Science.gov

Sample records for reactor dosimetry preservation

  1. The International Reactor Dosimetry File.

    Energy Science and Technology Software Center (ESTSC)

    1994-01-19

    Version 01 The International Reactor Dosimetry File (IRDF-90) contains recommended neutron cross-section data to be used for reactor neutron dosimetry by foil activation. It also contains selected recommended values for radiation damage cross-sections and benchmark neutron spectra. This library supersedes all earlier versions of IRDF.

  2. The International Reactor Dosimetry File.

    Energy Science and Technology Software Center (ESTSC)

    2008-08-07

    Version 01 The International Reactor Dosimetry File (IRDF-2002) contains recommended neutron cross-section data to be used for reactor neutron dosimetry by foil activation and subsequent neutron spectrum unfolding. It also contains selected recom�mended values for radiation damage cross-sections and benchmark neutron spectra. Two related programs available from NEADB and RSICC are: SPECTER-ANL (PSR-263) & STAY’SL (PSR-113).

  3. International Reactor Dosimetry Data.

    Energy Science and Technology Software Center (ESTSC)

    1982-06-28

    Version 00 IRDF-82 contains 620 neutron group cross sections (SAND-II format) based on the ENDF/B-V Special Purpose Dosimetry File as well as other reaction cross sections important for dosimetry applications. In addition, multigroup spectra for ten reference benchmarks are also provided.

  4. Health physics research reactor reference dosimetry

    SciTech Connect

    Sims, C.S.; Ragan, G.E.

    1987-06-01

    Reference neutron dosimetry is developed for the Health Physics Research Reactor (HPRR) in the new operational configuration directly above its storage pit. This operational change was physically made early in CY 1985. The new reference dosimetry considered in this document is referred to as the 1986 HPRR reference dosimetry and it replaces any and all HPRR reference documents or papers issued prior to 1986. Reference dosimetry is developed for the unshielded HPRR as well as for the reactor with each of five different shield types and configurations. The reference dosimetry is presented in terms of three different dose and six different dose equivalent reporting conventions. These reporting conventions cover most of those in current use by dosimetrists worldwide. In addition to the reference neutron dosimetry, this document contains other useful dosimetry-related data for the HPRR in its new configuration. These data include dose-distance measurements and calculations, gamma dose measurements, neutron-to-gamma ratios, ''9-to-3 inch'' ratios, threshold detector unit measurements, 56-group neutron energy spectra, sulfur fluence measurements, and details concerning HPRR shields. 26 refs., 11 figs., 31 tabs.

  5. Fast Reactor Technology Preservation

    SciTech Connect

    Wootan, David W.; Omberg, Ronald P.

    2008-01-11

    There is renewed worldwide interest in developing and implementing a new generation of advanced fast reactors. International cooperative efforts are underway such as the Global Nuclear Energy Partnership (GNEP). Advanced computer modeling and simulation efforts are a key part of these programs. A recognized and validated set of Benchmark Cases are an essential component of such modeling efforts. Testing documentation developed during the operation of the Fast Flux Test Facility (FFTF) provide the information necessary to develop a very useful set of Benchmark Cases.

  6. Reactor Dosimetry State of the Art 2008

    NASA Astrophysics Data System (ADS)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G

  7. Reactor Dosimetry State of the Art 2008

    NASA Astrophysics Data System (ADS)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G

  8. Reactor dosimetry and RPV life management

    SciTech Connect

    Belousov, S.; Ilieva, K.; Mitev, M.

    2011-07-01

    Reactor dosimetry (RD) is a tool that provides data for neutron fluence accumulated over the reactor pressure vessel (RPV) during the reactor operation. This information, however, is not sufficient for RPV lifetime assessment. The life management of RPV is a multidisciplinary task. To assess whether the RPV steel properties at the current stage (for actual accumulated neutron fluence) of reactor operation are still 'safe enough,' the dependence of material properties on the fluence must be known; this is a task for material science (MS). Moreover, the mechanical loading over the RPV during normal operation and accidence have to be known, as well, for evaluation, if the RPV material integrity in this loading condition and existing cracks is provided. The crack loading path in terms of stress intensity factor is carried out by structural analyses (SA). Pressure and temperature distribution over RPV used in these analyses are obtained from a thermal hydraulic (TH) calculation. The conjunction of RD and other disciplines in RPV integrity assessment is analyzed in accordance with the FFP (fitness for purpose) approach. It could help to improve the efficiency in multi-disciplinary tasks solutions. (authors)

  9. Experimental Breeder Reactor I Preservation Plan

    SciTech Connect

    Julie Braun

    2006-10-01

    Experimental Breeder Reactor I (EBR I) is a National Historic Landmark located at the Idaho National Laboratory, a Department of Energy laboratory in southeastern Idaho. The facility is significant for its association and contributions to the development of nuclear reactor testing and development. This Plan includes a structural assessment of the interior and exterior of the EBR I Reactor Building from a preservation, rather than an engineering stand point and recommendations for maintenance to ensure its continued protection.

  10. Retrospective dosimetry analyses of reactor vessel cladding samples

    SciTech Connect

    Greenwood, L. R.; Soderquist, C. Z.; Fero, A. H.

    2011-07-01

    Reactor pressure vessel cladding samples for Ringhals Units 3 and 4 in Sweden were analyzed using retrospective reactor dosimetry techniques. The objective was to provide the best estimates of the neutron fluence for comparison with neutron transport calculations. A total of 51 stainless steel samples consisting of chips weighing approximately 100 to 200 mg were removed from selected locations around the pressure vessel and were sent to Pacific Northwest National Laboratory for analysis. The samples were fully characterized and analyzed for radioactive isotopes, with special interest in the presence of Nb-93m. The RPV cladding retrospective dosimetry results will be combined with a re-evaluation of the surveillance capsule dosimetry and with ex-vessel neutron dosimetry results to form a comprehensive 3D comparison of measurements to calculations performed with 3D deterministic transport code. (authors)

  11. ASTM Standards for Reactor Dosimetry and Pressure Vessel Surveillance

    SciTech Connect

    GRIFFIN, PATRICK J.

    1999-09-14

    The ASTM standards provide guidance and instruction on how to field and interpret reactor dosimetry. They provide a roadmap towards understanding the current ''state-of-the-art'' in reactor dosimetry, as reflected by the technical community. The consensus basis to the ASTM standards assures the user of an unbiased presentation of technical procedures and interpretations of the measurements. Some insight into the types of standards and the way in which they are organized can assist one in using them in an expeditious manner. Two example are presented to help orient new users to the breadth and interrelationship between the ASTM nuclear metrology standards. One example involves the testing of a new ''widget'' to verify the radiation hardness. The second example involves quantifying the radiation damage at a pressure vessel critical weld location through surveillance dosimetry and calculation.

  12. Radiation dosimetry for quality control of food preservation and disinfestation

    NASA Astrophysics Data System (ADS)

    McLaughlin, W. L.; Miller, A.; Uribe, R. M.

    In the use of x and gamma rays and scanned electron beams to extend the shelf life of food by delay of sprouting and ripening, killing of microbes, and control of insect population, quality assurance is provided by standardized radiation dosimetry. By strategic placement of calibrated dosimeters that are sufficiently stable and reproducible, it is possible to monitor minimum and maximum radiation absorbed dose levels and dose uniformity for a given processed foodstuff. The dosimetry procedure is especially important in the commisioning of a process and in making adjustments of process parameters (e.g. conveyor speed) to meet changes that occur in product and source parameters (e.g. bulk density and radiation spectrum). Routine dosimetry methods and certain corrections of dosimetry data may be selected for the radiations used in typical food processes.

  13. EPR/PTFE dosimetry for test reactor environments

    SciTech Connect

    Vehar, D.W.; Griffin, P.J.; Quirk, T.J.

    2011-07-01

    The use of Electron Paramagnetic Resonance (EPR) spectroscopy with materials such as alanine is well established as a technique for measurement of ionizing radiation absorbed dose in photon and electron fields such as Co-60, high-energy bremsstrahlung and electron-beam fields [1]. In fact, EPR/Alanine dosimetry has become a routine transfer standard for national standards bodies such as NIST and NPL. In 1992 the Radiation Metrology Laboratory (RML) at Sandia National Laboratories implemented EPR/Alanine capabilities for use in routine and calibration activities at its Co-60 and pulsed-power facilities. At that time it also investigated the usefulness of the system for measurement of absorbed dose in the mixed neutron/photon environments of reactors such as the Sandia Pulsed Reactor and the Annular Core Research Reactor used for hardness testing of electronics. The RML concluded that the neutron response of alanine was a sufficiently high fraction of the overall dosimeter response that the resulting uncertainties in the photon dose would be unacceptably large for silicon-device testing. However, it also suggested that non-hydrogenous materials such as polytetrafluoroethylene (PTFE) would exhibit smaller neutron response and might be useful in mixed environments. Preliminary research with PTFE in photon environments indicated considerable promise, but further development was not pursued at that time. Because of renewed interest in absorbed dose measurements that could better define the individual contributions of photon and neutron components to the overall dose delivered to a test object, the RML has re-initiated the development of an EPR/PTFE dosimetry system. This effort consists of three stages: 1) Identification of PTFE materials that may be suitable for dosimetry applications. It was speculated that the inconsistency of EPR signatures in the earlier samples may have been due to variability in PTFE manufacturing processes. 2) Characterization of dosimetry in

  14. Retrospective Reactor Dosimetry with Zirconium Alloy Samples

    SciTech Connect

    Greenwood, Lawrence R.; Foster, John P.

    2009-11-01

    Retrospective measurements are routinely performed with stainless steel samples. Recent experiments have been successfully conducted using zirconium alloy samples, involving somewhat different neuron activation reactions than are normally encountered with stainless steel samples. The alloy composition consisted of nominally 1% (by weight) niobium, 1% tin, and 0.1% iron, with the balance zirconium. The activation products observed in the samples by gamma spectroscopy included Zr-95, Nb-95, Sn-113, Sb-125, Mn-54, Co-60, Nb-94, and Ta-182. The niobium was then chemically separated following ASTM procedure E1297 and the Nb-93m activities were measured by x-ray spectroscopy. The thermal neutron fluences, as determined independently by the neutron capture gamma reactions to Zr-95, Sn-113, Nb-94, and Sn/Sb-125, were in excellent agreement. The fast neutron fluences, as determined separately by the Fe-54(n,p)Mn-54 and Nb-93(n,n’)Nb-93m reactions, were also in good agreement, thus demonstrating the versatility of the retrospective dosimetry technique.

  15. RADIATION DOSIMETRY AT THE BNL HIGH FLUX BEAM REACTOR AND MEDICAL RESEARCH REACTOR.

    SciTech Connect

    HOLDEN,N.E.

    1999-09-10

    RADIATION DOSIMETRY MEASUREMENTS HAVE BEEN PERFORMED OVER A PERIOD OF MANY YEARS AT THE HIGH FLUX BEAM REACTOR (HFBR) AND THE MEDICAL RESEARCH REACTOR (BMRR) AT BROOKHAVEN NATIONAL LABORATORY TO PROVIDE INFORMATION ON THE ENERGY DISTRIBUTION OF THE NEUTRON FLUX, NEUTRON DOSE RATES, GAMMA-RAY FLUXES AND GAMMA-RAY DOSE RATES. THE MCNP PARTICLE TRANSPORT CODE PROVIDED MONTE CARLO RESULTS TO COMPARE WITH VARIOUS DOSIMETRY MEASUREMENTS PERFORMED AT THE EXPERIMENTAL PORTS, AT THE TREATMENT ROOMS AND IN THE THIMBLES AT BOTH HFBR AND BMRR.

  16. Reactor vessel fluence evaluation and dosimetry

    SciTech Connect

    Lois, L. )

    1992-01-01

    The methodology currently in use for the estimation of the fast neutron fluence to the pressure vessel (inside surface and reactor cavity) is based on discrete ordinates two-dimensional codes such as DOT or its updated version DORT. This methodology assumes a P[sub 3] scattering, an S[sub 8] quadrature approximation, and cross sections based on the ENDF/B-IV file. Associated one-dimensional codes are often used for the cross-section collapsing portion of the calculation. The neutron spectrum at the pressure vessel location of interest is estimated assuming a [sup 235]U, [sup 239]Pu, or [sup 241]Pu source spectrum or an appropriate combination thereof. The two-dimensional codes and associated methodologies were benchmarked in the early eighties using the results of the PCA and PSF Oak Ridge National Laboratory reactor experiments. The benchmarking experiments were estimated to provide an uncertainty of [approx]10%. The results of the calculations applied to a reactor were estimated to have an uncertainty of [approx]20%. This level of uncertainty was assumed in the estimation of the margin term defined in 10CFR50.61

  17. Neutron Dosimetry Tokamak Fusion Test Reactor Lithium Blanket Module

    SciTech Connect

    Tsang, F.Y.; Harker, Y.D.; Anderl, R.A.; Nigg, D.W.; Jassby, D.L.

    1986-11-01

    The Tokamak Fusion Test Reactor (TFTR) Lithium Blanket Module (LBM) program is a first-of-kind neutronics experiment involving a toroidal fusion neutron source. Qualification experiments have been conducted to develop primary measurement techniques and verify dosimetry materials that will be used to characterize the neutron environment inside and on the surfaces of the LBM. The deuterium-tritium simulation experiments utilizing a 14-MeV neutron generator and a fusion blanket mockup facility at the Idaho National Engineering Laboratory are described. Results and discussions are presented that identify the quality and limitations of the measured integral reaction data, including the minimum fluence requirement for the TFTR experiment.

  18. Dosimetry analyses of the Ringhals 3 and 4 reactor pressure vessels

    SciTech Connect

    Kulesza, J.A.; Fero, A.H.; Rouden, J.; Green, E.L.

    2011-07-01

    A comprehensive series of neutron dosimetry measurements consisting of surveillance capsules, reactor pressure vessel cladding samples, and ex-vessel neutron dosimetry has been analyzed and compared to the results of three-dimensional, cycle-specific neutron transport calculations for the Ringhals Unit 3 and Unit 4 reactors in Sweden. The comparisons show excellent agreement between calculations and measurements. The measurements also demonstrate that it is possible to perform retrospective dosimetry measurements using the {sup 93}Nb (n,n') {sup 93m}Nb reaction on samples of 18-8 austenitic stainless steel with only trace amounts of elemental niobium. (authors)

  19. THE RADIATION SAFETY INFORMATION COMPUTATIONAL CENTER: A RESOURCE FOR REACTOR DOSIMETRY SOFTWARE AND NUCLEAR DATA

    SciTech Connect

    Kirk, Bernadette Lugue

    2009-01-01

    The Radiation Safety Information Computational Center (RSICC) was established in 1963 to collect and disseminate computational nuclear technology in the form of radiation transport, shielding and safety software and corresponding nuclear cross sections. Approximately 1700 nuclear software and data packages are in the RSICC collection, and the majority are applicable to reactor dosimetry.

  20. The Radiation Safety Information Computational Center:. a Resource for Reactor Dosimetry Software and Nuclear Data

    NASA Astrophysics Data System (ADS)

    Kirk, B. L.

    2009-08-01

    The Radiation Safety Information Computational Center (RSICC) was established in 1963 to collect and disseminate computational nuclear technology in the form of radiation transport, shielding and safety software and corresponding nuclear cross sections. Approximately 1700 nuclear software and data packages are in the RSICC collection, and the majority are applicable to reactor dosimetry.

  1. A History of Dosimetry for the Advanced Gas-cooled Reactors

    NASA Astrophysics Data System (ADS)

    Shaw, Simon; Thornton, Dean

    2016-02-01

    This paper presents a summary of the methods used in the first ˜40 years of AGR neutron dosimetry and nuclear heating calculations, and the influence of the earlier Magnox reactor dosimetry programme. While the current state-of-the-art Monte Carlo methods are extremely powerful they still require very careful consideration of the quality of the input data, nuclear data validation and variance reduction techniques; in particular, this paper examines the difficulties in assuring the adequate convergence of calculations when Monte Carlo acceleration is applied in the presence of significant streaming paths through attenuating or scattering media.

  2. Jules Horowitz Reactor, a new irradiation facility: Improving dosimetry for the future of nuclear experimentation

    SciTech Connect

    Gregoire, G.; Beretz, D.; Destouches, C.

    2011-07-01

    Document available in abstract form only, full text of document follows: The Jules Horowitz Reactor (JHR) is an experimental reactor under construction at the French Nuclear Energy and Alternative Energies Commission (CEA) facility at Cadarache. It will achieve its first criticality by the end of 2014. Experiments that will be conducted at JHR will deal with fuel, cladding, and material behavior. The JHR will also produce medical radio-isotopes and doped silicon for the electronic industry. As a new irradiation facility, its instrumentation will benefit from recent improvements. Nuclear instrumentation will include reactor dosimetry, as it is a reference technique to determine neutron fluence in experimental devices or characterize irradiation locations. Reactor dosimetry has been improved with the progress of simulation tools and nuclear data, but at the same time the customer needs have increased: Experimental results must have reduced and assessed uncertainties. This is now a necessary condition to perform an experimental irradiation in a test reactor. Items improved, in the framework of a general upgrading of the dosimetry process based on uncertainty minimization, will include dosimeter, nuclear data, and modelling scheme. (authors)

  3. Dosimetry assessments for the reactor pressure vessel and core barrel in UK PWR plant

    SciTech Connect

    Thornton, D.A.; Allen, D.A.; Huggon, A.P.; Picton, D.J.; Robinson, A.T.; Steadman, R.J.; Seren, T.; Lipponen, M.; Kekki, T.

    2011-07-01

    Specimens for the Sizewell B reactor pressure vessel (RPV) inservice steels surveillance program are irradiated inside eight capsules located within the reactor pressure vessel and loaded prior to commissioning. The periodic removal of these capsules and testing of their contents provides material properties data at intervals during the lifetime of the plant. Neutron activation measurements and radiation transport calculations play an essential role in assessing the neutron exposure of the specimens and RPV. Following the most recent withdrawal, seven capsules have now been removed covering nine cycles of reactor operation. This paper summarizes the dosimetry results of the Sizewell B surveillance program obtained to date. In addition to an overview of the calculational methodology it includes a review of the measurements. Finally, it describes an extension of the methodology to provide dosimetry recommendations for the core barrel and briefly discusses the results that were obtained. (authors)

  4. VVER-440 and VVER-1000 reactor dosimetry benchmark - BUGLE-96 versus ALPAN VII.0

    SciTech Connect

    Duo, J. I.

    2011-07-01

    Document available in abstract form only, full text of document follows: Analytical results of the vodo-vodyanoi energetichesky reactor-(VVER-) 440 and VVER-1000 reactor dosimetry benchmarks developed from engineering mockups at the Nuclear Research Inst. Rez LR-0 reactor are discussed. These benchmarks provide accurate determination of radiation field parameters in the vicinity and over the thickness of the reactor pressure vessel. Measurements are compared to calculated results with two sets of tools: TORT discrete ordinates code and BUGLE-96 cross-section library versus the newly Westinghouse-developed RAPTOR-M3G and ALPAN VII.0. The parallel code RAPTOR-M3G enables detailed neutron distributions in energy and space in reduced computational time. ALPAN VII.0 cross-section library is based on ENDF/B-VII.0 and is designed for reactor dosimetry applications. It uses a unique broad group structure to enhance resolution in thermal-neutron-energy range compared to other analogous libraries. The comparison of fast neutron (E > 0.5 MeV) results shows good agreement (within 10%) between BUGLE-96 and ALPAN VII.O libraries. Furthermore, the results compare well with analogous results of participants of the REDOS program (2005). Finally, the analytical results for fast neutrons agree within 15% with the measurements, for most locations in all three mockups. In general, however, the analytical results underestimate the attenuation through the reactor pressure vessel thickness compared to the measurements. (authors)

  5. A Reactor Pressure Vessel Dosimetry Calculation Using ATTILA, An Unstructured Tetrahedral Mesh Discrete-Ordinates Code

    SciTech Connect

    Wareing, T.A.; Parsons, D.K.; Pautz, S.

    1997-12-31

    Recently, a new state-of-the-art discrete-ordinates code, ATTILA, was developed. ATTILA provides the capabilities to solve geometrically complex 3-D transport problems by using an unstructured tetrahedral mesh. In this paper we describe the application of ATTILA to a 3-D reactor pressure vessel dosimetry problem. We provide numerical results from ATTILA and the Monte Carlo code, MCNP. The results demonstrate the effectiveness and efficiency of ATTILA for such calculations.

  6. Neutron dosimetry in containment of a pressurized water reactor utilizing the Panasonic UD-802 dosimetry system

    SciTech Connect

    Kralick, S.C.

    1984-01-01

    The Panasonic UD-802 dosimeter was evaluated as a potential neutron dosimeter for use in containment of a PWR. The Panasonic UD-802 dosimeter, although designed as a beta and gamma dosimeter, is also sensitive to neutrons. UD-802 dosimeters were mounted on polyethylene phantoms and irradiated to known doses at selected locations in containment. The known neutron dose equivalents were determined based on remmeter dose rate measurements and stay times. The thermoluminescent response of the dosimeters and the known neutron dose equivalents were used to obtain a calibration factor at each location. The average calibration factor was 3.7 (unit of dosimeter response per mrem) and all calibration factors were within +-30% of this mean value. The dosimeter distance from the phantom was found to have minimal effect on the response but the system was directionally dependent, necessitating a correction in the calibration factor. The minimum significant dosimeter response was determined independent of any calibration factor. The minimum significant response of the UD-802 to neutrons is a function of the corresponding gamma exposure rate. It is concluded that the Panasonic UD-802 dosimeter can be used for neutron dosimetry in PWR containment.

  7. Criticality accident dosimetry systems: an international intercomparison at the SILENE reactor in 2002.

    PubMed

    Médioni, R; Asselineau, B; Verrey, B; Trompier, F; Itié, C; Texier, C; Muller, H; Pelcot, G; Clairand, I; Jacquet, X; Pochat, J L

    2004-01-01

    In criticality accident dosimetry and more generally for high dose measurements, special techniques are used to measure separately the gamma ray and neutron components of the dose. To improve these techniques and to check their dosimetry systems (physical and/or biological), a total of 60 laboratories from 29 countries (America, Europe, Asia) participated in an international intercomparaison, which took place in France from 9 to 21 June 2002, at the SILENE reactor in Valduc and at a pure gamma source in Fontenay-aux-Roses. This intercomparison was jointly organised by the IRSN and the CEA with the help of the NEA/OCDE and was partly supported by the European Communities. This paper describes the aim of this intercomparison, the techniques used by the participants and the two radiation sources and their characteristics. The experimental arrangements of the dosemeters for the irradiations in free air or on phantoms are given. Then the dosimetric quantities measured and reported by the participants are summarised, analysed and compared with the reference values. The present paper concerns only the physical dosimetry and essentially experiments performed on the SILENE facility. The results obtained with the biological dosimetry are published in two other papers of this issue. PMID:15353686

  8. Validating the Serpent Model of FiR 1 Triga Mk-II Reactor by Means of Reactor Dosimetry

    NASA Astrophysics Data System (ADS)

    Viitanen, Tuomas; Leppänen, Jaakko

    2016-02-01

    A model of the FiR 1 Triga Mk-II reactor has been previously generated for the Serpent Monte Carlo reactor physics and burnup calculation code. In the current article, this model is validated by comparing the predicted reaction rates of nickel and manganese at 9 different positions in the reactor to measurements. In addition, track-length estimators are implemented in Serpent 2.1.18 to increase its performance in dosimetry calculations. The usage of the track-length estimators is found to decrease the reaction rate calculation times by a factor of 7-8 compared to the standard estimator type in Serpent, the collision estimators. The differences in the reaction rates between the calculation and the measurement are below 20%.

  9. Personal neutron dosimetry at a research reactor facility.

    PubMed

    Kamenopoulou, V; Carinou, E; Stamatelatos, I E

    2001-01-01

    Individual neutron monitoring presents several difficulties due to the differences in energy response of the dosemeters. In the present study, an individual dosemeter (TLD) calibration approach is attempted for the personnel of a research reactor facility. The neutron energy response function of the dosemeter was derived using the MCNP code. The results were verified by measurements to three different neutron spectra and were found to be in good agreement. Three different calibration curves were defined for thermal, intermediate and fast neutrons. At the different working positions around the reactor, neutron spectra were defined using the Monte Carlo technique and ambient dose rate measurements were performed. An estimation of the neutrons energy is provided by the ratio of the different TLD pellets of each dosemeter in combination with the information concerning the worker's position; then the dose equivalent is deduced according to the appropriate calibration curve. PMID:11586728

  10. Neutron dosimetry in the containment of a pressurized water reactor using a neutron-sensitive beta/gamma dosimetry system

    SciTech Connect

    Kralick, S.C.; Watson, J.E. Jr.; Croslin, S.W.

    1986-06-01

    In this study the Panasonic UD-802 dosimeter was evaluated as a potential neutron dosimeter for use in the containment of a pressurized water reactor by comparing the results from the UD-802 with remmeter readings. The Panasonic UD-802 dosimeter is used routinely as a beta and gamma dosimeter but due to the natural Li and B in the thermoluminescent materials, it is also sensitive to neutrons. Since a dosimeter's response to neutrons is energy-dependent, proper calibration of the UD-802 in the environment for which it is to be used was an important consideration of the study. To calibrate the system, UD-802 dosimeters were mounted on polyethylene phantoms and irradiated to reference doses at selected locations in containment. The reference doses were determined based on remmeter dose-rate measurements and stay times. The thermoluminescent response of the dosimeters and the reference measurements were used to obtain a response ratio at each location. The average response ratio (unit of dosimeter response per millirem) was 3.7 and all response ratios were within +/-30% of this mean value. Specific characteristics of the UD-802 were also investigated, that is, the effects that dosimeter distance from the phantom and a person's movement through containment have on response. The dosimeter distance from the phantom was found to have a minimal effect on response, but the system was found to be dependent upon the angle of the phantom relative to the reactor core, necessitating a correction in the calibration factor. The overall conclusion of this study was that the Panasonic UD-802 dosimeter can be used for neutron dosimetry in containment of a pressurized water reactor.

  11. REACTOR DOSIMETRY STUDY OF THE RHODE ISLAND NUCLEAR SCIENCE CENTER.

    SciTech Connect

    HOLDEN, N.E.,; RECINIELLO, R.N.; HU, J.-P.

    2005-05-08

    The Rhode Island Nuclear Science Center (RINSC), located on the Narragansett Bay Campus of the University of Rhode Island, is a state-owned and US NRC-licensed nuclear facility constructed for educational and industrial applications. The main building of RINSC houses a two-megawatt (2 MW) thermal power critical reactor immersed in demineralized water within a shielded tank. As its original design in 1958 by the Rhode Island Atomic Energy Commission focused on the teaching and research use of the facility, only a minimum of 3.85 kg fissile uranium-235 was maintained in the fuel elements to allow the reactor to reach a critical state. In 1986 when RINSC was temporarily shutdown to start US DOE-directed core conversion project for national security reasons, all the U-Al based Highly-Enriched Uranium (HEU, 93% uranium-235 in the total uranium) fuel elements were replaced by the newly developed U{sub 3}Si{sub 2}-Al based Low Enriched Uranium (LEU, {le}20% uranium-235 in the total uranium) elements. The reactor first went critical after the core conversion was achieved in 1993, and feasibility study on the core upgrade to accommodate Boron Neutron-Captured Therapy (BNCT) was completed in 2000 [3]. The 2-MW critical reactor at RINSC which includes six beam tubes, a thermal column, a gamma-ray experimental station and two pneumatic tubes has been extensive utilized as neutron-and-photon dual source for nuclear-specific research in areas of material science, fundamental physics, biochemistry, and radiation therapy. After the core conversion along with several major system upgrade (e.g. a new 3-MW cooling tower, a large secondary piping system, a set of digitized power-level instrument), the reactor has become more compact and thus more effective to generate high beam flux in both the in-core and ex-core regions for advance research. If not limited by the manpower and operating budget in recent years, the RINSC built ''in concrete'' structure and control systems should have

  12. Radiation dosimetry at the BNL Medical Research Reactor

    SciTech Connect

    Holden, N.E.; Reciniello, R.N.; Greenberg, D.D.; Hu, J.P.

    1998-11-01

    The Medical Research Reactor, BMRR, at the Brookhaven National Laboratory, BNL, is a three megawatt, 3 MW, heterogeneous, tank-type, light water cooled and moderated, graphite reflected reactor, which was designed for biomedical studies, and became operational in 1959. It provides thermal and epithermal neutron beams suitable for research studies such as radiation therapy of various types of tumors. At the present time, the major program at BMRR is Boron Neutron Capture Therapy, BNCT. Modifications have been made to the BMRR to significantly increase the available epithermal neutron flux density to a patient in clinical trials of BNCT. The data indicate that the flux density and dose rate are concentrated in the center of the beam, the patient absorbs neutrons rather than gamma radiation and as noted previously even with the increasing flux values, gamma-ray dose received by the attending personnel has remained minimal. Flux densities in the center of the thermal port and epithermal port beams have been characterized with an agreement between the measurements and the calculations.

  13. Dosimetry aspects of the new Canadian MAPLE-X10 reactor

    SciTech Connect

    Lidstone, R.F.; Wilkin, G.B.

    1994-12-31

    Atomic Energy of Canada Limited is building the 10-MW{sub t} MAPLE-X10 reactor facility as a dedicated producer of medical and industrial radioisotopes. Dosimetry aspects of the MAPLE-X10 nuclear design include the calculated thermal and fast neutron flux distributions throughout the reactor assembly and the rate of heat generation in reactor materials and components. Examples of the resolution of design issues are also presented, such as the use of fission counters and ion chambers to provide diverse methods of detecting neutron flux levels and the use of the difference between photon and neutron signals to guard against the effects of downgrading of the heavy-water reflector. Computer codes employed in the calculations include MCNP, ONEDANT, WIMS-AECL, and 3DDT.

  14. Radiation dosimetry for NCT facilities at the Brookhaven Medical Research Reactor

    SciTech Connect

    Holden, N.E.; Hu, J.P.; Greenberg, D.D.; Reciniello, R.N.

    1998-12-31

    Brookhaven Medical Research Reactor (BMRR) is a 3 mega-watt (MW) heterogeneous, tank-type, light water cooled and moderated, graphite reflected reactor, which was designed for medical and biological studies and became operational in 1959. Over time, the BMRR was modified to provide thermal and epithermal neutron beams suitable for research studies. NCT studies have been performed at both the epithermal neutron irradiation facility (ENIF) on the east side of the BMRR reactor core and the thermal neutron irradiation facility (TNIF) on the west side of the core. Neutron and gamma-ray dosimetry performed from 1994 to the present in both facilities are described and the results are presented and discussed.

  15. Benchmark experiments for validation of reaction rates determination in reactor dosimetry

    NASA Astrophysics Data System (ADS)

    Rataj, J.; Huml, O.; Heraltova, L.; Bily, T.

    2014-11-01

    The precision of Monte Carlo calculations of quantities of neutron dosimetry strongly depends on precision of reaction rates prediction. Research reactor represents a very useful tool for validation of the ability of a code to calculate such quantities as it can provide environments with various types of neutron energy spectra. Especially, a zero power research reactor with well-defined core geometry and neutronic properties enables precise comparison between experimental and calculated data. Thus, at the VR-1 zero power research reactor, a set of benchmark experiments were proposed and carried out to verify the MCNP Monte Carlo code ability to predict correctly the reaction rates. For that purpose two frequently used reactions were chosen: He-3(n,p)H-3 and Au-197(n,γ)Au-198. The benchmark consists of response measurement of small He-3 gas filled detector in various positions of reactor core and of activated gold wires placed inside the core or to its vicinity. The reaction rates were calculated in MCNP5 code utilizing a detailed model of VR-1 reactor which was validated for neutronic calculations at the reactor. The paper describes in detail the experimental set-up of the benchmark, the MCNP model of the VR-1 reactor and provides a comparison between experimental and calculated data.

  16. Discrepancies between film and thermoluminescent dosimetry (TLD) readings at an operating power reactor

    SciTech Connect

    Quinn, D.M.

    1980-01-01

    The results of exposure measurements using film badges and thermoluminescent dosimetry (TLD) were compared at an operating nuclear power reactor. The film badge overresponded to the high-energy Nitrogen-16 gamma rays produced under power, while the TLD did not. Discussions of charged-particle equilibrium and energy dependence are included. The cause of the overresponse was determined to be the excess pair production electrons created because of the high atomic number in the lead energy-compensating shield surrounding the film and in the film itself.

  17. Major Upgrade of the Reactor Dosimetry Interpretation Methodology Used at the CEA General Principle

    NASA Astrophysics Data System (ADS)

    Destouches, C.; Gregoire, G.; Beretz, D.; Bourganel, S.; Chiron, M.

    2009-08-01

    One of the main objectives of reactor dosimetry is the determination of the physical parameters characterizing the neutron field in which test samples are irradiated. These characteristics, from neutron spectrum to reaction rates characterization are used in experimental reactors to carry out the follow-up of the irradiation and to qualify the neutron calculation used to model the experiment. In power reactors these characteristics are used for the follow-up of the predicted damages to vessel and interns. Neutron parameters are derived from the dosimeter's activities which have suitable reactions (response functions and radioactive emissions). Then, the activities are analyzed using nuclear data, neutron computation results and data characterizing the conditions of irradiation (temporal and technological data, changes of location, etc.). The current CEA interpretation process applied for industrial power reactor interpretation process presents limitations coming mainly from the calculational tools and the nuclear data knowledge available at the time this method was developed in the mid 90's. However nowadays due to, first the improvement of the neutron calculational tools, for example, a full 3D Monte Carlo reactor modeling providing reaction in a point wise format is now possible in a reasonable time, and second, recent releases of the updated international nuclear data libraries, JEFF3.1, ENDF/B-VII for transport calculation and IRDF2002 and EAF2007 for dosimetry libraries, we have been engaged in a deep renewal of the reactor dosimetry interpretation process. The mains goals of this works are to improve the modeling of the experiment and the neutron parameters calculation for each phase of interest. In addition, uncertainties associated to the derived metrics are quantified in a rigorous way using simulation methods designed to cope with the high non-linearity of the process. After a detailed presentation of the current interpretation process and its limitations

  18. Reactor Dosimetry Aspects of the Service Life Extension of the Hungarian Paks NPP

    NASA Astrophysics Data System (ADS)

    Zsolnay, Eva M.; Czifrus, Szabolcs; Fehér, Sándor; Hordósy, Gábor; Keresztúri, András; Kresz, Norbert; Oszvald, Ferenc

    2016-02-01

    The service life of the Hungarian Paks Nuclear Power Plant (NPP) will be extended from the originally planned 30 years to 50 years. To improve the reliability of the results obtained in frame of the old reactor pressure vessel (RPV) surveillance programme, new methods have been developed, and based on them, the old exposition data have been re-evaluated for all the four reactor units. At the same time, a new RPV surveillance programme has been developed and introduced, and long term irradiations have been performed to determine the radiation damage of the surveillance specimens due to the high fast neutron exposition. Neutron transport calculations have been performed with a validated neutron transport code system to determine the fast neutron exposition of the RPVs during the extended service life. The cavity dosimetry is in the introductory phase. This paper presents the new developments in the field of the RPV surveillance dosimetry and summarises the results obtained. According to the results the service life of the NPP can safely be extended for the planned 50 years.

  19. Confirmation of a realistic reactor model for BNCT dosimetry at the TRIGA Mainz

    SciTech Connect

    Ziegner, Markus; Schmitz, Tobias; Hampel, Gabriele; Khan, Rustam; Blaickner, Matthias; Palmans, Hugo; Sharpe, Peter; Böck, Helmuth

    2014-11-01

    Purpose: In order to build up a reliable dose monitoring system for boron neutron capture therapy (BNCT) applications at the TRIGA reactor in Mainz, a computer model for the entire reactor was established, simulating the radiation field by means of the Monte Carlo method. The impact of different source definition techniques was compared and the model was validated by experimental fluence and dose determinations. Methods: The depletion calculation code ORIGEN2 was used to compute the burn-up and relevant material composition of each burned fuel element from the day of first reactor operation to its current core. The material composition of the current core was used in a MCNP5 model of the initial core developed earlier. To perform calculations for the region outside the reactor core, the model was expanded to include the thermal column and compared with the previously established ATTILA model. Subsequently, the computational model is simplified in order to reduce the calculation time. Both simulation models are validated by experiments with different setups using alanine dosimetry and gold activation measurements with two different types of phantoms. Results: The MCNP5 simulated neutron spectrum and source strength are found to be in good agreement with the previous ATTILA model whereas the photon production is much lower. Both MCNP5 simulation models predict all experimental dose values with an accuracy of about 5%. The simulations reveal that a Teflon environment favorably reduces the gamma dose component as compared to a polymethyl methacrylate phantom. Conclusions: A computer model for BNCT dosimetry was established, allowing the prediction of dosimetric quantities without further calibration and within a reasonable computation time for clinical applications. The good agreement between the MCNP5 simulations and experiments demonstrates that the ATTILA model overestimates the gamma dose contribution. The detailed model can be used for the planning of structural

  20. Neutron dosimetry qualification experiments for the Tokamak Fusion Test Reactor Lithium Blanket Module program

    SciTech Connect

    Tsang, F.Y.; Harker, Y.D.; Anderi, R.A.; Nigg, D.W.; Jassby, D.L.

    1986-11-01

    The Tokamak Fusion Test Reactor (TFTR) Lithium Blanket module (LBM) program is a first-of-kind neutronics experiment involving a toroidal fusion neutron source. Qualification experiments have been conducted to develop primary measurement techniques and verify dosimetry materials that will be used to characterize the neutron environment inside and on the surfaces of the LBM. The deuterium-tritium simulation experiments utilizing a 14-MeV neutron generator and a fusion blanket mockup facility at the Idaho National Engineering Laboratory are described. Results and discussions are presented that identify the quality and limitations of the measured integral reaction data, including the minimum fluence requirement for the TFTR experiment and the use of such data in neutron spectrum adjustment and in predicting integral performance parameters, e.g., tritium production.

  1. Extension of RAPTOR-M3G to r-θ-z Geometry for Use in Reactor Dosimetry Applications

    NASA Astrophysics Data System (ADS)

    Hunter, Melissa A.; Longoni, Gianluca; Anderson, Stanwood L.

    2009-08-01

    The RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3-D Geometries) is a new deterministic radiation transport code that was originally developed for x-y-z geometry. The development of the r-θ-z version of RAPTOR-M3G and its application to determine ex-vessel neutron dosimetry responses in the cavity of a typical 2-loop pressurized water reactor is presented. The neutron dosimetry responses determined from RAPTOR-M3G and TORT 3-D r-θ-z calculations are compared to actual measured responses.

  2. Experimental simulation of personal dosimetry in production of medical radioisotopes by research reactor.

    PubMed

    Mossadegh, N; Karimian, A; Shahhosseini, E; Mohammadzadeh, A; Sheibani, Sh

    2011-09-01

    Due to their work conditions, research reactor personnel are exposed to ionising nuclear radiations. Because the absorbed dose values are different for different tissues due to variations in sensitivity, in this work personal dosimetry has been performed under normal working conditions at anatomical locations relevant to more sensitive tissues as well as for the whole body by employing a Rando phantom and thermoluminescent dosemeters (TLDs). Fifty-two TLDs-100H were positioned at high-risk organ locations such as the thyroid, eyes as well as the left breast, which was used to assess the whole-body dose in order to study the absorbed doses originating from selected locations in the vicinity of the reactor. The results have employed the tissue weighting factors based on International Commission on Radiological Protection ICRP 103 and ICRP 60 and the measured results were below the dose limits recommended by ICRP. The mean effective dose rates calculated from ICRP 103 were the following: whole body, 30.64-6.44 µSv h(-1); thyroid, 1.22-0.23 µSv h(-1); prostate, 0.085-0.045 µSv h(-1); gonads, 1.00-0.51 µSv h(-1); breast, 3.68-0.77 µSv h(-1); and eyes, 33.74-7.01 µSv h(-1). PMID:21862507

  3. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    NASA Astrophysics Data System (ADS)

    Sumantri, Indro; Purwanto, Budiyono

    2015-12-01

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.

  4. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    SciTech Connect

    Sumantri, Indro; Purwanto,; Budiyono

    2015-12-29

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.

  5. Solid-state track recorder neutron dosimetry in the Three-Mile Island Unit-2 reactor cavity

    NASA Astrophysics Data System (ADS)

    Gold, R.; Roberts, J. H.; Ruddy, F. H.; Preston, C. C.; McElroy, W. N.

    1985-04-01

    Solid state track recorder (SSTR) neutron dosimetry was conducted in the Three Mile Island Unit (TMI-2) reactor cavity (i.e., the annular gap between the pressure vessel and the biological shield) for nondestructive assessment of the fuel distribution. Two axial stringers were deployed in the annular gap with 17 SSTR dosimeters located on each stringer. SSTR experimental results reveal that neutron streaming, upward from the bottom of the reactor cavity region, dominates the observed neutron intensity. These absolute thermal neutron flux observations are consistent with the presence a significant amount of fuel debris lying at the bottom of the reactor vessel. A conservative lower bound estimated from these SSTR data implies that there are at least 2 tonnes of fuels, which is roughly 4 fuel assemblies, at the bottom of the vessel. The existence of significant neutron streaming also explains the high count rate observed with the source range monitors (SRMs) that are located in the TMI-2 reactor cavity.

  6. Fricke-gel dosimetry in epithermal or thermal neutron beams of a research reactor

    NASA Astrophysics Data System (ADS)

    Gambarini, G.; Artuso, E.; Giove, D.; Volpe, L.; Agosteo, S.; Barcaglioni, L.; Campi, F.; Garlati, L.; Pola, A.; Durisi, E.; Borroni, M.; Carrara, M.; Klupak, V.; Marek, M.; Viererbl, L.; Vins, M.; d'Errico, F.

    2015-11-01

    Fricke-xylenol-orange gel has shown noticeable potentiality for in-phantom dosimetry in epithermal or thermal neutron fields with very high fluence rate, as those characteristic of nuclear research reactors. Fricke gels in form of layers give the possibility of achieving spatial distribution of gamma dose, fast neutron dose and dose due to charged particles generated by thermal neutron reactions. The thermal neutron fluence has been deduced from the dose coming from the charge particles emitted by neutron reactions with the isotope 10B. Some measurements have been performed for improving the information on the relative sensitivity of Fricke gel dosimeters to the particles produced by 10B reactions, because at present the precision of dose evaluations is limited by the scanty knowledge about the dependence of the dosimeter sensitivity on the radiation LET. For in-air measurements, the dosimeter material can produce an enhancement of thermal neutron fluence. Measurements and Monte Carlo calculations have been developed to investigate the importance of this effect.

  7. a New ENDF/B-VII.0 Based Multigroup Cross-Section Library for Reactor Dosimetry

    NASA Astrophysics Data System (ADS)

    Alpan, F. A.; Anderson, S. L.

    2009-08-01

    The latest of the ENDF/B libraries, ENDF/B-VII.0 was released in December 2006. In this paper, the ENDF/B-VII.O evaluations were used in generating a new coupled neutron/gamma multigroup library having the same group structure of VITAMIN-B6, i.e., the 199-neutron, 42-gamma group library. The new library was generated utilizing NJOY99.259 for pre-processing and the AMPX modules for post-processing of cross sections. An ENDF/B-VI.3 based VITAMIN-B6-like library was also generated. The fine-group libraries and the ENDF/B-VI.3 based 47-neutron, 20-gamma group BUGLE-96 library were used with the discrete ordinates code DORT to obtain a three-dimensional synthesized flux distribution from r, r-θ, and r-z models for a standard Westinghouse 3-loop design reactor. Reaction rates were calculated for ex-vessel neutron dosimetry containing 63Cu(n,α)60Co, 46Ti(n,p)46Sc, 54Fe(n,P)54Mn, 58Ni(n,P)58Co, 238U(n,f)137Cs, 237Np(n,f)137Cs, and 59Co(n,γ)60Co (bare and cadmium covered) reactions. Results were compared to measurements. In comparing the 199-neutron, 42-gamma group ENDF/B-VI.3 and ENDF/B-VII.O libraries, it was observed that the ENDF/B-VI.3 based library results were in better agreement with measurements. There is a maximum difference of 7% (for the 63Cu(n,α)60Co reaction rate calculation) between ENDF/B-VI.3 and ENDF/B-VII.O. Differences between ENDF/B-VI.3 and ENDF/B-VII.O libraries are due to 16O, 1H, 90Zr, 91Zr, 92Zr, 238U, and 239Pu evaluations. Both ENDF/B-VI.3 and ENDF/B-VII.O library calculated reaction rates are within 20% of measurement and meet the criterion specified in the U. S. Nuclear Regulatory Commission Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence."

  8. Collaborative Physical and Biological Dosimetry Studies for Neutron Capture Therapy at the RA-1 Research Reactor Facility

    SciTech Connect

    David W. Nigg; Amanda E. Schwint; John K. Hartwell; Elisa M. Heber; Veronica Trivillin; Jorge Castillo; Luis Wentzeis; Patrick Sloan; Charles A. Wemple

    2004-10-01

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminiscent dosimeters to characterize the BNCT irradiation facility developed at the RA-1 research reactor operated by the Argentine National Atomic Energy Commission in Buenos Aires. Some biological scoping irradiations have also been completed using a small-animal (hamster) oral mucosa tumor model. Results indicate that the RA-1 neutron source produces useful dose rates but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications.

  9. Collaborative Physical and Biological Dosimetry Studies for Neutron Capture Therapy at the RA-1 Research Reactor Facility

    SciTech Connect

    Nigg, D.W.; Schwint, A.E.; Hartwell, J.K.; Heber, E.M.; Trivillin, V.; Castillo, J.; Wentzeis, L.; Sloan, P.; Wemple, C.A.

    2004-10-04

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminiscent dosimeters to characterize the BNCT irradiation facility developed at the RA-1 research reactor operated by the Argentine National Atomic Energy Commission in Buenos Aires. Some biological scoping irradiations have also been completed using a small-animal (hamster) oral mucosa tumor model. Results indicate that the RA-1 neutron source produces useful dose rates but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications.

  10. Sandia National Laboratories results for the 2010 criticality accident dosimetry exercise, at the CALIBAN reactor, CEA Valduc France.

    SciTech Connect

    Ward, Dann C.

    2011-09-01

    This document describes the personal nuclear accident dosimeter (PNAD) used by Sandia National Laboratories (SNL) and presents PNAD dosimetry results obtained during the Nuclear Accident Dosimeter Intercomparison Study held 20-23 September, 2010, at CEA Valduc, France. SNL PNADs were exposed in two separate irradiations from the CALIBAN reactor. Biases for reported neutron doses ranged from -15% to +0.4% with an average bias of -7.7%. PNADs were also exposed on the back side of phantoms to assess orientation effects.

  11. Reactor Dosimetry Applications Using RAPTOR-M3G:. a New Parallel 3-D Radiation Transport Code

    NASA Astrophysics Data System (ADS)

    Longoni, Gianluca; Anderson, Stanwood L.

    2009-08-01

    The numerical solution of the Linearized Boltzmann Equation (LBE) via the Discrete Ordinates method (SN) requires extensive computational resources for large 3-D neutron and gamma transport applications due to the concurrent discretization of the angular, spatial, and energy domains. This paper will discuss the development RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries), a new 3-D parallel radiation transport code, and its application to the calculation of ex-vessel neutron dosimetry responses in the cavity of a commercial 2-loop Pressurized Water Reactor (PWR). RAPTOR-M3G is based domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architectures. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor, yielding an efficient solution methodology for large 3-D problems. Measured neutron dosimetry responses in the reactor cavity air gap will be compared to the RAPTOR-M3G predictions. This paper is organized as follows: Section 1 discusses the RAPTOR-M3G methodology; Section 2 describes the 2-loop PWR model and the numerical results obtained. Section 3 addresses the parallel performance of the code, and Section 4 concludes this paper with final remarks and future work.

  12. Solid-state track recorder neutron dosimetry in the Three-Mile Island Unit-2 reactor cavity

    SciTech Connect

    Gold, R.; Roberts, J.H.; Ruddy, F.H.; Preston, C.C.; McElroy, W.N.

    1985-04-01

    Solid-state track recorder (SSTR) neutron dosimetry has been conducted in the Three-Mile Island Unit (TMI-2) reactor cavity (i.e., the annular gap between the pressure vessel and the biological shield) for nondestructive assessment of the fuel distribution. Two axial stringers were deployed in the annular gap with 17 SSTR dosimeters located on each stringer. SSTR experimental results reveal that neutron streaming, upward from the bottom of the reactor cavity region, dominates the observed neutron intensity. These absolute thermal neutron flux observations are consistent with the presence of a significant amount of fuel debris lying at the bottom of the reactor vessel. A conservative lower bound estimated from these SSTR data implies that there are at least 2 tonnes of fuel, which is roughly 4 fuel assemblies, at the bottom of the vessel. The existence of significant neutron streaming also explains the high count rate observed with the source range monitors (SRMs) that are located in the TMI-2 reactor cavity.

  13. The ENEA criticality accident dosimetry system: a contribution to the 2002 international intercomparison at the SILENE reactor.

    PubMed

    Gualdrini, G; Bedogni, R; Fantuzzi, E; Mariotti, F

    2004-01-01

    The present paper summarises the activity carried out at the ENEA Radiation Protection Institute for updating the methodologies employed for the evaluation of the neutron and photon dose to the exposed workers in case of a criticality accident, in the framework of the 'International Intercomparison of Criticality Accident Dosimetry Systems' (Silène reactor, IRSN-CEA-Valduc June 2002). The evaluation of the neutron spectra and the neutron dosimetric quantities relies on activation detectors and on unfolding algorithms. Thermoluminescent detectors are employed for the gamma dose measurement. The work is aimed at accurately characterising the measurement system and, at the same time, testing the algorithms. Useful spectral information were included, based on Monte Carlo simulations, to take into account the potential accident scenarios of practical interest. All along this exercise intercomparison a particular attention was devoted to the 'traceability' of all the experimental and computational parameters and therefore, aimed at an easy treatment by the user. PMID:15353692

  14. Neutron spectrum effect on pressure vessel embrittlement: Dosimetry and qualification of irradiation locations in OSIRIS and SILOE reactors

    SciTech Connect

    Alberman, A.; Bourdet, L.; Carcreff, H.; Beretz, D.

    1994-12-31

    Two irradiation experiments have been undertaken in OSIRIS (Saclay) and SILOE (Grenoble) reactors, in order to establish the correlation between the embrittlement of pressure vessel steels and neutron spectrum. Target fluence is 0.1 dpa for both experiments. This damage fluence corresponds to a fluence of 7.5 10{sup 19} n.cm{sup {minus}2} E > 1 MeV (7.5 10{sup 15} n.m{sup {minus}2}) in the case of a well moderated light water spectrum, but only 45 10{sup 19} n.cm{sup {minus}2} in the case of the specially designed SILOE irradiation location. One irradiation run is now completed, the second one is underway. This paper presents the experimental dosimetry data and irradiation parameters obtained in the preliminary qualification program, needed to assess this damage correlation.

  15. RADIATION DOSIMETRY OF THE PRESSURE VESSEL INTERNALS OF THE HIGH FLUX BEAM REACTOR.

    SciTech Connect

    HOLDEN,N.E.; RECINIELLO,R.N.; HU,J.P.; RORER,D.C.

    2002-08-18

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, both measurements and calculations of the decay gamma-ray dose rate have been performed for the reactor pressure vessel and vessel internal structures which included the upper and lower thermal shields, the transition plate, and the control rod blades. The measurements were made using Red Perspex{trademark} polymethyl methacrylate high-level film dosimeters, a Radcal ''peanut'' ion chamber, and Eberline's high-range ion chamber. To compare with measured gamma-ray dose rate, the Monte Carlo MCNP code and geometric progressive Microshield code were used to model the gamma transport and dose buildup.

  16. Radiation Dosimetry of the Pressure Vessel Internals of the High Flux Beam Reactor

    NASA Astrophysics Data System (ADS)

    Holden, Norman E.; Reciniello, Richard N.; Hu, Jih-Perng; Rorer, David C.

    2003-06-01

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, both measurements and calculations of the decay gamma-ray dose rate have been performed for the reactor pressure vessel and vessel internal structures which included the upper and lower thermal shields, the Transition Plate, and the Control Rod blades. The measurements were made using Red Perspex™ polymethyl methacrylate high-level film dosimeters, a Radcal "peanut" ion chamber, and Eberline's high-range ion chamber. To compare with measured gamma-ray dose rates, the Monte Carlo MCNP code and geometric progressive MicroShield code were used to model the gamma-ray transport and dose buildup.

  17. Neutron dosimetry and damage calculations for the TRIGA MARK-II reactor in Vienna

    NASA Astrophysics Data System (ADS)

    Weber, H. W.; Böck, H.; Unfried, E.; Greenwood, L. R.

    1986-02-01

    In order to improve the source characterization of the reactor, especially for recent irradiation experiments in the central irradiation thimble, neutron activation experiments were made on 16 nuclides and the neutron flux spectrum was adjusted using the computer code STAY'SL. The results for the total, thermal and fast neutron flux density at a reactor power of 250 kW are as follows: 2.1 × 10 17, 6.1 × 10 16 ( E < 0.55 eV), 7.6 × 10 16 ( E > 0.1 MeV) and 4.0 × 10 16 ( E > 1 MeV) m -2 s -1. respectively. Calculated damage energy cross sections and gas production rates are presented for selected elements.

  18. Neutron spectrometry and dosimetry study at two research nuclear reactors using Bonner sphere spectrometer (BSS), rotational spectrometer (ROSPEC) and cylindrical nested neutron spectrometer (NNS).

    PubMed

    Atanackovic, J; Matysiak, W; Hakmana Witharana, S S; Aslam, I; Dubeau, J; Waker, A J

    2013-01-01

    Neutron spectrometry and subsequent dosimetry measurements were undertaken at the McMaster Nuclear Reactor (MNR) and AECL Chalk River National Research Universal (NRU) Reactor. The instruments used were a Bonner sphere spectrometer (BSS), a cylindrical nested neutron spectrometer (NNS) and a commercially available rotational proton recoil spectrometer. The purposes of these measurements were to: (1) compare the results obtained by three different neutron measuring instruments and (2) quantify neutron fields of interest. The results showed vastly different neutron spectral shapes for the two different reactors. This is not surprising, considering the type of the reactors and the locations where the measurements were performed. MNR is a heavily shielded light water moderated reactor, while NRU is a heavy water moderated reactor. The measurements at MNR were taken at the base of the reactor pool, where a large amount of water and concrete shielding is present, while measurements at NRU were taken at the top of the reactor (TOR) plate, where there is only heavy water and steel between the reactor core and the measuring instrument. As a result, a large component of the thermal neutron fluence was measured at MNR, while a negligible amount of thermal neutrons was measured at NRU. The neutron ambient dose rates at NRU TOR were measured to be between 0.03 and 0.06 mSv h⁻¹, while at MNR, these values were between 0.07 and 2.8 mSv h⁻¹ inside the beam port and <0.2 mSv h⁻¹ between two operating beam ports. The conservative uncertainty of these values is 15 %. The conservative uncertainty of the measured integral neutron fluence is 5 %. It was also found that BSS over-responded slightly due to a non-calibrated response matrix. PMID:23019598

  19. Local Neutron Flux Distribution Measurements by Wire-Dosimetry in the AMMON Experimental Program in the EOLE Reactor

    NASA Astrophysics Data System (ADS)

    Gruel, A.; Di Salvo, J.; Roche, A.; Girard, J.-M.; Philibert, H.; Bonora, J.; Ledoux, J.-F.; Morel, C.; Lecluze, A.; Foucras, A.; Vaglio-Gaudard, C.; Colombier, A.-C.

    2016-02-01

    Dosimetry measurements were carried out during the AMMON experimental program, in the EOLE facility. Al-0.1 wt% Au wires were positioned along curved fuel plates of JHR-type assemblies to investigate the azimuthal and axial gold capture rate profiles, directly linked to the thermal and epithermal flux. After irradiation, wires were cut into small segments (a few mm), and the gold capture rate of each part was measured by gamma spectrometry on the MADERE platform. This paper presents results in the "hafnium" configuration, and more specifically the azimuthal flux profile characterization. The final uncertainty on each measured wire lies below 1% (at 2 standard deviations). Experimental profiles are in a good agreement against Monte Carlo calculations, and the 4% capture rate increase at the plate edge is well observed. The flux dissymmetry due to assembly position in the core is also measured, and shows a 10% discrepancy between the two edges of the plate.

  20. Computational dosimetry

    SciTech Connect

    Siebert, B.R.L.; Thomas, R.H.

    1996-01-01

    The paper presents a definition of the term ``Computational Dosimetry`` that is interpreted as the sub-discipline of computational physics which is devoted to radiation metrology. It is shown that computational dosimetry is more than a mere collection of computational methods. Computational simulations directed at basic understanding and modelling are important tools provided by computational dosimetry, while another very important application is the support that it can give to the design, optimization and analysis of experiments. However, the primary task of computational dosimetry is to reduce the variance in the determination of absorbed dose (and its related quantities), for example in the disciplines of radiological protection and radiation therapy. In this paper emphasis is given to the discussion of potential pitfalls in the applications of computational dosimetry and recommendations are given for their avoidance. The need for comparison of calculated and experimental data whenever possible is strongly stressed.

  1. Application of dosimetry measurements to analyze the neutron activation of a stainless steel sample in a training nuclear reactor

    NASA Astrophysics Data System (ADS)

    Ródenas, J.; Gallardo, S.; Weirich, F.; Hansen, W.

    2014-11-01

    All materials present in the core of a nuclear reactor are activated by neutron irradiation. The activity so generated produces a dose around the material. This dose is a potential risk for workers in the surrounding area when materials are withdrawn from the reactor. Therefore, it is necessary to assess the activity generated and the dose produced. In previous works, neutron activation of control rods and doses around the storage pool where they are placed have been calculated for a Boiling Water Reactor using the MCNP5 code based on the Monte Carlo method. Most of the activation is produced indeed in stainless steel components of the nuclear reactor core not only control rods. In this work, a stainless steel sample is irradiated in the Training Reactor AKR-2 of the Technical University Dresden. Dose measurements around the sample have been performed for different times after the irradiation. Experimental dosimetric values are compared with results of Monte Carlo simulation of the irradiation. Comparison shows a good agreement. Hence, the activation Monte Carlo model can be considered as validated.

  2. Epid Dosimetry

    NASA Astrophysics Data System (ADS)

    Greer, Peter B.; Vial, Philip

    2011-05-01

    Electronic portal imaging devices (EPIDs) were introduced originally for patient position verification. The idea of using EPIDs for dosimetry was realised in the 1980s. Little was published on the topic until the mid 1990's, when the interest in EPIDs for dosimetry increased rapidly and continues to grow. The increasing research on EPID dosimetry coincided with the introduction of intensity modulated radiation therapy (IMRT). EPIDs are well suited to IMRT dosimetry because they are high resolution, two-dimensional (2D) digital detectors. They are also pre-existing on almost all modern linear accelerators. They generally show a linear response to increasing dose. Different types of EPIDs have been clinically implemented, and these have been described in several review papers. The current generation of commercially available EPIDs are indirect detection active matrix flat panel imagers, also known as amorphous silicon (a-Si) EPIDs. Disadvantages of a-Si EPIDs for dosimetry include non-water equivalent construction materials, and the energy sensitivity and optical scatter of the phosphor scintillators used to create optical signal from the megavoltage beam. This report discusses current knowledge regarding a-Si EPIDs for dosimetry.

  3. Epid Dosimetry

    SciTech Connect

    Greer, Peter B.; Vial, Philip

    2011-05-05

    Electronic portal imaging devices (EPIDs) were introduced originally for patient position verification. The idea of using EPIDs for dosimetry was realised in the 1980s. Little was published on the topic until the mid 1990's, when the interest in EPIDs for dosimetry increased rapidly and continues to grow. The increasing research on EPID dosimetry coincided with the introduction of intensity modulated radiation therapy (IMRT). EPIDs are well suited to IMRT dosimetry because they are high resolution, two-dimensional (2D) digital detectors. They are also pre-existing on almost all modern linear accelerators. They generally show a linear response to increasing dose. Different types of EPIDs have been clinically implemented, and these have been described in several review papers. The current generation of commercially available EPIDs are indirect detection active matrix flat panel imagers, also known as amorphous silicon (a-Si) EPIDs. Disadvantages of a-Si EPIDs for dosimetry include non-water equivalent construction materials, and the energy sensitivity and optical scatter of the phosphor scintillators used to create optical signal from the megavoltage beam. This report discusses current knowledge regarding a-Si EPIDs for dosimetry.

  4. (Biological dosimetry)

    SciTech Connect

    Preston, R.J.

    1990-12-17

    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  5. Fourth Personnel Dosimetry Intercomparison Study

    SciTech Connect

    Dickson, H.W.

    1980-02-01

    The fourth Personnel Dosimetry Intercomparison Study was held at the Oak Ridge National Laboratory's Dosimetry Applications Research Facility during March 15-23, 1978. The Health Physics Research Reactor (HPRR) used unshielded, with a 12-cm-thick Lucite shield, a 20-cm-thick concrete shield, or a 5-cm-thick steel and 15-cm-thick concrete shield, and provided four neutron and gamma-ray spectra. Then the dose was calculated based on the HPRR neutron spectra and dose conversion factors which had been determined previously for the four spectra. The results of these personnel dosimetry intercomparison studies reveal that estimates of dose equivalent vary over a wide range. The standard deviation of the mean of participants data for gamma measurements was in the range of 29 to 43%; for neutrons it was 57 to 188%. (PCS)

  6. Neutron personnel dosimetry

    SciTech Connect

    Griffith, R.V.

    1981-06-16

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments. (ACR)

  7. Neutron dosimetry

    DOEpatents

    Quinby, Thomas C.

    1976-07-27

    A method of measuring neutron radiation within a nuclear reactor is provided. A sintered oxide wire is disposed within the reactor and exposed to neutron radiation. The induced radioactivity is measured to provide an indication of the neutron energy and flux within the reactor.

  8. Nuclear accident dosimetry intercomparison studies.

    PubMed

    Sims, C S

    1989-09-01

    Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shielded spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry. PMID:2777549

  9. Radiation dosimetry.

    PubMed Central

    Cameron, J

    1991-01-01

    This article summarizes the basic facts about the measurement of ionizing radiation, usually referred to as radiation dosimetry. The article defines the common radiation quantities and units; gives typical levels of natural radiation and medical exposures; and describes the most important biological effects of radiation and the methods used to measure radiation. Finally, a proposal is made for a new radiation risk unit to make radiation risks more understandable to nonspecialists. PMID:2040250

  10. Path forward for dosimetry cross sections

    SciTech Connect

    Griffin, P.J.; Peters, C.D.

    2011-07-01

    In the 1980's the dosimetry community embraced the need for a high fidelity quantification of uncertainty in nuclear data used for dosimetry applications. This led to the adoption of energy-dependent covariance matrices as the accepted manner of quantifying the uncertainty data. The trend for the dosimetry community to require high fidelity treatment of uncertainty estimates has continued to the current time where requirements on nuclear data are codified in standards such as ASTM E 1018. This paper surveys the current state of the dosimetry cross sections and investigates the quality of the current dosimetry cross section evaluations by examining calculated-to-experimental ratios in neutron benchmark fields. In recent years more nuclear-related technical areas are placing an emphasis on uncertainty quantification. With the availability of model-based cross sections and covariance matrices produced by nuclear data codes, some nuclear-related communities are considering the role these covariance matrices should play. While funding within the dosimetry community for cross section evaluations has been very meager, other areas, such as the solar-related astrophysics community and the US Nuclear Criticality Safety Program, have been supporting research in the area of neutron cross sections. The Cross Section Evaluation Working Group (CSEWG) is responsible for the creation and maintenance of the ENDF/B library which has been the mainstay for the reactor dosimetry community. Given the new trends in cross section evaluations, this paper explores the path forward for the US nuclear reactor dosimetry community and its use of the ENDF/B cross-sections. The major concern is maintenance of the sufficiency and accuracy of the uncertainty estimate when used for dosimetry applications. The two major areas of deficiency in the proposed ENDF/B approach are: 1) the use of unrelated covariance matrices in ENDF/B evaluations and 2) the lack of 'due consideration' of experimental data

  11. Neutron dosimetry and radiation damage calculations for HFBR

    SciTech Connect

    Greenwood, L.R.; Ratner, R.T.

    1998-03-01

    Neutron dosimetry measurements have been conducted for various positions of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) in order to measure the neutron flux and energy spectra. Neutron dosimetry results and radiation damage calculations are presented for positions V10, V14, and V15.

  12. Ex-vessel neutron dosimetry analysis for westinghouse 4-loop XL pressurized water reactor plant using the RadTrack{sup TM} Code System with the 3D parallel discrete ordinates code RAPTOR-M3G

    SciTech Connect

    Chen, J.; Alpan, F. A.; Fischer, G.A.; Fero, A.H.

    2011-07-01

    Traditional two-dimensional (2D)/one-dimensional (1D) SYNTHESIS methodology has been widely used to calculate fast neutron (>1.0 MeV) fluence exposure to reactor pressure vessel in the belt-line region. However, it is expected that this methodology cannot provide accurate fast neutron fluence calculation at elevations far above or below the active core region. A three-dimensional (3D) parallel discrete ordinates calculation for ex-vessel neutron dosimetry on a Westinghouse 4-Loop XL Pressurized Water Reactor has been done. It shows good agreement between the calculated results and measured results. Furthermore, the results show very different fast neutron flux values at some of the former plate locations and elevations above and below an active core than those calculated by a 2D/1D SYNTHESIS method. This indicates that for certain irregular reactor internal structures, where the fast neutron flux has a very strong local effect, it is required to use a 3D transport method to calculate accurate fast neutron exposure. (authors)

  13. Cross sections required for FMIT dosimetry

    SciTech Connect

    Gold, R.; McElroy, W.N.; Lippincott, E.P.; Mann, F.M.; Oberg, D.L.; Roberts, J.H.; Ruddy, F.H.

    1980-05-02

    The Fusion Materials Irradiation Test (FMIT) facility, currently under construction, is designed to produce a high flux of high energy neutrons for irradiation effects experiments on fusion reactor materials. Characterization of the flux-fluence-spectrum in this rapidly varying neutron field requires adaptation and extension of currently available dosimetry techniques. This characterization will be carried out by a combination of active, passive, and calculational dosimetry. The goal is to provide the experimenter with accurate neutron flux-fluence-spectra at all positions in the test cell. Plans have been completed for a number of experimental dosimetry stations and provision for these facilities has been incorporated into the FMIT design. Overall needs of the FMIT irradiation damage program delineate goal accuracies for dosimetry that, in turn, create new requirements for high energy neutron cross section data. Recommendations based on these needs have been derived for required cross section data and accuracies.

  14. Nuclear Decay Data for the International Reactor Dosimetry Library for Fission and Fusion (IRDFF): Updated Evaluations of the Half-Lives and Gamma Ray Intensities

    NASA Astrophysics Data System (ADS)

    Chechev, Valery P.; Kuzmenko, Nikolay K.

    2016-02-01

    Updated evaluations of the half-lives and prominent gamma ray intensities have been presented for 20 radionuclides - dosimetry reaction residuals. The new values of these decay characteristics recommended for the IRDFF library were obtained using the approaches and methodology adopted by the working group of the Decay Data Evaluation Project (DDEP) cooperation. The experimental data published up to 2014 were taken into account in updated evaluations. The list of radionuclides includes 3H, 18F, 22Na, 24Na, 46Sc, 51Cr, 54Mn, 59Fe, 57Co, 60Co, 57Ni, 64Cu, 88Y, 132Te, 131I, 140Ba, 140La, 141Ce, 182Ta, 198Au.

  15. Fifth personnel dosimetry intercomparison study

    SciTech Connect

    Sims, C.S.

    1980-02-01

    The fifth Personnel Dosimetry Intercomparison Study (PDIS) was conducted at the Oak Ridge National Laboratory's (ORNL) Dosimetry Applications Research (DOSAR) facility on March 20-22, 1979. This study is the latest PDIS in the continuing series started at the DOSAR facility in 1974. The PDIS is a three day study, typically in March, where personnel dosimeters are mailed to the DOSAR facility, exposed to a range of low-level neutron radiation doses (1 to 15 mSv or equivalently, 100 to 1500 mrem) and neutron-to-gamma ratios (1:1-10:1) using the Health Physics Research Reactor (HPRR) as the radiation source, and returned to the participants for evaluation. This report is a summary and analysis of the results reported by the various participants. The participants are able to intercompare their results with those of others who made dose measurements under identical experimental conditions.

  16. Neutron personnel dosimetry intecomparison studies

    SciTech Connect

    Sims, C.S.

    1991-01-01

    The Dosimetry Applications Research (DOSAR) Group at the Oak Ridge National Laboratory (ORNL) has conducted sixteen Neutron Personnel Dosimetry Intercomparison Studies (PDIS) since 1974. During these studies dosimeters are mailed to DOSAR, exposed to low-level (typically in the 0.3 -- 5.0 mSv range) neutron dose equivalents in a variety of mixed neutron-gamma radiation fields, and then returned to the participants for evaluation. The Health Physics Research Reactor (HPRR) was used as the primary radiation source in PDIS 1--12 and radioisotopic neutron sources at DOSAR's Radiation Calibration Laboratory (RADCAL) were mainly used, along with sources and accelerators at cooperating institutions, in PDIS 13--16. Conclusions based on 13,560 measurements made by 146 different participating organizations (102 - US) are presented.

  17. REACTOR

    DOEpatents

    Szilard, L.

    1963-09-10

    A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)

  18. REACTOR

    DOEpatents

    Christy, R.F.

    1961-07-25

    A means is described for co-relating the essential physical requirements of a fission chain reaction in order that practical, compact, and easily controllable reactors can be built. These objects are obtained by employing a composition of fissionsble isotope and moderator in fluid form in which the amount of fissionsble isotcpe present governs the reaction. The size of the reactor is no longer a critical factor, the new criterion being the concentration of the fissionable isotope.

  19. Personnel neutron dosimetry

    SciTech Connect

    Hankins, D.

    1982-04-01

    This edited transcript of a presentation on personnel neutron discusses the accuracy of present dosimetry practices, requirements, calibration, dosemeter types, quality factors, operational problems, and dosimetry for a criticality accident. 32 figs. (ACR)

  20. REACTOR

    DOEpatents

    Roman, W.G.

    1961-06-27

    A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

  1. REACTORS

    DOEpatents

    Spitzer, L. Jr.

    1961-10-01

    Thermonuclear reactors, methods, and apparatus are described for controlling and confining high temperature plasma. Main axial confining coils in combination with helical windings provide a rotational transform that avoids the necessity of a figure-eight shaped reactor tube. The helical windings provide a multipolar helical magnetic field transverse to the axis of the main axial confining coils so as to improve the effectiveness of the confining field by counteracting the tendency of the more central lines of force in the stellarator tube to exchange positions with the magnetic lines of force nearer the walls of the tube. (AEC)

  2. SNL RML recommended dosimetry cross section compendium

    SciTech Connect

    Griffin, P.J.; Kelly, J.G.; Luera, T.F.; VanDenburg, J.

    1993-11-01

    A compendium of dosimetry cross sections is presented for use in the characterization of fission reactor spectrum and fluence. The contents of this cross section library are based upon the ENDF/B-VI and IRDF-90 cross section libraries and are recommended as a replacement for the DOSCROS84 multigroup library that is widely used by the dosimetry community. Documentation is provided on the rationale for the choice of the cross sections selected for inclusion in this library and on the uncertainty and variation in cross sections presented by state-of-the-art evaluations.

  3. REACTOR

    DOEpatents

    Spitzer, L. Jr.

    1962-01-01

    The system conteraplates ohmically heating a gas to high temperatures such as are useful in thermonuclear reactors of the stellarator class. To this end the gas is ionized and an electric current is applied to the ionized gas ohmically to heat the gas while the ionized gas is confined to a central portion of a reaction chamber. Additionally, means are provided for pumping impurities from the gas and for further heating the gas. (AEC)

  4. Thin film tritium dosimetry

    DOEpatents

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  5. Chemical dosimetry system for criticality accidents.

    PubMed

    Miljanić, Saveta; Ilijas, Boris

    2004-01-01

    Ruder Bosković Institute (RBI) criticality dosimetry system consists of a chemical dosimetry system for measuring the total (neutron + gamma) dose, and a thermoluminescent (TL) dosimetry system for a separate determination of the gamma ray component. The use of the chemical dosemeter solution chlorobenzene-ethanol-trimethylpentane (CET) is based on the radiolytic formation of hydrochloric acid, which protonates a pH indicator, thymolsulphonphthalein. The high molar absorptivity of its red form at 552 nm is responsible for a high sensitivity of the system: doses in the range 0.2-15 Gy can be measured. The dosemeter has been designed as a glass ampoule filled with the CET solution and inserted into a pen-shaped plastic holder. For dose determinations, a newly constructed optoelectronic reader has been used. The RBI team took part in the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002, with the CET dosimetry system. For gamma ray dose determination TLD-700 TL detectors were used. The results obtained with CET dosemeter show very good agreement with the reference values. PMID:15353694

  6. Reactor

    DOEpatents

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  7. Preservation Environments

    NASA Technical Reports Server (NTRS)

    Moore, Reagan W.

    2004-01-01

    The long-term preservation of digital entities requires mechanisms to manage the authenticity of massive data collections that are written to archival storage systems. Preservation environments impose authenticity constraints and manage the evolution of the storage system technology by building infrastructure independent solutions. This seeming paradox, the need for large archives, while avoiding dependence upon vendor specific solutions, is resolved through use of data grid technology. Data grids provide the storage repository abstractions that make it possible to migrate collections between vendor specific products, while ensuring the authenticity of the archived data. Data grids provide the software infrastructure that interfaces vendor-specific storage archives to preservation environments.

  8. International intercomparison for criticality dosimetry: the case of biological dosimetry.

    PubMed

    Roy, L; Buard, V; Delbos, M; Durand, V; Paillole, N; Grégoire, E; Voisin, P

    2004-01-01

    The Institute of Radiation Protection and Nuclear Safety (IRSN) organized a biological dosimetry international intercomparison with the purpose of comparing (i) dicentrics yield produced in human lymphocytes; (ii) the gamma and neutron dose estimate according to the corresponding laboratory calibration curve. The experimental reactor SILENE was used with different configurations: bare source 4 Gy, lead shield 1 and 2 Gy and a 60Co source 2 Gy. An increasing variation of dicentric yield per cell was observed between participants when there were more damages in the samples. Doses were derived from the observed dicentric rates according to the dose-effect relationship provided by each laboratory. Differences in dicentric rate values are more important than those in the corresponding dose values. The doses obtained by the participants were found to be in agreement with the given physical dose within 20%. The evaluation of the respective gamma and neutron dose was achieved only by four laboratories, with some small variations among them. PMID:15353693

  9. Urine Preservative

    NASA Technical Reports Server (NTRS)

    Smith, Scott M. (Inventor); Nillen, Jeannie (Inventor)

    2001-01-01

    Disclosed is CPG, a combination of a chlorhexidine salt (such as chlorhexidine digluconate, chlorhexidine diacetate, or chlorhexidine dichloride) and n-propyl gallate that can be used at ambient temperatures as a urine preservative.

  10. Methodology of Fuel Burn Up Fitting in VVER-1000 Reactor Core by Using New Ex-Vessel Neutron Dosimetry and In-Core Measurements and its Application for Routine Reactor Pressure Vessel Fluence Calculations

    NASA Astrophysics Data System (ADS)

    Borodkin, Pavel; Borodkin, Gennady; Khrennikov, Nikolay

    2016-02-01

    Paper describes the new approach of fitting axial fuel burn-up patterns in peripheral fuel assemblies of VVER-1000 type reactors, on the base of ex-core neutron leakage measurements, neutron-physical calculations and in-core SPND measured data. The developed approach uses results of new ex-vessel measurements on different power units through different reactor cycles and their uncertainties to clear the influence of a fitted fuel burn-up profile to the RPV neutron fluence calculations. The new methodology may be recommended to be included in the routine fluence calculations used in RPV lifetime management and may be taken into account during VVER-1000 core burn-up pattern correction.

  11. Radiation shielding and dosimetry experiments updates in the SINBAD database.

    PubMed

    Kodeli, I; Hunter, H; Sartori, E

    2005-01-01

    The Shielding Integral Benchmark Archive Database (SINBAD) is an internationally established set of radiation shielding and dosimetry data related to experiments relevant in reactor shielding, fusion blanket neutronics and accelerator shielding. In addition to the characterisation of the radiation source, it describes shielding materials and instrumentation and the relevant detectors. The experimental results, be it dose or reaction rates, or unfolded spectra, are presented in tabular ASCII form that can easily be exported to different computer environments for further use. Most sets in SINBAD also contain the computer model used for the interpretation of the experiment and, where available, results from uncertainty analysis. This is an international effort between the Organization for Economic Cooperation and Development, Nuclear Energy Agency Data Bank (http://www.nea.fr/html/databank/) (OECD/NEA Data Bank) and Oak Ridge National Laboratory, Radiation Safety Information Computational Center (http://www-rsicc.ornl.gov/rsic.html) (ORNL/RSICC). Cooperation from many organisations, authors and benchmark analysts have helped SINBAD become a 'living database'--one which involves continuous information updates, preservation and additions of nuclear benchmarks in the areas of fusion, fission and accelerator science and engineering. This paper focuses on the increased comprehensiveness of experiments that have been carried out in recent years and the validation of computer code and cross section library using these experiments. PMID:16604698

  12. Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: application to the treatment of experimental oral cancer.

    PubMed

    Pozzi, E; Nigg, D W; Miller, M; Thorp, S I; Heber, E M; Zarza, L; Estryk, G; Monti Hughes, A; Molinari, A J; Garabalino, M; Itoiz, M E; Aromando, R F; Quintana, J; Trivillin, V A; Schwint, A E

    2009-07-01

    The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1 x 10(9) n cm(-2)s(-1) and the fast neutron flux was 2.5 x 10(6) n cm(-2)s(-1), indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in (6)Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated. PMID:19380233

  13. Practical CT dosimetry

    SciTech Connect

    Yoshizumi, T.T.; Suneja, S.K.; Teal, J.S. )

    1989-07-01

    The dose from computed tomography (CT) examinations is not negligible from a radiation safety standpoint. Occasionally, one encounters a case in which an unsuspected pregnant woman undergoes a CT pelvic scan, and the radiologist is required to estimate the dose to the fetus. This article addresses practical methods of CT dosimetry with a specific discussion on fetal dose estimate. Three methods are described: (1) the use of a dose chart, (2) the pencil ionization chamber method, and (3) the thermoluminescence dosimetry (TLD) method.

  14. Preservation Matters

    ERIC Educational Resources Information Center

    Noriega, Chon A.

    2005-01-01

    One must undertake multi-institutional efforts that include universities, archives, museums, libraries and community-based arts organizations and the artists to preserve Latino art history. Arts infrastructure can be strengthened by various Chicano Studies Research Center projects that are concerned with archive building and scholarship, and with…

  15. Digital Preservation.

    ERIC Educational Resources Information Center

    Yakel, Elizabeth

    2001-01-01

    Reviews research on digital preservation issues, including born-digital and digitally recreated documents. Discusses electronic records research; metadata and other standards; electronic mail; Web-based documents; moving images media; selection of materials for digitization, including primary sources; administrative issues; media stability…

  16. Fusion reactor materials

    SciTech Connect

    none,

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  17. Internal dosimetry of tritium

    SciTech Connect

    LaBone, T.R.

    1992-01-01

    Tritium is an interesting radionuclide from the perspective of internal dosimetry because of the wide variety of chemical compounds in which it can appear, its unusual routes of entry into the body, and its ability to exchange with stable hydrogen in surrounding material. In this report the internal dosimetry of tritium compounds is reviewed, with emphasis on methods of evaluating bioassay data following chronic and acute intakes. The assumptions and models used in the derivation of Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) for tritium are also discussed.

  18. Internal dosimetry of tritium

    SciTech Connect

    LaBone, T.R.

    1992-06-01

    Tritium is an interesting radionuclide from the perspective of internal dosimetry because of the wide variety of chemical compounds in which it can appear, its unusual routes of entry into the body, and its ability to exchange with stable hydrogen in surrounding material. In this report the internal dosimetry of tritium compounds is reviewed, with emphasis on methods of evaluating bioassay data following chronic and acute intakes. The assumptions and models used in the derivation of Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) for tritium are also discussed.

  19. Dosimetry with diamond detectors

    NASA Astrophysics Data System (ADS)

    Gervino, G.; Marino, C.; Silvestri, F.; Lavagno, A.; Truc, F.

    2010-05-01

    In this paper we present the dosimetry analysis in terms of stability and repeatability of the signal and dose rate dependence of a synthetic single crystal diamond grown by Chemical Vapor Deposition (CVD) technique. The measurements carried out by 5 MeV X-ray photons beam show very promising results, even if the dose rate detector response points out that the charge trapping centers distribution is not uniform inside the crystal volume. This handicap that affects the detectors performances, must be ascribed to the growing process. Synthetic single crystal diamonds could be a valuable alternative to air ionization chambers for quality beam control and for intensity modulated radiation therapy beams dosimetry.

  20. Ion-kill dosimetry

    NASA Technical Reports Server (NTRS)

    Katz, R.; Cucinotta, F. A.; Fromm, M.; Chambaudet, A.

    2001-01-01

    Unanticipated late effects in neutron and heavy ion therapy, not attributable to overdose, imply a qualitative difference between low and high LET therapy. We identify that difference as 'ion kill', associated with the spectrum of z/beta in the radiation field, whose measurement we label 'ion-kill dosimetry'.

  1. Ion storage dosimetry

    NASA Astrophysics Data System (ADS)

    Mathur, V. K.

    2001-09-01

    The availability of a reliable, accurate and cost-effective real-time personnel dosimetry system is fascinating to radiation workers. Electronic dosimeters are contemplated to meet this demand of active dosimetry. The development of direct ion storage (DIS) dosimeters, a member of the electronic dosimeter family, for personnel dosimetry is also an attempt in this direction. DIS dosimeter is a hybrid of the well-established technology of ion chambers and the latest advances in data storage using metal oxide semiconductor field effect transistor (MOSFET) analog memory device. This dosimeter is capable of monitoring legal occupational radiation doses of gamma, X-rays, beta and neutron radiation. Similar to an ion chamber, the performance of the dosimeter for a particular application can be optimized through the selection of appropriate wall materials. The use of the floating gate of a MOSFET as one of the electrodes of the ion chamber allows the miniaturization of the device to the size of a dosimetry badge and avoids the use of power supplies during dose accumulation. The concept of the device, underlying physics and the design of the DIS dosimeter are discussed. The results of preliminary testing of the device are also provided.

  2. Application of the LEPRICON methodology to LWR pressure vessel surveillance dosimetry

    SciTech Connect

    Maerker, R.E.

    1987-01-01

    A second example of applying the LEPRICON methodology to an existing pressurized water reactor is described. The present application is an analysis of ad hoc dosimetry inserted into the H.B. Robinson-2 reactor to monitor the effects on pressure vessel fluence produced by the introduction of a low-leakage fuel management scheme during cycle 9. The use of simultaneous dosimetry at both a downcomer location and in the reactor cavity allows a quantitative evaluation to be made by the LEPRICON procedure of the relative merits of each location, and the cavity location is found to be superior.

  3. Comparison of Different Internal Dosimetry Systems for Selected Radionuclides Important to Nuclear Power Production

    SciTech Connect

    Leggett, Richard Wayne; Eckerman, Keith F; Manger, Ryan P

    2013-08-01

    This report compares three different radiation dosimetry systems currently applied by various U.S. Federal agencies and dose estimates based on these three dosimetry systems for a set of radionuclides often identified in power reactor effluents. These dosimetry systems were developed and applied by the International Commission on Radiological Protection at different times over the past six decades. Two primary modes of intake of radionuclides are addressed: ingestion in drinking water and inhalation. Estimated doses to individual organs and to the whole body based on each dosimetry system are compared for each of four age groups: infant, child, teenager, and adult. Substantial differences between dosimetry systems in estimated dose per unit intake are found for some individual radionuclides, but differences in estimated dose per unit intake generally are modest for mixtures of radionuclides typically found in nuclear power plant effluents.

  4. Dosimetry for Radiopharmaceutical Therapy

    PubMed Central

    Sgouros, George; Hobbs, Robert F.

    2014-01-01

    Radiopharmaceutical therapy (RPT) involves the use of radionuclides that are either conjugated to tumor-targeting agents (eg, nanoscale constructs, antibodies, peptides, and small molecules) or concentrated in tissue through natural physiological mechanisms that occur predominantly in neoplastic or otherwise targeted cells (eg, Graves disease). The ability to collect pharmacokinetic data by imaging and use this to perform dosimetry calculations for treatment planning distinguishes RPT from other systemic treatment modalities. Treatment planning has not been widely adopted, in part, because early attempts to relate dosimetry to outcome were not successful. This was partially because a dosimetry methodology appropriate to risk evaluation rather than efficacy and toxicity was being applied to RPT. The weakest links in both diagnostic and therapeutic dosimetry are the accuracy of the input and the reliability of the radiobiological models used to convert dosimetric data to the relevant biologic end points. Dosimetry for RPT places a greater demand on both of these weak links. To date, most dosimetric studies have been retrospective, with a focus on tumor dose-response correlations rather than prospective treatment planning. In this regard, transarterial radioembolization also known as intra-arterial radiation therapy, which uses radiolabeled (90Y) microspheres of glass or resin to treat lesions in the liver holds much promise for more widespread dosimetric treatment planning. The recent interest in RPT with alpha-particle emitters has highlighted the need to adopt a dosimetry methodology that specifically accounts for the unique aspects of alpha particles. The short range of alpha-particle emitters means that in cases in which the distribution of activity is localized to specific functional components or cell types of an organ, the absorbed dose will be equally localized and dosimetric calculations on the scale of organs or even voxels (~5 mm) are no longer sufficient

  5. In vivo dosimetry for IMRT

    SciTech Connect

    Vial, Philip

    2011-05-05

    In vivo dosimetry has a well established role in the quality assurance of 2D radiotherapy and 3D conformal radiotherapy. The role of in vivo dosimetry for IMRT is not as well established. IMRT introduces a range of technical issues that complicate in vivo dosimetry. The first decade or so of IMRT implementation has largely relied upon pre-treatment phantom based dose verification. During that time, several new devices and techniques for in vivo dosimetry have emerged with the promise of providing the ultimate form of IMRT dose verification. Solid state dosimeters continue to dominate the field of in vivo dosimetry in the IMRT era. In this report we review the literature on in vivo dosimetry for IMRT, with an emphasis on clinical evidence for different detector types. We describe the pros and cons of different detectors and techniques in the IMRT setting and the roles that they are likely to play in the future.

  6. Electron Paramagnetic Resonance Retrospective Dosimetry

    SciTech Connect

    Romanyukha, Alex; Trompier, Francois

    2011-05-05

    Necessity for, principles of, and general concepts of the electron paramagnetic resonance (EPR) retrospective dosimetry are presented. Also presented and given in details are examples of EPR retrospective dosimetry applications in tooth enamel, bone, and fingernails with focus on general approaches for solving technical and methodological problems. Advantages, drawbacks, and possible future developments are discussed and an extensive bibliography on EPR retrospective dosimetry is provided.

  7. Hanford External Dosimetry Program

    SciTech Connect

    Fix, J.J.

    1990-10-01

    This document describes the Hanford External Dosimetry Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) and its Hanford contractors. Program services include administrating the Hanford personnel dosimeter processing program and ensuring that the related dosimeter data accurately reflect occupational dose received by Hanford personnel or visitors. Specific chapters of this report deal with the following subjects: personnel dosimetry organizations at Hanford and the associated DOE and contractor exposure guidelines; types, characteristics, and procurement of personnel dosimeters used at Hanford; personnel dosimeter identification, acceptance testing, accountability, and exchange; dosimeter processing and data recording practices; standard sources, calibration factors, and calibration processes (including algorithms) used for calibrating Hanford personnel dosimeters; system operating parameters required for assurance of dosimeter processing quality control; special dose evaluation methods applied for individuals under abnormal circumstances (i.e., lost results, etc.); and methods for evaluating personnel doses from nuclear accidents. 1 ref., 14 figs., 5 tabs.

  8. Neutron beam measurement dosimetry

    SciTech Connect

    Amaro, C.R.

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  9. Prostate PDT dosimetry

    PubMed Central

    Zhu, Timothy C.; Finlay, Jarod C.

    2015-01-01

    Summary We provide a review of the current state of dosimetry in prostate photodynamic therapy (PDT). PDT of the human prostate has been performed with a number of different photosensitizers and with a variety of dosimetry schemes. The simplest clinical light dose prescription is to quantify the total light energy emitted per length (J/cm) of cylindrical diffusing fibers (CDF) for patients treated with a defined photosensitizer injection per body weight. However, this approach does not take into account the light scattering by tissue and usually underestimates the local light fluence rate, and consequently the fluence. Techniques have been developed to characterize tissue optical properties and light fluence rates in vivo using interstitial measurements during prostate PDT. Optical methods have been developed to characterize tissue absorption and scattering spectra, which in turn provide information about tissue oxygenation and drug concentration. Fluorescence techniques can be used to quantify drug concentrations and photobleaching rates of photosensitizers. PMID:25046988

  10. Cosmic Ray Dosimetry

    NASA Astrophysics Data System (ADS)

    Si Belkhir, F.; Attallah, R.

    2010-10-01

    Radiation levels at aircraft cruising altitudes are twenty times higher than at sea level. Thus, on average, a typical airline pilot receives a larger annual radiation dose than some one working in nuclear industry. The main source of this radiation is from galactic cosmic radiation, high energy particles generated by exploding stars within our own galaxy. In this work we study cosmic rays dosimetry at various aviation altitudes using the PARMA model.

  11. Reference dosimetry measurements for the international intercomparison of criticality accident dosimetry SILENE 9-21 June 2002.

    PubMed

    Asselineau, B; Trompier, F; Texier, C; Itié, C; Médioni, R; Tikunov, D; Muller, H; Pelcot, G

    2004-01-01

    An international intercomparison of criticality accident dosimetry systems took place in the SILENE reactor, in June 2002. Participants from 60 laboratories irradiated their dosemeters (physical and biological) using two different configurations of the reactor. In preparation for this intercomparison, the leakage radiation fields were characterised by spectrometry and dosimetry measurements using the ROSPEC spectrometer associated with a NE-213 scintillator, ionisation chambers, GM counters, diodes and thermoluminescence dosemeters (TLDs). For this intercomparison, a large area was required to irradiate the dosemeters both in free air and on phantoms. Therefore, measurements of the uniformity of the field were performed with activation detectors and TLDs for neutron and gammas, respectively. This paper describes the procedures used and the results obtained. PMID:15353691

  12. Heavy-ion dosimetry

    SciTech Connect

    Schimmerling, W.

    1980-03-01

    This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained.

  13. Uranium Dispersion & Dosimetry Model.

    SciTech Connect

    MICHAEL,; MOMENI, H.

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for application to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.

  14. Fast neutron dosimetry

    SciTech Connect

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

  15. Uranium Dispersion & Dosimetry Model.

    Energy Science and Technology Software Center (ESTSC)

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for applicationmore » to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.« less

  16. Preservation of Digital Objects.

    ERIC Educational Resources Information Center

    Galloway, Patricia

    2004-01-01

    Presents a literature review that covers the following topics related to preservation of digital objects: practical examples; stakeholders; recordkeeping standards; genre-specific problems; trusted repository standards; preservation methods; preservation metadata standards; and future directions. (Contains 82 references.) (MES)

  17. Use of Neutron Benchmark Fields for the Validation of Dosimetry Cross Sections

    NASA Astrophysics Data System (ADS)

    Griffin, Patrick

    2016-02-01

    The evolution of validation metrics for dosimetry cross sections in neutron benchmark fields is explored. The strength of some of the metrics in providing validation evidence is examined by applying them to the 252Cf spontaneous fission standard neutron benchmark field, the 235U thermal neutron fission reference benchmark field, the ACRR pool-type reactor central cavity reference benchmark fields, and the SPR-III fast burst reactor central cavity. The IRDFF dosimetry cross section library is used in the validation study and observations are made on the amount of coverage provided to the library contents by validation data available in these benchmark fields.

  18. Liquid radiochromic dosimetry

    NASA Astrophysics Data System (ADS)

    Rativanich, N.; Radak, B. B.; Miller, A.; Uribe, R. M.; McLaughlin, W. L.

    By strategic combination of weak acid, mild oxidizing agent, and polar organic solvents containing millimolar concentrations of leucocyanides of certain triphenylmethane dyes, fairly broad ranges of absorbed doses of ionizing radiation can be determined. The yield of dye ions as determined by spectrophotometry can be made essentially constant with dose (i.e. linear response) from 0.01 to 30 kGy and it does not vary with dose rate upto 10 11 Gy·s -1. The radiation-induced color is stable and offers fast-retrieval dosimetry if N-vinyl-2-pyrrolidone is used as solvent. Other possible polar solvents are 2-propanol, 2-methoxy ethanol, N, N-dimethyl formamide, dimethyl sulfoxide, and triethyl phosphate. Dimethyl sulfoxide is found to give the widest and most linear response. Suitable dye precursors are leucocyanides of pararosaniline, new fuchsin, hexa (hydroxyethyl) pararosaniline, crystal violet, malachite green, setoglaucine, ethyl violet, helvetia green, basic violet-14, and formyl violet. Low concentrations of carboxylic acids contribute stability to the system. Typical mild oxidizing agents are nitrobenzene, and atmospheric oxygen, or oxygen released radiolytically from the solvents. The dosimetry systems do not require high-purity of ingredients or ultracleanliness of containers, although, for reproducibility of dye yields (G-values), thoroughly purified and uniform dye derivates are recommended.

  19. TOPICAL REVIEW: Polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Baldock, C.; De Deene, Y.; Doran, S.; Ibbott, G.; Jirasek, A.; Lepage, M.; McAuley, K. B.; Oldham, M.; Schreiner, L. J.

    2010-03-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented.

  20. Topical Review: Polymer gel dosimetry

    PubMed Central

    Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

  1. Proton minibeam radiation therapy: Experimental dosimetry evaluation

    SciTech Connect

    Peucelle, C.; Martínez-Rovira, I.; Prezado, Y.; Nauraye, C.; Patriarca, A.; Hierso, E.; Fournier-Bidoz, N.

    2015-12-15

    Purpose: Proton minibeam radiation therapy (pMBRT) is a new radiotherapy (RT) approach that allies the inherent physical advantages of protons with the normal tissue preservation observed when irradiated with submillimetric spatially fractionated beams. This dosimetry work aims at demonstrating the feasibility of the technical implementation of pMBRT. This has been performed at the Institut Curie - Proton Therapy Center in Orsay. Methods: Proton minibeams (400 and 700 μm-width) were generated by means of a brass multislit collimator. Center-to-center distances between consecutive beams of 3200 and 3500 μm, respectively, were employed. The (passive scattered) beam energy was 100 MeV corresponding to a range of 7.7 cm water equivalent. Absolute dosimetry was performed with a thimble ionization chamber (IBA CC13) in a water tank. Relative dosimetry was carried out irradiating radiochromic films interspersed in a IBA RW3 slab phantom. Depth dose curves and lateral profiles at different depths were evaluated. Peak-to-valley dose ratios (PVDR), beam widths, and output factors were also assessed as a function of depth. Results: A pattern of peaks and valleys was maintained in the transverse direction with PVDR values decreasing as a function of depth until 6.7 cm. From that depth, the transverse dose profiles became homogeneous due to multiple Coulomb scattering. Peak-to-valley dose ratio values extended from 8.2 ± 0.5 at the phantom surface to 1.08 ± 0.06 at the Bragg peak. This was the first time that dosimetry in such small proton field sizes was performed. Despite the challenge, a complete set of dosimetric data needed to guide the first biological experiments was achieved. Conclusions: pMBRT is a novel strategy in order to reduce the side effects of RT. This works provides the experimental proof of concept of this new RT method: clinical proton beams might allow depositing a (high) uniform dose in a brain tumor located in the center of the brain (7.5 cm depth

  2. Performance of the CEDS Accident Dosimetry System at the 1995 Los Alamos National Laboratory Nuclear Accident Dosimetry Intercomparison

    SciTech Connect

    McMahan, K.L.; Schwanke, L.J.

    1996-12-01

    In July 1995, LANL hosted an accident dosimetry intercomparison. When all reactors on the Oak Ridge Reservation were idled in 1988, the Health Physics Research Reactor (HPRR), which had been used for 22 previous intercomparisons dating from 1965, was shut down for an indefinite period. The LANL group began characterization of two critical assemblies for dosimetry purposes. As a result, NAD-23 was conceived and 10 DOE facilities accepted invitations to participate in the intercomparison. This report is a summary of the performance of one of the participants, the Centralized External Dosimetry System (CEDS). The CEDS is a cooperative personnel dosimetry arrangement between three DOE sites in Oak Ridge, Tennessee. Many successes and failures are reported herein. Generally, the TL dosimeters performed poorly and always over-reported the delivered dose. The TLD processing procedures contain efforts that would lead to large biases in the reported absorbed dose, and omit several key steps in the TLD reading process. The supralinear behavior of lithium fluoride (LiF) has not been characterized for this particular dosimeter and application (i.e., in high-dose mixed neutron/gamma fields). The use of TLD materials may also be precluded given the limitations of the LiF material itself, the TLD reading system, and the upper dose level to which accident dosimetry systems are required to perform as set forth in DOE regulations. The indium foil results confirm the expected inability of that material to predict the magnitude of the wearer`s dose reliably, although it is quite suitable as a quick-sort material. Biological sample (hair) results were above the minimum detectable activity (MDA) for only one of the tests. Several questions as to the best methods for sample handling and processing remain.

  3. Dosimetry in mixed neutron-gamma fields

    SciTech Connect

    Remec, I.

    1998-04-01

    The gamma field accompanying neutrons may, in certain circumstances, play an important role in the analysis of neutron dosimetry and even in the interpretation of radiation induced steel embrittlement. At the High Flux Isotope Reactor pressure vessel the gamma induced reactions dominate the responses of {sup 237}Np and {sup 238}U dosimeters, and {sup 9}Be helium accumulation fluence monitors. The gamma induced atom displacement rate in steel is higher than corresponding neutron rate, and is the cause of ``accelerated embrittlement`` of HFIR materials. In a large body of water, adjacent to a fission plate, photofissions contribute significantly to the responses of fission monitors and need to be taken into account if the measurements are used for the qualification of the transport codes and cross-section libraries.

  4. AMS applied to Hiroshima and Chernobyl dosimetry

    SciTech Connect

    Straume, T.; Marchetti, A.A.; Anspaugh, L.R.

    1995-12-01

    Two projects employing AMS are summarized and updated. One project employs AMS to measure {sup 36}Cl in concrete and other mineral samples from Hiroshima and Nagasaki to help reconstruct neutron fluences received by the atom-bomb survivors. In this project, we have demonstrated a large discrepancy between the neutron activation measured in Hiroshima and predictions based on the current dosimetry system. This discrepancy has practical implications for radiation risk assessment and radiation protection standards. The other project employs AMS to measure {sup 129}I in soil and other environmental samples from Belarus, Ukraine, and Russia. This is a proof-of-principle study to determine if the long lived {sup 129}I isotope (half life, 16 x 10{sup 6} y) measured by AMS can be used to reconstruct deposition of the short lived {sup 131}I isotope from the 1986 Chernobyl reactor accident. This is required because {sup 131}I disappeared before adequate measurements could be made.

  5. Simultaneous macro and micro dosimetry with MOSFETs

    SciTech Connect

    Rosenfeld, A.B.; Kaplan, G.I.; Carolan, M.G.; Allen, B.J.; Maughan, R.; Yudelev, M.; Kota, C.; Coderre, J.

    1996-12-01

    The application of MOSFET dosimeters in complicated mixed radiation fields for measurement of absorbed dose distribution in tissue equivalent phantoms has been studied. The spectra of secondary charged particles have been measured simultaneously with average absorbed doses by the same MOSFET dosimeter. A good correlation has been observed between neutron depth dose distribution in a water phantom obtained using MOSFETs in integral mode and a tissue equivalent (T.E.) ionization chamber. Such MOSFET dosimeters are a promising tool for micro-macro dosimetry in Boron Neutron Capture Therapy (BNCT) and Fast Neutron Therapy (FNT). Paired MOSFETs with one of the dosimeters covered by {sup 10}B have been applied for measuring of average boron dose distribution and microdosimetric spectra due to alpha particles and {sup 7}Li ions throughout a perspex phantom exposed in the epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR).

  6. Internal dosimetry technical basis manual

    SciTech Connect

    Not Available

    1990-12-20

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.

  7. Radioembolization Dosimetry: The Road Ahead

    SciTech Connect

    Smits, Maarten L. J. Elschot, Mattijs; Sze, Daniel Y.; Kao, Yung H.; Nijsen, Johannes F. W.; Iagaru, Andre H.; Jong, Hugo W. A. M. de; Bosch, Maurice A. A. J. van den; Lam, Marnix G. E. H.

    2015-04-15

    Methods for calculating the activity to be administered during yttrium-90 radioembolization (RE) are largely based on empirical toxicity and efficacy analyses, rather than dosimetry. At the same time, it is recognized that treatment planning based on proper dosimetry is of vital importance for the optimization of the results of RE. The heterogeneous and often clustered intrahepatic biodistribution of millions of point-source radioactive particles poses a challenge for dosimetry. Several studies found a relationship between absorbed doses and treatment outcome, with regard to both toxicity and efficacy. This should ultimately lead to improved patient selection and individualized treatment planning. New calculation methods and imaging techniques and a new generation of microspheres for image-guided RE will all contribute to these improvements. The aim of this review is to give insight into the latest and most important developments in RE dosimetry and to suggest future directions on patient selection, individualized treatment planning, and study designs.

  8. Medical dosimetry in Hungary

    NASA Astrophysics Data System (ADS)

    Turák, O.; Osvay, M.; Ballay, L.

    2012-09-01

    Radiation exposure of medical staff during cardiological and radiological procedures was investigated. The exposure of medical staff is directly connected to patient exposure. The aim of this study was to determine the distribution of doses on uncovered part of body of medical staff using LiF thermoluminescent (TL) dosimeters in seven locations. Individual Kodak film dosimeters (as authorized dosimetry system) were used for the assessment of medical staff's effective dose. Results achieved on dose distribution measurements confirm that wearing only one film badge under the lead apron does not provide enough information on the personal dose. The value of estimated annual doses on eye lens and extremities (fingers) were in good correlation with international publications.

  9. Fundamentals of Radiation Dosimetry

    SciTech Connect

    Bos, Adrie J. J.

    2011-05-05

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  10. Fundamentals of Radiation Dosimetry

    NASA Astrophysics Data System (ADS)

    Bos, Adrie J. J.

    2011-05-01

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  11. Laser heated thermoluminescence dosimetry

    SciTech Connect

    Justus, B.L.; Huston, A.L.

    1996-06-01

    We report a novel laser-heated thermoluminescence dosimeter that is radically different from previous laser-heated dosimeters. The dosimeter is a semiconductor and metal ion doped silica glass that has excellent optical transparency. The high optical quality of the glass essentially eliminates laser power loss due to light scattering. This efficient utilization of the laser power permits operation of the dosimeter without strong absorption of the laser, as is required in traditional laser-heated dosimetry. Our laser-heated dosimeter does not rely on the diffusion of heat from a separate, highly absorbing substrate, but operates via intimate, localized heating within the glass dosimeter due to the absorption of the laser light by rare earth ion dopants in the glass. Following absorption of the laser light, the rare earth ions transfer energy to the surrounding glass via nonradiative relaxation processes, resulting in rapid, localized temperature increases sufficient to release all the filled traps near the ions. As the heat diffuses radially away from the rare earth ions the temperature plummets dramatically on a manometer distance scale and the release of additional filled traps subsides. A key distinguishing feature of this laser-heated dosimeter is the ability to read the dose information more than once. While laser-heating provides complete information about the radiation exposure experienced by the glass due to the release of locally heated traps, the process leaves the remaining filled bulk traps undisturbed. The bulk traps can be read using traditional bulk heating methods and can provide a direct determination of an accumulated dose, measured following any number of laser-heated readouts. Laser-heated dosimetry measurements have been performed using a solid state diode laser for the readout following radiation exposure with a {sup 60}Co source.

  12. Fifth international radiopharmaceutical dosimetry symposium

    SciTech Connect

    Watson, E.E.; Schlafke-Stelson, A.T.

    1992-05-01

    This meeting was held to exchange information on how to get better estimates of the radiation absorbed dose. There seems to be a high interest of late in patient dosimetry; discussions were held in the light of revised risk estimates for radiation. Topics included: Strategies of Dose Assessment; Dose Estimation for Radioimmunotherapy; Dose Calculation Techniques and Models; Dose Estimation for Positron Emission Tomography (PET); Kinetics for Dose Estimation; and Small Scale Dosimetry and Microdosimetry. (VC)

  13. Hanford internal dosimetry program manual

    SciTech Connect

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs.

  14. Lithium Blanket Module (LBM) dosimetry measurements at the LOTUS 14-MeV neutron source facility

    SciTech Connect

    Tsang, F.Y.; Leo, W.; Sahraoui, C.; Wuthrich, S.; Shaer, M.

    1986-11-01

    A series of passive dosimetry irradiation experiments were performed inside the Lithium Blanket Module (LBM) with the 14-MeV neutron source at the Ecole Polytechnique Federale de Lausane (EPFL). Sets of passive dosimetry foils were utilized to measure fusion-reactor-blanket neutronic environments. The dosimeter reaction data are analyzed and compared with calculational models. These experimental results demonstrate the ability to simulate low power deuterium-tritium (D-T) plasma shots by measuring the neutron field in a reactor-representative fusion blanket environment. The dosimeter results can determine the entire neutron spectrum along the full length of the LBM test rod. The set of selected dosimetry materials meets the requirements of neutronic characterization in future LBM-TFTR D-T and high power deuterium-deuterium (D-D) plasma experiments.

  15. ACS Algorithm in Discrete Ordinates for Pressure Vessel Dosimetry

    NASA Astrophysics Data System (ADS)

    Walters, William; Haghighat, Alireza

    2016-02-01

    The Adaptive Collision Source (ACS) method can solve the Linear Boltzmann Equation (LBE) more efficiently by adaptation of the angular quadrature order. This is similar to, and essentially an extension of, the first collision source method. Previously, the ACS methodology has been implemented into the TITAN discrete ordinates code, and has shown speedups of 2-4 on a simple test problem, with very little loss of accuracy (within a provided adaptive tolerance). This work examines the use of the ACS method for a more realistic problem: pressure vessel dosimetry with the VENUS-2 MOX-fuelled reactor dosimetry benchmark. The ACS method proved to be able to obtain accurate results while being approximately twice as efficient as using a constant quadrature in a standard source iteration scheme.

  16. EPR dosimetry in a mixed neutron and gamma radiation field.

    PubMed

    Trompier, F; Fattibene, P; Tikunov, D; Bartolotta, A; Carosi, A; Doca, M C

    2004-01-01

    Suitability of Electron Paramagnetic Resonance (EPR) spectroscopy for criticality dosimetry was evaluated for tooth enamel, mannose and alanine pellets during the 'international intercomparison of criticality dosimetry techniques' at the SILENE reactor held in Valduc in June 2002, France. These three materials were irradiated in neutron and gamma-ray fields of various relative intensities and spectral distributions in order to evaluate their neutron sensitivity. The neutron response was found to be around 10% for tooth enamel, 45% for mannose and between 40 and 90% for alanine pellets according their type. According to the IAEA recommendations on the early estimate of criticality accident absorbed dose, analyzed results show the EPR potentiality and complementarity with regular criticality techniques. PMID:15353687

  17. A new technique for dosimetry reaction cross-section evaluation

    SciTech Connect

    Badikov, S.A.

    2011-07-01

    Document available in abstract form only, full text of document follows: An objective of this paper is a unification of the procedure for dosimetry reaction cross-section evaluation. A set of requirements for the unified evaluation procedure is presented. A new code (ORTHO) was developed in order to meet these requirements. A statistical model, an algorithm, and the basic formulae employed in the code are described. The code was used for Ti48(n,p) reaction cross-section evaluation. The results of the evaluation are compared to International Reactor Dosimetry File (IRDF)-2002 data. The evaluated cross-sections and their correlations from this work are in good agreement with the IRDF-2002 evaluated data, whereas the uncertainties of the evaluated cross-sections are inconsistent. (authors)

  18. Formax Preserved Birds

    ERIC Educational Resources Information Center

    Sheridan, Philip

    1978-01-01

    A quick, simple method for preserving bird specimens using borax and a formalin solution is described. Procedures for injecting and mounting the specimens are given along with certain restrictions on preserving specimens. (MA)

  19. Analysis of dosimetry from the H.B. Robinson unit 2 pressure vessel benchmark using RAPTOR-M3G and ALPAN

    SciTech Connect

    Fischer, G.A.

    2011-07-01

    Document available in abstract form only, full text of document follows: The dosimetry from the H. B. Robinson Unit 2 Pressure Vessel Benchmark is analyzed with a suite of Westinghouse-developed codes and data libraries. The radiation transport from the reactor core to the surveillance capsule and ex-vessel locations is performed by RAPTOR-M3G, a parallel deterministic radiation transport code that calculates high-resolution neutron flux information in three dimensions. The cross-section library used in this analysis is the ALPAN library, an Evaluated Nuclear Data File (ENDF)/B-VII.0-based library designed for reactor dosimetry and fluence analysis applications. Dosimetry is evaluated with the industry-standard SNLRML reactor dosimetry cross-section data library. (authors)

  20. Space radiation dosimetry

    SciTech Connect

    Hanser, F.A.; Dichter, B.K. ||

    1993-12-31

    Dosimetry is the measurement of the energy deposited in matter by various forms of radiation. In space the radiation is primarily energetic electrons, protons and heavier ions from planetary radiation belts, solar flares, and interstellar cosmic rays. Experimentally, dose is frequently obtained by summing the individual energy deposits in a solid state detector. If the detector is calibrated and the sensitive mass is known, the energy sum can be converted directly to accumulated radiation dose in Gy (J/kg). Such detectors can also be used to provide an approximate separation of dose into the components due to electrons, protons, and heavier ions, which is useful if it is desired to convert the measured dose into a biological effective dose (Sv) for manned spaceflight purposes. The output can also be used to provide an essentially instantaneous dose rate for use as warning devices. This is the primary type of space radiation dosimeter to be discussed here. The MOS-type dosimeter is another solid state sensor which can be of small size and low power. These devices integrate the total dose once through, can not separate particle types, and are not suitable for instantaneous dose rate measurement at low levels. There are several additional methods of measuring space radiation dose using scintillators, etc., but are not discussed in detail. In this paper emphasis is given to descriptions of active solid state detector instruments which have successfully worked in space. Some results of in-orbit dose measurements are presented.

  1. Initial radiation dosimetry at Hiroshima and Nagasaki

    SciTech Connect

    Loewe, W.E.

    1983-09-01

    The dosimetry of A-bomb survivors at Hiroshima and Nagasaki is discussed in light of the new dosimetry developed in 1980 by the author. The important changes resulting from the new dosimetry are the ratios of neutron to gamma doses, particularly at Hiroshima. The implications of these changes in terms of epidemiology and radiation protection standards are discussed. (ACR)

  2. 4.2 Methods for Internal Dosimetry

    NASA Astrophysics Data System (ADS)

    Noßke, D.; Mattsson, S.; Johansson, L.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '4.2 Methods for Internal Dosimetry' of the Chapter '4 Dosimetry in Nuclear Medicine Diagnosis and Therapy' with the contents:

  3. Neutron dosimetry in boron neutron capture therapy

    SciTech Connect

    Fairchild, R.G.; Miola, U.J.; Ettinger, K.V.

    1981-01-01

    The recent development of various borated compounds and the utilization of one of these (Na/sub 2/B/sub 12/H/sub 11/SH) to treat brain tumors in clinical studies in Japan has renewed interest in neutron capture therapy. In these procedures thermal neutrons interact with /sup 10/B in boron containing cells through the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction producing charged particles with a maximum range of approx. 10..mu..m in tissue. Borated analogs of chlorpromazine, porphyrin, thiouracil and deoxyuridine promise improved tumor uptake and blood clearance. The therapy beam from the Medical Research Reactor in Brookhaven contains neutrons from a modified and filtered fission spectrum and dosimetric consequences of the use of the above mentioned compounds in conjunction with thermal and epithermal fluxes are discussed in the paper. One of the important problems of radiation dosimetry in capture therapy is determination of the flux profile and, hence, the dose profile in the brain. This has been achieved by constructing a brain phantom made of TE plastic. The lyoluminescence technique provides a convenient way of monitoring the neutron flux distributions; the detectors for this purpose utilize /sup 6/Li and /sup 10/B compounds. Such compounds have been synthesized specially for the purpose of dosimetry of thermal and epithermal beams. In addition, standard lyoluminescent phosphors, like glutamine, could be used to determine the collisional component of the dose as well as the contribution of the /sup 14/N(n,p)/sup 14/C reaction. Measurements of thermal flux were compared with calculations and with measurements done with activation foils.

  4. TVA's dosimetry technician training program

    SciTech Connect

    Hudson, C.G.; Faust, V.L.; Cornelius, T.W.; Regan, J.M.; Farrell, W.E. )

    1984-04-01

    In 1984, the Tennessee Valley Authority decentralized its personnel TLD program and established TLD processing facilities at each of its nuclear plant sites. This article describes the training program that was developed to aid in staffing dosimetry technician positions at each of the plants. The scope of the dosimetry technician's duties include TLD processing, operation of a computerized records system, whole-body counting system operation, and respirator mask fit-testing. The training program includes thirteen weeks of classroom and laboratory training plus a 15-month apprenticeship at a nuclear plant. Retraining and requalification are performed on an annual basis.

  5. Monte Carlo portal dosimetry

    SciTech Connect

    Chin, P.W. . E-mail: mary.chin@physics.org

    2005-10-15

    This project developed a solution for verifying external photon beam radiotherapy. The solution is based on a calibration chain for deriving portal dose maps from acquired portal images, and a calculation framework for predicting portal dose maps. Quantitative comparison between acquired and predicted portal dose maps accomplishes both geometric (patient positioning with respect to the beam) and dosimetric (two-dimensional fluence distribution of the beam) verifications. A disagreement would indicate that beam delivery had not been according to plan. The solution addresses the clinical need for verifying radiotherapy both pretreatment (without the patient in the beam) and on treatment (with the patient in the beam). Medical linear accelerators mounted with electronic portal imaging devices (EPIDs) were used to acquire portal images. Two types of EPIDs were investigated: the amorphous silicon (a-Si) and the scanning liquid ion chamber (SLIC). The EGSnrc family of Monte Carlo codes were used to predict portal dose maps by computer simulation of radiation transport in the beam-phantom-EPID configuration. Monte Carlo simulations have been implemented on several levels of high throughput computing (HTC), including the grid, to reduce computation time. The solution has been tested across the entire clinical range of gantry angle, beam size (5 cmx5 cm to 20 cmx20 cm), and beam-patient and patient-EPID separations (4 to 38 cm). In these tests of known beam-phantom-EPID configurations, agreement between acquired and predicted portal dose profiles was consistently within 2% of the central axis value. This Monte Carlo portal dosimetry solution therefore achieved combined versatility, accuracy, and speed not readily achievable by other techniques.

  6. Knowledge Preservation at the Fast Flux Test Facility

    SciTech Connect

    Wootan, David W.; Omberg, Ronald P.; Makenas, Bruce J.; Nielsen, Deborah L.; Nelson, Joseph V.; Polzin, David L.

    2011-11-30

    The Fast Flux Test Facility (FFTF) is the most recent Liquid Metal Reactor (LMR) to operate in the United States, from 1982 to 1992. The technologies employed in designing and constructing this reactor, along with information obtained from tests conducted during its operation, are currently being secured and archived by the Department of Energy's Office of Nuclear Energy. This report provides a status update documenting the overall project efforts to retrieve and preserve critical information related to advanced reactors.

  7. Knowledge Preservation at the Fast Flux Test Facility

    SciTech Connect

    Wootan, David W.; Omberg, Ronald P.; Makenas, Bruce J.; Nielsen, Deborah L.; Nelson, Joseph V.; Polzin, David L.

    2012-01-30

    The Fast Flux Test Facility (FFTF) is the most recent Liquid Metal Reactor (LMR) to operate in the United States, from 1982 to 1992. The technologies employed in designing and constructing this reactor, along with information obtained from tests conducted during its operation, are currently being secured and archived by the Department of Energy's Office of Nuclear Energy. This report is one in a series documenting the overall project efforts to retrieve and preserve critical information related to advanced reactors

  8. [Preservatives in ophthalmology].

    PubMed

    Messmer, E M

    2012-11-01

    Preservatives are a legal requirement for eye drops in multidose containers. Moreover, they are necessary for stabilization and intraocular penetration for a number of ophthalmic preparations. Most preservatives act in a relatively unspecific manner as detergents or by oxidative mechanisms and thereby cause side effects at the ocular surface. They may also affect the lens, trabecular meshwork and the retina. Benzalkonium chloride is the most commonly used preservative in ophthalmology and is more toxic than other or newer preservatives, such as polyquaternium-1 (Polyquad), sodium perborate, oxychloro-complex (Purite®) and SofZia. Preservative-free topical medication is highly recommended for patients with ocular surface disease, frequent eye drop administration, proven allergy to preservatives and contact lens wear. PMID:23179809

  9. Neutron dosimetry at commercial nuclear plants. Final report of Subtask B: dosimeter response

    SciTech Connect

    Cummings, F.M.; Endres, G.W.R.; Brackenbush, L.W.

    1983-03-01

    As part of a larger program to evaluate personnel neutron dosimetry at commercial nuclear power plants, this study was designed to characterize neutron dosimeter responses inside the containment structure of commercial nuclear plants. In order to characterize those responses, dosimeters were irradiated inside containment at 2 pressurized water reactors and at pipe penetrations outside the biological shield at two boiling water reactors. The reactors were operating at full power during the irradiations. Measurements were also performed with electronic instruments, the tissue equivalent proportional counter (TEPC), and portable remmeters, SNOOPY, RASCAL and PNR-4.

  10. Fast neutron fluence of yonggwang nuclear unit 1 reactor pressure vessel

    SciTech Connect

    Yoo, C.; Km, B.; Chang, K.; Leeand, S.; Park, J.

    2006-07-01

    The Code of Federal Regulations, Title 10, Part 50, Appendix H, requires that the neutron dosimetry be present to monitor the reactor vessel throughout plant life. The Ex-Vessel Neutron Dosimetry System has been installed for Yonggwang Nuclear Unit 1 after complete withdrawal of all six in-vessel surveillance capsules. This system has been installed in the reactor cavity annulus in order to measure the fast neutron spectrum coming out through the reactor pressure vessel. Cycle specific neutron transport calculations were performed to obtain the energy dependent neutron flux throughout the reactor geometry including dosimetry positions. Comparisons between calculations and measurements were performed for the reaction rates of each dosimetry sensors and results show good agreements. (authors)

  11. Seventeenth nuclear accident dosimetry intercomparison study: August 11-15, 1980

    SciTech Connect

    Swaja, R.E.; Greene, R.T.

    1981-04-01

    The Seventeenth Nuclear Accident Dosimetry Intercomparison Study was conducted August 11-15, 1980, at the Oak Ridge National Laboratory. Nuclear criticality accidents with three different neutron and gamma ray energy spectra were simulated by operating the Health Physics Research Reactor in the pulse mode. Participants from 13 organizations exposed dosimeters set up as area monitors and mounted on phantoms for personnel monitoring. Analysis of experimental results reported by participants showed that less than 60% of the neutron dose measurements using foil activation, thermoluminescent, or sodium activation methods and less than 20% of the gamma dose measurements using thermoluminescent dosimeters met nuclear criticality accident dosimetry guidelines which suggest accuracies of +-25% for neutron dose and +-20% for gamma dose. This indicates that continued development and evaluation of criticality accident dosimetry systems for area and personnel monitoring are required to improve measurement accuracy so that existing standards can be met.

  12. Dosimetry Evaluation of In-Core and Above-Core Zirconium Alloy Samples in a PWR

    NASA Astrophysics Data System (ADS)

    Amiri, Benjamin W.; Foster, John P.; Greenwood, Larry R.

    2016-02-01

    A description of the neutron fluence analysis of activated zirconium alloys samples at a Westinghouse 3-loop reactor is presented. These samples were irradiated in the core and in the fuel plenum region, where dosimetry measurements are relatively rare compared with regions radially outward of the core. Dosimetry measurements performed by Batelle/PNNL are compared to the calculational models. Good agreement is shown with the in-core measurements when using analysis conditions expected to best represent this region, such as an assembly-specific axial power distribution. However, the use of these conditions to evaluate dosimetry in the fuel plenum region can lead to significant underestimation of the fluence. The use of a flat axial power distribution, however, does not underestimate the fluence in the fuel plenum region.

  13. Modes of fossil preservation

    USGS Publications Warehouse

    Schopf, J.M.

    1975-01-01

    The processes of geologic preservation are important for understanding the organisms represented by fossils. Some fossil differences are due to basic differences in organization of animals and plants, but the interpretation of fossils has also tended to be influenced by modes of preservation. Four modes of preservation generally can be distinguished: (1) Cellular permineralization ("petrifaction") preserves anatomical detail, and, occasionally, even cytologic structures. (2) Coalified compression, best illustrated by structures from coal but characteristic of many plant fossils in shale, preserves anatomical details in distorted form and produces surface replicas (impressions) on enclosing matrix. (3) Authigenic preservation replicates surface form or outline (molds and casts) prior to distortion by compression and, depending on cementation and timing, may intergrade with fossils that have been subject to compression. (4) Duripartic (hard part) preservation is characteristic of fossil skeletal remains, predominantly animal. Molds, pseudomorphs, or casts may form as bulk replacements following dissolution of the original fossil material, usually by leaching. Classification of the kinds of preservation in fossils will aid in identifying the processes responsible for modifying the fossil remains of both animals and plants. ?? 1975.

  14. Unexplained overexposures on physical dosimetry reported by biological dosimetry.

    PubMed

    Montoro, A; Almonacid, M; Villaescusa, J I; Verdu, G

    2009-01-01

    The Medical Service of the Radiation Protection Service from the University Hospital La Fe (Valencia, Spain), carries out medical examinations of the workers occupationally exposed to ionising radiation. The Biological Dosimetry Laboratory is developing its activity since 2001. Up to now, the activities have been focused in performing biological dosimetry studies of Interventionists workers from La Fe Hospital. Recently, the Laboratory has been authorized by the Health Authority in the Valencian Community. Unexplained overexposures of workers and patients are also studied. Workers suspected of being overexposed to ionising radiation were referred for investigation by cytogenetic analysis. Two of these were from Hospitals of the Valencian Community and one belonged to an uranium mine from Portugal. Hospital workers had a physical dose by thermoluminiscence dosimeters (TLD) that exceeded the established limit. The worker of the uranium mine received a dose from a lost source of Cesium 137 with an activity of 170 mCi. All three cases showed normal values after the hematological analysis. Finally, the aim of this study consist to determine whether the dose showed by the dosimeter is reliable or not. In the case of workers that wore dosimeter, it is concluded that the doses measured by dosimeter are not corresponding to real doses. Hospital worker with a physical dose of 2.6 Sv and 0.269 Sv had an estimated absorbed dose by biological dosimetry of 0.076 Gy (0-0.165 Gy) and 0 Gy (0-0.089 Gy), respectively. In case of the mine worker an estimated absorbed dose of 0.073 Gy (0-0.159 Gy) was obtained by biological dosimetry. In all cases we used the odds ratio to present the results due to a very low frequency of observed aberrations [1]. PMID:19964943

  15. Grafts for Ridge Preservation

    PubMed Central

    Jamjoom, Amal; Cohen, Robert E.

    2015-01-01

    Alveolar ridge bone resorption is a biologic phenomenon that occurs following tooth extraction and cannot be prevented. This paper reviews the vertical and horizontal ridge dimensional changes that are associated with tooth extraction. It also provides an overview of the advantages of ridge preservation as well as grafting materials. A Medline search among English language papers was performed in March 2015 using alveolar ridge preservation, ridge augmentation, and various graft types as search terms. Additional papers were considered following the preliminary review of the initial search that were relevant to alveolar ridge preservation. The literature suggests that ridge preservation methods and augmentation techniques are available to minimize and restore available bone. Numerous grafting materials, such as autografts, allografts, xenografts, and alloplasts, currently are used for ridge preservation. Other materials, such as growth factors, also can be used to enhance biologic outcome. PMID:26262646

  16. Self-preserving cosmetics.

    PubMed

    Varvaresou, A; Papageorgiou, S; Tsirivas, E; Protopapa, E; Kintziou, H; Kefala, V; Demetzos, C

    2009-06-01

    Preservatives are added to products for two reasons: first, to prevent microbial spoilage and therefore to prolong the shelf life of the product; second, to protect the consumer from a potential infection. Although chemical preservatives prevent microbial growth, their safety is questioned by a growing segment of consumers. Therefore, there is a considerable interest in the development of preservative-free or self-preserving cosmetics. In these formulations traditional/chemical preservatives have been replaced by other cosmetic ingredients with antimicrobial properties that are not legislated as preservatives according to the Annex VI of the Commission Directive 76/768/EEC and the amending directives (2003/15/EC, 2007/17/EC and 2007/22/EC). 'Hurdle Technology', a technology that has been used for the control of product safety in the food industry since 1970s, has also been applied for the production of self-preserving cosmetics. 'Hurdle Technology' is a term used to describe the intelligent combination of different preservation factors or hurdles to deteriorate the growth of microorganisms. Adherence to current good manufacturing practice, appropriate packaging, careful choice of the form of the emulsion, low water activity and low or high pH values are significant variables for the control of microbial growth in cosmetic formulations. This paper describes the application of the basic principles of 'Hurdle Technology' in the production of self-preserving cosmetics. Multifunctional antimicrobial ingredients and plant-derived essential oils and extracts that are used as alternative or natural preservatives and are not listed in Annex VI of the Cosmetic Directive are also reported. PMID:19302511

  17. Results from 2010 Caliban Criticality Dosimetry Intercomparison

    SciTech Connect

    Veinot, K. G.

    2011-10-12

    The external dosimetry program participated in a criticality dosimetry intercomparison conducted at the Caliban facility in Valduc, France in 2010. Representatives from the dosimetry and instrumentation groups were present during testing which included irradiations of whole-body beta/gamma (HBGT) and neutron thermoluminescent dosimeters (TLDs), a fixed nuclear accident dosimeter (FNAD), electronic alarming dosimeters, and a humanoid phantom filled with reference man concentrations of sodium. This report reviews the testing procedures, preparations, irradiations, and presents results of the tests.

  18. Tenth ORNL Personnel Dosimetry Intercomparison Study

    SciTech Connect

    Swaja, R.E.; Chou, T.L.; Sims, C.S.; Greene, R.T.

    1985-03-01

    The Tenth Personnel Dosimetry Intercomparison Study was conducted at the Oak Ridge National Laboratory during April 9-11, 1984. Dosemeter badges from 31 participating organizations were mounted on 40cm Lucite phantoms and exposed to a range of dose equivalents which could be encountered during routine personnel monitoring in mixed radiation fields. The Health Physics Research Reactor served as the only source of radiation for eight of the ten irradiations which included a low (approx. 0.50 mSv) and high (approx. 10.00 mSv) neutron dose equivalent run for each of four shield conditions. Two irradiations were also conducted for which concrete- and Lucite-shield reactor irradiations were gamma-enhanced using a /sup 137/Cs source. Results indicated that some participants had difficulty obtaining measurable indication of neutron and gamma exposures at dose equivalents less than about 0.50 mSv and 0.20 mSv, respectively. Albedo dosemeters provided the best overall accuracy and precision for the neutron measurements. Direct interaction TLD systems showed significant variation in accuracy with incident spectrum, and threshold neutron dosemeters (film and recoil track) underestimated reference values by more than 50%. Gamma dose equivalents estimated in the mixed fields were higher than reference values with TL gamma dosemeters generally yielding more accurate results than film. Under the conditions of this study in which participants had information concerning exposure conditions and radiation field characteristics prior to dosemeter evaluation, only slightly more than half of all reported results met regulatory standards for neutron and gamma accuracy. 19 refs., 2 figs., 29 tabs.

  19. Dosimetry at the Los Alamos Critical Experiments Facility: Past, present, and future

    SciTech Connect

    Malenfant, R.E.

    1993-10-01

    Although the primary reason for the existence of the Los Alamos Critical Experiments Facility is to provide basic data on the physics of systems of fissile material, the physical arrangements and ability to provide sources of radiation have led to applications for all types of radiation dosimetry. In the broad definition of radiation phenomena, the facility has provided sources to evaluate biological effects, radiation shielding and transport, and measurements of basic parameters such as the evaluation of delayed neutron parameters. Within the last 15 years, many of the radiation measurements have been directed to calibration and intercomparison of dosimetry related to nuclear criticality safety. Future plans include (1) the new applications of Godiva IV, a bare-metal pulse assembly, for dosimetry (including an evaluation of neutron and gamma-ray room return); (2) a proposal to relocate the Health Physics Research Reactor from the Oak Ridge National Laboratory to Los Alamos, which will provide the opportunity to continue the application of a primary benchmark source to radiation dosimetry; and (3) a proposal to employ SHEBA, a low-enrichment solution assembly, for accident dosimetry and evaluation.

  20. Interspecies dosimetry of reactive gases

    SciTech Connect

    Miller, F.J.; Overton, J.H.; Gerrity, T.R.; Graham, R.C.

    1987-03-01

    The development of dosimetry models that can provide a description of the uptake and distribution of inhaled compounds throughout the body and the availability of animal toxicological data are integral components for a full evaluation of potential risks associated with human exposure. Interspecies dosimetric comparisons must be approached using a model conceptualization that incorporates the major factors affecting the uptake of the gas, such as respiratory tract morphology, route of breathing, depth and rate of breathing, physicochemical properties of the gas, etc. Modeling efforts thus far have primarily focused on ozone. A comparison of theoretical predictions of delivered dose of ozone to the lower respiratory tract of man shows good agreement with dose estimates derived from experimental measurements. Applications to ozone toxicological data in animals and man have been examined that incorporate the use of dosimetry models in studying quantitative dose-response relationships.

  1. Organ reperfusion and preservation.

    PubMed

    Jamieson, Russell W; Friend, Peter J

    2008-01-01

    Organ transplantation is one of the medical success stories of the 20th century. Transplantation is, however, a victim of its own success with demand for organs far exceeding supply. The ischemia/reperfusion injury associated with organ transplantation is complex with interlinking cellular pathways and cascades. With increasing use of marginal organs and better understanding of the consequences of ischemia/reperfusion, enhanced organ preservation is required. Traditional static cold preservation cannot prevent ischemia/reperfusion injury, the low temperature itself is damaging and viability testing is limited. Donor preconditioning techniques to enhance organ preservation in advance of retrieval are starting to show convergence on several key pathways (HO-1 and cell apoptosis). Microdialysis and bioimpedence techniques may allow viability assessment during cold storage. Hypothermic machine perfusion has a role to play, particularly in preservation of kidneys from non-heart-beating donors although results of clinical trials are awaited. Normothermic preservation offers benefits over cold storage (at least experimentally) by avoiding damage induced by low temperature, minimising ischemia/reperfusion injury and allowing resuscitation of damaged organs. Normothermic preservation is likely to increase as the average quality of donor organs declines and clinical trials are needed. In the long term, normothermic preservation may be used, not just to resuscitate organs, but facilitate organ immunomodulation. PMID:17981540

  2. Korean standard nuclear plant ex-vessel neutron dosimetry program Ulchin 4

    SciTech Connect

    Duo, J.I.; Chen, J.; Kulesza, J.A.; Fero, A.H.; Yoo, C.S.; Kim, B.C.

    2011-07-01

    A comprehensive ex-vessel neutron dosimetry (EVND) surveillance program has been deployed in 16 pressurized water reactors (PWR) in South Korea and EVND dosimetry sets have already been installed and analyzed in Westinghouse reactor designs. In this paper, the unique features of the design, training, and installation in the Korean standard nuclear plant (KSNP) Ulchin Unit 4 are presented. Ulchin Unit 4 Cycle 9 represents the first dosimetry analyzed from the EVND design deployed in KSNP plants: Yonggwang Units 3 through 6 and Ulchin Units 3 through 6. KSNP's cavity configuration precludes a conventional installation from the cavity floor. The solution, requiring the installation crew to access the cavity at an elevation of the active core, places a premium on rapid installation due to high area dose rates. Numerous geometrical features warranted the use of a detailed design in true 3D mechanical design software to control interferences. A full-size training mockup maximized the crew ability to correctly install the instrument in minimum time. The analysis of the first dosimetry set shows good agreements between measurement and calculation within the associated uncertainties. A complete EVND system has been successfully designed, installed, and analyzed for a KNSP plant. Current and future EVND analyses will continue supporting the successful operation of PWR units in South Korea. (authors)

  3. Tifft Farm Nature Preserve.

    ERIC Educational Resources Information Center

    Benjamin, Thomas B.; Gannon, David J.

    1980-01-01

    Described are the creation, development, activities, and programs of Tifft Farm, a 264-acre nature preserve and environmental education center in Buffalo, New York, constructed on a sanitary landfill. (BT)

  4. Mechanism of entanglement preservation

    SciTech Connect

    Tong Qingjun; An Junhong; Luo Honggang; Oh, C. H.

    2010-05-15

    We study the entanglement preservation of two qubits locally interacting with their reservoirs. We show that the existence of a bound state of the qubit and its reservoir and the non-Markovian effect are two essential ingredients and their interplay plays a crucial role in preserving the entanglement in the steady state. When the non-Markovian effect is neglected, the entanglement sudden death (ESD) is reproduced. On the other hand, when the non-Markovian is significantly strong but the bound state is absent, the phenomenon of the ESD and its revival is recovered. Our formulation presents a unified picture about the entanglement preservation and provides a clear clue on how to preserve the entanglement in quantum information processing.

  5. Updating and extending the IRDF-2002 dosimetry library

    SciTech Connect

    Capote, R.; Zolotarev, K.I.; Pronyaev, V.G.; Trkov, A.

    2011-07-01

    The International Reactor Dosimetry File (IRDF)-2002 released in 2004 by the IAEA (see http://www-nds.iaea.org/irdf2002/) contains cross-section data and corresponding uncertainties for 66 dosimetry reactions. New cross-section evaluations have become available recently that re-define some of these dosimetry reactions including: (1) high-fidelity evaluation work undertaken by one of the authors (KIZ); (2) evaluations from the US ENDF/B-VII.0 and candidate evaluations from the US ENDF/B-VII.1 libraries that cover reactions within the International Evaluation of Neutron Cross-Section Standards; (3) European JEFF3.1 library; and (4) Japanese JENDL-4.0 library. Additional high-threshold reactions not included in IRDF-2002 (e.g., {sup 59C}o(n,3n) and {sup 209}Bi(n,3n)) have been also evaluated to characterize higher-energy neutron fields. Overall, 37 new evaluations of dosimetry reactions have been assessed and intercomparisons made with integral measurements in reference neutron fields to determine whether they should be adopted to update and improve IRDF-2002. Benchmark calculations performed for newly evaluated reactions using the ENDF/B-VII.0 {sup 235}U thermal fission and {sup 252}Cf spontaneous fission neutron spectra show that calculated integral cross sections exhibit improved agreement with evaluated experimental data when compared with the equivalent data from the IRDF-2002 library. Data inconsistencies or deficiencies of new evaluations have been identified for {sup 63}Cu(n,2n), {sup 60}Ni(n,p) {sup 60m+g}Co, {sup 55}Mn(n,{gamma}), and {sup 232}Th(n,f) reactions. Compared with IRDF-2002, the upper neutron energy boundary was formally increased from the actual maximum energy of typically 20 MeV up to 60 MeV by using the TENDL-2010 cross sections and covariance matrices. This extension would allow the updated IRDF library to be also used in fusion dosimetry applications. Uncertainties in the cross sections for all new evaluations are given in the form of

  6. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    SciTech Connect

    Hu, J. P.; Holden, N. E.; Reciniello, R. N.

    2014-05-23

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7

  7. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    NASA Astrophysics Data System (ADS)

    Hu, J.-P.; Holden, N. E.; Reciniello, R. N.

    2016-02-01

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4-7% lower than

  8. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.630 Dosimetry equipment. (a) Except for low dose-rate remote afterloader sources...

  9. Dosimetry in Nuclear Medicine Diagnosis and Therapy

    NASA Astrophysics Data System (ADS)

    Noßke, D.; Mattsson, S.; Johansson, L.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '4.7 Necessity of Patient-Specific Dose Planning in Radionuclide Therapy' of the Chapter '4 Dosimetry in Nuclear Medicine Diagnosis and Therapy'.

  10. Dosimetry modeling of inhaled toxic reactive gases

    SciTech Connect

    Overton, J.H.; Miller, F.J.

    1986-07-01

    This report focuses on the physical, chemical, and biological processes and factors involved in the absorption of reactive gases. Emphasis is placed on the importance of these factors in developing dosimetry models, special consideration being given to the role of lung fluids and tissues. Several dosimetry models are discussed and illustrations of predicted results presented to demonstrate the application of the models to the uptake of NO/sub 2/ and O/sub 3/, and to demonstrate the use of models in determining the effects of physical, chemical and biological parameters on dosimetry predictions. Gaps in our knowledge and understanding of the processes of dosimetry are pointed out, and research recommendations are made to increase our understanding of the processes and to enhance the development of dosimetry models.

  11. Ozone dosimetry predictions for humans and rats

    SciTech Connect

    Overton, J.H.; Graham, R.C.; McCurdy, T.R.; Richmond, H.M.

    1990-11-01

    The report summarizes ozone (O3) dosimetry model predictions for rats and humans under several different scenarios based on the most recent empirical data and theoretical considerations in the field of O3 dosimetry. The report was prepared at the request of the Office of Air Quality Planning and Standards (OAQPS) as an input to be considered by scientists participating in a chronic lung injury risk assessment project for O3. As indicated in the report a number of judgments and assumptions had to be made to obtain the dosimetry predictions. In addition to presenting the simulation results, the O3 dosimetry model used to make the predictions is discussed and the choice or method of selecting important physiological parameters explained. This includes anatomical dimensions, choices of rat and human ventilatory parameters, and the method of estimating human and rat upper respiratory tract uptake. Finally, a comparison of simulation results to recent experimental dosimetry results is discussed.

  12. Validating the ENDF-B/VII{sup 235}U(n{sub th},f) prompt fission neutron spectrum using updated dosimetry cross sections (IRDFF)

    SciTech Connect

    Capote, R.; Zolotarev, K. I.; Pronyaev, V. G.; Trkov, A.

    2012-07-01

    The International Reactor Dosimetry File IRDF-2002 released in 2004 by the IAEA contains cross-section data and corresponding uncertainties for 66 dosimetry reactions. New cross-section evaluations have become available recently that re-define some of these dosimetry reactions for reactor applications including: 1) high fidelity evaluation work undertaken by one of the authors (KIZ); 2) evaluations from the ENDF/B-VII libraries that cover reactions within the International Evaluation of Neutron Cross-Section Standards; and 3) evaluations from JENDL-3.1 and JENDL-4 libraries. Overall, 37 new evaluations of dosimetry reactions have been assessed to determine whether they should be adopted to update and improve IRDF-2002. A new dosimetry library (International Reactor Dosimetry File for Fission and Fusion - IRDFF) was assembled based on new evaluations combined with selected IRDF-2002 evaluations. A grand-total of 74 dosimetry reactions are included into the IRDFF dosimetry library available at www-nds.iaea.org/IRDFFI. The assembled library was used to validate the {sup 235}U(n{sub th},f) ENDF-B/VII.0 prompt fission neutron spectrum. An excellent average C/E value of 1.002 +/- 0.02 is achieved for reactions with mean neutron energy of the integrated response (E50%) lower than 11 MeV. C/E data for reactions with E50%-response higher than 11 MeV decreases up to 0.8. We conclude that the ENDF-B/VII.0 {sup 235}U(n{sub th},f) prompt fission neutron spectrum from 1-11 MeV is validated within quoted uncertainties by available integral measurements in {sup 235}U(n{sub th},f) neutron field. Further investigations for high-threshold reactions are needed and new measurements of spectrum average cross sections for those reactions in the {sup 235}U(n{sub th},f) neutron field are recommended. (authors)

  13. Solid-State Personal Dosimetry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.

    2005-01-01

    This document is a web site page, and a data sheet about Personal protection (i.e., space suits) presented to the Radiation and Micrometeoroid Mitigation Technology Focus Group meeting. The website describes the work of the PI to improve solid state personal radiation dosimetry. The data sheet presents work on the active personal radiation detection system that is to provide real-time local radiation exposure information during EVA. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.

  14. The Future of Medical Dosimetry

    SciTech Connect

    Adams, Robert D.

    2015-07-01

    The world of health care delivery is becoming increasingly complex. The purpose of this manuscript is to analyze current metrics and analytically predict future practices and principles of medical dosimetry. The results indicate five potential areas precipitating change factors: a) evolutionary and revolutionary thinking processes, b) social factors, c) economic factors, d) political factors, and e) technological factors. Outcomes indicate that significant changes will occur in the job structure and content of being a practicing medical dosimetrist. Discussion indicates potential variables that can occur within each process and change factor and how the predicted outcomes can deviate from normative values. Finally, based on predicted outcomes, future opportunities for medical dosimetrists are given.

  15. A History Worth Preserving

    NASA Astrophysics Data System (ADS)

    Kelly, Cynthia

    2008-04-01

    The Manhattan Project transformed the course of American and world history, science, politics and society. If we can read about this in books and watch History Channel documentaries, why do we need to preserve some of the properties of this enormous undertaking? The presentation, ``A History Worth Preserving,'' will address why some of the physical properties need to be preserved and which ones we are struggling to maintain for future generations. The story of this effort begins in 1997 as the Department of Energy was posed to demolish the last remaining Manhattan Project properties at the Los Alamos laboratory. Located deep behind security fences, the ``V Site's'' asbestos-shingled wooden buildings looked like humble garages with over-sized wooden doors. The ``V Site'' properties were almost lost twice, first to bulldozers and then the Cerro Grande fire of 2000. Now, visitors can stand inside the building where J. Robert Oppenheimer and his crew once worked and imagine the Trinity ``gadget'' hanging from its hoist shortly before it ushered in the Atomic Age on July 16, 1945. As Richard Rhodes has commented, we preserve what we value of the physical past because it specifically embodies our social past. But many challenge whether the Manhattan Project properties ought to be preserved. Rather than recognize the Manhattan Project as a great achievement worthy of commemoration, some see it as a regrettable event, producing an instrument to take man's inhumanity to man to extremes. While these divergent views will no doubt persist, the significance of the Manhattan Project in producing the world's first atomic bombs is irrefutable. Preserving some of its tangible remains is essential so that future generations can understand what the undertaking entailed from its humble wooden sheds to enormous first-of-a-kind industrial plants with 125,000 people working in secret and living in frontier-like communities. With continuing pressure for their demolition, what progress has

  16. Family Preservation & Family Functioning.

    ERIC Educational Resources Information Center

    McCroskey, Jacquelyn; Meezan, William

    This book reports a study of the outcomes of home-based family preservation services for abusive and neglectful families in Los Angeles County. Using the Family Assessment Form, the research project evaluated services provided by two voluntary agencies, and focused on changes in family functioning between the opening and closing of services during…

  17. Preserving Southwest Virginia's Folklore.

    ERIC Educational Resources Information Center

    Burgin, Ramond

    1997-01-01

    Describes Southwest Virginia's rich tradition of folklore and culture and the need for its preservation. Summarizes the author's time-consuming process of preparing an inventory and indexing the vast archival collections gathered by students in American Folklore classes at Mountain Empire Community College and by the Southwest Virginia Folklore…

  18. Paints and Preservatives.

    ERIC Educational Resources Information Center

    Powell, Larry E.; Miller, Larry E.

    The publication contains an outline for use by agriculture teachers in developing a teaching plan for a unit on paints and preservatives. The topics included are (1) recognizing, solving, and preventing paint problems and (2) operating and using power spray painting equipment. Items presented for each topic are: the situation, (intended to inform…

  19. Preserving the Seminar Experience

    ERIC Educational Resources Information Center

    Ramsey, David; Evans, Jocelyn; Levy, Meyer

    2016-01-01

    This article presents a new approach to online graduate education. With hopes of recruiting a larger cohort in order to preserve a graduate program struggling with low enrollment, we began offering a limited number of seats to students who would attend class in real time but from remote locations, using a videoconferencing platform. Unlike…

  20. Upgraded Neutron Dosimetry Procedure for VVER-440 Surveilance Specimens

    NASA Astrophysics Data System (ADS)

    Kochkin, V.; Erak, D.; Zaritsky, S.; Egorov, A.; Makhotin, D.

    2009-08-01

    The control of Reactor Pressure Vessel (RPV) metal during lifetime is one of the basic conditions of the reliable and safe operation of a reactor and NPP as a whole. The substantiation of safe RPV operation is based on Surveillance Specimens (SS) testing results and their transfer to the RPV. Since the reliability of the SS program directly depends on the dosimetry accuracy, one of the most important tasks in the investigation of SS is precision estimation of fast neutron fluence (E > 0.5MeV) for each specimen. The upgraded procedure of neutron fluence evaluation for surveillance specimens of VVER-440/213 reactor has been developed and is presented in this paper. This procedure based on measurements of the 54Mn activity of each of the surveillance specimens and neutron field computations. In contrast to the earlier procedures the new one takes into account correctly all pressure vessel internals, influence of core pattern on the neutron field in SS channel, and dependence of spectral index SI0.5/3.0 on the axial coordinate of surveillance specimens. The upgraded procedure is used for neutron fluence evaluation of VVER-440 surveillance and research programs in RRC "Kurchatov institute".

  1. Emerging technological bases for retrospective dosimetry.

    PubMed

    Straume, T; Anspaugh, L R; Haskell, E H; Lucas, J N; Marchetti, A A; Likhtarev, I A; Chumak, V V; Romanyukha, A A; Khrouch, V T; Gavrilin YuI; Minenko, V F

    1997-01-01

    In this article we discuss examples of challenging problems in retrospective dosimetry and describe some promising solutions. The ability to make measurements by accelerator mass spectrometry and luminescence techniques promises to provide improved dosimetry for regions of Belarus, Ukraine and Russian Federation contaminated by radionuclides from the Chernobyl accident. In addition, it may soon be possible to resolve the large neutron discrepancy in the dosimetry system for Hiroshima through novel measurement techniques that can be used to reconstruct the fast-neutron fluence emitted by the bomb some 51 years ago. Important advances in molecular cytogenetics and electron paramagnetic resonance measurements have produced biodosimeters that show potential in retrospective dosimetry. The most promising of these are the frequency of reciprocal translocations measured in chromosomes of blood lymphocytes using fluorescence in situ hybridization and the electron paramagnetic resonance signal in tooth enamel. PMID:9368303

  2. INTERSPECIES DOSIMETRY MODELS FOR PULMONARY PHARMACOLOGY

    EPA Science Inventory

    Interspecies Dosimetry Models for Pulmonary Pharmacology

    Ted B. Martonen, Jeffry D. Schroeter, and John S. Fleming

    Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangl...

  3. Audits for advanced treatment dosimetry

    NASA Astrophysics Data System (ADS)

    Ibbott, G. S.; Thwaites, D. I.

    2015-01-01

    Radiation therapy has advanced rapidly over the last few decades, progressing from 3D conformal treatment to image-guided intensity modulated therapy of several different flavors, both 3D and 4D and to adaptive radiotherapy. The use of intensity modulation has increased the complexity of quality assurance and essentially eliminated the physicist's ability to judge the validity of a treatment plan, even approximately, on the basis of appearance and experience. Instead, complex QA devices and procedures are required at the institutional level. Similarly, the assessment of treatment quality through remote and on-site audits also requires greater sophistication. The introduction of 3D and 4D dosimetry into external audit systems must follow, to enable quality assurance systems to perform meaningful and thorough audits.

  4. Aufgaben und Genauigkeit der klinischen Dosimetrie

    NASA Astrophysics Data System (ADS)

    Krieger, Hanno

    In diesem Kapitel werden die Aufgaben der klinischen Dosimetrie für die verschiedenen radiologischen Disziplinen zusammengestellt. Die wichtigste Aufgabe ist die Messung der im bestrahlten Medium entstandenen Energiedosis für die verschiedenen Strahlungsquellen. Die am weitesten verbreitete dazu verwendete Methode ist die Dosismessung mit gasgefüllten Ionisationskammern. Im zweiten Teil des Kapitels werden die Genauigkeitsanforderungen der klinischen Dosimetrie diskutiert.

  5. Enterocins in food preservation.

    PubMed

    Khan, Haider; Flint, Steve; Yu, Pak-Lam

    2010-06-30

    The Enterococcus genus, a member of the Lactic Acid Bacteria (LAB) is found in various environments, but more particularly in the intestines of humans and other animals. Although sometimes associated with pathogenicity these bacteria have many benefits. They have been found in traditional artisanal fermented products, are used as probiotic cultures and nowadays extensively studied for the production of bacteriocins--the enterocins. Many of these enterocins have been found to be active against Listeria monocytogenes, and a few have also been reported to be active even against Gram negative bacteria, an unusual property for the bacteriocins produced by LAB. These properties have resulted in many studies describing the use of enterocins as preservatives in foods of animal and vegetable origin. This review covers the most recent information on the use of enterocins as food preservatives, either produced in-situ by the addition of enterocin producing strains or as external preservatives in the form of purified or semi-purified extracts, to prevent the growth of spoilage and pathogenic microorganisms. PMID:20399522

  6. Preserving physics knowledge at the fast flux test facility

    SciTech Connect

    Wootan, D.; Omberg, R.; Makenas, B. J.; Polzin, D. L.

    2012-07-01

    One of the goals of the Dept. of Energy's Office of Nuclear Energy, initiated under the Fuel Cycle Research and Development Program (FCRD) and continued under the Advanced Reactor Concepts Program (ARC) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMRs) that could support the development of an environmentally and economically sound nuclear fuel cycle. The Fast Flux Test Facility (FFTF) is the most recent LMR to operate in the United States, from 1982 to 1992, and was designed as a fully instrumented test reactor with on-line, real time test control and performance monitoring of components and tests installed in the reactor. The 10 years of operation of the FFTF provided a very useful framework for testing the advances in LMR safety technology based on passive safety features that may be of increased importance to new designs after the events at Fukushima. Knowledge preservation at the FFTF is focused on the areas of design, construction, and startup of the reactor, as well as on preserving information obtained from 10 years of successful operating history and extensive irradiation testing of fuels and materials. In order to ensure protection of information at risk, the program to date has sequestered reports, files, tapes, and drawings to allow for secure retrieval. A disciplined and orderly approach has been developed to respond to client's requests for documents and data in order to minimize the search effort and ensure that future requests for this information can be readily accommodated. (authors)

  7. Preserving a Lunar Legacy

    NASA Astrophysics Data System (ADS)

    O'Leary, B.; Brown, L. F.; Gibson, R. A.; Versluis, J.

    2000-12-01

    With the first Russian flyby mission in 1959, the quest for robotic, and eventually, manned exploration of the moon became fact rather than fiction. Since then there have been innumerable spacecraft impacts and landers which have left artifacts and created archaeological sites on the lunar surface. One of the most significant events in lunar exploration came with the successful landing of the manned Apollo 11 mission in the Sea of Tranquillity (July 20, 1969). Missions such as these form a transcript of the world's quest to explore space and are evidence of humanity's first steps in this ultimate journey. One would think that, given the historic nature of these endeavors, some process would have been established to preserve sites for future generations. There is certainly little disagreement within the astronomical and archeological communities that lunar landing and impact sites are precious cultural resources containing irreplaceable artifacts that attest to humanity's initial efforts to explore other worlds. But, in fact, there are no federal preservation laws, nor international criteria, which directly address preservation procedures and decisions on other solar system bodies. Although the moon's remoteness and isolation have protected lunar sites to date, recent commercial interests in development, and in private robotic exploration, of the moon, make preservation of these historic sites even more timely. This preliminary study, funded in part by NASA, has begun to document the Apollo 11 landing site by making the first complete inventory of artifacts, and features, and completing an archeological site map of Tranquillity Base. We will discuss the issues in obtaining accurate lists of the cultural resources left behind, in documenting their historic context, and in the problems of selenographic mapping. Detailed information is needed to document the integrity historical importance of any location with the eventual aim of having it listed as a UNESCO World

  8. Analysis of HFIR Dosimetry Experiments Performed in Cycles 400 and 401

    SciTech Connect

    Remec, Igor; Baldwin, Charles A

    2008-09-01

    The High Flux Isotope Reactor (HFIR) has been in operation at Oak Ridge National Laboratory since 1966. To upgrade and enhance capabilities for neutron science research at the reactor, a larger HB-2 beam tube was installed in April of 2002. To assess, experimentally, the impact of this larger beam tube on radiation damage rates [i.e., displacement-per-atom (dpa) rates] used in vessel life extension studies, dosimetry experiments were performed from April to August 2004 during fuel cycles 400 and 401. This report documents the analysis of the dosimetry experiments and the determination of best-estimate dpa rates. These dpa rates are obtained by performing a least-squares adjustment of calculated neutron and gamma-ray fluxes and the measured responses of radiometric monitors and beryllium helium accumulation fluence monitors. The best-estimate dpa rates provided here will be used to update HFIR pressure vessel life extension studies, which determine the pressure/temperature limits for reactor operation and the HFIR pressure vessel's remaining life. All irradiation parameters given in this report correspond to a reactor power of 85 MW.

  9. Uncertainty in 3D gel dosimetry

    NASA Astrophysics Data System (ADS)

    De Deene, Yves; Jirasek, Andrew

    2015-01-01

    Three-dimensional (3D) gel dosimetry has a unique role to play in safeguarding conformal radiotherapy treatments as the technique can cover the full treatment chain and provides the radiation oncologist with the integrated dose distribution in 3D. It can also be applied to benchmark new treatment strategies such as image guided and tracking radiotherapy techniques. A major obstacle that has hindered the wider dissemination of gel dosimetry in radiotherapy centres is a lack of confidence in the reliability of the measured dose distribution. Uncertainties in 3D dosimeters are attributed to both dosimeter properties and scanning performance. In polymer gel dosimetry with MRI readout, discrepancies in dose response of large polymer gel dosimeters versus small calibration phantoms have been reported which can lead to significant inaccuracies in the dose maps. The sources of error in polymer gel dosimetry with MRI readout are well understood and it has been demonstrated that with a carefully designed scanning protocol, the overall uncertainty in absolute dose that can currently be obtained falls within 5% on an individual voxel basis, for a minimum voxel size of 5 mm3. However, several research groups have chosen to use polymer gel dosimetry in a relative manner by normalizing the dose distribution towards an internal reference dose within the gel dosimeter phantom. 3D dosimetry with optical scanning has also been mostly applied in a relative way, although in principle absolute calibration is possible. As the optical absorption in 3D dosimeters is less dependent on temperature it can be expected that the achievable accuracy is higher with optical CT. The precision in optical scanning of 3D dosimeters depends to a large extend on the performance of the detector. 3D dosimetry with X-ray CT readout is a low contrast imaging modality for polymer gel dosimetry. Sources of error in x-ray CT polymer gel dosimetry (XCT) are currently under investigation and include inherent

  10. Summary and analysis of neutron measurements conducted during the Oak Ridge personnel dosimetry intercomparison studies

    SciTech Connect

    Swaja, R.E.

    1987-01-01

    Since 1974, neutron personnel dosimetry intercomparison studies (PDIS) have been conducted annually at the Oak Ridge National Laboratory's (ORNL) Dosimetry Applications Research Facility. During these studies, neutron dosimeters are mailed to ORNL, exposed to low-level (less than 15 mSv) dose equivalents in a variety of mixed-radiation fields produced using the Health Physics Research Reactor (HPRR), and then returned to the participants for evaluation. Beginning with the Seventh PDIS in 1981, interest and participation in the Oak Ridge intercomparisons increased significantly and consistent and documented techniques for determining reference neutron dose equivalents for the HPRR were introduced. This document presents a summary and analysis of approximately 3400 neutron dose equivalent measurements made using a variety of personnel dosimeters and reported for PDIS 7-12. 16 refs., 3 tabs.

  11. BREN Tower: A Monument to the Material Culture of Radiation Dosimetry Research

    SciTech Connect

    Susan Edwards

    2008-05-30

    With a height of more than 1,500 feet, the BREN (Bare Reactor Experiment, Nevada) Tower dominates the surrounding desert landscape of the Nevada Test Site. Associated with the nuclear research and atmospheric testing programs carried out during the 1950s and 1960s, the tower was a vital component in a series of experiments aimed at characterizing radiation fields from nuclear detonations. Research programs conducted at the tower provided the data for the baseline dosimetry studies crucial to determining the radiation dose rates received by the atomic bomb survivors of Hiroshima and Nagasaki, Japan. Today, BREN Tower stands as a monument to early dosimetry research and one of the legacies of the Cold War.

  12. In aqua vivo EPID dosimetry

    SciTech Connect

    Wendling, Markus; McDermott, Leah N.; Mans, Anton; Olaciregui-Ruiz, Igor; Pecharroman-Gallego, Raul; Sonke, Jan-Jakob; Stroom, Joep; Herk, Marcel J.; Mijnheer, Ben van

    2012-01-15

    Purpose: At the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital in vivo dosimetry using an electronic portal imaging device (EPID) has been implemented for almost all high-energy photon treatments of cancer with curative intent. Lung cancer treatments were initially excluded, because the original back-projection dose-reconstruction algorithm uses water-based scatter-correction kernels and therefore does not account for tissue inhomogeneities accurately. The aim of this study was to test a new method, in aqua vivo EPID dosimetry, for fast dose verification of lung cancer irradiations during actual patient treatment. Methods: The key feature of our method is the dose reconstruction in the patient from EPID images, obtained during the actual treatment, whereby the images have been converted to a situation as if the patient consisted entirely of water; hence, the method is termed in aqua vivo. This is done by multiplying the measured in vivo EPID image with the ratio of two digitally reconstructed transmission images for the unit-density and inhomogeneous tissue situation. For dose verification, a comparison is made with the calculated dose distribution with the inhomogeneity correction switched off. IMRT treatment verification is performed for each beam in 2D using a 2D {gamma} evaluation, while for the verification of volumetric-modulated arc therapy (VMAT) treatments in 3D a 3D {gamma} evaluation is applied using the same parameters (3%, 3 mm). The method was tested using two inhomogeneous phantoms simulating a tumor in lung and measuring its sensitivity for patient positioning errors. Subsequently five IMRT and five VMAT clinical lung cancer treatments were investigated, using both the conventional back-projection algorithm and the in aqua vivo method. The verification results of the in aqua vivo method were statistically analyzed for 751 lung cancer patients treated with IMRT and 50 lung cancer patients treated with VMAT. Results: The improvements by

  13. Preserving the Manhattan Project

    NASA Astrophysics Data System (ADS)

    Kelly, Cynthia

    2014-03-01

    When future generations look back on the 20th century, few events will rival the harnessing of nuclear energy as a turning point in world history, science and society. Yet, the Department of Energy has not always embraced its Manhattan Project origins. The presentation will focus on the progress made over the last 20 years to preserve the properties and first-hand accounts that for decades have been threatened with demolition and indifference. Since the mid-1950s, most remaining Manhattan Project properties at the Los Alamos National Laboratory had been abandoned. Among them was a cluster of wooden buildings called the ``V Site.'' This is where scientists assembled the ``Gadget,'' the world's first atomic device tested on July 16, 1945. Regardless of its significance, the ``V Site'' buildings like all the rest were slated for demolition. The Advisory Council on Historic Preservation (ACHP) toured the properties in November 1998. Most could not believe that the world's first atomic bomb was designed in such humble structures. The properties were declared to be ``monumental in their lack of monumentality.'' A Save America's Treasures grant for 700,000 was awarded to restore the properties. To raise the required matching funds, I left the Federal government and soon founded the Atomic Heritage Foundation. The presentation will trace the progress made over the last decade to generate interest and support nationwide to preserve the Manhattan Project heritage. Saving both the physical properties and first-hand accounts of the men and women have been a priority. Perhaps our most significant achievement may be legislation now under consideration by Congress to create a Manhattan Project National Historical Park. Seventy years later, the Manhattan Project is finally getting the recognition it deserves.

  14. Breast dosimetry in clinical mammography

    NASA Astrophysics Data System (ADS)

    Benevides, Luis Alberto Do Rego

    The objective of this study was show that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. In the study, AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The protocol proposes the use of a fiber-optic coupled (FOCD) or Metal Oxide Semiconductor Field Effect Transistor (MOSFET) dosimeter to measure the entrance skin exposure at the time of the mammogram without interfering with diagnostic information of the mammogram. The study showed that FOCD had sensitivity with less than 7% energy dependence, linear in all tube current-time product stations, and was reproducible within 2%. FOCD was superior to MOSFET dosimeter in sensitivity, reusability, and reproducibility. The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. In addition, the study population anthropometric

  15. Experimental verification of internal dosimetry calculations. Annual progress report

    SciTech Connect

    1980-05-01

    During the past year a dosimetry research program has been established in the School of Nuclear Engineering at the Georgia Institute of Technology. The major objective of this program has been to provide research results upon which a useful internal dosimetry system could be based. The important application of this dosimetry system will be the experimental verification of internal dosimetry calculations such as those published by the MIRD Committee.

  16. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    SciTech Connect

    COOPER, J.R.

    2000-04-17

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual.

  17. Personnel neutron dosimetry at Department of Energy facilities

    SciTech Connect

    Brackenbush, L.W.; Endres, G.W.R.; Selby, J.M.; Vallario, E.J.

    1980-08-01

    This study assesses the state of personnel neutron dosimetry at DOE facilities. A survey of the personnel dosimetry systems in use at major DOE facilities was conducted, a literature search was made to determine recent advances in neutron dosimetry, and several dosimetry experts were interviewed. It was concluded that personnel neutron dosimeters do not meet current needs and that serious problems exist now and will increase in the future if neutron quality factors are increased and/or dose limits are lowered.

  18. Preserving Perishables (Dormavac)

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A new commercial product that can preserve perishable commodities for weeks without freezing, so that they can be shipped fresh without the cost of air freight, has been developed by Grumman Corporation, Bethpage, Long Island, New York. The development benefited from the company's experience in developing the environmental control system for the Lunar Module, which delivered Apollo astronauts to the surface of the moon. Called Dormavac, the system provides a commodity-preserving environment within an aluminum container that can be transported by truck, rail or ship. Dormavac creates a cold-but above freezing-environment with high relative humidity and very low air pressure. The saturated air minimizes commodity weight loss and the air is automatically changed several times an hour to flush away odors and harmful gases released by the commodities. According to company literature, Dormavac significantly extends the transportation life of perishables. For example, pork has a normal cold storage life of about seven days, beef two weeks and tomatoes three weeks; with Dormavac, pork remains fresh for three weeks, beef more than six weeks and tomatoes seven weeks or more. Dormavac is manufactured and marketed by Grumman Allied Industries, Woodbury, New York. In developing the system, Grumman Allied drew upon the technological resources of another company subsidiary, Grumman Aerospace. Engineers who had earlier worked on Lunar Module environmental control brought their know-how and experience to the Dormavac development.

  19. EVA dosimetry in manned spacecraft.

    PubMed

    Thomson, I

    1999-12-01

    Extra Vehicular Activity (EVA) will become a large part of the astronaut's work on board the International Space Station (ISS). It is already well known that long duration space missions inside a spacecraft lead to radiation doses which are high enough to be a significant health risk to the crew. The doses received during EVA, however, have not been quantified to the same degree. This paper reviews the space radiation environment and the current dose limits to critical organs. Results of preliminary radiation dosimetry experiments on the external surface of the BION series of satellites indicate that EVA doses will vary considerably due to a number of factors such as EVA suit shielding, temporal fluctuations and spacecraft orbit and shielding. It is concluded that measurement of doses to crew members who engage in EVA should be done on board the spacecraft. An experiment is described which will lead the way to implementing this plan on the ISS. It is expected that results of this experiment will help future crew mitigate the risks of ionising radiation in space. PMID:10631334

  20. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  1. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  2. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  3. Dosimetry characteristics of coupled fast-thermal-core HERBE

    NASA Astrophysics Data System (ADS)

    Pesic, Milan; Milosevic, Miodrag; Milovanovic, Sava

    1997-02-01

    The 'HERBE' is new coupled fast-thermal core, designed in 1991, at the 'RB' reactor in the 'Vinca' Institute. It is used for verification of designed oriented computer codes developed in the Institute, training and sample irradiation in fast neutron field. For the last purpose a vertical experimental channel (VCH) is placed in the central axis of the fast core. Neutron spectrum in the center of the VCH is calculated in 44 energy groups. Space distributions of two energy group neutron flux in the 'HERBE' are measured using gold foils and converted into the neutron absorbed dose using group flux-dose conversion factors. Gamma absorption doses in the air in the center of the VCH are measured using calibrated small ionization chamber filed with air. Determined dose rates are related to the reactor power. The first preliminary irradiations of silicon diodes in the center of the VCH of the 'HERBE' fast core are carried out in 1994 and 1995. This paper describes calculation methods and measurement techniques applied to determination of the irradiation performance and dosimetry characteristics of the 'HERBE' system.

  4. Radioactive Waste Management: Study of Spent Fuel Dissolution Rates in Geological Storage Using Dosimetry Modeling and Experimental Verification

    SciTech Connect

    Hansen, Brady; Miller, William

    2011-10-28

    This research will provide improved predictions into the mechanisms and effects of radiolysis on spent nuclear fuel dissolution in a geological respository through accurate dosimetry modeling of the dose to water, mechanistic chemistry modeling of the resulting radiolytic reactions and confirmatory experimental measurements. This work will combine effort by the Nuclear Science and Engineering Institute (NSEI) and the Missouri University Research Reactor (MURR) at the University of Missouri-Columbia, and the expertise and facilities at the Pacific Northwest National Laboratory (PNNL).

  5. Preserving reptiles for research

    USGS Publications Warehouse

    Gotte, Steve W.; Jacobs, Jeremy F.; Zug, George R.

    2016-01-01

    What are voucher specimens and why do we collect them? Voucher specimens are animals and/or their parts that are deposited in a research museum to document the occurrence of a taxon at a specific location in space and time (Pleijel et al., 2008; Reynolds and McDiarmid, 2012). For field biologists, vouchers are the repeatable element of a field study as they allow other biologists, now and in the future, to confirm the identity of species that were studied. The scientific importance of a voucher specimen or series of specimens is that other people are afforded the opportunity to examine the entire animal and confirm or correct identifications. A photographic record is somewhat useful for recording the occurrence of a species, but such records can be insufficient for reliable confirmation of specific identity. Even if a photo shows diagnostic characters of currently recognized taxa, it may not show characters that separate taxa that may be described in the future. Substantial cryptic biodiversity is being found in even relatively well-known herpetofaunas (Crawford et al., 2010), and specimens allow researchers to retroactively evaluate the true diversity in a study as understanding of taxonomy evolves. They enable biologists to study the systematic relationships of populations by quantifying variation in different traits. Specimens are also a source of biological data such as behaviour, ecology, epidemiology, and reproduction through examination of their anatomy, reproductive and digestive tracts, and parasites (Suarez and Tsutsui, 2004). Preserving reptiles as vouchers is not difficult, although doing it properly requires care, effort, and time. Poorly preserved vouchers can invalidate the results and conclusions of your study because of the inability to confirm the identity of your study animals. Good science requires repeatability of observations, and the absence of vouchers or poorly preserved ones prevents such confirmation. Due to space restrictions, we are

  6. Knowledge Preservation at the Fast Flux Test Facility

    SciTech Connect

    Wootan, David W.; Omberg, Ronald P.

    2011-12-30

    One of the goals of the Department of Energy's Office of Nuclear Energy Fuel Cycle Research and Development Program (FCRD) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMRs) that could support the development of an environmentally and economically sound nuclear fuel cycle. The Fast Flux Test Facility (FFTF) is the most recent LMR to operate in the United States, from 1982 to 1992, and was designed as a fully instrumented test reactor with on-line, real time test control and performance monitoring of components and tests installed in the reactor. Knowledge preservation at the FFTF is focused on the areas of design, construction, and startup of the reactor, as well as on preserving information obtained from 10 years of successful operating history and extensive irradiation testing of fuels and materials. In order to ensure protection of information at risk, the program to date has sequestered reports, files, tapes, and drawings to allow for secure retrieval. A disciplined and orderly approach has been developed to respond to client's requests for documents and data in order to minimize the search effort and ensure that future requests for this information can be readily accommodated.

  7. Survey of international personnel radiation dosimetry programs

    SciTech Connect

    Swaja, R.E.

    1985-04-01

    In September of 1983, a mail survey was conducted to determine the status of external personnel gamma and neutron radiation dosimetry programs at international agencies. A total of 130 agencies participated in this study including military, regulatory, university, hospital, laboratory, and utility facilities. Information concerning basic dosimeter types, calibration sources, calibration phantoms, corrections to dosimeter responses, evaluating agencies, dose equivalent reporting conventions, ranges of typical or expected dose equivalents, and degree of satisfaction with existing systems was obtained for the gamma and neutron personnel monitoring programs at responding agencies. Results of this survey indicate that to provide the best possible occupational radiation monitoring programs and to improve dosimetry accuracy in performance studies, facility dosimetrists, regulatory and standards agencies, and research laboratories must act within their areas of responsibility to become familiar with their radiation monitoring systems, establish common reporting guidelines and performance standards, and provide opportunities for dosimetry testing and evaluation. 14 references, 10 tables.

  8. Dosimetry procedures for an industrial irradiation plant

    NASA Astrophysics Data System (ADS)

    Grahn, Ch.

    Accurate and reliable dosimetry procedures constitute a very important part of process control and quality assurance at a radiation processing plant. γ-Dose measurements were made on the GBS 84 irradiator for food and other products on pallets or in containers. Chemical dosimeters wre exposed in the facility under conditions of the typical plant operation. The choice of the dosimeter systems employed was based on the experience in chemical dosimetry gained over several years. Dose uniformity information was obtained in air, spices, bulbs, feeds, cosmetics, plastics and surgical goods. Most products currently irradiated require dose uniformity which can be efficiently provided by pallet or box irradiators like GBS 84. The radiation performance characteristics and some dosimetry procedures are discussed.

  9. Czech results at criticality dosimetry intercomparison 2002.

    PubMed

    Frantisek, Spurný; Jaroslav, Trousil

    2004-01-01

    Two criticality dosimetry systems were tested by Czech participants during the intercomparison held in Valduc, France, June 2002. The first consisted of the thermoluminescent detectors (TLDs) (Al-P glasses) and Si-diodes as passive neutron dosemeters. Second, it was studied to what extent the individual dosemeters used in the Czech routine personal dosimetry service can give a reliable estimation of criticality accident exposure. It was found that the first system furnishes quite reliable estimation of accidental doses. For routine individual dosimetry system, no important problems were encountered in the case of photon dosemeters (TLDs, film badge). For etched track detectors in contact with the 232Th or 235U-Al alloy, the track density saturation for the spark counting method limits the upper dose at approximately 1 Gy for neutrons with the energy >1 MeV. PMID:15353690

  10. 3-D Imaging Based, Radiobiological Dosimetry

    PubMed Central

    Sgouros, George; Frey, Eric; Wahl, Richard; He, Bin; Prideaux, Andrew; Hobbs, Robert

    2008-01-01

    Targeted radionuclide therapy holds promise as a new treatment against cancer. Advances in imaging are making it possible to evaluate the spatial distribution of radioactivity in tumors and normal organs over time. Matched anatomical imaging such as combined SPECT/CT and PET/CT have also made it possible to obtain tissue density information in conjunction with the radioactivity distribution. Coupled with sophisticated iterative reconstruction algorithims, these advances have made it possible to perform highly patient-specific dosimetry that also incorporates radiobiological modeling. Such sophisticated dosimetry techniques are still in the research investigation phase. Given the attendant logistical and financial costs, a demonstrated improvement in patient care will be a prerequisite for the adoption of such highly-patient specific internal dosimetry methods. PMID:18662554

  11. Preservation of Human Cornea

    PubMed Central

    Armitage, W. John

    2011-01-01

    Summary The successful outcome of the majority of corneal transplants depends on the presence of a viable corneal endothelium. This monolayer of cells lines the inner surface of the cornea and its primary function is to maintain corneal transparency by controlling the hydration of the collagenous stromal layer. Since human corneal endothelial cells do not readily proliferate, preservation of the endothelium is a primary aim of methods of corneal storage. Although some cryopreserved corneas have been transplanted successfully, the complexity of the cryopreservation technique and its potential for causing endothelial damage have limited its application. Hypothermia (2–8 °C) is the most commonly applied method of storage, which allows storage for 7–14 days. Organ culture (28–37 °C), which extends storage time to 4 weeks, is used widely in European eye banks. Graft outcomes for corneas stored by these two techniques appear similar. PMID:21566714

  12. Orbital preservation in maxillectomy.

    PubMed

    Stern, S J; Goepfert, H; Clayman, G; Byers, R; Wolf, P

    1993-07-01

    Twenty-eight previously untreated patients with squamous carcinoma of the maxillary sinus underwent maxillectomy with preservation of the orbital contents at the M. D. Anderson Cancer Center between 1971 and 1986. Eighteen patients had part or all of the orbital floor resected; nine patients were treated with radiotherapy, and nine had surgery only. Only 3 of 18 patients in this group (17%) retained significant function in the ipsilateral eye. Furthermore, local recurrence in this group was common (44%), regardless of whether postoperative radiotherapy was used. Ten patients retained the bony orbital floor; if the radiation fields did not include the eye, problems were minimal. Strong consideration should be given to orbital exenteration at the time of surgery, when the orbital floor is resected--especially if postoperative radiation fields will include the eye. PMID:8336956

  13. Advances in corneal preservation.

    PubMed Central

    Lindstrom, R L

    1990-01-01

    The functional status of the endothelium and sustained corneal deturgescence after corneal preservation are of great clinical importance and have been primary goals in the development of corneal storage media. In our investigational studies we have specifically addressed the improvement of the quality of donor tissue after 4 degrees C storage, the extension of corneal preservation time, the enhancement of corneal wound healing, and the reduction of the normal progressive loss of endothelial cells postkeratoplasty. Specifically we have developed in vitro HCE cell and epithelial cell culture models that can accurately reflect the response of human corneal tissue in vivo. These models have been utilized to study the effects of growth factors and medium components in relation to their biocompatibility and efficacy in the development of improved corneal preservation solutions. Our laboratory investigated in vitro conditions that allowed human corneal endothelium to shift from a nonproliferative state, in which they remain viable and metabolically active, to a proliferative, mitotically active state. Isolation techniques developed in our laboratory have enabled the establishment of primary and subsequent subcultures of human corneal endothelium that retain the attributes of native endothelium. These in vitro conditions maintain HCE cells in a proliferative state, actively undergoing mitosis. A quantitative bioassay has been developed to determine the effects of various test medium in the stimulation or inhibition of DNA synthesis. In attempting to learn more about the events that occur during in vitro endothelial cell isolation, cell reattachment, extracellular matrix interaction and migrating during subculture, SEM was done on isolated HCE cells incubated in CSM. These studies suggest that the components of the extracellular matrix modulate the growth response of HCE cells, and play a role in regulating proliferation and migration. These observations are important in

  14. Format-Preserving Encryption

    NASA Astrophysics Data System (ADS)

    Bellare, Mihir; Ristenpart, Thomas; Rogaway, Phillip; Stegers, Till

    Format-preserving encryption (FPE) encrypts a plaintext of some specified format into a ciphertext of identical format—for example, encrypting a valid credit-card number into a valid credit-card number. The problem has been known for some time, but it has lacked a fully general and rigorous treatment. We provide one, starting off by formally defining FPE and security goals for it. We investigate the natural approach for achieving FPE on complex domains, the “rank-then-encipher” approach, and explore what it can and cannot do. We describe two flavors of unbalanced Feistel networks that can be used for achieving FPE, and we prove new security results for each. We revisit the cycle-walking approach for enciphering on a non-sparse subset of an encipherable domain, showing that the timing information that may be divulged by cycle walking is not a damaging thing to leak.

  15. HSE performance tests for dosimetry services.

    PubMed

    Birch, R; Simpson, J A; Hedley, R P; Wardle, J

    2000-12-01

    In the United Kingdom a dosimetry service that measures and assesses whole-body or part-body doses arising from external radiation must successfully complete a performance test. Results of the performance tests for routine whole-body, routine extremity/skin and special accident dosimetry, carried out over the past six years by the AEA Technology Calibration Service at Winfrith, and DRaStaC, the AWE Calibration Service at Aldermaston, are presented. The test involves irradiating groups of dosemeters to known doses of gamma radiation and determining the bias and relative standard deviations for each dose group. The results are compared with the pass criteria specified by the UK Health and Safety Executive. For routine whole-body dosimetry, both the film badge and thermoluminescent dosemeter (TLD) perform adequately for irradiations between 0.6 and 30 mSv. For higher doses up to 250 mSv, where the slow emulsion of the film is used, the film badge shows poorer performance with a tendency to overestimate the dose. For routine extremity/skin dosimetry there is a wider spread of relative standard deviation results than is seen for routine whole-body dosimetry. This is to be expected since the results will include dosemeters that are based on 'disposable' TLDs and ones based on lithium fluoride powder in sachets. For special accident dosimetry the dosemeters are tested between 0.26 and 6 Gy. For the highest dose group the film badge invariably underestimates the true dose, whereas the TLD has a tendency to overestimate it. PMID:11140715

  16. A Widening Circle: Preservation Literature Review, 1992.

    ERIC Educational Resources Information Center

    Drewes, Jeanne M.

    1993-01-01

    Examines preservation literature from 1992 that focused on the integration of preservation strategies within the organization. Highlights include foreign preservation programs; collection development and preservation; government programs; deacidification; paper requirements; disaster recovery techniques; mutilation; microform issues; nonbook…

  17. Nuclear accident dosimetry studies at Los Alamos National Laboratory

    SciTech Connect

    Casson, W.H.; Buhl, T.E.; Upp, D.L.

    1995-12-01

    Two critical assemblies have been characterized at the Los Alamos Critical Experiments Facility (LACEF) for use in testing nuclear accident dosimeters and related devices. These device, Godiva IV and SHEBA II, have very different characteristics in both operation and emitted neutron energy spectra. The Godiva assembly is a bare metal fast burst device with a hard spectrum. This spectrum can be modified by use of several shields including steel, concrete, and plexiglas. The modified spectra vary in both average neutron energy and in the specific distribution of the neutron energies in the intermediate energy range. This makes for a very favorable test arrangement as the response ratios between different activation foils used in accident dosimeters are significantly altered such as the ratio between gold, copper, and sulfur elements. The SHEBA device is a solution assembly which has both a slow ramp and decay period and a much softer spectrum. The uncertainly introduced in the response of fast decay foils such as indium can therefore be evaluated into the test results. The neutron energy spectrum for each configuration was measured during low power operations with a multisphere system. These measurements were extended to high dose pulsed operation by use of TLDs moderated TLDs, and special activation techniques. The assemblies were used in the testing of several accident dosimetry devices in studies modeled after the Nuclear Accident Dosimetry Studies that were conducted at Oak Ridge National Laboratory for about 25 years using the Health Physics Research Reactor. It is our intention to conduct these studies approximately annually for the evaluation of the nuclear accident dosimeter systems currently in use within the DOE, alternative systems used internationally, and new dosimeter designs being developed or considered for field application. Participation in selected studies will be open to all participants.

  18. Technical basis for internal dosimetry at Hanford

    SciTech Connect

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ({sup 58}Co, {sup 60}Co, {sup 54}Mn, and {sup 59}Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78 refs., 35 figs., 115 tabs.

  19. Practical neutron dosimetry at high energies

    SciTech Connect

    McCaslin, J.B.; Thomas, R.H.

    1980-10-01

    Dosimetry at high energy particle accelerators is discussed with emphasis on physical measurements which define the radiation environment and provide an immutable basis for the derivation of any quantities subsequently required for risk evaluation. Results of inter-laboratory dosimetric comparisons are reviewed and it is concluded that a well-supported systematic program is needed which would make possible detailed evaluations and inter-comparisons of instruments and techniques in well characterized high energy radiation fields. High-energy dosimetry is so coupled with radiation transport that it is clear their study should proceed concurrently.

  20. Applicability of Topaz Composites to Electron Dosimetry

    NASA Astrophysics Data System (ADS)

    Bomfim, K. S.; Souza, D. N.

    2010-11-01

    Thermoluminescent dosimetric topaz properties have been investigated and the results have shown that this mineral presents characteristics of a good dosimeter mainly in doses evaluation in radiotherapy with photons beams in radiotherapy. Typical applications of thermoluminescent dosimeters in radiotherapy are: in vivo dosimetry on patients (either as a routine quality assurance procedure or for dose monitoring in special cases); verification of treatment techniques; dosimetry audits; and comparisons among hospitals. The mean aim of this work was to evaluate the efficiency of topaz-Teflon pellets as thermoluminescent dosimeters in high-energy electron beams used to radiotherapy. Topaz-Teflon pellets were used as TLD.

  1. Recent progresses in tritium radioecology and dosimetry

    SciTech Connect

    Galeriu, D.; Davis, P.; Raskob, W.; Melintescu, A.

    2008-07-15

    In this paper, some aspects of recent progress in tritium radioecology and dosimetry are presented, with emphasis on atmospheric releases to terrestrial ecosystems. The processes involved in tritium transfer through the environment are discussed, together with the current status of environmental tritium models. Topics include the deposition and reemission of HT and HTO, models for the assessment of routine and accidental HTO emissions, a new approach to modeling the dynamics of tritium in mammals, the dose consequences of tritium releases and aspects of human dosimetry. The need for additional experimental data is identified, together with the attributes that would be desirable in the next generation of tritium codes. (authors)

  2. Technical basis for internal dosimetry at Hanford

    SciTech Connect

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products (/sup 58/Co, /sup 60/Co, /sup 54/Mn, and /sup 59/Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64 refs., 42 figs., 118 tabs.

  3. Time to demand dosimetry for molecular radiotherapy?

    PubMed Central

    Guy, M J

    2015-01-01

    Molecular radiotherapy (MRT) has been used clinically for around 75 years. Despite this long history of clinical use, there is no established dosimetry practice for calculating the absorbed dose delivered to tumour targets or to organs at risk. As a result, treatment protocols have often evolved based on experience with relatively small numbers of patients, each receiving a similar administered activity but, potentially, widely varying doses. This is in stark contrast to modern external-beam radiotherapy practice. This commentary describes some of the barriers to MRT dosimetry and gives some opinions on the way forward. PMID:25571916

  4. NSDUAZ unfolding package for neutron spectrometry and dosimetry with Bonner spheres.

    PubMed

    Vega-Carrillo, H R; Ortiz-Rodríguez, J M; Martínez-Blanco, M R

    2012-12-01

    NSDUAZ (Neutron Spectrometry and Dosimetry from the Universidad Autónoma de Zacatecas) is a user friendly neutron unfolding package for Bonner sphere spectrometer with (6)LiI(Eu) developed under LabView(®) environment. Unfolding is carried out using a recursive iterative procedure with the SPUNIT algorithm, where the starting spectrum is obtained from a library initial guess spectra to start the iterations. The NSDUAZ performance was evaluated using (252)Cf, (252)Cf/D(2)O, (241)AmBe neutron sources and the neutrons outside the radial beam port of a TRIGA Mark III nuclear reactor running to 10 W. PMID:22578610

  5. Recommended Dosimetry Cross Section Compendium.

    Energy Science and Technology Software Center (ESTSC)

    1994-07-11

    Version 00 The data is recommended for spectrum determination applications and for the prediction of neutron activation of typical radiation sensor materials. The library has been tested for consistency of the cross sections in a wide variety of neutron environments. The results and cautions from this testing have been documented. The data has been interfaced with radiation transport codes, such as TWODANT-SYS (CCC-547) and MCNP (CCC-200), in order to compare calculated and measured activities formore » benchmark reactor experiments.« less

  6. 1983 international intercomparison of nuclear accident dosimetry systems at Oak Ridge National Laboratory

    SciTech Connect

    Swaja, R.E.; Greene, R.T.; Sims, C.S.

    1985-04-01

    An international intercomparison of nuclear accident dosimetry systems was conducted during September 12-16, 1983, at Oak Ridge National Laboratory (ORNL) using the Health Physics Research Reactor operated in the pulse mode to simulate criticality accidents. This study marked the twentieth in a series of annual accident dosimetry intercomparisons conducted at ORNL. Participants from ten organizations attended this intercomparison and measured neutron and gamma doses at area monitoring stations and on phantoms for three different shield conditions. Results of this study indicate that foil activation techniques are the most popular and accurate method of determining accident-level neutron doses at area monitoring stations. For personnel monitoring, foil activation, blood sodium activation, and thermoluminescent (TL) methods are all capable of providing accurate dose estimates in a variety of radiation fields. All participants in this study used TLD's to determine gamma doses with very good results on the average. Chemical dosemeters were also shown to be capable of yielding accurate estimates of total neutron plus gamma doses in a variety of radiation fields. While 83% of all neutron measurements satisfied regulatory standards relative to reference values, only 39% of all gamma results satisfied corresponding guidelines for gamma measurements. These results indicate that continued improvement in accident dosimetry evaluation and measurement techniques is needed.

  7. Twenty-first nuclear accident dosimetry intercomparison study, August 6-10, 1984

    SciTech Connect

    Swaja, R.E.; Ragan, G.E.; Sims, C.S.

    1985-05-01

    The twenty-first in a series of nuclear accident dosimetry (NAD) intercomparison (NAD) studies was conducted at the Oak Ridge National Laboratory's Dosimetry Applications Research Facility during August 6-10, 1984. The Health Physics Research Reactor operated in the pulse mode was used to simulate three criticality accidents with different radiation fields. Participants from five organizations measured neutron doses between 0.53 and 4.36 Gy and gamma doses between 0.19 and 1.01 Gy at area monitoring stations and on phantoms. About 75% of all neutron dose estimates based on foil activation, hair activation, simulated blood sodium activation, and thermoluminescent methods were within +-25% of reference values. Approximately 86% of all gamma results measured using thermoluminescent (TLD-700 or CaSO/sub 4/) systems were within +-20% of reference doses which represents a significant improvement over previous studies. Improvements observed in the ability of intercomparison participants to estimate neutron and gamma doses under criticality accident conditions can be partly attributed to experience in previous NAD studies which have provided practical tests of dosimetry systems, enabled participants to improve evaluation methods, and standardized dose reporting conventions. 16 refs., 15 tabs.

  8. Personnel radiation dosimetry symposium: program and abstracts

    SciTech Connect

    Not Available

    1984-10-01

    The purpose was to provide applied and research dosimetrists with sufficient information to evaluate the status and direction of their programs relative to the latest guidelines and techniques. A technical program was presented concerning experience, requirements, and advances in gamma, beta, and neutron personnel dosimetry.

  9. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy... system or source traceable to the National Institute of Standards and Technology (NIST) and...

  10. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy... system or source traceable to the National Institute of Standards and Technology (NIST) and...

  11. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy... system or source traceable to the National Institute of Standards and Technology (NIST) and...

  12. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy... system or source traceable to the National Institute of Standards and Technology (NIST) and...

  13. Software for 3D radiotherapy dosimetry. Validation

    NASA Astrophysics Data System (ADS)

    Kozicki, Marek; Maras, Piotr; Karwowski, Andrzej C.

    2014-08-01

    The subject of this work is polyGeVero® software (GeVero Co., Poland), which has been developed to fill the requirements of fast calculations of 3D dosimetry data with the emphasis on polymer gel dosimetry for radiotherapy. This software comprises four workspaces that have been prepared for: (i) calculating calibration curves and calibration equations, (ii) storing the calibration characteristics of the 3D dosimeters, (iii) calculating 3D dose distributions in irradiated 3D dosimeters, and (iv) comparing 3D dose distributions obtained from measurements with the aid of 3D dosimeters and calculated with the aid of treatment planning systems (TPSs). The main features and functions of the software are described in this work. Moreover, the core algorithms were validated and the results are presented. The validation was performed using the data of the new PABIGnx polymer gel dosimeter. The polyGeVero® software simplifies and greatly accelerates the calculations of raw 3D dosimetry data. It is an effective tool for fast verification of TPS-generated plans for tumor irradiation when combined with a 3D dosimeter. Consequently, the software may facilitate calculations by the 3D dosimetry community. In this work, the calibration characteristics of the PABIGnx obtained through four calibration methods: multi vial, cross beam, depth dose, and brachytherapy, are discussed as well.

  14. A-bomb survivor dosimetry update

    SciTech Connect

    Loewe, W.E.

    1982-06-01

    A-bomb survivor data have been generally accepted as applicable. Also, the initial radiations have tended to be accepted as the dominant radiation source for all survivors. There was general acceptance of the essential reliability of both the biological effects data and the causative radiation dose values. There are considerations casting doubt on these acceptances, but very little quantification of th implied uncertainties has been attempted. The exception was A-bomb survivor dosimetry, where free-field kerma values for initial radiations were thought to be accurate to about 30%, and doses to individual survivors were treated as effectively error-free. In 1980, a major challenge to the accepted A-bomb survivor dosimetry was announced, and was quickly followed by a succession of explanations and displays showing the soundness of that challenge. In fact, a complete replacement set of free-field kerma values was provided which was suitable for use in constructing an entire new dosimetry for Hiroshima and Nagasaki. The new values showed many changes greater than the accepted 30% uncertainty. An approximate new dosimetry was indeed constructed, and used to convert existing leukemia cause-and-effect data from the old to the new dose values, by way of assessing the impact. (ERB)

  15. Dosimetry implant for treating restenosis and hyperplasia

    DOEpatents

    Srivastava, Suresh; Gonzales, Gilbert R; Howell, Roger W; Bolch, Wesley E; Adzic, Radoslav

    2014-09-16

    The present invention discloses a method of selectively providing radiation dosimetry to a subject in need of such treatment. The radiation is applied by an implant comprising a body member and .sup.117mSn electroplated at selected locations of the body member, emitting conversion electrons absorbed immediately adjacent selected locations while not affecting surrounding tissue outside of the immediately adjacent area.

  16. Protocol for emergency EPR dosimetry in fingernails

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is an increased need for after-the fact dosimetry because of the high risk of radiation exposures due to terrorism or accidents. In case of such an event, a method is needed to make measurements of dose in a large number of individuals rapidly and with sufficient accuracy to facilitate effect...

  17. Development of A-bomb survivor dosimetry

    SciTech Connect

    Kerr, G.D.

    1995-12-31

    An all important datum in risk assessment is the radiation dose to individual survivors of the bombings in Hiroshima and Nagasaki. The first set of dose estimates for survivors was based on a dosimetry system developed in 1957 by the Oak Ridge National Laboratory (ORNL). These Tentative 1957 Doses (T57D) were later replaced by a more extensive and refined set of Tentative 1965 Doses (T65D). The T65D system of dose estimation for survivors was also developed at ORNL and served as a basis for risk assessment throughout the 1970s. In the late 1970s, it was suggested that there were serious inadequacies with the T65D system, and these inadequacies were the topic of discussion at two symposia held in 1981. In early 1983, joint US- Japan research programs were established to conduct a thorough review of all aspects of the radiation dosimetry for the Hiroshima and Nagasaki A-bomb survivors. A number of important contributions to this review were made by ORNL staff members. The review was completed in 1986 and a new Dosimetry System 1986 (DS86) was adopted for use. This paper discusses the development of the various systems of A-bomb survivor dosimetry, and the status of the current DS86 system as it is being applied in the medical follow-up studies of the A-bomb survivors and their offspring.

  18. New dosimetry of atomic bomb radiations.

    PubMed

    Fry, R J; Sinclair, W K

    1987-10-10

    The reassessment of the radiation dosimetry from the Hiroshima and Nagasaki atomic bombs is almost complete. Since atomic bomb survivors provide a major source of data for estimates of risk of cancer induction by radiation the impact of the new dosimetry on risk estimates and radiation protection standards is important. The changes include an increase of about 20% in the estimated yield of the Hiroshima bomb and a reduction in the estimated doses from neutrons in both cities. The estimated neutron dose for Hiroshima is about 10% of the previous estimate. The neutron doses are now so small that direct estimates of neutron relative biological effectiveness may be precluded or be much more difficult. There is little change in most of the gamma ray organ doses because various changes in the new estimates tend to cancel each other out. The new estimate of the attenuation of the free-in-air kerma by the walls of the homes is about twice that used in the previous dosimetry. But the transmission of gamma radiation to the deep organs such as bone marrow is significantly greater than earlier estimates. Probably future risk estimates for radiogenic cancer will be somewhat higher because of both the new dosimetry and the new cancer mortality data. New risk estimates should be available in 1988. PMID:2889042

  19. Historic Preservation in Art Education

    ERIC Educational Resources Information Center

    Guilfoil, Joanne K.

    2004-01-01

    The Blue Grass Trust in Lexington, Kentucky sponsors the annual visual art contest for historic preservation, one of the many events they sponsor as part of the celebrations planned for Historic Preservation Month each May. When the announcement concerning the Blue Grass Trust visual art competition is released, area high school art teachers…

  20. Preservation of Liquid Biological Samples

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi (Inventor); Nimmagudda, Ramalingeshwara R. (Inventor)

    2000-01-01

    The present invention provides a method of preserving a liquid biological sample, comprising the step of: contacting said liquid biological sample with a preservative comprising, sodium benzoate in an amount of at least about 0.15% of the sample (weight/volume) and citric acid in an amount of at least about 0.025% of the sample (weight/volume).

  1. Entanglement preservation by continuous distillation

    SciTech Connect

    Mundarain, D.; Orszag, M.

    2009-05-15

    We study the two-qubit entanglement preservation for a system in the presence of independent thermal baths. We use a combination of filtering operations and distillation protocols as a series of frequent measurements on the system. It is shown that a small fraction of the total amount of available copies of the system preserves or even improves its initial entanglement during the evolution.

  2. Sharing and Preserving Family Stories.

    ERIC Educational Resources Information Center

    Dobrez, Cynthia K.

    1987-01-01

    One public library's storytelling program for fourth through eighth graders and their grandparents has preserved grandparents' stories and fostered family communication. Storytelling was done one-on-one, with each child then writing and illustrating the story. Benefits included preservation of oral history and encouragement of storytelling,…

  3. Preservation Methods for Digital Library

    ERIC Educational Resources Information Center

    Rajendran, L.; Venkatesan, M.; Kanthimathi, S.

    2005-01-01

    Going digital is the way to minimize handling of damaged materials, but the imaging process is demanding and must be done with oversight by preservation staff and with a high enough level of quality to ensure the reusability of the archival electronic file for as long as possible. This paper focuses on the scope and needs of digital preservation,…

  4. Collections Security: The Preservation Perspective.

    ERIC Educational Resources Information Center

    Patkus, Beth L.

    1998-01-01

    Provides a brief review of the basic elements of library security and preservation programs as a background for an exploration of security/preservation issues, problems, and policies. Discusses environmental control, disaster preparedness, fire protection, storage and handling, and controlling access to collections. (AEF)

  5. BOILING REACTORS

    DOEpatents

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  6. TOPICAL REVIEW Dosimetry for ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Karger, Christian P.; Jäkel, Oliver; Palmans, Hugo; Kanai, Tatsuaki

    2010-11-01

    Recently, ion beam radiotherapy (including protons as well as heavier ions) gained considerable interest. Although ion beam radiotherapy requires dose prescription in terms of iso-effective dose (referring to an iso-effective photon dose), absorbed dose is still required as an operative quantity to control beam delivery, to characterize the beam dosimetrically and to verify dose delivery. This paper reviews current methods and standards to determine absorbed dose to water in ion beam radiotherapy, including (i) the detectors used to measure absorbed dose, (ii) dosimetry under reference conditions and (iii) dosimetry under non-reference conditions. Due to the LET dependence of the response of films and solid-state detectors, dosimetric measurements are mostly based on ion chambers. While a primary standard for ion beam radiotherapy still remains to be established, ion chamber dosimetry under reference conditions is based on similar protocols as for photons and electrons although the involved uncertainty is larger than for photon beams. For non-reference conditions, dose measurements in tissue-equivalent materials may also be necessary. Regarding the atomic numbers of the composites of tissue-equivalent phantoms, special requirements have to be fulfilled for ion beams. Methods for calibrating the beam monitor depend on whether passive or active beam delivery techniques are used. QA measurements are comparable to conventional radiotherapy; however, dose verification is usually single field rather than treatment plan based. Dose verification for active beam delivery techniques requires the use of multi-channel dosimetry systems to check the compliance of measured and calculated dose for a representative sample of measurement points. Although methods for ion beam dosimetry have been established, there is still room for developments. This includes improvement of the dosimetric accuracy as well as development of more efficient measurement techniques.

  7. Preserving Dignity in Later Life.

    PubMed

    São José, José Manuel

    2016-09-01

    This article examines how elders who receive social care in the community experience loss of dignity and how they preserve their dignity. Qualitative research revealed that loss of dignity is a major concern for these elders and that they preserve their dignity differently, ranging from actively engaging with life to detaching themselves from life. We conclude that, in later life, preserving dignity while receiving social care differs from preserving dignity in the context of health care, especially health care provided in institutional settings. Furthermore, preserving dignity in later life, while receiving social care, is a complex process, depending not only on performing activities and individual action and responsibility, but also on other actions, some of them involving a certain inactivity/passivity, and interactions with others, especially caregivers. This article offers some insights to developing better policies and care practices for promoting dignity in the context of community-based social care. PMID:27456751

  8. Contact dermatitis caused by preservatives.

    PubMed

    Yim, Elizabeth; Baquerizo Nole, Katherine L; Tosti, Antonella

    2014-01-01

    Preservatives are biocidal chemicals added to food, cosmetics, and industrial products to prevent the growth of microorganisms. They are usually nontoxic and inexpensive and have a long shelf life. Unfortunately, they commonly cause contact dermatitis. This article reviews the most important classes of preservatives physicians are most likely to encounter in their daily practice, specifically isothiazolinones, formaldehyde and formaldehyde-releasers, iodopropynyl butylcarbamate, methyldibromoglutaronitrile, and parabens. For each preservative mentioned, the prevalence of sensitization, clinical presentation of contact dermatitis, patch testing concentrations, cross reactions, and related legislation will be discussed. Mandatory labeling of preservatives is required in some countries, but not required in others. Until policies are made, physicians and patients must be proactive in identifying potential sensitizers and removing their use. We hope that this article will serve as a guide for policy makers in creating legislation and future regulations on the use and concentration of certain preservatives in cosmetics and industrial products. PMID:25207684

  9. NEUTRONIC REACTOR

    DOEpatents

    Daniels, F.

    1959-10-27

    A reactor in which at least a portion of the moderator is in the form of movable refractory balls is described. In addition to their moderating capacity, these balls may serve as carriers for fissionable material or fertile material, or may serve in a coolant capacity to remove heat from the reactor. A pneumatic system is used to circulate the balls through the reactor.

  10. Specifications for the development of BUGLE-93: An ENDF/B-VI multigroup cross section library for LWR shielding and pressure vessel dosimetry

    SciTech Connect

    White, J.E.; Wright, R.Q.; Roussin, R.W.; Ingersoll, D.T.

    1992-11-01

    This report discusses specifications which have been developed for a new multigroup cross section library based on ENDF/B-VI data for light water reactor shielding and reactor pressure vessel dosimetry applications. The resulting broad-group library and an intermediate fine-group library are defined by the specifications provided in this report. Processing ENDF/B-VI into multigroup format for use in radiation transport codes will provide radiation shielding analysts with the most currently available nuclear data. it is expected that the general nature of the specifications will be useful in other applications such as reactor physics.

  11. The dosimetry of brachytherapy-induced erectile dysfunction

    SciTech Connect

    Merrick, Gregory S.; Butler, Wayne M

    2003-12-31

    There is emerging evidence that brachytherapy-induced erectile dysfunction (ED) is technique-related and may be minimized by careful attention to source placement. Herein, we review the relationship between radiation doses to the prostate gland/surrounding structures and the development of brachytherapy-induced ED. The permanent prostate brachytherapy literature was reviewed using MEDLINE searches to ensure completeness. Although the site-specific structure associated with brachytherapy-induced ED remains unknown, there is an increasing body of data implicating the proximal penis. With day 0 CT-based dosimetry, the dose to 50% (D{sub 50}) and 25% (D{sub 25}) of the bulb of the penis should be maintained below 40% and 60% mPD, respectively, while the crura D{sub 50} should be maintained below 28% mPD to maximize post-brachytherapy potency. To date, there is no data to suggest that either radiation doses to the neurovascular bundles or choice of isotope is associated with brachytherapy-induced ED, while conflicting data has been reported regarding radiation dose to the prostate and the use of supplemental external beam radiation therapy. Although the etiology of brachytherapy-induced ED is likely multifactorial, the available data supports the proximal penis as an important site-specific structure. Refinements in implant technique, including preplanning and intraoperative seed placement, will result in lower radiation doses to the proximal penis with potential improvement in potency preservation.

  12. Research reactors

    SciTech Connect

    Tonneson, L.C.; Fox, G.J.

    1996-04-01

    There are currently 284 research reactors in operation, and 12 under construction around the world. Of the operating reactors, nearly two-thirds are used exclusively for research, and the rest for a variety of purposes, including training, testing, and critical assembly. For more than 50 years, research reactor programs have contributed greatly to the scientific and educational communities. Today, six of the world`s research reactors are being shut down, three of which are in the USA. With government budget constraints and the growing proliferation concerns surrounding the use of highly enriched uranium in some of these reactors, the future of nuclear research could be impacted.

  13. CONVECTION REACTOR

    DOEpatents

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  14. Preserving Physics Knowledge at the Fast Flux Test Facility

    SciTech Connect

    Wootan, David W.; Omberg, Ronald P.; Makenas, Bruce J.; Nielsen, Deborah L.; Nelson, Joseph V.; Polzin, David L.

    2011-11-01

    One of the goals of the Department of Energy’s Office of Nuclear Energy, initiated under the Fuel Cycle Research and Development Program (FCRD) and continued under the Advanced Reactor Concepts Program (ARC) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMRs) that could support the development of an environmentally and economically sound nuclear fuel cycle. The Fast Flux Test Facility (FFTF) is the most recent LMR to operate in the United States, from 1982 to 1992, and was designed as a fully instrumented test reactor with on-line, real time test control and performance monitoring of components and tests installed in the reactor. The 10 years of operation of the FFTF provided a very useful framework for testing the advances in LMR safety technology based on passive safety features that may be of increased importance to new designs after the events at Fukushima. Knowledge preservation at the FFTF is focused on the areas of design, construction, and startup of the reactor, as well as on preserving information obtained from 10 years of successful operating history and extensive irradiation testing of fuels and materials. In order to ensure protection of information at risk, the program to date has sequestered reports, files, tapes, and drawings to allow for secure retrieval. A disciplined and orderly approach has been developed to respond to client’s requests for documents and data in order to minimize the search effort and ensure that future requests for this information can be readily accommodated.

  15. Tactical gamma and fast neutron dosimetry with leuko dye optical waveguides. Conference paper

    SciTech Connect

    Kronenberg, S.

    1982-06-18

    Ionizing radiation-induced changes in the refractive index of radiochromic dye solution results in a novel dosimetry system with a very wide dynamic range. This approach is adaptable to personnel dosimetry and to Army tactical dosimetry.

  16. Savannah River Site production reactor technical specifications. K Production Reactor

    SciTech Connect

    1996-02-01

    These technical specifications are explicit restrictions on the operation of the Savannah River Site K Production Reactor. They are designed to preserve the validity of the plant safety analysis by ensuring that the plant is operated within the required conditions bounded by the analysis, and with the operable equipment that is assumed to mitigate the consequences of an accident. Technical specifications preserve the primary success path relied upon to detect and respond to accidents. This report describes requirements on thermal-hydraulic limits; limiting conditions for operation and surveillance for the reactor, power distribution control, instrumentation, process water system, emergency cooling and emergency shutdown systems, confinement systems, plant systems, electrical systems, components handling, and special test exceptions; design features; and administrative controls.

  17. Cultural Preservation Program for Alaska

    ERIC Educational Resources Information Center

    Barbaran, Francisco Ramon

    2011-01-01

    In this technical report, an innovative cultural preservation program for implementation in Athabascan villages is presented. The parameters for success in implementing such a project is discussed based on a workshop with Athabascan elders.

  18. LWR surveillance dosimetry improvement program: PSF metallurgical blind test results

    SciTech Connect

    Kam, F.B.K.; Maerker, R.E.; Stallmann, F.W.

    1984-01-01

    The metallurgical irradiation experiment at the Oak Ridge Research Reactor Poolside Facility (ORR-PSF) was designed as a benchmark to test the accuracy of radiation embrittlement predictions in the pressure vessel wall of light water reactors on the basis of results from surveillance capsules. The PSF metallurgical Blind Test is concerned with the simulated surveillance capsule (SSC) and the simulated pressure vessel capsule (SPVC). The data from the ORR-PSF benchmark experiment are the basis for comparison with the predictions made by participants of the metallurgical ''Blind Test''. The Blind Test required the participants to predict the embrittlement of the irradiated specimen based only on dosimetry and metallurgical data from the SSC1 capsule. This exercise included both the prediction of damage fluence and the prediction of embrittlement based on the predicted fluence. A variety of prediction methodologies was used by the participants. No glaring biases or other deficiencies were found, but neither were any of the methods clearly superior to the others. Closer analysis shows a rather complex and poorly understood relation between fluence and material damage. Many prediction formulas can give an adequate approximation, but further improvement of the prediction methodology is unlikely at this time given the many unknown factors. Instead, attention should be focused on determining realistic uncertainties for the predicted material changes. The Blind Test comparisons provide some clues for the size of these uncertainties. In particular, higher uncertainties must be assigned to materials whose chemical composition lies outside the data set for which the prediction formula was obtained. 16 references, 14 figures, 5 tables.

  19. Preservation of Liquid Biological Samples

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi (Inventor); Nimmagudda, Ramalingeshwara (Inventor)

    2004-01-01

    The present invention related to the preservation of a liquid biological sample. The biological sample is exposed to a preservative containing at least about 0.15 g of sodium benzoate and at least about 0.025 g of citric acid per 100 ml of sample. The biological sample may be collected in a vessel or an absorbent mass. The biological sample may also be exposed to a substrate and/or a vehicle.

  20. NONCONVEX REGULARIZATION FOR SHAPE PRESERVATION

    SciTech Connect

    CHARTRAND, RICK

    2007-01-16

    The authors show that using a nonconvex penalty term to regularize image reconstruction can substantially improve the preservation of object shapes. The commonly-used total-variation regularization, {integral}|{del}u|, penalizes the length of the object edges. They show that {integral}|{del}u|{sup p}, 0 < p < 1, only penalizes edges of dimension at least 2-p, and thus finite-length edges not at all. We give numerical examples showing the resulting improvement in shape preservation.

  1. An investigation of false positive dosimetry results

    SciTech Connect

    Lewandowski, M.A.; Davis, S.A.; Goff, T.E.; Wu, C.F.

    1996-12-31

    The Waste Isolation Pilot Plant (WIPP) is a facility designed for the demonstration of the safe disposal of transuranic waste. Currently, the radiation source term is confined to sealed calibration and check sources since WIPP has not received waste for disposal. For several years the WIPP Dosimetry Group has operated a Harshaw Model 8800C reader to analyze Harshaw 8801-7776 thermoluminescent cards (3 TLD-700 and 1 TLD-600) with 8805 holder. The frequency of false positive results for quarterly dosimeter exchanges is higher than desired by the Dosimetry Group management. Initial observations suggested that exposure to intense ambient sunlight may be responsible for the majority of the false positive readings for element 3. A study was designed to investigate the possibility of light leaking through the holder and inducing a signal in element 3. This paper discusses the methods and results obtained, with special emphasis placed on recommendations to reduce the frequency of light-induced false positive readings.

  2. Neutron dosimetry using optically stimulated luminescence

    NASA Astrophysics Data System (ADS)

    Miller, S. D.; Eschbach, P. A.

    1991-06-01

    The addition of thermoluminescent (TL) materials within hydrogenous matrices to detect neutron induced proton recoils for radiation dosimetry is a well known concept. Previous attempts to implement this technique have met with limited success, primarily due to the high temperatures required for TL readout and the low melting temperatures of hydrogen-rich plastics. Research in recent years PNL has produced a new Optically Stimulated Luminescence (OSL) technique known as the Cooled Optically Stimulated Luminescence (COSL) that offers, for the first time, the capability of performing extremely sensitive radiation dosimetry at low temperatures. In addition to its extreme sensitivity, the COSL technique offers multiple readout capability, limited fading in a one year period, and the capability of analyzing single grains within a hydrogenous matrix.

  3. Passive particle dosimetry. [silver halide crystal growth

    NASA Technical Reports Server (NTRS)

    Childs, C. B.

    1977-01-01

    Present methods of dosimetry are reviewed with emphasis on the processes using silver chloride crystals for ionizing particle dosimetry. Differences between the ability of various crystals to record ionizing particle paths are directly related to impurities in the range of a few ppm (parts per million). To understand the roles of these impurities in the process, a method for consistent production of high purity silver chloride, and silver bromide was developed which yields silver halides with detectable impurity content less than 1 ppm. This high purity silver chloride was used in growing crystals with controlled doping. Crystals were grown by both the Czochalski method and the Bridgman method, and the Bridgman grown crystals were used for the experiments discussed. The distribution coefficients of ten divalent cations were determined for the Bridgman crystals. The best dosimeters were made with silver chloride crystals containing 5 to 10 ppm of lead; other impurities tested did not produce proper dosimeters.

  4. Absolute and relative dosimetry for ELIMED

    SciTech Connect

    Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F.; Carpinelli, M.; Presti, D. Lo; Raffaele, L.; Tramontana, A.; Cirio, R.; Sacchi, R.; Monaco, V.; Marchetto, F.; Giordanengo, S.

    2013-07-26

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  5. Neutron dosimetry using optically stimulated luminescence

    SciTech Connect

    Miller, S.D.; Eschbach, P.A.

    1991-06-01

    The addition of thermoluminescent (TL) materials within hydrogenous matrices to detect neutron-induced proton recoils for radiation dosimetry is a well-known concept. Previous attempts to implement this technique have met with limited success, primarily due to the high temperatures required for TL readout and the low melting temperatures of hydrogen-rich plastics. Research in recent years at Pacific Northwest laboratories (PNL) has produced a new Optically Stimulated Luminescence (OSL) technique known as the Cooled Optically Stimulated Luminescence (COSL) that offers, for the first time, the capability of performing extremely sensitive radiation dosimetry at low temperatures. In addition to its extreme sensitivity, the COSL technique offers multiple readout capability, limited fading in a one-year period, and the capability of analyzing single grains within a hydrogenous matrix. 4 refs., 10 figs.

  6. Trigeminal neuralgia treatment dosimetry of the Cyberknife

    SciTech Connect

    Ho, Anthony; Lo, Anthony T.; Dieterich, Sonja; Soltys, Scott G.; Gibbs, Iris C.; Chang, Steve G.; Adler, John R.

    2012-04-01

    There are 2 Cyberknife units at Stanford University. The robot of 1 Cyberknife is positioned on the patient's right, whereas the second is on the patient's left. The present study examines whether there is any difference in dosimetry when we are treating patients with trigeminal neuralgia when the target is on the right side or the left side of the patient. In addition, we also study whether Monte Carlo dose calculation has any effect on the dosimetry. We concluded that the clinical and dosimetric outcomes of CyberKnife treatment for trigeminal neuralgia are independent of the robot position. Monte Carlo calculation algorithm may be useful in deriving the dose necessary for trigeminal neuralgia treatments.

  7. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2005-02-25

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database.

  8. Simple optical theory for light dosimetry during PDT (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Jacques, Steven L.

    1992-06-01

    Photons are one of the three major reactants in the photodynamic reaction that yields toxic photoproduct for cell killing. Dosimetry of light is a major concern when planning a photodynamic therapy (PDT) protocol. This paper presents a very simple approach toward the tissue optics with a practical conclusion about how tissue optics affects planning of day-to-day PDT dosimetry. The paper does not address all the complexities of real tissue dosimetry, such as heterogeneous tissues, variable absorption due to changing tissue blood content, and variable tissue oxygen levels. The paper outlines the optical behavior in a homogeneous tissue, which is a starting point for understanding light dosimetry.

  9. Energy Metabolism and Human Dosimetry of Tritium

    SciTech Connect

    Galeriu, D.; Takeda, H.; Melintescu, A.; Trivedi, A

    2005-07-15

    In the frame of current revision of human dosimetry of {sup 14}C and tritium, undertaken by the International Commission of Radiological Protection, we propose a novel approach based on energy metabolism and a simple biokinetic model for the dynamics of dietary intake (organic {sup 14}C, tritiated water and Organically Bound Tritium-OBT). The model predicts increased doses for HTO and OBT comparing to ICRP recommendations, supporting recent findings.

  10. Quantities and units in radiation protection dosimetry

    NASA Astrophysics Data System (ADS)

    Jennings, W. A.

    1994-08-01

    A new report, entitled Quantities and Units in Radiation Protection Dosimetry, has recently been published by the international Commission on Radiation Units and Measurements. That report (No. 51) aims to provide a coherent system of quantities and units for purposes of measurement and calculation in the assessment of compliance with dose limitations. The present paper provides an extended summary of that report, including references to the operational quantities needed for area and individual monitoring of external radiations.

  11. a Generalized Program for Internal Radionuclide Dosimetry

    NASA Astrophysics Data System (ADS)

    Johnson, Timothy Karl

    The development of monoclonal antibodies specific for tumor surface antigens promises a highly specific carrier medium for delivering a tumorcidal radiation dose. Dosimetry calculations of monoclonal antibodies are made difficult, however, precisely because the focus of radioactivity is targeted for a nonstandard volume in a nonstandard geometry. This precludes straightforward application of the formalism developed for internal radionuclide dosimetry by the Medical Internal Radiation Dose Committee. A software program was written to account for the perturbations introduced by the inclusion of a tumor mass as an additional source of, and target for, radiation. The program allows the interactive development of a mathematical model to account for observed biodistribution data. The model describes the time dependence of radioactivity in each organ system that retains radiolabeled antibody, including tumor. Integration of these "time-activity" curves yield cumulative activity for each organ system identified as a 'source' of radioactivity. A Monte Carlo simulation of photon transport is then executed for each source organ to obtain the fraction of radiation energy absorbed by various 'target' organs. When combined with the cumulative activity, this absorbed fraction allows an estimate of dose to be made for each target organ. The program has been validated against ten analytic models designed to span a range of common input data types. Additionally, a performance benchmark has been defined to assess the practicality of implementing the program on different computing hardware platforms. Sources of error in the computation are elaborated on, and future directions and improvements discussed. The software presents an integrated modeling/dosimetry environment particularly suited for performing Monoclonal Antibody dosimetry. It offers a viable methodology for performing prospective treatment planning, based on extrapolation of tracer kinetic data to therapeutic levels.

  12. The Importance of Dosimetry Standardization in Radiobiology

    PubMed Central

    Desrosiers, Marc; DeWerd, Larry; Deye, James; Lindsay, Patricia; Murphy, Mark K; Mitch, Michael; Macchiarini, Francesca; Stojadinovic, Strahinja; Stone, Helen

    2013-01-01

    Radiation dose is central to much of radiobiological research. Precision and accuracy of dose measurements and reporting of the measurement details should be sufficient to allow the work to be interpreted and repeated and to allow valid comparisons to be made, both in the same laboratory and by other laboratories. Despite this, a careful reading of published manuscripts suggests that measurement and reporting of radiation dosimetry and setup for radiobiology research is frequently inadequate, thus undermining the reliability and reproducibility of the findings. To address these problems and propose a course of action, the National Cancer Institute (NCI), the National Institute of Allergy and Infectious Diseases (NIAID), and the National Institute of Standards and Technology (NIST) brought together representatives of the radiobiology and radiation physics communities in a workshop in September, 2011. The workshop participants arrived at a number of specific recommendations as enumerated in this paper and they expressed the desirability of creating dosimetry standard operating procedures (SOPs) for cell culture and for small and large animal experiments. It was also felt that these SOPs would be most useful if they are made widely available through mechanism(s) such as the web, where they can provide guidance to both radiobiologists and radiation physicists, be cited in publications, and be updated as the field and needs evolve. Other broad areas covered were the need for continuing education through tutorials at national conferences, and for journals to establish standards for reporting dosimetry. This workshop did not address issues of dosimetry for studies involving radiation focused at the sub-cellular level, internally-administered radionuclides, biodosimetry based on biological markers of radiation exposure, or dose reconstruction for epidemiological studies. PMID:26401441

  13. 3D dosimetry fundamentals: gels and plastics

    NASA Astrophysics Data System (ADS)

    Lepage, M.; Jordan, K.

    2010-11-01

    Many different materials have been developed for 3D radiation dosimetry since the Fricke gel dosimeter was first proposed in 1984. This paper is intended as an entry point into these materials where we provide an overview of the basic principles for the most explored materials. References to appropriate sources are provided such that the reader interested in more details can quickly find relevant information.

  14. Bayesian Methods for Radiation Detection and Dosimetry

    SciTech Connect

    Peter G. Groer

    2002-09-29

    We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed compartmental activities. From the estimated probability densities of the model parameters we were able to derive the densities for compartmental activities for a two compartment catenary model at different times. We also calculated the average activities and their standard deviation for a simple two compartment model.

  15. Software tool for portal dosimetry research.

    PubMed

    Vial, P; Hunt, P; Greer, P B; Oliver, L; Baldock, C

    2008-09-01

    This paper describes a software tool developed for research into the use of an electronic portal imaging device (EPID) to verify dose for intensity modulated radiation therapy (IMRT) beams. A portal dose image prediction (PDIP) model that predicts the EPID response to IMRT beams has been implemented into a commercially available treatment planning system (TPS). The software tool described in this work was developed to modify the TPS PDIP model by incorporating correction factors into the predicted EPID image to account for the difference in EPID response to open beam radiation and multileaf collimator (MLC) transmitted radiation. The processes performed by the software tool include; i) read the MLC file and the PDIP from the TPS, ii) calculate the fraction of beam-on time that each point in the IMRT beam is shielded by MLC leaves, iii) interpolate correction factors from look-up tables, iv) create a corrected PDIP image from the product of the original PDIP and the correction factors and write the corrected image to file, v) display, analyse, and export various image datasets. The software tool was developed using the Microsoft Visual Studio.NET framework with the C# compiler. The operation of the software tool was validated. This software provided useful tools for EPID dosimetry research, and it is being utilised and further developed in ongoing EPID dosimetry and IMRT dosimetry projects. PMID:18946980

  16. Hanford Internal Dosimetry Project manual. Revision 1

    SciTech Connect

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.; Long, M.P.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, and guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program.

  17. Radiation dosimetry and spectrometry with superheated emulsions

    NASA Astrophysics Data System (ADS)

    d'Errico, Francesco

    2001-09-01

    Detectors based on emulsions of overexpanded halocarbon droplets in tissue equivalent aqueous gels or soft polymers, known as "superheated drop detectors" or "bubble (damage) detectors", have been used in radiation detection, dosimetry and spectrometry for over two decades. Recent technological advances have led to the introduction of several instruments for individual and area monitoring: passive integrating meters based on the optical or volumetric registration of the bubbles, and active counters detecting bubble nucleations acoustically. These advances in the instrumentation have been matched by the progress made in the production of stable and well-specified emulsions of superheated droplets. A variety of halocarbons are employed in the formulation of the detectors, and this permits a wide range of applications. In particular, halocarbons with a moderate degree of superheat, i.e. a relatively small difference between their operating temperature and boiling point, can be used in neutron dosimetry and spectrometry since they are only nucleated by energetic heavy ions such as those produced by fast neutrons. More recently, halocarbons with an elevated degree of superheat have been utilised to produce emulsions that nucleate with much smaller energy deposition and detect low linear energy transfer radiations, such as photons and electrons. This paper reviews the detector physics of superheated emulsions and their applications in radiation measurements, particularly in neutron dosimetry and spectrometry.

  18. Effects of temperature variation on MOSFET dosimetry.

    PubMed

    Cheung, Tsang; Butson, Martin J; Yu, Peter K N

    2004-07-01

    This note investigates temperature effects on dosimetry using a metal oxide semiconductor field effect transistor (MOSFET) for radiotherapy x-ray treatment. This was performed by analysing the dose response and threshold voltage outputs for MOSFET dosimeters as a function of ambient temperature. Results have shown that the clinical semiconductor dosimetry system (CSDS) MOSFET provides stable dose measurements with temperatures varying from 15 degrees C up to 40 degrees C. Thus standard irradiations performed at room temperature can be directly compared to in vivo dose assessments performed at near body temperature without a temperature correction function. The MOSFET dosimeter threshold voltage varies with temperature and this level is dependent on the dose history of the MOSFET dosimeter. However, the variation can be accounted for in the measurement method. For accurate dosimetry, the detector should be placed for approximately 60 s on a patient to allow thermal equilibrium before measurements are taken with the final reading performed whilst still attached to the patient or conversely left for approximately 120 s after removal from the patient if initial readout was measured at room temperature to allow temperature equilibrium to be established. PMID:15285264

  19. In vivo dosimetry in external beam radiotherapy

    SciTech Connect

    Mijnheer, Ben; Beddar, Sam; Izewska, Joanna; Reft, Chester

    2013-07-15

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20/20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors' opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks.

  20. Reconstructive dosimetry for cutaneous radiation syndrome

    PubMed Central

    Lima, C.M.A.; Lima, A.R.; Degenhardt, Ä.L.; Valverde, N.J.; Da Silva, F.C.A.

    2015-01-01

    According to the International Atomic Energy Agency (IAEA), a relatively significant number of radiological accidents have occurred in recent years mainly because of the practices referred to as potentially high-risk activities, such as radiotherapy, large irradiators and industrial radiography, especially in gammagraphy assays. In some instances, severe injuries have occurred in exposed persons due to high radiation doses. In industrial radiography, 80 cases involving a total of 120 radiation workers, 110 members of the public including 12 deaths have been recorded up to 2014. Radiological accidents in industrial practices in Brazil have mainly resulted in development of cutaneous radiation syndrome (CRS) in hands and fingers. Brazilian data include 5 serious cases related to industrial gammagraphy, affecting 7 radiation workers and 19 members of the public; however, none of them were fatal. Some methods of reconstructive dosimetry have been used to estimate the radiation dose to assist in prescribing medical treatment. The type and development of cutaneous manifestations in the exposed areas of a person is the first achievable gross dose estimation. This review article presents the state-of-the-art reconstructive dosimetry methods enabling estimation of local radiation doses and provides guidelines for medical handling of the exposed individuals. The review also presents the Chilean and Brazilian radiological accident cases to highlight the importance of reconstructive dosimetry. PMID:26445332

  1. NEUTRONIC REACTOR

    DOEpatents

    Fraas, A.P.; Mills, C.B.

    1961-11-21

    A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

  2. Evaluation of radiochromic gel dosimetry and polymer gel dosimetry in a clinical dose verification

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Jan; De Deene, Yves

    2013-09-01

    A quantitative comparison of two full three-dimensional (3D) gel dosimetry techniques was assessed in a clinical setting: radiochromic gel dosimetry with an in-house developed optical laser CT scanner and polymer gel dosimetry with magnetic resonance imaging (MRI). To benchmark both gel dosimeters, they were exposed to a 6 MV photon beam and the depth dose was compared against a diamond detector measurement that served as golden standard. Both gel dosimeters were found accurate within 4% accuracy. In the 3D dose matrix of the radiochromic gel, hotspot dose deviations up to 8% were observed which are attributed to the fabrication procedure. The polymer gel readout was shown to be sensitive to B0 field and B1 field non-uniformities as well as temperature variations during scanning. The performance of the two gel dosimeters was also evaluated for a brain tumour IMRT treatment. Both gel measured dose distributions were compared against treatment planning system predicted dose maps which were validated independently with ion chamber measurements and portal dosimetry. In the radiochromic gel measurement, two sources of deviations could be identified. Firstly, the dose in a cluster of voxels near the edge of the phantom deviated from the planned dose. Secondly, the presence of dose hotspots in the order of 10% related to inhomogeneities in the gel limit the clinical acceptance of this dosimetry technique. Based on the results of the micelle gel dosimeter prototype presented here, chemical optimization will be subject of future work. Polymer gel dosimetry is capable of measuring the absolute dose in the whole 3D volume within 5% accuracy. A temperature stabilization technique is incorporated to increase the accuracy during short measurements, however keeping the temperature stable during long measurement times in both calibration phantoms and the volumetric phantom is more challenging. The sensitivity of MRI readout to minimal temperature fluctuations is demonstrated which

  3. REACTOR COOLING

    DOEpatents

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  4. Dosimetry tools and techniques for IMRT

    SciTech Connect

    Low, Daniel A.; Moran, Jean M.; Dempsey, James F.; Dong Lei; Oldham, Mark

    2011-03-15

    Intensity modulated radiation therapy (IMRT) poses a number of challenges for properly measuring commissioning data and quality assurance (QA) radiation dose distributions. This report provides a comprehensive overview of how dosimeters, phantoms, and dose distribution analysis techniques should be used to support the commissioning and quality assurance requirements of an IMRT program. The proper applications of each dosimeter are described along with the limitations of each system. Point detectors, arrays, film, and electronic portal imagers are discussed with respect to their proper use, along with potential applications of 3D dosimetry. Regardless of the IMRT technique utilized, some situations require the use of multiple detectors for the acquisition of accurate commissioning data. The overall goal of this task group report is to provide a document that aids the physicist in the proper selection and use of the dosimetry tools available for IMRT QA and to provide a resource for physicists that describes dosimetry measurement techniques for purposes of IMRT commissioning and measurement-based characterization or verification of IMRT treatment plans. This report is not intended to provide a comprehensive review of commissioning and QA procedures for IMRT. Instead, this report focuses on the aspects of metrology, particularly the practical aspects of measurements that are unique to IMRT. The metrology of IMRT concerns the application of measurement instruments and their suitability, calibration, and quality control of measurements. Each of the dosimetry measurement tools has limitations that need to be considered when incorporating them into a commissioning process or a comprehensive QA program. For example, routine quality assurance procedures require the use of robust field dosimetry systems. These often exhibit limitations with respect to spatial resolution or energy response and need to themselves be commissioned against more established dosimeters. A chain of

  5. Dosimetry tools and techniques for IMRT.

    PubMed

    Low, Daniel A; Moran, Jean M; Dempsey, James F; Dong, Lei; Oldham, Mark

    2011-03-01

    Intensity modulated radiation therapy (IMRT) poses a number of challenges for properly measuring commissioning data and quality assurance (QA) radiation dose distributions. This report provides a comprehensive overview of how dosimeters, phantoms, and dose distribution analysis techniques should be used to support the commissioning and quality assurance requirements of an IMRT program. The proper applications of each dosimeter are described along with the limitations of each system. Point detectors, arrays, film, and electronic portal imagers are discussed with respect to their proper use, along with potential applications of 3D dosimetry. Regardless of the IMRT technique utilized, some situations require the use of multiple detectors for the acquisition of accurate commissioning data. The overall goal of this task group report is to provide a document that aids the physicist in the proper selection and use of the dosimetry tools available for IMRT QA and to provide a resource for physicists that describes dosimetry measurement techniques for purposes of IMRT commissioning and measurement-based characterization or verification of IMRT treatment plans. This report is not intended to provide a comprehensive review of commissioning and QA procedures for IMRT. Instead, this report focuses on the aspects of metrology, particularly the practical aspects of measurements that are unique to IMRT. The metrology of IMRT concerns the application of measurement instruments and their suitability, calibration, and quality control of measurements. Each of the dosimetry measurement tools has limitations that need to be considered when incorporating them into a commissioning process or a comprehensive QA program. For example, routine quality assurance procedures require the use of robust field dosimetry systems. These often exhibit limitations with respect to spatial resolution or energy response and need to themselves be commissioned against more established dosimeters. A chain of

  6. Fusion reactor materials semiannual progress report for the period ending September 30, 1988

    SciTech Connect

    none,

    1989-04-01

    This paper discusses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  7. Fusion reactor materials: Semiannual progress report for the period ending March 31, 1988

    SciTech Connect

    none,

    1988-08-01

    This report contains papers on thermonuclear reactor materials. The general categories of these papers are: irradiation facilities, test matrices, and experimental methods; dosimetry, damage parameters and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; development of structural alloys; solid breeding materials; ceramics; and radiation effects. Selected papers have been processed for inclusion in the energy database. (LSP)

  8. Fusion Reactor Materials semiannual progress report for period ending September 30, 1991

    SciTech Connect

    none,

    1992-04-01

    This report contains papers on topic in the following areas of thermonuclear reactor materials: irradiation facilities, test matrices, and experimental methods; dosimetry, damage parameters and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials and beryllium; and ceramics. These paper have been index separately elsewhere. (LSP).

  9. Fusion reactor materials semiannual progress report for the period ending March 31, 1990

    SciTech Connect

    Not Available

    1990-08-01

    This report mainly discusses topics on the physical effects of radiation on thermonuclear reactor materials. The areas discussed are: irradiation facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; fundamental mechanical behavior; radiation effects; mechanistic studies, theory and modeling; development of structural alloys; solid breeding materials; and ceramics. (FI)

  10. Fertility preservation in Turner syndrome.

    PubMed

    Grynberg, Michaël; Bidet, Maud; Benard, Julie; Poulain, Marine; Sonigo, Charlotte; Cédrin-Durnerin, Isabelle; Polak, Michel

    2016-01-01

    Premature ovarian insufficiency is a relatively rare condition that can appear early in life. In a non-negligible number of cases the ovarian dysfunction results from genetic diseases. Turner syndrome (TS), the most common sex chromosome abnormality in females, is associated with an inevitable premature exhaustion of the follicular stockpile. The possible or probable infertility is a major concern for TS patients and their parents, and physicians are often asked about possible options to preserve fertility. Unfortunately, there are no recommendations on fertility preservation in this group. The severely reduced follicle pool even during prepubertal life represents the major limit for fertility preservation and is the root of numerous questions regarding the competence of gametes or ovarian tissue crybanked. In addition, patients suffering from TS show higher than usual rates of spontaneous abortion, fetal anomaly, and maternal morbidity and mortality, which should be considered at the time of fertility preservation and before reutilization of the cryopreserved gametes. Apart from fulfillment of the desire of becoming genetic parents, TS patients may be potential candidates for egg donation, gestational surrogacy, and adoption. The present review discusses the different options for preserving female fertility in TS and the ethical questions raised by these approaches. PMID:26677790

  11. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  12. NEUTRONIC REACTOR

    DOEpatents

    Metcalf, H.E.; Johnson, H.W.

    1961-04-01

    BS>A nuclear reactor incorporating fuel rods passing through a moderator and including tubes of a material of higher Thermal conductivity than the fuel in contact with the fuel is described. The tubes extend beyond the active portion of the reactor into contant with a fiuld coolant.

  13. MANHATTAN PROJECT B REACTOR HANFORD WASHINGTON [HANFORD'S HISTORIC B REACTOR (12-PAGE BOOKLET)

    SciTech Connect

    GERBER MS

    2009-04-28

    The Hanford Site began as part of the United States Manhattan Project to research, test and build atomic weapons during World War II. The original 670-square mile Hanford Site, then known as the Hanford Engineer Works, was the last of three top-secret sites constructed in order to produce enriched uranium and plutonium for the world's first nuclear weapons. B Reactor, located about 45 miles northwest of Richland, Washington, is the world's first full-scale nuclear reactor. Not only was B Reactor a first-of-a-kind engineering structure, it was built and fully functional in just 11 months. Eventually, the shoreline of the Columbia River in southeastern Washington State held nine nuclear reactors at the height of Hanford's nuclear defense production during the Cold War era. The B Reactor was shut down in 1968. During the 1980's, the U.S. Department of Energy began removing B Reactor's support facilities. The reactor building, the river pumphouse and the reactor stack are the only facilities that remain. Today, the U.S. Department of Energy (DOE) Richland Operations Office offers escorted public access to B Reactor along a designated tour route. The National Park Service (NPS) is studying preservation and interpretation options for sites associated with the Manhattan Project. A draft is expected in summer 2009. A final report will recommend whether the B Reactor, along with other Manhattan Project facilities, should be preserved, and if so, what roles the DOE, the NPS and community partners will play in preservation and public education. In August 2008, the DOE announced plans to open B Reactor for additional public tours. Potential hazards still exist within the building. However, the approved tour route is safe for visitors and workers. DOE may open additional areas once it can assure public safety by mitigating hazards.

  14. Clathrate hydrates for ozone preservation.

    PubMed

    Muromachi, Sanehiro; Ohmura, Ryo; Takeya, Satoshi; Mori, Yasuhiko H

    2010-09-01

    We report the experimental evidence for the preservation of ozone (O(3)) encaged in a clathrate hydrate. Although ozone is an unstable substance and is apt to decay to oxygen (O(2)), it may be preserved for a prolonged time if it is encaged in hydrate cavities in the form of isolated molecules. This possibility was assessed using a hydrate formed from an ozone + oxygen gas mixture coexisting with carbon tetrachloride or xenon. Each hydrate sample was stored in an air-filled container at atmospheric pressure and a constant temperature in the range between -20 and 2 degrees C and was continually subjected to iodometric measurements of its fractional ozone content. Such chronological measurements and structure analysis using powder X-ray diffraction have revealed that ozone can be preserved in a hydrate-lattice structure for more than 20 days at a concentration on the order of 0.1% (hydrate-mass basis). PMID:20707330

  15. Automatic in vivo portal dosimetry of all treatments

    NASA Astrophysics Data System (ADS)

    Olaciregui-Ruiz, I.; Rozendaal, R.; Mijnheer, B.; van Herk, M.; Mans, A.

    2013-11-01

    At our institution EPID (electronic portal imaging device) dosimetry is routinely applied to perform in vivo dose verification of all patient treatments with curative intent since January 2008. The major impediment of the method has been the amount of work required to produce and inspect the in vivo dosimetry reports (a time-consuming and labor-intensive process). In this paper we present an overview of the actions performed to implement an automated in vivo dosimetry solution clinically. We reimplemented the EPID dosimetry software and modified the acquisition software. Furthermore, we introduced new tools to periodically inspect the record-and-verify database and automatically run the EPID dosimetry software when needed. In 2012, 95% of our 3839 treatments scheduled for in vivo dosimetry were analyzed automatically (27 633 portal images of intensity-modulated radiotherapy (IMRT) fields, 5551 portal image data of VMAT arcs, and 2003 portal images of non-IMRT fields). The in vivo dosimetry verification results are available a few minutes after delivery and alerts are immediately raised when deviations outside tolerance levels are detected. After the clinical introduction of this automated solution, inspection of the detected deviations is the only remaining work. These newly developed tools are a major step forward towards full integration of in vivo EPID dosimetry in radiation oncology practice.

  16. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Emergency Exposure Situations § 835.1304 Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material...

  17. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Emergency Exposure Situations § 835.1304 Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material...

  18. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Emergency Exposure Situations § 835.1304 Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material...

  19. Student Perceptions of an Online Medical Dosimetry Program

    ERIC Educational Resources Information Center

    Lenards, Nishele D.

    2007-01-01

    The University of Wisconsin--La Crosse offers the first web-based medical dosimetry program in the nation. There is no data to research a program of this type. This research consisted of the evaluation of other distance education programs including health profession programs in addition to face-to-face medical dosimetry programs. There was need to…

  20. Automatic in vivo portal dosimetry of all treatments.

    PubMed

    Olaciregui-Ruiz, I; Rozendaal, R; Mijnheer, B; van Herk, M; Mans, A

    2013-11-21

    At our institution EPID (electronic portal imaging device) dosimetry is routinely applied to perform in vivo dose verification of all patient treatments with curative intent since January 2008. The major impediment of the method has been the amount of work required to produce and inspect the in vivo dosimetry reports (a time-consuming and labor-intensive process). In this paper we present an overview of the actions performed to implement an automated in vivo dosimetry solution clinically. We reimplemented the EPID dosimetry software and modified the acquisition software. Furthermore, we introduced new tools to periodically inspect the record-and-verify database and automatically run the EPID dosimetry software when needed. In 2012, 95% of our 3839 treatments scheduled for in vivo dosimetry were analyzed automatically (27,633 portal images of intensity-modulated radiotherapy (IMRT) fields, 5551 portal image data of VMAT arcs, and 2003 portal images of non-IMRT fields). The in vivo dosimetry verification results are available a few minutes after delivery and alerts are immediately raised when deviations outside tolerance levels are detected. After the clinical introduction of this automated solution, inspection of the detected deviations is the only remaining work. These newly developed tools are a major step forward towards full integration of in vivo EPID dosimetry in radiation oncology practice. PMID:24201085

  1. Preservation at Stony Brook. Preservation Planning Program. Study Report.

    ERIC Educational Resources Information Center

    Cook, Donald C.; And Others

    This final report is a product of a Preservation Planning Program (PPP) self-study conducted by the State University of New York (SUNY), Stony Brook, working with the Association of Research Libraries' (ARL) Office of Management Studies (OMS). The PPP is designed to put self-help tools into the hands of library staff responsible for developing…

  2. Dosimetry for members of the extended Techa River cohort

    SciTech Connect

    Anspaugh, L R.; Degteva, M. O.; Vorobiova, M I.; Mokrov, Y; Napier, Bruce A.

    2006-10-01

    has now been funded, and there has been a major discovery that may profoundly affect the accuracy and credibility of the Techa River source term. Important records dated from 1949?1956 have been found in the Mayak archives and include detailed data on, e.g., irradiation times of uranium blocks in the reactors, the cooling time of the blocks, and information on waste-storage equipment and processing. The latter will be important in determining the age and fractionation of fission products discharged. Efforts are underway to review these documents and to make important data available to the international community. Efforts are ongoing to make historic documents more widely available to the scientific community through re-publication in Radiation Safety Problems. Other recommendations of Balonov et al. are being implemented. Many efforts are being undertaken to validate estimates of internal and external doses; the results of past efforts have been published in Degteva et al. Additional efforts are underway as part of a cooperative Russian-European Commission program. An internationally coordinated effort is underway to perform a complete analysis of uncertainty for the estimates of dose and how the uncertainty in individual doses translates into derivations of risk coefficients. Many other improvements have been made or are being made in the TRDS; these are too numerous to describe here, but current accomplishments and plans for future work have been described in Degteva et al. Thus, the recommendations of Balonov et al. for improvements in dosimetry are being implemented with enthusiasm through joint activities of Russian, American, and European colleagues. We believe that the resulting dosimetry system will be credible and can be validated against a large volume of data on environmental measurements and of radionuclide-body burdens in people.

  3. Cryobiological preservation of Drosophila embryos

    SciTech Connect

    Mazur, P.; Schreuders, P.D.; Cole, K.W.; Hall, J.W. ); Mahowald, A.P. )

    1992-12-18

    The inability to cryobiologically preserve the fruit fly Drosophila melanogaster has required that fly stocks be maintained by frequent transfer of adults. This method is costly in terms of time and can lead to loss of stocks. Traditional slow freezing methods do not succeed because the embryos are highly sensitive to chilling. With the procedures described here, 68 percent of precisely staged 15-hour Oregon R (wild-type) embryos hatch after vitrification at -205[degree]C, and 40 percent of the resulting larvae develop into normal adult flies. These embryos are among the most complex organisms successfully preserved by cryobiology.

  4. EURADOS strategic research agenda: vision for dosimetry of ionising radiation.

    PubMed

    Rühm, W; Fantuzzi, E; Harrison, R; Schuhmacher, H; Vanhavere, F; Alves, J; Bottollier Depois, J F; Fattibene, P; Knežević, Ž; Lopez, M A; Mayer, S; Miljanić, S; Neumaier, S; Olko, P; Stadtmann, H; Tanner, R; Woda, C

    2016-02-01

    Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises-based on input from EURADOS Working Groups (WGs) and Voting Members-five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS website (www.eurados.org). PMID:25752758

  5. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  6. Improving neutron dosimetry using bubble detector technology

    SciTech Connect

    Buckner, M.A.

    1993-02-01

    Providing accurate neutron dosimetry for a variety of neutron energy spectra is a formidable task for any dosimetry system. Unless something is known about the neutron spectrum prior to processing the dosimeter, the calculated dose may vary greatly from that actually encountered; that is until now. The entrance of bubble detector technology into the field of neutron dosimetry has eliminated the necessity of having an a priori knowledge of the neutron energy spectra. Recently, a new approach in measuring personnel neutron dose equivalent was developed at Oak Ridge National Laboratory. By using bubble detectors in combination with current thermoluminescent dosimeters (TLDs) as a Combination Personnel Neutron Dosimeter (CPND), not only is it possible to provide accurate dose equivalent results, but a simple four-interval neutron energy spectrum is obtained as well. The components of the CPND are a Harshaw albedo TLD and two bubble detectors with theoretical energy thresholds of 100 key and 1500 keV. Presented are (1) a synoptic history surrounding emergence of bubble detector technology, (2) a brief overview of the current theory on mechanisms of interaction, (3) the data and analysis process involved in refining the response functions, (4) performance evaluation of the original CPND and a reevaluation of the same data under the modified method, (5) the procedure used to determine the reference values of component fluence and dose equivalent for field assessment, (6) analysis of the after-modification results, (7) a critique of some currently held assumptions, offering some alternative explanations, and (8) thoughts concerning potential applications and directions for future research.

  7. In vivo light dosimetry for pleural PDT

    NASA Astrophysics Data System (ADS)

    Dimofte, Andreea; Zhu, Timothy C.; Finlay, Jarod C.; Culligan, Melissa; Edmonds, Christine E.; Friedberg, Joseph S.; Cengel, Keith; Hahn, Stephen M.

    2009-02-01

    In-vivo light Dosimetry for patients undergoing photodynamic therapy (PDT) is one of the important dosimetry quantities critical for predicting PDT outcome. This study examines the light fluence (rate) delivered to patients undergoing pleural PDT as a function of treatment time, treatment volume and surface area, and its accuracy as a function of the calibration accuracies of each isotropic detector and the calibration integrating sphere. The patients studied here were enrolled in Phase II clinical trial of Photofrin-mediated PDT for the treatment of non-small cell lung cancer with pleural effusion. The ages of the patients studied varied from 34 to 69 year old. All patients were administered 2mg per kg body weight Photoprin 24 hours before the surgery. Patients undergoing photodynamic therapy (PDT) are treated with laser light with a light fluence of 60 J/cm^2 at 630nm. Fluence rate (mW/cm^2) and cumulative fluence (J/cm^2) was monitored at 7 different sites during the entire light treatment delivery. Isotropic detectors were used for in-vivo light dosimetry. The anisotropy of each isotropic detector was found to be within 30%. The mean fluence rate delivery varied from 37.84 to 94.05 mW/cm^2 and treatment time varied from 1762 to 5232s. We have established a correlation between the treatment time and the treatment volume. The results are discussed using an integrating sphere theory and the measured tissue optical properties. The result can be used as a clinical guideline for future pleural PDT treatment.

  8. Model selection for radiochromic film dosimetry

    NASA Astrophysics Data System (ADS)

    Méndez, I.

    2015-05-01

    The purpose of this study was to find the most accurate model for radiochromic film dosimetry by comparing different channel independent perturbation models. A model selection approach based on (algorithmic) information theory was followed, and the results were validated using gamma-index analysis on a set of benchmark test cases. Several questions were addressed: (a) whether incorporating the information of the non-irradiated film, by scanning prior to irradiation, improves the results; (b) whether lateral corrections are necessary when using multichannel models; (c) whether multichannel dosimetry produces better results than single-channel dosimetry; (d) which multichannel perturbation model provides more accurate film doses. It was found that scanning prior to irradiation and applying lateral corrections improved the accuracy of the results. For some perturbation models, increasing the number of color channels did not result in more accurate film doses. Employing Truncated Normal perturbations was found to provide better results than using Micke-Mayer perturbation models. Among the models being compared, the triple-channel model with Truncated Normal perturbations, net optical density as the response and subject to the application of lateral corrections was found to be the most accurate model. The scope of this study was circumscribed by the limits under which the models were tested. In this study, the films were irradiated with megavoltage radiotherapy beams, with doses from about 20-600 cGy, entire (8 inch  × 10 inch) films were scanned, the functional form of the sensitometric curves was a polynomial and the different lots were calibrated using the plane-based method.

  9. NUCLEAR REACTOR

    DOEpatents

    Moore, R.V.; Bowen, J.H.; Dent, K.H.

    1958-12-01

    A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.

  10. Preserving Plutonium-244 as a National Asset

    SciTech Connect

    Patton, Bradley D; Alexander, Charles W; Benker, Dennis; Collins, Emory D; Romano, Catherine E; Wham, Robert M

    2011-01-01

    Plutonium-244 (244 Pu) is an extremely rare and long-lived isotope of plutonium with a half-life of 80 million years. Measureable amounts of 244 Pu are found in neither reactor-grade nor weapons-grade plutonium. Production of this isotope requires a very high thermal flux to permit the two successive neutron captures that convert 242 Pu to 243 Pu to 244 Pu, particularly given the short (about 5 hour) half-life of 243 Pu. Such conditions simply do not exist in plutonium production processes. Therefore, 244 Pu is ideal for precise radiochemical analyses measuring plutonium material properties and isotopic concentrations in items containing plutonium. Isotope dilution mass spectrometry is about ten times more sensitive when using 244 Pu rather than 242 Pu for determining plutonium isotopic content. The isotope can also be irradiated in small quantities to produce superheavy elements. The majority of the existing global inventory of 244 Pu is contained in the outer housing of Mark-18A targets at the Savannah River Site (SRS). The total inventory is about 20 grams of 244 Pu in about 400 grams of plutonium distributed among the 65 targets. Currently, there are no specific plans to preserve these targets. Although the cost of separating and preserving this material would be considerable, it is trivial in comparison to new production costs. For all practical purposes, the material is irreplaceable, because new production would cost billions of dollars and require a series of irradiation and chemical separation cycles spanning up to 50 years. This paper will discuss a set of options for overcoming the significant challenges to preserve the 244 Pu as a National Asset: (1) the need to relocate the material from SRS in a timely manner, (2) the need to reduce the volume of material to the extent possible for storage, and (3) the need to establish an operational capability to enrich the 244 Pu in significant quantities. This paper suggests that if all the Mark-18A plutonium is

  11. A broad-group cross-section library based on ENDF/B-VII.0 for fast neutron dosimetry Applications

    SciTech Connect

    Alpan, F.A.

    2011-07-01

    A new ENDF/B-VII.0-based coupled 44-neutron, 20-gamma-ray-group cross-section library was developed to investigate the latest evaluated nuclear data file (ENDF) ,in comparison to ENDF/B-VI.3 used in BUGLE-96, as well as to generate an objective-specific library. The objectives selected for this work consisted of dosimetry calculations for in-vessel and ex-vessel reactor locations, iron atom displacement calculations for reactor internals and pressure vessel, and {sup 58}Ni(n,{gamma}) calculation that is important for gas generation in the baffle plate. The new library was generated based on the contribution and point-wise cross-section-driven (CPXSD) methodology and was applied to one of the most widely used benchmarks, the Oak Ridge National Laboratory Pool Critical Assembly benchmark problem. In addition to the new library, BUGLE-96 and an ENDF/B-VII.0-based coupled 47-neutron, 20-gamma-ray-group cross-section library was generated and used with both SNLRML and IRDF dosimetry cross sections to compute reaction rates. All reaction rates computed by the multigroup libraries are within {+-} 20 % of measurement data and meet the U. S. Nuclear Regulatory Commission acceptance criterion for reactor vessel neutron exposure evaluations specified in Regulatory Guide 1.190. (authors)

  12. USF/Russian dosimetry on STS-57

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The major purpose of this experiment was to conduct an international comparison of passive dosimetry methods in space. Two APD's were flown in the charged particle directional spectrometer (CPDS)/tissue equivalent proportional counter (TEPC) locker on the space shuttle during the STS-57 mission. Due to placement, the shielding and radiation environment of the APD's were nearly the same and the dosimeters distributed in the two boxes can be considered equally exposed. The dosimeter types included plastic nuclear track detectors (PNTD's), thermoluminescent detectors (TLD), nuclear emulsions, and thermal/resonance neutron detectors (TRND's). The USF dosimeters included PNTD's, TLD's, and TRND's, while the Russian dosimeters included PNTD's, TLD's, and nuclear emulsions.

  13. Multisegmented ion chamber for CT scanner dosimetry

    SciTech Connect

    Moore, M.M.; Cacak, R.K.; Hendee, W.R.

    1981-01-01

    A multisegmented, ionization chamber capable of determining dosimetric profiles from a CT scanner has been developed and tested. The chamber consists of a number of 2 mm wide electrically isolated segments from which ionization currents may be measured. Presented here are the performance characteristics of the chamber including energy response, dose linearity, and corrections for ''cross talk'' between segments. Sample dosimetric profiles are depicted for 3 and 6 mm nominal beam widths at two locations in a dosimetric phantom positioned in the x-ray beam of a fourth generation CT scanner. The results agree well with the conventional method of obtaining dosimetry measurements with TLD chips.

  14. Neutron dosimetry of the Little Boy device

    SciTech Connect

    Pederson, R.A.; Plassmann, E.A.

    1984-01-01

    Neutron dose rates at several angular locations and at distances out to 0.5 mile have been measured during critical operation of the Little Boy replica. We used modified remmetes and thermoluminescent dosimetry techniques for the measurements. The present status of our analysis is presented including estimates of the neutron-dose-relaxation length in air and the variation of the neutron-to-gamma-ray dose ratio with distance from the replica. These results are preliminary and are subject to detector calibration measurements.

  15. The next decade in external dosimetry

    SciTech Connect

    Griffith, R.V.

    1986-10-01

    As the radiation protection community moves through the last half of the '80s and into the next decade, we can expect the requirements for external dosimetry to become increasingly more restrictive and demanding. As in other health protection fields, growing regulatory and legal pressures, together with a natural evolution in philosophy, require the health physicist to display an increasing degree of accountability, rigor, and professionalism. The good news is that, for the most part, the technology necessary to solve many of the problems will be available or not far behind. This paper describes anticipated technology. 66 refs., 10 figs.

  16. Hydroxyanthraquinone dye solutions for radiation dosimetry.

    PubMed

    Bedear El-Assy, N; Alian, A; Abdel Rahim, F; Roushdy, H

    1982-06-01

    An investigation has been carried out on the effect of gamma-radiation on the absorption spectra of aqueous solutions of the hydroxyanthraquinone dyes, alizarin and alizarin red S. Ionizing radiation at absorbed doses over the range 10(5)-3 x 10(6) rad brought about gradual bleaching of aerated (oxygenated) dye solutions. The radiolytic bleaching was enhanced through addition of hydrogen peroxide, as expected. A mechanism for the radiolytic reaction is proposed, based on chemical attack of the chromophore by radicals and radical ions as aqueous radiolysis products. Suggestions are made for possible radiation dosimetry by means of spectrophotometric analysis of the absorption spectra. PMID:7107037

  17. ETR, TRA642. ON BASEMENT FLOOR. REACTOR VESSEL WILL BE PLACED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR, TRA-642. ON BASEMENT FLOOR. REACTOR VESSEL WILL BE PLACED WITHIN THE INNER METAL FORM. WHEN CONCRETE IS POURED OUTSIDE THIS FORM, CONDUIT HOLES WILL BE PRESERVE SPACE THROUGH HOLES. INL NEGATIVE NO. 56-1507. Jack L. Anderson, Photographer, 5/8/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  18. Preservation and Archives in Vietnam.

    ERIC Educational Resources Information Center

    Henchy, Judith

    This report, based on visits to Vietnamese libraries and archives between 1987 and 1997, examines the largely unexplored corpus of Vietnamese textual resources in research institutions and libraries there and elsewhere, the associated problems of bibliographic control, and issues of preservation. The following topics are addressed: the history of…

  19. ESR Dosimetry for Atomic Bomb Survivors Using Shell Buttons and Tooth Enamel

    NASA Astrophysics Data System (ADS)

    Ikeya, Motoji; Miyajima, Junko; Okajima, Shunzo

    1984-09-01

    Atomic bomb radiation doses to humans at Nagasaki and Hiroshima are investigated by electron spin resonance (ESR) from shell buttons and tooth enamel voluntarily supplied by survivors. A shell button gives a dose of 2.1± 0.2 Gy with ESR signals at g=2.001 and g=1.997 while the signal at g=1.997 for the tooth enamel of the same person is 1.9± 0.5 Gy. Other teeth show doses from about 0.5 Gy to 3 Gy. An apparent shielding converted to a concrete thickness is given using the T65D calculated in 1965. Teeth extracted during dental treatment should be preserved for cumulative radiation dosimetry.

  20. NEUTRONIC REACTOR

    DOEpatents

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  1. NEUTRONIC REACTOR

    DOEpatents

    Hurwitz, H. Jr.; Brooks, H.; Mannal, C.; Payne, J.H.; Luebke, E.A.

    1959-03-24

    A reactor of the heterogeneous, liquid cooled type is described. This reactor is comprised of a central region of a plurality of vertically disposed elongated tubes surrounded by a region of moderator material. The central region is comprised of a central core surrounded by a reflector region which is surrounded by a fast neutron absorber region, which in turn is surrounded by a slow neutron absorber region. Liquid sodium is used as the primary coolant and circulates through the core which contains the fuel elements. Control of the reactor is accomplished by varying the ability of the reflector region to reflect neutrons back into the core of the reactor. For this purpose the reflector is comprised of moderator and control elements having varying effects on reactivity, the control elements being arranged and actuated by groups to give regulation, shim, and safety control.

  2. NUCLEAR REACTOR

    DOEpatents

    Sherman, J.; Sharbaugh, J.E.; Fauth, W.L. Jr.; Palladino, N.J.; DeHuff, P.G.

    1962-10-23

    A nuclear reactor incorporating seed and blanket assemblies is designed. Means are provided for obtaining samples of the coolant from the blanket assemblies and for varying the flow of coolant through the blanket assemblies. (AEC)

  3. REACTOR SHIELD

    DOEpatents

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  4. NUCLEAR REACTOR

    DOEpatents

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  5. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.

    1960-04-01

    A nuclear reactor is described consisting of blocks of graphite arranged in layers, natural uranium bodies disposed in holes in alternate layers of graphite blocks, and coolant tubes disposed in the layers of graphite blocks which do not contain uranium.

  6. Hybrid Food Preservation Program Improves Food Preservation and Food Safety Knowledge

    ERIC Educational Resources Information Center

    Francis, Sarah L.

    2014-01-01

    The growing trend in home food preservation raises concerns about whether the resulting food products will be safe to eat. The increased public demand for food preservation information led to the development of the comprehensive food preservation program, Preserve the Taste of Summer (PTTS). PTTS is a comprehensive hybrid food preservation program…

  7. NUCLEAR REACTOR

    DOEpatents

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  8. NUCLEAR REACTOR

    DOEpatents

    Breden, C.R.; Dietrich, J.R.

    1961-06-20

    A water-soluble non-volatile poison may be introduced into a reactor to nullify excess reactivity. The poison is removed by passing a side stream of the water containing the soluble poison to an evaporation chamber. The vapor phase is returned to the reactor to decrease the concentration of soluble poison and the liquid phase is returned to increase the concentration of soluble poison.

  9. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  10. Effect of processor temperature on film dosimetry

    SciTech Connect

    Srivastava, Shiv P.; Das, Indra J.

    2012-07-01

    Optical density (OD) of a radiographic film plays an important role in radiation dosimetry, which depends on various parameters, including beam energy, depth, field size, film batch, dose, dose rate, air film interface, postexposure processing time, and temperature of the processor. Most of these parameters have been studied for Kodak XV and extended dose range (EDR) films used in radiation oncology. There is very limited information on processor temperature, which is investigated in this study. Multiple XV and EDR films were exposed in the reference condition (d{sub max.}, 10 Multiplication-Sign 10 cm{sup 2}, 100 cm) to a given dose. An automatic film processor (X-Omat 5000) was used for processing films. The temperature of the processor was adjusted manually with increasing temperature. At each temperature, a set of films was processed to evaluate OD at a given dose. For both films, OD is a linear function of processor temperature in the range of 29.4-40.6 Degree-Sign C (85-105 Degree-Sign F) for various dose ranges. The changes in processor temperature are directly related to the dose by a quadratic function. A simple linear equation is provided for the changes in OD vs. processor temperature, which could be used for correcting dose in radiation dosimetry when film is used.

  11. Investigation of the dosimetry of chest tomosynthesis

    NASA Astrophysics Data System (ADS)

    Svalkvist, Angelica; Zachrisson, Sara; Månsson, Lars Gunnar; Båth, Magnus

    2009-02-01

    Chest tomosynthesis has recently been introduced to healthcare as a low-dose alternative to CT or as a tool for improved diagnostics in chest radiography with only a modest increase in radiation dose to the patient. However, no detailed description of the dosimetry for this type of examination has been presented. The aim of this work was therefore to investigate the dosimetry of chest tomosynthesis. The chest tomosynthesis examination was assumed to be performed using a stationary detector and a vertically moving x-ray tube, exposing the patient from different angles. The Monte Carlo based computer software PCXMC was used to determine the effective dose delivered to a standard-sized patient from various angles using different assumptions of the distribution of the effective dose over the different projections. The obtained conversion factors between input dose measures and effective dose for chest tomosynthesis for different angular intervals were then compared with the horizontal projection. The results indicate that the error introduced by using conversion factors for the PA projection in chest radiography for estimating the effective dose of chest tomosynthesis is small for normally sized patients, especially if a conversion factor between KAP and effective dose is used.

  12. Numerical dosimetry dedicated to children RF exposure.

    PubMed

    Wiart, Joe; Hadjem, Abdelhamid; Varsier, Nadège; Conil, Emmanuelle

    2011-12-01

    Children are more and more using wireless communication systems. This growth has strengthened public concern and has highlighted the need to assess the radio frequency (RF) exposure of children. In dosimetry, taking advantage of the improvement of High Performance Calculation systems, great efforts have been carried out to improve the numerical tools and human models used to assess the Specific Absorption Rate (SAR). This paper analyses progress in building child and foetus models for numerical dosimetry purpose. The simulation results, in terms of Specific Absorption Rate over 1 and 10 g of tissues, in specific organs such as brain and averaged over the whole body, are reported and analysed. The results show that compliance methods used nowadays to certify phones are valid for children. The studies also show that specific tissues such as peripheral brain tissues can have higher exposure with children than with adults. Studies performed with plane waves as sources and whole body children models show that the whole body SAR of children can be higher than the WBSAR of adults and that the compliance to ICNIRP reference levels does not guarantee the compliance to ICNIRP basic restrictions. Dealing with the foetus models and dielectric properties great efforts have been made. Preliminary results show that the foetus exposure is often lower than the mother exposure, with an important influencing parameter: the foetus position in the uterus. PMID:22005525

  13. Dosimetry of inhaled radon and thoron progeny

    SciTech Connect

    James, A.C.

    1994-06-01

    This chapter reviews recent developments in modeling doses received by lung tissues, with particular emphasis on application of ICRP`s new dosimetric model of the respiratory tract for extrapolating to other environments the established risks from exposure to radon progeny in underground mines. Factors discussed include: (1) the influence of physical characteristics of radon progeny aerosols on dose per unit exposure, e.g., the unattached fraction, and the activity-size distributions of clustered and attached progeny; (2) the dependence of dose on breathing rate, and on the exposed subject (man, woman or child); (3) the variability of dose per unit exposure in a home when exposure is expressed in terms of potential {alpha} energy or radon gas concentration; (4) the comparative dosimetry of thoron progeny; and (5) the effects of air-cleaning on lung dose. Also discussed is the apparent discrepancy between lung cancer risk estimates derived purely from dosimetry and the lung cancer incidence observed in the epidemiological studies of radon-exposed underground miners. Application of ICRP`s recommended risk factors appears to overestimate radon lung-cancer risk for miners by a factor of three. ``Normalization`` of the calculated effective dose is therefore needed, at least for {alpha} dose from radon and thoron progeny, in order to obtain a realistic estimate of lung cancer risk.

  14. Eleventh DOE workshop on personnel neutron dosimetry

    SciTech Connect

    Not Available

    1991-12-31

    Since its formation, the Office of Health (EH-40) has stressed the importance of the exchange of information related to and improvements in neutron dosimetry. This Workshop was the eleventh in the series sponsored by the Department of Energy (DOE). It provided a forum for operational personnel at DOE facilities to discuss current issues related to neutron dosimetry and for leading investigators in the field to discuss promising approaches for future research. A total of 26 papers were presented including the keynote address by Dr. Warren K. Sinclair, who spoke on, ``The 1990 Recommendations of the ICRP and their Biological Background.`` The first several papers discussed difficulties in measuring neutrons of different energies and ways of compensating or deriving correction factors at individual facilities. Presentations were also given by the US Navy and Air Force. Current research in neutron dosimeter development was the subject of the largest number of papers. These included a number on the development of neutron spectrometers. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  15. The importance of 3D dosimetry

    NASA Astrophysics Data System (ADS)

    Low, Daniel

    2015-01-01

    Radiation therapy has been getting progressively more complex for the past 20 years. Early radiation therapy techniques needed only basic dosimetry equipment; motorized water phantoms, ionization chambers, and basic radiographic film techniques. As intensity modulated radiation therapy and image guided therapy came into widespread practice, medical physicists were challenged with developing effective and efficient dose measurement techniques. The complex 3-dimensional (3D) nature of the dose distributions that were being delivered demanded the development of more quantitative and more thorough methods for dose measurement. The quality assurance vendors developed a wide array of multidetector arrays that have been enormously useful for measuring and characterizing dose distributions, and these have been made especially useful with the advent of 3D dose calculation systems based on the array measurements, as well as measurements made using film and portal imagers. Other vendors have been providing 3D calculations based on data from the linear accelerator or the record and verify system, providing thorough evaluation of the dose but lacking quality assurance (QA) of the dose delivery process, including machine calibration. The current state of 3D dosimetry is one of a state of flux. The vendors and professional associations are trying to determine the optimal balance between thorough QA, labor efficiency, and quantitation. This balance will take some time to reach, but a necessary component will be the 3D measurement and independent calculation of delivered radiation therapy dose distributions.

  16. PDT dose dosimetry for pleural photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Sharikova, Anna V.; Finlay, Jarod C.; Liang, Xing; Zhu, Timothy C.

    2013-03-01

    PDT dose is the product of the photosensitizer concentration and the light fluence in target tissue. Although existing systems are capable of measuring the light fluence in vivo, the concurrent measurement of photosensitizer in the treated tissue so far has been lacking. We have developed and tested a new method to simultaneously acquire light dosimetry and photosensitizer fluorescence data via the same isotropic detector, employing treatment light as the excitation source. A dichroic beamsplitter is used to split light from the isotropic detector into two fibers, one for light dosimetry, the other, after the 665 nm treatment light is removed by a band-stop filter, to a spectrometer for fluorescence detection. The light fluence varies significantly during treatment because of the source movement. The fluorescence signal is normalized by the light fluence measured at treatment wavelength. We have shown that the absolute photosensitizer concentration can be obtained by an optical properties correction factor and linear spectral fitting. Tissue optical properties are determined using an absorption spectroscopy probe immediately before PDT at the same sites. This novel method allows accurate real-time determination of delivered PDT dose using existing isotropic detectors, and may lead to a considerable improvement of PDT treatment quality compared to the currently employed systems. Preliminary data in patient studies is presented.

  17. An absorbed dose calorimeter for IMRT dosimetry

    NASA Astrophysics Data System (ADS)

    Duane, S.; Aldehaybes, M.; Bailey, M.; Lee, N. D.; Thomas, C. G.; Palmans, H.

    2012-10-01

    A new calorimeter for dosimetry in small and complex fields has been built. The device is intended for the direct determination of absorbed dose to water in moderately small fields and in composite fields such as IMRT treatments, and as a transfer instrument calibrated against existing absorbed dose standards in conventional reference conditions. The geometry, materials and mode of operation have been chosen to minimize detector perturbations when used in a water phantom, to give a reasonably isotropic response and to minimize the effects of heat transfer when the calorimeter is used in non-reference conditions in a water phantom. The size of the core is meant to meet the needs of measurement in IMRT treatments and is comparable to the size of the air cavity in a type NE2611 ionization chamber. The calorimeter may also be used for small field dosimetry. Initial measurements in reference conditions and in an IMRT head and neck plan, collapsed to gantry angle zero, have been made to estimate the thermal characteristics of the device, and to assess its performance in use. The standard deviation (estimated repeatability) of the reference absorbed dose measurements was 0.02 Gy (0.6%).

  18. Dosimetry of radium-223 and progeny

    SciTech Connect

    Fisher, D.R.; Sgouros, G.

    1999-01-01

    Radium-223 is a short-lived (11.4 d) alpha emitter with potential applications in radioimmunotherapy of cancer. Radium-223 can be complexed and linked to protein delivery molecules for specific tumor-cell targeting. It decays through a cascade of short-lived alpha- and beta-emitting daughters with emission of about 28 MeV of energy through complete decay. The first three alpha particles are essentially instantaneous. Photons associated with Ra-223 and progeny provide the means for tumor and normal-organ imaging and dosimetry. Two beta particles provide additional therapeutic value. Radium-223 may be produced economically and in sufficient amounts for widescale application. Many aspects of the chemistry of carrier-free isotope preparation, complexation, and linkage to the antibody have been developed and are being tested. The radiation dosimetry of a Ra-223-labeled antibody shows favorable tumor to normal tissue dose ratios for therapy. The 11.4-d half-life of Ra-223 allows sufficient time for immunoconjugate preparation, administration, and tumor localization by carrier antibodies before significant radiological decay takes place. If 0.01 percent of a 37 MBq (1 mCi) injection deposits in a one gram tumor mass, and if the activity is retained with a typical effective half-time (75 h), the absorbed dose will be 163 mGy MBq{sup {minus}1} (600 rad mCi{sup {minus}1}) administered. 49 refs., 5 figs., 2 tabs.

  19. TG-69: radiographic film for megavoltage beam dosimetry.

    PubMed

    Pai, Sujatha; Das, Indra J; Dempsey, James F; Lam, Kwok L; Losasso, Thomas J; Olch, Arthur J; Palta, Jatinder R; Reinstein, Lawrence E; Ritt, Dan; Wilcox, Ellen E

    2007-06-01

    TG-69 is a task group report of the AAPM on the use of radiographic film for dosimetry. Radiographic films have been used for radiation dosimetry since the discovery of x-rays and have become an integral part of dose verification for both routine quality assurance and for complex treatments such as soft wedges (dynamic and virtual), intensity modulated radiation therapy (IMRT), image guided radiation therapy (IGRT), and small field dosimetry like stereotactic radiosurgery. Film is convenient to use, spatially accurate, and provides a permanent record of the integrated two dimensional dose distributions. However, there are several challenges to obtaining high quality dosimetric results with film, namely, the dependence of optical density on photon energy, field size, depth, film batch sensitivity differences, film orientation, processing conditions, and scanner performance. Prior to the clinical implementation of a film dosimetry program, the film, processor, and scanner need to be tested to characterize them with respect to these variables. Also, the physicist must understand the basic characteristics of all components of film dosimetry systems. The primary mission of this task group report is to provide guidelines for film selection, irradiation, processing, scanning, and interpretation to allow the physicist to accurately and precisely measure dose with film. Additionally, we present the basic principles and characteristics of film, processors, and scanners. Procedural recommendations are made for each of the steps required for film dosimetry and guidance is given regarding expected levels of accuracy. Finally, some clinical applications of film dosimetry are discussed. PMID:17654924

  20. Dosimetry of ionising radiation in modern radiation oncology

    NASA Astrophysics Data System (ADS)

    Kron, Tomas; Lehmann, Joerg; Greer, Peter B.

    2016-07-01

    Dosimetry of ionising radiation is a well-established and mature branch of physical sciences with many applications in medicine and biology. In particular radiotherapy relies on dosimetry for optimisation of cancer treatment and avoidance of severe toxicity for patients. Several novel developments in radiotherapy have introduced new challenges for dosimetry with small and dynamically changing radiation fields being central to many of these applications such as stereotactic ablative body radiotherapy and intensity modulated radiation therapy. There is also an increasing awareness of low doses given to structures not in the target region and the associated risk of secondary cancer induction. Here accurate dosimetry is important not only for treatment optimisation but also for the generation of data that can inform radiation protection approaches in the future. The article introduces some of the challenges and highlights the interdependence of dosimetric calculations and measurements. Dosimetric concepts are explored in the context of six application fields: reference dosimetry, small fields, low dose out of field, in vivo dosimetry, brachytherapy and auditing of radiotherapy practice. Recent developments of dosimeters that can be used for these purposes are discussed using spatial resolution and number of dimensions for measurement as sorting criteria. While dosimetry is ever evolving to address the needs of advancing applications of radiation in medicine two fundamental issues remain: the accuracy of the measurement from a scientific perspective and the importance to link the measurement to a clinically relevant question. This review aims to provide an update on both of these.

  1. Dosimetry of ionising radiation in modern radiation oncology.

    PubMed

    Kron, Tomas; Lehmann, Joerg; Greer, Peter B

    2016-07-21

    Dosimetry of ionising radiation is a well-established and mature branch of physical sciences with many applications in medicine and biology. In particular radiotherapy relies on dosimetry for optimisation of cancer treatment and avoidance of severe toxicity for patients. Several novel developments in radiotherapy have introduced new challenges for dosimetry with small and dynamically changing radiation fields being central to many of these applications such as stereotactic ablative body radiotherapy and intensity modulated radiation therapy. There is also an increasing awareness of low doses given to structures not in the target region and the associated risk of secondary cancer induction. Here accurate dosimetry is important not only for treatment optimisation but also for the generation of data that can inform radiation protection approaches in the future. The article introduces some of the challenges and highlights the interdependence of dosimetric calculations and measurements. Dosimetric concepts are explored in the context of six application fields: reference dosimetry, small fields, low dose out of field, in vivo dosimetry, brachytherapy and auditing of radiotherapy practice. Recent developments of dosimeters that can be used for these purposes are discussed using spatial resolution and number of dimensions for measurement as sorting criteria. While dosimetry is ever evolving to address the needs of advancing applications of radiation in medicine two fundamental issues remain: the accuracy of the measurement from a scientific perspective and the importance to link the measurement to a clinically relevant question. This review aims to provide an update on both of these. PMID:27351409

  2. PREFACE: Third International Conference on Radiotherapy Gel Dosimetry

    NASA Astrophysics Data System (ADS)

    DeDeene, Yves; Baldock, Clive

    2004-01-01

    Gel dosimetry is not merely another dosimetry technique. Gel dosimeters are integrating dosimeters that enable dose verification in three dimensions. The application of a 3D dosimetry technique in the clinic would give a real push to the implementation of advanced high-precision radiotherapy technologies in many institutes. It can be expected that with the recent developments in the field towards more user-friendly gel systems and imaging modalities, gel dosimetry will become a vital link in the chain of high-precision radiation cancer therapy in the near future. Many researchers all over the world have contributed to the emerging technology of gel dosimetry. The research field of gel dosimetry is recognized to be very broad from polymer and analytical chemistry and material research to imaging technologies. The DOSGEL conferences in the past have proven to be an important forum at which material scientists, chemists, medical physicists, magnetic resonance imaging and radiation specialists brought together a critical mass of thoughts, findings and considerations. DOSGEL 2004 has been endorsed by many international, supra-national and national medical physics organizations and publishers. These proceedings contain 51 papers that cover various aspects of gel dosimetry.

  3. Twelve years of neutron personnel dosimetry intercomparison studies at Oak Ridge National Laboratory: What have we learned

    SciTech Connect

    Swaja, R.E.

    1988-01-01

    To provide an opportunity for dosimetrists to test and calibrate their personnel neutron monitoring systems in a variety of incident radiation fields, the staff of the Dosimetry Applications Research (DOSAR) Facility at the Oak Ridge National Laboratory (ORNL) has conducted personnel dosimetry intercomparison studies (PDIS) periodically since 1974 and annually since 1976 (Si82, Sw87). During these studies, personnel dosimeters are mailed to ORNL, mounted on phantoms and exposed to low-level (less than 15 mSv) dose equivalents in mixed-radiation fields mainly produced using the Health Physics Research Reactor (HPRR) at ORNL (Au65), and then returned to the participants for evaluation. Reported dose equivalents are compared to reference values provided by the DOSAR staff and to results reported by individual organizations which made measurements under identical conditions. These intercomparisons, which require no fee and are open to any organization interested in external personnel dosimetry, have provided more data concerning neutron dosimeter performance characteristics in mixed-radiation fields than any other periodic open test program conducted to date. The following text presents a summary and analysis of neutron dose equivalent measurements reported for the seventh through twelfth intercomparisons (1981-1986) using the HPRR as the source of radiation. Particular factors examined include low dose equivalent sensitivity and measurement accuracy for the basic types of neutron personnel dosimeters. 5 refs., 1 fig.

  4. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2009-08-28

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document.

  5. The 1983 international intercomparison of nuclear accident dosimetry systems at Oak Ridge National Laboratory

    NASA Astrophysics Data System (ADS)

    Swaja, R. E.; Greene, R. T.; Sims, C. S.

    1985-04-01

    An international intercomparison of nuclear accident dosimetry systems was conducted during September 12 to 16, 1983, at Oak Ridge National Laboratory (ORNL) using the Health Physics Research Reactor operated in the pulse mode to simulate criticality accidents. Participants measured neutron and gamma doses at area monitoring stations and on phantoms for three different shield conditions. Results indicate that foil activation techniques are the most popular and accurate method of determining accident level neutron doses at area monitoring stations. For personnel monitoring, foil activation, blood sodium activation, and thermoluminescent (TL) methods are all capable of providing accurate dose estimates in a variety of radiation fields. All participants used TLD's to determine gamma doses with very good results. Chemical dosimeters were also shown to be capable of yielding accurate estimates of total neutron plus gamma doses in a variety of radiation fields. While 83% of all neutron measurements satisfied regulatory standards relative to reference values, only 39% of all gamma results satisfied corresponding guidelines for gamma measurements. Results indicate that continued improvement in accident dosimetry evaluation and measurement techniques is needed.

  6. In-phantom dosimetry for BNCT with Fricke and normoxic-polymer gels

    NASA Astrophysics Data System (ADS)

    Gambarini, G.; Agosteo, S.; Carrara, M.; Gay, S.; Mariani, M.; Pirola, L.; Vanossi, E.

    2006-05-01

    Measurements of in-phantom dose distributions and images are important for Boron Neutron Capture Therapy treatment planning. The method for spatial determination of absorbed doses in thermal or epithermal neutron fields, based on Fricke-xylenol-orange-infused gel dosimeters in form of layers, has revealed to be very reliable, as gel layer dosimeters give the possibility of obtaining spatial dose distributions and measurements of each dose contribution in neutron fields, by means of a properly studied procedure. Quite recently, BNCT has been applied to treat liver metastases; in this work the results of in-phantom dosimetry for explanted liver in BNCT treatments are described. Moreover, polyacrylamide gel (PAG) dosimeters in which a polymerization process appears as a consequence of absorbed dose, have been recently tested, because of their characteristic absence of diffusion. In fact, due to the diffusion of ferric ions, Fricke-gel dosimeters require prompt analysis after exposure to avoid spatial information loss. In this work the preliminary results of a study about the reliability of polymer gel in BNCT dosimetry are also discussed. Gel layers have been irradiated in a phantom exposed in the thermal column of the TRIGA MARK II reactor (Pavia). The results obtained with the two kinds of gel dosimeter have been compared.

  7. Calculated effects of backscattering on skin dosimetry for nuclear fuel fragments.

    PubMed

    Aydarous, A Sh

    2008-01-01

    The size of hot particles contained in nuclear fallout ranges from 10 nm to 20 microm for the worldwide weapons fallout. Hot particles from nuclear power reactors can be significantly bigger (100 microm to several millimetres). Electron backscattering from such particles is a prominent secondary effect in beta dosimetry for radiological protection purposes, such as skin dosimetry. In this study, the effect of electron backscattering due to hot particles contamination on skin dose is investigated. These include parameters such as detector area, source radius, source energy, scattering material and source density. The Monte-Carlo Neutron Particle code (MCNP4C) was used to calculate the depth dose distribution for 10 different beta sources and various materials. The backscattering dose factors (BSDF) were then calculated. A significant dependence is shown for the BSDF magnitude upon detector area, source radius and scatterers. It is clearly shown that the BSDF increases with increasing detector area. For high Z scatterers, the BSDF can reach as high as 40 and 100% for sources with radii 0.1 and 0.0001 cm, respectively. The variation of BSDF with source radius, source energy and source density is discussed. PMID:18223183

  8. Preserved entropy and fragile magnetism

    NASA Astrophysics Data System (ADS)

    Canfield, Paul C.; Bud’ko, Sergey L.

    2016-08-01

    A large swath of quantum critical and strongly correlated electron systems can be associated with the phenomena of preserved entropy and fragile magnetism. In this overview we present our thoughts and plans for the discovery and development of lanthanide and transition metal based, strongly correlated systems that are revealed by suppressed, fragile magnetism, quantum criticality, or grow out of preserved entropy. We will present and discuss current examples such as YbBiPt, YbAgGe, YbFe2Zn20, PrAg2In, BaFe2As2, CaFe2As2, LaCrSb3 and LaCrGe3 as part of our motivation and to provide illustrative examples.

  9. Preserved entropy and fragile magnetism.

    PubMed

    Canfield, Paul C; Bud'ko, Sergey L

    2016-08-01

    A large swath of quantum critical and strongly correlated electron systems can be associated with the phenomena of preserved entropy and fragile magnetism. In this overview we present our thoughts and plans for the discovery and development of lanthanide and transition metal based, strongly correlated systems that are revealed by suppressed, fragile magnetism, quantum criticality, or grow out of preserved entropy. We will present and discuss current examples such as YbBiPt, YbAgGe, YbFe2Zn20, PrAg2In, BaFe2As2, CaFe2As2, LaCrSb3 and LaCrGe3 as part of our motivation and to provide illustrative examples. PMID:27377181

  10. Research reactors - an overview

    SciTech Connect

    West, C.D.

    1997-03-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

  11. Technical Information/Website Preservation

    NASA Technical Reports Server (NTRS)

    PintoRey, Christian R.

    2010-01-01

    This document reviews the work of the author in NASA's Motivating Undergraduates in Science and Technology (MUST) internship. The intern worked on the Space Shuttles hydraulic systems (i.e., Auxiliary Power Units (APU's) and Hydraulic Pump Units (HPU's)), and website preservation of the hydraulic technology captured in websites relating to the coming.the Space Shuttle Retirement. Several figures and pictures show an overview of the orbiter's hydraulic systems

  12. Privacy Preserving Nearest Neighbor Search

    NASA Astrophysics Data System (ADS)

    Shaneck, Mark; Kim, Yongdae; Kumar, Vipin

    Data mining is frequently obstructed by privacy concerns. In many cases data is distributed, and bringing the data together in one place for analysis is not possible due to privacy laws (e.g. HIPAA) or policies. Privacy preserving data mining techniques have been developed to address this issue by providing mechanisms to mine the data while giving certain privacy guarantees. In this chapter we address the issue of privacy preserving nearest neighbor search, which forms the kernel of many data mining applications. To this end, we present a novel algorithm based on secure multiparty computation primitives to compute the nearest neighbors of records in horizontally distributed data. We show how this algorithm can be used in three important data mining algorithms, namely LOF outlier detection, SNN clustering, and kNN classification. We prove the security of these algorithms under the semi-honest adversarial model, and describe methods that can be used to optimize their performance. Keywords: Privacy Preserving Data Mining, Nearest Neighbor Search, Outlier Detection, Clustering, Classification, Secure Multiparty Computation

  13. Phase-preserved optical elevator

    PubMed Central

    Luo, Yuan; Zhang, Baile; Han, Tiancheng; Chen, Zhi; Duan, Yubo; Chu, Chia-Wei; Barbastathis, George; Qiu, Cheng Wei

    2013-01-01

    The unique superiority of transformation optics devices designed from coordinate transformation is their capability of recovering both ray trajectory and optical path length in light manipulation. However, very few experiments have been done so far to verify this dual-recovery property from viewpoints of both ray trajectory and optical path length simultaneously. The experimental difficulties arise from the fact that most previous optical transformation optics devices only work at the nano-scale; the lack of intercomparison between data from both optical path length and ray trajectory measurement in these experiments obscured the fact that the ray path was subject to a subwavelength lateral shift that was otherwise not easily perceivable and, instead, was pointed out theoretically [B. Zhang et al. Phys. Rev. Lett. 104, 233903, (2010)]. Here, we use a simple macroscopic transformation optics device of phase-preserved optical elevator, which is a typical birefringent optical phenomenon that can virtually lift an optical image by a macroscopic distance, to demonstrate decisively the unique optical path length preservation property of transformation optics. The recovery of ray trajectory is first determined with no lateral shift in the reflected ray. The phase preservation is then verified with incoherent white-light interferometry without ambiguity and phase unwrapping. PMID:23546046

  14. The ZEUS data preservation project

    NASA Astrophysics Data System (ADS)

    Malka, Janusz; Wichmann, Katarzyna

    2012-12-01

    A project to allow long term access and physics analysis of ZEUS data (ZEUS data preservation) has been established in collaboration with the DESY-IT group. In the ZEUS approach the analysis model is based on the Common Ntuple project, under development since 2006. The real data and all presently available Monte Carlo samples are being preserved in a flat ROOT ntuple format. There is ongoing work to provide the ability to simulate new, additional Monte Carlo samples also in the future. The validation framework of such a scheme using virtualisation techniques is being explored. The goal is to validate the frozen ZEUS software against future changes in hardware and operating system. A cooperation between ZEUS, DESY-IT and the library was established for document digitisation and long-term preservation of collaboration web pages. Part of the ZEUS internal documentation has already been stored within the HEP documentation system INSPIRE. Existing digital documentation, needed to perform physics analysis also in the future, is being centralised and completed.

  15. NEUTRONIC REACTOR

    DOEpatents

    Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.

    1958-09-01

    This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.

  16. PREDON Scientific Data Preservation 2014

    NASA Astrophysics Data System (ADS)

    Diaconu, C.; Kraml, S.; Surace, C.; Chateigner, D.; Libourel, T.; Laurent, A.; Lin, Y.; Schaming, M.; Benbernou, S.; Lebbah, M.; Boucon, D.; Cérin, C.; Azzag, H.; Mouron, P.; Nief, J.-Y.; Coutin, S.; Beckmann, V.

    Scientific data collected with modern sensors or dedicated detectors exceed very often the perimeter of the initial scientific design. These data are obtained more and more frequently with large material and human efforts. A large class of scientific experiments are in fact unique because of their large scale, with very small chances to be repeated and to superseded by new experiments in the same domain: for instance high energy physics and astrophysics experiments involve multi-annual developments and a simple duplication of efforts in order to reproduce old data is simply not affordable. Other scientific experiments are in fact unique by nature: earth science, medical sciences etc. since the collected data is "time-stamped" and thereby non-reproducible by new experiments or observations. In addition, scientific data collection increased dramatically in the recent years, participating to the so-called "data deluge" and inviting for common reflection in the context of "big data" investigations. The new knowledge obtained using these data should be preserved long term such that the access and the re-use are made possible and lead to an enhancement of the initial investment. Data observatories, based on open access policies and coupled with multi-disciplinary techniques for indexing and mining may lead to truly new paradigms in science. It is therefore of outmost importance to pursue a coherent and vigorous approach to preserve the scientific data at long term. The preservation remains nevertheless a challenge due to the complexity of the data structure, the fragility of the custom-made software environments as well as the lack of rigorous approaches in workflows and algorithms. To address this challenge, the PREDON project has been initiated in France in 2012 within the MASTODONS program: a Big Data scientific challenge, initiated and supported by the Interdisciplinary Mission of the National Centre for Scientific Research (CNRS). PREDON is a study group formed by

  17. Permanent Breast Seed Implant Dosimetry Quality Assurance

    SciTech Connect

    Keller, Brian M.; Ravi, Ananth; Sankreacha, Raxa; Pignol, Jean-Philippe

    2012-05-01

    Purpose: A permanent breast seed implant is a novel method of accelerated partial breast irradiation for women with early-stage breast cancer. This article presents pre- and post-implant dosimetric data, relates these data to clinical outcomes, and makes recommendations for those interested in starting a program. Methods and Materials: A total of 95 consecutive patients were accrued into one of three clinical trials after breast-conserving surgery: a Phase I/II trial (67 patients with infiltrating ductal carcinoma); a Phase II registry trial (25 patients with infiltrating ductal carcinoma); or a multi-center Phase II trial for patients with ductal carcinoma in situ (3 patients). Contouring of the planning target volume (PTV) was done on a Pinnacle workstation and dosimetry calculations, including dose-volume histograms, were done using a Variseed planning computer. Results: The mean pre-implant PTV coverage for the V{sub 90}, V{sub 100}, V{sub 150}, and V{sub 200} were as follows: 98.8% {+-} 1.2% (range, 94.5-100%); 97.3% {+-} 2.1% (range, 90.3-99.9%), 68.8% {+-} 14.3% (range, 32.7-91.5%); and 27.8% {+-} 8.6% (range, 15.1-62.3%). The effect of seed motion was characterized by post-implant dosimetry performed immediately after the implantation (same day) and at 2 months after the implantation. The mean V{sub 100} changed from 85.6% to 88.4% (p = 0.004) and the mean V{sub 200} changed from 36.2% to 48.3% (p < 0.001). Skin toxicity was associated with maximum skin dose (p = 0.014). Conclusions: Preplanning dosimetry should aim for a V{sub 90} of approximately 100%, a V{sub 100} between 95% and 100%, and a V{sub 200} between 20% and 30%, as these numbers are associated with no local recurrences to date and good patient tolerance. In general, the target volume coverage improved over the duration of the seed therapy. The maximum skin dose, defined as the average dose over the hottest 1 Multiplication-Sign 1-cm{sup 2} surface area, should be limited to 90% of the

  18. Combined TL and 10B-alanine ESR dosimetry for BNCT.

    PubMed

    Bartolotta, A; D'Oca, M C; Lo Giudice, B; Brai, M; Borio, R; Forini, N; Salvadori, P; Manera, S

    2004-01-01

    The dosimetric technique described in this paper is based on electron spin resonance (ESR) detectors using an alanine-boric compound acid enriched with (10)B, and beryllium oxide thermoluminescent (TL) detectors; with this combined dosimetry, it is possible to discriminate the doses due to thermal neutrons and gamma radiation in a mixed field. Irradiations were carried out inside the thermal column of a TRIGA MARK II water-pool-type research nuclear reactor, also used for Boron Neutron Capture therapy (BNCT) applications, with thermal neutron fluence from 10(9) to 10(14) nth cm(-2). The ESR dosemeters using the alanine-boron compound indicated ESR signals about 30-fold stronger than those using only alanine. Moreover, a negligible correction for the gamma contribution, measured with TL detectors, almost insensitive to thermal neutrons, was necessary. Therefore, a simultaneous analysis of our TL and ESR detectors allows discrimination between thermal neutron and gamma doses, as required in BNCT. PMID:15353720

  19. Preliminary study of MAGAT polymer gel dosimetry for boron-neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Hayashi, Shin-ichiro; Sakurai, Yoshinori; Uchida, Ryohei; Suzuki, Minoru; Usui, Shuji; Tominaga, Takahiro

    2015-01-01

    MAGAT gel dosimeter with boron is irradiated in Heavy Water Neutron Irradiation Facility (HWNIF) of Kyoto University Research Reactor (KUR). The cylindrical gel phantoms are exposed to neutron beams of three different energy spectra (thermal neutron rich, epithermal and fast neutron rich and the mixed modes) in air. Preliminary results corresponding to depth-dose responses are obtained as the transverse relaxation rate (R2=1/T2) from magnetic resonance imaging data. As the results MAGAT gel dosimeter has the higher sensitivity on thermal neutron than on epi-thermal and fast neutron, and the gel with boron showed an enhancement and a change in the depth-R2 response explicitly. From these results, it is suggested that MAGAT gel dosimeter can be an effective tool in BNCT dosimetry.

  20. Nuclear-accident dosimetry: measurements at the Los Alamos SHEBA critical assembly

    SciTech Connect

    Vasilik, D.G.; Martin, R.W.; Fuller, D.

    1981-07-01

    Criticality dosimeters were exposed to different degraded neutron and gamma-ray energy spectra from the Los Alamos Solution High Energy Burst Assembly (SHEBA). The liquid critical test assembly was operated in the continuous mode to provide a mixed source of neutron and gamma-ray radiation for the evaluation of Los Alamos criticality detector systems. Different neutron and gamma-ray spectra were generated by operating the reactor (a) shielded by 12 cm of Lucite, (b) unshielded, (c) shielded by 20 cm of concrete, and (d) shielded by 15 cm of steel. This report summarizes the dosimetry measurements conducted for these different configurations. In-air measurements were conducted with shielded and unshielded area and personnel dosimeters. Phantom measurements were made using personnel dosimeters. Combined blood-sodium and hair sulfur activation measurements of absorbed dose were also made. In addition, indium foils placed on phantoms were evaluated for the purpose of screening personnel for radiation exposure.

  1. Neutron dosimetry at commercial nuclear plants. Final report of Subtask C: /sup 3/He neutron spectrometer

    SciTech Connect

    Brackenbush, L.W.; Reece, W.D.; Tanner, J.E.

    1984-09-01

    In commercial nuclear power plants, personnel routinely enter containment for maintenance and inspections while the reactor is operating and can be exposed to intense neutron fields. The low-energy neutron fields found in reactor containment cause problems in proper interpretation of TLD-albedo dosimeters and survey instrument readings. This report describes a technique that can aid plant health physicists to improve the accuracy of personnel neutron dosimetry programs. A /sup 3/He neutron spectrometer can be used to measure neutron energy spectra and determine dose equivalent rates at work locations inside containment. Energy correction factors for TLD-albedo dosimeters can be determined from the measured spectra if the dosimeter energy response is known, or from direct measurements with dosimeters placed on phantoms at locations where the dose equivalent rate has been measured. This report describes how to assemble a spectrometer system using only commercially available components, how to use it for reactor energy spectrum measurements, and how to analyze the data and interpret the results. Both /sup 3/He and multisphere spectrometers were used to measure neutron energy spectra and dose equivalent at three PWRs and one BWR. In general, the /sup 3/He spectrometer measures higher dose equivalent rates than the multisphere spectrometer. In the energy range from 10 keV to 1 MeV, the dose equivalents measured by the /sup 3/He spectrometer and multisphere spectrometer agree within about 35% for the spectra measured.

  2. Comparison of Real-Time Intraoperative Ultrasound-Based Dosimetry With Postoperative Computed Tomography-Based Dosimetry for Prostate Brachytherapy

    SciTech Connect

    Nag, Subir; Shi Peipei; Liu Bingren; Gupta, Nilendu; Bahnson, Robert R.; Wang, Jian Z.

    2008-01-01

    Purpose: To evaluate whether real-time intraoperative ultrasound (US)-based dosimetry can replace conventional postoperative computed tomography (CT)-based dosimetry in prostate brachytherapy. Methods and Materials: Between December 2001 and November 2002, 82 patients underwent {sup 103}Pd prostate brachytherapy. An interplant treatment planning system was used for real-time intraoperative transrectal US-guided treatment planning. The dose distribution was updated according to the estimated seed position to obtain the dose-volume histograms. Postoperative CT-based dosimetry was performed a few hours later using the Theraplan-Plus treatment planning system. The dosimetric parameters obtained from the two imaging modalities were compared. Results: The results of this study revealed correlations between the US- and CT-based dosimetry. However, large variations were found in the implant-quality parameters of the two modalities, including the doses covering 100%, 90%, and 80% of the prostate volume and prostate volumes covered by 100%, 150%, and 200% of the prescription dose. The mean relative difference was 38% and 16% for doses covering 100% and 90% of the prostate volume and 10% and 21% for prostate volumes covered by 100% and 150% of the prescription dose, respectively. The CT-based volume covered by 200% of the prescription dose was about 30% greater than the US-based one. Compared with CT-based dosimetry, US-based dosimetry significantly underestimated the dose to normal organs, especially for the rectum. The average US-based maximal dose and volume covered by 100% of the prescription dose for the rectum was 72 Gy and 0.01 cm{sup 3}, respectively, much lower than the 159 Gy and 0.65 cm{sup 3} obtained using CT-based dosimetry. Conclusion: Although dosimetry using intraoperative US-based planning provides preliminary real-time information, it does not accurately reflect the postoperative CT-based dosimetry. Until studies have determined whether US-based dosimetry

  3. NUCLEAR REACTOR

    DOEpatents

    Christy, R.F.

    1958-07-15

    A nuclear reactor of the homogeneous liquid fuel type is described wherein the fissionable isotope is suspended or dissolved in a liquid moderator such as water. The reactor core is comprised essentially of a spherical vessel for containing the reactive composition surrounded by a reflector, preferably of beryllium oxide. The reactive composition may be an ordinary water solution of a soluble salt of uranium, the quantity of fissionable isotope in solution being sufficient to provide a critical mass in the vessel. The liquid fuel is stored in a tank of non-crtttcal geometry below the reactor vessel and outside of the reflector and is passed from the tank to the vessel through a pipe connecting the two by air pressure means. Neutron absorbing control and safety rods are operated within slots in the reflector adjacent to the vessel.

  4. POWER REACTOR

    DOEpatents

    Zinn, W.H.

    1958-07-01

    A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

  5. NEUTRONIC REACTORS

    DOEpatents

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  6. Catalytic reactor

    DOEpatents

    Aaron, Timothy Mark; Shah, Minish Mahendra; Jibb, Richard John

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  7. Bioconversion reactor

    SciTech Connect

    McCarty, P.L.; Bachmann, A.

    1992-02-25

    A bioconversion reactor is described for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible. 7 figs.

  8. Bioconversion reactor

    DOEpatents

    McCarty, Perry L.; Bachmann, Andre

    1992-01-01

    A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

  9. REACTOR CONTROL

    DOEpatents

    Fortescue, P.; Nicoll, D.

    1962-04-24

    A control system employed with a high pressure gas cooled reactor in which a control rod is positioned for upward and downward movement into the neutron field from a position beneath the reactor is described. The control rod is positioned by a coupled piston cylinder releasably coupled to a power drive means and the pressurized coolant is directed against the lower side of the piston. The coolant pressure is offset by a higher fiuid pressure applied to the upper surface of the piston and means are provided for releasing the higher pressure on the upper side of the piston so that the pressure of the coolant drives the piston upwardly, forcing the coupled control rod into the ncutron field of the reactor. (AEC)

  10. Chernobyl nuclear reactor accident fallout: Measurement and consequences. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1994-01-01

    The bibliography contains citations concerning the consequences of radioactive fallout from the Chernobyl nuclear reactor accident. Citations discuss radioactive monitoring, health hazards, and radiation dosimetry. Radiation contamination in the air, soil, vegetation, and food is examined. (Contains a minimum of 210 citations and includes a subject term index and title list.)

  11. Chernobyl Nuclear Reactor accident fallout: Measurement and consequences. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-11-01

    The bibliography contains citations concerning the consequences of radioactive fallout from the Chernobyl nuclear reactor accident. Citations discuss radioactive monitoring, health hazards, and radiation dosimetry. Radiation contamination in the air, soil, vegetation, and food is examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  12. Chernobyl nuclear reactor accident fallout: Measurement and consequences. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect

    1993-09-01

    The bibliography contains citations concerning the consequences of radioactive fallout from the Chernobyl nuclear reactor accident. Citations discuss radioactive monitoring, health hazards, and radiation dosimetry. Radiation contamination in the air, soil, vegetation, and food is examined. (Contains a minimum of 208 citations and includes a subject term index and title list.)

  13. Chernobyl nuclear reactor accident fallout: Measurement and consequences. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-02-01

    The bibliography contains citations concerning the consequences of radioactive fallout from the Chernobyl nuclear reactor accident. Citations discuss radioactive monitoring, health hazards, and radiation dosimetry. Radiation contamination in the air, soil, vegetation, and food is examined. (Contains a minimum of 247 citations and includes a subject term index and title list.)

  14. Chernobyl nuclear reactor accident fallout: Measurement and consequences. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-01-01

    The bibliography contains citations concerning the consequences of radioactive fallout from the Chernobyl nuclear reactor accident. Citations discuss radioactive monitoring, health hazards, and radiation dosimetry. Radiation contamination in the air, soil, vegetation, and food is examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  15. Design and Testing of a Boron Carbide Capsule for Spectral Tailoring in Mixed-Spectrum Reactors

    SciTech Connect

    Greenwood, Lawrence R.; Wittman, Richard S.; Pierson, Bruce D.; Metz, Lori A.; Payne, Rosara F.; Finn, Erin C.; Friese, Judah I.

    2012-03-01

    A boron carbide capsule has been designed and used for spectral-tailoring experiments at the TRIGA reactor at Washington State University. Irradiations were conducted in pulsed mode and in continuous operation for up to 4 hours. A cadmium cover was used to reduce thermal heating. The neutron spectrum calculated with MCNP was found to be in good agreement with reactor dosimetry measurements using the STAY'SL computer code. The neutron spectrum resembles that of a fast reactor. Design of a capsule using boron carbide enriched in {sup 10}B shows that it is possible to produce a neutron spectrum similar to {sup 235}U fission.

  16. Neutron field for activation experiments in horizontal channel of training reactor VR-1

    NASA Astrophysics Data System (ADS)

    Stefanik, Milan; Katovsky, Karel; Vins, Miroslav; Soltes, Jaroslav; Zavorka, Lukas

    2014-11-01

    The experimental channels of nuclear reactors often serve for nuclear data measurement and validation. The dosimetry-foils activation technique was employed to measure neutron field parameters in the horizontal radial channel of the training reactor VR-1, and to test the possibility of using the reactor for scientific purposes. The reaction rates, energy spectral indexes, and neutron spectrum at several irradiation positions of the experimental channel were determined. The experimental results show the feasibility of the radial channel for irradiating experiments and open new possibilities for data validation by using this nuclear facility.

  17. NUCLEAR REACTOR

    DOEpatents

    Young, G.

    1963-01-01

    This patent covers a power-producing nuclear reactor in which fuel rods of slightly enriched U are moderated by heavy water and cooled by liquid metal. The fuel rods arranged parallel to one another in a circle are contained in a large outer closed-end conduit that extends into a tank containing the heavy water. Liquid metal is introduced into the large conduit by a small inner conduit that extends within the circle of fuel rods to a point near the lower closed end of the outer conduit. (AEC) Production Reactors

  18. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  19. Preservation of FFTF Data Related to Passive Safety Testing

    SciTech Connect

    Wootan, David W.; Butner, R. Scott; Omberg, Ronald P.; Makenas, Bruce J.; Nielsen, Deborah L.

    2010-10-01

    One of the goals of the Fuel Cycle Research and Development Program (FCRD) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMR). A key area deserving special attention for preservation is the data relating to passive safety testing that was conducted in FFTF and EBR-II during the 1980’s. Accidents at Unit 4 of the Chernobyl Station and Unit 2 at Three Mile Island changed the safety paradigm of the nuclear power industry. New emphasis was placed on assured safety based on intrinsic plant characteristics that protect not only the public, but the significant investment in the plant as well. Plants designated to perform in this manner are considered to be passively safe since no active sensor/alarm system or human intervention is required to bring the reactor to a safe shutdown condition. The liquid metal reactor (LMR) has several key characteristics needed for a passively safe reactor: reactor coolant with superior heat transfer capability and very high boiling point, low (atmospheric) system pressures, and reliable negative reactivity feedback. The credibility of the design for a passively safe LMR rests on two issues: the validity of analytic methods used to predict passive safety performance and the availability of relevant test data to calibrate design tools. Safety analysis methods used to analyze LMRs under the old safety paradigm were focused on calculating the source term for the Core Disruptive Accident. Passive safety design requires refined analysis methods for transient events because treatment of the detailed reactivity feedbacks is important in predicting the response of the reactor. Similarly, analytic tools should be calibrated against actual test experience in existing LMR facilities. The principal objectives of the combined FFTF natural circulation and Passive Safety Testing program were: 1) to verify natural circulation as a reliable means to safely remove decay heat, 2) to extend passive safety

  20. Gamma-ray dosimetry measurements of the Little Boy replica

    SciTech Connect

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We present the current status of our gamma-ray dosimetry results for the Little Boy replica. Both Geiger-Mueller and thermoluminescent detectors were used in the measurements. Future work is needed to test assumptions made in data analysis.

  1. Proceedings of the third conference on radiation protection and dosimetry

    SciTech Connect

    Swaja, R.E.; Sims, C.S.; Casson, W.H.

    1991-10-01

    The Third Conference on Radiation Protection and Dosimetry was held during October 21--24, 1991, at the Sheraton Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection, and providing them with sufficient information to evaluate their programs. To meet these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical session included external dosimetry, internal dosimetry, instruments, accident dosimetry, regulations and standards, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. Individual reports are processed separately on the database.

  2. MECHANISTIC DOSIMETRY MODELS OF NANOMATERIAL DEPOSITION IN THE RESPIRATORY TRACT

    EPA Science Inventory

    Accurate health risk assessments of inhalation exposure to nanomaterials will require dosimetry models that account for interspecies differences in dose delivered to the respiratory tract. Mechanistic models offer the advantage to interspecies extrapolation that physicochemica...

  3. Dosimetry of ozone and nitrogen dioxide in man and animals

    SciTech Connect

    Overton, J.H. Jr.; Miller, F.J.

    1984-01-01

    The health effects of ozone (O/sub 3/) and nitrogen dioxide (NO/sub 2/) are assessed from animal toxicological, controlled human, and epidemiological studies. These assessments will be strengthened when results of animal studies can be quantitatively extrapolated to man. To achieve quantitative extrapolation, improvements are needed in the areas of dosimetry and species sensitivity. And, of course, an adequate health effect data base must exist on which to make extrapolations. The focus of this paper is to review the regional dosimetry of O/sub 3/ and NO/sub 2/ in the respiratory tract of man and animals. Dosimetry relates to estimating the amount of pollutant reaching a specific target region of the respiratory tract as a function of exposure concentration. At present, there are two approaches to dosimetry, experimental and mathematical modeling, which are discussed.

  4. Characterisation of radiation field for irradiation of biological samples at nuclear reactor-comparison of twin detector and recombination methods.

    PubMed

    Golnik, N; Gryziński, M A; Kowalska, M; Meronka, K; Tulik, P

    2014-10-01

    Central Laboratory for Radiological Protection is involved in achieving scientific project on biological dosimetry. The project includes irradiation of blood samples in radiation fields of nuclear reactor. A simple facility for irradiation of biological samples has been prepared at horizontal channel of the nuclear reactor MARIA in NCBJ in Poland. The radiation field, composed mainly of gamma radiation and thermal neutrons, has been characterised in terms of tissue kerma using twin-detector technique and recombination chambers. PMID:24366246

  5. Investigation criteria for dosimetry results comparisons

    SciTech Connect

    Hough, E.G. )

    1984-01-01

    This paper reports that the Oconee Nuclear Station, like most nuclear facilities, monitors its personnel with two types of dosimeters: a thermoluminescent dosimeter (TLD), which is normally used for determining the official dose equivalent, and a pocket ionization chamber (PIC), which is used to estimate exposure for control purposes. At Oconee, the results obtained from the two types of dosimeters are compared on a monthly basis as a part of the routine exchange and processing of worker TLDs. Each worker's TLD result is compared to the sum of the PIC dose estimates for the month that the TLD was used. The TLD result is accepted as the official dose equivalent for the month if the comparison results are within the tolerance limits specified by the criteria. An out-of-tolerance comparison requires investigation, which consists of performance tests of the dosimetry involved and reviews of exposure records. Adjustments to a worker's official dose equivalent are made when warranted by an investigation.

  6. Gastroesophageal scintiscanning in a pediatric population: dosimetry

    SciTech Connect

    Castronovo, F.P. Jr.

    1986-07-01

    The dosimetry associated with orally administered (/sup 99m/Tc)sulfur colloid for the diagnosis of gastroesophageal reflux has not been adequately described for the pediatric populations. Standard MIRD methodology was performed for the following: newborn, 1, 5, 10, and 15 yr old, and adult standard man. The critical organ for all pediatric groups was the lower large intestine with absorbed dose of 0.927, 0.380, 0.194, 0.120 and 0.0721 rad/100 microCi, respectively. For the adult the critical organ was the upper large intestine with an absorbed dose of 0.0518 rad/100 microCi. These data should be considered when administering (99mTc)sulfur colloid orally in a pediatric population.

  7. Advanced Semiconductor Dosimetry in Radiation Therapy

    SciTech Connect

    Rosenfeld, Anatoly B.

    2011-05-05

    Modern radiation therapy is very conformal, resulting in a complexity of delivery that leads to many small radiation fields with steep dose gradients, increasing error probability. Quality assurance in delivery of such radiation fields is paramount and requires real time and high spatial resolution dosimetry. Semiconductor radiation detectors due to their small size, ability to operate in passive and active modes and easy real time multichannel readout satisfy many aspects of in vivo and in a phantom quality assurance in modern radiation therapy. Update on the recent developments and improvements in semiconductor radiation detectors and their application for quality assurance in radiation therapy, based mostly on the developments at the Centre for Medical Radiation Physics (CMRP), University of Wollongong, is presented.

  8. Dosimetry for photodynamic therapy of endometrial tissue

    NASA Astrophysics Data System (ADS)

    Svaasand, Lars O.; Fehr, Mathias K.; Madsen, Sten; Tadir, Yona; Tromberg, Bruce J.

    1995-05-01

    Hysterectomy is the most common major operation performed in the United States with dysfunctional uterine bleeding as one of the major indications. The clinical needs for simple and safe endometrial destruction are essential. Photodynamic therapy (PDT) may offer a simple and cost effective solution for the treatment of dysfunctional uterine bleeding. The dosimetry is discussed for the case of topical application of photosensitizer. This technique might be the method of preference because undesired side effects such as skin photosensitization that is typical for systemically injected photosensitizers, can be avoided. Effective PDT requires a sufficient amount of light delivered to the targeted tissue in a reasonable period of time. A trifurcated optical applicator consisting of three cylindrical diffusing fibers has been constructed, and this applicator can deliver a typical required optical dose of about 50-100 J/cm2 to the full depth of the endometrium for an exposure time of 10-20 minutes.

  9. Tissue substitutes in radiation dosimetry and measurement

    SciTech Connect

    Not Available

    1989-01-01

    This book explains the activities of the International Commission on Radiation Units and Measurements and discusses tissue substitutes in radiation dosimetry and measurement. The following section is on basic concepts including definitions, specifications, and interaction coefficients. This section also includes a description of the effects of photons, electrons, neutrons, and heavily charged particles on body tissues. The third section is on selected requirements for tissue substitutes and briefly covers radiation-related requirements for radiation therapy, radiologic diagnosis, radiation protection, and radiobiology. The fourth short section is on composition of body tissues, and comparative interaction and depth dose data for selected tissue substitutes are covered in the fifth section. This includes several tables and many graphs of the ratios required to calculate the radiation dose.

  10. The radiation dosimetry of intrathecally administered radionuclides

    SciTech Connect

    Stabin, M.G.; Evans, J.F.

    1999-01-01

    The radiation dose to the spine, spinal cord, marrow, and other organs of the body from intrathecal administration of several radiopharmaceuticals was studied. Anatomic models were developed for the spine, spinal cerebrospinal fluid (CSF), spinal cord, spinal skeleton, cranial skeleton, and cranial CSF. A kinetic model for the transport of CSF was used to determine residence times in the CSF; material leaving the CSF was thereafter assumed to enter the bloodstream and follow the kinetics of the radiopharmaceutical as if intravenously administered. The radiation transport codes MCNP and ALGAMP were used to model the electron and photon transport and energy deposition. The dosimetry of Tc-99m DTPA and HSA, In-111 DTPA, I-131 HSA, and Yb-169 DTPA was studied. Radiation dose profiles for the spinal cord and marrow in the spine were developed and average doses to all other organs were estimated, including dose distributions within the bone and marrow.

  11. Planning for Preservation. SPEC Kit 66.

    ERIC Educational Resources Information Center

    Association of Research Libraries, Washington, DC. Office of Management Studies.

    In a March 1980 Systems and Procedures Exchange Center (SPEC) survey on preservation activities in Association of Research Libraries (ARL) member institutions, 40 libraries reported having conducted a formal preservation study or needs assessment, 28 had adopted planning or policy documents, and 58 reported operating an active preservation program…

  12. 32 CFR 174.18 - Historic preservation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the regulations implementing the National Historic Preservation Act (36 CFR 800.5(a)(2)(vii)). One way... 32 National Defense 1 2014-07-01 2014-07-01 false Historic preservation. 174.18 Section 174.18... Historic preservation. (a) The transfer, lease, or sale of National Register-eligible historic property...

  13. 32 CFR 174.18 - Historic preservation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the regulations implementing the National Historic Preservation Act (36 CFR 800.5(a)(2)(vii)). One way... 32 National Defense 1 2013-07-01 2013-07-01 false Historic preservation. 174.18 Section 174.18... Historic preservation. (a) The transfer, lease, or sale of National Register-eligible historic property...

  14. 32 CFR 174.18 - Historic preservation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the regulations implementing the National Historic Preservation Act (36 CFR 800.5(a)(2)(vii)). One way... 32 National Defense 1 2012-07-01 2012-07-01 false Historic preservation. 174.18 Section 174.18... Historic preservation. (a) The transfer, lease, or sale of National Register-eligible historic property...

  15. 32 CFR 174.18 - Historic preservation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the regulations implementing the National Historic Preservation Act (36 CFR 800.5(a)(2)(vii)). One way... 32 National Defense 1 2010-07-01 2010-07-01 false Historic preservation. 174.18 Section 174.18... Historic preservation. (a) The transfer, lease, or sale of National Register-eligible historic property...

  16. 32 CFR 174.18 - Historic preservation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the regulations implementing the National Historic Preservation Act (36 CFR 800.5(a)(2)(vii)). One way... 32 National Defense 1 2011-07-01 2011-07-01 false Historic preservation. 174.18 Section 174.18... Historic preservation. (a) The transfer, lease, or sale of National Register-eligible historic property...

  17. Preservation Assessment and Disaster Response Plan.

    ERIC Educational Resources Information Center

    Wisdom, Mark

    This paper addresses the preservation needs unique to small libraries, where the majority of special collections exist. A preservation survey of the Herrick Memorial Library (Wellington, OH) was conducted to ascertain the condition of its 45,000 holdings and develop a practical low-cost disaster plan. Using accepted preservation survey criteria,…

  18. Commission on Preservation and Access Newsletter, 1995.

    ERIC Educational Resources Information Center

    Commission on Preservation and Access Newsletter, 1995

    1995-01-01

    The Commission on Preservation and Access was established to foster and support collaboration among libraries and allied organizations in order to ensure the preservation of the published and documentary records in all formats and to provide enhanced access to scholarly information. The Commission's newsletter keeps preservation and access…

  19. Preserving Library Materials in the South Pacific.

    ERIC Educational Resources Information Center

    Kivia, Ivarature

    1994-01-01

    Discusses problems of preservation and conservation of library materials in the South Pacific, including environmental factors, insect and animal pests, and mishandling. Describes the situation in national, public, and academic libraries in the region; factors in planning library buildings to promote preservation; and preservation efforts at the…

  20. Preservation Impacts on Educational Facilities Planning.

    ERIC Educational Resources Information Center

    Shultz, James A.

    This paper examines the significance of facilities preservation for educational facilities planning and identifies various forms of facilities preservation applicable to educational facilities. It analyzes why educational facilities planners need to be aware of preservation considerations, reviews the relevant literature for preservation…

  1. Orthogonality preserving infinite dimensional quadratic stochastic operators

    SciTech Connect

    Akın, Hasan; Mukhamedov, Farrukh

    2015-09-18

    In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators.

  2. The Preservation of Paper Collections in Archives.

    ERIC Educational Resources Information Center

    Adams, Cynthia Ann

    The preservation methods used for paper collections in archives were studied through a survey of archives in the metropolitan Atlanta (Georgia) area. The preservation policy or program was studied, and the implications for conservators and preservation officers were noted. Twelve of 15 archives responded (response rate of 80 percent). Basic…

  3. On flattening filter-free portal dosimetry.

    PubMed

    Pardo, Eduardo; Castro Novais, Juan; Molina López, María Yolanda; Ruiz Maqueda, Sheila

    2016-01-01

    Varian introduced (in 2010) the option of removing the flattening filter (FF) in their C-Arm linacs for intensity-modulated treatments. This mode, called flattening filter-free (FFF), offers the advantage of a greater dose rate. Varian's "Portal Dosimetry" is an electronic portal imager device (EPID)-based tool for IMRT verification. This tool lacks the capability of verifying flattening filter-free (FFF) modes due to saturation and lack of an image prediction algorithm. (Note: the latest versions of this software and EPID correct these issues.) The objective of the present study is to research the feasibility of said verifications (with the older versions of the software and EPID). By placing the EPID at a greater distance, the images can be acquired without saturation, yielding a linearity similar to the flattened mode. For the image prediction, a method was optimized based on the clinically used algorithm (analytical anisotropic algorithm (AAA)) over a homogeneous phantom. The depth inside the phantom and its electronic density were tailored. An application was developed to allow the conversion of a dose plane (in DICOM format) to Varian's custom format for Portal Dosimetry. The proposed method was used for the verification of test and clinical fields for the three qualities used in our institution for IMRT: 6X, 6FFF and 10FFF. The method developed yielded a positive verification (more than 95% of the points pass a 2%/2 mm gamma) for both the clinical and test fields. This method was also capable of "predicting" static and wedged fields. A workflow for the verification of FFF fields was developed. This method relies on the clinical algorithm used for dose calculation and is able to verify the FFF modes, as well as being useful for machine quality assurance. The procedure described does not require new hardware. This method could be used as a verification of Varian's Portal Dose Image Prediction. PMID:27455487

  4. Thermoluminescent Dosimetry: A Preliminary Study for microCT Applications

    SciTech Connect

    Montano Garcia, C.; Rodriguez-Villafuerte, M.; Martinez-Davalos, A.; Brandan, M. E.; Ruiz-Trejo, C.

    2006-09-08

    Preliminary measurements for microCT dosimetry are reported in this work, using TLD-100 crystals (1x1x1 mm3) within a solid water phantom specially designed with approximate dimensions of a mouse. A dose dependence as a function of radial distance and position along the axis of the phantom was found. Because of the smaller doses used in this work we can say that it is feasible to perform dosimetry measurements with high accuracy using TLD-100 microcubes.

  5. Hanford Internal Dosimetry Program Manual, PNL-MA-552

    SciTech Connect

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2003-10-10

    This manual is a guide to the services provided by the Hanford Internal Dosimetry Program (IDP). It describes the roles of and relationships between the IDP and site contractors, and provides recommendations and guidance for consideration in implementing bioassay monitoring and internal dosimetry elements of radiation protection programs. Guidance includes identifying conditions under which workers should be placed on bioassay programs, types, descritptions, and capabilities of measurements, suggested routine bioassay programs, limitations on services, and practices for recording and reporting results.

  6. EPID dosimetry for pretreatment quality assurance with two commercial systems.

    PubMed

    Bailey, Daniel W; Kumaraswamy, Lalith; Bakhtiari, Mohammad; Malhotra, Harish K; Podgorsak, Matthew B

    2012-01-01

    This study compares the EPID dosimetry algorithms of two commercial systems for pretreatment QA, and analyzes dosimetric measurements made with each system alongside the results obtained with a standard diode array. 126 IMRT fields are examined with both EPID dosimetry systems (EPIDose by Sun Nuclear Corporation, Melbourne FL, and Portal Dosimetry by Varian Medical Systems, Palo Alto CA) and the diode array, MapCHECK (also by Sun Nuclear Corporation). Twenty-six VMAT arcs of varying modulation complexity are examined with the EPIDose and MapCHECK systems. Optimization and commissioning testing of the EPIDose physics model is detailed. Each EPID IMRT QA system is tested for sensitivity to critical TPS beam model errors. Absolute dose gamma evaluation (3%, 3 mm, 10% threshold, global normalization to the maximum measured dose) yields similar results (within 1%-2%) for all three dosimetry modalities, except in the case of off-axis breast tangents. For these off-axis fields, the Portal Dosimetry system does not adequately model EPID response, though a previously-published correction algorithm improves performance. Both MapCHECK and EPIDose are found to yield good results for VMAT QA, though limitations are discussed. Both the Portal Dosimetry and EPIDose algorithms, though distinctly different, yield similar results for the majority of clinical IMRT cases, in close agreement with a standard diode array. Portal dose image prediction may overlook errors in beam modeling beyond the calculation of the actual fluence, while MapCHECK and EPIDose include verification of the dose calculation algorithm, albeit in simplified phantom conditions (and with limited data density in the case of the MapCHECK detector). Unlike the commercial Portal Dosimetry package, the EPIDose algorithm (when sufficiently optimized) allows accurate analysis of EPID response for off-axis, asymmetric fields, and for orthogonal VMAT QA. Other forms of QA are necessary to supplement the limitations of the

  7. Specific issues in small animal dosimetry and irradiator calibration

    PubMed Central

    Yoshizumi, Terry; Brady, Samuel L.; Robbins, Mike E.; Bourland, J. Daniel

    2013-01-01

    Purpose In response to the increased risk of radiological terrorist attack, a network of Centers for Medical Countermeasures against Radiation (CMCR) has been established in the United States, focusing on evaluating animal model responses to uniform, relatively homogenous whole- or partial-body radiation exposures at relatively high dose rates. The success of such studies is dependent not only on robust animal models but on accurate and reproducible dosimetry within and across CMCR. To address this issue, the Education and Training Core of the Duke University School of Medicine CMCR organised a one-day workshop on small animal dosimetry. Topics included accuracy in animal dosimetry accuracy, characteristics and differences of cesium-137 and X-ray irradiators, methods for dose measurement, and design of experimental irradiation geometries for uniform dose distributions. This paper summarises the information presented and discussed. Conclusions Without ensuring accurate and reproducible dosimetry the development and assessment of the efficacy of putative countermeasures will not prove successful. Radiation physics support is needed, but is often the weakest link in the small animal dosimetry chain. We recommend: (i) A user training program for new irradiator users, (ii) subsequent training updates, and (iii) the establishment of a national small animal dosimetry center for all CMCR members. PMID:21961967

  8. Personnel neutron dosimetry using electrochemically etched CR-39 foils

    SciTech Connect

    Hankins, D.E.; Homann, S.; Westermark, J.

    1986-09-17

    A personnel neutron dosimetry system has been developed based on the electrochemical etching of CR-39 plastic at elevated temperatures. The doses obtained using this dosimeter system are more accurate than those obtained using other dosimetry systems, especially when varied neutron spectra are encountered. This Cr-39 dosimetry system does not have the severe energy dependence that exists with albedo neutron dosimeters or the fading and reading problems encountered with NTA film. The dosimetry system employs an electrochemical etch procedure that be used to process large numbers of Cr-39 dosimeters. The etch procedure is suitable for operations where the number of personnel requires that many CR-39 dosimeters be processed. Experience shows that one full-time technician can etch and evaluate 2000 foils per month. The energy response to neutrons is fairly flat from about 80 keV to 3.5 MeV, but drops by about a factor of three in the 13 to 16 MeV range. The sensitivity of the dosimetry system is about 7 tracks/cm/sup 2//mrem, with a background equivalent to about 8 mrem for new CR-39 foils. The limit of sensitivity is approximately 10 mrem. The dosimeter has a significant variation in directional dependence, dropping to about 20% at 90/sup 0/. This dosimeter has been used for personnel neutron dosimetry at the Lawrence Livermore National Laboratory for more tha 18 months. 6 refs., 23 figs., 2 tabs.

  9. Boron dose determination for BNCT using Fricke and EPR dosimetry

    SciTech Connect

    Wielopolski, L.; Ciesielski, B.

    1995-02-01

    In Boron Neutron Capture Therapy (BNCT) the dominant dose delivered to the tumor is due to {alpha} and {sup 7}Li charged particles resulting from a neutron capture by {sup 10}B and is referred to herein as the boron dose. Boron dose is directly attributable to the following two independent factors, one boron concentration and the neutron capture energy dependent cross section of boron, and two the energy spectrum of the neutrons that interact with boron. The neutron energy distribution at a given point is dictated by the incident neutron energy distribution, the depth in tissue, geometrical factors such as beam size and patient`s dimensions. To account for these factors can be accommodated by using Monte Carlo theoretical simulations. However, in conventional experimental BNCT dosimetry, e.g., using TLDs or ionization chambers, it is only possible to estimate the boron dose. To overcome some of the limitations in the conventional dosimetry, modifications in ferrous sulfate dosimetry (Fricke) and Electron Paramagnetic Resonance (EPR) dosimetry in alanine, enable to measure specifically boron dose in a mixed gamma neutron radiation fields. The boron dose, in either of the dosimeters, is obtained as a difference between measurements with boronated and unboronated dosimeters. Since boron participates directly in the measurements, the boron dosimetry reflects the true contribution, integral of the neutron energy spectrum with boron cross section, of the boron dose to the total dose. Both methods are well established and used extensively in dosimetry, they are presented briefly here.

  10. Review of the near-earth space radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Guo, Jianming; Chen, Xiaoqian; Li, Shiyou

    2016-07-01

    The near-earth space radiation environment has a great effect to the spacecraft and maybe do harm to the astronaut's health. Thus, how to measure the radiation has become a serious challenge. In order to provide sufficient protection both for astronauts and for instruments on-board, dose equivalent and linear energy transfer should be measured instead of merely measuring total radiation dose. This paper reviews the methods of radiation measurement and presents a brief introduction of dosimetry instruments. The method can be divided into two different kinds, i.e., positive dosimetry and passive dosimetry. The former usually includes electronic devices which can be used for data storage and can offer simultaneous monitoring on space radiation. The passive dosimetry has a much simple structure, and need extra operation after on-orbit missions for measuring. To get more reliable data of radiation dosimetry, various instruments and methods had been applied in the spacecrafts and the manned spacecrafts in particular. The outlook of the development in the space radiation dosimetry measurement is also presented.

  11. ESR dosimetry for atomic bomb survivors and radiologic technologists

    NASA Astrophysics Data System (ADS)

    Tatsumi-Miyajima, Junko

    1987-06-01

    An individual absorbed dose for atomic bomb (A-bomb) survivors and radiologic technologists has been estimated using a new personal dosimetry. This dosimetry is based on the electron spin resonance (ESR) spectroscopy of the CO 33- radicals, which are produced in their teeth by radiation. Measurements were carried out to study the characteristics of the dosimetry; the ESR signals of the CO 33- radicals were stable and increased linearly with the radiation dose. In the evaluation of the absorbed dose, the ESR signals were considered to be a function of photon energy. The absorbed doses in ten cases of A-bomb victims and eight cases of radiologic technologists were determined. For A-bomb survivors, the adsorbed doses, which were estimated using the ESR dosimetry, were consistent with the ones obtained using the calculations of the tissue dose in air of A-bomb, and also with the ones obtained using the chromosome measurements. For radiologic technologists, the absorbed doses, which were estimated using the ESR dosimetry, agreed with the ones calculated using the information on the occupational history and conditions. The advantages of this method are that the absorbed dose can be directly estimated by measuring the ESR signals obtained from the teeth of persons, who are exposed to radiation. Therefore, the ESR dosimetry is useful to estimate the accidental exposure and the long term cumulative dose.

  12. Preserving mobility in older adults.

    PubMed Central

    Buchner, D M

    1997-01-01

    Age-related loss of strength contributes to impaired mobility and increases the risk of falls. Recent research has focused on 2 approaches to preventing age-related loss of strength--promoting physical activity and exercise (especially strength training) and using trophic factors to enhance muscle performance. Epidemiologic evidence strongly supports a role of regular physical activity in successful aging by preserving muscle performance, promoting mobility, and reducing fall risk. Randomized controlled trials provide convincing evidence that strength and endurance training improve muscle performance in older adults. Evidence is rapidly accumulating from randomized trials that endurance, strength, and balance training promote mobility and reduce fall risk, though exercise effects differ according to the type of exercise, details of the exercise program, and the target group of older adults. Because lifetime regular physical activity is recommended for all older adults, a reasonable strategy (especially for weak adults) is an activity program that includes strength training. In contrast, insufficient evidence exists to recommend the long-term use of trophic factors to preserve muscular performance. An intervention that merits additional study is avoiding the use of psychoactive drugs because drugs like benzodiazepines appear to be risk factors for inactivity and may have unrecognized direct effects on muscular performance. Because chronic illness is a risk factor for inactivity and disuse muscle atrophy, randomized trials comparing strength training with other interventions would be useful in understanding whether strength training has advantages in preserving muscle performance and improving health-related quality of life in a variety of chronic illnesses such as depressive illness. PMID:9348757

  13. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  14. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.

    1976-08-17

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

  15. Sonochemical Reactors.

    PubMed

    Gogate, Parag R; Patil, Pankaj N

    2016-10-01

    Sonochemical reactors are based on the generation of cavitational events using ultrasound and offer immense potential for the intensification of physical and chemical processing applications. The present work presents a critical analysis of the underlying mechanisms for intensification, available reactor configurations and overview of the different applications exploited successfully, though mostly at laboratory scales. Guidelines have also been presented for optimum selection of the important operating parameters (frequency and intensity of irradiation, temperature and liquid physicochemical properties) as well as the geometric parameters (type of reactor configuration and the number/position of the transducers) so as to maximize the process intensification benefits. The key areas for future work so as to transform the successful technique at laboratory/pilot scale into commercial technology have also been discussed. Overall, it has been established that there is immense potential for sonochemical reactors for process intensification leading to greener processing and economic benefits. Combined efforts from a wide range of disciplines such as material science, physics, chemistry and chemical engineers are required to harness the benefits at commercial scale operation. PMID:27573503

  16. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1960-09-27

    A unit assembly is described for a neutronic reactor comprising a tube and plurality of spaced parallel sandwiches in the tube extending lengthwise thereof, each sandwich including a middle plate having a central opening for plutonium and other openings for fertile material at opposite ends of the plate.

  17. NEUTRONIC REACTOR

    DOEpatents

    Creutz, E.C.; Ohlinger, L.A.; Weinberg, A.M.; Wigner, E.P.; Young, G.J.

    1959-10-27

    BS>A reactor cooled by water, biphenyl, helium, or other fluid with provision made for replacing the fuel rods with the highest plutonium and fission product content without disassembling the entire core and for promptly cooling the rods after their replacement in order to prevent build-up of heat from fission product activity is described.

  18. Neutronic reactor

    DOEpatents

    Carleton, John T.

    1977-01-25

    A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment.

  19. Polarization preservation in the AGS

    SciTech Connect

    Ratner, L.G.

    1983-01-01

    The successful operation of a high energy polarized beam at the Argonne Zero Gradient Synchrotron (ZGS) with the concommitant development of depolarizing resonance correction techniques has led to the present project of commissioning such a beam at the Brookhaven Alternating Gradient Synchrotron (AGS). A description of the project was presented at the 1981 National Accelerator Conference. I would like to now present a more detailed description of how we plan to preserve the polarization during acceleration, and to present our game plan for tuning through some 50 resonances and reaching our goal of a 26 GeV polarized proton beam with greater than 60% polarization.

  20. Preservation of sweet sorghum biomass

    SciTech Connect

    Jasberg, B.K.; Montgomery, R.R.; Anderson, R.A.

    1983-01-01

    Sweet sorghum stalks (42% sugar, dry basis (d.b.)) and bagasse (10% sugar, d.b.) from a cane mill were stored to preserve sugar. Bagasse and stalks were stored outdoors in sealed containers (anaerobic conditions). Treatments included using carbon dioxide or sulfur dioxide atmospheres or surface spraying with propionic acid or aqueous ammonia. Stalks were also stored outdoors under aerobic conditions. Treatments included drying the stalks or spraying with propionic acid. After 200 days, propionic acid (anaerobic) and SO/sub 2/-treated stalks had 34% and 19% of the original sugar remaining, respectively. No other samples had more than 3% of the original sugar remaining. 28 references, 6 tables.

  1. Highlights and pitfalls of 20 years of application of computerised glow curve analysis to thermoluminescence research and dosimetry.

    PubMed

    Horowitz, Y S; Moscovitch, M

    2013-01-01

    The technical and dosimetric aspects of computerised glow curve analysis are described in detail including a review of the current 'state-of-the-achieved' in applications to environmental and personal dosimetry, clinical dosimetry, quality control, characterisation of new materials, continuing characterisation of 'old' materials, heavy charged particle dosimetry, mixed field n-gamma dosimetry, X-ray dosimetry and other aspects of thermoluminescence dosimetry. Fearless emphasis is placed on 'pitfalls' as well as successes. PMID:22987121

  2. Application of the Subgroup Decomposition Method (SDM) for Reactor Simulation

    NASA Astrophysics Data System (ADS)

    Roskoff, Nathan; Walters, William; Haghighat, Alireza

    2016-02-01

    The performance of the TITAN-SDM algorithm for solving a reactor pressure vessel dosimetry problem is evaluated. Douglass and Rahnema recently developed the he subgroup decomposition method (SDM); a methodology which directly couples a consistent coarse-group transport calculation with a set of "decomposition sweeps" to provide a fine-group flux spectrum. The SDM has been implemented into the TITAN three-dimensional transport code and has been shown to accurately solve core criticality problems while significantly reducing computation time. This paper addresses the use of SDM for fixed-source problems. The VENUS-2 dosimetry benchmark problem is selected with an emphasis on fast neutron analysis; therefore, material cross sections are generated from the BUGLE-96 library considering neutron energies greater than 0.1 MeV. The accuracy and efficiency of TITAN-SDM is evaluated by comparison with a standard TITAN multigroup calculation.

  3. N Reactor Deactivation Program Plan. Revision 4

    SciTech Connect

    Walsh, J.L.

    1993-12-01

    This N Reactor Deactivation Program Plan is structured to provide the basic methodology required to place N Reactor and supporting facilities {center_dot} in a radiologically and environmentally safe condition such that they can be decommissioned at a later date. Deactivation will be in accordance with facility transfer criteria specified in Department of Energy (DOE) and Westinghouse Hanford Company (WHC) guidance. Transition activities primarily involve shutdown and isolation of operational systems and buildings, radiological/hazardous waste cleanup, N Fuel Basin stabilization and environmental stabilization of the facilities. The N Reactor Deactivation Program covers the period FY 1992 through FY 1997. The directive to cease N Reactor preservation and prepare for decommissioning was issued by DOE to WHC on September 20, 1991. The work year and budget data supporting the Work Breakdown Structure in this document are found in the Activity Data Sheets (ADS) and the Environmental Restoration Program Baseline, that are prepared annually.

  4. Visualization of topological structures in area-preserving maps.

    PubMed

    Tricoche, Xavier; Garth, Christoph; Sanderson, Allen

    2011-12-01

    Area-preserving maps are found across a wide range of scientific and engineering problems. Their study is made challenging by the significant computational effort typically required for their inspection but more fundamentally by the fractal complexity of salient structures. The visual inspection of these maps reveals a remarkable topological picture consisting of fixed (or periodic) points embedded in so-called island chains, invariant manifolds, and regions of ergodic behavior. This paper is concerned with the effective visualization and precise topological analysis of area-preserving maps with two degrees of freedom from numerical or analytical data. Specifically, a method is presented for the automatic extraction and characterization of fixed points and the computation of their invariant manifolds, also known as separatrices, to yield a complete picture of the structures present within the scale and complexity bounds selected by the user. This general approach offers a significant improvement over the visual representations that are so far available for area-preserving maps. The technique is demonstrated on a numerical simulation of magnetic confinement in a fusion reactor. PMID:22034293

  5. Psychological Counseling of Female Fertility Preservation Patients.

    PubMed

    Lawson, Angela K; Klock, Susan C; Pavone, Mary Ellen; Hirshfeld-Cytron, Jennifer; Smith, Kristin N; Kazer, Ralph R

    2015-01-01

    Young cancer patients are increasingly interested in preserving their fertility prior to undergoing gonadotoxic therapies. Although the medical safety and treatment protocols for fertility preservation have been well documented, limited research has addressed the emotional issues that arise in fertility preservation patients. We briefly review the literature on the psychosocial issues in adult female fertility preservation treatment and describe our experiences within this patient population. Our findings suggest that several important issues to be addressed during the psychological counseling of adult female fertility preservation patients include: (1) preexisting psychological distress in patients undergoing treatment, (2) choice of fertility preservation strategy in the face of an uncertain relationship future, (3) decision making regarding use of third-party reproduction (e.g., sperm/egg donation, gestational surrogacy), (4) treatment expectations regarding pregnancy and miscarriage, (5) ethical issues related to treatment including the creation, cryopreservation, and disposition of embryos/oocytes, and (6) decision regret from patients who declined fertility preservation. PMID:25996581

  6. Fertility preservation in gynecological cancers.

    PubMed

    Chhabra, Shakuntala; Kutchi, Imran

    2013-03-21

    For cancers of reproductive system in women, fertility preservation is complex. Fertility is also affected by therapies, however prevention is possible. Radiotherapy affects gonads, uterus, and subsequent pregnancy outcomes in all ages. However, degree and damage depend on dose, irradiation field, and age at the time of exposure. Ovarian transposition is considered if ovarian involvement is unlikely. Gonadotoxic effects of chemotherapy are related to agent's type, cumulative doses, age, and ovarian reserve. Some agents are highly toxic. Rendering follicular development quiescent by suppression of gonadotropins does reduce the ovarian damage. Simple or radical trachelectomy can be used in early cervical cancer. Fertility saving surgery is possible only in early stage low grade epithelial cancers of the ovary, however, in germ cell tumors even in advanced stages it may be possible to preserve fertility. There are no standard recommendations for endometrial cancer. Embryo, oocyte, and ovarian tissue cryopreservation are possible. The human embryo is very resistant to damage. In view of these possibilities, it is advocated that attention to long term health and quality of life in gonadotoxic therapy must be incorporated into plans as early as possible. PMID:24453519

  7. Low-Rank Preserving Projections.

    PubMed

    Lu, Yuwu; Lai, Zhihui; Xu, Yong; Li, Xuelong; Zhang, David; Yuan, Chun

    2016-08-01

    As one of the most popular dimensionality reduction techniques, locality preserving projections (LPP) has been widely used in computer vision and pattern recognition. However, in practical applications, data is always corrupted by noises. For the corrupted data, samples from the same class may not be distributed in the nearest area, thus LPP may lose its effectiveness. In this paper, it is assumed that data is grossly corrupted and the noise matrix is sparse. Based on these assumptions, we propose a novel dimensionality reduction method, named low-rank preserving projections (LRPP) for image classification. LRPP learns a low-rank weight matrix by projecting the data on a low-dimensional subspace. We use the L21 norm as a sparse constraint on the noise matrix and the nuclear norm as a low-rank constraint on the weight matrix. LRPP keeps the global structure of the data during the dimensionality reduction procedure and the learned low rank weight matrix can reduce the disturbance of noises in the data. LRPP can learn a robust subspace from the corrupted data. To verify the performance of LRPP in image dimensionality reduction and classification, we compare LRPP with the state-of-the-art dimensionality reduction methods. The experimental results show the effectiveness and the feasibility of the proposed method with encouraging results. PMID:26277014

  8. Radiation dosimetry of a conformal heat-brachytherapy applicator.

    PubMed

    Taschereau, Richard; Stauffer, Paul R; Hsu, I-Chow; Schlorff, Jaime L; Milligan, Andrew J; Pouliot, Jean

    2004-08-01

    The purpose of this paper is to report the radiation dosimetric characteristics of a new combination applicator for delivering heat and radiation simultaneously to large area superficial disease <1.5 cm deep. The applicator combines an array of brachytherapy catheters (for radiation delivery) with a conformal printed circuit board microwave antenna array (for heat generation), and a body-conforming 5-10 mm thick temperature-controlled water bolus. The rationale for applying both modalities simultaneously includes the potential for significantly higher response rate due to enhanced synergism of modalities, and lower peak toxicity due to temporal extension of heat and radiation induced toxicities. Treatment plans and radiation dosimetry are calculated with IPSA (an optimization tool developed at UCSF) for 15 x 15 cm(2) and 35 x 24 cm(2) applicators, lesion thicknesses of 5 to 15 mm, flat and curved surfaces, and catheter separation of 5 and 10 mm. The effect on skin dose of bolus thickness and presence of thin copper antenna structures between radiation source and tissue are also evaluated. Results demonstrate the ability of the applicator to provide conformal radiation dose coverage for up to 15 mm deep target volumes under the applicator. For clinically acceptable plans, tumor coverage is > 98%, homogeneity index > 0.95 and the percentage of normal tissue irradiated is < 20%. The dose gradient at the skin surface varies from 3 to 5 cGy/mm depending on bolus thickness and lesion depth. Attenuation of the photon beam by the printed circuit antenna array is of the order 0.25% and secondary electron emissions are absorbed completely within 5 mm of water bolus and plastic layers. Both phenomena can then be neglected in dose calculations allowing commercial software to be used for treatment planning. This novel applicator should prove useful for the treatment of diffuse chestwall disease located over contoured anatomy that may be difficult to treat with single field

  9. EDITORIAL: Special issue on radiation dosimetry Special issue on radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Sharpe, Peter

    2009-04-01

    This special issue of Metrologia on radiation dosimetry is the second in a trilogy on the subject of ionizing radiation measurements, a field that is overseen by Sections I, II and III of the CIPM's Consultative Committee for Ionizing Radiation (CCRI). The work of Section II, on radionuclide metrology, was covered in issue 44(4), published in 2007, and that of Section III, on neutron metrology, will be covered in a special issue to be published shortly. This issue covers the work of Section I (x-rays and γ rays, and charged particles). The proposal to publish special issues of Metrologia covering the work of the CCRI Sections was first made in 2003 and refined at the two subsequent meetings of the CCRI in 2005 and 2007. The overall aim is to present the work of the CCRI to a wider metrological audience and to highlight the relevance and importance of the field. The main focus of our special issue on dosimetry metrology is on the 'state of the art' in the various areas covered, with an indication of the current developments taking place and the problems and challenges that remain. Where appropriate, this is set in a brief historical context, although it is not the aim to give a historical review. The need for accurate measurement has been appreciated from the pioneering days of the use of ionizing radiation in the early 20th century, particularly in the fields of diagnostic and therapeutic medicine. Over the years, the range of applications for ionizing radiation has expanded both in scope and in the types and energies of radiation employed. This has led to the need to develop a wide variety of measurement techniques and standards covering fields ranging from the low doses experienced in environmental and protection applications to the extremely high doses used in industrial processing. The different types of radiation employed give rise to the need for dose measurements in radiation beams whose effective penetration through a material such as water ranges from a

  10. A probabilistic gastrointestinal tract dosimetry model

    NASA Astrophysics Data System (ADS)

    Huh, Chulhaeng

    In internal dosimetry, the tissues of the gastrointestinal (GI) tract represent one of the most radiosensitive organs of the body with the hematopoietic bone marrow. Endoscopic ultrasound is a unique tool to acquire in-vivo data on GI tract wall thicknesses of sufficient resolution needed in radiation dosimetry studies. Through their different echo texture and intensity, five layers of differing echo patterns for superficial mucosa, deep mucosa, submucosa, muscularis propria and serosa exist within the walls of organs composing the alimentary tract. Thicknesses for stomach mucosa ranged from 620 +/- 150 mum to 1320 +/- 80 mum (total stomach wall thicknesses from 2.56 +/- 0.12 to 4.12 +/- 0.11 mm). Measurements made for the rectal images revealed rectal mucosal thicknesses from 150 +/- 90 mum to 670 +/- 110 mum (total rectal wall thicknesses from 2.01 +/- 0.06 to 3.35 +/- 0.46 mm). The mucosa thus accounted for 28 +/- 3% and 16 +/- 6% of the total thickness of the stomach and rectal wall, respectively. Radiation transport simulations were then performed using the Monte Carlo N-particle transport code (MCNP) 4C transport code to calculate S values (Gy/Bq-s) for penetrating and nonpenetrating radiations such as photons, beta particles, conversion electrons and auger electrons of selected nuclides, I123, I131, Tc 99m and Y90 under two source conditions: content and mucosa sources, respectively. The results of this study demonstrate generally good agreement with published data for the stomach mucosa wall. The rectal mucosa data are consistently higher than published data compared with the large intestine due to different radiosensitive cell thicknesses (350 mum vs. a range spanning from 149 mum to 729 mum) and different geometry when a rectal content source is considered. Generally, the ICRP models have been designed to predict the amount of radiation dose in the human body from a "typical" or "reference" individual in a given population. The study has been performed to

  11. NEUTRONIC REACTOR

    DOEpatents

    Wade, E.J.

    1958-09-16

    This patent relates to a reflector means for a neutronic reactor. A reflector comprised of a plurality of vertically movable beryllium control members is provided surrounding the sides of the reactor core. An absorber of fast neutrons comprised of natural uramum surrounds the reflector. An absorber of slow neutrons surrounds the absorber of fast neutrons and is formed of a plurality of beryllium blocks having natural uranium members distributcd therethrough. in addition, a movable body is positioned directly below the core and is comprised of a beryllium reflector and an absorbing member attached to the botiom thereof, the absorbing member containing a substance selected from the goup consisting of natural urantum and Th/sup 232/.

  12. REACTOR MONITORING

    DOEpatents

    Bugbee, S.J.; Hanson, V.F.; Babcock, D.F.

    1959-02-01

    A neutron density inonitoring means for reactors is described. According to this invention a tunnel is provided beneath and spaced from the active portion of the reactor and extends beyond the opposite faces of the activc portion. Neutron beam holes are provided between the active portion and the tunnel and open into the tunnel near the middle thereof. A carriage operates back and forth in the tunnel and is adapted to convey a neutron detector, such as an ion chamber, and position it beneath one of the neutron beam holes. This arrangement affords convenient access of neutron density measuring instruments to a location wherein direct measurement of neutron density within the piles can be made and at the same time affords ample protection to operating personnel.

  13. REACTOR UNLOADING

    DOEpatents

    Leverett, M.C.

    1958-02-18

    This patent is related to gas cooled reactors wherein the fuel elements are disposed in vertical channels extending through the reactor core, the cooling gas passing through the channels from the bottom to the top of the core. The invention is a means for unloading the fuel elements from the core and comprises dump values in the form of flat cars mounted on wheels at the bottom of the core structure which support vertical stacks of fuel elements. When the flat cars are moved, either manually or automatically, for normal unloading purposes, or due to a rapid rise in the reproduction ratio within the core, the fuel elements are permtted to fall by gravity out of the core structure thereby reducing the reproduction ratio or stopping the reaction as desired.

  14. Nuclear reactor

    DOEpatents

    Wade, Elman E.

    1979-01-01

    A nuclear reactor including two rotatable plugs and a positive top core holddown structure. The top core holddown structure is divided into two parts: a small core cover, and a large core cover. The small core cover, and the upper internals associated therewith, are attached to the small rotating plug, and the large core cover, with its associated upper internals, is attached to the large rotating plug. By so splitting the core holddown structures, under-the-plug refueling is accomplished without the necessity of enlarging the reactor pressure vessel to provide a storage space for the core holddown structure during refueling. Additionally, the small and large rotating plugs, and their associated core covers, are arranged such that the separation of the two core covers to permit rotation is accomplished without the installation of complex lifting mechanisms.

  15. NUCLEAR REACTOR

    DOEpatents

    Treshow, M.

    1958-08-19

    A neuclear reactor is described of the heterogeneous type and employing replaceable tubular fuel elements and heavy water as a coolant and moderator. A pluraltty of fuel tubesa having their axes parallel, extend through a tank type pressure vessel which contatns the liquid moderator. The fuel elements are disposed within the fuel tubes in the reaetive portion of the pressure vessel during normal operation and the fuel tubes have removable plug members at each end to permit charging and discharging of the fuel elements. The fuel elements are cylindrical strands of jacketed fissionable material having helical exterior ribs. A bundle of fuel elements are held within each fuel tube with their longitudinal axes parallel, the ribs serving to space them apart along their lengths. Coolant liquid is circulated through the fuel tubes between the spaced fuel elements. Suitable control rod and monitoring means are provided for controlling the reactor.

  16. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-12-15

    A reactor which is particularly adapted tu serve as a heat source for a nuclear powered alrcraft or rocket is described. The core of this reactor consists of a porous refractory modera;or body which is impregnated with fissionable nuclei. The core is designed so that its surface forms tapered inlet and outlet ducts which are separated by the porous moderator body. In operation a gaseous working fluid is circulated through the inlet ducts to the surface of the moderator, enters and passes through the porous body, and is heated therein. The hot gas emerges into the outlet ducts and is available to provide thrust. The principle advantage is that tremendous quantities of gas can be quickly heated without suffering an excessive pressure drop.

  17. Twenty new ISO standards on dosimetry for radiation processing

    NASA Astrophysics Data System (ADS)

    Farrar, H., IV

    2000-03-01

    Twenty standards on essentially all aspects of dosimetry for radiation processing were published as new ISO standards in December 1998. The standards are based on 20 standard practices and guides developed over the past 14 years by Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). The transformation to ISO standards using the 'fast track' process under ISO Technical Committee 85 (ISO/TC85) commenced in 1995 and resulted in some overlap of technical information between three of the new standards and the existing ISO Standard 11137 Sterilization of health care products — Requirements for validation and routine control — Radiation sterilization. Although the technical information in these four standards was consistent, compromise wording in the scopes of the three new ISO standards to establish precedence for use were adopted. Two of the new ISO standards are specifically for food irradiation applications, but the majority apply to all forms of gamma, X-ray, and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruit, vegetables, meats, spices, processed foods, plastics, inks, medical wastes, and paper. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties using the new ISO Type A and Type B evaluations. Unfortunately, nine of the 20 standards just adopted by the ISO are not the most recent versions of these standards and are therefore already out of date. To help solve this problem, efforts are being made to develop procedures to coordinate the ASTM and ISO development and revision processes for these and future ASTM-originating dosimetry standards. In the meantime, an additional four dosimetry standards have recently been published by the ASTM but

  18. NUCLEAR REACTORS

    DOEpatents

    Koch, L.J.; Rice, R.E. Jr.; Denst, A.A.; Rogers, A.J.; Novick, M.

    1961-12-01

    An active portion assembly for a fast neutron reactor is described wherein physical distortions resulting in adverse changes in the volume-to-mass ratio are minimized. A radially expandable locking device is disposed within a cylindrical tube within each fuel subassembly within the active portion assembly, and clamping devices expandable toward the center of the active portion assembly are disposed around the periphery thereof. (AEC)

  19. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashby, J.W.

    1958-09-16

    ABS>A graphite moderator structure is presented for a nuclear reactor compriscd of an assembly of similarly orientated prismatic graphite blocks arranged on spaced longitudinal axes lying in common planes wherein the planes of the walls of the blocks are positioned so as to be twisted reintive to the planes of said axes so thatthe unlmpeded dtrect paths in direction wholly across the walls of the blocks are limited to the width of the blocks plus spacing between the blocks.

  20. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1961-01-24

    A core structure for neutronic reactors adapted for the propulsion of aircraft and rockets is offered. The core is designed for cooling by gaseous media, and comprises a plurality of hollow tapered tubular segments of a porous moderating material impregniated with fissionable fuel nested about a common axis. Alternate ends of the segments are joined. In operation a coolant gas passes through the porous structure and is heated.

  1. REACTOR CONTROL

    DOEpatents

    Ruano, W.J.

    1957-12-10

    This patent relates to nuclear reactors of the type which utilize elongited rod type fuel elements immersed in a liquid moderator and shows a design whereby control of the chain reaction is obtained by varying the amount of moderator or reflector material. A central tank for containing liquid moderator and fuel elements immersed therein is disposed within a surrounding outer tank providing an annular space between the two tanks. This annular space is filled with liquid moderator which functions as a reflector to reflect neutrons back into the central reactor tank to increase the reproduction ratio. Means are provided for circulating and cooling the moderator material in both tanks and additional means are provided for controlling separately the volume of moderator in each tank, which latter means may be operated automatically by a neutron density monitoring device. The patent also shows an arrangement for controlling the chain reaction by injecting and varying an amount of poisoning material in the moderator used in the reflector portion of the reactor.

  2. Improved dosimetry techniques for intravascular brachytherapy

    NASA Astrophysics Data System (ADS)

    Sehgal, Varun

    Coronary artery disease leads to the accumulation of atheromatous plaque leading to coronary stenosis. Coronary intervention techniques such as balloon angioplasty and atherectomy are used to address coronary stenosis and establish a stable lumen thus enhancing blood flow to the myocardium. Restenosis or re-blockage of the arteries is a major limitation of the above mentioned interventional techniques. Neointimal hyperplasia or proliferation of cells in response to the vascular injury as a result of coronary intervention is considered to be one of the major causes of restenosis. Recent studies indicated that irradiation of the coronary lesion site, with radiation doses ranging from 15 to 30 Gy, leads to diminishing neointimal hyperplasia with subsequent reduction in restenosis. The radiation dose is given by catheter-based radiation delivery systems using beta-emitters 90Sr/90Y, 32P and gamma-emitting 192Ir among others. However the dose schema used for dose prescription for these sources are relatively simplistic, and are based on calculations using uniform homogenous water or tissue media and simple cylinder geometry. Stenotic coronary vessels are invariably lined with atheromatous plaque of heterogeneous composition, the radiation dose distribution obtained from such dosimetry data can cause significant variations in the actual dose received by a given patient. Such discrepancies in dose calculation can introduce relatively large uncertainties in the limits of dose window for effective and safe application of intravascular brachytherapy, and consequently in the clinical evaluation of the efficacy of this modality. In this research study we investigated the effect of different geometrical and material heterogeneities, including residual plaque, catheter non-centering, lesion eccentricity and cardiac motion on the radiation dose delivered at the lesion site. Correction factors including dose perturbation factors and dose variation factors have been calculated

  3. Saliva Preservative for Diagnostic Purposes

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Mehta, Satish K.

    2012-01-01

    Saliva is an important body fluid for diagnostic purposes. Glycoproteins, glucose, steroids, DNA, and other molecules of diagnostic value are found in saliva. It is easier to collect as compared to blood or urine. Unfortunately, saliva also contains large numbers of bacteria that can release enzymes, which can degrade proteins and nucleic acids. These degradative enzymes destroy or reduce saliva s diagnostic value. This innovation describes the formulation of a chemical preservative that prevents microbial growth and inactivates the degradative enzymes. This extends the time that saliva can be stored or transported without losing its diagnostic value. Multiple samples of saliva can be collected if needed without causing discomfort to the subject and it does not require any special facilities to handle after it is collected.

  4. Boundary Preserving Dense Local Regions.

    PubMed

    Kim, Jaechul; Grauman, Kristen

    2015-05-01

    We propose a dense local region detector to extract features suitable for image matching and object recognition tasks. Whereas traditional local interest operators rely on repeatable structures that often cross object boundaries (e.g., corners, scale-space blobs), our sampling strategy is driven by segmentation, and thus preserves object boundaries and shape. At the same time, whereas existing region-based representations are sensitive to segmentation parameters and object deformations, our novel approach to robustly sample dense sites and determine their connectivity offers better repeatability. In extensive experiments, we find that the proposed region detector provides significantly better repeatability and localization accuracy for object matching compared to an array of existing feature detectors. In addition, we show our regions lead to excellent results on two benchmark tasks that require good feature matching: weakly supervised foreground discovery and nearest neighbor-based object recognition. PMID:26353319

  5. Update on Dark Sky Preservation

    NASA Astrophysics Data System (ADS)

    Crawford, D. L.

    1998-12-01

    The efforts to protect dark skies for astronomy and for the public are accelerating. An increasing number of cities and states are considering and enacting outdoor lighting control ordinances. Examples of such lighting codes and a model code are available from the International Dark-Sky Association's Web page, at www.darksky.org. There will be a major meeting on Preserving the Astronomical Environment, IAU Symposium #196, co-sponsored by the United Nations, IDA, and others, to be held the week of 12 July 1999 in Vienna, Austria. Further information on this meeting (and others) can also be found on the IDA Web site, which also contains many other resources (and links to other web sites) for those interested in the issues.

  6. Virtual Environments for Data Preservation

    NASA Astrophysics Data System (ADS)

    Beckmann, Volker

    Data preservation in a wider sense includes also the ability to analyse data of past experiments. Because operation systems, such as Linux and Windows, are evolving rapidly, software packages can be outdated and not usable anymore already a few years after they have been written. Creating an image of the operation system is a way to be able to launch the analysis software on a computing infrastructure independent on the local operation system used. At the same time, virtualization also allows to launch the same software in collaborations across several institutes with very different computing infrastructure. At the François Arago Centre of the APC in Paris we provide user support for virtualization and computing environment access to the scientific community

  7. Lifetime Neutron Fluence Analysis of the Ringhals Unit 1 Boiling Water Reactor

    NASA Astrophysics Data System (ADS)

    Kulesza, Joel A.; Roudén, Jenny; Green, Eva-Lena

    2016-02-01

    This paper describes a neutron fluence assessment considering the entire commercial operating history (35 cycles or ˜ 25 effective full power years) of the Ringhals Unit 1 reactor pressure vessel beltline region. In this assessment, neutron (E >1.0 MeV) fluence and iron atom displacement distributions were calculated on the moderator tank and reactor pressure vessel structures. To validate those calculations, five in-vessel surveillance chain dosimetry sets were evaluated as well as material samples taken from the upper core grid and wide range neutron monitor tubes to act as a form of retrospective dosimetry. During the analysis, it was recognized that delays in characterizing the retrospective dosimetry samples reduced the amount of reactions available to be counted and complicated the material composition determination. However, the comparisons between the surveillance chain dosimetry measurements (M) and calculated (C) results show similar and consistent results with the linear average M/C ratio of 1.13 which is in good agreement with the resultant least squares best estimate (BE)/C ratios of 1.10 for both neutron (E >1.0 MeV) flux and iron atom displacement rate.

  8. Three-dimensional calculations of neutron streaming in the beam tubes of the ORNL HFIR (High Flux Isotope Reactor) Reactor

    SciTech Connect

    Childs, R.L.; Rhoades, W.A.; Williams, L.R.

    1988-01-01

    The streaming of neutrons through the beam tubes in High Flux Isotope Reactor at Oak Ridge National Laboratory has resulted in a reduction of the fracture toughness of the reactor vessel. As a result, an evaluation of vessel integrity was undertaken in order to determine if the reactor can be operated again. As a part of this evaluation, three-dimensional neutron transport calculations were performed to obtain fluxes at points of interest in the wall of the vessel. By comparing the calculated and measured activation of dosimetry specimens from the vessel surveillance program, it was determined that the calculated flux shape was satisfactory to transpose the surveillance data to the locations in the vessel. A bias factor was applied to correct for the average C/E ratio of 0.69. 8 refs., 7 figs., 3 tabs.

  9. Abdominoplasty With Scarpa Fascia Preservation.

    PubMed

    Costa-Ferreira, António; Marco, Rebelo; Vásconez, Luis; Amarante, José

    2016-06-01

    The plane of dissection used during a full abdominoplasty has been implicated on the seroma rate. Avoiding the classic plane of dissection on top of the rectus fascia and using a more superficial plane of dissection has been suggested as a strategy to improve recovery and lower the complication rate. The authors have been applying this principle in their practice for more than a decade, and they performed 2 prospective comparative studies to evaluate the clinical effects of using a more superficial plane of dissection (with Scarpa fascia preservation) during a full abdominoplasty.The technique is presented and explained along with the results of both comparative studies.The results of both studies are discussed particularly the effects on drain volume (total and daily), the duration of drain usage and the avoidance of "long drainers." These are very relevant advantages of the technique that have not been discussed in the literature. The results and surgical strategies used by other authors which apply a more superficial plane of dissection are presented.Controversy still exits on the manipulation of the deep fat compartment by liposuction or direct fat excision. No manipulation is another option which should be considered but it has been questioned due to the risk of aesthetic compromise. A morphometric study performed on the surgical specimens of 41 female patients submitted to a full abdominoplasty validates that option.Based on this evidence, the authors recommend that surgeons consider performing abdominoplasties using a more superficial plane of dissection in the infraumbilical area with total preservation of Scarpa fascia and the deep fat compartment. The classic plane of dissection, on top of the deep fascia, should be avoided in the lower abdomen. PMID:27187249

  10. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2011-04-04

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  11. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2010-04-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  12. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2007-03-12

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Revision Log: Rev. 0 (2/25/2005) Major revision and expansion. Rev. 0.1 (3/12/2007) Minor

  13. Female fertility preservation: a clinical perspective.

    PubMed

    Pavone, Mary E; Confino, Rafael; Steinberg, Marissa

    2016-08-01

    For patients with cancer, preserving the ability to start a family at a time of their choosing is especially important and may influence decisions pertaining to cancer treatment. For other women who have delayed childbearing for personal or professional reasons, fertility preservation offers the possibility of having a biological child regardless of age. Though these women may be interested in or benefit from fertility preservation, fertility preservation services remain underutilized. While embryo and oocyte cryopreservation remain the standard strategies for female fertility preservation recommended by the American Society of Reproductive Medicine, the American Society of Clinical Oncology and the European Society of Medical Oncology, other strategies (e.g. pharmacological protection of the ovaries and ovarian tissue cryopreservation) are the subject of increasing research. This review will present new data that have become available over the past few years pertaining to all available methods of fertility preservation. PMID:26847846

  14. Biological dosimetry by interphase chromosome painting

    NASA Technical Reports Server (NTRS)

    Durante, M.; George, K.; Yang, T. C.

    1996-01-01

    Both fluorescence in situ hybridization of metaphase spreads with whole-chromosome probes and premature chromosome condensation in interphase nuclei have been used in the past to estimate the radiation dose to lymphocytes. We combined these techniques to evaluate the feasibility of using painted interphase chromosomes for biodosimetry. Human peripheral lymphocytes were exposed to gamma rays and fused to mitotic Chinese hamster cells either immediately after irradiation or after 8 h incubation at 37 degrees C. Interphase or metaphase human chromosomes were hybridized with a composite probe specific for human chromosomes 3 and 4. The dose-response curve for fragment induction immediately after irradiation was linear; these results reflected breakage frequency in the total genome in terms of DNA content per chromosome. At 8 h after irradiation, the dose-response curve for chromosome interchanges, the prevalent aberration in interphase chromosomes, was linear-quadratic and similar to that observed for metaphase chromosomes. These results suggest that painting prematurely condensed chromosomes can be useful for biological dosimetry when blood samples are available shortly after the exposure, or when interphase cells are to be scored instead of mitotic cells.

  15. Optical dosimetry for interstitial photodynamic therapy

    SciTech Connect

    Arnfield, M.R.; Tulip, J.; Chetner, M.; McPhee, M.S. )

    1989-07-01

    An approach to photodynamic treatment of tumors is the interstitial implantation of fiber optic light sources. Dosimetry is critical in identifying regions of low light intensity in the tumor which may prevent tumor cure. We describe a numerical technique for calculating light distributions within tumors, from multiple fiber optic sources. The method was tested using four translucent plastic needles, which were placed in a 0.94 X 0.94 cm grid pattern within excised Dunning R3327-AT rat prostate tumors. A cylindrical diffusing fiber tip, illuminated by 630 nm dye laser light was placed within one needle and a miniature light detector was placed within another. The average penetration depth in the tumor region between the two needles was calculated from the optical power measured by the detector, using a modified diffusion theory. Repeating the procedure for each pair of needles revealed significant variations in penetration depth within individual tumors. Average values of penetration depth, absorption coefficient, scattering coefficient, and mean scattering cosine were 0.282 cm, 0.469 cm-1, 250 cm-1 and 0.964, respectively. Calculated light distributions from four cylindrical sources in tumors gave reasonable agreement with direct light measurements using fiber optic probes.

  16. Calibration facility for environment dosimetry instruments

    SciTech Connect

    Bercea, Sorin; Celarel, Aurelia; Cenusa, Constantin

    2013-12-16

    In the last ten years, the nuclear activities, as well as the major nuclear events (see Fukushima accident) had an increasing impact on the environment, merely by contamination with radioactive materials. The most conferment way to quickly identify the presence of some radioactive elements in the environment, is to measure the dose-equivalent rate H. In this situation, information concerning the values of H due only to the natural radiation background must exist. Usually, the values of H due to the natural radiation background, are very low (∼10{sup −9} - 10{sup −8} Sv/h). A correct measurement of H in this range involve a performing calibration of the measuring instruments in the measuring range corresponding to the natural radiation background lead to important problems due to the presence of the natural background itself the best way to overlap this difficulty is to set up the calibration stand in an area with very low natural radiation background. In Romania, we identified an area with such special conditions at 200 m dept, in a salt mine. This paper deals with the necessary requirements for such a calibration facility, as well as with the calibration stand itself. The paper includes also, a description of the calibration stand (and images) as well as the radiological and metrological parameters. This calibration facilities for environment dosimetry is one of the few laboratories in this field in Europe.

  17. Film Dosimetry for Intensity Modulated Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Benites-Rengifo, J.; Martínez-Dávalos, A.; Celis, M.; Lárraga, J.

    2004-09-01

    Intensity Modulated Radiation Therapy (IMRT) is an oncology treatment technique that employs non-uniform beam intensities to deliver highly conformal radiation to the targets while minimizing doses to normal tissues and critical organs. A key element for a successful clinical implementation of IMRT is establishing a dosimetric verification process that can ensure that delivered doses are consistent with calculated ones for each patient. To this end we are developing a fast quality control procedure, based on film dosimetry techniques, to be applied to the 6 MV Novalis linear accelerator for IMRT of the Instituto Nacional de Neurología y Neurocirugía (INNN) in Mexico City. The procedure includes measurements of individual fluence maps for a limited number of fields and dose distributions in 3D using extended dose-range radiographic film. However, the film response to radiation might depend on depth, energy and field size, and therefore compromise the accuracy of measurements. In this work we present a study of the dependence of Kodak EDR2 film's response on the depth, field size and energy, compared with those of Kodak XV2 film. The first aim is to devise a fast and accurate method to determine the calibration curve of film (optical density vs. doses) commonly called a sensitometric curve. This was accomplished by using three types of irradiation techniques: Step-and-shoot, dynamic and static fields.

  18. Calibration facility for environment dosimetry instruments

    NASA Astrophysics Data System (ADS)

    Bercea, Sorin; Celarel, Aurelia; Cenusa, Constantin

    2013-12-01

    In the last ten years, the nuclear activities, as well as the major nuclear events (see Fukushima accident) had an increasing impact on the environment, merely by contamination with radioactive materials. The most conferment way to quickly identify the presence of some radioactive elements in the environment, is to measure the dose-equivalent rate H. In this situation, information concerning the values of H due only to the natural radiation background must exist. Usually, the values of H due to the natural radiation background, are very low (˜10-9 - 10-8 Sv/h). A correct measurement of H in this range involve a performing calibration of the measuring instruments in the measuring range corresponding to the natural radiation background lead to important problems due to the presence of the natural background itself the best way to overlap this difficulty is to set up the calibration stand in an area with very low natural radiation background. In Romania, we identified an area with such special conditions at 200 m dept, in a salt mine. This paper deals with the necessary requirements for such a calibration facility, as well as with the calibration stand itself. The paper includes also, a description of the calibration stand (and images) as well as the radiological and metrological parameters. This calibration facilities for environment dosimetry is one of the few laboratories in this field in Europe.

  19. Current personnel dosimetry practices at DOE facilities

    SciTech Connect

    Fix, J.J.

    1981-05-01

    Only three parameters were included in the personnel occupational exposure records by all facilities. These are employee name, social security number, and whole body dose. Approximate percentages of some other parameters included in the record systems are sex (50%), birthdate (90%), occupation (26%), previous employer radiation exposure (74%), etc. Statistical analysis of the data for such parameters as sex versus dose distribution, age versus dose distribution, cumulative lifetime dose, etc. was apparently seldom done. Less than 50% of the facilities reported having formal documentation for either the dosimeter, records system, or reader. Slightly greater than 50% of facilities reported having routine procedures in place. These are considered maximum percentages because some respondents considered computer codes as formal documentation. The repository receives data from DOE facilities regarding the (a) distribution of annual whole body doses, (b) significant internal depositions, and (c) individual doses upon termination. It is expected that numerous differences exist in the dose data submitted by the different facilities. Areas of significant differences would likely include the determination of non-measurable doses, the methods used to determine previous employer radiation dose, the methods of determining cumulative radiation dose, and assessment of internal doses. Undoubtedly, the accuracy of the different dosimetry systems, especially at low doses, is very important to the credibility of data summaries (e.g., man-rem) provided by the repository.

  20. Laser microbeam CT scanning of dosimetry gels

    NASA Astrophysics Data System (ADS)

    Maryanski, Marek J.; Ranade, Manisha K.

    2001-06-01

    A novel design of an optical tomographic scanner is described that can be used for 3D mapping of optical attenuation coefficient within translucent cylindrical objects with spatial resolution on the order of 100 microns. Our scanner design utilizes the cylindrical geometry of the imaged object to obtain the desired paths of the scanning light rays. A rotating mirror and a photodetector are placed at two opposite foci of the translucent cylinder that acts as a cylindrical lens. A He-Ne laser beam passes first through a focusing lens and then is reflected by the rotating mirror, so as to scan the interior of the cylinder with focused and parallel paraxial rays that are subsequently collected by the photodetector to produce the projection data, as the cylinder rotates in small angle increments between projections. Filtered backprojection is then used to reconstruct planar distributions of optical attenuation coefficient in the cylinder. Multiplanar scans are used to obtain a complete 3D tomographic reconstruction. Among other applications, the scanner can be used in radiation therapy dosimetry and quality assurance for mapping 3D radiation dose distributions in various types of tissue-equivalent gel phantoms that change their optical attenuation coefficients in proportion to the absorbed radiation dose.

  1. Biological dosimetry in Russian and Italian astronauts

    NASA Astrophysics Data System (ADS)

    Greco, O.; Durante, M.; Gialanella, G.; Grossi, G.; Pugliese, M.; Scampoli, P.; Snigiryova, G.; Obe, G.

    Large uncertainties are associated with estimates of equivalent dose and cancer risk for crews of longterm space missions. Biological dosimetry in astronauts is emerging as a useful technique to compare predictions based on quality factors and risk coefficients with actual measurements of biological damage in-flight. In the present study, chromosomal aberrations were analyzed in one Italian and eight Russian cosmonauts following missions of different duration on the MIR and the international space station (ISS). We used the technique of fluorescence in situ hybridization (FISH) to visualize translocations in chromosomes 1 and 2. In some cases, an increase in chromosome damage was observed after flight, but no correlation could be found between chromosome damage and flight history, in terms of number of flights at the time of sampling, duration in space and extra-vehicular activity. Blood samples from one of the cosmonauts were exposed in vitro to 6 MeV X-rays both before and after the flight. An enhancement in radiosensitivity induced by the spaceflight was observed.

  2. 3D dosimetry by optical-CT scanning

    PubMed Central

    Oldham, Mark

    2007-01-01

    The need for an accurate, practical, low-cost 3D dosimetry system is becoming ever more critical as modern dose delivery techniques increase in complexity and sophistication. A recent report from the Radiological Physics Center (RPC) (1), revealed that 38% of institutions failed the head-and-neck IMRT phantom credentialing test at the first attempt. This was despite generous passing criteria (within 7% dose-difference or 4mm distance-to-agreement) evaluated at a half-dozen points and a single axial plane. The question that arises from this disturbing finding is – what percentage of institutions would have failed if a comprehensive 3D measurement had been feasible, rather than measurements restricted to the central film-plane and TLD points? This question can only be adequately answered by a comprehensive 3D-dosimetry system, which presents a compelling argument for its development as a clinically viable low cost dosimetry solution. Optical-CT dosimetry is perhaps the closest system to providing such a comprehensive solution. In this article, we review the origins and recent developments of optical-CT dosimetry systems. The principle focus is on first generation systems known to have highest accuracy but longer scan times. PMID:17460781

  3. Student Perceptions of an Online Medical Dosimetry Program

    SciTech Connect

    Lenards, Nishele

    2011-07-01

    The University of Wisconsin-La Crosse offers the first online medical dosimetry program in the nation. There is no data to research a program of this type. This research consisted of the evaluation of other distance education programs including health profession programs in addition to face-to-face medical dosimetry programs. There was a need to collect and analyze student perceptions of online learning in medical dosimetry. This research provided a guide for future implementation by other programs as well as validated the University of Wisconsin-La Crosse program. Methodology used consisted of an electronic survey sent to all previous and currently enrolled students in the University of Wisconsin-La Crosse medical dosimetry program. The survey was both quantitative and qualitative in demonstrating attitudinal perceptions of students in the program. Quantitative data was collected and analyzed using a 5-point Likert scale. Qualitative data was gathered based on the open-ended responses and the identifying themes from the responses. The results demonstrated an overall satisfaction with this program, the instructor, and the online courses. Students felt a sense of belonging to the courses and the program. Considering that a majority of the students had never taken an online course previously, the students felt there were no technology issues. Future research should include an evaluation of board exam statistics for students enrolled in the online and face-to-face medical dosimetry programs.

  4. Implementation of IMRT and VMAT using Delta4 phantom and portal dosimetry as dosimetry verification tools

    NASA Astrophysics Data System (ADS)

    Daci, Lulzime; Malkaj, Partizan

    2016-03-01

    In this study we analyzed and compared the dose distribution of different IMRT and VMAT plans with the intent to provide pre-treatment quality assurance using two different tools. Materials/Methods: We have used the electronic portal imaging device EPID after calibration to dose and correction for the background offset signal and also the Delta4 phantom after en evaluation of angular sensitivity. The Delta4 phantom has a two-dimensional array with ionization chambers. We analyzed three plans for each anatomical site calculated by Eclipse treatment planning system. The measurements were analyzed using γ-evaluation method with passing criteria 3% absolute dose and 3 mm distance to agreement (DTA). For all the plans the range of score has been from 97% to 99% for gantry fixed at 0° while for rotational planes there was a slightly decreased pass rates and above 95%. Point measurement with a ionization chamber were done in additional to see the accuracy of portal dosimetry and to evaluate the Delta4 device to various dose rates. Conclusions: Both Delt4 and Portal dosimetry shows good results between the measured and calculated doses. While Delta4 is more accurate in measurements EPID is more time efficient. We have decided to use both methods in the first steps of IMRT and VMAT implementation and later on to decide which of the tools to use depending on the complexity of plans, how much accurate we want to be and the time we have on the machine.

  5. Macroscopic to Microscopic Scales of Particulate Dosimetry: From Source to Fate in the Body

    EPA Science Inventory

    Additional perspective with regards to particle dosimetry is achieved by exploring dosimetry across a range of scales from macroscopic to microscopic in scope. Typically, one thinks of dosimetry as what happens when a particle is inhaled, where it is deposited, and how it is clea...

  6. Influence of preservation temperature on the characteristics of anaerobic ammonium oxidation (anammox) granular sludge.

    PubMed

    Xing, Bao-Shan; Guo, Qiong; Jiang, Xiao-Yan; Chen, Qian-Qian; Li, Peng; Ni, Wei-Min; Jin, Ren-Cun

    2016-05-01

    Preserving active anaerobic ammonium oxidation (anammox) biomass is a potential method for securing sufficient seeding biomass for the rapid start-up of full-scale anammox processes. In this study, anammox granules were cultured in an upflow anaerobic sludge blanket (UASB) reactor (R0), and then the enriched anammox granules were preserved at 35, 20, 4, and -30 °C. The subsequent reactivation characteristics of the granules were evaluated in four UASB reactors (denoted R1, R2, R3, and R4, respectively) to investigate the effect of preservation temperature on the characteristics of anammox granules and their reactivation performance. The results demonstrated that 4 °C was the optimal preservation temperature for maintaining the biomass, activity, settleability, and integrity of the anammox granules and their cellular structures. During the preservation period, a first-order exponential decay model may be used to simulate the decay of anammox biomass and activity. The protein-to-polysaccharide ratio in the extracellular polymeric substances and the heme c content could not effectively indicate the changes in settleability and activity of the anammox granules, respectively, and a loss of bioactivity was positively associated with the degree of anaerobic ammonium-oxidizing bacteria cell lysis. After 42 days of storage, the anammox granules preserved at 4 °C (R3) exhibited a better recovery performance than those preserved at 20 °C (R2), -30 °C (R4), and 35 °C (R1). The comprehensive comparison indicated that 4 °C is the optimal storage temperature for anammox granular sludge because it promotes improved maintenance and recovery performance properties. PMID:26780355

  7. The non-uniformity of fossil preservation.

    PubMed

    Holland, Steven M

    2016-07-19

    The fossil record provides the primary source of data for calibrating the origin of clades. Although minimum ages of clades are given by the oldest preserved fossil, these underestimate the true age, which must be bracketed by probabilistic methods based on multiple fossil occurrences. Although most of these methods assume uniform preservation rates, this assumption is unsupported over geological timescales. On geologically long timescales (more than 10 Myr), the origin and cessation of sedimentary basins, and long-term variations in tectonic subsidence, eustatic sea level and sedimentation rate control the availability of depositional facies that preserve the environments in which species lived. The loss of doomed sediments, those with a low probability of preservation, imparts a secular trend to fossil preservation. As a result, the fossil record is spatially and temporally non-uniform. Models of fossil preservation should reflect this non-uniformity by using empirical estimates of fossil preservation that are spatially and temporally partitioned, or by using indirect proxies of fossil preservation. Geologically, realistic models of preservation will provide substantially more reliable estimates of the origination of clades.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. PMID:27325828

  8. Reevaluation of an individual's radiation exposure at NTS in 1963-64. [FRAN reactor

    SciTech Connect

    Myers, D.S.

    1983-02-25

    The FRAN prompt burst reactor began operation at NTS on November 1, 1962 and continued in use until April 1965. From January 2, 1963 to August 12, 1964, an individual periodically performed maintenance and troubleshooting functions on various components of the FRAN reactor system. In June, 1980, the individual requested a review of the radiation dose that he received from his involvement with the FRAN reactor. An evaluation of the individual's radiation dose associated with the FRAN reactor operation was performed. This report details the reevaluation of the individual's estimated radiation dose from the FRAN reactor assembly, as derived from computer calculations, GODIVA-IV measurements, personnel dosimetry results, and a reconstruction of work scenarios.

  9. Nuclear reactor

    DOEpatents

    Pennell, William E.; Rowan, William J.

    1977-01-01

    A nuclear reactor in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assmblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters and the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters and the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance.

  10. The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN

    NASA Astrophysics Data System (ADS)

    Wagemans, Jan; Malambu, Edouard; Borms, Luc; Fiorito, Luca

    2016-02-01

    The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma) irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f) prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f) prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards.

  11. Nuclear Reactors. Revised.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: How Reactors Work; Reactor Design; Research, Teaching, and Materials Testing; Reactors (Research, Teaching and Materials); Production Reactors; Reactors for Electric Power…

  12. ELECTRONUCLEAR REACTOR

    DOEpatents

    Lawrence, E.O.; McMillan, E.M.; Alvarez, L.W.

    1960-04-19

    An electronuclear reactor is described in which a very high-energy particle accelerator is employed with appropriate target structure to produce an artificially produced material in commercial quantities by nuclear transformations. The principal novelty resides in the combination of an accelerator with a target for converting the accelerator beam to copious quantities of low-energy neutrons for absorption in a lattice of fertile material and moderator. The fertile material of the lattice is converted by neutron absorption reactions to an artificially produced material, e.g., plutonium, where depleted uranium is utilized as the fertile material.

  13. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashley, J.W.

    1958-12-16

    A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.

  14. REACTOR COMPONETN

    DOEpatents

    Creutz, E.C.

    1959-10-27

    A reactor fuel element comprised of a slug of fissionable material disposed in a sheath of corrosion resistantmaterial is described. The sheath is in the form of a tubular container closed at one end and is in tight-fitting engagement with the peripheral sunface of the slug. An inner cap is insented into the open end of the sheath against the slug, which end is then bent around the inner cap and welded thereto. An outer cap is then welded around its peripheny to the bent portion of the container.

  15. Personnel neutron dosimetry improvements at Los Alamos National Laboratory

    SciTech Connect

    Harvey, W.F.; Hoffman, J.M.; Brake, R.J.; Bliss, J.L.

    1992-08-01

    We are investigating methods to improve neutron dosimetry at Los Alamos National Laboratory (LANL) using the track etch dosemeter CR-39. Specifically, use of CR-39 for dynamic environments, typically encountered at the LANL Plutonium Facility, is shown to be a superior method for personnel neutron dosimetry when compared to the currently used TLD system. The results of glovebox experiments simulating hydrogenous shielding used at LANL, temporal variations of neutron correction factors used at the Plutonium Facility, trial implementation at this facility and preliminary neutron spectroscopy measurements are presented and compared to reference dosimetry measurements. Our results confirm that use of a TLD system in a facility implementing hydrogenous shielding requires frequent field re-calibration. When such correction factors are not re-evaluated frequently, or are maintained at pre-shielding levels, significant (i.e., 2- to 3-fold) overestimation of the neutron dose equivalent can occur.

  16. Personnel neutron dosimetry improvements at Los Alamos National Laboratory

    SciTech Connect

    Harvey, W.F.; Hoffman, J.M.; Brake, R.J. ); Bliss, J.L. . Dept. of Nuclear Engineering)

    1992-01-01

    We are investigating methods to improve neutron dosimetry at Los Alamos National Laboratory (LANL) using the track etch dosemeter CR-39. Specifically, use of CR-39 for dynamic environments, typically encountered at the LANL Plutonium Facility, is shown to be a superior method for personnel neutron dosimetry when compared to the currently used TLD system. The results of glovebox experiments simulating hydrogenous shielding used at LANL, temporal variations of neutron correction factors used at the Plutonium Facility, trial implementation at this facility and preliminary neutron spectroscopy measurements are presented and compared to reference dosimetry measurements. Our results confirm that use of a TLD system in a facility implementing hydrogenous shielding requires frequent field re-calibration. When such correction factors are not re-evaluated frequently, or are maintained at pre-shielding levels, significant (i.e., 2- to 3-fold) overestimation of the neutron dose equivalent can occur.

  17. [Electronic portal image device dosimetry for volumetric modulated arc therapy].

    PubMed

    Tatsumi, Daisaku; Nakada, Ryosei; Ienaga, Akinori; Yomoda, Akane; Inoue, Makoto; Ichida, Takao; Hosono, Masako

    2013-01-01

    Recently electronic portal image devices (EPIDs) have been widely used for quality assurance and dose verification. However there are no reports describing EPID dosimetry for Elekta volumetric modulated arc therapy (VMAT). We have investigated EPID dosimetry during VMAT delivery using a commercial software EPIDose with an Elekta Synergy linac. Dose rate dependence and the linac system sag during gantry rotation were measured. Gamma indices were calculated between measured doses using an EPID and calculation made by a treatment planning system for prostate VMAT test plans. The results were also compared to gamma indices using films and a two-dimensional detector array, MapCHECK2. The pass rates of the gamma analysis with a criterion of 3% and 2 mm for the three methods were over 96% with good consistency. Our results have showed that EPID dosimetry is feasible for Elekta VMAT. PMID:23358333

  18. Report from the dosimetry working group to CEDR project management

    SciTech Connect

    Fix, J J

    1994-08-01

    On August 2, 1989, Admiral Watkins, Secretary of the US Department of Energy (DOE), presented a four-point program designed to enhance the DOE epidemiology program. One part of this program was the establishment of a Comprehensive Epidemiologic Data Resource (CEDR) to facilitate independent research to validate and supplement DOE research on human health effects. A Dosimetry Working Group was formed during May 1991 to evaluate radiation dose variables and associated documentation that would be most useful to researchers for retrospective and prospective studies. The Working Group consisted of thirteen individuals with expertise and experience in health physics, epidemiology, dosimetry, computing, and industrial hygiene. A final report was delivered to CEDR Project Management during February 1992. The report contains a number of major recommendations concerning collection, interpretation, and documentation of dosimetry data to maximize their usefulness to researchers using CEDR for examining possible health effects of occupational exposure to ionizing radiation.

  19. Data compression preserving statistical independence

    NASA Technical Reports Server (NTRS)

    Morduch, G. E.; Rice, W. M.

    1973-01-01

    The purpose of this study was to determine the optimum points of evaluation of data compressed by means of polynomial smoothing. It is shown that a set y of m statistically independent observations Y(t sub 1), Y(t sub 2), ... Y(t sub m) of a quantity X(t), which can be described by a (n-1)th degree polynomial in time, may be represented by a set Z of n statistically independent compressed observations Z (tau sub 1), Z (tau sub 2),...Z (tau sub n), such that The compressed set Z has the same information content as the observed set Y. the times tau sub 1, tau sub 2,.. tau sub n are the zeros of an nth degree polynomial P sub n, to whose definition and properties the bulk of this report is devoted. The polynomials P sub n are defined as functions of the observation times t sub 1, t sub 2,.. t sub n, and it is interesting to note that if the observation times are continuously distributed the polynomials P sub n degenerate to legendre polynomials. The proposed data compression scheme is a little more complex than those usually employed, but has the advantage of preserving all the information content of the original observations.

  20. Optical-CT gel-dosimetry I: basic investigations.

    PubMed

    Oldham, Mark; Siewerdsen, Jeffrey H; Kumar, Sai; Wong, John; Jaffray, David A

    2003-04-01

    Comprehensive verification of the intricate dose distributions associated with advanced radiation treatments is now an immediate and substantial problem. The task is challenging using traditional dosimeters because of restrictions to point measurements (ion chambers, diodes, TLD, etc.) or planar measurements (film). In essence, rapid advances in the technology to deliver radiation treatments have not been paralleled by corresponding advances in the ability to verify these treatments. A potential solution has emerged in the form of water equivalent three dimensional (3D) gel-dosimetry. In this paper we present basic characterization and performance studies of a prototype optical-CT scanning system developed in our laboratory. An analysis of the potential role or scope of gel dosimetry, in relation to other dosimeters, and to verification across the spectrum of therapeutic techniques is also given. The characterization studies enabled the determination of nominal operating conditions for optical-CT scanning. "Finger" phantoms are introduced as a powerful and flexible tool for the investigation of optical-CT performance. The modulation-transfer function (MTF) of the system is determined to be better than 10% out to 1 mm(-1), confirming sub-mm imaging ability. System performance is demonstrated by the acquisition of a 1 x 1 x 1 mm3 dataset through the dose distribution delivered by an x-ray lens that focuses x rays in the energy range 40-80 KeV. This 3D measurement would be extremely difficult to achieve with other dosimetry techniques and highlights some of the strengths of gel dosimetry. Finally, an optical Monte Carlo model is introduced and shown to have potential to model light transport through gel-dosimetry systems, and to provide a tool for the study and optimization of optical-CT gel dosimetry. The model utilizes Mie scattering theory and requires knowledge of the variation of the particle size distribution with dose. The latter was determined here using the

  1. Collection and analysis of Health Physics Research Reactor operational and use data

    SciTech Connect

    Sims, C.S.

    1985-04-01

    The Health Physics Research Reactor (HPRR) is the primary research tool at the Dosimetry Applications Research (DOSAR) Facility. In addition to use by the DOSAR staff, the HPRR is used by a wide segment of the scientific community for a variety of experimental purposes. This report is a compilation and analysis of data concerning HPRR uses, users, and operations through the end of FY 1984. 17 refs., 12 tabs.,

  2. Summary and analsysis of the 1986 ORNL personnel dosimetry intercomparison study

    SciTech Connect

    Swaja, R.E.; Weng, P.S.; Sims, C.S.; Yeh, S.H.

    1987-04-01

    The Twelfth Personnel Dosimetry Intercomparison Study was conducted at the Oak Ridge National Laboratory (ORNL) during April 14 to 17, 1986. Objectives of this study were to determine neutron dosimeter performance characteristics at neutron dose equivalent levels near the minimum specified for accreditation testing programs and to provide several radiation fields different from those that have been considered in prior ORNL intercomparisons. Dosimeter badges from 49 participating organizations were mounted on Lucite block phantoms and exposed to six mixed-radiation fields (five using the Health Physics Research Reactor and one using a PuBe source) with neutron dose equivalents of about 1.5 mSv and gamma dose equivalents between 0.04 and 5.37 mSv. Results of this study indicated that participants had no difficulty obtaining measurable indication of neutron exposure at dose equivalent levels of about 1.5 mSv. Average neutron results for all dosimeter types were within approximately 60% of reference values with hard spectra being more accurately measured than soft spectra. Considering all irradiations, albedo and direct interaction TLD systems provided about the same performance characteristics. With regard to precision, about 58% of the reported neutron results had single standard deviations within 10% at the means which indicates that precision was not a problem relative to accuracy for over half of the participants. Average gamma results varied from 0.98 to 2.22 times reference values for all exposures with TLD systems being more accurate than film. Some participants, especially those using film, had difficulty obtaining measurable indication of gamma exposures at dose equivalent levels lower than 0.09 mSv. About 69% of all neutron results and 77% of all gamma results met regulatory standards for measurement accuracy and approximately 65% of all neutron data satisfied national dosimetry accreditation criteria for accuracy plus precision. 18 refs., 1 fig., 30 tabs.

  3. Hanford Internal Dosimetry Program Manual, PNL-MA-552

    SciTech Connect

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2009-09-24

    This manual is a guide to the services provided by the Hanford Internal Dosimetry Program (IDP), which is operated by the Pacific Northwest National Laboratory.( ) for the U.S. Department of Energy Richland Operations Office, Office of River Protection and their Hanford Site contractors. The manual describes the roles of and relationships between the IDP and the radiation protection programs of the Hanford Site contractors. Recommendations and guidance are also provided for consideration in implementing bioassay monitoring and internal dosimetry elements of radiation protection programs.

  4. Personal nuclear accident dosimetry at Sandia National Laboratories

    SciTech Connect

    Ward, D.C.; Mohagheghi, A.H.; Burrows, R.

    1996-09-01

    DOE installations possessing sufficient quantities of fissile material to potentially constitute a critical mass, such that the excessive exposure of personnel to radiation from a nuclear accident is possible, are required to provide nuclear accident dosimetry services. This document describes the personal nuclear accident dosimeter (PNAD) used by SNL and prescribes methodologies to initially screen, and to process PNAD results. In addition, this report describes PNAD dosimetry results obtained during the Nuclear Accident Dosimeter Intercomparison Study (NAD23), held during 12-16 June 1995, at Los Alamos National Laboratories. Biases for reported neutron doses ranged from -6% to +36% with an average bias of +12%.

  5. Current state of the art brachytherapy treatment planning dosimetry algorithms

    PubMed Central

    Pantelis, E; Karaiskos, P

    2014-01-01

    Following literature contributions delineating the deficiencies introduced by the approximations of conventional brachytherapy dosimetry, different model-based dosimetry algorithms have been incorporated into commercial systems for 192Ir brachytherapy treatment planning. The calculation settings of these algorithms are pre-configured according to criteria established by their developers for optimizing computation speed vs accuracy. Their clinical use is hence straightforward. A basic understanding of these algorithms and their limitations is essential, however, for commissioning; detecting differences from conventional algorithms; explaining their origin; assessing their impact; and maintaining global uniformity of clinical practice. PMID:25027247

  6. Third conference on radiation protection and dosimetry. Program and abstracts

    SciTech Connect

    Not Available

    1991-12-31

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations.

  7. Overview of the Hanford Environmental Thermoluminescent Dosimetry Program

    SciTech Connect

    Endres, A.W.; Peters, J.D.

    1993-01-01

    The Hanford Environmental Thermoluminescent Dosimetry Program has been in operation for 30 years. The program`s main goal is to report ambient penetrating radiation levels at specified locations on the Hanford Site and at nearby and distant communities. Dosimeter processing, dose calculation, and dose-reporting functions are provided by the Instrumentation and External Dosimetry section of the Pacific Northwest Laboratory`s Health Physics Department. This presentation provides a brief historical overview of dosimeter designs, processing procedures, dose-calculation methodologies, calibration techniques, and quality control.

  8. Overview of the Hanford Environmental Thermoluminescent Dosimetry Program

    SciTech Connect

    Endres, A.W.; Peters, J.D.

    1993-01-01

    The Hanford Environmental Thermoluminescent Dosimetry Program has been in operation for 30 years. The program's main goal is to report ambient penetrating radiation levels at specified locations on the Hanford Site and at nearby and distant communities. Dosimeter processing, dose calculation, and dose-reporting functions are provided by the Instrumentation and External Dosimetry section of the Pacific Northwest Laboratory's Health Physics Department. This presentation provides a brief historical overview of dosimeter designs, processing procedures, dose-calculation methodologies, calibration techniques, and quality control.

  9. A thermoluminescence dosimetry system for personal monitoring in Ireland.

    PubMed

    Currivan, L; Spain, D; Donnelly, H; Colgan, P A

    2001-01-01

    In 1993 the decision was taken to replace film badges with thermoluminescence dosemeters (TLDs) as the main form of dosemeter for both whole-body and extremity monitoring at the Dosimetry Service of the Radiological Protection Institute of Ireland (RPII) in Dublin. A review of commercially available automatic TLD systems was carried out to identify the system which best met the RPII's requirements. This paper describes the dosimetry system used, and, in addition, discusses the problems encountered and how these were addressed. PMID:11586731

  10. The use of a portable electronic device in accident dosimetry.

    PubMed

    Beerten, Koen; Vanhavere, Filip

    2008-01-01

    The use of a portable electronic device in accident dosimetry has been investigated. The thermoluminescence properties of a surface-mount alumina-rich ceramic resonator from a USB flash drive were investigated. The following characteristics were verified: the absence of a zero-dose signal, gamma dose response, dose recycling behaviour, fading and optical bleaching. Finally, this component has been successfully used to determine a simulated accident dose (1 d following the irradiation event). It is concluded that it should be possible to perform rapid and reliable accident dose assessments with such components using conventional thermoluminescence dosimetry equipment. PMID:18703583

  11. Third conference on radiation protection and dosimetry. Program and abstracts

    SciTech Connect

    1991-01-01

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations.

  12. Subwavelength films for standoff radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Alvine, Kyle J.; Bernacki, Bruce E.; Bennett, Wendy D.; Schemer-Kohrn, Alan; Suter, Jonathan D.

    2015-05-01

    We present optical subwavelength nanostructure architecture suitable for standoff radiation dosimetry with remote optical readout in the visible or infrared spectral regions. To achieve this, films of subwavelength structures are fabricated over several square inches via the creation of a 2D non-close packed (NCP) array template of radiationsensitive polymeric nanoparticles, followed by magnetron sputtering of a metallic coating to form a 2D array of separated hemispherical nanoscale metallic shells. The nanoshells are highly reflective at resonance in the visible or infrared depending on design. These structures and their behavior are based on the open ring resonator (ORR) architecture and have their analog in resonant inductive-capacitive (LC) circuits, which display a resonance wavelength that is inversely proportional to the square root of the product of the inductance and capacitance. Therefore, any modification of the nanostructure material properties due to radiation alters the inductive or capacitive behavior of the subwavelength features, which in turn changes their optical properties resulting in a shift in the optical resonance. This shift in resonance may be remotely interrogated actively using either laser illumination or passively by hyperspectral or multispectral sensing with broadband illumination. These structures may be designed to be either anisotropic or isotropic, which can also offer polarization-sensitive interrogation. We present experimental measurements of a radiation induced shift in the optical resonance of a subwavelength film after exposure to an absorbed dose of gamma radiation from 2 Mrad up to 62 Mrad demonstrating the effect. Interestingly the resonance shift is non-monotonic for this material system and possible radiation damage mechanisms to the nanoparticles are discussed.

  13. How flatbed scanners upset accurate film dosimetry.

    PubMed

    van Battum, L J; Huizenga, H; Verdaasdonk, R M; Heukelom, S

    2016-01-21

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner's transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner's optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film. PMID:26689962

  14. Studies on the Techa river populations: dosimetry

    SciTech Connect

    Degteva, M O.; Shagina, N B.; Tolstykh, E I.; Vorobiova, M I.; Napier, Bruce A. ); Anspaugh, L R.

    2001-12-01

    The combined dosimetric and epidemiologic study of the Extended Techa River Cohort (ETRC) is deemed important, as this cohort is one of a very few that can be studied to examine the question of whether there is a dose rate- reduction factor in the induction of stochastic effects by radiation. This question represents a central issue in radiation protection of workers and the public. The overall scientific hypothesis to be tested by the combined dosimetric and epidemiologic study of the ETRC is whether radiation dose delivered at low dose rates is equally as effective (in causing cancer and other stochastic effects) as the same dose delivered at high dose rates. Russian and United States scientists have been involved in collaborative research programs under the sponsorship of the U.S.-Russian Joint Coordinating Committee on Radiation Effects Research (JCCRER) since 1995. JCCRER Project 1.1 was a comprehensive program to develop improvements in the dosimetry system for the population exposed as a result of the releases of the Mayak Production Association (Mayak PA) by providing more in-depth analysis of existing data, further search of existing records for useful data, model development and testing, evaluation of uncertainties, verification of procedures, and validation studies. The project was extended in 2000 with the additional aims of further study of uncertainty of the doses with the goal of reducing uncertainty in the final dose estimates, and validation of the dose estimates, particularly the revised estimates of external dose. Russian and European scientists are also collaborating in this area. Current work is supported by the EC-Framework Programme/Research and Training Programme in the Field of Nuclear Energy. The partners include the Urals Research Center for Radiation Medicine (URCRM) and the GSF - National Research Center for Environment and Health. The purpose is to support companion epidemiologic studies of radiogenic leukemia and solid cancers.

  15. Beta-dosimetry studies at LLNL

    SciTech Connect

    Hankins, D.E.

    1983-01-01

    This paper summarizes three beta-dosimetry studies made recently at the Lawrence Livermore National Laboratory. The first study was to determine the beta-gamma exposure rates at the Los Alamos Godiva IV Critical Assembly. The beta spectra from the assembly were evaluated using absorption curves and the beta-gamma dose-rate ratios were determined at various distances from the assembly. A comparison was made of the doses determined using two types of TLD personnel dosimeters and a film badge. The readings of an Eberline RO-7 instrument and the dose rates determined by TLDs were compared. Shielding provided by various metals, gloves, and clothing were measured. The second study was to determine the beta energy response of the Eberline RO-7 instrument based on measurements made with the PTB beta sources. This study required additional calibration points for the PTB sources which were made using extrapolation chamber measurements. The third study resulted in two techniques to determine the beta energy (E/sub max/) from the readings of this-window portable survey instruments. Both techniques are based on the readings obtained using aluminium filters. One technique is for field application, requires one filter, and provides a quick estimate of the beta energy in three energy groups: < 0.5 MeV, 0.5 MeV to 1.5 MeV and > 1.5 MeV. The second technique is more complex requiring measurements with two or three filters, but gives the beta energy and the approximate shape of the beta spectrum. 9 references, 6 figures.

  16. Code for INternal DosimetrY

    Energy Science and Technology Software Center (ESTSC)

    2002-05-30

    The Code for Internal Dosimetry Software Package (CINDY1.4) was developed to assist in the interpretation of bioassay data, provide bioassay projections, and evaluate committed and calendar-year doses from intake or bioassay measurement data. CINDY1.4 addresses the U.S. Department of Energy's (DOE) Order 5480.11 and the U.S. Nuclear Regulatory Commission's (NRC) 10 CFR 20 by providing the capabilities to calculate organ dose equivalents and effective dose equivalents using the International Commission on radiological Protection (ICRP) 30more » approach. Biokinetic models, which allow user-modified parameter values, are used to estimate intakes based on bioassay data using weighted and unweighted least-squares regression between measured and expected bioassay values, to estimate organ burdens as well as urinary and fecal excretion rates from a given intake, and to determine organ doses for annual, 50-year, calendar year, or any other time point. Intakes to be considered may be either acute or chronic, and may consist of many combinations of intake routes, radionuclides, and physical and chemical forms. A four-compartment input model (with user defined parameters) is used for wounds and absorption. Direct injection can be simulated as direct absorption. Appropriate metabolic models for each radionuclide are selected by the user from menus. Metabolic models available in CINDY1.4 are the ICRP 30 lung model, ICRP 30 gastrointestinal model, ICRP 30 general systematic model, Johnson and Dunford tritium model, ICRP 30 tritium model, including the Johnson HT lung model, Johnson alkaline earth model, ICRP 54 iodine model, tellurium-iodine model, Jones excretion model, Durbin excretion model, ICRP 54 excretion models, Wrenn-Lipsztein uranium model, Fisher Modified Wrenn-Lipsztein uranium model, and the ICRP 30 carbon model. For Windows 95 or Windows NT an alternate CD is required.« less

  17. Subwavelength films for standoff radiation dosimetry

    SciTech Connect

    Alvine, Kyle J.; Bernacki, Bruce E.; Bennett, Wendy D.; Schemer-Kohrn, Alan L.; Suter, Jonathan D.

    2015-05-22

    We present optical subwavelength nanostructure architecture suitable for standoff radiation dosimetry with remote optical readout in the visible or infrared spectral regions. To achieve this, films of subwavelength structures are fabricated over several square inches via the creation of a 2D non-close packed (NCP) array template of radiation-sensitive polymeric nanoparticles, followed by magnetron sputtering of a metallic coating to form a 2D array of separated hemispherical nanoscale metallic shells. The nanoshells are highly reflective at resonance in the visible or infrared depending on design. These structures and their behavior are based on the open ring resonator (ORR) architecture and have their analog in resonant inductive-capacitive (LC) circuits, which display a resonance wavelength that is inversely proportional to the square root of the product of the inductance and capacitance. Therefore, any modification of the nanostructure material properties due to radiation alters the inductive or capacitive behavior of the subwavelength features, which in turn changes their optical properties resulting in a shift in the optical resonance. This shift in resonance may be remotely interrogated actively using either laser illumination or passively by hyperspectral or multispectral sensing with broadband illumination. These structures may be designed to be either anisotropic or isotropic, which can also offer polarization-sensitive interrogation. We present experimental measurements of a radiation induced shift in the optical resonance of a subwavelength film after exposure to an absorbed dose of gamma radiation from 2 Mrad up to 62 Mrad demonstrating the effect. Interestingly the resonance shift is non-monotonic for this material system and possible radiation damage mechanisms to the nanoparticles are discussed.

  18. How flatbed scanners upset accurate film dosimetry

    NASA Astrophysics Data System (ADS)

    van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  19. Hybrid adsorptive membrane reactor

    DOEpatents

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  20. Hybrid adsorptive membrane reactor

    NASA Technical Reports Server (NTRS)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.