiments. For these purposes, meetings were held with KfK staff to arrange for acquisition of detailed CORA facility drawings, experimental data, and related engineering. 17 refs.

  5. Instrumentation availability during severe accidents for a boiling water reactor with a Mark I containment

    SciTech Connect

    Arcieri, W.C.; Hanson, D.J. )

    1992-02-01

    In support of the US Nuclear Regulatory Commission Accident Management Research Program, the availability of instruments to supply accident management information during a broad range of severe accidents is evaluated for a Boiling Water Reactor with a Mark I containment. Results from this evaluation include: (1) the identification of plant conditions that would impact instrument performance and information needs during severe accidents; (2) the definition of envelopes of parameters that would be important in assessing the performance of plant instrumentation for a broad range of severe accident sequences; and (3) assessment of the availability of plant instrumentation during severe accidents.

  6. Radioactive fallout from the Chernobyl nuclear reactor accident

    SciTech Connect

    Beiriger, J.M.; Failor, R.A.; Marsh, K.V.; Shaw, G.E.

    1987-08-01

    This report describes the detection of fallout in the United States from the Chernobyl nuclear reactor accident. As part of its environmental surveillance program, Lawrence Livermore National Laboratory maintained detectors for gamma-emitting radionuclides. Following the reactor accident, additional air filters were set out. Several uncommon isotopes were detected at the time the plume passed into the US. (TEM)

  7. Loss of pumping accident limit calculation for Savannah River Reactor

    SciTech Connect

    Paul, P.K.; Barbour, K.L. )

    1992-01-01

    For the Savannah River Site production reactors, the design basis accident reactor power limit ensures that if a double-ended guillotine break (DEGB) in a secondary cooling water pipe were to occur, the reactor will shut down safely. The primary reactor coolant is heavy water (D{sub 2}O) with secondary light water (H{sub 2}O) cooling. The accident scenario is a DEGB in one of two secondary coolant inlet header pipes with several assumed single failures. The recycled primary coolant loses its cooling, and the reactor core temperature begins to rise. Another possible accident is a DEGB in one of two heat exchanger secondary coolant effluent header pipes. The inlet header break is slightly more limiting than the effluent header break. Upon break detection, emergency shutdown begins and the emergency cooling system (ECS) activates. The accident scenario was constructed with regard to physical, mechanical, and human factors. The computer code TRAC simulates the accident.

  8. Assessment of light water reactor accident management programs and experience

    SciTech Connect

    Hammersley, R.J.

    1992-03-01

    The objective of this report is to provide an assessment of the current light water reactor experience regarding accident management programs and associated technology developments. This assessment for light water reactor (LWR) designs is provided as a resource and reference for the development of accident management capabilities for the production reactors at the Savannah River Site. The specific objectives of this assessment are as follows: 1. Perform a review of the NRC, utility, and industry (NUMARC, EPRI) accident management programs and implementation experience. 2. Provide an assessment of the problems and opportunities in developing an accident management program in conjunction or following the Individual Plant Examination process. 3. Review current NRC, utility, and industry technological developments in the areas of computational tools, severe accident predictive tools, diagnostic aids, and severe accident training and simulation.

  9. PKL reactor tank bottom pressures in accident scenarios

    SciTech Connect

    Tudor, A.A.

    1987-03-10

    Nuclear Engineering Division requested estimates of the maximum PKL reactor tank pressures associated with postulated reactor accidents. Tank bottom pressures calculated in establishing confinement protection limits (CPL) in Mark 16B-31 and Mark 22 reactor charges are given in this document.

  10. Reactor Safety Gap Evaluation of Accident Tolerant Components and Severe Accident Analysis

    SciTech Connect

    Farmer, Mitchell T.; Bunt, R.; Corradini, M.; Ellison, Paul B.; Francis, M.; Gabor, John D.; Gauntt, R.; Henry, C.; Linthicum, R.; Luangdilok, W.; Lutz, R.; Paik, C.; Plys, M.; Rabiti, Cristian; Rempe, J.; Robb, K.; Wachowiak, R.

    2015-01-31

    The overall objective of this study was to conduct a technology gap evaluation on accident tolerant components and severe accident analysis methodologies with the goal of identifying any data and/or knowledge gaps that may exist, given the current state of light water reactor (LWR) severe accident research, and additionally augmented by insights obtained from the Fukushima accident. The ultimate benefit of this activity is that the results can be used to refine the Department of Energy’s (DOE) Reactor Safety Technology (RST) research and development (R&D) program plan to address key knowledge gaps in severe accident phenomena and analyses that affect reactor safety and that are not currently being addressed by the industry or the Nuclear Regulatory Commission (NRC).

  11. Implications for accident management of adding water to a degrading reactor core

    SciTech Connect

    Kuan, P.; Hanson, D.J.; Pafford, D.J.; Quick, K.S.; Witt, R.J.

    1994-02-01

    This report evaluates both the positive and negative consequences of adding water to a degraded reactor core during a severe accident. The evaluation discusses the earliest possible stage at which an accident can be terminated and how plant personnel can best respond to undesired results. Specifically discussed are (a) the potential for plant personnel to add water for a range of severe accidents, (b) the time available for plant personnel to act, (c) possible plant responses to water added during the various stages of core degradation, (d) plant instrumentation available to understand the core condition and (e) the expected response of the instrumentation during the various stages of severe accidents.

  12. Advanced sodium fast reactor accident source terms : research needs.

    SciTech Connect

    Powers, Dana Auburn; Clement, Bernard; Ohno, Shuji; Zeyen, Roland

    2010-09-01

    An expert opinion elicitation has been used to evaluate phenomena that could affect releases of radionuclides during accidents at sodium-cooled fast reactors. The intent was to identify research needed to develop a mechanistic model of radionuclide release for licensing and risk assessment purposes. Experts from the USA, France, the European Union, and Japan identified phenomena that could affect the release of radionuclides under hypothesized accident conditions. They qualitatively evaluated the importance of these phenomena and the need for additional experimental research. The experts identified seven phenomena that are of high importance and have a high need for additional experimental research: High temperature release of radionuclides from fuel during an energetic eventEnergetic interactions between molten reactor fuel and sodium coolant and associated transfer of radionuclides from the fuel to the coolantEntrainment of fuel and sodium bond material during the depressurization of a fuel rod with breached claddingRates of radionuclide leaching from fuel by liquid sodiumSurface enrichment of sodium pools by dissolved and suspended radionuclidesThermal decomposition of sodium iodide in the containment atmosphereReactions of iodine species in the containment to form volatile organic iodides. Other issues of high importance were identified that might merit further research as development of the mechanistic model of radionuclide release progressed.

  13. Guidelines for Exposure Assessment in Health Risk Studies Following a Nuclear Reactor Accident

    PubMed Central

    Bouville, André; Linet, Martha S.; Hatch, Maureen; Mabuchi, Kiyohiko

    2013-01-01

    Background: Worldwide concerns regarding health effects after the Chernobyl and Fukushima nuclear power plant accidents indicate a clear need to identify short- and long-term health impacts that might result from accidents in the future. Fundamental to addressing this problem are reliable and accurate radiation dose estimates for the affected populations. The available guidance for activities following nuclear accidents is limited with regard to strategies for dose assessment in health risk studies. Objectives: Here we propose a comprehensive systematic approach to estimating radiation doses for the evaluation of health risks resulting from a nuclear power plant accident, reflected in a set of seven guidelines. Discussion: Four major nuclear reactor accidents have occurred during the history of nuclear power production. The circumstances leading to these accidents were varied, as were the magnitude of the releases of radioactive materials, the pathways by which persons were exposed, the data collected afterward, and the lifestyle factors and dietary consumption that played an important role in the associated radiation exposure of the affected populations. Accidents involving nuclear reactors may occur in the future under a variety of conditions. The guidelines we recommend here are intended to facilitate obtaining reliable dose estimations for a range of different exposure conditions. We recognize that full implementation of the proposed approach may not always be feasible because of other priorities during the nuclear accident emergency and because of limited resources in manpower and equipment. Conclusions: The proposed approach can serve as a basis to optimize the value of radiation dose reconstruction following a nuclear reactor accident. Citation: Bouville A, Linet MS, Hatch M, Mabuchi K, Simon SL. 2014. Guidelines for exposure assessment in health risk studies following a nuclear reactor accident. Environ Health Perspect 122:1–5; http://dx.doi.org/10

  14. Analysis of containment performance and radiological consequences under severe accident conditions for the Advanced Neutron Source Reactor at the Oak Ridge National Laboratory

    SciTech Connect

    Kim, S.H.; Taleyarkhan, R.P.

    1994-01-01

    A severe accident study was conducted to evaluate conservatively scoped source terms and radiological consequences to support the Advanced Neutron Source (ANS) Conceptual Safety Analysis Report (CSAR). Three different types of severe accident scenarios were postulated with a view of evaluating conservatively scoped source terms. The first scenario evaluates maximum possible steaming loads and associated radionuclide transport, whereas the next scenario is geared towards evaluating conservative containment loads from releases of radionuclide vapors and aerosols with associated generation of combustible gases. The third scenario follows the prescriptions given by the 10 CFR 100 guidelines. It was included in the CSAR for demonstrating site-suitability characteristics of the ANS. Various containment configurations are considered for the study of thermal-hydraulic and radiological behaviors of the ANS containment. Severe accident mitigative design features such as the use of rupture disks were accounted for. This report describes the postulated severe accident scenarios, methodology for analysis, modeling assumptions, modeling of several severe accident phenomena, and evaluation of the resulting source term and radiological consequences.

  15. Estimation Of 137Cs Using Atmospheric Dispersion Models After A Nuclear Reactor Accident

    NASA Astrophysics Data System (ADS)

    Simsek, V.; Kindap, T.; Unal, A.; Pozzoli, L.; Karaca, M.

    2012-04-01

    Nuclear energy will continue to have an important role in the production of electricity in the world as the need of energy grows up. But the safety of power plants will always be a question mark for people because of the accidents happened in the past. Chernobyl nuclear reactor accident which happened in 26 April 1986 was the biggest nuclear accident ever. Because of explosion and fire large quantities of radioactive material was released to the atmosphere. The release of the radioactive particles because of accident affected not only its region but the entire Northern hemisphere. But much of the radioactive material was spread over west USSR and Europe. There are many studies about distribution of radioactive particles and the deposition of radionuclides all over Europe. But this was not true for Turkey especially for the deposition of radionuclides released after Chernobyl nuclear reactor accident and the radiation doses received by people. The aim of this study is to determine the radiation doses received by people living in Turkish territory after Chernobyl nuclear reactor accident and use this method in case of an emergency. For this purpose The Weather Research and Forecasting (WRF) Model was used to simulate meteorological conditions after the accident. The results of WRF which were for the 12 days after accident were used as input data for the HYSPLIT model. NOAA-ARL's (National Oceanic and Atmospheric Administration Air Resources Laboratory) dispersion model HYSPLIT was used to simulate the 137Cs distrubition. The deposition values of 137Cs in our domain after Chernobyl Nuclear Reactor Accident were between 1.2E-37 Bq/m2 and 3.5E+08 Bq/m2. The results showed that Turkey was affected because of the accident especially the Black Sea Region. And the doses were calculated by using GENII-LIN which is multipurpose health physics code.

  16. Accident Performance of Light Water Reactor Cladding Materials

    SciTech Connect

    Nelson, Andrew T.

    2012-07-24

    During a loss of coolant accident as experienced at Fukushima, inadequate cooling of the reactor core forces component temperatures ever higher where they must withstand aggressive chemical environments. Conventional zirconium cladding alloys will readily oxidize in the presence of water vapor at elevated temperatures, rapidly degrading and likely failing. A cladding breach removes the critical barrier between actinides and fission products and the coolant, greatly increasing the probability of the release of radioactivity in the event of a containment failure. These factors have driven renewed international interest in both study and improvement of the materials used in commercial light water reactors. Characterization of a candidate cladding alloy or oxidation mitigation technique requires understanding of both the oxidation kinetics and hydrogen production as a function of temperature and atmosphere conditions. Researchers in the MST division supported by the DOE-NE Fuel Cycle Research and Development program are working to evaluate and quantify these parameters across a wide range of proposed cladding materials. The primary instrument employed is a simultaneous thermal analyzer (STA) equipped with a specialized water vapor furnace capable of maintaining temperatures above 1200 C in a range of atmospheres and water vapor contents. The STA utilizes thermogravimetric analysis and a coupled mass spectrometer to measure in situ oxidation and hydrogen production of candidate materials. This capability is unprecedented in study of materials under consideration for reactor cladding use, and is currently being expanded to investigate proposed coating techniques as well as the effect of coating defects on corrosion resistance.

  17. Graphite Oxidation Simulation in HTR Accident Conditions

    SciTech Connect

    El-Genk, Mohamed

    2012-10-19

    Massive air and water ingress, following a pipe break or leak in steam-generator tubes, is a design-basis accident for high-temperature reactors (HTRs). Analysis of these accidents in both prismatic and pebble bed HTRs requires state-of-the-art capability for predictions of: 1) oxidation kinetics, 2) air helium gas mixture stratification and diffusion into the core following the depressurization, 3) transport of multi-species gas mixture, and 4) graphite corrosion. This project will develop a multi-dimensional, comprehensive oxidation kinetics model of graphite in HTRs, with diverse capabilities for handling different flow regimes. The chemical kinetics/multi-species transport model for graphite burning and oxidation will account for temperature-related changes in the properties of graphite, oxidants (O2, H2O, CO), reaction products (CO, CO2, H2, CH4) and other gases in the mixture (He and N2). The model will treat the oxidation and corrosion of graphite in geometries representative of HTR core component at temperatures of 900°C or higher. The developed chemical reaction kinetics model will be user-friendly for coupling to full core analysis codes such as MELCOR and RELAP, as well as computational fluid dynamics (CFD) codes such as CD-adapco. The research team will solve governing equations for the multi-dimensional flow and the chemical reactions and kinetics using Simulink, an extension of the MATLAB solver, and will validate and benchmark the model's predictions using reported experimental data. Researchers will develop an interface to couple the validated model to a commercially available CFD fluid flow and thermal-hydraulic model of the reactor , and will perform a simulation of a pipe break in a prismatic core HTR, with the potential for future application to a pebble-bed type HTR.

  18. Loss-of-coolant accident experiment at the AVR gas-cooled reactor

    SciTech Connect

    Cleveland, J.; Krueger, K.; Kernforschungsanlage Juelich G.m.b.H. . Arbeitsgemeinschaft Versuchsreaktor)

    1989-01-01

    Loss-of-coolant is one of the most severe accidents for a nuclear power plant. To demonstrate inherent safety characteristics incorporated into small High-Temperature Gas Cooled Reactor (HTGR) designs, loss-of-coolant accident (LOCA) simulation tests have been conducted with the German pebble-bed High-Temperature Reactor AVR. The AVR is the only nuclear power plant ever to have been intentionally subjected to LOCA conditions. The LOCA test was planned to create conditions that would exist if a rapid LOCA occurred with the reactor operating at full power. The tests demonstrated this reactor's safe response to an accident in which the coolant escapes from the reactor core and no emergency system is available to provide coolant flow to the core. The test is of special interest because it demonstrates the inherent safety features incorporated into modular HTGR designs. The main LOCA test lasted for 5 d. After the test began, core temperatures increased for {approximately}13 h and then gradually and continually decreased as the rate of heat dissipation from the core exceeded accident levels of decay power. Throughout the test, temperatures remained below limiting values for the core and other reactor components. 3 refs., 9 figs., 1 tab.

  19. Global risk of radioactive fallout after major nuclear reactor accidents

    NASA Astrophysics Data System (ADS)

    Lelieveld, J.; Kunkel, D.; Lawrence, M. G.

    2012-05-01

    Major reactor accidents of nuclear power plants are rare, yet the consequences are catastrophic. But what is meant by "rare"? And what can be learned from the Chernobyl and Fukushima incidents? Here we assess the cumulative, global risk of exposure to radioactivity due to atmospheric dispersion of gases and particles following severe nuclear accidents (the most severe ones on the International Nuclear Event Scale, INES 7), using particulate 137Cs and gaseous 131I as proxies for the fallout. Our results indicate that previously the occurrence of INES 7 major accidents and the risks of radioactive contamination have been underestimated. Using a global model of the atmosphere we compute that on average, in the event of a major reactor accident of any nuclear power plant worldwide, more than 90% of emitted 137Cs would be transported beyond 50 km and about 50% beyond 1000 km distance before being deposited. This corroborates that such accidents have large-scale and trans-boundary impacts. Although the emission strengths and atmospheric removal processes of 137Cs and 131I are quite different, the radioactive contamination patterns over land and the human exposure due to deposition are computed to be similar. High human exposure risks occur around reactors in densely populated regions, notably in West Europe and South Asia, where a major reactor accident can subject around 30 million people to radioactive contamination. The recent decision by Germany to phase out its nuclear reactors will reduce the national risk, though a large risk will still remain from the reactors in neighbouring countries.

  20. Evaluation of Launch Accident Safety Options for Low-Power Surface Reactors

    SciTech Connect

    Fung Poon, Cindy; Poston, David I.

    2006-01-20

    Safety options for surface reactors of less than 800 kW (thermal power) are analyzed. The concepts under consideration are heat pipe cooled reactors fueled with either uranium nitride or uranium dioxide. This study investigates the impact of launch accident criteria on the system mass, while ensuring the mechanical integrity and reliability of the system through launch accident scenarios. The four criticality scenarios analyzed for shutdown determination are dry sand surround with reflectors stripped, water submersion on concrete, water submersion with all control drums in, and the nominal shutdown reactor condition. Additionally the following two operational criteria are analyzed: reactor is warm and swelled, and reactor is warm and swelled with one drum in (where swelled includes both thermal mechanical expansion and irradiation induced swelling of the fuel)

  1. Loss-of-coolant accident experiment at the AVR (Arbeitsgemeinschaft Versuchsreaktor) gas-cooled reactor

    SciTech Connect

    Krueger, K. ); Cleveland, J. )

    1989-11-01

    Loss of coolant is one of the most severe accidents for a nuclear power plant. To demonstrate inherent safety characteristics incorporated into modular gas-cooled reactor designs, loss-of-coolant accident (LOCA) simulation tests were conducted with the 15-MW(electric), 46-MW(thermal), pebble-bed, high-temperature Arbeitsgemeinschaft Versuchsreaktor (AVR) in the Federal Republic of Germany (FRG). This is the only nuclear power plant ever to have been intentionally subjected to LOCa conditions. Oak Ridge National Laboratory participation in the preparation and conduct of the tests was carried out within the U.S./FRG Agreement for Cooperation in Gas-Cooled Reactor Development.

  2. Key Parameters for Operator Diagnosis of BWR Plant Condition during a Severe Accident

    SciTech Connect

    Clayton, Dwight A.; Poore, III, Willis P.

    2015-01-01

    The objective of this research is to examine the key information needed from nuclear power plant instrumentation to guide severe accident management and mitigation for boiling water reactor (BWR) designs (specifically, a BWR/4-Mark I), estimate environmental conditions that the instrumentation will experience during a severe accident, and identify potential gaps in existing instrumentation that may require further research and development. This report notes the key parameters that instrumentation needs to measure to help operators respond to severe accidents. A follow-up report will assess severe accident environmental conditions as estimated by severe accident simulation model analysis for a specific US BWR/4-Mark I plant for those instrumentation systems considered most important for accident management purposes.

  3. Revised accident source terms for light-water reactors

    SciTech Connect

    Soffer, L.

    1995-02-01

    This paper presents revised accident source terms for light-water reactors incorporating the severe accident research insights gained in this area over the last 15 years. Current LWR reactor accident source terms used for licensing date from 1962 and are contained in Regulatory Guides 1.3 and 1.4. These specify that 100% of the core inventory of noble gases and 25% of the iodine fission products are assumed to be instantaneously available for release from the containment. The chemical form of the iodine fission products is also assumed to be predominantly elemental iodine. These assumptions have strongly affected present nuclear air cleaning requirements by emphasizing rapid actuation of spray systems and filtration systems optimized to retain elemental iodine. A proposed revision of reactor accident source terms and some im implications for nuclear air cleaning requirements was presented at the 22nd DOE/NRC Nuclear Air Cleaning Conference. A draft report was issued by the NRC for comment in July 1992. Extensive comments were received, with the most significant comments involving (a) release fractions for both volatile and non-volatile species in the early in-vessel release phase, (b) gap release fractions of the noble gases, iodine and cesium, and (c) the timing and duration for the release phases. The final source term report is expected to be issued in late 1994. Although the revised source terms are intended primarily for future plants, current nuclear power plants may request use of revised accident source term insights as well in licensing. This paper emphasizes additional information obtained since the 22nd Conference, including studies on fission product removal mechanisms, results obtained from improved severe accident code calculations and resolution of major comments, and their impact upon the revised accident source terms. Revised accident source terms for both BWRS and PWRS are presented.

  4. 77 FR 61446 - Proposed Revision Probabilistic Risk Assessment and Severe Accident Evaluation for New Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... COMMISSION Proposed Revision Probabilistic Risk Assessment and Severe Accident Evaluation for New Reactors..., ``Probabilistic Risk Assessment and Severe Accident Evaluation for New Reactors.'' DATES: Submit comments by... No. ML081430087) concerning the review of probabilistic risk assessment (PRA) information and...

  5. Global impact of the Chernobyl reactor accident

    SciTech Connect

    Anspaugh, L.R.; Catlin, R.J.; Goldman, M.

    1988-12-16

    Radioactive material was deposited throughout the Northern Hemisphere as a result of the accident at the Chernobyl Nuclear Power Station on 26 April 1986. On the basis of a large amount of environmental data and new integrated dose assessment and risk models, the collective dose commitment to the approximately 3 billion inhabitants is calculated to be 930,000 person-gray, with 97% in the western Soviet Union and Europe. The best estimates for the lifetime expectation of fatal radiogenic cancer would increase the risk from 0 to 0.02% in Europe and 0 to 0.003% in the Northern Hemisphere. By means of an integration of the environmental data, it is estimated that approximately 100 petabecquerels of cesium-137 (1 PBq = 10(15) Bq) were released during and subsequent to the accident.

  6. Global risk of radioactive fallout after nuclear reactor accidents

    NASA Astrophysics Data System (ADS)

    Kunkel, D.; Lelieveld, J.; Lawrence, M. G.

    2012-04-01

    Reactor core meltdowns of nuclear power plants are rare, yet the consequences are catastrophic. But what is meant by "rare"? And what can be learned from the Chernobyl and Fukushima incidents? Here we assess the risk of exposure to radioactivity due to atmospheric dispersion of gases and particles following severe nuclear accidents, using particulate 137Cs and gaseous 131I as proxies for the fallout. It appears that previously the occurrence of major accidents and the risks of radioactive contamination have been underestimated. Using a global model of the atmosphere we compute that on average, in the event of a core melt of any nuclear power plant worldwide, more than 90 % of emitted 137Cs would be transported beyond 50 km and about 50 % beyond 1000 km distance. This corroborates that such accidents have large-scale and trans-boundary impacts. Although the emission strengths and atmospheric removal processes of 137Cs and 131I are quite different, the radioactive contamination patterns over land and the human deposition exposure are computed to be similar. High human exposure risks occur around reactors in densely populated regions, notably in southern Asia where a core melt can subject 55 million people to radioactive contamination. The recent decision by Germany to phase out its nuclear reactors will reduce the national risk, though a large risk will still remain from the reactors in neighbouring countries.

  7. Global risk of radioactive fallout after nuclear reactor accidents

    NASA Astrophysics Data System (ADS)

    Lelieveld, J.; Kunkel, D.; Lawrence, M. G.

    2011-11-01

    Reactor core meltdowns of nuclear power plants are rare, yet the consequences are catastrophic. But what is meant by "rare"? And what can be learned from the Chernobyl and Fukushima incidents? Here we assess the risk of exposure to radioactivity due to atmospheric dispersion of gases and particles following severe nuclear accidents, using particulate 137Cs and gaseous 131I as proxies for the fallout. It appears that previously the occurrence of major accidents and the risks of radioactive contamination have been underestimated. Using a global model of the atmosphere we compute that on average, in the event of a core melt of any nuclear power plant worldwide, more than 90% of emitted 137Cs would be transported beyond 50km and about 50% beyond 1000 km distance. This corroborates that such accidents have large-scale and trans-boundary impacts. Although the emission strengths and atmospheric removal processes of 137Cs and 131I are quite different, the radioactive contamination patterns over land and the human deposition exposure are computed to be similar. High human exposure risks occur around reactors in densely populated regions, notably in southern Asia where a core melt can subject 55 million people to radioactive contamination. The recent decision by Germany to phase out its nuclear reactors will reduce the national risk, though a large risk will still remain from the reactors in neighbouring countries.

  8. Behavior of fission product tellurium under severe accident conditions

    SciTech Connect

    Collins, J.L.; Osborne, M.F.; Lorenz, R.A.

    1986-01-01

    Fission product release tests at Oak Ridge National Laboratory (ORNL) have provided new experimental data that help characterize the behavior of tellurium under severe light-water reactor (LWR) accident conditions. The release of tellurium from the fuel rods is dependent upon the rate and extent of cladding oxidation. Tellurium has been found to be considerably retained by metallic Zircaloy cladding at test temperatures up to 1975/sup 0/C. The results indicate that the tellurium is bound by the Zircaloy cladding as zirconium telluride, but once the available zirconium metal is oxidized by the steam, tellurium is released in favor of continued zirconium oxide formation. The collection behavior of the released tellurium indicates that it is probably released from the fuel rods as SnTe and CsTe, rather than as elemental tellurium.

  9. Estimate of radionuclide release characteristics into containment under severe accident conditions. Final report

    SciTech Connect

    Nourbakhsh, H.P.

    1993-11-01

    A detailed review of the available light water reactor source term information is presented as a technical basis for development of updated source terms into the containment under severe accident conditions. Simplified estimates of radionuclide release and transport characteristics are specified for each unique combination of the reactor coolant and containment system combinations. A quantitative uncertainty analysis in the release to the containment using NUREG-1150 methodology is also presented.

  10. Large-Break Loss-of-Coolant Accident Testing and Simulation for 200-MWe Simplified Boiling Water Reactor

    SciTech Connect

    Revankar, S.T.; Xu, Y.; Yoon, H.J.; Ishii, M.

    2002-07-01

    The performance of the safety systems of a new design of the 200-MWe simplified boiling water reactor during a large-break, loss-of-coolant accident transient was investigated through code modeling and integral system testing. The accident considered was a break in the main steam line which is the major design basis accident. RELAP5/MOD3 best estimate reactor thermalhydraulic code was used and its applicability to the reactor safety system evaluation was examined. The integral tests were performed to assess the safety systems and the response of the emergency core cooling systems to accident conditions in a scaled facility called PUMA. The details of the safety system behavior are presented. The integral test simulations examined code applicability at the scaled facility level as well as prototype key safety system performance. (authors)

  11. Evaluation of LLNL's Nuclear Accident Dosimeters at the CALIBAN Reactor September 2010

    SciTech Connect

    Hickman, D P; Wysong, A R; Heinrichs, D P; Wong, C T; Merritt, M J; Topper, J D; Gressmann, F A; Madden, D J

    2011-06-21

    The Lawrence Livermore National Laboratory uses neutron activation elements in a Panasonic TLD holder as a personnel nuclear accident dosimeter (PNAD). The LLNL PNAD has periodically been tested using a Cf-252 neutron source, however until 2009, it was more than 25 years since the PNAD has been tested against a source of neutrons that arise from a reactor generated neutron spectrum that simulates a criticality. In October 2009, LLNL participated in an intercomparison of nuclear accident dosimeters at the CEA Valduc Silene reactor (Hickman, et.al. 2010). In September 2010, LLNL participated in a second intercomparison of nuclear accident dosimeters at CEA Valduc. The reactor generated neutron irradiations for the 2010 exercise were performed at the Caliban reactor. The Caliban results are described in this report. The procedure for measuring the nuclear accident dosimeters in the event of an accident has a solid foundation based on many experimental results and comparisons. The entire process, from receiving the activated NADs to collecting and storing them after counting was executed successfully in a field based operation. Under normal conditions at LLNL, detectors are ready and available 24/7 to perform the necessary measurement of nuclear accident components. Likewise LLNL maintains processing laboratories that are separated from the areas where measurements occur, but contained within the same facility for easy movement from processing area to measurement area. In the event of a loss of LLNL permanent facilities, the Caliban and previous Silene exercises have demonstrated that LLNL can establish field operations that will very good nuclear accident dosimetry results. There are still several aspects of LLNL's nuclear accident dosimetry program that have not been tested or confirmed. For instance, LLNL's method for using of biological samples (blood and hair) has not been verified since the method was first developed in the 1980's. Because LLNL and the other DOE

  12. Radioactive fallout from the Chernobyl nuclear reactor accident

    SciTech Connect

    Beiriger, J.M.; Failor, R.A.; Marsh, K.V.; Shaw, G.E.

    1987-03-23

    Following the accident at the nuclear reactor at Chernobyl, in the Soviet Union on April 26, 1986, we performed a variety of measurements to determine the level of the radioactive fallout on the western United States. We used gamma-spectroscopy to analyze air filters from the areas around Lawrence Livermore National Laboratory (LLNL), California, and Barrow and Fairbanks, Alaska. Milk from California and imported vegetables were also analyzed. The levels of the various fission products detected were far below the maximum permissible concentration levels.

  13. Severe accident sequence assessment for boiling water reactors: program overview

    SciTech Connect

    Fontana, M. H.

    1980-10-01

    The Severe Accident Sequence Assessment (SASA) Program was started at the Oak Ridge National Laboratory (ORNL) in June 1980. This report documents the initial planning, specification of objectives, potential uses of the results, plan of attack, and preliminary results. ORNL was assigned the Brown's Ferry Unit 1 Plant with the station blackout being the initial sequence set to be addressed. This set includes: (1) loss of offsite and onsite ac power with no coolant injection; and (2) loss of offsite and onsite ac power with high pressure coolant injection (HPCI) and reactor core isolation cooling (RCIC) as long as dc power supply lasts. This report includes representative preliminary results for the former case.

  14. Investigations on optimization of accident management measures following a station blackout accident in a VVER-1000 pressurized water reactor

    SciTech Connect

    Tusheva, P.; Schaefer, F.; Kliem, S.

    2012-07-01

    The reactor safety issues are of primary importance for preserving the health of the population and ensuring no release of radioactivity and fission products into the environment. A part of the nuclear research focuses on improvement of the safety of existing nuclear power plants. Studies, research and efforts are a continuing process at improving the safety and reliability of existing and newly developed nuclear power plants at prevention of a core melt accident. Station blackout (loss of AC power supply) is one of the dominant accidents taken into consideration at performing accident analysis. In case of multiple failures of safety systems it leads to a severe accident. To prevent an accident to turn into a severe one or to mitigate the consequences, accident management measures must be performed. The present paper outlines possibilities for application and optimization of accident management measures following a station blackout accident. Assessed is the behaviour of the nuclear power plant during a station blackout accident without accident management measures and with application of primary/secondary side oriented accident management measures. Discussed are the possibilities for operators ' intervention and the influence of the performed accident management measures on the course of the accident. Special attention has been paid to the effectiveness of the passive feeding and physical phenomena having an influence on the system behaviour. The performed simulations show that the effectiveness of the secondary side feeding procedure can be limited due to an early evaporation or flashing effects in the feed water system. The analyzed cases show that the effectiveness of the accident management measures strongly depends on the initiation criteria applied for depressurization of the reactor coolant system. (authors)

  15. Sodium fast reactor gaps analysis of computer codes and models for accident analysis and reactor safety.

    SciTech Connect

    Carbajo, Juan; Jeong, Hae-Yong; Wigeland, Roald; Corradini, Michael; Schmidt, Rodney Cannon; Thomas, Justin; Wei, Tom; Sofu, Tanju; Ludewig, Hans; Tobita, Yoshiharu; Ohshima, Hiroyuki; Serre, Frederic

    2011-06-01

    This report summarizes the results of an expert-opinion elicitation activity designed to qualitatively assess the status and capabilities of currently available computer codes and models for accident analysis and reactor safety calculations of advanced sodium fast reactors, and identify important gaps. The twelve-member panel consisted of representatives from five U.S. National Laboratories (SNL, ANL, INL, ORNL, and BNL), the University of Wisconsin, the KAERI, the JAEA, and the CEA. The major portion of this elicitation activity occurred during a two-day meeting held on Aug. 10-11, 2010 at Argonne National Laboratory. There were two primary objectives of this work: (1) Identify computer codes currently available for SFR accident analysis and reactor safety calculations; and (2) Assess the status and capability of current US computer codes to adequately model the required accident scenarios and associated phenomena, and identify important gaps. During the review, panel members identified over 60 computer codes that are currently available in the international community to perform different aspects of SFR safety analysis for various event scenarios and accident categories. A brief description of each of these codes together with references (when available) is provided. An adaptation of the Predictive Capability Maturity Model (PCMM) for computational modeling and simulation is described for use in this work. The panel's assessment of the available US codes is presented in the form of nine tables, organized into groups of three for each of three risk categories considered: anticipated operational occurrences (AOOs), design basis accidents (DBA), and beyond design basis accidents (BDBA). A set of summary conclusions are drawn from the results obtained. At the highest level, the panel judged that current US code capabilities are adequate for licensing given reasonable margins, but expressed concern that US code development activities had stagnated and that the

  16. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics

    SciTech Connect

    Brad Merrill; Melissa Teague; Robert Youngblood; Larry Ott; Kevin Robb; Michael Todosow; Chris Stanek; Mitchell Farmer; Michael Billone; Robert Montgomery; Nicholas Brown; Shannon Bragg-Sitton

    2014-02-01

    The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. As a result, continual improvement of technology, including advanced materials and nuclear fuels, remains central to industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) initiated an Accident Tolerant Fuel (ATF) Development program. The complex multiphysics behavior of LWR nuclear fuel makes defining specific material or design improvements difficult; as such, establishing qualitative attributes is critical to guide the design and development of fuels and cladding with enhanced accident tolerance. This report summarizes a common set of technical evaluation metrics to aid in the optimization and down selection of candidate designs. As used herein, “metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. Furthermore, this report describes a proposed technical evaluation methodology that can be applied to assess the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed for lead test rod or lead test assembly

  17. Hydrogen-control systems for severe LWR accident conditions - a state-of-technology report

    SciTech Connect

    Hilliard, R K; Postma, A K; Jeppson, D W

    1983-03-01

    This report reviews the current state of technology regarding hydrogen safety issues in light water reactor plants. Topics considered in this report relate to control systems and include combustion prevention, controlled combustion, minimization of combustion effects, combination of control concepts, and post-accident disposal. A companion report addresses hydrogen generation, distribution, and combustion. The objectives of the study were to identify the key safety issues related to hydrogen produced under severe accident conditions, to describe the state of technology for each issue, and to point out ongoing programs aimed at resolving the open issues.

  18. 77 FR 66649 - Proposed Revision to Probabilistic Risk Assessment and Severe Accident Evaluation for New Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ... COMMISSION Proposed Revision to Probabilistic Risk Assessment and Severe Accident Evaluation for New Reactors... comment period. SUMMARY: On October 9, 2012 (77 FR 61446), the U.S. Nuclear Regulatory Commission (NRC or...), Section 19.0 ``Probabilistic Risk Assessment and Severe Accident Evaluation for New Reactors.'' The NRC...

  19. BESAFE II: Accident safety analysis code for MFE reactor designs

    NASA Astrophysics Data System (ADS)

    Sevigny, Lawrence Michael

    The viability of controlled thermonuclear fusion as an alternative energy source hinges on its desirability from an economic and an environmental and safety standpoint. It is the latter which is the focus of this thesis. For magnetic fusion energy (MFE) devices, the safety concerns equate to a design's behavior during a worst-case accident scenario which is the loss of coolant accident (LOCA). In this dissertation, we examine the behavior of MFE devices during a LOCA and how this behavior relates to the safety characteristics of the machine; in particular the acute, whole-body, early dose. In doing so, we have produced an accident safety code, BESAFE II, now available to the fusion reactor design community. The Appendix constitutes the User's Manual for BESAFE II. The theory behind early dose calculations including the mobilization of activation products is presented in Chapter 2. Since mobilization of activation products is a strong function of temperature, it becomes necessary to calculate the thermal response of a design during a LOCA in order to determine the fraction of the activation products which are mobilized and thus become the source for the dose. The code BESAFE II is designed to determine the temperature history of each region of a design and determine the resulting mobilization of activation products at each point in time during the LOCA. The BESAFE II methodology is discussed in Chapter 4, followed by demonstrations of its use for two reference design cases: a PCA-Li tokamak and a SiC-He tokamak. Of these two cases, it is shown that the SiC-He tokamak is a better design from an accident safety standpoint than the PCA-Li tokamak. It is also found that doses derived from temperature-dependent mobilization data are different than those predicted using set mobilization categories such as those that involve Piet fractions. This demonstrates the need for more experimental data on fusion materials. The possibility for future improvements and modifications

  20. Loss-of-coolant accident experiment at the AVR gas-cooled reactor

    SciTech Connect

    Krueger, K. ); Cleveland, J. )

    1990-01-01

    A landmark safety test has been conducted at the AVR-reactor, a high-temperature gas-cooled reactor (HTGR) in the Federal Republic of Germany owned by the Arbeitsgemeinschaft Versuchsreaktor, AVR in Juelich. The 46-MW(t), 15-MW(e) AVR reactor was subjected to a simulated loss-of-coolant accident (LOCA), a very severe occurrence in which the coolant escapes from the reactor core and no emergency system provides coolant flow to the core. The test, which demonstrated the inherently safe response of this reactor to a LOCA, marked the first time ever that a reactor has been intentionally subjected to loss-of-coolant conditions without emergency cooling. Oak Ridge National Laboratory (ORNL) and General Atomics participated in the test by working with AVR staff by jointly performing the analyses needed to obtain the license to conduct the test and by performing post test analyses. This participation was carried out under the cooperative AVR Subprogram which is conducted within the US/FRG Agreement for Cooperation in Gas-Cooled Reactor Development. 7 figs.

  1. Containment building atmosphere response during severe accidents in high temperature gas-cooled reactors

    SciTech Connect

    Kroeger, P.G.; Chan, B.C.

    1985-01-01

    Several safety evaluations for large High Temperature Gas Cooled Reactors (HTGR), using a Prestressed Concrete Reactor Vessel (PCRV) design, have concluded that Unrestricted Core Heatup Accidents (UCHA) present the most important severe accidents, resulting in the dominant source term. While the core thermohydraulic transients for such accident sequences have been presented previously, the subject of this paper is the containment building (CB) atmosphere transient, with primary emphasis on the CB atmosphere temperature and pressure, as overpressurization is the most likely failure mode.

  2. Ferritic Alloys as Accident Tolerant Fuel Cladding Material for Light Water Reactors

    SciTech Connect

    Rebak, Raul B.

    2014-12-30

    The objective of the GE project is to demonstrate that advanced steels such as iron-chromium-aluminum (FeCrAl) alloys could be used as accident tolerant fuel cladding material in commercial light water reactors. The GE project does not include fuel development. Current findings support the concept that a FeCrAl alloy could be used for the cladding of commercial nuclear fuel. The use of this alloy will benefit the public since it is going to make the power generating light water reactors safer. In the Phase 1A of this cost shared project, GE (GRC + GNF) teamed with the University of Michigan, Los Alamos National Laboratory, Brookhaven National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory to study the environmental and mechanical behavior of more than eight candidate cladding materials both under normal operation conditions of commercial nuclear reactors and under accident conditions in superheated steam (loss of coolant condition). The main findings are as follows: (1) Under normal operation conditions the candidate alloys (e.g. APMT, Alloy 33) showed excellent resistance to general corrosion, shadow corrosion and to environmentally assisted cracking. APMT also showed resistance to proton irradiation up to 5 dpa. (2) Under accident conditions the selected candidate materials showed several orders of magnitude improvement in the reaction with superheated steam as compared with the current zirconium based alloys. (3) Tube fabrication feasibility studies of FeCrAl alloys are underway. The aim is to obtain a wall thickness that is below 400 µm. (4) A strategy is outlined for the regulatory path approval and for the insertion of a lead fuel assembly in a commercial reactor by 2022. (5) The GE team worked closely with INL to have four rodlets tested in the ATR. GE provided the raw stock for the alloys, the fuel for the rodlets and the cost for fabrication/welding of the rodlets. INL fabricated the rodlets and the caps and welded them to

  3. Natural circulation under severe accident conditions

    SciTech Connect

    Pafford, D.J.; Hanson, D.J.; Tung, V.X.; Chmielewski, S.V.

    1992-01-01

    Research is being conducted to better understand natural circulation phenomena in mixtures of steam and noncondensibles and its influence on the temperature of the vessel internals and the hot leg, pressurizer surge line, and steam generator tubes. The temperature of these structures is important because their failure prior to reactor vessel lower head failure could reduce the likelihood of containment failure as a result of direct containment heating. Computer code calculations (MELPROG, SCDAP/RELAP5/MOD3) predict high fluid temperatures in the upper plenum resulting from in-vessel natural circulation. Using a simple model for the guide tube phenomena, high upper plenum temperatures are shown to be consistent with the relatively low temperatures that were deduced metallurgically from leadscrews removed from the TMI-2 upper plenum. Evaluation of the capabilities of the RELAP5/MOD3 computer code to predict natural circulation behavior was also performed. The code was used to model the Westinghouse natural circulation experimental facility. Comparisons between code calculations and results from experiments show good agreement.

  4. Natural circulation under severe accident conditions

    SciTech Connect

    Pafford, D.J.; Hanson, D.J.; Tung, V.X.; Chmielewski, S.V.

    1992-12-31

    Research is being conducted to better understand natural circulation phenomena in mixtures of steam and noncondensibles and its influence on the temperature of the vessel internals and the hot leg, pressurizer surge line, and steam generator tubes. The temperature of these structures is important because their failure prior to reactor vessel lower head failure could reduce the likelihood of containment failure as a result of direct containment heating. Computer code calculations (MELPROG, SCDAP/RELAP5/MOD3) predict high fluid temperatures in the upper plenum resulting from in-vessel natural circulation. Using a simple model for the guide tube phenomena, high upper plenum temperatures are shown to be consistent with the relatively low temperatures that were deduced metallurgically from leadscrews removed from the TMI-2 upper plenum. Evaluation of the capabilities of the RELAP5/MOD3 computer code to predict natural circulation behavior was also performed. The code was used to model the Westinghouse natural circulation experimental facility. Comparisons between code calculations and results from experiments show good agreement.

  5. Natural Convection and Boiling for Cooling SRP Reactors During Loss of Circulation Conditions

    SciTech Connect

    Buckner, M.R.

    2001-06-26

    This study investigated natural convection and boiling as a means of cooling SRP reactors in the event of a loss of circulation accident. These studies show that single phase natural convection cooling of SRP reactors in shutdown conditions with the present piping geometry is probably not feasible.

  6. LIGHT WATER REACTOR ACCIDENT TOLERANT FUELS IRRADIATION TESTING

    SciTech Connect

    Carmack, William Jonathan; Barrett, Kristine Eloise; Chichester, Heather Jean MacLean

    2015-09-01

    The purpose of Accident Tolerant Fuels (ATF) experiments is to test novel fuel and cladding concepts designed to replace the current zirconium alloy uranium dioxide (UO2) fuel system. The objective of this Research and Development (R&D) is to develop novel ATF concepts that will be able to withstand loss of active cooling in the reactor core for a considerably longer time period than the current fuel system while maintaining or improving the fuel performance during normal operations, operational transients, design basis, and beyond design basis events. It was necessary to design, analyze, and fabricate drop-in capsules to meet the requirements for testing under prototypic LWR temperatures in Idaho National Laboratory's Advanced Test Reactor (ATR). Three industry led teams and one DOE team from Oak Ridge National Laboratory provided fuel rodlet samples for their new concepts for ATR insertion in 2015. As-built projected temperature calculations were performed on the ATF capsules using the BISON fuel performance code. BISON is an application of INL’s Multi-physics Object Oriented Simulation Environment (MOOSE), which is a massively parallel finite element based framework used to solve systems of fully coupled nonlinear partial differential equations. Both 2D and 3D models were set up to examine cladding and fuel performance.

  7. Thermodynamic analysis of cesium and iodine behavior in severe light water reactor accidents

    NASA Astrophysics Data System (ADS)

    Minato, Kazuo

    1991-11-01

    In order to understand the release and transport behavior of cesium (Cs) and iodine (I) in severe light water reactor accidents, chemical forms of Cs and I in steam-hydrogen mixtures were analyzed thermodynamically. In the calculations reactions of boron (B) with Cs were taken into consideration. The analysis showed that B plays an important role in determining chemical forms of Cs. The main Cs-containing species are CsBO 2(g) and CsBO 2(l), depending on temperature. The contribution of CsOH(g) is minor. The main I-containing species are HI(g) and CsI(g) over the wide ranges of the parameters considered. Calculations were also carried out under the conditions of the Three Mile Island Unit 2 accident.

  8. Response of HEPA filters to simulated-accident conditions

    SciTech Connect

    Gregory, W.S.; Martin, R.A.; Smith, P.R.; Fenton, D.E.

    1982-01-01

    High-efficiency particulate air (HEPA) filters have been subjected to simulated accident conditions to determine their response to abnormal operating events. Both domestic and European standard and high-capacity filters have been evaluated to determine their response to simulated fire, explosion, and tornado conditions. The HEPA filter structural limitations for tornado and explosive loadings are discussed. In addition, filtration efficiencies during these accident conditions are reported for the first time. Our data indicate efficiencies between 80% and 90% for shock loadings below the structural limit level. We describe two types of testing for ineffective filtration - clean filters exposed to pulse-entrained aerosol and dirty filters exposed to tornado and shock pulses. Efficiency and material loss data are described. Also, the resonse of standard HEPA filters to simulated fire conditions is presented. We describe a unique method of measuring accumulated combustion products on the filter. Additionally, data relating to pressure drop vs accumulated mass during plugging are reported for simulated combustion aerosols. The effects of concentration and moisture levels on filter plugging were evaluated. We are obtaining all of the above data so that mathematical models can be developed for fire, explosion, and tornado accident analysis computer codes. These computer codes can be used to assess the response of nuclear air cleaning systems to accident conditions.

  9. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    SciTech Connect

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01

    Abstract –Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000°C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  10. Thyroid Consequences of the Fukushima Nuclear Reactor Accident

    PubMed Central

    Nagataki, Shigenobu

    2012-01-01

    Background A special report, ‘The Fukushima Accident’, was delivered at the 35th Annual Meeting of the European Thyroid Association in Krakow on September 11, 2011, and this study is the follow-up of the special report. Objectives To present a preliminary review of potential thyroid consequences of the 2011 Fukushima nuclear reactor accident. Methods Numerous new data have been presented in Japanese, and most of them are available on the website from each research institute and/or from each municipality. The review was made using these data from the website. Results When individual radiation doses were expressed as values in more than 99% of residents, radiation doses by behavior survey in evacuation and deliberate evacuation areas were less than 10 mSv in the first 4 months, and internal radiation doses measured by whole body counters were less than 1 mSv/year. Individual thyroid radiation doses were less than 50 mSv (intervention levels) even in evacuation areas. As for health consequences, no one died and no one suffered from acute effects. The thyroid ultrasound examination is in progress and following examination of almost 40,000 children, 35% of them have nodules and/or cysts but no cancers. Conclusions Countermeasures against radiation must consider current individual measured values, although every effort must be taken to reconstruct radiation doses as precisely as possible. At present, the difference of thyroid radiation dose between Chernobyl and Fukushima appears to be due to the strict control of milk started within a week after the accident in Fukushima. Since the iodine-131 plume moved around in wide areas and for a long time, the method of thyroid protection must be reconsidered. PMID:24783014

  11. Predictions of structural integrity of steam generator tubes under normal operating, accident, and severe accident conditions

    SciTech Connect

    Majumdar, S.

    1996-09-01

    Available models for predicting failure of flawed and unflawed steam generator tubes under normal operating, accident, and severe accident conditions are reviewed. Tests conducted in the past, though limited, tended to show that the earlier flow-stress model for part-through-wall axial cracks overestimated the damaging influence of deep cracks. This observation is confirmed by further tests at high temperatures as well as by finite element analysis. A modified correlation for deep cracks can correct this shortcoming of the model. Recent tests have shown that lateral restraint can significantly increase the failure pressure of tubes with unsymmetrical circumferential cracks. This observation is confirmed by finite element analysis. The rate-independent flow stress models that are successful at low temperatures cannot predict the rate sensitive failure behavior of steam generator tubes at high temperatures. Therefore, a creep rupture model for predicting failure is developed and validated by tests under varying temperature and pressure loading expected during severe accidents.

  12. 10 CFR 71.73 - Hypothetical accident conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... minutes, or any other thermal test that provides the equivalent total heat input to the package and which... 10 Energy 2 2011-01-01 2011-01-01 false Hypothetical accident conditions. 71.73 Section 71.73 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE...

  13. Air Ingress Accident in a High Temperature Reactor with Prismatic Fuel

    SciTech Connect

    Haque, H.; Brinkmann, G.

    2006-07-01

    In this paper, the safety behavior of the new generation high temperature reactors (HTRs) with prismatic fuels during air ingress accident conditions has been investigated. These reactors conceived primarily for the production of hydrogen, are characterized by their inherent safety features with respect to passive decay heat removal through conduction, radiation and natural convection. Air ingress is an HTR specific event. The potential threat posed by air ingress lies in the chemical reaction of oxygen with hot graphite at a temperature above 500 deg. C leading to reaction heat and graphite corrosion. A substantial amount of graphite burn-off can take place only if sufficient amount of air enters into the core. In order to better assess the phenomena of air ingress into the reactor, it is postulated that breaks are present above and below the reactor core and that unobstructed ingress of air through them is possible. It is obvious that the air ingress incident has to be preceded by a depressurization accident. For this hypothetical scenario the maximum possible air flow rate through the core resulting solely from the pressure losses in the core is determined as a function of the break cross sections exposed above and below the core. This paper demonstrates the thermal behavior of the ANTARES reactor (operating inlet/outlet temperatures 450/850 deg. C) for various air flow rates with respect to graphite burn-off and maximum temperatures of fuel and bottom reflector region. It indicates the limiting time at which the graphite layer of fuel will be completely burnt-off and the pellets exposed. (authors)

  14. Parametric study of recriticality in a boiling water reactor severe accident

    SciTech Connect

    Shamoun, B.I.; Witt, R.J. . Dept. of Nuclear Engineering and Engineering Physics)

    1994-08-01

    Recriticality is possible in a severe accident if unborated or low boron concentration water is added to a damaged core after control rod melting but before fuel melting. Recriticality in a severe accident in a boiling water reactor was parametrically investigated using the TWODANT code. Eigenvalue calculations for a unit central fuel cell with reflective boundary conditions were performed by solving the two-dimensional multigroup steady-state Boltzman transport equation using TWODANT. Two sets of calculations were performed in this work. The first set of calculations was carried out under three types of normal operating conditions to provide reference values for the accident calculations: (a) cold rodded condition, (b) cold unrodded condition, and (c) hot full-power condition. The eigenvalues at these conditions were found to be 1.055, 1.208, and 1.098, respectively. The second set of calculations was carried out after the melting of the control element and during the reflood phase, under the following reflood conditions: (a) reflood with unborated water and (b) reflood with borated water. For the reflood case with unborated water, five values of void fractions were considered (100, 60, 40, 20, and 0%). Decreasing void fractions represent greater refill levels during the reflood process. The system pressure was taken to be 7 MPa, while the moderator temperature was set to 560 K. Plotting the eigenvalue compared with the fraction of control materials lost indicates recriticality is only possible if nearly 100% of the control material is lost from the core. Eigenvalue calculations were repeated for short- and long-term recovery conditions of the reflood phase corresponding to maximum moderator density at 4 MPa pressure and 525 K moderator temperature and for 1 MPa pressure and 325 K moderator temperature, respectively. Recriticality was again observed to be a concern only after losing 95% ore more of control materials from the unit cell.

  15. Metal-fueled HWR (heavy water reactors) severe accident issues: Differences and similarities to commercial LWRs (light water reactors)

    SciTech Connect

    Ellison, P.G.; Hyder, M.L.; Monson, P.R. ); Coryell, E.W. )

    1990-01-01

    Differences and similarities in severe accident progression and phenomena between commercial Light Water Reactors (LWR) and metal-fueled isotopic production Heavy Water Reactors (HWR) are described. It is very important to distinguish between accident progression in the two systems because each reactor type behaves in a unique manner to a fuel melting accident. Some of the lessons learned as a result of the extensive commercial severe accident research are not applicable to metal-fueled heavy water reactors. A direct application of severe accident phenomena developed from oxide-fueled LWRs to metal-fueled HWRs may lead to large errors or substantial uncertainties. In general, the application of severe accident LWR concepts to HWRs should be done with the intent to define the relevant issues, define differences, and determine areas of overlap. This paper describes the relevant differences between LWR and metal-fueled HWR severe accident phenomena. Also included in the paper is a description of the phenomena that govern the source term in HWRs, the areas where research is needed to resolve major uncertainties, and areas in which LWR technology can be directly applied with few modifications.

  16. Optimized Conditioning of Activated Reactor Graphite

    SciTech Connect

    Tress, G.; Doehring, L.; Pauli, H.; Beer, H.-F.

    2002-02-25

    The research reactor DIORIT at the Paul Scherrer Institute was decommissioned in 1993 and is now being dismantled. One of the materials to be conditioned is activated reactor graphite, approximately 45 tons. A cost effective conditioning method has been developed. The graphite is crushed to less than 6 mm and added to concrete and grout. This graphite concrete is used as matrix for embedding dismantling waste in containers. The waste containers that would have been needed for separate conditioning and disposal of activated reactor graphite are thus saved. Applying the new method, the cost can be reduced from about 55 SFr/kg to about 17 SFr/kg graphite.

  17. Simulating experimental investigation on the safety of nuclear heating reactor in loss-of-coolant accidents

    NASA Astrophysics Data System (ADS)

    Xu, Zhanjie

    1996-12-01

    The 5MW low temperature nuclear heating reactor (NHR-5) is a new and advanced type of nuclear reactor developed by Institute of Nuclear Energy Technology (INET) of Tsinghua University of China in 1989. Its main loop is a thermal-hydraulic system with natural circulation. This paper studies the safety of NHR under the condition of loss-of-coolant accidents (LOCAs) by means of simulant experiments. First, the background and necessity of the experiments are presented, then the experimental system, including the thermal-hydraulic system and the data collection system, and similarity criteria are introduced. Up to now, the discharge experiments with the residual heating power (20% rated heating power) have been carried out on the experimental system. The system parameters including circulation flow rate, system pressure, system temperature, void fraction, discharge mass and so on have been recorded and analyzed. Based on the results of the experiments, the conclusions are shown as follos: on the whole, the reactor is safe under the condition of LOCAs, but the thermal vacillations resulting from the vibration of the circulation flow rate are disadvantageous to the internal parts of the reactor core.

  18. Code System for Calculating Early Offsite Consequences from Nuclear Reactor Accidents.

    Energy Science and Technology Software Center (ESTSC)

    1992-06-10

    SMART calculates early offsite consequences from nuclear reactor accidents. Once the air and ground concentrations of the radionuclide are estimated, the early dose to an individual is calculated via three pathways: cloudshine, short-term groundshine, and inhalation.

  19. Contamination of surface-water bodies after reactor accidents by the erosion of atmospherically deposited radionuclides.

    PubMed

    Helton, J C; Muller, A B; Bayer, A

    1985-06-01

    Reactor safety analyses usually do not consider the population risk which might result from the contamination of surface-water bodies after reactor accidents by the erosion of atmospherically deposited radionuclides. This paper is intended to provide perspective on the reasonableness of this omission. Data are presented which are suggestive of the rates at which atmospherically deposited radionuclides might erode into surface-water bodies. These rates are used in the calculation of potential health effects resulting from surface-water contamination due to such erosion. These health effects are compared with predicted health effects due to atmospheric and terrestrial pathways after reactor accidents. The presented results support the belief that the contamination of surface-water bodies after reactor accidents by the erosion of atmospherically deposited radionuclides is not a major contributor to the risk associated with such accidents. PMID:3997527

  20. Action Plan for updated Chapter 15 Accident Analysis in the SRS Production Reactor SAR

    SciTech Connect

    Hightower, N.T. III; Burnett, T.W.

    1989-11-15

    This report describes the Action Plan for the upgrade of the Chapter 15 Accident Analysis in the SRS Production Reactor SAR required for K-Restart. This Action Plan will be updated periodically to reflect task accomplishments and issue resolutions.

  1. Descriptions of selected accidents that have occurred at nuclear reactor facilities

    SciTech Connect

    Bertini, H.W.

    1980-04-01

    This report was prepared at the request of the President's Commission on the Accident at Three Mile Island to provide the members of the Commission with some insight into the nature and significance of accidents that have occurred at nuclear reactor facilities in the past. Toward that end, this report presents a brief description of 44 accidents which have occurred throughout the world and which meet at least one of the severity criteria that were established.

  2. An idealized transient model for melt dispersal from reactor cavities during pressurized melt ejection accident scenarios

    SciTech Connect

    Tutu, N.K.

    1991-06-01

    The direct Containment Heating (DCH) calculations require that the transient rate at which the melt is ejected from the reactor cavity during hypothetical pressurized melt ejection accident scenarios be calculated. However, at present no models, that are able to predict the available melt dispersal data from small scale reactor cavity models, are available. In this report, a simple idealized model of the melt dispersal process within a reactor cavity during a pressurized melt ejection accident scenario is presented. The predictions from the model agree reasonably well with the integral data obtained from the melt dispersal experiments using a small scale model of the Surry reactor cavity. 17 refs., 15 figs.

  3. 10 CFR 71.73 - Hypothetical accident conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Hypothetical accident conditions. 71.73 Section 71.73... greater than 1000 kg/m 3 (62.4 lb/ft 3) based on external dimension, and radioactive contents greater than... least 1 m (40 in), but may not extend more than 3 m (10 ft), beyond any external surface of the...

  4. 10 CFR 71.73 - Hypothetical accident conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Hypothetical accident conditions. 71.73 Section 71.73... greater than 1000 kg/m 3 (62.4 lb/ft 3) based on external dimension, and radioactive contents greater than... least 1 m (40 in), but may not extend more than 3 m (10 ft), beyond any external surface of the...

  5. 10 CFR 71.73 - Hypothetical accident conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Hypothetical accident conditions. 71.73 Section 71.73... greater than 1000 kg/m 3 (62.4 lb/ft 3) based on external dimension, and radioactive contents greater than... least 1 m (40 in), but may not extend more than 3 m (10 ft), beyond any external surface of the...

  6. SL-1 Accident Briefing Report - 1961 Nuclear Reactor Meltdown Educational Documentary

    ScienceCinema

    None

    2014-03-11

    U.S. Atomic Energy Commission (Idaho Operations Office) briefing about the SL-1 Nuclear Reactor Meltdown. The SL-1, or Stationary Low-Power Reactor Number One, was a United States Army experimental nuclear power reactor which underwent a steam explosion and meltdown on January 3, 1961, killing its three operators. The direct cause was the improper withdrawal of the central control rod, responsible for absorbing neutrons in the reactor core. The event is the only known fatal reactor accident in the United States. The accident released about 80 curies (3.0 TBq) of Iodine-131, which was not considered significant due to its location in a remote desert of Idaho. About 1,100 curies (41 TBq) of fission products were released into the atmosphere. The facility, located at the National Reactor Testing Station approximately 40 miles (64 km) west of Idaho Falls, Idaho, was part of the Army Nuclear Power Program and was known as the Argonne Low Power Reactor (ALPR) during its design and build phase. It was intended to provide electrical power and heat for small, remote military facilities, such as radar sites near the Arctic Circle, and those in the DEW Line. The design power was 3 MW (thermal). Operating power was 200 kW electrical and 400 kW thermal for space heating. In the accident, the core power level reached nearly 20 GW in just four milliseconds, precipitating the reactor accident and steam explosion.

  7. SL-1 Accident Briefing Report - 1961 Nuclear Reactor Meltdown Educational Documentary

    SciTech Connect

    2013-09-25

    U.S. Atomic Energy Commission (Idaho Operations Office) briefing about the SL-1 Nuclear Reactor Meltdown. The SL-1, or Stationary Low-Power Reactor Number One, was a United States Army experimental nuclear power reactor which underwent a steam explosion and meltdown on January 3, 1961, killing its three operators. The direct cause was the improper withdrawal of the central control rod, responsible for absorbing neutrons in the reactor core. The event is the only known fatal reactor accident in the United States. The accident released about 80 curies (3.0 TBq) of Iodine-131, which was not considered significant due to its location in a remote desert of Idaho. About 1,100 curies (41 TBq) of fission products were released into the atmosphere. The facility, located at the National Reactor Testing Station approximately 40 miles (64 km) west of Idaho Falls, Idaho, was part of the Army Nuclear Power Program and was known as the Argonne Low Power Reactor (ALPR) during its design and build phase. It was intended to provide electrical power and heat for small, remote military facilities, such as radar sites near the Arctic Circle, and those in the DEW Line. The design power was 3 MW (thermal). Operating power was 200 kW electrical and 400 kW thermal for space heating. In the accident, the core power level reached nearly 20 GW in just four milliseconds, precipitating the reactor accident and steam explosion.

  8. Reactor Accident Analysis Methodology for the Advanced Test Reactor Critical Facility Documented Safety Analysis Upgrade

    SciTech Connect

    Gregg L. Sharp; R. T. McCracken

    2003-06-01

    The regulatory requirement to develop an upgraded safety basis for a DOE nuclear facility was realized in January 2001 by issuance of a revision to Title 10 of the Code of Federal Regulations Section 830 (10 CFR 830).1 Subpart B of 10 CFR 830, “Safety Basis Requirements,” requires a contractor responsible for a DOE Hazard Category 1, 2, or 3 nuclear facility to either submit by April 9, 2001 the existing safety basis which already meets the requirements of Subpart B, or to submit by April 10, 2003 an upgraded facility safety basis that meets the revised requirements.1 10 CFR 830 identifies Nuclear Regulatory Commission (NRC) Regulatory Guide 1.70, “Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants”2 as a safe harbor methodology for preparation of a DOE reactor documented safety analysis (DSA). The regulation also allows for use of a graded approach. This report presents the methodology that was developed for preparing the reactor accident analysis portion of the Advanced Test Reactor Critical Facility (ATRC) upgraded DSA. The methodology was approved by DOE for developing the ATRC safety basis as an appropriate application of a graded approach to the requirements of 10 CFR 830.

  9. Reactor Accident Analysis Methodology for the Advanced Test Reactor Critical Facility Documented Safety Analysis Upgrade

    SciTech Connect

    Sharp, G.L.; McCracken, R.T.

    2003-05-13

    The regulatory requirement to develop an upgraded safety basis for a DOE Nuclear Facility was realized in January 2001 by issuance of a revision to Title 10 of the Code of Federal Regulations Section 830 (10 CFR 830). Subpart B of 10 CFR 830, ''Safety Basis Requirements,'' requires a contractor responsible for a DOE Hazard Category 1, 2, or 3 nuclear facility to either submit by April 9, 2001 the existing safety basis which already meets the requirements of Subpart B, or to submit by April 10, 2003 an upgraded facility safety basis that meets the revised requirements. 10 CFR 830 identifies Nuclear Regulatory Commission (NRC) Regulatory Guide 1.70, ''Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants'' as a safe harbor methodology for preparation of a DOE reactor documented safety analysis (DSA). The regulation also allows for use of a graded approach. This report presents the methodology that was developed for preparing the reactor accident analysis portion of the Advanced Test Reactor Critical Facility (ATRC) upgraded DSA. The methodology was approved by DOE for developing the ATRC safety basis as an appropriate application of a graded approach to the requirements of 10 CFR 830.

  10. Status report of advanced cladding modeling work to assess cladding performance under accident conditions

    SciTech Connect

    B.J. Merrill; Shannon M. Bragg-Sitton

    2013-09-01

    Scoping simulations performed using a severe accident code can be applied to investigate the influence of advanced materials on beyond design basis accident progression and to identify any existing code limitations. In 2012 an effort was initiated to develop a numerical capability for understanding the potential safety advantages that might be realized during severe accident conditions by replacing Zircaloy components in light water reactors (LWRs) with silicon carbide (SiC) components. To this end, a version of the MELCOR code, under development at the Sandia National Laboratories in New Mexico (SNL/NM), was modified by replacing Zircaloy for SiC in the MELCOR reactor core oxidation and material properties routines. The modified version of MELCOR was benchmarked against available experimental data to ensure that present SiC oxidation theory in air and steam were correctly implemented in the code. Additional modifications have been implemented in the code in 2013 to improve the specificity in defining components fabricated from non-standard materials. An overview of these modifications and the status of their implementation are summarized below.

  11. Dose evaluation in criticality accident conditions using transient critical facilities fueled with a fissile solution.

    PubMed

    Nakamura, T; Tonoike, K; Miyoshi, Y

    2004-01-01

    Neutron dose measurement and evaluation techniques in criticality accident conditions using a thermo luminescence dosemeter (TLD) was studied at the Transient Experiment Critical Facility (TRACY) of Japan Atomic Energy Research Institute (JAERI). In the present approach, the absorbed dose is derived from the ambient dose equivalent measured with a TLD, using the appropriate conversion factor given by computation. Using this technique, the neutron dose around the SILENE reactor of the Institute for Radioprotection and Nuclear Safety (IRSN) of France was measured in the Accident Dosimetry Intercomparison Exercise (June 10-21, 2002) organized by OECD/NEA and IRSN. In this exercise, the gamma dose was also measured with a TLD. In this report, measurements and evaluation results at TRACY and SILENE are presented. PMID:15353695

  12. Characterization of debris/concrete interactions for advanced research reactor and commercial BWR severe accidents

    SciTech Connect

    Hyman, C.R.; Taleyarkhan, R.P.; Greene, S.R.

    1991-01-01

    The core concrete interaction (CCI) is an important phase of any severe accident where the reactor vessel has failed and core debris is relocated onto the containment basemat. In recent calculations performed at the Oak Ridge National Laboratory (ORNL), CCI has been studied for severe accidents occurring in a commercial Boiling Water Reactor (BWR) and in a high-power density Department of Energy (DOE) research reactor that is currently in the conceptual design stage. Because of differences in the debris decay heating level, core debris composition and inventory, and containment design, the characteristics of the resulting CCI and containment response are different for the two reactor types. Furthermore, proper selection of the basemat concrete type and the provision of an overlying water pool are found to be significant CCI mitigating factors for the research reactor and thus constitute important design considerations for any future reactor type. 10 refs., 4 figs., 1 tab.

  13. Predictions of structural integrity of steam generator tubes under normal operating, accident, an severe accident conditions

    SciTech Connect

    Majumdar, S.

    1997-02-01

    Available models for predicting failure of flawed and unflawed steam generator tubes under normal operating, accident, and severe accident conditions are reviewed. Tests conducted in the past, though limited, tended to show that the earlier flow-stress model for part-through-wall axial cracks overestimated the damaging influence of deep cracks. This observation was confirmed by further tests at high temperatures, as well as by finite-element analysis. A modified correlation for deep cracks can correct this shortcoming of the model. Recent tests have shown that lateral restraint can significantly increase the failure pressure of tubes with unsymmetrical circumferential cracks. This observation was confirmed by finite-element analysis. The rate-independent flow stress models that are successful at low temperatures cannot predict the rate-sensitive failure behavior of steam generator tubes at high temperatures. Therefore, a creep rupture model for predicting failure was developed and validated by tests under various temperature and pressure loadings that can occur during postulated severe accidents.

  14. Potential for containment leak paths through electrical penetration assemblies under severe accident conditions. [PWR; BWR

    SciTech Connect

    Sebrell, W.

    1983-07-01

    The leakage behavior of containments beyond design conditions and knowledge of failure modes is required for evaluation of mitigation strategies for severe accidents, risk studies, emergency preparedness planning, and siting. These studies are directed towards assessing the risk and consequences of severe accidents. An accident sequence analysis conducted on a Boiling Water Reactor (BWR), Mark I (MK I), indicated very high temperatures in the dry-well region, which is the location of the majority of electrical penetration assemblies. Because of the high temperatures, it was postulated in the ORNL study that the sealants would fail and all the electrical penetration assemblies would leak before structural failure would occur. Since other containments had similar electrical penetration assemblies, it was concluded that all containments would experience the same type of failure. The results of this study, however, show that this conclusion does not hold for PWRs because in the worst accident sequence, the long time containment gases stabilize to 350/sup 0/F. BWRs, on the other hand, do experience high dry-well temperatures and have a higher potential for leakage.

  15. Analysis of reactivity-insertion accidents in the TREAT Upgrade reactor

    SciTech Connect

    Rudolph, R.R.; Bhattacharyya, S.K.

    1983-01-01

    The expansion of the experimental capabilities of the TREAT Upgrade (TU) reactor also tends to increase the potential risks associated with off-normal reactivity insertion incidents compared to the TREAT reactor. To provide adequate prtection for the public and the facility, while meeting experimenter's requirements, a specialized Reactor Trip System (RTS) with energy-dependent scram trips on reactor power and period has been developed. With this protection strategy, the consequences of reactivity insertion accidents in the TU reactor have been analyzed using a general methodology developed earlier. Results of these analyses are presented.

  16. Mitigative techniques and analysis of generic site conditions for ground-water contamination associated with severe accidents

    SciTech Connect

    Shafer, J.M.; Oberlander, P.L.; Skaggs, R.L.

    1984-04-01

    The purpose of this study is to evaluate the feasibility of using ground-water contaminant mitigation techniques to control radionuclide migration following a severe commercial nuclear power reactor accident. The two types of severe commercial reactor accidents investigated are: (1) containment basemat penetration of core melt debris which slowly cools and leaches radionuclides to the subsurface environment, and (2) containment basemat penetration of sump water without full penetration of the core mass. Six generic hydrogeologic site classifications are developed from an evaluation of reported data pertaining to the hydrogeologic properties of all existing and proposed commercial reactor sites. One-dimensional radionuclide transport analyses are conducted on each of the individual reactor sites to determine the generic characteristics of a radionuclide discharge to an accessible environment. Ground-water contaminant mitigation techniques that may be suitable, depending on specific site and accident conditions, for severe power plant accidents are identified and evaluated. Feasible mitigative techniques and associated constraints on feasibility are determined for each of the six hydrogeologic site classifications. The first of three case studies is conducted on a site located on the Texas Gulf Coastal Plain. Mitigative strategies are evaluated for their impact on contaminant transport and results show that the techniques evaluated significantly increased ground-water travel times. 31 references, 118 figures, 62 tables.

  17. Fission product release from irradiated LWR fuel under accident conditions

    SciTech Connect

    Strain, R.V.; Sanecki, J.E.; Osborne, M.F.

    1984-01-01

    Fission product release from irradiated LWR fuel is being studied by heating fuel rod segments in flowing steam and an inert carrier gas to simulate accident conditions. Fuels with a range of irradiation histories are being subjected to several steam flow rates over a wide range of temperatures. Fission product release during each test is measured by gamma spectroscopy and by detailed examination of the collection apparatus after the test has been completed. These release results are complemented by a detailed posttest examination of samples of the fuel rod segment. Results of release measurements and fuel rod characterizations for tests at 1400 through 2000/sup 0/C are presented in this paper.

  18. Estimates of the financial consequences of nuclear-power-reactor accidents

    SciTech Connect

    Strip, D.R.

    1982-09-01

    This report develops preliminary techniques for estimating the financial consequences of potential nuclear power reactor accidents. Offsite cost estimates are based on CRAC2 calculations. Costs are assigned to health effects as well as property damage. Onsite costs are estimated for worker health effects, replacement power, and cleanup costs. Several classes of costs are not included, such as indirect costs, socio-economic costs, and health care costs. Present value discounting is explained and then used to calculate the life cycle cost of the risks of potential reactor accidents. Results of the financial consequence estimates for 156 reactor-site combinations are summarized, and detailed estimates are provided in an appendix. The results indicate that, in general, onsite costs dominate the consequences of potential accidents.

  19. Assessment on Integrity of BWR Internals Against Impact Load by Water Hammer Under Conditions of Reactivity Initiated Accidents

    SciTech Connect

    Azuma, Mie; Taniguchi, Atsushi; Hotta, Akitoshi; Ohta, Takeshi

    2005-03-15

    The integrity of the reactor pressure vessel (RPV) head and reactor internals was assessed by means of fluid and fluid-structural coupled analyses to evaluate the water hammer phenomenon arising from postulated high burnup fuel failure under reactivity initiated accident (RIA) conditions. The fluid viscosity effect on the water column burst as well as the complex three-dimensional flow paths caused by a core shroud and standpipes were considered in this study. It is shown that fluid viscosity becomes an influential factor to dissipate impacting kinetic energy. Integrity of the RPV head and the shroud head was ensured with a sufficient level of margin even under these excessively conservative RIA conditions.

  20. Nuclear reactor accidents: Chernobyl, TMI, and Windscale. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect

    1995-12-01

    The bibliography contains citations concerning studies and measurements of the radiological consequences of nuclear reactor accidents. The citations cover specifically the Chernobyl reactor in the USSR, the Three Mile Island (TMI) reactor in the US, and the Windscale reactor in the UK. Included are detection and monitoring of the fallout; the resultant runoff into rivers, lakes, and the sea; the radiation effects on people; and the transfrontier radioactive contamination of the environment. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  1. Nuclear reactor accidents: Chernobyl, TMI, and windscale. (Latest citations from Pollution Abstracts). Published Search

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations concerning studies and measurements of the radiological consequences of nuclear reactor accidents. The citations cover specifically the Chernobyl reactor in the USSR, the Three Mile Island (TMI) reactor in the US, and the Windscale reactor in the UK. Included are detection and monitoring of the fallout; the resultant runoff into rivers, lakes, and the sea; the radiation effects on people; and the transfrontier radioactive contamination of the environment. (Contains 250 citations and includes a subject term index and title list.)

  2. A review of source term and dose estimation for the TMI-2 reactor accident

    SciTech Connect

    Gudiksen, P.H.; Dickerson, M.H.

    1990-09-01

    The TMI-2 nuclear reactor accident, which occurred on March 28, 1979 in Harrisburg, Pennsylvania, produced environmental releases of noble gases and small quantities of radioiodine. The releases occurred over a roughly two week period with almost 90% of the noble gases being released during the first three days after the initiation of the accident. Meteorological conditions during the prolonged release period varied from strong synoptic driven flows that rapidly transported the radioactive gases out of the Harrisburg area to calm situations that allowed the radioactivity to accumulate within the low lying river area and to subsequently slowly disperse within the immediate vicinity of the reactor. The results reported by various analysts, revealed that approximately 2.4--10 million curies of noble gases (mainly Xe-133), and about 14 curies of I-131 were released. During the first two days, when most of the noble gas release occurred, the plume was transported in a northerly direction causing the most exposed area to lie within a northwesterly to northeasterly direction from TMI. Changing surface winds caused the plume to be subsequently transported in a southerly direction, followed by an easterly direction. The calculated maximum whole body dose due to plume passage exceeded 100 mrem over an area extending several kilometers north of the plant, although the highest measured dose was 75 mrem. The collective dose equivalent (within a radius of 80 km) due to the noble gas exposure ranged over several orders of magnitude with a central estimate of 3300 person-rem. The small I-131 release produced barely detectable levels of activity in air and milk samples. This may have produced thyroid doses of a few milirem to a small segment of the population. 7 refs., 4 figs., 2 tabs.

  3. Neutronics and Fuel Performance Evaluation of Accident Tolerant Fuel under Normal Operation Conditions

    SciTech Connect

    Xu Wu; Piyush Sabharwall; Jason Hales

    2014-07-01

    This report details the analysis of neutronics and fuel performance analysis for enhanced accident tolerance fuel, with Monte Carlo reactor physics code Serpent and INL’s fuel performance code BISON, respectively. The purpose is to evaluate two of the most promising candidate materials, FeCrAl and Silicon Carbide (SiC), as the fuel cladding under normal operating conditions. Substantial neutron penalty is identified when FeCrAl is used as monolithic cladding for current oxide fuel. From the reactor physics standpoint, application of the FeCrAl alloy as coating layer on surface of zircaloy cladding is possible without increasing fuel enrichment. Meanwhile, SiC brings extra reactivity and the neutron penalty is of no concern. Application of either FeCrAl or SiC could be favorable from the fuel performance standpoint. Detailed comparison between monolithic cladding and hybrid cladding (cladding + coating) is discussed. Hybrid cladding is more practical based on the economics evaluation during the transition from current UO2/zircaloy to Accident Tolerant Fuel (ATF) system. However, a few issues remain to be resolved, such as the creep behavior of FeCrAl, coating spallation, inter diffusion with zirconium, etc. For SiC, its high thermal conductivity, excellent creep resistance, low thermal neutron absorption cross section, irradiation stability (minimal swelling) make it an excellent candidate materials for future nuclear fuel/cladding system.

  4. Analysis of fission product revaporization in a BWR Reactor Coolant System during a station blackout accident

    SciTech Connect

    Yang, J.W.; Schmidt, E.; Cazzoli, E.; Khatib-Rahbar, M.

    1988-01-01

    This paper presents an analysis of fission product revaporization from the Reactor Coolant System (RCS) following the Reactor Pressure Vessel (RPV) failure. The station blackout accident in a BWR Mark I Power Plant was considered. The TRAPMELT3 models for vaporization, chemisorption, and the decay heating of RCS structures and gases were used and extended beyond the RPV failure in the analysis. The RCS flow models based on the density-difference or pressure-difference between the RCS and containment pedestal region were developed to estimate the RCS outflow which carries the revaporized fission product to the containment. A computer code called REVAP was developed for the analysis. The REVAP code was incorporated with the MARCH, TRAPMELT3 and NAUA codes from the Source Term Code Package (STCP) to estimate the impact of revaporization on environmental release. The results show that the thermal-hydraulic conditions between the RCS and the pedestal region are important factors in determining the magnitude of revaporization and subsequent release of the volatile fission product into the environment. 6 refs., 8 figs.

  5. The global impact of the Chernobyl reactor accident.

    PubMed

    Anspaugh, L R; Catlin, R J; Goldman, M

    1988-12-16

    Radioactive material was deposited throughout the Northern Hemisphere as a result of the accident at the Chernobyl Nuclear Power Station on 26 April 1986. On the basis of a large amount of environmental data and new integrated dose assessment and risk models, the collective dose commitment to the approximately 3 billion inhabitants is calculated to be 930,000 person-gray, with 97% in the western Soviet Union and Europe. The best estimates for the lifetime expectation of fatal radiogenic cancer would increase the risk from 0 to 0.02% in Europe and 0 to 0.003% in the Northern Hemisphere. By means of an integration of the environmental data, it is estimated that approximately 100 petabecquerels of cesium-137 (1 PBq = 10(15) Bq) were released during and subsequent to the accident. PMID:3201240

  6. Heat Transfer in Cane Fiberboard Exposed to Hypothetical Accident Conditions

    SciTech Connect

    Gromada, R.J.

    1995-05-25

    Radioactive material packages containing fiberboard insulation have been subjected to Hypothetical Accident Condition (HAC) thermal tests for many years. Historically, the packages` thermal performance has always been difficult to grasp. A package designer needs to understand the effects of temperature and pyrolysis on the rate of heat transfer and performance. This paper describes in detail the one-dimensional HAC thermal tests performed on fiberboard to understand the effects of pyrolysis, its char and its gas products. The tests were conducted by the Packaging and Transportation Group at the Savannah River Site (SRS). Test fixtures were assembled at SRS and thermal testing conducted in the Radiant Heat Facility at the Sandia National Laboratories. Descriptions of the test fixtures are provided, as well as the time dependent temperature profiles. In addition, lessons learned are discussed.

  7. ORNL studies of fission product release under LWR accident conditions

    SciTech Connect

    Osborne, M.F.; Lorenz, R.A.; Collins, J.L.

    1991-01-01

    High burnup Zircaloy-clad UO{sub 2} fuel specimens have been heated to study the release of fission products in tests simulating LWR accident conditions. The dominant variable was found to be temperature, with atmosphere, time, and burnup also being significant variables. Comparison of data from tests in steam and hydrogen, at temperatures of 2000 to 2700 K, have shown that the releases of the most volatile species (Kr, Xe, I, and Cs) are relatively insensitive to atmosphere. The releases of the less-volatile species (Sr, Mo, Ru, Sb, Te, Ba, and Eu), however, may vary by orders of magnitude depending on atmosphere. In addition, the atmosphere may drastically affect the mode and extent of fuel destruction.

  8. Computer program predicts thermal and flow transients experienced in a reactor loss- of-flow accident

    NASA Technical Reports Server (NTRS)

    Hale, C. J.

    1967-01-01

    Program analyzes the consequences of a loss-of-flow accident in the primary cooling system of a heterogeneous light-water moderated and cooled nuclear reactor. It produces a temperature matrix 36 x 41 /x,y/ which includes fuel surface temperatures relative to the time the pump power was lost.

  9. Power conditioning for space nuclear reactor systems

    NASA Technical Reports Server (NTRS)

    Berman, Baruch

    1987-01-01

    This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.

  10. Natural Circulation Level Optimization and the Effect during ULOF Accident in the SPINNOR Reactors

    SciTech Connect

    Abdullah, Ade Gafar; Su'ud, Zaki; Kurniadi, Rizal; Kurniasih, Neny; Yulianti, Yanti

    2010-12-23

    Natural circulation level optimization and the effect during loss of flow accident in the 250 MWt MOX fuelled small Pb-Bi Cooled non-refueling nuclear reactors (SPINNOR) have been performed. The simulation was performed using FI-ITB safety code which has been developed in ITB. The simulation begins with steady state calculation of neutron flux, power distribution and temperature distribution across the core, hot pool and cool pool, and also steam generator. When the accident is started due to the loss of pumping power the power distribution and the temperature distribution of core, hot pool and cool pool, and steam generator change. Then the feedback reactivity calculation is conducted, followed by kinetic calculation. The process is repeated until the optimum power distribution is achieved. The results show that the SPINNOR reactor has inherent safety capability against this accident.

  11. Natural Circulation Level Optimization and the Effect during ULOF Accident in the SPINNOR Reactors

    NASA Astrophysics Data System (ADS)

    Abdullah, Ade Gafar; Su'ud, Zaki; Kurniadi, Rizal; Kurniasih, Neny; Yulianti, Yanti

    2010-12-01

    Natural circulation level optimization and the effect during loss of flow accident in the 250 MWt MOX fuelled small Pb-Bi Cooled non-refueling nuclear reactors (SPINNOR) have been performed. The simulation was performed using FI-ITB safety code which has been developed in ITB. The simulation begins with steady state calculation of neutron flux, power distribution and temperature distribution across the core, hot pool and cool pool, and also steam generator. When the accident is started due to the loss of pumping power the power distribution and the temperature distribution of core, hot pool and cool pool, and steam generator change. Then the feedback reactivity calculation is conducted, followed by kinetic calculation. The process is repeated until the optimum power distribution is achieved. The results show that the SPINNOR reactor has inherent safety capability against this accident.

  12. RELAP5 Application to Accident Analysis of the NIST Research Reactor

    SciTech Connect

    Baek, J.; Cuadra Gascon, A.; Cheng, L.Y.; Diamond, D.

    2012-03-18

    Detailed safety analyses have been performed for the 20 MW D{sub 2}O moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The time-dependent analysis of the primary system is determined with a RELAP5 transient analysis model that includes the reactor vessel, the pump, heat exchanger, fuel element geometry, and flow channels for both the six inner and twenty-four outer fuel elements. A post-processing of the simulation results has been conducted to evaluate minimum critical heat flux ratio (CHFR) using the Sudo-Kaminaga correlation. Evaluations are performed for the following accidents: (1) the control rod withdrawal startup accident and (2) the maximum reactivity insertion accident. In both cases the RELAP5 results indicate that there is adequate margin to CHF and no damage to the fuel will occur because of sufficient coolant flow through the fuel channels and the negative scram reactivity insertion.

  13. Oxidation of SiC cladding under Loss of Coolant Accident (LOCA) conditions in LWRs

    SciTech Connect

    Lee, Y.; Yue, C.; Arnold, R. P.; McKrell, T. J.; Kazimi, M. S.

    2012-07-01

    An experimental assessment of Silicon Carbide (SiC) cladding oxidation rate in steam under conditions representative of Loss of Coolant Accidents (LOCA) in light water reactors (LWRs) was conducted. SiC oxidation tests were performed with monolithic alpha phase tubular samples in a vertical quartz tube at a steam temperature of 1140 deg. C and steam velocity range of 1 to 10 m/sec, at atmospheric pressure. Linear weight loss of SiC samples due to boundary layer controlled reaction of silica scale (SiO{sub 2} volatilization) was experimentally observed. The weight loss rate increased with increasing steam flow rate. Over the range of test conditions, SiC oxidation rates were shown to be about 3 orders of magnitude lower than the oxidation rates of zircaloy 4. A SiC volatilization correlation for developing laminar flow in a vertical channel is formulated. (authors)

  14. TRAC loss-of-coolant accident analyses of the Savannah River production reactors

    SciTech Connect

    Lime, J.F.; Motley, F.E. )

    1990-06-01

    TRAC loss-of-coolant accident (LOCA) analyses were performed as part of the independent safety review of the US Department of Energy's Savannah River (SR) production reactors. The double-ended guillotine break in a coolant loop is a design-basis LOCA for the SR reactors. Three break locations were analyzed to determine the worst break location: (1) at the pump-suction flange; (2) at the pump discharge flange; or (3) at the plenum inlet. The plenum-inlet break was shown to be the most severe in terms of minimum flow delivered to each fuel assembly in the reactor core.

  15. Impact of reducing sodium void worth on the severe accident response of metallic-fueled sodium-cooled reactors

    SciTech Connect

    Wigeland, R.A.; Turski, R.B.; Pizzica, P.A.

    1994-03-01

    Analyses have performed on the severe accident response of four 90 MWth reactor cores, all designed using the metallic fuel of the Integrated Fast Reactor (IFR) concept. The four core designs have different sodium void worth, in the range of {minus}3$ to 5$. The purpose of the investigation is to determine the improvement in safety, as measured by the severe accident consequences, that can be achieved from a reduction in the sodium void worth for reactor cores designed using the IFR concept.

  16. Inherent Prevention and Mitigation of Severe Accident Consequences in Sodium-Cooled Fast Reactors

    SciTech Connect

    Roald A. Wigeland; James E. Cahalan

    2011-04-01

    Safety challenges for sodium-cooled fast reactors include maintaining core temperatures within design limits and assuring the geometry and integrity of the reactor core. Due to the high power density in the reactor core, heat removal requirements encourage the use of high-heat-transfer coolants such as liquid sodium. The variation of power across the core requires ducted assemblies to control fuel and coolant temperatures, which are also used to constrain core geometry. In a fast reactor, the fuel is not in the most neutronically reactive configuration during normal operation. Accidents leading to fuel melting, fuel pin failure, and fuel relocation can result in positive reactivity, increasing power, and possibly resulting in severe accident consequences including recriticalities that could threaten reactor and containment integrity. Inherent safety concepts, including favorable reactivity feedback, natural circulation cooling, and design choices resulting in favorable dispersive characteristics for failed fuel, can be used to increase the level of safety to the point where it is highly unlikely, or perhaps even not credible, for such severe accident consequences to occur.

  17. Uncertainty and sensitivity analysis of early exposure results with the MACCS Reactor Accident Consequence Model

    SciTech Connect

    Helton, J.C.; Johnson, J.D.; McKay, M.D.; Shiver, A.W.; Sprung, J.L.

    1995-01-01

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the early health effects associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 34 imprecisely known input variables on the following reactor accident consequences are studied: number of early fatalities, number of cases of prodromal vomiting, population dose within 10 mi of the reactor, population dose within 1000 mi of the reactor, individual early fatality probability within 1 mi of the reactor, and maximum early fatality distance. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: scaling factor for horizontal dispersion, dry deposition velocity, inhalation protection factor for nonevacuees, groundshine shielding factor for nonevacuees, early fatality hazard function alpha value for bone marrow exposure, and scaling factor for vertical dispersion.

  18. Potassium iodide for thyroid blockade in a reactor accident: administrative policies that govern its use.

    PubMed

    Becker, D V; Zanzonico, P

    1997-04-01

    A marked increase in thyroid cancer among young children who were in the vicinity of the Chernobyl nuclear power plant at the time of the 1986 accident strongly suggests a possible causal relationship to the large amounts of radioactive iodine isotopes in the resulting fallout. Although remaining indoors, restricting consumption of locally produced milk and foodstuffs, and evacuation are important strategies in a major breach-of-containment accident, stable potassium iodide (KI) prophylaxis given shortly before or immediately after exposure can reduce greatly the thyroidal accumulation of radioiodines and the resulting radiation dose. Concerns about possible side effects of large-scale, medically unsupervised KI consumption largely have been allayed in light of the favorable experience in Poland following the Chernobyl accident; 16 million persons received single administrations of KI with only rare occurrence of side effects and with a probable 40% reduction in projected thyroid radiation dose. Despite the universal acceptance of KI as an effective thyroid protective agent, supplies of KI in the US are not available for public distribution in the event of a reactor accident largely because government agencies have argued that stockpiling and distribution of KI to other than emergency workers cannot be recommended in light of difficult distribution logistics, problematic administrative issue, and a calculated low cost-effectiveness. However, KI in tablet form is expensive and has a long shelf life, and many countries have largely stockpiles and distribution programs. The World Health Organization recognizes the benefits of stable KI and urges its general availability. At present there are 110 operating nuclear power plants in the US and more than 300 in the rest of the world. These reactors product 17% of the world's electricity and in some countries up to 60-70% of the total electrical energy. Almost all US nuclear power plants have multistage containment

  19. Features of temperature control of fuel element cladding for pressurized water nuclear reactor ``WWER-1000'' while simulating reactor accidents

    NASA Astrophysics Data System (ADS)

    Zaytsev, P. A.; Priymak, S. V.; Usachev, V. B.; Oleynikov, P. P.; Soldatkin, D. M.

    2013-09-01

    During the experiments simulating NPR (nuclear power reactor) accidents with a coolant loss fuel elements behavior in a steam-hydrogen medium was studied at the temperature changed with the rate from 1 to 100K/s within the range of 300÷1500 °C. Indications of the thermocouples fixed on the cladding notably differ from real values of the cladding temperatures in the area of measuring junction due to thermal resistance influence of the transition zones "cladding-junction" and "junction-coolant". The estimating method of a measurement error was considered which can provide adequate accounting of the influence factors. The method is based on thermal probing of a thermocouple by electric current flashing through thermoelements under the coolant presence or absence, a response time registration and processing, calculation of thermal inertia value for a thermocouple junction. A formula was derived for calculation of methodical error under stationary mode and within the stage of linear increase in temperature, which will determine the conditions for the cladding depressurization. Some variants of the formula application were considered, and the values of methodical errors were established which reached ˜5% of maximum value by the final moment of the stage of linear increase in the temperature.

  20. BWRSAR (Boiling Water Reactor Severe Accident Response) calculations of reactor vessel debris pours for Peach Bottom short-term station blackout

    SciTech Connect

    Hodge, S.A.; Ott, L.J.

    1988-01-01

    This paper describes recent analyses performed by the BWR Severe Accident Technology (BWRSAT) Program at Oak Ridge National Laboratory to estimate the release of debris from the reactor vessel for the unmitigated short-term station blackout accident sequence. Calculations were performed with the BWR Severe Accident Response (BWRSAR) code and are based upon consideration of the Peach Bottom Atomic Power Station. The modeling strategies employed within BWRSAR for debris relocation within the reactor vessel are briefly discussed and the calculated events of the accident sequence, including details of the calculated debris pours, are presented. 4 refs., 13 figs., 3 tabs.

  1. Behavior of Zr1%Nb Fuel Cladding under Accident Conditions

    SciTech Connect

    Perez-Fero, E.; Hozer, Z.; Windberg, P.; Nagy, I.; Vimi, A.; Ver, N.; Matus, L.; Kunstar, M.; Novotny, T.; Horvath, M.; Gyori, Cs.

    2007-07-01

    The behavior of the VVER fuel (E110) cladding under accident conditions has been investigated at the AEKI in order to study the role of oxidation and hydrogen uptake on the cladding embrittlement and to understand the phenomena that took place during the Paks-2 cleaning tank incident (2003). The test programme covered small scale tests and large scale tests with electrically heated 7-rod bundles in the CODEX (Core Degradation Experiment) facility. Since a hydrogen rich atmosphere could have been formed in the closed tank, the experiments were carried out in hydrogen-steam mixture. According to the results of the small scale tests, a former correlation for the ductile-brittle transitions of E110 in pure steam remained valid in hydrogen rich steam atmosphere as well. During the large scale tests the main conditions of the incident were reconstructed. The test characterized the high temperature oxidation and embrittlement of zirconium in hydrogen rich steam. The observed cladding failure phenomena and the extent of the damage of the test bundle in the quenching phase were very similar to those of the VVER assemblies in the incident. The simulation of the cleaning tank incident provided detailed information on the most probable scenario of the incident. (authors)

  2. "What--me worry?" "Why so serious?": a personal view on the Fukushima nuclear reactor accidents.

    PubMed

    Gallucci, Raymond

    2012-09-01

    Infrequently, it seems that a significant accident precursor or, worse, an actual accident, involving a commercial nuclear power reactor occurs to remind us of the need to reexamine the safety of this important electrical power technology from a risk perspective. Twenty-five years since the major core damage accident at Chernobyl in the Ukraine, the Fukushima reactor complex in Japan experienced multiple core damages as a result of an earthquake-induced tsunami beyond either the earthquake or tsunami design basis for the site. Although the tsunami itself killed tens of thousands of people and left the area devastated and virtually uninhabitable, much concern still arose from the potential radioactive releases from the damaged reactors, even though there was little population left in the area to be affected. As a lifelong probabilistic safety analyst in nuclear engineering, even I must admit to a recurrence of the doubt regarding nuclear power safety after Fukushima that I had experienced after Three Mile Island and Chernobyl. This article is my attempt to "recover" my personal perspective on acceptable risk by examining both the domestic and worldwide history of commercial nuclear power plant accidents and attempting to quantify the risk in terms of the frequency of core damage that one might glean from a review of operational history. PMID:22394214

  3. Electrical equipment performance under severe accident conditions (BWR/Mark 1 plant analysis): Summary report

    SciTech Connect

    Bennett, P.R.; Kolaczkowski, A.M.; Medford, G.T.

    1986-09-01

    The purpose of the Performance Evaluation of Electrical Equipment during Severe Accident States Program is to determine the performance of electrical equipment, important to safety, under severe accident conditions. In FY85, a method was devised to identify important electrical equipment and the severe accident environments in which the equipment was likely to fail. This method was used to evaluate the equipment and severe accident environments for Browns Ferry Unit 1, a BWR/Mark I. Following this work, a test plan was written in FY86 to experimentally determine the performance of one selected component to two severe accident environments.

  4. Accident Analysis for the NIST Research Reactor Before and After Fuel Conversion

    SciTech Connect

    Baek J.; Diamond D.; Cuadra, A.; Hanson, A.L.; Cheng, L-Y.; Brown, N.R.

    2012-09-30

    Postulated accidents have been analyzed for the 20 MW D2O-moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analysis has been carried out for the present core, which contains high enriched uranium (HEU) fuel and for a proposed equilibrium core with low enriched uranium (LEU) fuel. The analyses employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron transport calculations were performed with the MCNPX code to determine homogenized fuel compositions in the lower and upper halves of each fuel element and to determine the resulting neutronic properties of the core. The accident analysis employed a model of the primary loop with the RELAP5 code. The model includes the primary pumps, shutdown pumps outlet valves, heat exchanger, fuel elements, and flow channels for both the six inner and twenty-four outer fuel elements. Evaluations were performed for the following accidents: (1) control rod withdrawal startup accident, (2) maximum reactivity insertion accident, (3) loss-of-flow accident resulting from loss of electrical power with an assumption of failure of shutdown cooling pumps, (4) loss-of-flow accident resulting from a primary pump seizure, and (5) loss-of-flow accident resulting from inadvertent throttling of a flow control valve. In addition, natural circulation cooling at low power operation was analyzed. The analysis shows that the conversion will not lead to significant changes in the safety analysis and the calculated minimum critical heat flux ratio and maximum clad temperature assure that there is adequate margin to fuel failure.

  5. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of plutonium. (a) Test conditions—Sequence...

  6. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of plutonium. (a) Test conditions—Sequence...

  7. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of plutonium. (a) Test conditions—Sequence...

  8. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport...

  9. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of plutonium. (a) Test conditions—Sequence...

  10. The modelling of fuel volatilisation in accident conditions

    NASA Astrophysics Data System (ADS)

    Manenc, H.; Mason, P. K.; Kissane, M. P.

    2001-04-01

    For oxidising conditions, at high temperatures, the pressure of uranium vapour species at the fuel surface is predicted to be high. These vapour species can be transported away from the fuel surface, giving rise to significant amounts of volatilised fuel, as has been observed during small-scale experiments and taken into account in different models. Hence, fuel volatilisation must be taken into account in the conduct of a simulated severe accident such as the Phebus FPT-4 experiment. A large-scale in-pile test is designed to investigate the release of fission products and actinides from irradiated UO 2 fuel in a debris bed and molten pool configuration. Best estimate predictions for fuel volatilisation were performed before the test. This analysis was used to assess the maximum possible loading of filters collecting emissions and the consequences for the filter-change schedule. Following successful completion of the experiment, blind post-test analysis is being performed; boundary conditions for the calculations are based on the preliminary post-test analysis with the core degradation code ICARE2 [J.C. Crestia, G. Repetto, S. Ederli, in: Proceedings of the Fourth Technical Seminar on the PHEBUS FP Programme, Marseille, France, 20-22 March 2000]. The general modelling approach is presented here and then illustrated by the analysis of fuel volatilisation in Phebus FPT4 (for which results are not yet available). Effort was made to reduce uncertainties in the calculations by improving the understanding of controlling physical processes and by using critically assessed thermodynamic data to determine uranium vapour pressures. The analysis presented here constitutes a preliminary, blind, post-test estimate of fuel volatilised during the test.

  11. Evaluation of graphite/steam interactions for ITER (International Thermonuclear Experimental Reactor) accident scenarios

    SciTech Connect

    Smolik, G.R.; Merrill, B.J.; Piet, S.J.; Holland, D.F.

    1990-01-01

    This paper presents the results of an experimental/analytical study designed to determine the quantity of hydrogen generated during an accident involving coolant leakage into the plasma chamber of the International Thermonuclear Experimental Reactor (ITER). This hydrogen could represent a potential explosive hazard, provided the proper conditions exist, causing machine damage and release of radioactive material. We measured graphite/steam reaction rates for several graphites and carbon-based composites at temperatures between 1000 and 1700{degree}C. The effects of steam flow rate and partial pressure were also examined. The measured reaction rates correlated well with two Arrhenius type relationships. We used the relationships for GraphNOL N3M in thermal model to determine that for ITER the quantity of hydrogen produced would range between 5 and 35 kg, depending upon how the graphite tiles are attached to the first wall. While 5 kg is not a significant concern, 35 kg presents an explosive hazard. 16 refs., 7 figs., 1 tab.

  12. Consequences of tritium release to water pathways from postulated accidents in a DOE production reactor

    SciTech Connect

    O`Kula, K.R.; Olson, R.L.; Hamby, D.M.

    1991-12-31

    A full-scale PRA of a DOE production reactor has been completed that considers full release of tritium as part of the severe accident source term. Two classes of postulated reactor accidents, a loss-of-moderator pumping accident and a loss-of-coolant accident, are used to bound the expected dose consequence from liquid pathway release. Population doses from the radiological release associated with the two accidents are compared for aqueous discharge and atmospheric release modes. The expectation values of the distribution of possible values for the societal effective dose equivalent to the general public, given a tritium release to the atmosphere, is 2.8 person-Sv/PBq (9.9 {times} 10{sup {minus}3} person-rem/Ci). The general public drinking water dose to downstream water consumers is 6.5 {times} 10{sup {minus}2} person-Sv/Pbq (2.4 {times} 10{sup {minus}4} person-rem/Ci) for aqueous releases to the surface streams eventually reaching the Savannah River. Negligible doses are calculated for freshwater fish and saltwater invertebrate consumption, irrigation, and recreational use of the river, given that an aqueous release is assumed to occur. Relative to the balance of fission products released in a hypothetical severe accident, the tritium-related dose is small. This study suggests that application of regional models (1610 km radius) will indicate larger dose consequences from short-term tritium release to the atmosphere than from comparable tritium source terms to water pathways. However, the water pathways assessment is clearly site-specific, and the overall aqueous dose will be dependent on downstream receptor populations and uses of the river.

  13. Consequences of tritium release to water pathways from postulated accidents in a DOE production reactor

    SciTech Connect

    O'Kula, K.R.; Olson, R.L.; Hamby, D.M.

    1991-01-01

    A full-scale PRA of a DOE production reactor has been completed that considers full release of tritium as part of the severe accident source term. Two classes of postulated reactor accidents, a loss-of-moderator pumping accident and a loss-of-coolant accident, are used to bound the expected dose consequence from liquid pathway release. Population doses from the radiological release associated with the two accidents are compared for aqueous discharge and atmospheric release modes. The expectation values of the distribution of possible values for the societal effective dose equivalent to the general public, given a tritium release to the atmosphere, is 2.8 person-Sv/PBq (9.9 {times} 10{sup {minus}3} person-rem/Ci). The general public drinking water dose to downstream water consumers is 6.5 {times} 10{sup {minus}2} person-Sv/Pbq (2.4 {times} 10{sup {minus}4} person-rem/Ci) for aqueous releases to the surface streams eventually reaching the Savannah River. Negligible doses are calculated for freshwater fish and saltwater invertebrate consumption, irrigation, and recreational use of the river, given that an aqueous release is assumed to occur. Relative to the balance of fission products released in a hypothetical severe accident, the tritium-related dose is small. This study suggests that application of regional models (1610 km radius) will indicate larger dose consequences from short-term tritium release to the atmosphere than from comparable tritium source terms to water pathways. However, the water pathways assessment is clearly site-specific, and the overall aqueous dose will be dependent on downstream receptor populations and uses of the river.

  14. Calculations of reactor-accident consequences, Version 2. CRAC2: computer code user's guide

    SciTech Connect

    Ritchie, L.T.; Johnson, J.D.; Blond, R.M.

    1983-02-01

    The CRAC2 computer code is a revision of the Calculation of Reactor Accident Consequences computer code, CRAC, developed for the Reactor Safety Study. The CRAC2 computer code incorporates significant modeling improvements in the areas of weather sequence sampling and emergency response, and refinements to the plume rise, atmospheric dispersion, and wet deposition models. New output capabilities have also been added. This guide is to facilitate the informed and intelligent use of CRAC2. It includes descriptions of the input data, the output results, the file structures, control information, and five sample problems.

  15. Generation IV reactors and the ASTRID prototype: Lessons from the Fukushima accident

    NASA Astrophysics Data System (ADS)

    Gauché, François

    2012-05-01

    In France, the ASTRID prototype is a sodium-cooled fast neutron industrial demonstrator, fulfilling the criteria for Generation IV reactors. ASTRID will meet safety requirements as stringent as for 3rd generation reactors, and take into account lessons from the Fukushima accident. The objectives are to reinforce the robustness of the safety demonstration for all safety functions. ASTRID will feature an innovative core with a negative sodium void coefficient, take advantage of the large thermal inertia of SFRs for decay heat removal, and provide for a design either eliminating the sodium-water reaction, or guaranteeing no consequences for safety in case such reaction would take place.

  16. Loss-of-coolant accident analyses of the Advanced Neutron Source Reactor

    SciTech Connect

    Chen, N.C.J.; Yoder, G.L. ); Wendel, M.W. )

    1991-01-01

    Currently in the conceptual design stage, the Advanced Neutron Source Reactor (ANSR) will operate at a high heat flux, a high mass flux, an a high degree of coolant subcooling. Loss-of-coolant accident (LOCA) analyses using RELAP5 have been performed as part of an early evaluation of ANSR safety issues. This paper discusses the RELAP5 ANSR conceptual design system model and preliminary LOCA simulation results. Some previous studies were conducted for the preconceptual design. 12 refs., 7 figs.

  17. Identification of traffic accident risk-prone areas under low-light conditions

    NASA Astrophysics Data System (ADS)

    Ivan, K.; Haidu, I.; Benedek, J.; Ciobanu, S. M.

    2015-09-01

    Besides other non-behavioural factors, low-light conditions significantly influence the frequency of traffic accidents in an urban environment. This paper intends to identify the impact of low-light conditions on traffic accidents in the city of Cluj-Napoca, Romania. The dependence degree between light and the number of traffic accidents was analysed using the Pearson correlation, and the relation between the spatial distribution of traffic accidents and the light conditions was determined by the frequency ratio model. The vulnerable areas within the city were identified based on the calculation of the injury rate for the 0.5 km2 areas uniformly distributed within the study area. The results show a strong linear correlation between the low-light conditions and the number of traffic accidents in terms of three seasonal variations and a high probability of traffic accident occurrence under the above-mentioned conditions at the city entrances/exits, which represent vulnerable areas within the study area. Knowing the linear dependence and the spatial relation between the low light and the number of traffic accidents, as well as the consequences induced by their occurrence, enabled us to identify the areas of high traffic accident risk in Cluj-Napoca.

  18. Identification of traffic accident risk-prone areas under low lighting conditions

    NASA Astrophysics Data System (ADS)

    Ivan, K.; Haidu, I.; Benedek, J.; Ciobanu, S. M.

    2015-02-01

    Besides other non-behavioural factors, the low lighting conditions significantly influence the frequency of the traffic accidents in the urban environment. This paper intends to identify the impact of low lighting conditions on the traffic accidents in the city of Cluj-Napoca. The dependence degree between lighting and the number of traffic accidents was analyzed by the Pearson's correlation and the relation between the spatial distribution of traffic accidents and the lighting conditions was determined by the frequency ratio model. The vulnerable areas within the city were identified based on the calculation of the injured persons rate for the 0.5 km2 equally-sized areas uniformly distributed within the study area. The results have shown a strong linear dependence between the low lighting conditions and the number of traffic accidents in terms of three seasonal variations and a high probability of traffic accidents occurrence under the above-mentioned conditions, at the city entrances-exits, which represent also vulnerable areas within the study area. Knowing the linear dependence and the spatial relation between the low lighting and the number of traffic accidents, as well as the consequences induced by their occurrence enabled us to identify the high traffic accident risk areas in the city of Cluj-Napoca.

  19. Test plan for high-burnup fuel cladding behavior under loss-of- coolant accident conditions

    SciTech Connect

    Chung, H.M.; Neimark, L.A.; Kassner, T.F.

    1996-10-01

    Excessive oxidation, hydriding, and extensive irradiation damage occur in high-burnup fuel cladding, and as result, mechanical properties of high-burnup fuels are degraded significantly. This may influence the current fuel cladding failure limits for loss-of- coolant-accident (LOCA) situations, which are based on fuel cladding behavior for zero burnup. To avoid cladding fragmentation and fuel dispersal during a LOCA, 10 CFR 50.46 requires that peak cladding temperature shall not exceed 1204 degrees C (2200 degrees F) and that total oxidation of the fuel cladding nowhere exceeds 0.17 times total cladding thickness before oxidation. Because of the concern, a new experimental program to investigate high-burnup fuel cladding behavior under LOCA situations has been initiated under the sponsorship of the U.S. Nuclear Regulatory Commission. A hot-cell test plan to investigate single-rod behavior under simulated LOCA conditions is described in this paper. In the meantime, industry fuel design and operating conditions are expected to undergo further changes as more advanced cladding materials are developed. Under these circumstances, mechanical properties of high-burnup fuel cladding require further investigation so that results from studies on LOCA, reactivity- initiated-accident (RIA), operational transient, and power-ramping situations, can be extrapolated to modified or advanced cladding materials and altered irradiation conditions without repeating major integral experiments in test reactors. To provide the applicable data base and mechanistic understanding, tests will be conducted to determine dynamic and static fracture toughness and tensile properties. Background and rationale for selecting the specific mechanical properties tests are also described.

  20. Uncertainty and sensitivity analysis of food pathway results with the MACCS Reactor Accident Consequence Model

    SciTech Connect

    Helton, J.C.; Johnson, J.D.; Rollstin, J.A.; Shiver, A.W.; Sprung, J.L.

    1995-01-01

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the food pathways associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 87 imprecisely-known input variables on the following reactor accident consequences are studied: crop growing season dose, crop long-term dose, milk growing season dose, total food pathways dose, total ingestion pathways dose, total long-term pathways dose, area dependent cost, crop disposal cost, milk disposal cost, condemnation area, crop disposal area and milk disposal area. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: fraction of cesium deposition on grain fields that is retained on plant surfaces and transferred directly to grain, maximum allowable ground concentrations of Cs-137 and Sr-90 for production of crops, ground concentrations of Cs-134, Cs-137 and I-131 at which the disposal of milk will be initiated due to accidents that occur during the growing season, ground concentrations of Cs-134, I-131 and Sr-90 at which the disposal of crops will be initiated due to accidents that occur during the growing season, rate of depletion of Cs-137 and Sr-90 from the root zone, transfer of Sr-90 from soil to legumes, transfer of Cs-137 from soil to pasture, transfer of cesium from animal feed to meat, and the transfer of cesium, iodine and strontium from animal feed to milk.

  1. TECHNICAL BASIS DOCUMENT FOR THE ABOVE GROUND TANK FAILURE REPRESENTATIVE ACCIDENT & ASSOCIATED REPRESENTED HAZARDOUS CONDITIONS

    SciTech Connect

    ZACH, J.J.

    2003-03-21

    This document qualitatively evaluates the frequency and consequences of the representative aboveground tank failure accident and associated represented hazardous conditions without controls. Based on the evaluation, it was determined that safety-significant structures, systems, and components, and/or technical safety requirements were not required to prevent or mitigate aboveground tank failure accidents.

  2. Numerical simulation of PWR response to a small break LOCA (loss-of-coolant accident) with reactor coolant pumps operating

    SciTech Connect

    Adams, J.P.; Dobbe, C.A.; Bayless, P.D.

    1986-01-01

    Calculations have been made of the response of pressurized water reactors (PWRs) during a small-break, loss-of-coolant accident with the reactor coolant pumps (RCPs) operating. This study was conducted, as part of a comprehensive project, to assess the relationship between measurable RCP parameters, such as motor power or current, and fluid density, both local (at the RCP inlet) and global (average reactor coolant system). Additionally, the efficacy of using these RCP parameters, together with fluid temperature, to identify an off-nominal transient as either a LOCA, a heatup transient, or a cooldown transient and to follow recovery from the transient was assessed. The RELAP4 and RELAP5 computer codes were used with three independent sets of RCP, two-phase degradation multipliers. These multipliers were based on data obtained in two-phase flow conditions for the Semiscale, LOFT, and Creare/Combustion Engineering (CE)/Electric Power Research Institute (EPRI) pumps, respectively. Two reference PWRs were used in this study: Zion, a four-loop, 1100-MWe, Westinghouse plant operated by Commonwealth Edison Co. in Zion, Illinois and Bellefonte, a two-by-four loop, 1213 MWe, Babcock and Wilcox designed plant being built by the Tennessee Valley Authority in Scottsboro, Alabama. The results from this study showed that RCP operation resulted in an approximately homogeneous reactor coolant system and that this result was independent of reference plant, computer code, or two-phase RCP head degradation multiplier used in the calculation.

  3. Modeling & analysis of criticality-induced severe accidents during refueling for the Advanced Neutron Source Reactor

    SciTech Connect

    Georgevich, V.; Kim, S.H.; Taleyarkhan, R.P.; Jackson, S.

    1992-10-01

    This paper describes work done at the Oak Ridge National Laboratory (ORNL) for evaluating the potential and resulting consequences of a hypothetical criticality accident during refueling of the 330-MW Advanced Neutron Source (ANS) research reactor. The development of an analytical capability is described. Modeling and problem formulation were conducted using concepts of reactor neutronic theory for determining power level escalation, coupled with ORIGEN and MELCOR code simulations for radionuclide buildup and containment transport Gaussian plume transport modeling was done for determining off-site radiological consequences. Nuances associated with modeling this blast-type scenario are described. Analysis results for ANS containment response under a variety of postulated scenarios and containment failure modes are presented. It is demonstrated that individuals at the reactor site boundary will not receive doses beyond regulatory limits for any of the containment configurations studied.

  4. Guide for licensing evaluations using CRAC2: A computer program for calculating reactor accident consequences

    SciTech Connect

    White, J.E.; Roussin, R.W.; Gilpin, H.

    1988-12-01

    A version of the CRAC2 computer code applicable for use in analyses of consequences and risks of reactor accidents in case work for environmental statements has been implemented for use on the Nuclear Regulatory Commission Data General MV/8000 computer system. Input preparation is facilitated through the use of an interactive computer program which operates on an IBM personal computer. The resulting CRAC2 input deck is transmitted to the MV/8000 by using an error-free file transfer mechanism. To facilitate the use of CRAC2 at NRC, relevant background material on input requirements and model descriptions has been extracted from four reports - ''Calculations of Reactor Accident Consequences,'' Version 2, NUREG/CR-2326 (SAND81-1994) and ''CRAC2 Model Descriptions,'' NUREG/CR-2552 (SAND82-0342), ''CRAC Calculations for Accident Sections of Environmental Statements, '' NUREG/CR-2901 (SAND82-1693), and ''Sensitivity and Uncertainty Studies of the CRAC2 Computer Code,'' NUREG/CR-4038 (ORNL-6114). When this background information is combined with instructions on the input processor, this report provides a self-contained guide for preparing CRAC2 input data with a specific orientation toward applications on the MV/8000. 8 refs., 11 figs., 10 tabs.

  5. SCDAP/RELAP5/MOD 3.1 code manual: MATPRO, A library of materials properties for Light-Water-Reactor accident analysis. Volume 4

    SciTech Connect

    Hagrman, D.T.; Allison, C.M.; Berna, G.A.

    1995-06-01

    The SCDAP/RELAP5 code has been developed for best estimate transient simulation of light -- water-reactor coolant systems during a severe accident. The code models the coupled behavior of the reactor coolant system, the core, fission products released during a severe accident transient as well as large and small break loss of coolant accidents, operational transients such as anticipated transient without SCRAM, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits as much of a particular system to be modeled as necessary. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater conditioning systems. This volume, Volume IV, describes the material properties correlations and computer subroutines (MATPRO) used by SCDAP/RELAP5. formulation of the materials properties are generally semi-empirical in nature. The materials property subroutines contained in this document are for uranium, uranium dioxide, mixed uranium-plutonium dioxide fuel, zircaloy cladding, zirconium dioxide, stainless steel, stainless steel oxide, silver-indium-cadmium alloy, cadmium, boron carbide, Inconel 718, zirconium-uranium-oxygen melts, fill gas mixtures, carbon steel, and tungsten. This document also contains descriptions of the reaction and solution rate models needed to analyze a reactor accident.

  6. Accident Conditions versus Regulatory Test for NRC-Approved UF6 Packages

    SciTech Connect

    MILLS, G. SCOTT; AMMERMAN, DOUGLAS J.; LOPEZ, CARLOS

    2003-01-01

    The Nuclear Regulatory Commission (NRC) approves new package designs for shipping fissile quantities of UF{sub 6}. Currently there are three packages approved by the NRC for domestic shipments of fissile quantities of UF{sub 6}: NCI-21PF-1; UX-30; and ESP30X. For approval by the NRC, packages must be subjected to a sequence of physical tests to simulate transportation accident conditions as described in 10 CFR Part 71. The primary objective of this project was to relate the conditions experienced by these packages in the tests described in 10 CFR Part 71 to conditions potentially encountered in actual accidents and to estimate the probabilities of such accidents. Comparison of the effects of actual accident conditions to 10 CFR Part 71 tests was achieved by means of computer modeling of structural effects on the packages due to impacts with actual surfaces, and thermal effects resulting from test and other fire scenarios. In addition, the likelihood of encountering bodies of water or sufficient rainfall to cause complete or partial immersion during transport over representative truck routes was assessed. Modeled effects, and their associated probabilities, were combined with existing event-tree data, plus accident rates and other characteristics gathered from representative routes, to derive generalized probabilities of encountering accident conditions comparable to the 10 CFR Part 71 conditions. This analysis suggests that the regulatory conditions are unlikely to be exceeded in real accidents, i.e. the likelihood of UF{sub 6} being dispersed as a result of accident impact or fire is small. Moreover, given that an accident has occurred, exposure to water by fire-fighting, heavy rain or submersion in a body of water is even less probable by factors ranging from 0.5 to 8E-6.

  7. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics Executive Summary

    SciTech Connect

    Shannon Bragg-Sitton

    2014-02-01

    Research and development (R&D) activities on advanced, higher performance Light Water Reactor (LWR) fuels have been ongoing for the last few years. Following the unfortunate March 2011 events at the Fukushima Nuclear Power Plant in Japan, the R&D shifted toward enhancing the accident tolerance of LWRs. Qualitative attributes for fuels with enhanced accident tolerance, such as improved reaction kinetics with steam resulting in slower hydrogen generation rate, provide guidance for the design and development of fuels and cladding with enhanced accident tolerance. A common set of technical metrics should be established to aid in the optimization and down selection of candidate designs on a more quantitative basis. “Metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. This report describes a proposed technical evaluation methodology that can be applied to evaluate the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed toward qualification.

  8. A preliminary assessment of beryllium dust oxidation during a wet bypass accident in a fusion reactor

    SciTech Connect

    Brad J. Merrill; Richard L. Moore; J. Phillip Sharp

    2008-09-01

    A beryllium dust oxidation model has been developed at the Idaho National Laboratory (INL) by the Fusion Safety Program (FSP) for the MELCOR safety computer code. The purpose of this model is to investigate hydrogen production from beryllium dust layers on hot surfaces inside a fusion reactor vacuum vessel (VV) during in-vessel loss-of-cooling accidents (LOCAs). This beryllium dust oxidation model accounts for the diffusion of steam into a beryllium dust layer, the oxidation of the dust particles inside this layer based on the beryllium-steam oxidation equations developed at the INL, and the effective thermal conductivity of this beryllium dust layer. This paper details this oxidation model and presents the results of the application of this model to a wet bypass accident scenario in the ITER device.

  9. Using cost/risk procedures to establish recovery criteria following a nuclear reactor accident.

    PubMed

    Tawil, J J; Strenge, D L

    1987-02-01

    In the event of a major accidental release of radionuclides at a nuclear power plant, large populated areas could become seriously contaminated. Local officials would be responsible for establishing radiation recovery criteria that would permit the evacuated population to return safely to their jobs and homes. The range of acceptable criteria could imply variations in property losses in the billions of dollars. Given the likely public concern over the health consequences and the enormity of the potential property losses, a cost/risk analysis can provide important input to establishing the recovery criteria. This paper describes procedures for conducting a cost/risk analysis of a site radiologically contaminated by a nuclear power plant accident. The procedures are illustrated by analyzing a hypothetically contaminated site, using software developed for determining the property and health effects of major reactor accidents. PMID:3818283

  10. Large break loss-of-coolant accident analyses for the high flux isotope reactor

    SciTech Connect

    Taleyarkhan, R.P. )

    1989-01-01

    The US Department of Energy's High Flux Isotope Reactor (HFIR) was analyzed to evaluate it's response to a spectrum of loss-of-coolant accidents (LOCAs) with potential for leading to core damage. The MELCOR severe accident analysis code (version 1.7.1) was used to evaluate the overall dynamic response of HFIR. Before conducting LOCA analyses, the steady-state thermal-hydraulic parameters evaluated by MELCOR for various loop sections were verified against steady-state operating data. Thereafter, HFIR depressurization tests were simulated to evaluate the system pressure change for a given depletion in coolant inventory. Interesting and important safety-related phenomena were observed. The current analyses (which should be considered preliminary) that occur over a period from 1 to 3 seconds do not lead to core wide fuel melting. Core fluid flashing during the initial rapid depressurization does cause fuel temperature excursions due to adiabatic-like heatup. 3 refs., 4 figs.

  11. Chlorine Release from Hypalon Cable Insulation During Severe Nuclear Reactor Accidents

    SciTech Connect

    Auvinen, Ari; Zilliacus, Riitta; Jokiniemi, Jorma

    2005-02-15

    Pyrolytic dehydrochlorination of the electrical cable insulation Hypalon was studied as a function of time and temperature. The chlorine evolution was determined separately by means of on-line activity measurements and by neutron activation analysis in the temperature range 200 deg. C to 300 deg. C, with one test conducted at 500 deg. C. The object of the research was to determine the chlorine release and the chlorine release fraction as a function of temperature. The data obtained were needed to formulate conclusions regarding the release mechanisms of chlorine. Estimates of the amount of hydrochloric acid released to the containment building in a severe reactor accident were also calculated. It can be concluded that the amount of chlorine release from the Hypalon cable is significant and will have an effect on iodine behavior in a severe accident.

  12. Radionuclide monitoring in Northern Ireland of the Chernobyl nuclear reactor accident

    PubMed Central

    Gilmore, B J; Cranley, K

    1987-01-01

    Northern Ireland received higher radiation doses due to the radionuclide contamination from the Chernobyl nuclear reactor accident than did the south of England. Levels of radioactive iodine (131I) and caesium (137Cs) in cows' milk in Northern Ireland increased to 166 and 120 Bq/l respectively in May 1986, but had decreased by factors of one million, and of twenty-five, respectively, by 1 September 1986. The resultant radiation doses represent less than one per cent of those received by a Northern Ireland individual over a period of 40 years from natural background radiation sources. The added risk to any individual from the Chernobyl accident will therefore be very small and may best be judged in the context of the enormously greater risk of death due to potentially preventable diseases, such as smoking-related lung cancer, and coronary heart disease. PMID:3590387

  13. Experiment Operations Plan for a Loss-of-Coolant Accident Simulation in the National Research Universal Reactor Materials Tests 1 and 2

    SciTech Connect

    Russcher, G. E.; Wilson, C. L.; Marshall, R, K.; King, L. L.; Parchen, L. J.; Pilger, J. P.; Hesson, G. M.; Mohr, C. L.

    1981-09-01

    A loss of Coolant Accident (LOCA) simulation program is evaluating the thermal-hydraulic and mechanical effects of LOCA conditions on pressurized water reactor test fuel bundles. This experiment operation plan for the second and third experiments of the program will provide peak fuel cladding temperatures of up to 1172K (1650{degree}F) and 1061K (1450{degree}) respectively. for a long enough time to cause test fuel cladding deformation and rupture in both. Reflood coolant delay times and the reflooding rates for the experiments were selected from thermal-hydraulic data measured in the National Research Universal (NRU) reactor facilities and test train assembly during the first experiment.

  14. Uncertainty and sensitivity analysis of chronic exposure results with the MACCS reactor accident consequence model

    SciTech Connect

    Helton, J.C.; Johnson, J.D.; Rollstin, J.A.; Shiver, A.W.; Sprung, J.L.

    1995-01-01

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the chronic exposure pathways associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 75 imprecisely known input variables on the following reactor accident consequences are studied: crop growing season dose, crop long-term dose, water ingestion dose, milk growing season dose, long-term groundshine dose, long-term inhalation dose, total food pathways dose, total ingestion pathways dose, total long-term pathways dose, total latent cancer fatalities, area-dependent cost, crop disposal cost, milk disposal cost, population-dependent cost, total economic cost, condemnation area, condemnation population, crop disposal area and milk disposal area. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: dry deposition velocity, transfer of cesium from animal feed to milk, transfer of cesium from animal feed to meat, ground concentration of Cs-134 at which the disposal of milk products will be initiated, transfer of Sr-90 from soil to legumes, maximum allowable ground concentration of Sr-90 for production of crops, fraction of cesium entering surface water that is consumed in drinking water, groundshine shielding factor, scale factor defining resuspension, dose reduction associated with decontamination, and ground concentration of 1-131 at which disposal of crops will be initiated due to accidents that occur during the growing season.

  15. Loads on steam generator tubes during simulated loss-of-coolant accident conditions. Final report. [PWR

    SciTech Connect

    Guerrero, H.N.; Hiestand, J.W.; Rossano, F.V.; Shah, P.K.; Thakkar, J.G.

    1982-11-01

    This report presents the work performed to verify the CEFLASH digital computer code modeling of the hydro-dynamic loads in a steam generator tube during a loss-of-coolant accident (LOCA). The test loop simulated the primary side thermal-hydraulic conditions in an operational nuclear steam generator. The loop consisted of 5 full size double 90/sup 0/ bend tubes and steam generator plena, a pressurizer, a reactor resistance simulator, a heater, a pump, and associated pipes and valves to complete the system. The tubes used were of typical length and the same outside diameter as those used in C-E steam generators. Prototypical supports were provided for the bundle of 5 tubes. Cold leg guillotine breaks were simulated using quick opening valve and rupture disks. Break opening times ranged from less than 1 msec to as much as 67 milliseconds. The loop instrumentation was designed to measure the transient pressure history at various locations and monitor the structural response of the tube to the LOCA hydrodynamic loading. A series of blowdown tests was performed for different operating and boundary conditions. Analytically predicted transient pressure histories and the differential pressure history across the tube span were compared with the experimental data.

  16. Radiocesium levels measured in breast milk one year after the reactor accident at Chernobyl

    SciTech Connect

    Assimakopoulos, P.A.; Ioannides, K.G.; Pakou, A.A.; Lolis, D.; Zikopoulos, K.; Dusias, B.

    1989-01-01

    One hundred-two samples of colostral milk, collected during spring of 1987, approximately one year after the reactor accident at Chernobyl, were measured for radiocesium contamination. The data showed a normal-type distribution with a mean contamination concentration of 16.4 Bq L-1. A weak correlation of the data to the mothers' diet was established by taking into account four of the main staples in the area. The corresponding transfer coefficient was deduced with a value of fm = 0.06 +/- 0.03 d L-1. The resultant effective dose received by breast-feeding infants was estimated, on the average, as 0.012 mrem d-1.

  17. A simplified model for calculating early offsite consequences from nuclear reactor accidents

    SciTech Connect

    Madni, I.K.; Cazzoli, E.G.; Khatib-Rahbar, M.

    1988-07-01

    A personal computer-based model, SMART, has been developed that uses an integral approach for calculating early offsite consequences from nuclear reactor accidents. The solution procedure uses simplified meteorology and involves direct analytic integration of air concentration equations over time and position. This is different from the discretization approach currently used in the CRAC2 and MACCS codes. The SMART code is fast-running, thereby providing a valuable tool for sensitivity and uncertainty studies. The code was benchmarked against both MACCS version 1.4 and CRAC2. Results of benchmarking and detailed sensitivity/uncertainty analyses using SMART are presented. 34 refs., 21 figs., 24 tabs.

  18. Analysis of a small break loss-of-coolant accident of pressurized water reactor by APROS

    SciTech Connect

    Al-Falahi, A.; Haennine, M.; Porkholm, K.

    1995-09-01

    The purpose of this paper is to study the capability of APROS (Advanced PROcess Simulator) code to simulate the real plant thermal-hydraulic transient of a Small Break Loss-Of-Coolant Accident (SBLOCA) of Loss-Of-Fluid Test (LOFT) facility. The LOFT is a scaled model of a Pressurized Water Reactor (PWR). This work is a part of a larger validation of the APROS thermal-hydraulic models. The results of SBLOCA transient calculated by APROS showed a reasonable agreement with the measured data.

  19. Accident sequence analysis for a BWR (Boiling Water Reactor) during low power and shutdown operations

    SciTech Connect

    Whitehead, D.W.; Hake, T.M.

    1990-01-01

    Most previous Probabilistic Risk Assessments have excluded consideration of accidents initiated in low power and shutdown modes of operation. A study of the risk associated with operation in low power and shutdown is being performed at Sandia National Laboratories for a US Boiling Water Reactor (BWR). This paper describes the proposed methodology for the analysis of the risk associated with the operation of a BWR during low power and shutdown modes and presents preliminary information resulting from the application of the methodology. 2 refs., 2 tabs.

  20. Sensitivity studies of loss-of-coolant accidents in the Savannah River production reactors

    SciTech Connect

    Edwards, J.N.; Motley, F.E.; Morgan, M.M.; Knight, T.D.; Fischer, S.R. )

    1990-01-01

    Loss-of-coolant accident (LOCA) analyses were completed using the Transient Reactor Analysis Code (TRAC) to support the U.S. Department of Energy efforts to restart the production reactors located at the Savannah River Site. The break location and pump operation after the LOCA were the parameters varied for these sensitivity studies. Three location of double-ended guillotine break were studied: plenum inlet, pump suction, and pump discharge. Three pump operation scenarios were also studied: continued operation of both ac and dc pumps, tripping of the ac motor at 2 s after the LOCA, and tripping of the ac motor at 200 s after the LOCA. The production reactors use low pressure and temperature heavy water as the process fluid. The reactor has a moderator tank that contains the fuel channels. Above the moderator tank is an upper plenum that distributes the heavy water to each fuel assembly. The heavy water flows down through the fuel channels and into the moderator tank. From the tank, the water is pumped back to the upper plenum through six loops. Each loop contains a pump and two heat exchangers. Four of the loops have an emergency core coolant system (ECCS) connection. This TRAC model has been benchmarked extensively against data taken in the actual reactors or in prototypical models of the components of the reactors. The calculations were completed using a version of TRAC-PF1/MOD 2 that was updated to include heavy water properties and other changes that are specific to the production reactors.

  1. A New Application of Support Vector Machine Method: Condition Monitoring and Analysis of Reactor Coolant Pump

    NASA Astrophysics Data System (ADS)

    Meng, Qinghu; Meng, Qingfeng; Feng, Wuwei

    2012-05-01

    Fukushima nuclear power plant accident caused huge losses and pollution and it showed that the reactor coolant pump is very important in a nuclear power plant. Therefore, to keep the safety and reliability, the condition of the coolant pump needs to be online condition monitored and fault analyzed. In this paper, condition monitoring and analysis based on support vector machine (SVM) is proposed. This method is just to aim at the small sample studies such as reactor coolant pump. Both experiment data and field data are analyzed. In order to eliminate the noise and useless frequency, these data are disposed through a multi-band FIR filter. After that, a fault feature selection method based on principal component analysis is proposed. The related variable quantity is changed into unrelated variable quantity, and the dimension is descended. Then the SVM method is used to separate different fault characteristics. Firstly, this method is used as a two-kind classifier to separate each two different running conditions. Then the SVM is used as a multiple classifier to separate all of the different condition types. The SVM could separate these conditions successfully. After that, software based on SVM was designed for reactor coolant pump condition analysis. This software is installed on the reactor plant control system of Qinshan nuclear power plant in China. It could monitor the online data and find the pump mechanical fault automatically.

  2. Relative radiological impact from a reactor accident in the case of emerging nuclear fuels.

    PubMed

    Nicolaou, G

    2009-08-01

    An assessment has been carried out on the radiological impact on an area contaminated from an accident of a nuclear reactor loaded with different actinide fuels considered in transmutation and recycling schemes. The impact of these schemes is compared to reference cases of commercial UO2 and MOX fuels. The effective dose equivalent delivered to permanent residents has been calculated using the RESRAD code and used as an index for the assessment purposes. The highest and lowest doses would be delivered from the self-generating recycling of actinides in fast and thermal reactors, respectively. External irradiation is the main contributor to the dose delivered to the target population in comparison to ingestion and inhalation. The external dose delivered would be attributed for the first few years to 134Cs and for the following several tens of years to 137Cs. PMID:19590275

  3. Radiological protection issues arising during and after the Fukushima nuclear reactor accident.

    PubMed

    González, Abel J; Akashi, Makoto; Boice, John D; Chino, Masamichi; Homma, Toshimitsu; Ishigure, Nobuhito; Kai, Michiaki; Kusumi, Shizuyo; Lee, Jai-Ki; Menzel, Hans-Georg; Niwa, Ohtsura; Sakai, Kazuo; Weiss, Wolfgang; Yamashita, Shunichi; Yonekura, Yoshiharu

    2013-09-01

    Following the Fukushima accident, the International Commission on Radiological Protection (ICRP) convened a task group to compile lessons learned from the nuclear reactor accident at the Fukushima Daiichi nuclear power plant in Japan, with respect to the ICRP system of radiological protection. In this memorandum the members of the task group express their personal views on issues arising during and after the accident, without explicit endorsement of or approval by the ICRP. While the affected people were largely protected against radiation exposure and no one incurred a lethal dose of radiation (or a dose sufficiently large to cause radiation sickness), many radiological protection questions were raised. The following issues were identified: inferring radiation risks (and the misunderstanding of nominal risk coefficients); attributing radiation effects from low dose exposures; quantifying radiation exposure; assessing the importance of internal exposures; managing emergency crises; protecting rescuers and volunteers; responding with medical aid; justifying necessary but disruptive protective actions; transiting from an emergency to an existing situation; rehabilitating evacuated areas; restricting individual doses of members of the public; caring for infants and children; categorising public exposures due to an accident; considering pregnant women and their foetuses and embryos; monitoring public protection; dealing with 'contamination' of territories, rubble and residues and consumer products; recognising the importance of psychological consequences; and fostering the sharing of information. Relevant ICRP Recommendations were scrutinised, lessons were collected and suggestions were compiled. It was concluded that the radiological protection community has an ethical duty to learn from the lessons of Fukushima and resolve any identified challenges. Before another large accident occurs, it should be ensured that inter alia: radiation risk coefficients of potential

  4. Assessments of Water Ingress Accidents in a Modular High-Temperature Gas-Cooled Reactor

    SciTech Connect

    Zhang Zuoyi; Dong Yujie; Scherer, Winfried

    2005-03-15

    Severe water ingress accidents in the 200-MW HTR-module were assessed to determine the safety margins of modular pebble-bed high-temperature gas-cooled reactors (HTR-module). The 200-MW HTR-module was designed by Siemens under the criteria that no active safety protection systems were necessary because of its inherent safe nature. For simulating the behavior of the HTR-module during severe water ingress accidents, a water, steam, and helium multiphase cavity model was developed and implemented in the dynamic simulator for nuclear power plants (DSNP) simulation system. Comparisons of the DSNP simulations incorporating these models with experiments and with calculations using the time-dependent neutronics and temperature dynamics code were made to validate the simulation. The analysis of the primary circuit showed that the maximum water concentration increase in the reactor core was <0.3 kg/(m{sup 3}s). The water vaporization in the steam generator and characteristics of water transport from the steam generator to the reactor core would reduce the rate of water ingress into the reactor core. The analysis of a full cavitation of the feedwater pump showed that if the secondary circuit could be depressurized, the feedwater pump would be stopped by the full cavitation. This limits the water transported from the deaerator to the steam generator. A comprehensive simulation of the HTR-module power plant showed that the water inventory in the primary circuit was limited to {approx}3000 kg. The nuclear reactivity increase caused by the water ingress would lead to a fast power excursion, which would be inherently counterbalanced by negative feedback effects. The integrity of the fuel elements, because the safety-relevant temperature limit of 1600 deg. C is not reached in any case, is not challenged.

  5. Radiation protection: an analysis of thyroid blocking. [Effectiveness of KI in reducing radioactive uptake following potential reactor accident

    SciTech Connect

    Aldrich, D C; Blond, R M

    1980-01-01

    An analysis was performed to provide guidance to policymakers concerning the effectiveness of potassium iodide (KI) as a thyroid blocking agent in potential reactor accident situations, the distance to which (or area within which) it should be distributed, and its relative effectiveness compared to other available protective measures. The analysis was performed using the Reactor Safety Study (WASH-1400) consequence model. Four categories of accidents were addressed: gap activity release accident (GAP), GAP without containment isolation, core melt with a melt-through release, and core melt with an atmospheric release. Cost-benefit ratios (US $/thyroid nodule prevented) are given assuming that no other protective measures are taken. Uncertainties due to health effects parameters, accident probabilities, and costs are assessed. The effects of other potential protective measures, such as evacuation and sheltering, and the impact on children (critical population) are evaluated. Finally, risk-benefit considerations are briefly discussed.

  6. Potential behavior of depleted uranium penetrators under shipping and bulk storage accident conditions

    SciTech Connect

    Mishima, J.; Parkhurst, M.A.; Scherpelz, R.I.

    1985-03-01

    An investigation of the potential hazard from airborne releases of depleted uranium (DU) from the Army's M829 munitions was conducted at the Pacific Northwest Laboratory. The study included: (1) assessing the characteristics of DU oxide from an April 1983 burn test, (2) postulating conditions of specific accident situations, and (3) reviewing laboratory and theoretical studies of oxidation and airborne transport of DU from accidents. Results of the experimental measurements of the DU oxides were combined with atmospheric transport models and lung and kidney exposure data to help establish reasonable exclusion boundaries to protect personnel and the public at an accident site. 121 references, 44 figures, 30 tables.

  7. Radioactivity in persons exposed to fallout from the Chernobyl reactor accident

    SciTech Connect

    Schlenker, R.A.; Oltman, B.G.; Lucas, H.F.

    1987-01-01

    Measurements of fallout radioactivity were made in the thyroid region, abdomen, whole body, or urine of 96 persons who were in eastern Europe at the time of the Chernobyl reactor accident or who went there shortly afterward. The most frequently encountered radionuclides were /sup 131/I, sup 134,137/Cs, and /sup 103/Ru//sup 103/Rh. The median /sup 131/I activity in the thyroids of 42 subjects in whom radioiodine was detected and who were in Europe when the accident began was projected as 42 nCi the day the accident began. The median total body activity of /sup 134/Cs in 40 subjects in which it was detected was 1.7 nCi upon arrival in the US. For 51 subjects with detectable /sup 137/Cs burdens, the total body activity was 4.6 nCi. The risk of fatal thyroid cancer is less than 3 x 10/sup -6/ for nearly all subjects in this series. The risk of fatal cancer from /sup 134,137/Cs for subjects with cesium exposures similar to the ones observed by us, but who remained in Europe, is estimated as 1.4 x 10/sup -6/ to 4.2 x 10/sup -5/ with 95% of the risk attributable to /sup 137/Cs. 5 refs., 4 tabs.

  8. Thermochemistry of Ruthenium Oxyhydroxide Species and Their Impact on Volatile Speciations in Severe Nuclear Accident Conditions.

    PubMed

    Miradji, Faoulat; Virot, François; Souvi, Sidi; Cantrel, Laurent; Louis, Florent; Vallet, Valérie

    2016-02-01

    Literature thermodynamic data of ruthenium oxyhydroxides reveal large uncertainties in some of the standard enthalpies of formation, motivating the use of high-level relativistic correlated quantum chemical methods to reduce the level of discrepancies. Reaction energies leading to the formation of all possible oxyhydroxide species RuOx(OH)y(H2O)z have been calculated for a series of reactions combining DFT (TPSSh-5%HF) geometries and partition functions, CCSD(T) energies extrapolated to the complete basis set limits. The highly accurate ab initio thermodynamic data were used as input data of thermodynamic equilibrium computations to derive the speciation of gaseous ruthenium species in the temperature, pressure and concentration conditions of severe nuclear accidents occurring in pressurized water reactors. At temperatures lower than 1000 K, gaseous ruthenium tetraoxide is the dominating species, between 1000 and 2000 K ruthenium trioxide becomes preponderant, whereas at higher temperatures gaseous ruthenium oxide, dioxide and even Ru in gaseous phase are formed. Although earlier studies predicted the formation of oxyhydroxides in significant quantities, the use of highly accurate ab initio thermodynamic data for ruthenium gaseous species leads to a more reliable inventory of gaseous ruthenium species in which gaseous oxyhydroxide ruthenium molecules are formed only in negligible amounts. PMID:26789932

  9. Core thermal response and hydrogen generation of the N Reactor hydrogen mitigation design basis accident

    SciTech Connect

    White, M.D.; Lombardo, N.J.; Heard, F.J.; Ogden, D.M.; Quapp, W.J.

    1988-04-01

    Calculations were performed to determine core heatup, core damage, and subsequent hydrogen production of a hypothetical loss-of-cooling accident at the Department of Energy's N Reactor. The thermal transient response of the reactor core was solved using the TRUMP-BD computer program. Estimates of whole-core thermal damage and hydrogen production were made by weighting the results of multiple half-length pressure tube simulations at various power levels. The Baker-Just and Wilson parabolic rate equations for the metal-water chemical reactions modeled the key phenomena of chemical energy and hydrogen evolution. Unlimited steam was assumed available for continuous oxidation of exposed Zircaloy-2 surfaces and for uranium metal with fuel cladding beyond the failure temperature (1038 C). Intact fuel geometry was modeled. Maximum fuel temperatures (1181 C) in the cooled central regions of the core were predicted to occur one-half hour into the accident scenario. Maximum fuel temperatures of 1447 C occurred in the core GSCS-regions at the end of the 10-h transient. After 10-h 26% of the fuel inventory was predicted to have failed. Peak hydrogen evolution equaled 42 g/s, while 10-h integrated hydrogen evolution equaled 167 kg. 12 refs., 12 figs., 2 tabs.

  10. Alloy Selection for Accident Tolerant Fuel Cladding in Commercial Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Rebak, Raul B.

    2015-12-01

    As a consequence of the March 2011 events at the Fukushima site, the U.S. congress asked the Department of Energy (DOE) to concentrate efforts on the development of nuclear fuels with enhanced accident tolerance. The new fuels had to maintain or improve the performance of current UO2-zirconium alloy rods during normal operation conditions and tolerate the loss of active cooling in the core for a considerably longer time period than the current system. DOE is funding cost-shared research to investigate the behavior of advanced steels both under normal operation conditions in high-temperature water [ e.g., 561 K (288 °C)] and under accident conditions for reaction with superheated steam. Current results show that, under accident conditions, the advanced ferritic steels (1) have orders of magnitude lower reactivity with steam, (2) would generate less hydrogen and heat than the current zirconium alloys, (3) are resistant to stress corrosion cracking under normal operation conditions, and (4) have low general corrosion in water at 561 K (288 °C).

  11. A SCOPING STUDY: Development of Probabilistic Risk Assessment Models for Reactivity Insertion Accidents During Shutdown In U.S. Commercial Light Water Reactors

    SciTech Connect

    S. Khericha

    2011-06-01

    This report documents the scoping study of developing generic simplified fuel damage risk models for quantitative analysis from inadvertent reactivity insertion events during shutdown (SD) in light water pressurized and boiling water reactors. In the past, nuclear fuel reactivity accidents have been analyzed both mainly deterministically and probabilistically for at-power and SD operations of nuclear power plants (NPPs). Since then, many NPPs had power up-rates and longer refueling intervals, which resulted in fuel configurations that may potentially respond differently (in an undesirable way) to reactivity accidents. Also, as shown in a recent event, several inadvertent operator actions caused potential nuclear fuel reactivity insertion accident during SD operations. The set inadvertent operator actions are likely to be plant- and operation-state specific and could lead to accident sequences. This study is an outcome of the concern which arose after the inadvertent withdrawal of control rods at Dresden Unit 3 in 2008 due to operator actions in the plant inadvertently three control rods were withdrawn from the reactor without knowledge of the main control room operator. The purpose of this Standardized Plant Analysis Risk (SPAR) Model development project is to develop simplified SPAR Models that can be used by staff analysts to perform risk analyses of operating events and/or conditions occurring during SD operation. These types of accident scenarios are dominated by the operator actions, (e.g., misalignment of valves, failure to follow procedures and errors of commissions). Human error probabilities specific to this model were assessed using the methodology developed for SPAR model human error evaluations. The event trees, fault trees, basic event data and data sources for the model are provided in the report. The end state is defined as the reactor becomes critical. The scoping study includes a brief literature search/review of historical events, developments of

  12. Evaluation of selected ex-reactor accidents related to the tritium and medical isotope production mission at the FFTF

    SciTech Connect

    Himes, D.A.

    1997-11-17

    The Fast Flux Test Facility (FFTF) has been proposed as a production facility for tritium and medical isotopes. A range of postulated accidents related to ex-reactor irradiated fuel and target handling were identified and evaluated using new source terms for the higher fuel enrichment and for the tritium and medical isotope targets. In addition, two in-containment sodium spill accidents were re-evaluated to estimate effects of increased fuel enrichment and the presence of the Rapid Retrieval System. Radiological and toxicological consequences of the analyzed accidents were found to be well within applicable risk guidelines.

  13. Large break loss of coolant severe accident sequences at the HFIR (High Flux Isotope Reactor)

    SciTech Connect

    Simpson, D.B.; Greene, S.R.

    1990-01-01

    An assessment of many potential HFIR severe accident phenomena was conducted during the HFIR design effort, and many severe accident mitigating features were designed into the plant. These evaluation typically incorporated a bounding'' or highly conservative analysis approach and employed tools and techniques representative of the state of knowledge in the mid-1960s. Recently, programs to address severe accident issues were initiated at the Oak Ridge National Laboratory (ORNL) to support the HFIR probabilistic risk assessment (PRA) and equipment qualification and accident management studies. This paper presents the results of environment condition calculations conducted to evaluate a response of HFIR's heat exchanger cell environment to a double-ended rupture of a 0.25 m diameter coolant loop downstream of the circulating pump and check valve. The confinement calculations were performed using an atmospheric fission product source for the heat exchanger cell consistent with, but more conservative than that stipulated in Regulatory Guide 1.89. The results of the calculations indicate that the heat exchanger cell atmospheric temperature peaks at 377 K 225 seconds into the transient and then begins decreasing at approximately 1.7 K per minute. 8 refs., 5 figs.

  14. Design requirements for innovative homogeneous reactor, lesson learned from Fukushima accident

    NASA Astrophysics Data System (ADS)

    Arbie, Bakri; Pinem, Suryan; Sembiring, Tagor; Subki, Iyos

    2012-06-01

    The Fukushima disaster is the largest nuclear accident since the 1986 Chernobyl disaster, but it is more complex as multiple reactors and spent fuel pools are involved. The severity of the nuclear accident is rated 7 in the International Nuclear Events Scale. Expert said that "Fukushima is the biggest industrial catastrophe in the history of mankind". According to Mitsuru Obe, in The Wall Street Journal, May 16th of 2011, TEPCO estimates the nuclear fuel was exposed to the air less than five hours after the earthquake struck. Fuel rods melted away rapidly as the temperatures inside the core reached 2800 C within six hours. In less than 16 hours, the reactor core melted and dropped to the bottom of the pressure vessel. The information should be evaluated in detail. In Germany several nuclear power plant were shutdown, Italy postponed it's nuclear power program and China reviewed their nuclear power program. Different news come from Britain, in October 11, 2011, the Safety Committee said all clear for nuclear power in Britain, because there are no risk of strong earthquake and tsunami in the region. Due to this severe fact, many nuclear scientists and engineer from all over the world are looking for a new approach, such as homogeneous reactor which was developed in Oak Ridge National Laboratory in 1960-ies, during Dr. Alvin Weinberg tenure as the Director of ORNL. The paper will describe the design requirement that will be used as the basis for innovative homogeneous reactor. Innovative Homogeneous Reactor is expected to reduce core melt by two decades (4), since the fuel is intermix homogeneously with coolant and secondly we eliminate the used fuel rod which need to be cooled for a long period of time. In order to be successful for its implementation of the innovative system, testing and validation, three phases of development will be introduced. The first phase is Low Level Goals is really the proof of concept;the Medium Level Goal is Technical Goalsand the High

  15. European Pressurized water Reactor (EPR) SAR ATWS Accident Analyses by using 3D Code Internal Coupling Method

    SciTech Connect

    Gagner, Renata; Lafitte, Helene; Dormeau, Pascal; Stoudt, Roger H.

    2004-07-01

    Anticipated Transients Without Scram (ATWS) accident analyses make part of the Safety Analysis Report of the European Pressurized water Reactor (EPR), covering Risk Reduction Category A (Core Melt Prevention) events. This paper deals with three of the most penalizing RRC-A sequences of ATWS caused by mechanical blockage of the control/shutdown rods, regarding their consequences on the Reactor Coolant System (RCS) and core integrity. A new 3D code internal coupling calculation method has been introduced. (authors)

  16. Thermal hydraulic features of the TMI accident

    NASA Astrophysics Data System (ADS)

    Tolman, B.

    1985-10-01

    The Three Mile island (TMI)-2 accident resulted in extensive core damage and recent data confirms that the reactor vessel was challenged from molten core materials. A hypothesized TMI accident scenario is presented that consistently explains the TMI data and is also consistent with research findings from independent severe fuel damage experiments. The TMI data will prove useful in confirming our understanding of severe core damage accidents under realistic reactor systems conditions. This understanding will aid in addressing safety and regulatory issues related to severe core damage accidents in light water reactors.

  17. Scoping studies of vapor behavior during a severe accident in a metal-fueling reactor

    NASA Astrophysics Data System (ADS)

    Spencer, B. W.; Marchaterre, J. F.

    1985-04-01

    The consequences of fuel melting and pin failures for a reactivity-insertion type accident in a sodium-cooled, pool-type reactor fueled with a metal alloy fuel were examined. The principal gas and vapor species released are shown to be Xe, Cs, and bond sodium contained within the fuel porosity. Condensation of sodium vapor as it expands into the upper sodium pool in a jet mixing regime may occur as rapidly as the vapor emerges from the disrupted core. If the predictions of rapid direct-contact condensation can be verified experimentally for the sodium system, the ability of vapor expansion to perform appreciable work on the system and the ability of an expanding vapor bubble to transport fuel and fission produce species to the cover gas region where they may be released to the containment are largely eliminated. The radionuclide species except for fission gas are largely retained within the core and sodium pool.

  18. Loss-of-coolant accident mitigation for the Advanced Neutron Source Reactor

    SciTech Connect

    Chen, N.C.J.; Wendel, M.W.; Yoder, G.L. Jr.

    1994-09-01

    A RELAP5 Advanced Neutron Source Reactor system model has been developed for the conceptual design safety analysis. Three major regions modeled are the core, the heat exchanger loops, and letdown/pressurizing system. The model has been used to examine design alternatives for mitigation of loss-of-coolant accident (LOCA) transients. The safety margins to the flow excursion limit and critical heat flux are presented. The results show that the core can survive an instantaneous double-ended guillotine of the core outlet piping break (610 mm-diameter) provided a cavitating venturi is employed. RELAP5 calculations were also used to determine the effects of using a non-instantaneous break opening times. Both break opening time and break formation characteristics were included in these parametric calculations. Accumulator optimization studies were also performed which suggest that an optimum accumulator bubble size exists which improves system performance under some break scenarios.

  19. Conceptual design loss-of-coolant accident analysis for the Advanced Neutron Source reactor

    SciTech Connect

    Chen, N.C.J.; Wendel, M.W.; Yoder, G.L. Jr. )

    1994-01-01

    A RELAP5 system model for the Advanced Neutron Source Reactor has been developed for performing conceptual safety analysis report calculations. To better represent thermal-hydraulic behavior of the core, three specific changes in the RELAP5 computer code were implemented: a turbulent forced-convection heat transfer correlation, a critical heat flux (CHF) correlation, and an interfacial drag correlation. The model consists of the core region, the heat exchanger loop region, and the pressurizing/letdown system region. Results for three loss-of-coolant accident analyses are presented: (1) an instantaneous double-ended guillotine (DEG) core outlet break with a cavitating venturi installed downstream of the core, (b) a core pressure boundary tube outer wall rupture, and (c) a DEG core inlet break with a finite break-formation time. The results show that the core can survive without exceeding the flow excursion of CHF thermal limits at a 95% probability level if the proper mitigation options are provided.

  20. Search for ^90Sr from the Fukushima Reactor Accident in San Francisco Bay Area Rainwater

    NASA Astrophysics Data System (ADS)

    Lo, B. T.; Chodash, P. A.; Thomas, K. J.; Norman, E. B.

    2012-10-01

    Shortly after the Fukushima reactor accident, we collected rainwater samples in the San Francisco Bay area. Subsequent gamma-ray counting revealed the presence of volatile short-lived fission fragments such as ^131, 132I, ^132Te, and ^134,137 Cs [1]. Recently, we have searched for the presence of the long-lived fission fragment ^90Sr in these same rainwater samples. To chemically separate Sr, a small amount of stable Sr carrier was dissolved in each rainwater sample. Potassium carbonate was then added to precipitate SrCO3. The precipitate was filtered, dried, and then beta counted using a planar Ge detector. Results from these measurements will be presented and compared to the levels of other fission fragments previously observed in the rainwater. [4pt] [1] E. B. Norman, C. T. Angell, P. A. Chodash, PLoSONE 6(9): e24330. Doi:10.1371/journal.pone.0024330.

  1. Chernobyl nuclear reactor accident fallout: Measurement and consequences. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1994-01-01

    The bibliography contains citations concerning the consequences of radioactive fallout from the Chernobyl nuclear reactor accident. Citations discuss radioactive monitoring, health hazards, and radiation dosimetry. Radiation contamination in the air, soil, vegetation, and food is examined. (Contains a minimum of 210 citations and includes a subject term index and title list.)

  2. Chernobyl Nuclear Reactor accident fallout: Measurement and consequences. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-11-01

    The bibliography contains citations concerning the consequences of radioactive fallout from the Chernobyl nuclear reactor accident. Citations discuss radioactive monitoring, health hazards, and radiation dosimetry. Radiation contamination in the air, soil, vegetation, and food is examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. Chernobyl nuclear reactor accident fallout: Measurement and consequences. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect

    1993-09-01

    The bibliography contains citations concerning the consequences of radioactive fallout from the Chernobyl nuclear reactor accident. Citations discuss radioactive monitoring, health hazards, and radiation dosimetry. Radiation contamination in the air, soil, vegetation, and food is examined. (Contains a minimum of 208 citations and includes a subject term index and title list.)

  4. Chernobyl nuclear reactor accident fallout: Measurement and consequences. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-02-01

    The bibliography contains citations concerning the consequences of radioactive fallout from the Chernobyl nuclear reactor accident. Citations discuss radioactive monitoring, health hazards, and radiation dosimetry. Radiation contamination in the air, soil, vegetation, and food is examined. (Contains a minimum of 247 citations and includes a subject term index and title list.)

  5. Chernobyl nuclear reactor accident fallout: Measurement and consequences. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-01-01

    The bibliography contains citations concerning the consequences of radioactive fallout from the Chernobyl nuclear reactor accident. Citations discuss radioactive monitoring, health hazards, and radiation dosimetry. Radiation contamination in the air, soil, vegetation, and food is examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Accident source terms for boiling water reactors with high burnup cores.

    SciTech Connect

    Gauntt, Randall O.; Powers, Dana Auburn; Leonard, Mark Thomas

    2007-11-01

    The primary objective of this report is to provide the technical basis for development of recommendations for updates to the NUREG-1465 Source Term for BWRs that will extend its applicability to accidents involving high burnup (HBU) cores. However, a secondary objective is to re-examine the fundamental characteristics of the prescription for fission product release to containment described by NUREG-1465. This secondary objective is motivated by an interest to understand the extent to which research into the release and behaviors of radionuclides under accident conditions has altered best-estimate calculations of the integral response of BWRs to severe core damage sequences and the resulting radiological source terms to containment. This report, therefore, documents specific results of fission product source term analyses that will form the basis for the HBU supplement to NUREG-1465. However, commentary is also provided on observed differences between the composite results of the source term calculations performed here and those reflected NUREG-1465 itself.

  7. Observations of fallout from the Fukushima reactor accident in Cienfuegos, Cuba.

    PubMed

    Alonso-Hernandez, Carlos M; Guillen-Arruebarrena, Aniel; Cartas-Aguila, Hector; Morera-Gomez, Yasser; Diaz-Asencio, Misael

    2012-05-01

    Following the recent accident at the Fukushima Daiichi nuclear power plant in Japan, radioactive contamination was observed near the reactor site. As a contribution towards the understanding of the worldwide impact of the accident, we collected fallout samples in Cienfuegos, Cuba, and examined them for the presence of above normal amounts of radioactivity. Gamma ray spectra measured from these samples showed clear evidence of fission products (131)I and (137)Cs. However, the fallout levels measured for these isotopes (135 ± 4.78 mBq m(-2) day(-1) for (131)I and 10.7 ± 0.38 mBq m(-2) day(-1)for (137)Cs) were very low and posed no health risk to the public. The doses received as consequence to the Fukushima fallout by the Cienfuegos population's (0.002 mSv per year) don't overcome the limit of dose (1 mSv per year) fixed for the public in Cuba. PMID:22310844

  8. A simplified model for calculating atmospheric radionuclide transport and early health effects from nuclear reactor accidents

    SciTech Connect

    Madni, I.K.; Cazzoli, E.G.; Khatib-Rahbar, M.

    1995-11-01

    During certain hypothetical severe accidents in a nuclear power plant, radionuclides could be released to the environment as a plume. Prediction of the atmospheric dispersion and transport of these radionuclides is important for assessment of the risk to the public from such accidents. A simplified PC-based model was developed that predicts time-integrated air concentration of each radionuclide at any location from release as a function of time integrated source strength using the Gaussian plume model. The solution procedure involves direct analytic integration of air concentration equations over time and position, using simplified meteorology. The formulation allows for dry and wet deposition, radioactive decay and daughter buildup, reactor building wake effects, the inversion lid effect, plume rise due to buoyancy or momentum, release duration, and grass height. Based on air and ground concentrations of the radionuclides, the early dose to an individual is calculated via cloudshine, groundshine, and inhalation. The model also calculates early health effects based on the doses. This paper presents aspects of the model that would be of interest to the prediction of environmental flows and their public consequences.

  9. Analysis of concrete containment structures under severe accident loading conditions

    SciTech Connect

    Porter, V.L.

    1993-12-31

    One of the areas of current interest in the nuclear power industry is the response of containment buildings to internal pressures that may exceed design pressure levels. Evaluating the response of structures under these conditions requires computing beyond design load to the ultimate load of the containment. For concrete containments, this requirement means computing through severe concrete cracking and into the regime of wide-spread plastic rebar and/or tendon response. In this regime of material response, an implicit code can have trouble converging. This paper describes some of the author`s experiences with Version 5.2 of ABAQUS Standard and the ABAQUS concrete model in computing the axisymmetric response of a prestressed concrete containment to ultimate global structural failure under high internal pressures. The effects of varying the tension stiffening parameter in the concrete material model and variations of the parameters for the CONTROLS option are discussed.

  10. PRESSURE INTEGRITY OF 3013 CONTAINER UNDER POSTULATED ACCIDENT CONDITIONS

    SciTech Connect

    Rawls, G.

    2010-02-01

    A series of tests was carried out to determine the threshold for deflagration-to-detonation transition (DDT), structural loading, and structural response of the Department of Energy 3013 storage systems for the case of an accidental explosion of evolved gas within the storage containers. Three experimental fixtures were used to examine the various issues and three mixtures consisting of either stoichiometric hydrogen-oxygen, stoichiometric hydrogen-oxygen with added nitrogen, or stoichiometric hydrogen-oxygen with an added nitrogen-helium mixture were tested. Tests were carried out as a function of initial pressure from 1 to 3.5 bar and initial temperature from room temperature to 150 C. The elevated temperature tests resulted in a slight increase in the threshold pressure for DDT. The elevated temperature tests were performed to ensure the test results were bounding. Because the change was not significant the elevated temperature data are not presented in the paper. The explosions were initiated with either a small spark or a hot surface. Based on the results of these tests under the conditions investigated, it can be concluded that DDT of a stoichiometric hydrogen-oxygen mixture (and mixtures diluted with nitrogen and helium) within the 3013 containment system does not pose a threat to the structural integrity of the outer container.

  11. ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) simulation of a loss of coolant accident in a space reactor

    SciTech Connect

    Roth, P.A.; Shumway, R.W.

    1988-01-01

    The Advanced Thermal Hydraulic Energy Network Analyzer (ATHENA) code was used to simulate a loss-of-coolant accident (LOCA) in a conceptual space reactor design. ATHENA provides the capability of simulating the thermal-hydraulic behavior of the wide variety of systems which are being considered for use in space reactors. Flow loops containing any one of several available working fluids may interact through thermal connections with other loops containing the same or a different working fluid. The code can be used to model special systems such as: heat pipes, point reactor kinetics, plant control systems, turbines, valves, and pumps. This work demonstrates the application of the thermal radiation model which has been recently incorporated into ATHENA and verifies the need for supplemental reactor cooling to prevent reactor fuel damage in the event of a LOCA.

  12. LOFA (loss of flow accident) and LOCA (loss of coolant accident) in the TIBER-II engineering test reactor: Appendix A-4

    SciTech Connect

    Sviatoslavsky, I.N.; Attaya, H.M.; Corradini, M.L.; Lomperski, S.

    1987-01-01

    This paper describes the preliminary analysis of LOFA (loss of flow accident) and LOCA (loss of coolant accident) in the TIBER-II engineering test reactor breeding shield. TIBER-II is a compact reactor with a major radius of 3 m and thus requires a thin, high efficiency shield on the inboard side. The use of tungsten in the inboard shield implies a rather high rate of afterheat upon plasma shutdown, which must be dissipated in a controlled manner to avoid the possibility of radioactivity release or threatening the investment. Because the shield is cooled with an aqueous solution, LOFA does not pose a problem as long as natural convection can be established. LOCA, however, has more serious consequences, particularly on the inboard side. Circulation of air by natural convection is proposed as a means for dissipating the inboard shield decay heat. The safety and environmental implications of such a scheme are evaluated. It is shown that the inboard shield temperature never exceeds 510/sup 0/C following LOCA posing no hazard to reactor personnel and not threatening the investment. 7 refs., 6 figs.

  13. Sandia National Laboratories results for the 2010 criticality accident dosimetry exercise, at the CALIBAN reactor, CEA Valduc France.

    SciTech Connect

    Ward, Dann C.

    2011-09-01

    This document describes the personal nuclear accident dosimeter (PNAD) used by Sandia National Laboratories (SNL) and presents PNAD dosimetry results obtained during the Nuclear Accident Dosimeter Intercomparison Study held 20-23 September, 2010, at CEA Valduc, France. SNL PNADs were exposed in two separate irradiations from the CALIBAN reactor. Biases for reported neutron doses ranged from -15% to +0.4% with an average bias of -7.7%. PNADs were also exposed on the back side of phantoms to assess orientation effects.

  14. Assessment of potential doses to workers during postulated accident conditions at the Waste Isolation Pilot Plant

    SciTech Connect

    Hoover, M.D.; Farrell, R.F.; Newton, G.J.

    1995-12-01

    The recent 1995 WIPP Safety Analysis Report (SAR) Update provided detailed analyses of potential radiation doses to members of the public at the site boundary during postulated accident scenarios at the U.S. Department of Energy`s Waste Isolation Pilot Plant (WIPP). The SAR Update addressed the complete spectrum of potential accidents associated with handling and emplacing transuranic waste at WIPP, including damage to waste drums from fires, punctures, drops, and other disruptions. The report focused on the adequacy of the multiple layers of safety practice ({open_quotes}defense-in-depth{close_quotes}) at WIPP, which are designed to (1) reduce the likelihood of accidents and (2) limit the consequences of those accidents. The safeguards which contribute to defense-in-depth at WIPP include a substantial array of inherent design features, engineered controls, and administrative procedures. The SAR Update confirmed that the defense-in-depth at WIPP is adequate to assure the protection of the public and environment. As a supplement to the 1995 SAR Update, we have conducted additional analyses to confirm that these controls will also provide adequate protection to workers at the WIPP. The approaches and results of the worker dose assessment are summarized here. In conformance with the guidance of DOE Standard 3009-94, we emphasize that use of these evaluation guidelines is not intended to imply that these numbers constitute acceptable limits for worker exposures under accident conditions. However, in conjunction with the extensive safety assessment in the 1995 SAR Update, these results indicate that the Carlsbad Area Office strategy for the assessment of hazards and accidents assures the protection of workers, members of the public, and the environment.

  15. Features of temperature control of fuel element cladding for pressurized water nuclear reactor “WWER-1000” while simulating reactor accidents

    SciTech Connect

    Zaytsev, P. A.; Priymak, S. V.; Usachev, V. B.; Oleynikov, P. P.; Soldatkin, D. M.

    2013-09-11

    During the experiments simulating NPR (nuclear power reactor) accidents with a coolant loss fuel elements behavior in a steam-hydrogen medium was studied at the temperature changed with the rate from 1 to 100K/s within the range of 300÷1500 °C. Indications of the thermocouples fixed on the cladding notably differ from real values of the cladding temperatures in the area of measuring junction due to thermal resistance influence of the transition zones “cladding-junction” and “junction-coolant”. The estimating method of a measurement error was considered which can provide adequate accounting of the influence factors. The method is based on thermal probing of a thermocouple by electric current flashing through thermoelements under the coolant presence or absence, a response time registration and processing, calculation of thermal inertia value for a thermocouple junction. A formula was derived for calculation of methodical error under stationary mode and within the stage of linear increase in temperature, which will determine the conditions for the cladding depressurization. Some variants of the formula application were considered, and the values of methodical errors were established which reached ∼5% of maximum value by the final moment of the stage of linear increase in the temperature.

  16. The ENEA criticality accident dosimetry system: a contribution to the 2002 international intercomparison at the SILENE reactor.

    PubMed

    Gualdrini, G; Bedogni, R; Fantuzzi, E; Mariotti, F

    2004-01-01

    The present paper summarises the activity carried out at the ENEA Radiation Protection Institute for updating the methodologies employed for the evaluation of the neutron and photon dose to the exposed workers in case of a criticality accident, in the framework of the 'International Intercomparison of Criticality Accident Dosimetry Systems' (Silène reactor, IRSN-CEA-Valduc June 2002). The evaluation of the neutron spectra and the neutron dosimetric quantities relies on activation detectors and on unfolding algorithms. Thermoluminescent detectors are employed for the gamma dose measurement. The work is aimed at accurately characterising the measurement system and, at the same time, testing the algorithms. Useful spectral information were included, based on Monte Carlo simulations, to take into account the potential accident scenarios of practical interest. All along this exercise intercomparison a particular attention was devoted to the 'traceability' of all the experimental and computational parameters and therefore, aimed at an easy treatment by the user. PMID:15353692

  17. MORECA: A computer code for simulating modular high-temperature gas-cooled reactor core heatup accidents

    SciTech Connect

    Ball, S.J. )

    1991-10-01

    The design features of the modular high-temperature gas-cooled reactor (MHTGR) have the potential to make it essentially invulnerable to damage from postulated core heatup accidents. This report describes the ORNL MORECA code, which was developed for analyzing postulated long-term core heatup scenarios for which active cooling systems used to remove afterheat following the accidents can be assumed to the unavailable. Simulations of long-term loss-of-forced-convection accidents, both with and without depressurization of the primary coolant, have shown that maximum core temperatures stay below the point at which any significant fuel failures and fission product releases are expected. Sensitivity studies also have been done to determine the effects of errors in the predictions due both to uncertainties in the modeling and to the assumptions about operational parameters. MORECA models the US Department of Energy reference design of a standard MHTGR.

  18. Causal Factors and Adverse Conditions of Aviation Accidents and Incidents Related to Integrated Resilient Aircraft Control

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Sandifer, Carl E.; Jones, Sharon Monica

    2010-01-01

    The causal factors of accidents from the National Transportation Safety Board (NTSB) database and incidents from the Federal Aviation Administration (FAA) database associated with loss of control (LOC) were examined for four types of operations (i.e., Federal Aviation Regulation Part 121, Part 135 Scheduled, Part 135 Nonscheduled, and Part 91) for the years 1988 to 2004. In-flight LOC is a serious aviation problem. Well over half of the LOC accidents included at least one fatality (80 percent in Part 121), and roughly half of all aviation fatalities in the studied time period occurred in conjunction with LOC. An adverse events table was updated to provide focus to the technology validation strategy of the Integrated Resilient Aircraft Control (IRAC) Project. The table contains three types of adverse conditions: failure, damage, and upset. Thirteen different adverse condition subtypes were gleaned from the Aviation Safety Reporting System (ASRS), the FAA Accident and Incident database, and the NTSB database. The severity and frequency of the damage conditions, initial test conditions, and milestones references are also provided.

  19. An analysis of thermionic space nuclear reactor power system: I. Effect of disassembling radial reflector, following a reactivity initiated accident

    SciTech Connect

    El-Genk, M.S.; Paramonov, D. )

    1993-01-10

    An analysis is performed to determine the effect of disassembling the radial reflector of the TOPAZ-II reactor, following a hypothetical severe Reactivity Initiated Accident (RIA). Such an RIA is assumed to occur during the system start-up in orbit due to a malfunction of the drive mechanism of the control drums, causing the drums to rotate the full 180[degree] outward at their maximum speed of 1.4[degree]/s. Results indicate that disassembling only three of twelve radial reflector panels would successfully shutdown the reactor, with little overheating of the fuel and the moderator.

  20. Launch Vehicle Fire Accident Preliminary Analysis of a Liquid-Metal Cooled Thermionic Nuclear Reactor: TOPAZ-II

    NASA Astrophysics Data System (ADS)

    Hu, G.; Zhao, S.; Ruan, K.

    2012-01-01

    In this paper, launch vehicle propellant fire accident analysis of TOPAZ-II reactor has been done by a thermionic reactor core analytic code-TATRHG(A) developed by author. When a rocket explodes on a launch pad, its payload-TOPAZ-II can be subjected to a severe thermal environment from the resulting fireball. The extreme temperatures associated with propellant fires can create a destructive environment in or near the fireball. Different kind of propellants - liquid propellant and solid propellant which will lead to different fire temperature are considered. Preliminary analysis shows that the solid propellant fires can melt the whole toxic beryllium radial reflector.

  1. On the effect of accident conditions on the molten core debris relocation into lower head of a PWR vessel

    NASA Astrophysics Data System (ADS)

    An, Xuegao

    From 1975 to present, it has been found that the primary risk to the public health and safety from nuclear power reactors lies in ``beyond design basis'' accidents. During such severe accidents, melting of the reactor core may lead to a loss of primary system integrity, or even containment failure, which will allow escape of significant amounts of radioactive material to the environment. It is very important to understand the mechanism of reactor core degradation during a severe accident. In this study, the damage progression of the reactor core and the slumping mechanism of molten material to the lower head of the reactor vessel were examined through simulation of severe accident scenarios that lead to large-scale core damage. The calculations were carried out using the computer code SCDAP/RELAP5. Different modeling parameters or models were used in calculations by version MOD3.2. The cladding oxidation shell ``durability'' parameter, which can control the timing of fuel clad failure, was varied. The heat flux model of steady-state natural convection of the molten pool was changed. The ultimate strength of the crust supporting the molten pool was doubled. These changes were made to examine the effects on the calculated core damage, and the molten pool expansion and its slumping. Different accident scenarios were simulated. The HPI/makeup flow rates were changed. The timing of opening and closing the PORV was considered. Reflood by restart of coolant pump 2B was also studied. Finally, the size of the PORV opening was also changed. The effects of these accident scenarios on accident progression and core damage process were studied. From the calculated results, it was concluded that the accurate modeling of core damage phenomena was very important to the prediction of the later stage of an accident. According to code MOD3.2, the molten material in a pool slumped to the lower head of the reactor vessel when the juncture of the top and side crusts failed after the

  2. Atmospheric radionuclides from the Fukushima Dai-ichi nuclear reactor accident observed in Vietnam.

    PubMed

    Long, N Q; Truong, Y; Hien, P D; Binh, N T; Sieu, L N; Giap, T V; Phan, N T

    2012-09-01

    Radionuclides from the reactor accident at the Fukushima Dai-ichi Nuclear Power Plant were observed in the surface air at stations in Hanoi, Dalat, and Ho Chi Minh City (HCMC) in Vietnam, about 4500 km southwest of Japan, during the period from March 27 to April 22, 2011. The maximum activity concentrations in the air measured at those three sites were 193, 33, and 37 μBq m(-3) for (131)I, (13)(4)Cs, and (13)(7)Cs, respectively. Peaks of radionuclide concentrations in the air corresponded to arrival of the air mass from Fukushima to Vietnam after traveling for 8 d over the Pacific Ocean. Cesium-134 was detected with the (134)Cs/(137)Cs activity ratio of about 0.85 in line with observations made elsewhere. The (131)I/(137)Cs activity ratio was observed to decrease exponentially with time as expected from radioactive decay. The ratio at Dalat, where is 1500 m high, was higher than those at Hanoi and HCMC in low lands, indicating the relative enrichment of the iodine in comparison to cesium at high altitudes. The time-integrated surface air concentrations of the Fukushima-derived radionuclides in the Southeast Asia showed exponential decrease with distance from Fukushima. PMID:22200554

  3. Criticality accident dosimetry systems: an international intercomparison at the SILENE reactor in 2002.

    PubMed

    Médioni, R; Asselineau, B; Verrey, B; Trompier, F; Itié, C; Texier, C; Muller, H; Pelcot, G; Clairand, I; Jacquet, X; Pochat, J L

    2004-01-01

    In criticality accident dosimetry and more generally for high dose measurements, special techniques are used to measure separately the gamma ray and neutron components of the dose. To improve these techniques and to check their dosimetry systems (physical and/or biological), a total of 60 laboratories from 29 countries (America, Europe, Asia) participated in an international intercomparaison, which took place in France from 9 to 21 June 2002, at the SILENE reactor in Valduc and at a pure gamma source in Fontenay-aux-Roses. This intercomparison was jointly organised by the IRSN and the CEA with the help of the NEA/OCDE and was partly supported by the European Communities. This paper describes the aim of this intercomparison, the techniques used by the participants and the two radiation sources and their characteristics. The experimental arrangements of the dosemeters for the irradiations in free air or on phantoms are given. Then the dosimetric quantities measured and reported by the participants are summarised, analysed and compared with the reference values. The present paper concerns only the physical dosimetry and essentially experiments performed on the SILENE facility. The results obtained with the biological dosimetry are published in two other papers of this issue. PMID:15353686

  4. Component evaluation for intersystem loss-of-coolant accidents in advanced light water reactors

    SciTech Connect

    Ware, A.G.

    1994-07-01

    Using the methodology outlined in NUREG/CR-5603 this report evaluates (on a probabilistic basis) design rules for components in ALWRs that could be subjected to intersystem loss-of-coolant accidents (ISLOCAs). The methodology is intended for piping elements, flange connections, on-line pumps and valves, and heat exchangers. The NRC has directed that the design rules be evaluated for BWR pressures of 7.04 MPa (1025 psig), PWR pressures of 15.4 MPa (2235 psig), and 177{degrees}C (350{degrees}F), and has established a goal of 90% probability that system rupture will not occur during an ISLOCA event. The results of the calculations in this report show that components designed for a pressure of 0.4 of the reactor coolant system operating pressure will satisfy the NRC survival goal in most cases. Specific recommendations for component strengths for BWR and PWR applications are made in the report. A peer review panel of nationally recognized experts was selected to review and critique the initial results of this program.

  5. Assessment of possible consequences of a hypothetical reactivity accident associated with a {open_quotes}Topaz-2{close_quotes} spacecraft reactor entering water

    SciTech Connect

    Glushkov, E.S.; Ermoshin, M.Yu.; Ponomarev-Stepnoi; Skorlygin, V.V.

    1994-12-01

    An accident analysis for a Russian Topaz-2 nuclear reactor is summarized. The accident scenario involves emergency return from orbit, severe damage to reactor structural elements, and subsequent falling of the reactor core into the ocean. The thermionic converter reactor, used in spacecraft, has a large neutron leakage which decreases when water enters the inner core cavity. Preliminary results of numerical modeling, summarized in the article, show that the possible consequences of the hypothetical accidental submersion are limited. 8 refs., 2 figs., 2 tabs.

  6. Nuclear-reactor accidents: Chernobyl, TMI, and Windscale. January 1974-September 1988 (Citations from Pollution Abstracts). Report for January 1974-September 1988

    SciTech Connect

    Not Available

    1988-11-01

    This bibliography contains citations concerning studies and measurements of the radiological consequences of nuclear-reactor accidents. The citations cover specifically the Chernobyl reactor in the USSR, the Three Mile Island (TMI) reactor in the US, and the Windscale reactor in the UK. Included are detection and monitoring of the fallout, the resultant runoff into rivers, lakes, and the sea, the radiation effects on people, and the transfrontier radioactive contamination of the environment. (Contains 105 citations fully indexed and including a title list.)

  7. Significant increase in trisomy 21 in Berlin nine months after the Chernobyl reactor accident: temporal correlation or causal relation?

    PubMed Central

    Sperling, K.; Pelz, J.; Wegner, R. D.; Dörries, A.; Grüters, A.; Mikkelsen, M.

    1994-01-01

    OBJECTIVE--To assess whether the increased prevalence of trisomy 21 in West Berlin in January 1987 might have been causally related to exposure to ionising radiation as a result of the Chernobyl reactor accident or was merely a chance event. DESIGN--Analysis of monthly prevalence of trisomy 21 in West Berlin from January 1980 to December 1989. SETTING--Confines of West Berlin. RESULTS--Owing to the former "island" situation of West Berlin and its well organised health services, ascertainment of trisomy 21 was thought to be almost complete. A cluster of 12 cases occurred in January 1987 as compared with two or three expected. After exclusion of factors that might have explained the increase, including maternal age distribution, only exposure to radiation as a result of the Chernobyl reactor accident remained. In six of seven cases that could be studied cytogenetically the extra chromosome was of maternal origin, confirming that nondisjunction had occurred at about the time of conception. CONCLUSION--On the basis of two assumptions--(a) that maternal meiosis is an error prone process susceptible to exogenous factors at the time of conception; (b) that owing to the high prevalence of iodine deficiency in Berlin a large amount of iodine-131 would have been accumulated over a short period--it is concluded that the increased prevalence of trisomy 21 in West Berlin in January 1987 was causally related to a short period of exposure to ionising radiation as a result of the Chernobyl reactor accident. PMID:8044094

  8. Fukushima Daiichi Unit 1 Accident Progression Uncertainty Analysis and Implications for Decommissioning of Fukushima Reactors - Volume I.

    SciTech Connect

    Gauntt, Randall O.; Mattie, Patrick D.

    2016-01-01

    Sandia National Laboratories (SNL) has conducted an uncertainty analysis (UA) on the Fukushima Daiichi unit (1F1) accident progression with the MELCOR code. The model used was developed for a previous accident reconstruction investigation jointly sponsored by the US Department of Energy (DOE) and Nuclear Regulatory Commission (NRC). That study focused on reconstructing the accident progressions, as postulated by the limited plant data. This work was focused evaluation of uncertainty in core damage progression behavior and its effect on key figures-of-merit (e.g., hydrogen production, reactor damage state, fraction of intact fuel, vessel lower head failure). The primary intent of this study was to characterize the range of predicted damage states in the 1F1 reactor considering state of knowledge uncertainties associated with MELCOR modeling of core damage progression and to generate information that may be useful in informing the decommissioning activities that will be employed to defuel the damaged reactors at the Fukushima Daiichi Nuclear Power Plant. Additionally, core damage progression variability inherent in MELCOR modeling numerics is investigated.

  9. Small-break loss-of-coolant accidents in the updated PIUS 600 advanced reactor design

    SciTech Connect

    Boyack, B.E.; Steiner, J.L.; Harmony, S.C.

    1995-09-01

    The PIUS advanced reactor is a 640-MWe pressurized water reactor developed by Asea Brown Boveri (ABB). A unique feature of the PIUS concept is the absence of mechanical control and shutdown rods. Reactivity is normally controlled by coolant boron concentration and the temperature of the moderator coolant. ABB submitted the PIUS design to the US Nuclear Regulatory Commission (NRC) for preapplication review, and Los Alamos supported the NRC`s review effort. Baseline analyses of small-break initiators at two locations were performed with the system neutronic and thermal-hydraulic analysis code TRAC-PF1/MOD2. In addition, sensitivity studies were performed to explore the robustness of the PIUS concept to severe off-normal conditions having a very low probability of occurrence.

  10. Reactor coolant seal testing under station blackout conditions

    SciTech Connect

    Marsi, J.A.

    1988-01-01

    Failures of reactor coolant pump (RCP) seals that could result in a significant loss-of-coolant inventory are of current concern to the US Nuclear Regulatory Commission. Particular attention is being focused on seal behavior during station blackout conditions, when failure of on-site emergency diesel generators occurs simultaneously with loss of all off-site alternating current power. Under these conditions, both seal injection flow and component cooling water flow are lost, and the RCP seals are exposed to full reactor coolant temperature. Overheating of elastomeric components and flashing of coolant across the sealing faces can cause unacceptably high leakage rates, with potential catastrophic consequences. A test program has been conducted that subjects full-scale seal cartridges to typical pressurized water reactor (PWR) coolant system steady-state and transient operation conditions including associated dynamic shaft motions. A special test segment was developed to evaluate seal operation under station blackout conditions. The test program successfully mirrored the severity of an actual loss-of-seal cooling water event under station blackout conditions, and the Byron Jackson{reg sign} N-9000 seal cartridge maintained its integrity.

  11. The Fuel Accident Condition Simulator (FACS) furnace system for high temperature performance testing of VHTR fuel

    SciTech Connect

    Paul A. Demkowicz; David V. Laug; Dawn M. Scates; Edward L. Reber; Lyle G. Roybal; John B. Walter; Jason M. Harp; Robert N. Morris

    2012-10-01

    The AGR-1 irradiation of TRISO-coated particle fuel specimens was recently completed and represents the most successful such irradiation in US history, reaching peak burnups of greater than 19% FIMA with zero failures out of 300,000 particles. An extensive post-irradiation examination (PIE) campaign will be conducted on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature safety testing. A new furnace system has been designed, built, and tested to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000 degrees C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, and Eu), iodine, and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator furnace system and the associated fission gas monitoring system, as well as preliminary system calibration results.

  12. Shipping container response to severe highway and railway accident conditions: Appendices

    SciTech Connect

    Fischer, L.E.; Chou, C.K.; Gerhard, M.A.; Kimura, C.Y.; Martin, R.W.; Mensing, R.W.; Mount, M.E.; Witte, M.C.

    1987-02-01

    Volume 2 contains the following appendices: Severe accident data; truck accident data; railroad accident data; highway survey data and bridge column properties; structural analysis; thermal analysis; probability estimation techniques; and benchmarking for computer codes used in impact analysis. (LN)

  13. Analysis of Accidents at the Pakistan Research Reactor-1 Using Proposed Mixed-Fuel (HEU and LEU) Core

    SciTech Connect

    Bokhari, Ishtiaq H.

    2004-12-15

    The Pakistan Research Reactor-1 (PARR-1) was converted from highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel in 1991. The reactor is running successfully, with an upgraded power level of 10 MW. To save money on the purchase of costly fresh LEU fuel elements, the use of less burnt HEU spent fuel elements along with the present LEU fuel elements is being considered. The proposal calls for the HEU fuel elements to be placed near the thermal column to gain the required excess reactivity. In the present study the safety analysis of a proposed mixed-fuel core has been carried out at a calculated steady-state power level of 9.8 MW. Standard computer codes and correlations were employed to compute various parameters. Initiating events in reactivity-induced accidents involve various modes of reactivity insertion, namely, start-up accident, accidental drop of a fuel element on the core, flooding of a beam tube with water, and removal of an in-pile experiment during reactor operation. For each of these transients, time histories of reactor power, energy released, temperature, and reactivity were determined.

  14. Fission products behaviour in UO2 submitted to nuclear severe accident conditions

    NASA Astrophysics Data System (ADS)

    Geiger, E.; Bès, R.; Martin, P.; Pontillon, Y.; Solari, P. L.; Salome, M.

    2016-05-01

    The objective of this work was to study the molybdenum chemistry in UO2 based materials, known as SIMFUELS. These materials could be used as an alternative to irradiated nuclear fuels in the study of fission products behaviour during a nuclear severe accident. UO2 samples doped with 12 stable isotopes of fission products were submitted to annealing tests in conditions representative to intermediate steps of severe accidents. Samples were characterized by SEM-EDS and XAS. It was found that Mo chemistry seems to be more complex than what is normally estimated by thermodynamic calculations: XAS spectra indicate the presence of Mo species such as metallic Mo, MoO2, MoO3 and Cs2MoO4.

  15. Analysis 320 coal mine accidents using structural equation modeling with unsafe conditions of the rules and regulations as exogenous variables.

    PubMed

    Zhang, Yingyu; Shao, Wei; Zhang, Mengjia; Li, Hejun; Yin, Shijiu; Xu, Yingjun

    2016-07-01

    Mining has been historically considered as a naturally high-risk industry worldwide. Deaths caused by coal mine accidents are more than the sum of all other accidents in China. Statistics of 320 coal mine accidents in Shandong province show that all accidents contain indicators of "unsafe conditions of the rules and regulations" with a frequency of 1590, accounting for 74.3% of the total frequency of 2140. "Unsafe behaviors of the operator" is another important contributory factor, which mainly includes "operator error" and "venturing into dangerous places." A systems analysis approach was applied by using structural equation modeling (SEM) to examine the interactions between the contributory factors of coal mine accidents. The analysis of results leads to three conclusions. (i) "Unsafe conditions of the rules and regulations," affect the "unsafe behaviors of the operator," "unsafe conditions of the equipment," and "unsafe conditions of the environment." (ii) The three influencing factors of coal mine accidents (with the frequency of effect relation in descending order) are "lack of safety education and training," "rules and regulations of safety production responsibility," and "rules and regulations of supervision and inspection." (iii) The three influenced factors (with the frequency in descending order) of coal mine accidents are "venturing into dangerous places," "poor workplace environment," and "operator error." PMID:27085591

  16. Role of Winter Weather Conditions and Slipperiness on Tourists’ Accidents in Finland

    PubMed Central

    Lépy, Élise; Rantala, Sinikka; Huusko, Antti; Nieminen, Pentti; Hippi, Marjo; Rautio, Arja

    2016-01-01

    (1) Background: In Finland, slippery snowy or icy ground surface conditions can be quite hazardous to human health during wintertime. We focused on the impacts of the variability in weather conditions on tourists’ health via documented accidents during the winter season in the Sotkamo area. We attempted to estimate the slipping hazard in a specific context of space and time focusing on the weather and other possible parameters, responsible for fluctuations in the numbers of injuries/accidents; (2) Methods: We used statistical distributions with graphical illustrations to examine the distribution of visits to Kainuu Hospital by non-local patients and their characteristics/causes; graphs to illustrate the distribution of the different characteristics of weather conditions; questionnaires and interviews conducted among health care and safety personnel in Sotkamo and Kuusamo; (3) Results: There was a clear seasonal distribution in the numbers and types of extremity injuries of non-local patients. While the risk of slipping is emphasized, other factors leading to injuries are evaluated; and (4) Conclusions: The study highlighted the clear role of wintery weather conditions as a cause of extremity injuries even though other aspects must also be considered. Future scenarios, challenges and adaptive strategies are also discussed from the viewpoint of climate change. PMID:27537899

  17. Role of Winter Weather Conditions and Slipperiness on Tourists' Accidents in Finland.

    PubMed

    Lépy, Élise; Rantala, Sinikka; Huusko, Antti; Nieminen, Pentti; Hippi, Marjo; Rautio, Arja

    2016-01-01

    (1) BACKGROUND: In Finland, slippery snowy or icy ground surface conditions can be quite hazardous to human health during wintertime. We focused on the impacts of the variability in weather conditions on tourists' health via documented accidents during the winter season in the Sotkamo area. We attempted to estimate the slipping hazard in a specific context of space and time focusing on the weather and other possible parameters, responsible for fluctuations in the numbers of injuries/accidents; (2) METHODS: We used statistical distributions with graphical illustrations to examine the distribution of visits to Kainuu Hospital by non-local patients and their characteristics/causes; graphs to illustrate the distribution of the different characteristics of weather conditions; questionnaires and interviews conducted among health care and safety personnel in Sotkamo and Kuusamo; (3) RESULTS: There was a clear seasonal distribution in the numbers and types of extremity injuries of non-local patients. While the risk of slipping is emphasized, other factors leading to injuries are evaluated; and (4) CONCLUSIONS: The study highlighted the clear role of wintery weather conditions as a cause of extremity injuries even though other aspects must also be considered. Future scenarios, challenges and adaptive strategies are also discussed from the viewpoint of climate change. PMID:27537899

  18. The SAM software system for modeling severe accidents at nuclear power plants equipped with VVER reactors on full-scale and analytic training simulators

    NASA Astrophysics Data System (ADS)

    Osadchaya, D. Yu.; Fuks, R. L.

    2014-04-01

    The architecture of the SAM software package intended for modeling beyond-design-basis accidents at nuclear power plants equipped with VVER reactors evolving into a severe stage with core melting and failure of the reactor pressure vessel is presented. By using the SAM software package it is possible to perform comprehensive modeling of the entire emergency process from the failure initiating event to the stage of severe accident involving meltdown of nuclear fuel, failure of the reactor pressure vessel, and escape of corium onto the concrete basement or into the corium catcher with retention of molten products in it.

  19. Modeling and analysis of the unprotected loss-of-flow accident in the Clinch River Breeder Reactor

    SciTech Connect

    Morris, E.E.; Dunn, F.E.; Simms, R.; Gruber, E.E.

    1985-01-01

    The influence of fission-gas-driven fuel compaction on the energetics resulting from a loss-of-flow accident was estimated with the aid of the SAS3D accident analysis code. The analysis was carried out as part of the Clinch River Breeder Reactor licensing process. The TREAT tests L6, L7, and R8 were analyzed to assist in the modeling of fuel motion and the effects of plenum fission-gas release on coolant and clad dynamics. Special, conservative modeling was introduced to evaluate the effect of fission-gas pressure on the motion of the upper fuel pin segment following disruption. For the nominal sodium-void worth, fission-gas-driven fuel compaction did not adversely affect the outcome of the transient. When uncertainties in the sodium-void worth were considered, however, it was found that if fuel compaction occurs, loss-of-flow driven transient overpower phenomenology could not be precluded.

  20. Effects of control system failures on transients and accidents at a 3-loop Westinghouse pressurized water reactor. Volume 2. Appendices

    SciTech Connect

    Bruske, S.J.; Davis, C.B.; Ogden, D.M.; Ransom, C.B.; Stitt, B.D.; Stromberg, H.M.; Waterman, M.E.

    1985-10-01

    Safety Implications of Control Systems (A-47) was approved as an Unresolved Safety Issue (USI) by the Nuclear Regulatory Commission (NRC) in December of 1980. USI A-47 is concerned with the potential for transients or accidents being made more severe than previously analyzed as a result of control system failures. This report describes the work performed on the effects of control system failures on transients and accidents at a Westinghouse 3-loop pressurized water reactor. In this volume, the appendices contain detailed information consisting of the FMEA (failure mode and analysis) results, an in-depth description of the computer model, the deterministic computer analyses, and responses to comments made by Carolina Power and Light Company and Westinghouse Electric Corporation.

  1. A radioactive waste transportation package monitoring system for normal transport and accident emergency response conditions

    SciTech Connect

    Brown, G. S.; Cashwell, J. W.; Apple, M. L.

    1991-01-01

    Shipments of radioactive material (RAM) constitute but a small fraction of the total hazardous materials shipped in the United States each year. Public perception, however, of the potential consequences of a release from a transportation package containing RAM has resulted in significant regulation of transport operations, both to ensure the integrity of a package in accident conditions and to place operational constraints on the shipper. Much of this attention has focused on shipments of spent nuclear fuel and high level wastes which, although comprising a very small number of total shipments, constitute a majority of the total curies transported on an annual basis. This report discusses the shipment of these highly radioactive materials.

  2. Hypothetical accident condition thermal analysis and testing of a Type B drum package

    SciTech Connect

    Hensel, S.J.; Alstine, M.N. Van; Gromada, R.J.

    1995-07-01

    A thermophysical property model developed to analytically determine the thermal response of cane fiberboard when exposed to temperatures and heat fluxes associated with the 10 CFR 71 hypothetical accident condition (HAC) has been benchmarked against two Type B drum package fire test results. The model 9973 package was fire tested after a 30 ft. top down drop and puncture, and an undamaged model 9975 package containing a heater (21W) was fire tested to determine content heat source effects. Analysis results using a refined version of a previously developed HAC fiberboard model compared well against the test data from both the 9973 and 9975 packages.

  3. Characterization and chemistry of fission products released from LWR fuel under accident conditions

    SciTech Connect

    Norwood, K.S.; Collins, J.L.; Osborne, M.F.; Lorenz, R.A.; Wichner, R.P.

    1984-01-01

    Segments from commercial LWR fuel rods have been tested at temperatures between 1400 and 2000/sup 0/C in a flowing steam-helium atmosphere to simulate severe accident conditions. The primary goals of the tests were to determine the rate of fission product release and to characterize the chemical behavior. This paper is concerned primarily with the identification and chemical behavior of the released fission products with emphasis on antimony, cesium, iodine, and silver. The iodine appeared to behave primarily as cesium iodide and the antimony and silver as elements, while cesium behavior was much more complex. 17 refs., 7 figs., 1 tab.

  4. Analysis of Sodium Fire in the Containment Building of Prototype Fast Breeder Reactor Under the Scenario of Core Disruptive Accident

    SciTech Connect

    Rao, P.M.; Kasinathan, N.; Kannan, S.E.

    2006-07-01

    The potential for sodium release to reactor containment building from reactor assembly during Core Disruptive Accident (CDA) in Fast Breeder Reactors (FBR) is an important safety issue with reference to the structural integrity of Reactor Containment Building (RCB). For Prototype Fast Breeder Reactor (PFBR), the estimated sodium release under a CDA of 100 MJ energy release is 350 kg. The ejected sodium reacts easily with air in RCB and causes temperature and pressure rise in the RCB. For estimating the severe thermal consequences in RCB, different modes of sodium fires like pool and spray fires were analyzed by using SOFIRE -- II and NACOM sodium fire computer codes. Effects of important parameters like amount of sodium, area of pool, containment air volume and oxygen concentration have been investigated. A peak pressure rise of 7.32 kPa is predicted by SOFIRE II code for 350 kg sodium pool fire in 86,000 m{sup 3} RCB volume. Under sodium release as spray followed by unburnt sodium as pool fire mode analysis, the estimated pressure rise is 5.85 kPa in the RCB. In the mode of instantaneous combustion of sodium, the estimated peak pressure rise is 13 kPa. (authors)

  5. Preliminary phenomena identification and ranking tables for simplified boiling water reactor Loss-of-Coolant Accident scenarios

    SciTech Connect

    Kroeger, P.G.; Rohatgi, U.S.; Jo, J.H.; Slovik, G.C.

    1998-04-01

    For three potential Loss-of-Coolant Accident (LOCA) scenarios in the General Electric Simplified Boiling Water Reactors (SBWR) a set of Phenomena Identification and Ranking Tables (PIRT) is presented. The selected LOCA scenarios are typical for the class of small and large breaks generally considered in Safety Analysis Reports. The method used to develop the PIRTs is described. Following is a discussion of the transient scenarios, the PIRTs are presented and discussed in detailed and in summarized form. A procedure for future validation of the PIRTs, to enhance their value, is outlined. 26 refs., 25 figs., 44 tabs.

  6. Experimental results from containment piping bellows subjected to severe accident conditions: Results from bellows tested in corroded conditions. Volume 2

    SciTech Connect

    Lambert, L.D.; Parks, M.B.

    1995-10-01

    Bellows are an integral part of the containment pressure boundary in nuclear power plants. They are used at piping penetrations to allow relative movement between piping and the containment wall, while minimizing the load imposed on the piping and wall. Piping bellows are primarily used in steel containments; however, they have received limited use in some concrete (reinforced and prestressed) containments. In a severe accident they may be subjected to pressure and temperature conditions that exceed the design values, along with a combination of axial and lateral deflections. A test program to determine the leak-tight capacity of containment penetration bellows is being conducted at Sandia National Laboratories under the sponsorship of the US Nuclear Regulatory Commission. Several different bellows geometries, representative of actual containment bellows, have been subjected to extreme deflections along with pressure and temperature loads. The bellows geometries and loading conditions are described along with the testing apparatus and procedures. A total of nineteen bellows have been tested. Thirteen bellows were tested in ``like-new`` condition (results reported in Volume 1), and six were tested in a corroded condition. The tests showed that bellows in ``like-new`` condition are capable of withstanding relatively large deformations, up to, or near, the point of full compression or elongation, before developing leakage, while those in a corroded condition did not perform as well, depending on the amount of corrosion. The corroded bellows test program and results are presented in this report.

  7. MLAM assessment of air concentration, deposition, and dose for Chernobyl reactor accident

    SciTech Connect

    Olsen, A.R.; Davis, W.E.; Didier, B.T.; Soldat, J.K.; Napier, B.A.; Peloquin, R.A.

    1989-12-01

    The purpose of this report is to provide estimates for the areas in Europe affected by the accident involving Unit 4 of the Chernobylskaya Atomic Energy Station which resulted in the release of radioactive material to the atmosphere.

  8. DYNAMIC ANALYSIS OF HANFORD UNIRRADIATED FUEL PACKAGE SUBJECTED TO SEQUENTIAL LATERAL LOADS IN HYPOTHETICAL ACCIDENT CONDITIONS

    SciTech Connect

    Wu, T

    2008-04-30

    Large fuel casks present challenges when evaluating their performance in the Hypothetical Accident Conditions (HAC) specified in the Code of Federal Regulations Title 10 part 71 (10CFR71). Testing is often limited by cost, difficulty in preparing test units and the limited availability of facilities which can carry out such tests. In the past, many casks were evaluated without testing by using simplified analytical methods. This paper presents a numerical technique for evaluating the dynamic responses of large fuel casks subjected to sequential HAC loading. A nonlinear dynamic analysis was performed for a Hanford Unirradiated Fuel Package (HUFP) [1] to evaluate the cumulative damage after the hypothetical accident Conditions of a 30-foot lateral drop followed by a 40-inch lateral puncture as specified in 10CFR71. The structural integrity of the containment vessel is justified based on the analytical results in comparison with the stress criteria, specified in the ASME Code, Section III, Appendix F [2], for Level D service loads. The analyzed cumulative damages caused by the sequential loading of a 30-foot lateral drop and a 40-inch lateral puncture are compared with the package test data. The analytical results are in good agreement with the test results.

  9. EXPERIMENT OPERATIONS PLAN FOR A LOSS-OF-COOLANT ACCIDENT SIMULATION IN THE NATIONAL RESEARCH UNIVERSAL REACTOR

    SciTech Connect

    Russcher, G. E.; Cannon, L. W.; Goodman, R. L.; Hesson, G. M.; King, L. L.; McDuffie, P. N.; Marshall, R. K.; Nealley, C.; Pilger, J. P.; Mohr, C. L.

    1981-04-01

    Pressurized water reactor loss-of-coolant accident phenomena are being simulated with a series of experiments in the U-2 loop of the National Research Universal Reactor at Chalk River, Ontario, Canada. The first of these experiments includes up to 45 parametric thermal-hydraulic tests to establish the relationship between the reflood delay time of emergency coolant, the reflooding rate, and the resultant fuel rod cladding peak temperature. This document contains both experiment proposal and assembly proposal information. The intent of this document is to supply information required by the Chalk River Nuclear Laboratories (CRNL), and to identify the planned procedures and data that will be used both to establish readiness to proceed from one test phase to the next and to operate the experiment. Operating control settings and limits are provided for both experimenter systems and CRNL systems. A hazards review summarizes safety issues that have been addressed during the development of the experiment plan.

  10. Hypothetical accident scenario analyses for a 250-MW(T) modular high temperature gas-cooled reactor

    SciTech Connect

    Harrington, R.M.; Ball, S.J.; Cleveland, J.C.

    1985-01-01

    This paper describes calculations performed at Oak Ridge National Laboratory, under the auspices of the U.S. Nuclear Regulatory Commission's HTGR Safety Research Program, to characterize the inherent safety of a 250-MW(t), 100-MW(e), pebble bed modular high temperature gas-cooled reactor (HTGR) design with vertical in-line arrangement (i.e. upflow core with steam generators directly above the core). A variety of postulated accident sequences involving combinations of loss of forced helium primary coolant circulation, loss of primary coolant pressurization, and loss of heat sink were studied and are discussed. Comparisons of calculated and measured response for a flow reduction test on the German reactor AVR are also presented.

  11. DIANA: A multi-phase, multi-component hydrodynamic model for the analysis of severe accidents in heavy water reactors with multiple-tube assemblies

    SciTech Connect

    Tentner, A.M.

    1994-03-01

    A detailed hydrodynamic fuel relocation model has been developed for the analysis of severe accidents in Heavy Water Reactors with multiple-tube Assemblies. This model describes the Fuel Disruption and Relocation inside a nuclear fuel assembly and is designated by the acronym DIANA. DIANA solves the transient hydrodynamic equations for all the moving materials in the core and treats all the relevant flow regimes. The numerical solution techniques and some of the physical models included in DIANA have been developed taking advantage of the extensive experience accumulated in the development and validation of the LEVITATE (1) fuel relocation model of SAS4A [2, 3]. The model is designed to handle the fuel and cladding relocation in both voided and partially voided channels. It is able to treat a wide range of thermal/ hydraulic/neutronic conditions and the presence of various flow regimes at different axial locations within the same hydrodynamic channel.

  12. Thermohydraulics in a high-temperature gas-cooled reactor primary loop during early phases of unrestricted core-heatup accidents

    SciTech Connect

    Kroeger, P.G.; Colman, J.; Hsu, C.J.

    1983-01-01

    In High Temperature Gas Cooled Reactor (HTGR) siting considerations, the Unrestricted Core Heatup Accidents (UCHA) are considered as accidents of highest consequence, corresponding to core meltdown accidents in light water reactors. Initiation of such accidents can be, for instance, due to station blackout, resulting in scram and loss of all main loop forced circulation, with none of the core auxiliary cooling system loops being started. The result is a slow but continuing core heatup, extending over days. During the initial phases of such UCHA scenarios, the primary loop remains pressurized, with the system pressure slowly increasing until the relief valve setpoint is reached. The major objectives of the work described here were to determine times to depressurization as well as approximate loop component temperatures up to depressurization.

  13. Thermal analysis of the 10-gallon and the 55-gallon DOT-6M containers with thermal boundary conditions corresponding to 10CFR71 normal transport and accident conditions

    SciTech Connect

    Sanchez, L.C.; Longenbaugh, R.S.; Moss, M.; Haseman, G.M.; Fowler, W.E.; Roth, E.P.

    1988-03-01

    This report describes the heat transfer analysis of the 10-gallon and 55-gallon 6M containers. The analysis was performed with boundary conditions corresponding to a normal transport condition and a hypothetical accident condition. Computational results indicated that the insulation material in the 6M containers will adequately protect the payload region of the 6M containers. 26 refs., 26 figs., 8 tabs.

  14. Study of Air Ingress Across the Duct During the Accident Conditions

    SciTech Connect

    Hassan, Yassin

    2013-05-06

    The goal of this project is to study the fundamental physical phenomena associated with air ingress in very high temperature reactors (VHTRs). Air ingress may occur due to a rupture of primary piping and a subsequent breach in the primary pressure boundary in helium-cooled and graphite-moderated VHTRs. Significant air ingress is a concern because it introduces potential to expose the fuel, graphite support rods, and core to a risk of severe graphite oxidation. Two of the most probable air ingress scenarios involve rupture of a control rod or fuel access standpipe, and rupture in the main coolant pipe on the lower part of the reactor pressure vessel. Therefore, establishing a fundamental understanding of air ingress phenomena is critical in order to rationally evaluate safety of existing VHTRs and develop new designs that minimize these risks. But despite this importance, progress toward development these predictive capabilities has been slowed by the complex nature of the underlying phenomena. The combination of inter-diffusion among multiple species, molecular diffusion, natural convection, and complex geometries, as well as the multiple chemical reactions involved, impose significant roadblocks to both modeling and experiment design. The project team will employ a coordinated experimental and computational effort that will help gain a deeper understanding of multiphased air ingress phenomena. This project will enhance advanced modeling and simulation methods, enabling calculation of nuclear power plant transients and accident scenarios with a high degree of confidence. The following are the project tasks: Perform particle image velocimetry measurement of multiphase air ingresses; and, Perform computational fluid dynamics analysis of air ingress phenomena.

  15. Accident source terms for pressurized water reactors with high-burnup cores calculated using MELCOR 1.8.5.

    SciTech Connect

    Gauntt, Randall O.; Powers, Dana Auburn; Ashbaugh, Scott G.; Leonard, Mark Thomas; Longmire, Pamela

    2010-04-01

    In this study, risk-significant pressurized-water reactor severe accident sequences are examined using MELCOR 1.8.5 to explore the range of fission product releases to the reactor containment building. Advances in the understanding of fission product release and transport behavior and severe accident progression are used to render best estimate analyses of selected accident sequences. Particular emphasis is placed on estimating the effects of high fuel burnup in contrast with low burnup on fission product releases to the containment. Supporting this emphasis, recent data available on fission product release from high-burnup (HBU) fuel from the French VERCOR project are used in this study. The results of these analyses are treated as samples from a population of accident sequences in order to employ approximate order statistics characterization of the results. These trends and tendencies are then compared to the NUREG-1465 alternative source term prescription used today for regulatory applications. In general, greater differences are observed between the state-of-the-art calculations for either HBU or low-burnup (LBU) fuel and the NUREG-1465 containment release fractions than exist between HBU and LBU release fractions. Current analyses suggest that retention of fission products within the vessel and the reactor coolant system (RCS) are greater than contemplated in the NUREG-1465 prescription, and that, overall, release fractions to the containment are therefore lower across the board in the present analyses than suggested in NUREG-1465. The decreased volatility of Cs2MoO4 compared to CsI or CsOH increases the predicted RCS retention of cesium, and as a result, cesium and iodine do not follow identical behaviors with respect to distribution among vessel, RCS, and containment. With respect to the regulatory alternative source term, greater differences are observed between the NUREG-1465 prescription and both HBU and LBU predictions than exist between HBU and LBU

  16. Insights on fission products behaviour in nuclear severe accident conditions by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Geiger, E.; Bès, R.; Martin, Ph; Pontillon, Y.; Ducros, G.; Solari, P. L.

    2016-04-01

    Many research programs have been carried out aiming to understand the fission products behaviour during a Nuclear Severe Accident. Most of these programs used highly radioactive irradiated nuclear fuel, which requires complex instrumentation. Moreover, the radioactive character of samples hinders an accurate chemical characterisation. In order to overcome these difficulties, SIMFUEL stand out as an alternative to perform complementary tests. A sample made of UO2 doped with 11 fission products was submitted to an annealing test up to 1973 K in reducing atmosphere. The sample was characterized before and after the annealing test using SEM-EDS and XAS at the MARS beam-line, SOLEIL Synchrotron. It was found that the overall behaviour of several fission products (such as Mo, Ba, Pd and Ru) was similar to that observed experimentally in irradiated fuels and consistent with thermodynamic estimations. The experimental approach presented in this work has allowed obtaining information on chemical phases evolution under nuclear severe accident conditions, that are yet difficult to obtain using irradiated nuclear fuel samples.

  17. Insights on fission products behaviour in nuclear severe accident conditions by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Geiger, E.; Bès, R.; Martin, Ph; Pontillon, Y.; Ducros, G.; Solari, P. L.

    2016-04-01

    Many research programs have been carried out aiming to understand the fission products behaviour during a Nuclear Severe Accident. Most of these programs used highly radioactive irradiated nuclear fuel, which requires complex instrumentation. Moreover, the radioactive character of samples hinders an accurate chemical characterisation. In order to overcome these difficulties, SIMFUEL stand out as an alternative to perform complementary tests. A sample made of UO2 doped with 11 fission products was submitted to an annealing test up to 1973 K in reducing atmosphere. The sample was characterized before and after the annealing test using SEM-EDS and XAS at the MARS beam-line, SOLEIL Synchrotron. It was found that the overall behaviour of several fission products (such as Mo, Ba, Pd and Ru) was similar to that observed experimentally in irradiated fuels and consistent with thermodynamic estimations. The experimental approach presented in this work has allowed obtaining information on chemical phases evolution under nuclear severe accident conditions, that are yet difficult to obtain using irradiated nuclear fuel samples.

  18. Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Su'ud, Zaki; Anshari, Rio

    2012-06-01

    Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environment such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.

  19. Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident

    SciTech Connect

    Su'ud, Zaki; Anshari, Rio

    2012-06-06

    Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environment such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.

  20. Brookhaven lecture series No. 227: The Chernobyl accident

    SciTech Connect

    Kouts, H.

    1986-09-24

    This lecture discusses the events leading to, during, and following the Chernobyl Reactor number 4 accident. A description of the light water cooled, graphite moderated reactor, the reactor site conditions leading to meltdown is presented. The emission of radioactive effluents and the biological radiation effects is also discussed. (FI)

  1. Models and numerical methods for the simulation of loss-of-coolant accidents in nuclear reactors

    NASA Astrophysics Data System (ADS)

    Seguin, Nicolas

    2014-05-01

    In view of the simulation of the water flows in pressurized water reactors (PWR), many models are available in the literature and their complexity deeply depends on the required accuracy, see for instance [1]. The loss-of-coolant accident (LOCA) may appear when a pipe is broken through. The coolant is composed by light water in its liquid form at very high temperature and pressure (around 300 °C and 155 bar), it then flashes and becomes instantaneously vapor in case of LOCA. A front of liquid/vapor phase transition appears in the pipes and may propagate towards the critical parts of the PWR. It is crucial to propose accurate models for the whole phenomenon, but also sufficiently robust to obtain relevant numerical results. Due to the application we have in mind, a complete description of the two-phase flow (with all the bubbles, droplets, interfaces…) is out of reach and irrelevant. We investigate averaged models, based on the use of void fractions for each phase, which represent the probability of presence of a phase at a given position and at a given time. The most accurate averaged model, based on the so-called Baer-Nunziato model, describes separately each phase by its own density, velocity and pressure. The two phases are coupled by non-conservative terms due to gradients of the void fractions and by source terms for mechanical relaxation, drag force and mass transfer. With appropriate closure laws, it has been proved [2] that this model complies with all the expected physical requirements: positivity of densities and temperatures, maximum principle for the void fraction, conservation of the mixture quantities, decrease of the global entropy… On the basis of this model, it is possible to derive simpler models, which can be used where the flow is still, see [3]. From the numerical point of view, we develop new Finite Volume schemes in [4], which also satisfy the requirements mentioned above. Since they are based on a partial linearization of the physical

  2. Proceedings of the US Nuclear Regulatory Commission fifteenth water reactor safety information meeting: Volume 6, Decontamination and decommissioning, accident management, TMI-2

    SciTech Connect

    Weiss, A. J.

    1988-02-01

    This six-volume report contains 140 papers out of the 164 that were presented at the Fifteenth Water Reactor Safety Information Meeting held at the National Bureau of Standards, Gaithersburg, Maryland, during the week of October 26-29, 1987. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. This report, Volume 6, discusses decontamination and decommissioning, accident management, and the Three Mile Island-2 reactor accident. Thirteen reports have been cataloged separately.

  3. TMI-2 accident: core heat-up analysis

    SciTech Connect

    Ardron, K.H.; Cain, D.G.

    1981-01-01

    This report summarizes NSAC study of reactor core thermal conditions during the accident at Three Mile Island, Unit 2. The study focuses primarily on the time period from core uncovery (approximately 113 minutes after turbine trip) through the initiation of sustained high pressure injection (after 202 minutes). The transient analysis is based upon established sequences of events; plant data; post-accident measurements; interpretation or indirect use of instrument responses to accident conditions.

  4. An atmospheric pressure flow reactor: Gas phase kinetics and mechanism in tropospheric conditions without wall effects

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Davis, Dennis D.; Hansen, Merrill

    1988-01-01

    A new type of gas phase flow reactor, designed to permit the study of gas phase reactions near 1 atm of pressure, is described. A general solution to the flow/diffusion/reaction equations describing reactor performance under pseudo-first-order kinetic conditions is presented along with a discussion of critical reactor parameters and reactor limitations. The results of numerical simulations of the reactions of ozone with monomethylhydrazine and hydrazine are discussed, and performance data from a prototype flow reactor are presented.

  5. Assessment of severe accident prevention and mitigation features: BWR (boiling water reactor), Mark I containment design

    SciTech Connect

    Pratt, W.T.; Eltawila, F.; Perkins, K.R.; Fitzpatrick, R.G.; Luckas, W.J.; Lehner, J.R.; Davis, P.

    1988-07-01

    Plant features and operator actions, which have been found to be important in either preventing or mitigating severe accidents in BWRs with Mark I containments (BWR Mark I's) have been identified. These features and actions were developed from insights derived from reviews of in-depth risk assessments performed specifically for the Peach Bottom plant and from assessment of other relevant studies. Accident sequences that dominate the core-damage frequency and those accident sequences that are of potentially high consequence were identified. Vulnerabilities of the BWR Mark I to severe accident containment loads were also identified. In addition, those features of a BWR Mark I, which are important for preventing core damage and are available for mitigating fission-product release to the environment were also identified. This report is issued to provide focus to an analyst examining an individual plant. This report calls attention to plant features and operator actions and provides a list of deterministic attributes for assessing those features and actions found to be helpful in reducing the overall risk for Peach Bottom and other Mark I plants. Thus, the guidance is offered as a resource in examining the subject plant to determine if the same, or similar, plant features and operator actions will be of value in reducing overall plant risk. This report is intended to serve solely as guidance.

  6. THREE MILE ISLAND NUCLEAR REACTOR ACCIDENT OF MARCH 1979. ENVIRONMENTAL RADIATION DATA: UPDATE 2, VOLUME III

    EPA Science Inventory

    The original report contains a listing of environmental radiation monitoring data collected in the vicinity of Three Mile Island (TMI) following the March 28, 1979 accident. These data were collected by the EPA, NRC, DOE, HHS, the Commonwealth of Pennsylvania, or the Bethlehem St...

  7. THREE MILE ISLAND NUCLEAR REACTOR ACCIDENT OF MARCH 1979. ENVIRONMENTAL RADIATION DATA: UPDATE 2, VOLUME II

    EPA Science Inventory

    The original report contains a listing of environmental radiation monitoring data collected in the vicinity of Three Mile Island (TMI) following the March 28, 1979 accident. These data were collected by the EPA, NRC, DOE, HHS, the Commonwealth of Pennsylvania, or the Bethlehem St...

  8. THREE MILE ISLAND NUCLEAR REACTOR ACCIDENT OF MARCH 1979. ENVIRONMENTAL RADIATION DATA: UPDATE 2, VOLUME I

    EPA Science Inventory

    The original report contains a listing of environmental radiation monitoring data collected in the vicinity of Three Mile Island (TMI) following the March 28, 1979 accident. These data were collected by the EPA, NRC, DOE, HHS, the Commonwealth of Pennsylvania, or the Bethlehem St...

  9. Risk Analysis for Public Consumption: Media Coverage of the Ginna Nuclear Reactor Accident.

    ERIC Educational Resources Information Center

    Dunwoody, Sharon; And Others

    Researchers have determined that the lay public makes risk judgments in ways that are very different from those advocated by scientists. Noting that these differences have caused considerable concern among those who promote and regulate health and safety, a study examined media coverage of the accident at the Robert E. Ginna nuclear power plant…

  10. Hollow-fiber enzyme reactor operating under nonisothermal conditions.

    PubMed

    Diano, Nadia; Grano, Valentina; Rossi, Sergio; Bencivenga, Umberto; Portaccio, Marianna; Amato, Umberto; Carfora, Francesca; Lepore, Maria; Gaeta, Francesco Saverio; Mita, Damiano Gustavo

    2004-01-01

    A hollow-fiber enzyme reactor, operating under isothermal and nonisothermal conditions, was built employing a polypropylene hollow fiber onto which beta-galactosidase was immobilized. Hexamethylenediamine and glutaraldehyde were used as spacer and coupling agent, respectively. Glucose production was studied as a function of temperature, substrate concentration, and size of the transmembrane temperature gradient. The actual average temperature differences across the polypropylene fiber, to which reference was done to evaluate the effect of the nonisothermal conditions, were calculated by means of a mathematical approach, which made it possible to know, using computer simulation, the radial and axial temperature profiles inside the bioreactor and across the membrane. Percent activity increases, proportional to the size of the temperature gradients, were found when the enzyme activities under nonisothermal conditions were compared to those measured under comparable isothermal conditions. Percent reductions of the production times, proportional to the applied temperature gradients, were also calculated. The advantage of employing nonisothermal bioreactors in biotechnological industrial process was discussed. PMID:15058990