Science.gov

Sample records for readily releasable vesicles

  1. Ral-GTPase influences the regulation of the readily releasable pool of synaptic vesicles.

    PubMed

    Polzin, Atsuko; Shipitsin, Michail; Goi, Takanori; Feig, Larry A; Turner, Timothy J

    2002-03-01

    The Ral proteins are members of the Ras superfamily of GTPases. Because they reside in synaptic vesicles, we used transgenic mice expressing a dominant inhibitory form of Ral to investigate the role of Ral in neurosecretion. Using a synaptosomal secretion assay, we found that while K(+)-evoked secretion of glutamate was normal, protein kinase C-mediated enhancement of glutamate secretion was suppressed in the mutant mice. Since protein kinase C effects on secretion have been shown to be due to enhancement of the size of the readily releasable pool of synaptic vesicles docked at the plasma membrane, we directly measured the refilling of this readily releasable pool of synaptic vesicles after Ca(2+)-triggered exocytosis. Refilling of the readily releasable pool was suppressed in synaptosomes from mice expressing dominant inhibitory Ral. Moreover, we found that protein kinase C and calcium-induced phosphorylation of proteins thought to influence synaptic vesicle function, such as MARCKS, synapsin, and SNAP-25, were all reduced in synaptosomes from these transgenic mice. Concomitant with these studies, we searched for new functions of Ral by detecting proteins that specifically bind to it in cells. Consistent with the phenotype of the transgenic mice described above, we found that active but not inactive RalA binds to the Sec6/8 (exocyst) complex, whose yeast counterpart is essential for targeting exocytic vesicles to specific docking sites on the plasma membrane. These findings demonstrate a role for Ral-GTPase signaling in the modulation of the readily releasable pool of synaptic vesicles and suggest the possible involvement of Ral-Sec6/8 (exocyst) binding in modulation of synaptic strength. PMID:11865051

  2. The Bruchpilot cytomatrix determines the size of the readily releasable pool of synaptic vesicles.

    PubMed

    Matkovic, Tanja; Siebert, Matthias; Knoche, Elena; Depner, Harald; Mertel, Sara; Owald, David; Schmidt, Manuela; Thomas, Ulrich; Sickmann, Albert; Kamin, Dirk; Hell, Stefan W; Bürger, Jörg; Hollmann, Christina; Mielke, Thorsten; Wichmann, Carolin; Sigrist, Stephan J

    2013-08-19

    Synaptic vesicles (SVs) fuse at a specialized membrane domain called the active zone (AZ), covered by a conserved cytomatrix. How exactly cytomatrix components intersect with SV release remains insufficiently understood. We showed previously that loss of the Drosophila melanogaster ELKS family protein Bruchpilot (BRP) eliminates the cytomatrix (T bar) and declusters Ca(2+) channels. In this paper, we explored additional functions of the cytomatrix, starting with the biochemical identification of two BRP isoforms. Both isoforms alternated in a circular array and were important for proper T-bar formation. Basal transmission was decreased in isoform-specific mutants, which we attributed to a reduction in the size of the readily releasable pool (RRP) of SVs. We also found a corresponding reduction in the number of SVs docked close to the remaining cytomatrix. We propose that the macromolecular architecture created by the alternating pattern of the BRP isoforms determines the number of Ca(2+) channel-coupled SV release slots available per AZ and thereby sets the size of the RRP. PMID:23960145

  3. The Bruchpilot cytomatrix determines the size of the readily releasable pool of synaptic vesicles

    PubMed Central

    Matkovic, Tanja; Siebert, Matthias; Knoche, Elena; Depner, Harald; Mertel, Sara; Owald, David; Schmidt, Manuela; Thomas, Ulrich; Sickmann, Albert; Kamin, Dirk; Hell, Stefan W.; Bürger, Jörg; Hollmann, Christina; Mielke, Thorsten

    2013-01-01

    Synaptic vesicles (SVs) fuse at a specialized membrane domain called the active zone (AZ), covered by a conserved cytomatrix. How exactly cytomatrix components intersect with SV release remains insufficiently understood. We showed previously that loss of the Drosophila melanogaster ELKS family protein Bruchpilot (BRP) eliminates the cytomatrix (T bar) and declusters Ca2+ channels. In this paper, we explored additional functions of the cytomatrix, starting with the biochemical identification of two BRP isoforms. Both isoforms alternated in a circular array and were important for proper T-bar formation. Basal transmission was decreased in isoform-specific mutants, which we attributed to a reduction in the size of the readily releasable pool (RRP) of SVs. We also found a corresponding reduction in the number of SVs docked close to the remaining cytomatrix. We propose that the macromolecular architecture created by the alternating pattern of the BRP isoforms determines the number of Ca2+ channel-coupled SV release slots available per AZ and thereby sets the size of the RRP. PMID:23960145

  4. A Well-Defined Readily Releasable Pool with Fixed Capacity for Storing Vesicles at Calyx of Held

    PubMed Central

    Mahfooz, Kashif; Singh, Mahendra; Renden, Robert; Wesseling, John F.

    2016-01-01

    The readily releasable pool (RRP) of vesicles is a core concept in studies of presynaptic function. However, operating principles lack consensus definition and the utility for quantitative analysis has been questioned. Here we confirm that RRPs at calyces of Held from 14 to 21 day old mice have a fixed capacity for storing vesicles that is not modulated by Ca2+. Discrepancies with previous studies are explained by a dynamic flow-through pool, established during heavy use, containing vesicles that are released with low probability despite being immediately releasable. Quantitative analysis ruled out a posteriori explanations for the vesicles with low release probability, such as Ca2+-channel inactivation, and established unexpected boundary conditions for remaining alternatives. Vesicles in the flow-through pool could be incompletely primed, in which case the full sequence of priming steps downstream of recruitment to the RRP would have an average unitary rate of at least 9/s during heavy use. Alternatively, vesicles with low and high release probability could be recruited to distinct types of release sites; in this case the timing of recruitment would be similar at the two types, and the downstream transition from recruited to fully primed would be much faster. In either case, further analysis showed that activity accelerates the upstream step where vesicles are initially recruited to the RRP. Overall, our results show that the RRP can be well defined in the mathematical sense, and support the concept that the defining mechanism is a stable group of autonomous release sites. PMID:27035349

  5. A Well-Defined Readily Releasable Pool with Fixed Capacity for Storing Vesicles at Calyx of Held.

    PubMed

    Mahfooz, Kashif; Singh, Mahendra; Renden, Robert; Wesseling, John F

    2016-04-01

    The readily releasable pool (RRP) of vesicles is a core concept in studies of presynaptic function. However, operating principles lack consensus definition and the utility for quantitative analysis has been questioned. Here we confirm that RRPs at calyces of Held from 14 to 21 day old mice have a fixed capacity for storing vesicles that is not modulated by Ca2+. Discrepancies with previous studies are explained by a dynamic flow-through pool, established during heavy use, containing vesicles that are released with low probability despite being immediately releasable. Quantitative analysis ruled out a posteriori explanations for the vesicles with low release probability, such as Ca2+-channel inactivation, and established unexpected boundary conditions for remaining alternatives. Vesicles in the flow-through pool could be incompletely primed, in which case the full sequence of priming steps downstream of recruitment to the RRP would have an average unitary rate of at least 9/s during heavy use. Alternatively, vesicles with low and high release probability could be recruited to distinct types of release sites; in this case the timing of recruitment would be similar at the two types, and the downstream transition from recruited to fully primed would be much faster. In either case, further analysis showed that activity accelerates the upstream step where vesicles are initially recruited to the RRP. Overall, our results show that the RRP can be well defined in the mathematical sense, and support the concept that the defining mechanism is a stable group of autonomous release sites. PMID:27035349

  6. Synaptotagmin-1 and -7 Are Redundantly Essential for Maintaining the Capacity of the Readily-Releasable Pool of Synaptic Vesicles

    PubMed Central

    Burré, Jacqueline; Malenka, Robert C.; Liu, Xinran; Südhof, Thomas C.

    2015-01-01

    In forebrain neurons, Ca2+ triggers exocytosis of readily releasable vesicles by binding to synaptotagmin-1 and -7, thereby inducing fast and slow vesicle exocytosis, respectively. Loss-of-function of synaptotagmin-1 or -7 selectively impairs the fast and slow phase of release, respectively, but does not change the size of the readily-releasable pool (RRP) of vesicles as measured by stimulation of release with hypertonic sucrose, or alter the rate of vesicle priming into the RRP. Here we show, however, that simultaneous loss-of-function of both synaptotagmin-1 and -7 dramatically decreased the capacity of the RRP, again without altering the rate of vesicle priming into the RRP. Either synaptotagmin-1 or -7 was sufficient to rescue the RRP size in neurons lacking both synaptotagmin-1 and -7. Although maintenance of RRP size was Ca2+-independent, mutations in Ca2+-binding sequences of synaptotagmin-1 or synaptotagmin-7—which are contained in flexible top-loop sequences of their C2 domains—blocked the ability of these synaptotagmins to maintain the RRP size. Both synaptotagmins bound to SNARE complexes; SNARE complex binding was reduced by the top-loop mutations that impaired RRP maintenance. Thus, synaptotagmin-1 and -7 perform redundant functions in maintaining the capacity of the RRP in addition to nonredundant functions in the Ca2+ triggering of different phases of release. PMID:26437117

  7. ELKS controls the pool of readily releasable vesicles at excitatory synapses through its N-terminal coiled-coil domains

    PubMed Central

    Held, Richard G; Liu, Changliang; Kaeser, Pascal S

    2016-01-01

    In a presynaptic nerve terminal, synaptic strength is determined by the pool of readily releasable vesicles (RRP) and the probability of release (P) of each RRP vesicle. These parameters are controlled at the active zone and vary across synapses, but how such synapse specific control is achieved is not understood. ELKS proteins are enriched at vertebrate active zones and enhance P at inhibitory hippocampal synapses, but ELKS functions at excitatory synapses are not known. Studying conditional knockout mice for ELKS, we find that ELKS enhances the RRP at excitatory synapses without affecting P. Surprisingly, ELKS C-terminal sequences, which interact with RIM, are dispensable for RRP enhancement. Instead, the N-terminal ELKS coiled-coil domains that bind to Liprin-α and Bassoon are necessary to control RRP. Thus, ELKS removal has differential, synapse-specific effects on RRP and P, and our findings establish important roles for ELKS N-terminal domains in synaptic vesicle priming. DOI: http://dx.doi.org/10.7554/eLife.14862.001 PMID:27253063

  8. CAPS1 stabilizes the state of readily releasable synaptic vesicles to fusion competence at CA3–CA1 synapses in adult hippocampus

    PubMed Central

    Shinoda, Yo; Ishii, Chiaki; Fukazawa, Yugo; Sadakata, Tetsushi; Ishii, Yuki; Sano, Yoshitake; Iwasato, Takuji; Itohara, Shigeyoshi; Furuichi, Teiichi

    2016-01-01

    Calcium-dependent activator protein for secretion 1 (CAPS1) regulates exocytosis of dense-core vesicles in neuroendocrine cells and of synaptic vesicles in neurons. However, the synaptic function of CAPS1 in the mature brain is unclear because Caps1 knockout (KO) results in neonatal death. Here, using forebrain-specific Caps1 conditional KO (cKO) mice, we demonstrate, for the first time, a critical role of CAPS1 in adult synapses. The amplitude of synaptic transmission at CA3–CA1 synapses was strongly reduced, and paired-pulse facilitation was significantly increased, in acute hippocampal slices from cKO mice compared with control mice, suggesting a perturbation in presynaptic function. Morphological analysis revealed an accumulation of synaptic vesicles in the presynapse without any overall morphological change. Interestingly, however, the percentage of docked vesicles was markedly decreased in the Caps1 cKO. Taken together, our findings suggest that CAPS1 stabilizes the state of readily releasable synaptic vesicles, thereby enhancing neurotransmitter release at hippocampal synapses. PMID:27545744

  9. Huntingtin-associated protein 1 regulates exocytosis, vesicle docking, readily releasable pool size and fusion pore stability in mouse chromaffin cells

    PubMed Central

    Mackenzie, Kimberly D; Duffield, Michael D; Peiris, Heshan; Phillips, Lucy; Zanin, Mark P; Teo, Ee Hiok; Zhou, Xin-Fu; Keating, Damien J

    2014-01-01

    Huntingtin-associated protein 1 (HAP1) was initially established as a neuronal binding partner of huntingtin, mutations in which underlie Huntington's disease. Subcellular localization and protein interaction data indicate that HAP1 may be important in vesicle trafficking and cell signalling. In this study, we establish that HAP1 is important in several steps of exocytosis in adrenal chromaffin cells. Using carbon-fibre amperometry, we measured single vesicle exocytosis in chromaffin cells obtained from HAP1−/− and HAP1+/+ littermate mice. Numbers of Ca2+-dependent and Ca2+-independent full fusion events in HAP1−/− cells are significantly decreased compared with those in HAP1+/+ cells. We observed no change in the frequency of ‘kiss-and-run’ fusion events or in Ca2+ entry. Whereas release per full fusion event is unchanged in HAP1−/− cells, early fusion pore duration is prolonged, as indicated by the increased duration of pre-spike foot signals. Kiss-and-run events have a shorter duration, indicating opposing roles for HAP1 in the stabilization of the fusion pore during full fusion and transient fusion, respectively. We use electron microscopy to demonstrate a reduction in the number of vesicles docked at the plasma membrane of HAP1−/− cells, where membrane capacitance measurements reveal the readily releasable pool of vesicles to be reduced in size. Our study therefore illustrates that HAP1 regulates exocytosis by influencing the morphological docking of vesicles at the plasma membrane, the ability of vesicles to be released rapidly upon stimulation, and the early stages of fusion pore formation. PMID:24366265

  10. Variable temperature effects on release rates of readily soluble nuclides

    SciTech Connect

    Kim, C.-L.; Light, W.B.; Lee, W.W.-L.; Chambre, P.L.; Pigford, T.H.; Lawrence Berkeley Lab., CA )

    1988-09-01

    In this paper we study the effect of temperature on the release rate of readily soluble nuclides, as affected by a time-temperature dependent diffusion coefficient. In this analysis ground water fills the voids in the waste package at t = 0 and one percent of the inventories of cesium and iodine are immediately dissolved into the void water. Mass transfer resistance of partly failed container and cladding is conservatively neglected. The nuclides move through the void space into the surrounding rock under a concentration gradient. We use an analytic solution to compute the nuclide concentration in the gap or void, and the mass flux rate into the porous rock. 8 refs., 4 figs.

  11. Temporal separation of vesicle release from vesicle fusion during exocytosis.

    PubMed

    Troyer, Kevin P; Wightman, R Mark

    2002-08-01

    During exocytosis, vesicles in secretory cells fuse with the cellular membrane and release their contents in a Ca2+-dependent process. Release occurs initially through a fusion pore, and its rate is limited by the dissociation of the matrix-associated contents. To determine whether this dissociation is promoted by osmotic forces, we have examined the effects of elevated osmotic pressure on release and extrusion from vesicles at mast and chromaffin cells. The identity of the molecules released and the time course of extrusion were measured with fast scan cyclic voltammetry at carbon fiber microelectrodes. In external solutions of high osmolarity, release events following entry of divalent ions (Ba2+ or Ca2+) were less frequent. However, the vesicles appeared to be fused to the membrane without extruding their contents, since the maximal observed concentrations of events were less than 7% of those evoked in isotonic media. Such an isolated, intermediate fusion state, which we term "kiss-and-hold," was confirmed by immunohistochemistry at chromaffin cells. Transient exposure of cells in the kiss and hold state to isotonic solutions evoked massive release. These results demonstrate that an osmotic gradient across the fusion pore is an important driving force for exocytotic extrusion of granule contents from secretory cells following fusion pore formation. PMID:12034731

  12. Synaptobrevin 1 mediates vesicle priming and evoked release in a subpopulation of hippocampal neurons.

    PubMed

    Zimmermann, Johannes; Trimbuch, Thorsten; Rosenmund, Christian

    2014-09-15

    The core machinery of synaptic vesicle fusion consists of three soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins, the two t-SNAREs at the plasma membrane (SNAP-25, Syntaxin 1) and the vesicle-bound v-SNARE synaptobrevin 2 (VAMP2). Formation of the trans-oriented four-α-helix bundle between these SNAREs brings vesicle and plasma membrane in close proximity and prepares the vesicle for fusion. The t-SNAREs are thought to be necessary for vesicle fusion. Whether the v-SNAREs are required for fusion is still unclear, as substantial vesicle priming and spontaneous release activity remain in mammalian mass-cultured synaptobrevin/cellubrevin-deficient neurons. Using the autaptic culture system from synaptobrevin 2 knockout neurons of mouse hippocampus, we found that the majority of cells were devoid of any evoked or spontaneous release and had no measurable readily releasable pool. A small subpopulation of neurons, however, displayed release, and their release activity correlated with the presence and amount of v-SNARE synaptobrevin 1 expressed. Comparison of synaptobrevin 1 and 2 in rescue experiments demonstrates that synaptobrevin 1 can substitute for the other v-SNARE, but with a lower efficiency in neurotransmitter release probability. Release activity in synaptobrevin 2-deficient mass-cultured neurons was massively reduced by a knockdown of synaptobrevin 1, demonstrating that synaptobrevin 1 is responsible for the remaining release activity. These data support the hypothesis that both t- and v-SNAREs are absolutely required for vesicle priming and evoked release and that differential expression of SNARE paralogs can contribute to differential synaptic coding in the brain. PMID:24944211

  13. Polydiacetylene vesicles as a novel drug sustained-release system.

    PubMed

    Guo, Caixin; Liu, Shaoqin; Dai, Zhifei; Jiang, Chang; Li, Wenyuan

    2010-03-01

    Aiming at the enhancement of the physicochemical stability as well as the sustained-release property of conventional liposomes, a novel polymerized vesicular carrier, 10,12-pentacosadiynoic acid (PCDA) vesicles, loaded with paclitaxel as a model hydrophobic drug has been successfully constituted by incorporation of a polymerizable diacetylene into the lipid bilayer vesicles. The polymerized vesicles have been characterized in terms of particle size distribution and zeta-potential. Altering their lipid composition causes the zeta-potential to change from -3+/-1mV to more than -25mV, with a concomitant change in particle size distribution from 29+/-4nm to 149+/-18nm. Dynamic light scattering (DLS) showed that the stability of polymerized vesicles against Triton X-100 was improved greatly compared with the conventional liposomes. In vitro drug release studies show that PCDA-incorporating vesicles reduce the paclitaxel release over the conventional phospholipids vesicles. 69+/-6% paclitaxel is released within 24h from the conventional vesicles, but the insertion of 50% and 75% molar ratio of PCDA changes the amount to 57+/-1% and 32+/-4%, respectively. Our results demonstrate that such novel polymerized vesicles have very good prospect as an anticancer drug carrier. PMID:19896808

  14. Nanoparticle-triggered release from lipid membrane vesicles.

    PubMed

    Reimhult, Erik

    2015-12-25

    Superparamagnetic iron oxide nanoparticles are used in a rapidly expanding number of research and practical applications in biotechnology and biomedicine. We highlight how recent developments in iron oxide nanoparticle design and understanding of nanoparticle membrane interactions have led to applications in magnetically triggered, liposome delivery vehicles with controlled structure. Nanoscale vesicles actuated by incorporated nanoparticles allow for controlling location and timing of compound release, which enables e.g. use of more potent drugs in drug delivery as the interaction with the right target is ensured. This review emphasizes recent results on the connection between nanoparticle design, vesicle assembly and the stability and release properties of the vesicles. While focused on lipid vesicles magnetically actuated through iron oxide nanoparticles, these insights are of general interest for the design of capsule and cell delivery systems for biotechnology controlled by nanoparticles. PMID:25534673

  15. Astrocytic vesicles and gliotransmitters: Slowness of vesicular release and synaptobrevin2-laden vesicle nanoarchitecture.

    PubMed

    Zorec, R; Verkhratsky, A; Rodríguez, J J; Parpura, V

    2016-05-26

    Neurotransmitters released at synapses activate neighboring astrocytes, which in turn, modulate neuronal activity by the release of diverse neuroactive substances that include classical neurotransmitters such as glutamate, GABA or ATP. Neuroactive substances are released from astrocytes through several distinct molecular mechanisms, for example, by diffusion through membrane channels, by translocation via plasmalemmal transporters or by vesicular exocytosis. Vesicular release regulated by a stimulus-mediated increase in cytosolic calcium involves soluble N-ethyl maleimide-sensitive fusion protein attachment protein receptor (SNARE)-dependent merger of the vesicle membrane with the plasmalemma. Up to 25 molecules of synaptobrevin 2 (Sb2), a SNARE complex protein, reside at a single astroglial vesicle; an individual neuronal, i.e. synaptic, vesicle contains ∼70 Sb2 molecules. It is proposed that this paucity of Sb2 molecules in astrocytic vesicles may determine the slow secretion. In the present essay we shall overview multiple aspects of vesicular architecture and types of vesicles based on their cargo and dynamics in astroglial cells. PMID:25727638

  16. Presynaptic Mechanisms of Lead Neurotoxicity: Effects on Vesicular Release, Vesicle Clustering and Mitochondria Number

    PubMed Central

    McGlothan, Jennifer L.; Stansfield, Kirstie H.; Stanton, Patric K.; Guilarte, Tomás R.

    2015-01-01

    Childhood lead (Pb2+) intoxication is a global public health problem and accounts for 0.6% of the global burden of disease associated with intellectual disabilities. Despite the recognition that childhood Pb2+ intoxication contributes significantly to intellectual disabilities, there is a fundamental lack of knowledge on presynaptic mechanisms by which Pb2+ disrupts synaptic function. In this study, using a well-characterized rodent model of developmental Pb2+ neurotoxicity, we show that Pb2+ exposure markedly inhibits presynaptic vesicular release in hippocampal Schaffer collateral-CA1 synapses in young adult rats. This effect was associated with ultrastructural changes which revealed a reduction in vesicle number in the readily releasable/docked vesicle pool, disperse vesicle clusters in the resting pool, and a reduced number of presynaptic terminals with multiple mitochondria with no change in presynaptic calcium influx. These studies provide fundamental knowledge on mechanisms by which Pb2+ produces profound inhibition of presynaptic vesicular release that contribute to deficits in synaptic plasticity and intellectual development. PMID:26011056

  17. Presynaptic mechanisms of lead neurotoxicity: effects on vesicular release, vesicle clustering and mitochondria number.

    PubMed

    Zhang, Xiao-Lei; Guariglia, Sara R; McGlothan, Jennifer L; Stansfield, Kirstie H; Stanton, Patric K; Guilarte, Tomás R

    2015-01-01

    Childhood lead (Pb2+) intoxication is a global public health problem and accounts for 0.6% of the global burden of disease associated with intellectual disabilities. Despite the recognition that childhood Pb2+ intoxication contributes significantly to intellectual disabilities, there is a fundamental lack of knowledge on presynaptic mechanisms by which Pb2+ disrupts synaptic function. In this study, using a well-characterized rodent model of developmental Pb2+ neurotoxicity, we show that Pb2+ exposure markedly inhibits presynaptic vesicular release in hippocampal Schaffer collateral-CA1 synapses in young adult rats. This effect was associated with ultrastructural changes which revealed a reduction in vesicle number in the readily releasable/docked vesicle pool, disperse vesicle clusters in the resting pool, and a reduced number of presynaptic terminals with multiple mitochondria with no change in presynaptic calcium influx. These studies provide fundamental knowledge on mechanisms by which Pb2+ produces profound inhibition of presynaptic vesicular release that contribute to deficits in synaptic plasticity and intellectual development. PMID:26011056

  18. Readily adaptable release kinetics of prodrugs using protease-dependent reversible PEGylation.

    PubMed

    Böttger, Roland; Knappe, Daniel; Hoffmann, Ralf

    2016-05-28

    Protein and peptide therapeutics with good in vitro activities often fail due to poor bioavailability, circulation lifetime, and immunogenicity. PEGylation, i.e. conjugation of polyethylene glycol (PEG), significantly improves serum stability and renal clearance besides reducing the immunogenicity and thus enhances pharmacokinetics and tolerance in vivo. Several PEGylated drugs are marketed including several top-selling blockbusters. However, PEGylation can mask the binding site, especially in peptides, and thereby reduce the activity drastically, which is only rarely compensated by the improved bioavailability. Prodrug strategies using temporary PEGylation, i.e. the authentic drug is released from a PEG-linked precursor by hydrolysis or enzymatic degradation, can overcome these weaknesses. Recently, we reported a strategy coupling PEG via a peptide linker cleaved C-terminally by trypsin-like proteases in blood to release the unmasked therapeutic peptide. Here, we designed twelve short peptide linkers (four or five residues) to tune the release-rates of oncocin Onc112, a proline-rich antimicrobial peptide. In 25% aqueous mouse serum, Onc112 was released with half-life times from 0.5 to 12h. When elongated N-terminally with 5kDa ɑ-methoxy-ω-mercapto PEG as thioether, the half-life times of the prodrugs ranged from 7 to 42h in full mouse serum. Conjugation of a 20kDa instead of the 5kDa PEG increased the half-life times more than twofold, whereas longer peptide linkers up to twelve residues increased them only slightly. In all cases, Onc112 was released continuously providing stable peptide levels for at least 16h. The kinetics will allow the specific design of PEG-linker-drug-combinations for optimizing the pharmacokinetics of promising peptide therapeutics. PMID:27067364

  19. Controlled release mechanisms of spontaneously forming unilamellar vesicles.

    PubMed

    Nieh, Mu-Ping; Katsaras, John; Qi, Xiaoyang

    2008-06-01

    Spontaneously forming small unilamellar vesicles (SULVs) are easy to prepare and show great promise for use in delivering therapeutic payloads. We report of SULVs made up of the ternary phospholipid mixture, dimyristoyl-phosphatidylcholine (DMPC), dihexanoyl-phosphatidylcholine (DHPC) and dimyristoyl-phosphatidylglycerol (DMPG), which have been characterized by small angle neutron scattering (SANS). These low-polydispersity (0.14-0.19) SULVs range in size (i.e., radius) from 110 to 215 A and are capable of entrapping, and subsequently releasing, hydrophilic molecules (e.g., fluorescent dyes and quenchers) in a controlled fashion over two different temperature ranges. The low-temperature release mechanism involves the SULVs transforming into discoidal micelles, with an onset temperature (T(o)) of ~32 degrees C, while the high-temperature release mechanism is more gradual, presumably the result of defects formed through the continuous dissolution of DHPC into solution. Both of these mechanisms differ from other, previously reported thermosensitive liposomes. PMID:18394425

  20. Lipoplex formulation of superior efficacy exhibits high surface activity and fusogenicity, and readily releases DNA

    PubMed Central

    Koynova, Rumiana; Tarahovsky, Yury S.; Wang, Li; MacDonald, Robert C.

    2007-01-01

    Lipoplexes containing a mixture of cationic phospholipids dioleoylethylphosphatidylcholine (EDOPC) and dilauroylethylphosphatidylcholine (EDLPC) are known to be far more efficient agents in transfection of cultured primary endothelial cells than are lipoplexes containing either lipid alone. The large magnitude of the synergy permits comparison of the physical and physico-chemical properties of lipoplexes that have very different transfection efficiencies, but minor chemical differences. Here we report that the superior transfection efficiency of the EDLPC/EDOPC lipoplexes correlates with higher surface activity, higher affinity to interact and mix with negatively charged membrane-mimicking liposomes, and with considerably more efficient DNA release relative to the EDOPC lipoplexes. Observations on cultured cells agree with the results obtained with model systems; confocal microscopy of transfected human umbilical artery endothelial cells (HUAEC) demonstrated more extensive DNA release into the cytoplasm and nucleoplasm for the EDLPC/EDOPC lipoplexes than for EDOPC lipoplexes; electron microscopy of cells fixed and embedded directly on the culture dish revealed contact of EDLPC/EDOPC lipoplexes with various cellular membranes, including those of the endoplasmic reticulum, mitochondria and nucleus. The sequence of events outlining efficient lipofection is discussed based on the presented data. PMID:17156744

  1. Disruption of adaptor protein 2μ (AP-2μ) in cochlear hair cells impairs vesicle reloading of synaptic release sites and hearing.

    PubMed

    Jung, SangYong; Maritzen, Tanja; Wichmann, Carolin; Jing, Zhizi; Neef, Andreas; Revelo, Natalia H; Al-Moyed, Hanan; Meese, Sandra; Wojcik, Sonja M; Panou, Iliana; Bulut, Haydar; Schu, Peter; Ficner, Ralf; Reisinger, Ellen; Rizzoli, Silvio O; Neef, Jakob; Strenzke, Nicola; Haucke, Volker; Moser, Tobias

    2015-11-01

    Active zones (AZs) of inner hair cells (IHCs) indefatigably release hundreds of vesicles per second, requiring each release site to reload vesicles at tens per second. Here, we report that the endocytic adaptor protein 2μ (AP-2μ) is required for release site replenishment and hearing. We show that hair cell-specific disruption of AP-2μ slows IHC exocytosis immediately after fusion of the readily releasable pool of vesicles, despite normal abundance of membrane-proximal vesicles and intact endocytic membrane retrieval. Sound-driven postsynaptic spiking was reduced in a use-dependent manner, and the altered interspike interval statistics suggested a slowed reloading of release sites. Sustained strong stimulation led to accumulation of endosome-like vacuoles, fewer clathrin-coated endocytic intermediates, and vesicle depletion of the membrane-distal synaptic ribbon in AP-2μ-deficient IHCs, indicating a further role of AP-2μ in clathrin-dependent vesicle reformation on a timescale of many seconds. Finally, we show that AP-2 sorts its IHC-cargo otoferlin. We propose that binding of AP-2 to otoferlin facilitates replenishment of release sites, for example, via speeding AZ clearance of exocytosed material, in addition to a role of AP-2 in synaptic vesicle reformation. PMID:26446278

  2. Ciprofloxacin encapsulation into giant unilamellar vesicles: membrane binding and release.

    PubMed

    Kaszás, Nóra; Bozó, Tamás; Budai, Marianna; Gróf, Pál

    2013-02-01

    This study aimed at investigating some respects of binding and interaction between water-soluble drugs and liposomal carrier systems depending on their size and lamellarity. As model substance, ciprofloxacin hydrochloride (CPFX) was incorporated into giant unilamellar vesicles (GUVs) to study their CPFX encapsulation/binding capacity. To characterize molecular interactions of various CPFX microspecies with lipid bilayer, zeta potential and electron paramagnetic resonance (EPR) spectroscopy measurements were performed. The increase of the zeta potential at pH 5.4 but no change at pH 7.2 was interpreted in terms of the CPFX microspecies' distribution at the two pH values. EPR observations showed an increased fluidity because of CPFX binding to GUVs. We worked out and applied a three-compartment dialysis model to separately determine the rate of drug diffusion through the liposomal membrane. Equilibrium dialysis showed (a) different permeation of CPFX through the membranes of GUVs and multilamellar vesicles (MLVs), with characteristic half-lives of 54.4 and 18.1 h, respectively; and (b) increased retention of CPFX in case of GUVs with released amounts of 70% compared with about 97% in case of MLVs. Our results may provide further details for efficient design of liposomal formulations incorporating water-soluble drugs. PMID:23233199

  3. Improved signaling as a result of randomness in synaptic vesicle release

    PubMed Central

    Zhang, Calvin; Peskin, Charles S.

    2015-01-01

    The probabilistic nature of neurotransmitter release in synapses is believed to be one of the most significant sources of noise in the central nervous system. We show how p0, the probability of release per docked vesicle when an action potential arrives, affects the dynamics of the rate of vesicle release in response to changes in the rate of arrival of action potentials. Furthermore, we examine the theoretical capability of a synapse in the estimation of desired signals using information from the stochastic vesicle release events under the framework of optimal linear filter theory. We find that a small p0, such as 0.1, reduces the error in the reconstruction of the input, or in the reconstruction of the time derivative of the input, from the time series of vesicle release events. Our results imply that the probabilistic nature of synaptic vesicle release plays a direct functional role in synaptic transmission. PMID:26627245

  4. Location Matters: Synaptotagmin Helps Place Vesicles Near Calcium Channels

    PubMed Central

    McNeil, Benjamin D.; Wu, Ling-Gang

    2016-01-01

    Positioning releasable vesicles near voltage-gated calcium channels may ensure transmitter release upon calcium influx. Disruption of vesicle positioning may underlie short-term synaptic depression. However, how this positioning is achieved is unclear. In this issue of Neuron, Young and Neher find that synaptotagmin 2 helps to align readily releasable vesicles near calcium channels at nerve terminals. PMID:19709623

  5. Vesicles

    MedlinePlus

    ... pox Contact dermatitis (may be caused by poison ivy) Herpes simplex (cold sores, genital herpes ) Herpes zoster ( ... for certain conditions that cause vesicles, including poison ivy and cold sores.

  6. Synaptotagmin-7 Is Essential for Ca2+-Triggered Delayed Asynchronous Release But Not for Ca2+-Dependent Vesicle Priming in Retinal Ribbon Synapses

    PubMed Central

    Bacaj, Taulant

    2015-01-01

    mediating delayed asynchronous release, or vesicle repriming, in cultured neurons. To test the precise function of synaptotagmin-7 in a physiologically important synapse in situ, we have used pair recordings to study the synaptic transmission between retinal rod bipolar cells and AII amacrine cells. Our data demonstrate that the knock-out of synaptotagmin-7 selectively impaired delayed asynchronous release but not synchronous release. In contrast, the readily releasable vesicles after depletion recover normally in knock-out mice. Therefore, our findings extend our knowledge of synaptotagmins as Ca2+ sensors in vesicle fusion and support the idea that synapses are governed universally by different synaptotagmin Ca2+ sensors mediating distinct release. PMID:26245964

  7. A preliminary proteomic characterisation of extracellular vesicles released by the ovine parasitic nematode, Teladorsagia circumcincta

    PubMed Central

    Tzelos, Thomas; Matthews, Jacqueline B.; Buck, Amy H.; Simbari, Fabio; Frew, David; Inglis, Neil F.; McLean, Kevin; Nisbet, Alasdair J.; Whitelaw, C. Bruce A.; Knox, David P.; McNeilly, Tom N.

    2016-01-01

    Teladorsagia circumcincta is a major cause of ovine parasitic gastroenteritis in temperate climatic regions. The development of high levels of anthelmintic resistance in this nematode species challenges its future control. Recent research indicates that many parasite species release extracellular vesicles into their environment, many of which have been classified as endocytic in origin, termed exosomes. These vesicles are considered to play important roles in the intercellular communication between parasites and their hosts, and thus represent potentially useful targets for novel control strategies. Here, we demonstrate that exosome-like extracellular vesicles can be isolated from excretory-secretory (ES) products released by T. circumcincta fourth stage larvae (Tci-L4ES). Furthermore, we perform a comparative proteomic analysis of vesicle-enriched and vesicle-free Tci-L4ES. Approximately 73% of the proteins identified in the vesicle-enriched fraction were unique to this fraction, whilst the remaining 27% were present in both vesicle-enriched and vesicle-free fraction. These unique proteins included structural proteins, nuclear proteins, metabolic proteins, proteolytic enzymes and activation-associated secreted proteins. Finally, we demonstrate that molecules present within the vesicles-enriched material are targets of the IgA and IgG response in T. circumcincta infected sheep, and could potentially represent useful targets for future vaccine intervention studies. PMID:27084478

  8. A preliminary proteomic characterisation of extracellular vesicles released by the ovine parasitic nematode, Teladorsagia circumcincta.

    PubMed

    Tzelos, Thomas; Matthews, Jacqueline B; Buck, Amy H; Simbari, Fabio; Frew, David; Inglis, Neil F; McLean, Kevin; Nisbet, Alasdair J; Whitelaw, C Bruce A; Knox, David P; McNeilly, Tom N

    2016-05-15

    Teladorsagia circumcincta is a major cause of ovine parasitic gastroenteritis in temperate climatic regions. The development of high levels of anthelmintic resistance in this nematode species challenges its future control. Recent research indicates that many parasite species release extracellular vesicles into their environment, many of which have been classified as endocytic in origin, termed exosomes. These vesicles are considered to play important roles in the intercellular communication between parasites and their hosts, and thus represent potentially useful targets for novel control strategies. Here, we demonstrate that exosome-like extracellular vesicles can be isolated from excretory-secretory (ES) products released by T. circumcincta fourth stage larvae (Tci-L4ES). Furthermore, we perform a comparative proteomic analysis of vesicle-enriched and vesicle-free Tci-L4ES. Approximately 73% of the proteins identified in the vesicle-enriched fraction were unique to this fraction, whilst the remaining 27% were present in both vesicle-enriched and vesicle-free fraction. These unique proteins included structural proteins, nuclear proteins, metabolic proteins, proteolytic enzymes and activation-associated secreted proteins. Finally, we demonstrate that molecules present within the vesicles-enriched material are targets of the IgA and IgG response in T. circumcincta infected sheep, and could potentially represent useful targets for future vaccine intervention studies. PMID:27084478

  9. Antibody Binding Alters the Characteristics and Contents of Extracellular Vesicles Released by Histoplasma capsulatum

    PubMed Central

    Nakayasu, Ernesto S.; Sobreira, Tiago J. P.; Choi, Hyungwon; Casadevall, Arturo; Nimrichter, Leonardo; Nosanchuk, Joshua D.

    2016-01-01

    ABSTRACT Histoplasma capsulatum produces extracellular vesicles containing virulence-associated molecules capable of modulating host machinery, benefiting the pathogen. Treatment of H. capsulatum cells with monoclonal antibodies (MAbs) can change the outcome of infection in mice. We evaluated the sizes, enzymatic contents, and proteomic profiles of the vesicles released by fungal cells treated with either protective MAb 6B7 (IgG1) or nonprotective MAb 7B6 (IgG2b), both of which bind H. capsulatum heat shock protein 60 (Hsp60). Our results showed that treatment with either MAb was associated with changes in size and vesicle loading. MAb treatments reduced vesicle phosphatase and catalase activities compared to those of vesicles from untreated controls. We identified 1,125 proteins in vesicles, and 250 of these manifested differences in abundance relative to that of proteins in vesicles isolated from yeast cells exposed to Hsp60-binding MAbs, indicating that surface binding of fungal cells by MAbs modified protein loading in the vesicles. The abundance of upregulated proteins in vesicles upon MAb 7B6 treatment was 44.8% of the protein quantities in vesicles from fungal cells treated with MAb 6B7. Analysis of orthologous proteins previously identified in vesicles from other fungi showed that different ascomycete fungi have similar proteins in their extracellular milieu, many of which are associated with virulence. Our results demonstrate that antibody binding can modulate fungal cell responses, resulting in differential loading of vesicles, which could alter fungal cell susceptibility to host defenses. This finding provides additional evidence that antibody binding modulates microbial physiology and suggests a new function for specific immunoglobulins through alterations of fungal secretion. IMPORTANCE Diverse fungal species release extracellular vesicles, indicating that this is a common pathway for the delivery of molecules to the extracellular space. However

  10. Antibody Binding Alters the Characteristics and Contents of Extracellular Vesicles Released by Histoplasma capsulatum.

    PubMed

    Matos Baltazar, Ludmila; Nakayasu, Ernesto S; Sobreira, Tiago J P; Choi, Hyungwon; Casadevall, Arturo; Nimrichter, Leonardo; Nosanchuk, Joshua D

    2016-01-01

    Histoplasma capsulatum produces extracellular vesicles containing virulence-associated molecules capable of modulating host machinery, benefiting the pathogen. Treatment of H. capsulatum cells with monoclonal antibodies (MAbs) can change the outcome of infection in mice. We evaluated the sizes, enzymatic contents, and proteomic profiles of the vesicles released by fungal cells treated with either protective MAb 6B7 (IgG1) or nonprotective MAb 7B6 (IgG2b), both of which bind H. capsulatum heat shock protein 60 (Hsp60). Our results showed that treatment with either MAb was associated with changes in size and vesicle loading. MAb treatments reduced vesicle phosphatase and catalase activities compared to those of vesicles from untreated controls. We identified 1,125 proteins in vesicles, and 250 of these manifested differences in abundance relative to that of proteins in vesicles isolated from yeast cells exposed to Hsp60-binding MAbs, indicating that surface binding of fungal cells by MAbs modified protein loading in the vesicles. The abundance of upregulated proteins in vesicles upon MAb 7B6 treatment was 44.8% of the protein quantities in vesicles from fungal cells treated with MAb 6B7. Analysis of orthologous proteins previously identified in vesicles from other fungi showed that different ascomycete fungi have similar proteins in their extracellular milieu, many of which are associated with virulence. Our results demonstrate that antibody binding can modulate fungal cell responses, resulting in differential loading of vesicles, which could alter fungal cell susceptibility to host defenses. This finding provides additional evidence that antibody binding modulates microbial physiology and suggests a new function for specific immunoglobulins through alterations of fungal secretion. IMPORTANCE Diverse fungal species release extracellular vesicles, indicating that this is a common pathway for the delivery of molecules to the extracellular space. However, there has

  11. Adiponectin is released via a unique regulated exocytosis pathway from a pre-formed vesicle pool on insulin stimulation.

    PubMed

    Lim, Chun-Yan; Hong, Wanjin; Han, Weiping

    2015-11-01

    Adiponectin, a hormone secreted from adipocytes and released at a high rate into the circulation, plays a pivotal role in maintaining insulin sensitivity at the whole-body level. Despite the importance of this adipokine in metabolic homoeostasis, the mechanism of its secretion from adipocytes remains largely unclear. In the present study, we investigated the subcellular localization of adiponectin, and its secretion regulation in 3T3-L1-differentiated adipocytes, using biochemical methods and fluorescence microscopic imaging. We show that adiponectin is localized in vesicular compartments with no apparent overlap with the Golgi apparatus or endosomes. Moreover, adiponectin-containing vesicles are enriched in two distinct pools: one at the plasma membrane (PM) and the other co-fractionating with endoplasmic reticulum membranes. When viewed under a total internal refection fluorescence microscope, a subset of adiponectin-Venus vesicles is readily observed in proximity to PMs, and could be released in response to insulin. Insulin-stimulated adiponectin release appears to be from a pre-existing pool of vesicles, and is not dependent on new protein synthesis, because adiponectin mRNA levels remain unchanged over a 6-h period of insulin treatment, and inhibition of protein synthesis has no effect on adiponectin release. Disruption of insulin signalling by inhibitors of phosphoinositide 3-kinase and protein kinase B (Akt)-1/2 abrogates the stimulated release of adiponectin. Taken together, our results show that adiponectin is stored in a unique vesicular compartment, and released through a regulated exocytosis pathway that is dependent on insulin signalling. PMID:26330614

  12. Bacterial Membrane Vesicles Mediate the Release of Mycobacterium tuberculosis Lipoglycans and Lipoproteins from Infected Macrophages.

    PubMed

    Athman, Jaffre J; Wang, Ying; McDonald, David J; Boom, W Henry; Harding, Clifford V; Wearsch, Pamela A

    2015-08-01

    Mycobacterium tuberculosis is an intracellular pathogen that infects lung macrophages and releases microbial factors that regulate host defense. M. tuberculosis lipoproteins and lipoglycans block phagosome maturation, inhibit class II MHC Ag presentation, and modulate TLR2-dependent cytokine production, but the mechanisms for their release during infection are poorly defined. Furthermore, these molecules are thought to be incorporated into host membranes and released from infected macrophages within exosomes, 40-150-nm extracellular vesicles that derive from multivesicular endosomes. However, our studies revealed that extracellular vesicles released from infected macrophages include two distinct, largely nonoverlapping populations: one containing host cell markers of exosomes (CD9, CD63) and the other containing M. tuberculosis molecules (lipoglycans, lipoproteins). These vesicle populations are similar in size but have distinct densities, as determined by separation on sucrose gradients. Release of lipoglycans and lipoproteins from infected macrophages was dependent on bacterial viability, implicating active bacterial mechanisms in their secretion. Consistent with recent reports of extracellular vesicle production by bacteria (including M. tuberculosis), we propose that bacterial membrane vesicles are secreted by M. tuberculosis within infected macrophages and subsequently are released into the extracellular environment. Furthermore, extracellular vesicles released from M. tuberculosis-infected cells activate TLR2 and induce cytokine responses by uninfected macrophages. We demonstrate that these activities derive from the bacterial membrane vesicles rather than exosomes. Our findings suggest that bacterial membrane vesicles are the primary means by which M. tuberculosis exports lipoglycans and lipoproteins to impair effector functions of infected macrophages and circulate bacterial components beyond the site of infection to regulate immune responses by uninfected

  13. Formation of drug/surfactant catanionic vesicles and their application in sustained drug release.

    PubMed

    Jiang, Yue; Li, Feifei; Luan, Yuxia; Cao, Wenting; Ji, Xiaoqing; Zhao, Lanxia; Zhang, Longlong; Li, Zhonghao

    2012-10-15

    The aggregation behavior of the cationic drug/anionic surfactant vesicles formed by tetracaine hydrochloride (TH) and double-chain surfactant, sodium bis(2-ethylhexyl)sulfosuccinate (AOT), was investigated. By controlling the molar ratio of TH to AOT, a transition from catanionic vesicles to micelles was observed. The catanionic aggregates exhibited different charge properties, structures, interaction enthalpies and drug release behaviors depending on the composition. To characterize the cationic drug/anionic surfactant system, transmission electron microscopy (TEM), dynamic light scattering (DLS), isothermal titration calorimetry (ITC), conductivity, turbidity and zeta potential (ζ) measurements were performed. The drug release results indicate that the present drug-containing catanionic vesicles have promising applications in drug delivery systems. Furthermore, the percentage of drug distributed in the catanionic vesicles or micelles can be obtained by comparing the cumulative release of the corresponding aggregates with the pure drug solution. PMID:22871561

  14. Enhanced survival of Salmonella enterica in vesicles released by a soilborne Tetrahymena species.

    PubMed

    Brandl, M T; Rosenthal, B M; Haxo, A F; Berk, S G

    2005-03-01

    Nondestructive ingestion by soilborne protozoa may enhance the environmental resiliency of important bacterial pathogens and may model how such bacteria evade destruction in human macrophages. Here, the interaction of Salmonella enterica serovar Thompson with a soilborne Tetrahymena sp. isolate was examined using serovar Thompson cells labeled with the green fluorescent protein. The bacteria were mixed in solution with cells of Tetrahymena at several ratios. During incubation with serovar Thompson, Tetrahymena cells released a large number of vesicles containing green fluorescent serovar Thompson cells. In comparison, grazing on Listeria monocytogenes cells resulted in their digestion and thus the infrequent release of this pathogen in vesicles. The number of serovar Thompson cells per vesicle increased significantly as the initial ratio of serovar Thompson to Tetrahymena cells increased from 500:1 to 5,000:1. The density of serovar Thompson was as high as 50 cells per vesicle. Staining with propidium iodide revealed that a significantly higher proportion of serovar Thompson cells remained viable when enclosed in vesicles than when free in solution. Enhanced survival rates were observed in vesicles that were secreted by both starved (F = 28.3, P < 0.001) and unstarved (F = 14.09, P < 0.005) Tetrahymena cells. Sequestration in vesicles also provided greater protection from low concentrations of calcium hypochlorite. Thus, the release of this human pathogen from Tetrahymena cells in high-density clusters enclosed in a membrane may have important implications for public health. PMID:15746361

  15. A supramolecular vesicle of camptothecin for its water dispersion and controllable releasing.

    PubMed

    Ma, Mingfang; Shang, Wenqing; Xing, Pengyao; Li, Shangyang; Chu, Xiaoxiao; Hao, Aiyou; Liu, Guangcun; Zhang, Yimeng

    2015-01-30

    Camptothecin, as an antitumor drug, has shown significant antitumor activity against various cancers through the inhibition of topoisomerase I. However, its poor solubility severely limits the clinical applications. Here, we report a camptothecin supramolecular vesicle based on the host-guest interactions, which can uniformly disperse camptothecin into water and greatly enhance camptothecin aqueous solubility. The camptothecin vesicles were identified by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and dynamic light scattering (DLS). X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-vis spectrum, 1H NMR and 2D NMR ROESY were further employed to study the formation mechanism of the vesicles. Furthermore, camptothecin could be controllably released when the competitive guests were added into the vesicles system. Finally, the camptothecin vesicles in aqueous solution exhibited comparable antitumor activity in vitro as natural camptothecin in DMSO to HeLa cells under the same conditions. PMID:25498021

  16. Mechanisms, pools, and sites of spontaneous vesicle release at synapses of rod and cone photoreceptors.

    PubMed

    Cork, Karlene M; Van Hook, Matthew J; Thoreson, Wallace B

    2016-08-01

    Photoreceptors have depolarized resting potentials that stimulate calcium-dependent release continuously from a large vesicle pool but neurons can also release vesicles without stimulation. We characterized the Ca(2+) dependence, vesicle pools, and release sites involved in spontaneous release at photoreceptor ribbon synapses. In whole-cell recordings from light-adapted horizontal cells (HCs) of tiger salamander retina, we detected miniature excitatory post-synaptic currents (mEPSCs) when no stimulation was applied to promote exocytosis. Blocking Ca(2+) influx by lowering extracellular Ca(2+) , by application of Cd(2+) and other agents reduced the frequency of mEPSCs but did not eliminate them, indicating that mEPSCs can occur independently of Ca(2+) . We also measured release presynaptically from rods and cones by examining quantal glutamate transporter anion currents. Presynaptic quantal event frequency was reduced by Cd(2+) or by increased intracellular Ca(2+) buffering in rods, but not in cones, that were voltage clamped at -70 mV. By inhibiting the vesicle cycle with bafilomycin, we found the frequency of mEPSCs declined more rapidly than the amplitude of evoked excitatory post-synaptic currents (EPSCs) suggesting a possible separation between vesicle pools in evoked and spontaneous exocytosis. We mapped sites of Ca(2+) -independent release using total internal reflectance fluorescence (TIRF) microscopy to visualize fusion of individual vesicles loaded with dextran-conjugated pHrodo. Spontaneous release in rods occurred more frequently at non-ribbon sites than evoked release events. The function of Ca(2+) -independent spontaneous release at continuously active photoreceptor synapses remains unclear, but the low frequency of spontaneous quanta limits their impact on noise. PMID:27255664

  17. Circulating Extracellular Vesicles Contain miRNAs and are Released as Early Biomarkers for Cardiac Injury.

    PubMed

    Deddens, Janine C; Vrijsen, Krijn R; Colijn, Johanna M; Oerlemans, Martinus I; Metz, Corina H G; van der Vlist, Els J; Nolte-'t Hoen, Esther N M; den Ouden, Krista; Jansen Of Lorkeers, Sanne J; van der Spoel, Tycho I G; Koudstaal, Stefan; Arkesteijn, Ger J; Wauben, Marca H M; van Laake, Linda W; Doevendans, Pieter A; Chamuleau, Steven A J; Sluijter, Joost P G

    2016-08-01

    Plasma-circulating microRNAs have been implicated as novel early biomarkers for myocardial infarction (MI) due to their high specificity for cardiac injury. For swift clinical translation of this potential biomarker, it is important to understand their temporal and spatial characteristics upon MI. Therefore, we studied the temporal release, potential source, and transportation of circulating miRNAs in different models of ischemia reperfusion (I/R) injury. We demonstrated that extracellular vesicles are released from the ischemic myocardium upon I/R injury. Moreover, we provided evidence that cardiac and muscle-specific miRNAs are transported by extracellular vesicles and are rapidly detectable in plasma. Since these vesicles are enriched for the released miRNAs and their detection precedes traditional damage markers, they hold great potential as specific early biomarkers for MI. PMID:27383837

  18. Neurotransmitter Release: The Last Millisecond in the Life of a Synaptic Vesicle

    PubMed Central

    Südhof, Thomas C.

    2013-01-01

    During an action potential, Ca2+ entering a presynaptic terminal triggers synaptic vesicle exocytosis and neurotransmitter release in less than a millisecond. How does Ca2+ stimulate release so rapidly and precisely? Work over the last decades revealed that Ca2+-binding to synaptotagmin triggers release by stimulating synaptotagmin-binding to a core machinery composed of SNARE and SM proteins that mediates membrane fusion during exocytosis. Complexin adaptor proteins assist synaptotagmin by activating and clamping this core fusion machinery. Synaptic vesicles containing synaptotagmin are positioned at the active zone, the site of vesicle fusion, by a protein complex containing RIM proteins. RIM proteins simultaneously activate docking and priming of synaptic vesicles and recruit Ca2+-channels to active zones, thereby connecting in a single complex primed synaptic vesicles to Ca2+-channels. This architecture allows direct flow of Ca2+-ions from Ca2+-channels to synaptotagmin, which then triggers fusion, thus mediating tight millisecond coupling of an action potential to neurotransmitter release. PMID:24183019

  19. Inositol 1,4,5-trisphosphate-induced calcium release from platelet plasma membrane vesicles

    SciTech Connect

    Rengasamy, A.; Feinberg, H.

    1988-02-15

    A platelet membrane preparation, enriched in plasma membrane markers, took up /sup 45/Ca/sup 2 +/ in exchange for intravesicular Na+ and released it after the addition of inositol 1,4,5-trisphosphate (IP3). The possibility that contaminating dense tubular membrane (DTS) vesicles contributed the Ca/sup 2 +/ released by IP3 was eliminated by the addition of vanadate to inhibit Ca/sup +/-ATPase-mediated DTS Ca/sup 2 +/ sequestration and by the finding that only plasma membrane vesicles exhibit Na/sup +/-dependent Ca/sup 2 +/ uptake. Ca/sup 2 +/ released by IP3 was dependent on low extravesicular Ca/sup 2 +/ concentrations. IP3-induced Ca/sup 2 +/ release was additive to that released by Na/sup +/ addition while GTP or polyethylene glycol (PEG) had no effect. These results strongly suggest that IP3 facilitates extracellular Ca/sup 2 +/ influx in addition to release from DTS membranes.

  20. The Immediately Releasable Pool of Mouse Chromaffin Cell Vesicles Is Coupled to P/Q-Type Calcium Channels via the Synaptic Protein Interaction Site

    PubMed Central

    Álvarez, Yanina D.; Belingheri, Ana Verónica; Perez Bay, Andrés E.; Javis, Scott E.; Tedford, H. William; Zamponi, Gerald; Marengo, Fernando D.

    2013-01-01

    It is generally accepted that the immediately releasable pool is a group of readily releasable vesicles that are closely associated with voltage dependent Ca2+ channels. We have previously shown that exocytosis of this pool is specifically coupled to P/Q Ca2+ current. Accordingly, in the present work we found that the Ca2+ current flowing through P/Q-type Ca2+ channels is 8 times more effective at inducing exocytosis in response to short stimuli than the current carried by L-type channels. To investigate the mechanism that underlies the coupling between the immediately releasable pool and P/Q-type channels we transiently expressed in mouse chromaffin cells peptides corresponding to the synaptic protein interaction site of Cav2.2 to competitively uncouple P/Q-type channels from the secretory vesicle release complex. This treatment reduced the efficiency of Ca2+ current to induce exocytosis to similar values as direct inhibition of P/Q-type channels via ω-agatoxin-IVA. In addition, the same treatment markedly reduced immediately releasable pool exocytosis, but did not affect the exocytosis provoked by sustained electric or high K+ stimulation. Together, our results indicate that the synaptic protein interaction site is a crucial factor for the establishment of the functional coupling between immediately releasable pool vesicles and P/Q-type Ca2+ channels. PMID:23382986

  1. The ROP vesicle release factor is required in adult Drosophila glia for normal circadian behavior

    PubMed Central

    Ng, Fanny S.; Jackson, F. Rob

    2015-01-01

    We previously showed that endocytosis and/or vesicle recycling mechanisms are essential in adult Drosophila glial cells for the neuronal control of circadian locomotor activity. In this study, our goal was to identify specific glial vesicle trafficking, recycling, or release factors that are required for rhythmic behavior. From a glia-specific, RNAi-based genetic screen, we identified eight glial factors that are required for normally robust circadian rhythms in either a light-dark cycle or in constant dark conditions. In particular, we show that conditional knockdown of the ROP vesicle release factor in adult glial cells results in arrhythmic behavior. Immunostaining for ROP reveals reduced protein in glial cell processes and an accumulation of the Par Domain Protein 1ε (PDP1ε) clock output protein in the small lateral clock neurons. These results suggest that glia modulate rhythmic circadian behavior by secretion of factors that act on clock neurons to regulate a clock output factor. PMID:26190976

  2. The Release of Vesicles from Platelets Following Adhesion to Vessel Walls In Vitro

    PubMed Central

    Warren, B. A.; Vales, O.

    1972-01-01

    The ultrastructure of the adhesion of platelets to the subendothelial layers of arteries was examined in man (coronary artery), rabbit (aorta) and rat (aorta) in vitro. In each case dendritic platelet pseudopodia proceeded from the platelets. These dendritic pseudopodia were frequently associated with multivesicular membranous sacs. These sacs appeared in various forms and every gradation from profiles containing closely packed vesicles to rupture of the primary sac and release of the contained vesicles was observed. Following initial contact with the subendothelial layer by dendritic pseudopodia (and on many occasions by associated multivesicular membranous sac) progressive stages from a free-floating platelet to one closely applied to the basement membrane were noted. Granules were not extruded and were present in the main cytoplasmic masses of the platelets in contact with the basement membrane. Vesicles were released from the membranous sacs directly from the main cell mass of the platelet on contact of platelets with the vessel wall and at or near the terminal bulb of platelet dendritic pseudopodia. Human platelets in contact with the basement membrane of human coronary artery tended to form a thin usually monocellular layer more rapidly than platelets in the other 2 species. It is postulated that the release of vesicles from the multivesicular membranous sacs is the morphological basis of the platelet release reaction. ImagesFig. 2Fig. 3Fig. 5Fig. 1Fig. 4 PMID:4338062

  3. Intracellular calcium stores drive slow non-ribbon vesicle release from rod photoreceptors

    PubMed Central

    Chen, Minghui; Križaj, David; Thoreson, Wallace B.

    2014-01-01

    Rods are capable of greater slow release than cones contributing to overall slower release kinetics. Slow release in rods involves Ca2+-induced Ca2+ release (CICR). By impairing release from ribbons, we found that unlike cones where release occurs entirely at ribbon-style active zones, slow release from rods occurs mostly at ectopic, non-ribbon sites. To investigate the role of CICR in ribbon and non-ribbon release from rods, we used total internal reflection fluorescence microscopy as a tool for visualizing terminals of isolated rods loaded with fluorescent Ca2+ indicator dyes and synaptic vesicles loaded with dextran-conjugated pH-sensitive rhodamine. We found that rather than simply facilitating release, activation of CICR by ryanodine triggered release directly in rods, independent of plasma membrane Ca2+ channel activation. Ryanodine-evoked release occurred mostly at non-ribbon sites and release evoked by sustained depolarization at non-ribbon sites was mostly due to CICR. Unlike release at ribbon-style active zones, non-ribbon release did not occur at fixed locations. Fluorescence recovery after photobleaching of endoplasmic reticulum (ER)-tracker dye in rod terminals showed that ER extends continuously from synapse to soma. Release of Ca2+ from terminal ER by lengthy depolarization did not significantly deplete Ca2+ from ER in the perikaryon. Collectively, these results indicate that CICR-triggered release at non-ribbon sites is a major mechanism for maintaining vesicle release from rods and that CICR in terminals may be sustained by diffusion of Ca2+ through ER from other parts of the cell. PMID:24550779

  4. Shape bistability of a membrane neck: A toggle switch to control vesicle content release

    PubMed Central

    Frolov, Vadim A.; Lizunov, Vladimir A.; Dunina-Barkovskaya, Antonina Ya.; Samsonov, Andrey V.; Zimmerberg, Joshua

    2003-01-01

    Shape dynamics and permeability of a membrane neck connecting a vesicle and plasma membrane are considered. The neck is modeled by a lipid membrane tubule extended between two parallel axisymmetric rings. Within a range of lengths, defined by system geometry and mechanical properties of the membrane, the tubule has two stable shapes: catenoidal microtubule and cylindrical nanotubule. The permeabilities of these two shapes, measured as ionic conductivity of the tubule interior, differ by up to four orders of magnitude. Near the critical length the transitions between the shapes occur within less than a millisecond. Theoretical estimates show that the shape switching is controlled by a single parameter, the tubule length. Thus the tubule connection can operate as a conductivity microswitch, toggling the release of vesicle content in such cellular processes as “kiss-and-run” exocytosis. In support of this notion, bistable behavior of membrane connections between vesicles and the cell plasma membrane in macrophages is demonstrated. PMID:12857952

  5. Induction of skeletal muscle contracture and calcium release from isolated sarcoplasmic reticulum vesicles by sanguinarine

    PubMed Central

    Hu, C M; Cheng, H W; Cheng, Y W; Kang, J J

    2000-01-01

    The benzophenanthrine alkaloid, sanguinarine, was studied for its effects on isolated mouse phrenic-nerve diaphragm preparations. Sanguinarine induced direct, dose-dependent effects on muscle contractility. Sanguinarine-induced contracture was partially inhibited when the extracellular Ca2+ was removed or when the diaphragm was pretreated with nifedipine. Depletion of sarcoplasmic reticulum (SR) internal calcium stores completely blocked the contracture. Sanguinarine induced Ca2+ release from the actively loaded SR vesicles was blocked by ruthenium red and dithiothreitol (DTT), consistent with the ryanodine receptor (RyR) as the site of sanguinarine action. Sanguinarine altered [3H]-ryanodine binding to the RyR of isolated SR vesicles, potentiating [3H]-ryanodine binding at lower concentrations and inhibiting binding at higher concentrations. All of these effects were reversed by DTT, suggesting that sanguinarine-induced Ca2+ release from SR occurs through oxidation of critical SH groups of the RyR SR calcium release channel. PMID:10807666

  6. Extracellular vesicles release by cardiac telocytes: electron microscopy and electron tomography.

    PubMed

    Fertig, Emanuel T; Gherghiceanu, Mihaela; Popescu, Laurentiu M

    2014-10-01

    Telocytes have been reported to play an important role in long-distance heterocellular communication in normal and diseased heart, both through direct contact (atypical junctions), as well as by releasing extracellular vesicles (EVs) which may act as paracrine mediators. Exosomes and ectosomes are the two main types of EVs, as classified by size and the mechanism of biogenesis. Using electron microscopy (EM) and electron tomography (ET) we have found that telocytes in culture release at least three types of EVs: exosomes (released from endosomes; 45 ± 8 nm), ectosomes (which bud directly from the plasma membrane; 128 ± 28 nm) and multivesicular cargos (MVC; 1 ± 0.4 μm), the latter containing tightly packaged endomembrane-bound vesicles (145 ± 35 nm). Electron tomography revealed that endomembrane vesicles are released into the extracellular space as a cargo enclosed by plasma membranes (estimated area of up to 3 μm(2)). This new type of EV, also released by telocytes in tissue, likely represents an essential component in the paracrine secretion of telocytes and may consequently be directly involved in heart physiology and regeneration. PMID:25257228

  7. Release of kinesin from vesicles by hsc70 and regulation of fast axonal transport

    NASA Technical Reports Server (NTRS)

    Tsai, M. Y.; Morfini, G.; Szebenyi, G.; Brady, S. T.

    2000-01-01

    The nature of kinesin interactions with membrane-bound organelles and mechanisms for regulation of kinesin-based motility have both been surprisingly difficult to define. Most kinesin is recovered in supernatants with standard protocols for purification of motor proteins, but kinesin recovered on membrane-bound organelles is tightly bound. Partitioning of kinesin between vesicle and cytosolic fractions is highly sensitive to buffer composition. Addition of either N-ethylmaleimide or EDTA to homogenization buffers significantly increased the fraction of kinesin bound to organelles. Given that an antibody against kinesin light chain tandem repeats also releases kinesin from vesicles, these observations indicated that specific cytoplasmic factors may regulate kinesin release from membranes. Kinesin light tandem repeats contain DnaJ-like motifs, so the effects of hsp70 chaperones were evaluated. Hsc70 released kinesin from vesicles in an MgATP-dependent and N-ethylmaleimide-sensitive manner. Recombinant kinesin light chains inhibited kinesin release by hsc70 and stimulated the hsc70 ATPase. Hsc70 actions may provide a mechanism to regulate kinesin function by releasing kinesin from cargo in specific subcellular domains, thereby effecting delivery of axonally transported materials.

  8. Fusion Pore Size Limits 5-HT Release From Single Enterochromaffin Cell Vesicles.

    PubMed

    Raghupathi, Ravinarayan; Jessup, Claire F; Lumsden, Amanda L; Keating, Damien J

    2016-07-01

    Enterochromaffin cells are the major site of serotonin (5-HT) synthesis and secretion providing ∼95% of the body's total 5-HT. 5-HT can act as a neurotransmitter or hormone and has several important endocrine and paracrine roles. We have previously demonstrated that EC cells release small amounts of 5-HT per exocytosis event compared to other endocrine cells. We utilized a recently developed method to purify EC cells to demonstrate the mechanisms underlying 5-HT packaging and release. Using the fluorescent probe FFN511, we demonstrate that EC cells express VMAT and that VMAT plays a functional role in 5-HT loading into vesicles. Carbon fiber amperometry studies illustrate that the amount of 5-HT released per exocytosis event from EC cells is dependent on both VMAT and the H(+)-ATPase pump, as demonstrated with reserpine or bafilomycin, respectively. We also demonstrate that increasing the amount of 5-HT loaded into EC cell vesicles does not result in an increase in quantal release. As this indicates that fusion pore size may be a limiting factor involved, we compared pore diameter in EC and chromaffin cells by assessing the vesicle capture of different-sized fluorescent probes to measure the extent of fusion pore dilation. This identified that EC cells have a reduced fusion pore expansion that does not exceed 9 nm in diameter. These results demonstrate that the small amounts of 5-HT released per fusion event in EC cells can be explained by a smaller fusion pore that limits 5-HT release capacity from individual vesicles. PMID:26574734

  9. Increased Expression of Alpha-Synuclein Reduces Neurotransmitter Release by Inhibiting Synaptic Vesicle Reclustering After Endocytosis

    PubMed Central

    Nemani, Venu M.; Lu, Wei; Berge, Victoria; Nakamura, Ken; Onoa, Bibiana; Lee, Michael K.; Chaudhry, Farrukh A.; Nicoll, Roger A.; Edwards, Robert H.

    2011-01-01

    Summary The protein α-synuclein accumulates in the brain of patients with sporadic Parkinson’s disease (PD), and increased gene dosage causes a severe, dominantly inherited form of PD, but we know little about the effects of synuclein that precede degeneration. α-Synuclein localizes to the nerve terminal, but the knockout has little if any effect on synaptic transmission. In contrast, we now find that the modest over-expression of α-synuclein, in the range predicted for gene multiplication and in the absence of overt toxicity, markedly inhibits neurotransmitter release. The mechanism, elucidated by direct imaging of the synaptic vesicle cycle, involves a specific reduction in size of the synaptic vesicle recycling pool. Ultrastructural analysis demonstrates reduced synaptic vesicle density at the active zone, and imaging further reveals a defect in the reclustering of synaptic vesicles after endocytosis. Increased levels of α-synuclein thus produce a specific, physiological defect in synaptic vesicle recycling that precedes detectable neuropathology. PMID:20152114

  10. Release Studies on Ciprofloxacin Loaded Non-ionic Surfactant Vesicles

    PubMed Central

    Akbari, Vajihe; Abedi, Daryoush; Pardakhty, Abbas; Sadeghi-Aliabadi, Hojjat

    2015-01-01

    Background: Development of new drug carriers would be an interesting approach if it allowed increased efficacy of antibiotics and a reduction in doses, thus reducing the risk of developing resistance. As with most drug carriers, niosomes have been used to improve the selective delivery and the therapeutic index of antimicrobial agents. Methods: In this study, different formulation of niosomes containing ciprofloxacin (CPFX), Span (20, 60 or 80), Tween (20, 60 or 80) and cholesterol were prepared by film hydration method. The release of the drug from different formulations was studied by using Franz diffusion cell. The niosomes were further characterized by optical microscopy and particle size analysis, and their antimicrobial activity was evaluated. Results: Size of the niosomes was significantly dependent on the amount of cholesterol and surfactant type and varied from 8.56 to 61.3 μm. The entrapment efficiency of CPFX niosomes prepared by remote loading was more than 74%. Niosomes composed of Span/Tween 60 provided a higher CPFX release rate than other formulations. The obtained results indicated a diffusion-based mechanism for drug leakage through bilayers. All formulations presented more antibacterial activity as compared to free CPFX solution. Conclusion: Niosomal CPFX appears to be a promising approach in the management of bacterial infections, especially ophthalmic ones, and should be further evaluated by in vivo experiments. PMID:26140184

  11. Peptide hormone release monitored from single vesicles in "membrane lawns" of differentiated male pituitary cells: SNAREs and fusion pore widening.

    PubMed

    Stenovec, Matjaž; Gonçalves, Paula P; Zorec, Robert

    2013-03-01

    In this study we used live-cell immunocytochemistry and confocal microscopy to study the release from a single vesicle in a simplified system called membrane lawns. The lawns were prepared by exposing differentiated pituitary prolactin (PRL)-secreting cells to a hypoosmotic shear stress. The density of the immunolabeled ternary soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) complexes that bind complexin was approximately 10 times lower than the PRL-positive, lawn-resident vesicles; this indicates that some but not all vesicles are associated with ternary SNARE complexes. However, lawn-resident PRL vesicles colocalized relatively well with particular SNARE proteins: synaptobrevin 2 (35%), syntaxin 1 (22%), and 25-kDa synaptosome associated protein (6%). To study vesicle discharge, we prepared lawn-resident vesicles, derived from atrial natriuretic peptide tagged with emerald fluorescent protein (ANP.emd)-transfected cells, which label vesicles. These maintained the structural passage to the exterior because approximately 40% of ANP.emd-loaded vesicles were labeled by extracellular PRL antibodies. Cargo release from the lawn-resident vesicles, monitored by the decline in the ANP.emd fluorescence intensity, was similar to that in intact cells. It is likely that SNARE proteins are required for calcium-dependent release from these vesicles. This is because the expression of the dominant-negative SNARE peptide, which interferes with SNARE complex formation, reduced the number of PRL-positive spots per cell (PRL antibodies placed extracellularly) significantly, from 58 ± 9 to 4 ± 2. In dominant-negative SNARE-treated cells, the PRL-positive area was reduced from 0.259 ± 0.013 to 0.123 ± 0.014 μm(2), which is consistent with a hindered vesicle luminal access for extracellular PRL antibodies. These results indicate that vesicle discharge is regulated by SNARE-mediated fusion pore widening. PMID:23372020

  12. Sodium dodecyl sulfate/β-cyclodextrin vesicles embedded in chitosan gel for insulin delivery with pH-selective release.

    PubMed

    Li, Zhuo; Li, Haiyan; Wang, Caifen; Xu, Jianghui; Singh, Vikramjeet; Chen, Dawei; Zhang, Jiwen

    2016-07-01

    In an answer to the challenge of enzymatic instability and low oral bioavailability of proteins/peptides, a new type of drug-delivery vesicle has been developed. The preparation, based on sodium dodecyl sulfate (SDS) and β-cyclodextrin (β-CD) embedded in chitosan gel, was used to successfully deliver the model drug-insulin. The self-assembled SDS/β-CD vesicles were prepared and characterized by particle size, zeta potential, appearance, microscopic morphology and entrapment efficiency. In addition, both the interaction of insulin with vesicles and the stability of insulin loaded in vesicles in the presence of pepsin were investigated. The vesicles were crosslinked into thermo-sensitive chitosan/β-glycerol phosphate solution for an in-situ gel to enhance the dilution stability. The in vitro release characteristics of insulin from gels in media at different pH values were investigated. The insulin loaded vesicles-chitosan hydrogel (IVG) improved the dilution stability of the vesicles and provided pH-selective sustained release compared with insulin solution-chitosan hydrogel (ISG). In vitro, IVG exhibited slow release in acidic solution and relatively quick release in neutral solutions to provide drug efficacy. In simulated digestive fluid, IVG showed better sustained release and insulin protection properties compared with ISG. Thus IVG might improve the stability of insulin during its transport in vivo and contribute to the bioavailability and therapeutic effect of insulin. PMID:27471675

  13. Degradation of heparan sulfate in the subendothelial extracellular matrix by a readily released heparanase from human neutrophils. Possible role in invasion through basement membranes.

    PubMed Central

    Matzner, Y; Bar-Ner, M; Yahalom, J; Ishai-Michaeli, R; Fuks, Z; Vlodavsky, I

    1985-01-01

    Freshly isolated human neutrophils were investigated for their ability to degrade heparan sulfate proteoglycans in the subendothelial extracellular matrix (ECM) produced by cultured corneal and vascular endothelial cells. The ECM was metabolically labeled with Na2(35S)O4 and labeled degradation products were analyzed by gel filtration over Sepharose 6B. More than 90% of the released radioactivity consisted of heparan sulfate fragments 5-6 times smaller than intact heparan sulfate side chains released from the ECM by either papain or alkaline borohydride. These fragments were sensitive to deamination with nitrous acid and were not produced in the presence of either heparin or serine protease inhibitors. In contrast, degradation of soluble high molecular weight heparan sulfate proteoglycan, which was first released from the ECM, was inhibited by heparin but there was no effect of protease inhibitors. These results indicate that interaction of human neutrophils with the subendothelial ECM is associated with degradation of its heparan sulfate by means of a specific, newly identified, heparanase activity and that this degradation is facilitated to a large extent by serine proteases. The neutrophil heparanase was readily and preferentially released (15-25% of the cellular content in 60 min) by simply incubating the cells at 4 degrees C in the absence of added stimuli. Under these conditions, less than 5% of the cellular content of lactate dehydrogenase, lysozyme, and globin degrading proteases was released. Further purification of the neutrophil heparanase was achieved by its binding to heparin-Sepharose and elution at 1 M NaCl. It is suggested that heparanase activity is involved in the early events of extravasation and diapedesis of neutrophils in response to a threshold signal from an extravascular inflamed organ. PMID:2997275

  14. Vesicles derived via AP-3-dependent recycling contribute to asynchronous release and influence information transfer.

    PubMed

    Evstratova, Alesya; Chamberland, Simon; Faundez, Victor; Tóth, Katalin

    2014-01-01

    Action potentials trigger synchronous and asynchronous neurotransmitter release. Temporal properties of both types of release could be altered in an activity-dependent manner. While the effects of activity-dependent changes in synchronous release on postsynaptic signal integration have been studied, the contribution of asynchronous release to information transfer during natural stimulus patterns is unknown. Here we find that during trains of stimulations, asynchronous release contributes to the precision of action potential firing. Our data show that this form of release is selectively diminished in AP-3b2 KO animals, which lack functional neuronal AP-3, an adaptor protein regulating vesicle formation from endosomes generated during bulk endocytosis. We find that in the absence of neuronal AP-3, asynchronous release is attenuated and the activity-dependent increase in the precision of action potential timing is compromised. Lack of asynchronous release decreases the capacity of synaptic information transfer and renders synaptic communication less reliable in response to natural stimulus patterns. PMID:25410111

  15. Individual Neuronal Subtypes Exhibit Diversity in CNS Myelination Mediated by Synaptic Vesicle Release.

    PubMed

    Koudelka, Sigrid; Voas, Matthew G; Almeida, Rafael G; Baraban, Marion; Soetaert, Jan; Meyer, Martin P; Talbot, William S; Lyons, David A

    2016-06-01

    Regulation of myelination by oligodendrocytes in the CNS has important consequences for higher-order nervous system function (e.g., [1-4]), and there is growing consensus that neuronal activity regulates CNS myelination (e.g., [5-9]) through local axon-oligodendrocyte synaptic-vesicle-release-mediated signaling [10-12]. Recent analyses have indicated that myelination along axons of distinct neuronal subtypes can differ [13, 14], but it is not known whether regulation of myelination by activity is common to all neuronal subtypes or only some. This limits insight into how specific neurons regulate their own conduction. Here, we use a novel fluorescent fusion protein reporter to study myelination along the axons of distinct neuronal subtypes over time in zebrafish. We find that the axons of reticulospinal and commissural primary ascending (CoPA) neurons are among the first myelinated in the zebrafish CNS. To investigate how activity regulates myelination by different neuronal subtypes, we express tetanus toxin (TeNT) in individual reticulospinal or CoPA neurons to prevent synaptic vesicle release. We find that the axons of individual tetanus toxin expressing reticulospinal neurons have fewer myelin sheaths than controls and that their myelin sheaths are 50% shorter than controls. In stark contrast, myelination along tetanus-toxin-expressing CoPA neuron axons is entirely normal. These results indicate that while some neuronal subtypes modulate myelination by synaptic vesicle release to a striking degree in vivo, others do not. These data have implications for our understanding of how different neurons regulate myelination and thus their own function within specific neuronal circuits. PMID:27161502

  16. Nephrin Is Expressed on the Surface of Insulin Vesicles and Facilitates Glucose-Stimulated Insulin Release

    PubMed Central

    Fornoni, Alessia; Jeon, Jongmin; Varona Santos, Javier; Cobianchi, Lorenzo; Jauregui, Alexandra; Inverardi, Luca; Mandic, Slavena A.; Bark, Christina; Johnson, Kevin; McNamara, George; Pileggi, Antonello; Molano, R. Damaris; Reiser, Jochen; Tryggvason, Karl; Kerjaschki, Dontscho; Berggren, Per-Olof; Mundel, Peter; Ricordi, Camillo

    2010-01-01

    OBJECTIVE Nephrin, an immunoglobulin-like protein essential for the function of the glomerular podocyte and regulated in diabetic nephropathy, is also expressed in pancreatic β-cells, where its function remains unknown. The aim of this study was to investigate whether diabetes modulates nephrin expression in human pancreatic islets and to explore the role of nephrin in β-cell function. RESEARCH DESIGN AND METHODS Nephrin expression in human pancreas and in MIN6 insulinoma cells was studied by Western blot, PCR, confocal microscopy, subcellular fractionation, and immunogold labeling. Islets from diabetic (n = 5) and nondiabetic (n = 7) patients were compared. Stable transfection and siRNA knockdown in MIN-6 cells/human islets were used to study nephrin function in vitro and in vivo after transplantation in diabetic immunodeficient mice. Live imaging of green fluorescent protein (GFP)-nephrin–transfected cells was used to study nephrin endocytosis. RESULTS Nephrin was found at the plasma membrane and on insulin vesicles. Nephrin expression was decreased in islets from diabetic patients when compared with nondiabetic control subjects. Nephrin transfection in MIN-6 cells/pseudoislets resulted in higher glucose-stimulated insulin release in vitro and in vivo after transplantation into immunodeficient diabetic mice. Nephrin gene silencing abolished stimulated insulin release. Confocal imaging of GFP-nephrin–transfected cells revealed nephrin endocytosis upon glucose stimulation. Actin stabilization prevented nephrin trafficking as well as nephrin-positive effect on insulin release. CONCLUSIONS Our data suggest that nephrin is an active component of insulin vesicle machinery that may affect vesicle-actin interaction and mobilization to the plasma membrane. Development of drugs targeting nephrin may represent a novel approach to treat diabetes. PMID:19833886

  17. Vesicle-associated microRNAs are released from blood cells on incubation of blood samples.

    PubMed

    Köberle, Verena; Kakoschky, Bianca; Ibrahim, Ahmed Atef; Schmithals, Christian; Peveling-Oberhag, Jan; Zeuzem, Stefan; Kronenberger, Bernd; Waidmann, Oliver; Pleli, Thomas; Piiper, Albrecht

    2016-03-01

    MicroRNAs (miRNAs) circulating extracellularly in the blood are currently intensively studied as novel disease markers. However, the preanalytical factors influencing the levels of the extracellular miRNAs are still incompletely explored. In particular, it is unknown, whether the incubation of blood samples as occurring in clinical routine can lead to a release of miRNAs from blood cells and thus alter the extracellular miRNA levels before the preparation of serum or plasma from the blood cells. Using a set of marker miRNAs and quantitative RT-PCR, we found that the levels of extracellular miRNA-1, miRNA-16, and miRNA-21 were increased in EDTA and serum collection tubes incubated for 1-3 hours at room temperature and declined thereafter; the levels of the liver-specific miRNA-122 declined monophasically. These events occurred in the absence of significant hemolysis. When the blood was supplemented with Ribonuclease A inhibitor, the levels of miRNA-1, miRNA-16, and miRNA-21 increased substantially during the initial 3 hours of incubation and those of miRNA-122 remained unchanged, indicating that the release of blood cell-derived miRNAs occurred during the initial 3 hours of incubation of the blood tubes, but not at later time points. Separation of 5-hour preincubated blood into vesicle and nonvesicle fractions revealed a selective increase in the portion of vesicle-associated miRNAs. Together, these data indicate that the release of vesicle-associated miRNAs from blood cells can occur in blood samples within the time elapsing in normal clinical practice until their processing without significant hemolysis. This becomes particularly visible on the inhibition of miRNA degradation by Ribonuclease A inhibitor. PMID:26608461

  18. The Enolase of Borrelia burgdorferi Is a Plasminogen Receptor Released in Outer Membrane Vesicles

    PubMed Central

    Toledo, A.; Coleman, J. L.; Kuhlow, C. J.; Crowley, J. T.

    2012-01-01

    The agent of Lyme disease, Borrelia burgdorferi, has a number of outer membrane proteins that are differentially regulated during its life cycle. In addition to their physiological functions in the organism, these proteins also likely serve different functions in invasiveness and immune evasion. In borreliae, as well as in other bacteria, a number of membrane proteins have been implicated in binding plasminogen. The activation and transformation of plasminogen into its proteolytically active form, plasmin, enhances the ability of the bacteria to disseminate in the host. Outer membrane vesicles of B. burgdorferi contain enolase, a glycolytic-cycle enzyme that catalyzes 2-phosphoglycerate to form phosphoenolpyruvate, which is also a known plasminogen receptor in Gram-positive bacteria. The enolase was cloned, expressed, purified, and used to generate rabbit antienolase serum. The enolase binds plasminogen in a lysine-dependent manner but not through ionic interactions. Although it is present in the outer membrane, microscopy and proteinase K treatment showed that enolase does not appear to be exposed on the surface. However, enolase in the outer membrane vesicles is accessible to proteolytic degradation by proteinase K. Samples from experimentally and tick-infected mice and rabbits as well as from Lyme disease patients exhibit recognition of enolase in serologic assays. Thus, this immunogenic plasminogen receptor released in outer membrane vesicles could be responsible for external proteolysis in the pericellular environment and have roles in nutrition and in enhancing dissemination. PMID:22083700

  19. Soft landing of cell-sized vesicles on solid surfaces for robust vehicle capture/release.

    PubMed

    Wang, Dehui; Wu, Zhengfang; Gao, Aiting; Zhang, Weihong; Kang, Chengying; Tao, Qi; Yang, Peng

    2015-04-28

    Based on a concept of a smooth and steady landing of fragile objects without destruction via a soft cushion, we have developed a model for the soft landing of deformable lipid giant unilamellar vesicles (GUVs) on solid surfaces. The foundation for a successful soft landing is a solid substrate with a two-layer coating, including a bottom layer of positively charged lysozymes and an upper lipid membrane layer. We came to a clear conclusion that anionic GUVs when sedimented on a surface, the vesicle rupture occurs upon the direct contact with the positively charged lysozyme layer due to the strong coulombic interactions. In contrast, certain separation distances was achieved by the insertion of a soft lipid membrane cushion between the charged GUVs and the lysozyme layer, which attenuated the coulombic force and created a mild buffer zone, ensuring the robust capture of GUVs on the substrate without their rupture. The non-covalent bonding facilitated a fully reversible stimuli-responsive capture/release of GUVs from the biomimetic solid surface, which has never been demonstrated before due to the extreme fragility of GUVs. Moreover, the controllable capture/release of cells has been proven to be of vital importance in biotechnology, and similarity the present approach to capture/release cells is expected to open the previously inaccessible avenues of research. PMID:25787226

  20. Botulinum neurotoxin dose-dependently inhibits release of neurosecretory vesicle-vargeted luciferase from neuronal cells.

    PubMed

    Pathe-Neuschäfer-Rube, Andrea; Neuschäfer-Rube, Frank; Genz, Lara; Püchel, Gerhard P

    2015-01-01

    Botulinum toxin is a bacterial toxin that inhibits neurotransmitter release from neurons and thereby causes a flaccid paralysis. It is used as drug to treat a number of serious ailments and, more frequently, for aesthetic medical interventions. Botulinum toxin for pharmacological applications is isolated from bacterial cultures. Due to partial denaturation of the protein, the specific activity of these preparations shows large variations.Because of its extreme potential toxicity, pharmacological preparations must be carefully tested for their activity. For the current gold standard, the mouse lethality assay, several hundred thousand mice are killed per year. Alternative methods have been developed that suffer from one or more of the following deficits: In vitro enzyme assays test only the activity of the catalytic subunit of the toxin. Enzymatic and cell based immunological assays are specific for just one of the different serotypes. The current study takes a completely different approach that overcomes these limitations: Neuronal cell lines were stably transfected with plasmids coding for luciferases of different species, which were N-terminally tagged with leader sequences that redirect the luciferase into neuro-secretory vesicles. From these vesicles, luciferases were released upon depolarization of the cells. The depolarization-dependent release was efficiently inhibited by of botulinum toxin in a concentration range (1 to 100 pM) that is used in pharmacological preparations. The new assay might thus be an alternative to the mouse lethality assay and the immunological assays already in use. PMID:26389683

  1. Release of Small RNA-containing Exosome-like Vesicles from the Human Filarial Parasite Brugia malayi

    PubMed Central

    Agbedanu, Prince N; Harischandra, Hiruni; Moorhead, Andrew R; Day, Tim A; Bartholomay, Lyric C; Kimber, Michael J

    2015-01-01

    Lymphatic filariasis (LF) is a socio-economically devastating mosquito-borne Neglected Tropical Disease caused by parasitic filarial nematodes. The interaction between the parasite and host, both mosquito and human, during infection, development and persistence is dynamic and delicately balanced. Manipulation of this interface to the detriment of the parasite is a promising potential avenue to develop disease therapies but is prevented by our very limited understanding of the host-parasite relationship. Exosomes are bioactive small vesicles (30–120 nm) secreted by a wide range of cell types and involved in a wide range of physiological processes. Here, we report the identification and partial characterization of exosome-like vesicles (ELVs) released from the infective L3 stage of the human filarial parasite Brugia malayi. Exosome-like vesicles were isolated from parasites in culture media and electron microscopy and nanoparticle tracking analysis were used to confirm that vesicles produced by juvenile B. malayi are exosome-like based on size and morphology. We show that loss of parasite viability correlates with a time-dependent decay in vesicle size specificity and rate of release. The protein cargo of these vesicles is shown to include common exosomal protein markers and putative effector proteins. These Brugia-derived vesicles contain small RNA species that include microRNAs with host homology, suggesting a potential role in host manipulation. Confocal microscopy shows J774A.1, a murine macrophage cell line, internalize purified ELVs, and we demonstrate that these ELVs effectively stimulate a classically activated macrophage phenotype in J774A.1. To our knowledge, this is the first report of exosome-like vesicle release by a human parasitic nematode and our data suggest a novel mechanism by which human parasitic nematodes may actively direct the host responses to infection. Further interrogation of the makeup and function of these bioactive vesicles could seed

  2. Vesicle Pools: Lessons from Adrenal Chromaffin Cells

    PubMed Central

    Stevens, David R.; Schirra, Claudia; Becherer, Ute; Rettig, Jens

    2011-01-01

    The adrenal chromaffin cell serves as a model system to study fast Ca2+-dependent exocytosis. Membrane capacitance measurements in combination with Ca2+ uncaging offers a temporal resolution in the millisecond range and reveals that catecholamine release occurs in three distinct phases. Release of a readily releasable (RRP) and a slowly releasable (SRP) pool are followed by sustained release, due to maturation, and release of vesicles which were not release-ready at the start of the stimulus. Trains of depolarizations, a more physiological stimulus, induce release from a small immediately releasable pool of vesicles residing adjacent to calcium channels, as well as from the RRP. The SRP is poorly activated by depolarization. A sequential model, in which non-releasable docked vesicles are primed to a slowly releasable state, and then further mature to the readily releasable state, has been proposed. The docked state, dependent on membrane proximity, requires SNAP-25, synaptotagmin, and syntaxin. The ablation or modification of SNAP-25 and syntaxin, components of the SNARE complex, as well as of synaptotagmin, the calcium sensor, and modulators such complexins and Snapin alter the properties and/or magnitudes of different phases of release, and in particular can ablate the RRP. These results indicate that the composition of the SNARE complex and its interaction with modulatory molecules drives priming and provides a molecular basis for different pools of releasable vesicles. PMID:21423410

  3. Reduction-Responsive Polymeric Micelles and Vesicles for Triggered Intracellular Drug Release

    PubMed Central

    Sun, Huanli; Cheng, Ru; Deng, Chao

    2014-01-01

    Abstract Significance: The therapeutic effects of current micellar and vesicular drug formulations are restricted by slow and inefficient drug release at the pathological site. The development of smart polymeric nanocarriers that release drugs upon arriving at the target site has received a tremendous amount of attention for cancer therapy. Recent Advances: Taking advantage of a high reducing potential in the tumor tissues and in particular inside the tumor cells, various reduction-sensitive polymeric micelles and vesicles have been designed and explored for triggered anticancer drug release. These reduction-responsive nanosystems have demonstrated several unique features, such as good stability under physiological conditions, fast response to intracellular reducing environment, triggering drug release right in the cytosol and cell nucleus, and significantly improved antitumor activity, compared to traditional reduction-insensitive counterparts. Critical Issues: Although reduction-sensitive micelles and polymersomes have accomplished rapid intracellular drug release and enhanced in vitro antitumor effect, their fate inside the cells including the mechanism, site, and rate of reduction reaction remains unclear. Moreover, the systemic fate and performance of reduction-sensitive polymeric drug formulations have to be investigated. Future Directions: Biophysical studies should be carried out to gain insight into the degradation and drug release behaviors of reduction-responsive nanocarriers inside the tumor cells. Furthermore, novel ligand-decorated reduction-sensitive nanoparticulate drug formulations should be designed and explored for targeted cancer therapy in vivo. Antioxid. Redox Signal. 21, 755–767. PMID:24279980

  4. ATP is released from autophagic vesicles to the extracellular space in a VAMP7-dependent manner

    PubMed Central

    Fader, Claudio Marcelo; Aguilera, Milton Osmar; Colombo, María Isabel

    2012-01-01

    Autophagy is a normal degradative pathway that involves the sequestration of cytoplasmic components and organelles in a vacuole called autophagosome. SNAREs proteins are key molecules of the vesicle fusion machinery. Our results indicate that in a mammalian tumor cell line a subset of VAMP7 (V-SNARE)-positive vacuoles colocalize with LC3 at the cell periphery (focal adhesions) upon starvation. The re-distribution of VAMP7 positive structures is a microtubule-dependent event, with the participation of the motor protein KIF5 and the RAB7 effector RILP. Interestingly, most of the VAMP7-labeled vesicles were loaded with ATP. Moreover, in cells subjected to starvation, these structures fuse with the plasma membrane to release the nucleotide to the extracellular medium. Summarizing, our results show the molecular components involved in the release of ATP to extracellular space, which is recognized as an important autocrine/paracrine signal molecule that participates in the regulation of several cellular functions such as immunogenicity of cancer cell death or inflammation PMID:22951367

  5. Multifunctional Eu3+/Gd3+ dual-doped calcium phosphate vesicle-like nanospheres for sustained drug release and imaging.

    PubMed

    Chen, Feng; Huang, Peng; Zhu, Ying-Jie; Wu, Jin; Cui, Da-Xiang

    2012-09-01

    A facile room-temperature solution method is reported for the preparation of multifunctional Eu(3+) and Gd(3+) dual-doped calcium phosphate (CaP) (Eu(3+)/Gd(3+)-CaP) vesicle-like nanospheres in the presence of an amphiphilic block copolymer polylactide-block-monomethoxy(polyethyleneglycol) (PLA-mPEG). The photoluminescent (PL) and magnetic multifunctions of CaP vesicle-like nanospheres are realized by dual-doping with Eu(3+)/Gd(3+) ions. Under the excitation at 393 nm, Eu(3+)/Gd(3+)-CaP vesicle-like nanospheres exhibit a strong near-infrared (NIR) emission at 700 nm, and the PL intensity can be adjusted by varying Eu(3+) and Gd(3+) concentrations. Furthermore, Eu(3+)/Gd(3+)-CaP vesicle-like nanospheres can be used as the drug nanocarrier and have a high drug loading capacity and ultralong sustained drug release using ibuprofen as a model drug. The drug release from the drug delivery system of Eu(3+)/Gd(3+)-CaP vesicle-like nanospheres can sustain for a very long period of time (more than 80 days). The as-prepared Eu(3+)/Gd(3+)-CaP vesicle-like nanospheres exhibit essentially inappreciable toxicity to the cells in vitro. The noninvasive visualization of nude mice with subcutaneous injection indicates that the Eu(3+)/Gd(3+)-CaP vesicle-like nanospheres are suitable for in vivo bio-imaging. In vivo imaging tests using the subcutaneous injection model of nude mice indicate that Eu(3+)/Gd(3+)-CaP vesicle-like nanospheres can be used as an imaging agent for the NIR luminescence imaging. Thus, the Eu(3+)/Gd(3+)-CaP vesicle-like nanospheres are promising for applications in the biomedical fields such as multifunctional drug delivery systems and tissue engineering scaffolds with bio-imaging guidance. PMID:22721725

  6. Characterisation of adipocyte-derived extracellular vesicles released pre- and post-adipogenesis

    PubMed Central

    Connolly, Katherine D.; Guschina, Irina A.; Yeung, Vincent; Clayton, Aled; Draman, Mohd Shazli; Von Ruhland, Christopher; Ludgate, Marian; James, Philip E.; Rees, D. Aled

    2015-01-01

    Extracellular vesicles (EVs) are submicron vesicles released from many cell types, including adipocytes. EVs are implicated in the pathogenesis of obesity-driven cardiovascular disease, although the characteristics of adipocyte-derived EVs are not well described. We sought to define the characteristics of adipocyte-derived EVs before and after adipogenesis, hypothesising that adipogenesis would affect EV structure, molecular composition and function. Using 3T3-L1 cells, EVs were harvested at day 0 and day 15 of differentiation. EV and cell preparations were visualised by electron microscopy and EVs quantified by nanoparticle tracking analysis (NTA). EVs were then assessed for annexin V positivity using flow cytometry; lipid and phospholipid composition using 2D thin layer chromatography and gas chromatography; and vesicular protein content by an immuno-phenotyping assay. Pre-adipogenic cells are connected via a network of protrusions and EVs at both time points display classic EV morphology. EV concentration is elevated prior to adipogenesis, particularly in exosomes and small microvesicles. Parent cells contain higher proportions of phosphatidylserine (PS) and show higher annexin V binding. Both cells and EVs contain an increased proportion of arachidonic acid at day 0. PREF-1 was increased at day 0 whilst adiponectin was higher at day 15 indicating EV protein content reflects the stage of adipogenesis of the cell. Our data suggest that EV production is higher in cells before adipogenesis, particularly in vesicles <300 nm. Cells at this time point possess a greater proportion of PS (required for EV generation) whilst corresponding EVs are enriched in signalling fatty acids, such as arachidonic acid, and markers of adipogenesis, such as PREF-1 and PPARγ. PMID:26609807

  7. Corticosterone treatment results in enhanced release of peptidergic vesicles in astrocytes via cytoskeletal rearrangements.

    PubMed

    Chatterjee, Sreejata; Sikdar, Sujit K

    2013-12-01

    While the effect of stress on neuronal physiology is widely studied, its effect on the functionality of astrocytes is not well understood. We studied the effect of high doses of stress hormone corticosterone, on two physiological properties of astrocytes, i.e., gliotransmission and interastrocytic calcium waves. To study the release of peptidergic vesicles from astrocytes, hippocampal astrocyte cultures were transfected with a plasmid to express pro-atrial natriuretic peptide (ANP) fused with the emerald green fluorescent protein (ANP.emd). The rate of decrease in fluorescence of ANP.emd on application of ionomycin, a calcium ionophore was monitored. Significant increase in the rate of calcium-dependent exocytosis of ANP.emd was observed with the 100 nM and 1 μM corticosterone treatments for 3 h, which depended on the activation of the glucocorticoid receptor. ANP.emd tagged vesicles exhibited increased mobility in astrocyte culture upon corticosterone treatment. Increasing corticosterone concentrations also resulted in concomitant increase in the calcium wave propagation velocity, initiated by focal ATP application. Corticosterone treatment also resulted in increased GFAP expression and F-actin rearrangements. FITC-Phalloidin immunostaining revealed increased formation of cross linked F-actin networks with the 100 nM and 1 μM corticosterone treatment. Alternatively, blockade of actin polymerization and disruption of microtubules prevented the corticosterone-mediated increase in ANP.emd release kinetics. This study reports for the first time the effect of corticosterone on gliotransmission via modulation of cytoskeletal elements. As ANP acts on both neurons and blood vessels, modulation of its release could have functional implications in neurovascular coupling under pathophysiological conditions of stress. PMID:24123181

  8. Cationic vesicles based on biocompatible diacyl glycerol-arginine surfactants: physicochemical properties, antimicrobial activity, encapsulation efficiency and drug release.

    PubMed

    Tavano, L; Pinazo, A; Abo-Riya, M; Infante, M R; Manresa, M A; Muzzalupo, R; Pérez, L

    2014-08-01

    Physicochemical characteristics of cationic vesicular systems prepared from biocompatible diacyl glycerol-arginine surfactants are investigated. These systems form stable cationic vesicles by themselves and the average diameter of the vesicles decreases as the alkyl chain length of the surfactant increases. The addition of DPPC also modifies the physicochemical properties of these vesicles. Among the drugs these cationic formulations can encapsulate, we have considered Ciprofloxacin and 5-Fluorouracil (5-FU). We show that the percentage of encapsulated drug depends on both the physicochemical properties of the carrier and the type of drug. The capacity of these systems to carry different molecules was evaluated performing in vitro drug release studies. Finally, the antimicrobial activity of empty and Ciprofloxacin-loaded vesicles against Gram-positive and Gram-negative bacteria has been determined. Three bacteria were tested: Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae. The in vitro drug release from all formulations was effectively delayed. Empty cationic vesicles showed antimicrobial activity and Ciprofloxacin-loaded vesicles showed similar or higher antimicrobial activity than the free drug solution. These results suggest that our formulations represent a great innovation in the pharmaceutical field, due to their dual pharmacological function: one related to the nature of the vehiculated drug and the other related to the innate antibacterial properties of the surfactant-based carriers. PMID:24907585

  9. Ultrastructural and functional fate of recycled vesicles in hippocampal synapses

    PubMed Central

    Rey, Stephanie A.; Smith, Catherine A.; Fowler, Milena W.; Crawford, Freya; Burden, Jemima J.; Staras, Kevin

    2015-01-01

    Efficient recycling of synaptic vesicles is thought to be critical for sustained information transfer at central terminals. However, the specific contribution that retrieved vesicles make to future transmission events remains unclear. Here we exploit fluorescence and time-stamped electron microscopy to track the functional and positional fate of vesicles endocytosed after readily releasable pool (RRP) stimulation in rat hippocampal synapses. We show that most vesicles are recovered near the active zone but subsequently take up random positions in the cluster, without preferential bias for future use. These vesicles non-selectively queue, advancing towards the release site with further stimulation in an actin-dependent manner. Nonetheless, the small subset of vesicles retrieved recently in the stimulus train persist nearer the active zone and exhibit more privileged use in the next RRP. Our findings reveal heterogeneity in vesicle fate based on nanoscale position and timing rules, providing new insights into the origins of future pool constitution. PMID:26292808

  10. Modeling and measurement of vesicle pools at the cone ribbon synapse: Changes in release probability are solely responsible for voltage-dependent changes in release.

    PubMed

    Thoreson, Wallace B; Van Hook, Matthew J; Parmelee, Caitlyn; Curto, Carina

    2016-01-01

    Postsynaptic responses are a product of quantal amplitude (Q), size of the releasable vesicle pool (N), and release probability (P). Voltage-dependent changes in presynaptic Ca(2+) entry alter postsynaptic responses primarily by changing P but have also been shown to influence N. With simultaneous whole cell recordings from cone photoreceptors and horizontal cells in tiger salamander retinal slices, we measured N and P at cone ribbon synapses by using a train of depolarizing pulses to stimulate release and deplete the pool. We developed an analytical model that calculates the total pool size contributing to release under different stimulus conditions by taking into account the prior history of release and empirically determined properties of replenishment. The model provided a formula that calculates vesicle pool size from measurements of the initial postsynaptic response and limiting rate of release evoked by a train of pulses, the fraction of release sites available for replenishment, and the time constant for replenishment. Results of the model showed that weak and strong depolarizing stimuli evoked release with differing probabilities but the same size vesicle pool. Enhancing intraterminal Ca(2+) spread by lowering Ca(2+) buffering or applying BayK8644 did not increase PSCs evoked with strong test steps, showing there is a fixed upper limit to pool size. Together, these results suggest that light-evoked changes in cone membrane potential alter synaptic release solely by changing release probability. PMID:26541100

  11. Respiratory Infections Cause the Release of Extracellular Vesicles: Implications in Exacerbation of Asthma/COPD

    PubMed Central

    Eltom, Suffwan; Dale, Nicole; Raemdonck, Kristof R. G.; Stevenson, Christopher S.; Snelgrove, Robert J.; Sacitharan, Pradeep K.; Recchi, Chiara; Wavre-Shapton, Silene; McAuley, Daniel F.; O'Kane, Cecilia; Belvisi, Maria G.; Birrell, Mark A.

    2014-01-01

    Background Infection-related exacerbations of respiratory diseases are a major health concern; thus understanding the mechanisms driving them is of paramount importance. Despite distinct inflammatory profiles and pathological differences, asthma and COPD share a common clinical facet: raised airway ATP levels. Furthermore, evidence is growing to suggest that infective agents can cause the release of extracellular vesicle (EVs) in vitro and in bodily fluids. ATP can evoke the P2X7/caspase 1 dependent release of IL-1β/IL-18 from EVs; these cytokines are associated with neutrophilia and are increased during exacerbations. Thus we hypothesized that respiratory infections causes the release of EVs in the airway and that the raised ATP levels, present in respiratory disease, triggers the release of IL-1β/IL-18, neutrophilia and subsequent disease exacerbations. Methods To begin to test this hypothesis we utilised human cell-based assays, ex vivo murine BALF, in vivo pre-clinical models and human samples to test this hypothesis. Results Data showed that in a murine model of COPD, known to have increased airway ATP levels, infective challenge causes exacerbated inflammation. Using cell-based systems, murine models and samples collected from challenged healthy subjects, we showed that infection can trigger the release of EVs. When exposed to ATP the EVs release IL-1β/IL-18 via a P2X7/caspase-dependent mechanism. Furthermore ATP challenge can cause a P2X7 dependent increase in LPS-driven neutrophilia. Conclusions This preliminary data suggests a possible mechanism for how infections could exacerbate respiratory diseases and may highlight a possible signalling pathway for drug discovery efforts in this area. PMID:24972036

  12. Hydrophobically Modified Keratin Vesicles for GSH-Responsive Intracellular Drug Release.

    PubMed

    Curcio, Manuela; Blanco-Fernandez, Barbara; Diaz-Gomez, Luis; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2015-09-16

    Redox-responsive polymersomes were prepared by self-assembly of a hydrophobically modified keratin and employing a water addition/solvent evaporation method. Polyethylene glycol-40 stearate (PEG40ST) was chosen as hydrophobic block to be coupled to keratin via radical grafting. The amphiphilic polymer exhibited low critical aggregation concentration (CAC; 10 μg/mL), indicating a good thermodynamic stability. The polymeric vesicles loaded both hydrophilic methotrexate and hydrophobic curcumin with high entrapment efficiencies, and showed a GSH-dependent drug release rate. Confocal studies on HeLa cells revealed that the obtained polymersomes were efficiently internalized. Biocompatibility properties of the proposed delivery vehicle were assessed in HET-CAM test and Balb-3T3 mouse fibroblasts. Polymersomes loaded with either methotrexate or curcumin inhibited HeLa and CHO-K1 cancer cells proliferation. Overall, the proposed keratin polymersomes could be efficient nanocarriers for chemotherapeutic agents. PMID:26287808

  13. Molecular Machines Regulating the Release Probability of Synaptic Vesicles at the Active Zone

    PubMed Central

    Körber, Christoph; Kuner, Thomas

    2016-01-01

    The fusion of synaptic vesicles (SVs) with the plasma membrane of the active zone (AZ) upon arrival of an action potential (AP) at the presynaptic compartment is a tightly regulated probabilistic process crucial for information transfer. The probability of a SV to release its transmitter content in response to an AP, termed release probability (Pr), is highly diverse both at the level of entire synapses and individual SVs at a given synapse. Differences in Pr exist between different types of synapses, between synapses of the same type, synapses originating from the same axon and even between different SV subpopulations within the same presynaptic terminal. The Pr of SVs at the AZ is set by a complex interplay of different presynaptic properties including the availability of release-ready SVs, the location of the SVs relative to the voltage-gated calcium channels (VGCCs) at the AZ, the magnitude of calcium influx upon arrival of the AP, the buffering of calcium ions as well as the identity and sensitivity of the calcium sensor. These properties are not only interconnected, but can also be regulated dynamically to match the requirements of activity patterns mediated by the synapse. Here, we review recent advances in identifying molecules and molecular machines taking part in the determination of vesicular Pr at the AZ. PMID:26973506

  14. Molecular Machines Regulating the Release Probability of Synaptic Vesicles at the Active Zone.

    PubMed

    Körber, Christoph; Kuner, Thomas

    2016-01-01

    The fusion of synaptic vesicles (SVs) with the plasma membrane of the active zone (AZ) upon arrival of an action potential (AP) at the presynaptic compartment is a tightly regulated probabilistic process crucial for information transfer. The probability of a SV to release its transmitter content in response to an AP, termed release probability (Pr), is highly diverse both at the level of entire synapses and individual SVs at a given synapse. Differences in Pr exist between different types of synapses, between synapses of the same type, synapses originating from the same axon and even between different SV subpopulations within the same presynaptic terminal. The Pr of SVs at the AZ is set by a complex interplay of different presynaptic properties including the availability of release-ready SVs, the location of the SVs relative to the voltage-gated calcium channels (VGCCs) at the AZ, the magnitude of calcium influx upon arrival of the AP, the buffering of calcium ions as well as the identity and sensitivity of the calcium sensor. These properties are not only interconnected, but can also be regulated dynamically to match the requirements of activity patterns mediated by the synapse. Here, we review recent advances in identifying molecules and molecular machines taking part in the determination of vesicular Pr at the AZ. PMID:26973506

  15. Human pyramidal to interneuron synapses are mediated by multi-vesicular release and multiple docked vesicles

    PubMed Central

    Molnár, Gábor; Rózsa, Márton; Baka, Judith; Holderith, Noémi; Barzó, Pál; Nusser, Zoltan; Tamás, Gábor

    2016-01-01

    Classic theories link cognitive abilities to synaptic properties and human-specific biophysical features of synapses might contribute to the unparalleled performance of the human cerebral cortex. Paired recordings and multiple probability fluctuation analysis revealed similar quantal sizes, but 4-times more functional release sites in human pyramidal cell to fast-spiking interneuron connections compared to rats. These connections were mediated on average by three synaptic contacts in both species. Each presynaptic active zone (AZ) contains 6.2 release sites in human, but only 1.6 in rats. Electron microscopy (EM) and EM tomography showed that an AZ harbors 4 docked vesicles in human, but only a single one in rats. Consequently, a Katz’s functional release site occupies ~0.012 μm2 in the human presynaptic AZ and ~0.025 μm2 in the rat. Our results reveal a robust difference in the biophysical properties of a well-defined synaptic connection of the cortical microcircuit of human and rodents. DOI: http://dx.doi.org/10.7554/eLife.18167.001 PMID:27536876

  16. Time-dependent release of extracellular vesicle subpopulations in tumor CABA I cells.

    PubMed

    Giusti, Ilaria; Di Francesco, Marianna; Cantone, Laura; D'Ascenzo, Sandra; Bollati, Valentina; Carta, Gaspare; Dolo, Vincenza

    2015-11-01

    Investigations into extracellular vesicles (EVs) have significantly increased since their role in physiological and pathological processes has become more clearly understood. Furthermore, it has become increasingly clear that several subpopulations of EVs exist, such as exosomes (EXOs) and microvesicles (MVs). Various methods and techniques used to identify and isolate the specific EVs subpopulations exist. However, these methods should be further elucidated. A deep understanding of the different factors that affect the EVs release may therefore be useful for the standardization of protocols and to establish guidelines for a more adequate analysis and correct inter‑laboratory comparison. In the present study, we investigated whether composition and molecular features of EVs altered over time following a trigger stimulus. Starved CABA I cells were stimulated with FBS and conditioned medium was collected after different time intervals (30 min and 4, 8 and 18 h). The dynamic of EVs release was time-dependent, as shown by the results of scanning electron microscopy. Additionally, the time elapsed from the stimulus affected the size distribution (as highlighted by transmission electron microscopy and NanoSight assay), amount (in terms of the number of particles and protein amount) and molecular composition (CD63, HLA, Ago-2, gelatinases, and plasminogen activators) suggesting that, different EVs subpopulations were released at different time intervals following cell stimulation. Collectively, the results suggested that, parameters useful to standardize procedures for EVs isolation, including stimulation time should be considered. PMID:26323210

  17. Imaging Exocytosis of Single Synaptic Vesicles at a Fast CNS Presynaptic Terminal.

    PubMed

    Midorikawa, Mitsuharu; Sakaba, Takeshi

    2015-11-01

    Synaptic vesicles are tethered to the active zone where they are docked/primed so that they can fuse rapidly upon Ca(2+) influx. To directly study these steps at a CNS presynaptic terminal, we used total internal reflection fluorescence (TIRF) microscopy at the live isolated calyx of Held terminal and measured the movements of single synaptic vesicle just beneath the plasma membrane. Only a subset of vesicles within the TIRF field underwent exocytosis. Following exocytosis, new vesicles (newcomers) approached the membrane and refilled the release sites slowly with a time constant of several seconds. Uniform elevation of the intracellular Ca(2+) using flash photolysis elicited an exocytotic burst followed by the sustained component, representing release of the readily releasable vesicles and vesicle replenishment, respectively. Surprisingly, newcomers were not released within a second of high Ca(2+). Instead, already-tethered vesicles became release-ready and mediated the replenishment. Our results reveal an important feature of conventional synapses. PMID:26539890

  18. Monte Carlo simulation of the effects of vesicle geometry on calcium microdomains and neurotransmitter release

    NASA Astrophysics Data System (ADS)

    Limsakul, Praopim; Modchang, Charin

    2016-07-01

    We investigate the effects of synaptic vesicle geometry on Ca2+ diffusion dynamics in presynaptic terminals using MCell, a realistic Monte Carlo algorithm that tracks individual molecules. By modeling the vesicle as a sphere and an oblate or a prolate spheroid with a reflective boundary, we measure the Ca2+ concentration at various positions relative to the vesicle. We find that the presence of a vesicle as a diffusion barrier modifies the shape of the [Ca2+] microdomain in the vicinity of the vesicle. Ca2+ diffusion dynamics also depend on the distance between the vesicle and the voltage-gated calcium channels (VGCCs) and on the shape of the vesicle. The oblate spheroidal vesicle increases the [Ca2+] up to six times higher than that in the absence of a vesicle, while the prolate spheroidal vesicle can increase the [Ca2+] only 1.4 times. Our results also show that the presence of vesicles that have different geometries can maximally influence the [Ca2+] microdomain when the vesicle is located less than 50 nm from VGCCs.

  19. Heterogeneity of glutamatergic and GABAergic release machinery in cerebral cortex: analysis of synaptogyrin, vesicle-associated membrane protein, and syntaxin.

    PubMed

    Bragina, L; Giovedì, S; Barbaresi, P; Benfenati, F; Conti, F

    2010-02-01

    To define whether cortical glutamatergic and GABAergic release machineries can be differentiated on the basis of the nature and amount of proteins they express, we studied the degree of co-localization of synaptogyrin (SGYR) 1 and 3, vesicle-associated membrane protein (VAMP) 1 and 2, syntaxin (STX) 1A and 1B in vesicular glutamate transporter (VGLUT)1-, VGLUT2- and vesicular GABA transporter (VGAT)-positive (+) puncta and synaptic vesicles in the rat cerebral cortex. Co-localization studies showed that SGYR1 and 3 were expressed in about 90% of VGLUT1+, 70% of VGLUT2+ and 80% of VGAT+ puncta; VAMP1 was expressed in approximately 45% of VGLUT1+, 55% of VGLUT2+, and 80% of VGAT+ puncta; VAMP2 in about 95% of VGLUT1+, 75% of VGLUT2+, and 80% of VGAT+ puncta; STX1A in about 65% of VGLUT1+, 30% of VGLUT2+, and 3% of VGAT+ puncta, and STX1B in approximately 45% of VGLUT1+, 35% of VGLUT2+, and 70% of VGAT+ puncta. Immunoisolation studies showed that while STX1A was completely segregated and virtually absent from VGAT synaptic vesicles, STX1B, VAMP1/VAMP2, SGYR1/SGYR3 showed a similar pattern with the highest expression in VGLUT1 immunoisolated vesicles and the lowest in VGAT immunoisolated vesicles. Moreover, we studied the localization of STX1B at the electron microscope and found that a population of axon terminals forming symmetric synapses were STX1B-positive.These results extend our previous observations on the differential expression of presynaptic proteins involved in neurotransmitter release in GABAergic and glutamatergic terminals and indicate that heterogeneity of glutamatergic and GABAergic release machinery can be contributed by both the presence or absence of a given protein in a nerve terminal and the amount of protein expressed by synaptic vesicles. PMID:19909789

  20. Muscle Releases Alpha-Sarcoglycan Positive Extracellular Vesicles Carrying miRNAs in the Bloodstream

    PubMed Central

    Guescini, Michele; Canonico, Barbara; Lucertini, Francesco; Maggio, Serena; Annibalini, Giosué; Barbieri, Elena; Luchetti, Francesca; Papa, Stefano; Stocchi, Vilberto

    2015-01-01

    In the past few years, skeletal muscle has emerged as an important secretory organ producing soluble factors, called myokines, that exert either autocrine, paracrine or endocrine effects. Moreover, recent studies have shown that muscle releases microRNAs into the bloodstream in response to physical exercise. These microRNAs affect target cells, such as hormones and cytokines. The mechanisms underlying microRNA secretion are poorly characterized at present. Here, we investigated whether muscle tissue releases extracellular vesicles (EVs), which carry microRNAs in the bloodstream under physiological conditions such as physical exercise. Using density gradient separation of plasma from sedentary and physically fit young men we found EVs positive for TSG101 and alpha-sarcoglycan (SGCA), and enriched for miR-206. Cytometric analysis showed that the SGCA+ EVs account for 1–5% of the total and that 60–65% of these EVs were also positive for the exosomal marker CD81. Furthermore, the SGCA-immuno captured sub-population of EVs exhibited higher levels of the miR-206/miR16 ratio compared to total plasma EVs. Finally, a significant positive correlation was found between the aerobic fitness and muscle-specific miRNAs and EV miR-133b and -181a-5p were significantly up-regulated after acute exercise. Thus, our study proposes EVs as a novel means of muscle communication potentially involved in muscle remodeling and homeostasis. PMID:25955720

  1. Lipid Mixing and Content Release in Single-Vesicle, SNARE-Driven Fusion Assay with 1–5 ms Resolution

    PubMed Central

    Wang, Tingting; Smith, Elizabeth A.; Chapman, Edwin R.; Weisshaar, James C.

    2009-01-01

    A single-vesicle, fluorescence-based, SNARE-driven fusion assay enables simultaneous measurement of lipid mixing and content release with 5 ms/frame, or even 1 ms/frame, time resolution. The v-SNARE vesicles, labeled with lipid and content markers of different color, dock and fuse with a planar t-SNARE bilayer supported on glass. A narrow (<5 ms duration), intense spike of calcein fluorescence due to content release and dequenching coincides with inner-leaflet lipid mixing within 10 ms. The spike provides more sensitive detection of productive hemifusion events than do lipid labels alone. Consequently, many fast events previously thought to be prompt, full fusion events are now reclassified as productive hemifusion. Both full fusion and hemifusion occur with a time constant of 5–10 ms. At 60% phosphatidylethanolamine lipid composition, productive and dead-end hemifusion account for 65% of all fusion events. However, quantitative analysis shows that calcein is released into the space above the bilayer (vesicle bursting), rather than the thin aqueous space between the bilayer and glass. Evidently, at the instant of inner-leaflet mixing, flattening of the vesicle increases the internal pressure beyond the bursting point. This may be related to in vivo observations suggesting that membrane lysis often competes with membrane fusion. PMID:19450483

  2. Sub-100 nm gold nanoparticle vesicles as a drug delivery carrier enabling rapid drug release upon light irradiation.

    PubMed

    Niikura, Kenichi; Iyo, Naoki; Matsuo, Yasutaka; Mitomo, Hideyuki; Ijiro, Kuniharu

    2013-05-01

    Previously, we reported gold nanoparticles coated with semifluorinated ligands self-assembled into gold nanoparticle vesicles (AuNVs) with a sub-100 nm diameter in tetrahydrofuran (THF). (1) Although this size is potentially useful for in vivo use, the biomedical applications of AuNVs were limited, as the vesicular structure collapsed in water. In this paper, we demonstrate that the AuNVs can be dispersed in water by cross-linking each gold nanoparticle with thiol-terminated PEG so that the cross-linked vesicles can work as a drug delivery carrier enabling light-triggered release. Rhodamine dyes or anticancer drugs were encapsulated within the cross-linked vesicles by heating to 62.5 °C. At this temperature, the gaps between nanoparticles open, as confirmed by a blue shift in the plasmon peak and the more efficient encapsulation than that observed at room temperature. The cross-linked AuNVs released encapsulated drugs upon short-term laser irradiation (5 min, 532 nm) by again opening the nanogaps between each nanoparticle in the vesicle. On the contrary, when heating the solution to 70 °C, the release speed of encapsulated dyes was much lower (more than 2 h) than that triggered by laser irradiation, indicating that cross-linked AuNVs are highly responsive to light. The vesicles were efficiently internalized into cells compared to discrete gold nanoparticles and released anticancer drugs upon laser irradiation in cells. These results indicate that cross-linked AuNVs, sub-100 nm in size, could be a new type of light-responsive drug delivery carrier applicable to the biomedical field. PMID:23566248

  3. Complexin arrests a pool of docked vesicles for fast Ca2+-dependent release

    PubMed Central

    Malsam, Jörg; Parisotto, Daniel; Bharat, Tanmay A M; Scheutzow, Andrea; Krause, Jean Michel; Briggs, John A G; Söllner, Thomas H

    2012-01-01

    Regulated exocytosis requires that the assembly of the basic membrane fusion machinery is temporarily arrested. Synchronized membrane fusion is then caused by a specific trigger—a local rise of the Ca2+ concentration. Using reconstituted giant unilamellar vesicles (GUVs), we have analysed the role of complexin and membrane-anchored synaptotagmin 1 in arresting and synchronizing fusion by lipid-mixing and cryo-electron microscopy. We find that they mediate the formation and consumption of docked small unilamellar vesicles (SUVs) via the following sequence of events: Synaptotagmin 1 mediates v-SNARE-SUV docking to t-SNARE-GUVs in a Ca2+-independent manner. Complexin blocks vesicle consumption, causing accumulation of docked vesicles. Together with synaptotagmin 1, complexin synchronizes and stimulates rapid fusion of accumulated docked vesicles in response to physiological Ca2+ concentrations. Thus, the reconstituted assay resolves both the stimulatory and inhibitory function of complexin and mimics key aspects of synaptic vesicle fusion. PMID:22705946

  4. LRRK2 kinase activity regulates synaptic vesicle trafficking and neurotransmitter release through modulation of LRRK2 macro-molecular complex.

    PubMed

    Cirnaru, Maria D; Marte, Antonella; Belluzzi, Elisa; Russo, Isabella; Gabrielli, Martina; Longo, Francesco; Arcuri, Ludovico; Murru, Luca; Bubacco, Luigi; Matteoli, Michela; Fedele, Ernesto; Sala, Carlo; Passafaro, Maria; Morari, Michele; Greggio, Elisa; Onofri, Franco; Piccoli, Giovanni

    2014-01-01

    Mutations in Leucine-rich repeat kinase 2 gene (LRRK2) are associated with familial and sporadic Parkinson's disease (PD). LRRK2 is a complex protein that consists of multiple domains executing several functions, including GTP hydrolysis, kinase activity, and protein binding. Robust evidence suggests that LRRK2 acts at the synaptic site as a molecular hub connecting synaptic vesicles to cytoskeletal elements via a complex panel of protein-protein interactions. Here we investigated the impact of pharmacological inhibition of LRRK2 kinase activity on synaptic function. Acute treatment with LRRK2 inhibitors reduced the frequency of spontaneous currents, the rate of synaptic vesicle trafficking and the release of neurotransmitter from isolated synaptosomes. The investigation of complementary models lacking LRRK2 expression allowed us to exclude potential off-side effects of kinase inhibitors on synaptic functions. Next we studied whether kinase inhibition affects LRRK2 heterologous interactions. We found that the binding among LRRK2, presynaptic proteins and synaptic vesicles is affected by kinase inhibition. Our results suggest that LRRK2 kinase activity influences synaptic vesicle release via modulation of LRRK2 macro-molecular complex. PMID:24904275

  5. Lipid merging, protrusion and vesicle release triggered by shrinking/swelling of poly(N-isopropylacrylamide) microgel particles

    NASA Astrophysics Data System (ADS)

    Dou, Yujiang; Li, Jingliang; Yuan, Bing; Yang, Kai

    2014-03-01

    Cell membrane changes its morphology during many physiological processes with the assistance of a solid support, such as the cytoskeleton, under an environmental stimulus. Here, a novel type of stimuli-responsive lipogel was fabricated, mimicking the changes of cell membrane. The lipogel was prepared from poly(N-isopropylacrylamide) (pNIPAM) microgel particle and phospholipid by a solvent-exchange method. The temperature dependent volume phase transition of pNIPAM triggers reversible transformation of the lipogel between a lipid vesicle-coated sun-like structure and a contracted hybrid sphere, through lipid merging and protrusion processes, respectively. By contrast, the salt induced pNIPAM phase transition leads to an irreversible vesicle release behaviour. The lipogel creates a unique platform for studying cell membrane behaviour and provides promising candidates in drug delivery and controlled release applications.

  6. Cysteine Depletion Causes Oxidative Stress and Triggers Outer Membrane Vesicle Release by Neisseria meningitidis; Implications for Vaccine Development

    PubMed Central

    van de Waterbeemd, Bas; Zomer, Gijsbert; van den IJssel, Jan; van Keulen, Lonneke; Eppink, Michel H.; van der Ley, Peter; van der Pol, Leo A.

    2013-01-01

    Outer membrane vesicles (OMV) contain immunogenic proteins and contribute to in vivo survival and virulence of bacterial pathogens. The first OMV vaccines successfully stopped Neisseria meningitidis serogroup B outbreaks but required detergent-extraction for endotoxin removal. Current vaccines use attenuated endotoxin, to preserve immunological properties and allow a detergent-free process. The preferred process is based on spontaneously released OMV (sOMV), which are most similar to in vivo vesicles and easier to purify. The release mechanism however is poorly understood resulting in low yield. This study with N. meningitidis demonstrates that an external stimulus, cysteine depletion, can trigger growth arrest and sOMV release in sufficient quantities for vaccine production (±1500 human doses per liter cultivation). Transcriptome analysis suggests that cysteine depletion impairs iron-sulfur protein assembly and causes oxidative stress. Involvement of oxidative stress is confirmed by showing that addition of reactive oxygen species during cysteine-rich growth also triggers vesiculation. The sOMV in this study are similar to vesicles from natural infection, therefore cysteine-dependent vesiculation is likely to be relevant for the in vivo pathogenesis of N. meningitidis. PMID:23372704

  7. Caffeine Modulates Vesicle Release and Recovery at Cerebellar Parallel Fibre Terminals, Independently of Calcium and Cyclic AMP Signalling

    PubMed Central

    Dobson, Katharine L.; Jackson, Claire; Balakrishnan, Saju; Bellamy, Tomas C.

    2015-01-01

    Background Cerebellar parallel fibres release glutamate at both the synaptic active zone and at extrasynaptic sites—a process known as ectopic release. These sites exhibit different short-term and long-term plasticity, the basis of which is incompletely understood but depends on the efficiency of vesicle release and recycling. To investigate whether release of calcium from internal stores contributes to these differences in plasticity, we tested the effects of the ryanodine receptor agonist caffeine on both synaptic and ectopic transmission. Methods Whole cell patch clamp recordings from Purkinje neurons and Bergmann glia were carried out in transverse cerebellar slices from juvenile (P16-20) Wistar rats. Key Results Caffeine caused complex changes in transmission at both synaptic and ectopic sites. The amplitude of postsynaptic currents in Purkinje neurons and extrasynaptic currents in Bergmann glia were increased 2-fold and 4-fold respectively, but paired pulse ratio was substantially reduced, reversing the short-term facilitation observed under control conditions. Caffeine treatment also caused synaptic sites to depress during 1 Hz stimulation, consistent with inhibition of the usual mechanisms for replenishing vesicles at the active zone. Unexpectedly, pharmacological intervention at known targets for caffeine—intracellular calcium release, and cAMP signalling—had no impact on these effects. Conclusions We conclude that caffeine increases release probability and inhibits vesicle recovery at parallel fibre synapses, independently of known pharmacological targets. This complex effect would lead to potentiation of transmission at fibres firing at low frequencies, but depression of transmission at high frequency connections. PMID:25933382

  8. Uropathogenic Escherichia coli Releases Extracellular Vesicles That Are Associated with RNA

    PubMed Central

    Blenkiron, Cherie; Simonov, Denis; Muthukaruppan, Anita; Tsai, Peter; Dauros, Priscila; Green, Sasha; Hong, Jiwon; Print, Cristin G.

    2016-01-01

    Background Bacterium-to-host signalling during infection is a complex process involving proteins, lipids and other diffusible signals that manipulate host cell biology for pathogen survival. Bacteria also release membrane vesicles (MV) that can carry a cargo of effector molecules directly into host cells. Supported by recent publications, we hypothesised that these MVs also associate with RNA, which may be directly involved in the modulation of the host response to infection. Methods and Results Using the uropathogenic Escherichia coli (UPEC) strain 536, we have isolated MVs and found they carry a range of RNA species. Density gradient centrifugation further fractionated and characterised the MV preparation and confirmed that the isolated RNA was associated with the highest particle and protein containing fractions. Using a new approach, RNA-sequencing of libraries derived from three different ‘size’ RNA populations (<50nt, 50-200nt and 200nt+) isolated from MVs has enabled us to now report the first example of a complete bacterial MV-RNA profile. These data show that MVs carry rRNA, tRNAs, other small RNAs as well as full-length protein coding mRNAs. Confocal microscopy visualised the delivery of lipid labelled MVs into cultured bladder epithelial cells and showed their RNA cargo labelled with 5-EU (5-ethynyl uridine), was transported into the host cell cytoplasm and nucleus. MV RNA uptake by the cells was confirmed by droplet digital RT-PCR of csrC. It was estimated that 1% of MV RNA cargo is delivered into cultured cells. Conclusions These data add to the growing evidence of pathogenic bacterial MV being associated a wide range of RNAs. It further raises the plausibility for MV-RNA-mediated cross-kingdom communication whereby they influence host cell function during the infection process. PMID:27500956

  9. Synaptic Vesicle Pools: An Update

    PubMed Central

    Denker, Annette; Rizzoli, Silvio O.

    2010-01-01

    During the last few decades synaptic vesicles have been assigned to a variety of functional and morphological classes or “pools”. We have argued in the past (Rizzoli and Betz, 2005) that synaptic activity in several preparations is accounted for by the function of three vesicle pools: the readily releasable pool (docked at active zones and ready to go upon stimulation), the recycling pool (scattered throughout the nerve terminals and recycling upon moderate stimulation), and finally the reserve pool (occupying most of the vesicle clusters and only recycling upon strong stimulation). We discuss here the advancements in the vesicle pool field which took place in the ensuing years, focusing on the behavior of different pools under both strong stimulation and physiological activity. Several new findings have enhanced the three-pool model, with, for example, the disparity between recycling and reserve vesicles being underlined by the observation that the former are mobile, while the latter are “fixed”. Finally, a number of altogether new concepts have also evolved such as the current controversy on the identity of the spontaneously recycling vesicle pool. PMID:21423521

  10. Synaptic vesicle pools: an update.

    PubMed

    Denker, Annette; Rizzoli, Silvio O

    2010-01-01

    During the last few decades synaptic vesicles have been assigned to a variety of functional and morphological classes or "pools". We have argued in the past (Rizzoli and Betz, 2005) that synaptic activity in several preparations is accounted for by the function of three vesicle pools: the readily releasable pool (docked at active zones and ready to go upon stimulation), the recycling pool (scattered throughout the nerve terminals and recycling upon moderate stimulation), and finally the reserve pool (occupying most of the vesicle clusters and only recycling upon strong stimulation). We discuss here the advancements in the vesicle pool field which took place in the ensuing years, focusing on the behavior of different pools under both strong stimulation and physiological activity. Several new findings have enhanced the three-pool model, with, for example, the disparity between recycling and reserve vesicles being underlined by the observation that the former are mobile, while the latter are "fixed". Finally, a number of altogether new concepts have also evolved such as the current controversy on the identity of the spontaneously recycling vesicle pool. PMID:21423521

  11. Electron microscopy during release and purification of mesosomal vesicles and protoplast membranes from Staphylococcus aureus.

    PubMed

    Popkin, T J; Theodore, T S; Cole, R M

    1971-09-01

    The mesosomes of log-phase Staphylococcus aureus ATCC 6538P and Staphylococcus aureus phage-type 80/81, as seen in situ in ultrathin sections, were of the vesicular type. The constituent vesicles ranged from 35 to 50 nm in diameter when the glutaraldehyde-osmium-uranium-lead sequence of fixation and staining was used. During protoplasting in hypertonic buffer containing a muralytic enzyme, vesicles of the same size were extruded and required magnesium ion to maintain structural integrity. The vesicles, purified from the protoplasting supernatant medium by density gradient centrifugation, maintained size and configuration in a homogeneous preparation. Cytoplasmic membranes, produced by osmotic shock and nuclease treatment of protoplasts, were similarly concentrated in gradients. However, they were not free of membrane-associated ribosomes nor of mesosomal vesicles except when prepared in the absence of magnesium. PMID:4106221

  12. The Human Pathogen Streptococcus pyogenes Releases Lipoproteins as Lipoprotein-rich Membrane Vesicles*

    PubMed Central

    Biagini, Massimiliano; Garibaldi, Manuela; Aprea, Susanna; Pezzicoli, Alfredo; Doro, Francesco; Becherelli, Marco; Taddei, Anna Rita; Tani, Chiara; Tavarini, Simona; Mora, Marirosa; Teti, Giuseppe; D'Oro, Ugo; Nuti, Sandra; Soriani, Marco; Margarit, Immaculada; Rappuoli, Rino; Grandi, Guido; Norais, Nathalie

    2015-01-01

    Bacterial lipoproteins are attractive vaccine candidates because they represent a major class of cell surface-exposed proteins in many bacteria and are considered as potential pathogen-associated molecular patterns sensed by Toll-like receptors with built-in adjuvanticity. Although Gram-negative lipoproteins have been extensively characterized, little is known about Gram-positive lipoproteins. We isolated from Streptococcus pyogenes a large amount of lipoproteins organized in vesicles. These vesicles were obtained by weakening the bacterial cell wall with a sublethal concentration of penicillin. Lipid and proteomic analysis of the vesicles revealed that they were enriched in phosphatidylglycerol and almost exclusively composed of lipoproteins. In association with lipoproteins, a few hypothetical proteins, penicillin-binding proteins, and several members of the ExPortal, a membrane microdomain responsible for the maturation of secreted proteins, were identified. The typical lipidic moiety was apparently not necessary for lipoprotein insertion in the vesicle bilayer because they were also recovered from the isogenic diacylglyceryl transferase deletion mutant. The vesicles were not able to activate specific Toll-like receptor 2, indicating that lipoproteins organized in these vesicular structures do not act as pathogen-associated molecular patterns. In light of these findings, we propose to name these new structures Lipoprotein-rich Membrane Vesicles. PMID:26018414

  13. Actin- and Myosin-Dependent Vesicle Loading of Presynaptic Docking Sites Prior to Exocytosis.

    PubMed

    Miki, Takafumi; Malagon, Gerardo; Pulido, Camila; Llano, Isabel; Neher, Erwin; Marty, Alain

    2016-08-17

    Variance analysis of postsynaptic current amplitudes suggests the presence of distinct docking sites (also called release sites) where vesicles pause before exocytosis. Docked vesicles participate in the readily releasable pool (RRP), but the relation between docking site number and RRP size remains unclear. It is also unclear whether all vesicles of the RRP are equally release competent, and what cellular mechanisms underlie RRP renewal. We address here these questions at single glutamatergic synapses, counting released vesicles using deconvolution. We find a remarkably low variance of cumulative vesicle counts during action potential trains. This, combined with Monte Carlo simulations, indicates that vesicles transit through two successive states before exocytosis, so that the RRP is up to 2-fold higher than the docking site number. The transition to the second state has a very rapid rate constant, and is specifically inhibited by latrunculin B and blebbistatin, suggesting the involvement of actin and myosin. PMID:27537485

  14. Osteoblast-released Matrix Vesicles, Regulation of Activity and Composition by Sulfated and Non-sulfated Glycosaminoglycans.

    PubMed

    Schmidt, Johannes R; Kliemt, Stefanie; Preissler, Carolin; Moeller, Stephanie; von Bergen, Martin; Hempel, Ute; Kalkhof, Stefan

    2016-02-01

    Our aging population has to deal with the increasing threat of age-related diseases that impair bone healing. One promising therapeutic approach involves the coating of implants with modified glycosaminoglycans (GAGs) that mimic the native bone environment and actively facilitate skeletogenesis. In previous studies, we reported that coatings containing GAGs, such as hyaluronic acid (HA) and its synthetically sulfated derivative (sHA1) as well as the naturally low-sulfated GAG chondroitin sulfate (CS1), reduce the activity of bone-resorbing osteoclasts, but they also induce functions of the bone-forming cells, the osteoblasts. However, it remained open whether GAGs influence the osteoblasts alone or whether they also directly affect the formation, composition, activity, and distribution of osteoblast-released matrix vesicles (MV), which are supposed to be the active machinery for bone formation. Here, we studied the molecular effects of sHA1, HA, and CS1 on MV activity and on the distribution of marker proteins. Furthermore, we used comparative proteomic methods to study the relative protein compositions of isolated MVs and MV-releasing osteoblasts. The MV proteome is much more strongly regulated by GAGs than the cellular proteome. GAGs, especially sHA1, were found to severely impact vesicle-extracellular matrix interaction and matrix vesicle activity, leading to stronger extracellular matrix formation and mineralization. This study shows that the regulation of MV activity is one important mode of action of GAGs and provides information on underlying molecular mechanisms. PMID:26598647

  15. Effects of 17alpha-methyltestosterone on seminal vesicle development and semen release response in the African catfish, Clarias gariepinus.

    PubMed

    Viveiros, A T; Eding, E H; Komen, J

    2001-11-01

    The effects of 17alpha-methyltestosterone on seminal vesicle development in the African catfish, Clarias gariepinus, were investigated in an attempt to improve semen collection from this species. Treatment of larvae with dietary 17alpha-methyltestosterone at 50 mg kg(-1) for days 12-33 or days 12-40 after hatching, or at 20 mg kg(-1) for days 12-26, 12-33, 12-40 or 12-47 after hatching inhibited the development of the seminal vesicle finger-like extensions in male catfish, but did not affect the sex ratio. The minimum effective dose and period of treatment to inhibit seminal vesicle development in all male catfish treated with 17alpha-methyltestosterone was 20 mg kg(-1) for days 12-40 after hatching. Male catfish from this treatment group developed normal testes that, in some cases, contained a few oocytes, which tended to disappear before sexual maturation. After sexual maturation, the semen release response was evaluated in males with incomplete seminal vesicles. Fluid with viable spermatozoa was obtained after two consecutive injections of carp pituitary suspension, from 10 of 19 males that had been fed 20 mg 17alpha-methyltestosterone kg(-1) for days 12-40 or days 12-47 after hatching, but from only 4 of 15 males that did not receive any dietary steroid. Intratesticular semen quality was not affected by 17alpha-methyltestosterone treatment. The results of this study demonstrate that the absence of seminal vesicle extensions induced by treatment with 17alpha-methyltestosterone facilitated the collection of semen by stripping from this species of fish. PMID:11690543

  16. One stone kills three birds: novel boron-containing vesicles for potential BNCT, controlled drug release, and diagnostic imaging.

    PubMed

    Chen, Gaojian; Yang, Jingying; Lu, Gang; Liu, Pi Chu; Chen, Qianjin; Xie, Zuowei; Wu, Chi

    2014-10-01

    A new conjugate polymer was prepared by an efficient thiol-ene coupling of one carborane with a linear PEG chain (Mn = 2,000 g/mol), and each carborane was further labeled with a fluorescence rhodamine dye. Such a novel polymer can associate in water to form narrowly distributed spherical vesicles, which were characterized using a range of methods, including laser light scattering, confocal laser scanning microscopy, and TEM. The vesicular structure is potentially multifunctional in biomedical applications, namely, serving as a boron neutron capture therapy (BNCT) agent, a hydrophilic drug carrier, and a diagnostic imaging fluorescent probe. As expected, either cleaving the thiol-ene linked PEO chain by esterase or destroying carborane by neutron irradiation results in a dismantlement of such a vesicle structure to release its encapsulated drugs. Its potential biomedical applications have been evaluated in vitro and in vivo. Our preliminary results reveal that these small vesicles can be quickly taken up by cells and have an enhanced stability in the bloodstream so that their targeting to specific cancer cells becomes feasible. PMID:24521224

  17. Microfluidic assembly of multistage porous silicon–lipid vesicles for controlled drug release

    PubMed Central

    Herranz-Blanco, Bárbara; Arriaga, Laura R.; Mäkilä, Ermei; Correia, Alexandra; Shrestha, Neha; Mirza, Sabiruddin; Weitz, David A.; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A.

    2014-01-01

    A reliable microfluidic platform for the generation of stable and monodisperse multistage drug delivery systems is reported. A glass-capillary flow-focusing droplet generation device was used to encapsulate thermally hydrocarbonized porous silicon (PSi) microparticles into the aqueous cores of double emulsion drops, yielding the formation of a multistage PSi-lipid vesicle. This composite system enables a large loading capacity for hydrophobic drugs. PMID:24469311

  18. Characterization of outer membrane vesicles released by the psychrotolerant bacterium Pseudoalteromonas antarctica NF3

    PubMed Central

    Nevot, Maria; Deroncelé, Víctor; Messner, Paul; Guinea, Jesús; Mercadé, Elena

    2015-01-01

    Summary Pseudoalteromonas antarctica NF3 is an Antarctic psychrotolerant Gram-negative bacterium that accumulates large amounts of an extracellular polymeric substance (EPS) with high protein content. Transmission electron microscopy analysis after high-pressure freezing and freeze substitution (HPF-FS) shows that the EPS is composed of a capsular polymer and large numbers of outer membrane vesicles (OMVs). These vesicles are bilayered structures and predominantly spherical in shape, with an average diameter of 25–70 nm, which is similar to what has been observed in OMVs from other Gram-negative bacteria. Analyses of lipopolysaccharide (LPS), phospholipids and protein profiles of OMVs are consistent with the bacterial outer membrane origin of these vesicles. In an initial attempt to elucidate the functions of OMVs proteins, we conducted a proteomic analysis on 1D SDS-PAGE bands. Those proteins putatively identified match with outer membrane proteins and proteins related to nutrient processing and transport in Gram-negative bacteria. This approach suggests that OMVs present in the EPS from P. antarctica NF3, might function to deliver proteins to the external media, and therefore play an important role in the survival of the bacterium in the extreme Antarctic environment. PMID:16913913

  19. Effects of diet on synaptic vesicle release in dynactin complex mutants: a mechanism for improved vitality during motor disease

    PubMed Central

    Rawson, Joel M.; Kreko, Tabita; Davison, Holly; Mahoney, Rebekah; Bokov, Alex; Chang, Leo; Gelfond, Jon; Macleod, Greg T.; Eaton, Benjamin A.

    2012-01-01

    Summary Synaptic dysfunction is considered the primary substrate for the functional declines observed within the nervous system during age-related neurodegenerative disease. Dietary restriction (DR), which extends lifespan in numerous species, has been shown to have beneficial effects on many neurodegenerative disease models. Existing data sets suggest that the effects of DR during disease include the amelioration of synaptic dysfunction but evidence of the beneficial effects of diet on the synapse is lacking. Dynactin mutant flies have significant increases in mortality rates and exhibit progressive loss of motor function. Using a novel fly motor disease model, we demonstrate that mutant flies raised on a low calorie diet have enhanced motor function and improved survival compared to flies on a high calorie diet. Neurodegeneration in this model is characterized by an early impairment of neurotransmission that precedes the deterioration of neuromuscular junction (NMJ) morphology. In mutant flies, low calorie diet increases neurotransmission, but has little effect on morphology, supporting the hypothesis that enhanced neurotransmission contributes to the effects of diet on motor function. Importantly, the effects of diet on the synapse are not due to the reduction of mutant pathologies, but by the increased release of synaptic vesicles during activity. The generality of this effect is demonstrated by the observation that diet can also increase synaptic vesicle release at wild type NMJs. These studies reveal a novel presynaptic mechanism of diet that may contribute to the improved vigor observed in mutant flies raised on low calorie diet. PMID:22268717

  20. TNFα triggers release of extracellular vesicles containing TNFR1 and TRADD, which can modulate TNFα responses of the parental cells.

    PubMed

    Sohda, Miwa; Misumi, Yoshio; Oda, Kimimitsu

    2015-12-01

    Tumor necrosis factor-α (TNFα)-induced reactions are effective to maintain homeostasis; however, excessive responses play progressive roles in the pathogenesis of various chronic inflammatory diseases. We demonstrate that TNFα triggered the release of its receptor TNFR1 as a content of extracellular vesicles (EVs) from the human bronchial epithelial cell, BEAS-2b. The TNFR1 cytoplasmic domain binding partner, TNFR-associated death domain (TRADD), was released by TNFα treatment along with TNFR1. TNFα-triggered release of EVs was decreased in the presence of amitriptyline, an inhibitor of acid sphingomyelinase (A-SMase), or of GW4869, an inhibitor of neutral sphingomyelinase (N-SMase), indicating that EVs containing TNFR1 and TRADD are released through A-SMase and N-SMase dependent manners. From sucrose density gradient analysis, each sphingomyelinase is involved in the generation of distinct populations of EVs. Inhibition of A-SMase or N-SMase resulted in significantly increased responses to TNFα in parental cells. Given that TRADD serves as a platform for the assembly of subsequent signaling molecules, the TNFα triggered release of TNFR1 and TRADD might be an effective strategy for down regulation of the TNFα responses of parental cells. PMID:26475675

  1. Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release.

    PubMed

    Jackson, J; Papadopulos, A; Meunier, F A; McCluskey, A; Robinson, P J; Keating, D J

    2015-07-01

    Hormones and neurotransmitters are stored in specialised vesicles and released from excitable cells through exocytosis. During vesicle fusion with the plasma membrane, a transient fusion pore is created that enables transmitter release. The protein dynamin is known to regulate fusion pore expansion (FPE). The mechanism is unknown, but requires its oligomerisation-stimulated GTPase activity. We used a palette of small molecule dynamin modulators to reveal bi-directional regulation of FPE by dynamin and vesicle release in chromaffin cells. The dynamin inhibitors Dynole 34-2 and Dyngo 4a and the dynamin activator Ryngo 1-23 reduced or increased catecholamine released from single vesicles, respectively. Total internal reflection fluorescence (TIRF) microscopy demonstrated that dynamin stimulation with Ryngo 1-23 reduced the number of neuropeptide Y (NPY) kiss-and-run events, but not full fusion events, and slowed full fusion release kinetics. Amperometric stand-alone foot signals, representing transient kiss-and-run events, were less frequent but were of longer duration, similarly to full amperometric spikes and pre-spike foot signals. These effects are not due to alterations in vesicle size. Ryngo 1-23 action was blocked by inhibitors of actin polymerisation or myosin II. Therefore, we demonstrate using a novel pharmacological approach that dynamin not only controls FPE during exocytosis, but is a bi-directional modulator of the fusion pore that increases or decreases the amount released from a vesicle during exocytosis if it is activated or inhibited, respectively. As such, dynamin has the ability to exquisitely fine-tune transmitter release. PMID:25939402

  2. Release of outer membrane vesicles in Pseudomonas putida as a response to stress caused by cationic surfactants.

    PubMed

    Marisa Heredia, Romina; Sabrina Boeris, Paola; Sebastián Liffourrena, Andrés; Fernanda Bergero, María; Alberto López, Gastón; Inés Lucchesi, Gloria

    2016-05-01

    Pseudomonas putida A (ATCC 12633), a degrader of cationic surfactants, releases outer membrane vesicles (OMVs) when grown with tetradecyltrimethylammonium bromide (TTAB) as the sole carbon, nitrogen and energy source. The OMVs exhibit a bilayer structure and were found to be composed of lipopolysaccharides, proteins and phospholipids (PLs) such as cardiolipin, phosphatidylcholine, phosphatidic acid and phosphatidylglycerol (PG). The OMVs showed a marked increase in the PG content, approximately 43 % higher than the amount registered in the parent cells from which the vesicles were derived. After growth of P. putida with TTAB, the amount of lipoprotein covalently cross-linked to the peptidoglycan showed a twofold decrease when compared with values found after growth without the surfactant [16 ± 2 and 28 ± 3 μg (mg cell envelope protein)- 1, respectively]. This decrease in the amount of lipoprotein can be related to areas of loss of contact between the outer membrane and the peptidoglycan and, therefore, to OMV production. In addition, due to its amphiphilic nature, TTAB can contribute to OMV biogenesis, through a physical mechanism, by induction of the curvature of the membrane. Taking into account that OVMs were produced when the cells were grown under external stress, caused by the surfactant, and that TTAB was detected in the vesicles [48 nmol TTAB (nmol PL)- 1], we concluded that this system of TTAB elimination is a mechanism that P. putida A (ATCC 12633) would utilize for alleviating stress caused by cationic surfactants. PMID:26925774

  3. Acinetobacter baumannii Extracellular OXA-58 Is Primarily and Selectively Released via Outer Membrane Vesicles after Sec-Dependent Periplasmic Translocation

    PubMed Central

    Liao, Yu-Ting; Kuo, Shu-Chen; Chiang, Ming-Hsien; Lee, Yi-Tzu; Sung, Wang-Chou; Chen, You-Hsuan; Fung, Chang-Phone

    2015-01-01

    Carbapenem-resistant Acinetobacter baumannii (CRAb) shelter cohabiting carbapenem-susceptible bacteria from carbapenem killing via extracellular release of carbapenem-hydrolyzing class D β-lactamases, including OXA-58. However, the mechanism of the extracellular release of OXA-58 has not been elucidated. In silico analysis predicted OXA-58 to be translocated to the periplasm via the Sec system. Using cell fractionation and Western blotting, OXA-58 with the signal peptide and C terminus deleted was not detected in the periplasmic and extracellular fractions. Overexpression of enhanced green fluorescent protein fused to the OXA-58 signal peptide led to its periplasmic translocation but not extracellular release, suggesting that OXA-58 is selectively released. The majority of the extracellular OXA-58 was associated with outer membrane vesicles (OMVs). The OMV-associated OXA-58 was detected only in a strain overexpressing OXA-58. The presence of OXA-58 in OMVs was confirmed by a carbapenem inactivation bioassay, proteomic analysis, and transmission electron microscopy. Imipenem treatment increased OMV formation and caused cell lysis, resulting in an increase in the OMV-associated and OMV-independent release of extracellular OXA-58. OMV-independent OXA-58 hydrolyzed nitrocefin more rapidly than OMV-associated OXA-58 but was more susceptible to proteinase K degradation. Rose bengal, an SecA inhibitor, inhibited the periplasmic translocation and OMV-associated release of OXA-58 and abolished the sheltering effect of CRAb. This study demonstrated that the majority of the extracellular OXA-58 is selectively released via OMVs after Sec-dependent periplasmic translocation. Addition of imipenem increased both OMV-associated and OMV-independent OXA-58, which may have different biological roles. SecA inhibitor could abolish the carbapenem-sheltering effect of CRAb. PMID:26369971

  4. On-chip immunoelectrophoresis of extracellular vesicles released from human breast cancer cells.

    PubMed

    Akagi, Takanori; Kato, Kei; Kobayashi, Masashi; Kosaka, Nobuyoshi; Ochiya, Takahiro; Ichiki, Takanori

    2015-01-01

    Extracellular vesicles (EVs) including exosomes and microvesicles have attracted considerable attention in the fields of cell biology and medicine. For a better understanding of EVs and further exploration of their applications, the development of analytical methods for biological nanovesicles has been required. In particular, considering the heterogeneity of EVs, methods capable of measuring individual vesicles are desired. Here, we report that on-chip immunoelectrophoresis can provide a useful method for the differential protein expression profiling of individual EVs. Electrophoresis experiments were performed on EVs collected from the culture supernatant of MDA-MB-231 human breast cancer cells using a measurement platform comprising a microcapillary electrophoresis chip and a laser dark-field microimaging system. The zeta potential distribution of EVs that reacted with an anti-human CD63 (exosome and microvesicle marker) antibody showed a marked positive shift as compared with that for the normal immunoglobulin G (IgG) isotype control. Thus, on-chip immunoelectrophoresis could sensitively detect the over-expression of CD63 glycoproteins on EVs. Moreover, to explore the applicability of on-chip immunoelectrophoresis to cancer diagnosis, EVs collected from the blood of a mouse tumor model were analyzed by this method. By comparing the zeta potential distributions of EVs after their immunochemical reaction with normal IgG, and the anti-human CD63 and anti-human CD44 (cancer stem cell marker) antibodies, EVs of tumor origin circulating in blood were differentially detected in the real sample. The result indicates that the present method is potentially applicable to liquid biopsy, a promising approach to the low-invasive diagnosis of cancer. PMID:25928805

  5. Caco-2 cells infected with rotavirus release extracellular vesicles that express markers of apoptotic bodies and exosomes.

    PubMed

    Bautista, Diana; Rodríguez, Luz-Stella; Franco, Manuel A; Angel, Juana; Barreto, Alfonso

    2015-07-01

    Previously, we showed that infecting human intestinal epithelial cells (Caco-2) with rotavirus (RV) increases the release of extracellular vesicles (EVs) with an immunomodulatory function that, upon concentration at 100,000×g, present buoyant densities on a sucrose gradient of between 1.10 to 1.18 g/ml (characteristic of exosomes) and higher than 1.24 g/ml (proposed for apoptotic bodies). The effect of cellular death induced by RV on the composition of these EV is unknown. Here, we evaluated exosome (CD63, Hsc70, and AChE) and apoptotic body (histone H3) markers in EVs isolated by differential centrifugation (4000×g, 10,000×g, and 100,000×g) or filtration/ultracentrifugation (100,000×g) protocols. When we infected cells in the presence of caspase inhibitors, Hsc70 and AChE diminished in EVs obtained at 100,000×g, but not in EVs obtained at 4000×g or 10,000×g. In addition, caspase inhibitors decreased CD63 and AChE in vesicles with low and high buoyant densities. Without caspase inhibitors, RV infection increased exosome markers in all of the EVs obtained by differential centrifugation. However, CD63 preferentially localized in the 100,000×g fraction and H3 only increased in EVs concentrated at 100,000×g and with high buoyant densities on a sucrose gradient. Thus, RV infection increases the release of EVs that, upon concentration at 100,000×g, are composed by exosomes and apoptotic bodies, which can partially be separated using sucrose gradients. PMID:25975376

  6. A new Vibrio cholerae sRNA modulates colonization and affects release of outer membrane vesicles

    PubMed Central

    Song, Tianyan; Mika, Franziska; Lindmark, Barbro; Liu, Zhi; Schild, Stefan; Bishop, Anne; Zhu, Jun; Camilli, Andrew; Johansson, Jörgen; Vogel, Jörg; Wai, Sun Nyunt

    2008-01-01

    We discovered a new small non-coding RNA (sRNA) gene, vrrA of Vibrio cholerae O1 strain A1552. A vrrA mutant overproduces OmpA porin, and we demonstrate that the 140 nt VrrA RNA represses ompA translation by base-pairing with the 5′ region of the mRNA. The RNA chaperone Hfq is not stringently required for VrrA action, but expression of the vrrA gene requires the membrane stress sigma factor, σE, suggesting that VrrA acts on ompA in response to periplasmic protein folding stress. We also observed that OmpA levels inversely correlated with the number of outer membrane vesicles (OMVs), and that VrrA increased OMV production comparable to loss of OmpA. VrrA is the first sRNA known to control OMV formation. Moreover, a vrrA mutant showed a fivefold increased ability to colonize the intestines of infant mice as compared with the wild type. There was increased expression of the main colonization factor of V. cholerae, the toxin co-regulated pili, in the vrrA mutant as monitored by immunoblot detection of the TcpA protein. VrrA overproduction caused a distinct reduction in the TcpA protein level. Our findings suggest that VrrA contributes to bacterial fitness in certain stressful environments, and modulates infection of the host intestinal tract. PMID:18681937

  7. Anti-obesity and anti-tumor pro-apoptotic peptides are sufficient to cause release of cytochrome c from vesicles

    PubMed Central

    Sandoval, Cristina M.; Salzameda, Bridget; Reyes, Kristine; Williams, Taylor; Hohman, Valerie S.; Plesniak, Leigh A.

    2007-01-01

    Peptides that target tissue for an apoptotic death have potential as therapeutics in a variety of disease conditions. The class of peptides described herein enters the cell through a specific receptor-mediated interaction. Once inside the cell, the peptide migrates toward the mitochondria, where the membrane barrier is disrupted. These experiments demonstrate that upon treatment with these short peptides large unilamellar vesicles are not lysed, a graded mode of leakage is observed and the transient pores formed by these peptides are large enough to release entrapped cytochrome c from the vesicles. PMID:17983599

  8. Loading of Silica Nanoparticles in Block Copolymer Vesicles during Polymerization-Induced Self-Assembly: Encapsulation Efficiency and Thermally Triggered Release

    PubMed Central

    2015-01-01

    Poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymer vesicles can be prepared in the form of concentrated aqueous dispersions via polymerization-induced self-assembly (PISA). In the present study, these syntheses are conducted in the presence of varying amounts of silica nanoparticles of approximately 18 nm diameter. This approach leads to encapsulation of up to hundreds of silica nanoparticles per vesicle. Silica has high electron contrast compared to the copolymer which facilitates TEM analysis, and its thermal stability enables quantification of the loading efficiency via thermogravimetric analysis. Encapsulation efficiencies can be calculated using disk centrifuge photosedimentometry, since the vesicle density increases at higher silica loadings while the mean vesicle diameter remains essentially unchanged. Small angle X-ray scattering (SAXS) is used to confirm silica encapsulation, since a structure factor is observed at q ≈ 0.25 nm–1. A new two-population model provides satisfactory data fits to the SAXS patterns and allows the mean silica volume fraction within the vesicles to be determined. Finally, the thermoresponsive nature of the diblock copolymer vesicles enables thermally triggered release of the encapsulated silica nanoparticles simply by cooling to 0–10 °C, which induces a morphological transition. These silica-loaded vesicles constitute a useful model system for understanding the encapsulation of globular proteins, enzymes, or antibodies for potential biomedical applications. They may also serve as an active payload for self-healing hydrogels or repair of biological tissue. Finally, we also encapsulate a model globular protein, bovine serum albumin, and calculate its loading efficiency using fluorescence spectroscopy. PMID:26600089

  9. Loading of Silica Nanoparticles in Block Copolymer Vesicles during Polymerization-Induced Self-Assembly: Encapsulation Efficiency and Thermally Triggered Release.

    PubMed

    Mable, Charlotte J; Gibson, Rebecca R; Prevost, Sylvain; McKenzie, Beulah E; Mykhaylyk, Oleksandr O; Armes, Steven P

    2015-12-30

    Poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymer vesicles can be prepared in the form of concentrated aqueous dispersions via polymerization-induced self-assembly (PISA). In the present study, these syntheses are conducted in the presence of varying amounts of silica nanoparticles of approximately 18 nm diameter. This approach leads to encapsulation of up to hundreds of silica nanoparticles per vesicle. Silica has high electron contrast compared to the copolymer which facilitates TEM analysis, and its thermal stability enables quantification of the loading efficiency via thermogravimetric analysis. Encapsulation efficiencies can be calculated using disk centrifuge photosedimentometry, since the vesicle density increases at higher silica loadings while the mean vesicle diameter remains essentially unchanged. Small angle X-ray scattering (SAXS) is used to confirm silica encapsulation, since a structure factor is observed at q ≈ 0.25 nm(-1). A new two-population model provides satisfactory data fits to the SAXS patterns and allows the mean silica volume fraction within the vesicles to be determined. Finally, the thermoresponsive nature of the diblock copolymer vesicles enables thermally triggered release of the encapsulated silica nanoparticles simply by cooling to 0-10 °C, which induces a morphological transition. These silica-loaded vesicles constitute a useful model system for understanding the encapsulation of globular proteins, enzymes, or antibodies for potential biomedical applications. They may also serve as an active payload for self-healing hydrogels or repair of biological tissue. Finally, we also encapsulate a model globular protein, bovine serum albumin, and calculate its loading efficiency using fluorescence spectroscopy. PMID:26600089

  10. An Active Form of Sphingosine Kinase-1 Is Released in the Extracellular Medium as Component of Membrane Vesicles Shed by Two Human Tumor Cell Lines

    PubMed Central

    Rigogliuso, Salvatrice; Donati, Chiara; Cassarà, Donata; Taverna, Simona; Salamone, Monica; Bruni, Paola; Vittorelli, Maria Letizia

    2010-01-01

    Expression of sphingosine kinase-1 (SphK-1) correlates with a poor survival rate of tumor patients. This effect is probably due to the ability of SphK-1 to be released into the extracellular medium where it catalyzes the biosynthesis of sphingosine-1-phosphate (S1P), a signaling molecule endowed with profound proangiogenic effects. SphK-1 is a leaderless protein which is secreted by an unconventional mechanism. In this paper, we will show that in human hepatocarcinoma Sk-Hep1 cells, extracellular signaling is followed by targeting the enzyme to the cell surface and parallels targeting of FGF-2 to the budding vesicles. We will also show that SphK-1 is present in a catalitycally active form in vesicles shed by SK-Hep1 and human breast carcinoma 8701-BC cells. The enzyme substrate sphingosine is present in shed vesicles where it is produced by neutral ceramidase. Shed vesicles are therefore a site for S1P production in the extracellular medium and conceivably also within host cell following vesicle endocytosis. PMID:20508814

  11. Sequential Drug Release and Enhanced Photothermal and Photoacoustic Effect of Hybrid Reduced Graphene Oxide-Loaded Ultrasmall Gold Nanorod Vesicles for Cancer Therapy.

    PubMed

    Song, Jibin; Yang, Xiangyu; Jacobson, Orit; Lin, Lisen; Huang, Peng; Niu, Gang; Ma, Qingjie; Chen, Xiaoyuan

    2015-09-22

    We report a hybrid reduced graphene oxide (rGO)-loaded ultrasmall plasmonic gold nanorod vesicle (rGO-AuNRVe) (∼65 nm in size) with remarkably amplified photoacoustic (PA) performance and photothermal effects. The hybrid vesicle also exhibits a high loading capacity of doxorubicin (DOX), as both the cavity of the vesicle and the large surface area of the encapsulated rGO can be used for loading DOX, making it an excellent drug carrier. The loaded DOX is released sequentially: near-infrared photothermal heating induces DOX release from the vesicular cavity, and an intracellular acidic environment induces DOX release from the rGO surface. Positron emission tomography imaging showed high passive U87MG tumor accumulation of (64)Cu-labeled rGO-AuNRVes (∼9.7% ID/g at 24 h postinjection) and strong PA signal in the tumor region. Single intravenous injection of rGO-AuNRVe-DOX followed by low-power-density 808 nm laser irradiation (0.25 W/cm(2)) revealed effective inhibition of tumor growth due to the combination of chemo- and photothermal therapies. The rGO-AuNRVe-DOX capable of sequential DOX release by laser light and acid environment may have the potential for clinical translation to treat cancer patients with tumors accessible by light. PMID:26308265

  12. Extracellular vesicles released by CD40/IL-4-stimulated CLL cells confer altered functional properties to CD4+ T cells.

    PubMed

    Smallwood, Dawn T; Apollonio, Benedetta; Willimott, Shaun; Lezina, Larissa; Alharthi, Afaf; Ambrose, Ashley R; De Rossi, Giulia; Ramsay, Alan G; Wagner, Simon D

    2016-07-28

    The complex interplay between cancer cells, stromal cells, and immune cells in the tumor microenvironment (TME) regulates tumorigenesis and provides emerging targets for immunotherapies. Crosstalk between CD4(+) T cells and proliferating chronic lymphocytic leukemia (CLL) tumor B cells occurs within lymphoid tissue pseudofollicles, and investigating these interactions is essential to understand both disease pathogenesis and the effects of immunotherapy. Tumor-derived extracellular vesicle (EV) shedding is emerging as an important mode of intercellular communication in the TME. In order to characterize tumor EVs released in response to T-cell-derived TME signals, we performed microRNA (miRNA [miR]) profiling of EVs released from CLL cells stimulated with CD40 and interleukin-4 (IL-4). Our results reveal an enrichment of specific cellular miRNAs including miR-363 within EVs derived from CD40/IL-4-stimulated CLL cells compared with parental cell miRNA content and control EVs from unstimulated CLL cells. We demonstrate that autologous patient CD4(+) T cells internalize CLL-EVs containing miR-363 that targets the immunomodulatory molecule CD69. We further reveal that autologous CD4(+) T cells that are exposed to EVs from CD40/IL-4-stimulated CLL cells exhibit enhanced migration, immunological synapse signaling, and interactions with tumor cells. Knockdown of miR-363 in CLL cells prior to CD40/IL-4 stimulation prevented the ability of CLL-EVs to induce increased synapse signaling and confer altered functional properties to CD4(+) T cells. Taken together, these data reveal a novel role for CLL-EVs in modifying T-cell function that highlights unanticipated complexity of intercellular communication that may have implications for bidirectional CD4(+) T-cell:tumor interactions within the TME. PMID:27118451

  13. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles

    SciTech Connect

    Zhang, Xiaojun; Chen, Yuan; Chen, Yong

    2014-03-28

    Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM) has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release.

  14. GTP Hydrolysis of TC10 Promotes Neurite Outgrowth through Exocytic Fusion of Rab11- and L1-Containing Vesicles by Releasing Exocyst Component Exo70

    PubMed Central

    Fujita, Akane; Koinuma, Shingo; Yasuda, Sayaka; Nagai, Hiroyuki; Kamiguchi, Hiroyuki; Wada, Naoyuki; Nakamura, Takeshi

    2013-01-01

    The use of exocytosis for membrane expansion at nerve growth cones is critical for neurite outgrowth. TC10 is a Rho family GTPase that is essential for specific types of vesicular trafficking to the plasma membrane. Recent studies have shown that TC10 and its effector Exo70, a component of the exocyst tethering complex, contribute to neurite outgrowth. However, the molecular mechanisms of the neuritogenesis-promoting functions of TC10 remain to be established. Here, we propose that GTP hydrolysis of vesicular TC10 near the plasma membrane promotes neurite outgrowth by accelerating vesicle fusion by releasing Exo70. Using Förster resonance energy transfer (FRET)-based biosensors, we show that TC10 activity at the plasma membrane decreased at extending growth cones in hippocampal neurons and nerve growth factor (NGF)-treated PC12 cells. In neuronal cells, TC10 activity at vesicles was higher than its activity at the plasma membrane, and TC10-positive vesicles were found to fuse to the plasma membrane in NGF-treated PC12 cells. Therefore, activity of TC10 at vesicles is presumed to be inactivated near the plasma membrane during neuronal exocytosis. Our model is supported by functional evidence that constitutively active TC10 could not rescue decrease in NGF-induced neurite outgrowth induced by TC10 depletion. Furthermore, TC10 knockdown experiments and colocalization analyses confirmed the involvement of Exo70 in TC10-mediated trafficking in neuronal cells. TC10 frequently resided on vesicles containing Rab11, which is a key regulator of recycling pathways and implicated in neurite outgrowth. In growth cones, most of the vesicles containing the cell adhesion molecule L1 had TC10. Exocytosis of Rab11- and L1-positive vesicles may play a central role in TC10-mediated neurite outgrowth. The combination of this study and our previous work on the role of TC10 in EGF-induced exocytosis in HeLa cells suggests that the signaling machinery containing TC10 proposed here may be

  15. A Missense Mutation of the Gene Encoding Synaptic Vesicle Glycoprotein 2A (SV2A) Confers Seizure Susceptibility by Disrupting Amygdalar Synaptic GABA Release.

    PubMed

    Tokudome, Kentaro; Okumura, Takahiro; Terada, Ryo; Shimizu, Saki; Kunisawa, Naofumi; Mashimo, Tomoji; Serikawa, Tadao; Sasa, Masashi; Ohno, Yukihiro

    2016-01-01

    Synaptic vesicle glycoprotein 2A (SV2A) is specifically expressed in the membranes of synaptic vesicles and modulates action potential-dependent neurotransmitter release. To explore the role of SV2A in the pathogenesis of epileptic disorders, we recently generated a novel rat model (Sv2a(L174Q) rat) carrying a missense mutation of the Sv2a gene and showed that the Sv2a(L174Q) rats were hypersensitive to kindling development (Tokudome et al., 2016). Here, we further conducted behavioral and neurochemical studies to clarify the pathophysiological mechanisms underlying the seizure vulnerability in Sv2a(L174Q) rats. Sv2a(L174Q) rats were highly susceptible to pentylenetetrazole (PTZ)-induced seizures, yielding a significantly higher seizure scores and seizure incidence than the control animals. Brain mapping analysis of Fos expression, a biological marker of neural excitation, revealed that the seizure threshold level of PTZ region-specifically elevated Fos expression in the amygdala in Sv2a(L174Q) rats. In vivo microdialysis study showed that the Sv2a(L174Q) mutation preferentially reduced high K(+) (depolarization)-evoked GABA release, but not glutamate release, in the amygdala. In addition, specific control of GABA release by SV2A was supported by its predominant expression in GABAergic neurons, which were co-stained with antibodies against SV2A and glutamate decarboxylase 1. The present results suggest that dysfunction of SV2A by the missense mutation elevates seizure susceptibility in rats by preferentially disrupting synaptic GABA release in the amygdala, illustrating the crucial role of amygdalar SV2A-GABAergic system in epileptogenesis. PMID:27471467

  16. A Missense Mutation of the Gene Encoding Synaptic Vesicle Glycoprotein 2A (SV2A) Confers Seizure Susceptibility by Disrupting Amygdalar Synaptic GABA Release

    PubMed Central

    Tokudome, Kentaro; Okumura, Takahiro; Terada, Ryo; Shimizu, Saki; Kunisawa, Naofumi; Mashimo, Tomoji; Serikawa, Tadao; Sasa, Masashi; Ohno, Yukihiro

    2016-01-01

    Synaptic vesicle glycoprotein 2A (SV2A) is specifically expressed in the membranes of synaptic vesicles and modulates action potential-dependent neurotransmitter release. To explore the role of SV2A in the pathogenesis of epileptic disorders, we recently generated a novel rat model (Sv2aL174Q rat) carrying a missense mutation of the Sv2a gene and showed that the Sv2aL174Q rats were hypersensitive to kindling development (Tokudome et al., 2016). Here, we further conducted behavioral and neurochemical studies to clarify the pathophysiological mechanisms underlying the seizure vulnerability in Sv2aL174Q rats. Sv2aL174Q rats were highly susceptible to pentylenetetrazole (PTZ)-induced seizures, yielding a significantly higher seizure scores and seizure incidence than the control animals. Brain mapping analysis of Fos expression, a biological marker of neural excitation, revealed that the seizure threshold level of PTZ region-specifically elevated Fos expression in the amygdala in Sv2aL174Q rats. In vivo microdialysis study showed that the Sv2aL174Q mutation preferentially reduced high K+ (depolarization)-evoked GABA release, but not glutamate release, in the amygdala. In addition, specific control of GABA release by SV2A was supported by its predominant expression in GABAergic neurons, which were co-stained with antibodies against SV2A and glutamate decarboxylase 1. The present results suggest that dysfunction of SV2A by the missense mutation elevates seizure susceptibility in rats by preferentially disrupting synaptic GABA release in the amygdala, illustrating the crucial role of amygdalar SV2A-GABAergic system in epileptogenesis. PMID:27471467

  17. Protein and small non-coding RNA-enriched extracellular vesicles are released by the pathogenic blood fluke Schistosoma mansoni

    PubMed Central

    Nowacki, Fanny C.; Swain, Martin T.; Klychnikov, Oleg I.; Niazi, Umar; Ivens, Alasdair; Quintana, Juan F.; Hensbergen, Paul J.; Hokke, Cornelis H.; Buck, Amy H.; Hoffmann, Karl F.

    2015-01-01

    Background Penetration of skin, migration through tissues and establishment of long-lived intravascular partners require Schistosoma parasites to successfully manipulate definitive host defences. While previous studies of larval schistosomula have postulated a function for excreted/secreted (E/S) products in initiating these host-modulatory events, the role of extracellular vesicles (EVs) has yet to be considered. Here, using preparatory ultracentrifugation as well as methodologies to globally analyse both proteins and small non-coding RNAs (sncRNAs), we conducted the first characterization of Schistosoma mansoni schistosomula EVs and their potential host-regulatory cargos. Results Transmission electron microscopy analysis of EVs isolated from schistosomula in vitro cultures revealed the presence of numerous, 30–100 nm sized exosome-like vesicles. Proteomic analysis of these vesicles revealed a core set of 109 proteins, including homologs to those previously found enriched in other eukaryotic EVs, as well as hypothetical proteins of high abundance and currently unknown function. Characterization of E/S sncRNAs found within and outside of schistosomula EVs additionally identified the presence of potential gene-regulatory miRNAs (35 known and 170 potentially novel miRNAs) and tRNA-derived small RNAs (tsRNAs; nineteen 5′ tsRNAs and fourteen 3′ tsRNAs). Conclusions The identification of S. mansoni EVs and the combinatorial protein/sncRNA characterization of their cargo signifies that an important new participant in the complex biology underpinning schistosome/host interactions has now been discovered. Further work defining the role of these schistosomula EVs and the function/stability of intra- and extra-vesicular sncRNA components presents tremendous opportunities for developing novel schistosomiasis diagnostics or interventions. PMID:26443722

  18. Gas vesicles.

    PubMed Central

    Walsby, A E

    1994-01-01

    The gas vesicle is a hollow structure made of protein. It usually has the form of a cylindrical tube closed by conical end caps. Gas vesicles occur in five phyla of the Bacteria and two groups of the Archaea, but they are mostly restricted to planktonic microorganisms, in which they provide buoyancy. By regulating their relative gas vesicle content aquatic microbes are able to perform vertical migrations. In slowly growing organisms such movements are made more efficiently than by swimming with flagella. The gas vesicle is impermeable to liquid water, but it is highly permeable to gases and is normally filled with air. It is a rigid structure of low compressibility, but it collapses flat under a certain critical pressure and buoyancy is then lost. Gas vesicles in different organisms vary in width, from 45 to > 200 nm; in accordance with engineering principles the narrower ones are stronger (have higher critical pressures) than wide ones, but they contain less gas space per wall volume and are therefore less efficient at providing buoyancy. A survey of gas-vacuolate cyanobacteria reveals that there has been natural selection for gas vesicles of the maximum width permitted by the pressure encountered in the natural environment, which is mainly determined by cell turgor pressure and water depth. Gas vesicle width is genetically determined, perhaps through the amino acid sequence of one of the constituent proteins. Up to 14 genes have been implicated in gas vesicle production, but so far the products of only two have been shown to be present in the gas vesicle: GvpA makes the ribs that form the structure, and GvpC binds to the outside of the ribs and stiffens the structure against collapse. The evolution of the gas vesicle is discussed in relation to the homologies of these proteins. Images PMID:8177173

  19. Ultrasound-responsive ultrathin multiblock copolyamide vesicles.

    PubMed

    Huang, Lei; Yu, Chunyang; Huang, Tong; Xu, Shuting; Bai, Yongping; Zhou, Yongfeng

    2016-03-01

    This study reports the self-assembly of novel polymer vesicles from an amphiphilic multiblock copolyamide, and the vesicles show a special structure with an ultrathin wall thickness of about 4.5 nm and a combined bilayer and monolayer packing model. Most interestingly, the vesicles are ultrasound-responsive and can release the encapsulated model drugs in response to ultrasonic irradiation. PMID:26878351

  20. Deleterious effects of soluble amyloid-β oligomers on multiple steps of synaptic vesicle trafficking.

    PubMed

    Park, Joohyun; Jang, Mirye; Chang, Sunghoe

    2013-07-01

    Growing evidence supports a role for soluble amyloid-β oligomer intermediates in the synaptic dysfunction associated with Alzheimer's disease (AD), but the molecular mechanisms underlying this effect remain unclear. We found that acute treatment of cultured rat hippocampal neurons with nanomolar concentrations of Aβ oligomers reduced the recycling pool and increased the resting pool of synaptic vesicles. Endocytosis of synaptic vesicles and the regeneration of fusion-competent vesicles were also severely impaired. Furthermore, the release probability of the readily-releasable pool (RRP) was increased, and recovery of the RRP was delayed. All these effects were prevented by antibody against Aβ. Moreover reduction of the pool size was prevented by inhibiting calpain or CDK5, while the defects in endocytosis were averted by overexpressing phosphatidylinositol-4-phosphate-5-kinase type I-γ, indicating that these two downstream pathways are involved in Aβ oligomers-induced presynaptic dysfunction. PMID:23523634

  1. Spontaneous vesicle recycling in the synaptic bouton

    PubMed Central

    Truckenbrodt, Sven; Rizzoli, Silvio O.

    2014-01-01

    The trigger for synaptic vesicle exocytosis is Ca2+, which enters the synaptic bouton following action potential stimulation. However, spontaneous release of neurotransmitter also occurs in the absence of stimulation in virtually all synaptic boutons. It has long been thought that this represents exocytosis driven by fluctuations in local Ca2+ levels. The vesicles responding to these fluctuations are thought to be the same ones that release upon stimulation, albeit potentially triggered by different Ca2+ sensors. This view has been challenged by several recent works, which have suggested that spontaneous release is driven by a separate pool of synaptic vesicles. Numerous articles appeared during the last few years in support of each of these hypotheses, and it has been challenging to bring them into accord. We speculate here on the origins of this controversy, and propose a solution that is related to developmental effects. Constitutive membrane traffic, needed for the biogenesis of vesicles and synapses, is responsible for high levels of spontaneous membrane fusion in young neurons, probably independent of Ca2+. The vesicles releasing spontaneously in such neurons are not related to other synaptic vesicle pools and may represent constitutively releasing vesicles (CRVs) rather than bona fide synaptic vesicles. In mature neurons, constitutive traffic is much dampened, and the few remaining spontaneous release events probably represent bona fide spontaneously releasing synaptic vesicles (SRSVs) responding to Ca2+ fluctuations, along with a handful of CRVs that participate in synaptic vesicle turnover. PMID:25538561

  2. Fusion Competent Synaptic Vesicles Persist upon Active Zone Disruption and Loss of Vesicle Docking.

    PubMed

    Wang, Shan Shan H; Held, Richard G; Wong, Man Yan; Liu, Changliang; Karakhanyan, Aziz; Kaeser, Pascal S

    2016-08-17

    In a nerve terminal, synaptic vesicle docking and release are restricted to an active zone. The active zone is a protein scaffold that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Here, we generated conditional knockout mice removing the active zone proteins RIM and ELKS, which additionally led to loss of Munc13, Bassoon, Piccolo, and RIM-BP, indicating disassembly of the active zone. We observed a near-complete lack of synaptic vesicle docking and a strong reduction in vesicular release probability and the speed of exocytosis, but total vesicle numbers, SNARE protein levels, and postsynaptic densities remained unaffected. Despite loss of the priming proteins Munc13 and RIM and of docked vesicles, a pool of releasable vesicles remained. Thus, the active zone is necessary for synaptic vesicle docking and to enhance release probability, but releasable vesicles can be localized distant from the presynaptic plasma membrane. PMID:27537483

  3. Synaptic vesicle fusion

    PubMed Central

    Rizo, Josep; Rosenmund, Christian

    2008-01-01

    The core of the neurotransmitter release machinery is formed by SNARE complexes, which bring the vesicle and plasma membranes together and are key for fusion, and by Munc18-1, which controls SNARE-complex formation and may also have a direct role in fusion. In addition, SNARE complex assembly is likely orchestrated by Munc13s and RIMs, active-zone proteins that function in vesicle priming and diverse forms of presynaptic plasticity. Synaptotagmin-1 mediates triggering of release by Ca2+, probably through interactions with SNAREs and both membranes, as well as through a tight interplay with complexins. Elucidation of the release mechanism will require a full understanding of the network of interactions among all these proteins and the membranes. PMID:18618940

  4. New effects of GABAB receptor allosteric modulator rac-BHFF on ambient GABA, uptake/release, Em and synaptic vesicle acidification in nerve terminals.

    PubMed

    Pozdnyakova, N; Dudarenko, M; Borisova, T

    2015-09-24

    Positive allosteric modulators of GABAB receptors have great therapeutic potential for medications of anxiety, depression, etc. The effects of recently discovered modulator rac-BHFF on the key characteristics of GABAergic neurotransmission were investigated in cortical and hippocampal presynaptic nerve terminals of rats (synaptosomes). The ambient level of [(3)H]GABA that is a balance between release and uptake of the neurotransmitter increased significantly in the presence of rac-BHFF (at concentrations 10-30μM). The initial velocity of synaptosomal [(3)H]GABA uptake was suppressed by the modulator. In the presence of GABA transporter blocker NO-711, it was shown that rac-BHFF increased tonic release of [(3)H]GABA from synaptosomes (at concentrations 3-30μM). Rac-BHFF within the concentration range of 0.3-30μM did not enhance inhibiting effect of (±)-baclofen on depolarization-induced exocytotic release of [(3)H]GABA. Rac-BHFF (0.3-30μM) caused dose-dependent depolarization of the plasma membrane and dissipation of the proton gradient of synaptic vesicles in synaptosomes that was shown in the absence/presence of GABAB receptor antagonist saclofen using fluorescent dyes rhodamine 6G and acridine orange, respectively, and so, the above effects of rac-BHFF were not associated with the modulation of presynaptic GABAB receptors. Therefore, drug development strategy of positive allosteric modulation of GABAB receptors is to eliminate the above side effects of rac-BHFF in presynapse, and vice versa, these new properties of rac-BHFF may be exploited appropriately. PMID:26197223

  5. Interaction of Cryptococcus neoformans Extracellular Vesicles with the Cell Wall

    PubMed Central

    Wolf, Julie M.; Espadas-Moreno, Javier; Luque-Garcia, Jose L.

    2014-01-01

    Cryptococcus neoformans produces extracellular vesicles containing a variety of cargo, including virulence factors. To become extracellular, these vesicles not only must be released from the plasma membrane but also must pass through the dense matrix of the cell wall. The greatest unknown in the area of fungal vesicles is the mechanism by which these vesicles are released to the extracellular space given the presence of the fungal cell wall. Here we used electron microscopy techniques to image the interactions of vesicles with the cell wall. Our goal was to define the ultrastructural morphology of the process to gain insights into the mechanisms involved. We describe single and multiple vesicle-leaving events, which we hypothesized were due to plasma membrane and multivesicular body vesicle origins, respectively. We further utilized melanized cells to “trap” vesicles and visualize those passing through the cell wall. Vesicle size differed depending on whether vesicles left the cytoplasm in single versus multiple release events. Furthermore, we analyzed different vesicle populations for vesicle dimensions and protein composition. Proteomic analysis tripled the number of proteins known to be associated with vesicles. Despite separation of vesicles into batches differing in size, we did not identify major differences in protein composition. In summary, our results indicate that vesicles are generated by more than one mechanism, that vesicles exit the cell by traversing the cell wall, and that vesicle populations exist as a continuum with regard to size and protein composition. PMID:24906412

  6. The influence of lipid composition and surface charge on biodistribution of intact liposomes releasing from hydrogel-embedded vesicles.

    PubMed

    Alinaghi, A; Rouini, M R; Johari Daha, F; Moghimi, H R

    2014-01-01

    Mixed drug delivery systems possess advantages over discrete systems, and can be used as a strategy to design more effective formulations. They are more valuable if the embedded particles perform well, rather than using drugs that have been affected by the surrounding vehicle. In order to address this concept, different liposomes have been incorporated into hydrogel to evaluate the potential effect on the controlled release of liposomes. Radiolabeled liposomes, with respect to different acyl chain lengths (DMPC, DPPC, or DSPC) and charges (neutral, negative [DSPG], or positive [DOTAP]) were integrated into chitosan-glycerophosphate. The results obtained from the biodistribution showed that the DSPC liposomes had the highest area under the curve (AUC) values, both in the blood (206.5%ID/gh(-1)) and peritoneum (622.3%ID/gh(-1)), when compared to the DPPC and DMPC formulations, whether in liposomal hydrogel or dispersion. Interesting results were observed in that the hydrogel could reverse the peritoneal retention of negatively charged liposomes, increasing to 8 times its AUC value, to attain the highest amount among all formulations. The interactions between the liposomes and chitosan-glycerophosphate, confirmed by the Fourier transform infrared (FTIR) spectra as shifted characteristic peaks, were observed in the combined systems. Overall, the hydrogel could control the release of intact liposomes, which could be manipulated by both the liposome type and interactions between the two vehicles. PMID:24239579

  7. High serum levels of extracellular vesicles expressing malignancy-related markers are released in patients with various types of hematological neoplastic disorders.

    PubMed

    Caivano, Antonella; Laurenzana, Ilaria; De Luca, Luciana; La Rocca, Francesco; Simeon, Vittorio; Trino, Stefania; D'Auria, Fiorella; Traficante, Antonio; Maietti, Maddalena; Izzo, Tiziana; D'Arena, Giovanni; Mansueto, Giovanna; Pietrantuono, Giuseppe; Laurenti, Luca; Musto, Pellegrino; Del Vecchio, Luigi

    2015-12-01

    Many cell types release extracellular vesicles (EVs), including exosomes, microvesicles (MVs), and apoptotic bodies, which play a role in physiology and diseases. Presence and phenotype of circulating EVs in hematological malignancies (HMs) remain largely unexplored.The aim of this study was to characterize EVs in peripheral blood of HM patients compared to healthy subjects (controls). We isolated serum EVs from patients with chronic lymphocytic leukemia (CLL), non-Hodgkin's lymphoma (NHL), Waldenstrom's macroglobulinemia (WM), Hodgkin's lymphoma (HL), multiple myeloma (MM), acute myeloid leukemia (AML), myeloproliferative neoplasms (MPNs), myelodysplastic syndromes (MDS), and controls. EVs were isolated from serum of peripheral blood by ultracentrifuge steps and analyzed by flow cytometry to define count, size, and immunophenotype. MV levels were significantly elevated in WM, HL, MM, AML, and some MPNs and, though at a lesser degree, in CLL and NHL as compared to healthy controls. HL, MM, and MPNs generated a population of MVs characterized by lower size (below 0.3 μm) when compared to controls. MVs from patients specifically expressed tumor-related antigens, such as CD19 in B cell neoplasms, CD38 in MM, CD13 in myeloid tumors, and CD30 in HL. Both total and antigen-specific count of MVs significantly correlated with different HM clinical features such as Rai stage in CLL, International Prognostic Scoring System in WM, International Staging System in MM, and clinical stage in HL. MVs may represent a novel biomarker in HMs. PMID:26156801

  8. Inhibition of oncogenic epidermal growth factor receptor kinase triggers release of exosome-like extracellular vesicles and impacts their phosphoprotein and DNA content.

    PubMed

    Montermini, Laura; Meehan, Brian; Garnier, Delphine; Lee, Wan Jin; Lee, Tae Hoon; Guha, Abhijit; Al-Nedawi, Khalid; Rak, Janusz

    2015-10-01

    Cancer cells emit extracellular vesicles (EVs) containing unique molecular signatures. Here, we report that the oncogenic EGF receptor (EGFR) and its inhibitors reprogram phosphoproteomes and cargo of tumor cell-derived EVs. Thus, phosphorylated EGFR (P-EGFR) and several other receptor tyrosine kinases can be detected in EVs purified from plasma of tumor-bearing mice and from conditioned media of cultured cancer cells. Treatment of EGFR-driven tumor cells with second generation EGFR kinase inhibitors (EKIs), including CI-1033 and PF-00299804 but not with anti-EGFR antibody (Cetuximab) or etoposide, triggers a burst in emission of exosome-like EVs containing EGFR, P-EGFR, and genomic DNA (exo-gDNA). The EV release can be attenuated by treatment with inhibitors of exosome biogenesis (GW4869) and caspase pathways (ZVAD). The content of P-EGFR isoforms (Tyr-845, Tyr-1068, and Tyr-1173), ERK, and AKT varies between cells and their corresponding EVs and as a function of EKI treatment. Immunocapture experiments reveal the presence of EGFR and exo-gDNA within the same EV population following EKI treatment. These findings suggest that targeted agents may induce cancer cells to change the EV emission profiles reflective of drug-related therapeutic stress. We suggest that EV-based assays may serve as companion diagnostics for targeted anticancer agents. PMID:26272609

  9. Synaptic Vesicle Proteins and Active Zone Plasticity

    PubMed Central

    Kittel, Robert J.; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention. PMID:27148040

  10. Isolation, characterization and potential role in beta cell-endothelium cross-talk of extracellular vesicles released from human pancreatic islets.

    PubMed

    Figliolini, Federico; Cantaluppi, Vincenzo; De Lena, Michela; Beltramo, Silvia; Romagnoli, Renato; Salizzoni, Mauro; Melzi, Raffaella; Nano, Rita; Piemonti, Lorenzo; Tetta, Ciro; Biancone, Luigi; Camussi, Giovanni

    2014-01-01

    The cross-talk between beta cells and endothelium plays a key role in islet physiopathology and in the revascularization process after islet transplantation. However, the molecular mechanisms involved in this cross-talk are not fully elucidated. Extracellular vesicles (EVs) are secreted membrane nanoparticles involved in inter-cellular communication through the transfer of proteins and nucleic acids. The aims of this study were: 1) isolation and characterization of EVs from human islets; 2) evaluation of the pro-angiogenic effect of islet-derived EVs on human islet endothelial cells (IECs). EVs were isolated by ultracentrifugation from conditioned medium of human islets and characterized by nanotrack analysis (Nanosight), FACS, western blot, bioanalyzer, mRNA/microRNA RT-PCR array. On IECs, we evaluated EV-induced insulin mRNA transfer, proliferation, resistance to apoptosis, in vitro angiogenesis, migration, gene and protein profiling. EVs sized 236±54 nm, expressed different surface molecules and islet-specific proteins (insulin, C-peptide, GLP1R) and carried several mRNAs (VEGFa, eNOS) and microRNAs (miR-27b, miR-126, miR-130 and miR-296) involved in beta cell function, insulin secretion and angiogenesis. Purified EVs were internalized into IECs inducing insulin mRNA expression, protection from apoptosis and enhancement of angiogenesis. Human islets release biologically active EVs able to shuttle specific mRNAs and microRNAs (miRNAs) into target endothelial cells. These results suggest a putative role for islet-derived EVs in beta cell-endothelium cross-talk and in the neoangiogenesis process which is critical for engraftment of transplanted islets. PMID:25028931

  11. Isolation, Characterization and Potential Role in Beta Cell-Endothelium Cross-Talk of Extracellular Vesicles Released from Human Pancreatic Islets

    PubMed Central

    De Lena, Michela; Beltramo, Silvia; Romagnoli, Renato; Salizzoni, Mauro; Melzi, Raffaella; Nano, Rita; Piemonti, Lorenzo; Tetta, Ciro; Biancone, Luigi; Camussi, Giovanni

    2014-01-01

    The cross-talk between beta cells and endothelium plays a key role in islet physiopathology and in the revascularization process after islet transplantation. However, the molecular mechanisms involved in this cross-talk are not fully elucidated. Extracellular vesicles (EVs) are secreted membrane nanoparticles involved in inter-cellular communication through the transfer of proteins and nucleic acids. The aims of this study were: 1) isolation and characterization of EVs from human islets; 2) evaluation of the pro-angiogenic effect of islet-derived EVs on human islet endothelial cells (IECs). EVs were isolated by ultracentrifugation from conditioned medium of human islets and characterized by nanotrack analysis (Nanosight), FACS, western blot, bioanalyzer, mRNA/microRNA RT-PCR array. On IECs, we evaluated EV-induced insulin mRNA transfer, proliferation, resistance to apoptosis, in vitro angiogenesis, migration, gene and protein profiling. EVs sized 236±54 nm, expressed different surface molecules and islet-specific proteins (insulin, C-peptide, GLP1R) and carried several mRNAs (VEGFa, eNOS) and microRNAs (miR-27b, miR-126, miR-130 and miR-296) involved in beta cell function, insulin secretion and angiogenesis. Purified EVs were internalized into IECs inducing insulin mRNA expression, protection from apoptosis and enhancement of angiogenesis. Human islets release biologically active EVs able to shuttle specific mRNAs and microRNAs (miRNAs) into target endothelial cells. These results suggest a putative role for islet-derived EVs in beta cell-endothelium cross-talk and in the neoangiogenesis process which is critical for engraftment of transplanted islets. PMID:25028931

  12. Ultrasound-responsive ultrathin multiblock copolyamide vesicles

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Yu, Chunyang; Huang, Tong; Xu, Shuting; Bai, Yongping; Zhou, Yongfeng

    2016-02-01

    This study reports the self-assembly of novel polymer vesicles from an amphiphilic multiblock copolyamide, and the vesicles show a special structure with an ultrathin wall thickness of about 4.5 nm and a combined bilayer and monolayer packing model. Most interestingly, the vesicles are ultrasound-responsive and can release the encapsulated model drugs in response to ultrasonic irradiation.This study reports the self-assembly of novel polymer vesicles from an amphiphilic multiblock copolyamide, and the vesicles show a special structure with an ultrathin wall thickness of about 4.5 nm and a combined bilayer and monolayer packing model. Most interestingly, the vesicles are ultrasound-responsive and can release the encapsulated model drugs in response to ultrasonic irradiation. Electronic supplementary information (ESI) available: Details of experiments and characterization, and FT-IR, TEM, DPD, FL and micro-DSC results. See DOI: 10.1039/c5nr08596a

  13. Synthetic Polymers from Readily Available Monosaccharides

    NASA Astrophysics Data System (ADS)

    Galbis, J. A.; García-Martín, M. G.

    The low degradability of petroleum-based polymers and the massive use of these materials constitute a serious problem because of the environmental pollution that they can cause. Thus, sustained efforts have been extensively devoted to produce new polymers based on natural renewing resources and with higher degradability. Of the different natural sources, carbohydrates stand out as highly convenient raw materials because they are inexpensive, readily available, and provide great stereochemical diversity. New polymers, analogous to the more accredited technical polymers, but based on chiral monomers, have been synthesized from natural and available sugars. This chapter describes the potential of sugar-based monomers as precursors to a wide variety of macromolecular materials.

  14. Electrical synapse formation disrupts calcium-dependent exocytosis, but not vesicle mobilization.

    PubMed

    Neunuebel, Joshua P; Zoran, Mark J

    2005-06-01

    Electrical coupling exists prior to the onset of chemical connectivity at many developing and regenerating synapses. At cholinergic synapses in vitro, trophic factors facilitated the formation of electrical synapses and interfered with functional neurotransmitter release in response to photolytic elevations of intracellular calcium. In contrast, neurons lacking trophic factor induction and electrical coupling possessed flash-evoked transmitter release. Changes in cytosolic calcium and postsynaptic responsiveness to acetylcholine were not affected by electrical coupling. These data indicate that transient electrical synapse formation delayed chemical synaptic transmission by imposing a functional block between the accumulation of presynaptic calcium and synchronized, vesicular release. Despite the inability to release neurotransmitter, neurons that had possessed strong electrical coupling recruited secretory vesicles to sites of synaptic contact. These results suggest that the mechanism by which neurotransmission is disrupted during electrical synapse formation is downstream of both calcium influx and synaptic vesicle mobilization. Therefore, electrical synaptogenesis may inhibit synaptic vesicles from acquiring a readily releasable state. We hypothesize that gap junctions might negatively interact with exocytotic processes, thereby diminishing chemical neurotransmission. PMID:15765535

  15. Alignment of Synaptic Vesicle Macromolecules with the Macromolecules in Active Zone Material that Direct Vesicle Docking

    PubMed Central

    Xu, Jing; Jung, Jae Hoon; Marshall, Robert M.; McMahan, Uel J.

    2013-01-01

    Synaptic vesicles dock at active zones on the presynaptic plasma membrane of a neuron’s axon terminals as a precondition for fusing with the membrane and releasing their neurotransmitter to mediate synaptic impulse transmission. Typically, docked vesicles are next to aggregates of plasma membrane-bound macromolecules called active zone material (AZM). Electron tomography on tissue sections from fixed and stained axon terminals of active and resting frog neuromuscular junctions has led to the conclusion that undocked vesicles are directed to and held at the docking sites by the successive formation of stable connections between vesicle membrane proteins and proteins in different classes of AZM macromolecules. Using the same nanometer scale 3D imaging technology on appropriately stained frog neuromuscular junctions, we found that ∼10% of a vesicle’s luminal volume is occupied by a radial assembly of elongate macromolecules attached by narrow projections, nubs, to the vesicle membrane at ∼25 sites. The assembly’s chiral, bilateral shape is nearly the same vesicle to vesicle, and nubs, at their sites of connection to the vesicle membrane, are linked to macromolecules that span the membrane. For docked vesicles, the orientation of the assembly’s shape relative to the AZM and the presynaptic membrane is the same vesicle to vesicle, whereas for undocked vesicles it is not. The connection sites of most nubs on the membrane of docked vesicles are paired with the connection sites of the different classes of AZM macromolecules that regulate docking, and the membrane spanning macromolecules linked to these nubs are also attached to the AZM macromolecules. We conclude that the luminal assembly of macromolecules anchors in a particular arrangement vesicle membrane macromolecules, which contain the proteins that connect the vesicles to AZM macromolecules during docking. Undocked vesicles must move in a way that aligns this arrangement with the AZM macromolecules for

  16. SYNAPTIC VESICLE PROTEIN TRAFFICKING AT THE GLUTAMATE SYNAPSE

    PubMed Central

    Santos, Magda S.; Li, Haiyan; Voglmaier, Susan M.

    2009-01-01

    Expression of the integral and associated proteins of synaptic vesicles is subject to regulation over time, by region, and in response to activity. The process by which changes in protein levels and isoforms result in different properties of neurotransmitter release involves protein trafficking to the synaptic vesicle. How newly synthesized proteins are incorporated into synaptic vesicles at the presynaptic bouton is poorly understood. During synaptogenesis, synaptic vesicle proteins sort through the secretory pathway and are transported down the axon in precursor vesicles that undergo maturation to form synaptic vesicles. Changes in protein content of synaptic vesicles could involve the formation of new vesicles that either mix with the previous complement of vesicles or replace them, presumably by their degradation or inactivation. Alternatively, new proteins could individually incorporate into existing synaptic vesicles, changing their functional properties. Glutamatergic vesicles likely express many of the same integral membrane proteins and share certain common mechanisms of biogenesis, recycling, and degradation with other synaptic vesicles. However, glutamatergic vesicles are defined by their ability to package glutamate for release, a property conferred by the expression of a vesicular glutamate transporter (VGLUT). VGLUTs are subject to regional, developmental, and activity-dependent changes in expression. In addition, VGLUT isoforms differ in their trafficking, which may target them to different pathways during biogenesis or after recycling, which may in turn sort them to different vesicle pools. Emerging data indicate that differences in the association of VGLUTs and other synaptic vesicle proteins with endocytic adaptors may influence their trafficking. These observations indicate that independent regulation of synaptic vesicle protein trafficking has the potential to influence synaptic vesicle protein composition, the maintenance of synaptic vesicle

  17. Trafficking of astrocytic vesicles in hippocampal slices

    SciTech Connect

    Potokar, Maja; Kreft, Marko; Celica Biomedical Center, Technology Park 24, 1000 Ljubljana ; Lee, So-Young; Takano, Hajime; Haydon, Philip G.; Zorec, Robert; Celica Biomedical Center, Technology Park 24, 1000 Ljubljana

    2009-12-25

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  18. Optogenetic Acidification of Synaptic Vesicles and Lysosomes

    PubMed Central

    Grauel, M. Katharina; Wozny, Christian; Bentz, Claudia; Blessing, Anja; Rosenmund, Tanja; Jentsch, Thomas J.; Schmitz, Dietmar; Hegemann, Peter; Rosenmund, Christian

    2016-01-01

    Acidification is required for the function of many intracellular organelles, but methods to acutely manipulate their intraluminal pH have not been available. Here we present a targeting strategy to selectively express the light-driven proton pump Arch3 on synaptic vesicles. Our new tool, pHoenix, can functionally replace endogenous proton pumps, enabling optogenetic control of vesicular acidification and neurotransmitter accumulation. Under physiological conditions, glutamatergic vesicles are nearly full, as additional vesicle acidification with pHoenix only slightly increased the quantal size. By contrast, we found that incompletely filled vesicles exhibited a lower release probability than full vesicles, suggesting preferential exocytosis of vesicles with high transmitter content. Our subcellular targeting approach can be transferred to other organelles, as demonstrated for a pHoenix variant that allows light-activated acidification of lysosomes. PMID:26551543

  19. Streptococcus mutans Extracellular DNA Is Upregulated during Growth in Biofilms, Actively Released via Membrane Vesicles, and Influenced by Components of the Protein Secretion Machinery

    PubMed Central

    Liao, Sumei; Klein, Marlise I.; Heim, Kyle P.; Fan, Yuwei; Bitoun, Jacob P.; Ahn, San-Joon; Burne, Robert A.; Koo, Hyun; Brady, L. Jeannine

    2014-01-01

    Streptococcus mutans, a major etiological agent of human dental caries, lives primarily on the tooth surface in biofilms. Limited information is available concerning the extracellular DNA (eDNA) as a scaffolding matrix in S. mutans biofilms. This study demonstrates that S. mutans produces eDNA by multiple avenues, including lysis-independent membrane vesicles. Unlike eDNAs from cell lysis that were abundant and mainly concentrated around broken cells or cell debris with floating open ends, eDNAs produced via the lysis-independent pathway appeared scattered but in a structured network under scanning electron microscopy. Compared to eDNA production of planktonic cultures, eDNA production in 5- and 24-h biofilms was increased by >3- and >1.6-fold, respectively. The addition of DNase I to growth medium significantly reduced biofilm formation. In an in vitro adherence assay, added chromosomal DNA alone had a limited effect on S. mutans adherence to saliva-coated hydroxylapatite beads, but in conjunction with glucans synthesized using purified glucosyltransferase B, the adherence was significantly enhanced. Deletion of sortase A, the transpeptidase that covalently couples multiple surface-associated proteins to the cell wall peptidoglycan, significantly reduced eDNA in both planktonic and biofilm cultures. Sortase A deficiency did not have a significant effect on membrane vesicle production; however, the protein profile of the mutant membrane vesicles was significantly altered, including reduction of adhesin P1 and glucan-binding proteins B and C. Relative to the wild type, deficiency of protein secretion and membrane protein insertion machinery components, including Ffh, YidC1, and YidC2, also caused significant reductions in eDNA. PMID:24748612

  20. Platelet Activating Factor Enhances Synaptic Vesicle Exocytosis Via PKC, Elevated Intracellular Calcium, and Modulation of Synapsin 1 Dynamics and Phosphorylation

    PubMed Central

    Hammond, Jennetta W.; Lu, Shao-Ming; Gelbard, Harris A.

    2016-01-01

    Platelet activating factor (PAF) is an inflammatory phospholipid signaling molecule implicated in synaptic plasticity, learning and memory and neurotoxicity during neuroinflammation. However, little is known about the intracellular mechanisms mediating PAF’s physiological or pathological effects on synaptic facilitation. We show here that PAF receptors are localized at the synapse. Using fluorescent reporters of presynaptic activity we show that a non-hydrolysable analog of PAF (cPAF) enhances synaptic vesicle release from individual presynaptic boutons by increasing the size or release of the readily releasable pool and the exocytosis rate of the total recycling pool. cPAF also activates previously silent boutons resulting in vesicle release from a larger number of terminals. The underlying mechanism involves elevated calcium within presynaptic boutons and protein kinase C activation. Furthermore, cPAF increases synapsin I phosphorylation at sites 1 and 3, and increases dispersion of synapsin I from the presynaptic compartment during stimulation, freeing synaptic vesicles for subsequent release. These findings provide a conceptual framework for how PAF, regardless of its cellular origin, can modulate synapses during normal and pathologic synaptic activity. PMID:26778968

  1. Cholesterol Regulates Multiple Forms of Vesicle Endocytosis at a Mammalian Central Synapse

    PubMed Central

    Yue, Hai-Yuan; Xu, Jianhua

    2015-01-01

    Endocytosis in synapses sustains neurotransmission by recycling vesicle membrane and maintaining the homeostasis of synaptic membrane. A role of membrane cholesterol in synaptic endocytosis remains controversial because of conflicting observations, technical limitations in previous studies, and potential interference from nonspecific effects after cholesterol manipulation. Furthermore, it is unclear whether cholesterol participates in distinct forms of endocytosis that function under different activity levels. In this study, applying the whole-cell membrane capacitance measurement to monitor endocytosis in real time at the rat calyx of Held terminals, we found that disrupting cholesterol with dialysis of cholesterol oxidase (COase) or methyl-β-cyclodextrin (MCD) impaired three different forms of endocytosis, i.e., slow endocytosis, rapid endocytosis, and endocytosis of the retrievable membrane that exists at the surface before stimulation. The effects were observed when disruption of cholesterol was mild enough not to change Ca2+ channel current or vesicle exocytosis, indicative of stringent cholesterol requirement in synaptic endocytosis. Extracting cholesterol with high concentrations of MCD reduced exocytosis, mainly by decreasing the readily releasable pool (RRP) and the vesicle replenishment after RRP depletion. Our study suggests that cholesterol is an important, universal regulator in multiple forms of vesicle endocytosis at mammalian central synapses. PMID:25893258

  2. Syntaxin-1 N-peptide and Habc-domain perform distinct essential functions in synaptic vesicle fusion

    PubMed Central

    Zhou, Peng; Pang, Zhiping P; Yang, Xiaofei; Zhang, Yingsha; Rosenmund, Christian; Bacaj, Taulant; Südhof, Thomas C

    2013-01-01

    Among SNARE proteins mediating synaptic vesicle fusion, syntaxin-1 uniquely includes an N-terminal peptide (‘N-peptide') that binds to Munc18-1, and a large, conserved Habc-domain that also binds to Munc18-1. Previous in vitro studies suggested that the syntaxin-1 N-peptide is functionally important, whereas the syntaxin-1 Habc-domain is not, but limited information is available about the in vivo functions of these syntaxin-1 domains. Using rescue experiments in cultured syntaxin-deficient neurons, we now show that the N-peptide and the Habc-domain of syntaxin-1 perform distinct and independent roles in synaptic vesicle fusion. Specifically, we found that the N-peptide is essential for vesicle fusion as such, whereas the Habc-domain regulates this fusion, in part by forming the closed syntaxin-1 conformation. Moreover, we observed that deletion of the Habc-domain but not deletion of the N-peptide caused a loss of Munc18-1 which results in a decrease in the readily releasable pool of vesicles at a synapse, suggesting that Munc18 binding to the Habc-domain stabilizes Munc18-1. Thus, the N-terminal syntaxin-1 domains mediate different functions in synaptic vesicle fusion, probably via formation of distinct Munc18/SNARE-protein complexes. PMID:23188083

  3. Engineered Asymmetric Synthetic Vesicles

    NASA Astrophysics Data System (ADS)

    Lu, Li; Chiarot, Paul

    2013-11-01

    Synthetic vesicles are small, fluid-filled spheres that are enclosed by a bilayer of lipid molecules. They can be used as models for investigating membrane biology and as delivery vehicles for pharmaceuticals. In practice, it is difficult to simultaneously control membrane asymmetry, unilamellarity, vesicle size, vesicle-to-vesicle uniformity, and luminal content. Membrane asymmetry, where each leaflet of the bilayer is composed of different lipids, is of particular importance as it is a feature of most natural membranes. In this study, we leverage microfluidic technology to build asymmetric vesicles at high-throughput. We use the precise flow control offered by microfluidic devices to make highly uniform emulsions, with controlled internal content, that serve as templates to build the synthetic vesicles. Flow focusing, dielectrophoretic steering, and interfacial lipid self-assembly are critical procedures performed on-chip to produce the vesicles. Fluorescent and confocal microscopy are used to evaluate the vesicle characteristics.

  4. Molecular underpinnings of synaptic vesicle pool heterogeneity.

    PubMed

    Crawford, Devon C; Kavalali, Ege T

    2015-04-01

    Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling. PMID:25620674

  5. Molecular Underpinnings of Synaptic Vesicle Pool Heterogeneity

    PubMed Central

    Crawford, Devon C.; Kavalali, Ege T.

    2015-01-01

    Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling. PMID:25620674

  6. Probing the interior of synaptic vesicles with internalized nanoparticles

    NASA Astrophysics Data System (ADS)

    Gadd, Jennifer C.; Budzinski, Kristi L.; Chan, Yang-Hsiang; Ye, Fangmao; Chiu, Daniel T.

    2012-03-01

    Synaptic vesicles are subcellular organelles that are found in the synaptic bouton and are responsible for the propagation of signals between neurons. Synaptic vesicles undergo endo- and exocytosis with the neuronal membrane to load and release neurotransmitters. Here we discuss how we utilize this property to load nanoparticles as a means of probing the interior of synaptic vesicles. To probe the intravesicular region of synaptic vesicles, we have developed a highly sensitive pH-sensing polymer dot. We feel the robust nature of the pH-sensing polymer dot will provide insight into the dynamics of proton loading into synaptic vesicles.

  7. Functions and importance of mycobacterial extracellular vesicles.

    PubMed

    Rodriguez, G Marcela; Prados-Rosales, Rafael

    2016-05-01

    The release of cellular factors by means of extracellular vesicles (EVs) is conserved in archaea, bacteria, and eukaryotes. EVs are released by growing bacteria as part of their interaction with their environment and, for pathogenic bacteria, constitute an important component of their interactions with the host. While EVs released by gram-negative bacteria have been extensively studied, the vesicles released by thick cell wall microorganisms like mycobacteria were recognized only recently and are less well understood. Nonetheless, studies of mycobacterial EVs have already suggested roles in pathogenesis, opening exciting new avenues of research aimed at understanding their biogenesis and potential use in antitubercular strategies. In this minireview, we discuss the discovery of mycobacterial vesicles, the current understanding of their nature, content, regulation, and possible functions, as well as their potential therapeutic applications. PMID:27020292

  8. High- and Low-Mobility Stages in the Synaptic Vesicle Cycle

    PubMed Central

    Kamin, Dirk; Lauterbach, Marcel A.; Westphal, Volker; Keller, Jan; Schönle, Andreas; Hell, Stefan W.; Rizzoli, Silvio O.

    2010-01-01

    Abstract Synaptic vesicles need to be mobile to reach their release sites during synaptic activity. We investigated vesicle mobility throughout the synaptic vesicle cycle using both conventional and subdiffraction-resolution stimulated emission depletion fluorescence microscopy. Vesicle tracking revealed that recently endocytosed synaptic vesicles are highly mobile for a substantial time period after endocytosis. They later undergo a maturation process and integrate into vesicle clusters where they exhibit little mobility. Despite the differences in mobility, both recently endocytosed and mature vesicles are exchanged between synapses. Electrical stimulation does not seem to affect the mobility of the two types of vesicles. After exocytosis, the vesicle material is mobile in the plasma membrane, although the movement appears to be somewhat limited. Increasing the proportion of fused vesicles (by stimulating exocytosis while simultaneously blocking endocytosis) leads to substantially higher mobility. We conclude that both high- and low-mobility states are characteristic of synaptic vesicle movement. PMID:20643088

  9. Extracellular vesicles as emerging intercellular communicasomes

    PubMed Central

    Yoon, Yae Jin; Kim, Oh Youn; Gho, Yong Song

    2014-01-01

    All living cells release extracellular vesicles having pleiotropic functions in intercellular communication. Mammalian extracellular vesicles, also known as exosomes and microvesicles, are spherical bilayered proteolipids composed of various bioactive molecules, including RNAs, DNAs, proteins, and lipids. Extracellular vesicles directly and indirectly control a diverse range of biological processes by transferring membrane proteins, signaling molecules, mRNAs, and miRNAs, and activating receptors of recipient cells. The active interaction of extracellular vesicles with other cells regulates various physiological and pathological conditions, including cancer, infectious diseases, and neurodegenerative disorders. Recent developments in high-throughput proteomics, transcriptomics, and lipidomics tools have provided ample data on the common and specific components of various types of extracellular vesicles. These studies may contribute to the understanding of the molecular mechanism involved in vesicular cargo sorting and the biogenesis of extracellular vesicles, and, further, to the identification of disease-specific biomarkers. This review focuses on the components, functions, and therapeutic and diagnostic potential of extracellular vesicles under various pathophysiological conditions. [BMB Reports 2014; 47(10): 531-539] PMID:25104400

  10. Regulation of Immune Responses by Extracellular Vesicles

    PubMed Central

    Robbins, Paul D.; Morelli, Adrian E.

    2015-01-01

    Extracellular vesicles (EVs) including exosomes, are small membrane vesicles derived from multivesicular bodies or from the plasma membrane. Most, if not all, cell types release EVs that then enter the bodily fluids. These vesicles contain a subset of proteins, lipids and nucleic acids that are derived from the parent cell. It is postulated that EVs have important roles in intercellular communication, both locally and systemically, by transferring their contents, including protein, lipids and RNAs, between cells. EVs are involved in numerous physiological processes, and vesicles from both non-immune and immune cells have important roles in immune regulation. Moreover, EV-based therapeutics are being developed and tested clinically for treatment of inflammatory and autoimmune diseases and cancer. Given the tremendous therapeutic potential of EVs this review focuses on the role of EVs in modulating immune responses and the therapeutic applications. PMID:24566916

  11. Erythropoietin protects the tubular basement membrane by promoting the bone marrow to release extracellular vesicles containing tPA-targeting miR-144.

    PubMed

    Zhou, Yang; Fang, Li; Yu, Yanting; Niu, Jing; Jiang, Lei; Cao, Hongdi; Sun, Qi; Zen, Ke; Dai, Chunsun; Yang, Junwei

    2016-01-01

    Renal fibrosis is an inevitable outcome of chronic kidney disease (CKD). Erythropoietin (EPO) has been recently reported to be able to mitigate renal fibrosis. The mechanism underlying the protective effect of EPO, however, remains elusive. In the present study, employing a mouse model of renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction (UUO), we demonstrated that EPO markedly reduced the disruption of the tubular basement membrane (TBM) through attenuating the activation of tissue plasminogen activator (tPA) and matrix metalloproteinase 9 (MMP9), the major matrix proteolytic network in the obstructed kidney. Instead of acting directly on tPA in the kidney, EPO strongly increased the level of circulating microRNA (miR)-144, which was delivered to the injured renal fibroblasts via extracellular vesicles (EVs) to target the tPA 3'-untranslated region and suppress tPA expression. The protective effect of EPO on mouse TBM was inhibited by miR-144 antagomir. Furthermore, in vitro results confirmed that EPO could stimulate bone marrow-derived Sca-1(+)CD44(+)CD11b(-)CD19(-) cells to secrete miR-144-containing EVs, which markedly suppressed tPA expression, as well as metalloproteinase 9 (MMP9) level and activity, in cultured renal fibroblasts. In conclusion, our study provides the first evidence that EPO protects mouse renal TBM through promoting bone marrow cells to generate and secrete miR-144, which, in turn, is efficiently delivered into the mouse kidney via EVs to inhibit the activation of the tPA/MMP9-mediated proteolytic network. This finding thus suggests that EPO, a hormone widely used to treat anemia in CKD, is a potential therapeutic strategy for renal fibrosis. PMID:26469975

  12. Multi-core vesicle nanoparticles based on vesicle fusion for delivery of chemotherapic drugs.

    PubMed

    Yuk, Soon Hong; Oh, Keun Sang; Koo, Heebeom; Jeon, Hyesung; Kim, Kwangmeyung; Kwon, Ick Chan

    2011-11-01

    The Pluronic nanoparticles (NPs) composed of Pluronic (F-68) and liquid polyethylene glycol (PEG, molecular wt: 400) containing docetaxel (DTX) were stabilized with the vesicle fusion. When DTX-loaded Pluronic NPs were mixed with vesicles in the aqueous medium, DTX-loaded Pluronic NPs were incorporated into vesicles to form multi-core vesicle NPs. The morphology and size distribution of multi-core vesicle NPs were observed using FE-SEM, cryo-TEM and a particle size analyzer. To apply multi-core vesicle NPs as a delivery system for DTX, a model anti-cancer drug, the release pattern of DTX was observed and the tumor growth was monitored by injecting the DTX-loaded multi-core vesicle NPs into the tail veins of tumor-bearing mice. We also evaluated the time-dependent excretion profile, in vivo biodistribution, circulation time, and tumor targeting capability of multi-core vesicle NPs using a non-invasive live animal imaging technology. PMID:21784512

  13. Isolation of calcifiable vesicles from human atherosclerotic aortas.

    PubMed

    Hsu, H H; Camacho, N P

    1999-04-01

    Advanced mineralization can cause brittleness of aortic walls with decreased elasticity thereby causing the wall to rupture. Although the precise mechanisms of dystrophic calcification remain unknown, morphological evidence reveals the presence of mineral-associated vesicles in the lesions and defective bioprosthetic valves. In an attempt to demonstrate the calcifiability of the vesicles, small segments of human atherosclerotic aortas with calcified lesions were removed at autopsy and then digested in a crude collagenase solution to release vesicles. A differential centrifugation was then used to isolate calcifiable vesicles, which was precipitated at 300,000 x g for 20 min. An exposure of the vesicles to a calcifying medium containing physiologic levels of Ca2+, Pi, and 1 mM ATP caused Ca deposition in a vesicle protein-concentration dependent manner. The calcifiability of the vesicles was further demonstrated by electron microscopy. Fourier transform spectroscopic analysis of the deposited mineral revealed the presence of a hydroxyapatite phase, closely resembling the native form of mineral in atherosclerotic plaques. In addition, calcifiable vesicles were enriched in ATP-hydrolyzing enzymes including Mg2+ or Ca2+-ATPase and NTP pyrophosphohydrolase that may be involved in normal and pathological calcification. Triton X-100 at 0.01% abolished 80% of both ATPase activity and ATP-initiated calcification. A comparison of vesicles isolated from non-atherosclerotic and atherosclerotic aortas indicated that atherosclerotic vesicles tended to have higher calcifiability. These observations suggest that the calcifiable vesicles play a part in dystrophic calcification of aortas in atherosclerosis. PMID:10217364

  14. Preparation of right-side-out, acetylcholine receptor enriched intact vesicles from Torpedo californica electroplaque membranes.

    PubMed

    Hartig, P R; Raftery, M A

    1979-04-01

    Intact vesicles enriched in acetylcholine receptor from Torpedo californica electroplaque membranes can be separated from collapsed or leaky vesicles and membrane sheets on sucrose density gradients. alpha-Bungarotoxin binding in intact vesicles reveals that approximately 95% of the acetylcholine receptor containing vesicles are formed outside-out (with the synaptic membrane face exposed on the vesicle exterior). The binding data also indicated that only 5% or less of the sites for alpha-bungarotoxin binding to synaptic membranes are located on the interior, cytoplasmic face. Intact vesicles are stable to gentle pelleting and resuspension but are easily osmotically shocked. The vesicles are impermeable to sucrose and Ficoll, but glycerol readily transverses to membrane barrier. Intact vesicles provide a sealed, oriented membrane preparation for studies of vectorial acetylcholine receptor mediated processes. PMID:427105

  15. Ectosomes and exosomes: shedding the confusion between extracellular vesicles.

    PubMed

    Cocucci, Emanuele; Meldolesi, Jacopo

    2015-06-01

    Long- and short-distance communication can take multiple forms. Among them are exosomes and ectosomes, extracellular vesicles (EVs) released from the cell to deliver signals to target cells. While most of our understanding of how these vesicles are assembled and work comes from mechanistic studies performed on exosomes, recent studies have begun to shift their focus to ectosomes. Unlike exosomes, which are released on the exocytosis of multivesicular bodies (MVBs), ectosomes are ubiquitous vesicles assembled at and released from the plasma membrane. Here we review the similarities and differences between these two classes of vesicle, suggesting that, despite their considerable differences, the functions of ectosomes may be largely analogous to those of exosomes. Both vesicles appear to be promising targets in the diagnosis and therapy of diseases, especially cancer. PMID:25683921

  16. Deep sequencing of RNA from three different extracellular vesicle (EV) subtypes released from the human LIM1863 colon cancer cell line uncovers distinct miRNA-enrichment signatures.

    PubMed

    Ji, Hong; Chen, Maoshan; Greening, David W; He, Weifeng; Rai, Alin; Zhang, Wenwei; Simpson, Richard J

    2014-01-01

    Secreted microRNAs (miRNAs) enclosed within extracellular vesicles (EVs) play a pivotal role in intercellular communication by regulating recipient cell gene expression and affecting target cell function. Here, we report the isolation of three distinct EV subtypes from the human colon carcinoma cell line LIM1863--shed microvesicles (sMVs) and two exosome populations (immunoaffinity isolated A33-exosomes and EpCAM-exosomes). Deep sequencing of miRNA libraries prepared from parental LIM1863 cells/derived EV subtype RNA yielded 254 miRNA identifications, of which 63 are selectively enriched in the EVs--miR-19a/b-3p, miR-378a/c/d, and miR-577 and members of the let-7 and miR-8 families being the most prominent. Let-7a-3p*, let-7f-1-3p*, miR-451a, miR-574-5p*, miR-4454 and miR-7641 are common to all EV subtypes, and 6 miRNAs (miR-320a/b/c/d, miR-221-3p, and miR-200c-3p) discern LIM1863 exosomes from sMVs; miR-98-5p was selectively represented only in sMVs. Notably, A33-Exos contained the largest number (32) of exclusively-enriched miRNAs; 14 of these miRNAs have not been reported in the context of CRC tissue/biofluid analyses and warrant further examination as potential diagnostic markers of CRC. Surprisingly, miRNA passenger strands (star miRNAs) for miR-3613-3p*, -362-3p*, -625-3p*, -6842-3p* were the dominant strand in A33-Exos, the converse to that observed in parental cells. This finding suggests miRNA biogenesis may be interlinked with endosomal/exosomal processing. PMID:25330373

  17. Synaptic Vesicle Endocytosis

    PubMed Central

    Saheki, Yasunori; De Camilli, Pietro

    2012-01-01

    Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization. PMID:22763746

  18. A Vesicle Superpool Spans Multiple Presynaptic Terminals in Hippocampal Neurons

    PubMed Central

    Staras, Kevin; Branco, Tiago; Burden, Jemima J.; Pozo, Karine; Darcy, Kevin; Marra, Vincenzo; Ratnayaka, Arjuna; Goda, Yukiko

    2010-01-01

    Summary Synapse-specific vesicle pools have been widely characterized at central terminals. Here, we demonstrate a vesicle pool that is not confined to a synapse but spans multiple terminals. Using fluorescence imaging, correlative electron microscopy, and modeling of vesicle dynamics, we show that some recycling pool vesicles at synapses form part of a larger vesicle “superpool.” The vesicles within this superpool are highly mobile and are rapidly exchanged between terminals (turnover: ∼4% of total pool/min), significantly changing vesicular composition at synapses over time. In acute hippocampal slices we show that the mobile vesicle pool is also a feature of native brain tissue. We also demonstrate that superpool vesicles are available to synapses during stimulation, providing an extension of the classical recycling pool. Experiments using focal BDNF application suggest the involvement of a local TrkB-receptor-dependent mechanism for synapse-specific regulation of presynaptic vesicle pools through control of vesicle release and capture to or from the extrasynaptic pool. PMID:20399727

  19. Challenges posed by extracellular vesicles from eukaryotic microbes

    PubMed Central

    Wolf, Julie M.; Casadevall, Arturo

    2014-01-01

    Extracellular vesicles (EV) produced by eukaryotic microbes play an important role during infection. EV release is thought to benefit microbial invasion by delivering a high concentration of virulence factors to distal host cells or to the cytoplasm of a host cell. EV can significantly impact the outcome of host-pathogen interaction in a cargo-dependent manner. Release of EV from eukaryotic microbes poses unique challenges when compared to their bacterial or archaeal counterparts. Firstly, the membrane-bound organelles within eukaryotes facilitate multiple mechanisms of vesicle generation. Secondly, the fungal cell wall poses a unique barrier between the vesicle release site at the plasma membrane and its destined extracellular environment. This review focuses on these eukaryotic-specific aspects of vesicle synthesis and release. PMID:25460799

  20. Extracellular vesicles as new pharmacological targets to treat atherosclerosis.

    PubMed

    Yin, Min; Loyer, Xavier; Boulanger, Chantal M

    2015-09-15

    Extracellular vesicles released by most cell types, include apoptotic bodies (ABs), microvesicles (MVs) and exosomes. They play a crucial role in physiology and pathology, contributing to "cell-to-cell" communication by modifying the phenotype and the function of target cells. Thus, extracellular vesicles participate in the key processes of atherosclerosis from endothelial dysfunction, vascular wall inflammation to vascular remodeling. The purpose of this review is to summarize recent findings on extracellular vesicle formation, structure, release and clearance. We focus on the deleterious and beneficial effects of extracellular vesicles in the development of atherosclerosis. The potential role of extracellular vesicles as biomarkers and pharmacological targets, their innate therapeutic capacity, or their use for novel drug delivery devices in atherosclerotic cardiovascular diseases will also be discussed. PMID:26142082

  1. Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles.

    PubMed

    Farsi, Zohreh; Preobraschenski, Julia; van den Bogaart, Geert; Riedel, Dietmar; Jahn, Reinhard; Woehler, Andrew

    2016-02-26

    Synaptic transmission is mediated by the release of neurotransmitters, which involves exo-endocytotic cycling of synaptic vesicles. To maintain synaptic function, synaptic vesicles are refilled with thousands of neurotransmitter molecules within seconds after endocytosis, using the energy provided by an electrochemical proton gradient. However, it is unclear how transmitter molecules carrying different net charges can be efficiently sequestered while maintaining charge neutrality and osmotic balance. We used single-vesicle imaging to monitor pH and electrical gradients and directly showed different uptake mechanisms for glutamate and γ-aminobutyric acid (GABA) operating in parallel. In contrast to glutamate, GABA was exchanged for protons, with no other ions participating in the transport cycle. Thus, only a few components are needed to guarantee reliable vesicle filling with different neurotransmitters. PMID:26912364

  2. Characterization of Yeast Extracellular Vesicles: Evidence for the Participation of Different Pathways of Cellular Traffic in Vesicle Biogenesis

    PubMed Central

    Joffe, Luna S.; Guimarães, Allan J.; Sobreira, Tiago J. P.; Nosanchuk, Joshua D.; Cordero, Radames J. B.; Frases, Susana; Casadevall, Arturo; Almeida, Igor C.; Nimrichter, Leonardo; Rodrigues, Marcio L.

    2010-01-01

    Background Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown. Methodology/Principal Findings We characterized extracellular vesicle production in wild type (WT) and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB) formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100–300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex) or MVB functionality (vps23, late endosomal trafficking) revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells. Conclusions/Significance Our results suggest that both conventional and unconventional pathways of secretion are required for

  3. Enhanced stabilization of vesicles by compressed CO2.

    PubMed

    Li, Wei; Zhang, Jianling; Cheng, Siqing; Han, Buxing; Zhang, Chaoxing; Feng, Xiaoying; Zhao, Yueju

    2009-01-01

    In this work, we studied the effect of compressed CO2 on the stability of vesicles formed in a dodecyltrimethylammonium bromide (DTAB)/sodium dodecyl sulfate (SDS) mixed surfactant system by combination of phase behavior and turbidity study, and UV-vis and fluorescence techniques. It was discovered that compressed CO2 could enhance the stability of vesicles significantly. This new and effective method to stabilize vesicles has some unique advantages over conventional methods. For example, the size and stability of the vesicles can be easily controlled by CO2 pressure; the method is greener because CO2 is a green reagent and it can be released completely after depressurization, which simplifies postseparation processes in applications. The main reason for CO2 to stabilize the vesicles is that CO2 molecules can insert into the hydrophobic bilayer region to enhance the rigidity of the vesicle film and reduce the size of the vesicles, which is different from that of conventional cosolvents (e.g., alcohols) used to stabilize vesicles. On the basis of this discovery, we developed a method to prepare hollow silica spheres using tetraethoxysilane as the precursor and CO2-stabilized vesicles as the template, in which CO2 acts as both the stabilizer of the vesicular template and the catalyst for the hydrolysis reaction of the precursor, and other cosolvents and catalysts are not required. Besides, the size of the silica hollow spheres prepared can be controlled by the pressure of CO2. PMID:19049396

  4. Impaired maturation of large dense-core vesicles in muted-deficient adrenal chromaffin cells.

    PubMed

    Hao, Zhenhua; Wei, Lisi; Feng, Yaqin; Chen, Xiaowei; Du, Wen; Ma, Jing; Zhou, Zhuan; Chen, Liangyi; Li, Wei

    2015-04-01

    The large dense-core vesicle (LDCV), a type of lysosome-related organelle, is involved in the secretion of hormones and neuropeptides in specialized secretory cells. The granin family is a driving force in LDCV biogenesis, but the machinery for granin sorting to this biogenesis pathway is largely unknown. The mu mutant mouse, which carries a spontaneous null mutation on the Muted gene (also known as Bloc1s5), which encodes a subunit of the biogenesis of lysosome-related organelles complex-1 (BLOC-1), is a mouse model of Hermansky-Pudlak syndrome. Here, we found that LDCVs were enlarged in mu adrenal chromaffin cells. Chromogranin A (CgA, also known as CHGA) was increased in mu adrenals and muted-knockdown cells. The increased CgA in mu mice was likely due a failure to export this molecule out of immature LDCVs, which impairs LDCV maturation and docking. In mu chromaffin cells, the size of readily releasable pool and the vesicle release frequency were reduced. Our studies suggest that the muted protein is involved in the selective export of CgA during the biogenesis of LDCVs. PMID:25673877

  5. Getting to know the extracellular vesicle glycome.

    PubMed

    Gerlach, Jared Q; Griffin, Matthew D

    2016-04-22

    Extracellular vesicles (EVs) are a diverse population of complex biological particles with diameters ranging from approximately 20 to 1000 nm. Tremendous interest in EVs has been generated following a number of recent, high-profile reports describing their potential utility in diagnostic, prognostic, drug delivery, and therapeutic roles. Subpopulations, such as exosomes, are now known to directly participate in cell-cell communication and direct material transfer. Glycomics, the 'omic' portion of the glycobiology field, has only begun to catalog the surface oligosaccharide and polysaccharide structures and also the carbohydrate-binding proteins found on and inside EVs. The EV glycome undoubtedly contains vital clues essential to better understanding the function, biogenesis, release and transfer of vesicles, however getting at this information is technically challenging and made even more so because of the small physical size of the vesicles and the typically minute yield from physiological-scale biological samples. Vesicle micro-heterogeneity which may be related to specific vesicle origins and functions presents a further challenge. A number of primary studies carried out over the past decade have turned up specific and valuable clues regarding the composition and roles of glycan structures and also glycan binding proteins involved EV biogenesis and transfer. This review explores some of the major EV glycobiological research carried out to date and discusses the potential implications of these findings across the life sciences. PMID:26888195

  6. Controlled growth of filamentous fatty acid vesicles under flow.

    PubMed

    Hentrich, Christian; Szostak, Jack W

    2014-12-16

    The earliest forms of cellular life would have required a membrane compartment capable of growth and division. Fatty acid vesicles are an attractive model of protocell membranes, as they can grow into filamentous vesicles that readily divide while retaining their contents. In order to study vesicle growth, we have developed a method for immobilizing multilamellar fatty acid vesicles on modified glass surfaces and inducing filamentous membrane growth under flow. Filament formation strictly depended on the presence of freshly neutralized fatty acid micelles in the flow chamber. Using light microscopy, we observed a strong dependence of initial growth velocity on initial vesicle size, suggesting that new fatty acid molecules were incorporated into the membrane over the entire external surface of the vesicle. We examined the influences of flow rate, fatty acid concentration, and salt concentration on filamentous growth and observed drastic shape changes, including membrane pearling, of preexisting membrane tubules in response to osmotic stress. These results illustrate the versatility of flow studies for exploring the process of fatty acid vesicle growth following exposure to free fatty acids. PMID:25402759

  7. Controlled Growth of Filamentous Fatty Acid Vesicles under Flow

    PubMed Central

    2014-01-01

    The earliest forms of cellular life would have required a membrane compartment capable of growth and division. Fatty acid vesicles are an attractive model of protocell membranes, as they can grow into filamentous vesicles that readily divide while retaining their contents. In order to study vesicle growth, we have developed a method for immobilizing multilamellar fatty acid vesicles on modified glass surfaces and inducing filamentous membrane growth under flow. Filament formation strictly depended on the presence of freshly neutralized fatty acid micelles in the flow chamber. Using light microscopy, we observed a strong dependence of initial growth velocity on initial vesicle size, suggesting that new fatty acid molecules were incorporated into the membrane over the entire external surface of the vesicle. We examined the influences of flow rate, fatty acid concentration, and salt concentration on filamentous growth and observed drastic shape changes, including membrane pearling, of preexisting membrane tubules in response to osmotic stress. These results illustrate the versatility of flow studies for exploring the process of fatty acid vesicle growth following exposure to free fatty acids. PMID:25402759

  8. Micrometer-size vesicle formation triggered by UV light.

    PubMed

    Shima, Tatsuya; Muraoka, Takahiro; Hamada, Tsutomu; Morita, Masamune; Takagi, Masahiro; Fukuoka, Hajime; Inoue, Yuichi; Sagawa, Takashi; Ishijima, Akihiko; Omata, Yuki; Yamashita, Takashi; Kinbara, Kazushi

    2014-07-01

    Vesicle formation is a fundamental kinetic process related to the vesicle budding and endocytosis in a cell. In the vesicle formation by artificial means, transformation of lamellar lipid aggregates into spherical architectures is a key process and known to be prompted by e.g. heat, infrared irradiation, and alternating electric field induction. Here we report UV-light-driven formation of vesicles from particles consisting of crumpled phospholipid multilayer membranes involving a photoactive amphiphilic compound composed of 1,4-bis(4-phenylethynyl)benzene (BPEB) units. The particles can readily be prepared from a mixture of these components, which is casted on the glass surface followed by addition of water under ultrasonic radiation. Interestingly, upon irradiation with UV light, micrometer-size vesicles were generated from the particles. Neither infrared light irradiation nor heating prompted the vesicle formation. Taking advantage of the benefits of light, we successfully demonstrated micrometer-scale spatiotemporal control of single vesicle formation. It is also revealed that the BPEB units in the amphiphile are essential for this phenomenon. PMID:24898450

  9. Two Readily-Constructed Instruments for the Teaching Laboratory.

    ERIC Educational Resources Information Center

    Isaacs, Neil S.

    1983-01-01

    Reported are designs for a colorimeter (absorptiometer) and polarimeter, both of which may be constructed readily with average workshop facilities and whose performance is superior to many commercial instruments commonly used in teaching laboratories. Includes pertinent diagrams, operating instructions, and sample output. (JN)

  10. Characterization of extracellular vesicles in whole blood: Influence of pre-analytical parameters and visualization of vesicle-cell interactions using imaging flow cytometry.

    PubMed

    Fendl, Birgit; Weiss, René; Fischer, Michael B; Spittler, Andreas; Weber, Viktoria

    2016-09-01

    Extracellular vesicles are central players in intercellular communication and are released from the plasma membrane under tightly regulated conditions, depending on the physiological and pathophysiological state of the producing cell. Their heterogeneity requires a spectrum of methods for isolation and characterization, where pre-analytical parameters have profound impact on vesicle analysis, particularly in blood, since sampling, addition of anticoagulants, as well as post-sampling vesicle generation may influence the outcome. Here, we characterized microvesicles directly in whole blood using a combination of flow cytometry and imaging flow cytometry. We assessed the influence of sample agitation, anticoagulation, and temperature on post-sampling vesicle generation, and show that vesicle counts remained stable over time in samples stored without agitation. Storage with gentle rolling mimicking agitation, in contrast, resulted in strong release of platelet-derived vesicles in blood anticoagulated with citrate or heparin, whereas vesicle counts remained stable upon anticoagulation with EDTA. Using imaging flow cytometry, we could visualize microvesicles adhering to blood cells and revealed an anticoagulant-dependent increase in vesicle-cell aggregates over time. We demonstrate that vesicles adhere preferentially to monocytes and granulocytes in whole blood, while no microvesicles could be visualized on lymphocytes. Our data underscore the relevance of pre-analytical parameters in vesicle analysis and demonstrate that imaging flow cytometry is a suitable tool to study the interaction of extracellular vesicles with their target cells. PMID:27444383

  11. Redox-Reactive Membrane Vesicles produced by Shewanella

    SciTech Connect

    Gorby, Yuri A.; McLean, Jeffrey S.; Korenevsky, Anton A.; Rosso, Kevin M.; El-Naggar, Mohamed Y.; Beveridge, Terrance J.

    2008-06-01

    Dissimilatory iron reducing bacteria produce and release membrane vesicles with diameters ranging from 50 to 250 nm. The vesicles, which arise from the outer membrane of these Gram-negative bacteria, lack DNA but contain proteins that catalyze the reduction of ferric iron and other multivalent heavy metals and radionuclides. This enzymatic process results in the formation of nano-size biogenic mineral assemblages that resemble nanofossils. Under low-shear conditions, membrane vesicles are commonly tethered to intact cells by electrically conductive filaments known as bacterial nanowires. The functional role of membrane vesicles and associated nanowires is not known, but the potential for mineralized vesicles that morphologically resemble nanofossils to serve as paleontological indicators of early life on earth and as biosignatures of like on other planets is recognized.

  12. Two Rab2 interactors regulate dense-core vesicle maturation.

    PubMed

    Ailion, Michael; Hannemann, Mandy; Dalton, Susan; Pappas, Andrea; Watanabe, Shigeki; Hegermann, Jan; Liu, Qiang; Han, Hsiao-Fen; Gu, Mingyu; Goulding, Morgan Q; Sasidharan, Nikhil; Schuske, Kim; Hullett, Patrick; Eimer, Stefan; Jorgensen, Erik M

    2014-04-01

    Peptide neuromodulators are released from a unique organelle: the dense-core vesicle. Dense-core vesicles are generated at the trans-Golgi and then sort cargo during maturation before being secreted. To identify proteins that act in this pathway, we performed a genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We identified two conserved Rab2-binding proteins: RUND-1, a RUN domain protein, and CCCP-1, a coiled-coil protein. RUND-1 and CCCP-1 colocalize with RAB-2 at the Golgi, and rab-2, rund-1, and cccp-1 mutants have similar defects in sorting soluble and transmembrane dense-core vesicle cargos. RUND-1 also interacts with the Rab2 GAP protein TBC-8 and the BAR domain protein RIC-19, a RAB-2 effector. In summary, a pathway of conserved proteins controls the maturation of dense-core vesicles at the trans-Golgi network. PMID:24698274

  13. Electrohydrodynamics Of Multicomponent Vesicles

    NASA Astrophysics Data System (ADS)

    Gera, Prerna; Salac, David

    2015-11-01

    The addition of cholesterol into a lipid membrane induces the formation of distinct domains. These domains try to minimize the overall energy of the system by coalescence and migration. The application of electric fields will induce flow of these membrane domains and influence the rate at which they coarsen. In this work the electrohydrodynamics of multicomponent vesicles is numerically modelled. The method uses a Cahn-Hilliard-Cook model of the lipid domains restricted to a deforming three-dimensional vesicle and will be briefly discussed. Sample results will be presented and compared to experimental observations. This work supported by NSF Grant #1253739.

  14. Host-Guest Interaction-Based Self-Engineering of Nano-Sized Vesicles for Co-Delivery of Genes and Anticancer Drugs.

    PubMed

    Yang, Bin; Dong, Xing; Lei, Qi; Zhuo, Renxi; Feng, Jun; Zhang, Xianzheng

    2015-10-01

    On the basis of host-guest interactions, this study reported a kind of linear-hyperbranched supramolecular amphiphile and its assembled vesicles for the combined achievement of drug encapsulation and DNA delivery. Amine-attached β-cyclodextrin-centered hyperbranched polyglycerol and linear adamantane-terminated octadecane were arranged to spontaneously interlink together and then self-assemble into nanoscale vesicles. As the model of a hydrophilic agent, DOX·HCl was demonstrated to be readily loaded into the hollow cavity of the vesicles. The drug release pattern could be controlled by adjusting the environmental acidity, favoring the intracellularly fast drug liberation in response to the cellular lysosomal microenvironment. The nanovesicles displayed superior serum-tolerant transgene ability and significantly lower cytotoxicity compared to those of PEI25K, the gold standard of gene delivery vectors. The drug-loaded nanovesicle can co-deliver DNA payloads into cells and allow the preferable accumulation of two payloads in nuclei. The drug encapsulation was found to have little influence on the transfection. This co-delivery vehicle presents a good example of rational design of cationic supramolecular vesicles for stimulus-responsive drug/DNA transport. PMID:26398113

  15. Altered Active Zones, Vesicle Pools, Nerve Terminal Conductivity, and Morphology during Experimental MuSK Myasthenia Gravis

    PubMed Central

    Patel, Vishwendra; Oh, Anne; Voit, Antanina; Sultatos, Lester G.; Babu, Gopal J.; Wilson, Brenda A.; Ho, Mengfei; McArdle, Joseph J.

    2014-01-01

    Recent studies demonstrate reduced motor-nerve function during autoimmune muscle-specific tyrosine kinase (MuSK) myasthenia gravis (MG). To further understand the basis of motor-nerve dysfunction during MuSK-MG, we immunized female C57/B6 mice with purified rat MuSK ectodomain. Nerve-muscle preparations were dissected and neuromuscular junctions (NMJs) studied electrophysiologically, morphologically, and biochemically. While all mice produced antibodies to MuSK, only 40% developed respiratory muscle weakness. In vitro study of respiratory nerve-muscle preparations isolated from these affected mice revealed that 78% of NMJs produced endplate currents (EPCs) with significantly reduced quantal content, although potentiation and depression at 50 Hz remained qualitatively normal. EPC and mEPC amplitude variability indicated significantly reduced number of vesicle-release sites (active zones) and reduced probability of vesicle release. The readily releasable vesicle pool size and the frequency of large amplitude mEPCs also declined. The remaining NMJs had intermittent (4%) or complete (18%) failure of neurotransmitter release in response to 50 Hz nerve stimulation, presumably due to blocked action potential entry into the nerve terminal, which may arise from nerve terminal swelling and thinning. Since MuSK-MG-affected muscles do not express the AChR γ subunit, the observed prolongation of EPC decay time was not due to inactivity-induced expression of embryonic acetylcholine receptor, but rather to reduced catalytic activity of acetylcholinesterase. Muscle protein levels of MuSK did not change. These findings provide novel insight into the pathophysiology of autoimmune MuSK-MG. PMID:25438154

  16. Repository of not readily available documents for project W-320

    SciTech Connect

    Conner, J.C.

    1997-04-18

    The purpose of this document is to provide a readily available source of the technical reports needed for the development of the safety documentation provided for the waste retrieval sluicing system (WRSS), designed to remove the radioactive and chemical sludge from tank 241-C-106, and transport that material to double-shell tank 241-AY-102 via a new, temporary, shielded, encased transfer line.

  17. Concurrent Imaging of Synaptic Vesicle Recycling and Calcium Dynamics

    PubMed Central

    Li, Haiyan; Foss, Sarah M.; Dobryy, Yuriy L.; Park, C. Kevin; Hires, Samuel Andrew; Shaner, Nathan C.; Tsien, Roger Y.; Osborne, Leslie C.; Voglmaier, Susan M.

    2011-01-01

    Synaptic transmission involves the calcium dependent release of neurotransmitter from synaptic vesicles. Genetically encoded optical probes emitting different wavelengths of fluorescent light in response to neuronal activity offer a powerful approach to understand the spatial and temporal relationship of calcium dynamics to the release of neurotransmitter in defined neuronal populations. To simultaneously image synaptic vesicle recycling and changes in cytosolic calcium, we developed a red-shifted reporter of vesicle recycling based on a vesicular glutamate transporter, VGLUT1-mOrange2 (VGLUT1-mOr2), and a presynaptically localized green calcium indicator, synaptophysin-GCaMP3 (SyGCaMP3) with a large dynamic range. The fluorescence of VGLUT1-mOr2 is quenched by the low pH of synaptic vesicles. Exocytosis upon electrical stimulation exposes the luminal mOr2 to the neutral extracellular pH and relieves fluorescence quenching. Reacidification of the vesicle upon endocytosis again reduces fluorescence intensity. Changes in fluorescence intensity thus monitor synaptic vesicle exo- and endocytosis, as demonstrated previously for the green VGLUT1-pHluorin. To monitor changes in calcium, we fused the synaptic vesicle protein synaptophysin to the recently improved calcium indicator GCaMP3. SyGCaMP3 is targeted to presynaptic varicosities, and exhibits changes in fluorescence in response to electrical stimulation consistent with changes in calcium concentration. Using real time imaging of both reporters expressed in the same synapses, we determine the time course of changes in VGLUT1 recycling in relation to changes in presynaptic calcium concentration. Inhibition of P/Q- and N-type calcium channels reduces calcium levels, as well as the rate of synaptic vesicle exocytosis and the fraction of vesicles released. PMID:22065946

  18. Alternative methods for characterization of extracellular vesicles.

    PubMed

    Momen-Heravi, Fatemeh; Balaj, Leonora; Alian, Sara; Tigges, John; Toxavidis, Vasilis; Ericsson, Maria; Distel, Robert J; Ivanov, Alexander R; Skog, Johan; Kuo, Winston Patrick

    2012-01-01

    Extracellular vesicles (ECVs) are nano-sized vesicles released by all cells in vitro as well as in vivo. Their role has been implicated mainly in cell-cell communication, but also in disease biomarkers and more recently in gene delivery. They represent a snapshot of the cell status at the moment of release and carry bioreactive macromolecules such as nucleic acids, proteins, and lipids. A major limitation in this emerging new field is the availability/awareness of techniques to isolate and properly characterize ECVs. The lack of gold standards makes comparing different studies very difficult and may potentially hinder some ECVs-specific evidence. Characterization of ECVs has also recently seen many advances with the use of Nanoparticle Tracking Analysis, flow cytometry, cryo-electron microscopy instruments, and proteomic technologies. In this review, we discuss the latest developments in translational technologies involving characterization methods including the facts in their support and the challenges they face. PMID:22973237

  19. Alternative Methods for Characterization of Extracellular Vesicles

    PubMed Central

    Momen-Heravi, Fatemeh; Balaj, Leonora; Alian, Sara; Tigges, John; Toxavidis, Vasilis; Ericsson, Maria; Distel, Robert J.; Ivanov, Alexander R.; Skog, Johan; Kuo, Winston Patrick

    2012-01-01

    Extracellular vesicles (ECVs) are nano-sized vesicles released by all cells in vitro as well as in vivo. Their role has been implicated mainly in cell–cell communication, but also in disease biomarkers and more recently in gene delivery. They represent a snapshot of the cell status at the moment of release and carry bioreactive macromolecules such as nucleic acids, proteins, and lipids. A major limitation in this emerging new field is the availability/awareness of techniques to isolate and properly characterize ECVs. The lack of gold standards makes comparing different studies very difficult and may potentially hinder some ECVs-specific evidence. Characterization of ECVs has also recently seen many advances with the use of Nanoparticle Tracking Analysis, flow cytometry, cryo-electron microscopy instruments, and proteomic technologies. In this review, we discuss the latest developments in translational technologies involving characterization methods including the facts in their support and the challenges they face. PMID:22973237

  20. Lipid-Targeting Peptide Probes for Extracellular Vesicles.

    PubMed

    Flynn, Aaron D; Yin, Hang

    2016-11-01

    Extracellular vesicles released from cells are under intense investigation for their roles in cell-cell communication and cancer progression. However, individual vesicles have been difficult to probe as their small size renders them invisible by conventional light microscopy. However, as a consequence of their small size these vesicles possess highly curved lipid membranes that offer an unconventional target for curvature-sensing probes. In this article, we present a strategy for using peptide-based biosensors to detect highly curved membranes and the negatively charged membrane lipid phosphatidylserine, we delineate several assays used to validate curvature- and lipid-targeting mechanisms, and we explore potential applications in probing extracellular vesicles released from sources such as apoptotic cells, cancer cells, or activated platelets. J. Cell. Physiol. 231: 2327-2332, 2016. © 2016 Wiley Periodicals, Inc. PMID:26909741

  1. Focus on Extracellular Vesicles: Development of Extracellular Vesicle-Based Therapeutic Systems

    PubMed Central

    Ohno, Shin-ichiro; Drummen, Gregor P. C.; Kuroda, Masahiko

    2016-01-01

    Many types of cells release phospholipid membrane vesicles thought to play key roles in cell-cell communication, antigen presentation, and the spread of infectious agents. Extracellular vesicles (EVs) carry various proteins, messenger RNAs (mRNAs), and microRNAs (miRNAs), like a “message in a bottle” to cells in remote locations. The encapsulated molecules are protected from multiple types of degradative enzymes in body fluids, making EVs ideal for delivering drugs. This review presents an overview of the potential roles of EVs as natural drugs and novel drug-delivery systems. PMID:26861303

  2. Endothelial microparticles: Sophisticated vesicles modulating vascular function

    PubMed Central

    Curtis, Anne M; Edelberg, Jay; Jonas, Rebecca; Rogers, Wade T; Moore, Jonni S; Syed, Wajihuddin; Mohler, Emile R

    2015-01-01

    Endothelial microparticles (EMPs) belong to a family of extracellular vesicles that are dynamic, mobile, biological effectors capable of mediating vascular physiology and function. The release of EMPs can impart autocrine and paracrine effects on target cells through surface interaction, cellular fusion, and, possibly, the delivery of intra-vesicular cargo. A greater understanding of the formation, composition, and function of EMPs will broaden our understanding of endothelial communication and may expose new pathways amenable for therapeutic manipulation. PMID:23892447

  3. Photoresponsive vesicle permeability based on intramolecular host-guest inclusion.

    PubMed

    Kauscher, Ulrike; Samanta, Avik; Ravoo, Bart Jan

    2014-01-28

    This article describes light-responsive vesicles that can release their contents in response to a light-sensitive molecular trigger. To this end, liposomes were equipped with amphiphilic β-cyclodextrin that was covalently labeled with azobenzene. Using dye encapsulation and confocal laser scanning microscopy, we show that the permeability of these vesicles strongly increases upon UV irradiation (λ = 350 nm) with concomitant isomerization of apolar trans-azobenzene to polar cis-azobenzene on the liposome surface. PMID:24287588

  4. How pure are your vesicles?

    PubMed

    Webber, Jason; Clayton, Aled

    2013-01-01

    We propose a straightforward method to estimate the purity of vesicle preparations by comparing the ratio of nano-vesicle counts to protein concentration, using tools such as the increasingly available NanoSight platform and a colorimetric protein assay such as the BCA-assay. Such an approach is simple enough to apply to every vesicle preparation within a given laboratory, assisting researchers as a routine quality control step. Also, the approach may aid in comparing/standardising vesicle purity across diverse studies, and may be of particular importance in evaluating vesicular biomarkers. We herein propose some criteria to aid in the definition of pure vesicles. PMID:24009896

  5. Dephosphorylated synapsin I anchors synaptic vesicles to actin cytoskeleton: an analysis by videomicroscopy.

    PubMed

    Ceccaldi, P E; Grohovaz, F; Benfenati, F; Chieregatti, E; Greengard, P; Valtorta, F

    1995-03-01

    Synapsin I is a synaptic vesicle-associated protein which inhibits neurotransmitter release, an effect which is abolished upon its phosphorylation by Ca2+/calmodulin-dependent protein kinase II (CaM kinase II). Based on indirect evidence, it was suggested that this effect on neurotransmitter release may be achieved by the reversible anchoring of synaptic vesicles to the actin cytoskeleton of the nerve terminal. Using video-enhanced microscopy, we have now obtained experimental evidence in support of this model: the presence of dephosphorylated synapsin I is necessary for synaptic vesicles to bind actin; synapsin I is able to promote actin polymerization and bundling of actin filaments in the presence of synaptic vesicles; the ability to cross-link synaptic vesicles and actin is specific for synapsin I and is not shared by other basic proteins; the cross-linking between synaptic vesicles and actin is specific for the membrane of synaptic vesicles and does not reflect either a non-specific binding of membranes to the highly surface active synapsin I molecule or trapping of vesicles within the thick bundles of actin filaments; the formation of the ternary complex is virtually abolished when synapsin I is phosphorylated by CaM kinase II. The data indicate that synapsin I markedly affects synaptic vesicle traffic and cytoskeleton assembly in the nerve terminal and provide a molecular basis for the ability of synapsin I to regulate the availability of synaptic vesicles for exocytosis and thereby the efficiency of neurotransmitter release. PMID:7876313

  6. Parameters affecting the fusion of unilamellar phospholipid vesicles with planar bilayer membranes.

    PubMed

    Cohen, F S; Akabas, M H; Zimmerberg, J; Finkelstein, A

    1984-03-01

    It was previously shown (Cohen, F. S., J. Zimmerberg, and A. Finkelstein, 1980, J. Gen. Physiol., 75:251-270) that multilamellar phospholipid vesicles can fuse with decane-containing phospholipid bilayer membranes. An essential requirement for fusion was an osmotic gradient across the planar membrane, with the vesicle-containing (cis) side hyperosmotic with respect to the opposite (trans) side. We now report that unilamellar vesicles will fuse with "hydrocarbon-free" membranes subject to these same osmotic conditions. Thus the same conditions that apply to fusion of multilamellar vesicles with planar bilayer membranes also apply to fusion of unilamellar vesicles with these membranes, and hydrocarbon is not required for the fusion process. If the vesicles and/or planar membrane contain negatively charged lipids, divalent cation (approximately 15 mM Ca++) is required in the cis compartment (in addition to the osmotic gradient across the membrane) to obtain substantial fusion rates. On the other hand, vesicles made from uncharged lipids readily fuse with planar phosphatidylethanolamine planar membranes in the near absence of divalent cation with just an osmotic gradient. Vesicles fuse much more readily with phosphatidylethanolamine-containing than with phosphatidylcholine-containing planar membranes. Although hydrocarbon (decane) is not required in the planar membrane for fusion, it does affect the rate of fusion and causes the fusion process to be dependent on stirring in the cis compartment. PMID:6699081

  7. Microfluidic filtration system to isolate extracellular vesicles from blood.

    PubMed

    Davies, Ryan T; Kim, Junho; Jang, Su Chul; Choi, Eun-Jeong; Gho, Yong Song; Park, Jaesung

    2012-12-21

    Extracellular vesicles are released by various cell types, particularly tumor cells, and may be potential targets for blood-based cancer diagnosis. However, studies performed on blood-borne vesicles to date have been limited by lack of effective, standardized purification strategies. Using in situ prepared nanoporous membranes, we present a simple strategy employing a microfluidic filtration system to isolate vesicles from whole blood samples. This method can be applied to purify nano-sized particles from blood allowing isolation of intact extracellular vesicles, avoiding the need for laborious and potentially damaging centrifugation steps or overly specific antibody-based affinity purification. Porous polymer monoliths were integrated as membranes into poly(methyl methacrylate) microfluidic chips by benchtop UV photopolymerization through a mask, allowing precise positioning of membrane elements while preserving simplicity of device preparation. Pore size could be manipulated by changing the ratio of porogenic solvent to prepolymer solution, and was tuned to a size proper for extraction of vesicles. Using the membrane as a size exclusion filter, we separated vesicles from cells and large debris by injecting whole blood under pressure through the microfluidic device. To enhance isolation purity, DC electrophoresis was employed as an alternative driving force to propel particles across the filter and increase the separation efficiency of vesicles from proteins. From the whole blood of melanoma-grown mice, we isolated extracellular vesicles and performed RT-PCR to verify their contents of RNA. Melan A mRNA derived from melanoma tumor cells were found enriched in filtered samples, confirming the recovery of vesicles via their cargo. This filtration system can be incorporated into other on-chip processes enabling integrated sample preparation for the downstream analysis of blood-based extracellular vesicles. PMID:23111789

  8. PC12 Cells that Lack Synaptotagmin I Exhibit Loss of a Subpool of Small Dense Core Vesicles

    PubMed Central

    Adams, Robert D.; Harkins, Amy B.

    2014-01-01

    Neurons communicate by releasing neurotransmitters that are stored in intracellular vesicular compartments. PC12 cells are frequently used as a model secretory cell line that is described to have two subpools of vesicles: small clear vesicles and dense core vesicles. We measured transmitter molecules released from vesicles in NGF-differentiated PC12 cells using carbon-fiber amperometry, and relative diameters of individual vesicles using electron microscopy. Both amperometry and electron micrograph data were analyzed by statistical and machine learning methods for Gaussian mixture models. An electron microscopy size correction algorithm was used to predict and correct for observation bias of vesicle size due to tangential slices through some vesicles. Expectation maximization algorithms were used to perform maximum likelihood estimation for the Gaussian parameters of different populations of vesicles, and were shown to be better than histogram and cumulative distribution function methods for analyzing mixed populations. The Bayesian information criterion was used to determine the most likely number of vesicle subpools observed in the amperometric and electron microscopy data. From this analysis, we show that there are three major subpools, not two, of vesicles stored and released from PC12 cells. The three subpools of vesicles include small clear vesicles and two subpools of dense core vesicles, a small and a large dense core vesicle subpool. Using PC12 cells stably transfected with short-hairpin RNA targeted to synaptotagmin I, an exocytotic Ca2+ sensor, we show that the presence and release of the small dense core vesicle subpool is dependent on synaptotagmin I. Furthermore, synaptotagmin I also plays a role in the formation and/or maintenance of the small dense core vesicle subpool in PC12 cells. PMID:25517150

  9. Poking vesicles in silico

    NASA Astrophysics Data System (ADS)

    Barlow, Ben; Bertrand, Martin; Joos, Bela

    2014-03-01

    The Atomic Force Microscope (AFM) is used to poke cells and study their mechanical properties. Using Coarse-Grained Molecular Dynamics simulations, we study the deformation and relaxation of lipid bilayer vesicles, when poked with a constant force. The relaxation time, equilibrium area expansion, and surface tension of the vesicle membrane are studied over a range of applied forces. The relaxation time exhibits a strong force-dependence. Our force-compression curves show a strong similarity with results from a recent experiment by Schafer et al. (Langmuir, 2013). They used an AFM to ``poke'' adherent giant liposomes with constant nanonewton forces and observed the resulting deformation with a Laser Scanning Confocal Microscope. Results of such experiments, whether on vesicles or cells, are often interpreted in terms of dashpots and springs. This simple approach used to describe the response of a whole cell --complete with cytoskeleton, organelles etc.-- can be problematic when trying to measure the contribution of a single cell component. Our modeling is a first step in a ``bottom-up'' approach where we investigate the viscoelastic properties of an in silico cell prototype with constituents added step by step. Supported by NSERC (Canada).

  10. Shear-stress sensitive lenticular vesicles for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Holme, Margaret N.; Fedotenko, Illya A.; Abegg, Daniel; Althaus, Jasmin; Babel, Lucille; Favarger, France; Reiter, Renate; Tanasescu, Radu; Zaffalon, Pierre-Léonard; Ziegler, André; Müller, Bert; Saxer, Till; Zumbuehl, Andreas

    2012-08-01

    Atherosclerosis results in the narrowing of arterial blood vessels and this causes significant changes in the endogenous shear stress between healthy and constricted arteries. Nanocontainers that can release drugs locally with such rheological changes can be very useful. Here, we show that vesicles made from an artificial 1,3-diaminophospholipid are stable under static conditions but release their contents at elevated shear stress. These vesicles have a lenticular morphology, which potentially leads to instabilities along their equator. Using a model cardiovascular system based on polymer tubes and an external pump to represent shear stress in healthy and constricted vessels of the heart, we show that drugs preferentially release from the vesicles in constricted vessels that have high shear stress.

  11. Shear-stress sensitive lenticular vesicles for targeted drug delivery.

    PubMed

    Holme, Margaret N; Fedotenko, Illya A; Abegg, Daniel; Althaus, Jasmin; Babel, Lucille; Favarger, France; Reiter, Renate; Tanasescu, Radu; Zaffalon, Pierre-Léonard; Ziegler, André; Müller, Bert; Saxer, Till; Zumbuehl, Andreas

    2012-08-01

    Atherosclerosis results in the narrowing of arterial blood vessels and this causes significant changes in the endogenous shear stress between healthy and constricted arteries. Nanocontainers that can release drugs locally with such rheological changes can be very useful. Here, we show that vesicles made from an artificial 1,3-diaminophospholipid are stable under static conditions but release their contents at elevated shear stress. These vesicles have a lenticular morphology, which potentially leads to instabilities along their equator. Using a model cardiovascular system based on polymer tubes and an external pump to represent shear stress in healthy and constricted vessels of the heart, we show that drugs preferentially release from the vesicles in constricted vessels that have high shear stress. PMID:22683843

  12. Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics.

    PubMed Central

    Kadurugamuwa, J L; Beveridge, T J

    1996-01-01

    Pseudomonas aeruginosa releases membrane vesicles (MVs) filled with periplasmic components during normal growth, and the quantity of these vesicles can be increased by brief exposure to gentamicin. Natural and gentamicin-induced membrane vesicles (n-MVs and g-MVs, respectively) are subtly different from one another, but both contain several important virulence factors, including hydrolytic enzyme factors (J. L. Kadurugamuwa and T. J. Beveridge, J. Bacteriol. 177:3998-4008, 1995). Peptidoglycan hydrolases (autolysins) were detected in both MV types, especially a periplasmic 26-kDa autolysin whose expression has been related to growth phase (Z. Li, A. J. Clarke, and T. J. Beveridge, J. Bacteriol. 178:2479-2488, 1996). g-MVs possessed slightly higher autolysin activity and, at the same time, small quantities of gentamicin. Both MV types hydrolyzed isolated gram-positive and gram-negative murein sacculi and were also capable of hydrolyzing several glycyl peptides. Because the MVs were bilayered, they readily fused with the outer membrane of gram-negative bacteria. They also adhered to the cell wall of gram-positive bacteria. g-MVs were more effective in lysing other bacteria because, in addition to the autolysins, they also contained small amounts of gentamicin. The bactericidal activity was 2.5 times the MIC of gentamicin, which demonstrates the synergistic effect of the antibiotic with the autolysins. n-MVs were capable of killing cultures of P. aeruginosa with permeability resistance against gentamicin, indicating that the fusion of n-MV to the outer membrane liberated autolysins into the periplasm, where they degraded the peptidoglycan and lysed the cells. g-MVs had even greater killing power since they liberated both gentamicin and autolysins into these resistant cells. These findings may help develop a conceptually new group of antibiotics designed to be effective against hard-to-kill bacteria. PMID:8631663

  13. ATP: The crucial component of secretory vesicles.

    PubMed

    Estévez-Herrera, Judith; Domínguez, Natalia; Pardo, Marta R; González-Santana, Ayoze; Westhead, Edward W; Borges, Ricardo; Machado, José David

    2016-07-12

    The colligative properties of ATP and catecholamines demonstrated in vitro are thought to be responsible for the extraordinary accumulation of solutes inside chromaffin cell secretory vesicles, although this has yet to be demonstrated in living cells. Because functional cells cannot be deprived of ATP, we have knocked down the expression of the vesicular nucleotide carrier, the VNUT, to show that a reduction in vesicular ATP is accompanied by a drastic fall in the quantal release of catecholamines. This phenomenon is particularly evident in newly synthesized vesicles, which we show are the first to be released. Surprisingly, we find that inhibiting VNUT expression also reduces the frequency of exocytosis, whereas the overexpression of VNUT drastically increases the quantal size of exocytotic events. To our knowledge, our data provide the first demonstration that ATP, in addition to serving as an energy source and purinergic transmitter, is an essential element in the concentration of catecholamines in secretory vesicles. In this way, cells can use ATP to accumulate neurotransmitters and other secreted substances at high concentrations, supporting quantal transmission. PMID:27342860

  14. Microencapsulation technology by nature: Cell derived extracellular vesicles with therapeutic potential.

    PubMed

    Kittel, A; Falus, A; Buzás, E

    2013-06-01

    Cell derived extracellular vesicles are submicron structures surrounded by phospholipid bilayer and released by both prokaryotic and eukaryotic cells. The sizes of these vesicles roughly fall into the size ranges of microbes, and they represent efficient delivery platforms targeting complex molecular information to professional antigen presenting cells. Critical roles of these naturally formulated units of information have been described in many physiological and pathological processes. Extracellular vesicles are not only potential biomarkers and possible pathogenic factors in numerous diseases, but they are also considered as emerging therapeutic targets and therapeutic vehicles. Strikingly, current drug delivery systems, designed to convey therapeutic proteins and peptides (such as liposomes), show many similarities to extracellular vesicles. Here we review some aspects of therapeutic implementation of natural, cell-derived extracellular vesicles in human diseases. Exploration of molecular and functional details of extracellular vesicle release and action may provide important lessons for the design of future drug delivery systems. PMID:24265924

  15. Microencapsulation technology by nature: Cell derived extracellular vesicles with therapeutic potential

    PubMed Central

    Falus, A.; Buzás, E.

    2013-01-01

    Cell derived extracellular vesicles are submicron structures surrounded by phospholipid bilayer and released by both prokaryotic and eukaryotic cells. The sizes of these vesicles roughly fall into the size ranges of microbes, and they represent efficient delivery platforms targeting complex molecular information to professional antigen presenting cells. Critical roles of these naturally formulated units of information have been described in many physiological and pathological processes. Extracellular vesicles are not only potential biomarkers and possible pathogenic factors in numerous diseases, but they are also considered as emerging therapeutic targets and therapeutic vehicles. Strikingly, current drug delivery systems, designed to convey therapeutic proteins and peptides (such as liposomes), show many similarities to extracellular vesicles. Here we review some aspects of therapeutic implementation of natural, cell-derived extracellular vesicles in human diseases. Exploration of molecular and functional details of extracellular vesicle release and action may provide important lessons for the design of future drug delivery systems. PMID:24265924

  16. Lipophilic dye staining of Cryptococcus neoformans extracellular vesicles and capsule.

    PubMed

    Nicola, André Moraes; Frases, Susana; Casadevall, Arturo

    2009-09-01

    Cryptococcus neoformans is an encapsulated yeast that causes systemic mycosis in immunosuppressed individuals. Recent studies have determined that this fungus produces vesicles that are released to the extracellular environment both in vivo and in vitro. These vesicles contain assorted cargo that includes several molecules associated with virulence and implicated in host-pathogen interactions, such as capsular polysaccharides, laccase, urease, and other proteins. To date, visualization of extracellular vesicles has relied on transmission electron microscopy, a time-consuming technique. In this work we report the use of fluorescent membrane tracers to stain lipophilic structures in cryptococcal culture supernatants and capsules. Two dialkylcarbocyanine probes with different spectral characteristics were used to visualize purified vesicles by fluorescence microscopy and flow cytometry. Dual staining of vesicles with dialkylcarbocyanine and RNA-selective nucleic acid dyes suggested that a fraction of the vesicle population carried RNA. Use of these dyes to stain whole cells, however, was hampered by their possible direct binding to capsular polysaccharide. A fluorescent phospholipid was used as additional membrane tracer to stain whole cells, revealing punctate structures on the edge of the capsule which are consistent with vesicular trafficking. Lipophilic dyes provide new tools for the study of fungal extracellular vesicles and their content. The finding of hydrophobic regions in the capsule of C. neoformans adds to the growing evidence for a structurally complex structure composed of polysaccharide and nonpolysaccharide components. PMID:19465562

  17. Micromanaging of tumor metastasis by extracellular vesicles.

    PubMed

    Tominaga, Naoomi; Katsuda, Takeshi; Ochiya, Takahiro

    2015-04-01

    Extracellular vesicles (EVs) are nanometer-sized membranous vesicles that are released by a variety of cell types into the extracellular space. In the past two decades, EVs have emerged as novel mediators of cancer biology. Many reports have demonstrated the contribution of EVs to cancer metastasis. Metastasis is a multistep process that is responsible for the majority of deaths in cancer patients. This process includes proliferation, angiogenesis, immune modulation, extravasation, intravasation, and colonization. EVs from cancer cells impact these steps through modulation of the host immune system, angiogenesis, and pre-/pro-metastatic niche formation. In this review, we summarize the function of EVs in cancer metastasis. In addition, we also discuss the hurdles to be overcome for further developing this research field. PMID:25746922

  18. Facile synthesis of multilayered polysaccharidic vesicles.

    PubMed

    Kwag, Dong Sup; Oh, Kyung Taek; Lee, Eun Seong

    2014-08-10

    In this study, we developed facile synthesis method of multilayered polysaccharidic vesicles (hereafter termed 'mPSVs') using polysaccharides such as starch, hyaluronate (HA), and glycol chitosan (GC) via simple chemistry and using enzymatic reactions among polysaccharides. The enzymatic degradation of the HA shell by hyaluronidase (HYAL) enzyme contributed to accelerate the release of protein/peptide from the mPSVs. The mPSVs containing folate ligand and apoptotic cell death-inducing D-(KLAKLAK)2 peptide were effectively accumulated in in vivo KB tumor cells, primarily owing to passive tumor penetration via the enhanced permeability and retention (EPR) effect and active targeting via specific binding to folate receptors expressed on KB tumor cells. These mPSVs resulted in a significant increase in the in vivo tumor inhibition. This vesicle system is expected to exhibit great potential as an advanced platform technology for biomedical applications involving small molecular drugs with protein/gene targets. PMID:24878178

  19. VAMP-1: a synaptic vesicle-associated integral membrane protein.

    PubMed

    Trimble, W S; Cowan, D M; Scheller, R H

    1988-06-01

    Several proteins are associated with, or are integral components of, the lipid bilayer that forms the delineating membrane of neuronal synaptic vesicles. To characterize these molecules, we used a polyclonal antiserum raised against purified cholinergic synaptic vesicles from Torpedo to screen a cDNA expression library constructed from mRNA of the electromotor nucleus. One clone encodes VAMP-1 (vesicle-associated membrane protein 1), a nervous-system-specific protein of 120 amino acids whose primary sequence can be divided into three domains: a proline-rich amino terminus, a highly charged internal region, and a hydrophobic carboxyl-terminal domain that is predicted to comprise a membrane anchor. Tryptic digestion of intact and lysed vesicles suggests that the protein faces the cytoplasm, where it may play a role in packaging, transport, or release of neurotransmitters. PMID:3380805

  20. Formation of secretory vesicles in permeabilized cells: a salt extract from yeast membranes promotes budding of nascent secretory vesicles from the trans-Golgi network of endocrine cells.

    PubMed Central

    Ling, W L; Shields, D

    1996-01-01

    The mechanism of secretory-vesicle formation from the trans-Golgi network (TGN) of endocrine cells is poorly understood. To identify cytosolic activities that facilitate the formation and fission of nascent secretory vesicles, we treated permeabilized pituitary GH3 cells with high salt to remove endogenous budding factors. Using this cell preparation, secretory-vesicle budding from the TGN required addition of exogenous cytosol and energy. Mammalian cytosols (GH3 cells and bovine brain) promoted post-TGN vesicle formation. Most significantly, a salt extract of membranes from the yeast Saccharomyces cerevisiae, a cell lacking a regulated secretory pathway, stimulated secretory vesicle budding in the absence of mammalian cytosolic factors. These results demonstrate that the factors which promote secretory-vesicle release from the TGN are conserved between yeast and mammalian cells. PMID:8615761

  1. SAD-B Phosphorylation of CAST Controls Active Zone Vesicle Recycling for Synaptic Depression.

    PubMed

    Mochida, Sumiko; Hida, Yamato; Tanifuji, Shota; Hagiwara, Akari; Hamada, Shun; Abe, Manabu; Ma, Huan; Yasumura, Misato; Kitajima, Isao; Sakimura, Kenji; Ohtsuka, Toshihisa

    2016-09-13

    Short-term synaptic depression (STD) is a common form of activity-dependent plasticity observed widely in the nervous system. Few molecular pathways that control STD have been described, but the active zone (AZ) release apparatus provides a possible link between neuronal activity and plasticity. Here, we show that an AZ cytomatrix protein CAST and an AZ-associated protein kinase SAD-B coordinately regulate STD by controlling reloading of the AZ with release-ready synaptic vesicles. SAD-B phosphorylates the N-terminal serine (S45) of CAST, and S45 phosphorylation increases with higher firing rate. A phosphomimetic CAST (S45D) mimics CAST deletion, which enhances STD by delaying reloading of the readily releasable pool (RRP), resulting in a pool size decrease. A phosphonegative CAST (S45A) inhibits STD and accelerates RRP reloading. Our results suggest that the CAST/SAD-B reaction serves as a brake on synaptic transmission by temporal calibration of activity and synaptic depression via RRP size regulation. PMID:27626661

  2. Extracellular Vesicles in Luminal Fluid of the Ovine Uterus

    PubMed Central

    Burns, Gregory; Brooks, Kelsey; Wildung, Mark; Navakanitworakul, Raphatphorn; Christenson, Lane K.; Spencer, Thomas E.

    2014-01-01

    Microvesicles and exosomes are nanoparticles released from cells and can contain small RNAs, mRNA and proteins that affect cells at distant sites. In sheep, endogenous beta retroviruses (enJSRVs) are expressed in the endometrial epithelia of the uterus and can be transferred to the conceptus trophectoderm. One potential mechanism of enJSRVs transfer from the uterus to the conceptus is via exosomes/microvesicles. Therefore, studies were conducted to evaluate exosomes in the uterine luminal fluid (ULF) of sheep. Exosomes/microvesicles (hereafter referred to as extracellular vesicles) were isolated from the ULF of day 14 cyclic and pregnant ewes using ExoQuick-TC. Transmission electron microscopy and nanoparticle tracking analysis found the isolates contained vesicles that ranged from 50 to 200 nm in diameter. The isolated extracellular vesicles were positive for two common markers of exosomes (CD63 and HSP70) by Western blot analysis. Proteins in the extracellular vesicles were determined by mass spectrometry and Western blot analysis. Extracellular vesicle RNA was analyzed for small RNAs by sequencing and enJSRVs RNA by RT-PCR. The ULF extracellular vesicles contained a large number of small RNAs and miRNAs including 81 conserved mature miRNAs. Cyclic and pregnant ULF extracellular vesicles contained enJSRVs env and gag RNAs that could be delivered to heterologous cells in vitro. These studies support the hypothesis that ULF extracellular vesicles can deliver enJSRVs RNA to the conceptus, which is important as enJSRVs regulate conceptus trophectoderm development. Importantly, these studies support the idea that extracellular vesicles containing select miRNAs, RNAs and proteins are present in the ULF and likely have a biological role in conceptus-endometrial interactions important for the establishment and maintenance of pregnancy. PMID:24614226

  3. Binding Isotherms and Time Courses Readily from Magnetic Resonance

    PubMed Central

    2016-01-01

    Evidence is presented that binding isotherms, simple or biphasic, can be extracted directly from noninterpreted, complex 2D NMR spectra using principal component analysis (PCA) to reveal the largest trend(s) across the series. This approach renders peak picking unnecessary for tracking population changes. In 1:1 binding, the first principal component captures the binding isotherm from NMR-detected titrations in fast, slow, and even intermediate and mixed exchange regimes, as illustrated for phospholigand associations with proteins. Although the sigmoidal shifts and line broadening of intermediate exchange distorts binding isotherms constructed conventionally, applying PCA directly to these spectra along with Pareto scaling overcomes the distortion. Applying PCA to time-domain NMR data also yields binding isotherms from titrations in fast or slow exchange. The algorithm readily extracts from magnetic resonance imaging movie time courses such as breathing and heart rate in chest imaging. Similarly, two-step binding processes detected by NMR are easily captured by principal components 1 and 2. PCA obviates the customary focus on specific peaks or regions of images. Applying it directly to a series of complex data will easily delineate binding isotherms, equilibrium shifts, and time courses of reactions or fluctuations. PMID:27458657

  4. Binding Isotherms and Time Courses Readily from Magnetic Resonance.

    PubMed

    Xu, Jia; Van Doren, Steven R

    2016-08-16

    Evidence is presented that binding isotherms, simple or biphasic, can be extracted directly from noninterpreted, complex 2D NMR spectra using principal component analysis (PCA) to reveal the largest trend(s) across the series. This approach renders peak picking unnecessary for tracking population changes. In 1:1 binding, the first principal component captures the binding isotherm from NMR-detected titrations in fast, slow, and even intermediate and mixed exchange regimes, as illustrated for phospholigand associations with proteins. Although the sigmoidal shifts and line broadening of intermediate exchange distorts binding isotherms constructed conventionally, applying PCA directly to these spectra along with Pareto scaling overcomes the distortion. Applying PCA to time-domain NMR data also yields binding isotherms from titrations in fast or slow exchange. The algorithm readily extracts from magnetic resonance imaging movie time courses such as breathing and heart rate in chest imaging. Similarly, two-step binding processes detected by NMR are easily captured by principal components 1 and 2. PCA obviates the customary focus on specific peaks or regions of images. Applying it directly to a series of complex data will easily delineate binding isotherms, equilibrium shifts, and time courses of reactions or fluctuations. PMID:27458657

  5. Transient release kinetics of rod bipolar cells revealed by capacitance measurement of exocytosis from axon terminals in rat retinal slices.

    PubMed

    Oltedal, Leif; Hartveit, Espen

    2010-05-01

    Presynaptic transmitter release has mostly been studied through measurements of postsynaptic responses, but a few synapses offer direct access to the presynaptic terminal, thereby allowing capacitance measurements of exocytosis. For mammalian rod bipolar cells, synaptic transmission has been investigated in great detail by recording postsynaptic currents in AII amacrine cells. Presynaptic measurements of the dynamics of vesicular cycling have so far been limited to isolated rod bipolar cells in dissociated preparations. Here, we first used computer simulations of compartmental models of morphologically reconstructed rod bipolar cells to adapt the 'Sine + DC' technique for capacitance measurements of exocytosis at axon terminals of intact rod bipolar cells in retinal slices. In subsequent physiological recordings, voltage pulses that triggered presynaptic Ca(2+) influx evoked capacitance increases that were proportional to the pulse duration. With pulse durations 100 ms, the increase saturated at 10 fF, corresponding to the size of a readily releasable pool of vesicles. Pulse durations 400 ms evoked additional capacitance increases, probably reflecting recruitment from additional pools of vesicles. By using Ca(2+) tail current stimuli, we separated Ca(2+) influx from Ca(2+) channel activation kinetics, allowing us to estimate the intrinsic release kinetics of the readily releasable pool, yielding a time constant of 1.1 ms and a maximum release rate of 2-3 vesicles (release site)(1) ms(1). Following exocytosis, we observed endocytosis with time constants ranging from 0.7 to 17 s. Under physiological conditions, it is likely that release will be transient, with the kinetics limited by the activation kinetics of the voltage-gated Ca(2+) channels. PMID:20211976

  6. Electrochemical Detection of Single Phospholipid Vesicle Collisions at a Pt Ultramicroelectrode.

    PubMed

    Lebègue, Estelle; Anderson, Cari M; Dick, Jeffrey E; Webb, Lauren J; Bard, Allen J

    2015-10-27

    We report the collision behavior of single unilamellar vesicles, composed of a bilayer lipid membrane (BLM), on a platinum (Pt) ultramicroelectrode (UME) by two electrochemical detection methods. In the first method, the blocking of a solution redox reaction, induced by the single vesicle adsorption on the Pt UME, can be observed in the amperometric i-t response as current steps during the electrochemical oxidation of ferrocyanide. In the second technique, the ferrocyanide redox probe is directly encapsulated inside vesicles and can be oxidized during the vesicle collision on the UME if the potential is poised positive enough for ferrocyanide oxidation to occur. In the amperometric i-t response for the latter experiment, a current spike is observed. Here, we report the vesicle blocking (VB) method as a relevant technique for determining the vesicle solution concentration from the collisional frequency and also for observing the vesicle adhesion on the Pt surface. In addition, vesicle reactor (VR) experiments show clear evidence that the lipid bilayer membrane does not collapse or break open at the Pt UME during the vesicle collision. Because the bilayer is too thick for electron tunneling to occur readily, an appropriate concentration of a surfactant, such as Triton X-100 (TX100), was added in the VR solution to induce loosening of the bilayer (transfection conditions), allowing the electrode to oxidize the contents of the vesicle. With this technique, the TX100 effect on the vesicle lipid bilayer permeability can be evaluated through the current spike charge and frequency corresponding to redox vesicle collisions. PMID:26474107

  7. Preeclampsia and Extracellular Vesicles.

    PubMed

    Gilani, Sarwat I; Weissgerber, Tracey L; Garovic, Vesna D; Jayachandran, Muthuvel

    2016-09-01

    Preeclampsia is a hypertensive pregnancy disorder characterized by development of hypertension and proteinuria after 20 weeks of gestation that remains a leading cause of maternal and neonatal morbidity and mortality. While preeclampsia is believed to result from complex interactions between maternal and placental factors, the proximate pathophysiology of this syndrome remains elusive. Cell-to-cell communication is a critical signaling mechanism for feto-placental development in normal pregnancies. One mechanism of cellular communication relates to activated cell-derived sealed membrane vesicles called extracellular vesicles (EVs). The concentrations and contents of EVs in biological fluids depend upon their cells of origin and the stimuli which trigger their production. Research on EVs in preeclampsia has focused on EVs derived from the maternal vasculature (endothelium, vascular smooth muscle) and blood (erythrocytes, leukocytes, and platelets), as well as placental syncytiotrophoblasts. Changes in the concentrations and contents of these EVs may contribute to the pathophysiology of preeclampsia by accentuating the pro-inflammatory and pro-coagulatory states of pregnancy. This review focuses on possible interactions among placental- and maternal-derived EVs and their contents in the initiation and progression of the pathogenesis of preeclampsia. Understanding the contributions of EVs in the pathogenesis of preeclampsia may facilitate their use as diagnostic and prognostic biomarkers. PMID:27590522

  8. Genetic spatial autocorrelation can readily detect sex-biased dispersal.

    PubMed

    Banks, Sam C; Peakall, Rod

    2012-05-01

    Sex-biased dispersal is expected to generate differences in the fine-scale genetic structure of males and females. Therefore, spatial analyses of multilocus genotypes may offer a powerful approach for detecting sex-biased dispersal in natural populations. However, the effects of sex-biased dispersal on fine-scale genetic structure have not been explored. We used simulations and multilocus spatial autocorrelation analysis to investigate how sex-biased dispersal influences fine-scale genetic structure. We evaluated three statistical tests for detecting sex-biased dispersal: bootstrap confidence intervals about autocorrelation r values and recently developed heterogeneity tests at the distance class and whole correlogram levels. Even modest sex bias in dispersal resulted in significantly different fine-scale spatial autocorrelation patterns between the sexes. This was particularly evident when dispersal was strongly restricted in the less-dispersing sex (mean distance <200 m), when differences between the sexes were readily detected over short distances. All tests had high power to detect sex-biased dispersal with large sample sizes (n ≥ 250). However, there was variation in type I error rates among the tests, for which we offer specific recommendations. We found congruence between simulation predictions and empirical data from the agile antechinus, a species that exhibits male-biased dispersal, confirming the power of individual-based genetic analysis to provide insights into asymmetries in male and female dispersal. Our key recommendations for using multilocus spatial autocorrelation analyses to test for sex-biased dispersal are: (i) maximize sample size, not locus number; (ii) concentrate sampling within the scale of positive structure; (iii) evaluate several distance class sizes; (iv) use appropriate methods when combining data from multiple populations; (v) compare the appropriate groups of individuals. PMID:22335562

  9. Exocytosis of post-Golgi vesicles is regulated by components of the endocytic machinery

    PubMed Central

    Jaiswal, Jyoti K.; Rivera, Victor M.; Simon, Sanford M.

    2009-01-01

    Post-Golgi vesicles target and deliver most biosynthetic cargoes to the cell surface. However, the molecules and mechanism involved in fusion of these vesicles is not well understood in mammalian cells. We have employed a system to simultaneously monitor release of luminal and membrane biosynthetic cargoes from individual post-Golgi vesicles. Exocytosis of these vesicles is not calcium-triggered and can result in complete, partial or no release of membrane cargo. Partial or no release of membrane cargo of a fusing vesicle are fates associated with kiss-and-run exocytosis and are the predominant mode of post-Golgi vesicle exocytosis. Partial cargo release by post-Golgi vesicles occurs due to premature closure of the fusion pore and is modulated by the activity of clathrin, actin and dynamin. Our results demonstrate that the components of the endocytic machinery modulate the nature and extent of secretion of biosynthetic cargo by affecting fusion of post-Golgi vesicles to the cell membrane. PMID:19563761

  10. Cycling of Dense Core Vesicles Involved in Somatic Exocytosis of Serotonin by Leech Neurons

    PubMed Central

    Trueta, Citlali; Kuffler, Damien P.; De-Miguel, Francisco F.

    2012-01-01

    We studied the cycling of dense core vesicles producing somatic exocytosis of serotonin. Our experiments were made using electron microscopy and vesicle staining with fluorescent dye FM1-43 in Retzius neurons of the leech, which secrete serotonin from clusters of dense core vesicles in a frequency-dependent manner. Electron micrographs of neurons at rest or after 1 Hz stimulation showed two pools of dense core vesicles. A perinuclear pool near Golgi apparatuses, from which vesicles apparently form, and a peripheral pool with vesicle clusters at a distance from the plasma membrane. By contrast, after 20 Hz electrical stimulation 47% of the vesicle clusters were apposed to the plasma membrane, with some omega exocytosis structures. Dense core and small clear vesicles apparently originating from endocytosis were incorporated in multivesicular bodies. In another series of experiments, neurons were stimulated at 20 Hz while bathed in a solution containing peroxidase. Electron micrographs of these neurons contained gold particles coupled to anti-peroxidase antibodies in dense core vesicles and multivesicular bodies located near the plasma membrane. Cultured neurons depolarized with high potassium in the presence of FM1-43 displayed superficial fluorescent spots, each reflecting a vesicle cluster. A partial bleaching of the spots followed by another depolarization in the presence of FM1-43 produced restaining of some spots, other spots disappeared, some remained without restaining and new spots were formed. Several hours after electrical stimulation the FM1-43 spots accumulated at the center of the somata. This correlated with electron micrographs of multivesicular bodies releasing their contents near Golgi apparatuses. Our results suggest that dense core vesicle cycling related to somatic serotonin release involves two steps: the production of clear vesicles and multivesicular bodies after exocytosis, and the formation of new dense core vesicles in the perinuclear

  11. Sphingosine Facilitates SNARE Complex Assembly and Activates Synaptic Vesicle Exocytosis

    PubMed Central

    Darios, Frédéric; Wasser, Catherine; Shakirzyanova, Anastasia; Giniatullin, Artur; Goodman, Kerry; Munoz-Bravo, Jose L.; Raingo, Jesica; Jorgačevski, Jernej; Kreft, Marko; Zorec, Robert; Rosa, Juliana M.; Gandia, Luis; Gutiérrez, Luis M.; Binz, Thomas; Giniatullin, Rashid; Kavalali, Ege T.; Davletov, Bazbek

    2009-01-01

    Summary Synaptic vesicles loaded with neurotransmitters fuse with the plasma membrane to release their content into the extracellular space, thereby allowing neuronal communication. The membrane fusion process is mediated by a conserved set of SNARE proteins: vesicular synaptobrevin and plasma membrane syntaxin and SNAP-25. Recent data suggest that the fusion process may be subject to regulation by local lipid metabolism. Here, we have performed a screen of lipid compounds to identify positive regulators of vesicular synaptobrevin. We show that sphingosine, a releasable backbone of sphingolipids, activates synaptobrevin in synaptic vesicles to form the SNARE complex implicated in membrane fusion. Consistent with the role of synaptobrevin in vesicle fusion, sphingosine upregulated exocytosis in isolated nerve terminals, neuromuscular junctions, neuroendocrine cells and hippocampal neurons, but not in neurons obtained from synaptobrevin-2 knockout mice. Further mechanistic insights suggest that sphingosine acts on the synaptobrevin/phospholipid interface, defining a novel function for this important lipid regulator. PMID:19524527

  12. Extracellular vesicles in parasitic diseases

    PubMed Central

    Marcilla, Antonio; Martin-Jaular, Lorena; Trelis, Maria; de Menezes-Neto, Armando; Osuna, Antonio; Bernal, Dolores; Fernandez-Becerra, Carmen; Almeida, Igor C.; del Portillo, Hernando A.

    2014-01-01

    Parasitic diseases affect billions of people and are considered a major public health issue. Close to 400 species are estimated to parasitize humans, of which around 90 are responsible for great clinical burden and mortality rates. Unfortunately, they are largely neglected as they are mainly endemic to poor regions. Of relevance to this review, there is accumulating evidence of the release of extracellular vesicles (EVs) in parasitic diseases, acting both in parasite–parasite inter-communication as well as in parasite–host interactions. EVs participate in the dissemination of the pathogen and play a role in the regulation of the host immune systems. Production of EVs from parasites or parasitized cells has been described for a number of parasitic infections. In this review, we provide the most relevant findings of the involvement of EVs in intercellular communication, modulation of immune responses, involvement in pathology, and their potential as new diagnostic tools and therapeutic agents in some of the major human parasitic pathogens. PMID:25536932

  13. Freeze-thaw and high-voltage discharge allow macromolecule uptake into ileal brush-border vesicles

    SciTech Connect

    Donowitz, M.; Emmer, E.; McCullen, J.; Reinlib, L.; Cohen, M.E.; Rood, R.P.; Madara, J.; Sharp, G.W.G.; Murer, H.; Malmstrom, K.

    1987-06-01

    High-voltage discharge or one cycle of freeze-thawing are shown to transiently permeabilize rabbit ileal brush-border membrane vesicles to macromolecules. Uptake of the radiolabeled macromolecule dextran, mol wt 70,000, used as a marker for vesicle permeability, was determined by a rapid filtration technique, with uptake defined as substrate associated with the vesicle and releasable after incubation of vesicles with 0.1% saponin. Dextran added immediately after electric shock (2000 V) or at the beginning of one cycle of freeze-thawing was taken up approximately eightfold compared with control. ATP also was taken up into freeze-thawed vesicles, whereas there was no significant uptake into control vesicles. The increase in vesicle permeability was reversible, based on Na-dependent D-glucose uptake being decreased when studied 5 but not 15 min after electric shock, and was not significantly decreased after completion of one cycle of freeze-thawing. In addition, adenosine 3',5'-cyclic monophosphate and Ca/sup 2 +/-calmodulin-dependent protein kinase activity were similar in control vesicles and vesicles exposed to high-voltage discharge or freeze-thawing. Also, vesicles freeze-thawed with (/sup 32/P)ATP demonstrated increased phosphorylation compared with nonfrozen vesicles, while freeze-thawing did not alter vesicle protein as judged by Coomassie blue staining. These techniques should allow intestinal membrane vesicles to be used for studies of intracellular control of transport processes, for instance, studies of protein kinase regulation of transport.

  14. Routes and mechanisms of extracellular vesicle uptake

    PubMed Central

    Mulcahy, Laura Ann; Pink, Ryan Charles; Carter, David Raul Francisco

    2014-01-01

    Extracellular vesicles (EVs) are small vesicles released by donor cells that can be taken up by recipient cells. Despite their discovery decades ago, it has only recently become apparent that EVs play an important role in cell-to-cell communication. EVs can carry a range of nucleic acids and proteins which can have a significant impact on the phenotype of the recipient. For this phenotypic effect to occur, EVs need to fuse with target cell membranes, either directly with the plasma membrane or with the endosomal membrane after endocytic uptake. EVs are of therapeutic interest because they are deregulated in diseases such as cancer and they could be harnessed to deliver drugs to target cells. It is therefore important to understand the molecular mechanisms by which EVs are taken up into cells. This comprehensive review summarizes current knowledge of EV uptake mechanisms. Cells appear to take up EVs by a variety of endocytic pathways, including clathrin-dependent endocytosis, and clathrin-independent pathways such as caveolin-mediated uptake, macropinocytosis, phagocytosis, and lipid raft–mediated internalization. Indeed, it seems likely that a heterogeneous population of EVs may gain entry into a cell via more than one route. The uptake mechanism used by a given EV may depend on proteins and glycoproteins found on the surface of both the vesicle and the target cell. Further research is needed to understand the precise rules that underpin EV entry into cells. PMID:25143819

  15. Munc13-1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells

    PubMed Central

    Ashery, Uri; Varoqueaux, Frederique; Voets, Thomas; Betz, Andrea; Thakur, Pratima; Koch, Henriette; Neher, Erwin; Brose, Nils; Rettig, Jens

    2000-01-01

    In chromaffin cells the number of large dense-core vesicles (LDCVs) which can be released by brief, intense stimuli represents only a small fraction of the ‘morphologically docked’ vesicles at the plasma membrane. Recently, it was shown that Munc13-1 is essential for a post-docking step of synaptic vesicle fusion. To investigate the role of Munc13-1 in LDCV exocytosis, we overexpressed Munc13-1 in chromaffin cells and stimulated secretion by flash photolysis of caged calcium. Both components of the exocytotic burst, which represent the fusion of release-competent vesicles, were increased by a factor of three. The sustained component, which represents vesicle maturation and subsequent fusion, was increased by the same factor. The response to a second flash, however, was greatly reduced, indicating a depletion of release-competent vesicles. Since there was no apparent change in the number of docked vesicles, we conclude that Munc13-1 acts as a priming factor by accelerating the rate constant of vesicle transfer from a pool of docked, but unprimed vesicles to a pool of release-competent, primed vesicles. PMID:10899113

  16. Proteomic analysis of a podocyte vesicle-enriched fraction from human normal and pathological urine samples.

    PubMed

    Lescuyer, Pierre; Pernin, Agnès; Hainard, Alexandre; Bigeire, Caty; Burgess, Jennifer A; Zimmermann-Ivol, Catherine; Sanchez, Jean-Charles; Schifferli, Jürg A; Hochstrasser, Denis F; Moll, Solange

    2008-07-01

    Podocytes (glomerular visceral epithelial cells) release vesicles into urine. Podocyte vesicle-enriched fractions from normal and pathological human urine samples were prepared for proteomic analysis. An immunoadsorption method was applied and enrichment of podocyte vesicles was assessed. We identified 76 unique proteins. One protein, serum paraoxonase/arylesterase 1 (PON-1), was newly identified in normal human urine sample. We confirmed this result and showed PON-1 expression in normal human kidney. These results demonstrated the potential for using the urine samples enriched in podocyte vesicles as a starting material in studies aimed at discovery of biomarkers for diseases. PMID:21136901

  17. Role of extracellular vesicles in autoimmune diseases.

    PubMed

    Turpin, Delphine; Truchetet, Marie-Elise; Faustin, Benjamin; Augusto, Jean-François; Contin-Bordes, Cécile; Brisson, Alain; Blanco, Patrick; Duffau, Pierre

    2016-02-01

    Extracellular vesicles (EVs) consist of exosomes released upon fusion of multivesicular bodies with the cell plasma membrane and microparticles shed directly from the cell membrane of many cell types. EVs can mediate cell-cell communication and are involved in many processes including inflammation, immune signaling, angiogenesis, stress response, senescence, proliferation, and cell differentiation. Accumulating evidence reveals that EVs act in the establishment, maintenance and modulation of autoimmune processes among several others involved in cancer and cardiovascular complications. EVs could also present biomedical applications, as disease biomarkers and therapeutic targets or agents for drug delivery. PMID:26554931

  18. Extracellular vesicles: Emerging targets for cancer therapy

    PubMed Central

    Vader, Pieter; Breakefield, Xandra O.; Wood, Matthew J.A.

    2014-01-01

    Extracellular vesicles (EVs), including exosomes, microvesicles and apoptotic bodies, are released by almost all cell types, including tumour cells. Through transfer of their molecular contents, EVs are capable of altering the function of recipient cells. Increasing evidence suggests a key role for EV-mediated intercellular communication in a variety of cellular processes involved in tumour development and progression, including immune suppression, angiogenesis and metastasis. Aspects of EV biogenesis or function are therefore increasingly being considered as targets for anti-cancer therapy. Here, we summarize the current knowledge on the contributions of EVs to cancer pathogenesis and discuss novel therapeutic strategies to target EVs to prevent tumour growth and spread. PMID:24703619

  19. Mapping organelle motion reveals a vesicular conveyor belt spatially replenishing secretory vesicles in stimulated chromaffin cells.

    PubMed

    Maucort, Guillaume; Kasula, Ravikiran; Papadopulos, Andreas; Nieminen, Timo A; Rubinsztein-Dunlop, Halina; Meunier, Frederic A

    2014-01-01

    How neurosecretory cells spatially adjust their secretory vesicle pools to replenish those that have fused and released their hormonal content is currently unknown. Here we designed a novel set of image analyses to map the probability of tracked organelles undergoing a specific type of movement (free, caged or directed). We then applied our analysis to time-lapse z-stack confocal imaging of secretory vesicles from bovine Chromaffin cells to map the global changes in vesicle motion and directionality occurring upon secretagogue stimulation. We report a defined region abutting the cortical actin network that actively transports secretory vesicles and is dissipated by actin and microtubule depolymerizing drugs. The directionality of this "conveyor belt" towards the cell surface is activated by stimulation. Actin and microtubule networks therefore cooperatively probe the microenvironment to transport secretory vesicles to the periphery, providing a mechanism whereby cells globally adjust their vesicle pools in response to secretagogue stimulation. PMID:24489879

  20. Functional Nanoscale Imaging of Synaptic Vesicle Cycling with Superfast Fixation.

    PubMed

    Schikorski, Thomas

    2016-01-01

    Functional imaging is the measurement of structural changes during an ongoing physiological process over time. In many cases, functional imaging has been implemented by tracking a fluorescent signal in live imaging sessions. Electron microscopy, however, excludes live imaging which has hampered functional imaging approaches on the ultrastructural level. This barrier was broken with the introduction of superfast fixation. Superfast fixation is capable of stopping and fixing membrane traffic at sufficient speed to capture a physiological process at a distinct functional state. Applying superfast fixation at sequential time points allows tracking of membrane traffic in a step-by-step fashion.This technique has been applied to track labeled endocytic vesicles at central synapses as they pass through the synaptic vesicle cycle. At synapses, neurotransmitter is released from synaptic vesicles (SVs) via fast activity-dependent exocytosis. Exocytosis is coupled to fast endocytosis that retrieves SVs components from the plasma membrane shortly after release. Fluorescent FM dyes that bind to the outer leaflet of the plasma membrane enter the endocytic vesicle during membrane retrieval and remain trapped in endocytic vesicles have been widely used to study SV exo-endocytic cycling in live imaging sessions. FM dyes can also be photoconverted into an electron-dense diaminobenzidine polymer which allows the investigation of SV cycling in the electron microscope. The combination of FM labeling with superfast fixation made it possible to track the fine structure of endocytic vesicles at 1 s intervals. Because this combination is not specialized to SV cycling, many other cellular processes can be studied. Furthermore, the technique is easy to set up and cost effective.This chapter describes activity-dependent FM dye labeling of SVs in cultured hippocampal neurons, superfast microwave-assisted fixation, photoconversion of the fluorescent endocytic vesicles, and the analysis of

  1. Needle-free jet injection of intact phospholipid vesicles across the skin: a feasibility study.

    PubMed

    Schlich, Michele; Lai, Francesco; Murgia, Sergio; Valenti, Donatella; Fadda, Anna Maria; Sinico, Chiara

    2016-08-01

    Needle-free liquid jet injectors are devices developed for the delivery of pharmaceutical solutions through the skin. In this paper, we investigated for the first time the ability of these devices to deliver intact lipid vesicles. Diclofenac sodium loaded phospholipid vesicles of two types, namely liposomes and transfersomes, were prepared and fully characterized. The lipid vesicles were delivered through a skin specimen using a jet injector and the collected samples were analyzed to assess vesicle structural integrity, drug retention and release kinetics after the injection. In this regard, data concerning size, size distribution, surface charge of vesicles and bilayer integrity and thickness, before and after the injections, were measured by dynamic light scattering experiments, cryo-electron microscopy, and X-ray scattering techniques. Finally, the effect of vesicle fast jet injection through the skin on drug release kinetics was checked by in vitro experiments. The retention of the morphological, physico-chemical, and technological features after injection, proved the integrity of vesicles after skin crossing as a high-speed liquid jet. The delivery of undamaged vesicular carriers beneath the skin is of utmost importance to create a controlled release drug depot in the hypoderm, which may be beneficial for several localized therapies. Overall results reported in this paper may broaden the range of application of liquid jet injectors to lipid vesicle based formulations thus combining beneficial performance of painless devices with those of liposomal drug delivery systems. PMID:27422107

  2. Complexin-1 Enhances the On-Rate of Vesicle Docking via Simultaneous SNARE and Membrane Interactions

    PubMed Central

    2013-01-01

    In synaptic terminals, complexin is thought to have inhibitory and activating roles for spontaneous “mini” release and evoked synchronized neurotransmitter release, respectively. We used single vesicle–vesicle microscopy imaging to study the effect of complexin-1 on the on-rate of docking between vesicles that mimic synaptic vesicles and the plasma membrane. We found that complexin-1 enhances the on-rate of docking of synaptic vesicle mimics containing full-length synaptobrevin-2 and full-length synaptotagmin-1 to plasma membrane-mimicking vesicles containing full-length syntaxin-1A and SNAP-25A. This effect requires the C-terminal domain of complexin-1, which binds to the membrane, the presence of PS in the membrane, and the core region of complexin-1, which binds to the SNARE complex. PMID:24083833

  3. Histones Cause Aggregation and Fusion of Lipid Vesicles Containing Phosphatidylinositol-4-Phosphate

    PubMed Central

    Lete, Marta G.; Sot, Jesus; Gil, David; Valle, Mikel; Medina, Milagros; Goñi, Felix M.; Alonso, Alicia

    2015-01-01

    In a previous article, we demonstrated that histones (H1 or histone octamers) interact with negatively charged bilayers and induce extensive aggregation of vesicles containing phosphatidylinositol-4-phosphate (PIP) and, to a lesser extent, vesicles containing phosphatidylinositol (PI). Here, we found that vesicles containing PIP, but not those containing PI, can undergo fusion induced by histones. Fusion was demonstrated through the observation of intervesicular mixing of total lipids and inner monolayer lipids, and by ultrastructural and confocal microscopy studies. Moreover, in both PI- and PIP-containing vesicles, histones caused permeabilization and release of vesicular aqueous contents, but the leakage mechanism was different (all-or-none for PI and graded release for PIP vesicles). These results indicate that histones could play a role in the remodeling of the nuclear envelope that takes place during the mitotic cycle. PMID:25692591

  4. Nanotube-Enabled Vesicle-Vesicle Communication: A Computational Model.

    PubMed

    Zhang, Liuyang; Wang, Xianqiao

    2015-07-01

    Cell-to-cell communications via the tunneling nanotubes or gap junction channels are vital for the development and maintenance of multicellular organisms. Instead of these intrinsic communication pathways, how to design artificial communication channels between cells remains a challenging but interesting problem. Here, we perform dissipative particle dynamics (DPD) simulations to analyze the interaction between rotational nanotubes (RNTs) and vesicles so as to provide a novel design mechanism for cell-to-cell communication. Simulation results have demonstrated that the RNTs are capable of generating local disturbance and promote vesicle translocation toward the RNTs. Through ligand pattern designing on the RNTs, we can find a suitable nanotube candidate with a specific ligand coating pattern for forming the RNT-vesicle network. The results also show that a RNT can act as a bridged channel between vesicles, which facilitates substance transfer. Our findings provide useful guidelines for the molecular design of patterned RNTs for creating a synthetic channel between cells. PMID:26266730

  5. A model of synaptic vesicle-pool depletion and replenishment can account for the interspike interval distributions and nonrenewal properties of spontaneous spike trains of auditory-nerve fibers.

    PubMed

    Peterson, Adam J; Irvine, Dexter R F; Heil, Peter

    2014-11-01

    In mammalian auditory systems, the spiking characteristics of each primary afferent (type I auditory-nerve fiber; ANF) are mainly determined by a single ribbon synapse in a single receptor cell (inner hair cell; IHC). ANF spike trains therefore provide a window into the operation of these synapses and cells. It was demonstrated previously (Heil et al., 2007) that the distribution of interspike intervals (ISIs) of cat ANFs during spontaneous activity can be modeled as resulting from refractoriness operating on a non-Poisson stochastic point process of excitation (transmitter release events from the IHC). Here, we investigate nonrenewal properties of these cat-ANF spontaneous spike trains, manifest as negative serial ISI correlations and reduced spike-count variability over short timescales. A previously discussed excitatory process, the constrained failure of events from a homogeneous Poisson point process, can account for these properties, but does not offer a parsimonious explanation for certain trends in the data. We then investigate a three-parameter model of vesicle-pool depletion and replenishment and find that it accounts for all experimental observations, including the ISI distributions, with only the release probability varying between spike trains. The maximum number of units (single vesicles or groups of simultaneously released vesicles) in the readily releasable pool and their replenishment time constant can be assumed to be constant (∼4 and 13.5 ms, respectively). We suggest that the organization of the IHC ribbon synapses not only enables sustained release of neurotransmitter but also imposes temporal regularity on the release process, particularly when operating at high rates. PMID:25378173

  6. Biogenesis and Functions of Exosomes and Extracellular Vesicles.

    PubMed

    Dreyer, Florian; Baur, Andreas

    2016-01-01

    Research on extracellular vesicles (EVs) is a new and emerging field that is rapidly growing. Many features of these structures still need to be described and discovered. This concerns their biogenesis, their release and cellular entrance mechanisms, as well as their functions, particularly in vivo. Hence our knowledge on EV is constantly evolving and sometimes changing. In our review we summarize the most important facts of our current knowledge about extracellular vesicles and described some of the assumed functions in the context of cancer and HIV infection. PMID:27317183

  7. Extracellular Vesicles as New Players in Cellular Senescence.

    PubMed

    Urbanelli, Lorena; Buratta, Sandra; Sagini, Krizia; Tancini, Brunella; Emiliani, Carla

    2016-01-01

    Cell senescence is associated with the secretion of many factors, the so-called "senescence-associated secretory phenotype", which may alter tissue microenvironment, stimulating the organism to clean up senescent cells and replace them with newly divided ones. Therefore, although no longer dividing, these cells are still metabolically active and influence the surrounding tissue. Much attention has been recently focused not only on soluble factors released by senescent cells, but also on extracellular vesicles as conveyors of senescence signals outside the cell. Here, we give an overview of the role of extracellular vesicles in biological processes and signaling pathways related to senescence and aging. PMID:27571072

  8. Benzaldehyde-functionalized Polymer Vesicles

    PubMed Central

    Sun, Guorong; Fang, Huafeng; Cheng, Chong; Lu, Peng; Zhang, Ke; Walker, Amy V.; Taylor, John-Stephen A.; Wooley, Karen L.

    2009-01-01

    Polymer vesicles with diameters of ca. 100-600 nm and bearing benzaldehyde functionalities within the vesicular walls were constructed through self assembly of an amphiphilic block copolymer PEO45-b-PVBA26 in water. The reactivity of the benzaldehyde functionalities was verified by crosslinking the polymersomes, and also by a one-pot crosslinking and functionalization approach to further render the vesicles fluorescent, each via reductive amination. In vitro studies found these labelled nanostructures to undergo cell association. PMID:19309173

  9. Photolabile plasmonic vesicles assembled from amphiphilic gold nanoparticles for remote-controlled traceable drug delivery

    NASA Astrophysics Data System (ADS)

    Song, Jibin; Fang, Zheng; Wang, Chenxu; Zhou, Jiajing; Duan, Bo; Pu, Lu; Duan, Hongwei

    2013-06-01

    We have developed a new type of photo-responsive plasmonic vesicles that allow for active delivery of anticancer payloads to specific cancer cells and personalized drug release regulated by external photo-irradiation. Our results show that amphiphilic gold nanoparticles carrying hydrophilic poly(ethylene glycol) (PEG) and photo-responsive hydrophobic poly(2-nitrobenzyl acrylate) (PNBA) can assemble into plasmonic vesicles with gold nanoparticles embedded in the hydrophobic shell of PNBA, which can be converted into hydrophilic poly(acrylic acid) upon photo exposure. Benefiting from the interparticle plasmonic coupling of gold nanoparticles in close proximity, the plasmonic vesicles assembled from amphiphilic gold nanoparticles exhibit distinctively different optical properties from single nanoparticle units, which offer the opportunity to track the photo-triggered disassembly of the vesicles and the associated cargo release by plasmonic imaging. We have shown the dense layer of PEG grafts on the vesicles not only endow plasmonic vesicles with excellent colloidal stability, but also serve as flexible spacers for bioconjugation of targeting ligands to facilitate the specific recognition of cancer cells. The targeted delivery of model anticancer drug doxorubicin, investigated by dual-modality plasmonic and fluorescence imaging and toxicity studies, clearly demonstrated the potential of photolabile plasmonic vesicles as multi-functional drug carriers.We have developed a new type of photo-responsive plasmonic vesicles that allow for active delivery of anticancer payloads to specific cancer cells and personalized drug release regulated by external photo-irradiation. Our results show that amphiphilic gold nanoparticles carrying hydrophilic poly(ethylene glycol) (PEG) and photo-responsive hydrophobic poly(2-nitrobenzyl acrylate) (PNBA) can assemble into plasmonic vesicles with gold nanoparticles embedded in the hydrophobic shell of PNBA, which can be converted into

  10. Emerging roles of extracellular vesicles in the nervous system.

    PubMed

    Rajendran, Lawrence; Bali, Jitin; Barr, Maureen M; Court, Felipe A; Krämer-Albers, Eva-Maria; Picou, Frederic; Raposo, Graça; van der Vos, Kristan E; van Niel, Guillaume; Wang, Juan; Breakefield, Xandra O

    2014-11-12

    Information exchange executed by extracellular vesicles, including exosomes, is a newly described form of intercellular communication important in the development and physiology of neural systems. These vesicles can be released from cells, are packed with information including signaling proteins and both coding and regulatory RNAs, and can be taken up by target cells, thereby facilitating the transfer of multilevel information. Recent studies demonstrate their critical role in physiological processes, including nerve regeneration, synaptic function, and behavior. These vesicles also have a sinister role in the propagation of toxic amyloid proteins in neurodegenerative conditions, including prion diseases and Alzheimer's and Parkinson's diseases, in inducing neuroinflammation by exchange of information between the neurons and glia, as well as in aiding tumor progression in the brain by subversion of normal cells. This article provides a summary of topics covered in a symposium and is not meant to be a comprehensive review of the subject. PMID:25392515

  11. The role of synaptobrevin1/VAMP1 in Ca2+-triggered neurotransmitter release at the mouse neuromuscular junction.

    PubMed

    Liu, Yun; Sugiura, Yoshie; Lin, Weichun

    2011-04-01

    Synaptobrevin (Syb)/vesicle-associated membrane protein (VAMP) is a small, integral membrane protein of synaptic vesicles. Two homologous isoforms of synaptobrevin, Syb1/VAMP1 and Syb2/VAMP2, exhibit distinct but partially overlapping patterns of expression in adult mammalian neurons: Syb1 is predominantly expressed in the spinal cord, especially in motor neurons and motor nerve terminals of the neuromuscular junction (NMJ), whereas Syb2 is primarily expressed in central synapses in the brain. Whereas many studies have focused on the function of Syb2 in the brain, few studies have examined the role of Syb1. Here we report that Syb1 plays a critical role in neuromuscular synaptic transmission. A null mutation of Syb1 resulting from a spontaneous, nonsense mutation in mice significantly impairs the function, but not the structure, of the NMJ. In particular, both spontaneous and evoked synaptic activities in Syb1 mutant mice are reduced significantly relative to control mice. Short-term synaptic plasticity in Syb1-deficient NMJs is markedly altered: paired-pulse facilitation is significantly enhanced, suggesting a reduction in the initial release probability of synaptic vesicles. Furthermore, Syb1-deficient NMJs display a pronounced asynchrony in neurotransmitter release. These impairments are not due to an alteration of the size of the readily releasable pool of vesicles, but are attributable to reduced sensitivity and cooperativity to calcium (Ca2+) due to the absence of Syb1. Our findings demonstrate that Syb1 plays an essential, non-redundant role in Ca2+-triggered vesicle exocytosis at the mouse NMJ. PMID:21282288

  12. Nanoscale dynamics of synaptic vesicle trafficking and fusion at the presynaptic active zone

    PubMed Central

    Vaithianathan, Thirumalini; Henry, Diane; Akmentin, Wendy; Matthews, Gary

    2016-01-01

    The cytomatrix at the active zone (CAZ) is a macromolecular complex that facilitates the supply of release-ready synaptic vesicles to support neurotransmitter release at synapses. To reveal the dynamics of this supply process in living synapses, we used super-resolution imaging to track single vesicles at voltage-clamped presynaptic terminals of retinal bipolar neurons, whose CAZ contains a specialized structure—the synaptic ribbon—that supports both fast, transient and slow, sustained modes of transmission. We find that the synaptic ribbon serves a dual function as a conduit for diffusion of synaptic vesicles and a platform for vesicles to fuse distal to the plasma membrane itself, via compound fusion. The combination of these functions allows the ribbon-type CAZ to achieve the continuous transmitter release required by synapses of neurons that carry tonic, graded visual signals in the retina. DOI: http://dx.doi.org/10.7554/eLife.13245.001 PMID:26880547

  13. Enrichment of calcifying extracellular vesicles using density-based ultracentrifugation protocol

    PubMed Central

    Hutcheson, Joshua D.; Goettsch, Claudia; Pham, Tan; Iwashita, Masaya; Aikawa, Masanori; Singh, Sasha A.; Aikawa, Elena

    2014-01-01

    Calcifying extracellular vesicles (EVs) released from cells within atherosclerotic plaques have received increased attention for their role in mediating vascular calcification, a major predictor of cardiovascular morbidity and mortality. However, little is known about the difference between this pathologic vesicle population and other EVs that contribute to physiological cellular processes. One major challenge that hinders research into these differences is the inability to selectively isolate calcifying EVs from other vesicle populations. In this study, we hypothesized that the formation of mineral within calcifying EVs would increase the density of the vesicles such that they would pellet at a faster rate during ultracentrifugation. We show that after 10 min of ultracentrifugation at 100,000×g, calcifying EVs are depleted from the conditioned media of calcifying coronary artery smooth muscle cells and are enriched in the pelleted portion. We utilized mass spectrometry to establish functional proteomic differences between the calcifying EVs enriched in the 10 min ultracentrifugation compared to other vesicle populations preferentially pelleted by longer ultracentrifugation times. The procedures established in this study will allow us to enrich the vesicle population of interest and perform advanced proteomic analyses to find subtle differences between calcifying EVs and other vesicle populations that may be translated into therapeutic targets for vascular calcification. Finally, we will show that the differences in ultracentrifugation times required to pellet the vesicle populations can also be used to estimate physical differences between the vesicles. PMID:25491249

  14. The aminosterol antibiotic squalamine permeabilizes large unilamellar phospholipid vesicles.

    PubMed

    Selinsky, B S; Zhou, Z; Fojtik, K G; Jones, S R; Dollahon, N R; Shinnar, A E

    1998-03-13

    The ability of the shark antimicrobial aminosterol squalamine to induce the leakage of polar fluorescent dyes from large unilamellar phospholipid vesicles (LUVs) has been measured. Micromolar squalamine causes leakage of carboxyfluorescein (CF) from vesicles prepared from the anionic phospholipids phosphatidylglycerol (PG), phosphatidylserine (PS), and cardiolipin. Binding analyses based on the leakage data show that squalamine has its highest affinity to phosphatidylglycerol membranes, followed by phosphatidylserine and cardiolipin membranes. Squalamine will also induce the leakage of CF from phosphatidylcholine (PC) LUVs at low phospholipid concentrations. At high phospholipid concentrations, the leakage of CF from PC LUVs deviates from a simple dose-response relationship, and it appears that some of the squalamine can no longer cause leakage. Fluorescent dye leakage generated by squalamine is graded, suggesting the formation of a discrete membrane pore rather than a generalized disruption of vesicular membranes. By using fluorescently labeled dextrans of different molecular weight, material with molecular weight released from vesicles by squalamine, but material with molecular weight >/=10,000 is retained. Negative stain electron microscopy of squalamine-treated LUVs shows that squalamine decreases the average vesicular size in a concentration-dependent manner. Squalamine decreases the size of vesicles containing anionic phospholipid at a lower squalamine/lipid molar ratio than pure PC LUVs. In a centrifugation assay, squalamine solubilizes phospholipid, but only at significantly higher squalamine/phospholipid ratios than required for either dye leakage or vesicle size reduction. Squalamine solubilizes PC at lower squalamine/phospholipid ratios than PG. We suggest that squalamine complexes with phospholipid to form a discrete structure within the bilayers of LUVs, resulting in the transient leakage of small encapsulated molecules. At higher

  15. 16 CFR 1101.13 - Public ability to ascertain readily identity of manufacturer or private labeler.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Public ability to ascertain readily identity...)(1) § 1101.13 Public ability to ascertain readily identity of manufacturer or private labeler. The... readily ascertain from the information itself the identity of the manufacturer or private labeler of...

  16. Shape modification of phospholipid vesicles induced by high pressure: influence of bilayer compressibility.

    PubMed

    Beney, L; Perrier-Cornet, J M; Hayert, M; Gervais, P

    1997-03-01

    Giant vesicles composed of pure egg yolk phosphatidylcholine (EYPC) or containing cholesterol (28 mol%) have been studied during a high hydrostatic pressure treatment to 285 MPa by microscopic observation. During pressure loading the vesicles remain spherical. A shape transition consisting of budding only occurs on the cholesterol-free vesicles during pressure release. The decrease in the volume delimited by the pure EYPC bilayer between 0.1 and 285 MPa was found to be 16% of its initial volume, whereas the bulk compression of water in this pressure range is only 10%. So the compression at 285 MPa induced a water exit from the pure EYPC vesicle. The shape transition of the EYPC vesicle during pressure release is attributed to an increase in its area-to-volume ratio caused by the loss of its water content during compression. Because bulk compression of the cholesterol-containing vesicle is close to that of water, no water transfer would be induced across the bilayer and the vesicle remains spherical during the pressure release. PMID:9138571

  17. Shape modification of phospholipid vesicles induced by high pressure: influence of bilayer compressibility.

    PubMed Central

    Beney, L; Perrier-Cornet, J M; Hayert, M; Gervais, P

    1997-01-01

    Giant vesicles composed of pure egg yolk phosphatidylcholine (EYPC) or containing cholesterol (28 mol%) have been studied during a high hydrostatic pressure treatment to 285 MPa by microscopic observation. During pressure loading the vesicles remain spherical. A shape transition consisting of budding only occurs on the cholesterol-free vesicles during pressure release. The decrease in the volume delimited by the pure EYPC bilayer between 0.1 and 285 MPa was found to be 16% of its initial volume, whereas the bulk compression of water in this pressure range is only 10%. So the compression at 285 MPa induced a water exit from the pure EYPC vesicle. The shape transition of the EYPC vesicle during pressure release is attributed to an increase in its area-to-volume ratio caused by the loss of its water content during compression. Because bulk compression of the cholesterol-containing vesicle is close to that of water, no water transfer would be induced across the bilayer and the vesicle remains spherical during the pressure release. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:9138571

  18. Extracellular vesicles in Alzheimer's disease: friends or foes? Focus on aβ-vesicle interaction.

    PubMed

    Joshi, Pooja; Benussi, Luisa; Furlan, Roberto; Ghidoni, Roberta; Verderio, Claudia

    2015-01-01

    The intercellular transfer of amyloid-β (Aβ) and tau proteins has received increasing attention in Alzheimer's disease (AD). Among other transfer modes, Aβ and tau dissemination has been suggested to occur through release of Extracellular Vesicles (EVs), which may facilitate delivery of pathogenic proteins over large distances. Recent evidence indicates that EVs carry on their surface, specific molecules which bind to extracellular Aβ, opening the possibility that EVs may also influence Aβ assembly and synaptotoxicity. In this review we focus on studies which investigated the impact of EVs in Aβ-mediated neurodegeneration and showed either detrimental or protective role for EVs in the pathology. PMID:25741766

  19. Rab27b regulates exocytosis of secretory vesicles in acinar epithelial cells from the lacrimal gland

    PubMed Central

    Chiang, Lilian; Ngo, Julie; Schechter, Joel E.; Karvar, Serhan; Tolmachova, Tanya; Seabra, Miguel C.; Hume, Alistair N.

    2011-01-01

    Tear proteins are supplied by the regulated fusion of secretory vesicles at the apical surface of lacrimal gland acinar cells, utilizing trafficking mechanisms largely yet uncharacterized. We investigated the role of Rab27b in the terminal release of these secretory vesicles. Confocal fluorescence microscopy analysis of primary cultured rabbit lacrimal gland acinar cells revealed that Rab27b was enriched on the membrane of large subapical vesicles that were significantly colocalized with Rab3D and Myosin 5C. Stimulation of cultured acinar cells with the secretagogue carbachol resulted in apical fusion of these secretory vesicles with the plasma membrane. Evaluation of morphological changes by transmission electron microscopy of lacrimal glands from Rab27b−/− and Rab27ash/ash/Rab27b−/− mice, but not ashen mice deficient in Rab27a, showed changes in abundance and organization of secretory vesicles, further confirming a role for this protein in secretory vesicle exocytosis. Glands lacking Rab27b also showed increased lysosomes, damaged mitochondria, and autophagosome-like organelles. In vitro, expression of constitutively active Rab27b increased the average size but retained the subapical distribution of Rab27b-enriched secretory vesicles, whereas dominant-negative Rab27b redistributed this protein from membrane to the cytoplasm. Functional studies measuring release of a cotransduced secretory protein, syncollin-GFP, showed that constitutively active Rab27b enhanced, whereas dominant-negative Rab27b suppressed, stimulated release. Disruption of actin filaments inhibited vesicle fusion to the apical membrane but did not disrupt homotypic fusion. These data show that Rab27b participates in aspects of lacrimal gland acinar cell secretory vesicle formation and release. PMID:21525430

  20. Clathrin regenerates synaptic vesicles from endosomes

    PubMed Central

    Watanabe, Shigeki; Trimbuch, Thorsten; Camacho-Pérez, Marcial; Rost, Benjamin R.; Brokowski, Bettina; Söhl-Kielczynski, Berit; Felies, Annegret; Davis, M. Wayne; Rosenmund, Christian; Jorgensen, Erik M.

    2014-01-01

    Summary Ultrafast endocytosis can retrieve a single large endocytic vesicle as fast as 50-100 ms after synaptic vesicle fusion. However, the fate of the large endocytic vesicles is not known. Here we demonstrate that these vesicles transition to a synaptic endosome about one second after stimulation. The endosome is resolved into coated vesicles after 3 seconds, which in turn become small-diameter synaptic vesicles 5-6 seconds after stimulation. We disrupted clathrin function using RNAi and found that clathrin is not required for ultrafast endocytosis but is required to generate synaptic vesicles from the endosome. Ultrafast endocytosis fails when actin polymerization is disrupted, or when neurons are stimulated at room temperature instead of physiological temperature. In the absence of ultrafast endocytosis, synaptic vesicles are retrieved directly from the plasma membrane by clathrin-mediated endocytosis. These results explain in large part discrepancies among published experiments concerning the role of clathrin in synaptic vesicle endocytosis. PMID:25296249

  1. Preparation of anion-exchangeable polymer vesicles through the self-assembly of hyperbranched polymeric ionic liquids.

    PubMed

    Fan, Yujiao; Zhang, Dapeng; Wang, Jie; Jin, Haibao; Zhou, Yongfeng; Yan, Deyue

    2015-04-28

    This work reports the self-assembly of anion-exchangeable vesicles from an amphiphilic hyperbranched polymeric ionic liquid (HBPIL). By a simple one-step anion exchange with methyl orange, the obtained HBPILs could self-assemble into pH-indicative and colorful vesicles in water with color changes directly visible to the naked eye in response to solution pH. In addition, by another step of anion exchange with bovine serum albumin (BSA), the BSA-coated vesicles could also be readily prepared. PMID:25813408

  2. Dysregulations of Synaptic Vesicle Trafficking in Schizophrenia.

    PubMed

    Egbujo, Chijioke N; Sinclair, Duncan; Hahn, Chang-Gyu

    2016-08-01

    Schizophrenia is a serious psychiatric illness which is experienced by about 1 % of individuals worldwide and has a debilitating impact on perception, cognition, and social function. Over the years, several models/hypotheses have been developed which link schizophrenia to dysregulations of the dopamine, glutamate, and serotonin receptor pathways. An important segment of these pathways that have been extensively studied for the pathophysiology of schizophrenia is the presynaptic neurotransmitter release mechanism. This set of molecular events is an evolutionarily well-conserved process that involves vesicle recruitment, docking, membrane fusion, and recycling, leading to efficient neurotransmitter delivery at the synapse. Accumulated evidence indicate dysregulation of this mechanism impacting postsynaptic signal transduction via different neurotransmitters in key brain regions implicated in schizophrenia. In recent years, after ground-breaking work that elucidated the operations of this mechanism, research efforts have focused on the alterations in the messenger RNA (mRNA) and protein expression of presynaptic neurotransmitter release molecules in schizophrenia and other neuropsychiatric conditions. In this review article, we present recent evidence from schizophrenia human postmortem studies that key proteins involved in the presynaptic release mechanism are dysregulated in the disorder. We also discuss the potential impact of dysfunctional presynaptic neurotransmitter release on the various neurotransmitter systems implicated in schizophrenia. PMID:27371030

  3. Ornithine decarboxylase antizyme inhibitor 2 regulates intracellular vesicle trafficking

    SciTech Connect

    Kanerva, Kristiina; Maekitie, Laura T.; Baeck, Nils; Andersson, Leif C.

    2010-07-01

    Antizyme inhibitor 1 (AZIN1) and 2 (AZIN2) are proteins that activate ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis. Both AZINs release ODC from its inactive complex with antizyme (AZ), leading to formation of the catalytically active ODC. The ubiquitously expressed AZIN1 is involved in cell proliferation and transformation whereas the role of the recently found AZIN2 in cellular functions is unknown. Here we report the intracellular localization of AZIN2 and present novel evidence indicating that it acts as a regulator of vesicle trafficking. We used immunostaining to demonstrate that both endogenous and FLAG-tagged AZIN2 localize to post-Golgi vesicles of the secretory pathway. Immuno-electron microscopy revealed that the vesicles associate mainly with the trans-Golgi network (TGN). RNAi-mediated knockdown of AZIN2 or depletion of cellular polyamines caused selective fragmentation of the TGN and retarded the exocytotic release of vesicular stomatitis virus glycoprotein. Exogenous addition of polyamines normalized the morphological changes and reversed the inhibition of protein secretion. Our findings demonstrate that AZIN2 regulates the transport of secretory vesicles by locally activating ODC and polyamine biosynthesis.

  4. Altered mechanisms underlying the abnormal glutamate release in amyotrophic lateral sclerosis at a pre-symptomatic stage of the disease.

    PubMed

    Bonifacino, Tiziana; Musazzi, Laura; Milanese, Marco; Seguini, Mara; Marte, Antonella; Gallia, Elena; Cattaneo, Luca; Onofri, Franco; Popoli, Maurizio; Bonanno, Giambattista

    2016-11-01

    Abnormal Glu release occurs in the spinal cord of SOD1(G93A) mice, a transgenic animal model for human ALS. Here we studied the mechanisms underlying Glu release in spinal cord nerve terminals of SOD1(G93A) mice at a pre-symptomatic disease stage (30days) and found that the basal release of Glu was more elevated in SOD1(G93A) with respect to SOD1 mice, and that the surplus of release relies on synaptic vesicle exocytosis. Exposure to high KCl or ionomycin provoked Ca(2+)-dependent Glu release that was likewise augmented in SOD1(G93A) mice. Equally, the Ca(2+)-independent hypertonic sucrose-induced Glu release was abnormally elevated in SOD1(G93A) mice. Also in this case, the surplus of Glu release was exocytotic in nature. We could determine elevated cytosolic Ca(2+) levels, increased phosphorylation of Synapsin-I, which was causally related to the abnormal Glu release measured in spinal cord synaptosomes of pre-symptomatic SOD1(G93A) mice, and increased phosphorylation of glycogen synthase kinase-3 at the inhibitory sites, an event that favours SNARE protein assembly. Western blot experiments revealed an increased number of SNARE protein complexes at the nerve terminal membrane, with no changes of the three SNARE proteins and increased expression of synaptotagmin-1 and β-Actin, but not of an array of other release-related presynaptic proteins. These results indicate that the abnormal exocytotic Glu release in spinal cord of pre-symptomatic SOD1(G93A) mice is mainly based on the increased size of the readily releasable pool of vesicles and release facilitation, supported by plastic changes of specific presynaptic mechanisms. PMID:27425885

  5. Heparin affinity purification of extracellular vesicles

    PubMed Central

    Balaj, Leonora; Atai, Nadia A.; Chen, Weilin; Mu, Dakai; Tannous, Bakhos A.; Breakefield, Xandra O.; Skog, Johan; Maguire, Casey A.

    2015-01-01

    Extracellular vesicles (EVs) are lipid membrane vesicles released by cells. They carry active biomolecules including DNA, RNA, and protein which can be transferred to recipient cells. Isolation and purification of EVs from culture cell media and biofluids is still a major challenge. The most widely used isolation method is ultracentrifugation (UC) which requires expensive equipment and only partially purifies EVs. Previously we have shown that heparin blocks EV uptake in cells, supporting a direct EV-heparin interaction. Here we show that EVs can be purified from cell culture media and human plasma using ultrafiltration (UF) followed by heparin-affinity beads. UF/heparin-purified EVs from cell culture displayed the EV marker Alix, contained a diverse RNA profile, had lower levels of protein contamination, and were functional at binding to and uptake into cells. RNA yield was similar for EVs isolated by UC. We were able to detect mRNAs in plasma samples with comparable levels to UC samples. In conclusion, we have discovered a simple, scalable, and effective method to purify EVs taking advantage of their heparin affinity. PMID:25988257

  6. Tetraspanins in Extracellular Vesicle Formation and Function

    PubMed Central

    Andreu, Zoraida; Yáñez-Mó, María

    2014-01-01

    Extracellular vesicles (EVs) represent a novel mechanism of intercellular communication as vehicles for intercellular transfer of functional membrane and cytosolic proteins, lipids, and RNAs. Microvesicles, ectosomes, shedding vesicles, microparticles, and exosomes are the most common terms to refer to the different kinds of EVs based on their origin, composition, size, and density. Exosomes have an endosomal origin and are released by many different cell types, participating in different physiological and/or pathological processes. Depending on their origin, they can alter the fate of recipient cells according to the information transferred. In the last two decades, EVs have become the focus of many studies because of their putative use as non-invasive biomarkers and their potential in bioengineering and clinical applications. In order to exploit this ability of EVs many aspects of their biology should be deciphered. Here, we review the mechanisms involved in EV biogenesis, assembly, recruitment of selected proteins, and genetic material as well as the uptake mechanisms by target cells in an effort to understand EV functions and their utility in clinical applications. In these contexts, the role of proteins from the tetraspanin superfamily, which are among the most abundant membrane proteins of EVs, will be highlighted. PMID:25278937

  7. Role of Extracellular Vesicles in Hematological Malignancies

    PubMed Central

    Raimondo, Stefania; Corrado, Chiara; Raimondi, Lavinia; De Leo, Giacomo; Alessandro, Riccardo

    2015-01-01

    In recent years the role of tumor microenvironment in the progression of hematological malignancies has been widely recognized. Recent studies have focused on how cancer cells communicate within the microenvironment. Among several factors (cytokines, growth factors, and ECM molecules), a key role has been attributed to extracellular vesicles (EV), released from different cell types. EV (microvesicles and exosomes) may affect stroma remodeling, host cell functions, and tumor angiogenesis by inducing gene expression modulation in target cells, thus promoting cancer progression and metastasis. Microvesicles and exosomes can be recovered from the blood and other body fluids of cancer patients and contain and deliver genetic and proteomic contents that reflect the cell of origin, thus constituting a source of new predictive biomarkers involved in cancer development and serving as possible targets for therapies. Moreover, due to their specific cell-tropism and bioavailability, EV can be considered natural vehicles suitable for drug delivery. Here we will discuss the recent advances in the field of EV as actors in hematological cancer progression, pointing out the role of these vesicles in the tumor-host interplay and in their use as biomarkers for hematological malignancies. PMID:26583135

  8. Tetraspanins in extracellular vesicle formation and function.

    PubMed

    Andreu, Zoraida; Yáñez-Mó, María

    2014-01-01

    Extracellular vesicles (EVs) represent a novel mechanism of intercellular communication as vehicles for intercellular transfer of functional membrane and cytosolic proteins, lipids, and RNAs. Microvesicles, ectosomes, shedding vesicles, microparticles, and exosomes are the most common terms to refer to the different kinds of EVs based on their origin, composition, size, and density. Exosomes have an endosomal origin and are released by many different cell types, participating in different physiological and/or pathological processes. Depending on their origin, they can alter the fate of recipient cells according to the information transferred. In the last two decades, EVs have become the focus of many studies because of their putative use as non-invasive biomarkers and their potential in bioengineering and clinical applications. In order to exploit this ability of EVs many aspects of their biology should be deciphered. Here, we review the mechanisms involved in EV biogenesis, assembly, recruitment of selected proteins, and genetic material as well as the uptake mechanisms by target cells in an effort to understand EV functions and their utility in clinical applications. In these contexts, the role of proteins from the tetraspanin superfamily, which are among the most abundant membrane proteins of EVs, will be highlighted. PMID:25278937

  9. Folding Up of Gold Nanoparticle Strings into Plasmonic Vesicles for Enhanced Photoacoustic Imaging.

    PubMed

    Liu, Yijing; He, Jie; Yang, Kuikun; Yi, Chenglin; Liu, Yi; Nie, Liming; Khashab, Niveen M; Chen, Xiaoyuan; Nie, Zhihong

    2015-12-21

    The stepwise self-assembly of hollow plasmonic vesicles with vesicular membranes containing strings of gold nanoparticles (NPs) is reported. The formation of chain vesicles can be controlled by tuning the density of the polymer ligands on the surface of the gold NPs. The strong absorption of the chain vesicles in the near-infrared (NIR) region leads to a much higher efficiency in photoacoustic (PA) imaging than for non-chain vesicles. The chain vesicles were further employed for the encapsulation of drugs and the NIR light triggered release of payloads. This work not only offers a new platform for controlling the hierarchical self-assembly of NPs, but also demonstrates that the physical properties of the materials can be tailored by controlling the spatial arrangement of NPs within assemblies to achieve a better performance in biomedical applications. PMID:26555318

  10. Role of extracellular RNA-carrying vesicles in cell differentiation and reprogramming.

    PubMed

    Quesenberry, Peter J; Aliotta, Jason; Deregibus, Maria Chiara; Camussi, Giovanni

    2015-01-01

    Growing evidence suggests that transcriptional regulators and secreted RNA molecules encapsulated within membrane vesicles modify the phenotype of target cells. Membrane vesicles, actively released by cells, represent a mechanism of intercellular communication that is conserved evolutionarily and involves the transfer of molecules able to induce epigenetic changes in recipient cells. Extracellular vesicles, which include exosomes and microvesicles, carry proteins, bioactive lipids, and nucleic acids, which are protected from enzyme degradation. These vesicles can transfer signals capable of altering cell function and/or reprogramming targeted cells. In the present review we focus on the extracellular vesicle-induced epigenetic changes in recipient cells that may lead to phenotypic and functional modifications. The relevance of these phenomena in stem cell biology and tissue repair is discussed. PMID:26334526

  11. Morphological docking of secretory vesicles

    PubMed Central

    2010-01-01

    Calcium-dependent secretion of neurotransmitters and hormones is essential for brain function and neuroendocrine-signaling. Prior to exocytosis, neurotransmitter-containing vesicles dock to the target membrane. In electron micrographs of neurons and neuroendocrine cells, like chromaffin cells many synaptic vesicles (SVs) and large dense-core vesicles (LDCVs) are docked. For many years the molecular identity of the morphologically docked state was unknown. Recently, we resolved the minimal docking machinery in adrenal medullary chromaffin cells using embryonic mouse model systems together with electron-microscopic analyses and also found that docking is controlled by the sub-membrane filamentous (F-)actin. Currently it is unclear if the same docking machinery operates in synapses. Here, I will review our docking assay that led to the identification of the LDCV docking machinery in chromaffin cells and also discuss whether identical docking proteins are required for SV docking in synapses. PMID:20577884

  12. Ellipsoidal Relaxation of Deformed Vesicles

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Lira, Rafael B.; Riske, Karin A.; Dimova, Rumiana; Lin, Hao

    2015-09-01

    Theoretical analysis and experimental quantification on the ellipsoidal relaxation of vesicles are presented. The current work reveals the simplicity and universal aspects of this process. The Helfrich formula is shown to apply to the dynamic relaxation of moderate-to-high tension membranes, and a closed-form solution is derived which predicts the vesicle aspect ratio as a function of time. Scattered data are unified by a time scale, which leads to a similarity behavior, governed by a distinctive solution for each vesicle type. Two separate regimes in the relaxation are identified, namely, the "entropic" and the "constant-tension" regimes. The bending rigidity and the initial membrane tension can be simultaneously extracted from the data analysis, posing the current approach as an effective means for the mechanical analysis of biomembranes.

  13. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate

    PubMed Central

    Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias; Huson, Vincent; Mamer, Lauren; Kalogreades, Lawrence; ter Veer, Mirelle; Ruiter, Marvin; Brose, Nils; Rosenmund, Christian

    2015-01-01

    The energy required to fuse synaptic vesicles with the plasma membrane (‘activation energy’) is considered a major determinant in synaptic efficacy. From reaction rate theory, we predict that a class of modulations exists, which utilize linear modulation of the energy barrier for fusion to achieve supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca2+-dependent release. DOI: http://dx.doi.org/10.7554/eLife.05531.001 PMID:25871846

  14. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes.

    PubMed

    Taylor, Douglas D; Shah, Sahil

    2015-10-01

    Viable tumor cells actively release vesicles into the peripheral circulation and other biologic fluids, which exhibit proteins and RNAs characteristic of that cell. Our group demonstrated the presence of these extracellular vesicles of tumor origin within the peripheral circulation of cancer patients and proposed their utility for diagnosing the presence of tumors and monitoring their response to therapy in the 1970s. However, it has only been in the past 10 years that these vesicles have garnered interest based on the recognition that they serve as essential vehicles for intercellular communication, are key determinants of the immunosuppressive microenvironment observed in cancer and provide stability to tumor-derived components that can serve as diagnostic biomarkers. To date, the clinical utility of extracellular vesicles has been hampered by issues with nomenclature and methods of isolation. The term "exosomes" was introduced in 1981 to denote any nanometer-sized vesicles released outside the cell and to differentiate them from intracellular vesicles. Based on this original definition, we use "exosomes" as synonymous with "extracellular vesicles." While our original studies used ultracentrifugation to isolate these vesicles, we immediately became aware of the significant impact of the isolation method on the number, type, content and integrity of the vesicles isolated. In this review, we discuss and compare the most commonly utilized methods for purifying exosomes for post-isolation analyses. The exosomes derived from these approaches have been assessed for quantity and quality of specific RNA populations and specific marker proteins. These results suggest that, while each method purifies exosomal material, there are pros and cons of each and there are critical issues linked with centrifugation-based methods, including co-isolation of non-exosomal materials, damage to the vesicle's membrane structure and non-standardized parameters leading to qualitative and

  15. Extracellular vesicles are rapidly purified from human plasma by PRotein Organic Solvent PRecipitation (PROSPR)

    PubMed Central

    Gallart-Palau, Xavier; Serra, Aida; Wong, Andrew See Weng; Sandin, Sara; Lai, Mitchell K. P.; Chen, Christopher P.; Kon, Oi Lian; Sze, Siu Kwan

    2015-01-01

    Extracellular vesicles (EVs) such as exosomes and microvesicles mediate intercellular communication and regulate a diverse range of crucial biological processes. Host cells that are damaged, infected or transformed release biomarker-containing EVs into the peripheral circulation, where they can be readily accessed for use in diagnostic or prognostic testing. However, current methods of EV isolation from blood plasma are complex and often require relatively large sample volumes, hence are inefficient for widespread use in clinical settings. Here, we report a novel and inexpensive method of rapidly isolating EVs from small volumes of human blood plasma by PRotein Organic Solvent PRecipitation (PROSPR). PROSPR encompasses a rapid three-step protocol to remove soluble proteins from plasma via precipitation in cold acetone, leaving the lipid-encapsulated EVs behind in suspension. This generates higher purity EVs that can then be obtained from filtration or classical ultracentrifugation methods. We foresee that PROSPR-based purification of EVs will significantly accelerate the discovery of new disease biomarkers and the characterization of EVs with potential for clinical applications. PMID:26419333

  16. Extracellular vesicles in lung microenvironment and pathogenesis.

    PubMed

    Fujita, Yu; Kosaka, Nobuyoshi; Araya, Jun; Kuwano, Kazuyoshi; Ochiya, Takahiro

    2015-09-01

    Increasing attention is being paid to the role of extracellular vesicles (EVs) in various lung diseases. EVs are released by a variety of cells, including respiratory cells and immune cells, and they encapsulate various molecules, such as proteins and microRNAs, as modulators of intercellular communication. Cancer cell-derived EVs play crucial roles in promoting tumor progression and modifying their microenvironment. By contrast, noncancerous cell-derived EVs demonstrate protective functions against injury, such as tissue recovery and repair, to maintain physiological homeostasis. Airway cells in contact with harmful substances may alter their EV composition and modify the balanced reciprocal interactions with surrounding mesenchymal cells. We summarize the novel findings of EV function in various lung diseases, primarily chronic obstructive pulmonary disease (COPD) and lung cancer. PMID:26231094

  17. Vesicle Motion during Sustained Exocytosis in Chromaffin Cells: Numerical Model Based on Amperometric Measurements

    PubMed Central

    Jarukanont, Daungruthai; Bonifas Arredondo, Imelda; Femat, Ricardo; Garcia, Martin E.

    2015-01-01

    Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles’ arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that

  18. Understanding the biosynthesis of platelets-derived extracellular vesicles

    PubMed Central

    Antwi-Baffour, Samuel; Adjei, Jonathan; Aryeh, Claudia; Kyeremeh, Ransford; Kyei, Foster; Seidu, Mahmood A

    2015-01-01

    Platelet-derived extracellular vesicles (PEVs) are described as sub-cellular vesicles released into circulation upon platelets shear stress, activation, injury, or apoptosis. They are considered as universal biomarkers in a wide range of physiological and pathological processes. They are of tremendous significance for the prediction, diagnosis, and observation of the therapeutic success of many diseases. Understanding their biosynthesis and therefore functional properties would contribute to a better understanding of the pathological mechanisms leading to various diseases in which their levels are raised and they are implicated. The review takes a critical look at the historical background of PEVs, their structural components, the mechanism of their formation, physiological, and exogenous stimuli inducing their release and their detection. It concludes by highlighting on the importance of undertaking in-depth studies into PEVs biosynthesis and subsequently gaining a better understanding of their biological role in general. PMID:26417432

  19. Proteomics of Aggregatibacter actinomycetemcomitans Outer Membrane Vesicles.

    PubMed

    Kieselbach, Thomas; Zijnge, Vincent; Granström, Elisabeth; Oscarsson, Jan

    2015-01-01

    Aggregatibacter actinomycetemcomitans is an oral and systemic pathogen associated with aggressive forms of periodontitis and with endocarditis. Outer membrane vesicles (OMVs) released by this species have been demonstrated to deliver effector proteins such as cytolethal distending toxin (CDT) and leukotoxin (LtxA) into human host cells and to act as triggers of innate immunity upon carriage of NOD1- and NOD2-active pathogen-associated molecular patterns (PAMPs). To improve our understanding of the pathogenicity-associated functions that A. actinomycetemcomitans exports via OMVs, we studied the proteome of density gradient-purified OMVs from a rough-colony type clinical isolate, strain 173 (serotype e) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). This analysis yielded the identification of 151 proteins, which were found in at least three out of four independent experiments. Data are available via ProteomeXchange with identifier PXD002509. Through this study, we not only confirmed the vesicle-associated release of LtxA, and the presence of proteins, which are known to act as immunoreactive antigens in the human host, but we also identified numerous additional putative virulence-related proteins in the A. actinomycetemcomitans OMV proteome. The known and putative functions of these proteins include immune evasion, drug targeting, and iron/nutrient acquisition. In summary, our findings are consistent with an OMV-associated proteome that exhibits several offensive and defensive functions, and they provide a comprehensive basis to further disclose roles of A. actinomycetemcomitans OMVs in periodontal and systemic disease. PMID:26381655

  20. Glioblastoma extracellular vesicles: reservoirs of potential biomarkers

    PubMed Central

    Redzic, Jasmina S; Ung, Timothy H; Graner, Michael W

    2014-01-01

    Glioblastoma multiforme (GBM) is the most frequent and most devastating of the primary central nervous system tumors, with few patients living beyond 2 years postdiagnosis. The damage caused by the disease and our treatments for the patients often leave them physically and cognitively debilitated. Generally, GBMs appear after very short clinical histories and are discovered by imaging (using magnetic resonance imaging [MRI]), and the diagnosis is validated by pathology, following surgical resection. The treatment response and diagnosis of tumor recurrence are also tracked by MRI, but there are numerous problems encountered with these monitoring modalities, such as ambiguous interpretation and forms of pseudoprogression. Diagnostic, prognostic, and predictive biomarkers would be an immense boon in following treatment schemes and in determining recurrence, which often requires an invasive intracranial biopsy to verify imaging data. Extracellular vesicles (EVs) are stable, membrane-enclosed, virus-sized particles released from either the cell surface or from endosomal pathways that lead to the systemic release of EVs into accessible biofluids, such as serum/plasma, urine, cerebrospinal fluid, and saliva. EVs carry a wide variety of proteins, nucleic acids, lipids, and other metabolites, with many common features but with enough individuality to be able to identify the cell of origin of the vesicles. These components, if properly interrogated, could allow for the identification of tumor-derived EVs in biofluids, indicating tumor progression, relapse, or treatment failure. That knowledge would allow clinicians to continue with treatment regimens that were actually effective or to change course if the therapies were failing. Here, we review the features of GBM EVs, in terms of EV content and activities that may lead to the use of EVs as serially accessible biomarkers for diagnosis and treatment response in neuro-oncology. PMID:24634586

  1. Proteomics of Aggregatibacter actinomycetemcomitans Outer Membrane Vesicles

    PubMed Central

    Kieselbach, Thomas; Zijnge, Vincent; Granström, Elisabeth; Oscarsson, Jan

    2015-01-01

    Aggregatibacter actinomycetemcomitans is an oral and systemic pathogen associated with aggressive forms of periodontitis and with endocarditis. Outer membrane vesicles (OMVs) released by this species have been demonstrated to deliver effector proteins such as cytolethal distending toxin (CDT) and leukotoxin (LtxA) into human host cells and to act as triggers of innate immunity upon carriage of NOD1- and NOD2-active pathogen-associated molecular patterns (PAMPs). To improve our understanding of the pathogenicity-associated functions that A. actinomycetemcomitans exports via OMVs, we studied the proteome of density gradient-purified OMVs from a rough-colony type clinical isolate, strain 173 (serotype e) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). This analysis yielded the identification of 151 proteins, which were found in at least three out of four independent experiments. Data are available via ProteomeXchange with identifier PXD002509. Through this study, we not only confirmed the vesicle-associated release of LtxA, and the presence of proteins, which are known to act as immunoreactive antigens in the human host, but we also identified numerous additional putative virulence-related proteins in the A. actinomycetemcomitans OMV proteome. The known and putative functions of these proteins include immune evasion, drug targeting, and iron/nutrient acquisition. In summary, our findings are consistent with an OMV-associated proteome that exhibits several offensive and defensive functions, and they provide a comprehensive basis to further disclose roles of A. actinomycetemcomitans OMVs in periodontal and systemic disease. PMID:26381655

  2. A Novel Pulse-Chase Paradigm to Visualize the Trafficking of Transport Vesicles in Neurons

    NASA Astrophysics Data System (ADS)

    Al-Bassam, Sarmad

    In neurons transmembrane proteins are targeted to dendrites in vesicles that traffic solely within the somatodendritic compartment. How these vesicles are retained within the somatodendritic domain is unknown. Here we adapt a novel pulse chase system that allows synchronous release of exogenous transmembrane proteins from the endoplasmic reticulum using FKBP12 and Rapamycin. We demonstrate proof-of-concept and establish protein trafficking controls in incremental steps. We demonstrate the utility of this approach in studying protein trafficking and establish parameters for analysis of time-lapse images. We implement this novel pulse-chase strategy to track the movements of post-Golgi transport vesicles. Surprisingly, we found that post-Golgi vesicles carrying dendritic proteins were equally likely to enter axons and dendrites. However, once such vesicles entered the axon they very rarely moved beyond the axon initial segment, but instead either halted or reversed direction in an actin and Myosin Va-dependent manner. In contrast, vesicles carrying either an axonal or a nonspecifically localized protein only rarely halted or reversed and instead generally proceeded to the distal axon. Thus, our results are consistent with the axon initial segment behaving as a vesicle filter that mediates the differential trafficking of transport vesicles.

  3. Extracellular vesicles including exosomes are mediators of signal transduction: Are they protective or pathogenic?

    PubMed Central

    Gangoda, Lahiru; Boukouris, Stephanie; Liem, Michael; Kalra, Hina; Mathivanan, Suresh

    2015-01-01

    Extracellular vesicles are signaling organelles that are released by many cell types and is highly conserved in both prokaryotes and eukaryotes. Based on the mechanism of biogenesis, these membranous vesicles can be classified as exosomes, shedding microvesicles and apoptotic blebs. It is becoming clearer that these extracellular vesicles mediate signal transduction in both autocrine and paracrine fashion by the transfer of proteins and RNA. Whilst the role of extracellular vesicles including exosomes in pathogenesis is well established, very little is known about their function in normal physiological conditions. Recent evidences allude that extracellular vesicles can mediate both protective and pathogenic effects depending on the precise state. In this review, we discuss the involvement of extracellular vesicle as mediators of signal transduction in neurodegenerative diseases and cancer. In addition, the role of extracellular vesicles in mediating Wnt and PI3K signaling pathways is also discussed. Additional findings on the involvement of extracellular vesicles in homeostasis and disease progression will promote a better biological understanding, advance future therapeutic and diagnostic applications. PMID:25307053

  4. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets

    PubMed Central

    Prada, Ilaria; Meldolesi, Jacopo

    2016-01-01

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated. PMID:27517914

  5. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    PubMed

    Prada, Ilaria; Meldolesi, Jacopo

    2016-01-01

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated. PMID:27517914

  6. Osteoprotegerin in Exosome-Like Vesicles from Human Cultured Tubular Cells and Urine

    PubMed Central

    Benito-Martin, Alberto; Ucero, Alvaro Conrado; Zubiri, Irene; Posada-Ayala, Maria; Fernandez-Fernandez, Beatriz; Cannata-Ortiz, Pablo; Sanchez-Nino, Maria Dolores; Ruiz-Ortega, Marta; Egido, Jesus; Alvarez-Llamas, Gloria; Ortiz, Alberto

    2013-01-01

    Urinary exosomes have been proposed as potential diagnostic tools. TNF superfamily cytokines and receptors may be present in exosomes and are expressed by proximal tubular cells. We have now studied the expression of selected TNF superfamily proteins in exosome-like vesicles from cultured human proximal tubular cells and human urine and have identified additional proteins in these vesicles by LC-MS/MS proteomics. Human proximal tubular cells constitutively released exosome-like vesicles that did not contain the TNF superfamily cytokines TRAIL or TWEAK. However, exosome-like vesicles contained osteoprotegerin (OPG), a TNF receptor superfamily protein, as assessed by Western blot, ELISA or selected reaction monitoring by nLC-(QQQ)MS/MS. Twenty-one additional proteins were identified in tubular cell exosome-like vesicles, including one (vitamin D binding protein) that had not been previously reported in exosome-like vesicles. Twelve were extracellular matrix proteins, including the basement membrane proteins type IV collagen, nidogen-1, agrin and fibulin-1. Urine from chronic kidney disease patients contained a higher amount of exosomal protein and exosomal OPG than urine from healthy volunteers. Specifically OPG was increased in autosomal dominant polycystic kidney disease urinary exosome-like vesicles and expressed by cystic epithelium in vivo. In conclusion, OPG is present in exosome-like vesicles secreted by proximal tubular epithelial cells and isolated from Chronic Kidney Disease urine. PMID:24058411

  7. The encapsulation of bleomycin within chitosan based polymeric vesicles does not alter its biodistribution.

    PubMed

    Sludden, J; Uchegbu, I F; Schätzlein, A G

    2000-04-01

    Polymeric vesicles have recently been developed from an amphiphilic chitosan derivative--palmitoyl glycol chitosan. Their potential as a drug delivery system was evaluated using the anti-cancer compound bleomycin as a model drug. Palmitoyl glycol chitosan (GCP41) was synthesised by conjugation of palmitoyl groups to glycol chitosan. Bleomycin-containing vesicles (669 nm diameter) were prepared from a mixture of GCP41 and cholesterol by remote loading. The vesicles were imaged by freeze-fracture electron microscopy and their in-vitro stability tested. Incubation of the larger vesicles with plasma in-vitro led to a reduction of mean size by 49%, a reaction not seen with control sorbitan monostearate niosomes (215 nm in size). They also showed a higher initial drug release (1 h), but GCP41 and sorbitan monostearate vesicles retained 62% and 63% of the encapsulated drug after 24h, respectively. The biodistribution of smaller vesicles (290 nm) prepared by extrusion through a 200-nm filter was also studied in male Balb/c mice. Encapsulation of bleomycin into polymeric vesicles did not significantly alter the pharmacokinetics of biodistribution of bleomycin in male Balb/c mice although plasma and kidney levels were slightly increased. It is concluded that the extruded GCP41 vesicles break down in plasma in-vivo and hence are unlikely to offer any therapeutic advantage over the free drug. PMID:10813546

  8. Ellipsoidal relaxation of electrodeformed vesicles

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Lin, Hao; Lira, Rafael; Dimova, Rumiana; Riske, Karin

    2015-11-01

    Electrodeformation has been extensively applied to investigate the mechanical behavior of vesicles and cells. While the deformation process often exhibits complex behavior and reveals interesting physics, the relaxation process post-pulsation is equally intriguing yet less frequently studied. In this work theoretical analysis and experimental quantification on the ellipsoidal relaxation of vesicles are presented, which reveal the simplicity and universal aspects of this process. The Helfrich formula, which is derived only for equilibrated shapes, is shown to be applicable to dynamic situations such as in relaxation. A closed-form solution is derived which predicts the vesicle aspect ratio as a function of time. Scattered data are unified by a timescale, which leads to a similarity behavior, governed by a distinctive solution for each vesicle type. Two separate regimes in the relaxation are identified, namely, the ``entropic'' and the ``constant-tension'' regime. The bending rigidity and the initial membrane tension can be simultaneously extracted from the data/model analysis, posing the current approach as an effective means for the mechanical analysis of biomembranes.

  9. Microfluidic Fabrication of Pluronic Vesicles with Controlled Permeability.

    PubMed

    do Nascimento, Débora F; Arriaga, Laura R; Eggersdorfer, Max; Ziblat, Roy; Marques, Maria de Fátima V; Reynaud, Franceline; Koehler, Stephan A; Weitz, David A

    2016-05-31

    Block copolymers with a low hydrophilic-to-lipophilic balance form membranes that are highly permeable to hydrophilic molecules. Polymersomes with this type of membrane enable the controllable release of molecules without membrane rupture. However, these polymersomes are difficult to assemble because of their low hydrophobicity. Here, we report a microfluidic approach to the production of these polymersomes using double-emulsion drops with ultrathin shells as templates. The small thickness of the middle oil phase enables the attraction of the hydrophobic blocks of the polymers adsorbed at each of the oil/water interfaces of the double emulsions; this results in the dewetting of the oil from the surface of the innermost water drops of the double emulsions and the ultimate formation of the polymersome. This approach to polymersome fabrication enables control of the vesicle size and results in the efficient encapsulation of hydrophilic ingredients that can be released through the polymer membrane without membrane rupture. We apply our approach to the fabrication of Pluronic L121 vesicles and characterize the permeability of their membranes. Furthermore, we show that membrane permeability can be tuned by blending different Pluronic polymers. Our work thus describes a route to producing Pluronic vesicles that are useful for the controlled release of hydrophilic ingredients. PMID:27192611

  10. Brain-derived neurotrophic factor enhances GABA release probability and nonuniform distribution of N- and P/Q-type channels on release sites of hippocampal inhibitory synapses.

    PubMed

    Baldelli, Pietro; Hernandez-Guijo, Jesus-Miguel; Carabelli, Valentina; Carbone, Emilio

    2005-03-30

    Long-lasting exposures to brain-derived neurotrophic factor (BDNF) accelerate the functional maturation of GABAergic transmission in embryonic hippocampal neurons, but the molecular bases of this phenomenon are still debated. Evidence in favor of a postsynaptic site of action has been accumulated, but most of the data support a presynaptic site effect. A crucial issue is whether the enhancement of evoked IPSCs (eIPSCs) induced by BDNF is attributable to an increase in any of the elementary parameters controlling neurosecretion, namely the probability of release, the number of release sites, the readily releasable pool (RRP), and the quantal size. Here, using peak-scaled variance analysis of miniature IPSCs, multiple probability fluctuation analysis, and cumulative amplitude analysis of action potential-evoked postsynaptic currents, we show that BDNF increases release probability and vesicle replenishment with little or no effect on the quantal size, the number of release sites, the RRP, and the Ca2+ dependence of eIPSCs. BDNF treatment changes markedly the distribution of Ca2+ channels controlling neurotransmitter release. It enhances markedly the contribution of N- and P/Q-type channels, which summed to >100% ("supra-additivity"), and deletes the contribution of R-type channels. BDNF accelerates the switch of presynaptic Ca2+ channel distribution from "segregated" to "nonuniform" distribution. This maturation effect was accompanied by an uncovered increased control of N-type channels on paired-pulse depression, otherwise dominated by P/Q-type channels in untreated neurons. Nevertheless, BDNF preserved the fast recovery from depression associated with N-type channels. These novel presynaptic BDNF actions derive mostly from an enhanced overlapping and better colocalization of N- and P/Q-type channels to vesicle release sites. PMID:15800191

  11. Single-vesicle architecture of synaptobrevin2 in astrocytes

    PubMed Central

    Singh, Priyanka; Jorgačevski, Jernej; Kreft, Marko; Grubišić, Vladimir; Stout, Randy F.; Potokar, Maja; Parpura, Vladimir; Zorec, Robert

    2015-01-01

    Exocytic transmitter release is regulated by the SNARE complex, which contains a vesicular protein, synaptobrevin2 (Sb2). However, Sb2 vesicular arrangement is unclear. Here we use super-resolution fluorescence microscopy to study the prevalence and distribution of endogenous and exogenous Sb2 in single vesicles of astrocytes, the most abundant glial cells in the brain. We tag Sb2 protein at C- and N termini with a pair of fluorophores, which allows us to determine the Sb2 length and geometry. To estimate total number of Sb2 proteins per vesicle and the quantity necessary for the formation of fusion pores, we treat cells with ATP to stimulate Ca2+-dependent exocytosis, increase intracellular alkalinity to enhance the fluorescence presentation of yellow-shifted pHluorin (YpH), appended to the vesicle lumen domain of Sb2, and perform photobleaching of YpH fluorophores. Fluorescence intensity analysis reveals that the total number of endogenous Sb2 units or molecules per vesicle is ≤25. PMID:24807050

  12. Probing polymerization forces by using actin-propelled lipid vesicles

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Arpita; Chabot, Jeffrey R.; Andreeva, Albina; Samadani, Azadeh; van Oudenaarden, Alexander

    2003-04-01

    Actin polymerization provides a powerful propulsion force for numerous types of cell motility. Although tremendous progress has been made in identifying the biochemical components necessary for actin-based motility, the precise biophysical mechanisms of force generation remain unclear. To probe the polymerization forces quantitatively, we introduce an experimental system in which lipid vesicles coated with the Listeria monocytogenes virulence factor ActA are propelled by actin polymerization. The polymerization forces cause significant deformations of the vesicle. We have used these deformations to obtain a spatially resolved measure of the forces exerted on the membrane using a model based on the competition between osmotic pressure and membrane stretching. Our results indicate that actin exerts retractile or propulsive forces depending on the local membrane curvature and that the membrane is strongly bound to the actin gel. These results are consistent with the observed dynamics. After a slow elongation of the vesicle from a spherical shape, the strong bonds between the actin gel and the membrane rupture if the retractile forces exceed a critical value, leading to a rapid release of the vesicle's trailing edge.

  13. From self-assembled vesicles to protocells.

    PubMed

    Chen, Irene A; Walde, Peter

    2010-07-01

    Self-assembled vesicles are essential components of primitive cells. We review the importance of vesicles during the origins of life, fundamental thermodynamics and kinetics of self-assembly, and experimental models of simple vesicles, focusing on prebiotically plausible fatty acids and their derivatives. We review recent work on interactions of simple vesicles with RNA and other studies of the transition from vesicles to protocells. Finally we discuss current challenges in understanding the biophysics of protocells, as well as conceptual questions in information transmission and self-replication. PMID:20519344

  14. From Self-Assembled Vesicles to Protocells

    PubMed Central

    Chen, Irene A.; Walde, Peter

    2010-01-01

    Self-assembled vesicles are essential components of primitive cells. We review the importance of vesicles during the origins of life, fundamental thermodynamics and kinetics of self-assembly, and experimental models of simple vesicles, focusing on prebiotically plausible fatty acids and their derivatives. We review recent work on interactions of simple vesicles with RNA and other studies of the transition from vesicles to protocells. Finally we discuss current challenges in understanding the biophysics of protocells, as well as conceptual questions in information transmission and self-replication. PMID:20519344

  15. Neural activity selects myosin IIB and VI with a specific time window in distinct dynamin isoform-mediated synaptic vesicle reuse pathways.

    PubMed

    Hayashida, Michikata; Tanifuji, Shota; Ma, Huan; Murakami, Noriko; Mochida, Sumiko

    2015-06-10

    Presynaptic nerve terminals must maintain stable neurotransmissions via synaptic vesicle (SV) resupply despite encountering wide fluctuations in the number and frequency of incoming action potentials (APs). However, the molecular mechanism linking variation in neural activity to SV resupply is unknown. Myosins II and VI are actin-based cytoskeletal motors that drive dendritic actin dynamics and membrane transport, respectively, at brain synapses. Here we combined genetic knockdown or molecular dysfunction and direct physiological measurement of fast synaptic transmission from paired rat superior cervical ganglion neurons in culture to show that myosins IIB and VI work individually in SV reuse pathways, having distinct dependency and time constants with physiological AP frequency. Myosin VI resupplied the readily releasable pool (RRP) with slow kinetics independently of firing rates but acted quickly within 50 ms after AP. Under high-frequency AP firing, myosin IIB resupplied the RRP with fast kinetics in a slower time window of 200 ms. Knockdown of both myosin and dynamin isoforms by mixed siRNA microinjection revealed that myosin IIB-mediated SV resupply follows amphiphysin/dynamin-1-mediated endocytosis, while myosin VI-mediated SV resupply follows dynamin-3-mediated endocytosis. Collectively, our findings show how distinct myosin isoforms work as vesicle motors in appropriate SV reuse pathways associated with specific firing patterns. PMID:26063922

  16. Extracellular vesicles during Herpes Simplex Virus type 1 infection: an inquire.

    PubMed

    Kalamvoki, Maria; Deschamps, Thibaut

    2016-01-01

    Extracellular vesicles are defined as a heterogeneous group of vesicles that are released by prokaryotic to higher eukaryotic cells and by plant cells in an evolutionary conserved manner. The significance of these vesicles lies in their capacity to transfer selected cargo composed of proteins, lipids and nucleic acids to both recipient and parent cells and to influence various physiological and pathological functions. Microorganisms such as parasites, fungi and protozoa and even single cell organisms such as bacteria generate extracellular vesicles. In addition, several viruses have evolved strategies to hijack the extracellular vesicles for egress or to alter the surrounding environment. The thesis of this article is that: a) during HSV-1 infection vesicles are delivered from infected to uninfected cells that influence the infection; b) the cargo of these vesicles consists of viral and host transcripts (mRNAs, miRNAs and non-coding RNAs) and proteins including innate immune components, such as STING; and c) the viral vesicles carry the tetraspanins CD9, CD63 and CD81, which are considered as markers of exosomes. Therefore, we assume that the STING-carrying vesicles, produced during HSV-1 infection, are reminiscent to exosomes. The presumed functions of the exosomes released from HSV-1 infected cells include priming the recipient cells and accelerating antiviral responses to control the dissemination of the virus. This may be one strategy used by the virus to prevent the elimination by the host and establish persistent infection. In conclusion, the modification of the cargo of exosomes appears to be part of the strategy that HSV-1 has evolved to establish lifelong persistent infections into the human body to ensure successful dissemination between individuals. PMID:27048572

  17. Small Angle Neutron-Scattering Studies of the Core Structure of Intact Neurosecretory Vesicles.

    NASA Astrophysics Data System (ADS)

    Krueger, Susan Takacs

    Small angle neutron scattering (SANS) was used to study the state of the dense cores within intact neurosecretory vesicles. These vesicles transport the neurophysin proteins, along with their associated hormones, oxytocin or vasopressin, from the posterior pituitary gland to the bloodstream, where the entire vesicle contents are released. Knowledge of the vesicle core structure is important in developing an understanding of this release mechanism. Since the core constituents exist in a dense state at concentrations which cannot be reproduced (in solution) in the laboratory, a new method was developed to determine the core structure from SANS experiments performed on intact neurosecretory vesicles. These studies were complemented by biochemical assays performed to determine the role, if any, played by phospholipids in the interactions between the core constituents. H_2O/D_2 O ratio in the solvent can be adjusted, using the method of contrast variation, such that the scattering due to the vesicle membranes is minimized, thus emphasizing the scattering originating from the cores. The applicability of this method for examining the interior of biological vesicles was tested by performing an initial study on human red blood cells, which are similar in structure to other biological vesicles. Changes in intermolecular hemoglobin interactions, occurring when the ionic strength of the solvent was varied or when the cells were deoxygenated, were examined. The results agreed with those expected for dense protein solutions, indicating that the method developed was suitable for the study of hemoglobin within the cells. Similar SANS studies were then performed on intact neurosecretory vesicles. The experimental results were inconsistent with model calculations which assumed that the cores consisted of small, densely-packed particles or large, globular aggregates. Although a unique model could not be determined, the data suggest that the core constituents form long aggregates of

  18. How the stimulus defines the dynamics of vesicle pool recruitment, fusion mode, and vesicle recycling in neuroendocrine cells.

    PubMed

    Cárdenas, Ana María; Marengo, Fernando D

    2016-06-01

    The pattern of stimulation defines important characteristics of the secretory process in neurons and neuroendocrine cells, including the pool of secretory vesicles being recruited, the type and amount of transmitters released, the mode of membrane retrieval, and the mechanisms associated with vesicle replenishment. This review analyzes the mechanisms that regulate these processes in chromaffin cells, as well as in other neuroendocrine and neuronal models. A common factor in these mechanisms is the spatial and temporal distribution of the Ca(2+) signal generated during cell stimulation. For instance, neurosecretory cells and neurons have pools of vesicles with different locations with respect to Ca(2+) channels, and those pools are therefore differentially recruited following different patterns of stimulation. In this regard, a brief stimulus will induce the exocytosis of a small pool of vesicles that is highly coupled to voltage-dependent Ca(2+) channels, whereas longer or more intense stimulation will provoke a global Ca(2+) increase, promoting exocytosis irrespective of vesicle location. The pattern of stimulation, and therefore the characteristics of the Ca(2+) signal generated by the stimulus also influence the mode of exocytosis and the type of endocytosis. Indeed, low-frequency stimulation favors kiss-and-run exocytosis and clathrin-independent fast endocytosis, whereas higher frequencies promote full fusion and clathrin-dependent endocytosis. This latter type of endocytosis is accelerated at high-frequency stimulation. Synaptotagmins, calcineurin, dynamin, complexin, and actin remodeling, appear to be involved in the mechanisms that determine the response of these processes to Ca(2+) . In chromaffin cells, a brief stimulus induces the exocytosis of a small pool of vesicles that is highly coupled to voltage-dependent Ca(2+) channels (A), whereas longer or high-frequency stimulation provokes a global Ca(2+) increase, promoting exocytosis irrespective of

  19. Vesicle Geometries Enabled by Dynamically Trapped States.

    PubMed

    Su, Jiaye; Yao, Zhenwei; de la Cruz, Monica Olvera

    2016-02-23

    Understanding and controlling vesicle shapes is a fundamental challenge in biophysics and materials design. In this paper, we design dynamic protocols for enlarging the shape space of both fluid and crystalline vesicles beyond the equilibrium zone. By removing water from within the vesicle at different rates, we numerically produced a series of dynamically trapped stable vesicle shapes for both fluid and crystalline vesicles in a highly controllable fashion. In crystalline vesicles that are continuously dehydrated, simulations show the initial appearance of small flat areas over the surface of the vesicles that ultimately merge to form fewer flat faces. In this way, the vesicles transform from a fullerene-like shape into various faceted polyhedrons. We perform analytical elasticity analysis to show that these salient features are attributable to the crystalline nature of the vesicle. The potential to use dynamic protocols, such as those used in this study, to engineer vesicle shape transformations is helpful for exploiting the richness of vesicle geometries for desired applications. PMID:26795199

  20. Lipid interaction of Pseudomonas aeruginosa exotoxin A. Acid-triggered permeabilization and aggregation of lipid vesicles.

    PubMed Central

    Menestrina, G; Pederzolli, C; Forti, S; Gambale, F

    1991-01-01

    We have investigated the interaction of Pseudomonas exotoxin A with small unilamellar vesicles comprised of different phospholipids as a function of pH, toxin, and lipid concentration. We have found that this toxin induces vesicle permeabilization, as measured by the release of a fluorescent dye. Permeabilization is due to the formation of ion-conductive channels which we have directly observed in planar lipid bilayers. The toxin also produces vesicle aggregation, as indicated by an increase of the turbidity. Aggregation and permeabilization have completely different time course and extent upon toxin dose and lipid composition, thus suggesting that they are two independent events. Both time constants decrease by lowering the pH of the bulk phase or by introducing a negative lipid into the vesicles. Our results indicate that at least three steps are involved in the interaction of Pseudomonas exotoxin A with lipid vesicles. After protonation of one charged group the toxin becomes competent to bind to the surface of the vesicles. Binding is probably initiated by an electrostatic interaction because it is absolutely dependent on the presence of acidic phospholipids. Binding is a prerequisite for the subsequent insertion of the toxin into the lipid bilayer, with a special preference for phosphatidylglycerol-containing membranes, to form ionic channels. At high toxin and vesicle concentrations, bound toxin may also induce aggregation of the vesicles, particularly when phosphatidic acid is present in the lipid mixture. A quenching of the intrinsic tryptophan fluorescence of the protein, which is induced by lowering the pH of the solution, becomes more drastic in the presence of lipid vesicles. However, this further quenching takes so long that it cannot be a prerequisite to either vesicle permeabilization or aggregation. Pseudomonas exotoxin A shares many of these properties with other bacterial toxins like diphtheria and tetanus toxin. Images FIGURE 7 FIGURE 8 FIGURE 12

  1. Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials.

    PubMed

    Oglęcka, Kamila; Rangamani, Padmini; Liedberg, Bo; Kraut, Rachel S; Parikh, Atul N

    2014-01-01

    Giant lipid vesicles are closed compartments consisting of semi-permeable shells, which isolate femto- to pico-liter quantities of aqueous core from the bulk. Although water permeates readily across vesicular walls, passive permeation of solutes is hindered. In this study, we show that, when subject to a hypotonic bath, giant vesicles consisting of phase separating lipid mixtures undergo osmotic relaxation exhibiting damped oscillations in phase behavior, which is synchronized with swell-burst lytic cycles: in the swelled state, osmotic pressure and elevated membrane tension due to the influx of water promote domain formation. During bursting, solute leakage through transient pores relaxes the pressure and tension, replacing the domain texture by a uniform one. This isothermal phase transition--resulting from a well-coordinated sequence of mechanochemical events--suggests a complex emergent behavior allowing synthetic vesicles produced from simple components, namely, water, osmolytes, and lipids to sense and regulate their micro-environment. PMID:25318069

  2. Cannabinoid agonists rearrange synaptic vesicles at excitatory synapses and depress motoneuron activity in vivo.

    PubMed

    García-Morales, Victoria; Montero, Fernando; Moreno-López, Bernardo

    2015-05-01

    Impairment of motor skills is one of the most common acute adverse effects of cannabis. Related studies have focused mainly on psychomotor alterations, and little is known about the direct impact of cannabinoids (CBs) on motoneuron physiology. As key modulators of synaptic function, CBs regulate multiple neuronal functions and behaviors. Presynaptic CB1 mediates synaptic strength depression by inhibiting neurotransmitter release, via a poorly understood mechanism. The present study examined the effect of CB agonists on excitatory synaptic inputs incoming to hypoglossal motoneurons (HMNs) in vitro and in vivo. The endocannabinoid anandamide (AEA) and the synthetic CB agonist WIN 55,212-2 rapidly and reversibly induced short-term depression (STD) of glutamatergic synapses on motoneurons by a presynaptic mechanism. Presynaptic effects were fully reversed by the CB1-selective antagonist AM281. Electrophysiological and electron microscopy analysis showed that WIN 55,212-2 reduced the number of synaptic vesicles (SVs) docked to active zones in excitatory boutons. Given that AM281 fully abolished depolarization-induced depression of excitation, motoneurons can be feasible sources of CBs, which in turn act as retrograde messengers regulating synaptic function. Finally, microiontophoretic application of the CB agonist O-2545 reversibly depressed, presumably via CB1, glutamatergic inspiratory-related activity of HMNs in vivo. Therefore, evidence support that CBs, via presynaptic CB1, induce excitatory STD by reducing the readily releasable pool of SVs at excitatory synapses, then attenuating motoneuron activity. These outcomes contribute a possible mechanistic basis for cannabis-associated motor performance disturbances such as ataxia, dysarthria and dyscoordination. PMID:25595101

  3. Extracellular Vesicles: Potential Roles in Regenerative Medicine

    PubMed Central

    De Jong, Olivier G.; Van Balkom, Bas W. M.; Schiffelers, Raymond M.; Bouten, Carlijn V. C.; Verhaar, Marianne C.

    2014-01-01

    Extracellular vesicles (EV) consist of exosomes, which are released upon fusion of the multivesicular body with the cell membrane, and microvesicles, which are released directly from the cell membrane. EV can mediate cell–cell communication and are involved in many processes, including immune signaling, angiogenesis, stress response, senescence, proliferation, and cell differentiation. The vast amount of processes that EV are involved in and the versatility of manner in which they can influence the behavior of recipient cells make EV an interesting source for both therapeutic and diagnostic applications. Successes in the fields of tumor biology and immunology sparked the exploration of the potential of EV in the field of regenerative medicine. Indeed, EV are involved in restoring tissue and organ damage, and may partially explain the paracrine effects observed in stem cell-based therapeutic approaches. The function and content of EV may also harbor information that can be used in tissue engineering, in which paracrine signaling is employed to modulate cell recruitment, differentiation, and proliferation. In this review, we discuss the function and role of EV in regenerative medicine and elaborate on potential applications in tissue engineering. PMID:25520717

  4. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles

    PubMed Central

    Iraci, Nunzio; Leonardi, Tommaso; Gessler, Florian; Vega, Beatriz; Pluchino, Stefano

    2016-01-01

    Extracellular vesicles (EVs) are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in) EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain. PMID:26861302

  5. Lipidomic Analysis of Extracellular Vesicles from the Pathogenic Phase of Paracoccidioides brasiliensis

    PubMed Central

    Longo, Larissa V. G.; Ganiko, Luciane; Lopes, Felipe G.; Matsuo, Alisson L.; Almeida, Igor C.; Puccia, Rosana

    2012-01-01

    Background Fungal extracellular vesicles are able to cross the cell wall and transport molecules that help in nutrient acquisition, cell defense, and modulation of the host defense machinery. Methodology/Principal Findings Here we present a detailed lipidomic analysis of extracellular vesicles released by Paracoccidioides brasiliensis at the yeast pathogenic phase. We compared data of two representative isolates, Pb3 and Pb18, which have distinct virulence profiles and phylogenetic background. Vesicle lipids were fractionated into different classes and analyzed by either electrospray ionization- or gas chromatography-mass spectrometry. We found two species of monohexosylceramide and 33 phospholipid species, including phosphatidylcholine, phosphatidylethanolamine, phosphatidic acid, phosphatidylserine, phosphatidylinositol, and phosphatidylglycerol. Among the phospholipid-bound fatty acids in extracellular vesicles, C181 predominated in Pb3, whereas C18:2 prevailed in Pb18. The prevalent sterol in Pb3 and Pb18 vesicles was brassicasterol, followed by ergosterol and lanosterol. Inter-isolate differences in sterol composition were observed, and also between extracellular vesicles and whole cells. Conclusions/Significance The extensive lipidomic analysis of extracellular vesicles from two P. brasiliensis isolates will help to understand the composition of these fungal components/organelles and will hopefully be useful to study their biogenesis and role in host-pathogen interactions. PMID:22745761

  6. Transient fusion and selective secretion of vesicle proteins in Phytophthora nicotianae zoospores.

    PubMed

    Zhang, Weiwei; Blackman, Leila M; Hardham, Adrienne R

    2013-01-01

    Secretion of pathogen proteins is crucial for the establishment of disease in animals and plants. Typically, early interactions between host and pathogen trigger regulated secretion of pathogenicity factors that function in pathogen adhesion and host penetration. During the onset of plant infection by spores of the Oomycete, Phytophthora nicotianae, proteins are secreted from three types of cortical vesicles. Following induction of spore encystment, two vesicle types undergo full fusion, releasing their entire contents onto the cell surface. However, the third vesicle type, so-called large peripheral vesicles, selectively secretes a small Sushi domain-containing protein, PnCcp, while retaining a large glycoprotein, PnLpv, before moving away from the plasma membrane. Selective secretion of PnCcp is associated with its compartmentalization within the vesicle periphery. Pharmacological inhibition of dynamin function, purportedly in vesicle fission, by dynasore treatment provides evidence that selective secretion of PnCcp requires transient fusion of the large peripheral vesicles. This is the first report of selective protein secretion via transient fusion outside mammalian cells. Selective secretion is likely to be an important aspect of plant infection by this destructive pathogen. PMID:24392285

  7. CD47-dependent immunomodulatory and angiogenic activities of extracellular vesicles produced by T cells.

    PubMed

    Kaur, Sukhbir; Singh, Satya P; Elkahloun, Abdel G; Wu, Weiwei; Abu-Asab, Mones S; Roberts, David D

    2014-07-01

    Intercellular communication is critical for integrating complex signals in multicellular eukaryotes. Vascular endothelial cells and T lymphocytes closely interact during the recirculation and trans-endothelial migration of T cells. In addition to direct cell-cell contact, we show that T cell derived extracellular vesicles can interact with endothelial cells and modulate their cellular functions. Thrombospondin-1 and its receptor CD47 are expressed on exosomes/ectosomes derived from T cells, and these extracellular vesicles are internalized and modulate signaling in both T cells and endothelial cells. Extracellular vesicles released from cells expressing or lacking CD47 differentially regulate activation of T cells induced by engaging the T cell receptor. Similarly, T cell-derived extracellular vesicles modulate endothelial cell responses to vascular endothelial growth factor and tube formation in a CD47-dependent manner. Uptake of T cell derived extracellular vesicles by recipient endothelial cells globally alters gene expression in a CD47-dependent manner. CD47 also regulates the mRNA content of extracellular vesicles in a manner consistent with some of the resulting alterations in target endothelial cell gene expression. Therefore, the thrombospondin-1 receptor CD47 directly or indirectly regulates intercellular communication mediated by the transfer of extracellular vesicles between vascular cells. PMID:24887393

  8. Response of unilamellar DPPC and DPPC:SM vesicles to hypo and hyper osmotic shocks: A comparison.

    PubMed

    Ahumada, M; Calderon, C; Alvarez, C; Lanio, M E; Lissi, E A

    2015-05-01

    DPPC and DPPC:SM large unilamellar vesicles (LUVs), prepared by extrusion, readily respond to osmotic shocks (hypo- and hyper-osmotic) by water influx/efflux (evaluated by changes in turbidity) and by entrapped calcein liberation (measured by an increase in dye fluorescence intensity). On the other hand, small unilamellar vesicles (SUVs) prepared by sonication are almost osmotically insensitive. LUVs water transport, both in hypo- and hyper-osmotic conditions, takes place faster than calcein ejection towards the external solvent. Similarly, response to a hypotonic imbalance is faster than that associated to a hypertonic stress. This difference is particularly noticeable for the increase in calcein fluorescence intensity and can be related to the large reorganization of the bilayer needed to form pores and/or to adsorb the dye to the inner leaflet of the vesicle after water efflux. Conversely, addition of SM to the vesicles barely modify the rate of calcein permeation across the bilayer. PMID:25956303

  9. Intracellular distribution of fluorescent probes delivered by vesicles of different lipidic composition.

    PubMed

    Manconi, Maria; Isola, Raffaella; Falchi, Angela Maria; Sinico, Chiara; Fadda, Anna Maria

    2007-06-15

    In order to study mechanisms involved in liposome-cell interaction, this work attempted to assess the influence of vesicle composition on the delivery of liposomal content to Hela cells. In particular, to evaluate pH-sensitive properties and cell interaction of the prepared liposomes, the lipid formulations contained cholesterol (Chol) and they were varied by using phosphatidylcholines with different purity degree: soy lecithin (SL; 80% phosphatidylcholine), a commercial mixture of soy phosphatidylcholine (P90; 90% phosphatidylcholine) or dipalmitoylphosphatidylcholine (DPPC; 99% of purity). A second series of liposomes also contained stearylamine (SA). Dehydration-rehydration vesicles (DRV) were prepared and then sonicated to decrease vesicle size. Vesicle-cell interactions and liposomal uptake were examined by fluorescence microscopy using carboxyfluorescein (CF) and phosphatidylethanolamine-dioleoyl-sulforhodamine B (Rho-PE) as fluorescent markers. Fluorescence dequenching assay was used to study the influence of pH on CF release from the liposomal formulations. Liposome adhesion on the cell surface and internalization were strongly dependent on vesicle bilayer composition. SA vesicles were not endocytosed. DPPC/Chol liposomes were endocytosed but did not release their fluorescent content into the cytosol. SL/Chol and P90/Chol formulations displayed a diffuse cytoplasmic fluorescence of liposomal marker. PMID:17339103

  10. Extracellular Vesicles and a Novel Form of Communication in the Brain

    PubMed Central

    Basso, Manuela; Bonetto, Valentina

    2016-01-01

    In numerous neurodegenerative diseases, the interplay between neurons and glia modulates the outcome and progression of pathology. One particularly intriguing mode of interaction between neurons, astrocytes, microglia, and oligodendrocytes is characterized by the release of extracellular vesicles that transport proteins, lipids, and nucleotides from one cell to another. Notably, several proteins that cause disease, including the prion protein and mutant SOD1, have been detected in glia-derived extracellular vesicles and observed to fuse with neurons and trigger pathology in vitro. Here we review the structural and functional characterization of such extracellular vesicles in neuron-glia interactions. Furthermore, we discuss possible mechanisms of extracellular vesicle biogenesis and release from activated glia and microglia, and their effects on neurons. Given that exosomes, the smallest type of extracellular vesicles, have been reported to recognize specific cellular populations and act as carriers of very specialized cargo, a thorough analysis of these vesicles may aid in their engineering in vitro and targeted delivery in vivo, opening opportunities for therapeutics. PMID:27065789

  11. The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles.

    PubMed

    Topalidou, Irini; Cattin-Ortolá, Jérôme; Pappas, Andrea L; Cooper, Kirsten; Merrihew, Gennifer E; MacCoss, Michael J; Ailion, Michael

    2016-05-01

    The dense-core vesicle is a secretory organelle that mediates the regulated release of peptide hormones, growth factors, and biogenic amines. Dense-core vesicles originate from the trans-Golgi of neurons and neuroendocrine cells, but it is unclear how this specialized organelle is formed and acquires its specific cargos. To identify proteins that act in dense-core vesicle biogenesis, we performed a forward genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We previously reported the identification of two conserved proteins that interact with the small GTPase RAB-2 to control normal dense-core vesicle cargo-sorting. Here we identify several additional conserved factors important for dense-core vesicle cargo sorting: the WD40 domain protein EIPR-1 and the endosome-associated recycling protein (EARP) complex. By assaying behavior and the trafficking of dense-core vesicle cargos, we show that mutants that lack EIPR-1 or EARP have defects in dense-core vesicle cargo-sorting similar to those of mutants in the RAB-2 pathway. Genetic epistasis data indicate that RAB-2, EIPR-1 and EARP function in a common pathway. In addition, using a proteomic approach in rat insulinoma cells, we show that EIPR-1 physically interacts with the EARP complex. Our data suggest that EIPR-1 is a new interactor of the EARP complex and that dense-core vesicle cargo sorting depends on the EARP-dependent trafficking of cargo through an endosomal sorting compartment. PMID:27191843

  12. The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles

    PubMed Central

    Topalidou, Irini; Cattin-Ortolá, Jérôme; MacCoss, Michael J.

    2016-01-01

    The dense-core vesicle is a secretory organelle that mediates the regulated release of peptide hormones, growth factors, and biogenic amines. Dense-core vesicles originate from the trans-Golgi of neurons and neuroendocrine cells, but it is unclear how this specialized organelle is formed and acquires its specific cargos. To identify proteins that act in dense-core vesicle biogenesis, we performed a forward genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We previously reported the identification of two conserved proteins that interact with the small GTPase RAB-2 to control normal dense-core vesicle cargo-sorting. Here we identify several additional conserved factors important for dense-core vesicle cargo sorting: the WD40 domain protein EIPR-1 and the endosome-associated recycling protein (EARP) complex. By assaying behavior and the trafficking of dense-core vesicle cargos, we show that mutants that lack EIPR-1 or EARP have defects in dense-core vesicle cargo-sorting similar to those of mutants in the RAB-2 pathway. Genetic epistasis data indicate that RAB-2, EIPR-1 and EARP function in a common pathway. In addition, using a proteomic approach in rat insulinoma cells, we show that EIPR-1 physically interacts with the EARP complex. Our data suggest that EIPR-1 is a new interactor of the EARP complex and that dense-core vesicle cargo sorting depends on the EARP-dependent trafficking of cargo through an endosomal sorting compartment. PMID:27191843

  13. Regulatory Multidimensionality of Gas Vesicle Biogenesis in Halobacterium salinarum NRC-1

    PubMed Central

    Yao, Andrew I.; Facciotti, Marc T.

    2011-01-01

    It is becoming clear that the regulation of gas vesicle biogenesis in Halobacterium salinarum NRC-1 is multifaceted and appears to integrate environmental and metabolic cues at both the transcriptional and posttranscriptional levels. The mechanistic details underlying this process, however, remain unclear. In this manuscript, we quantify the contribution of light scattering made by both intracellular and released gas vesicles isolated from Halobacterium salinarum NRC-1, demonstrating that each form can lead to distinct features in growth curves determined by optical density measured at 600 nm (OD600). In the course of the study, we also demonstrate the sensitivity of gas vesicle accumulation in Halobacterium salinarum NRC-1 on small differences in growth conditions and reevaluate published works in the context of our results to present a hypothesis regarding the roles of the general transcription factor tbpD and the TCA cycle enzyme aconitase on the regulation of gas vesicle biogenesis. PMID:22110395

  14. Autophagy-associated dengue vesicles promote viral transmission avoiding antibody neutralization.

    PubMed

    Wu, Yan-Wei; Mettling, Clément; Wu, Shang-Rung; Yu, Chia-Yi; Perng, Guey-Chuen; Lin, Yee-Shin; Lin, Yea-Lih

    2016-01-01

    One of the major defense mechanisms against virus spread in vivo is the blocking of viral infectibility by neutralizing antibodies. We describe here the identification of infectious autophagy-associated dengue vesicles released from infected cells. These vesicles contain viral proteins E, NS1, prM/M, and viral RNA, as well as host lipid droplets and LC3-II, an autophagy marker. The viral RNA can be protected within the autophagic organelles since anti-dengue neutralizing antibodies do not have an effect on the vesicle-mediated transmission that is able to initiate a new round of infection in target cells. Importantly, such infectious vesicles were also detected in a patient serum. Our study suggests that autophagy machinery plays a new role in dengue virus transmission. This discovery explains the inefficiency of neutralizing antibody upon dengue infection as a potential immune evasion mechanism in vivo. PMID:27558165

  15. Autophagy-associated dengue vesicles promote viral transmission avoiding antibody neutralization

    PubMed Central

    Wu, Yan-Wei; Mettling, Clément; Wu, Shang-Rung; Yu, Chia-Yi; Perng, Guey-Chuen; Lin, Yee-Shin; Lin, Yea-Lih

    2016-01-01

    One of the major defense mechanisms against virus spread in vivo is the blocking of viral infectibility by neutralizing antibodies. We describe here the identification of infectious autophagy-associated dengue vesicles released from infected cells. These vesicles contain viral proteins E, NS1, prM/M, and viral RNA, as well as host lipid droplets and LC3-II, an autophagy marker. The viral RNA can be protected within the autophagic organelles since anti-dengue neutralizing antibodies do not have an effect on the vesicle-mediated transmission that is able to initiate a new round of infection in target cells. Importantly, such infectious vesicles were also detected in a patient serum. Our study suggests that autophagy machinery plays a new role in dengue virus transmission. This discovery explains the inefficiency of neutralizing antibody upon dengue infection as a potential immune evasion mechanism in vivo. PMID:27558165

  16. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion.

    PubMed

    Kabachinski, Greg; Kielar-Grevstad, D Michelle; Zhang, Xingmin; James, Declan J; Martin, Thomas F J

    2016-02-15

    The Ca(2+)-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro-scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2-dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly. PMID:26700319

  17. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion

    PubMed Central

    Kabachinski, Greg; Kielar-Grevstad, D. Michelle; Zhang, Xingmin; James, Declan J.; Martin, Thomas F. J.

    2016-01-01

    The Ca2+-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro­scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2–dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly. PMID:26700319

  18. Deformation of vesicles flowing through capillaries

    NASA Astrophysics Data System (ADS)

    Vitkova, V.; Mader, M.; Podgorski, T.

    2004-11-01

    The flow of giant lipid vesicles through cylindrical capillaries is experimentally investigated. Vesicles are deflated with reduced volumes between 0.8 and 1, corresponding to prolate spheroidal equilibrium shapes. Both interior and exterior fluids are sugar solutions with viscosities close to 10-3 Pa s. Vesicles are aspirated into a capillary tube with a diameter close to the vesicle size and a constant flow rate is imposed. Significant deformation of the membrane occurs and increases when the velocity, confinement or deflation of the vesicle are increased. The mobility of vesicles, defined as the ratio of their velocity to the average velocity of the fluid is a decreasing function of confinement. Our experimental system provides a controllable and flexible tool to investigate deformability effects responsible for crucial aspects of blood rheology in capillaries.

  19. Ciliary Extracellular Vesicles: Txt Msg Organelles.

    PubMed

    Wang, Juan; Barr, Maureen M

    2016-04-01

    Cilia are sensory organelles that protrude from cell surfaces to monitor the surrounding environment. In addition to its role as sensory receiver, the cilium also releases extracellular vesicles (EVs). The release of sub-micron sized EVs is a conserved form of intercellular communication used by all three kingdoms of life. These extracellular organelles play important roles in both short and long range signaling between donor and target cells and may coordinate systemic responses within an organism in normal and diseased states. EV shedding from ciliated cells and EV-cilia interactions are evolutionarily conserved phenomena, yet remarkably little is known about the relationship between the cilia and EVs and the fundamental biology of EVs. Studies in the model organisms Chlamydomonas and Caenorhabditis elegans have begun to shed light on ciliary EVs. Chlamydomonas EVs are shed from tips of flagella and are bioactive. Caenorhabditis elegans EVs are shed and released by ciliated sensory neurons in an intraflagellar transport-dependent manner. Caenorhabditis elegans EVs play a role in modulating animal-to-animal communication, and this EV bioactivity is dependent on EV cargo content. Some ciliary pathologies, or ciliopathies, are associated with abnormal EV shedding or with abnormal cilia-EV interactions. Until the 21st century, both cilia and EVs were ignored as vestigial or cellular junk. As research interest in these two organelles continues to gain momentum, we envision a new field of cell biology emerging. Here, we propose that the cilium is a dedicated organelle for EV biogenesis and EV reception. We will also discuss possible mechanisms by which EVs exert bioactivity and explain how what is learned in model organisms regarding EV biogenesis and function may provide insight to human ciliopathies. PMID:26983828

  20. Ciliary extracellular vesicles: Txt msg orgnlls

    PubMed Central

    Wang, Juan; Barr, Maureen M.

    2016-01-01

    Cilia are sensory organelles that protrude from cell surfaces to monitor the surrounding environment. In addition to its role as sensory receiver, the cilium also releases extracellular vesicles (EVs). The release of sub-micron sized EVs is a conserved form of intercellular communication used by all three kingdoms of life. These extracellular organelles play important roles in both short and long range signaling between donor and target cells and may coordinate systemic responses within an organism in normal and diseased states. EV shedding from ciliated cells and EV-cilia interactions are evolutionarily conserved phenomena, yet remarkably little is known about the relationship between the cilia and EVs and the fundamental biology of EVs. Studies in the model organisms Chlamydomonas and C. elegans have begun to shed light on ciliary EVs. Chlamydomonas EVs are shed from tips of flagella and are bioactive. C. elegans EVs are shed and released by ciliated sensory neurons in an intraflagellar transport (IFT)-dependent manner. C. elegans EVs play a role in modulating animal-to-animal communication, and this EV bioactivity is dependent on EV cargo content. Some ciliary pathologies, or ciliopathies, are associated with abnormal EV shedding or with abnormal cilia-EV interactions, suggest the cilium may be an important organelle as an EV donor or as an EV target. Until the past few decades, both cilia and EVs were ignored as vestigial or cellular junk. As research interest in these two organelles continues to gain momentum, we envision a new field of cell biology emerging. Here, we propose that the cilium is a dedicated organelle for EV biogenesis and EV reception. We will also discuss possible mechanisms by which EVs exert bioactivity and explain how what is learned in model organisms regarding EV biogenesis and function may provide insight to human ciliopathies. PMID:26983828

  1. Pressure-induced shape change of phospholipid vesicles: implication of compression and phase transition.

    PubMed

    Perrier-Cornet, J-M; Baddóuj, K; Gervais, P

    2005-04-01

    A microscopic study has allowed the analysis of modifications of various shapes acquired by phospholipid vesicles during a hydrostatic pressure treatment of up to 300 MPa. Giant vesicles of dimyristoylphosphatidylcholine / phosphatidylserine (DMPC/PS) prepared at 40 degrees C mainly presented a shape change resembling budding during pressure release. This comportment was reinforced by the incorporation of 1,2-dioleyl-sn-glycero-3-phosphatidylethanolamine (DOPE) or by higher temperature (60 degrees C) processing. The thermotropic main phase transition (L alpha to P beta') of the different vesicles prepared was determined under pressure through a spectrofluorimetric study of 6-dodecanoyl-2-dimethylamino-naphtalene (Laurdan) incorporated into the vesicles' bilayer. This analysis was performed by microfluorescence observation of single vesicles. The phase transition was found to begin at about 80 MPa and 120 MPa for DMPC/PS vesicles at, respectively, 40 degrees C and 60 degrees C. At 60 degrees C the liquid-to-gel transition phase was not complete within 250 MPa. Addition of DMPE at 40 degrees C does not significantly shift the onset boundary of the phase transition but extends the transition region. At 40 degrees C, the gel phase was obtained at, respectively, 110 MPa and 160 MPa for DMPC/PS and DMPC/PS/DOPE vesicles. In comparing volume data obtained from image analysis and Laurdan signal, we assume the shape change is a consequence of the difference between lateral compressibility of the membrane and bulk water. The phase transition contributes to the membrane compression but seems not necessary to induce shape change of vesicles. The high compressibility of the L alpha phase at 60 degrees C allows induction on DMPC/PS vesicles of a morphological transition without phase change. PMID:16245032

  2. Time-coded neurotransmitter release at excitatory and inhibitory synapses.

    PubMed

    Rodrigues, Serafim; Desroches, Mathieu; Krupa, Martin; Cortes, Jesus M; Sejnowski, Terrence J; Ali, Afia B

    2016-02-23

    Communication between neurons at chemical synapses is regulated by hundreds of different proteins that control the release of neurotransmitter that is packaged in vesicles, transported to an active zone, and released when an input spike occurs. Neurotransmitter can also be released asynchronously, that is, after a delay following the spike, or spontaneously in the absence of a stimulus. The mechanisms underlying asynchronous and spontaneous neurotransmitter release remain elusive. Here, we describe a model of the exocytotic cycle of vesicles at excitatory and inhibitory synapses that accounts for all modes of vesicle release as well as short-term synaptic plasticity (STSP). For asynchronous release, the model predicts a delayed inertial protein unbinding associated with the SNARE complex assembly immediately after vesicle priming. Experiments are proposed to test the model's molecular predictions for differential exocytosis. The simplicity of the model will also facilitate large-scale simulations of neural circuits. PMID:26858411

  3. Time-coded neurotransmitter release at excitatory and inhibitory synapses

    PubMed Central

    Rodrigues, Serafim; Desroches, Mathieu; Krupa, Martin; Cortes, Jesus M.; Sejnowski, Terrence J.; Ali, Afia B.

    2016-01-01

    Communication between neurons at chemical synapses is regulated by hundreds of different proteins that control the release of neurotransmitter that is packaged in vesicles, transported to an active zone, and released when an input spike occurs. Neurotransmitter can also be released asynchronously, that is, after a delay following the spike, or spontaneously in the absence of a stimulus. The mechanisms underlying asynchronous and spontaneous neurotransmitter release remain elusive. Here, we describe a model of the exocytotic cycle of vesicles at excitatory and inhibitory synapses that accounts for all modes of vesicle release as well as short-term synaptic plasticity (STSP). For asynchronous release, the model predicts a delayed inertial protein unbinding associated with the SNARE complex assembly immediately after vesicle priming. Experiments are proposed to test the model’s molecular predictions for differential exocytosis. The simplicity of the model will also facilitate large-scale simulations of neural circuits. PMID:26858411

  4. Aggregation and hemi-fusion of anionic vesicles induced by the antimicrobial peptide cryptdin-4.

    PubMed

    Cummings, Jason E; Vanderlick, T Kyle

    2007-07-01

    We show that cryptdin-4 (Crp4), an antimicrobial peptide found in mice, induces the aggregation and hemi-fusion of charged phospholipid vesicles constructed of the anionic lipid POPG and the zwitterionic lipid POPC. Hemi-fusion is confirmed with positive total lipid-mixing assay results, negative inner monolayer lipid-mixing assay results, and negative results from contents-mixing assays. Aggregation, as quantified by absorbance and dynamic light scattering, is self-limiting, creating finite-sized vesicle assemblies. The rate limiting step in the formation process is the mixing of juxtaposed membrane leaflets, which is regulated by bound peptide concentration as well as vesicle radius (with larger vesicles less prone to hemi-fusion). Bound peptide concentration is readily controlled by total peptide concentration and the fraction of anionic lipid in the vesicles. As little as 1% PEGylated lipid significantly reduces aggregate size by providing a steric barrier for membrane apposition. Finally, as stable hemi-fusion is a rare occurrence, we compare properties of Crp4 to those of many peptides known to induce complete fusion and lend insight into conditions necessary for this unusual type of membrane merger. PMID:17531950

  5. Endosomal vesicles as vehicles for viral genomes

    PubMed Central

    Nour, Adel M.; Modis, Yorgo

    2014-01-01

    The endocytic pathway is the principal cell entry pathway for large cargo and pathogens. Among the wide variety of specialized lipid structures within endosomes, the intraluminal vesicles formed in early endosomes and transferred to late endosomal compartments are emerging as critical effectors of viral infection and immune recognition. Various viruses deliver their genomes into these intraluminal vesicles, which serve as vehicles to transport the genome to the nuclear periphery for replication. When secreted as exosomes, intraluminal vesicles containing viral genomes can infect permissive cells, or activate immune responses in myeloid cells. We therefore propose that endosomal intraluminal vesicles and exosomes are key effectors of viral pathogenesis. PMID:24746011

  6. Autonomous movement of a chemically powered vesicle

    NASA Astrophysics Data System (ADS)

    Gupta, Shivam; Sreeja, K. K.; Thakur, Snigdha

    2015-10-01

    We investigate the diffusio-phoretic motion of a deformable vesicle. A vesicle is built from the linked catalytic and noncatalytic vertices that consumes fuel in the environment and utilize the resulting self-generated concentration gradient to exhibit propulsive motion. Under nonequilibrium conditions it is found that the self-propulsion velocity of the vesicle depends on its shape, which in turn is controlled by the bending rigidity of the membrane and solvent density around it. The self-propulsion velocity of the vesicle for different shapes has been calculated and the factors which affect the velocity are identified.

  7. Probing Rotational Viscosity in Synaptic Vesicles

    PubMed Central

    Zeigler, Maxwell B.; Allen, Peter B.; Chiu, Daniel T.

    2011-01-01

    The synaptic vesicle (SV) is a central organelle in neurotransmission, and previous studies have suggested that SV protein 2 (SV2) may be responsible for forming a gel-like matrix within the vesicle. Here we measured the steady-state rotational anisotropy of the fluorescent dye, Oregon Green, within individual SVs. By also measuring the fluorescence lifetime of Oregon Green in SVs, we determined the mean rotational viscosity to be 16.49 ± 0.12 cP for wild-type (WT) empty mice vesicles (i.e., with no neurotransmitters), 11.21 ± 0.12 cP for empty vesicles from SV2 knock-out mice, and 11.40 ± 0.65 cP for WT mice vesicles loaded with the neurotransmitter glutamate (Glu). This measurement shows that SV2 is an important determinant of viscosity within the vesicle lumen, and that the viscosity decreases when the vesicles are filled with Glu. The viscosities of both empty SV2 knock-out vesicles and Glu-loaded WT vesicles were significantly different from that of empty WT SVs (p < 0.05). This measurement represents the smallest enclosed volume in which rotational viscosity has been measured thus far. PMID:21641331

  8. Vesicles

    MedlinePlus

    ... poison ivy) Herpes simplex (cold sores, genital herpes ) Herpes zoster (shingles) Impetigo Fungal infections Burns Home Care It is ... disease on the soles Herpes simplex - close-up Herpes zoster (shingles) - close-up of lesion Poison ivy on ...

  9. Secretory vesicle rebound hyperacidification and increased quantal size due to prolonged methamphetamine exposure

    PubMed Central

    Markov, Dmitriy; Mosharov, Eugene V.; Setlik, Wanda; Gershon, Michael D.; Sulzer, David

    2009-01-01

    Acute exposure to amphetamines collapses secretory vesicle pH gradients, which increases cytosolic catecholamine levels while decreases the quantal size of catecholamine release during fusion events. Amphetamine and methamphetamine, however, are retained in tissues over long durations. We used optical and electron microscopic probes to measure the effects of long-term methamphetamine exposure on secretory vesicle pH, and amperometry and intracellular patch electrochemistry to observe the effects on neurosecretion and cytosolic catecholamines in cultured rat chromaffin cells. In contrast to acute methamphetamine effects, exposure to the drug for 6–48 h at 10 μM and higher concentrations produced a concentration-dependent rebound hyperacidification of secretory vesicles. At 5–10 μM levels, methamphetamine increased the quantal size and reinstated exocytotic catecholamine release, although very high (>100 μM) levels of the drug, while continuing to produce rebound hyperacidification, did not increase quantal size. Secretory vesicle rebound hyperacidification was temperature dependent with optimal response at ~ 37°C, was not blocked by the transcription inhibitor, puromycin, and appears to be a general compensatory response to prolonged exposure with membranophilic weak bases, including amphetamines, methylphenidate, cocaine, and ammonia. Thus, under some conditions of prolonged exposure, amphetamines and other weak bases can enhance, rather than deplete, the vesicular release of catecholamines via a compensatory response resulting in vesicle acidification. PMID:19014382

  10. Pluronic P85/poly(lactic acid) vesicles as novel carrier for oral insulin delivery.

    PubMed

    Xiong, Xiang Yuan; Li, Qi Han; Li, Yu Ping; Guo, Liang; Li, Zi Ling; Gong, Yan Chun

    2013-11-01

    Poly(lactic acid)-b-Pluronic-b-poly(lactic acid) (PLA-P85-PLA) vesicles were developed as novel carrier for oral insulin delivery. PLA-P85-PLA block copolymer was synthesized by ring opening polymerization of the monomer l-lactide using Pluronic copolymer P85 as the initiator. Insulin-loaded PLA-P85-PLA vesicles were prepared by dialysis method and the mean diameter of insulin-loaded PLA-P85-PLA vesicles was determined to be 178 nm. The cytotoxicity studies using human ovarian cancer cells OVCAR-3 indicate that PLA-P85-PLA block copolymer has good biocompatibility. Both in vitro and in vivo release behavior of insulin loaded in PLA-P85-PLA vesicles were studied. It was observed that insulin was released out gradually from PLA-P85-PLA vesicles and almost all insulin was released out 7.5h later. More importantly, for the oral administration of insulin-loaded PLA-P85-PLA vesicles at insulin doses of 200 IU/kg, the minimum blood glucose concentration was observed in the diabetic mice test after 2.5h, which was 15% of initial glucose level. Furthermore, the blood glucose concentration increased slowly to 31.8% of initial blood glucose concentration after 10.5h and was maintained at this level for at least an additional 14h (32.5% of initial blood glucose concentration at 24.5h). These results proved that PLA-P85-PLA vesicles could be promising polymeric carriers for oral insulin delivery application due to their sustained and enhanced hypoglycemic effect. PMID:23838194

  11. Proteomics of extracellular vesicles: Exosomes and ectosomes.

    PubMed

    Choi, Dong-Sic; Kim, Dae-Kyum; Kim, Yoon-Keun; Gho, Yong Song

    2015-01-01

    Almost all bacteria, archaea, and eukaryotic cells shed extracellular vesicles either constitutively or in a regulated manner. These nanosized membrane vesicles are spherical, bilayered proteolipids that harbor specific subsets of proteins, DNAs, RNAs, and lipids. Recent research has facilitated conceptual advancements in this emerging field that indicate that extracellular vesicles act as intercellular communicasomes by transferring signals to their target cell via surface ligands and delivering receptors and functional molecules. Recent progress in mass spectrometry-based proteomic analyses of mammalian extracellular vesicles derived from diverse cell types and body fluids has resulted in the identification of several thousand vesicular proteins that provide us with essential clues to the molecular mechanisms involved in vesicle cargo sorting and biogenesis. Furthermore, cell-type- or disease-specific vesicular proteins help us to understand the pathophysiological functions of extracellular vesicles and contribute to the discovery of diagnostic and therapeutic target proteins. This review focuses on the high-throughput mass spectrometry-based proteomic analyses of mammalian extracellular vesicles (i.e., exosomes and ectosomes), EVpedia (a free web-based integrated database of high-throughput data for systematic analyses of extracellular vesicles; http://evpedia.info), and the intravesicular protein-protein interaction network analyses of mammalian extracellular vesicles. The goal of this article is to encourage further studies to construct a comprehensive proteome database for extracellular vesicles that will help us to not only decode the biogenesis and cargo-sorting mechanisms during vesicle formation but also elucidate the pathophysiological roles of these complex extracellular organelles. PMID:24421117

  12. Individual synaptic vesicles from the electroplaque of Torpedo californica, a classic cholinergic synapse, also contain transporters for glutamate and ATP

    PubMed Central

    Li, Huinan; Harlow, Mark L.

    2014-01-01

    Abstract The type of neurotransmitter secreted by a neuron is a product of the vesicular transporters present on its synaptic vesicle membranes and the available transmitters in the local cytosolic environment where the synaptic vesicles reside. Synaptic vesicles isolated from electroplaques of the marine ray, Torpedo californica, have served as model vesicles for cholinergic neurotransmission. Many lines of evidence support the idea that in addition to acetylcholine, additional neurotransmitters and/or neuromodulators are also released from cholinergic synapses. We identified the types of vesicular neurotransmitter transporters present at the electroplaque using immunoblot and immunofluoresence techniques with antibodies against the vesicle acetylcholine transporter (VAChT), the vesicular glutamate transporters (VGLUT1, 2, and 3), and the vesicular nucleotide transporter (VNUT). We found that VAChT, VNUT, VGLUT 1 and 2, but not 3 were present by immunoblot, and confirmed that the antibodies were specific to proteins of the axons and terminals of the electroplaque. We used a single‐vesicle imaging technique to determine whether these neurotransmitter transporters were present on the same or different populations of synaptic vesicles. We found that greater than 85% of vesicles that labeled for VAChT colabeled with VGLUT1 or VGLUT2, and approximately 70% colabeled with VNUT. Based upon confidence intervals, at least 52% of cholinergic vesicles isolated are likely to contain all four transporters. The presence of multiple types of neurotransmitter transporters – and potentially neurotransmitters – in individual synaptic vesicles raises fundamental questions about the role of cotransmitter release and neurotransmitter synergy at cholinergic synapses. PMID:24744885

  13. Outer membrane vesicles as platform vaccine technology

    PubMed Central

    Stork, Michiel; van der Ley, Peter

    2015-01-01

    Abstract Outer membrane vesicles (OMVs) are released spontaneously during growth by many Gram‐negative bacteria. They present a range of surface antigens in a native conformation and have natural properties like immunogenicity, self‐adjuvation and uptake by immune cells which make them attractive for application as vaccines against pathogenic bacteria. In particular with Neisseria meningitidis, they have been investigated extensively and an OMV‐containing meningococcal vaccine has recently been approved by regulatory agencies. Genetic engineering of the OMV‐producing bacteria can be used to improve and expand their usefulness as vaccines. Recent work on meningitis B vaccines shows that OMVs can be modified, such as for lipopolysaccharide reactogenicity, to yield an OMV product that is safe and effective. The overexpression of crucial antigens or simultaneous expression of multiple antigenic variants as well as the expression of heterologous antigens enable expansion of their range of applications. In addition, modifications may increase the yield of OMV production and can be combined with specific production processes to obtain high amounts of well‐defined, stable and uniform OMV particle vaccine products. Further improvement can facilitate the development of OMVs as platform vaccine product for multiple applications. PMID:26912077

  14. [Characterization and biological role of extracellular vesicles].

    PubMed

    Wójtowicz, Aneta; Baj-Krzyworzeka, Monika; Baran, Jarosław

    2014-01-01

    Extracellular vesicles (EV) form a heterogeneous population of mostly spherical membrane structures released by almost all cells, including tumour cells, both in vivo and in vitro. Their size varies from 30 nm to 1 μm, and size is one of the main criteria of the selection of two categories of EV: small (30-100 nm), more homogeneous exosomes and larger fragments (0.1-1 μm) called membrane microvesicles or ectosomes. The presence of EV has already been detected in many human body fluids: blood, urine, saliva, semen and amniotic fluid. Formation of EV is tightly controlled, and their function and biochemical composition depend on the cell type they originate from. EV are the "vehicles" of bioactive molecules, such as proteins, mRNA and microRNA, and may play an important role in intercellular communication and modulation of e.g. immune system cell activity. In addition, on the surface of tumour-derived microvesicles (TMV), called oncosomes, several markers specific for cancer cells were identified, which indicates a role of TMV in tumour growth and cancer development. On the other hand, TMV may be an important source of tumour-associated antigens (TAA) which can be potentially useful as biomarkers with prognostic value, as well as in development of new forms of targeted immunotherapy of cancer. PMID:25531706

  15. Comparison of official methods for 'readily oxidizable substances' in propionic acid as a food additive.

    PubMed

    Ishiwata, H; Takeda, Y; Kawasaki, Y; Kubota, H; Yamada, T

    1996-01-01

    The official methods for 'readily oxidizable substances (ROS)' in propionic acid as a food additive were compared. The methods examined were those adopted in the Compendium of Food Additive Specifications (CFAS) by the Joint FAO-WHO Expert Committee on Food Additives, FAO, The Japanese Standards for Food Additives (JSFA) by the Ministry of Health and Welfare, Japan, and the Food Chemicals Codex (FCC) by the National Research Council, USA. The methods given in CFAS and JSFA are the same (potassium permanganate consumption). However, by this method, manganese (VII) in potassium permanganate was readily reduced to colourless manganese(II) with some substances contained in the propionic acid before reacting with aldehydes, which are generally considered as 'readily oxidizable substances', to form brown manganese (IV) oxide. The FCC method (bromine consumption) for 'ROS' could be recommended because it was able to obtain quantitative results of 'ROS', including aldehydes. PMID:8647299

  16. Myeloid Extracellular Vesicles: Messengers from the Demented Brain

    PubMed Central

    Nigro, Annamaria; Colombo, Federico; Casella, Giacomo; Finardi, Annamaria; Verderio, Claudia; Furlan, Roberto

    2016-01-01

    Blood-borne monocyte derived cells play a pivotal, initially unrecognized, role in most central nervous system disorders, including diseases initially classified as purely neurodegenerative (i.e., Alzheimer’s disease, Parkinson’s disease, and ALS). Their trafficking to the brain and spinal cord has been extensively studied in classical neuroinflammatory disorders such as multiple sclerosis. Central nervous system resident myeloid cells, namely microglia and perivascular macrophages, also are in the spotlight of investigations on neurological disorders. Myeloid cells, such as infiltrating macrophages and microglia, have been described as having both protective and destructive features in neurological disorders, thus identification of their functional phenotype during disease evolution would be of paramount importance. Extracellular vesicles, namely exosomes and shed vesicles, are released by virtually any cell type and can be detected and identified in terms of cell origin in biological fluids. They therefore constitute an ideal tool to access information on cells residing in an inaccessible site such as the brain. We will review here available information on extracellular vesicles detection in neurological disorders with special emphasis on neurodegenerative diseases. PMID:26858720

  17. Horizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles

    PubMed Central

    Liu, Shu; Hossinger, André; Hofmann, Julia P.; Denner, Philip

    2016-01-01

    ABSTRACT Prions are infectious protein particles that replicate by templating their aggregated state onto soluble protein of the same type. Originally identified as the causative agent of transmissible spongiform encephalopathies, prions in yeast (Saccharomyces cerevisiae) are epigenetic elements of inheritance that induce phenotypic changes of their host cells. The prototype yeast prion is the translation termination factor Sup35. Prions composed of Sup35 or its modular prion domain NM are heritable and are transmitted vertically to progeny or horizontally during mating. Interestingly, in mammalian cells, protein aggregates derived from yeast Sup35 NM behave as true infectious entities that employ dissemination strategies similar to those of mammalian prions. While transmission is most efficient when cells are in direct contact, we demonstrate here that cytosolic Sup35 NM prions are also released into the extracellular space in association with nanometer-sized membrane vesicles. Importantly, extracellular vesicles are biologically active and are taken up by recipient cells, where they induce self-sustained Sup35 NM protein aggregation. Thus, in mammalian cells, extracellular vesicles can serve as dissemination vehicles for protein-based epigenetic information transfer. PMID:27406566

  18. Phenotyping of Leukocytes and Leukocyte-Derived Extracellular Vesicles

    PubMed Central

    Pugholm, Lotte Hatting; Bæk, Rikke; Søndergaard, Evo Kristina Lindersson; Revenfeld, Anne Louise Schacht; Jørgensen, Malene Møller; Varming, Kim

    2016-01-01

    Extracellular vesicles (EVs) have a demonstrated involvement in modulating the immune system. It has been proposed that EVs could be used as biomarkers for detection of inflammatory and immunological disorders. Consequently, it is of great interest to investigate EVs in more detail with focus on immunological markers. In this study, five major leukocyte subpopulations and the corresponding leukocyte-derived EVs were phenotyped with focus on selected immunological lineage-specific markers and selected vesicle-related markers. The leukocyte-derived EVs displayed phenotypic differences in the 34 markers investigated. The majority of the lineage-specific markers used for identification of the parent cell types could not be detected on EVs released from monocultures of the associated cell types. In contrast, the vesicular presentation of CD9, CD63, and CD81 correlated to the cell surface expression of these markers, however, with few exceptions. Furthermore, the cellular expression of CD9, CD63, and CD81 varied between leukocytes present in whole blood and cultured leukocytes. In summary, these data demonstrate that the cellular and vesicular presentation of selected lineage-specific and vesicle-related markers may differ, supporting the accumulating observations that sorting of molecular cargo into EVs is tightly controlled. PMID:27195303

  19. Synaptic vesicle distribution by conveyor belt.

    PubMed

    Moughamian, Armen J; Holzbaur, Erika L F

    2012-03-01

    The equal distribution of synaptic vesicles among synapses along the axon is critical for robust neurotransmission. Wong et al. show that the continuous circulation of synaptic vesicles throughout the axon driven by molecular motors ultimately yields this even distribution. PMID:22385955

  20. Dynamical simulations of vesicle growth and division

    NASA Astrophysics Data System (ADS)

    Ruiz-Herrero, Teresa; Mahadevan, L.

    2015-03-01

    Prebiotic cells constitute a beautiful and intriguing example of self-replicating vesicles. How these cells managed to grow and divide without sophisticated machinery is still an open question. The properties of these primitive vesicles can shed light on the ways modern cells have evolved by exploiting those characteristics to develop their replication mechanisms. The equilibrium configurations of elastic shells are well understood, however the dynamical behavior during growth still lacks of a deep theoretical understanding. To study vesicle growth from a general perspective, we have developed a minimal generic model where vesicles are represented by a 2D spring network and characterized by a minimum set of magnitudes: growth rate, permeability, bending stiffness, viscosity and temperature. We have performed hybrid molecuar dynamic simulations as a function of a reduced set of dimensionless parameters. Three main outcomes were observed: vesicles that grow without division, vesicles that divide symmetrically, and vesicles that act as generators of daughter vesicles. The type of outcome depends on the system parameters and specifically on its dynamics via two timescales. Furthermore, we found sets of parameters where the system shows size homeostasis. TRH was supported by Ramon Areces Foundation.

  1. Feruloyl Dioleoyglycerol Antioxidant Capacity in Phospholipid Vesicles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ferulic acid and its esters are known to be effective antioxidants. Feruloyl dioleoylglycerol was assessed for its ability to serve as an antioxidant in model membrane phospholipid vesicles. The molecule was incorporated into single-lamellar vesicles of 1,2-dioleoyl-sn-glycero-3-phosphocholine at ...

  2. Transport of Ions through Vesicle Bilayers

    PubMed

    Kaiser; Hoffmann

    1996-12-01

    Stopped flow measurements to determine the permeability of vesicles are presented. The kinetics of the reaction between FeSCN2+ and F- ions is used to monitor the permeability of vesicles. Samples with vesicles that have been equilibrated with the iron complex are mixed with F- solutions. The reaction is followed by UV/VIS absorption. The influence of temperature and surfactant concentration on the membrane permeability of large unilamellar phospholipid vesicles was studied. A dramatic increase of the permeability of the LUVs is observed when 30 to 40 mol% of the surfactant OP-10 (main component of Triton X-100) is added to the lipid. It is assumed that the increased permeability is due to the stabilization of transient defects in the bilayers of the vesicles as shown previously by other groups. Furthermore, a strong binding of the iron (III) thiocyanate complex to the phospholipid is observed by UV/VIS spectroscopy and zeta-potential measurements. Additional experiments with vesicles from a fluorocarbon surfactant show a much higher permeability than the phospholipid system. Models for the diffusion of either the iron (III) complex or the fluoride ions through the vesicles bilayer are discussed for LUV as well as for vesicles from a fluorocarbon surfactant. The results indicate that the rate-determining step is the diffusion of the iron complex through the membrane. PMID:8954634

  3. Functional Advantages of Porphyromonas gingivalis Vesicles

    PubMed Central

    Ho, Meng-Hsuan; Chen, Chin-Ho; Goodwin, J. Shawn; Wang, Bing-Yan; Xie, Hua

    2015-01-01

    Porphyromonas gingivalis is a keystone pathogen of periodontitis. Outer membrane vesicles (OMVs) have been considered as both offense and defense components of this bacterium. Previous studies indicated that like their originating cells, P. gingivalis vesicles, are able to invade oral epithelial cells and gingival fibroblasts, in order to promote aggregation of some specific oral bacteria and to induce host immune responses. In the present study, we investigated the invasive efficiency of P. gingivalis OMVs and compared results with that of the originating cells. Results revealed that 70–90% of human primary oral epithelial cells, gingival fibroblasts, and human umbilical vein endothelial cells carried vesicles from P. gingivalis 33277 after being exposed to the vesicles for 1 h, while 20–50% of the host cells had internalized P. gingivalis cells. We also detected vesicle-associated DNA and RNA and a vesicle-mediated horizontal gene transfer in P. gingivalis strains, which represents a novel mechanism for gene transfer between P. gingivalis strains. Moreover, purified vesicles of P. gingivalis appear to have a negative impact on biofilm formation and the maintenance of Streptococcus gordonii. Our results suggest that vesicles are likely the best offence weapon of P. gingivalis for bacterial survival in the oral cavity and for induction of periodontitis. PMID:25897780

  4. Nanoplasmonic ruler to measure lipid vesicle deformation.

    PubMed

    Jackman, Joshua A; Špačková, Barbora; Linardy, Eric; Kim, Min Chul; Yoon, Bo Kyeong; Homola, Jiří; Cho, Nam-Joon

    2016-01-01

    A nanoplasmonic ruler method is presented in order to measure the deformation of adsorbed, nm-scale lipid vesicles on solid supports. It is demonstrated that single adsorbed vesicles undergo greater deformation on silicon oxide over titanium oxide, offering direct experimental evidence to support membrane tension-based theoretical models of supported lipid bilayer formation. PMID:26466086

  5. Membrane tensiometer for heavy giant vesicles

    NASA Astrophysics Data System (ADS)

    Puech, P.-H.; Brochard-Wyart, F.

    2004-10-01

    One key parameter of giant-vesicles adhesion is their membrane tension, σ. A theoretically simple but delicate way to impose (and measure) it is to use micropipette manipulation techniques. But usually, the vesicles are free and their tension is unknown, until an adhesion patch grows. σ can be deduced from the detailed profile of the membrane close to the substrate, but this method is limited to very low tensions. We present here a rather simple way to estimate the membrane tension of heavy vesicles, which sediment close to a surface, by observing by RIM the size of the flat region of the vesicle. As an application, we follow the slow flattening of vesicles, when the surrounding sugar solution is evaporating, and their light-induced tensioning.

  6. [Transvesical Removal of Seminal Vesicle Cystadenoma].

    PubMed

    Takayasu, Kenta; Harada, Jiro; Kawa, Gen; Ota, Syuichi; Sakurai, Takanori

    2015-07-01

    Primary tumors of the seminal vesicles are extremely rare. There have been 25 reports of this tumor from overseas and most cases are cystadenoma. We report a case of seminal vesicle cystadenoma in a 70-year-old man who presented with lower abdominal pain and urinary frequency. A digital rectal examination detected a projecting and hard mass in the right side of the prostate. Magnetic resonance imaging (MRI) showed a 15 cm multiple cystic mass continuous with the right seminal vesicle. A transrectal needle biopsy revealed benign tissue. The tumor was resected using an open transvesical approach that enabled full exposure of the seminal vesicle without damaging the nerves and blood supply of the bladder. Pathology was consistent with a benign seminal vesicle cystadenoma. We describe the natural history, pathology,and surgical approach in this case. PMID:26278217

  7. New links between vesicle coats and Rab-mediated vesicle targeting

    PubMed Central

    Angers, Cortney G.; Merz, Alexey J.

    2011-01-01

    Vesicle trafficking is a highly regulated process that transports proteins and other cargoes through eukaryotic cells while maintaining cellular organization and compartmental identity. In order for cargo to reach the correct destination, each step of trafficking must impart specificity. During vesicle formation, this is achieved by coat proteins, which selectively incorporate cargo into the nascent vesicle. Classically, vesicle coats are thought to dissociate shortly after budding. However, recent studies suggest that coat proteins can remain on the vesicle en route to their destination, imparting targeting specificity by physically and functionally interacting with Rab-regulated tethering systems. This review focuses on how interactions among Rab GTPases, tethering factors, SNARE proteins, and vesicle coats contribute to vesicle targeting, fusion, and coat dynamics. PMID:20643221

  8. Reduced expression of the vesicular acetylcholine transporter and neurotransmitter content affects synaptic vesicle distribution and shape in mouse neuromuscular junction.

    PubMed

    Rodrigues, Hermann A; Fonseca, Matheus de C; Camargo, Wallace L; Lima, Patrícia M A; Martinelli, Patrícia M; Naves, Lígia A; Prado, Vânia F; Prado, Marco A M; Guatimosim, Cristina

    2013-01-01

    In vertebrates, nerve muscle communication is mediated by the release of the neurotransmitter acetylcholine packed inside synaptic vesicles by a specific vesicular acetylcholine transporter (VAChT). Here we used a mouse model (VAChT KD(HOM)) with 70% reduction in the expression of VAChT to investigate the morphological and functional consequences of a decreased acetylcholine uptake and release in neuromuscular synapses. Upon hypertonic stimulation, VAChT KD(HOM) mice presented a reduction in the amplitude and frequency of miniature endplate potentials, FM 1-43 staining intensity, total number of synaptic vesicles and altered distribution of vesicles within the synaptic terminal. In contrast, under electrical stimulation or no stimulation, VAChT KD(HOM) neuromuscular junctions did not differ from WT on total number of vesicles but showed altered distribution. Additionally, motor nerve terminals in VAChT KD(HOM) exhibited small and flattened synaptic vesicles similar to that observed in WT mice treated with vesamicol that blocks acetylcholine uptake. Based on these results, we propose that decreased VAChT levels affect synaptic vesicle biogenesis and distribution whereas a lower ACh content affects vesicles shape. PMID:24260111

  9. Mammalian exocyst complex is required for the docking step of insulin vesicle exocytosis.

    PubMed

    Tsuboi, Takashi; Ravier, Magalie A; Xie, Hao; Ewart, Marie-Ann; Gould, Gwyn W; Baldwin, Stephen A; Rutter, Guy A

    2005-07-01

    Glucose stimulates insulin secretion from pancreatic beta cells by inducing the recruitment and fusion of insulin vesicles to the plasma membrane. However, little is currently known about the mechanism of the initial docking or tethering of insulin vesicles prior to fusion. Here, we examined the role of the SEC6-SEC8 (exocyst) complex, implicated in trafficking of secretory vesicles to fusion sites in the plasma membrane in yeast and in regulating glucose-stimulated insulin secretion from pancreatic MIN6 beta cells. We show first that SEC6 is concentrated on insulin-positive vesicles, whereas SEC5 and SEC8 are largely confined to the cytoplasm and the plasma membrane, respectively. Overexpression of truncated, dominant-negative SEC8 or SEC10 mutants decreased the number of vesicles at the plasma membrane, whereas expression of truncated SEC6 or SEC8 inhibited overall insulin secretion. When single exocytotic events were imaged by total internal reflection fluorescence microscopy, the fluorescence of the insulin surrogate, neuropeptide Y-monomeric red fluorescent protein brightened, diffused, and then vanished with kinetics that were unaffected by overexpression of truncated SEC8 or SEC10. Together, these data suggest that the exocyst complex serves to selectively regulate the docking of insulin-containing vesicles at sites of release close to the plasma membrane. PMID:15878854

  10. Fibronectin-Containing Extracellular Vesicles Protect Melanocytes against Ultraviolet Radiation-Induced Cytotoxicity.

    PubMed

    Bin, Bum-Ho; Kim, Dae-Kyum; Kim, Nan-Hyung; Choi, Eun-Jeong; Bhin, Jinhyuk; Kim, Sung Tae; Gho, Yong Song; Lee, Ai-Young; Lee, Tae Ryong; Cho, Eun-Gyung

    2016-05-01

    Skin melanocytes are activated by exposure to UV radiation to secrete melanin-containing melanosomes to protect the skin from UV-induced damage. Despite the continuous renewal of the epidermis, the turnover rate of melanocytes is very slow, and they survive for long periods. However, the mechanisms underlying the survival of melanocytes exposed to UV radiation are not known. Here, we investigated the role of melanocyte-derived extracellular vesicles in melanocyte survival. Network analysis of the melanocyte extracellular vesicle proteome identified the extracellular matrix component fibronectin at a central node, and the release of fibronectin-containing extracellular vesicles was increased after exposure of melanocytes to UVB radiation. Using an anti-fibronectin neutralizing antibody and specific inhibitors of extracellular vesicle secretion, we demonstrated that extracellular vesicles enriched in fibronectin were involved in melanocyte survival after UVB radiation. Furthermore, we observed that in the hyperpigmented lesions of patients with melasma, the extracellular space around melanocytes contained more fibronectin compared with normal skin, suggesting that fibronectin is involved in maintaining melanocytes in pathological conditions. Collectively, our findings suggest that melanocytes secrete fibronectin-containing extracellular vesicles to increase their survival after UVB radiation. These data provide important insight into how constantly stimulated melanocytes can be maintained in pathological conditions such as melasma. PMID:26854492

  11. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses

    NASA Astrophysics Data System (ADS)

    Moon, James J.; Suh, Heikyung; Bershteyn, Anna; Stephan, Matthias T.; Liu, Haipeng; Huang, Bonnie; Sohail, Mashaal; Luo, Samantha; Ho Um, Soong; Khant, Htet; Goodwin, Jessica T.; Ramos, Jenelyn; Chiu, Wah; Irvine, Darrell J.

    2011-03-01

    Vaccines based on recombinant proteins avoid the toxicity and antivector immunity associated with live vaccine (for example, viral) vectors, but their immunogenicity is poor, particularly for CD8+ T-cell responses. Synthetic particles carrying antigens and adjuvant molecules have been developed to enhance subunit vaccines, but in general these materials have failed to elicit CD8+ T-cell responses comparable to those for live vectors in preclinical animal models. Here, we describe interbilayer-crosslinked multilamellar vesicles formed by crosslinking headgroups of adjacent lipid bilayers within multilamellar vesicles. Interbilayer-crosslinked vesicles stably entrapped protein antigens in the vesicle core and lipid-based immunostimulatory molecules in the vesicle walls under extracellular conditions, but exhibited rapid release in the presence of endolysosomal lipases. We found that these antigen/adjuvant-carrying vesicles form an extremely potent whole-protein vaccine, eliciting endogenous T-cell and antibody responses comparable to those for the strongest vaccine vectors. These materials should enable a range of subunit vaccines and provide new possibilities for therapeutic protein delivery.

  12. Presynaptic control of inhibitory neurotransmitter content in VIAAT containing synaptic vesicles.

    PubMed

    Aubrey, Karin R

    2016-09-01

    In mammals, fast inhibitory neurotransmission is carried out by two amino acid transmitters, γ-aminobutyric acid (GABA) and glycine. The higher brain uses only GABA, but in the spinal cord and brain stem both GABA and glycine act as inhibitory signals. In some cases GABA and glycine are co-released from the same neuron where they are co-packaged into synaptic vesicles by a shared vesicular inhibitory amino acid transporter, VIAAT (also called vGAT). The vesicular content of all other classical neurotransmitters (eg. glutamate, monoamines, acetylcholine) is determined by the presence of a specialized vesicular transporter. Because VIAAT is non-specific, the phenotype of inhibitory synaptic vesicles is instead predicted to be dependent on the relative concentration of GABA and glycine in the cytosol of the presynaptic terminal. This predicts that changes in GABA or glycine supply should be reflected in vesicle transmitter content but as yet, the mechanisms that control GABA versus glycine uptake into synaptic vesicles and their potential for modulation are not clearly understood. This review summarizes the most relevant experimental data that examines the link between GABA and glycine accumulation in the presynaptic cytosol and the inhibitory vesicle phenotype. The accumulated evidence challenges the hypothesis that vesicular phenotype is determined simply by the competition of inhibitory transmitter for VIAAT and instead suggest that the GABA/glycine balance in vesicles is dynamically regulated. PMID:27296116

  13. A Preferentially Segregated Recycling Vesicle Pool of Limited Size Supports Neurotransmission in Native Central Synapses

    PubMed Central

    Marra, Vincenzo; Burden, Jemima J.; Thorpe, Julian R.; Smith, Ikuko T.; Smith, Spencer L.; Häusser, Michael; Branco, Tiago; Staras, Kevin

    2012-01-01

    Summary At small central synapses, efficient turnover of vesicles is crucial for stimulus-driven transmission, but how the structure of this recycling pool relates to its functional role remains unclear. Here we characterize the organizational principles of functional vesicles at native hippocampal synapses with nanoscale resolution using fluorescent dye labeling and electron microscopy. We show that the recycling pool broadly scales with the magnitude of the total vesicle pool, but its average size is small (∼45 vesicles), highly variable, and regulated by CDK5/calcineurin activity. Spatial analysis demonstrates that recycling vesicles are preferentially arranged near the active zone and this segregation is abolished by actin stabilization, slowing the rate of activity-driven exocytosis. Our approach reveals a similarly biased recycling pool distribution at synapses in visual cortex activated by sensory stimulation in vivo. We suggest that in small native central synapses, efficient release of a limited pool of vesicles relies on their favored spatial positioning within the terminal. PMID:23141069

  14. Visualizing synaptic vesicle turnover and pool refilling driven by calcium nanodomains at presynaptic active zones of ribbon synapses.

    PubMed

    Vaithianathan, Thirumalini; Matthews, Gary

    2014-06-10

    Ribbon synapses of photoreceptor cells and second-order bipolar neurons in the retina are specialized to transmit graded signals that encode light intensity. Neurotransmitter release at ribbon synapses exhibits two kinetically distinct components, which serve different sensory functions. The faster component is depleted within milliseconds and generates transient postsynaptic responses that emphasize changes in light intensity. Despite the importance of this fast release for processing temporal and spatial contrast in visual signals, the physiological basis for this component is not precisely known. By imaging synaptic vesicle turnover and Ca(2+) signals at single ribbons in zebrafish bipolar neurons, we determined the locus of fast release, the speed and site of Ca(2+) influx driving rapid release, and the location where new vesicles are recruited to replenish the fast pool after it is depleted. At ribbons, Ca(2+) near the membrane rose rapidly during depolarization to levels >10 µM, whereas Ca(2+) at nonribbon locations rose more slowly to the lower level observed globally, consistent with selective positioning of Ca(2+) channels near ribbons. The local Ca(2+) domain drove rapid exocytosis of ribbon-associated synaptic vesicles nearest the plasma membrane, accounting for the fast component of neurotransmitter release. However, new vesicles replacing those lost arrived selectively at the opposite pole of the ribbon, distal to the membrane. Overall, the results suggest a model for fast release in which nanodomain Ca(2+) triggers exocytosis of docked vesicles, which are then replaced by more distant ribbon-attached vesicles, creating opportunities for new vesicles to associate with the ribbon at membrane-distal sites. PMID:24912160

  15. Question 7: new aspects of interactions among vesicles.

    PubMed

    Stano, Pasquale

    2007-10-01

    In this short article I discuss the relevance of two aspects of vesicle reactivity that are germane to understand the role of compartments in the origin of early cells. Studies of vesicle self-reproduction indicate that simple vesicles can grow and divide, maintaining inside most of their content and giving rise to a simple autopoietic system. New aspects of vesicle reactivity are also introduced, such as selection and competition processes within vesicle populations, emphasizing the concepts of vesicle diversity, inter-vesicles and vesicles-environment interactions, intended as synthetic analogs of primitive 'ecological' processes. PMID:17610045

  16. P301L tau expression affects glutamate release and clearance in the hippocampal trisynaptic pathway.

    PubMed

    Hunsberger, Holly C; Rudy, Carolyn C; Batten, Seth R; Gerhardt, Greg A; Reed, Miranda N

    2015-01-01

    Individuals at risk of developing Alzheimer's disease (AD) often exhibit hippocampal hyperexcitability. A growing body of evidence suggests that perturbations in the glutamatergic tripartite synapse may underlie this hyperexcitability. Here, we used a tau mouse model of AD (rTg(TauP301L)4510) to examine the effects of tau pathology on hippocampal glutamate regulation. We found a 40% increase in hippocampal vesicular glutamate transporter, which packages glutamate into vesicles, and has previously been shown to influence glutamate release, and a 40% decrease in hippocampal glutamate transporter 1, the major glutamate transporter responsible for removing glutamate from the extracellular space. To determine whether these alterations affected glutamate regulation in vivo, we measured tonic glutamate levels, potassium-evoked glutamate release, and glutamate uptake/clearance in the dentate gyrus, cornu ammonis 3(CA3), and cornu ammonis 1(CA1) regions of the hippocampus. P301L tau expression resulted in a 4- and 7-fold increase in potassium-evoked glutamate release in the dentate gyrus and CA3, respectively, and significantly decreased glutamate clearance in all three regions. Both release and clearance correlated with memory performance in the hippocampal-dependent Barnes maze task. Alterations in mice expressing P301L were observed at a time when tau pathology was subtle and before readily detectable neuron loss. These data suggest novel mechanisms by which tau may mediate hyperexcitability. Pre-synaptic vesicular glutamate transporters (vGLUTs) package glutamate into vesicles before exocytosis into the synaptic cleft. Once in the extracellular space, glutamate acts on glutamate receptors. Glutamate is removed from the extracellular space by excitatory amino acid transporters, including GLT-1, predominantly localized to glia. P301L tau expression increases vGLUT expression and glutamate release, while also decreasing GLT-1 expression and glutamate clearance. PMID

  17. Cholesterol and synaptic vesicle exocytosis

    PubMed Central

    Fratangeli, Alessandra

    2010-01-01

    Lipids may affect synaptic function in at least two ways: by acting as ligands for effector proteins [e.g., phosphatidylinositol (4,5) bisphosphate, diacylglycerol-mediated signaling] or by modifying the physicochemical properties and molecular organization of synaptic membranes. One that acts in the latter manner is cholesterol, an essential structural component of plasma membranes that is largely enriched in the membranes of synapses and synaptic vesicles, in which it may be involved in lipid-lipid and protein-lipid interactions. Cholesterol is an important constituent of the “membrane rafts” that may play a role in recruiting and organizing the specific proteins of the exocytic pathways. Furthermore, many synaptic proteins bind directly to cholesterol. The regulation of cholesterol and lipid levels may therefore influence the specific interactions and activity of synaptic proteins, and have a strong impact on synaptic functions. PMID:20798824

  18. Formulation and Characterization of Drug Loaded Nonionic Surfactant Vesicles (Niosomes) for Oral Bioavailability Enhancement

    PubMed Central

    Kamboj, Sunil; Saini, Vipin; Bala, Suman

    2014-01-01

    Nonionic surfactant vesicles (niosomes) were formulated with an aim of enhancing the oral bioavailability of tenofovir disoproxil fumarate (TDF), an anti-HIV drug. Niosomes were formulated by conventional thin film hydration technique with different molar ratios of surfactant, cholesterol, and dicetyl phosphate. The formulated niosomes were found spherical in shape, ranging from 2.95 μm to 10.91 μm in size. Vesicles with 1 : 1 : 0.1 ratios of surfactant : cholesterol : dicetyl phosphate with each grade of span were found to have higher entrapment efficiencies, which were further selected for in vitro and in vivo studies. Vesicles formulated with sorbitan monostearate were found to have maximum drug release (99.091%) at the end of 24 hours and followed zero order release kinetics. The results of in vivo study revealed that the niosomes significantly enhanced the oral bioavailability of TDF in rats after a dose of 95 mg/kg. The average relative bioavailability of niosomes in relation to plane drug solution was found to be 2.58, indicating more than twofold increase in oral bioavailability of TDF. Significant increase in mean residential time (MRT) was also found, reflecting release retarding efficacy of the vesicles. In conclusion, niosomes could be a promising delivery for TDF with improved oral bioavailability and prolonged release profiles. PMID:24672401

  19. The ubiquitous nature of multivesicular release

    PubMed Central

    Rudolph, Stephanie; Tsai, Ming-Chi; von Gersdorff, Henrique; Wadiche, Jacques I.

    2015-01-01

    “Simplicity is prerequisite for reliability.”EW Dijkstra [1] Presynaptic action potentials trigger the fusion of vesicles to release neurotransmitter onto postsynaptic neurons. Each release site was originally thought to liberate at most one vesicle per action potential in a probabilistic fashion, rendering synaptic transmission unreliable. However, the simultaneous release of several vesicles, or multivesicular release (MVR), represents a simple mechanism to overcome the intrinsic unreliability of synaptic transmission. MVR was initially identified at specialized synapses but is now known to be common throughout the brain. MVR determines the temporal and spatial dispersion of transmitter, controls the extent of receptor activation, and contributes to adapting synaptic strength during plasticity and neuromodulation. MVR consequently represents a widespread mechanism that extends the dynamic range of synaptic processing. PMID:26100141

  20. Attachment and phospholipase A2-induced lysis of phospholipid bilayer vesicles to plasma-polymerized maleic anhydride/SiO2 multilayers.

    PubMed

    Chifen, Anye N; Förch, Renate; Knoll, Wolfgang; Cameron, Petra J; Khor, Hwei L; Williams, Thomas L; Jenkins, A Toby A

    2007-05-22

    This article describes a method by which intact vesicles can be chemically attached to hydrolyzed maleic anhydride films covalently bound to plasma-polymerized SiO2 on Au substrates. Surface plasmon field-enhanced fluorescence spectroscopy (SPFS) combined with surface plasmon resonance spectroscopy (SPR) was used to monitor the activation of plasma-deposited maleic anhydride (pp-MA) film with EDC/NHS and the subsequent coupling of lipid vesicles. The vesicles were formed from a mixture of phosphatidylcholine and phosphatidylethanolamine lipids, with a water-soluble fluorophore encapsulated within. Vesicle attachment was measured in real time on plasma films formed under different pulse conditions (plasma duty cycle). Optimum vesicle attachment was observed on the pp-MA films containing the highest density of maleic anhydride groups. Phospholipase A2 was used to lyse the surface-bound vesicles and to release the encapsulated fluorophore. PMID:17447800

  1. 40 CFR 712.7 - Report of readily obtainable information for subparts B and C.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Report of readily obtainable information for subparts B and C. 712.7 Section 712.7 Protection of Environment ENVIRONMENTAL PROTECTION..., technical services, and marketing. Extensive file searches are not required....

  2. The Art Recipe Book, Volume One: 60 Non-toxic Art Materials from Readily Available Materials.

    ERIC Educational Resources Information Center

    Janeczko, Donna

    This collection of recipes is intended for art teachers to provide low-cost, non-toxic materials for classroom use. The materials needed are readily available and can be purchased in quantity to help the budget conscious teacher. Recipes included are for modeling materials, edible modeling materials, paints and inks, adhesives, fixatives, and…

  3. 33 CFR 76.01-1 - Sale of equipment not readily procurable.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Sale of equipment not readily procurable. 76.01-1 Section 76.01-1 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION SALE AND TRANSFER OF AIDS TO NAVIGATION EQUIPMENT Sale of Equipment §...

  4. 33 CFR 76.01-1 - Sale of equipment not readily procurable.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Sale of equipment not readily procurable. 76.01-1 Section 76.01-1 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION SALE AND TRANSFER OF AIDS TO NAVIGATION EQUIPMENT Sale of Equipment §...

  5. Use of inside-out chloroplast thylakoid membrane vesicles for studying electron transport and membrane structure

    SciTech Connect

    Atta-Asafo-Adjei, E.

    1987-01-01

    Inside-out and right-side-out thylakoid vesicles were isolated from spinach chloroplasts by aqueous-polymer two-phase partitioning following mechanical fragmentation of thylakoid membranes by Yeda press treatment. Externally added plastocyanin stimulated the whole-chain and PSI electron transport rates in the inside-out thylakoid vesicles by about 500 and 350%, respectively, compared to about 50% stimulation for both assays in the fraction enriched in right-side-out vesicles. The electron transport between PSII and PSI in inside-out thylakoid vesicles appears to be interrupted due to plastocyanin release from the thylakoids by the Yeda press treatment, but it was restored by externally added plastocyanin. Acetic anhydride chemical modification and uncoupler-induced proton release from dark-adapted membranes are probes for detecting the sequested proton domains in thylakoid membranes. Both assays were used to find out if inside-out membranes retain metastable, localized proton binding domains. Treatment of dark-maintained inside-out thylakoid membrane vesicles with ({sup 3}H)acetic anhydride showed no uncoupler-induced increase in acetylation of the 33, 24, and 18 kDa polypeptides of the oxygen-evolving-complex, indicating complete loss of the implicated proton domains in these polypeptides. The various steps in the inside-out preparation were studied to discern which steps(s) leads to the loss of the metastable domain proton pool.

  6. Dependence of vascular permeability enhancement on cysteine proteinases in vesicles of Porphyromonas gingivalis.

    PubMed Central

    Imamura, T; Potempa, J; Pike, R N; Travis, J

    1995-01-01

    Infection with Porphyromonas gingivalis is strongly associated with adult periodontitis, and proteinases are considered to be important virulent factors of the bacterium. In order to investigate the function of proteinases in disease development we examined vesicles, a biological carrier of these enzymes, for the generation of vascular permeability enhancement (VPE) activity, believed to correlate with the exudation of gingival crevicular fluid. The vesicles generated VPE activity from human plasma in a dose-dependent manner which could be inhibited 90% by antipain, a specific inhibitor of the Arg-specific cysteine proteinases (Arg-gingipains [RGPs] from P. gingivalis. Incubation of vesicles with high-molecular-weight-kininogen (HMWK)-deficient plasma did not result in VPE activity. On this basis, RGPs associated with vesicles were assumed to be responsible for most of the VPE activity generation via plasma prekallikrein activation and subsequent bradykinin production. The secondary pathway for VPE activity production was dependent on the direct release of bradykinin from HMWK by the concerted action of RGP and a Lys-specific cysteine proteinase (Lys-gingipain [KGP]), also associated with vesicles. These results indicate that RGP and KGP are biologically important VPE factors acting either via prekallikrein activation (RGP) and/or HMWK cleavage (RGP and KGP) to release BK and, thereby, contributing to the production of gingival crevicular fluid at periodontal sites infected with P. gingivalis. PMID:7729914

  7. A Bcl-xL-Drp1 complex regulates synaptic vesicle membrane dynamics during endocytosis

    PubMed Central

    Li, Hongmei; Alavian, Kambiz N.; Lazrove, Emma; Mehta, Nabil; Jones, Adrienne; Zhang, Ping; Licznerski, Pawel; Graham, Morven; Uo, Takuma; Guo, Junhua; Rahner, Christoph; Duman, Ronald S.; Morrison, Richard S.; Jonas, Elizabeth A.

    2013-01-01

    Following exocytosis, the rate of recovery of neurotransmitter release is determined by vesicle retrieval from the plasma membrane and by recruitment of vesicles from reserve pools within the synapse, the latter of which is dependent on mitochondrial ATP. The Bcl-2 family protein Bcl-xL, in addition to its role in cell death, regulates neurotransmitter release and recovery in part by increasing ATP availability from mitochondria. We now find, however, that, Bcl-xL directly regulates endocytotic vesicle retrieval in hippocampal neurons through protein/protein interaction with components of the clathrin complex. Our evidence suggests that, during synaptic stimulation, Bcl-xL translocates to clathrin-coated pits in a calmodulin-dependent manner and forms a complex of proteins with the GTPase Drp1, Mff and clathrin. Depletion of Drp1 produces misformed endocytotic vesicles. Mutagenesis studies suggest that formation of the Bcl-xL-Drp1 complex is necessary for the enhanced rate of vesicle endocytosis produced by Bcl-xL, thus providing a mechanism for presynaptic plasticity. PMID:23792689

  8. On the Computing Potential of Intracellular Vesicles

    PubMed Central

    Mayne, Richard; Adamatzky, Andrew

    2015-01-01

    Collision-based computing (CBC) is a form of unconventional computing in which travelling localisations represent data and conditional routing of signals determines the output state; collisions between localisations represent logical operations. We investigated patterns of Ca2+-containing vesicle distribution within a live organism, slime mould Physarum polycephalum, with confocal microscopy and observed them colliding regularly. Vesicles travel down cytoskeletal ‘circuitry’ and their collisions may result in reflection, fusion or annihilation. We demonstrate through experimental observations that naturally-occurring vesicle dynamics may be characterised as a computationally-universal set of Boolean logical operations and present a ‘vesicle modification’ of the archetypal CBC ‘billiard ball model’ of computation. We proceed to discuss the viability of intracellular vesicles as an unconventional computing substrate in which we delineate practical considerations for reliable vesicle ‘programming’ in both in vivo and in vitro vesicle computing architectures and present optimised designs for both single logical gates and combinatorial logic circuits based on cytoskeletal network conformations. The results presented here demonstrate the first characterisation of intracelluar phenomena as collision-based computing and hence the viability of biological substrates for computing. PMID:26431435

  9. On the Computing Potential of Intracellular Vesicles.

    PubMed

    Mayne, Richard; Adamatzky, Andrew

    2015-01-01

    Collision-based computing (CBC) is a form of unconventional computing in which travelling localisations represent data and conditional routing of signals determines the output state; collisions between localisations represent logical operations. We investigated patterns of Ca2+-containing vesicle distribution within a live organism, slime mould Physarum polycephalum, with confocal microscopy and observed them colliding regularly. Vesicles travel down cytoskeletal 'circuitry' and their collisions may result in reflection, fusion or annihilation. We demonstrate through experimental observations that naturally-occurring vesicle dynamics may be characterised as a computationally-universal set of Boolean logical operations and present a 'vesicle modification' of the archetypal CBC 'billiard ball model' of computation. We proceed to discuss the viability of intracellular vesicles as an unconventional computing substrate in which we delineate practical considerations for reliable vesicle 'programming' in both in vivo and in vitro vesicle computing architectures and present optimised designs for both single logical gates and combinatorial logic circuits based on cytoskeletal network conformations. The results presented here demonstrate the first characterisation of intracelluar phenomena as collision-based computing and hence the viability of biological substrates for computing. PMID:26431435

  10. Extracellular vesicles from infected cells: potential for direct pathogenesis

    PubMed Central

    Schwab, Angela; Meyering, Shabana S.; Lepene, Ben; Iordanskiy, Sergey; van Hoek, Monique L.; Hakami, Ramin M.; Kashanchi, Fatah

    2015-01-01

    Infections that result in natural or manmade spread of lethal biological agents are a concern and require national and focused preparedness. In this manuscript, as part of an early diagnostics and pathogen treatment strategy, we have focused on extracellular vesicles (EVs) that arise following infections. Although the field of biodefense does not currently have a rich resource in EVs literature, none the less, similar pathogens belonging to the more classical emerging and non-emerging diseases have been studied in their EV/exosomal contents and function. These exosomes are formed in late endosomes and released from the cell membrane in almost every cell type in vivo. These vesicles contain proteins, RNA, and lipids from the cells they originate from and function in development, signal transduction, cell survival, and transfer of infectious material. The current review focuses on how different forms of infection exploit the exosomal pathway and how exosomes can be exploited artificially to treat infection and disease and potentially also be used as a source of vaccine. Virally-infected cells can secrete viral as well as cellular proteins and RNA in exosomes, allowing viruses to cause latent infection and spread of miRNA to nearby cells prior to a subsequent infection. In addition to virally-infected host cells, bacteria, protozoa, and fungi can all release small vesicles that contain pathogen-associated molecular patterns, regulating the neighboring uninfected cells. Examples of exosomes from both virally and bacterially infected cells point toward a re-programming network of pathways in the recipient cells. Finally, many of these exosomes contain cytokines and miRNAs that in turn can effect gene expression in the recipient cells through the classical toll-like receptor and NFκB pathway. Therefore, although exosomes do not replicate as an independent entity, they however facilitate movement of infectious material through tissues and may be the cause of many

  11. Extracellular vesicles from infected cells: potential for direct pathogenesis.

    PubMed

    Schwab, Angela; Meyering, Shabana S; Lepene, Ben; Iordanskiy, Sergey; van Hoek, Monique L; Hakami, Ramin M; Kashanchi, Fatah

    2015-01-01

    Infections that result in natural or manmade spread of lethal biological agents are a concern and require national and focused preparedness. In this manuscript, as part of an early diagnostics and pathogen treatment strategy, we have focused on extracellular vesicles (EVs) that arise following infections. Although the field of biodefense does not currently have a rich resource in EVs literature, none the less, similar pathogens belonging to the more classical emerging and non-emerging diseases have been studied in their EV/exosomal contents and function. These exosomes are formed in late endosomes and released from the cell membrane in almost every cell type in vivo. These vesicles contain proteins, RNA, and lipids from the cells they originate from and function in development, signal transduction, cell survival, and transfer of infectious material. The current review focuses on how different forms of infection exploit the exosomal pathway and how exosomes can be exploited artificially to treat infection and disease and potentially also be used as a source of vaccine. Virally-infected cells can secrete viral as well as cellular proteins and RNA in exosomes, allowing viruses to cause latent infection and spread of miRNA to nearby cells prior to a subsequent infection. In addition to virally-infected host cells, bacteria, protozoa, and fungi can all release small vesicles that contain pathogen-associated molecular patterns, regulating the neighboring uninfected cells. Examples of exosomes from both virally and bacterially infected cells point toward a re-programming network of pathways in the recipient cells. Finally, many of these exosomes contain cytokines and miRNAs that in turn can effect gene expression in the recipient cells through the classical toll-like receptor and NFκB pathway. Therefore, although exosomes do not replicate as an independent entity, they however facilitate movement of infectious material through tissues and may be the cause of many

  12. Illuminating the physiology of extracellular vesicles.

    PubMed

    Choi, Hongyoon; Lee, Dong Soo

    2016-01-01

    Extracellular vesicles play a crucial role in intercellular communication by transmitting biological materials from donor cells to recipient cells. They have pathophysiologic roles in cancer metastasis, neurodegenerative diseases, and inflammation. Extracellular vesicles also show promise as emerging therapeutics, with understanding of their physiology including targeting, distribution, and clearance therefore becoming an important issue. Here, we review recent advances in methods for tracking and imaging extracellular vesicles in vivo and critically discuss their systemic distribution, targeting, and kinetics based on up-to-date evidence in the literature. PMID:27084088

  13. The small GTPase Cdc42 modulates the number of exocytosis-competent dense-core vesicles in PC12 cells

    SciTech Connect

    Sato, Mai; Kitaguchi, Tetsuya; Ikematsu, Kazuya; Kakeyama, Masaki; Murata, Masayuki; Sato, Ken; Tsuboi, Takashi

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Regulation of exocytosis by Rho GTPase Cdc42. Black-Right-Pointing-Pointer Cdc42 increases the number of fusion events from newly recruited vesicles. Black-Right-Pointing-Pointer Cdc42 increases the number of exocytosis-competent dense-core vesicles. -- Abstract: Although the small GTPase Rho family Cdc42 has been shown to facilitate exocytosis through increasing the amount of hormones released, the precise mechanisms regulating the quantity of hormones released on exocytosis are not well understood. Here we show by live cell imaging analysis under TIRF microscope and immunocytochemical analysis under confocal microscope that Cdc42 modulated the number of fusion events and the number of dense-core vesicles produced in the cells. Overexpression of a wild-type or constitutively-active form of Cdc42 strongly facilitated high-KCl-induced exocytosis from the newly recruited plasma membrane vesicles in PC12 cells. By contrast, a dominant-negative form of Cdc42 inhibited exocytosis from both the newly recruited and previously docked plasma membrane vesicles. The number of intracellular dense-core vesicles was increased by the overexpression of both a wild-type and constitutively-active form of Cdc42. Consistently, activation of Cdc42 by overexpression of Tuba, a Golgi-associated guanine nucleotide exchange factor for Cdc42 increased the number of intracellular dense-core vesicles, whereas inhibition of Cdc42 by overexpression of the Cdc42/Rac interactive binding domain of neuronal Wiskott-Aldrich syndrome protein decreased the number of them. These findings suggest that Cdc42 facilitates exocytosis by modulating both the number of exocytosis-competent dense-core vesicles and the production of dense-core vesicles in PC12 cells.

  14. Chemical modifications to vesicle forming diblock copolymers: Development of smart functional polymersome membranes

    NASA Astrophysics Data System (ADS)

    Katz, Joshua S.

    2011-07-01

    A major limitation to current treatment regimens for diseases is the inability to adequately deliver therapeutics. Many routes to encapsulation of these materials have been explored to improve biodistribution and better protect encapsulants from harsh biological conditions. One vehicle particularly attractive for encapsulation of such materials is the polymersome. While promising for translation to clinical use, there are still limitations in polymer chemistry and resulting polymersome behavior that will slow their adaptation. This thesis addresses several of these limitations. The first major limitation to polymersomes is lack of control over their release rate. Release is generally by simple diffusion, leading to a burst. To address this burst, Aim 1 proposes a route to stabilizing polymersome membranes through their polymerization. PCL-PEG copolymers were terminally acrylated and the acrylates polymerized in the membrane following vesicle assembly. Polymerization enhanced mechanical robustness of the membranes and reduced diffusion of encapsulated contents. To ultimately trigger release, Aim 2 presents a novel route to synthesizing diblock copolymers, enabling insertion of a functional group at the blocks' junction. To facilitate triggering of release, we inserted UV-cleavable 2-nitrophenylalanine. Polymersomes assembled from this polymer collapse upon exposure to light and molecules release. Demonstrating further utility of this synthetic route, fluorescent vesicles were prepared using fluorescent lysine as the joining molecule. These vesicles labeled dendritic cells, providing a novel route to cell labeling and tracking. The second limitation to vesicles promising for biomedical applications (made of PCL-PEG) is their solid membranes. Aim 3 demonstrates partial (or full) replacement of the PCL block with a caprolactone analogue, TOSUO, which is non-crystalline and assembles into soft, deformable vesicles. Increasing TOSUO content in the copolymer leads to

  15. Autophagy modulates articular cartilage vesicle formation in primary articular chondrocytes.

    PubMed

    Rosenthal, Ann K; Gohr, Claudia M; Mitton-Fitzgerald, Elizabeth; Grewal, Rupinder; Ninomiya, James; Coyne, Carolyn B; Jackson, William T

    2015-05-22

    Chondrocyte-derived extracellular organelles known as articular cartilage vesicles (ACVs) participate in non-classical protein secretion, intercellular communication, and pathologic calcification. Factors affecting ACV formation and release remain poorly characterized; although in some cell types, the generation of extracellular vesicles is associated with up-regulation of autophagy. We sought to determine the role of autophagy in ACV production by primary articular chondrocytes. Using an innovative dynamic model with a light scatter nanoparticle counting apparatus, we determined the effects of autophagy modulators on ACV number and content in conditioned medium from normal adult porcine and human osteoarthritic chondrocytes. Healthy articular chondrocytes release ACVs into conditioned medium and show significant levels of ongoing autophagy. Rapamycin, which promotes autophagy, increased ACV numbers in a dose- and time-dependent manner associated with increased levels of autophagy markers and autophagosome formation. These effects were suppressed by pharmacologic autophagy inhibitors and short interfering RNA for ATG5. Caspase-3 inhibition and a Rho/ROCK inhibitor prevented rapamycin-induced increases in ACV number. Osteoarthritic chondrocytes, which are deficient in autophagy, did not increase ACV number in response to rapamycin. SMER28, which induces autophagy via an mTOR-independent mechanism, also increased ACV number. ACVs induced under all conditions had similar ecto-enzyme specific activities and types of RNA, and all ACVs contained LC3, an autophagosome-resident protein. These findings identify autophagy as a critical participant in ACV formation, and augment our understanding of ACVs in cartilage disease and repair. PMID:25869133

  16. Extracellular Vesicles from Ovarian Carcinoma Cells Display Specific Glycosignatures

    PubMed Central

    Gomes, Joana; Gomes-Alves, Patrícia; Carvalho, Sofia B.; Peixoto, Cristina; Alves, Paula M.; Altevogt, Peter; Costa, Julia

    2015-01-01

    Cells release vesicles to the extracellular environment with characteristic nucleic acid, protein, lipid, and glycan composition. Here we have isolated and characterized extracellular vesicles (EVs) and total cell membranes (MBs) from ovarian carcinoma OVMz cells. EVs were enriched in specific markers, including Tsg101, CD63, CD9, annexin-I, and MBs contained markers of cellular membrane compartments, including calnexin, GRASP65, GS28, LAMP-1, and L1CAM. The glycoprotein galectin-3 binding protein (LGALS3BP) was strongly enriched in EVs and it contained sialylated complex N-glycans. Lectin blotting with a panel of lectins showed that EVs had specific glycosignatures relative to MBs. Furthermore, the presence of glycoproteins bearing complex N-glycans with α2,3-linked sialic acid, fucose, bisecting-GlcNAc and LacdiNAc structures, and O-glycans with the T-antigen were detected. The inhibition of N-glycosylation processing from high mannose to complex glycans using kifunensine caused changes in the composition of EVs and induced a decrease of several glycoproteins. In conclusion, the results showed that glycosignatures of EVs were specific and altered glycosylation within the cell affected the composition and/or dynamics of EVs release. Furthermore, the identified glycosignatures of EVs could provide novel biomarkers for ovarian cancer. PMID:26248080

  17. Current methods for the isolation of extracellular vesicles.

    PubMed

    Momen-Heravi, Fatemeh; Balaj, Leonora; Alian, Sara; Mantel, Pierre-Yves; Halleck, Allison E; Trachtenberg, Alexander J; Soria, Cesar E; Oquin, Shanice; Bonebreak, Christina M; Saracoglu, Elif; Skog, Johan; Kuo, Winston Patrick

    2013-10-01

    Extracellular vesicles (EVs), including microvesicles and exosomes, are nano- to micron-sized vesicles, which may deliver bioactive cargos that include lipids, growth factors and their receptors, proteases, signaling molecules, as well as mRNA and non-coding RNA, released from the cell of origin, to target cells. EVs are released by all cell types and likely induced by mechanisms involved in oncogenic transformation, environmental stimulation, cellular activation, oxidative stress, or death. Ongoing studies investigate the molecular mechanisms and mediators of EVs-based intercellular communication at physiological and oncogenic conditions with the hope of using this information as a possible source for explaining physiological processes in addition to using them as therapeutic targets and disease biomarkers in a variety of diseases. A major limitation in this evolving discipline is the hardship and the lack of standardization for already challenging techniques to isolate EVs. Technical advances have been accomplished in the field of isolation with improving knowledge and emerging novel technologies, including ultracentrifugation, microfluidics, magnetic beads and filtration-based isolation methods. In this review, we will discuss the latest advances in methods of isolation methods and production of clinical grade EVs as well as their advantages and disadvantages, and the justification for their support and the challenges that they encounter. PMID:23770532

  18. Telocytes and Their Extracellular Vesicles-Evidence and Hypotheses.

    PubMed

    Cretoiu, Dragos; Xu, Jiahong; Xiao, Junjie; Cretoiu, Sanda M

    2016-01-01

    Entering the new millennium, nobody believed that there was the possibility of discovering a new cellular type. Nevertheless, telocytes (TCs) were described as a novel kind of interstitial cell. Ubiquitously distributed in the extracellular matrix of any tissue, TCs are regarded as cells with telopodes involved in intercellular communication by direct homo- and heterocellular junctions or by extracellular vesicle (EVs) release. Their discovery has aroused the interest of many research groups worldwide, and many researchers regard them as potentially regenerative cells. Given the experience of our laboratory, where these cells were first described, we review the evidence supporting the fact that TCs release EVs, and discuss alternative hypotheses about their future implications. PMID:27529228

  19. Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study

    PubMed Central

    Zaborowski, MikoŁaj P.; Balaj, Leonora; Breakefield, Xandra O.; Lai, Charles P.

    2015-01-01

    The release of extracellular vesicles (EVs), including exosomes and microvesicles, is a phenomenon shared by many cell types as a means of communicating with other cells and also potentially removing cell contents. The cargo of EVs includes the proteins, lipids, nucleic acids, and membrane receptors of the cells from which they originate. EVs released into the extracellular space can enter body fluids and potentially reach distant tissues. Once taken up by neighboring and/or distal cells, EVs can transfer functional cargo that may alter the status of recipient cells, thereby contributing to both physiological and pathological processes. In this article, we will focus on EV composition, mechanisms of uptake, and their biological effects on recipient cells. We will also discuss established and recently developed methods used to study EVs, including isolation, quantification, labeling and imaging protocols, as well as RNA analysis. PMID:26955082

  20. The SNARE protein vti1a functions in dense-core vesicle biogenesis

    PubMed Central

    Walter, Alexander M; Kurps, Julia; de Wit, Heidi; Schöning, Susanne; Toft-Bertelsen, Trine L; Lauks, Juliane; Ziomkiewicz, Iwona; Weiss, Annita N; Schulz, Alexander; Fischer von Mollard, Gabriele; Verhage, Matthijs; Sørensen, Jakob B

    2014-01-01

    The SNARE protein vti1a is proposed to drive fusion of intracellular organelles, but recent data also implicated vti1a in exocytosis. Here we show that vti1a is absent from mature secretory vesicles in adrenal chromaffin cells, but localizes to a compartment near the trans-Golgi network, partially overlapping with syntaxin-6. Exocytosis is impaired in vti1a null cells, partly due to fewer Ca2+-channels at the plasma membrane, partly due to fewer vesicles of reduced size and synaptobrevin-2 content. In contrast, release kinetics and Ca2+-sensitivity remain unchanged, indicating that the final fusion reaction leading to transmitter release is unperturbed. Additional deletion of the closest related SNARE, vti1b, does not exacerbate the vti1a phenotype, and vti1b null cells show no secretion defects, indicating that vti1b does not participate in exocytosis. Long-term re-expression of vti1a (days) was necessary for restoration of secretory capacity, whereas strong short-term expression (hours) was ineffective, consistent with vti1a involvement in an upstream step related to vesicle generation, rather than in fusion. We conclude that vti1a functions in vesicle generation and Ca2+-channel trafficking, but is dispensable for transmitter release. PMID:24902738

  1. Kinetics of particle wrapping by a vesicle

    NASA Astrophysics Data System (ADS)

    Mirigian, Stephen; Muthukumar, Murugappan

    2013-07-01

    We present theoretical results on kinetics for the passive wrapping of a single, rigid particle by a flexible membrane. Using a simple geometric ansatz for the shape of the membrane/particle complex we first compute free energy profiles as a function of the particle size, attraction strength between the particle and vesicle, and material properties of the vesicle—bending stiffness and stretching modulus. The free energy profiles thus computed are taken as input to a stochastic model of the wrapping process, described by a Fokker-Planck equation. We compute average uptake rates of the particle into the vesicle. We find that the rate of particle uptake falls to zero outside of a thermodynamically allowed range of particle sizes. Within the thermodynamically allowed range of particle size, the rate of uptake is variable and we compute the optimal particle size and maximal uptake rate as a function of the attraction strength, the vesicle size, and vesicle material properties.

  2. Vesicle trafficking and cell surface membrane patchiness.

    PubMed

    Tang, Q; Edidin, M

    2001-07-01

    Membrane proteins and lipids often appear to be distributed in patches on the cell surface. These patches are often assumed to be membrane domains, arising from specific molecular associations. However, a computer simulation (Gheber and Edidin, 1999) shows that membrane patchiness may result from a combination of vesicle trafficking and dynamic barriers to lateral mobility. The simulation predicts that the steady-state patches of proteins and lipids seen on the cell surface will decay if vesicle trafficking is inhibited. To test this prediction, we compared the apparent sizes and intensities of patches of class I HLA molecules, integral membrane proteins, before and after inhibiting endocytic vesicle traffic from the cell surface, either by incubation in hypertonic medium or by expression of a dominant-negative mutant dynamin. As predicted by the simulation, the apparent sizes of HLA patches increased, whereas their intensities decreased after endocytosis and vesicle trafficking were inhibited. PMID:11423406

  3. Stability of Spherical Vesicles in Electric Fields

    PubMed Central

    2010-01-01

    The stability of spherical vesicles in alternating (ac) electric fields is studied theoretically for asymmetric conductivity conditions across their membranes. The vesicle deformation is obtained from a balance between the curvature elastic energies and the work done by the Maxwell stresses. The present theory describes and clarifies the mechanisms for the four types of morphological transitions observed experimentally on vesicles exposed to ac fields in the frequency range from 500 to 2 × 107 Hz. The displacement currents across the membranes redirect the electric fields toward the membrane normal to accumulate electric charges by the Maxwell−Wagner mechanism. These accumulated electric charges provide the underlying molecular mechanism for the morphological transitions of vesicles as observed on the micrometer scale. PMID:20575588

  4. Transformation of oil droplets into giant vesicles.

    PubMed

    Sheng, Li; Kurihara, Kensuke

    2016-06-14

    We propose a protocell model in which compartments are constructed via a new process involving the formation of robust vesicles using an autocatalytic, self-reproducing oil droplet system as a 'scaffold'. PMID:27152371

  5. Dynamics of a compound vesicle: numerical simulations

    NASA Astrophysics Data System (ADS)

    Veerapaneni, Shravan; Young, Yuan-Nan; Vlahovska, Petia; Blawzdziewicz, Jerzy

    2010-11-01

    Vesicles (self-enclosing lipid membranes) in simple linear flows are known to exhibit rich dynamics such as tank-treading, tumbling, trembling (swinging), and vacillating breathing. Recently, vesicles have been used as a multi-functional platform for drug-delivery. In this work, the dynamics of simplified models for such compound vesicles is investigated numerically using a state-of-the-art boundary-integral code that has been validated with high accuracy and efficiency. Results show that for a vesicle enclosing a rigid particle in a simple shear flow, transition from tank-treading to tumbling is possible even in the absence of viscosity mismatch in the interior and exterior fluids. We will discuss the shape transformations, multiple particle interactions and the flow properties. Comparison with results from analytical modeling gives insights to the underlying physics for such novel dynamics.

  6. New mechanisms of vesicles migration.

    PubMed

    Aursulesei, Viviana; Vasincu, Decebal; Timofte, Daniel; Vrajitoriu, Lucia; Gatu, Irina; Iacob, Dan D; Ghizdovat, Vlad; Buzea, Calin; Agop, Maricel

    2016-07-01

    In multicellular organisms, both health and disease are defined by means of communication patterns involving the component cells. Despite the intricate networks of soluble mediators, cells are also programed to exchange complex messages pre-assembled as multimolecular cargo of membranous structures known as extracellular vesicles (EVs). Several biogenetic pathways produce EVs with different properties able to orchestrate neighboring cell reactions or to establish an environment ripe for spreading tumor cells. Such an effect is in fact an extension of similar physiological roles played by exosomes in guiding cell migration under nontumoral tissue remodeling and organogenesis. We start with a biological thought experiment equivalent to Bénard's experiment, involving a fluid layer of EVs adherent to an extracellular matrix, in a haptotactic gradient, then, we build and present the first Lorenz model for EVs migration. Using Galerkin's method of reducing a system of partial differential equations to a system of ordinary differential equations, a biological Lorenz system is developed. Such a physical frame distributing individual molecular or exosomal type cell-guiding cues in the extracellular matrix space could serve as a guide for tissue neoformation of the budding pattern in nontumoral or tumoral instances. PMID:27045674

  7. A possible route to prebiotic vesicle reproduction.

    PubMed

    Luisi, Pier Luigi; Rasi, Pasquale Stano Silvia; Mavelli, Fabio

    2004-01-01

    Spherical bounded structures such as those formed by surfactant aggregates (mostly micelles and vesicles), with an inside that is chemically and physically different from the outside medium, can be seen as primitive cell models. As such, they are fundamental structures for the theory of autopoiesis as originally formulated by Varela and Maturana. In particular, since self-reproduction is a very important feature of minimal cellular life, the study of self-reproduction of micelles and vesicles represents a quite challenging bio-mimetic approach. Our laboratory has put much effort in recent years into implementing self-reproduction of vesicles as models for self-reproduction of cellular bounded structures, and this article is a further contribution in this direction. In particular, we deal with the so-called matrix effect of vesicles, related to the fact that when fresh surfactant is added to an aqueous solution containing preformed vesicles of a very narrow size distribution, the newly formed vesicles (instead of being polydisperse, as is usually the case) have dimensions very close to those of the preformed ones. In practice, this corresponds to a mechanism of reproduction of vesicles of the same size. In this article, the matrix effect is re-elaborated in the perspective of the origin of life, and in particular in terms of the prebiotic mechanisms that might permit the growth and reproduction of vesicles. The data are analyzed by dynamic light scattering with a new program that permits the calculation of the number-weighted size distribution. It is shown that, on adding a stoichiometric amount of oleate micelles to preformed oleate vesicles extruded at 50 and 100 nm, the final distribution contains about twice the initial number of particles, centered around 50 and 100 nm. The same holds when oleate is added to preformed phospholipid liposomes. By contrast, when the same amount of oleate is added to an aqueous solution (as a control experiment), a very broad

  8. Spontaneous unilamellar polymer vesicles in aqueous solution.

    PubMed

    Kim, Tae-Hwan; Song, Chaeyeon; Han, Young-Soo; Jang, Jong-Dae; Choi, Myung Chul

    2014-01-21

    A unilamellar polymeric vesicle is a self-assembled structure of a block copolymer that forms a spherical single bilayer structure with a hydrophobic interlayer and a hydrophilic surface. Due to their enhanced colloidal stability and mechanical property, controllable surface functionality, or tunable membrane thickness, polymeric vesicles are useful in nano and bio-science, providing potential applications as nanosized carriers for catalysts, drugs, and enzymes. For fabrication of a unilamellar vesicle, however, preparative procedures with a few steps are inherently required. Herein, without complicated preparative procedures, we report spontaneous unilamellar polymeric vesicles with nanometer sizes (<100 nm), which are prepared by simply mixing a triblock copolymer, Pluronic P85 (PEO26PPO40PEO26), and an organic derivative, 5-methyl salicylic acid (5mS), in aqueous solution. Depending on the 5mS concentration and the temperature, the P85-5mS mixtures presented various self-assembled nanostructures such as spherical and cylindrical micelles or vesicles, which were characterized by small angle neutron scattering and cryo-TEM, resulting in a phase diagram drawn as a function of temperature and the 5mS concentration. Interestingly the critical temperature for the micelle-to-vesicle phase transition was easily controlled by varying the 5mS concentration, i.e. it was decreased with increasing the 5mS concentration. PMID:24652418

  9. Elastic energy of polyhedral bilayer vesicles

    PubMed Central

    Haselwandter, Christoph A.; Phillips, Rob

    2011-01-01

    In recent experiments the spontaneous formation of hollow bilayer vesicles with polyhedral symmetry has been observed. On the basis of the experimental phenomenology it was suggested that the mechanism for the formation of bilayer polyhedra is minimization of elastic bending energy. Motivated by these experiments, we study the elastic bending energy of polyhedral bilayer vesicles. In agreement with experiments, and provided that excess amphiphiles exhibiting spontaneous curvature are present in sufficient quantity, we find that polyhedral bilayer vesicles can indeed be energetically favorable compared to spherical bilayer vesicles. Consistent with experimental observations we also find that the bending energy associated with the vertices of bilayer polyhedra can be locally reduced through the formation of pores. However, the stabilization of polyhedral bilayer vesicles over spherical bilayer vesicles relies crucially on molecular segregation of excess amphiphiles along the ridges rather than the vertices of bilayer polyhedra. Furthermore, our analysis implies that, contrary to what has been suggested on the basis of experiments, the icosahedron does not minimize elastic bending energy among arbitrary polyhedral shapes and sizes. Instead, we find that, for large polyhedron sizes, the snub dodecahedron and the snub cube both have lower total bending energies than the icosahedron. PMID:21797397

  10. Protein-Resistant Biodegradable Amphiphilic Graft Copolymer Vesicles as Protein Carriers.

    PubMed

    Wang, Yupeng; Yan, Lesan; Li, Bin; Qi, Yanxin; Xie, Zhigang; Jing, Xiabin; Chen, Xuesi; Huang, Yubin

    2015-09-01

    The protein adsorption and self-assembly behavior of biocompatible graft copolymer, poly(lactide-co-diazidomethyl trimethylene carbonate)-g-poly(ethylene glycol) [P(LA-co-DAC)-g-PEG], were systematically studied. The graft copolymers showed enhanced resistance to non-specific protein adsorption compared with their block copolymer counterparts, indicative of the increased effect of PEG density beyond PEG length. Diverse nanostructures including vesicles can be assembled from the amphiphilic graft copolymers with well-defined nano-sizes. Hemoglobin (Hb), as a model protein, can be entrapped in the formed vesicles and keep the gas-binding capacity. The reduced release rate of Hb from graft copolymer vesicles indicated the relatively stable membrane packing compared with block copolymer counterpart. PMID:26036907

  11. Structure of a micropipette-aspirated vesicle determined from the bending-energy model

    NASA Astrophysics Data System (ADS)

    Chen, Jeff Z. Y.

    2012-10-01

    The structure of the system consisting of an aspirating pipette and an aspirated vesicle is investigated with fixed total vesicle volume, total vesicle surface area, and aspirated volume fraction, based on the bending-energy model. Through an energetic consideration, the usage of an aspirated volume fraction can be converted to the aspirating pressure for the determination of a phase diagram; the procedure identifies a first-order transition, between a weakly aspirated state and the strongly aspirated state, as the pressure increases. The physical properties of the system are obtained from minimization of the bending energy by an implementation of the simulated annealing Monte Carlo procedure, which searches for a minimum in a multivariable space. An analysis of the hysteresis effects indicates that the experimentally observed aspirating and releasing critical pressures are related to the location of the spinodal points.

  12. Versatile cellular uptake mediated by catanionic vesicles: simultaneous spontaneous membrane fusion and endocytosis.

    PubMed

    Mauroy, Chloé; Castagnos, Pauline; Orio, Julie; Blache, Marie-Claire; Rico-Lattes, Isabelle; Teissié, Justin; Rols, Marie-Pierre; Blanzat, Muriel

    2015-01-01

    Lactose-derived catanionic vesicles offer unique opportunities to overcome cellular barriers. These potential nanovectors, very easy to formulate as drug delivery systems, are able to encapsulate drugs of various hydrophilicity. This article highlights versatile interaction mechanisms between these catanionic vesicles, labeled with hydrophilic and amphiphilic fluorescent probes, and a mammalian cell line, Chinese Hamster Ovary. Confocal microscopy and flow cytometry techniques show that these vesicles are internalized by cells through cellular energy dependent processes, as endocytosis, but are simultaneously able to spontaneously fuse with cell plasma membranes and release their hydrophilic content directly inside the cytosol. Such innovative and polyvalent nanovectors, able to deliver their content via different internalization pathways, would positively be a great progress for the coadministration of drugs of complementary efficiency. PMID:25310849

  13. The role of non-canonical SNAREs in synaptic vesicle recycling

    PubMed Central

    Ramirez, Denise M.O.; Kavalali, Ege T.

    2012-01-01

    An increasing number of studies suggest that distinct pools of synaptic vesicles drive specific forms of neurotransmission. Interspersed with these functional studies are analyses of the synaptic vesicle proteome which have consistently detected the presence of so-called “non-canonical” SNAREs that typically function in fusion and trafficking of other subcellular structures within the neuron. The recent identification of certain non-canonical vesicular SNAREs driving spontaneous (e.g., VAMP7 and vti1a) or evoked asynchronous (e.g., VAMP4) release integrates and corroborates existing data from functional and proteomic studies and implies that at least some complement of non-canonical SNAREs resident on synaptic vesicles function in neurotransmission. Here, we discuss the specific roles in neurotransmission of proteins homologous to each member of the classical neuronal SNARE complex consisting of synaptobrevin2, syntaxin-1 and SNAP-25. PMID:22645707

  14. Membrane curvature induced by Arf1-GTP is essential for vesicle formation

    PubMed Central

    Beck, Rainer; Sun, Zhe; Adolf, Frank; Rutz, Chistoph; Bassler, Jochen; Wild, Klemens; Sinning, Irmgard; Hurt, Ed; Brügger, Britta; Béthune, Julien; Wieland, Felix

    2008-01-01

    The GTPase Arf1 is considered as a molecular switch that regulates binding and release of coat proteins that polymerize on membranes to form transport vesicles. Here, we show that Arf1-GTP induces positive membrane curvature and find that the small GTPase can dimerize dependent on GTP. Investigating a possible link between Arf dimerization and curvature formation, we isolated an Arf1 mutant that cannot dimerize. Although it was capable of exerting the classical role of Arf1 as a coat receptor, it could not mediate the formation of COPI vesicles from Golgi-membranes and was lethal when expressed in yeast. Strikingly, this mutant was not able to deform membranes, suggesting that GTP-induced dimerization of Arf1 is a critical step inducing membrane curvature during the formation of coated vesicles. PMID:18689681

  15. Bacterial Vesicle Secretion and the Evolutionary Origin of the Eukaryotic Endomembrane System.

    PubMed

    Gould, Sven B; Garg, Sriram G; Martin, William F

    2016-07-01

    Eukaryotes possess an elaborate endomembrane system with endoplasmic reticulum, nucleus, Golgi, lysosomes, peroxisomes, autophagosomes, and dynamic vesicle traffic. Theories addressing the evolutionary origin of eukaryotic endomembranes have overlooked the outer membrane vesicles (OMVs) that bacteria, archaea, and mitochondria secrete into their surroundings. We propose that the eukaryotic endomembrane system originated from bacterial OMVs released by the mitochondrial ancestor within the cytosol of its archaeal host at eukaryote origin. Confined within the host's cytosol, OMVs accumulated naturally, fusing either with each other or with the host's plasma membrane. This matched the host's archaeal secretory pathway for cotranslational protein insertion with outward bound mitochondrial-derived vesicles consisting of bacterial lipids, forging a primordial, secretory endoplasmic reticulum as the cornerstone of the eukaryotic endomembrane system. VIDEO ABSTRACT. PMID:27040918

  16. Voltage-responsive vesicles based on orthogonal assembly of two homopolymers.

    PubMed

    Yan, Qiang; Yuan, Jinying; Cai, Zhinan; Xin, Yan; Kang, Yan; Yin, Yingwu

    2010-07-14

    Two end-decorated homopolymers, poly(styrene)-beta-cyclodextrin (PS-beta-CD) and poly(ethylene oxide)-ferrocene (PEO-Fc), can orthogonally self-assemble into a supramolecular diblock copolymer (PS-beta-CD/PEO-Fc) in aqueous solutions based on the terminal host-guest interactions. These assemblies can further form supramolecular vesicles, and their assembly and disassembly behaviors can be reversibly switched by voltage through the reversible association and disassociation of the middle supramolecular connection. The vesicles possess an unprecedented property that their assembly or disassembly speed can be controlled by the applied voltage strength. Luminescence spectroscopy demonstrates that the vesicles act as nanocapsules carrying molecules within their hollow cavities and that the external voltage strength accurately regulates the drug release time. PMID:20565093

  17. Microfluidics fabrication of monodisperse biocompatible phospholipid vesicles for encapsulation and delivery of hydrophilic drug or active compound.

    PubMed

    Kong, Feng; Zhang, Xu; Hai, Mingtan

    2014-04-01

    We encapsulate the hydrophilic anti-cancer drug doxurubicin hydrochloride (DOX) with about 94% drug encapsulation efficiency, either alone or with nanomagnetite, in monodisperse biocompatible phospholipid vesicles. Glass capillary microfluidics is used to generate monodisperse water in oil in water (w/o/w) double-emulsion templates with a core-shell structure by using a mixture of liquid unsaturated phospholipids and powdered saturated phospholipid. This combination would overcome the low transition temperature of unsaturated powdered phospholipid and the solubility limitation of saturated phospholipid, as well as improving the fabrication of stable monodisperse phospholipid vesicles. The double-emulsion droplet is controlled from 50 to 200 μm according to different flow rates, and the final phospholipid vesicles are retained after a solvent removal step by dewetting. DOX-loaded phospholipid vesicles show sustained release compared with free DOX water solution. The in vitro cell viability of 100 μg/mL phospholipid vesicles on HeLa or MCF-7 cells after 24 h incubation at 310 K is above 90%, confirming the excellent biocompatibility of the phospholipid vesicles. These biocompatible phospholipid vesicles are promising oral drug delivery vehicles for biomedical applications and magnetic resonance imaging contrast agents for biomedical diagnosis. PMID:24552433

  18. Analyzing the circulating microRNAs in exosomes/extracellular vesicles from serum or plasma by qRT-PCR.

    PubMed

    Moldovan, Leni; Batte, Kara; Wang, Yijie; Wisler, Jon; Piper, Melissa

    2013-01-01

    Small extracellular vesicles are released from both healthy and disease cells to facilitate cellular communication. They have a wide variety of names including exosomes, microvesicles and microparticles. Depending on their size, very small extracellular vesicles originating from the endocytic pathway have been called exosomes and in some cases nanovesicles. Collectively, extracellular vesicles are important mediators of a wide variety of functions including immune cell development and homeostasis. Encapsulated in the extracellular vesicles are proteins and nucleic acids including mRNA and microRNA molecules. MicroRNAs are small, non-coding RNA molecules implicated in the post-transcriptional control of gene expression that have emerged as important regulatory molecules and are involved in disease pathogenesis including cancer. In some diseases, not only does the quantity and the subpopulations of extracellular vesicles change in the peripheral blood but also microRNAs. Here, we described the analysis of peripheral blood extracellular vesicles by flow cytometry and the RNA extraction from extracellular vesicles isolated from the plasma or serum to profile microRNA expression. PMID:23719947

  19. Phase-Field Modeling of Lipid Vesicles With Pores

    NASA Astrophysics Data System (ADS)

    Seifi, Saman; Salac, David

    2013-11-01

    The formation and annihilation of pores in a lipid vesicle membrane is critical to a number of biotechnologies, such as drug delivery. Previous models of vesicle behavior have ignored the influence of topological changes in the vesicle membrane. Here the entire Helfrich model of a vesicle membrane is considered. Topological changes in the vesicle membrane, such as the formation of a pore, are captured through the use of an embedded phase-field model. The numerical method and sample results will be presented.

  20. Effects of boldine on mouse diaphragm and sarcoplasmic reticulum vesicles isolated from skeletal muscle.

    PubMed

    Kang, J J; Cheng, Y W

    1998-02-01

    The effects of boldine [(S)-2,9-dihydroxy-1,10-dimethoxyaporphine], a major alkaloid in the leaves and bark of boldo (Peumus boldus Mol.), on skeletal muscle were studied using mouse diaphragm and isolated sarcoplasmic reticulum membrane vesicles. Boldine, at 10-200 microM, has little effect on the muscle-evoked twitches; however, the ryanodine-induced contracture was potentiated dose-dependently. At higher concentrations of 300 microM, boldine by itself induced muscle contracture of two phases, which were caused by the influx of extracellular Ca2+ and induction of Ca2+ release from the internal Ca2+ storage site, the sarcoplasmic reticulum, respectively. When tested with isolated sarcoplasmic reticulum membrane vesicles, boldine dose-dependently induced Ca2+ release from actively loaded sarcoplasmic reticulum vesicles isolated from skeletal muscle of rabbit or rat which was inhibited by ruthenium red, suggesting that the release was through the Ca2+ release channel, also known as the ryanodine receptor. Boldine also dose-dependently increased apparent [3H]-ryanodine binding with the EC50 value of 50 microM. In conclusion, we have shown that boldine could sensitize the ryanodine receptor and induce Ca2+ release from the internal Ca2+ storage site of skeletal muscle. PMID:9491763

  1. Cytarabine-AOT catanionic vesicle-loaded biodegradable thermosensitive hydrogel as an efficient cytarabine delivery system.

    PubMed

    Liu, Jing; Jiang, Yue; Cui, Yuting; Xu, Chuanshan; Ji, Xiaoqing; Luan, Yuxia

    2014-10-01

    Carrier with high drug loading content is one of the most important issues in drug delivery system. In the present work, an ion-pair amphiphilic molecule composed of anticancer drug cation and surfactant anion is used for straightforward fabricating vesicles for cancer therapy. Anticancer drug (cytarabine hydrochloride) and anionic surfactant (AOT) are selected for the fabrication of ion-pair amphiphilic molecule. One amphiphilic molecule contains one drug cation, thus the drug loading content is 50% (mol/mol) in theory. The in vitro drug release study shows that the release time of cytarabine is about 3 times of the pure cytarabine solution and the permeability of cytarabine has been improved about 160 times tested by parallel artificial membrane permeability assay model. However, the hemolytic toxicity is largely decreased in the studied concentration range. The in vitro cytotoxicity results show that cytarabine-AOT amphiphiles have a much lower IC50 (drug concentration resulting in 50% cell death) value and a higher cell inhibition rate comparing with their respective components, indicating its effective therapy for leukemic cells. To obtain a longer and a convenient drug release system, the prepared vesicles are further incorporated into the thermosensitive PLGA-PEG-PLGA hydrogel to prepare a subcutaneous administration. The in vivo drug release results indicate that cytarabine-AOT vesicle-loaded hydrogel is a good injectable delivery system for controlled release of cytarabine for cancer therapy. PMID:25066076

  2. Mixing Water, Transducing Energy, and Shaping Membranes: Autonomously Self-Regulating Giant Vesicles.

    PubMed

    Ho, James C S; Rangamani, Padmini; Liedberg, Bo; Parikh, Atul N

    2016-03-01

    Giant lipid vesicles are topologically closed compartments bounded by semipermeable flexible shells, which isolate femto- to picoliter quantities of the aqueous core from the surrounding bulk. Although water equilibrates readily across vesicular walls (10(-2)-10(-3) cm(3) cm(-2) s(-1)), the passive permeation of solutes is strongly hindered. Furthermore, because of their large volume compressibility (∼10(9)-10(10) N m(-2)) and area expansion (10(2)-10(3) mN m(-1)) moduli, coupled with low bending rigidities (10(-19) N m), vesicular shells bend readily but resist volume compression and tolerate only a limited area expansion (∼5%). Consequently, vesicles experiencing solute concentration gradients dissipate the available chemical energy through the osmotic movement of water, producing dramatic shape transformations driven by surface-area-volume changes and sustained by the incompressibility of water and the flexible membrane interface. Upon immersion in a hypertonic bath, an increased surface-area-volume ratio promotes large-scale morphological remodeling, reducing symmetry and stabilizing unusual shapes determined, at equilibrium, by the minimal bending-energy configurations. By contrast, when subjected to a hypotonic bath, walls of giant vesicles lose their thermal undulation, accumulate mechanical tension, and, beyond a threshold swelling, exhibit remarkable oscillatory swell-burst cycles, with the latter characterized by damped, periodic oscillations in vesicle size, membrane tension, and phase behavior. This cyclical pattern of the osmotic influx of water, pressure, membrane tension, pore formation, and solute efflux suggests quasi-homeostatic self-regulatory behavior allowing vesicular compartments produced from simple molecular components, namely, water, osmolytes, and lipids, to sense and regulate their microenvironment in a negative feedback loop. PMID:26866787

  3. Transmembrane flux and receptor desensitization measured with membrane vesicles. Homogeneity of vesicles investigated by computer simulation.

    PubMed Central

    Cash, D J; Langer, R M; Subbarao, K; Bradbury, J R

    1988-01-01

    The use of membrane vesicles to make quantitative studies of transmembrane transport and exchange processes involves an assumption of homogeneity of the membrane vesicles. In studies of 86Rb+ exchange mediated by acetylcholine receptor from the electric organ of Electrophorus electricus and of 36Cl- exchange mediated by GABA receptor from rat brain, measurements of ion exchange and receptor desensitization precisely followed first order kinetics in support of this assumption. In other measurements a biphasic decay of receptor activity was seen. To elucidate the molecular properties of receptors from such measurements it is important to appreciate what the requirements of vesicle monodispersity are for meaningful results and what the effect of vesicle heterogeneity would be. The experiments were simulated with single vesicle populations with variable defined size distributions as well as with mixtures of different populations of vesicles. The properties of the receptors and their density in the membrane could be varied. Different receptors could be present on the same or different membrane vesicles. The simulated measurements were not very sensitive to size dispersity. A very broad size distribution of a single vesicle population was necessary to give rise to detectable deviations from first order kinetics or errors in the determined kinetic constants. Errors could become significant with mixtures of different vesicle populations, where the dispersity in initial ion exchange rate constant, proportional to the receptor concentration per internal volume, became large. In this case the apparent rate of receptor desensitization would diverge in opposite directions from the input value when measured by two different methods, suggesting an experimental test for such kinetic heterogeneity. A biphasic decrease of receptor activity could not be attributed to vesicle heterogeneity and must be due to desensitization processes with different rates. Significant errors would not

  4. Structural and dynamical characterization of unilamellar AOT vesicles in aqueous solutions and their efficacy as potential drug delivery vehicle.

    PubMed

    Saha, Ranajay; Verma, Pramod Kumar; Mitra, Rajib Kumar; Pal, Samir Kumar

    2011-11-01

    Sodium bis(2-ethylhexyl) sulfosuccinate (AOT) is well known to form nanometre sized aqueous droplets in organic solvents and used in several contemporary applications including templates of nanoparticle synthesis. However, the detailed structural characterization of AOT in aqueous media is relatively less attended. Here we have used dynamic light scattering technique for the structural characterization of AOT in aqueous solutions and found to have a monodispersed, unilamellar vesicles (∼140 nm diameter). The efficacy of the vesicle to host both charged drugs like H258 (2'-(4-hydroxyphenyl)-5-[5-(4-methylpiperazine-1-yl)-benzimidazo-2-yl-benzimidazole]), EtBr (ethidium bromide) and hydrophobic drug like DCM (4-(dicyanomethylene)-2-methyl-6-(p-dimethylamino-styryl)-4H-pyran) has also been investigated using Förster resonance energy transfer. Picosecond resolved and polarization gated spectroscopy have been used to study the solvation dynamics and microviscosity at the surface of the vesicles. We have also performed concentration and temperature dependent studies in order to confirm the stability of the vesicles in aqueous phase. The drug release profile of the vesicles has been studied through in vitro dialysis method. The non-toxic, monodispersed vesicles in aqueous media with a noteworthy stability in wide range of AOT concentration and temperature, capable of hosting drugs of various natures (both hydrophobic and charged) simultaneously for many codelivery applications with controlled drug release profile may find its applications in drug delivery. PMID:21816579

  5. Pharmacology of neurotransmitter release: measuring exocytosis.

    PubMed

    Khvotchev, Mikhail; Kavalali, Ege T

    2008-01-01

    Neurotransmission in the nervous system is initiated at presynaptic terminals by fusion of synaptic vesicles with the plasma membrane and subsequent exocytic release of chemical transmitters. Currently, there are multiple methods to detect neurotransmitter release from nerve terminals, each with their own particular advantages and disadvantages. For instance, most commonly employed methods monitor actions of released chemical substances on postsynaptic receptors or artificial substrates such as carbon fibers. These methods are closest to the physiological setting because they have a rapid time resolution and they measure the action of the endogenous neurotransmitters rather than the signals emitted by exogenous probes. However, postsynaptic receptors only indirectly report neurotransmitter release in a form modified by the properties of receptors themselves, which are often nonlinear detectors of released substances. Alternatively, released chemical substances can be detected biochemically, albeit on a time scale slower than electrophysiological methods. In addition, in certain preparations, where presynaptic terminals are accessible to whole cell recording electrodes, fusion of vesicles with the plasma membrane can be monitored using capacitance measurements. In the last decade, in addition to electrophysiological and biochemical methods, several fluorescence imaging modalities have been introduced which report synaptic vesicle fusion, endocytosis, and recycling. These methods either take advantage of styryl dyes that can be loaded into recycling vesicles or exogenous expression of synaptic vesicle proteins tagged with a pH-sensitive GFP variant at regions facing the vesicle lumen. In this chapter, we will provide an overview of these methods with particular emphasis on their relative strengths and weaknesses and discuss the types of information one can obtain from them. PMID:18064410

  6. Metformin loaded non-ionic surfactant vesicles: optimization of formulation, effect of process variables and characterization

    PubMed Central

    2013-01-01

    Background Metformin an oral hypoglycemic has been widely used as a fist line of treatment of Type II Diabetes but in a very high dose 2–3 times a day and moreover suffers from a number of side effects like lactic acidosis, gastric discomfort, chest pain, allergic reactions being some of them. The present work was conducted with the aim of sustaining the release of metformin so as to decrease its side effects and also reduce its dosing frequency using a novel delivery system niosomes (non-ionic surfactant vesicles). Non-ionic surfactant vesicles of different surfactants were prepared using thin film hydration technique and were investigated for morphology, entrapment, in-vitro release, TEM (transmission electron microscopy) and physical stability. Optimized formulation was further studied for the effect of Surfactant concentration, DCP (Dicetyl phosphate), Surfactant: cholesterol ratio and volume of hydration. The release studies data was subjected to release kinetics models. Results The prepared vesicles were uniform and spherical in size. Optimized formulation MN3 entrapped the drug with 84.50±0.184 efficiency in the vesicles of the size 487.60±2.646 and showed the most sustained release of 73.89±0.126. Also it was resulted that 100 molar concentration of cholesterol and surfactant, Presence of DCP, equimolar ratio of span 60: cholesterol and 15 ml of volume of hydration were found to be optimum for miosome preparation. Conclusions The present work concluded metformin loaded niosomes to be effective in sustaining the drug release leading to decreased side effects and increased patient compliance. PMID:23351604

  7. Dominant negative SNARE peptides stabilize the fusion pore in a narrow, release-unproductive state.

    PubMed

    Guček, Alenka; Jorgačevski, Jernej; Singh, Priyanka; Geisler, Claudia; Lisjak, Marjeta; Vardjan, Nina; Kreft, Marko; Egner, Alexander; Zorec, Robert

    2016-10-01

    Key support for vesicle-based release of gliotransmitters comes from studies of transgenic mice with astrocyte-specific expression of a dominant-negative domain of synaptobrevin 2 protein (dnSNARE). To determine how this peptide affects exocytosis, we used super-resolution stimulated emission depletion microscopy and structured illumination microscopy to study the anatomy of single vesicles in astrocytes. Smaller vesicles contained amino acid and peptidergic transmitters and larger vesicles contained ATP. Discrete increases in membrane capacitance, indicating single-vesicle fusion, revealed that astrocyte stimulation increases the frequency of predominantly transient fusion events in smaller vesicles, whereas larger vesicles transitioned to full fusion. To determine whether this reflects a lower density of SNARE proteins in larger vesicles, we treated astrocytes with botulinum neurotoxins D and E, which reduced exocytotic events of both vesicle types. dnSNARE peptide stabilized the fusion-pore diameter to narrow, release-unproductive diameters in both vesicle types, regardless of vesicle diameter. PMID:27056575

  8. Proteins of the exocytotic core complex mediate platelet alpha-granule secretion. Roles of vesicle-associated membrane protein, SNAP-23, and syntaxin 4.

    PubMed

    Flaumenhaft, R; Croce, K; Chen, E; Furie, B; Furie, B C

    1999-01-22

    To understand the molecular basis of granule release from platelets, we examined the role of vesicle-associated membrane protein, SNAP-23, and syntaxin 4 in alpha-granule secretion. A vesicle-associated membrane protein, SNAP-23, and syntaxin 4 were detected in platelet lysate. These proteins form a SDS-resistant complex that disassembles upon platelet activation. To determine whether these proteins are involved in alpha-granule secretion, we developed a streptolysin O-permeabilized platelet model of alpha-granule secretion. Streptolysin O-permeabilized platelets released alpha-granules, as measured by surface expression of P-selectin, in response to Ca2+ up to 120 min after permeabilization. Incubation of streptolysin O-permeabilized platelets with an antibody directed against vesicle-associated membrane protein completely inhibited Ca2+-induced alpha-granule release. Tetanus toxin cleaved platelet vesicle-associated membrane protein and inhibited Ca2+-induced alpha-granule secretion from streptolysin O-permeabilized platelets. An antibody to syntaxin 4 also inhibited Ca2+-induced alpha-granule release by approximately 75% in this system. These results show that vesicle-associated membrane protein, SNAP-23, and syntaxin 4 form a heterotrimeric complex in platelets that disassembles with activation and demonstrate that alpha-granule release is dependent on vesicle SNAP receptor-target SNAP receptor (vSNARE-tSNARE) interactions. PMID:9891020

  9. A Hybrid Capillary-Microfluidic Device for the Separation, Lysis, and Electrochemical Detection of Vesicles

    PubMed Central

    Omiatek, Donna M.; Santillo, Michael F.; Heien, Michael L; Ewing, Andrew G.

    2009-01-01

    The primary method for neuronal communication involves the extracellular release of small molecules that are packaged in secretory vesicles. We have developed a platform to separate, lyse, and electrochemically measure the contents of single vesicles using a hybrid capillary-microfluidic device. This device incorporates a sheath-flow design at the outlet of the capillary for chemical lysis of vesicles and subsequent electrochemical detection. The effect of sheath-flow on analyte dispersion was characterized using confocal fluorescence microscopy and electrochemical detection. At increased flow rates, dispersion was minimized, leading to higher separation efficiencies, but lower detected amounts. Large unilamellar vesicles (diameter ∼ 200 nm), a model for secretory vesicles, were prepared by extrusion and loaded with an electroactive molecule. They were then separated and detected using the hybrid capillary-microfluidic device. Determination of size from internalized analyte concentration provides a method to characterize the liposomal suspension. These results were compared to an orthogonal size measurement using dynamic light scattering to validate the detection platform. PMID:19228035

  10. The active zone protein CAST regulates synaptic vesicle recycling and quantal size in the mouse hippocampus.

    PubMed

    Kobayashi, Shizuka; Hida, Yamato; Ishizaki, Hiroyoshi; Inoue, Eiji; Tanaka-Okamoto, Miki; Yamasaki, Miwako; Miyazaki, Taisuke; Fukaya, Masahiro; Kitajima, Isao; Takai, Yoshimi; Watanabe, Masahiko; Ohtsuka, Toshihisa; Manabe, Toshiya

    2016-09-01

    Synaptic efficacy is determined by various factors, including the quantal size, which is dependent on the amount of neurotransmitters in synaptic vesicles at the presynaptic terminal. It is essential for stable synaptic transmission that the quantal size is kept within a constant range and that synaptic efficacy during and after repetitive synaptic activation is maintained by replenishing release sites with synaptic vesicles. However, the mechanisms for these fundamental properties have still been undetermined. We found that the active zone protein CAST (cytomatrix at the active zone structural protein) played pivotal roles in both presynaptic regulation of quantal size and recycling of endocytosed synaptic vesicles. In the CA1 region of hippocampal slices of the CAST knockout mice, miniature excitatory synaptic responses were increased in size, and synaptic depression after prolonged synaptic activation was larger, which was attributable to selective impairment of synaptic vesicle trafficking via the endosome in the presynaptic terminal likely mediated by Rab6. Therefore, CAST serves as a key molecule that regulates dynamics and neurotransmitter contents of synaptic vesicles in the excitatory presynaptic terminal in the central nervous system. PMID:27422015

  11. Sodium- and adenosine-triphosphate-dependent calcium movements in membrane vesicles prepared from dog erythrocytes.

    PubMed Central

    Ortiz, O E; Sjodin, R A

    1984-01-01

    Inside-out vesicles from the membranes of dog erythrocytes were obtained by the method of Lew & Seymour (1982) for study of Ca movements. In the absence of ATP, 45Ca accumulation by the vesicles was inhibited by external Na and stimulated by internal Na. The presence of either MgCl2, quinidine sulphate, or LaCl3 in the incubation medium inhibited 45Ca accumulation in the absence of ATP. The release of 45Ca from 45Ca-loaded vesicles was specifically promoted by Na+ in the absence as well as in the presence of ATP. The accumulation of 45Ca by vesicles was stimulated by ATP and the effect of ATP was entirely dependent on the presence of Mg. The Mg- and ATP-dependent 45Ca accumulation was stimulated by the presence of either K or Na in the medium, was hyperbolically activated by increasing the Ca2+ concentration in the medium, was stimulated by calmodulin and inhibited by orthovanadate (10(-4) M) or LaCl3 (10(-3) M). The data demonstrate the presence of two mechanisms for controlling Ca movements in inside-out vesicles from dog erythrocyte membranes, a Na-dependent one similar to the Na-Ca exchange described for squid axons and cardiac muscle and a Ca pump utilizing ATP with characteristics similar to those described for human erythrocytes and squid axons. PMID:6090650

  12. Essential cooperation of N-cadherin and neuroligin-1 in the transsynaptic control of vesicle accumulation.

    PubMed

    Stan, A; Pielarski, K N; Brigadski, T; Wittenmayer, N; Fedorchenko, O; Gohla, A; Lessmann, V; Dresbach, T; Gottmann, K

    2010-06-15

    Cell adhesion molecules are key players in transsynaptic communication, precisely coordinating presynaptic differentiation with postsynaptic specialization. At glutamatergic synapses, their retrograde signaling has been proposed to control presynaptic vesicle clustering at active zones. However, how the different types of cell adhesion molecules act together during this decisive step of synapse maturation is largely unexplored. Using a knockout approach, we show that two synaptic adhesion systems, N-cadherin and neuroligin-1, cooperate to control vesicle clustering at nascent synapses. Live cell imaging and fluorescence recovery after photobleaching experiments at individual synaptic boutons revealed a strong impairment of vesicle accumulation in the absence of N-cadherin, whereas the formation of active zones was largely unaffected. Strikingly, also the clustering of synaptic vesicles triggered by neuroligin-1 overexpression required the presence of N-cadherin in cultured neurons. Mechanistically, we found that N-cadherin acts by postsynaptically accumulating neuroligin-1 and activating its function via the scaffolding molecule S-SCAM, leading, in turn, to presynaptic vesicle clustering. A similar cooperation of N-cadherin and neuroligin-1 was observed in immature CA3 pyramidal neurons in an organotypic hippocampal network. Moreover, at mature synapses, N-cadherin was required for the increase in release probability and miniature EPSC frequency induced by expressed neuroligin-1. This cooperation of two cell adhesion systems provides a mechanism for coupling bidirectional synapse maturation mediated by neuroligin-1 to cell type recognition processes mediated by classical cadherins. PMID:20534458

  13. Recovery of ribophorins and ribosomes in "inverted rough" vesicles derived from rat liver rough microsomes

    PubMed Central

    1982-01-01

    Treatment of rat liver rough microsomes (3.5 mg of protein/ml) with sublytical concentrations (0.08%) of the neutral detergent Triton X-100 caused a lateral displacement of bound ribosomes and the formation of ribosomal aggregates on the microsomal surface. At slightly higher detergent concentrations (0.12-0.16%) membrane areas bearing ribosomal aggregates invaginated into the microsomal lumen and separated from the rest of the membrane. Two distinct classes of vesicles could be isolated by density gradient centrifugation from microsomes treated with 0.16% Triton X-100: one with ribosomes bound to the inner membrane surfaces ("inverted rough" vesicles) and another with no ribosomes attached to the membranes. Analysis of the fractions showed that approximately 30% of the phospholipids and 20-30% of the total membrane protein were released from the membranes by this treatment. Labeling with avidin-ferritin conjugates demonstrated that concanavalin A binding sites, which in native rough microsomes are found in the luminal face of the membranes, were present on the outer surface of the inverted rough vesicles. Freeze-fracture electron microscopy showed that both fracture faces had similar concentrations of intramembrane particles. SDS PAGE analysis of the two vesicle subfractions demonstrated that, of all the integral microsomal membrane proteins, only ribophorins I and II were found exclusively in the inverted rough vesicles bearing ribosomes. These observations are consistent with the proposal that ribophorins are associated with the ribosomal binding sites characteristic of rough microsomal membranes. PMID:7068749

  14. Mechanical and biocompatible characterizations of a readily available multilayer vascular graft

    PubMed Central

    Madhavan, Krishna; Elliott, Winston H; Bonani, Walter; Monnet, Eric; Tan, Wei

    2013-01-01

    There is always a considerable clinical need for vascular grafts. Considering the availability, physical and mechanical properties, and regenerative potential, we have developed and characterized readily available, strong, and compliant multilayer grafts that support cell culture and ingrowth. The grafts were made from heterogeneous materials and structures, including a thin, dense, nanofibrous core composed of poly-ε-caprolactone (PCL), and a thick, porous, hydrogel sleeve composed of genipin-crosslinked collagen–chitosan (GCC). Because the difference in physicochemical properties between PCL and GCC caused layer separation, the layer adhesion was identified as a determinant to graft property and integrity under physiological conditions. Thus, strategies to modify the layer interface, including increasing porosity of the PCL surface, decreasing hydrophobicity, and increasing interlayer crosslinking, were developed. Results from microscopic images showed that increasing PCL porosity was characterized by improved layer adhesion. The resultant graft was characterized by high compliance (4.5%), and desired permeability (528 mL/cm2/min), burst strength (695 mmHg), and suture strength (2.38 N) for readily grafting. Results also showed that PCL mainly contributed to the graft mechanical properties, whereas GCC reduced the water permeability. In addition to their complementary contributions to physical and mechanical properties, the distinct graft layers also provided layer-specific structures for seeding and culture of vascular endothelial and smooth muscle cells in vitro. Acellular graft constructs were readily used to replace abdominal aorta of rabbits, resulting in rapid cell ingrowth and flow reperfusion. The multilayer constructs capable of sustaining physiological conditions and promoting cellular activities could serve as a platform for future development of regenerative vascular grafts. PMID:23165922

  15. Necessity to adapt land use and land cover classification systems to readily accept radar data

    NASA Technical Reports Server (NTRS)

    Drake, B.

    1977-01-01

    A hierarchial, four level, standardized system for classifying land use/land cover primarily from remote-sensor data (USGS system) is described. The USGS system was developed for nonmicrowave imaging sensors such as camera systems and line scanners. The USGS system is not compatible with the land use/land cover classifications at different levels that can be made from radar imagery, and particularly from synthetic-aperture radar (SAR) imagery. The use of radar imagery for classifying land use/land cover at different levels is discussed, and a possible revision of the USGS system to more readily accept land use/land cover classifications from radar imagery is proposed.

  16. Isolation and characterization of platelet-derived extracellular vesicles

    PubMed Central

    Aatonen, Maria T.; Öhman, Tiina; Nyman, Tuula A.; Laitinen, Saara; Grönholm, Mikaela; Siljander, Pia R.-M.

    2014-01-01

    Background Platelet-derived extracellular vesicles (EVs) participate, for example, in haemostasis, immunity and development. Most studies of platelet EVs have targeted microparticles, whereas exosomes and EV characterization under various conditions have been less analyzed. Studies have been hampered by the difficulty in obtaining EVs free from contaminating cells and platelet remnants. Therefore, we optimized an EV isolation protocol and compared the quantity and protein content of EVs induced by different agonists. Methods Platelets isolated with iodixanol gradient were activated by thrombin and collagen, lipopolysaccharide (LPS) or Ca2+ ionophore. Microparticles and exosomes were isolated by differential centrifugations. EVs were quantitated by nanoparticle tracking analysis (NTA) and total protein. Size distributions were determined by NTA and electron microscopy. Proteomics was used to characterize the differentially induced EVs. Results The main EV populations were 100–250 nm and over 90% were <500 nm irrespective of the activation. However, activation pathways differentially regulated the quantity and the quality of EVs, which also formed constitutively. Thrombogenic activation was the most potent physiological EV-generator. LPS was a weak inducer of EVs, which had a selective protein content from the thrombogenic EVs. Ca2+ ionophore generated a large population of protein-poor and unselectively packed EVs. By proteomic analysis, EVs were highly heterogeneous after the different activations and between the vesicle subpopulations. Conclusions Although platelets constitutively release EVs, vesiculation can be increased, and the activation pathway determines the number and the cargo of the formed EVs. These activation-dependent variations render the use of protein content in sample normalization invalid. Since most platelet EVs are 100–250 nm, only a fraction has been analyzed by previously used methods, for example, flow cytometry. As the EV subpopulations

  17. Immunohistochemical localization of protein components of catecholamine storage vesicles

    PubMed Central

    Geffen, L. B.; Livett, B. G.; Rush, R. A.

    1969-01-01

    1. The distribution of specific proteins in sympathetic neurones has been examined by immunofluorescent histology using antibodies prepared against soluble protein components of the catecholamine storage vesicles of the adrenal medulla. 2. Two antigen preparations were separated by ion exchange chromatography of the soluble proteins released on osmotic lysis of catecholamine storage vesicles which had been isolated by centrifugation from homogenates of sheep adrenal medulla. One fraction (AgDH) had high dopamine-β-hydroxylase activity, while another (AgCB), consisting of the bulk of the protein, had some capacity to bind catecholamines. On disk gel electrophoresis the antigens ran as single bands with very different mobilities. 3. Antisera (AsDH) and (AsCB) produced in rabbits to the two antigens were shown to react specifically with their antigens by immunodiffusion and electrophoresis in agarose. 4. Indirect immunofluorescent staining of tissue sections was achieved by layering first the rabbit anti-sera, followed by goat anti-rabbit globulin serum which had been conjugated with fluorescein isothiocyanate. 5. The adrenal medulla and the cell bodies of sympathetic ganglia showed the most intense green fluorescence with the immune rabbit sera, and hardly stained when pre-immune serum from the same animal was used. The reactivity of the antisera could be abolished by incubation with the corresponding antigen. 6. The preterminal and terminal axons of sympathetic nerves also stained specifically but less intensely with both antisera. When the nerves were ligated for up to 24 hr, the portion immediately proximal to the constriction showed an enhanced reaction to the antisera. 7. The results provide evidence that sympathetic neurones contain proteins immunologically identical to those involved in the synthesis and storage of noradrenaline in the adrenal medulla, and support the concept that granular vesicles are synthesized in the perikaryon of the neurone and are

  18. Quantification of birefringence readily measures the level of muscle damage in zebrafish

    SciTech Connect

    Berger, Joachim; Sztal, Tamar; Currie, Peter D.

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Report of an unbiased quantification of the birefringence of muscle of fish larvae. Black-Right-Pointing-Pointer Quantification method readily identifies level of overall muscle damage. Black-Right-Pointing-Pointer Compare zebrafish muscle mutants for level of phenotype severity. Black-Right-Pointing-Pointer Proposed tool to survey treatments that aim to ameliorate muscular dystrophy. -- Abstract: Muscular dystrophies are a group of genetic disorders that progressively weaken and degenerate muscle. Many zebrafish models for human muscular dystrophies have been generated and analysed, including dystrophin-deficient zebrafish mutants dmd that model Duchenne Muscular Dystrophy. Under polarised light the zebrafish muscle can be detected as a bright area in an otherwise dark background. This light effect, called birefringence, results from the diffraction of polarised light through the pseudo-crystalline array of the muscle sarcomeres. Muscle damage, as seen in zebrafish models for muscular dystrophies, can readily be detected by a reduction in the birefringence. Therefore, birefringence is a very sensitive indicator of overall muscle integrity within larval zebrafish. Unbiased documentation of the birefringence followed by densitometric measurement enables the quantification of the birefringence of zebrafish larvae. Thereby, the overall level of muscle integrity can be detected, allowing the identification and categorisation of zebrafish muscle mutants. In addition, we propose that the establish protocol can be used to analyse treatments aimed at ameliorating dystrophic zebrafish models.

  19. Membrane vesicles of Clostridium perfringens Type A strains induce innate and adaptive immunity

    PubMed Central

    Jiang, Yanlong; Kong, Qingke; Roland, Kenneth L.; Curtiss, Roy

    2014-01-01

    Vesicle shedding from bacteria is a universal process in most Gram-negative bacteria and a few Gram-positive bacteria. In this report, we isolate extracellular membrane vesicles (MVs) from the supernatants of Gram-positive pathogen Clostridium perfringens (C. perfringens). We demonstrated vesicle production in a variety of virulent and nonvirulent type A strains. MVs did not contain alpha-toxin and NetB toxin demonstrated by negative reaction to specific antibody and absence of specific proteins identified by LC-MS/MS. C. perfringens MVs contained DNA components such as 16S ribosomal RNA gene (16S rRNA), alpha-toxin gene (plc) and the perfringolysin O gene (pfoA) demonstrated by PCR. We also identified a total of 431 proteins in vesicles by 1-D gel separation and LC-MS/MS analysis. In vitro studies demonstrated that vesicles could be internalized into murine macrophage RAW264.7 cells without direct cytotoxicity effects, causing release of inflammation cytokines including granulocyte colony stimulating factor (G-CSF), tumor necrosis factor-alpha (TNF-α) and interleukin-1 (IL-1), which could also be detected in mice injected with MVs through intraperitoneal (i.p.) route. Mice immunized with C. perfringens MVs produced high titer IgG, especially IgG1, antibodies against C. perfringens membrane proteins. However, this kind of antibody could not provide protection in mice following challenge, though it could slightly postpone the time of death. Our results indicate that release of MVs from C. perfringens could provide a previously unknown mechanism to induce release of inflammatory cytokines, especially TNF-α, these findings may contribute to a better understanding of the pathogenesis of C. perfringens infection. PMID:24631214

  20. A Stem Cell-Derived Platform for Studying Single Synaptic Vesicles in Dopaminergic Synapses

    PubMed Central

    Gu, Haigang; Lazarenko, Roman M.; Koktysh, Dmitry; Iacovitti, Lorraine

    2015-01-01

    The exocytotic release of dopamine is one of the most characteristic but also one of the least appreciated processes in dopaminergic neurotransmission. Fluorescence imaging has yielded rich information about the properties of synaptic vesicles and the release of neurotransmitters in excitatory and inhibitory neurons. In contrast, imaging-based studies for in-depth understanding of synaptic vesicle behavior in dopamine neurons are lagging largely because of a lack of suitable preparations. Midbrain culture has been one of the most valuable preparations for the subcellular investigation of dopaminergic transmission; however, the paucity and fragility of cultured dopaminergic neurons limits their use for live cell imaging. Recent developments in stem cell technology have led to the successful production of dopamine neurons from embryonic or induced pluripotent stem cells. Although the dopaminergic identity of these stem cell-derived neurons has been characterized in different ways, vesicle-mediated dopamine release from their axonal terminals has been barely assessed. We report a more efficient procedure to reliably generate dopamine neurons from embryonic stem cells, and it yields more dopamine neurons with more dopaminergic axon projections than midbrain culture does. Using a collection of functional measurements, we show that stem cell-derived dopamine neurons are indistinguishable from those in midbrain culture. Taking advantage of this new preparation, we simultaneously tracked the turnover of hundreds of synaptic vesicles individually using pH-sensitive quantum dots. By doing so, we revealed distinct fusion kinetics of the dopamine-secreting vesicles, which is consistent within both preparations. Significance For the use of stem cell-derived neurons in clinical applications, improved differentiation efficiency and more careful characterization of resultant cells are needed. A procedure has been refined for differentiation of mouse embryonic stem cells into

  1. Haloarchaea and the formation of gas vesicles.

    PubMed

    Pfeifer, Felicitas

    2015-01-01

    Halophilic Archaea (Haloarchaea) thrive in salterns containing sodium chloride concentrations up to saturation. Many Haloarchaea possess genes encoding gas vesicles, but only a few species, such as Halobacterium salinarum and Haloferax mediterranei, produce these gas-filled, proteinaceous nanocompartments. Gas vesicles increase the buoyancy of cells and enable them to migrate vertically in the water body to regions with optimal conditions. Their synthesis depends on environmental factors, such as light, oxygen supply, temperature and salt concentration. Fourteen gas vesicle protein (gvp) genes are involved in their formation, and regulation of gvp gene expression occurs at the level of transcription, including the two regulatory proteins, GvpD and GvpE, but also at the level of translation. The gas vesicle wall is solely formed of proteins with the two major components, GvpA and GvpC, and seven additional accessory proteins are also involved. Except for GvpI and GvpH, all of these are required to form the gas permeable wall. The applications of gas vesicles include their use as an antigen presenter for viral or pathogen proteins, but also as a stable ultrasonic reporter for biomedical purposes. PMID:25648404

  2. Activation of calcineurin by phosphotidylserine containing vesicles

    SciTech Connect

    Politino, M.; King, M.M.

    1986-05-01

    Calcineurin (CaN) is a Ca/sup 2 +/- and calmodulin-regulated phosphatase. Recent findings suggested an association of CaN with biological membranes and prompted the present investigation into the interactions of the phosphatase with phospholipids in vitro. In the absence of calmodulin, sonicated preparations of phosphatidylserine (PS) provided a five-fold activation of the Ni- and Mn-supported activities of CaN towards (/sup 32/P) histone Hl; activation in the presence of calmodulin was much less pronounced. Half-maximal activation in the absence of calmodulin required approximately 0.1 mg/ml of PS. Activation of CaN was also observed with mixed vesicles of phosphatidylcholine (PC) containing 20% PS but not with PC alone, or with phosphatidylethanolamine (PE). Molecular sieve chromatography on Ultrogel AcA 34 provided further evidence that CaN associates with phospholipid vesicles composed of PS, or PC containing 20% PS, but not with vesicles of PC or PE. Complete association with medium sized vesicles of PS and PC/PS required Ca/sup 2 +/ ions; in the absence of the metal ion at least 60% of the enzyme failed to interact with the lipids while the remainder preferentially migrated with larger vesicles. These results suggest a role for Ca/sup 2 +/ in regulating CaN's interaction with phospholipids.

  3. Haloarchaea and the Formation of Gas Vesicles

    PubMed Central

    Pfeifer, Felicitas

    2015-01-01

    Halophilic Archaea (Haloarchaea) thrive in salterns containing sodium chloride concentrations up to saturation. Many Haloarchaea possess genes encoding gas vesicles, but only a few species, such as Halobacterium salinarum and Haloferax mediterranei, produce these gas-filled, proteinaceous nanocompartments. Gas vesicles increase the buoyancy of cells and enable them to migrate vertically in the water body to regions with optimal conditions. Their synthesis depends on environmental factors, such as light, oxygen supply, temperature and salt concentration. Fourteen gas vesicle protein (gvp) genes are involved in their formation, and regulation of gvp gene expression occurs at the level of transcription, including the two regulatory proteins, GvpD and GvpE, but also at the level of translation. The gas vesicle wall is solely formed of proteins with the two major components, GvpA and GvpC, and seven additional accessory proteins are also involved. Except for GvpI and GvpH, all of these are required to form the gas permeable wall. The applications of gas vesicles include their use as an antigen presenter for viral or pathogen proteins, but also as a stable ultrasonic reporter for biomedical purposes. PMID:25648404

  4. Synaptic vesicle recycling: steps and principles

    PubMed Central

    Rizzoli, Silvio O

    2014-01-01

    Synaptic vesicle recycling is one of the best-studied cellular pathways. Many of the proteins involved are known, and their interactions are becoming increasingly clear. However, as for many other pathways, it is still difficult to understand synaptic vesicle recycling as a whole. While it is generally possible to point out how synaptic reactions take place, it is not always easy to understand what triggers or controls them. Also, it is often difficult to understand how the availability of the reaction partners is controlled: how the reaction partners manage to find each other in the right place, at the right time. I present here an overview of synaptic vesicle recycling, discussing the mechanisms that trigger different reactions, and those that ensure the availability of reaction partners. A central argument is that synaptic vesicles bind soluble cofactor proteins, with low affinity, and thus control their availability in the synapse, forming a buffer for cofactor proteins. The availability of cofactor proteins, in turn, regulates the different synaptic reactions. Similar mechanisms, in which one of the reaction partners buffers another, may apply to many other processes, from the biogenesis to the degradation of the synaptic vesicle. PMID:24596248

  5. Selection of high efficient transdermal lipid vesicle for curcumin skin delivery.

    PubMed

    Zhao, Ying-Zheng; Lu, Cui-Tao; Zhang, Yi; Xiao, Jian; Zhao, Ya-Ping; Tian, Ji-Lai; Xu, Yan-Yan; Feng, Zhi-Guo; Xu, Chong-Yong

    2013-09-15

    Curcumin shows effective anti-inflammatory activities but is seldom used in clinic because of its poor solubility in water and vulnerablity to sunshine ultraviolet effect. Novel lipid vesicles have been developed as carriers for skin delivery. In this paper, lipid vesicles-propylene glycol liposomes (PGL), Ethosomes and traditional liposomes, were prepared as curcumin carriers respectively. Their morphology, particle size and encapsulation efficiency and drug release behavior in vitro were evaluated. Transdermal efficiency and deposition quantity in abdominal skin were also measured with Franz diffusion device. Carrageenan-induced paw edema was established to evaluate the anti-inflammatory effect. From the result, the particle size order of lipid vesicles was: PGL (182.4 ± 89.2 nm)Ethosomes>traditional liposomes. PGL had the best encapsulation efficiency of 92.74 ± 3.44%. From anti-inflammatory experiment, PGL showed the highest and longest inhibition on the development of paw edema, followed by Ethosomes and Traditional liposomes. With the elevated entrapment efficiency, good transdermic ability and sustained-release behavior, PGL may represent an efficient transdermal lipid vesicle for skin delivery. PMID:23830940

  6. Ultrasound and pH Dually Responsive Polymer Vesicles for Anticancer Drug Delivery

    PubMed Central

    Chen, Wenqin; Du, Jianzhong

    2013-01-01

    Recently, smart polymer vesicles have attracted increasing interest due to their endless potential applications such as tunable delivery vehicles for the treatment of degenerative diseases. However, the evolution of stimuli-responsive vesicles from bench to bedside still seems far away for the limitations of current stimuli forms such as temperature, light, redox, etc. Since ultrasound combined with chemotherapy has been widely used in tumor treatment and the pH in tumor tissues is relatively low, we designed herein a novel polymer vesicle that respond to both physical (ultrasound) and chemical (pH) stimuli based on a PEO-b-P(DEA-stat-TMA) block copolymer, where PEO is short for poly(ethylene oxide), DEA for 2-(diethylamino)ethyl methacrylate and TMA for (2-tetrahydrofuranyloxy)ethyl methacrylate. These dually responsive vesicles show noncytotoxicity below 250 μg/mL and can encapsulate anticancer drugs, exhibiting retarded release profile and controllable release rate when subjected to ultrasound radiation or varying pH in tris buffer at 37°C. PMID:23831819

  7. Ultrasound and pH dually responsive polymer vesicles for anticancer drug delivery.

    PubMed

    Chen, Wenqin; Du, Jianzhong

    2013-01-01

    Recently, smart polymer vesicles have attracted increasing interest due to their endless potential applications such as tunable delivery vehicles for the treatment of degenerative diseases. However, the evolution of stimuli-responsive vesicles from bench to bedside still seems far away for the limitations of current stimuli forms such as temperature, light, redox, etc. Since ultrasound combined with chemotherapy has been widely used in tumor treatment and the pH in tumor tissues is relatively low, we designed herein a novel polymer vesicle that respond to both physical (ultrasound) and chemical (pH) stimuli based on a PEO-b-P(DEA-stat-TMA) block copolymer, where PEO is short for poly(ethylene oxide), DEA for 2-(diethylamino)ethyl methacrylate and TMA for (2-tetrahydrofuranyloxy)ethyl methacrylate. These dually responsive vesicles show noncytotoxicity below 250 μg/mL and can encapsulate anticancer drugs, exhibiting retarded release profile and controllable release rate when subjected to ultrasound radiation or varying pH in tris buffer at 37°C. PMID:23831819

  8. Ultrasound and pH Dually Responsive Polymer Vesicles for Anticancer Drug Delivery

    NASA Astrophysics Data System (ADS)

    Chen, Wenqin; Du, Jianzhong

    2013-07-01

    Recently, smart polymer vesicles have attracted increasing interest due to their endless potential applications such as tunable delivery vehicles for the treatment of degenerative diseases. However, the evolution of stimuli-responsive vesicles from bench to bedside still seems far away for the limitations of current stimuli forms such as temperature, light, redox, etc. Since ultrasound combined with chemotherapy has been widely used in tumor treatment and the pH in tumor tissues is relatively low, we designed herein a novel polymer vesicle that respond to both physical (ultrasound) and chemical (pH) stimuli based on a PEO-b-P(DEA-stat-TMA) block copolymer, where PEO is short for poly(ethylene oxide), DEA for 2-(diethylamino)ethyl methacrylate and TMA for (2-tetrahydrofuranyloxy)ethyl methacrylate. These dually responsive vesicles show noncytotoxicity below 250 μg/mL and can encapsulate anticancer drugs, exhibiting retarded release profile and controllable release rate when subjected to ultrasound radiation or varying pH in tris buffer at 37°C.

  9. Actin dynamics provides membrane tension to merge fusing vesicles into the plasma membrane.

    PubMed

    Wen, Peter J; Grenklo, Staffan; Arpino, Gianvito; Tan, Xinyu; Liao, Hsien-Shun; Heureaux, Johanna; Peng, Shi-Yong; Chiang, Hsueh-Cheng; Hamid, Edaeni; Zhao, Wei-Dong; Shin, Wonchul; Näreoja, Tuomas; Evergren, Emma; Jin, Yinghui; Karlsson, Roger; Ebert, Steven N; Jin, Albert; Liu, Allen P; Shupliakov, Oleg; Wu, Ling-Gang

    2016-01-01

    Vesicle fusion is executed via formation of an Ω-shaped structure (Ω-profile), followed by closure (kiss-and-run) or merging of the Ω-profile into the plasma membrane (full fusion). Although Ω-profile closure limits release but recycles vesicles economically, Ω-profile merging facilitates release but couples to classical endocytosis for recycling. Despite its crucial role in determining exocytosis/endocytosis modes, how Ω-profile merging is mediated is poorly understood in endocrine cells and neurons containing small ∼30-300 nm vesicles. Here, using confocal and super-resolution STED imaging, force measurements, pharmacology and gene knockout, we show that dynamic assembly of filamentous actin, involving ATP hydrolysis, N-WASP and formin, mediates Ω-profile merging by providing sufficient plasma membrane tension to shrink the Ω-profile in neuroendocrine chromaffin cells containing ∼300 nm vesicles. Actin-directed compounds also induce Ω-profile accumulation at lamprey synaptic active zones, suggesting that actin may mediate Ω-profile merging at synapses. These results uncover molecular and biophysical mechanisms underlying Ω-profile merging. PMID:27576662

  10. Adhesion energy can regulate vesicle fusion and stabilize partially fused states

    PubMed Central

    Long, Rong; Hui, Chung-Yuen; Jagota, Anand; Bykhovskaia, Maria

    2012-01-01

    Release of neurotransmitters from nerve terminals occurs by fusion of synaptic vesicles with the plasma membrane, and this process is highly regulated. Although major molecular components that control docking and fusion of vesicles to the synaptic membrane have been identified, the detailed mechanics of this process is not yet understood. We have developed a mathematical model that predicts how adhesion forces imposed by docking and fusion molecular machinery would affect the fusion process. We have computed the membrane stress that is produced by adhesion-driven vesicle bending and find that it is compressive. Further, our computations of the membrane curvature predict that strong adhesion can create a metastable state with a partially opened pore that would correspond to the ‘kiss and run’ release mode. Our model predicts that the larger the vesicle size, the more likely the metastable state with a transiently opened pore. These results contribute to understanding the mechanics of the fusion process, including possible clamping of the fusion by increasing molecular adhesion, and a balance between ‘kiss and run’ and full collapse fusion modes. PMID:22258550

  11. Neurotransmitter Co-release: Mechanism and Physiological Role

    PubMed Central

    Hnasko, Thomas S.; Edwards, Robert H.

    2014-01-01

    Neurotransmitter identity is a defining feature of all neurons because it constrains the type of information they convey, but it has become clear that many neurons in fact release multiple transmitters. Although the physiological role for co-release has remained poorly understood, the vesicular uptake of one transmitter can regulate filling with the other by influencing expression of the H+ electrochemical driving force. In addition, the sorting of vesicular neurotransmitter transporters and other synaptic vesicle proteins into different vesicle pools suggests the potential for distinct modes of release. Co-release thus serves multiple roles in synaptic transmission. PMID:22054239

  12. Bacterial Outer Membrane Vesicles Induce Plant Immune Responses.

    PubMed

    Bahar, Ofir; Mordukhovich, Gideon; Luu, Dee Dee; Schwessinger, Benjamin; Daudi, Arsalan; Jehle, Anna Kristina; Felix, Georg; Ronald, Pamela C

    2016-05-01

    Gram-negative bacteria continuously pinch off portions of their outer membrane, releasing membrane vesicles. These outer membrane vesicles (OMVs) are involved in multiple processes including cell-to-cell communication, biofilm formation, stress tolerance, horizontal gene transfer, and virulence. OMVs are also known modulators of the mammalian immune response. Despite the well-documented role of OMVs in mammalian-bacterial communication, their interaction with plants is not well studied. To examine whether OMVs of plant pathogens modulate the plant immune response, we purified OMVs from four different plant pathogens and used them to treat Arabidopsis thaliana. OMVs rapidly induced a reactive oxygen species burst, medium alkalinization, and defense gene expression in A. thaliana leaf discs, cell cultures, and seedlings, respectively. Western blot analysis revealed that EF-Tu is present in OMVs and that it serves as an elicitor of the plant immune response in this form. Our results further show that the immune coreceptors BAK1 and SOBIR1 mediate OMV perception and response. Taken together, our results demonstrate that plants can detect and respond to OMV-associated molecules by activation of their immune system, revealing a new facet of plant-bacterial interactions. PMID:26926999

  13. Facile preparation of salivary extracellular vesicles for cancer proteomics.

    PubMed

    Sun, Yan; Xia, Zhijun; Shang, Zhi; Sun, Kaibo; Niu, Xiaomin; Qian, Liqiang; Fan, Liu-Yin; Cao, Cheng-Xi; Xiao, Hua

    2016-01-01

    Extracellular vesicles (EVs) are membrane surrounded structures released by cells, which have been increasingly recognized as mediators of intercellular communication. Recent reports indicate that EVs participate in important biological processes and could serve as potential source for cancer biomarkers. As an attractive EVs source with merit of non-invasiveness, human saliva is a unique medium for clinical diagnostics. Thus, we proposed a facile approach to prepare salivary extracellular vesicles (SEVs). Affinity chromatography column combined with filter system (ACCF) was developed to efficiently remove the high abundant proteins and viscous interferences of saliva. Protein profiling in the SEVs obtained by this strategy was compared with conventional centrifugation method, which demonstrated that about 70% more SEVs proteins could be revealed. To explore its utility for cancer proteomics, we analyzed the proteome of SEVs in lung cancer patients and normal controls. Shotgun proteomic analysis illustrated that 113 and 95 proteins have been identified in cancer group and control group, respectively. Among those 63 proteins that have been consistently discovered only in cancer group, 12 proteins are lung cancer related. Our results demonstrated that SEVs prepared through the developed strategy are valuable samples for proteomics and could serve as a promising liquid biopsy for cancer. PMID:27091080

  14. Facile preparation of salivary extracellular vesicles for cancer proteomics

    PubMed Central

    Sun, Yan; Xia, Zhijun; Shang, Zhi; Sun, Kaibo; Niu, Xiaomin; Qian, Liqiang; Fan, Liu-Yin; Cao, Cheng-Xi; Xiao, Hua

    2016-01-01

    Extracellular vesicles (EVs) are membrane surrounded structures released by cells, which have been increasingly recognized as mediators of intercellular communication. Recent reports indicate that EVs participate in important biological processes and could serve as potential source for cancer biomarkers. As an attractive EVs source with merit of non-invasiveness, human saliva is a unique medium for clinical diagnostics. Thus, we proposed a facile approach to prepare salivary extracellular vesicles (SEVs). Affinity chromatography column combined with filter system (ACCF) was developed to efficiently remove the high abundant proteins and viscous interferences of saliva. Protein profiling in the SEVs obtained by this strategy was compared with conventional centrifugation method, which demonstrated that about 70% more SEVs proteins could be revealed. To explore its utility for cancer proteomics, we analyzed the proteome of SEVs in lung cancer patients and normal controls. Shotgun proteomic analysis illustrated that 113 and 95 proteins have been identified in cancer group and control group, respectively. Among those 63 proteins that have been consistently discovered only in cancer group, 12 proteins are lung cancer related. Our results demonstrated that SEVs prepared through the developed strategy are valuable samples for proteomics and could serve as a promising liquid biopsy for cancer. PMID:27091080

  15. Focus on Extracellular Vesicles: Introducing the Next Small Big Thing.

    PubMed

    Kalra, Hina; Drummen, Gregor P C; Mathivanan, Suresh

    2016-01-01

    Intercellular communication was long thought to be regulated exclusively through direct contact between cells or via release of soluble molecules that transmit the signal by binding to a suitable receptor on the target cell, and/or via uptake into that cell. With the discovery of small secreted vesicular structures that contain complex cargo, both in their lumen and the lipid membrane that surrounds them, a new frontier of signal transduction was discovered. These "extracellular vesicles" (EV) were initially thought to be garbage bags through which the cell ejected its waste. Whilst this is a major function of one type of EV, i.e., apoptotic bodies, many EVs have intricate functions in intercellular communication and compound exchange; although their physiological roles are still ill-defined. Additionally, it is now becoming increasingly clear that EVs mediate disease progression and therefore studying EVs has ignited significant interests among researchers from various fields of life sciences. Consequently, the research effort into the pathogenic roles of EVs is significantly higher even though their protective roles are not well established. The "Focus on extracellular vesicles" series of reviews highlights the current state of the art regarding various topics in EV research, whilst this review serves as an introductory overview of EVs, their biogenesis and molecular composition. PMID:26861301

  16. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation.

    PubMed

    Kalra, Hina; Simpson, Richard J; Ji, Hong; Aikawa, Elena; Altevogt, Peter; Askenase, Philip; Bond, Vincent C; Borràs, Francesc E; Breakefield, Xandra; Budnik, Vivian; Buzas, Edit; Camussi, Giovanni; Clayton, Aled; Cocucci, Emanuele; Falcon-Perez, Juan M; Gabrielsson, Susanne; Gho, Yong Song; Gupta, Dwijendra; Harsha, H C; Hendrix, An; Hill, Andrew F; Inal, Jameel M; Jenster, Guido; Krämer-Albers, Eva-Maria; Lim, Sai Kiang; Llorente, Alicia; Lötvall, Jan; Marcilla, Antonio; Mincheva-Nilsson, Lucia; Nazarenko, Irina; Nieuwland, Rienk; Nolte-'t Hoen, Esther N M; Pandey, Akhilesh; Patel, Tushar; Piper, Melissa G; Pluchino, Stefano; Prasad, T S Keshava; Rajendran, Lawrence; Raposo, Graca; Record, Michel; Reid, Gavin E; Sánchez-Madrid, Francisco; Schiffelers, Raymond M; Siljander, Pia; Stensballe, Allan; Stoorvogel, Willem; Taylor, Douglas; Thery, Clotilde; Valadi, Hadi; van Balkom, Bas W M; Vázquez, Jesús; Vidal, Michel; Wauben, Marca H M; Yáñez-Mó, María; Zoeller, Margot; Mathivanan, Suresh

    2012-01-01

    Extracellular vesicles (EVs) are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These findings have generated immense interest, along with an exponential increase in molecular data pertaining to EVs. Here, we describe Vesiclepedia, a manually curated compendium of molecular data (lipid, RNA, and protein) identified in different classes of EVs from more than 300 independent studies published over the past several years. Even though databases are indispensable resources for the scientific community, recent studies have shown that more than 50% of the databases are not regularly updated. In addition, more than 20% of the database links are inactive. To prevent such database and link decay, we have initiated a continuous community annotation project with the active involvement of EV researchers. The EV research community can set a gold standard in data sharing with Vesiclepedia, which could evolve as a primary resource for the field. PMID:23271954

  17. Urinary extracellular vesicles as source of biomarkers in kidney diseases.

    PubMed

    Gámez-Valero, Ana; Lozano-Ramos, Sara Inés; Bancu, Ioana; Lauzurica-Valdemoros, Ricardo; Borràs, Francesc E

    2015-01-01

    Most cells physiologically release vesicles as way of intercellular communication. The so-called Extracellular Vesicles (EVs) include exosomes, ectosomes, and apoptotic bodies, which basically differ in their composition and subcellular origin. Specifically, EVs found in urine reflect the state of the urinary system, from podocytes to renal-tubular cells, thus making them an excellent source of samples for the study of kidney physiology and pathology. Several groups have focused on defining biomarkers of kidney-related disorders, from graft rejection to metabolic syndromes. So far, the lack of a standard protocol for EVs isolation precludes the possibility of a proper comparison among the different biomarkers proposed in the literature, stressing the need for validation of these biomarkers not only in larger cohorts of patients but also considering the different methods for EVs isolation. In this review, we aim to gather the current knowledge about EVs-related biomarkers in kidney diseases, with a special emphasis in the methods used to date for EVs enrichment, and discussing the need for more specific protocols of EV isolation in clinical practice. PMID:25688242

  18. Exosomes in the Thymus: Antigen Transfer and Vesicles

    PubMed Central

    Skogberg, Gabriel; Telemo, Esbjörn; Ekwall, Olov

    2015-01-01

    Thymocytes go through several steps of maturation and selection in the thymus in order to form a functional pool of effector T-cells and regulatory T-cells in the periphery. Close interactions between thymocytes, thymic epithelial cells, and dendritic cells are of vital importance for the maturation, selection, and lineage decision of the thymocytes. One important question that is still unanswered is how a relatively small epithelial cell population can present a vast array of self-antigens to the manifold larger population of developing thymocytes in this selection process. Here, we review and discuss the literature concerning antigen transfer from epithelial cells with a focus on exosomes. Exosomes are nano-sized vesicles released from a cell into the extracellular space. These vesicles can carry proteins, microRNAs, and mRNAs between cells and are thus able to participate in intercellular communication. Exosomes have been shown to be produced by thymic epithelial cells and to carry tissue-restricted antigens and MHC molecules, which may enable them to participate in the thymocyte selection process. PMID:26257734

  19. Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation

    PubMed Central

    Kalra, Hina; Simpson, Richard J.; Ji, Hong; Aikawa, Elena; Altevogt, Peter; Askenase, Philip; Bond, Vincent C.; Borràs, Francesc E.; Breakefield, Xandra; Budnik, Vivian; Buzas, Edit; Camussi, Giovanni; Clayton, Aled; Cocucci, Emanuele; Falcon-Perez, Juan M.; Gabrielsson, Susanne; Gho, Yong Song; Gupta, Dwijendra; Harsha, H. C.; Hendrix, An; Hill, Andrew F.; Inal, Jameel M.; Jenster, Guido; Krämer-Albers, Eva-Maria; Lim, Sai Kiang; Llorente, Alicia; Lötvall, Jan; Marcilla, Antonio; Mincheva-Nilsson, Lucia; Nazarenko, Irina; Nieuwland, Rienk; Nolte-'t Hoen, Esther N. M.; Pandey, Akhilesh; Patel, Tushar; Piper, Melissa G.; Pluchino, Stefano; Prasad, T. S. Keshava; Rajendran, Lawrence; Raposo, Graca; Record, Michel; Reid, Gavin E.; Sánchez-Madrid, Francisco; Schiffelers, Raymond M.; Siljander, Pia; Stensballe, Allan; Stoorvogel, Willem; Taylor, Douglas; Thery, Clotilde; Valadi, Hadi; van Balkom, Bas W. M.; Vázquez, Jesús; Vidal, Michel; Wauben, Marca H. M.; Yáñez-Mó, María; Zoeller, Margot; Mathivanan, Suresh

    2012-01-01

    Extracellular vesicles (EVs) are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These findings have generated immense interest, along with an exponential increase in molecular data pertaining to EVs. Here, we describe Vesiclepedia, a manually curated compendium of molecular data (lipid, RNA, and protein) identified in different classes of EVs from more than 300 independent studies published over the past several years. Even though databases are indispensable resources for the scientific community, recent studies have shown that more than 50% of the databases are not regularly updated. In addition, more than 20% of the database links are inactive. To prevent such database and link decay, we have initiated a continuous community annotation project with the active involvement of EV researchers. The EV research community can set a gold standard in data sharing with Vesiclepedia, which could evolve as a primary resource for the field. PMID:23271954

  20. Facile preparation of salivary extracellular vesicles for cancer proteomics

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Xia, Zhijun; Shang, Zhi; Sun, Kaibo; Niu, Xiaomin; Qian, Liqiang; Fan, Liu-Yin; Cao, Cheng-Xi; Xiao, Hua

    2016-04-01

    Extracellular vesicles (EVs) are membrane surrounded structures released by cells, which have been increasingly recognized as mediators of intercellular communication. Recent reports indicate that EVs participate in important biological processes and could serve as potential source for cancer biomarkers. As an attractive EVs source with merit of non-invasiveness, human saliva is a unique medium for clinical diagnostics. Thus, we proposed a facile approach to prepare salivary extracellular vesicles (SEVs). Affinity chromatography column combined with filter system (ACCF) was developed to efficiently remove the high abundant proteins and viscous interferences of saliva. Protein profiling in the SEVs obtained by this strategy was compared with conventional centrifugation method, which demonstrated that about 70% more SEVs proteins could be revealed. To explore its utility for cancer proteomics, we analyzed the proteome of SEVs in lung cancer patients and normal controls. Shotgun proteomic analysis illustrated that 113 and 95 proteins have been identified in cancer group and control group, respectively. Among those 63 proteins that have been consistently discovered only in cancer group, 12 proteins are lung cancer related. Our results demonstrated that SEVs prepared through the developed strategy are valuable samples for proteomics and could serve as a promising liquid biopsy for cancer.

  1. Dynamics of fibers growing inside soft vesicles

    NASA Astrophysics Data System (ADS)

    Marenduzzo, D.; Orlandini, E.

    2007-11-01

    We present 3D stochastic dynamic simulations of the growth of a semiflexible polymer inside a soft vesicle. We find that very stiff fibers stall soon and lock the membrane into a strongly deformed prolate shape. Fibers of intermediate stiffness buckle and form a toroidal configuration which distorts the membrane into an oblate shape. Finally, more flexible polymers form massive spool-like condensates with ordered domains, while the vesicle inflates isotropically. We discuss our results with respect to observations on cell shape in sickle red blood cells, developing erythrocytes, and genome packing inside bacteriophages. We quantify how the force felt by the fiber tip, and the vesicle aspect ratio, change during growth, and we discuss possible "synthetic biology" experiments to validate our results.

  2. Directed vesicle transport by diffusio-osmosis

    NASA Astrophysics Data System (ADS)

    Michler, D.; Shahidzadeh, N.; Sprik, R.; Bonn, D.

    2015-04-01

    We present a study on surfactant vesicles that spontaneously move towards an oil droplet that is deposited on a glass substrate. Tracer particles in the surfactant solution show that the motion is not self-propelled: the vesicles are entrained by a macroscopic hydrodynamic flow. Measurements of the flow velocity suggest that the flow is of diffusio-osmotic nature. The surfactant is observed to move into the oil phase which creates a gradient in ion concentration in the vicinity of the droplet. As the diffusion coefficients of the surfactant's co- and counter-ions differ, a charge separation takes place and an electric field arises. This electric field then generates a hydrodynamic flow along the charged glass substrate in which the vesicles are entrained.

  3. Computational algorithms for vesicle electrohydrodyna- mics

    NASA Astrophysics Data System (ADS)

    Veerapaneni, Shravan

    2015-11-01

    In this talk, we discuss a new integral equation method for simulating the electrohydrodynamics of a suspension of vesicles. The classical Taylor-Melcher leaky-dielectric model is employed for the electric response of each vesicle and the Helfrich energy model combined with local inextensibility is employed for its elastic response. The coupled governing equations for the vesicle position and its transmembrane electric potential are solved using a numerical method that is spectrally accurate in space and first-order in time. The method uses a semi-implicit time-stepping scheme to overcome the numerical stiffness associated with the governing equations. We will present new results on the suspension rheology, two-body interactions and pattern formation. This is joint work with Bowei Wu. This work was sponsored by NSF under grants DMS-1224656 and DMS-1418964.

  4. Plasmonic Vesicles of Amphiphilic Nanocrystals: Optically Active Multifunctional Platform for Cancer Diagnosis and Therapy.

    PubMed

    Song, Jibin; Huang, Peng; Duan, Hongwei; Chen, Xiaoyuan

    2015-09-15

    Vesicular structures with compartmentalized, water-filled cavities, such as liposomes of natural and synthetic amphiphiles, have tremendous potential applications in nanomedicine. When block copolymers self-assemble, the result is polymersomes with tailored structural properties and built-in releasing mechanisms, controlled by stimuli-responsive polymer building blocks. More recently, chemists are becoming interested in multifunctional hybrid vesicles containing inorganic nanocrystals with unique optical, electronic, and magnetic properties. In this Account, we review our recent progress in assembling amphiphilic plasmonic nanostructures to create a new class of multifunctional hybrid vesicles and applying them towards cancer diagnosis and therapy. Localized surface plasmon resonance (LSPR) gives plasmonic nanomaterials a unique set of optical properties that are potentially useful for both biosensing and nanomedicine. For instance, the strong light scattering at their LSPR wavelength opens up the applications of plasmonic nanostructures in single particle plasmonic imaging. Their superior photothermal conversion properties, on the other hand, make them excellent transducers for photothermal ablation and contrast agents for photoacoustic imaging. Of particular note for ultrasensitive detection is that the confined electromagnetic field resulting from excitation of LSPR can give rise to highly efficient surface enhanced Raman scattering (SERS) for molecules in close proximity. We have explored several ways to combine well-defined plasmonic nanocrystals with amphiphilic polymer brushes of diverse chemical functionalities. In multiple systems, we have shown that the polymer grafts impart amphiphilicity-driven self-assembly to the hybrid nanoparticles. This has allowed us to synthesize well-defined vesicles in which we have embedded plasmonic nanocrystals in the shell of collapsed hydrophobic polymers. The hydrophilic brushes extend into external and interior aqueous

  5. Fundamental Studies of Assembly and Mechanical Properties of Lipid Bilayer Membranes and Unilamellar Vesicles

    NASA Astrophysics Data System (ADS)

    Wang, Xi

    peptide activities. The study of vesicle rupture mechanics and mechanical properties provide a means of understanding triggered release of internal payload from vesicular structures. POPC vesicles were also deposited on graphene; a transparent and highly conductive electrode. A combination method of diffusion bonding and template-stripping was used to prepare metal surfaces for graphene growth without concerns of outgassing, thermal and chemical compatibility. Continuous LBM formed on graphene-single crystal Cu, while tubular features with 120°C patterns formed on graphene-Cu foil, indicating the step edge of Cu below graphene may also guide the assembly of tubular LBM features on graphene.

  6. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes

    PubMed Central

    Crescitelli, Rossella; Lässer, Cecilia; Szabó, Tamas G.; Kittel, Agnes; Eldh, Maria; Dianzani, Irma; Buzás, Edit I.; Lötvall, Jan

    2013-01-01

    Introduction In recent years, there has been an exponential increase in the number of studies aiming to understand the biology of exosomes, as well as other extracellular vesicles. However, classification of membrane vesicles and the appropriate protocols for their isolation are still under intense discussion and investigation. When isolating vesicles, it is crucial to use systems that are able to separate them, to avoid cross-contamination. Method EVs released from three different kinds of cell lines: HMC-1, TF-1 and BV-2 were isolated using two centrifugation-based protocols. In protocol 1, apoptotic bodies were collected at 2,000×g, followed by filtering the supernatant through 0.8 µm pores and pelleting of microvesicles at 12,200×g. In protocol 2, apoptotic bodies and microvesicles were collected together at 16,500×g, followed by filtering of the supernatant through 0.2 µm pores and pelleting of exosomes at 120,000×g. Extracellular vesicles were analyzed by transmission electron microscopy, flow cytometry and the RNA profiles were investigated using a Bioanalyzer®. Results RNA profiles showed that ribosomal RNA was primary detectable in apoptotic bodies and smaller RNAs without prominent ribosomal RNA peaks in exosomes. In contrast, microvesicles contained little or no RNA except for microvesicles collected from TF-1 cell cultures. The different vesicle pellets showed highly different distribution of size, shape and electron density with typical apoptotic body, microvesicle and exosome characteristics when analyzed by transmission electron microscopy. Flow cytometry revealed the presence of CD63 and CD81 in all vesicles investigated, as well as CD9 except in the TF-1-derived vesicles, as these cells do not express CD9. Conclusions Our results demonstrate that centrifugation-based protocols are simple and fast systems to distinguish subpopulations of extracellular vesicles. Different vesicles show different RNA profiles and morphological characteristics

  7. Characterization of Regulatory Extracellular Vesicles from Osteoclasts.

    PubMed

    Huynh, N; VonMoss, L; Smith, D; Rahman, I; Felemban, M F; Zuo, J; Rody, W J; McHugh, K P; Holliday, L S

    2016-06-01

    Extracellular vesicles (EVs), which include exosomes and ectosomes/microvesicles, have emerged as important intercellular regulators. EVs can interact with surface receptors of target cells and can transport luminal components, including messenger RNAs (mRNAs), microRNAs, and enzymes, to the cytosol of the target cell. Here, we show that hematopoietic cells grown in culture shed exosome-like EVs as they differentiate from preosteoclasts into osteoclasts. These EVs were between 25 and 120 nm (mean, 40 nm) in diameter determined by transmission electron microscopy. The exosome-associated markers CD63 and EpCAM were enriched in the isolated EVs while markers of Golgi and endoplasmic reticulum were not detected. Treatment of isolated hematopoietic cells with EVs did not affect their receptor activator of nuclear factor κB-ligand (RANKL)-stimulated differentiation into osteoclasts. However, EVs from osteoclast precursors promoted 1,25-dihydroxyvitamin D3-dependent osteoclast formation in whole mouse marrow cultures, and EVs from osteoclast-enriched cultures inhibited osteoclastogenesis in the same cultures. These data suggested that osteoclast-derived EVs are paracrine regulators of osteoclastogenesis. EVs from mature osteoclasts contained receptor activator of nuclear factor κB (RANK). Immunogold labeling showed RANK was enriched in 1 in every 32 EVs isolated from osteoclast-enriched cultures. Depletion of RANK-rich EVs relieved the ability of osteoclast-derived EVs to inhibit osteoclast formation in 1,25-dihydroxyvitamin D3-stimulated marrow cultures. In summary, we show for the first time that EVs released by osteoclasts are novel regulators of osteoclastogenesis. Our data suggest that RANK in EVs may be mechanistically linked to the inhibition of osteoclast formation. RANK present in EVs may function by competitively inhibiting the stimulation of RANK on osteoclast surfaces by RANKL similar to osteoprotegerin. RANK-rich EVs may also take advantage of the RANK

  8. The saccadic system more readily co-processes orthogonal than co-linear saccades.

    PubMed

    Ram-Tsur, R; Caspi, A; Gordon, C R; Zivotofsky, A Z

    2005-01-01

    Real-life visual tasks such as tracking jumping objects and scanning visual scenes often require a sequence of saccadic eye movements. The ability of the ocular motor system to parallel process saccades has been previously demonstrated. We recorded the monocular eye movements of five normal human subjects using the magnetic search coil technique in a double step paradigm. Initial target jumps were always purely horizontal or purely vertical. We were interested in the latency to onset of the second saccade as a function of direction in relation to the first saccade. When the inter stimulus interval (ISI) was 150 or 180 ms orthogonal second saccades were of significantly shorter latency than second co-linear saccades. When the ISI was 250 ms the latencies of orthogonal and co-linear second saccades were statistically indistinguishable. Based on these findings it is postulated that the ocular motor system can more readily co-process orthogonal than co-linear saccades. PMID:15645227

  9. Variable priming of a docked synaptic vesicle

    PubMed Central

    Jung, Jae Hoon; Szule, Joseph A.; Marshall, Robert M.; McMahan, Uel J.

    2016-01-01

    The priming of a docked synaptic vesicle determines the probability of its membrane (VM) fusing with the presynaptic membrane (PM) when a nerve impulse arrives. To gain insight into the nature of priming, we searched by electron tomography for structural relationships correlated with fusion probability at active zones of axon terminals at frog neuromuscular junctions. For terminals fixed at rest, the contact area between the VM of docked vesicles and PM varied >10-fold with a normal distribution. There was no merging of the membranes. For terminals fixed during repetitive evoked synaptic transmission, the normal distribution of contact areas was shifted to the left, due in part to a decreased number of large contact areas, and there was a subpopulation of large contact areas where the membranes were hemifused, an intermediate preceding complete fusion. Thus, fusion probability of a docked vesicle is related to the extent of its VM–PM contact area. For terminals fixed 1 h after activity, the distribution of contact areas recovered to that at rest, indicating the extent of a VM–PM contact area is dynamic and in equilibrium. The extent of VM–PM contact areas in resting terminals correlated with eccentricity in vesicle shape caused by force toward the PM and with shortness of active zone material macromolecules linking vesicles to PM components, some thought to include Ca2+ channels. We propose that priming is a variable continuum of events imposing variable fusion probability on each vesicle and is regulated by force-generating shortening of active zone material macromolecules in dynamic equilibrium. PMID:26858418

  10. SNARE and regulatory proteins induce local membrane protrusions to prime docked vesicles for fast calcium-triggered fusion

    PubMed Central

    Bharat, Tanmay A M; Malsam, Jörg; Hagen, Wim J H; Scheutzow, Andrea; Söllner, Thomas H; Briggs, John A G

    2014-01-01

    Synaptic vesicles fuse with the plasma membrane in response to Ca2+ influx, thereby releasing neurotransmitters into the synaptic cleft. The protein machinery that mediates this process, consisting of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and regulatory proteins, is well known, but the mechanisms by which these proteins prime synaptic membranes for fusion are debated. In this study, we applied large-scale, automated cryo-electron tomography to image an in vitro system that reconstitutes synaptic fusion. Our findings suggest that upon docking and priming of vesicles for fast Ca2+-triggered fusion, SNARE proteins act in concert with regulatory proteins to induce a local protrusion in the plasma membrane, directed towards the primed vesicle. The SNAREs and regulatory proteins thereby stabilize the membrane in a high-energy state from which the activation energy for fusion is profoundly reduced, allowing synchronous and instantaneous fusion upon release of the complexin clamp. PMID:24493260

  11. Toroidal membrane vesicles in spherical confinement.

    PubMed

    Bouzar, Lila; Menas, Ferhat; Müller, Martin Michael

    2015-09-01

    We investigate the morphology of a toroidal fluid membrane vesicle confined inside a spherical container. The equilibrium shapes are assembled in a geometrical phase diagram as a function of scaled area and reduced volume of the membrane. For small area the vesicle can adopt its free form. When increasing the area, the membrane cannot avoid contact and touches the confining sphere along a circular contact line, which extends to a zone of contact for higher area. The elastic energies of the equilibrium shapes are compared to those of their confined counterparts of spherical topology to predict under which conditions a topology change is favored energetically. PMID:26465512

  12. Aquaporins in Urinary Extracellular Vesicles (Exosomes)

    PubMed Central

    Oshikawa, Sayaka; Sonoda, Hiroko; Ikeda, Masahiro

    2016-01-01

    Since the successful characterization of urinary extracellular vesicles (uEVs) by Knepper’s group in 2004, these vesicles have been a focus of intense basic and translational research worldwide, with the aim of developing novel biomarkers and therapeutics for renal disease. Along with these studies, there is growing evidence that aquaporins (AQPs), water channel proteins, in uEVs have the potential to be diagnostically useful. In this review, we highlight current knowledge of AQPs in uEVs from their discovery to clinical application. PMID:27322253

  13. Forty Years of Clathrin-coated Vesicles.

    PubMed

    Robinson, Margaret S

    2015-12-01

    The purification of coated vesicles and the discovery of clathrin by Barbara Pearse in 1975 was a landmark in cell biology. Over the past 40 years, work from many labs has uncovered the molecular details of clathrin and its associated proteins, including how they assemble into a coated vesicle and how they select cargo. Unexpected connections have been found with signalling, development, neuronal transmission, infection, immunity and genetic disorders. But there are still a number of unanswered questions, including how clathrin-mediated trafficking is regulated and how the machinery evolved. PMID:26403691

  14. Aquaporins in Urinary Extracellular Vesicles (Exosomes).

    PubMed

    Oshikawa, Sayaka; Sonoda, Hiroko; Ikeda, Masahiro

    2016-01-01

    Since the successful characterization of urinary extracellular vesicles (uEVs) by Knepper's group in 2004, these vesicles have been a focus of intense basic and translational research worldwide, with the aim of developing novel biomarkers and therapeutics for renal disease. Along with these studies, there is growing evidence that aquaporins (AQPs), water channel proteins, in uEVs have the potential to be diagnostically useful. In this review, we highlight current knowledge of AQPs in uEVs from their discovery to clinical application. PMID:27322253

  15. Regulation of chronic inflammatory and immune processes by extracellular vesicles.

    PubMed

    Robbins, Paul D; Dorronsoro, Akaitz; Booker, Cori N

    2016-04-01

    Almost all cell types release extracellular vesicles (EVs), which are derived either from multivesicular bodies or from the plasma membrane. EVs contain a subset of proteins, lipids, and nucleic acids from the cell from which they are derived. EV factors, particularly small RNAs such as miRNAs, likely play important roles in cell-to-cell communication both locally and systemically. Most of the functions associated with EVs are in the regulation of immune responses to pathogens and cancer, as well as in regulating autoimmunity. This Review will focus on the different modes of immune regulation, both direct and indirect, by EVs. The therapeutic utility of EVs for the regulation of immune responses will also be discussed. PMID:27035808

  16. Extracellular vesicles of the blood-brain barrier

    PubMed Central

    András, Ibolya E; Toborek, Michal

    2016-01-01

    Extracellular vesicles (ECV), like exosomes, gained recently a lot of attention as potentially playing a significant role in neurodegenerative diseases, particularly in Aβ pathology. While there are a lot of reports on ECV/exosomes derived from a variety of cell types, there is limited information on ECV/exosomes originated from brain microvascular endothelial cells forming the blood-brain barrier (BBB). In this review, we summarize the literature data on brain endothelial ECV/exosomes and present our own data on BBB-derived ECV and their possible involvement in the brain's Aβ pathology. We propose that ECV/exosome release from brain endothelial cells associated with Aβ affects different cells of the neurovascular unit and may be an important contributor to the Aβ deposition in the central nervous system. PMID:27141419

  17. Extracellular vesicles and viruses: Are they close relatives?

    PubMed Central

    Nolte-‘t Hoen, Esther; Cremer, Tom; Gallo, Robert C.; Margolis, Leonid B.

    2016-01-01

    Extracellular vesicles (EVs) released by various cells are small phospholipid membrane-enclosed entities that can carry miRNA. They are now central to research in many fields of biology because they seem to constitute a new system of cell–cell communication. Physical and chemical characteristics of many EVs, as well as their biogenesis pathways, resemble those of retroviruses. Moreover, EVs generated by virus-infected cells can incorporate viral proteins and fragments of viral RNA, being thus indistinguishable from defective (noninfectious) retroviruses. EVs, depending on the proteins and genetic material incorporated in them, play a significant role in viral infection, both facilitating and suppressing it. Deciphering the mechanisms of EV-cell interactions may facilitate the design of EVs that inhibit viral infection and can be used as vehicles for targeted drug delivery. PMID:27432966

  18. Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer.

    PubMed

    Torrano, Veronica; Royo, Felix; Peinado, Héctor; Loizaga-Iriarte, Ana; Unda, Miguel; Falcón-Perez, Juan M; Carracedo, Arkaitz

    2016-08-01

    Normal and tumor cells shed vesicles to the environment. Within the large family of extracellular vesicles, exosomes and microvesicles have attracted much attention in the recent years. Their interest ranges from mediators of cancer progression, inflammation, immune regulation and metastatic niche regulation, to non-invasive biomarkers of disease. In this respect, the procedures to purify and analyze extracellular vesicles have quickly evolved and represent a source of variability for data integration in the field. In this review, we provide an updated view of the potential of exosomes and microvesicles as biomarkers and the available technologies for their isolation. PMID:27366992

  19. Development of a cost-effective vaccine candidate with outer membrane vesicles of a tolA-disrupted Shigella boydii strain.

    PubMed

    Mitra, Soma; Sinha, Ritam; Mitobe, Jiro; Koley, Hemanta

    2016-04-01

    Our previous studies on outer membrane vesicles based vaccine development against shigellosis, revealed the inability of Shigella to release significant amount of vesicles naturally, during growth. Disruption of tolA, one of the genes of the Tol-Pal system of Gram negative bacterial membrane, has increased the vesicle release rate of a Shigella boydii type 4 strain to approximately 60% higher. We also noticed the vesicles, released from tolA-disrupted strain captured more OmpA protein and lipopolysaccharide, compared to the vesicles released from its wild type prototype. Six to seven weeks old BALB/c mice, immunized with 25μg of three oral doses of the vesicles, released by tolA mutant, conferred 100% protection against lethal homologous challenge through nasal route, compared to only 60% protection after the same dose of wild type immunogen. Mice, immunized with the vesicles from tolA-mutant, manifested significant secretion of mucosal IgG and IgA. A sharp and significant response of pro-inflammatory cytokines (TNF-α, IL-6, IFN-γ) were also observed in the lung lavage of these groups of mice, within 6h post challenge; but at 24h, these inflammatory cytokines showed the sign of subsidence and the system was taken over by the release of anti-inflammatory cytokines (IL-4 and IL-10). Studies with naïve peritoneal macrophages, proved further, the potency of these vesicles to stimulate nitric oxide and TNF-α, IL-12p70, IL-6 and IL-10 productions in-vitro. The ability of these vesicles to trigger polarization of CD4(+) T cells toward Th1 adaptive immune response, had also been observed along with the presence of anti-inflammatory cytokines in the system. Our study demonstrated, the vesicles from tolA-disrupted Shigella were able to suppress Shigella-mediated inflammation in the host and could balance between inflammation and anti-inflammation, promoting better survival and health of the infected mice. Outer membrane vesicles from tolA-mutant, could be a potential

  20. Fluorescent false neurotransmitter reveals functionally silent dopamine vesicle clusters in the striatum.

    PubMed

    Pereira, Daniela B; Schmitz, Yvonne; Mészáros, József; Merchant, Paolomi; Hu, Gang; Li, Shu; Henke, Adam; Lizardi-Ortiz, José E; Karpowicz, Richard J; Morgenstern, Travis J; Sonders, Mark S; Kanter, Ellen; Rodriguez, Pamela C; Mosharov, Eugene V; Sames, Dalibor; Sulzer, David

    2016-04-01

    Neurotransmission at dopaminergic synapses has been studied with techniques that provide high temporal resolution, but cannot resolve individual synapses. To elucidate the spatial dynamics and heterogeneity of individual dopamine boutons, we developed fluorescent false neurotransmitter 200 (FFN200), a vesicular monoamine transporter 2 (VMAT2) substrate that selectively traces monoamine exocytosis in both neuronal cell culture and brain tissue. By monitoring electrically evoked Ca(2+) transients with GCaMP3 and FFN200 release simultaneously, we found that only a small fraction of dopamine boutons that exhibited Ca(2+) influx engaged in exocytosis, a result confirmed with activity-dependent loading of the endocytic probe FM1-43. Thus, only a low fraction of striatal dopamine axonal sites with uptake-competent VMAT2 vesicles are capable of transmitter release. This is consistent with the presence of functionally 'silent' dopamine vesicle clusters and represents, to the best of our knowledge, the first report suggestive of presynaptically silent neuromodulatory synapses. PMID:26900925

  1. Calcium transport in sealed vesicles from red beet (Beta vulgaris L. ) storage tissue. II. Characterization of /sup 45/Ca/sup 2 +/ uptake into plasma membrane vesicles

    SciTech Connect

    Giannini, J.L.; Ruiz-Cristin, J.; Briskin, D.P.

    1987-12-01

    Calcium uptake was examined in sealed plasma membrane vesicles isolated from red beet (Beta vulgaris L.) storage tissue using /sup 45/Ca/sup 2 +/. Uptake of /sup 45/Ca/sup 2 +/ by the vesicles was ATP-dependent and radiotracer accumulated by the vesicles could be released by the addition of the calcium ionophore A23187. The uptake was stimulated by gramicidin D but slightly inhibited by carbonylcyanide m-chlorophenylhydrazone. Although the latter result might suggest some degree of indirect coupling of /sup 45/Ca/sup 2 +/ uptake to ATP utilization via ..delta mu..H/sup +/, no evidence for a secondary H/sup +//Ca/sup 2 +/ antiport in this vesicle system could be found. Following the imposition of an acid-interior pH gradient, proton efflux from the vesicle was not enhanced by the addition of Ca/sup 2 +/ and an imposed pH gradient could not drive /sup 45/Ca/sup 2 +/ uptake. Optimal uptake of /sup 45/Ca/sup 2 +/ occurred broadly between pH 7.0 and 7.5 and the transport was inhibited by orthovanadate, N,N'-dicyclohexylcarbodiimide, and diethylstilbestrol but insensitive to nitrate and azide. The dependence of /sup 45/Ca/sup 2 +/ uptake on both calcium and Mg:ATP concentration demonstrated saturation kinetics with K/sub m/ values of 6 micromolar and 0.37 millimolar, respectively. While ATP was the preferred substrate for driving /sup 45/Ca/sup 2 +/ uptake, GTP could drive transport at about 50% of the level observed for ATP. The results of this study demonstrate the presence of a unique primary calcium transport system associated with the plasma membrane which could drive calcium efflux from the plant cell.

  2. Native α-synuclein induces clustering of synaptic-vesicle mimics via binding to phospholipids and synaptobrevin-2/VAMP2

    PubMed Central

    Diao, Jiajie; Burré, Jacqueline; Vivona, Sandro; Cipriano, Daniel J; Sharma, Manu; Kyoung, Minjoung; Südhof, Thomas C; Brunger, Axel T

    2013-01-01

    α-Synuclein is a presynaptic protein that is implicated in Parkinson's and other neurodegenerative diseases. Physiologically, native α-synuclein promotes presynaptic SNARE-complex assembly, but its molecular mechanism of action remains unknown. Here, we found that native α-synuclein promotes clustering of synaptic-vesicle mimics, using a single-vesicle optical microscopy system. This vesicle-clustering activity was observed for both recombinant and native α-synuclein purified from mouse brain. Clustering was dependent on specific interactions of native α-synuclein with both synaptobrevin-2/VAMP2 and anionic lipids. Out of the three familial Parkinson's disease-related point mutants of α-synuclein, only the lipid-binding deficient mutation A30P disrupted clustering, hinting at a possible loss of function phenotype for this mutant. α-Synuclein had little effect on Ca2+-triggered fusion in our reconstituted single-vesicle system, consistent with in vivo data. α-Synuclein may therefore lead to accumulation of synaptic vesicles at the active zone, providing a ‘buffer’ of synaptic vesicles, without affecting neurotransmitter release itself. DOI: http://dx.doi.org/10.7554/eLife.00592.001 PMID:23638301

  3. Intra- and Interspecies Effects of Outer Membrane Vesicles from Stenotrophomonas maltophilia on β-Lactam Resistance.

    PubMed

    Devos, Simon; Stremersch, Stephan; Raemdonck, Koen; Braeckmans, Kevin; Devreese, Bart

    2016-04-01

    The treatment ofStenotrophomonas maltophiliainfection with β-lactam antibiotics leads to increased release of outer membrane vesicles (OMVs), which are packed with two chromosomally encoded β-lactamases. Here, we show that these β-lactamase-packed OMVs are capable of establishing extracellular β-lactam degradation. We also show that they dramatically increase the apparent MICs of imipenem and ticarcillin for the cohabituating speciesPseudomonas aeruginosaandBurkholderia cenocepacia. PMID:26787686

  4. Multisensor on-the-go mapping of readily dispersible clay, particle size and soil organic matter

    NASA Astrophysics Data System (ADS)

    Debaene, Guillaume; Niedźwiecki, Jacek; Papierowska, Ewa

    2016-04-01

    Particle size fractions affect strongly the physical and chemical properties of soil. Readily dispersible clay (RDC) is the part of the clay fraction in soils that is easily or potentially dispersible in water when small amounts of mechanical energy are applied to soil. The amount of RDC in the soil is of significant importance for agriculture and environment because clay dispersion is a cause of poor soil stability in water which in turn contributes to soil erodibility, mud flows, and cementation. To obtain a detailed map of soil texture, many samples are needed. Moreover, RDC determination is time consuming. The use of a mobile visible and near-infrared (VIS-NIR) platform is proposed here to map those soil properties and obtain the first detailed map of RDC at field level. Soil properties prediction was based on calibration model developed with 10 representative samples selected by a fuzzy logic algorithm. Calibration samples were analysed for soil texture (clay, silt and sand), RDC and soil organic carbon (SOC) using conventional wet chemistry analysis. Moreover, the Veris mobile sensor platform is also collecting electrical conductivity (EC) data (deep and shallow), and soil temperature. These auxiliary data were combined with VIS-NIR measurement (data fusion) to improve prediction results. EC maps were also produced to help understanding RDC data. The resulting maps were visually compared with an orthophotography of the field taken at the beginning of the plant growing season. Models were developed with partial least square regression (PLSR) and support vector machine regression (SVMR). There were no significant differences between calibration using PLSR or SVMR. Nevertheless, the best models were obtained with PLSR and standard normal variate (SNV) pretreatment and the fusion with deep EC data (e.g. for RDC and clay content: RMSECV = 0,35% and R2 = 0,71; RMSECV = 0,32% and R2 = 0,73 respectively). The best models were used to predict soil properties from the

  5. Hyperviscosity and hypofunction of the seminal vesicles.

    PubMed

    Gonzales, G F; Kortebani, G; Mazzolli, A B

    1993-01-01

    The study was designed to determine whether hyperviscosity of the semen sample is related to dysfunction of the male accessory glands. It was carried out on men who consecutively attended an infertility clinic between June 1989 and June 1991, and the men were grouped according to viscosity of semen samples (normal viscosity or higher viscosity). Semen samples from 229 infertility patients were studied. From these, 155 had normal viscosity and 74 showed hyperviscosity. The effect of hyperviscosity of semen samples on seminal quality and the function of the prostate was evaluated by acid phosphatase measurement, and the seminal vesicles by measurement of corrected fructose. Sperm motility (grades II-III), sperm vitality, and corrected fructose were significantly reduced in samples with high viscosity (p < .05). A high prevalence of hyperviscosity in semen samples was associated with only hypofunction of the seminal vesicles. In fact, 36.5% of subjects with hyperviscosity showed reduced levels of corrected fructose. The same association with hyperviscosity was not observed when only hypofunction of the prostate was present, or when hypofunction of both prostate and seminal vesicles was present (P:NS). Further analysis showed that high viscosity is observed mainly when corrected seminal fructose levels were below 1.5 mg/mL x 10(6) spz/mL. It would appear that hyperviscosity affects sperm motility and is associated with hypofunction of the seminal vesicles. PMID:8420506

  6. Preparation of vesicles entrapped lycopene extract.

    PubMed

    Luxsuwong, Dhitaree; Indranupakorn, Ratana; Wongtrakul, Paveena

    2014-01-01

    Lycopene, a lipophilic carotenoid, has been known as an effective antioxidant in supporting the cutaneous defensive system. However, it is unstable when exposed to light and water. In this study, lycopene was isolated from tomatoes and a vesicular delivery system was developed to entrap and stabilize the lycopene in the aqueous system. A simple process, maceration in ethyl acetate, was used to extract lycopene from the tomatoes. The extract was then chromatographed on the Sephadex LH20 column using acetone as a solvent system to yield 995 μg of lycopene per gram of dried tomato weight. The vesicular delivery system was prepared from a combination of ascorbic acid-6-palmitate (AP), cholesterol and dicetyl phosphate using a thin film hydration method. The formulation was composed of AP, cholesterol and dicetyl phosphate at a 44:44:12 molar ratio and with 2.12 μmol/ml of the isolated lycopene. Both blank vesicles and lycopene loaded vesicles were kept for a period of 3 months at 4±2°C and at the room temperature (28±2°C) to evaluate the effect of the encapsulation on the characteristic of the vesicles and on the antioxidant activity of the encapsulated lycopene. The result implied that lycopene could be stabilized in the vesicles and its scavenging activity against DPPH free radicals was superior to that of the free lycopene solution. PMID:24829133

  7. Compartmentalization and Transport in Synthetic Vesicles.

    PubMed

    Schmitt, Christine; Lippert, Anna H; Bonakdar, Navid; Sandoghdar, Vahid; Voll, Lars M

    2016-01-01

    Nanoscale vesicles have become a popular tool in life sciences. Besides liposomes that are generated from phospholipids of natural origin, polymersomes fabricated of synthetic block copolymers enjoy increasing popularity, as they represent more versatile membrane building blocks that can be selected based on their specific physicochemical properties, such as permeability, stability, or chemical reactivity. In this review, we focus on the application of simple and nested artificial vesicles in synthetic biology. First, we provide an introduction into the utilization of multicompartmented vesosomes as compartmentalized nanoscale bioreactors. In the bottom-up development of protocells from vesicular nanoreactors, the specific exchange of pathway intermediates across compartment boundaries represents a bottleneck for future studies. To date, most compartmented bioreactors rely on unspecific exchange of substrates and products. This is either based on changes in permeability of the coblock polymer shell by physicochemical triggers or by the incorporation of unspecific porin proteins into the vesicle membrane. Since the incorporation of membrane transport proteins into simple and nested artificial vesicles offers the potential for specific exchange of substances between subcompartments, it opens new vistas in the design of protocells. Therefore, we devote the main part of the review to summarize the technical advances in the use of phospholipids and block copolymers for the reconstitution of membrane proteins. PMID:26973834

  8. Compartmentalization and Transport in Synthetic Vesicles

    PubMed Central

    Schmitt, Christine; Lippert, Anna H.; Bonakdar, Navid; Sandoghdar, Vahid; Voll, Lars M.

    2016-01-01

    Nanoscale vesicles have become a popular tool in life sciences. Besides liposomes that are generated from phospholipids of natural origin, polymersomes fabricated of synthetic block copolymers enjoy increasing popularity, as they represent more versatile membrane building blocks that can be selected based on their specific physicochemical properties, such as permeability, stability, or chemical reactivity. In this review, we focus on the application of simple and nested artificial vesicles in synthetic biology. First, we provide an introduction into the utilization of multicompartmented vesosomes as compartmentalized nanoscale bioreactors. In the bottom-up development of protocells from vesicular nanoreactors, the specific exchange of pathway intermediates across compartment boundaries represents a bottleneck for future studies. To date, most compartmented bioreactors rely on unspecific exchange of substrates and products. This is either based on changes in permeability of the coblock polymer shell by physicochemical triggers or by the incorporation of unspecific porin proteins into the vesicle membrane. Since the incorporation of membrane transport proteins into simple and nested artificial vesicles offers the potential for specific exchange of substances between subcompartments, it opens new vistas in the design of protocells. Therefore, we devote the main part of the review to summarize the technical advances in the use of phospholipids and block copolymers for the reconstitution of membrane proteins. PMID:26973834

  9. Interaction of basic compounds with coated vesicles.

    PubMed

    Di Cerbo, A; Nandi, P K; Edelhoch, H

    1984-12-01

    The effect of poly- and dibasic amines, including chloroquine and quinacrine, on the dissociation of coated vesicles at pH 7.4 in 0.01 M 2-(N-morpholino)ethanesulfonic acid has been evaluated by light scattering and sucrose gradient centrifugation. The degree of inhibition of dissociation by the polybases is proportional to the number of amine groups in each compound. However, very little difference in effectiveness was found in a series of dibasic compounds, NH2(CH2)2-5NH2. Chloroquine and quinacrine contain dibasic aliphatic chains as well as aromatic ring systems. These two antimalarials are more effective in inhibiting dissociation of coated vesicles than the dibasic aliphatic amines. The ring systems therefore appear to be contributing, independently, to the free energy of stabilization of the coat structure of coated vesicles. It is suggested that the interaction of poly- or dibasic compounds with clathrin or coated vesicles could influence the turnover of ligands in receptor-mediated endocytosis. PMID:6151855

  10. Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials

    PubMed Central

    Oglęcka, Kamila; Rangamani, Padmini; Liedberg, Bo; Kraut, Rachel S; Parikh, Atul N

    2014-01-01

    Giant lipid vesicles are closed compartments consisting of semi-permeable shells, which isolate femto- to pico-liter quantities of aqueous core from the bulk. Although water permeates readily across vesicular walls, passive permeation of solutes is hindered. In this study, we show that, when subject to a hypotonic bath, giant vesicles consisting of phase separating lipid mixtures undergo osmotic relaxation exhibiting damped oscillations in phase behavior, which is synchronized with swell–burst lytic cycles: in the swelled state, osmotic pressure and elevated membrane tension due to the influx of water promote domain formation. During bursting, solute leakage through transient pores relaxes the pressure and tension, replacing the domain texture by a uniform one. This isothermal phase transition—resulting from a well-coordinated sequence of mechanochemical events—suggests a complex emergent behavior allowing synthetic vesicles produced from simple components, namely, water, osmolytes, and lipids to sense and regulate their micro-environment. DOI: http://dx.doi.org/10.7554/eLife.03695.001 PMID:25318069

  11. β-Amyloid and α-Synuclein Cooperate To Block SNARE-Dependent Vesicle Fusion

    PubMed Central

    Choi, Bong-Kyu; Kim, Jae-Yeol; Cha, Moon-Yong; Mook-Jung, Inhee; Shin, Yeon-Kyun; Lee, Nam Ki

    2015-01-01

    Alzheimer’s disease (AD) and Parkinson’s disease (PD) are caused by β-amyloid (Aβ) and α-synuclein (αS), respectively. Ample evidence suggests that these two pathogenic proteins are closely linked and have a synergistic effect on eliciting neurodegenerative disorders. However, the pathophysiological consequences of Aβ and αS coexistence are still elusive. Here, we show that large-sized αS oligomers, which are normally difficult to form, are readily generated by Aβ42-seeding and that these oligomers efficiently hamper neuronal SNARE-mediated vesicle fusion. The direct binding of the Aβ-seeded αS oligomers to the N-terminal domain of synaptobrevin-2, a vesicular SNARE protein, is responsible for the inhibition of fusion. In contrast, large-sized Aβ42 oligomers (or aggregates) or the products of αS incubated without Aβ42 have no effect on vesicle fusion. These results are confirmed by examining PC12 cell exocytosis. Our results suggest that Aβ and αS cooperate to escalate the production of toxic oligomers, whose main toxicity is the inhibition of vesicle fusion and consequently prompts synaptic dysfunction. PMID:25714795

  12. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting

    PubMed Central

    Wiklander, Oscar P. B.; Nordin, Joel Z.; O’Loughlin, Aisling; Gustafsson, Ylva; Corso, Giulia; Mäger, Imre; Vader, Pieter; Lee, Yi; Sork, Helena; Seow, Yiqi; Heldring, Nina; Alvarez-Erviti, Lydia; Smith, CI Edvard; Le Blanc, Katarina; Macchiarini, Paolo; Jungebluth, Philipp; Wood, Matthew J. A.; Andaloussi, Samir EL

    2015-01-01

    Extracellular vesicles (EVs) have emerged as important mediators of intercellular communication in a diverse range of biological processes. For future therapeutic applications and for EV biology research in general, understanding the in vivo fate of EVs is of utmost importance. Here we studied biodistribution of EVs in mice after systemic delivery. EVs were isolated from 3 different mouse cell sources, including dendritic cells (DCs) derived from bone marrow, and labelled with a near-infrared lipophilic dye. Xenotransplantation of EVs was further carried out for cross-species comparison. The reliability of the labelling technique was confirmed by sucrose gradient fractionation, organ perfusion and further supported by immunohistochemical staining using CD63-EGFP probed vesicles. While vesicles accumulated mainly in liver, spleen, gastrointestinal tract and lungs, differences related to EV cell origin were detected. EVs accumulated in the tumour tissue of tumour-bearing mice and, after introduction of the rabies virus glycoprotein-targeting moiety, they were found more readily in acetylcholine-receptor-rich organs. In addition, the route of administration and the dose of injected EVs influenced the biodistribution pattern. This is the first extensive biodistribution investigation of EVs comparing the impact of several different variables, the results of which have implications for the design and feasibility of therapeutic studies using EVs. PMID:25899407

  13. Flat and sigmoidally curved contact zones in vesicle-vesicle adhesion.

    PubMed

    Ziherl, P; Svetina, S

    2007-01-16

    Using the membrane-bending elasticity theory and a simple effective model of adhesion, we study the morphology of lipid vesicle doublets. In the weak adhesion regime, we find flat-contact axisymmetric doublets, whereas at large adhesion strengths, the vesicle aggregates are nonaxisymmetric and characterized by a sigmoidally curved, S-shaped contact zone with a single invagination and a complementary evagination on each vesicle. The sigmoid-contact doublets agree very well with the experimentally observed shapes of erythrocyte aggregates. Our results show that in identical vesicles with large to moderate surface-to-volume ratio, the sigmoid-contact shape is the only bound morphology. We also discuss the role of sigmoid contacts in the formation of multicellular aggregates such as erythrocyte rouleaux. PMID:17215358

  14. The unconventional secretion of stress-inducible protein 1 by a heterogeneous population of extracellular vesicles.

    PubMed

    Hajj, Glaucia N M; Arantes, Camila P; Dias, Marcos Vinicios Salles; Roffé, Martín; Costa-Silva, Bruno; Lopes, Marilene H; Porto-Carreiro, Isabel; Rabachini, Tatiana; Lima, Flávia R; Beraldo, Flávio H; Prado, Marco A M; Prado, Marco M A; Linden, Rafael; Martins, Vilma R

    2013-09-01

    The co-chaperone stress-inducible protein 1 (STI1) is released by astrocytes, and has important neurotrophic properties upon binding to prion protein (PrP(C)). However, STI1 lacks a signal peptide and pharmacological approaches pointed that it does not follow a classical secretion mechanism. Ultracentrifugation, size exclusion chromatography, electron microscopy, vesicle labeling, and particle tracking analysis were used to identify three major types of extracellular vesicles (EVs) released from astrocytes with sizes ranging from 20-50, 100-200, and 300-400 nm. These EVs carry STI1 and present many exosomal markers, even though only a subpopulation had the typical exosomal morphology. The only protein, from those evaluated here, present exclusively in vesicles that have exosomal morphology was PrP(C). STI1 partially co-localized with Rab5 and Rab7 in endosomal compartments, and a dominant-negative for vacuolar protein sorting 4A (VPS4A), required for formation of multivesicular bodies (MVBs), impaired EV and STI1 release. Flow cytometry and PK digestion demonstrated that STI1 localized to the outer leaflet of EVs, and its association with EVs greatly increased STI1 activity upon PrP(C)-dependent neuronal signaling. These results indicate that astrocytes secrete a diverse population of EVs derived from MVBs that contain STI1 and suggest that the interaction between EVs and neuronal surface components enhances STI1-PrP(C) signaling. PMID:23543276

  15. Superpriming of synaptic vesicles as a common basis for intersynapse variability and modulation of synaptic strength

    PubMed Central

    Taschenberger, Holger; Woehler, Andrew; Neher, Erwin

    2016-01-01

    Glutamatergic synapses show large variations in strength and short-term plasticity (STP). We show here that synapses displaying an increased strength either after posttetanic potentiation (PTP) or through activation of the phospholipase-C–diacylglycerol pathway share characteristic properties with intrinsically strong synapses, such as (i) pronounced short-term depression (STD) during high-frequency stimulation; (ii) a conversion of that STD into a sequence of facilitation followed by STD after a few conditioning stimuli at low frequency; (iii) an equalizing effect of such conditioning stimulation, which reduces differences among synapses and abolishes potentiation; and (iv) a requirement of long periods of rest for reconstitution of the original STP pattern. These phenomena are quantitatively described by assuming that a small fraction of “superprimed” synaptic vesicles are in a state of elevated release probability (p ∼ 0.5). This fraction is variable in size among synapses (typically about 30%), but increases after application of phorbol ester or during PTP. The majority of vesicles, released during repetitive stimulation, have low release probability (p ∼ 0.1), are relatively uniform in number across synapses, and are rapidly recruited. In contrast, superprimed vesicles need several seconds to be regenerated. They mediate enhanced synaptic strength at the onset of burst-like activity, the impact of which is subject to modulation by slow modulatory transmitter systems. PMID:27432975

  16. SUMOylation of synapsin Ia maintains synaptic vesicle availability and is reduced in an autism mutation

    PubMed Central

    Tang, Leo T. -H.; Craig, Tim J.; Henley, Jeremy M.

    2015-01-01

    Synapsins are key components of the presynaptic neurotransmitter release machinery. Their main role is to cluster synaptic vesicles (SVs) to each other and anchor them to the actin cytoskeleton to establish the reserve vesicle pool, and then release them in response to appropriate membrane depolarization. Here we demonstrate that SUMOylation of synapsin Ia (SynIa) at K687 is necessary for SynIa function. Replacement of endogenous SynIa with a non-SUMOylatable mutant decreases the size of the releasable vesicle pool and impairs stimulated SV exocytosis. SUMOylation enhances SynIa association with SVs to promote the efficient reclustering of SynIa following neuronal stimulation and maintain its presynaptic localization. The A548T mutation in SynIa is strongly associated with autism and epilepsy and we show that it leads to defective SynIa SUMOylation. These results identify SUMOylation as a fundamental regulator of SynIa function and reveal a novel link between reduced SUMOylation of SynIa and neurological disorders. PMID:26173895

  17. Vesicular Monoamine and Glutamate Transporters Select Distinct Synaptic Vesicle Recycling Pathways

    PubMed Central

    Onoa, Bibiana; Li, Haiyan; Gagnon-Bartsch, Johann A.; Elias, Laura A. B.; Edwards, Robert H.

    2011-01-01

    Previous work has characterized the properties of neurotransmitter release at excitatory and inhibitory synapses, but we know remarkably little about the properties of monoamine release because these neuromodulators do not generally produce a fast ionotropic response. Since dopamine and serotonin neurons can also release glutamate in vitro and in vivo, we have used the vesicular monoamine transporter VMAT2 and the vesicular glutamate transporter VGLUT1 to compare the localization and recycling of synaptic vesicles that store, respectively, monoamines and glutamate. First, VMAT2 segregates partially from VGLUT1 in the boutons of midbrain dopamine neurons, indicating the potential for distinct release sites. Second, endocytosis after stimulation is slower for VMAT2 than VGLUT1. During the stimulus, however, the endocytosis of VMAT2 (but not VGLUT1) accelerates dramatically in midbrain dopamine but not hippocampal neurons, indicating a novel, cell-specific mechanism to sustain high rates of release. On the other hand, we find that in both midbrain dopamine and hippocampal neurons, a substantially smaller proportion of VMAT2 than VGLUT1 is available for evoked release, and VMAT2 shows considerably more dispersion along the axon after exocytosis than VGLUT1. Even when expressed in the same neuron, the two vesicular transporters thus target to distinct populations of synaptic vesicles, presumably due to their selection of distinct recycling pathways. PMID:20534840

  18. Is the lower atmosphere a readily accessible reservoir of culturable, antimicrobial compound-producing Actinomycetales?

    PubMed

    Weber, Carolyn F; Werth, Jason T

    2015-01-01

    Recent metagenomic studies have revealed that microbial diversity in the atmosphere rivals that of surface environments. This indicates that the atmosphere may be worth bioprospecting in for novel microorganisms, especially those selected for by harsh atmospheric conditions. This is interesting in light of the antibiotic resistance crisis and renewed interests in bioprospecting for members of the Actinomycetales, which harbor novel secondary metabolite-producing pathways and produce spores that make them well suited for atmospheric travel. The latter leads to the hypothesis that the atmosphere may be a promising environment in which to search for novel Actinomycetales. Although ubiquitous in soils, where bioprospecting efforts for Actinomycetales have been and are largely still focused, we present novel data indicating that culturable members of this taxonomic order are 3-5.6 times more abundant in air samples collected at 1.5, 4.5, 7.5, and 18 m above the ground, than in the underlying soil. These results support the hypothesis that mining the vast and readily accessible lower atmosphere for novel Actinomycetales in the search for undescribed secondary metabolites could prove fruitful. PMID:26300868

  19. Incisional Hernia in Women: Predisposing Factors and Management Where Mesh is not Readily Available

    PubMed Central

    Agbakwuru, EA; Olabanji, JK; Alatise, OI; Okwerekwu, RO; Esimai, OA

    2009-01-01

    Background / Aim: Incisional hernia is still relatively common in our practice. The aim of the study was to identify risk factors associated with incisional hernia in our region. The setting is the Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Nigeria during a period when prosthetic mesh was not readily available. Patients and Methods: All the women who presented with incisional hernia between 1996 and 2005 were prospectively studied using a standard form to obtain information on pre-hernia (index) operations and possible predisposing factors. They all had open surgical repair and were followed up for 18–60 months. Results: Forty-four women were treated during study period. The index surgeries leading to the hernias were emergency caesarian section 26/44 (59.1%), emergency exploratory laparotomy 6/44 (13.6%), and elective surgeries 12/44 (27.3%). Major associated risk factors were the use of wrong suture materials for fascia repair, midline incisions, wound sepsis, and overweight. Conclusion: For elective surgeries, reduction of weight should be encouraged when appropriate, and transverse incisions are preferred. Absorbable sutures, especially chromic catgut, should be avoided in fascia closure. Antibiotics should be used for complicated obstetric cases. PMID:21483511

  20. [Dentistry and healthcare legislation 10. The law governing complaints: readily accessible filing procedures].

    PubMed

    van der Ven, J M; Eijkman, M A J; Brands, W G

    2014-03-01

    The law promises patients a readily accessible means of filing complaints. Healthcare providers are therefore required to adopt regulations governing complaints which satisfy a number of conditions. Most dentists choose to adopt the regulations which have been established by their professional organization. In addition to handling complaints, there is also a provision for mediation, which is often used by patients. Mediation appears, then, to be a successful provision. Many complaints have their origin in insufficient knowledge of healthcare legislation and patients' rights legislation. This demonstrates that more attention should be given to these subjects in educational programmes and programmes in continuing education. The present law governing complaints is expected to be replaced this year by a new, more comprehensive law in which considerable attention will be devoted to the quality of care as well as to complaints. It seems likely, however, that the new law governing complaints will damage the effective manner in which patients' complaints are dealt with in dentistry today. PMID:24684133

  1. Pseudolymphomatous cutaneous angiosarcoma: a rare variant of cutaneous angiosarcoma readily mistaken for cutaneous lymphoma.

    PubMed

    Requena, Luis; Santonja, Carlos; Stutz, Nathalie; Kaddu, Steven; Weenig, Roger H; Kutzner, Heinz; Menzel, Thomas; Cerroni, Lorenzo

    2007-08-01

    Cutaneous angiosarcoma is probably the most malignant neoplasm involving the skin. Three clinical variants of cutaneous angiosarcoma are recognized, including angiosarcoma of the scalp and face of elderly patients, angiosarcoma associated with chronic lymphedema, and postirradiation angiosarcoma. Histopathologically, these three variants of angiosarcoma show similar features, which consist of poorly circumscribed, irregularly dilated, and anastomosing vascular channels lined by prominent endothelial cells that dissect through the dermis. Focally, neoplastic endothelial cells show large, hyperchromatic, and pleomorphic nuclei, protruding within vascular lumina and creating small papillations. Usually, inflammatory infiltrate is sparse and consists of a patchy, perivascular lymphoid infiltrate around the neoformed vessels. In rare instances, cutaneous angiosarcomas may exhibit prominent inflammatory infiltrate, and the neoplasm may be mistaken for an inflammatory process, both from clinical and histopathologic points of view. We describe four examples of cutaneous angiosarcomas with dense lymphocytic infiltrates involving the neoplasm. Immunohistochemically, lymphocytes expressed immunoreactivity for CD3, CD5, and CD45 markers, whereas the germinal centers were positive for CD20, CD79a, and Bcl-6. The neoplastic endothelial cells expressed immunoreactivity for the CD31, CD34, podoplanin, Prox-1, Lyve-1, and D2-40. We discuss the possible relationship between neoplastic endothelial lymphatic cells and reactive lymphocytes. Cutaneous angiosarcoma with prominent lymphocytic infiltrate may be readily mistaken for cutaneous follicle center cell lymphoma or cutaneous pseudolymphoma. PMID:17667166

  2. Simple, readily controllable palladium nanoparticle formation on surface-assembled viral nanotemplates.

    PubMed

    Manocchi, Amy K; Horelik, Nicholas E; Lee, Byeongdu; Yi, Hyunmin

    2010-03-01

    Transition-metal nanoparticles possess unique size-dependent optical, electronic, and catalytic properties on the nanoscale, which differ significantly from their bulk properties. In particular, palladium (Pd) nanoparticles have properties applicable to a wide range of applications in catalysis and electronics. However, predictable and controllable nanoparticle synthesis remains challenging because of harsh reaction conditions, artifacts from capping agents, and unpredictable growth. Biological supramolecules offer attractive templates for nanoparticle synthesis because of their precise structure and size. In this article, we demonstrate simple, controllable Pd nanoparticle synthesis on surface-assembled viral nanotemplates. Specifically, we exploit precisely spaced thiol functionalities of genetically modified tobacco mosaic virus (TMV1cys) for facile surface assembly and readily controllable Pd nanoparticle synthesis via simple electroless deposition under mild aqueous conditions. Atomic force microscopy (AFM) studies clearly show tunable surface assembly and Pd nanoparticle formation preferentially on the TMV1cys templates. Grazing incidence small-angle X-ray scattering (GISAXS) further provided an accurate and statistically meaningful route by which to investigate the broad size ranges and uniformity of the Pd nanoparticles formed on TMV templates by simply tuning the reducer concentration. We believe that our viral-templated bottom-up approach to tunable Pd nanoparticle formation combined with the first in-depth characterization via GISAXS represents a major advancement toward exploiting viral templates for facile nanomaterials/device fabrication. We envision that our strategy can be extended to a wide range of applications, including uniform nanostructure and nanocatalyst synthesis. PMID:19919039

  3. Is the lower atmosphere a readily accessible reservoir of culturable, antimicrobial compound-producing Actinomycetales?

    PubMed Central

    Weber, Carolyn F.; Werth, Jason T.

    2015-01-01

    Recent metagenomic studies have revealed that microbial diversity in the atmosphere rivals that of surface environments. This indicates that the atmosphere may be worth bioprospecting in for novel microorganisms, especially those selected for by harsh atmospheric conditions. This is interesting in light of the antibiotic resistance crisis and renewed interests in bioprospecting for members of the Actinomycetales, which harbor novel secondary metabolite-producing pathways and produce spores that make them well suited for atmospheric travel. The latter leads to the hypothesis that the atmosphere may be a promising environment in which to search for novel Actinomycetales. Although ubiquitous in soils, where bioprospecting efforts for Actinomycetales have been and are largely still focused, we present novel data indicating that culturable members of this taxonomic order are 3–5.6 times more abundant in air samples collected at 1.5, 4.5, 7.5, and 18 m above the ground, than in the underlying soil. These results support the hypothesis that mining the vast and readily accessible lower atmosphere for novel Actinomycetales in the search for undescribed secondary metabolites could prove fruitful. PMID:26300868

  4. Advances Towards Readily Deployable Antineutrino Detectors for Reactor Monitoring and Safeguards

    SciTech Connect

    Bowden, N S; Bernstein, A; Dazeley, S; Lund, J; Reyna, D; Sadler, L; Svoboda, R

    2008-06-05

    Nuclear reactors have served as the neutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Our LLNL/SNL collaboration has demonstrated that such antineutrino based monitoring is feasible using a relatively small cubic meter scale detector at tens of meters standoff from a commercial PWR. With little or no burden on the plant operator we have been able to remotely and automatically monitor the reactor operational status (on/off), power level, and fuel burnup. Recently, we have investigated several technology paths that could allow such devices to be more readily deployed in the field. In particular, we have developed and fielded two new detectors; a low cost, non- flammable water based design; and a robust solid-state design based upon plastic scintillator. Here we will describe the tradeoffs inherent in these designs, and present results from their field deployments.

  5. Producing Long-term Series of Whole-Stream Metabolism Using Readily Available Data

    NASA Astrophysics Data System (ADS)

    Pai, H.; Villamizar, S. R.; Harmon, T. C.

    2015-12-01

    Continuous water quality and river discharge data that are readily available through government websites may be used to produce valuable information about key processes within a river ecosystem. In this work, we describe in detail the steps for acquisition and processing of river flow, dissolved oxygen, temperature, and specific conductance data that, combined with atmospheric data and physical properties of the river reach of interest, allow for the production of a long-term series of whole stream metabolism estimates, an important piece of information for the purposes of understanding the structure and function of river ecosystems. The restoration reach of the San Joaquin River in California (USA) has been intensively instrumented since 2010 and serves as an ideal case for testing this tool. The set of scripts, written in R code, can be used immediately for any other river in California for which the key parameters (river flow, dissolved oxygen, temperature, and specific conductivity) are available, and can be modified by the new users to fit their particular site conditions.

  6. In vitro and in vivo evaluation of stimuli-responsive vesicle from PEGylated hyperbranched PAMAM-doxorubicin conjugate for gastric cancer therapy.

    PubMed

    Nie, Jinshan; Wang, Yang; Wang, Wei

    2016-07-25

    Gastric Cancer is one of the major leading causes of death by cancer worldwide, but the chemotherapeutics, one of the preferred approaches, bring about extensive side effects when systemically injected. In our work, doxorubicin-loaded pH and redox responsive hyperbranched poly(amidoamine)(h-PAMAM)-based vesicle was prepared to enhance anti-tumor efficacy of chemotherapeutic compounds. The doxorubicin (DOX) molecules were attached to PEGylated h-PAMAM by acid sensitive cis-aconityl linkage to form pH sensitive conjugate (PPCD), which self-assembled in THF into micelles. The resulted micelles were then crosslinked by disulfide bonds and transferred from THF into water to form vesicles, which could be disassembled into small-sized conjugates under the redox condition. The drug release profiles showed that the PPCD vesicle presented stimuli-triggered drug release in acidic and reducing environment, and lower DOX leakage under neutral condition. The in vitro cell assay reflected the rapid DOX release and significant tumor-cytotoxic effect of the PPCD vesicle. The in vivo anticancer activity and systematic toxicity studies showed that the PPCD vesicles had lower tissue toxicity with good antitumor effect. In brief, h-PAMAM-based PPCD vesicle provides a safe and effective drug delivery system for the therapy of gastric cancer. PMID:27234696

  7. Presynaptic Calcium Channel Localization and Calcium Dependent Synaptic Vesicle Exocytosis Regulated by the Fuseless Protein

    PubMed Central

    Long, A. Ashleigh; Kim, Eunju; Leung, Hung-Tat; Woodruff, Elvin; An, Lingling; Doerge, R. W.; Pak, William L.; Broadie, Kendal

    2009-01-01

    Summary A systematic forward genetic Drosophila screen for electroretinogram mutants lacking synaptic transients identified the fuseless (fusl) gene, which encodes a predicted 8-pass transmembrane protein in the presynaptic membrane. Null fusl mutants display >75% reduction in evoked synaptic transmission but, conversely, a ~3-fold increase in the frequency and amplitude of spontaneous synaptic vesicle fusion events. These neurotransmission defects are rescued by a wildtype fusl transgene targeted only to the presynaptic cell, demonstrating a strictly presynaptic requirement for Fusl function. Defects in FM dye turnover at the synapse show a severely impaired exo-endo synaptic vesicle cycling pool. Consistently, ultrastructural analyses reveal accumulated vesicles arrested in clustered and docked pools at presynaptic active zones. In the absence of Fusl, calcium-dependent neurotransmitter release is dramatically compromised and there is little enhancement of synaptic efficacy with elevated external Ca2+ concentrations. These defects are causally linked with severe loss of the Cacophony voltage-gated Ca2+ channels, which fail to localize normally at presynaptic active zone domains in the absence of Fusl. These data indicate that Fusl regulates assembly of the presynaptic active zone Ca2+ channel domains required for efficient coupling of the Ca2+ influx and synaptic vesicle exocytosis during neurotransmission. PMID:18385325

  8. Contraction and AICAR Stimulate IL-6 Vesicle Depletion From Skeletal Muscle Fibers In Vivo

    PubMed Central

    Lauritzen, Hans P.M.M.; Brandauer, Josef; Schjerling, Peter; Koh, Ho-Jin; Treebak, Jonas T.; Hirshman, Michael F.; Galbo, Henrik; Goodyear, Laurie J.

    2013-01-01

    Recent studies suggest that interleukin 6 (IL-6) is released from contracting skeletal muscles; however, the cellular origin, secretion kinetics, and signaling mechanisms regulating IL-6 secretion are unknown. To address these questions, we developed imaging methodology to study IL-6 in fixed mouse muscle fibers and in live animals in vivo. Using confocal imaging to visualize endogenous IL-6 protein in fixed muscle fibers, we found IL-6 in small vesicle structures distributed throughout the fibers under basal (resting) conditions. To determine the kinetics of IL-6 secretion, intact quadriceps muscles were transfected with enhanced green fluorescent protein (EGFP)-tagged IL-6 (IL-6-EGFP), and 5 days later anesthetized mice were imaged before and after muscle contractions in situ. Contractions decreased IL-6-EGFP–containing vesicles and protein by 62% (P < 0.05), occurring rapidly and progressively over 25 min of contraction. However, contraction-mediated IL-6-EGFP reduction was normal in muscle-specific AMP-activated protein kinase (AMPK) α2-inactive transgenic mice. In contrast, the AMPK activator AICAR decreased IL-6-EGFP vesicles, an effect that was inhibited in the transgenic mice. In conclusion, resting skeletal muscles contain IL-6–positive vesicles that are expressed throughout myofibers. Contractions stimulate the rapid reduction of IL-6 in myofibers, occurring through an AMPKα2-independent mechanism. This novel imaging methodology clearly establishes IL-6 as a contraction-stimulated myokine and can be used to characterize the secretion kinetics of other putative myokines. PMID:23761105

  9. The Uptake of Extracellular Vesicles is Affected by the Differentiation Status of Myeloid Cells.

    PubMed

    Czernek, L; Chworos, A; Duechler, M

    2015-12-01

    Intercellular communication includes the exchange of various membrane vesicles including exosomes. Exosomes are intraluminal nanovesicles generated from multivesicular bodies, a late endosomal compartment. Cancer cells release exosomes that influence their proximate and distant environment to facilitate angiogenesis, metastatic dissemination and immune escape. Cancer-derived vesicles may also trigger an anti-tumour response by transferring tumour antigens to immune cells. We wanted to investigate whether differentiation and maturation of myeloid cells changes their capacity to take up cancer-derived extracellular vesicles (EV). We compared the efficiency of vesicle uptake by monocytes, macrophages and dendritic cells. To visualize and quantify the cellular uptake, EV were labelled with two different dyes, carboxyfluoresceine diacetate succinimidyl-ester (CFSE), or DSSN+, a water soluble distyrylstilbene oligoelectrolyte which preferentially intercalates into the cell membrane. With the help of cytokines, THP-1 monocytes were differentiated into immature or mature dendritic cells, or macrophages. EV uptake was monitored by flow cytometry and immunofluorescence microscopy. The results show that macrophages and mature dendritic cells acquired stronger fluorescence transferred by EV than monocytes or immature dendritic cells indicating that the differentiation status influences the efficiency of EV uptake. PMID:26332303

  10. Most of the Dominant Members of Amphibian Skin Bacterial Communities Can Be Readily Cultured

    PubMed Central

    Becker, Matthew H.; Hughey, Myra C.; Swartwout, Meredith C.; Jensen, Roderick V.; Belden, Lisa K.

    2015-01-01

    Currently, it is estimated that only 0.001% to 15% of bacteria in any given system can be cultured by use of commonly used techniques and media, yet culturing is critically important for investigations of bacterial function. Despite this situation, few studies have attempted to link culture-dependent and culture-independent data for a single system to better understand which members of the microbial community are readily cultured. In amphibians, some cutaneous bacterial symbionts can inhibit establishment and growth of the fungal pathogen Batrachochytrium dendrobatidis, and thus there is great interest in using these symbionts as probiotics for the conservation of amphibians threatened by B. dendrobatidis. The present study examined the portion of the culture-independent bacterial community (based on Illumina amplicon sequencing of the 16S rRNA gene) that was cultured with R2A low-nutrient agar and whether the cultured bacteria represented rare or dominant members of the community in the following four amphibian species: bullfrogs (Lithobates catesbeianus), eastern newts (Notophthalmus viridescens), spring peepers (Pseudacris crucifer), and American toads (Anaxyrus americanus). To determine which percentage of the community was cultured, we clustered Illumina sequences at 97% similarity, using the culture sequences as a reference database. For each amphibian species, we cultured, on average, 0.59% to 1.12% of each individual's bacterial community. However, the average percentage of bacteria that were culturable for each amphibian species was higher, with averages ranging from 2.81% to 7.47%. Furthermore, most of the dominant operational taxonomic units (OTUs), families, and phyla were represented in our cultures. These results open up new research avenues for understanding the functional roles of these dominant bacteria in host health. PMID:26162880

  11. Invasive Bighead and Silver Carps Form Different Sized Shoals that Readily Intermix

    PubMed Central

    Ghosal, Ratna; Xiong, Peter X.; Sorensen, Peter W.

    2016-01-01

    Two species of congeneric filter-feeding microphagous carps from Asia, the bighead and the silver carp, were recently introduced to North America and have become highly invasive. These species of carp have similar food habits but the silver carp has the unique habit of jumping when disturbed. Both species have complex but poorly understood social behaviors and while both are thought to aggregate (form groups) and shoal (form tight social groups), this possibility has not yet been examined in these species. The present study examined the grouping tendencies of these species in the laboratory and the effects of fish density and species identity on it. Using nearest neighbor distance (NND) as a metric, we showed that both juvenile bighead and juvenile silver carp grouped (aggregate) strongly (P<0.05) but to different extents, and that fish density had no effect (P>0.05) on this behavior. Within aggregations, bighead carp tended to form a single large shoal while silver carp formed shoals of 2–3 individuals. Further, when tested as mixed-species groups, bighead and silver carp readily shoaled with each other but not with the common carp, which is from Eurasia and a member of another feeding guild. Due to their similar feeding strategies, we speculate that the bighead and silver carp tend to aggregate and shoal to facilitate both their foraging efforts and to avoid predation, while the differences in the size of the shoals they form may seemingly reflect their different anti-predation strategies. These complex shoaling behaviors likely influence Asian carp distribution in rivers, and thus how they might be sampled and managed. PMID:27276024

  12. Most of the Dominant Members of Amphibian Skin Bacterial Communities Can Be Readily Cultured.

    PubMed

    Walke, Jenifer B; Becker, Matthew H; Hughey, Myra C; Swartwout, Meredith C; Jensen, Roderick V; Belden, Lisa K

    2015-10-01

    Currently, it is estimated that only 0.001% to 15% of bacteria in any given system can be cultured by use of commonly used techniques and media, yet culturing is critically important for investigations of bacterial function. Despite this situation, few studies have attempted to link culture-dependent and culture-independent data for a single system to better understand which members of the microbial community are readily cultured. In amphibians, some cutaneous bacterial symbionts can inhibit establishment and growth of the fungal pathogen Batrachochytrium dendrobatidis, and thus there is great interest in using these symbionts as probiotics for the conservation of amphibians threatened by B. dendrobatidis. The present study examined the portion of the culture-independent bacterial community (based on Illumina amplicon sequencing of the 16S rRNA gene) that was cultured with R2A low-nutrient agar and whether the cultured bacteria represented rare or dominant members of the community in the following four amphibian species: bullfrogs (Lithobates catesbeianus), eastern newts (Notophthalmus viridescens), spring peepers (Pseudacris crucifer), and American toads (Anaxyrus americanus). To determine which percentage of the community was cultured, we clustered Illumina sequences at 97% similarity, using the culture sequences as a reference database. For each amphibian species, we cultured, on average, 0.59% to 1.12% of each individual's bacterial community. However, the average percentage of bacteria that were culturable for each amphibian species was higher, with averages ranging from 2.81% to 7.47%. Furthermore, most of the dominant operational taxonomic units (OTUs), families, and phyla were represented in our cultures. These results open up new research avenues for understanding the functional roles of these dominant bacteria in host health. PMID:26162880

  13. Loading of Vesicles into Soft Amphiphilic Nanotubes using Osmosis.

    PubMed

    Erne, Petra M; van Bezouwen, Laura S; Štacko, Peter; van Dijken, Derk Jan; Chen, Jiawen; Stuart, Marc C A; Boekema, Egbert J; Feringa, Ben L

    2015-12-01

    The facile assembly of higher-order nanoarchitectures from simple building blocks is demonstrated by the loading of vesicles into soft amphiphilic nanotubes using osmosis. The nanotubes are constructed from rigid interdigitated bilayers which are capped with vesicles comprising phospholipid-based flexible bilayers. When a hyperosmotic gradient is applied to these vesicle-capped nanotubes, the closed system loses water and the more flexible vesicle bilayer is pulled inwards. This leads to inclusion of vesicles inside the nanotubes without affecting the tube structure, showing controlled reorganization of the self-assembled multicomponent system upon a simple osmotic stimulus. PMID:26503858

  14. Noble gases released by vacuum crushing of EETA 79001 glass

    NASA Technical Reports Server (NTRS)

    Wiens, R. C.

    1988-01-01

    An EETA 79001 glass sample was crushed in a vacuum to observe the gases released. About 15 pct of the total gas concentrations were a mixture of a small amount of SPB-type gas with larger proportions of another air-like component. Less than 5 pct of the SPB gas was released by crushing, while 36-40 pct of the EETV (indigenous) gas was crush-released. The results are consistent with a siting of the EETV component in 10-100 micron vesicles seen in the glass. It is suggested that the SPB component is either in vesicles less than 6 microns in diameter or is primarily sited elsewhere.

  15. Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes.

    PubMed

    Ascenso, Andreia; Raposo, Sara; Batista, Cátia; Cardoso, Pedro; Mendes, Tiago; Praça, Fabíola Garcia; Bentley, Maria Vitória Lopes Badra; Simões, Sandra

    2015-01-01

    Ultradeformable vesicles (UDV) have recently become a promising tool for the development of improved and innovative dermal and transdermal therapies. The aim of this work was to study three related UDV: transfersomes, ethosomes, and transethosomes for the incorporation of actives of distinct polarities, namely, vitamin E and caffeine, and to evaluate the effect of the carrier on skin permeation and penetration. These actives were incorporated in UDV formulations further characterized for vesicles imaging by transmission electron microscopy; mean vesicle size and polydispersity index by photon correlation spectroscopy; zeta potential by laser-Doppler anemometry; deformability by pressure-driven transport; and incorporation efficiency (IE) after actives quantification by high-performance liquid chromatography. Topical delivery studies were performed in order to compare UDV formulations regarding the release, skin permeation, and penetration profiles. All UDV formulations showed size values within the expected range, except transethosomes prepared by "transfersomal method", for which size was smaller than 100 nm in contrast to that obtained for vesicles prepared by "ethosomal method". Zeta potential was negative and higher for formulations containing sodium cholate. The IE was much higher for vitamin E- than caffeine-loaded UDV as expected. For flux measurements, the following order was obtained: transethosomes (TE) > ethosomes (E) ≥ transfersomes (T). This result was consistent with the release and skin penetration profiles for Vitamin E-loaded UDV. However, the releasing results were totally the opposite for caffeine-loaded UDV, which might be explained by the solubility and thermodynamic activity of this active in each formulation instead of the UDV deformability attending to the higher non-incorporated fraction of caffeine. Anyway, a high skin penetration and permeation for all caffeine-loaded UDV were obtained. Transethosomes were more deformable than ethosomes

  16. Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes

    PubMed Central

    Ascenso, Andreia; Raposo, Sara; Batista, Cátia; Cardoso, Pedro; Mendes, Tiago; Praça, Fabíola Garcia; Bentley, Maria Vitória Lopes Badra; Simões, Sandra

    2015-01-01

    Ultradeformable vesicles (UDV) have recently become a promising tool for the development of improved and innovative dermal and transdermal therapies. The aim of this work was to study three related UDV: transfersomes, ethosomes, and transethosomes for the incorporation of actives of distinct polarities, namely, vitamin E and caffeine, and to evaluate the effect of the carrier on skin permeation and penetration. These actives were incorporated in UDV formulations further characterized for vesicles imaging by transmission electron microscopy; mean vesicle size and polydispersity index by photon correlation spectroscopy; zeta potential by laser-Doppler anemometry; deformability by pressure-driven transport; and incorporation efficiency (IE) after actives quantification by high-performance liquid chromatography. Topical delivery studies were performed in order to compare UDV formulations regarding the release, skin permeation, and penetration profiles. All UDV formulations showed size values within the expected range, except transethosomes prepared by “transfersomal method”, for which size was smaller than 100 nm in contrast to that obtained for vesicles prepared by “ethosomal method”. Zeta potential was negative and higher for formulations containing sodium cholate. The IE was much higher for vitamin E- than caffeine-loaded UDV as expected. For flux measurements, the following order was obtained: transethosomes (TE) > ethosomes (E) ≥ transfersomes (T). This result was consistent with the release and skin penetration profiles for Vitamin E-loaded UDV. Howev