Science.gov

Sample records for reactor target rod

  1. Modeling the behavior of a light-water production reactor target rod

    SciTech Connect

    Sherwood, D.J.

    1992-03-01

    Pacific Northwest Laboratory has been conducting a series of in-reactor experiments in the Idaho National Engineering Laboratory (INEL) Advanced Test Reactor (ATR) to determine the amount of tritium released by permeation from a target rod under neutron irradiation. The model discussed in this report was developed from first principles to model the behavior of the first target rod irradiated in the ATR. The model can be used to determine predictive relationships for the amount of tritium that permeates through the target rod cladding during irradiation. The model consists of terms and equations for tritium production, gettering, partial pressure, and permeation, all of which are described in this report. The model addressed only the condition of steady state and features only a single adjustable parameter. The target rod design for producing tritium in a light-water reactor was tested first in the WC-1 in-reactor experiment. During irradiation, tritium is generated in the target rod within the ceramic lithium target material. The target rod has been engineered to limit the release of tritium to the reactor coolant during normal operations. The engineered features are a nickel-plated Zircaloy-4 getter and a barrier coating on the cladding surfaces. The ceramic target is wrapped with the getter material and the resulting ``pencils`` are inserted into the barrier coated cladding. These features of the rod are described in the report, along with the release of tritium from the ceramic target. The steady-state model could be useful for the design procedure of target rod components.

  2. Modeling the behavior of a light-water production reactor target rod

    SciTech Connect

    Sherwood, D.J.

    1992-03-01

    Pacific Northwest Laboratory has been conducting a series of in-reactor experiments in the Idaho National Engineering Laboratory (INEL) Advanced Test Reactor (ATR) to determine the amount of tritium released by permeation from a target rod under neutron irradiation. The model discussed in this report was developed from first principles to model the behavior of the first target rod irradiated in the ATR. The model can be used to determine predictive relationships for the amount of tritium that permeates through the target rod cladding during irradiation. The model consists of terms and equations for tritium production, gettering, partial pressure, and permeation, all of which are described in this report. The model addressed only the condition of steady state and features only a single adjustable parameter. The target rod design for producing tritium in a light-water reactor was tested first in the WC-1 in-reactor experiment. During irradiation, tritium is generated in the target rod within the ceramic lithium target material. The target rod has been engineered to limit the release of tritium to the reactor coolant during normal operations. The engineered features are a nickel-plated Zircaloy-4 getter and a barrier coating on the cladding surfaces. The ceramic target is wrapped with the getter material and the resulting pencils'' are inserted into the barrier coated cladding. These features of the rod are described in the report, along with the release of tritium from the ceramic target. The steady-state model could be useful for the design procedure of target rod components.

  3. REACTOR CONTROL ROD OPERATING SYSTEM

    DOEpatents

    Miller, G.

    1961-12-12

    A nuclear reactor control rod mechanism is designed which mechanically moves the control rods into and out of the core under normal conditions but rapidly forces the control rods into the core by catapultic action in the event of an emergency. (AEC)

  4. Automatic safety rod for reactors

    DOEpatents

    Germer, John H.

    1988-01-01

    An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-core flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

  5. Reactor control rod timing system

    DOEpatents

    Wu, Peter T. K.

    1982-01-01

    A fluid driven jet-edge whistle timing system for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  6. NEUTRONIC REACTOR CONTROL ROD DRIVE APPARATUS

    DOEpatents

    Oakes, L.C.; Walker, C.S.

    1959-12-15

    ABS>A suspension mechanism between a vertically movable nuclear reactor control rod and a rod extension, which also provides information for the operator or an automatic control signal, is described. A spring connects the rod extension to a drive shift. The extension of the spring indicates whether (1) the rod is at rest on the reactor, (2) the rod and extension are suspended, or (3) the extension alone is suspended, the spring controlling a 3-position electrical switch.

  7. Automatic safety rod for reactors. [LMFBR

    DOEpatents

    Germer, J.H.

    1982-03-23

    An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

  8. Reactor control rod timing system. [LMFBR

    DOEpatents

    Wu, P.T.K.

    1980-03-18

    A fluid driven jet-edge whistle timing system is described for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  9. Control rod drive for reactor shutdown

    DOEpatents

    McKeehan, Ernest R.; Shawver, Bruce M.; Schiro, Donald J.; Taft, William E.

    1976-01-20

    A means for rapidly shutting down or scramming a nuclear reactor, such as a liquid metal-cooled fast breeder reactor, and serves as a backup to the primary shutdown system. The control rod drive consists basically of an in-core assembly, a drive shaft and seal assembly, and a control drive mechanism. The control rod is driven into the core region of the reactor by gravity and hydraulic pressure forces supplied by the reactor coolant, thus assuring that common mode failures will not interfere with or prohibit scramming the reactor when necessary.

  10. Control Rod Malfunction at the NRAD Reactor

    SciTech Connect

    Thomas L. Maddock

    2010-05-01

    The neutron Radiography Reactor (NRAD) is a training, research, and isotope (TRIGA) reactor located at the INL. The reactor is normally shut down by the insertion of three control rods that drop into the core when power is removed from electromagnets. During a routine shutdown, indicator lights on the console showed that one of the control rods was not inserted. It was initially thought that the indicator lights were in error because of a limit switch that was out of adjustment. Through further testing, it was determined that the control rod did not drop when the scram switch was initially pressed. The control rod anomaly led to a six month shutdown of the reactor and an in depth investigation of the reactor protective system. The investigation looked into: scram switch operation, console modifications, and control rod drive mechanisms. A number of latent issues were discovered and corrected during the investigation. The cause of the control rod malfunction was found to be a buildup of corrosion in the control rod drive mechanism. The investigation resulted in modifications to equipment, changes to both operation and maintenance procedures, and additional training. No reoccurrences of the problem have been observed since corrective actions were implemented.

  11. Control rod for a nuclear reactor

    DOEpatents

    Roman, Walter G.; Sutton, Jr., Harry G.

    1979-01-01

    A control rod assembly for a nuclear reactor is disclosed having a remotely disengageable coupling between the control rod and the control rod drive shaft. The coupling is actuated by first lowering then raising the drive shaft. The described motion causes axial repositioning of a pin in a grooved rotatable cylinder, each being attached to different parts of the drive shaft which are axially movable relative to each other. In one embodiment, the relative axial motion of the parts of the drive shaft is used either to couple or to uncouple the connection by forcing resilient members attached to the drive shaft into or out of shouldered engagement, respectively, with an indentation formed in the control rod.

  12. Magnetic switch for reactor control rod

    DOEpatents

    Germer, John H.

    1986-01-01

    A magnetic reed switch assembly for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electromagnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.

  13. Magnetic switch for reactor control rod. [LMFBR

    DOEpatents

    Germer, J.H.

    1982-09-30

    A magnetic reed switch assembly is described for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electro-magnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.

  14. Nuclear reactor fuel rod attachment system

    DOEpatents

    Not Available

    1980-09-17

    A reusable system is described for removably attaching a nuclear reactor fuel rod to a support member. A locking cap is secured to the fuel rod and a locking strip is fastened to the support member. The locking cap has two opposing fingers shaped to form a socket having a body portion. The locking strip has an extension shaped to rigidly attach to the socket's body portion. The locking cap's fingers are resiliently deflectable. For attachment, the locking cap is longitudinally pushed onto the locking strip causing the extension to temporarily deflect open the fingers to engage the socket's body portion. For removal, the process is reversed.

  15. HIGH STRENGTH CONTROL RODS FOR NEUTRONIC REACTORS

    DOEpatents

    Lustman, B.; Losco, E.F.; Cohen, I.

    1961-07-11

    Nuclear reactor control rods comprised of highly compressed and sintered finely divided metal alloy panticles and fine metal oxide panticles substantially uniformly distributed theretbrough are described. The metal alloy consists essentially of silver, indium, cadmium, tin, and aluminum, the amount of each being present in centain percentages by weight. The oxide particles are metal oxides of the metal alloy composition, the amount of oxygen being present in certain percentages by weight and all the oxygen present being substantially in the form of metal oxide. This control rod is characterized by its high strength and resistance to creep at elevated temperatures.

  16. Rodded shutdown system for a nuclear reactor

    DOEpatents

    Golden, Martin P.; Govi, Aldo R.

    1978-01-01

    A top mounted nuclear reactor diverse rodded shutdown system utilizing gas fed into a pressure bearing bellows region sealed at the upper extremity to an armature. The armature is attached to a neutron absorber assembly by a series of shafts and connecting means. The armature is held in an uppermost position by an electromagnet assembly or by pressurized gas in a second embodiment. Deenergizing the electromagnet assembly, or venting the pressurized gas, causes the armature to fall by the force of gravity, thereby lowering the attached absorber assembly into the reactor core.

  17. Nuclear reactor shutdown control rod assembly

    DOEpatents

    Bilibin, Konstantin

    1988-01-01

    A temperature responsive, self-actuated nuclear reactor shutdown control rod assembly 10. The upper end 18 of a lower drive line 17 fits within the lower end of an upper drive line 12. The lower end (not shown) of the lower drive line 17 is connected to a neutron absorber. During normal temperature conditions the lower drive line 17 is supported by detent means 22,26. When an overtemperature condition occurs thermal actuation means 34 urges ring 26 upwardly sufficiently to allow balls 22 to move radially outwardly thereby allowing lower drive line 17 to move downwardly toward the core of the nuclear reactor resulting in automatic reduction of the reactor powder.

  18. Nuclear reactor fuel rod attachment system

    DOEpatents

    Christiansen, David W.

    1982-01-01

    A reusable system for removably attaching a nuclear reactor fuel rod (12) to a support member (14). A locking cap (22) is secured to the fuel rod (12) and a locking strip (24) is fastened to the support member (14). The locking cap (22) has two opposing fingers (24a and 24b) shaped to form a socket having a body portion (26). The locking strip has an extension (36) shaped to rigidly attach to the socket's body portion (26). The locking cap's fingers are resiliently deflectable. For attachment, the locking cap (22) is longitudinally pushed onto the locking strip (24) causing the extension (36) to temporarily deflect open the fingers (24a and 24b) to engage the socket's body portion (26). For removal, the process is reversed.

  19. Nuclear reactor remote disconnect control rod coupling indicator

    DOEpatents

    Vuckovich, Michael

    1977-01-01

    A coupling indicator for use with nuclear reactor control rod assemblies which have remotely disengageable couplings between the control rod and the control rod drive shaft. The coupling indicator indicates whether the control rod and the control rod drive shaft are engaged or disengaged. A resistive network, utilizing magnetic reed switches, senses the position of the control rod drive mechanism lead screw and the control rod position indicating tube, and the relative position of these two elements with respect to each other is compared to determine whether the coupling is engaged or disengaged.

  20. Variable flow control for a nuclear reactor control rod

    DOEpatents

    Carleton, Richard D.; Bhattacharyya, Ajay

    1978-01-01

    A variable flow control for a control rod assembly of a nuclear reactor that depends on turbulent friction though an annulus. The annulus is formed by a piston attached to the control rod drive shaft and a housing or sleeve fitted to the enclosure housing the control rod. As the nuclear fuel is burned up and the need exists for increased reactivity, the control rods are withdrawn, which increases the length of the annulus and decreases the rate of coolant flow through the control rod assembly.

  1. CONTROL ROD FOR A NUCLEAR REACTOR AND METHOD OF PREPARATION

    DOEpatents

    Hausner, H.H.

    1958-12-30

    BS>An improved control rod is presented for a nuclear reactor. This control rod is comprised of a rare earth metal oxide or rare earth metal carbide such as gadolinium oxide or gadolinium carbide, uniformly distributed in a metal matrix having a low cross sectional area of absorption for thermal neutrons, such as aluminum, beryllium, and zirconium.

  2. Packed rod neutron shield for fast nuclear reactors

    DOEpatents

    Eck, John E.; Kasberg, Alvin H.

    1978-01-01

    A fast neutron nuclear reactor including a core and a plurality of vertically oriented neutron shield assemblies surrounding the core. Each assembly includes closely packed cylindrical rods within a polygonal metallic duct. The shield assemblies are less susceptible to thermal stresses and are less massive than solid shield assemblies, and are cooled by liquid coolant flow through interstices among the rods and duct.

  3. Pellet relocation testing results for four-foot-long tritium target rods

    SciTech Connect

    McKinnon, M.A.; Harding, N.E.

    1992-05-01

    This report discusses four-foot-long sections of a new production light-water reactor (NP-LWR) generic tritium target rod which were tested to determine if the length of the pellet pencils affects the amount of pellet material relocated during a burst and to characterize the burst. This testing was conducted as a follow-on study of cladding strength and pellet relocation behavior of short target rod specimens [11 cm (4-4 in.)]. The results of these tests could be used to support safety analyses of the effects of rod bursting and pellet relocation on the performance of a NP-LWR reactor core during a postulated loss-of-coolant accident (LOCA). All burst tests of the target rods were performed in air because air is more reactive than the air-steam or water environment that accompanies a LOCA.

  4. Subchannel thermal-hydraulic modeling of an APT tungsten target rod bundle

    SciTech Connect

    Hamm, L.L.; Shadday, M.A. Jr.

    1997-09-01

    The planned target for the Accelerator Production of Tritium (APT) neutron source consists of an array of tungsten rod bundles through which D{sub 2}O coolant flows axially. Here, a scoping analysis of flow through an APT target rod bundle was conducted to demonstrate that lateral cross-flows are important, and therefore subchannel modeling is necessary to accurately predict thermal-hydraulic behavior under boiling conditions. A local reactor assembly code, FLOWTRAN, was modified to model axial flow along the rod bundle as flow through three concentric heated annular passages.

  5. System for fuel rod removal from a reactor module

    DOEpatents

    Matchett, R.L.; Fodor, G.; Kikta, T.J.; Bacvinsicas, W.S.; Roof, D.R.; Nilsen, R.J.; Wilczynski, R.

    1988-07-28

    A robotic system for remote underwater withdrawal of the fuel rods from fuel modules of a light water breeder reactor includes a collet/grapple assembly for gripping and removing fuel rods in each module, which is positioned by use of a winch and a radial support means attached to a vertical support tube which is mounted over the fuel module. A programmable logic controller in conjunction with a microcomputer, provides control for the accurate positioning and pulling force of the rod grapple assembly. Closed circuit television cameras are provided which aid in operator interface with the robotic system. 7 figs.

  6. System for fuel rod removal from a reactor module

    DOEpatents

    Matchett, Richard L.; Roof, David R.; Kikta, Thomas J.; Wilczynski, Rosemarie; Nilsen, Roy J.; Bacvinskas, William S.; Fodor, George

    1990-01-01

    A robotic system for remote underwater withdrawal of the fuel rods from fuel modules of a light water breeder reactor includes a collet/grapple assembly for gripping and removing fuel rods in each module, which is positioned by use of a winch and a radial support means attached to a vertical support tube which is mounted over the fuel module. A programmable logic controller in conjunction with a microcomputer, provides control for the accurate positioning and pulling force of the rod grapple assembly. Closed circuit television cameras are provided which aid in operator interface with the robotic system.

  7. COAXIAL CONTROL ROD DRIVE MECHANISM FOR NEUTRONIC REACTORS

    DOEpatents

    Fox, R.J.; Oakes, L.C.

    1959-04-14

    A drive mechanism is presented for the control rod or a nuclear reactor. In this device the control rod is coupled to a drive shaft which extends coaxially through the rotor of an electric motor for relative rotation with respect thereto. A gear reduction mehanism is coupled between the rotor and the drive shaft to convert the rotary motion of the motor into linear motion of the shaft with a comparatively great reduction in speed, thereby providing relatively glow linear movement of the shaft and control rod for control purposes.

  8. ALLOY COMPOSITION FOR NEUTRONIC REACTOR CONTROL RODS

    DOEpatents

    Lustman, B.; Losco, E.F.; Snyder, H.J.; Eggleston, R.R.

    1963-01-22

    This invention relates to alloy compositons suitable as cortrol rod material consisting of, by weight, from 85% to 85% Ag, from 2% to 20% In, from up to 10% of Cd, from up to 5% Sn, and from up to 1.5% Al, the amount of each element employed being determined by the equation X + 2Y + 3Z + 3W + 4V = 1.4 and less, where X, Y, Z, W, and V represent the atom fractions of the elements Ag, Cd, In, Al and Sn. (AEC)

  9. Fabrication of control rods for the High Flux Isotope Reactor

    SciTech Connect

    Sease, J.D.

    1998-03-01

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A.

  10. Horizontal displacement profiles in N Reactor horizontal control rod channels

    SciTech Connect

    Woodruff, E.M.

    1988-12-01

    One of the potential results from N Reactor graphite moderator distortion is horizontal curvature of the horizontal control rod (HCR) channels. Mockup testing has identified two possible problem scenarios resulting from such curvature: slow scram times and rod abrasion due to rubbing of the rod on the side of the channel and subsequent displacement of T-blocks that form the sides of the channels. As a result of these potential events, surveillance tools (instrumentation) to measure HCR channel horizontal displacement was recently developed. Surveillance of HCR channel 65, performed on December 11, 1987, indicated a six inch rearward displacement near the center of the channel. This approximated the displacement which mockup testing has identified as a concern with regard to T-block movement. Closed Circuit Television (CCTV) observations indicate that T-block movement has not occurred in HCR channel 65, but that there has been some rubbing of the rod on the channel sides. Review of most recent rod hot scram times indicates normal performance for HCR 65. To further evaluate this concern, horizontal deflection and CCTV surveillance was scheduled in six HCR channels surrounding HCR channel 65. Inspection of the HCR rod tip was also performed. 13 refs., 6 figs.

  11. NEUTRONIC REACTOR CONTROL ROD AND METHOD OF FABRICATION

    DOEpatents

    Porembka, S.W. Jr.

    1961-06-27

    A reactor control rod formed from a compacted powder dispersion is patented. The rod consists of titanium sheathed with a cladding alloy. The cladding alloy contains 1.3% to 1.6% by weight of tin, 0.07% to 0.12% by weight of chromium, 0.04% to 0.08% by weight of nickel, 0.09% to 0.16% by weight of iron, carbon not exceeding 0.05%, less than 0.5% by weight of incidental impurities, and the balance zirconium.

  12. Control rod system useable for fuel handling in a gas-cooled nuclear reactor

    DOEpatents

    Spurrier, Francis R.

    1976-11-30

    A control rod and its associated drive are used to elevate a complete stack of fuel blocks to a position above the core of a gas-cooled nuclear reactor. A fuel-handling machine grasps the control rod and the drive is unlatched from the rod. The stack and rod are transferred out of the reactor, or to a new location in the reactor, by the fuel-handling machine.

  13. End-of-life nondestructive examination of Light Water Breeder Reactor fuel rods (LWBR Development Program)

    SciTech Connect

    Gorscak, D.A.; Campbell, W.R.; Clayton, J.C.

    1987-10-01

    In-bundle and out-of-bundle (single rod) nondestructive examinations of Light Water Breeder Reactor fuel rods were performed. In-bundle examinations included visual examination and measurement of rod bow, rod-to-rod gaps, and rod removal forces. Out-of-bundle examinations included rod visuals and measurement of fuel rod length, diameter and ovality, cladding oxide and crud thickness, support grid induced cladding wear mark depth and volume, and fuel rod free hanging bow. The out-of-bundle examination also included ultrasonic inspection for cladding defects, neutron radiography for pellet integrity and plenum gap measurements, and gamma scans for instack axial gap screening and binary fuel stack length measurements. The measurements confirmed design predictions of fuel rod performance and provided evidence of excellent fuel rod performance for operation of Light Water Breeder Reactor to 29,047 effective full power hours (EFPH).

  14. Fabrication of light water reactor tritium targets

    SciTech Connect

    Pilger, J.P.

    1991-11-01

    The mission of the Fabrication Development Task of the Tritium Target Development Project is: to produce a documented technology basis, including specifications and procedures for target rod fabrication; to demonstrate that light water tritium targets can be manufactured at a rate consistent with tritium production requirements; and to develop quality control methods to evaluate target rod components and assemblies, and establish correlations between evaluated characteristics and target rod performance. Many of the target rod components: cladding tubes, end caps, plenum springs, etc., have similar counterparts in LWR fuel rods. High production rate manufacture and inspection of these components has been adequately demonstrated by nuclear fuel rod manufacturers. This summary describes the more non-conventional manufacturing processes and inspection techniques developed to fabricate target rod components whose manufacturability at required production rates had not been previously demonstrated.

  15. Visual inspections of N Reactor horizontal control rod channels

    SciTech Connect

    Woodruff, E.M.

    1990-09-01

    Safety surveillance is performed in horizontal control rod (HCR) channels to locate conditions which could slow or block rod travel. The findings guide the application of preventive measures to assure eventual rod motion impairment will not occur. Borescopes and, more recently, miniaturized closed circuit television (CCTV) cameras have been used for these examinations. Inspections and measurement results are documented in annual surveillance reports, however reported CCTV observations have been limited to highlights. The objective of this report is to catalogue the CCTV recordings in a format suitable for analysis and interpretation and to ease the access to any desired location by noting tape counter readings corresponding with each tube block in view. Searching file tapes for conditions in a specific areas in the past required counting blocks as they passed the camera to determine the distance from a feature like the edge of the reflector or a steam vent gap. This report adds the observations from recent rod channel inspections (1987 and 1988) to a comprehensive survey of graphite conditions in the moderator and reflector regions of the N Reactor core. When completed, the stand-by status of graphite components will be available for use in restart or decommissioning deliberations.

  16. Method and apparatus for monitoring the control rods of a nuclear reactor

    SciTech Connect

    Gravelle, A.; Marini, J.; Romy, D.

    1984-12-04

    Method and apparatus for monitoring the movement of the control rods of a nuclear reactor. The number of steps of movement in either direction of the rod from which the control rod is suspended is counted. According to the height of the step, an indication of the position of the suspension rod and of the control rod. The apparatus comprises devices for measuring the speed of movement of the control rod, for logging variations in speed higher than a given value, and for counting such variations according to their sign. The invention is particularly useful in pressurized water nuclear reactors.

  17. Large-eddy simulation, fuel rod vibration and grid-to-rod fretting in pressurized water reactors

    DOE PAGESBeta

    Christon, Mark A.; Lu, Roger; Bakosi, Jozsef; Nadiga, Balasubramanya T.; Karoutas, Zeses; Berndt, Markus

    2016-06-29

    Grid-to-rod fretting (GTRF) in pressurized water reactors is a flow-induced vibration phenomenon that results in wear and fretting of the cladding material on fuel rods. GTRF is responsible for over 70% of the fuel failures in pressurized water reactors in the United States. Predicting the GTRF wear and concomitant interval between failures is important because of the large costs associated with reactor shutdown and replacement of fuel rod assemblies. The GTRF-induced wear process involves turbulent flow, mechanical vibration, tribology, and time-varying irradiated material properties in complex fuel assembly geometries. This paper presents a new approach for predicting GTRF induced fuelmore » rod wear that uses high-resolution implicit large-eddy simulation to drive nonlinear transient dynamics computations. The GTRF fluid–structure problem is separated into the simulation of the turbulent flow field in the complex-geometry fuel-rod bundles using implicit large-eddy simulation, the calculation of statistics of the resulting fluctuating structural forces, and the nonlinear transient dynamics analysis of the fuel rod. Ultimately, the methods developed here, can be used, in conjunction with operational management, to improve reactor core designs in which fuel rod failures are minimized or potentially eliminated. Furthermore, robustness of the behavior of both the structural forces computed from the turbulent flow simulations and the results from the transient dynamics analyses highlight the progress made towards achieving a predictive simulation capability for the GTRF problem.« less

  18. Hybrid nuclear reactor grey rod to obtain required reactivity worth

    DOEpatents

    Miller, John V.; Carlson, William R.; Yarbrough, Michael B.

    1991-01-01

    Hybrid nuclear reactor grey rods are described, wherein geometric combinations of relatively weak neutron absorber materials such as stainless steel, zirconium or INCONEL, and relatively strong neutron absorber materials, such as hafnium, silver-indium cadmium and boron carbide, are used to obtain the reactivity worths required to reach zero boron change load follow. One embodiment includes a grey rod which has combinations of weak and strong neutron absorber pellets in a stainless steel cladding. The respective pellets can be of differing heights. A second embodiment includes a grey rod with a relatively thick stainless steel cladding receiving relatively strong neutron absorber pellets only. A third embodiment includes annular relatively weak netron absorber pellets with a smaller diameter pellet of relatively strong absorber material contained within the aperture of each relatively weak absorber pellet. The fourth embodiment includes pellets made of a homogeneous alloy of hafnium and a relatively weak absorber material, with the percentage of hafnium chosen to obtain the desired reactivity worth.

  19. NRC Targets University Reactors.

    ERIC Educational Resources Information Center

    Marshall, Eliot

    1984-01-01

    The Nuclear Regulatory Commission (NRC) wants universities to convert to low-grade fuel in their research reactions. Researchers claim the conversion, which will bring U.S. reactors in line with a policy the NRC is trying to impress on foreigners, could be financially and scientifically costly. Impact of the policy is considered. (JN)

  20. Validation of neutron flux redistribution factors in JSI TRIGA reactor due to control rod movements.

    PubMed

    Kaiba, Tanja; Žerovnik, Gašper; Jazbec, Anže; Štancar, Žiga; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka

    2015-10-01

    For efficient utilization of research reactors, such as TRIGA Mark II reactor in Ljubljana, it is important to know neutron flux distribution in the reactor as accurately as possible. The focus of this study is on the neutron flux redistributions due to control rod movements. For analyzing neutron flux redistributions, Monte Carlo calculations of fission rate distributions with the JSI TRIGA reactor model at different control rod configurations have been performed. Sensitivity of the detector response due to control rod movement have been studied. Optimal radial and axial positions of the detector have been determined. Measurements of the axial neutron flux distribution using the CEA manufactured fission chambers have been performed. The experiments at different control rod positions were conducted and compared with the MCNP calculations for a fixed detector axial position. In the future, simultaneous on-line measurements with multiple fission chambers will be performed inside the reactor core for a more accurate on-line power monitoring system. PMID:26141293

  1. CONTROL ROD DRIVE MECHANISM FOR A NUCLEAR REACTOR

    DOEpatents

    Hawke, B.C.; Liederbach, F.J.; Lones, W.

    1963-05-14

    A lead-screw-type control rod drive featuring an electric motor and a fluid motor arranged to provide a selectably alternative driving means is described. The electric motor serves to drive the control rod slowly during normal operation, while the fluid motor, assisted by an automatic declutching of the electric motor, affords high-speed rod insertion during a scram. (AEC)

  2. Optimization of boiling water reactor control rod patterns using linear search

    SciTech Connect

    Kiguchi, T.; Doi, K.; Fikuzaki, T.; Frogner, B.; Lin, C.; Long, A.B.

    1984-10-01

    A computer program for searching the optimal control rod pattern has been developed. The program is able to find a control rod pattern where the resulting power distribution is optimal in the sense that it is the closest to the desired power distribution, and it satisfies all operational constraints. The search procedure consists of iterative uses of two steps: sensitivity analyses of local power and thermal margins using a three-dimensional reactor simulator for a simplified prediction model; linear search for the optimal control rod pattern with the simplified model. The optimal control rod pattern is found along the direction where the performance index gradient is the steepest. This program has been verified to find the optimal control rod pattern through simulations using operational data from the Oyster Creek Reactor.

  3. Grid-to-rod flow-induced impact study for PWR fuel in reactor

    DOE PAGESBeta

    Jiang, Hao; Qu, Jun; Lu, Roger Y.; Wang, Jy-An John

    2016-06-10

    The source for grid-to-rod fretting in a pressurized water nuclear reactor (PWR) is the dynamic contact impact from hydraulic flow-induced fuel assembly vibration. In order to support grid-to-rod fretting wear mitigation research, finite element analysis (FEA) was used to evaluate the hydraulic flow-induced impact intensity between the fuel rods and the spacer grids. Three-dimensional FEA models, with detailed geometries of the dimple and spring of the actual spacer grids along with fuel rods, were developed for flow impact simulation. The grid-to-rod dynamic impact simulation provided insights of the contact phenomena at grid-rod interface. Finally, it is an essential and effectivemore » way to evaluate contact forces and provide guidance for simulative bench fretting-impact tests.« less

  4. Materials and mechanical design analysis of boron carbide reactor safety rods. Final report

    SciTech Connect

    Marra, J.C.

    1992-04-01

    The purpose of this task was to analyze the materials and mechanical design bases for the new boron carbide safety rod. These analyses included examination of the irradiation response of the materials, chemical compatibility of component materials, moisture considerations for the boron carbide pellets and susceptibility of the rod to corrosion under reactor environmental conditions. A number of issues concerning the mechanical behavior were also addressed. These included: safety rod dynamic response in scram scenarios, flexibility and mishandling behavior, and response to thermal excursions associated with gamma heating. A surveillance program aimed at evaluating the integrity of the safety rods following actual operating conditions and justifying life extension for the rods was also proposed. Based on the experimental testing and analyses associated with this task, it is concluded that the boron carbide safety rod design meets the materials and mechanical criteria for successful operational performance.

  5. CASL Virtual Reactor Predictive Simulation: Grid-to-Rod Fretting Wear

    SciTech Connect

    Roger, Lu Y.; Karoutas, Zeses; Sham, Sam

    2011-01-01

    Grid-to-Rod Fretting (GTRF) wear is currently one of the main causes of fuel rod leaking in pressurized water reactors. The Consortium for Advanced Simulation of Light Water Reactors (CASL) has identified GTRF as one of the Challenge Problems that drive the requirement for the development and application of a modeling and simulation computational environment for predictive simulation of light water reactors. This paper presents fretting wear simulation methodology currently employed by Westinghouse, a CASL industrial partner, to address GTRF. The required advancements in the computational and materials science modeling areas to develop a predictive simulation environment by CASL to address GTRF are outlined.

  6. RAPID-L Highly Automated Fast Reactor Concept Without Any Control Rods (1) Reactor concept and plant dynamics analyses

    SciTech Connect

    Kambe, Mitsuru; Tsunoda, Hirokazu; Mishima, Kaichiro; Iwamura, Takamichi

    2002-07-01

    The 200 kWe uranium-nitride fueled lithium cooled fast reactor concept 'RAPID-L' to achieve highly automated reactor operation has been demonstrated. RAPID-L is designed for Lunar base power system. It is one of the variants of RAPID (Refueling by All Pins Integrated Design), fast reactor concept, which enable quick and simplified refueling. The essential feature of RAPID concept is that the reactor core consists of an integrated fuel assembly instead of conventional fuel subassemblies. In this small size reactor core, 2700 fuel pins are integrated altogether and encased in a fuel cartridge. Refueling is conducted by replacing a fuel cartridge. The reactor can be operated without refueling for up to 10 years. Unique challenges in reactivity control systems design have been attempted in RAPID-L concept. The reactor has no control rod, but involves the following innovative reactivity control systems: Lithium Expansion Modules (LEM) for inherent reactivity feedback, Lithium Injection Modules (LIM) for inherent ultimate shutdown, and Lithium Release Modules (LRM) for automated reactor startup. All these systems adopt lithium-6 as a liquid poison instead of B{sub 4}C rods. In combination with LEMs, LIMs and LRMs, RAPID-L can be operated without operator. This is the first reactor concept ever established in the world. This reactor concept is also applicable to the terrestrial fast reactors. In this paper, RAPID-L reactor concept and its transient characteristics are presented. (authors)

  7. Control rod calibration and reactivity effects at the IPEN/MB-01 reactor

    SciTech Connect

    Pinto, Letícia Negrão; Gonnelli, Eduardo; Santos, Adimir dos

    2014-11-11

    Researches that aim to improve the performance of neutron transport codes and quality of nuclear cross section databases are very important to increase the accuracy of simulations and the quality of the analysis and prediction of phenomena in the nuclear field. In this context, relevant experimental data such as reactivity worth measurements are needed. Control rods may be made of several neutron absorbing materials that are used to adjust the reactivity of the core. For the reactor operation, these experimental data are also extremely important: with them it is possible to estimate the reactivity worth by the movement of the control rod, understand the reactor response at each rod position and to operate the reactor safely. This work presents a temperature correction approach for the control rod calibration problem. It is shown the control rod calibration data of the IPEN/MB-01 reactor, the integral and differential reactivity curves and a theoretical analysis, performed by the MCNP-5 reactor physics code, developed and maintained by Los Alamos National Laboratory, using the ENDF/B-VII.0 nuclear data library.

  8. Calculated concrete target damage by multiple rod impact and penetration

    SciTech Connect

    Pincosy, P A; Murphy, M J

    2006-12-29

    The effect of enhanced crater formation has been demonstrated experimentally when multiple and delayed shaped charge jets impact and penetrate concrete. The concept for enhancement utilizes a single follow-on jet at the centerline of holes produced by multiple precursor jets penetrating the surrounding the region. Calculations of the 3D crater enhancement phenomena have been conducted with multiple rods to simulate the steady state portion of the multiple jet penetration process. It is expected that this analysis methodology will be beneficial for optimization of the multiple jet crater enhancement application. We present calculated results using ALE3D where the model uses the standard Gruneisen equation of state combined with a rate dependent strength model including material damage parameters. This study focuses on the concrete material damage model as a representation of the portion of the target that would eventually be ejected creating a large bore-hole. The calculations are compared with the experimental evidence and limitations of the modeling approach are discussed.

  9. Rapid-L Operator-Free Fast Reactor Concept Without Any Control Rods

    SciTech Connect

    Kambe, Mitsuru; Tsunoda, Hirokazu; Mishima, Kaichiro; Iwamura, Takamichi

    2003-07-15

    The 200-kW(electric) uranium-nitride-fueled lithium-cooled fast reactor concept 'RAPID-L' to achieve highly automated reactor operation has been demonstrated. RAPID-L is designed for a lunar base power system. It is one of the variants of the RAPID (Refueling by All Pins Integrated Design) fast reactor concept, which enables quick and simplified refueling. The essential feature of the RAPID concept is that the reactor core consists of an integrated fuel assembly instead of conventional fuel subassemblies. In this small-size reactor core, 2700 fuel pins are integrated and encased in a fuel cartridge. Refueling is conducted by replacing a fuel cartridge. The reactor can be operated without refueling for up to 10 yr.Unique challenges in reactivity control systems design have been addressed in the RAPID-L concept. The reactor has no control rod but involves the following innovative reactivity control systems: lithium expansion modules (LEM) for inherent reactivity feedback, lithium injection modules (LIM) for inherent ultimate shutdown, and lithium release modules (LRM) for automated reactor startup. All these systems adopt {sup 6}Li as a liquid poison instead of B{sub 4}C rods. In combination with LEMs, LIMs, and LRMs, RAPID-L can be operated without an operator. This reactor concept is also applicable to the terrestrial fast reactors. In this paper, the RAPID-L reactor concept and its transient characteristics are presented.

  10. Core design study of a supercritical light water reactor with double row fuel rods

    SciTech Connect

    Zhao, C.; Wu, H.; Cao, L.; Zheng, Y.; Yang, J.; Zhang, Y.

    2012-07-01

    An equilibrium core for supercritical light water reactor has been designed. A novel type of fuel assembly with dual rows of fuel rods between water rods is chosen and optimized to get more uniform assembly power distributions. Stainless steel is used for fuel rod cladding and structural material. Honeycomb structure filled with thermal isolation is introduced to reduce the usage of stainless steel and to keep moderator temperature below the pseudo critical temperature. Water flow scheme with ascending coolant flow in inner regions is carried out to achieve high outlet temperature. In order to enhance coolant outlet temperature, the radial power distributions needs to be as flat as possible through operation cycle. Fuel loading pattern and control rod pattern are optimized to flatten power distribution at inner regions. Axial fuel enrichment is divided into three parts to control axial power peak, which affects maximum cladding surface temperature. (authors)

  11. Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors

    SciTech Connect

    Bakosi, J.; Christon, M. A.; Lowrie, R. B.; Pritchett-Sheats, L. A.; Nourgaliev, R. R.

    2013-07-12

    The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3 × 3 and 5 × 5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carried out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the singlephase incompressible Navier-Stokes equations. The simulations explicitly resolve the large scale motions of the turbulent flow field using first principles and rely on a monotonicity-preserving numerical technique to represent the unresolved scales. Each series of simulations for the 3 × 3 and 5 × 5 rod-bundle geometries is an analysis of the flow field statistics combined with a mesh-refinement study and validation with available experimental data. Our primary focus is the time history and statistics of the forces loading the fuel rods. These hydrodynamic forces are believed to be the key player resulting in rod vibration and GTRF wear, one of the leading causes for leaking nuclear fuel which costs power utilities millions of dollars in preventive measures. As a result, we demonstrate that implicit large-eddy simulation of rod-bundle flows is a viable way to calculate the excitation forces for the GTRF problem.

  12. Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors

    DOE PAGESBeta

    Bakosi, J.; Christon, M. A.; Lowrie, R. B.; Pritchett-Sheats, L. A.; Nourgaliev, R. R.

    2013-07-12

    The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3 × 3 and 5 × 5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carriedmore » out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the singlephase incompressible Navier-Stokes equations. The simulations explicitly resolve the large scale motions of the turbulent flow field using first principles and rely on a monotonicity-preserving numerical technique to represent the unresolved scales. Each series of simulations for the 3 × 3 and 5 × 5 rod-bundle geometries is an analysis of the flow field statistics combined with a mesh-refinement study and validation with available experimental data. Our primary focus is the time history and statistics of the forces loading the fuel rods. These hydrodynamic forces are believed to be the key player resulting in rod vibration and GTRF wear, one of the leading causes for leaking nuclear fuel which costs power utilities millions of dollars in preventive measures. As a result, we demonstrate that implicit large-eddy simulation of rod-bundle flows is a viable way to calculate the excitation forces for the GTRF problem.« less

  13. Evaluation of differential shim rod worth measurements in the Oak Ridge Research Reactor

    SciTech Connect

    Bretscher, M.M.

    1987-01-01

    Reasonable agreement between calculated and measured differential shim rod worths in the Oak Ridge Research Reactor (ORR) has been achieved by taking into account the combined effects of negative reactivity contributions from changing fuel-moderator temperatures and of delayed photoneutrons. A method has been developed for extracting the asymptotic period from the shape of the initial portion of the measured time-dependent neutron flux profile following a positive reactivity insertion. In this region of the curve temperature-related reactivity feedback effects are negligibly small. Results obtained by applying this technique to differential shim rod worth measurements made in a wide variety of ORR cores are presented.

  14. External attachment of titanium sheathed thermocouples to zirconium nuclear fuel rods for the LOFT reactor

    SciTech Connect

    Welty, R. K.

    1980-01-01

    The Exxon Nuclear Company, Inc., acting as a Subcontractor to EG and G Idaho Inc., Idaho National Engineering Laboratory, Idaho Falls, Idaho, has developed a welding process to attach titanium sheathed thermocouples to the outside of the zircaloy clad fuel rods. The fuel rods and thermocouples are used to test simulated loss-of-coolant accident (LOCA) conditions in a pressurized water reactor (LOFT Reactor, Idaho National Laboratory). A laser beam was selected as the optimum welding process because of the extremely high energy input per unit volume that can be achieved allowing local fusion of a small area irrespective of the difference in material thickness to be joined. A commercial pulsed laser and energy control system was installed along with specialized welding fixtures. Laser room facility requirements and tolerances were established. Performance qualifications, and detailed welding procedures were also developed. Product performance tests were conducted to assure that engineering design requirements could be met on a production basis.

  15. Method and means for remote removal of guide balls from nuclear reactor control rods

    SciTech Connect

    Krieg, A.H.

    1988-11-29

    This patent describes a method of remotely removing guide balls from nuclear reactor control rods using a punch mechanism, comprising: (a) providing attachment means in the punch mechanism for attaching the punch mechanism to means for reversibly lowering the punch mechanism over the top of one of the control rods; (b) providing a die within the punch mechanism; (c) providing cylinder means within the punch mechanism operatively connected to the die for axially moving the die in a back-and-forth direction; (d) providing a die block within the punch mechanism cooperating with the die; (e) providing guide means within the punch mechanism for self-aligning the punch mechanism so that the die and the die block are automatically aligned with a first one of the guide balls therebetween when the punch mechanism is lowered over the top of the control rod; (f) lowering the punch mechanism over the control rod so that the die, the die block, and the first guide ball are in alignment; and (g) then operating the cylinder means so that the die advances into the die block, thereby removing the first guide ball from the control rod.

  16. Monte Carlo simulation of a research reactor with nominal power of 7 MW to design new control safety rods

    NASA Astrophysics Data System (ADS)

    Shoushtari, M. K.; Kakavand, T.; Sadat Kiai, S. M.; Ghaforian, H.

    2010-03-01

    The Monte Carlo simulation has been established for a research reactor with nominal power of 7 MW. A detailed model of the reactor core was employed including standard and control fuel elements, reflectors, irradiation channels, control rods, reactor pool and thermal column. The following physical parameters of reactor core were calculated for the present LEU core: core reactivity ( ρ), control rod (CR) worth, thermal and epithermal neutron flux distributions, shutdown margin and delayed neutron fraction. Reduction of unfavorable effects of blockage probability of control safety rod (CSR)s in their interiors because of not enough space in their sites, and lack of suitable capabilities to fabricate very thin plates for CSR cladding, is the main aim of the present study. Making the absorber rod thinner and CSR cladding thicker by introducing a better blackness absorbing material and a new stainless steel alloy, respectively, are two studied ways to reduce the effects of mentioned problems.

  17. Feasibility study of the University of Utah TRIGA reactor power upgrade in respect to control rod system

    NASA Astrophysics Data System (ADS)

    Cutic, Avdo

    The objectives of this thesis are twofold: to determine the highest achievable power levels of the current University of Utah TRIG Reactor (UUTR) core configuration with the existing three control rods, and to design the core for higher reactor power by optimizing the control rod worth. For the current core configuration, the maximum reactor power, eigenvalue keff, shutdown margin, and excess reactivity have been measured and calculated. These calculated estimates resulted from thermal power calibrations, and the control rod worth measurements at various power levels. The results were then used as a benchmark to verify the MCNP5 core simulations for the current core and then to design a core for higher reactor power. This study showed that the maximum achievable power with the current core configuration and control rod system is 150kW, which is 50kW higher than the licensed power of the UUTR. The maximum achievable UUTR core power with the existing fuel is determined by optimizing the core configuration and control rod worth, showing that a power upgrade of 500 kW is achievable. However, it requires a new control rod system consisting of a total of four control rods. The cost of such an upgrade is $115,000.

  18. Visual inspections of N Reactor horizontal control rod channels. Revision 1

    SciTech Connect

    Woodruff, E.M.

    1990-09-01

    Safety surveillance is performed in horizontal control rod (HCR) channels to locate conditions which could slow or block rod travel. The findings guide the application of preventive measures to assure eventual rod motion impairment will not occur. Borescopes and, more recently, miniaturized closed circuit television (CCTV) cameras have been used for these examinations. Inspections and measurement results are documented in annual surveillance reports, however reported CCTV observations have been limited to highlights. The objective of this report is to catalogue the CCTV recordings in a format suitable for analysis and interpretation and to ease the access to any desired location by noting tape counter readings corresponding with each tube block in view. Searching file tapes for conditions in a specific areas in the past required counting blocks as they passed the camera to determine the distance from a feature like the edge of the reflector or a steam vent gap. This report adds the observations from recent rod channel inspections (1987 and 1988) to a comprehensive survey of graphite conditions in the moderator and reflector regions of the N Reactor core. When completed, the stand-by status of graphite components will be available for use in restart or decommissioning deliberations.

  19. Numerical Analysis on the Head-Shape Effect for Long-Rod Normally Penetrating Concrete Target

    NASA Astrophysics Data System (ADS)

    Mu, Zhong-Cheng; Zhang, Wei; Cao, Zong-Sheng

    2009-06-01

    The deep penetration of long rods into thick target has been the focus for many decades in the terminal ballistic. Especially the study on long rods penetrating concrete targets arouses more and more attention. But the investigations of the head-shape effect to the high velocity penetration of long rod are few. In this paper, the penetration process of long rod with different head-shapes is analyzed through a series of numerical simulations. The impact velocity from subsonic velocity on the order of 10^2 m/s to hypervelocity on the order of 10^3 m/s is used. The penetration target is high strength concrete. Numerical model of concrete target adopts typical dynamic concrete damage model-RHT. The model has shown promising results for prediction of penetration depth. The projectile material is 4340 steel, Johnson-Cook model is chosen. In all the simulations presented here the material properties of projectiles and targets doesn't change. The flat-head and the ogive-head projectile are chosen. The effect of the CRH of ogive-head projectile on penetration depth is analyzed. Difference and similarity are described by the time history of penetrating velocity, acceleration and the head deformation.

  20. Preliminary design studies for an iridium rod target at the BNL-AGS

    SciTech Connect

    Ludewig, H.; Hastings, J.; Montanez, P.; Todosow, M.

    1998-12-31

    The BNL-AGS is an intense source of 24 GeV protons. It is proposed to explore the potential to use these protons as the driver for a Pulsed Spallation Neutron Source target. The proposed target design is based on an edge cooled iridium rod concept--similar to the anti-proton production target which operated reliably at CERN under similar conditions. Lead, lead fluoride, and beryllium are investigated as possible reflector materials, and ambient temperature light water and 80 K light water ice are proposed as initial moderator materials. Both moderators are decoupled by cadmium containing moderator chamber walls. The small size of the target has the advantage that the moderators can be placed close to the target (resulting in a bright source), and since a large fraction of the radioactive inventory is contained in the iridium rod, removal and disposition of this inventory should be relatively simple and inexpensive.

  1. 3D Simulation of Missing Pellet Surface Defects in Light Water Reactor Fuel Rods

    SciTech Connect

    B.W. Spencer; J.D. Hales; S.R. Novascone; R.L. Williamson

    2012-09-01

    The cladding on light water reactor (LWR) fuel rods provides a stable enclosure for fuel pellets and serves as a first barrier against fission product release. Consequently, it is important to design fuel to prevent cladding failure due to mechanical interactions with fuel pellets. Cladding stresses can be effectively limited by controlling power increase rates. However, it has been shown that local geometric irregularities caused by manufacturing defects known as missing pellet surfaces (MPS) in fuel pellets can lead to elevated cladding stresses that are sufficiently high to cause cladding failure. Accurate modeling of these defects can help prevent these types of failures. Nuclear fuel performance codes commonly use a 1.5D (axisymmetric, axially-stacked, one-dimensional radial) or 2D axisymmetric representation of the fuel rod. To study the effects of MPS defects, results from 1.5D or 2D fuel performance analyses are typically mapped to thermo-mechanical models that consist of a 2D plane-strain slice or a full 3D representation of the geometry of the pellet and clad in the region of the defect. The BISON fuel performance code developed at Idaho National Laboratory employs either a 2D axisymmetric or 3D representation of the full fuel rod. This allows for a computational model of the full fuel rod to include local defects. A 3D thermo-mechanical model is used to simulate the global fuel rod behavior, and includes effects on the thermal and mechanical behavior of the fuel due to accumulation of fission products, fission gas production and release, and the effects of fission gas accumulation on thermal conductivity across the fuel-clad gap. Local defects can be modeled simply by including them in the 3D fuel rod model, without the need for mapping between two separate models. This allows for the complete set of physics used in a fuel performance analysis to be included naturally in the computational representation of the local defect, and for the effects of the

  2. The impact of tungsten long rod penetrators into water filled targets

    SciTech Connect

    Wilson, L.T.; Dickinson, D.L.; Hertel, E.S. Jr.

    1998-02-01

    Twelve experiments were conducted to determine the effect of water filled targets on the penetration of tungsten long rods in terms of their residual mass and integrity. CTH hydrocode calculations were performed for each of the experiments to ensure that the erosion and breakup of the tungsten projectiles could be accurately reproduced. The CTH hydrocode predictions correlation well with the experimental results in most cases. Only 8% of the variance is unexplained. The slip interface between the rod and water was approximated in one of two ways: (1) using the CTH BLINT option in 2-D or (2) using a standard Eulerian mixed cells treatment. Results indicate that a 3-D BLINT algorithm is critical to predicting rod residual lengths. The authors were unable to reproduce rod fracture that occurred in every experiment where the water column exceeded 25 cm in length. The authors feel that this is due to a change in rod material properties during penetration, and continue to investigate the issue.

  3. Maintaining a Critical Spectra within Monteburns for a Gas-Cooled Reactor Array by Way of Control Rod Manipulation

    DOE PAGESBeta

    Adigun, Babatunde John; Fensin, Michael Lorne; Galloway, Jack D.; Trellue, Holly Renee

    2016-06-07

    Our burnup study examined the effect of a predicted critical control rod position on the nuclide predictability of several axial and radial locations within a 4×4 graphite moderated gas cooled reactor fuel cluster geometry. To achieve this, a control rod position estimator (CRPE) tool was developed within the framework of the linkage code Monteburns between the transport code MCNP and depletion code CINDER90, and four methodologies were proposed within the tool for maintaining criticality. Two of the proposed methods used an inverse multiplication approach - where the amount of fissile material in a set configuration is slowly altered until criticalitymore » is attained - in estimating the critical control rod position. Another method carried out several MCNP criticality calculations at different control rod positions, then used a linear fit to estimate the critical rod position. The final method used a second-order polynomial fit of several MCNP criticality calculations at different control rod positions to guess the critical rod position. The results showed that consistency in prediction of power densities as well as uranium and plutonium isotopics was mutual among methods within the CRPE tool that predicted critical position consistently well. Finall, while the CRPE tool is currently limited to manipulating a single control rod, future work could be geared toward implementing additional criticality search methodologies along with additional features.« less

  4. Performance evaluation of cigarette filter rods as a biofilm carrier in an anaerobic moving bed biofilm reactor.

    PubMed

    Sabzali, Ahmad; Nikaeen, Mahnaz; Bina, Bijan

    2012-01-01

    Biocarriers are an important component of anaerobic moving bed biofilm reactors (AMBBRs). In this study, the capability of cigarette filter rods (CFRs) as a biocarrier in an anaerobic moving bed biofilm reactor was evaluated. Two similar lab-scale anaerobic moving bed biofilm reactors were undertaken using Kaldnes-K3 plastic media and cigarette filter rods (wasted filters from tobacco factories) as biofilm attachment media for wastewater treatment. Organic substance and total posphours (TP) removal was investigated over 100 days. Synthetic wastewater was prepared with ordinary water and glucose as the main sources of carbon and energy, plus balanced macro- and micro-nutrients. Process performance was studied by increasing the organic loading rate (OLR) in the range of 1.6-4.5 kg COD/m3 x d. The COD average removal efficiency were 61.3% and 64.5% for AMBBR with cigarette filter rods (Reactor A) and AMBBR with Kaldnes plastic media (Reactor B), respectively. The results demonstrate that the performance of the AMBBR containing 0.25 litres of cigarette filters was comparable with a similar reactor containing 1.5 litres of Kaldnes plastic media. An average phosphorus removal of 67.7% and 72.9% was achieved by Reactors A and B, respectively. PMID:22988642

  5. A New Insight into Energy Distribution of Electrons in Fuel-Rod Gap in VVER-1000 Nuclear Reactor

    NASA Astrophysics Data System (ADS)

    Fereshteh, Golian; Ali, Pazirandeh; Saeed, Mohammadi

    2015-06-01

    In order to calculate the electron energy distribution in the fuel rod gap of a VVER-1000 nuclear reactor, the Fokker-Planck equation (FPE) governing the non-equilibrium behavior of electrons passing through the fuel-rod gap as an absorber has been solved in this paper. Besides, the Monte Carlo Geant4 code was employed to simulate the electron migration in the fuel-rod gap and the energy distribution of electrons was found. As for the results, the accuracy of the FPE was compared to the Geant4 code outcomes and a satisfactory agreement was found. Also, different percentage of the volatile and noble gas fission fragments produced in fission reactions in fuel rod, i.e. Krypton, Xenon, Iodine, Bromine, Rubidium and Cesium were employed so as to investigate their effects on the electrons' energy distribution. The present results show that most of the electrons in the fuel rod's gap were within the thermal energy limitation and the tail of the electron energy distribution was far from a Maxwellian distribution. The interesting outcome was that the electron energy distribution is slightly increased due to the accumulation of fission fragments in the gap. It should be noted that solving the FPE for the energy straggling electrons that are penetrating into the fuel-rod gap in the VVER-1000 nuclear reactor has been carried out for the first time using an analytical approach.

  6. Super-characteristic x-ray generator utilizing a pipe and rod target

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Inoue, Takashi; Ogawa, Akira; Izumisawa, Mitsuru; Takahashi, Kiyomi; Sato, Shigehiro; Ichimaru, Toshio; Takayama, Kazuyoshi

    2006-08-01

    This generator consists of the following components: a constant high-voltage power supply, a filament power supply, a turbomolecular pump, and an x-ray tube. The x-ray tube is a demountable diode which is connected to the turbomolecular pump and consists of the following major devices: a tungsten hairpin cathode (filament), a focusing (Wehnelt) electrode, a polyethylene terephthalate x-ray window 0.25 mm in thickness, a stainless-steel tube body, a pipe target, and a rod target. The pipe and rod targets are useful for forming linear and cone beams, respectively. In the x-ray tube, the positive high voltage is applied to the anode (target) electrode, and the cathode is connected to the tube body (ground potential). In this experiment, the tube voltage applied was from12 to 20 kV, and the tube current was regulated to within 0.10 mA by the filament temperature. The exposure time is controlled in order to obtain optimum x-ray intensity. The electron beams from the cathode are converged to the target by the focusing electrode, and clean K-series characteristic x-rays are produced through the focusing electrode without using a filter. The x-ray intensities of the pipe and rod targets were 1.29 and 4.28 μGy/s at 1.0 m from the x-ray source with a tube voltage of 15 kV and a tube current of 0.10 mA, and quasi-monochromatic radiography was performed using a computed radiography system.

  7. DESTRUCTIVE EXAMINATION OF 3-CYCLE LWR (LIGHT WATER REACTOR) FUEL RODS FROM TURKEY POINT UNIT 3 FOR THE CLIMAX - SPENT FUEL TEST

    SciTech Connect

    ATKIN SD

    1981-06-01

    The destructive examination results of five light water reactor rods from the Turkey Point Unit 3 reactor are presented. The examinations included fission gas collection and analyses, burnup and hydrogen analyses, and a metallographic evaluation of the fuel, cladding, oxide, and hydrides. The rods exhibited a low fission gas release with all other results appearing representative for pressurized water reator fuel rods with similar burnups (28 GWd/MTU) and operating histories.

  8. High temperature postirradiation materials performance of spent pressurized water reactor fuel rods under dry storage conditions

    SciTech Connect

    Einziger, R.E.; Atkin, S.D.; Pasupathi, V.; Stellrecht, D.E.

    1982-04-01

    Postirradiation studies on failure mechanisms of well-characterized pressurized water reactor rods were conducted for up to a year at 482, 510, and 571/sup 0/C in limited air and inert gas atmospheres. No cladding breaches occurred even though the tests operated many orders of magnitude longer in time than the lifetime predicted by Blackburn's analyses. The extended lifetime is due to significant creep strain of the Zircaloy cladding, which decreases the internal rod pressure. The cladding creep also contributes to radial cracks, through the external oxide and internal fuel-cladding chemical interaction layers, which propagated into and arrested in an oxygen stabilized alpha-Zircaloy layer. There were no signs of either additional cladding hydriding, stress corrosion cracking, or fuel pellet degradation. If irradiation hardening does not reduce the stress rupture properties of Zircaloy, a conservative maximum storage temperature of 400/sup 0/C based on a stress-rupture mechanism is recommended to ensure a 1000-yr cladding lifetime.

  9. Zirconium-based alloys, nuclear fuel rods and nuclear reactors including such alloys, and related methods

    DOEpatents

    Mariani, Robert Dominick

    2014-09-09

    Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350.degree. C. to 750.degree. C., and a second additive having a solubility in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350.degree. C. to 750.degree. C. and a solubility of the second additive in the first additive over the temperature range extending from 350.degree. C. to 750.degree. C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.

  10. On-line detection of key radionuclides for fuel-rod failure in a pressurized water reactor.

    PubMed

    Qin, Guoxiu; Chen, Xilin; Guo, Xiaoqing; Ni, Ning

    2016-08-01

    For early on-line detection of fuel rod failure, the key radionuclides useful in monitoring must leak easily from failing rods. Yield, half-life, and mass share of fission products that enter the primary coolant also need to be considered in on-line analyses. From all the nuclides that enter the primary coolant during fuel-rod failure, (135)Xe and (88)Kr were ultimately chosen as crucial for on-line monitoring of fuel-rod failure. A monitoring system for fuel-rod failure detection for pressurized water reactor (PWR) based on the LaBr3(Ce) detector was assembled and tested. The samples of coolant from the PWR were measured using the system as well as a HPGe γ-ray spectrometer. A comparison showed the method was feasible. Finally, the γ-ray spectra of primary coolant were measured under normal operations and during fuel-rod failure. The two peaks of (135)Xe (249.8keV) and (88)Kr (2392.1keV) were visible, confirming that the method is capable of monitoring fuel-rod failure on-line. PMID:27209090

  11. Monte Carlo estimation of the dose and heating of cobalt adjuster rods irradiated in the CANDU 6 reactor core.

    PubMed

    Gugiu, Daniela; Dumitrache, Ion

    2005-01-01

    The present work is a part of a more complex project related to the replacement of the original stainless steel adjuster rods with cobalt assemblies in the CANDU 6 reactor core. The 60Co produced by 59Co irradiation could be used extensively in medicine and industry. The paper will mainly describe some of the reactor physics and safety requirements that must be carried into practice for the Co adjuster rods. The computations related to the neutronic equivalence of the stainless steel adjusters with the Co adjuster assemblies, as well as the estimations of the activity and heating of the irradiated cobalt rods, are performed using the Monte Carlo codes MCNP5 and MONTEBURNS 2.1. The activity values are used to evaluate the dose at the surface of the device designed to transport the cobalt adjusters. PMID:16604599

  12. Dealing with Historical Discrepancies: The Recovery of National Research Experiment (NRX) Reactor Fuel Rods at Chalk River Laboratories (CRL) - 13324

    SciTech Connect

    Vickerd, Meggan

    2013-07-01

    Following the 1952 National Research Experiment (NRX) Reactor accident, fuel rods which had short irradiation histories were 'temporarily' buried in wooden boxes at the 'disposal grounds' during the cleanup effort. The Nuclear Legacy Liabilities Program (NLLP), funded by Natural Resources Canada (NRCan), strategically retrieves legacy waste and restores lands affected by Atomic Energy of Canada Limited (AECL) early operations. Thus under this program the recovery of still buried NRX reactor fuel rods and their relocation to modern fuel storage was identified as a priority. A suspect inventory of NRX fuels was compiled from historical records and various research activities. Site characterization in 2005 verified the physical location of the fuel rods and determined the wooden boxes they were buried in had degraded such that the fuel rods were in direct contact with the soil. The fuel rods were recovered and transferred to a modern fuel storage facility in 2007. Recovered identification tags and measured radiation fields were used to identify the inventory of these fuels. During the retrieval activity, a discrepancy was discovered between the anticipated number of fuel rods and the number found during the retrieval. A total of 32 fuel rods and cans of cut end pieces were recovered from the specified site, which was greater than the anticipated 19 fuel rods and cans. This discovery delayed the completion of the project, increased the associated costs, and required more than anticipated storage space in the modern fuel storage facility. A number of lessons learned were identified following completion of this project, the most significant of which was the potential for discrepancies within the historical records. Historical discrepancies are more likely to be resolved by comprehensive historical record searches and site characterizations. It was also recommended that a complete review of the wastes generated, and the total affected lands as a result of this historic

  13. Gold nano-rods as a targeting contrast agent for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Agarwal, A.; Huang, S.-W.; Day, K. C.; O'Donnell, M.; Day, M.; Kotov, N.; Ashkenazi, S.

    2007-02-01

    We have studied the potential of gold nanorods to target cancer cells and provide contrast for photoacoustic imaging. The elongated "rod" shape of these nanoparticles provides a mechanism to tune their plasmon peak absorption wavelength. The absorption peak is shifted to longer wavelengths by increasing the aspect ratio of the rods. Particles 15 nm in diameter and 45 nm long were prepared using a seed mediated growth method. Their plasmon absorption peak was designed to be at 800 nm for increased penetration depth into biological tissue. They were conjugated with a specific antibody to target prostate cancer cells. We have applied photoacoustics to image a prostate cell culture targeted by conjugated gold particles. Images confirm the efficiency of conjugated particle binding to the targeted cell membranes. Photoacoustic detection of a single cell layer is demonstrated. To evaluate the applicability of the technique to clinical prostate cancer detection, we have imaged phantom objects mimicking a real tissue with small (2 mm size) inclusions of nanoparticle gel solution. Our photoacoustic imaging setup is based on a modified commercial ultrasonic scanner which makes it attractive for fast implementation in cancer diagnosis in clinical application. In addition, the setup allows for dual mode operation where a photoacoustic image is superimposed on a conventional B-mode ultrasound image. Dual mode operation is demonstrated by imaging a mouse with gold nanorod gel solution implanted in its hind limb.

  14. Laser-fusion targets for reactors

    DOEpatents

    Nuckolls, John H.; Thiessen, Albert R.

    1987-01-01

    A laser target comprising a thermonuclear fuel capsule composed of a centrally located quantity of fuel surrounded by at least one or more layers or shells of material for forming an atmosphere around the capsule by a low energy laser prepulse. The fuel may be formed as a solid core or hollow shell, and, under certain applications, a pusher-layer or shell is located intermediate the fuel and the atmosphere forming material. The fuel is ignited by symmetrical implosion via energy produced by a laser, or other energy sources such as an electron beam machine or ion beam machine, whereby thermonuclear burn of the fuel capsule creates energy for applications such as generation of electricity via a laser fusion reactor.

  15. Computerized operating procedures for shearing and dissolution of segments from LWBR (Light Water Breeder Reactor) fuel rods

    SciTech Connect

    Osudar, J.; Deeken, P.G.; Graczyk, D.G.; Fagan, J.E.; Martino, F.J.; Parks, J.E.; Levitz, N.M.; Kessie, R.W.; Leddin, J.M.

    1987-05-01

    This report presents two detailed computerized operating procedures developed to assist and control the shearing and dissolution of irradiated fuel rods. The procedures were employed in the destructive analysis of end-of-life fuel rods from the Light Water Breeder Reactor (LWBR) that was designed by the Westinghouse Electric Corporation Bettis Atomic Power Laboratory. Seventeen entire fuel rods from the end-of-life core of the LWBR were sheared into 169 precisely characterized segments, and more than 150 of these segments were dissolved during execution of the LWBR Proof-of-Breeding (LWBR-POB) Analytical Support Project at Argonne National Laboratory. The procedures illustrate our approaches to process monitoring, data reduction, and quality assurance during the LWBR-POB work.

  16. Reactor target from metal chromium for "pure" high-intensive artificial neutrino source

    NASA Astrophysics Data System (ADS)

    Gavrin, V. N.; Kozlova, Yu. P.; Veretenkin, E. P.; Logachev, A. V.; Logacheva, A. I.; Lednev, I. S.; Okunkova, A. A.

    2016-03-01

    The paper presents the first results of development of manufacturing technology of metallic chromium targets from highly enriched isotope 50Cr for irradiation in a high flux nuclear reactor to obtain a compact high intensity neutrino source with low content of radionuclide impurities and minimum losses of enriched isotope. The main technological stages are the hydrolysis of chromyl fluoride, the electrochemical reduction of metallic chromium, the hot isostatic pressing of chromium powder and the electrical discharge machining of chromium bars. The technological stages of hot isostatic pressing of chromium powder and of electrical discharge machining of Cr rods have been tested.

  17. Disposal Of Irradiated Cadmium Control Rods From The Plumbrook Reactor Facility

    SciTech Connect

    Posivak, E.J.; Berger, S.R.; Freitag, A.A.

    2008-07-01

    Innovative mixed waste disposition from NASA's Plum Brook Reactor Facility was accomplished without costly repackaging. Irradiated characteristic hardware with contact dose rates as high as 8 Sv/hr was packaged in a HDPE overpack and stored in a Secure Environmental Container during earlier decommissioning efforts, awaiting identification of a suitable pathway. WMG obtained regulatory concurrence that the existing overpack would serve as the macro-encapsulant per 40CFR268.45 Table 1.C. The overpack vent was disabled and the overpack was placed in a stainless steel liner to satisfy overburden slumping requirements. The liner was sealed and placed in shielded shoring for transport to the disposal site in a US DOT Type A cask. Disposition via this innovative method avoided cost, risk, and dose associated with repackaging the high dose irradiated characteristic hardware. In conclusion: WMG accomplished what others said could not be done. Large D and D contractors advised NASA that the cadmium control rods could only be shipped to the proposed Yucca mountain repository. NASA management challenged MOTA to find a more realistic alternative. NASA and MOTA turned to WMG to develop a methodology to disposition the 'hot and nasty' waste that presumably had no path forward. Although WMG lead a team that accomplished the 'impossible', the project could not have been completed with out the patient, supportive management by DOE-EM, NASA, and MOTA. (authors)

  18. cAMP controls rod photoreceptor sensitivity via multiple targets in the phototransduction cascade

    PubMed Central

    Astakhova, Luba A.; Samoiliuk, Evgeniia V.; Govardovskii, Victor I.

    2012-01-01

    In early studies, both cyclic AMP (cAMP) and cGMP were considered as potential secondary messengers regulating the conductivity of the vertebrate photoreceptor plasma membrane. Later discovery of the cGMP specificity of cyclic nucleotide–gated channels has shifted attention to cGMP as the only secondary messenger in the phototransduction cascade, and cAMP is not considered in modern schemes of phototransduction. Here, we report evidence that cAMP may also be involved in regulation of the phototransduction cascade. Using a suction pipette technique, we recorded light responses of isolated solitary rods from the frog retina in normal solution and in the medium containing 2 µM of adenylate cyclase activator forskolin. Under forskolin action, flash sensitivity rose more than twofold because of a retarded photoresponse turn-off. The same concentration of forskolin lead to a 2.5-fold increase in the rod outer segment cAMP, which is close to earlier reported natural day/night cAMP variations. Detailed analysis of cAMP action on the phototransduction cascade suggests that several targets are affected by cAMP increase: (a) basal dark phosphodiesterase (PDE) activity decreases; (b) at the same intensity of light background, steady background-induced PDE activity increases; (c) at light backgrounds, guanylate cyclase activity at a given fraction of open channels is reduced; and (d) the magnitude of the Ca2+ exchanger current rises 1.6-fold, which would correspond to a 1.6-fold elevation of [Ca2+]in. Analysis by a complete model of rod phototransduction suggests that an increase of [Ca2+]in might also explain effects (b) and (c). The mechanism(s) by which cAMP could regulate [Ca2+]in and PDE basal activity is unclear. We suggest that these regulations may have adaptive significance and improve the performance of the visual system when it switches between day and night light conditions. PMID:23008435

  19. An active target concept for the electronuclear reactor

    SciTech Connect

    Grebyonkin, K.F.; Shzerebzov, A.L.; Kandiev, Ya.Z.; Maloyaroslavtsev, A.N.; Modin, V.N.; Orlov, A.I.; Peschkov, I.A.; Scherbakov, A.P.

    1995-12-31

    Preliminary identification of the components and efficiency estimations for the proposed (by Chelyabinsk-70) concept of active target for electronuclear reactor are goals of this work. (The electronuclear reactor comprises a high-energy proton acclerator, a high-atomic-number target (lead, tungsten) which produces neutrons from the protons, and a subcritical blanket.) Results of preliminary neutron and thermal-hydraulic simulations of the target are represented in the paper and preliminary detailing of the active target components is performed. It is shown that the use of active target can lead to an essential reduction of the requirements to the accelerator power without deterioration of the safety of the system.

  20. Scrapie prion liposomes and rods exhibit target sizes of 55,000 Da

    SciTech Connect

    Bellinger-Kawahara, C.G.; Kempner, E.; Groth, D.; Gabizon, R.; Prusiner, S.B.

    1988-06-01

    Scrapie is a degenerative neurologic disease in sheep and goats which can be experimentally transmitted to laboratory rodents. Considerable evidence suggests that the scrapie agent is composed largely, if not entirely, of an abnormal isoform of the prion protein (PrPSc). Inactivation of scrapie prions by ionizing radiation exhibited single-hit kinetics and gave a target size of 55,000 +/- 9000 mol wt. The inactivation profile was independent of the form of the prion. Scrapie agent infectivity in brain homogenates, microsomal fractions, detergent-extracted microsomes, purified amyloid rods, and liposomes exhibited the same inactivation profile. Our data are consistent with the hypothesis that the infectious particle causing scrapie contains approximately 2 PrPSc molecules.

  1. Generation of a Nanobody Targeting the Paraflagellar Rod Protein of Trypanosomes

    PubMed Central

    Obishakin, Emmanuel; Stijlemans, Benoit; Santi-Rocca, Julien; Vandenberghe, Isabel; Devreese, Bart; Muldermans, Serge; Bastin, Philippe; Magez, Stefan

    2014-01-01

    Trypanosomes are protozoan parasites that cause diseases in humans and livestock for which no vaccines are available. Disease eradication requires sensitive diagnostic tools and efficient treatment strategies. Immunodiagnostics based on antigen detection are preferable to antibody detection because the latter cannot differentiate between active infection and cure. Classical monoclonal antibodies are inaccessible to cryptic epitopes (based on their size-150 kDa), costly to produce and require cold chain maintenance, a condition that is difficult to achieve in trypanosomiasis endemic regions, which are mostly rural. Nanobodies are recombinant, heat-stable, small-sized (15 kDa), antigen-specific, single-domain, variable fragments derived from heavy chain-only antibodies in camelids. Because of numerous advantages over classical antibodies, we investigated the use of nanobodies for the targeting of trypanosome-specific antigens and diagnostic potential. An alpaca was immunized using lysates of Trypanosoma evansi. Using phage display and bio-panning techniques, a cross-reactive nanobody (Nb392) targeting all trypanosome species and isolates tested was selected. Imunoblotting, immunofluorescence microscopy, immunoprecipitation and mass spectrometry assays were combined to identify the target recognized. Nb392 targets paraflagellar rod protein (PFR1) of T. evansi, T. brucei, T. congolense and T. vivax. Two different RNAi mutants with defective PFR assembly (PFR2RNAi and KIF9BRNAi) were used to confirm its specificity. In conclusion, using a complex protein mixture for alpaca immunization, we generated a highly specific nanobody (Nb392) that targets a conserved trypanosome protein, i.e., PFR1 in the flagella of trypanosomes. Nb392 is an excellent marker for the PFR and can be useful in the diagnosis of trypanosomiasis. In addition, as demonstrated, Nb392 can be a useful research or PFR protein isolation tool. PMID:25551637

  2. Investigation of stainless steel clad fuel rod failures and fuel performance in the Connecticut Yankee Reactor. Final report

    SciTech Connect

    Pasupathi, V.; Klingensmith, R. W.

    1981-11-01

    Significant levels of fuel rod failures were observed in the batch 8 fuel assemblies of the Connecticut Yankee reactor. Failure of 304 stainless steel cladding in a PWR environment was not expected. Therefore a detailed poolside and hot cell examination program was conducted to determine the cause of failure and identify differences between batch 8 fuel and previous batches which had operated without failures. Hot cell work conducted consisted of detailed nondestructive and destructive examination of fuel rods from batches 7 and 8. The results indicate that the batch 8 failure mechanism was stress corrosion cracking initiating on the clad outer surface. The sources of cladding stresses are believed to be (a) fuel pellet chips wedged in the cladding gap, (b) swelling of highly nondensifying batch 8 fuel and (c) potentially harmful effects of a power change event that occurred near the end of the second cycle of irradiation for batch 8.

  3. CFD simulation of an unbaffled stirred tank reactor driven by a magnetic rod: assessment of turbulence models.

    PubMed

    Li, Jiajia; Deng, Baoqing; Zhang, Bing; Shen, Xiuzhong; Kim, Chang Nyung

    2015-01-01

    A simulation of an unbaffled stirred tank reactor driven by a magnetic stirring rod was carried out in a moving reference frame. The free surface of unbaffled stirred tank was captured by Euler-Euler model coupled with the volume of fluid (VOF) method. The re-normalization group (RNG) k-ɛ model, large eddy simulation (LES) model and detached eddy simulation (DES) model were evaluated for simulating the flow field in the stirred tank. All turbulence models can reproduce the tangential velocity in an unbaffled stirred tank with a rotational speed of 150 rpm, 250 rpm and 400 rpm, respectively. Radial velocity is underpredicted by the three models. LES model and RNG k-ɛ model predict the better tangential velocity and axial velocity, respectively. RNG k-ɛ model is recommended for the simulation of the flow in an unbaffled stirred tank with magnetic rod due to its computational effort. PMID:26465300

  4. Fission gas release from UO{sub 2+x} in defective light water reactor fuel rods

    SciTech Connect

    Skim, Y. S.

    1999-11-12

    A simplified semi-empirical model predicting fission gas release form UO{sub 2+x} fuel to the fuel rod plenum as a function of stoichiometry excess (x) is developed to apply to the fuel of a defective LWR fuel rod in operation. The effect of fuel oxidation in enhancing gas diffusion is included as a parabolic dependence of the stoichiometry excess. The increase of fission gas release in a defective BWR fuel rod is at the most 3 times higher than in an intact fuel rod because of small extent of UO{sub 2} oxidation. The major enhancement contributor in fission gas release of UO{sub 2+x} fuel is the increased diffusivity due to stoichiometry excess rather than the higher temperature caused by degraded fuel thermal conductivity.

  5. CONTROL ROD DRIVE

    DOEpatents

    Chapellier, R.A.

    1960-05-24

    BS>A drive mechanism was invented for the control rod of a nuclear reactor. Power is provided by an electric motor and an outside source of fluid pressure is utilized in conjunction with the fluid pressure within the reactor to balance the loadings on the motor. The force exerted on the drive mechanism in the direction of scramming the rod is derived from the reactor fluid pressure so that failure of the outside pressure source will cause prompt scramming of the rod.

  6. Control rod drive

    SciTech Connect

    Hawke, Basil C.

    1986-01-01

    A control rod drive uses gravitational forces to insert one or more control rods upwardly into a reactor core from beneath the reactor core under emergency conditions. The preferred control rod drive includes a vertically movable weight and a mechanism operatively associating the weight with the control rod so that downward movement of the weight is translated into upward movement of the control rod. The preferred control rod drive further includes an electric motor for driving the control rods under normal conditions, an electrically actuated clutch which automatically disengages the motor during a power failure and a decelerator for bringing the control rod to a controlled stop when it is inserted under emergency conditions into a reactor core.

  7. Study of material changes of SINQ target rods after long-term exposure by neutron radiography methods.

    PubMed

    Lehmann, E E; Vontobel, P; Estermann, M

    2004-10-01

    This paper describes the results of non-destructive investigations by indirect neutron radiography methods obtained at the facility NEUTRA [Nondestruct. Testing Eval. 16 (2000b) 203], spallation neutron source SINQ [Operating experience and development projects at SINQ, PSI Report 98-04, ISSN 1019-0643]. Target rods from the second SINQ metal target were removed after 6 Ah of proton beam exposure and studied under well-shielded conditions. No real damage was found at one of the 11 observed rods and one tube. However, hydrogen accumulation could be identified inside the zircaloy rods and the steel rods as well. Whereas the hydrogen has a homogenous distribution in Zr (with the peak value near the centre of the applied beam), the steel samples show clusters of hydrogen near the edge of the Zr cladding. Lead (in steel cladding) was found modified by accumulations of spallation products, mainly mercury. In the radiography images, a depression of the neutron field was observed due to the absorption by mercury. The applied method with Dy and In as neutron converters and imaging plates [Nucl. Instrum. Methods 377 (1996) 119] as secondary detectors seems to be optimal for such kind of investigations, especially when quantitative considerations have to be made. PMID:15246406

  8. The necessity of nuclear reactors for targeted radionuclide therapies.

    PubMed

    Krijger, Gerard C; Ponsard, Bernard; Harfensteller, Mark; Wolterbeek, Hubert T; Nijsen, Johannes W F

    2013-07-01

    Nuclear medicine has been contributing towards personalized therapies. Nuclear reactors are required for the working horses of both diagnosis and treatment, i.e., Tc-99m and I-131. In fact, reactors will remain necessary to fulfill the demand for a variety of radionuclides and are essential in the expanding field of targeted radionuclide therapies for cancer. However, the main reactors involved in the global supply are ageing and expected to shut down before 2025. Therefore, the fields of (nuclear) medicine, nuclear industry and politics share a global responsibility, faced with the task to secure future access to suitable nuclear reactors. At the same time, alternative production routes should be industrialized. For this, a coordinating entity should be put into place. PMID:23731577

  9. A rule-based expert system for automatic control rod pattern generation for boiling water reactors

    SciTech Connect

    Lin, L.S.; Lin, C. )

    1991-07-01

    This paper reports on an expert system for generating control rod patterns that has been developed. The knowledge is transformed into IF-THEN rules. The inference engine uses the Rete pattern matching algorithm to match facts, and rule premises and conflict resolution strategies to make the system function intelligently. A forward-chaining mechanism is adopted in the inference engine. The system is implemented in the Common Lisp programming language. The three-dimensional core simulation model performs the core status and burnup calculations. The system is successfully demonstrated by generating control rod programming for the 2894-MW (thermal) Kuosheng nuclear power plant in Taiwan. The computing time is tremendously reduced compared to programs using mathematical methods.

  10. FY15 Status Report: CIRFT Testing of Spent Nuclear Fuel Rods from Boiler Water Reactor Limerick

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Jiang, Hao

    2015-06-01

    The objective of this project is to perform a systematic study of used nuclear fuel (UNF, also known as spent nuclear fuel [SNF]) integrity under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL) in August 2013. Under Nuclear Regulatory Commission (NRC) sponsorship, ORNL completed four benchmark tests, four static tests, and twelve dynamic or cycle tests on H. B. Robinson (HBR) high burn-up (HBU) fuel. The clad of the HBR fuels was made of Zircaloy-4. Testing was continued in fiscal year (FY) 2014 using Department of Energy (DOE) funds. The additional CIRFT was conducted on three HBR rods (R3, R4, and R5) in which two specimens failed and one specimen was tested to over 2.23 10⁷ cycles without failing. The data analysis on all the HBR UNF rods demonstrated that it is necessary to characterize the fatigue life of the UNF rods in terms of (1) the curvature amplitude and (2) the maximum absolute of curvature extremes. The maximum extremes are significant because they signify the maximum of tensile stress for the outer fiber of the bending rod. CIRFT testing has also addressed a large variation in hydrogen content on the HBR rods. While the load amplitude is the dominant factor that controls the fatigue life of bending rods, the hydrogen content also has an important effect on the lifetime attained at each load range tested. In FY 15, ten SNF rod segments from BWR Limerick were tested using ORNL CIRFT, with one under static and nine dynamic loading conditions. Under static unidirectional loading, a moment of 85 N·m was obtained at maximum curvature 4.0 m⁻¹. The specimen did not show any sign of failure in three repeated loading cycles to almost same maximum curvature. Ten cyclic tests were conducted with amplitude varying from 15.2 to 7.1 N·m. Failure was observed in nine of the tested rod specimens. The cycles to failure were

  11. Summary of dynamic analyses of the advanced neutron source reactor inner control rods

    SciTech Connect

    Hendrich, W.R.

    1995-08-01

    A summary of the structural dynamic analyses that were instrumental in providing design guidance to the Advanced Neutron source (ANS) inner control element system is presented in this report. The structural analyses and the functional constraints that required certain performance parameters were combined to shape and guide the design effort toward a prediction of successful and reliable control and scram operation to be provided by these inner control rods.

  12. CONTROL ROD

    DOEpatents

    Zinn, W.H.; Ross, H.V.

    1958-11-18

    A control rod is described for a nuclear reactor. In certaln reactor designs it becomes desirable to use a control rod having great width but relatively llttle thickness. This patent is addressed to such a need. The neutron absorbing material is inserted in a triangular tube, leaving volds between the circular insert and the corners of the triangular tube. The material is positioned within the tube by the use of dummy spacers to achleve the desired absorption pattern, then the ends of the tubes are sealed with suitable plugs. The tubes may be welded or soldered together to form two flat surfaces of any desired width, and covered with sheetmetal to protect the tubes from damage. This design provides a control member that will not distort under the action of outside forces or be ruptured by gases generated within the jacketed control member.

  13. Control rod driveline and grapple

    DOEpatents

    Germer, John H.

    1987-01-01

    A control rod driveline and grapple is disclosed for placement between a control rod drive and a nuclear reactor control rod containing poison for parasitic neutron absorption required for reactor shutdown. The control rod is provided with an enlarged cylindrical handle which terminates in an upwardly extending rod to provide a grapple point for the driveline. The grapple mechanism includes a tension rod which receives the upwardly extending handle and is provided with a lower annular flange. A plurality of preferably six grapple segments surround and grip the control rod handle. Each grapple rod segment grips the flange on the tension rod at an interior upper annular indentation, bears against the enlarged cylindrical handle at an intermediate annulus and captures the upwardly flaring frustum shaped handle at a lower and complementary female segment. The tension rods and grapple segments are surrounded by and encased within a cylinder. The cylinder terminates immediately and outward extending annulus at the lower portion of the grapple segments. Excursion of the tension rod relative to the encasing cylinder causes rod release at the handle by permitting the grapple segments to pivot outwardly and about the annulus on the tension rod so as to open the lower defined frustum shaped annulus and drop the rod. Relative movement between the tension rod and cylinder can occur either due to electromagnetic release of the tension rod within defined limits of travel or differential thermal expansion as between the tension rod and cylinder as where the reactor exceeds design thermal limits.

  14. Rod consolidation of RG and E's (Rochester Gas and Electric Corporation) spent PWR (pressurized water reactor) fuel

    SciTech Connect

    Bailey, W.J.

    1987-05-01

    The rod consolidation demonstration involved pulling the fuel rods from five fuel assemblies from Unit 1 of RG and E's R.E. Ginna Nuclear Power Plant. Slow and careful rod pulling efforts were used for the first and second fuel assemblies. Rod pulling then proceeded smoothly and rapidly after some minor modifications were made to the UST and D consolidation equipment. The compaction ratios attained ranged from 1.85 to 2.00 (rods with collapsed cladding were replaced by dummy rods in one fuel assembly to demonstrate the 2:1 compaction ratio capability). This demonstration involved 895 PWR fuel rods, among which there were some known defective rods (over 50 had collapsed cladding); no rods were broken or dropped during the demonstration. However, one of the rods with collapsed cladding unexplainably broke during handling operations (i.e., reconfiguration in the failed fuel canister), subsequent to the rod consolidation demonstration. The broken rod created no facility problems; the pieces were encapsulated for subsequent storage. Another broken rod was found during postdemonstration cutting operations on the nonfuel-bearing structural components from the five assemblies; evidence indicates it was broken prior to any rod consolidation operations. During the demonstration, burnish-type lines or scratches were visible on the rods that were pulled; however, experience indicates that such lines are generally produced when rods are pulled (or pushed) through the spacer grids. Rods with collapsed cladding would not enter the funnel (the transition device between the fuel assembly and the canister that aids in obtaining high compaction ratios). Reforming of the flattened areas of the cladding on those rods was attempted to make the rod cross sections more nearly circular; some of the reformed rods passed through the funnel and into the canister.

  15. Long rod penetration test of hot isostatically pressed Ti-based targets

    NASA Astrophysics Data System (ADS)

    Nesterenko, Vitali F.; Indrakanti, Sastry S.; Brar, Singh; Gu, YaBei

    2000-04-01

    Hot Isostatic Pressing (HIP) is one of the most efficient techniques to produce high quality materials from powders. Nevertheless there is a shortage of data on high-strain-rate behavior and penetration resistance of such materials. In this paper the results of penetration test with tungsten (93%) heavy alloy penetrators of solid and porous composite samples of Ti-6Al-4V alloy with different microstructures (Widmanstatten pattern and equiaxed) are presented. Penetration depth for HIPed materials is smaller than in baseline samples of Ti-6Al-4V alloy (forged rod MIL-T-9047G). Composite materials with alumina rods and tubes filled with B4C powders demonstrated a new features of penetration: projectile deflection with self sealing of hole and forced shear localization caused by tubes fracture. The results demonstrate the applicability of HIPing for Ti-based armor materials.

  16. Long Rod Penetration Test of Hot Isostatically Pressed Ti-based Targets

    NASA Astrophysics Data System (ADS)

    Nesterenko, Vitali; Indrakanti, Sastry; Singh Brar, N.; Gu, Yabei

    1999-06-01

    Hot Isostatic Pressing (HIP) is one of the most efficient techniques to produce materials from powders. Nevertheless there is a shortage of data on high-strain-rate behavior and penetration resistance of such materials. In this paper the results of penetration test (tungsten rod, velocity 886-960 m/s, diameter D=4.98 mm, L/D=10) with solid and porous composite samples of Ti-6Al-4V alloy with different microstructures (Widmanstatten pattern and equiaxed) will be reported. Milling of rapidly solidified Ti-6Al-4V powders prior to HIPing ensured the equiaxed final microstructure with increased compressive yield strength and microhardness (1180 and 3370 MPa correspondingly). Interstitial content was suitable for armor applications in some of the processing routes. Penetration depth for HIPed materials(14-15 mm) is smaller than in baseline samples of Ti-6Al-4V alloy (forged rod MIL-T-9047G). The results demonstrate the applicability of HIPing for Ti-based composite armor materials.

  17. CRUCIFORM CONTROL ROD JOINT

    DOEpatents

    Thorp, A.G. II

    1962-08-01

    An invention is described which relates to nuclear reactor control rod components and more particularly to a joint between cruciform control rod members and cruciform control rod follower members. In one embodiment this invention provides interfitting crossed arms at adjacent ends of a control rod and its follower in abutting relation. This holds the members against relative opposite longitudinal movement while a compression member keys the arms against relative opposite rotation around a common axis. Means are also provided for centering the control rod and its follower on a common axis and for selectively releasing the control rod from its follower for the insertion of a replacement of the control rod and reuse of the follower. (AEC)

  18. Rodding Surgery

    MedlinePlus

    ... Rods can be made of stainless steel or titanium. Regular rods do not expand. They have many ... v regular), the rod materials (stainless steel v titanium) and the age for a first rodding surgery. ...

  19. Variable reluctance electric motor for the translation of control rods in a nuclear reactor

    SciTech Connect

    Guedj, F.; Defaucheux, J.; Wiart, A.

    1985-04-02

    In accordance with the invention, the motor includes: a rotor component composed of a shaft of magnetic material provided with regularly spaced projections, and a stator component comprising at least three multipolar stators encircling the shaft consecutively, each polar core having cavities on the shaft side so as to constitute projections of the same width and spacing as those of the shaft, with the spacing between stators being such that the projections of the shaft and those of the polar cores face one another for only one of the stators. A tight casing is arranged to intersect the stator magnetic circuit and magnetic parts extend the polar core to the interior of the casing. Application to nuclear reactors.

  20. DESCRIPTION OF THE TRITIUM-PRODUCING BURNABLE ABSORBER ROD FOR THE COMMERCIAL LIGHT WATER REACTOR TTQP-1-015 Rev 19

    SciTech Connect

    Burns, Kimberly A.; Love, Edward F.; Thornhill, Cheryl K.

    2012-02-01

    Tritium-producing burnable absorber rods (TPBARs) used in the U.S. Department of Energy’s Tritium Readiness Program are designed to produce tritium when placed in a Westinghouse or Framatome 17x17 fuel assembly and irradiated in a pressurized water reactor (PWR). This document provides an unclassified description of the current design baseline for the TPBARs. This design baseline is currently valid only for Watts Bar reactor production cores. A description of the Lead Use TPBARs will not be covered in the text of the document, but the applicable drawings, specifications and test plan will be included in the appropriate appendices.

  1. Experimental investigations on decay heat removal in advanced nuclear reactors using single heater rod test facility: Air alone in the annular gap

    SciTech Connect

    Bopche, Santosh B.; Sridharan, Arunkumar

    2010-11-15

    During a loss of coolant accident in nuclear reactors, radiation heat transfer accounts for a significant amount of the total heat transfer in the fuel bundle. In case of heavy water moderator nuclear reactors, the decay heat of a fuel bundle enclosed in the pressure tube and outer concentric calandria tube can be transferred to the moderator. Radiation heat transfer plays a significant role in removal of decay heat from the fuel rods to the moderator, which is available outside the calandria tube. A single heater rod test facility is designed and fabricated as a part of preliminary investigations. The objective is to anticipate the capability of moderator to remove decay heat, from the reactor core, generated after shut down. The present paper focuses mainly on the role of moderator in removal of decay heat, for situation with air alone in the annular gap of pressure tube and calandria tube. It is seen that the naturally aspirated air is capable of removing the heat generated in the system compared to the standstill air or stagnant water situations. It is also seen that the flowing moderator is capable of removing a greater fraction of heat generated by the heater rod compared to a stagnant pool of boiling moderator. (author)

  2. Solid-state flow, mechanical alloying, and melt-related phenomena for [001] single-crystal tungsten ballistic rod penetrators interacting with steel targets

    NASA Astrophysics Data System (ADS)

    Pizana, Carlos

    This research program consists of a detailed microstructural investigation of in-target, single-crystal [001], clad (with Inconel 718) and unclad, W long-rod, ballistic penetrators. The rods were shot into rolled homogeneous armor (RHA) steel targets approximately 76 mm in thickness at impact velocities ranging from 1100 m/s to 1350 m/s. A comprehensive microstructural overview of the penetration process was obtained from this investigation. Solid-state flow/erosion, solid-state target/rod mixing as well as influencing factors such as strain rate, penetration performance, cladding interference and the interaction between target and projectile were emphasized. Some of the microstructural features observed, including deformation twins, cleaving, adiabatic shear bands and DRX support an overall solid-state penetration process. Furthermore they provide for a unifying perspective for the applicability of the hydrodynamic paradigm (DOP ≈ l∘rp/rt ) and earlier mechanistic erosion approaches. DRX and grain growth within adiabatic shear bands observed at specific high strain/strain-rate zones within the rods suggest that the projectile erodes by means of these microstructures in a solid-state form. This erosion process contributes to the performance of the rod by either allowing optimum flow of rod material which would increase penetration depth, or by maximizing rod material consumption which would reduce it. Since flow and/or erosion are also necessary in the target for perforation to occur, it is not surprising that the erosion process in the target was observed to mirror the one in the projectile. That is both target and projectile developed erosion zones with DRX facilitating the extreme deformation via dense overlapping shear band formation. Mechanical alloying and/or mixing of the target (steel) and rod (W, or W-Inconel 718) was also observed and investigated. Selective etching techniques as well as energy-dispersive x-ray mapping revealed unambiguous evidence of

  3. Reactor Physics Characterization of Transmutation Targeting Options in a Sodium Fast Reactor

    SciTech Connect

    Samuel E. Bays

    2007-04-01

    In sodium fast reactor designs, the fuel related inherent negative reactivity feedback is accomplished mainly through parasitic capture in U-238. However for an efficient minor actinide burning system, it is desirable to reduce or eliminate U-238 entirely to suppress further transuranic actinide generation. Consequently, reactivity feedback is accomplished by enhancing axial neutron streaming during a loss of coolant void situation. This is done by flattening “pancake” the active core geometry. Flattening the reactor also increases axial leakage which removes neutrons that could otherwise be used to destroy minor actinides. Therefore, it is important to tailor the neutron spectrum in the core for optimized feedback and minor actinide destruction simultaneously by using minor actinide and fission product targets.

  4. Locked-wrap fuel rod

    DOEpatents

    Kaplan, Samuel; Chertock, Alan J.; Punches, James R.

    1977-01-01

    A method for spacing fast reactor fuel rods using a wire wrapper improved by orienting the wire-wrapped fuel rods in a unique manner which introduces desirable performance characteristics not attainable by previous wire-wrapped designs. Use of this method in a liquid metal fast breeder reactor results in: (a) improved mechanical performance, (b) improved rod-to-rod contact, (c) reduced steel volume, and (d) improved thermal-hydraulic performance. The method produces a "locked wrap" design which tends to lock the rods together at each of the wire cluster locations.

  5. Synergistic Targeting of Cell Membrane, Cytoplasm and Nucleus of Cancer Cells using Rod-Shaped Nanoparticles

    PubMed Central

    Barua, Sutapa; Mitragotri, Samir

    2014-01-01

    Design of carriers for effective delivery and targeting of drugs to cellular and sub-cellular compartments is an unmet need in medicine. Here, we report pure drug nanoparticles comprising camptothecin (CPT), trastuzumab (TTZ) and doxorubicin (DOX) to enable cell-specific interactions, subcellular accumulation and growth inhibition of breast cancer cells. CPT is formulated in the form of nanorods which are coated with TTZ. DOX is encapsulated in the TTZ corona around the CPT nanoparticle. Our results show that TTZ/DOX-coated CPT nanorods exhibit cell-specific internalization in BT-474 breast cancer cells, after which TTZ is recycled to the plasma membrane leaving CPT nanorods in the perinuclear region and delivering DOX into the nucleus of the cells. The effects of CPT-TTZ-DOX nanoparticles on growth inhibition are synergistic (combination index = 0.17±0.03) showing 10-10,000 fold lower inhibitory concentrations (IC50) compared to those of individual drugs. The design of antibody-targeted pure drug nanoparticles offers a promising design strategy to facilitate intracellular delivery and therapeutic efficiency of anticancer drugs. PMID:24053162

  6. Simultaneous nuclear data target accuracy study for innovative fast reactors.

    SciTech Connect

    Aliberti, G.; Palmiotti, G.; Salvatores, M.; Nuclear Engineering Division; INL; CEA Cadarache

    2007-01-01

    The present paper summarizes the major outcomes of a study conducted within a Nuclear Energy Agency Working Party on Evaluation Cooperation (NEA WPEC) initiative aiming to investigate data needs for future innovative nuclear systems, to quantify them and to propose a strategy to meet them. Within the NEA WPEC Subgroup 26 an uncertainty assessment has been carried out using covariance data recently processed by joint efforts of several US and European Labs. In general, the uncertainty analysis shows that for the wide selection of fast reactor concepts considered, the present integral parameters uncertainties resulting from the assumed uncertainties on nuclear data are probably acceptable in the early phases of design feasibility studies. However, in the successive phase of preliminary conceptual designs and in later design phases of selected reactor and fuel cycle concepts, there will be the need for improved data and methods, in order to reduce margins, both for economic and safety reasons. It is then important to define as soon as possible priority issues, i.e. which are the nuclear data (isotope, reaction type, energy range) that need improvement, in order to quantify target accuracies and to select a strategy to meet the requirements needed (e.g. by some selected new differential measurements and by the use of integral experiments). In this context one should account for the wide range of high accuracy integral experiments already performed and available in national or, better, international data basis, in order to indicate new integral experiments that will be needed to account for new requirements due to innovative design features, and to provide the necessary full integral data base to be used for validation of the design simulation tools.

  7. Inverted Control Rod Lock-In Device

    DOEpatents

    Brussalis, W. G.; Bost, G. E.

    1962-12-01

    A mechanism which prevents control rods from dropping out of the reactor core in the event the vessel in which the reactor is mounted should capsize is described. The mechanism includes a pivoted toothed armature which engages the threaded control rod lead screw and prevents removal of the rod whenever the armature is not attracted by the provided electromagnetic means. (AEC)

  8. SNAREs Interact with Retinal Degeneration Slow and Rod Outer Segment Membrane Protein-1 during Conventional and Unconventional Outer Segment Targeting

    PubMed Central

    Zulliger, Rahel; Conley, Shannon M.; Mwoyosvi, Maggie L.; Stuck, Michael W.; Azadi, Seifollah; Naash, Muna I.

    2015-01-01

    Mutations in the photoreceptor protein peripherin-2 (also known as RDS) cause severe retinal degeneration. RDS and its homolog ROM-1 (rod outer segment protein 1) are synthesized in the inner segment and then trafficked into the outer segment where they function in tetramers and covalently linked larger complexes. Our goal is to identify binding partners of RDS and ROM-1 that may be involved in their biosynthetic pathway or in their function in the photoreceptor outer segment (OS). Here we utilize several methods including mass spectrometry after affinity purification, in vitro co-expression followed by pull-down, in vivo pull-down from mouse retinas, and proximity ligation assay to identify and confirm the SNARE proteins Syntaxin 3B and SNAP-25 as novel binding partners of RDS and ROM-1. We show that both covalently linked and non-covalently linked RDS complexes interact with Syntaxin 3B. RDS in the mouse is trafficked from the inner segment to the outer segment by both conventional (i.e., Golgi dependent) and unconventional secretory pathways, and RDS from both pathways interacts with Syntaxin3B. Syntaxin 3B and SNAP-25 are enriched in the inner segment (compared to the outer segment) suggesting that the interaction with RDS/ROM-1 occurs in the inner segment. Syntaxin 3B and SNAP-25 are involved in mediating fusion of vesicles carrying other outer segment proteins during outer segment targeting, so could be involved in the trafficking of RDS/ROM-1. PMID:26406599

  9. Penetration of rod projectiles in semi-infinite targets : a validation test for Eulerian X-FEM in ALEGRA.

    SciTech Connect

    Park, Byoung Yoon; Leavy, Richard Brian; Niederhaus, John Henry J.

    2013-03-01

    The finite-element shock hydrodynamics code ALEGRA has recently been upgraded to include an X-FEM implementation in 2D for simulating impact, sliding, and release between materials in the Eulerian frame. For validation testing purposes, the problem of long-rod penetration in semi-infinite targets is considered in this report, at velocities of 500 to 3000 m/s. We describe testing simulations done using ALEGRA with and without the X-FEM capability, in order to verify its adequacy by showing X-FEM recovers the good results found with the standard ALEGRA formulation. The X-FEM results for depth of penetration differ from previously measured experimental data by less than 2%, and from the standard formulation results by less than 1%. They converge monotonically under mesh refinement at first order. Sensitivities to domain size and rear boundary condition are investigated and shown to be small. Aside from some simulation stability issues, X-FEM is found to produce good results for this classical impact and penetration problem.

  10. SAFETY SYSTEM FOR CONTROL ROD

    DOEpatents

    Paget, J.A.

    1963-05-14

    A structure for monitoring the structural continuity of a control rod foi a neutron reactor is presented. A electric conductor readily breakable under mechanical stress is fastened along the length of the control rod at a plurality of positions and forms a closed circuit with remote electrical components responsive to an open circuit. A portion of the conductor between the control rod and said components is helically wound to allow free and normally unrestricted movement of the segment of conductor secured to the control rod relative to the remote components. Any break in the circuit is indicative of control rod breakage. (AEC)

  11. Hafnium stainless steel absorber rod for control rod

    SciTech Connect

    Charnley, J.E.; Cearley, J.E.; Dixon, R.C.; Izzo, K.R.; Aiello, L.L.

    1989-08-01

    This patent describes an improvement in a control rod having a stainless steel body for enclosing a neutron absorbing poison, the control rod having movement along an axial direction for insertion into and out of a nuclear reactor for controlling a nuclear reaction. The improvement comprising: a piece of hafnium; a piece of stainless steel joined to the hafnium by a thin diffusion interface created by friction welding. The hafnium and the stainless steel oriented serially in the axial direction with the thin diffusion interface disposed normal to the axial direction of the control rod movement; means for confining the hafnium to movement along the axial direction with the control rod; and means for attaching the piece of stainless steel to the remaining portion of the control rod to load the weld therebetween under compression or tension during the control rod movement. Whereby the thin diffusion interface is loaded in tension or compression only upon dynamic movement of the control rod.

  12. Double-clad nuclear fuel safety rod

    DOEpatents

    McCarthy, William H.; Atcheson, Donald B.; Vaidyanathan, Swaminathan

    1984-01-01

    A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

  13. High temperature post-irradiation performance of spent pressurized-water-reactor fuel rods under dry-storage conditions

    SciTech Connect

    Einziger, R.E.; Atkin, S.D.; Stellrecht, D.E.; Pasupathi, V.

    1981-06-01

    Post-irradiation studies on failure mechanisms of well characterized PWR rods were conducted for up to a year at 482, 510 and 571/sup 0/C in unlimited air and inert gas atmospheres. No cladding breaches occurred even though the tests operated many orders of magnitude longer in time than the lifetime predicted by Blackburn's analyses. The extended lifetime is due to significant creep strain of the Zircaloy cladding which decreases the internal rod pressures. The cladding creep also contributes to radial cracks, through the external oxide and internal FCCI layers, which propagated into and arrested in an oxygen stabilized ..cap alpha..-Zircaloy layer. There were no signs of either additional cladding hydriding, stress-corrosion cracking or fuel pellet degradation. Using the Larson-Miller formulization, a conservative maximum storage temperature of 400/sup 0/C is recommended to ensure a 1000-year cladding lifetime. This accounts for crack propagation and assumes annealing of the irradiation-hardened cladding.

  14. Assemblies with both target and fuel pins in an isotope-production reactor

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins adjacent to fuel pins in order to increase the tritium production rate.

  15. Vented target elements for use in an isotope-production reactor. [LMFBR

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium gas in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins equipped with vents, and tritium gas is recovered from the coolant.

  16. Fuel pins with both target and fuel pellets in an isotope-production reactor

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target pellets are placed in close contact with fissile fuel pellets in order to increase the tritium production rate.

  17. NUCLEAR REACTOR

    DOEpatents

    Moore, R.V.; Bowen, J.H.; Dent, K.H.

    1958-12-01

    A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.

  18. Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect

    Shott, Gregory

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  19. A particle assembly/constrained expansion (PACE) model for the formation and structure of porous metal oxide deposits on nuclear fuel rods in pressurized light water reactors

    NASA Astrophysics Data System (ADS)

    Brenner, Donald W.; Lu, Shijing; O'Brien, Christopher J.; Bucholz, Eric W.; Rak, Zsolt

    2015-02-01

    A new model is proposed for the structure and properties of porous metal oxide scales (aka Chalk River Unidentified Deposits (CRUD)) observed on the nuclear fuel rod cladding in Pressurized Water Reactors (PWR). The model is based on the thermodynamically-driven expansion of agglomerated octahedral nickel ferrite particles in response to pH and temperature changes in the CRUD. The model predicts that porous nickel ferrite with internal {1 1 1} surfaces is a thermodynamically stable structure under PWR conditions even when the free energy of formation of bulk nickel ferrite is positive. This explains the pervasive presence of nickel ferrite in CRUD, observed CRUD microstructures, why CRUD maintains its porosity, and variations in porosity within the CRUD observed experimentally. This model is a stark departure from decades of conventional wisdom and detailed theoretical analysis of CRUD chemistry, and defines new research directions for model validation, and for understanding and ultimately controlling CRUD formation.

  20. Minor Actinide Recycle in Sodium Cooled Fast Reactors Using Heterogeneous Targets

    SciTech Connect

    Samuel Bays; Pavel Medvedev; Michael Pope; Rodolfo Ferrer; Benoit Forget; Mehdi Asgari

    2009-04-01

    This paper investigates the plausible design of transmutation target assemblies for minor actinides (MA) in Sodium Fast Reactors (SFR). A heterogeneous recycling strategy is investigated, whereby after each reactor pass, un-burned MAs from the targets are blended with MAs produced by the driver fuel and additional MAs from Spent Nuclear Fuel (SNF). A design iteration methodology was adopted for customizing the core design, target assembly design and matrix composition design. The overall design was constrained against allowable peak or maximum in-core performances. While respecting these criteria, the overall design was adjusted to reduce the total number of assemblies fabricated per refueling cycle. It was found that an inert metal-hydride MA-Zr-Hx target matrix gave the highest transmutation efficiency, thus allowing for the least number of targets to be fabricated per reactor cycle.

  1. MicroRNA-499 Expression Distinctively Correlates to Target Genes sox6 and rod1 Profiles to Resolve the Skeletal Muscle Phenotype in Nile Tilapia

    PubMed Central

    Carvalho, Robson F.; Martins, Cesar; Pinhal, Danillo

    2015-01-01

    A class of small non-coding RNAs, the microRNAs (miRNAs), has been shown to be essential for the regulation of specific cell pathways, including skeletal muscle development, maintenance and homeostasis in vertebrates. However, the relative contribution of miRNAs for determining the red and white muscle cell phenotypes is far from being fully comprehended. To better characterize the role of miRNA in skeletal muscle cell biology, we investigated muscle-specific miRNA (myomiR) signatures in Nile tilapia fish. Quantitative (RT-qPCR) and spatial (FISH) expression analyses revealed a highly differential expression (forty-four-fold) of miR-499 in red skeletal muscle compared to white skeletal muscle, whereas the remaining known myomiRs were equally expressed in both muscle cell types. Detailed examination of the miR-499 targets through bioinformatics led us to the sox6 and rod1 genes, which had low expression in red muscle cells according to RT-qPCR, FISH, and protein immunofluorescence profiling experiments. Interestingly, we verified that the high expression of miR-499 perfectly correlates with a low expression of sox6 and rod1 target genes, as verified by a distinctive predominance of mRNA destabilization and protein translational decay to these genes, respectively. Through a genome-wide comparative analysis of SOX6 and ROD1 protein domains and through an in silico gene regulatory network, we also demonstrate that both proteins are essentially similar in vertebrate genomes, suggesting their gene regulatory network may also be widely conserved. Overall, our data shed light on the potential regulation of targets by miR-499 associated with the slow-twitch muscle fiber type phenotype. Additionally the results provide novel insights into the evolutionary dynamics of miRNA and target genes enrolled in a putative constrained molecular pathway in the skeletal muscle cells of vertebrates. PMID:25793727

  2. Fuel followed control rod installation at AFRRI

    SciTech Connect

    Moore, Mark; Owens, Chris; Forsbacka, Matt

    1992-07-01

    Fuel Followed Control Rods (FFCRs) were installed at the Armed Forces Radiobiology Research Institute's 1 MW TRIGA Reactor. The procedures for obtaining, shipping, and installing the FFCRs is described. As part of the FFCR installation, the transient rod drive was relocated. Core performance due to the addition of the fuel followed control rods is discussed. (author)

  3. ELECTROMAGNETIC APPARATUS FOR MOVING A ROD

    DOEpatents

    Young, J.N.

    1958-04-22

    An electromagnetic apparatus for moving a rod-like member in small steps in either direction is described. The invention has particular application in the reactor field where the reactor control rods must be moved only a small distance and where the use of mechanical couplings is impractical due to the high- pressure seals required. A neutron-absorbing rod is mounted in a housing with gripping uaits that engage the rod, and coils for magnetizing the gripping units to make them grip, shift, and release the rod are located outside the housing.

  4. Nondestructive post-irradiation examination of Loop-1, S1 and B1 rods

    SciTech Connect

    Bratton, R.L.

    1997-05-01

    As a part of the Pacific Northwest National Laboratory`s Tritium Target Development Program, eleven tritium target rods were irradiated in the Advanced Test Reactor located at the Idaho National Engineering and Environmental Laboratory during 1991. Both nondestructive and destructive post-irradiation examination on all eleven rods was planned under the Tritium Target Development Program. Funding for the program was reduced in 1991 resulting in the early removal of the program experiments before reaching their irradiation goals. Post-irradiation examination was only performed on one of the irradiated rods at the Pacific Northwest National Laboratory before the program was terminated in 1992. On December 6, 1995, the Secretary of Energy announced the pursuit of the Commercial Light-Water Reactor option for producing tritium establishing the Tritium Target Qualification Program at the Pacific Northwest National Laboratory. This program decided to pursue nondestructive and destructive post-irradiation examination of the ten remaining rods from the previous program. The ten rods comprise three experiments. The Loop-1 experiment irradiated eight target rods in a loop configuration for 217 irradiation days. The other two rods were irradiated in two separate irradiation experiments, designated as S1 and B1 for 143 effective full-power days, but at different power levels. After the ten rods were transferred from the ATR Canal to the Hot Fuels Examination Facility, the following examinations were performed: (1) visual examination and photography; (2) neutron radiography; (3) axial gamma scanning; (4) contact profilometry measurement; (5) bow and length measurements; (6) rod puncture and plenum gas analysis/measurement of plenum gas quantity; (7) void volume determination; and (8) internal pressure determination. This report presents the data collected during these examinations.

  5. COMPOSITE CONTROL ROD

    DOEpatents

    Rock, H.R.

    1963-12-24

    A composite control rod for use in controlling a nuclear reactor is described. The control rod is of sandwich construction in which finned dowel pins are utilized to hold together sheets of the neutron absorbing material and nonabsorbing structural material thereby eliminating the need for being dependent on the absorbing material for structural support. The dowel pins perform the function of absorbing the forces due to differential thermal expansion, seating further with the fins into the sheets of material and crushing before damage is done either to the absorbing or non-absorbing material. (AEC)

  6. Nuclear design of Helical Cruciform Fuel rods

    SciTech Connect

    Shirvan, K.; Kazimi, M. S.

    2012-07-01

    In order to increase the power density of current and new light water reactor designs, the Helical Cruciform Fuel (HCF) rods are proposed. The HCF rods are equivalent to a cylindrical rod, with the fuel in a cruciform shaped, twisted axially. The HCF rods increase the surface area to volume ratio and inter-subchannel mixing behavior due to their cruciform and helical shapes, respectively. In a previous study, the HCF rods have shown the potential to up-rate existing PWRs by 50% and BWRs by 25%. However, HCF rods do display different neutronics modeling and performance. The cruciform cross section of HCF rods creates radially asymmetric heat generation and temperature distribution. The nominal HCF rod's beginning of life reactivity is reduced, compared to a cylindrical rod with the same fuel volume, by 500 pcm, due to increase in absorption in cladding. The rotation of these rods accounts for reactivity changes, which depends on the H/HM ratio of the pin cell. The HCF geometry shows large sensitivities to U{sup 235} or gadolinium enrichments compared to a cylindrical geometry. In addition, the gadolinium-containing HCF rods show a stronger effect on neighboring HCF rods than in case of cylindrical rods, depending on the orientation of the HCF rods. The helical geometry of the rods introduces axial shadowing of about 600 pcm, not seen in typical cylindrical rods. (authors)

  7. Parametric study of spallation targets for the MYRRHA reactor using MCNPX simulations

    NASA Astrophysics Data System (ADS)

    Rebello, A. L. P.; Martinez, A. S.; Gonçalves, A. C.

    2014-06-01

    The present work aims to evaluate the behavior of neutron multiplicity in a spallation target using MCNPX simulations, focusing on its application in the MYRRHA reactor. It was studied the two types of spallation target proposed for the MYRRHA project, windowless and windows target, in order to compare them and find saturation boundaries. Some saturation boundaries were found and the windowless target proved to be as viable as the windows one. Each one produced nearly the same number of neutrons per incident proton. Using the concept of neutron cost, it was also observed that the optimum conditions on neutron production occur at about 1GeV, for both target designs.

  8. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  9. Systems and methods for processing irradiation targets through a nuclear reactor

    DOEpatents

    Dayal, Yogeshwar; Saito, Earl F.; Berger, John F.; Brittingham, Martin W.; Morales, Stephen K.; Hare, Jeffrey M.

    2016-05-03

    Apparatuses and methods produce radioisotopes in instrumentation tubes of operating commercial nuclear reactors. Irradiation targets may be inserted and removed from instrumentation tubes during operation and converted to radioisotopes otherwise unavailable during operation of commercial nuclear reactors. Example apparatuses may continuously insert, remove, and store irradiation targets to be converted to useable radioisotopes or other desired materials at several different origin and termination points accessible outside an access barrier such as a containment building, drywell wall, or other access restriction preventing access to instrumentation tubes during operation of the nuclear plant.

  10. A kinetic model for impact/sliding wear of pressurized water reactor internal components: Application to rod cluster control assemblies

    SciTech Connect

    Zbinden, M.; Durbec, V.

    1996-12-01

    Certain internal components of Pressurized Water Reactors are damaged by wear when subjected to vibration induced by flow. In order to enable predictive calculation of such wear, one must have a model which takes account reliably of real damages. The modelling of wear represents a final link in a succession of numerical calculations which begins by the determination of hydraulic excitations induced by the flow. One proceeds, then, in the dynamic response calculation of the structure to finish up with an estimation of volumetric wear and of the depth of wear scars. A new concept of industrial wear model adapted to components of nuclear plants is proposed. Its originality is to be supported, on one hand, by experimental results obtained via wear machines of relatively short operational times, and, on the other hand, by the information obtained from the operating feedback over real wear kinetics of the reactors components. The proposed model is illustrated by an example which correspond to a specific real situation. The determination of the coefficients permitting to cover all assembly of configurations and the validation of the model in these configurations have been the object of the most recent work.

  11. Neutronic Assessment of Transmutation Target Compositions in Heterogeneous Sodium Fast Reactor Geometries

    SciTech Connect

    Samuel E. Bays; Rodolfo M. Ferrer; Michael A. Pope; Benoit Forget; Mehdi Asgari

    2008-02-01

    The sodium fast reactor is under consideration for consuming the transuranic waste in the spent nuclear fuel generated by light water reactors. This work is concerned with specialized target assemblies for an oxide-fueled sodium fast reactor that are designed exclusively for burning the americium and higher mass actinide component of light water reactor spent nuclear fuel (SNF). The associated gamma and neutron radioactivity, as well as thermal heat, associated with decay of these actinides may significantly complicate fuel handling and fabrication of recycled fast reactor fuel. The objective of using targets is to isolate in a smaller number of assemblies these concentrations of higher actinides, thus reducing the volume of fuel having more rigorous handling requirements or a more complicated fabrication process. This is in contrast to homogeneous recycle where all recycled actinides are distributed among all fuel assemblies. Several heterogeneous core geometries were evaluated to determine the fewest target assemblies required to burn these actinides without violating a set of established fuel performance criteria. The DIF3D/REBUS code from Argonne National Laboratory was used to perform the core physics and accompanying fuel cycle calculations in support of this work. Using the REBUS code, each core design was evaluated at the equilibrium cycle condition.

  12. Production of {sup 99}Mo using LEU and molybdenum targets in a 1 MW Triga reactor

    SciTech Connect

    Mo, S.C.

    1993-12-31

    The production of {sup 99}Mo using Low Enriched Uranium (LEU) and natural molybdenum targets in a 1 MW Triga reactor is investigated. The successive linear programming technique is applied to minimize the target loadings for different yield constraints. The irradiation time is related to the kinetics of the growth and decay of {sup 99}Mo. The feasibility of a neutron generated based {sup 99}Mo production system is discussed.

  13. TOP OF MTR. CONTROL RODS AND GRID PLATE EMERGE FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TOP OF MTR. CONTROL RODS AND GRID PLATE EMERGE FROM REACTOR TANK. INL NEGATIVE NO. 6206. R.G. Larsen, Photographer, 6/27/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  14. Safety rod latch inspection

    SciTech Connect

    Leader, D.R.

    1992-02-01

    During an attempt to raise control rods from the 100 K reactor in December, one rod could not be withdrawn. Subsequent investigation revealed that a small button'' in the latch mechanism had broken off of the lock plunger'' and was wedged in a position that prevented rod withdrawal. Concern that this failure may have resulted from corrosion or some other metallurgical problem resulted in a request that SRL examine six typical latch mechanisms from the 100 L reactor by use of radiography and metallography. During the examination of the L-Area latches, a failed latch mechanism from the 100 K reactor was added to the investigation. Fourteen latches that had a history of problems were removed from K-Area and sent to SRL for inclusion in this study the week after the original seven assemblies were examined, bringing the total of latch assemblies discussed in this report to twenty one. Results of the examination of the K-Area latch that initiated this study is not included in this report.

  15. Safety rod latch inspection

    SciTech Connect

    Leader, D.R.

    1992-02-01

    During an attempt to raise control rods from the 100 K reactor in December, one rod could not be withdrawn. Subsequent investigation revealed that a small ``button`` in the latch mechanism had broken off of the ``lock plunger`` and was wedged in a position that prevented rod withdrawal. Concern that this failure may have resulted from corrosion or some other metallurgical problem resulted in a request that SRL examine six typical latch mechanisms from the 100 L reactor by use of radiography and metallography. During the examination of the L-Area latches, a failed latch mechanism from the 100 K reactor was added to the investigation. Fourteen latches that had a history of problems were removed from K-Area and sent to SRL for inclusion in this study the week after the original seven assemblies were examined, bringing the total of latch assemblies discussed in this report to twenty one. Results of the examination of the K-Area latch that initiated this study is not included in this report.

  16. Fuel and core testing plan for a target fueled isotope production reactor.

    SciTech Connect

    Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

    2010-12-01

    In recent years there has been an unstable supply of the critical diagnostic medical isotope 99Tc. Several concepts and designs have been proposed to produce 99Mo the parent nuclide of 99Tc, at a commercial scale sufficient to stabilize the world supply. This work lays out a testing and experiment plan for a proposed 2 MW open pool reactor fueled by Low Enriched Uranium (LEU) 99Mo targets. The experiments and tests necessary to support licensing of the reactor design are described and how these experiments and tests will help establish the safe operating envelop for a medical isotope production reactor is discussed. The experiments and tests will facilitate a focused and efficient licensing process in order to bring on line a needed production reactor dedicated to supplying medical isotopes. The Target Fuel Isotope Reactor (TFIR) design calls for an active core region that is approximately 40 cm in diameter and 40 cm in fuel height. It contains up to 150 cylindrical, 1-cm diameter, LEU oxide fuel pins clad with Zircaloy (zirconium alloy), in an annular hexagonal array on a {approx}2.0 cm pitch surrounded, radially, by a graphite or a Be reflector. The reactor is similar to U.S. university reactors in power, hardware, and safety/control systems. Fuel/target pin fabrication is based on existing light water reactor fuel fabrication processes. However, as part of licensing process, experiments must be conducted to confirm analytical predictions of steady-state power and accident conditions. The experiment and test plan will be conducted in phases and will utilize existing facilities at the U.S. Department of Energy's Sandia National Laboratories. The first phase is to validate the predicted reactor core neutronics at delayed critical, zero power and very low power. This will be accomplished by using the Sandia Critical Experiment (CX) platform. A full scale TFIR core will be built in the CX and delayed critical measurements will be taken. For low power experiments

  17. Temperature actuated automatic safety rod release

    DOEpatents

    Hutter, Ernest; Pardini, John A.; Walker, David E.

    1987-01-01

    A temperature-actuated apparatus is disclosed for releasably supporting a safety rod in a nuclear reactor, comprising a safety rod upper adapter having a retention means, a drive shaft which houses the upper adapter, and a bimetallic means supported within the drive shaft and having at least one ledge which engages a retention means of the safety rod upper adapter. A pre-determined increase in temperature causes the bimetallic means to deform so that the ledge disengages from the retention means, whereby the bimetallic means releases the safety rod into the core of the reactor.

  18. Temperature actuated automatic safety rod release

    DOEpatents

    Hutter, E.; Pardini, J.A.; Walker, D.E.

    1984-03-13

    A temperature-actuated apparatus is disclosed for releasably supporting a safety rod in a nuclear reactor, comprising a safety rod upper adapter having a retention means, a drive shaft which houses the upper adapter, and a bimetallic means supported within the drive shaft and having at least one ledge which engages a retention means of the safety rod upper adapter. A pre-determined increase in temperature causes the bimetallic means to deform so that the ledge disengages from the retention means, whereby the bimetallic means releases the safety rod into the core of the reactor.

  19. Analysis of the in-vessel control rod guide tube and subpile room shielding design for the advanced neutron source reactor

    SciTech Connect

    Gallmeier, F.X.; Bucholz, J.A.; Engle, W.W. Jr.; Williams, L.R.

    1995-08-01

    An extensive sheilding analysis of the control rod guide tube (CRGT) and the subpile room was performed for the Advanced Neutron Source (ANS) reactor. A two-dimensional model for the CRGT and subpile room was developed. Coupled 39 neutron group and 44 gamma group calculations with the multigroup DORT discrete originates transport code were done using cross sections from the ANSL-V library including photoneutron production. Different shield designs were investigated with a shield thickness of 10 to 15 mm. None of the shields affected the neutron dose rate and gamma dose rate at the top of the subpile room, which were 1 {center_dot} 10{sup 5} mrem/h and 1 {center_dot} 10{sup 3} mrem/h, respectively. An L-shaped cylindrical boral shield positioned around the core pressure boundary tube at the bottom of the reflector vessel with the horizontal part extended over the whole bottom of the reflector vessel reduced the maximal displacements per atom (DPA) level and helium production level in the primary coolant supply adapter and its flange after 40 years of reactor operation from 1 and 500 appm to 5 {center_dot} 10{sup -2} and 2 {center_dot} 10{sup -2} appm compared with the unshielded arrangement. Shields of boral and hafnium with the horizontal part of the shield restricted to a radius of 485 mm gave a maximal DPA of 5 {center_dot} 10{sup -2} and a helium production of up to 20 appm. Heat loads of up to 70 W{center_dot}cm{sup -3} were calculated at the most exposed parts of the shield both for boral and hafnium shields. A depletion/activation analysis of the hafnium shield showed that at the most exposed part of the shield, the naturally occurring isotope {sup 177}Hf is 34% depleted at the end of two years of reactor operation. This high burnup is somewhat balanced by a subsequent buildup of {sup 178}Hf, {sup 179}Hf, and {sup 180}Hf. In all other parts of the shield, the burnup is much smaller.

  20. Advanced gray rod control assembly

    DOEpatents

    Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

    2013-09-17

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

  1. Feasibility study Part I - Thermal hydraulic analysis of LEU target for {sup 99}Mo production in Tajoura reactor

    SciTech Connect

    Bsebsu, F.M.; Abotweirat, F. E-mail: abutweirat@yahoo.com; Elwaer, S.

    2008-07-15

    The Renewable Energies and Water Desalination Research Center (REWDRC), Libya, will implement the technology for {sup 99}Mo isotope production using LEU foil target, to obtain new revenue streams for the Tajoura nuclear research reactor and desiring to serve the Libyan hospitals by providing the medical radioisotopes. Design information is presented for LEU target with irradiation device and irradiation Beryllium (Be) unit in the Tajoura reactor core. Calculated results for the reactor core with LEU target at different level of power are presented for steady state and several reactivity induced accident situations. This paper will present the steady state thermal hydraulic design and transient analysis of Tajoura reactor was loaded with LEU foil target for {sup 99}Mo production. The results of these calculations show that the reactor with LEU target during the several cases of transient are in safe and no problems will occur. (author)

  2. Rod cluster having improved vane configuration

    SciTech Connect

    Shockling, L.A.; Francis, T.A.

    1989-09-05

    This patent describes a pressurized water reactor vessel, the vessel defining a predetermined axial direction of the flow of coolant therewithin and having plural spider assemblies supporting, for vertical movement within the vessel, respective clusters of rods in spaced, parallel axial relationship, parallel to the predetermined axial direction of coolant flow, and a rod guide for each spider assembly and respective cluster of rods. The rod guide having horizontally oriented support plates therewithin, each plate having an interior opening for accommodating axial movement therethrough of the spider assembly and respective cluster of rods. The opening defining plural radially extending channels and corresponding parallel interior wall surfaces of the support plate.

  3. NEUTRONIC REACTORS

    DOEpatents

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  4. NEUTRONIC REACTOR MANIPULATING DEVICE

    DOEpatents

    Ohlinger, L.A.

    1962-08-01

    A cable connecting a control rod in a reactor with a motor outside the reactor for moving the rod, and a helical conduit in the reactor wall, through which the cable passes are described. The helical shape of the conduit prevents the escape of certain harmful radiations from the reactor. (AEC)

  5. Systems and methods for managing shared-path instrumentation and irradiation targets in a nuclear reactor

    DOEpatents

    Heinold, Mark R.; Berger, John F.; Loper, Milton H.; Runkle, Gary A.

    2015-12-29

    Systems and methods permit discriminate access to nuclear reactors. Systems provide penetration pathways to irradiation target loading and offloading systems, instrumentation systems, and other external systems at desired times, while limiting such access during undesired times. Systems use selection mechanisms that can be strategically positioned for space sharing to connect only desired systems to a reactor. Selection mechanisms include distinct paths, forks, diverters, turntables, and other types of selectors. Management methods with such systems permits use of the nuclear reactor and penetration pathways between different systems and functions, simultaneously and at only distinct desired times. Existing TIP drives and other known instrumentation and plant systems are useable with access management systems and methods, which can be used in any nuclear plant with access restrictions.

  6. Degradation of gas-phase organic contaminants via nitrogen-embedded one-dimensional rod-shaped titania in a plug-flow reactor.

    PubMed

    Jo, Wan-Kuen; Kang, Hyun-Jung; Chun, Ho-Hwan

    2014-01-01

    In this study, one-dimensional rod-shaped titania (RST) and nitrogen-doped RST (N-RST) with different ratios of N to Ti were prepared using a hydrothermal method and their applications for purification of indoor toxic organic contaminants in a plug-flow reactor were examined under visible or ultraviolet (UV) irradiation. The surface characteristics of as-prepared photocatalysts were investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-visible spectroscopy. The TEM images revealed that both pure RSTs and N-RSTs displayed uniform and nanorod-shaped structures. XRD revealed that the photocatalysts had crystalline TiO2. The UV-visible spectra demonstrated that the N-RSTs could be activated in the visible region. In most cases, N-RSTs showed higher degradation efficiencies than pure RSTs under visible-light and UV irradiation. N-RSTs with a N-to-Ti ratio of 0.5 exhibited the highest degradation efficiencies of benzene, toluene, ethyl benzene, and o-xylene (BTEX), suggesting the presence of an optimal N-to-Ti ratio for preparation of N-RSTs. In addition, the average degradation efficiencies of BTEX determined for the N-RSTs with a N-to-Ti ratio of 0.5 under visible-light irradiation for the lowest initial concentration (IC, 0.1 ppm) were 19%, 53%, 85%, and 92%, respectively, while the degradation efficiencies for the highest IC (2.0 ppm) were 2%, 8%, 17%, and 33%. These values decreased as the stream flow rate increased. Overall, the as-prepared N-RSTs could be effectively applied for degradation of toxic gas-phase organic contaminants under visible-light as well as UV irradiation. PMID:25145164

  7. Double-clad nuclear-fuel safety rod

    DOEpatents

    McCarthy, W.H.; Atcheson, D.B.

    1981-12-30

    A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

  8. Rod consolidation at the West Valley Demonstration Project

    SciTech Connect

    Bailey, W.J.

    1986-12-01

    A rod consolidation demonstration with irradiated pressurized water reactor fuel was recently conducted by personnel from Nuclear Assurance Corporation and West Valley Nuclear Services Company at the West Valley Demonstration Project in West Valley, New York. The rod consolidation demonstration involved pulling all of the fuel rods from six fuel Assemblies. In general, the rod pulling proceeded smoothly. The highest compaction ratio attained was 1:8:1. Among the total of 1074 fuel rods were some known degraded rods (they had collapsed cladding, a result of in-reactor fuel densification), but no rods were broken or dropped during the demonstration. One aim was to gather information on the effect of rod consolidation operations on the integrity of the fuel rods during subsequent handling and storage. Another goal was to collect information on the condition and handling of intact, damaged, and failed fuel that has been in storage for an extended period. 9 refs., 8 figs., 1 tab.

  9. Status of rod consolidation, 1988

    SciTech Connect

    Bailey, W.J.

    1989-01-01

    It is estimated that the spent fuel storage pools at some domestic light-water reactors will run out of space before 2003, the year that the US Department of Energy currently predicts it will have a repository available. Of the methods being studied to alleviate the problem, rod consolidation is one of the leading candidates for achieving more efficient use of existing space in spent fuel storage pools. Rod consolidation involves mechanically removing all the fuel rods from the fuel assembly hardware (i.e., the structural components) and placing the fuel rods in a close-packed array in a canister without space grids. A typical goal of rod consolidation systems is to insert the fuel rods from two fuel assemblies into a canister that has the same exterior dimensions as one standard fuel assembly (i.e., to achieve a consolidation or compaction ratio of 2:1) and to compact the nonfuel-bearing structural components from those two fuel assemblies by a factor of 10 to 20. This report provides an overview of the current status of rod consolidation in the United States and a small amount of information on related activities in other countries. 85 refs., 36 figs., 5 tabs.

  10. A target station for plasma exposure of neutron irradiated fusion material samples to reactor relevant conditions

    NASA Astrophysics Data System (ADS)

    Rapp, Juergen; Giuliano, Dominic; Ellis, Ronald; Howard, Richard; Lore, Jeremy; Lumsdaine, Arnold; Lessard, Timothy; McGinnis, William; Meitner, Steven; Owen, Larry; Varma, Venugopal

    2015-11-01

    The Material Plasma Exposure eXperiment (MPEX) is a device planned to address scientific and technological gaps for the development of viable plasma facing components for fusion reactor conditions (FNSF, DEMO). It will have to address the relevant plasma conditions in a reactor divertor (electron density, electron temperature, ion fluxes) and it needs to be able to expose a-priori neutron irradiated samples. A pre design of a target station able to handle activated materials will be presented. This includes detailed MCNP as well as SCALE and MAVRIC calculations for all potential plasma-facing materials to estimate dose rates. Details on the remote handling schemes for the material samples will be presented. 2 point modeling of the linear plasma transport has been used to scope out the parameter range of the anticipated power fluxes to the target. This has been used to design the cooling capability of the target. The operational conditions of surface temperatures, plasma conditions, and oblique angle of incidence of magnetic field to target surface will be discussed. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.

  11. Targeted next generation sequencing identifies novel mutations in RP1 as a relatively common cause of autosomal recessive rod-cone dystrophy.

    PubMed

    El Shamieh, Said; Boulanger-Scemama, Elise; Lancelot, Marie-Elise; Antonio, Aline; Démontant, Vanessa; Condroyer, Christel; Letexier, Mélanie; Saraiva, Jean-Paul; Mohand-Saïd, Saddek; Sahel, José-Alain; Audo, Isabelle; Zeitz, Christina

    2015-01-01

    We report ophthalmic and genetic findings in families with autosomal recessive rod-cone dystrophy (arRCD) and RP1 mutations. Detailed ophthalmic examination was performed in 242 sporadic and arRCD subjects. Genomic DNA was investigated using our customized next generation sequencing panel targeting up to 123 genes implicated in inherited retinal disorders. Stringent filtering coupled with Sanger sequencing and followed by cosegregation analysis was performed to confirm biallelism and the implication of the most likely disease causing variants. Sequencing identified 9 RP1 mutations in 7 index cases. Eight of the mutations were novel, and all cosegregated with severe arRCD phenotype, found associated with additional macular changes. Among the identified mutations, 4 belong to a region, previously associated with arRCD, and 5 others in a region previously associated with adRCD. Our prevalence studies showed that RP1 mutations account for up to 2.5% of arRCD. These results point out for the necessity of sequencing RP1 when genetically investigating sporadic and arRCD. It further highlights the interest of unbiased sequencing technique, which allows investigating the implication of the same gene in different modes of inheritance. Finally, it reports that different regions of RP1 can also lead to arRCD. PMID:25692139

  12. NEUTRONIC REACTOR

    DOEpatents

    Creutz, E.C.; Ohlinger, L.A.; Weinberg, A.M.; Wigner, E.P.; Young, G.J.

    1959-10-27

    BS>A reactor cooled by water, biphenyl, helium, or other fluid with provision made for replacing the fuel rods with the highest plutonium and fission product content without disassembling the entire core and for promptly cooling the rods after their replacement in order to prevent build-up of heat from fission product activity is described.

  13. CONTROL FOR NEUTRONIC REACTOR

    DOEpatents

    Lichtenberger, H.V.; Cameron, R.A.

    1959-03-31

    S>A control rod operating device in a nuclear reactor of the type in which the control rod is gradually withdrawn from the reactor to a position desired during stable operation is described. The apparatus is comprised essentially of a stop member movable in the direction of withdrawal of the control rod, a follower on the control rod engageable with the stop and means urging the follower against the stop in the direction of withdrawal. A means responsive to disengagement of the follower from the stop is provided for actuating the control rod to return to the reactor shut-down position.

  14. Determination of initial fuel state and number of reactor shutdowns in archived low-burnup uranium targets

    SciTech Connect

    Byerly, Benjamin; Tandon, Lav; Hayes-Sterbenz, Anna; Martinez, Patrick; Keller, Russ; Stanley, Floyd; Spencer, Khalil; Thomas, Mariam; Xu, Ning; Schappert, Michael; Fulwyler, James

    2015-10-26

    This article presents a method for destructive analysis of irradiated uranium (U) targets, with a focus on collection and measurement of long-lived (t1/2 > ~10 years) and stable fission product isotopes of ruthenium and cesium. Long-lived and stable isotopes of these elements can provide information on reactor conditions (e.g. flux, irradiation time, cooling time) in old samples (> 5–10 years) whose short-lived fission products have decayed away. The separation and analytical procedures were tested on archived U reactor targets at Los Alamos National Laboratory as part of an effort to evaluate reactor models at low-burnup.

  15. Determination of initial fuel state and number of reactor shutdowns in archived low-burnup uranium targets

    DOE PAGESBeta

    Byerly, Benjamin; Tandon, Lav; Hayes-Sterbenz, Anna; Martinez, Patrick; Keller, Russ; Stanley, Floyd; Spencer, Khalil; Thomas, Mariam; Xu, Ning; Schappert, Michael; et al

    2015-10-26

    This article presents a method for destructive analysis of irradiated uranium (U) targets, with a focus on collection and measurement of long-lived (t1/2 > ~10 years) and stable fission product isotopes of ruthenium and cesium. Long-lived and stable isotopes of these elements can provide information on reactor conditions (e.g. flux, irradiation time, cooling time) in old samples (> 5–10 years) whose short-lived fission products have decayed away. The separation and analytical procedures were tested on archived U reactor targets at Los Alamos National Laboratory as part of an effort to evaluate reactor models at low-burnup.

  16. Fuel assembly for the production of tritium in light water reactors

    DOEpatents

    Cawley, W.E.; Trapp, T.J.

    1983-06-10

    A nuclear fuel assembly is described for producing tritium in a light water moderated reactor. The assembly consists of two intermeshing arrays of subassemblies. The first subassemblies comprise concentric annular elements of an outer containment tube, an annular target element, an annular fuel element, and an inner neutron spectrums shifting rod. The second subassemblies comprise an outer containment tube and an inner rod of either fuel, target, or neutron spectrum shifting neutral.

  17. Fuel assembly for the production of tritium in light water reactors

    DOEpatents

    Cawley, William E.; Trapp, Turner J.

    1985-01-01

    A nuclear fuel assembly is described for producing tritium in a light water moderated reactor. The assembly consists of two intermeshing arrays of subassemblies. The first subassemblies comprise concentric annular elements of an outer containment tube, an annular target element, an annular fuel element, and an inner neutron spectrums shifting rod. The second subassemblies comprise an outer containment tube and an inner rod of either fuel, target, or neutron spectrum shifting neutral.

  18. Nuclear reactor control apparatus

    DOEpatents

    Sridhar, Bettadapur N.

    1983-11-01

    Nuclear reactor core safety rod release apparatus comprises a control rod having a detent notch in the form of an annular peripheral recess at its upper end, a control rod support tube for raising and lowering the control rod under normal conditions, latches pivotally mounted on the control support tube with free ends thereof normally disposed in the recess in the control rod, and cam means for pivoting the latches out of the recess in the control rod when a scram condition occurs. One embodiment of the invention comprises an additional magnetically-operated latch for releasing the control rod under two different conditions, one involving seismic shock.

  19. NUCLEAR REACTOR

    DOEpatents

    Young, G.

    1963-01-01

    This patent covers a power-producing nuclear reactor in which fuel rods of slightly enriched U are moderated by heavy water and cooled by liquid metal. The fuel rods arranged parallel to one another in a circle are contained in a large outer closed-end conduit that extends into a tank containing the heavy water. Liquid metal is introduced into the large conduit by a small inner conduit that extends within the circle of fuel rods to a point near the lower closed end of the outer conduit. (AEC) Production Reactors

  20. Fast-acting nuclear reactor control device

    DOEpatents

    Kotlyar, Oleg M.; West, Phillip B.

    1993-01-01

    A fast-acting nuclear reactor control device for moving and positioning a fety control rod to desired positions within the core of the reactor between a run position in which the safety control rod is outside the reactor core, and a shutdown position in which the rod is fully inserted in the reactor core. The device employs a hydraulic pump/motor, an electric gear motor, and solenoid valve to drive the safety control rod into the reactor core through the entire stroke of the safety control rod. An overrunning clutch allows the safety control rod to freely travel toward a safe position in the event of a partial drive system failure.

  1. Rebirth of a control rod at the Phenix power plant

    SciTech Connect

    De Carvalho, Corinne; Vignau, Bernard; Masson, Marc

    2007-07-01

    This paper outlines the operations involved in cleaning the control rod for the complementary shutdown system in the Phenix Power Plant, the French sodium-cooled fast reactor. The Phenix reactor is controlled by six control rods and a complementary shutdown system. The latter comprises a control rod and a mechanism maintaining the rod in position by means of an electromagnet. The electromagnet is continuously supplied with power and holds the rod control assembly in position by magnetisation on a plane circular surface made from pure iron. The bearing capacity of the mechanism on the rod was initially 80 daN with a rod weight of 26.3 daN. This deteriorated progressively over time. The bearing surface of the rod and the electromagnet became contaminated with a deposit of sodium oxides and metallic particles, thus creating an air gap. This reached a figure of 36 daN in 2005 and was deemed not to be sufficient to prevent the rod from dropping at the wrong time during reactor operation. The Power Plant thus decided to replace the rod mechanism in the reactor in an initial phase, followed by the control rod itself. As the Phenix Power Plant had no spare control rods left, they initiated a 'salvage' plan, over two stages, for the rod removed from the reactor and placed in the fuel storage drum: - Inspection of the bearing surface of the rod by means of a borescope to check whether the rod could be salvaged, - A cleaning operation on the bearing face and checks on the bearing capacity of the rod. The operation is subject to very stringent requirements: the rod must not be taken out of the sodium to ensure that it can be reused in the reactor. The operation must thus take place in the fuel storage drum where there are no facilities for such an operation and where operating conditions are very hostile: high temperatures (the sodium in the fuel storage drum is at a temperature of 150 deg. C, high dose rate (3 mGy/h on the bearing surface) and the bearing surface is submerged

  2. Linear motion device and method for inserting and withdrawing control rods

    DOEpatents

    Smith, Jay E.

    1984-01-01

    A linear motion device, more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core, is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.

  3. Fast reactor core concepts to improve transmutation efficiency

    NASA Astrophysics Data System (ADS)

    Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi

    2015-12-01

    Fast Reactor (FR) core concepts to improve transmutation efficiency were conducted. A heterogeneous MA loaded core was designed based on the 1000MWe-ABR breakeven core. The heterogeneous MA loaded core with Zr-H loaded moderated targets had a better transmutation performance than the MA homogeneous loaded core. The annular pellet rod design was proposed as one of the possible design options for the MA target. It was shown that using annular pellet MA rods mitigates the self-shielding effect in the moderated target so as to enhance the transmutation rate.

  4. Fast reactor core concepts to improve transmutation efficiency

    SciTech Connect

    Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi

    2015-12-31

    Fast Reactor (FR) core concepts to improve transmutation efficiency were conducted. A heterogeneous MA loaded core was designed based on the 1000MWe-ABR breakeven core. The heterogeneous MA loaded core with Zr-H loaded moderated targets had a better transmutation performance than the MA homogeneous loaded core. The annular pellet rod design was proposed as one of the possible design options for the MA target. It was shown that using annular pellet MA rods mitigates the self-shielding effect in the moderated target so as to enhance the transmutation rate.

  5. Implosion of reactor-size, gas-filled spherical shell targets driven by shaped pressure pulses

    SciTech Connect

    Piriz, A.R.; Atzeni, S. )

    1993-05-01

    The implosion of a family of reactor-size targets for inertial confinement fusion (ICF) is studied analytically and numerically. The targets consist of a deuterium--tritium (D--T) shell filled with D--T vapor and they are imploded by a multistep pressure pulse designed in such a way that the final hot spot is formed mainly from the initially gaseous fuel. The formation of the hot spot is described by means of a relatively simple model, and scaling laws for the quantities that characterize the state of the initially gaseous part of the fuel prior to ignition are derived. The results of the model are compared with one-dimensional fluid simulations, and good agreement is found. A parametric study of the fuel energy gain is then presented; the dependence of the gain and of the hot spot convergence ratio on the pulse parameters and on the filling gas density is analyzed. It is also shown that a substantial increase in the gain (for a given target and pulse energy) can be achieved by replacing the last step of the pulse with an exponential ramp.

  6. NEUTRONIC REACTOR

    DOEpatents

    Metcalf, H.E.; Johnson, H.W.

    1961-04-01

    BS>A nuclear reactor incorporating fuel rods passing through a moderator and including tubes of a material of higher Thermal conductivity than the fuel in contact with the fuel is described. The tubes extend beyond the active portion of the reactor into contant with a fiuld coolant.

  7. Systems and methods for retaining and removing irradiation targets in a nuclear reactor

    SciTech Connect

    Runkle, Gary A.; Matsumoto, Jack T.; Dayal, Yogeshwar; Heinold, Mark R.

    2015-12-08

    A retainer is placed on a conduit to control movement of objects within the conduit in access-restricted areas. Retainers can prevent or allow movement in the conduit in a discriminatory fashion. A fork with variable-spacing between prongs can be a retainer and be extended or collapsed with respect to the conduit to change the size of the conduit. Different objects of different sizes may thus react to the fork differently, some passing and some being blocked. Retainers can be installed in inaccessible areas and allow selective movement in remote portions of conduit where users cannot directly interface, including below nuclear reactors. Position detectors can monitor the movement of objects through the conduit remotely as well, permitting engagement of a desired level of restriction and object movement. Retainers are useable in a variety of nuclear power plants and with irradiation target delivery, harvesting, driving, and other remote handling or robotic systems.

  8. Nuclear thermionic converter. [tungsten-thorium oxide rods

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Mondt, J. F. (Inventor)

    1977-01-01

    Efficient nuclear reactor thermionic converter units are described which can be constructed at low cost and assembled in a reactor which requires a minimum of fuel. Each converter unit utilizes an emitter rod with a fluted exterior, several fuel passages located in the bulges that are formed in the rod between the flutes, and a collector receiving passage formed through the center of the rod. An array of rods is closely packed in an interfitting arrangement, with the bulges of the rods received in the recesses formed between the bulges of other rods, thereby closely packing the nuclear fuel. The rods are constructed of a mixture of tungsten and thorium oxide to provide high power output, high efficiency, high strength, and good machinability.

  9. FLASH simulations of 120MJ target explosions in LIFE reactor chamber

    NASA Astrophysics Data System (ADS)

    Sacks, Ryan; Moses, Gregory; Fatenejad, Milad

    2012-10-01

    The LIFE conceptual reactor designfootnotetextMoses, E.I., Ignition on the National Ignition Facility: a path towards inertial fusion energy, Nucl. Fusion 49 104022 is a 12 m diameter reaction chamber with a steel first wall. The chamber is filled with 6 μg/cm^3 Xenon gas to protect the wall from fusion burn products. Indirect drive 120 MJ fusion targets are shot at 13 Hz repetition rate. For purposes of simulating the target explosion the target is approximated as a 1 g lead hohlraum. Fusion burn product energy is added to the Pb in a 100 ps flattop source at a rate of 12 MJ / 100 ps. The additional 13 MJ of fusion energy is assumed to be radiated as prompt x-rays. The resulting spherical micro-explosion of the heated Pb target into the surrounding Xe is simulated in 2D using the FLASH radiation hydrodynamics code. The FLASH codefootnotetextFryxell, B., Olson, K. et al.,FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes, Astro. Journal Sup. Series., 131, 273 is an AMR block-structured, parallel scalable radiation hydrodynamics code. FLASH has separate electron and ion temperatures and single group or multi-group radiation diffusion. Shock generation in the Xe and mixing of the Pb and Xe behind the shock due to Rayleigh-Taylor instability is investigated. Comparison with results from the 1D BUCKY radiation hydrodynamics code will be presented. This work was supported by Lawrence Livermore National Laboratory under contract number B587835.

  10. Rod examination gauge

    SciTech Connect

    Bacvinskas, W.S.; Bayer, J.E.; Davis, W.W.; Fodor, G.; Kikta, T.J.; Matchett, R.L.; Nilsen, R.J.; Wilczynski, R.

    1991-12-31

    The present invention is directed to a semi-automatic rod examination gauge for performing a large number of exacting measurements on radioactive fuel rods. The rod examination gauge performs various measurements underwater with remote controlled machinery of high reliability. The rod examination gauge includes instruments and a closed circuit television camera for measuring fuel rod length, free hanging bow measurement, diameter measurement, oxide thickness measurement, cladding defect examination, rod ovality measurement, wear mark depth and volume measurement, as well as visual examination. A control system is provided including a programmable logic controller and a computer for providing a programmed sequence of operations for the rod examination and collection of data.

  11. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    SciTech Connect

    McCulloch, R.W.; MacPherson, R.E.

    1983-03-01

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370/sup 0/C.

  12. FUEL ROD ASSEMBLY

    DOEpatents

    Hutter, E.

    1959-09-01

    A cluster of nuclear fuel rods aod a tubular casing through which a coolant flows in heat-change contact with the ruel rods are described. The casting is of trefoil section and carries the fuel rods, each of which has two fin engaging the serrated fins of the other two fuel rods, whereby the fuel rods are held in the casing and are interlocked against relative longitudinal movement.

  13. DEVICE FOR CONTROLLING INSERTION OF ROD

    DOEpatents

    Beaty, B.J.

    1958-10-14

    A device for rapidly inserting a safety rod into a nuclear reactor upon a given signal or in the event of a power failure in order to prevent the possibility of extensive damage caused by a power excursion is described. A piston is slidably mounted within a vertical cylinder with provision for an electromagnetic latch at the top of the cylinder. This assembly, with a safety rod attached to the piston, is mounted over an access port to the core region of the reactor. The piston is normally latched at the top of the cylinder with the safety rod clear of the core area, however, when the latch is released, the piston and rod drop by their own weight to insert the rod. Vents along the side of the cylinder permit the escape of the air entrapped under the piston over the greater part of the distance, however, at the end of the fall the entrapped air is compressed thereby bringing the safety rod gently to rest, thus providing for a rapid automatic insertion of the rod with a minimum of structural shock.

  14. Advances in implosion physics, alternative targets design, and neutron effects on heavy ion fusion reactors

    NASA Astrophysics Data System (ADS)

    Velarde, G.; Perlado, J. M.; Alonso, E.; Alonso, M.; Domínguez, E.; Rubiano, J. G.; Gil, J. M.; Gómez del Rio, J.; Lodi, D.; Malerba, L.; Marian, J.; Martel, P.; Martínez-Val, J. M.; Mínguez, E.; Piera, M.; Ogando, F.; Reyes, S.; Salvador, M.; Sanz, J.; Sauvan, P.; Velarde, M.; Velarde, P.

    2001-05-01

    The coupling of a new radiation transport (RT) solver with an existing multimaterial fluid dynamics code (ARWEN) using Adaptive Mesh Refinement named DAFNE, has been completed. In addition, improvements were made to ARWEN in order to work properly with the RT code, and to make it user-friendlier, including new treatment of Equations of State, and graphical tools for visualization. The evaluation of the code has been performed, comparing it with other existing RT codes (including the one used in DAFNE, but in the single-grid version). These comparisons consist in problems with real input parameters (mainly opacities and geometry parameters). Important advances in Atomic Physics, Opacity calculations and NLTE atomic physics calculations, with participation in significant experiments in this area, have been obtained. Early published calculations showed that a DT x fuel with a small tritium initial content ( x<3%) could work in a catalytic regime in Inertial Fusion Targets, at very high burning temperatures (≫100 keV). Otherwise, the cross-section of DT remains much higher than that of DD and no internal breeding of tritium can take place. Improvements in the calculation model allow to properly simulate the effect of inverse Compton scattering which tends to lower Te and to enhance radiation losses, reducing the plasma temperature, Ti. The neutron activation of all natural elements in First Structural Wall (FSW) component of an Inertial Fusion Energy (IFE) reactor for waste management, and the analysis of activation of target debris in NIF-type facilities has been completed. Using an original efficient modeling for pulse activation, the FSW behavior in inertial fusion has been studied. A radiological dose library coupled to the ACAB code is being generated for assessing impact of environmental releases, and atmospheric dispersion analysis from HIF reactors indicate the uncertainty in tritium release parameters. The first recognition of recombination barriers in Si

  15. Fission control system for nuclear reactor

    DOEpatents

    Conley, G.H.; Estes, G.P.

    Control system for nuclear reactor comprises a first set of reactivity modifying rods fixed in a reactor core with their upper ends stepped in height across the core, and a second set of reactivity modifying rods movable vertically within the reactor core and having their lower ends stepped to correspond with the stepped arrangement of the first set of rods, pairs of the rods of the first and second sets being in coaxial alignment.

  16. REACTOR

    DOEpatents

    Szilard, L.

    1963-09-10

    A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)

  17. REACTOR

    DOEpatents

    Christy, R.F.

    1961-07-25

    A means is described for co-relating the essential physical requirements of a fission chain reaction in order that practical, compact, and easily controllable reactors can be built. These objects are obtained by employing a composition of fissionsble isotope and moderator in fluid form in which the amount of fissionsble isotcpe present governs the reaction. The size of the reactor is no longer a critical factor, the new criterion being the concentration of the fissionable isotope.

  18. Safety evaluation report related to the Department of Energy`s proposal for the irradiation of lead test assemblies containing tritium-producing burnable absorber rods in commercial light-water reactors. Project Number 697

    SciTech Connect

    1997-05-01

    The NRC staff has reviewed a report, submitted by DOE to determine whether the use of a commercial light-water reactor (CLWR) to irradiate a limited number of tritium-producing burnable absorber rods (TPBARs) in lead test assemblies (LTAs) raises generic issues involving an unreviewed safety question. The staff has prepared this safety evaluation to address the acceptability of these LTAs in accordance with the provision of 10 CFR 50.59 without NRC licensing action. As summarized in Section 10 of this safety evaluation, the staff has identified issues that require NRC review. The staff has also identified a number of areas in which an individual licensee undertaking irradiation of TPBAR LTAs will have to supplement the information in the DOE report before the staff can determine whether the proposed irradiation is acceptable at a particular facility. The staff concludes that a licensee undertaking irradiation of TPBAR LTAs in a CLWR will have to submit an application for amendment to its facility operating license before inserting the LTAs into the reactor.

  19. REACTOR CONTROL

    DOEpatents

    Fortescue, P.; Nicoll, D.

    1962-04-24

    A control system employed with a high pressure gas cooled reactor in which a control rod is positioned for upward and downward movement into the neutron field from a position beneath the reactor is described. The control rod is positioned by a coupled piston cylinder releasably coupled to a power drive means and the pressurized coolant is directed against the lower side of the piston. The coolant pressure is offset by a higher fiuid pressure applied to the upper surface of the piston and means are provided for releasing the higher pressure on the upper side of the piston so that the pressure of the coolant drives the piston upwardly, forcing the coupled control rod into the ncutron field of the reactor. (AEC)

  20. Considerations for sensitivity analysis, uncertainty quantification, and data assimilation for grid-to-rod fretting

    SciTech Connect

    Michael Pernice

    2012-10-01

    Grid-to-rod fretting is the leading cause of fuel failures in pressurized water reactors, and is one of the challenge problems being addressed by the Consortium for Advanced Simulation of Light Water Reactors to guide its efforts to develop a virtual reactor environment. Prior and current efforts in modeling and simulation of grid-to-rod fretting are discussed. Sources of uncertainty in grid-to-rod fretting are also described.

  1. Safety analysis for operating the Annular Core Research Reactor with Cintichem-type targets installed in the central region of the core

    SciTech Connect

    PARMA JR.,EDWARD J.

    2000-01-01

    Production of the molybdenum-99 isotope at the Annular Core Research Reactor requires highly enriched, uranium oxide loaded targets to be irradiated for several days in the high neutron-flux region of the core. This report presents the safety analysis for the irradiation of up to seven Cintichem-type targets in the central region of the core and compares the results to the Annular Core Research Reactor Safety Analysis Report. A 19 target grid configuration is presented that allows one to seven targets to be irradiated, with the remainder of the grid locations filled with aluminum ''void'' targets. Analyses of reactor, neutronic, thermal hydraulics, and heat transfer calculations are presented. Steady-state operation and accident scenarios are analyzed with the conclusion that the reactor can be operated safely with seven targets in the grid, and no additional risk to the public.

  2. Targeted Ablation of the Pde6h Gene in Mice Reveals Cross-species Differences in Cone and Rod Phototransduction Protein Isoform Inventory*

    PubMed Central

    Brennenstuhl, Christina; Tanimoto, Naoyuki; Burkard, Markus; Wagner, Rebecca; Bolz, Sylvia; Trifunovic, Dragana; Kabagema-Bilan, Clement; Paquet-Durand, Francois; Beck, Susanne C.; Huber, Gesine; Seeliger, Mathias W.; Ruth, Peter; Wissinger, Bernd; Lukowski, Robert

    2015-01-01

    Phosphodiesterase-6 (PDE6) is a multisubunit enzyme that plays a key role in the visual transduction cascade in rod and cone photoreceptors. Each type of photoreceptor utilizes discrete catalytic and inhibitory PDE6 subunits to fulfill its physiological tasks, i.e. the degradation of cyclic guanosine-3′,5′-monophosphate at specifically tuned rates and kinetics. Recently, the human PDE6H gene was identified as a novel locus for autosomal recessive (incomplete) color blindness. However, the three different classes of cones were not affected to the same extent. Short wave cone function was more preserved than middle and long wave cone function indicating that some basic regulation of the PDE6 multisubunit enzyme was maintained albeit by a unknown mechanism. To study normal and disease-related functions of cone Pde6h in vivo, we generated Pde6h knock-out (Pde6h−/−) mice. Expression of PDE6H in murine eyes was restricted to both outer segments and synaptic terminals of short and long/middle cone photoreceptors, whereas Pde6h−/− retinae remained PDE6H-negative. Combined in vivo assessment of retinal morphology with histomorphological analyses revealed a normal overall integrity of the retinal organization and an unaltered distribution of the different cone photoreceptor subtypes upon Pde6h ablation. In contrast to human patients, our electroretinographic examinations of Pde6h−/− mice suggest no defects in cone/rod-driven retinal signaling and therefore preserved visual functions. To this end, we were able to demonstrate the presence of rod PDE6G in cones indicating functional substitution of PDE6. The disparities between human and murine phenotypes caused by mutant Pde6h/PDE6H suggest species-to-species differences in the vulnerability of biochemical and neurosensory pathways of the visual signal transduction system. PMID:25739440

  3. Targeted ablation of the Pde6h gene in mice reveals cross-species differences in cone and rod phototransduction protein isoform inventory.

    PubMed

    Brennenstuhl, Christina; Tanimoto, Naoyuki; Burkard, Markus; Wagner, Rebecca; Bolz, Sylvia; Trifunovic, Dragana; Kabagema-Bilan, Clement; Paquet-Durand, Francois; Beck, Susanne C; Huber, Gesine; Seeliger, Mathias W; Ruth, Peter; Wissinger, Bernd; Lukowski, Robert

    2015-04-17

    Phosphodiesterase-6 (PDE6) is a multisubunit enzyme that plays a key role in the visual transduction cascade in rod and cone photoreceptors. Each type of photoreceptor utilizes discrete catalytic and inhibitory PDE6 subunits to fulfill its physiological tasks, i.e. the degradation of cyclic guanosine-3',5'-monophosphate at specifically tuned rates and kinetics. Recently, the human PDE6H gene was identified as a novel locus for autosomal recessive (incomplete) color blindness. However, the three different classes of cones were not affected to the same extent. Short wave cone function was more preserved than middle and long wave cone function indicating that some basic regulation of the PDE6 multisubunit enzyme was maintained albeit by a unknown mechanism. To study normal and disease-related functions of cone Pde6h in vivo, we generated Pde6h knock-out (Pde6h(-/-)) mice. Expression of PDE6H in murine eyes was restricted to both outer segments and synaptic terminals of short and long/middle cone photoreceptors, whereas Pde6h(-/-) retinae remained PDE6H-negative. Combined in vivo assessment of retinal morphology with histomorphological analyses revealed a normal overall integrity of the retinal organization and an unaltered distribution of the different cone photoreceptor subtypes upon Pde6h ablation. In contrast to human patients, our electroretinographic examinations of Pde6h(-/-) mice suggest no defects in cone/rod-driven retinal signaling and therefore preserved visual functions. To this end, we were able to demonstrate the presence of rod PDE6G in cones indicating functional substitution of PDE6. The disparities between human and murine phenotypes caused by mutant Pde6h/PDE6H suggest species-to-species differences in the vulnerability of biochemical and neurosensory pathways of the visual signal transduction system. PMID:25739440

  4. Piston rod seal

    DOEpatents

    Lindskoug, Stefan

    1984-01-01

    In a piston rod seal of the type comprising a gland through which the piston rod is passed the piston is provided with a sleeve surrounding the piston rod and extending axially so as to axially partly overlap the gland when the piston is in its bottom dead center position.

  5. REACTOR

    DOEpatents

    Roman, W.G.

    1961-06-27

    A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

  6. Fuel rod mechanical deformation during the PBF/LOFT lead rod loss-of-coolant experiments

    SciTech Connect

    Varacalle, Jr., D. J.; MacDonald, P. E.; Shiozawa, S.; Driskell, W. E.

    1980-01-01

    Results of four PBF/LOFT Lead Rod (LLR) sequential blowdown tests conducted in the Power Burst Facility (PBF) are presented. Each test employed four separately shrouded fuel rods. The primary objective of the test series was to evaluate the extent of mechanical deformation that would be expected to occur to low pressure (0.1 MPa), light water reactor design fuel rods when subjected to a series of double ended cold leg break loss-of-coolant accident (LOCA) tests, and to determine whether subjecting these deformed fuel rods to subsequent testing would result in rod failure. The extent of mechanical deformation (buckling, collapse, or waisting of the cladding) was evaluated by comparison of cladding temperature and system pressure measurements with out-of-pile experimental data, and by posttest visual examinations and cladding diametral measurements.

  7. REACTORS

    DOEpatents

    Spitzer, L. Jr.

    1961-10-01

    Thermonuclear reactors, methods, and apparatus are described for controlling and confining high temperature plasma. Main axial confining coils in combination with helical windings provide a rotational transform that avoids the necessity of a figure-eight shaped reactor tube. The helical windings provide a multipolar helical magnetic field transverse to the axis of the main axial confining coils so as to improve the effectiveness of the confining field by counteracting the tendency of the more central lines of force in the stellarator tube to exchange positions with the magnetic lines of force nearer the walls of the tube. (AEC)

  8. CONTROL ROD DRIVE

    DOEpatents

    Chapellier, R.A.; Rogers, I.

    1961-06-27

    Accurate and controlled drive for the control rod is from an electric motor. A hydraulic arrangement is provided to balance a piston against which a control rod is urged by the application of fluid pressure. The electric motor drive of the control rod for normal operation is made through the aforementioned piston. In the event scramming is required, the fluid pressure urging the control rod against the piston is relieved and an opposite fluid pressure is applied. The lack of mechanical connection between the electric motor and control rod facilitates the scramming operation.

  9. SPRING DRIVEN ACTUATING MECHANISM FOR NUCLEAR REACTOR CONTROL

    DOEpatents

    Bevilacqua, F.; Uecker, D.F.; Groh, E.F.

    1962-01-23

    l962. rod in a nuclear reactor to shut it down. The control rod or an extension thereof is wound on a drum as it is withdrawn from the reactor. When an emergency occurs requiring the reactor to be shut down, the drum is released so as to be free to rotate, and the tendency of the control rod or its extension coiled on the drum to straighten itself is used for quickly returning the control rod to the reactor. (AEC)

  10. CONTROL ROD ALLOY CONTAINING NOBLE METAL ADDITIONS

    DOEpatents

    Anderson, W.K.; Ray, W.E.

    1960-05-01

    Silver-base alloys suitable for use in the fabrication of control rods for neutronic reactors are given. The alloy consists of from 0.5 wt.% to about 1.5 wt.% of a noble metal of platinum, ruthenium, rhodium, osmium, or palladium, up to 10 wt.% of cadmium, from 2 to 20 wt.% indium, the balance being silver.

  11. Low enriched uranium foil plate target for the production of fission Molybdenum-99 in Pakistan Research Reactor-1

    NASA Astrophysics Data System (ADS)

    Mushtaq, A.; Iqbal, Masood; Bokhari, Ishtiaq Hussain; Mahmood, Tayyab

    2009-04-01

    Low enriched uranium foil (19.99% 235U) will be used as target material for the production of fission Molybdenum-99 in Pakistan Research Reactor-1 (PARR-1). LEU foil plate target proposed by University of Missouri Research Reactor (MURR) will be irradiated in PARR-1 for the production of 100Ci of Molybdenum-99 at the end of irradiation, which will be sufficient to prepare required 99Mo/ 99mTc generators at Pakistan Institute of Nuclear Science and Technology, Islamabad (PINSTECH) and its supply in the country. Neutronic and thermal hydraulic analysis for the fission Molybdenum-99 production at PARR-1 has been performed. Power levels in target foil plates and their corresponding irradiation time durations were initially determined by neutronic analysis to have the required neutron fluence. Finally, the thermal hydraulic analysis has been carried out for the proposed design of the target holder using LEU foil plates for fission Molybdenum-99 production at PARR-1. Data shows that LEU foil plate targets can be safely irradiated in PARR-1 for production of desired amount of fission Molybdenum-99.

  12. NUCLEAR REACTOR

    DOEpatents

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  13. REACTOR

    DOEpatents

    Spitzer, L. Jr.

    1962-01-01

    The system conteraplates ohmically heating a gas to high temperatures such as are useful in thermonuclear reactors of the stellarator class. To this end the gas is ionized and an electric current is applied to the ionized gas ohmically to heat the gas while the ionized gas is confined to a central portion of a reaction chamber. Additionally, means are provided for pumping impurities from the gas and for further heating the gas. (AEC)

  14. Evaluation of Heterogeneous Options: Effects of MgO versus UO2 Matrix Selection for Minor Actinide Targets in a Sodium Fast Reactor

    SciTech Connect

    M. Pope; S. Bays; R. Ferrer

    2008-03-01

    The primary focus of this work was to compare MgO with UO2 as target matrix material options for burning minor actinides in a transmutation target within a sodium fast reactor. This analysis compared the transmutation performance of target assemblies having UO2 matrix to those having specifically MgO inert matrix.

  15. Studies on sodium boiling phenomena in out of pile rod bundles for various accidental situations in Liquid Metal Fast Breeder Reactors (LMFBR) experiments and interpretations

    NASA Astrophysics Data System (ADS)

    Seiler, J. M.; Rameau, B.

    Bundle sodium boiling in nominal geometry for different accident conditions is reviewed. Voiding of a subassembly is controlled by not only hydrodynamic effects but mainly by thermal effects. There is a strong influence of the thermal inertia of the bundle material compared to the sodium thermal inertia. Flow instability, during a slow transient, can be analyzed with numerical tools and estimated using simplified approximations. Stable boiling operational conditions under bundle mixed convection (natural convection in the reactor) can be predicted. Voiding during a fast transient can be approximated from single channel calculations. The phenomenology of boiling behavior for a subassembly with inlet completely blocked, submitted to decay heat and lateral cooling; two-phase sodium flow pressure drop in a tube of large hydraulic diameter under adiabatic conditions; critical flow phenomena and voiding rate under high power, slow transient conditions; and onset of dry out under local boiling remains problematical.

  16. 26. A typical outer rod room, or rack room, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. A typical outer rod room, or rack room, showing the racks for the nine horizontal control rods (HCRs) that would be inserted or withdrawn from the pile to control the rate of reaction. In this case, it is the 105-F Reactor in February 1945. The view is looking away from the pile, which is out of the picture on the left. Several of the cooling water hose reels for the rods can be seen at the end of the racks near the wall. D-8323 - B Reactor, Richland, Benton County, WA

  17. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.

    1976-08-17

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

  18. CONTROL SYSTEM FOR NEUTRONIC REACTORS

    DOEpatents

    Crever, F.E.

    1962-05-01

    BS>A slow-acting shim rod for control of major variations in reactor neutron flux and a fast-acting control rod to correct minor flux variations are employed to provide a sensitive, accurate control system. The fast-acting rod is responsive to an error signal which is produced by changes in the neutron flux from a predetermined optimum level. When the fast rod is thus actuated in a given direction, means is provided to actuate the slow-moving rod in that direction to return the fast rod to a position near the midpoint of its control range. (AEC)

  19. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  20. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  1. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-01-01

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  2. Pull rod assembly

    DOEpatents

    Cioletti, O.C.

    1988-04-21

    A pull rod assembly comprising a pull rod having three peripheral grooves, a piston device including an adaptor ring and a seal ring, said piston device being mounted on the pull rod by a split ring retainer situated in one groove and extending into an interior groove in the adaptor and a resilient split ring retained in another groove and positioned to engage the piston device and to retain the seal on its adaptor.

  3. The current status of fluoride salt cooled high temperature reactor (FHR) technology and its overlap with HIF target chamber concepts

    NASA Astrophysics Data System (ADS)

    Scarlat, Raluca O.; Peterson, Per F.

    2014-01-01

    The fluoride salt cooled high temperature reactor (FHR) is a class of fission reactor designs that use liquid fluoride salt coolant, TRISO coated particle fuel, and graphite moderator. Heavy ion fusion (HIF) can likewise make use of liquid fluoride salts, to create thick or thin liquid layers to protect structures in the target chamber from ablation by target X-rays and damage from fusion neutron irradiation. This presentation summarizes ongoing work in support of design development and safety analysis of FHR systems. Development work for fluoride salt systems with application to both FHR and HIF includes thermal-hydraulic modeling and experimentation, salt chemistry control, tritium management, salt corrosion of metallic alloys, and development of major components (e.g., pumps, heat exchangers) and gas-Brayton cycle power conversion systems. In support of FHR development, a thermal-hydraulic experimental test bay for separate effects (SETs) and integral effect tests (IETs) was built at UC Berkeley, and a second IET facility is under design. The experiments investigate heat transfer and fluid dynamics and they make use of oils as simulant fluids at reduced scale, temperature, and power of the prototypical salt-cooled system. With direct application to HIF, vortex tube flow was investigated in scaled experiments with mineral oil. Liquid jets response to impulse loading was likewise studied using water as a simulant fluid. A set of four workshops engaging industry and national laboratory experts were completed in 2012, with the goal of developing a technology pathway to the design and licensing of a commercial FHR. The pathway will include experimental and modeling efforts at universities and national laboratories, requirements for a component test facility for reliability testing of fluoride salt equipment at prototypical conditions, requirements for an FHR test reactor, and development of a pre-conceptual design for a commercial reactor.

  4. Hydraulic lock for displacer rod drive mechanism (DRDM) and method of operation

    SciTech Connect

    Rinker, E.D.

    1990-12-18

    This paper describes a drive rod latch in combination with a nuclear reactor having a drive rod disposed in a rod housing characterized in that the drive rod has one end selectively exposed to a first, relatively low pressure zone of the reactor and another end thereof in communication with a second, relatively high pressure zone of the reactor. The drive rod further having disposed on an end thereof a valve member and the rod housing having disposed thereon a corresponding valve seat, and a control valve for selectively establishing communication between the housing and the first zone of the reactor whereby a pressure differential is created across the piston. The pressure differential being sufficient to seat the valve member against the valve seat to thereby establish a pressure boundary.

  5. More on the penetration of yawed rods

    NASA Astrophysics Data System (ADS)

    Rosenberg, Z.; Dekel, E.; Ashuach, Y.

    2006-08-01

    One of the most complex processes, in the field of terminal ballistics, is that of yawed impact of long rods. In spite of many experimental observations, and some analytical modeling, a clear picture of this issue is still lacking. In order to gain some insight into the operating mechanisms, we developed a simple engineering model which considers the yawed rod as a series of small disks. We then define the effective length and diameter of the rod by considering those disks which are going to hit the initial crater which is opened by the impact. We also performed a series of 3D numerical simulations with various L/D tungsten alloy rods impacting a steel target, at yaws in the full range of 0-90^circ. We analyzed the results of these simulations in terms of the normalized penetration (P/D), where D is the rod diameter, and looked for systematic trends in the results for the various rods. The agreement between our model predictions and both experimental data and simulation results is quite good. Based on this agreement we can highlight some new features of the penetration process of yawed rods.

  6. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1963-06-11

    A fuel plate is designed for incorporation into control rods of the type utilized in high-flux test reactors. The fuel plate is designed so that the portion nearest the poison section of the control rod contains about one-half as much fissionable material as in the rest of the plate, thereby eliminating dangerous flux peaking in that portion. (AEC)

  7. Reactor

    DOEpatents

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  8. Linear motion device and method for inserting and withdrawing control rods

    DOEpatents

    Smith, J.E.

    Disclosed is a linear motion device and more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core. The CRDM and method disclosed is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.

  9. A Neural Network Model for the Tomographic Analysis of Irradiated Nuclear Fuel Rods

    SciTech Connect

    Craciunescu, Teddy

    2004-04-15

    A tomographic method based on a multilayer feed-forward artificial neural network is proposed for the reconstruction of gamma-radioactive fission product distribution in irradiated nuclear fuel rods. The quality of the method is investigated as compared to a conventional technique on experimental results concerning a Canada deuterium uranium reactor (CANDU)-type fuel rod irradiated in a TRIGA reactor.

  10. NEUTRONIC REACTOR STRUCTURE

    DOEpatents

    Daniels, F.

    1961-10-24

    A reactor core, comprised of vertical stacks of hexagonal blocks of beryllium oxide having axial cylindrical apertures extending therethrough and cylindrical rods of a sintered mixture of uranium dioxide and beryllium oxide, is described. (AEC)

  11. FUEL ROD CLUSTERS

    DOEpatents

    Schultz, A.B.

    1959-08-01

    A cluster of nuclear fuel rods and a tubular casing therefor through which a coolant flows in heat-exchange contact with the fuel rods is described. The fuel rcds are held in the casing by virtue of the compressive force exerted between longitudinal ribs of the fuel rcds and internal ribs of the casing or the internal surfaces thereof.

  12. ADF/cofilin-actin rods in neurodegenerative diseases

    PubMed Central

    Bamburg, J.R.; Bernstein, B.W.; Davis, R.C.; Flynn, K.C.; Goldsbury, C.; Jensen, J.R.; Maloney, M.T.; Marsden, I.T.; Minamide, L.S.; Pak, C.W.; Shaw, A.E.; Whiteman, I.; Wiggan, O.

    2015-01-01

    Dephosphorylation (activation) of cofilin, an actin binding protein, is stimulated by initiators of neuronal dysfunction and degeneration including oxidative stress, excitotoxic glutamate, ischemia, and soluble forms of β-amyloid peptide (Aβ). Hyperactive cofilin forms rod-shaped cofilin-saturated actin filament bundles (rods). Other proteins are recruited to rods but are not necessary for rod formation. Neuronal cytoplasmic rods accumulate within neurites where they disrupt synaptic function and are a likely cause of synaptic loss without neuronal loss, as occurs early in dementias. Different rod-inducing stimuli target distinct neuronal populations within the hippocampus. Rods form rapidly, often in tandem arrays, in response to stress. They accumulate phosphorylated tau that immunostains for epitopes present in “striated neuropil threads,” characteristic of tau pathology in Alzheimer disease (AD) brain. Thus, rods might aid in further tau modifications or assembly into paired helical filaments, the major component of neurofibrillary tangles (NFTs). Rods can occlude neurites and block vesicle transport. Some rod-inducing treatments cause an increase in secreted Aβ. Thus rods may mediate the loss of synapses, production of excess Aβ, and formation of NFTs, all of the pathological hallmarks of AD. Cofilin-actin rods also form within the nucleus of heat-shocked neurons and are cleared from cells expressing wild type huntingtin protein but not in cells expressing mutant or silenced huntingtin, suggesting a role for nuclear rods in Huntington disease (HD). As an early event in the neurodegenerative cascade, rod formation is an ideal target for therapeutic intervention that might be useful in treatment of many different neurological diseases. PMID:20088812

  13. Type B investigation of the iridium contamination event at the High Flux Isotope Reactor on September 7, 1993

    SciTech Connect

    Not Available

    1994-03-01

    On the title date, at ORNL, area radiation alarms sounded during a routine transfer of a shielding cask (containing 60 Ci{sup 192}Ir) from the HFIR pool side to a transport truck. Small amounts of Ir were released from the cask onto the reactor bay floor. The floor was cleaned, and the cask was shipped to a hot cell at Building 3047 on Oct. 3, 1993. The event was caused by rupture of one of the Ir target rods after it was loaded into the cask for normal transport operations; the rupture was the result of steam generation in the target rod soon after it was placed in the cask (water had entered the target rod through a tiny defect in a weld while it was in the reactor under pressure). While the target rods were in the reactor and reactor pool, there was sufficient cooling to prevent steam generation; when the target rod was loaded into the dry transport cask, the temperature increased enough to result in boiling of the trapped water and produced high enough pressure to result in rupture. The escaping steam ejected some of the Ir pellets. The event was reported as Occurrence Report Number ORO--MMES-X10HFIR-1993-0030, dated Sept. 8, 1993. Analysis indicated that the following conditions were probable causes: less than adequate welding procedures, practices, or techniques, material controls, or inspection methods, or combination thereof, could have led to weld defects, affecting the integrity of target rod IR-75; less than adequate secondary containment in the cask allowed Ir pellets to escape.

  14. Rod Photoreceptors Detect Rapid Flicker

    ERIC Educational Resources Information Center

    Conner, J. D.; MacLeod, Donald I. A.

    1977-01-01

    Rod-isolation techniques show that light-adapted human rods detect flicker frequencies as high as 28 hertz, and that the function relating rod critical flicker frequency to stimulus intensity contains two distinct branches. (MLH)

  15. Destructive examination of 3-cycle LWR fuel rods from Turkey Point Unit 3 for the Climax-Spent Fuel Test

    SciTech Connect

    Atkin, S.D.

    1981-06-01

    The destructive examination results of five light water reactor rods from the Turkey Point Unit 3 reactor are presented. The examinations included fission gas collection and analyses, burnup and hydrogen analyses, and a metallographic evaluation of the fuel, cladding, oxide, and hydrides. The rods exhibited a low fission gas release with all other results appearing representative for pressurized water reactor fuel rods with similar burnups (28 GWd/MTU) and operating histories.

  16. Nonionic, water self-dispersible "hairy-rod" poly(p-phenylene)-g-poly(ethylene glycol) copolymer/carbon nanotube conjugates for targeted cell imaging.

    PubMed

    Yuksel, Merve; Colak, Demet Goen; Akin, Mehriban; Cianga, Ioan; Kukut, Manolya; Medine, E Ilker; Can, Mustafa; Sakarya, Serhan; Unak, Perihan; Timur, Suna; Yagci, Yusuf

    2012-09-10

    The generation and fabrication of nanoscopic structures are of critical technological importance for future implementations in areas such as nanodevices and nanotechnology, biosensing, bioimaging, cancer targeting, and drug delivery. Applications of carbon nanotubes (CNTs) in biological fields have been impeded by the incapability of their visualization using conventional methods. Therefore, fluorescence labeling of CNTs with various probes under physiological conditions has become a significant issue for their utilization in biological processes. Herein, we demonstrate a facile and additional fluorophore-free approach for cancer cell-imaging and diagnosis by combining multiwalled CNTs with a well-known conjugated polymer, namely, poly(p-phenylene) (PP). In this approach, PP decorated with poly(ethylene glycol) (PEG) was noncovalently (π-π stacking) linked to acid-treated CNTs. The obtained water self-dispersible, stable, and biocompatible f-CNT/PP-g-PEG conjugates were then bioconjugated to estrogen-specific antibody (anti-ER) via -COOH functionalities present on the side-walls of CNTs. The resulting conjugates were used as an efficient fluorescent probe for targeted imaging of estrogen receptor overexpressed cancer cells, such as MCF-7. In vitro studies and fluorescence microscopy data show that these conjugates can specifically bind to MCF-7 cells with high efficiency. The represented results imply that CNT-based materials could easily be fabricated by the described approach and used as an efficient "fluorescent probe" for targeting and imaging, thereby providing many new possibilities for various applications in biomedical sensing and diagnosis. PMID:22866988

  17. POWER BREEDER REACTOR

    DOEpatents

    Monson, H.O.

    1960-11-22

    An arrangement is offered for preventing or minimizing the contraction due to temperature rise, of a reactor core comprising vertical fuel rods in sodium. Temperature rise of the fuel rods would normally make them move closer together by inward bowing, with a resultant undesired increase in reactivity. According to the present invention, assemblies of the fuel rods are laterally restrained at the lower ends of their lower blanket sections and just above the middle of the fuel sections proper of the rods, and thus the fuel sections move apart, rather than together, with increase in temperature.

  18. Regulatory perspective on incomplete control rod insertions

    SciTech Connect

    Chatterton, M.

    1997-01-01

    The incomplete control rod insertions experienced at South Texas Unit 1 and Wolf Creek are of safety concern to the NRC staff because they represent potential precursors to loss of shutdown margin. Even before it was determined if these events were caused by the control rods or by the fuel there was an apparent correlation of the problem with high burnup fuel. It was determined that there was also a correlation between high burnup and high drag forces as well as with rod drop time histories and lack of rod recoil. The NRC staff initial actions were aimed at getting a perspective on the magnitude of the problem as far as the number of plants and the amount of fuel that could be involved, as well as the safety significance in terms of shutdown margin. As tests have been performed and data has been analyzed the focus has shifted more toward understanding the problem and the ways to eliminate it. At this time the staff`s understanding of the phenomena is that it was a combination of factors including burnup, power history and temperature. The problem appears to be very sensitive to these factors, the interaction of which is not clearly understood. The model developed by Westinghouse provides a possible explanation but there is not sufficient data to establish confidence levels and sensitivity studies involving the key parameters have not been done. While several fixes to the problem have been discussed, no definitive fixes have been proposed. Without complete understanding of the phenomena, or fixes that clearly eliminate the problem the safety concern remains. The safety significance depends on the amount of shutdown margin lost due to incomplete insertion of the control rods. Were the control rods to stick high in the core, the reactor could not be shutdown by the control rods and other means such as emergency boration would be required.

  19. Single Rod Vibration in Axial Flow

    NASA Astrophysics Data System (ADS)

    Weichselbaum, Noah; Wang, Shengfu; Bardet, Philippe

    2013-11-01

    Fluid structure interaction of a single rod in axial flow is a coupled dynamical system present in many application including nuclear reactors, steam generators, and towed antenna arrays. Fluid-structure response can be quantified thanks to detailed experimental data where both structure and fluid responses are recorded. Such datum deepen understanding of the physics inherent to the system and provide high-dimensionality quantitative measurements to validate coupled structural and CFD codes with various level of complexity. In this work, single rods fixed on both ends in a concentric pipe, are subjected to an axial flow with Reynolds number based on hydraulic diameter of Re =4000. Rods of varying material stiffness and diameter are utilized in the experiment resulting in a range of dimensionless U between 0.5 and 1, where U = (ρA/EI)1/2uL. Experimental measurements of the velocity field around the rod are taken with PIV from time-resolved Nd:YLF laser and a high speed CMOS camera. Three-dimensional and temporal vibration and deflection of the rod is recorded with shadowgraphy utilizing two sets of pulsed high power LED and dedicated CMOS camera. Through integration of these two diagnostics, it is possible to reconstruct the full FSI domain providing unique validation data.

  20. IMPACT OF ENERGY GROUP STRUCTURE ON NUCLEAR DATA TARGET ACCURACY REQUIREMENTS FOR ADVANCED REACTOR SYSTEMS

    SciTech Connect

    G. Palmiotti; M. Salvatores; H. Hiruta

    2011-06-01

    A target accuracy assessment study using both a fine and a broad energy structure has shown that less stringent nuclear data accuracy requirements are needed for the latter energy structure. However, even though a reduction is observed, still the requirements will be very difficult to be met unless integral experiments are also used to reduce nuclear data uncertainties. Target accuracy assessment is the inverse problem of the uncertainty evaluation. To establish priorities and target accuracies on data uncertainty reduction, a formal approach can be adopted by defining target accuracy on design parameters and finding out required accuracy on data in order to meet them. In fact, the unknown uncertainty data requirements can be obtained by solving a minimization problem where the sensitivity coefficients in conjunction with the constraints on the integral parameters provide the needed quantities for finding the solutions.

  1. High temperature control rod assembly

    DOEpatents

    Vollman, Russell E.

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  2. Nuclear reactor control apparatus

    DOEpatents

    Sridhar, Bettadapur N.

    1983-10-25

    Nuclear reactor safety rod release apparatus comprises a ring which carries detents normally positioned in an annular recess in outer side of the rod, the ring being held against the lower end of a drive shaft by magnetic force exerted by a solenoid carried by the drive shaft. When the solenoid is de-energized, the detent-carrying ring drops until the detents contact a cam surface associated with the lower end of the drive shaft, at which point the detents are cammed out of the recess in the safety rod to release the rod from the drive shaft. In preferred embodiments of the invention, an additional latch is provided to release a lower portion of a safety rod under conditions that may interfere with movement of the entire rod.

  3. Experimental study of burnout in channels with twisted fuel rods

    NASA Astrophysics Data System (ADS)

    Bol'Shakov, V. V.; Bashkirtsev, S. M.; Kobzar', L. L.; Morozov, A. G.

    2007-05-01

    The results of experimental studies of pressure drop and critical heat flux in the models of fuel assemblies (FAs) with fuel rod simulators twisted relative to the longitudinal axis and a three-ray cross section are considered. The experimental data are compared to the results obtained with the use of techniques adopted for design calculations with fuel rod bundles of type-VVER reactors.

  4. Final design review of boron carbide safety rod

    SciTech Connect

    Lutz, R.N.

    1991-09-24

    The object of this paper discusses the design review of the boron carbide safety rod for the Westinghouse Savannah River Company. This paper reviewed information presented by personnel of the Savannah River Laboratory (SRL) Equipment Engineering Section, SRL Materials Technology Section and Reactor Materials Engineering and Technology. From this report, views, opinions and recommendations were made on the safety rod from materials testing to production.

  5. LWR fuel rod bundle behavior under severe fuel damage conditions

    SciTech Connect

    Kuczera, B. Hagen, S.; Hofmann, P.

    1988-01-01

    Light water reactor (LWR) safety research and development activities conducted at Kernforschungszentrum Karlsruhe have recently been reorganized with a concentrated mission under the LWR safety project group. The topics treated relate mainly to severe-accident analysis research and source term assessment as well as to source term mitigation measures. A major part of the investigations concerns the early phase of a severe core meltdown accident, specifically LWR rod assembly behavior under sever fuel damage (SFD) conditions. To determine the extent of fuel rod damage, including the relocation behavior of molten reaction products, damage propagation, time-dependent H{sub 2} generation from clad oxidation, and fragmentation of oxygen-embrittled materials during cooldown and quenching, extensive out-of-pile rod bundle experiments have been initiated in the new CORA test facility. The bundle parameters, such as rod dimensions, rod pitch, and grid spacer, can be adjusted to both pressurized water reactor (PWR) and boiling water reactor (BWR) conditions. Currently, the test program consists of 15 experiments in which the influence of Inconel grid spacer, (Ag,In,Cd)-absorber rods (PWR) and of B{sub 4}C control blades (BWR) on fuel damage initiation and damage propagation are being investigated for different boundary conditions. As of June 1988, four bundle tests had been successfully carried out for PWR accident conditions.

  6. Reactivity control assembly for nuclear reactor

    DOEpatents

    Bollinger, Lawrence R.

    1984-01-01

    Reactivity control assembly for nuclear reactor comprises supports stacked above reactor core for holding control rods. Couplers associated with the supports and a vertically movable drive shaft have lugs at their lower ends for engagement with the supports.

  7. Relaxation of rod misalignment technical specification requirements: An increased operational flexibility

    SciTech Connect

    John, G.; Leipner-Gomes, C.I.; Johansen, B.J.

    1995-12-31

    The pressurized water reactor technical specification (T/S) limiting condition for operation (LCO) for rod misalignment and rod position indication (RPI) typically requires all rod cluster control assemblies to be positioned with {+-}12 steps of the group demand position. The LCO is approved by the U.S. Nuclear Regulatory Commission (NRC) for use by all Westinghouse plants, and the core design incorporates a peaking factor uncertainty to accommodate potential rod misalignments within this approved LCO. Also, the LCO requires all RPI channels and the demand position indicator system to be operable and capable of determining the control rod position within {+-}12 steps.

  8. Understanding flame rods

    SciTech Connect

    McAuley, J.A. Jr.

    1995-11-01

    The flame rod is probably the least understood method of flame detection. Although it is not recommended for oilfired equipment, it is very common on atmospheric, or {open_quotes}in-shot,{close_quotes} gas burners. It is also possible, although not common, to have an application with a constant gas pilot, monitored by a flame rod, and maintaining an oil main flame. Regardless of the application, chances are that flame rods will be encountered during the course of servicing. The technician today must be versatile and able to work on many different types of equipment. One must understand the basic principles of flame rods, and how to correct potential problems. The purpose of a flame detection system is two-fold: (1) to prove there is no flame when there shouldn`t be one, and (2) to prove there is a flame when there should be one. Flame failure response time is very important. This is the amount of time it takes to realize there is a loss of flame, two to four seconds is typical today. Prior to flame rods, either bi-metal or thermocouple type flame detectors were common. The response time for these detectors was up to three minutes, seldom less than one minute.

  9. Intramedullary rodding in osteogenesis imperfecta.

    PubMed

    Mulpuri, K; Joseph, B

    2000-01-01

    The results of intramedullary rodding of long bones of 16 children with osteogenesis imperfecta, over a 10-year period, were analyzed. Sheffield elongating rods or non-elongating rods were used. The frequency of fractures was dramatically reduced after implantation of either type of rod, and the ambulatory status improved in all instances. The results were significantly better after Sheffield rodding with regard to the frequency of complications requiring reoperations and the longevity of the rods. Migration of the rods, encountered frequently, appears to be related to improper placement of the rods in the bone. It seems likely that if care is taken to ensure precise placement of a rod of appropriate size, several of these complications may be avoided. PMID:10739296

  10. Studying rod photoreceptor development in zebrafish

    PubMed Central

    Morris, A.C.; Fadool, J.M.

    2009-01-01

    The zebrafish has rapidly become a favored model vertebrate organism, well suited for studies of developmental processes using large-scale genetic screens. In particular, zebrafish morphological and behavioral genetic screens have led to the identification of genes important for development of the retinal photoreceptors. This may help clarify the genetic mechanisms underlying human photoreceptor development and dysfunction in retinal diseases. In this review, we present the advantages of zebrafish as a vertebrate model organism, summarize retinal and photoreceptor cell development in zebrafish, with emphasis on the rod photoreceptors, and describe zebrafish visual behaviors that can be used for genetic screens. We then describe some of the photoreceptor cell mutants that have been isolated in morphological and behavioral screens and discuss the limitations of current screening methods for uncovering mutations that specifically affect rod function. Finally, we present some alternative strategies to target the rod developmental pathway in zebrafish. PMID:16199068

  11. BWR fuel rod performance evaluation program. Final report

    SciTech Connect

    Rowland, T.C.

    1986-05-01

    The joint EPRI/GE fuel performance program, RP510-1, involved thorough preirradiation characterization of fuel used in lead test assemblies, detailed surveillance of their operation, and interim site examinations of the assemblies during reactor outages. The program originally included four GE-5 lead test assemblies operating in the Peach Bottom-2 reactor. The program was later modified to include the pressurized fuel rod test assembly in the Peach Bottom-3 reactor (RP510-2). The program modification also included extending the operation of the Peach Bottom-2 and Peach Bottom-3 lead test assembly fuel beyond normal discharge exposures. Interim site examination results following the first four cycles of operation of the Peach Bottom-2 lead test assemblies up to 35 GWd/MT and the examination of the Peach Bottom-3 pressurized test assembly at 32 GWd/MT are presented in this report. Elements of the examinations included visual examination of the fuel bundles; individual fuel rod visual examinations, rod length measurements, ultrasonic and eddy current nondestructive testing, Zircaloy cladding oxide thickness measurements and fission gas measurements. Channel measurements were made on the PB-2 Lead Test Assemblies after each of the first three operating cycles. All of the bundles were found to be in good condition. Since the pressurized test assembly contained pressurized and nonpressurized fuel rods in symmetric positions, it was possible to make direct comparisons of the fission gas release from pairs of pressurized and nonpressurized fuel rods with identical power histories. With one exception, the release was less from the pressurized fuel rod of each pair. Fuel rod power histories were calculated using new physics methods for all of the fuel rods that were punctured for fission gas release measurements. 28 refs., 41 figs., 16 tabs.

  12. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...., core support structures, control and rod guide tubes, thermal shields, baffles, core grid plates and diffuser plates especially designed or prepared for use in a nuclear reactor. (8) Reactor control rod...

  13. Verification of maximum radial power peaking factor due to insertion of FPM-LEU target in the core of RSG-GAS reactor

    SciTech Connect

    Setyawan, Daddy; Rohman, Budi

    2014-09-30

    Verification of Maximum Radial Power Peaking Factor due to insertion of FPM-LEU target in the core of RSG-GAS Reactor. Radial Power Peaking Factor in RSG-GAS Reactor is a very important parameter for the safety of RSG-GAS reactor during operation. Data of radial power peaking factor due to the insertion of Fission Product Molybdenum with Low Enriched Uranium (FPM-LEU) was reported by PRSG to BAPETEN through the Safety Analysis Report RSG-GAS for FPM-LEU target irradiation. In order to support the evaluation of the Safety Analysis Report incorporated in the submission, the assessment unit of BAPETEN is carrying out independent assessment in order to verify safety related parameters in the SAR including neutronic aspect. The work includes verification to the maximum radial power peaking factor change due to the insertion of FPM-LEU target in RSG-GAS Reactor by computational method using MCNP5and ORIGEN2. From the results of calculations, the new maximum value of the radial power peaking factor due to the insertion of FPM-LEU target is 1.27. The results of calculations in this study showed a smaller value than 1.4 the limit allowed in the SAR.

  14. Internal Control Rod Drive Mechanisms, Design Options for IRIS

    SciTech Connect

    Conway, Lawrence E.; Petrovic, Bojan

    2004-07-01

    IRIS (International Reactor Innovative and Secure) is a medium-power (335 MWe) PWR with an integral, primary circuit configuration, where all the reactor coolant system components are contained within the reactor vessel. This integral configuration is a key reason for the success of IRIS' 'safety-by-design' approach, whereby accident initiators are eliminated or the accident consequences and/or frequency are reduced. The most obvious example of the IRIS safety by design approach is the elimination of large LOCA's, since the integral reactor coolant system has no large loop piping. Another serious accident scenario that is being addressed in IRIS is the postulated ejection of a reactor control cluster assembly (RCCA). This accident initiator can be eliminated by locating the RCCA drive mechanisms (CRDMs) inside the reactor vessel. This eliminates the mechanical drive rod penetration between the RCCA and the external CRDM, eliminating the potential for differential pressure across the pressure boundary, and thus eliminating 'by design' the possibility for rod ejection accident. Moreover, the elimination of the 'large' drive-rod penetrations and the external CRDM pressure housings decreases the likelihood of boric acid leakage and subsequent corrosion of the reactor pressure boundary (like the Davis-Besse incident). This paper will discuss the IRIS top level design requirements and objectives for internal CRDMs, and provide examples candidate designs and their specific performance characteristics. (authors)

  15. Safety control circuit for a neutronic reactor

    DOEpatents

    Ellsworth, Howard C.

    2004-04-27

    A neutronic reactor comprising an active portion containing material fissionable by neutrons of thermal energy, means to control a neutronic chain reaction within the reactor comprising a safety device and a regulating device, a safety device including means defining a vertical channel extending into the reactor from an aperture in the upper surface of the reactor, a rod containing neutron-absorbing materials slidably disposed within the channel, means for maintaining the safety rod in a withdrawn position relative to the active portion of the reactor including means for releasing said rod on actuation thereof, a hopper mounted above the active portion of the reactor having a door disposed at the bottom of the hopper opening into the vertical channel, a plurality of bodies of neutron-absorbing materials disposed within the hopper, and means responsive to the failure of the safety rod on actuation thereof to enter the active portion of the reactor for opening the door in the hopper.

  16. Reactor physics analyses of the advanced neutron source three-element core

    SciTech Connect

    Gehin, J.C.

    1995-08-01

    A reactor physics analysis was performed for the Advanced Neutron Source reactor with a three-element core configuration. The analysis was performed with a two-dimensional r-z 20-energy-group finite-difference diffusion theory model of the 17-d fuel cycle. The model included equivalent r-z geometry representations of the central control rods, the irradiation and production targets, and reflector components. Calculated quantities include fuel cycle parameters, fuel element power distributions, unperturbed neutron fluxes in the reflector and target regions, reactivity perturbations, and neutron kinetics parameters.

  17. Nuclear reactor shutdown system

    DOEpatents

    Bhate, Suresh K.; Cooper, Martin H.; Riffe, Delmar R.; Kinney, Calvin L.

    1981-01-01

    An inherent shutdown system for a nuclear reactor having neutron absorbing rods affixed to an armature which is held in an upper position by a magnetic flux flowing through a Curie temperature material. The Curie temperature material is fixedly positioned about the exterior of an inner duct in an annular region through which reactor coolant flows. Elongated fuel rods extending from within the core upwardly toward the Curie temperature material are preferably disposed within the annular region. Upon abnormal conditions which result in high neutron flux and coolant temperature, the Curie material loses its magnetic permeability, breaking the magnetic flux path and allowing the armature and absorber rods to drop into the core, thus shutting down the fissioning reaction. The armature and absorber rods are retrieved by lowering the housing for the electromagnet forming coils which create a magnetic flux path which includes the inner duct wall. The coil housing then is raised, resetting the armature.

  18. Nuclear reactor safety device

    DOEpatents

    Hutter, E.

    1983-08-15

    A safety device is described for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of a thermal excursion. It comprises a laminated strip helically configured to form a tube, said tube being in operative relation to said control rod. The laminated strip is formed of at least two materials having different thermal coefficients of expansion, and is helically configured such that the material forming the outer lamina of the tube has a greater thermal coefficient of expansion than the material forming the inner lamina of said tube. In the event of a thermal excursion the laminated strip will tend to curl inwardly so that said tube will increase in length, whereby as said tube increases in length it exerts a force on said control rod to axially reposition said control rod with respect to said core.

  19. The analysis of failed nuclear fuel rods by gamma computed tomography

    NASA Astrophysics Data System (ADS)

    Dobrin, Relu; Craciunescu, Teddy; Tuturici, Ioan Liviu

    1997-07-01

    The failure of the cladding of an irradiated nuclear fuel rod can lead to the loss of some γ-radioactive fission products. Consequently the distribution of these fission products is altered in the cross-section of the fuel rod. The modification of the distribution, obtained by gamma computed tomography, is used to determine the integrity of the fuel cladding. The paper reports an experimental result, obtained for a CANDU-type fuel rod, irradiated in a TRIGA 14 MWth reactor.

  20. The results of postirradiation examinations of VVER-1000 and VVER-440 fuel rods

    NASA Astrophysics Data System (ADS)

    Dubrovin, K. P.; Ivanov, E. G.; Strijov, P. N.; Yakovlev, V. V.

    1991-02-01

    The paper presents the results of postirradiation examination of the fuel rods having different fuel-cladding gaps, pellet densities, pellet inner diameters and so on. The fuel rods were irradiated in the material science reactor (MR) of the Kurchatov Institute of Atomic Energy and at 4 unit of the Novo-Voronezh nuclear powerplant. Some data on fission gas release and rod geometry and compared with computer code predictions.

  1. Anchor for Fiberglas Guy Rod

    NASA Technical Reports Server (NTRS)

    Wilson, A. H.

    1982-01-01

    Solution to problem of anchoring fiberglas guy rods to install nut with threads on outer circumference, followed by aluminum sleeve. Sleeve has opening oval at upper and round at bottom end. End of rod is split so fiberglas wedge can be inserted to form V-shaped end. Spread end of rod fits into tapered hole in sleeve and threaded aluminum coupling is put over rod and sleeve.

  2. Fission gas release restrictor for breached fuel rod

    DOEpatents

    Kadambi, N. Prasad; Tilbrook, Roger W.; Spencer, Daniel R.; Schwallie, Ambrose L.

    1986-01-01

    In the event of a breach in the cladding of a rod in an operating liquid metal fast breeder reactor, the rapid release of high-pressure gas from the fission gas plenum may result in a gas blanketing of the breached rod and rods adjacent thereto which impairs the heat transfer to the liquid metal coolant. In order to control the release rate of fission gas in the event of a breached rod, the substantial portion of the conventional fission gas plenum is formed as a gas bottle means which includes a gas pervious means in a small portion thereof. During normal reactor operation, as the fission gas pressure gradually increases, the gas pressure interiorly of and exteriorly of the gas bottle means equalizes. In the event of a breach in the cladding, the gas pervious means in the gas bottle means constitutes a sufficient restriction to the rapid flow of gas therethrough that under maximum design pressure differential conditions, the fission gas flow through the breach will not significantly reduce the heat transfer from the affected rod and adjacent rods to the liquid metal heat transfer fluid flowing therebetween.

  3. Overview of Fuel Rod Simulator Usage at ORNL

    NASA Astrophysics Data System (ADS)

    Ott, Larry J.; McCulloch, Reg

    2004-02-01

    During the 1970s and early 1980s, the Oak Ridge National Laboratory (ORNL) operated large out-of-reactor experimental facilities to resolve thermal-hydraulic safety issues in nuclear reactors. The fundamental research ranged from material mechanical behavior of fuel cladding during the depressurization phase of a loss-of-coolant accident (LOCA) to basic heat transfer research in gas- or sodium-cooled cores. The largest facility simulated the initial phase (less than 1 min. of transient time) of a LOCA in a commercial pressurized-water reactor. The nonnuclear reactor cores of these facilities were mimicked via advanced, highly instrumented electric fuel rod simulators locally manufactured at ORNL. This paper provides an overview of these experimental facilities with an emphasis on the fuel rod simulators.

  4. Overview of Fuel Rod Simulator Usage at ORNL

    SciTech Connect

    Ott, Larry J.; McCulloch, Reg

    2004-02-04

    During the 1970s and early 1980s, the Oak Ridge National Laboratory (ORNL) operated large out-of-reactor experimental facilities to resolve thermal-hydraulic safety issues in nuclear reactors. The fundamental research ranged from material mechanical behavior of fuel cladding during the depressurization phase of a loss-of-coolant accident (LOCA) to basic heat transfer research in gas- or sodium-cooled cores. The largest facility simulated the initial phase (less than 1 min. of transient time) of a LOCA in a commercial pressurized-water reactor. The nonnuclear reactor cores of these facilities were mimicked via advanced, highly instrumented electric fuel rod simulators locally manufactured at ORNL. This paper provides an overview of these experimental facilities with an emphasis on the fuel rod simulators.

  5. Dysprosium titanate as an absorber material for control rods

    NASA Astrophysics Data System (ADS)

    Risovany, V. D.; Varlashova, E. E.; Suslov, D. N.

    2000-09-01

    Disprosium titanate is an attractive control rod material for the thermal neutron reactors. Its main advantages are: insignificant swelling, no out-gassing under neutron irradiation, rather high neutron efficiency, a high melting point (˜1870°C), non-interaction with the cladding at temperatures above 1000°C, simple fabrication and easily reprocessed non-radioactive waste. It can be used in control rods as pellets and powder. The disprosium titanate control rods have worked off in the MIR reactor for 17 years, in VVER-1000 - for 4 years without any operating problems. After post-irradiation examinations this type of control rod having high lifetime was recommended for the VVER and RBMK. The paper presents the examination results of absorber element dummies containing dysprosium titanate, irradiated in the SM reactor to the neutron fluence of 3.4×10 22 cm -2 ( E>0.1 MeV) and, also, the data on structure, thermal-physical properties of dysprosium titanate, efficiency of dysprosium titanate control rods.

  6. Semiconductor Quantum Rods as Single Molecule FluorescentBiological Labels

    SciTech Connect

    Fu, Aihua; Gu, Weiwei; Boussert, Benjamine; Koski, Kristie; Gerion, Daniele; Manna, Liberato; Le Gros, Mark; Larabell, Carolyn; Alivisatos, A. Paul

    2006-05-29

    In recent years, semiconductor quantum dots have beenapplied with great advantage in a wide range of biological imagingapplications. The continuing developments in the synthesis of nanoscalematerials and specifically in the area of colloidal semiconductornanocrystals have created an opportunity to generate a next generation ofbiological labels with complementary or in some cases enhanced propertiescompared to colloidal quantum dots. In this paper, we report thedevelopment of rod shaped semiconductor nanocrystals (quantum rods) asnew fluorescent biological labels. We have engineered biocompatiblequantum rods by surface silanization and have applied them fornon-specific cell tracking as well as specific cellular targeting. Theproperties of quantum rods as demonstrated here are enhanced sensitivityand greater resistance for degradation as compared to quantum dots.Quantum rods have many potential applications as biological labels insituations where their properties offer advantages over quantumdots.

  7. NUCLEAR REACTOR

    DOEpatents

    Christy, R.F.

    1958-07-15

    A nuclear reactor of the homogeneous liquid fuel type is described wherein the fissionable isotope is suspended or dissolved in a liquid moderator such as water. The reactor core is comprised essentially of a spherical vessel for containing the reactive composition surrounded by a reflector, preferably of beryllium oxide. The reactive composition may be an ordinary water solution of a soluble salt of uranium, the quantity of fissionable isotope in solution being sufficient to provide a critical mass in the vessel. The liquid fuel is stored in a tank of non-crtttcal geometry below the reactor vessel and outside of the reflector and is passed from the tank to the vessel through a pipe connecting the two by air pressure means. Neutron absorbing control and safety rods are operated within slots in the reflector adjacent to the vessel.

  8. Nuclear reactor safety device

    DOEpatents

    Hutter, Ernest

    1986-01-01

    A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

  9. PBF Reactor Building (PER620). Camera looks into reactor vessel. Control ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Camera looks into reactor vessel. Control rods are positioned at outer perimeter; transient rods, at inner perimeter. Photographer: Larry Page. Date: November 2, 1972. INEEL negative no. 72-5266 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  10. APPARATUS FOR SHEATHING RODS

    DOEpatents

    Ford, W.K.; Wyatt, M.; Plail, S.

    1961-08-01

    An arrangement is described for sealing a solid body of nuclear fuel, such as a uranium metal rod, into a closelyfitting thin metallic sheath with an internal atmosphere of inert gas. The sheathing process consists of subjecting the sheath, loaded with the nuclear fuel body, to the sequential operations of evacuation, gas-filling, drawing (to entrap inert gas and secure close contact between sheath and body), and sealing. (AEC)