Science.gov

Sample records for reading 1d barcodes

  1. A Bayesian Algorithm for Reading 1D Barcodes

    PubMed Central

    Tekin, Ender; Coughlan, James

    2010-01-01

    The 1D barcode is a ubiquitous labeling technology, with symbologies such as UPC used to label approximately 99% of all packaged goods in the US. It would be very convenient for consumers to be able to read these barcodes using portable cameras (e.g. mobile phones), but the limited quality and resolution of images taken by these cameras often make it difficult to read the barcodes accurately. We propose a Bayesian framework for reading 1D barcodes that models the shape and appearance of barcodes, allowing for geometric distortions and image noise, and exploiting the redundant information contained in the parity digit. An important feature of our framework is that it doesn’t require that every barcode edge be detected in the image. Experiments on a publicly available dataset of barcode images explore the range of images that are readable, and comparisons with two commercial readers demonstrate the superior performance of our algorithm. PMID:20428491

  2. Reading 1D Barcodes with Mobile Phones Using Deformable Templates.

    PubMed

    Gallo, Orazio; Manduchi, Roberto

    2011-09-01

    Camera cellphones have become ubiquitous, thus opening a plethora of opportunities for mobile vision applications. For instance, they can enable users to access reviews or price comparisons for a product from a picture of its barcode while still in the store. Barcode reading needs to be robust to challenging conditions such as blur, noise, low resolution, or low-quality camera lenses, all of which are extremely common. Surprisingly, even state-of-the-art barcode reading algorithms fail when some of these factors come into play. One reason resides in the early commitment strategy that virtually all existing algorithms adopt: The image is first binarized and then only the binary data are processed. We propose a new approach to barcode decoding that bypasses binarization. Our technique relies on deformable templates and exploits all of the gray-level information of each pixel. Due to our parameterization of these templates, we can efficiently perform maximum likelihood estimation independently on each digit and enforce spatial coherence in a subsequent step. We show by way of experiments on challenging UPC-A barcode images from five different databases that our approach outperforms competing algorithms. Implemented on a Nokia N95 phone, our algorithm can localize and decode a barcode on a VGA image (640 × 480, JPEG compressed) in an average time of 400-500 ms. PMID:21173448

  3. Reading 1-D Barcodes with Mobile Phones Using Deformable Templates

    PubMed Central

    Gallo, Orazio; Manduchi, Roberto

    2011-01-01

    Camera cellphones have become ubiquitous, thus opening a plethora of opportunities for mobile vision applications. For instance, they can enable users to access reviews or price comparisons for a product from a picture of its barcode while still in the store. Barcode reading needs to be robust to challenging conditions such as blur, noise, low resolution, or low quality camera lenses, all of which are extremely common. Surprisingly, even state-of-the-art barcode reading algorithms fail when some of these factors come into play. One reason resides in the early-commitment strategy that virtually all existing algorithms adopt: the image is first binarized and then only the binary data is processed. We propose a new approach to barcode decoding that bypasses binarization. Our technique relies on deformable templates and exploits all the gray level information of each pixel. Due to our parametrization of these templates, we can efficiently perform maximum likelihood estimation independently on each digit and enforce spatial coherence in a subsequent step. We show by way of experiments on challenging UPC-A barcode images from five different databases that our approach outperforms competing algorithms. Implemented on a Nokia N95 phone, our algorithm can localize and decode a barcode on a VGA image (640×480, JPEG compressed) in an average time of 400–500 ms. PMID:21173448

  4. Reading Challenging Barcodes with Cameras

    PubMed Central

    Gallo, Orazio; Manduchi, Roberto

    2010-01-01

    Current camera-based barcode readers do not work well when the image has low resolution, is out of focus, or is motion-blurred. One main reason is that virtually all existing algorithms perform some sort of binarization, either by gray scale thresholding or by finding the bar edges. We propose a new approach to barcode reading that never needs to binarize the image. Instead, we use deformable barcode digit models in a maximum likelihood setting. We show that the particular nature of these models enables efficient integration over the space of deformations. Global optimization over all digits is then performed using dynamic programming. Experiments with challenging UPC-A barcode images show substantial improvement over other state-of-the-art algorithms. PMID:20617113

  5. Robust recognition of 1D barcodes using Hough transform

    NASA Astrophysics Data System (ADS)

    Dwinell, John; Bian, Peng; Bian, Long Xiang

    2012-01-01

    In this paper we present an algorithm for the recognition of 1D barcodes using the Hough transform, which is highly robust regarding the typical degraded image. The algorithm addresses various typical image distortions, such as inhomogeneous illumination, reflections, damaged barcode or blurriness etc. Other problems arise from recognizing low quality printing (low contrast or poor ink receptivity). Traditional approaches are unable to provide a fast solution for handling such complex and mixed noise factors. A multi-level method offers a better approach to best manage competing constraints of complex noise and fast decode. At the lowest level, images are processed in gray scale. At the middle level, the image is transformed into the Hough domain. At the top level, global results, including missing information, is processed within a global context including domain heuristics as well as OCR. The three levels work closely together by passing information up and down between levels.

  6. TruSPAdes: barcode assembly of TruSeq synthetic long reads.

    PubMed

    Bankevich, Anton; Pevzner, Pavel A

    2016-03-01

    The recently introduced TruSeq synthetic long read (TSLR) technology generates long and accurate virtual reads from an assembly of barcoded pools of short reads. The TSLR method provides an attractive alternative to existing sequencing platforms that generate long but inaccurate reads. We describe the truSPAdes algorithm (http://bioinf.spbau.ru/spades) for TSLR assembly and show that it results in a dramatic improvement in the quality of metagenomics assemblies. PMID:26828418

  7. Direct Reading of Bona Fide Barcode Assays for Diagnostics with Smartphone Apps.

    PubMed

    Wong, Jessica X H; Li, Xiaochun; Liu, Frank S F; Yu, Hua-Zhong

    2015-01-01

    The desire to develop new point-of-care (POC) diagnostic tools has led to the adaptation of smartphones to tackle limitations in state-of-the-art instrumentation and centralized laboratory facilities. Today's smartphones possess the computer-like ability to image and process data using mobile apps; barcode scanners are one such type of apps. We demonstrate herein that a diagnostic assay can be performed by patterning immunoassay strips in a bona fide barcode format such that after target binding and signal enhancement, the linear barcode can be read directly with a standard smartphone app. Quantitative analysis can then be performed based on the grayscale intensities with a customized mobile app. This novel diagnostic concept has been validated for a real-world application, i.e., the detection of human chorionic gonadotropin, a pregnancy hormone. With the possibility of multiplex detection, the barcode assay protocol promises to boost POC diagnosis research by the direct adaptation of mobile devices and apps. PMID:26122608

  8. Direct Reading of Bona Fide Barcode Assays for Diagnostics with Smartphone Apps

    NASA Astrophysics Data System (ADS)

    Wong, Jessica X. H.; Li, Xiaochun; Liu, Frank S. F.; Yu, Hua-Zhong

    2015-06-01

    The desire to develop new point-of-care (POC) diagnostic tools has led to the adaptation of smartphones to tackle limitations in state-of-the-art instrumentation and centralized laboratory facilities. Today’s smartphones possess the computer-like ability to image and process data using mobile apps; barcode scanners are one such type of apps. We demonstrate herein that a diagnostic assay can be performed by patterning immunoassay strips in a bona fide barcode format such that after target binding and signal enhancement, the linear barcode can be read directly with a standard smartphone app. Quantitative analysis can then be performed based on the grayscale intensities with a customized mobile app. This novel diagnostic concept has been validated for a real-world application, i.e., the detection of human chorionic gonadotropin, a pregnancy hormone. With the possibility of multiplex detection, the barcode assay protocol promises to boost POC diagnosis research by the direct adaptation of mobile devices and apps.

  9. Direct Reading of Bona Fide Barcode Assays for Diagnostics with Smartphone Apps

    PubMed Central

    Wong, Jessica X. H.; Li, Xiaochun; Liu, Frank S. F.; Yu, Hua-Zhong

    2015-01-01

    The desire to develop new point-of-care (POC) diagnostic tools has led to the adaptation of smartphones to tackle limitations in state-of-the-art instrumentation and centralized laboratory facilities. Today’s smartphones possess the computer-like ability to image and process data using mobile apps; barcode scanners are one such type of apps. We demonstrate herein that a diagnostic assay can be performed by patterning immunoassay strips in a bona fide barcode format such that after target binding and signal enhancement, the linear barcode can be read directly with a standard smartphone app. Quantitative analysis can then be performed based on the grayscale intensities with a customized mobile app. This novel diagnostic concept has been validated for a real-world application, i.e., the detection of human chorionic gonadotropin, a pregnancy hormone. With the possibility of multiplex detection, the barcode assay protocol promises to boost POC diagnosis research by the direct adaptation of mobile devices and apps. PMID:26122608

  10. Barcode localization with region based gradient statistical analysis

    NASA Astrophysics Data System (ADS)

    Chen, Zhiyuan; Zhao, Yuming

    2015-03-01

    Barcode, as a kind of data representation method, has been adopted in a wide range of areas. Especially with the rise of the smart phone and the hand-held device equipped with high resolution camera and great computation power, barcode technique has found itself more extensive applications. In industrial field, barcode reading system is highly demanded to be robust to blur, illumination change, pitch, rotation, and scale change. This paper gives a new idea in localizing barcode under a region-based gradient statistical analysis. Making this idea as the basis, four algorithms have been developed for dealing with Linear, PDF417, Stacked 1D1D and Stacked 1D2D barcodes respectively. After being evaluated on our challenging dataset with more than 17000 images, the result shows that our methods can achieve an average localization accuracy of 82.17% with respect to 8 kinds of distortions and within an average time of 12 ms.

  11. Vision-based reading system for color-coded bar codes

    NASA Astrophysics Data System (ADS)

    Schubert, Erhard; Schroeder, Axel

    1996-02-01

    Barcode systems are used to mark commodities, articles and products with price and article numbers. The advantage of the barcode systems is the safe and rapid availability of the information about the product. The size of the barcode depends on the used barcode system and the resolution of the barcode scanner. Nevertheless, there is a strong correlation between the information content and the length of the barcode. To increase the information content, new 2D-barcode systems like CodaBlock or PDF-417 are introduced. In this paper we present a different way to increase the information content of a barcode and we would like to introduce the color coded barcode. The new color coded barcode is created by offset printing of the three colored barcodes, each barcode with different information. Therefore, three times more information content can be accommodated in the area of a black printed barcode. This kind of color coding is usable in case of the standard 1D- and 2D-barcodes. We developed two reading devices for the color coded barcodes. First, there is a vision based system, consisting of a standard color camera and a PC-based color frame grabber. Omnidirectional barcode decoding is possible with this reading device. Second, a bi-directional handscanner was developed. Both systems use a color separation process to separate the color image of the barcodes into three independent grayscale images. In the case of the handscanner the image consists of one line only. After the color separation the three grayscale barcodes can be decoded with standard image processing methods. In principle, the color coded barcode can be used everywhere instead of the standard barcode. Typical applications with the color coded barcodes are found in the medicine technique, stock running and identification of electronic modules.

  12. Barcode V1.0

    Energy Science and Technology Software Center (ESTSC)

    2003-03-03

    This software produces barcode images for printing and reads barcodes from digital images according to the mathematical and algorithmic description from a Sandia patent application titled "A Self-Registering Sread-Spectrum Barcode". A novel spread spectrum barcode methodology is disclosed that allows a barcode to be read in its entirety even when a significant fraction or majority of the barcode is obscured. The barcode methodology makes use of registration or clocking information that is distributed along withmore » the encoded user data across the barcode image. This registration information allows for the barcode image to be corrected for imaging distortion such as zoom, rotation, tilt, curvature and perspective.« less

  13. Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading

    NASA Astrophysics Data System (ADS)

    Goda, Keisuke; Tsia, Kevin K.; Jalali, Bahram

    2008-09-01

    Dispersive Fourier transformation is a powerful technique in which the spectrum of an optical pulse is mapped into a time-domain waveform using chromatic dispersion. It replaces a diffraction grating and detector array with a dispersive fiber and single photodetector. This simplifies the system and, more importantly, enables fast real-time measurements. Here we describe a novel ultrafast barcode reader and displacement sensor that employs internally amplified dispersive Fourier transformation. This technique amplifies and simultaneously maps the spectrally encoded barcode into a temporal waveform. It achieves a record acquisition speed of 25MHz—four orders of magnitude faster than the current state of the art.

  14. Self-registering spread-spectrum barcode method

    DOEpatents

    Cummings, Eric B.; Even Jr., William R.

    2004-11-09

    A novel spread spectrum barcode methodology is disclosed that allows a barcode to be read in its entirety even when a significant fraction or majority of the barcode is obscured. The barcode methodology makes use of registration or clocking information that is distributed along with the encoded user data across the barcode image. This registration information allows for the barcode image to be corrected for imaging distortion such as zoom, rotation, tilt, curvature, and perspective.

  15. Automation and workflow considerations for embedding Digimarc Barcodes at scale

    NASA Astrophysics Data System (ADS)

    Rodriguez, Tony; Haaga, Don; Calhoon, Sean

    2015-03-01

    The Digimarc® Barcode is a digital watermark applied to packages and variable data labels that carries GS1 standard GTIN-14 data traditionally carried by a 1-D barcode. The Digimarc Barcode can be read with smartphones and imaging-based barcode readers commonly used in grocery and retail environments. Using smartphones, consumers can engage with products and retailers can materially increase the speed of check-out, increasing store margins and providing a better experience for shoppers. Internal testing has shown an average of 53% increase in scanning throughput, enabling 100's of millions of dollars in cost savings [1] for retailers when deployed at scale. To get to scale, the process of embedding a digital watermark must be automated and integrated within existing workflows. Creating the tools and processes to do so represents a new challenge for the watermarking community. This paper presents a description and an analysis of the workflow implemented by Digimarc to deploy the Digimarc Barcode at scale. An overview of the tools created and lessons learned during the introduction of technology to the market are provided.

  16. A video processing method for convenient mobile reading of printed barcodes with camera phones

    NASA Astrophysics Data System (ADS)

    Bäckström, Christer; Södergård, Caj; Udd, Sture

    2006-01-01

    Efficient communication requires an appropriate choice and combination of media. The print media has succeeded to attract audiences also in our electronic age because of its high usability. However, the limitations of print are self evident. By finding ways of combining printed and electronic information into so called hybrid media, the strengths of both media can be obtained. In hybrid media, paper functions as an interface to the web, integrating printed products into the connected digital world. This is a "reinvention" of printed matter making it into a more communicative technology. Hybrid media means that printed products can be updated in real time. Multimedia clips, personalization and e-shopping can be added as a part of the interactive medium. The concept of enhancing print with interactive features has been around for years. However, the technology has been so far too restricting - people don't want to be tied in front of their PC's reading newspapers. Our solution is communicative and totally mobile. A code on paper or electronic media constitutes the link to mobility.

  17. Genetic barcodes

    DOEpatents

    Weier, Heinz -Ulrich G

    2015-08-04

    Herein are described multicolor FISH probe sets termed "genetic barcodes" targeting several cancer or disease-related loci to assess gene rearrangements and copy number changes in tumor cells. Two, three or more different fluorophores are used to detect the genetic barcode sections thus permitting unique labeling and multilocus analysis in individual cell nuclei. Gene specific barcodes can be generated and combined to provide both numerical and structural genetic information for these and other pertinent disease associated genes.

  18. Barcode uses and abuses

    SciTech Connect

    KEENEN,MARTHA JANE; NUSBAUM,ANNA W.

    2000-05-18

    Barcodes are something that everybody sees every day; so common as to be taken for granted and normally unnoticed. Readable, no one reads them. They are used to allow machines to identify a wide variety of non-electronic, real life objects. Barcode is one of the earliest types of what is now called ``Automatic Identification and Data Capture'' (AIDC), meaning ``data was transmitted into whatever system by something other than typing or hand-writing.'' There are 18 technologies, broken down into six categories--biometrics, electromagnetic, magnetic, optical, Smart Cards, Touch--included in the AIDC concept. Many are used jointly with or as adjuncts to a basic barcode system of some type. All are based on assignment of a unique identifier to the object, usually a number. The uniqueness presumption makes barcode systems very applicable and appropriate to the nuclear information management venue as they inherently comply with the Nuclear Quality Assurance (NQA-1) requirements. Barcode systems belong to the optical category of AIDC. It is very old in usage as these technologies go, having first been patented in 1949. It astonished me, in researching this paper, to find that there are over 250 types of barcode (symbologies), each with its own specialized attributes, though only a few dozen are in active use. The initial uses were in the early 1950s and diversity of use is ever increasing as people find new ways to make this versatile old technology work. To what else could it be applied, in the future? This paper attempts to answer this.

  19. Image barcodes

    NASA Astrophysics Data System (ADS)

    Damera-Venkata, Niranjan; Yen, Jonathan

    2003-01-01

    A Visually significant two-dimensional barcode (VSB) developed by Shaked et. al. is a method used to design an information carrying two-dimensional barcode, which has the appearance of a given graphical entity such as a company logo. The encoding and decoding of information using the VSB, uses a base image with very few graylevels (typically only two). This typically requires the image histogram to be bi-modal. For continuous-tone images such as digital photographs of individuals, the representation of tone or "shades of gray" is not only important to obtain a pleasing rendition of the face, but in most cases, the VSB renders these images unrecognizable due to its inability to represent true gray-tone variations. This paper extends the concept of a VSB to an image bar code (IBC). We enable the encoding and subsequent decoding of information embedded in the hardcopy version of continuous-tone base-images such as those acquired with a digital camera. The encoding-decoding process is modeled by robust data transmission through a noisy print-scan channel that is explicitly modeled. The IBC supports a high information capacity that differentiates it from common hardcopy watermarks. The reason for the improved image quality over the VSB is a joint encoding/halftoning strategy based on a modified version of block error diffusion. Encoder stability, image quality vs. information capacity tradeoffs and decoding issues with and without explicit knowledge of the base-image are discussed.

  20. DNA Barcoding through Quaternary LDPC Codes

    PubMed Central

    Tapia, Elizabeth; Spetale, Flavio; Krsticevic, Flavia; Angelone, Laura; Bulacio, Pilar

    2015-01-01

    For many parallel applications of Next-Generation Sequencing (NGS) technologies short barcodes able to accurately multiplex a large number of samples are demanded. To address these competitive requirements, the use of error-correcting codes is advised. Current barcoding systems are mostly built from short random error-correcting codes, a feature that strongly limits their multiplexing accuracy and experimental scalability. To overcome these problems on sequencing systems impaired by mismatch errors, the alternative use of binary BCH and pseudo-quaternary Hamming codes has been proposed. However, these codes either fail to provide a fine-scale with regard to size of barcodes (BCH) or have intrinsic poor error correcting abilities (Hamming). Here, the design of barcodes from shortened binary BCH codes and quaternary Low Density Parity Check (LDPC) codes is introduced. Simulation results show that although accurate barcoding systems of high multiplexing capacity can be obtained with any of these codes, using quaternary LDPC codes may be particularly advantageous due to the lower rates of read losses and undetected sample misidentification errors. Even at mismatch error rates of 10−2 per base, 24-nt LDPC barcodes can be used to multiplex roughly 2000 samples with a sample misidentification error rate in the order of 10−9 at the expense of a rate of read losses just in the order of 10−6. PMID:26492348

  1. Reading Mammal Diversity from Flies: The Persistence Period of Amplifiable Mammal mtDNA in Blowfly Guts (Chrysomya megacephala) and a New DNA Mini-Barcode Target

    PubMed Central

    Lee, Ping-Shin; Sing, Kong-Wah; Wilson, John-James

    2015-01-01

    Most tropical mammal species are threatened or data-deficient. Data collection is impeded by the traditional monitoring approaches which can be laborious, expensive and struggle to detect cryptic diversity. Monitoring approaches using mammal DNA derived from invertebrates are emerging as cost- and time-effective alternatives. As a step towards development of blowfly-derived DNA as an effective method for mammal monitoring in the biodiversity hotspot of Peninsular Malaysia, our objectives were (i) to determine the persistence period of amplifiable mammal mtDNA in blowfly guts through a laboratory feeding experiment (ii) to design and test primers that can selectively amplify mammal COI DNA mini-barcodes in the presence of high concentrations of blowfly DNA. The persistence period of amplifiable mammal mtDNA in blowfly guts was 24 h to 96 h post-feeding indicating the need for collecting flies within 24 h of capture to detect mammal mtDNA of sufficient quantity and quality. We designed a new primer combination for a COI DNA mini-barcode that did not amplify blowfly DNA and showed 89% amplification success for a dataset of mammals from Peninsular Malaysia. The short (205 bp) DNA mini-barcode could distinguish most mammal species (including separating dark taxa) and is of suitable length for high-throughput sequencing. Our new DNA mini-barcode target and a standardized trapping protocol with retrieval of blowflies every 24 h could point the way forward in the development of blowfly-derived DNA as an effective method for mammal monitoring. PMID:25898278

  2. Modelling of Camera Phone Capture Channel for JPEG Colour Barcode Images

    NASA Astrophysics Data System (ADS)

    Tan, Keng T.; Ong, Siong Khai; Chai, Douglas

    As camera phones have permeated into our everyday lives, two dimensional (2D) barcode has attracted researchers and developers as a cost-effective ubiquitous computing tool. A variety of 2D barcodes and their applications have been developed. Often, only monochrome 2D barcodes are used due to their robustness in an uncontrolled operating environment of camera phones. However, we are seeing an emerging use of colour 2D barcodes for camera phones. Nonetheless, using a greater multitude of colours introduces errors that can negatively affect the robustness of barcode reading. This is especially true when developing a 2D barcode for camera phones which capture and store these barcode images in the baseline JPEG format. This paper present one aspect of the errors introduced by such camera phones by modelling the camera phone capture channel for JPEG colour barcode images.

  3. A Concealed Barcode Identification System Using Terahertz Time-domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guan, Yu; Yamamoto, Manabu; Kitazawa, Toshiyuki; Tripathi, Saroj R.; Takeya, Kei; Kawase, Kodo

    2015-03-01

    We present a concealed terahertz barcode/chipless tag to achieve remote identification through an obstructing material using terahertz radiation. We show scanned terahertz reflection spectral images of barcodes concealed by a thick obstacle. A concealed and double- side printed terahertz barcode structure is proposed, and we demonstrate that our design has better performance in definition than a single-side printed barcode using terahertz time-domain spectroscopy. This technique combines the benefits of a chipless tag to read encoded information covered by an optically opaque material with low cost and a simple fabrication process. Simulations are also described, along with an explanation of the principle of the terahertz barcode identification system.

  4. Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens

    PubMed Central

    Shokralla, Shadi; Gibson, Joel F; Nikbakht, Hamid; Janzen, Daniel H; Hallwachs, Winnie; Hajibabaei, Mehrdad

    2014-01-01

    DNA barcoding is an efficient method to identify specimens and to detect undescribed/cryptic species. Sanger sequencing of individual specimens is the standard approach in generating large-scale DNA barcode libraries and identifying unknowns. However, the Sanger sequencing technology is, in some respects, inferior to next-generation sequencers, which are capable of producing millions of sequence reads simultaneously. Additionally, direct Sanger sequencing of DNA barcode amplicons, as practiced in most DNA barcoding procedures, is hampered by the need for relatively high-target amplicon yield, coamplification of nuclear mitochondrial pseudogenes, confusion with sequences from intracellular endosymbiotic bacteria (e.g. Wolbachia) and instances of intraindividual variability (i.e. heteroplasmy). Any of these situations can lead to failed Sanger sequencing attempts or ambiguity of the generated DNA barcodes. Here, we demonstrate the potential application of next-generation sequencing platforms for parallel acquisition of DNA barcode sequences from hundreds of specimens simultaneously. To facilitate retrieval of sequences obtained from individual specimens, we tag individual specimens during PCR amplification using unique 10-mer oligonucleotides attached to DNA barcoding PCR primers. We employ 454 pyrosequencing to recover full-length DNA barcodes of 190 specimens using 12.5% capacity of a 454 sequencing run (i.e. two lanes of a 16 lane run). We obtained an average of 143 sequence reads for each individual specimen. The sequences produced are full-length DNA barcodes for all but one of the included specimens. In a subset of samples, we also detected Wolbachia, nontarget species, and heteroplasmic sequences. Next-generation sequencing is of great value because of its protocol simplicity, greatly reduced cost per barcode read, faster throughout and added information content. PMID:24641208

  5. Dual resolution two-dimensional color barcode

    NASA Astrophysics Data System (ADS)

    Fan, Zhigang; Zhao, Yonghui; Wang, Shenge; Ding, Hengzhou

    2013-03-01

    In this paper, a QR code is presented with a dual resolution structure. It contains a high resolution layer that is coded in luminance and is in consistency with the conventional QR code, and a low resolution layer providing additional error checking information, that is coded in chrominance and is robust to blurring. The proposed QR code is compatible to its underlying conventional black and white barcode as it can be read by their decoders. Its advantage is additional reliability when a color decoder is used. In particular, it enhances the decoding accuracy for devices such as mobile devices for barcodes printed in small sizes.

  6. Insect Barcode Information System

    PubMed Central

    Pratheepa, Maria; Jalali, Sushil Kumar; Arokiaraj, Robinson Silvester; Venkatesan, Thiruvengadam; Nagesh, Mandadi; Panda, Madhusmita; Pattar, Sharath

    2014-01-01

    Insect Barcode Information System called as Insect Barcode Informática (IBIn) is an online database resource developed by the National Bureau of Agriculturally Important Insects, Bangalore. This database provides acquisition, storage, analysis and publication of DNA barcode records of agriculturally important insects, for researchers specifically in India and other countries. It bridges a gap in bioinformatics by integrating molecular, morphological and distribution details of agriculturally important insects. IBIn was developed using PHP/My SQL by using relational database management concept. This database is based on the client– server architecture, where many clients can access data simultaneously. IBIn is freely available on-line and is user-friendly. IBIn allows the registered users to input new information, search and view information related to DNA barcode of agriculturally important insects.This paper provides a current status of insect barcode in India and brief introduction about the database IBIn. Availability http://www.nabg-nbaii.res.in/barcode PMID:24616562

  7. Smart imaging using laser targeting: a multiple barcodes application

    NASA Astrophysics Data System (ADS)

    Amin, M. Junaid; Riza, Nabeel A.

    2014-05-01

    To the best of our knowledge, proposed is a novel variable depth of field smart imager design using intelligent laser targeting for high productivity multiple barcodes reading applications. System smartness comes via the use of an Electronically Controlled Variable Focal-Length Lens (ECVFL) to provide an agile pixel (and/or pixel set) within the laser transmitter and optical imaging receiver. The ECVFL in the receiver gives a flexible depth of field that allows clear image capture over a range of barcode locations. Imaging of a 660 nm wavelength laser line illuminated 95-bit one dimensional barcode is experimentally demonstrated via the smart imager for barcode target distances ranging from 10 cm to 54 cm. The smart system captured barcode images are evaluated using a proposed barcode reading algorithm. Experimental results after computer-based post-processing show a nine-fold increase in barcode target distance variation range (i.e., range variation increased from 2.5 cm to 24.5 cm) when compared to a conventional fixed lens imager. Applications for the smart imager include industrial multiple product tracking, marking, and inspection systems.

  8. Real-time multi-barcode reader for industrial applications

    NASA Astrophysics Data System (ADS)

    Zafar, Iffat; Zakir, Usman; Edirisinghe, Eran A.

    2010-05-01

    The advances in automated production processes have resulted in the need for detecting, reading and decoding 2D datamatrix barcodes at very high speeds. This requires the correct combination of high speed optical devices that are capable of capturing high quality images and computer vision algorithms that can read and decode the barcodes accurately. Such barcode readers should also be capable of resolving fundamental imaging challenges arising from blurred barcode edges, reflections from possible polyethylene wrapping, poor and/or non-uniform illumination, fluctuations of focus, rotation and scale changes. Addressing the above challenges in this paper we propose the design and implementation of a high speed multi-barcode reader and provide test results from an industrial trial. To authors knowledge such a comprehensive system has not been proposed and fully investigated in existing literature. To reduce the reflections on the images caused due to polyethylene wrapping used in typical packaging, polarising filters have been used. The images captured using the optical system above will still include imperfections and variations due to scale, rotation, illumination etc. We use a number of novel image enhancement algorithms optimised for use with 2D datamatrix barcodes for image de-blurring, contrast point and self-shadow removal using an affine transform based approach and non-uniform illumination correction. The enhanced images are subsequently used for barcode detection and recognition. We provide experimental results from a factory trial of using the multi-barcode reader and evaluate the performance of each optical unit and computer vision algorithm used. The results indicate an overall accuracy of 99.6 % in barcode recognition at typical speeds of industrial conveyor systems.

  9. Reading.

    ERIC Educational Resources Information Center

    Mulford, Jeremy, Ed.

    1971-01-01

    A collection of articles reflecting the underlying concern of British contributors with continuity--conceiving reading and learning as a whole throughout the school years--comprises this special issue of "English in Education." Specific topics treated are: "What Children Learn in Learning to Read" by R. Morris; "Reading without Primers" by W.…

  10. Implementing a Serials Barcoding Project.

    ERIC Educational Resources Information Center

    Lennertz, Lora L.; Conway, Cheryl L.

    1997-01-01

    Discusses the process of planning and implementing a barcode project for library serials based on experiences at the University of Arkansas Fayetteville library. Topics include dumb versus smart barcodes, cataloging, classification, application rate of barcode labels, and library staff participation. (Author/LRW)

  11. S-K Smartphone Barcode Reader for the Blind

    PubMed Central

    Tekin, Ender; Vásquez, David; Coughlan, James M.

    2014-01-01

    We describe a new smartphone app called BLaDE (Barcode Localization and Decoding Engine), designed to enable a blind or visually impaired user find and read product barcodes. Developed at The Smith-Kettlewell Eye Research Institute, the BLaDE Android app has been released as open source software, which can be used for free or modified for commercial or non-commercial use. Unlike popular commercial smartphone apps, BLaDE provides real-time audio feedback to help visually impaired users locate a barcode, which is a prerequisite to being able to read it. We describe experiments performed with five blind/visually impaired volunteer participants demonstrating that BLaDE is usable and that the audio feedback is key to its usability. PMID:25602592

  12. From barcodes to genomes: extending the concept of DNA barcoding.

    PubMed

    Coissac, Eric; Hollingsworth, Peter M; Lavergne, Sébastien; Taberlet, Pierre

    2016-04-01

    DNA barcoding has had a major impact on biodiversity science. The elegant simplicity of establishing massive scale databases for a few barcode loci is continuing to change our understanding of species diversity patterns, and continues to enhance human abilities to distinguish among species. Capitalizing on the developments of next generation sequencing technologies and decreasing costs of genome sequencing, there is now the opportunity for the DNA barcoding concept to be extended to new kinds of genomic data. We illustrate the benefits and capacity to do this, and also note the constraints and barriers to overcome before it is truly scalable. We advocate a twin track approach: (i) continuation and acceleration of global efforts to build the DNA barcode reference library of life on earth using standard DNA barcodes and (ii) active development and application of extended DNA barcodes using genome skimming to augment the standard barcoding approach. PMID:26821259

  13. A pyrosequencing-tailored nucleotide barcode design unveils opportunities for large-scale sample multiplexing.

    PubMed

    Parameswaran, Poornima; Jalili, Roxana; Tao, Li; Shokralla, Shadi; Gharizadeh, Baback; Ronaghi, Mostafa; Fire, Andrew Z

    2007-01-01

    Multiplexed high-throughput pyrosequencing is currently limited in complexity (number of samples sequenced in parallel), and in capacity (number of sequences obtained per sample). Physical-space segregation of the sequencing platform into a fixed number of channels allows limited multiplexing, but obscures available sequencing space. To overcome these limitations, we have devised a novel barcoding approach to allow for pooling and sequencing of DNA from independent samples, and to facilitate subsequent segregation of sequencing capacity. Forty-eight forward-reverse barcode pairs are described: each forward and each reverse barcode unique with respect to at least 4 nt positions. With improved read lengths of pyrosequencers, combinations of forward and reverse barcodes may be used to sequence from as many as n(2) independent libraries for each set of 'n' forward and 'n' reverse barcodes, for each defined set of cloning-linkers. In two pilot series of barcoded sequencing using the GS20 Sequencer (454/Roche), we found that over 99.8% of obtained sequences could be assigned to 25 independent, uniquely barcoded libraries based on the presence of either a perfect forward or a perfect reverse barcode. The false-discovery rate, as measured by the percentage of sequences with unexpected perfect pairings of unmatched forward and reverse barcodes, was estimated to be <0.005%. PMID:17932070

  14. Droplet barcoding for massively parallel single-molecule deep sequencing.

    PubMed

    Lan, Freeman; Haliburton, John R; Yuan, Aaron; Abate, Adam R

    2016-01-01

    The ability to accurately sequence long DNA molecules is important across biology, but existing sequencers are limited in read length and accuracy. Here, we demonstrate a method to leverage short-read sequencing to obtain long and accurate reads. Using droplet microfluidics, we isolate, amplify, fragment and barcode single DNA molecules in aqueous picolitre droplets, allowing the full-length molecules to be sequenced with multi-fold coverage using short-read sequencing. We show that this approach can provide accurate sequences of up to 10 kb, allowing us to identify rare mutations below the detection limit of conventional sequencing and directly link them into haplotypes. This barcoding methodology can be a powerful tool in sequencing heterogeneous populations such as viruses. PMID:27353563

  15. Droplet barcoding for massively parallel single-molecule deep sequencing

    PubMed Central

    Lan, Freeman; Haliburton, John R.; Yuan, Aaron; Abate, Adam R.

    2016-01-01

    The ability to accurately sequence long DNA molecules is important across biology, but existing sequencers are limited in read length and accuracy. Here, we demonstrate a method to leverage short-read sequencing to obtain long and accurate reads. Using droplet microfluidics, we isolate, amplify, fragment and barcode single DNA molecules in aqueous picolitre droplets, allowing the full-length molecules to be sequenced with multi-fold coverage using short-read sequencing. We show that this approach can provide accurate sequences of up to 10 kb, allowing us to identify rare mutations below the detection limit of conventional sequencing and directly link them into haplotypes. This barcoding methodology can be a powerful tool in sequencing heterogeneous populations such as viruses. PMID:27353563

  16. A smartphone-readable barcode assay for the detection and quantitation of pesticide residues.

    PubMed

    Guo, Juan; Wong, Jessica X H; Cui, Caie; Li, Xiaochun; Yu, Hua-Zhong

    2015-08-21

    In this paper, we present a smartphone-readable barcode assay for the qualitative detection of methyl parathion residues, a toxic organophosphorus pesticide that is popularly used in agriculture worldwide. The detection principle is based on the irreversible inhibition of the enzymatic activity of acetylcholinesterase (AchE) by methyl parathion; AchE catalytically hydrolyzes acetylthiocholine iodine to thiocholine that in turn dissociates dithiobis-nitrobenzoate to produce a yellow product (deprotonated thio-nitrobenzoate). The yellow intensity of the product was confirmed to be inversely dependent on the concentration of the pesticide. We have designed a barcode-formatted assay chip by using a PDMS (polydimethylsiloxane) channel plate (as the reaction reservoir), situated under a printed partial barcode, to complete the whole barcode such that it can be directly read by a barcode scanning app installed on a smartphone. The app is able to qualitatively present the result of the pesticide test; the absence or a low concentration of methyl parathion results in the barcode reading as "-", identifying the test as negative for pesticides. Upon obtaining a positive result (the app reads a "+" character), the captured image can be further analyzed to quantitate the methyl parathion concentration in the sample. Besides the portability and simplicity, this mobile-app based colorimetric barcode assay compares favorably with the standard spectrophotometric method. PMID:26087169

  17. Invisible two-dimensional barcode fabrication inside a synthetic fused silica by femtosecond laser processing using a computer-generated hologram

    NASA Astrophysics Data System (ADS)

    Kawashima, Hayato; Yamaji, Masahiro; Suzuki, Jun'ichi; Tanaka, Shuhei

    2011-03-01

    We report an invisible two-dimensional (2D) barcode embedded into a synthetic fused silica by femtosecond laser processing using a computer-generated hologram (CGH) that generates a spatially extended femtosecond pulse beam in the depth direction. When we illuminate the irradiated 2D barcode pattern with a 254 nm ultraviolet (UV) light, a strong red photoluminescence (PL) is observed, and we can read it by using a complementary metal oxide semiconductor (CMOS) camera and image processing technology. This work provides a novel barcode fabrication method by femtosecond laser processing using a CGH and a barcode reading method by a red PL.

  18. Reading color barcodes using visual snakes.

    SciTech Connect

    Schaub, Hanspeter

    2004-05-01

    Statistical pressure snakes are used to track a mono-color target in an unstructured environment using a video camera. The report discusses an algorithm to extract a bar code signal that is embedded within the target. The target is assumed to be rectangular in shape, with the bar code printed in a slightly different saturation and value in HSV color space. Thus, the visual snake, which primarily weighs hue tracking errors, will not be deterred by the presence of the color bar codes in the target. The bar code is generate with the standard 3 of 9 method. Using this method, the numeric bar codes reveal if the target is right-side-up or up-side-down.

  19. BEST: Barcode Enabled Sequencing of Tetrads

    PubMed Central

    Scott, Adrian C.; Ludlow, Catherine L.; Cromie, Gareth A.; Dudley, Aimée M.

    2014-01-01

    Tetrad analysis is a valuable tool for yeast genetics, but the laborious manual nature of the process has hindered its application on large scales. Barcode Enabled Sequencing of Tetrads (BEST)1 replaces the manual processes of isolating, disrupting and spacing tetrads. BEST isolates tetrads by virtue of a sporulation-specific GFP fusion protein that permits fluorescence-activated cell sorting of tetrads directly onto agar plates, where the ascus is enzymatically digested and the spores are disrupted and randomly arrayed by glass bead plating. The haploid colonies are then assigned sister spore relationships, i.e. information about which spores originated from the same tetrad, using molecular barcodes read during genotyping. By removing the bottleneck of manual dissection, hundreds or even thousands of tetrads can be isolated in minutes. Here we present a detailed description of the experimental procedures required to perform BEST in the yeast Saccharomyces cerevisiae, starting with a heterozygous diploid strain through the isolation of colonies derived from the haploid meiotic progeny. PMID:24836713

  20. The HTS barcode checker pipeline, a tool for automated detection of illegally traded species from high-throughput sequencing data

    PubMed Central

    2014-01-01

    Background Mixtures of internationally traded organic substances can contain parts of species protected by the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). These mixtures often raise the suspicion of border control and customs offices, which can lead to confiscation, for example in the case of Traditional Chinese medicines (TCMs). High-throughput sequencing of DNA barcoding markers obtained from such samples provides insight into species constituents of mixtures, but manual cross-referencing of results against the CITES appendices is labor intensive. Matching DNA barcodes against NCBI GenBank using BLAST may yield misleading results both as false positives, due to incorrectly annotated sequences, and false negatives, due to spurious taxonomic re-assignment. Incongruence between the taxonomies of CITES and NCBI GenBank can result in erroneous estimates of illegal trade. Results The HTS barcode checker pipeline is an application for automated processing of sets of 'next generation’ barcode sequences to determine whether these contain DNA barcodes obtained from species listed on the CITES appendices. This analytical pipeline builds upon and extends existing open-source applications for BLAST matching against the NCBI GenBank reference database and for taxonomic name reconciliation. In a single operation, reads are converted into taxonomic identifications matched with names on the CITES appendices. By inclusion of a blacklist and additional names databases, the HTS barcode checker pipeline prevents false positives and resolves taxonomic heterogeneity. Conclusions The HTS barcode checker pipeline can detect and correctly identify DNA barcodes of CITES-protected species from reads obtained from TCM samples in just a few minutes. The pipeline facilitates and improves molecular monitoring of trade in endangered species, and can aid in safeguarding these species from extinction in the wild. The HTS barcode checker pipeline is

  1. Tamper-indicating barcode and method

    DOEpatents

    Cummings, Eric B.; Even, Jr., William R.; Simmons, Blake A.; Dentinger, Paul Michael

    2005-03-22

    A novel tamper-indicating barcode methodology is disclosed that allows for detection of alteration to the barcode. The tamper-indicating methodology makes use of a tamper-indicating means that may be comprised of a particulate indicator, an optical indicator, a deformable substrate, and/or may be an integrated aspect of the barcode itself. This tamper-indicating information provides greater security for the contents of containers sealed with the tamper-indicating barcodes.

  2. 77 FR 26185 - POSTNET Barcode Discontinuation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ... March 2, 2012, the Postal Service published a proposed rule in the Federal Register (77 FR 12764-12769...-128 routing barcode or an Intelligent Mail package barcode for the delivery address. * * * * * 6.0... Qualified Business Reply Mail (QBRM), an Intelligent Mail barcode (IMb TM ) will be required. Summary...

  3. Efficient alignment-free DNA barcode analytics

    PubMed Central

    Kuksa, Pavel; Pavlovic, Vladimir

    2009-01-01

    Background In this work we consider barcode DNA analysis problems and address them using alternative, alignment-free methods and representations which model sequences as collections of short sequence fragments (features). The methods use fixed-length representations (spectrum) for barcode sequences to measure similarities or dissimilarities between sequences coming from the same or different species. The spectrum-based representation not only allows for accurate and computationally efficient species classification, but also opens possibility for accurate clustering analysis of putative species barcodes and identification of critical within-barcode loci distinguishing barcodes of different sample groups. Results New alignment-free methods provide highly accurate and fast DNA barcode-based identification and classification of species with substantial improvements in accuracy and speed over state-of-the-art barcode analysis methods. We evaluate our methods on problems of species classification and identification using barcodes, important and relevant analytical tasks in many practical applications (adverse species movement monitoring, sampling surveys for unknown or pathogenic species identification, biodiversity assessment, etc.) On several benchmark barcode datasets, including ACG, Astraptes, Hesperiidae, Fish larvae, and Birds of North America, proposed alignment-free methods considerably improve prediction accuracy compared to prior results. We also observe significant running time improvements over the state-of-the-art methods. Conclusion Our results show that newly developed alignment-free methods for DNA barcoding can efficiently and with high accuracy identify specimens by examining only few barcode features, resulting in increased scalability and interpretability of current computational approaches to barcoding. PMID:19900305

  4. Choosing and Using a Plant DNA Barcode

    PubMed Central

    Hollingsworth, Peter M.; Graham, Sean W.; Little, Damon P.

    2011-01-01

    The main aim of DNA barcoding is to establish a shared community resource of DNA sequences that can be used for organismal identification and taxonomic clarification. This approach was successfully pioneered in animals using a portion of the cytochrome oxidase 1 (CO1) mitochondrial gene. In plants, establishing a standardized DNA barcoding system has been more challenging. In this paper, we review the process of selecting and refining a plant barcode; evaluate the factors which influence the discriminatory power of the approach; describe some early applications of plant barcoding and summarise major emerging projects; and outline tool development that will be necessary for plant DNA barcoding to advance. PMID:21637336

  5. Levenshtein error-correcting barcodes for multiplexed DNA sequencing

    PubMed Central

    2013-01-01

    Background High-throughput sequencing technologies are improving in quality, capacity and costs, providing versatile applications in DNA and RNA research. For small genomes or fraction of larger genomes, DNA samples can be mixed and loaded together on the same sequencing track. This so-called multiplexing approach relies on a specific DNA tag or barcode that is attached to the sequencing or amplification primer and hence appears at the beginning of the sequence in every read. After sequencing, each sample read is identified on the basis of the respective barcode sequence. Alterations of DNA barcodes during synthesis, primer ligation, DNA amplification, or sequencing may lead to incorrect sample identification unless the error is revealed and corrected. This can be accomplished by implementing error correcting algorithms and codes. This barcoding strategy increases the total number of correctly identified samples, thus improving overall sequencing efficiency. Two popular sets of error-correcting codes are Hamming codes and Levenshtein codes. Result Levenshtein codes operate only on words of known length. Since a DNA sequence with an embedded barcode is essentially one continuous long word, application of the classical Levenshtein algorithm is problematic. In this paper we demonstrate the decreased error correction capability of Levenshtein codes in a DNA context and suggest an adaptation of Levenshtein codes that is proven of efficiently correcting nucleotide errors in DNA sequences. In our adaption we take the DNA context into account and redefine the word length whenever an insertion or deletion is revealed. In simulations we show the superior error correction capability of the new method compared to traditional Levenshtein and Hamming based codes in the presence of multiple errors. Conclusion We present an adaptation of Levenshtein codes to DNA contexts capable of correction of a pre-defined number of insertion, deletion, and substitution mutations. Our improved

  6. Barcoding a Small Academic Library: Avoiding the Pitfalls.

    ERIC Educational Resources Information Center

    Linsley, Laurie S.; Jones, Leona

    1994-01-01

    Relates the Seminole Community College (Florida) library's experience barcoding a collection of materials and provides practical suggestions on how to implement barcoding in other libraries. Highlights include a barcode plan (smart barcodes and dumb barcodes), worker guidelines, problems encountered, and costs. An annotated bibliography and seven…

  7. BARCODES: Mathematics in the Supermarket.

    ERIC Educational Resources Information Center

    Kissane, Barry V.

    1982-01-01

    The mathematical nature of the product barcode that now appears on many supermarket goods is discussed. Particular attention is given to the nature and formula of a "check digit" used to verify that product numbers are correctly scanned. Several possible student activities related to this code and others are suggested. (MP)

  8. Barcode Your Classroom.

    ERIC Educational Resources Information Center

    Speitel, Thomas W.

    1992-01-01

    Describes applications of bar coding technology that will help teachers to organize and energize their classrooms. Explains how bar codes--the black-and-white lines used for identification--are read and produced. Educational applications include their use in testing, equipment inventory, specimen identification, time keeping in experiments,…

  9. Autonomous underwater barcode recognition

    NASA Astrophysics Data System (ADS)

    Schulze, Karl R.

    2003-11-01

    Wide area symbol recognition is a task that plagues many autonomous vehicles. A process is needed first to recognize if the symbol is present, and if so where it is. Once the symbol's position is detected it must be analyzed and recognized. In this scenario we have a submersible attempting to locate man made objects on the bottom of a large water basin. These man made objects have bar codes on them that need to be read and the position of the code needs to be recorded relative to where it is in the entire pond. A two step process has been developed to allow the position recognition within a frame to be dealt with on a separate DSP associated with one of three total cameras. The object recognition is then dealt with on a high speed computer aboard the vehicle to read the proper code. The reading is done using a statistics based approach that assumes a noisy, but contrasting background. This approach has proven to be effective in environments in which the background has very little ordered noise, such as the bottom of lakes and ponds, but requires very high clarity in order to capture a suitable image.

  10. DNA barcoding of Dutch birds

    PubMed Central

    Aliabadian, Mansour; Beentjes, Kevin K.; Roselaar, C.S. (Kees); van Brandwijk, Hans; Nijman, Vincent; Vonk, Ronald

    2013-01-01

    Abstract The mitochondrial cytochrome c oxidase subunit I (COI) can serve as a fast and accurate marker for the identification of animal species, and has been applied in a number of studies on birds. We here sequenced the COI gene for 387 individuals of 147 species of birds from the Netherlands, with 83 species being represented by > 2 sequences. The Netherlands occupies a small geographic area and 95% of all samples were collected within a 50 km radius from one another. The intraspecific divergences averaged 0.29% among this assemblage, but most values were lower; the interspecific divergences averaged 9.54%. In all, 95% of species were represented by a unique barcode, with 6 species of gulls and skua (Larus and Stercorarius) having at least one shared barcode. This is best explained by these species representing recent radiations with ongoing hybridization. In contrast, one species, the Lesser Whitethroat Sylvia curruca showed deep divergences, averaging 5.76% and up to 8.68% between individuals. These possibly represent two distinct taxa, S. curruca and S. blythi, both clearly separated in a haplotype network analysis. Our study adds to a growing body of DNA barcodes that have become available for birds, and shows that a DNA barcoding approach enables to identify known Dutch bird species with a very high resolution. In addition some species were flagged up for further detailed taxonomic investigation, illustrating that even in ornithologically well-known areas such as the Netherlands, more is to be learned about the birds that are present. PMID:24453549

  11. Integrated quantum dot barcode smartphone optical device for wireless multiplexed diagnosis of infected patients.

    PubMed

    Ming, Kevin; Kim, Jisung; Biondi, Mia J; Syed, Abdullah; Chen, Kun; Lam, Albert; Ostrowski, Mario; Rebbapragada, Anu; Feld, Jordan J; Chan, Warren C W

    2015-03-24

    Inorganic nanoparticles are ideal precursors for engineering barcodes for rapidly detecting diseases. Despite advances in the chemical design of these barcodes, they have not advanced to clinical use because they lack sensitivity and are not cost-effective due to requirement of a large read-out system. Here we combined recent advances in quantum dot barcode technology with smartphones and isothermal amplification to engineer a simple and low-cost chip-based wireless multiplex diagnostic device. We characterized the analytical performance of this device and demonstrated that the device is capable of detecting down to 1000 viral genetic copies per milliliter, and this enabled the diagnosis of patients infected with HIV or hepatitis B. More importantly, the barcoding enabled us to detect multiple infectious pathogens simultaneously, in a single test, in less than 1 h. This multiplexing capability of the device enables the diagnosis of infections that are difficult to differentiate clinically due to common symptoms such as a fever or rash. The integration of quantum dot barcoding technology with a smartphone reader provides a capacity for global surveillance of infectious diseases and the potential to accelerate knowledge exchange transfer of emerging or exigent disease threats with healthcare and military organizations in real time. PMID:25661584

  12. DNA Barcoding Investigations Bring Biology to Life

    ERIC Educational Resources Information Center

    Musante, Susan

    2010-01-01

    This article describes how DNA barcoding investigations bring biology to life. Biologists recognize the power of DNA barcoding not just to teach biology through connections to the real world but also to immerse students in the exciting process of science. As an investigator in the Program for the Human Environment at Rockefeller University in New…

  13. 77 FR 12764 - POSTNET Barcode Discontinuation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... Intelligent Mail barcodes (IMb TM ) for automation price eligibility purposes. The Postal Service understands... working with individual mailers and software providers to ensure that the use of an Intelligent Mail..., both USPS and the mailing industry have used the Intelligent Mail barcode to gain information...

  14. 77 FR 33314 - POSTNET Barcode Discontinuation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... 111 POSTNET Barcode Discontinuation AGENCY: Postal Service. TM ACTION: Final rule; correction. SUMMARY..., Domestic Mail Manual (DMM ) which discontinued price eligibility based on the use of POSTNET TM barcodes on... Postal Service published a final rule in the Federal Register (77 FR 26185-26191) to discontinue...

  15. Using a Barcode Reader with Interactive Videodiscs.

    ERIC Educational Resources Information Center

    Smith, Mac; Gustafson, Kent

    1995-01-01

    Describes the use of a barcode reader, rather than a computer, to control an interactive videodisc for presentations and self-paced tutorials. Highlights include hardware and software used; remote and direct communication; a HyperCard-based program to make barcodes; and converting an existing program. (LRW)

  16. A DNA barcode for land plants

    PubMed Central

    Hollingsworth, Peter M.; Forrest, Laura L.; Spouge, John L.; Hajibabaei, Mehrdad; Ratnasingham, Sujeevan; van der Bank, Michelle; Chase, Mark W.; Cowan, Robyn S.; Erickson, David L.; Fazekas, Aron J.; Graham, Sean W.; James, Karen E.; Kim, Ki-Joong; Kress, W. John; Schneider, Harald; van AlphenStahl, Jonathan; Barrett, Spencer C.H.; van den Berg, Cassio; Bogarin, Diego; Burgess, Kevin S.; Cameron, Kenneth M.; Carine, Mark; Chacón, Juliana; Clark, Alexandra; Clarkson, James J.; Conrad, Ferozah; Devey, Dion S.; Ford, Caroline S.; Hedderson, Terry A.J.; Hollingsworth, Michelle L.; Husband, Brian C.; Kelly, Laura J.; Kesanakurti, Prasad R.; Kim, Jung Sung; Kim, Young-Dong; Lahaye, Renaud; Lee, Hae-Lim; Long, David G.; Madriñán, Santiago; Maurin, Olivier; Meusnier, Isabelle; Newmaster, Steven G.; Park, Chong-Wook; Percy, Diana M.; Petersen, Gitte; Richardson, James E.; Salazar, Gerardo A.; Savolainen, Vincent; Seberg, Ole; Wilkinson, Michael J.; Yi, Dong-Keun; Little, Damon P.

    2009-01-01

    DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF–atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK–psbI spacer, and trnH–psbA spacer). Based on assessments of recoverability, sequence quality, and levels of species discrimination, we recommend the 2-locus combination of rbcL+matK as the plant barcode. This core 2-locus barcode will provide a universal framework for the routine use of DNA sequence data to identify specimens and contribute toward the discovery of overlooked species of land plants. PMID:19666622

  17. A DNA barcode for land plants.

    PubMed

    2009-08-01

    DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF-atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK-psbI spacer, and trnH-psbA spacer). Based on assessments of recoverability, sequence quality, and levels of species discrimination, we recommend the 2-locus combination of rbcL+matK as the plant barcode. This core 2-locus barcode will provide a universal framework for the routine use of DNA sequence data to identify specimens and contribute toward the discovery of overlooked species of land plants. PMID:19666622

  18. The neotype barcode of the cotton aphid (Hemiptera: Aphididae: Aphis gossypii Glover, 1877) and a proposal for type barcodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A type barcode is a DNA barcode unequivocally tied to an authoritatively identified specimen, preferably the primary type specimen. Type barcodes are analogous, albeit subordinate, to type specimens, providing a stable reference to which other barcodes can be compared. We here designate and describe...

  19. DNA barcoding amphibians and reptiles.

    PubMed

    Vences, Miguel; Nagy, Zoltán T; Sonet, Gontran; Verheyen, Erik

    2012-01-01

    Only a few major research programs are currently targeting COI barcoding of amphibians and reptiles (including chelonians and crocodiles), two major groups of tetrapods. Amphibian and reptile species are typically old, strongly divergent, and contain deep conspecific lineages which might lead to problems in species assignment with incomplete reference databases. As far as known, there is no single pair of COI primers that will guarantee a sufficient rate of success across all amphibian and reptile taxa, or within major subclades of amphibians and reptiles, which means that the PCR amplification strategy needs to be adjusted depending on the specific research question. In general, many more amphibian and reptile taxa have been sequenced for 16S rDNA, which for some purposes may be a suitable complementary marker, at least until a more comprehensive COI reference database becomes available. DNA barcoding has successfully been used to identify amphibian larval stages (tadpoles) in species-rich tropical assemblages. Tissue sampling, DNA extraction, and amplification of COI is straightforward in amphibians and reptiles. Single primer pairs are likely to have a failure rate between 5 and 50% if taxa of a wide taxonomic range are targeted; in such cases the use of primer cocktails or subsequent hierarchical usage of different primer pairs is necessary. If the target group is taxonomically limited, many studies have followed a strategy of designing specific primers which then allow an easy and reliable amplification of all samples. PMID:22684953

  20. FLEXBAR-Flexible Barcode and Adapter Processing for Next-Generation Sequencing Platforms.

    PubMed

    Dodt, Matthias; Roehr, Johannes T; Ahmed, Rina; Dieterich, Christoph

    2012-01-01

    Quantitative and systems biology approaches benefit from the unprecedented depth of next-generation sequencing. A typical experiment yields millions of short reads, which oftentimes carry particular sequence tags. These tags may be: (a) specific to the sequencing platform and library construction method (e.g., adapter sequences); (b) have been introduced by experimental design (e.g., sample barcodes); or (c) constitute some biological signal (e.g., splice leader sequences in nematodes). Our software FLEXBAR enables accurate recognition, sorting and trimming of sequence tags with maximal flexibility, based on exact overlap sequence alignment. The software supports data formats from all current sequencing platforms, including color-space reads. FLEXBAR maintains read pairings and processes separate barcode reads on demand. Our software facilitates the fine-grained adjustment of sequence tag detection parameters and search regions. FLEXBAR is a multi-threaded software and combines speed with precision. Even complex read processing scenarios might be executed with a single command line call. We demonstrate the utility of the software in terms of read mapping applications, library demultiplexing and splice leader detection. FLEXBAR and additional information is available for academic use from the website: http://sourceforge.net/projects/flexbar/. PMID:24832523

  1. FLEXBAR—Flexible Barcode and Adapter Processing for Next-Generation Sequencing Platforms

    PubMed Central

    Dodt, Matthias; Roehr, Johannes T.; Ahmed, Rina; Dieterich, Christoph

    2012-01-01

    Quantitative and systems biology approaches benefit from the unprecedented depth of next-generation sequencing. A typical experiment yields millions of short reads, which oftentimes carry particular sequence tags. These tags may be: (a) specific to the sequencing platform and library construction method (e.g., adapter sequences); (b) have been introduced by experimental design (e.g., sample barcodes); or (c) constitute some biological signal (e.g., splice leader sequences in nematodes). Our software FLEXBAR enables accurate recognition, sorting and trimming of sequence tags with maximal flexibility, based on exact overlap sequence alignment. The software supports data formats from all current sequencing platforms, including color-space reads. FLEXBAR maintains read pairings and processes separate barcode reads on demand. Our software facilitates the fine-grained adjustment of sequence tag detection parameters and search regions. FLEXBAR is a multi-threaded software and combines speed with precision. Even complex read processing scenarios might be executed with a single command line call. We demonstrate the utility of the software in terms of read mapping applications, library demultiplexing and splice leader detection. FLEXBAR and additional information is available for academic use from the website: http://sourceforge.net/projects/flexbar/. PMID:24832523

  2. DNA Barcodes for Nearctic Auchenorrhyncha (Insecta: Hemiptera)

    PubMed Central

    Foottit, Robert G.; Maw, Eric; Hebert, P. D. N.

    2014-01-01

    Background Many studies have shown the suitability of sequence variation in the 5′ region of the mitochondrial cytochrome c oxidase I (COI) gene as a DNA barcode for the identification of species in a wide range of animal groups. We examined 471 species in 147 genera of Hemiptera: Auchenorrhyncha drawn from specimens in the Canadian National Collection of Insects to assess the effectiveness of DNA barcoding in this group. Methodology/Principal Findings Analysis of the COI gene revealed less than 2% intra-specific divergence in 93% of the taxa examined, while minimum interspecific distances exceeded 2% in 70% of congeneric species pairs. Although most species are characterized by a distinct sequence cluster, sequences for members of many groups of closely related species either shared sequences or showed close similarity, with 25% of species separated from their nearest neighbor by less than 1%. Conclusions/Significance This study, although preliminary, provides DNA barcodes for about 8% of the species of this hemipteran suborder found in North America north of Mexico. Barcodes can enable the identification of many species of Auchenorrhyncha, but members of some species groups cannot be discriminated. Future use of DNA barcodes in regulatory, pest management, and environmental applications will be possible as the barcode library for Auchenorrhyncha expands to include more species and broader geographic coverage. PMID:25004106

  3. Recommendations for Using Barcode in Hospital Process

    PubMed Central

    Hachesu, Peyman Rezaei; Zyaei, Leila; Hassankhani, Hadi

    2016-01-01

    Background: Lack of attention to the proper barcode using leads to lack of use or misuse in the hospitals. The present research aimed to investigate the requirements and barrier for using barcode technology and presenting suggestions to use it. Methods: The research is observational-descriptive. The data was collected using the designed checklist which its validity was assessed. This check list consists of two parts: “Requirements” and “barrier” of using the barcodes. Research community included 10 teaching hospitals and a class of 65 participants included people in the hospitals. The collected data was analyzed using descriptive statistics. Results: Required changes of workflow processes in the hospital and compliance them with the hospital policy are such requirements that had been infringed in the 90 % of hospitals. Prioritization of some hospital processes for barcoding, system integration with Hospital Information system (HIS), training of staff and budgeting are requirements for the successful implementation which had been infringed in the 80% of hospitals. Dissatisfaction with the quality of barcode labels and lacks of adequate scanners both whit the rate of 100 %, and the lack of understanding of the necessary requirements for implementation of barcodes as 80% were the most important barrier. Conclusion: Integrate bar code system with clinical workflow should be considered. Lack of knowledge and understanding toward the infrastructure, inadequate staff training and technologic problems are considered as the greatest barriers. PMID:27482137

  4. Scanning-time evaluation of Digimarc Barcode

    NASA Astrophysics Data System (ADS)

    Gerlach, Rebecca; Pinard, Dan; Weaver, Matt; Alattar, Adnan

    2015-03-01

    This paper presents a speed comparison between the use of Digimarc® Barcodes and the Universal Product Code (UPC) for customer checkout at point of sale (POS). The recently introduced Digimarc Barcode promises to increase the speed of scanning packaged goods at POS. When this increase is exploited by workforce optimization systems, the retail industry could potentially save billions of dollars. The Digimarc Barcode is based on Digimarc's watermarking technology, and it is imperceptible, very robust, and does not require any special ink, material, or printing processes. Using an image-based scanner, a checker can quickly scan consumer packaged goods (CPG) embedded with the Digimarc Barcode without the need to reorient the packages with respect to the scanner. Faster scanning of packages saves money and enhances customer satisfaction. It reduces the length of the queues at checkout, reduces the cost of cashier labor, and makes self-checkout more convenient. This paper quantifies the increase in POS scanning rates resulting from the use of the Digimarc Barcode versus the traditional UPC. It explains the testing methodology, describes the experimental setup, and analyzes the obtained results. It concludes that the Digimarc Barcode increases number of items per minute (IPM) scanned at least 50% over traditional UPC.

  5. QR Codes in the Library: "It's Not Your Mother's Barcode!"

    ERIC Educational Resources Information Center

    Dobbs, Cheri

    2011-01-01

    Barcode scanning has become more than just fun. Now libraries and businesses are leveraging barcode technology as an innovative tool to market their products and ideas. Developed and popularized in Japan, these Quick Response (QR) or two-dimensional barcodes allow marketers to provide interactive content in an otherwise static environment. In this…

  6. 75 FR 56922 - Implementation of the Intelligent Mail Package Barcode

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... 111 Implementation of the Intelligent Mail Package Barcode AGENCY: Postal Service TM . ACTION: Advance... Intelligent Mail package barcodes (IMpb), no later than January of 2011; and expects to require the mandatory...Standards@usps.gov , with a subject line of ``Intelligent Mail Package Barcode comments.'' Faxed...

  7. Laser Discs, Barcodes, and Books--a Great Combination.

    ERIC Educational Resources Information Center

    Peto, Erica

    1996-01-01

    Describes the use of barcodes to link laser discs with books in school libraries. Highlights include use of a barcode reader as a remote control device as well as a scanner, guidelines for making laser disc books, and a sidebar that explains how to make barcodes and describes software. (LRW)

  8. Botany without borders: barcoding in focus.

    PubMed

    Kane, Nolan C; Cronk, Quentin

    2008-12-01

    This recent meeting, held on the campus of the University of British Columbia, attracted 1200 delegates and a vast array of talks, but was notable for a remarkable showing of talks and posters on DNA barcoding in plants, spread through many sessions. The Canadian Centre for DNA Barcoding defines barcoding as 'species identification and discovery through the analysis of short, standardized gene regions known as DNA barcodes'. This approach is somewhat controversial in animals (Rubinoff et al., 2006), although it has been shown to be useful and reliable in many metazoan taxa (Meyer & Paulay 2005; Hajibabaei et al., 2007), in which the mitochondrial cytochrome oxidase I (COI) gene is used. However, in land plants, COI evolves far too slowly to be useful, and there is no obvious single universal alternative (Fazekas et al., 2008).Genes that work well in one taxon may perform poorly in other taxa. Additionally, some perfectly good plant species,reproductively isolated and morphologically and ecologically distinct, are too young to show much sequence divergence at most loci. Nevertheless, as we saw at this conference, progress has been made towards identifying genes that serve many of the functions of DNA barcodes, at least in some plant taxa. PMID:19067801

  9. Improved molecular barcodes by lifetime discrimination

    NASA Astrophysics Data System (ADS)

    Hall, Daniel B.; Lawrence, William G.

    2009-02-01

    Individual microspheres labeled with a unique barcode and a surface-bound probe are able to provide multiplexed biological assays in a convenient and high-throughput format. Typically, barcodes are created by impregnating microspheres with several colors of fluorophores mixed at different intensity levels. The number of barcodes is limited to hundreds primarily due to variability in fluorophore loading and difficulties in compensating for signal crosstalk. We constructed a molecular barcode based on differences in lifetimes rather than intensities. Lifetime-based measurements have an advantage in that signal from neighboring channels is reduced (because signal intensities are equal) and may be mathematically deconvoluted. The excited state lifetime of quantum dots (QDs) was systematically altered by attaching a variable number of quencher molecules to the surface. We have synthesized a series of ten QDs with distinguishable lifetimes all emitting at the same wavelength. The QDs were loaded into microspheres to determine the expected signal intensities. The uncertainty in lifetimes as a function of the interrogation time was determined. An acceptable standard deviation (3%) was obtained with a measurement time of approximately 10-30 μsec. Currently, we are expanding these studies to include multiple wavelengths and determining the maximal number of barcodes for a given spectral window.

  10. Biological identifications through DNA barcodes.

    PubMed Central

    Hebert, Paul D N; Cywinska, Alina; Ball, Shelley L; deWaard, Jeremy R

    2003-01-01

    Although much biological research depends upon species diagnoses, taxonomic expertise is collapsing. We are convinced that the sole prospect for a sustainable identification capability lies in the construction of systems that employ DNA sequences as taxon 'barcodes'. We establish that the mitochondrial gene cytochrome c oxidase I (COI) can serve as the core of a global bioidentification system for animals. First, we demonstrate that COI profiles, derived from the low-density sampling of higher taxonomic categories, ordinarily assign newly analysed taxa to the appropriate phylum or order. Second, we demonstrate that species-level assignments can be obtained by creating comprehensive COI profiles. A model COI profile, based upon the analysis of a single individual from each of 200 closely allied species of lepidopterans, was 100% successful in correctly identifying subsequent specimens. When fully developed, a COI identification system will provide a reliable, cost-effective and accessible solution to the current problem of species identification. Its assembly will also generate important new insights into the diversification of life and the rules of molecular evolution. PMID:12614582

  11. High capacity image barcodes using color separability

    NASA Astrophysics Data System (ADS)

    Bulan, Orhan; Oztan, Basak; Sharma, Gaurav

    2011-01-01

    Two-dimensional barcodes are widely used for encoding data in printed documents. In a number of applications, the visual appearance of the barcode constitutes a fundamental restriction. In this paper, we propose high capacity color image barcodes that encode data in an image while preserving its basic appearance. Our method aims at high embedding rates and sacrifices image fidelity in favor of embedding robustness in regions where these two goals conflict with each other. The method operates by utilizing cyan, magenta, and yellow printing channels with elongated dots whose orientations are modulated in order to encode the data. At the receiver, by using the complementary sensor channels to estimate the colorant channels, data is extracted in each individual colorant channel. In order to recover from errors introduced in the channel, error correction coding is employed. Our simulation and experimental results indicate that the proposed method can achieve high encoding rates while preserving the appearance of the base image.

  12. DNA barcoding in Mexico: an introduction.

    PubMed

    Elías-Gutiérrez, M; León-Regagnon, V

    2013-11-01

    DNA barcoding has become an important current scientific trend to the understanding of the world biodiversity. In the case of mega-diverse hot spots like Mexico, this technique represents an important tool for taxonomists, allowing them to concentrate in highlighted species by the barcodes instead of analyzing entire sets of specimens. This tendency resulted in the creation of a national network named Mexican Barcode of Life (MEXBOL) which main goals are to train students, and to promote the interaction and collective work among researchers interested in this topic. As a result, the number of records in the Barcode of Life Database (BOLD) for some groups, such as the Mammalia, Actinopterygii, Polychaeta, Branchiopoda, Ostracoda, Maxillopoda, Nematoda, Pinophyta, Ascomycota and Basidiomycota place Mexico among the top ten countries in the generation of these data. This special number presents only few of the many interesting findings in this region of the world, after the use of this technique and its integration with other methodologies. PMID:23919390

  13. 76 FR 34871 - Mobile Barcode Promotion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... consumer smartphones will apply to presort and automation mailings of First- Class Mail cards, letters, and... a three percent discount for presorted and automation mailings of First-Class Mail cards, letters... mailpieces with mobile barcodes must be one of the following: 1. Presorted or automation First-Class...

  14. Microcoding: the second step in DNA barcoding

    PubMed Central

    Summerbell, R.C; Lévesque, C.A; Seifert, K.A; Bovers, M; Fell, J.W; Diaz, M.R; Boekhout, T; de Hoog, G.S; Stalpers, J; Crous, P.W

    2005-01-01

    After the process of DNA barcoding has become well advanced in a group of organisms, as it has in the economically important fungi, the question then arises as to whether shorter and literally more barcode-like DNA segments should be utilized to facilitate rapid identification and, where applicable, detection. Through appropriate software analysis of typical full-length barcodes (generally over 500 base pairs long), uniquely distinctive oligonucleotide ‘microcodes’ of less than 25 bp can be found that allow rapid identification of circa 100–200 species on various array-like platforms. Microarrays can in principle fulfill the function of microcode-based species identification but, because of their high cost and low level of reusability, they tend to be less cost-effective. Two alternative platforms in current use in fungal identification are reusable nylon-based macroarrays and the Luminex system of specific, colour-coded DNA detection beads analysed by means of a flow cytometer. When the most efficient means of rapid barcode-based species identification is sought, a choice can be made either for one of these methodologies or for basic high-throughput sequencing, depending on the strategic outlook of the investigator and on current costs. Arrays and functionally similar platforms may have a particular advantage when a biologically complex material such as soil or a human respiratory secretion sample is analysed to give a census of relevant species present. PMID:16214747

  15. Quantitative phenotyping via deep barcode sequencing.

    PubMed

    Smith, Andrew M; Heisler, Lawrence E; Mellor, Joseph; Kaper, Fiona; Thompson, Michael J; Chee, Mark; Roth, Frederick P; Giaever, Guri; Nislow, Corey

    2009-10-01

    Next-generation DNA sequencing technologies have revolutionized diverse genomics applications, including de novo genome sequencing, SNP detection, chromatin immunoprecipitation, and transcriptome analysis. Here we apply deep sequencing to genome-scale fitness profiling to evaluate yeast strain collections in parallel. This method, Barcode analysis by Sequencing, or "Bar-seq," outperforms the current benchmark barcode microarray assay in terms of both dynamic range and throughput. When applied to a complex chemogenomic assay, Bar-seq quantitatively identifies drug targets, with performance superior to the benchmark microarray assay. We also show that Bar-seq is well-suited for a multiplex format. We completely re-sequenced and re-annotated the yeast deletion collection using deep sequencing, found that approximately 20% of the barcodes and common priming sequences varied from expectation, and used this revised list of barcode sequences to improve data quality. Together, this new assay and analysis routine provide a deep-sequencing-based toolkit for identifying gene-environment interactions on a genome-wide scale. PMID:19622793

  16. DNA Barcoding in Fragaria L. (Strawberry) Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA barcoding for species identification using a short DNA sequence has been successful in animals due to rapid mutation rates of the mitochondrial genome where the animal DNA barocode, cytochrome c oxidase 1 gene is located. The chloroplast PsbA-trnH spacer and the nuclear ribosomal internal transc...

  17. DNA barcoding and phylogenetic relationships in Timaliidae.

    PubMed

    Huang, Z H; Ke, D H

    2015-01-01

    The Timaliidae, a diverse family of oscine passerine birds, has long been a subject of debate regarding its phylogeny. The mitochondrial cytochrome c oxidase subunit I (COI) gene has been used as a powerful marker for identification and phylogenetic studies of animal species. In the present study, we analyzed the COI barcodes of 71 species from 21 genera belonging to the family Timaliidae. Every bird species possessed a barcode distinct from that of other bird species. Kimura two-parameter (K2P) distances were calculated between barcodes. The average genetic distance between species was 18 times higher than the average genetic distance within species. The neighbor-joining method was used to construct a phylogenetic tree and all the species could be discriminated by their distinct clades within the phylogenetic tree. The results indicate that some currently recognized babbler genera might not be monophyletic, with the COI gene data supporting the hypothesis of polyphyly for Garrulax, Alcippe, and Minla. Thus, DNA barcoding is an effective molecular tool for Timaliidae species identification and phylogenetic inference. PMID:26125793

  18. Raman Barcode for Counterfeit Drug Product Detection.

    PubMed

    Lawson, Latevi S; Rodriguez, Jason D

    2016-05-01

    Potential infiltration of counterfeit drug products-containing the wrong or no active pharmaceutical ingredient (API)-into the bona fide drug supply poses a significant threat to consumers worldwide. Raman spectroscopy offers a rapid, nondestructive avenue to screen a high throughput of samples. Traditional qualitative Raman identification is typically done with spectral correlation methods that compare the spectrum of a reference sample to an unknown. This is often effective for pure materials but is quite challenging when dealing with drug products that contain different formulations of active and inactive ingredients. Typically, reliable identification of drug products using common spectral correlation algorithms can only be made if the specific product under study is present in the library of reference spectra, thereby limiting the scope of products that can be screened. In this paper, we introduce the concept of the Raman barcode for identification of drug products by comparing the known peaks in the API reference spectrum to the peaks present in the finished drug product under study. This method requires the transformation of the Raman spectra of both API and finished drug products into a barcode representation by assigning zero intensity to every spectral frequency except the frequencies that correspond to Raman peaks. By comparing the percentage of nonzero overlap between the expected API barcode and finished drug product barcode, the identity of API present can be confirmed. In this study, 18 approved finished drug products and nine simulated counterfeits were successfully identified with 100% accuracy utilizing this method. PMID:27043140

  19. Universal COI primers for DNA barcoding amphibians.

    PubMed

    Che, Jing; Chen, Hong-Man; Yang, Jun-Xiao; Jin, Jie-Qiong; Jiang, Ke; Yuan, Zhi-Yong; Murphy, Robert W; Zhang, Ya-Ping

    2012-03-01

    DNA barcoding is a proven tool for the rapid and unambiguous identification of species, which is essential for many activities including the vouchering tissue samples in the genome 10K initiative, genealogical reconstructions, forensics and biodiversity surveys, among many other applications. A large-scale effort is underway to barcode all amphibian species using the universally sequenced DNA region, a partial fragment of mitochondrial cytochrome oxidase subunit I COI. This fragment is desirable because it appears to be superior to 16S for barcoding, at least for some groups of salamanders. The barcoding of amphibians is essential in part because many species are now endangered. Unfortunately, existing primers for COI often fail to achieve this goal. Herein, we report two new pairs of primers (➀, ➁) that in combination serve to universally amplify and sequence all three orders of Chinese amphibians as represented by 36 genera. This taxonomic diversity, which includes caecilians, salamanders and frogs, suggests that the new primer pairs will universally amplify COI for the vast majority species of amphibians. PMID:22145866

  20. The unholy trinity: taxonomy, species delimitation and DNA barcoding.

    PubMed

    DeSalle, Rob; Egan, Mary G; Siddall, Mark

    2005-10-29

    Recent excitement over the development of an initiative to generate DNA sequences for all named species on the planet has in our opinion generated two major areas of contention as to how this 'DNA barcoding' initiative should proceed. It is critical that these two issues are clarified and resolved, before the use of DNA as a tool for taxonomy and species delimitation can be universalized. The first issue concerns how DNA data are to be used in the context of this initiative; this is the DNA barcode reader problem (or barcoder problem). Currently, many of the published studies under this initiative have used tree building methods and more precisely distance approaches to the construction of the trees that are used to place certain DNA sequences into a taxonomic context. The second problem involves the reaction of the taxonomic community to the directives of the 'DNA barcoding' initiative. This issue is extremely important in that the classical taxonomic approach and the DNA approach will need to be reconciled in order for the 'DNA barcoding' initiative to proceed with any kind of community acceptance. In fact, we feel that DNA barcoding is a misnomer. Our preference is for the title of the London meetings--Barcoding Life. In this paper we discuss these two concerns generated around the DNA barcoding initiative and attempt to present a phylogenetic systematic framework for an improved barcoder as well as a taxonomic framework for interweaving classical taxonomy with the goals of 'DNA barcoding'. PMID:16214748

  1. Barcode server: a visualization-based genome analysis system.

    PubMed

    Mao, Fenglou; Olman, Victor; Wang, Yan; Xu, Ying

    2013-01-01

    We have previously developed a computational method for representing a genome as a barcode image, which makes various genomic features visually apparent. We have demonstrated that this visual capability has made some challenging genome analysis problems relatively easy to solve. We have applied this capability to a number of challenging problems, including (a) identification of horizontally transferred genes, (b) identification of genomic islands with special properties and (c) binning of metagenomic sequences, and achieved highly encouraging results. These application results inspired us to develop this barcode-based genome analysis server for public service, which supports the following capabilities: (a) calculation of the k-mer based barcode image for a provided DNA sequence; (b) detection of sequence fragments in a given genome with distinct barcodes from those of the majority of the genome, (c) clustering of provided DNA sequences into groups having similar barcodes; and (d) homology-based search using Blast against a genome database for any selected genomic regions deemed to have interesting barcodes. The barcode server provides a job management capability, allowing processing of a large number of analysis jobs for barcode-based comparative genome analyses. The barcode server is accessible at http://csbl1.bmb.uga.edu/Barcode. PMID:23457606

  2. Barcode Server: A Visualization-Based Genome Analysis System

    PubMed Central

    Mao, Fenglou; Olman, Victor; Wang, Yan; Xu, Ying

    2013-01-01

    We have previously developed a computational method for representing a genome as a barcode image, which makes various genomic features visually apparent. We have demonstrated that this visual capability has made some challenging genome analysis problems relatively easy to solve. We have applied this capability to a number of challenging problems, including (a) identification of horizontally transferred genes, (b) identification of genomic islands with special properties and (c) binning of metagenomic sequences, and achieved highly encouraging results. These application results inspired us to develop this barcode-based genome analysis server for public service, which supports the following capabilities: (a) calculation of the k-mer based barcode image for a provided DNA sequence; (b) detection of sequence fragments in a given genome with distinct barcodes from those of the majority of the genome, (c) clustering of provided DNA sequences into groups having similar barcodes; and (d) homology-based search using Blast against a genome database for any selected genomic regions deemed to have interesting barcodes. The barcode server provides a job management capability, allowing processing of a large number of analysis jobs for barcode-based comparative genome analyses. The barcode server is accessible at http://csbl1.bmb.uga.edu/Barcode. PMID:23457606

  3. DNA barcoding insect–host plant associations

    PubMed Central

    Jurado-Rivera, José A.; Vogler, Alfried P.; Reid, Chris A.M.; Petitpierre, Eduard; Gómez-Zurita, Jesús

    2008-01-01

    Short-sequence fragments (‘DNA barcodes’) used widely for plant identification and inventorying remain to be applied to complex biological problems. Host–herbivore interactions are fundamental to coevolutionary relationships of a large proportion of species on the Earth, but their study is frequently hampered by limited or unreliable host records. Here we demonstrate that DNA barcodes can greatly improve this situation as they (i) provide a secure identification of host plant species and (ii) establish the authenticity of the trophic association. Host plants of leaf beetles (subfamily Chrysomelinae) from Australia were identified using the chloroplast trnL(UAA) intron as barcode amplified from beetle DNA extracts. Sequence similarity and phylogenetic analyses provided precise identifications of each host species at tribal, generic and specific levels, depending on the available database coverage in various plant lineages. The 76 species of Chrysomelinae included—more than 10 per cent of the known Australian fauna—feed on 13 plant families, with preference for Australian radiations of Myrtaceae (eucalypts) and Fabaceae (acacias). Phylogenetic analysis of beetles shows general conservation of host association but with rare host shifts between distant plant lineages, including a few cases where barcodes supported two phylogenetically distant host plants. The study demonstrates that plant barcoding is already feasible with the current publicly available data. By sequencing plant barcodes directly from DNA extractions made from herbivorous beetles, strong physical evidence for the host association is provided. Thus, molecular identification using short DNA fragments brings together the detection of species and the analysis of their interactions. PMID:19004756

  4. Barcoding, types and the Hirudo files: using information content to critically evaluate the identity of DNA barcodes.

    PubMed

    Kvist, Sebastian; Oceguera-Figueroa, Alejandro; Siddall, Mark E; Erséus, Christer

    2010-12-01

    Species identifications based on DNA barcoding rely on the correct identity of previously barcoded specimens, but little attention has been given to whether deposited barcodes include correspondence to the species' name-bearing type. The information content associated with COX1 sequences in the two most commonly used repositories of barcodes, GenBank and the Barcode of Life Data System (BOLD), is often insufficient for subsequent evaluation of the robustness of the identification procedure. We argue that DNA barcoding and taxonomy alike will benefit from more information content in the annotations of barcoded specimens as this will allow for validation and re-evaluation of the initial specimen identification. The aim should be to closely connect specimens from which reference barcodes are generated with the holotype through straight-forward taxonomy, and geographical and genetic correlations. Annotated information should also include voucher specimens and collector/identifier information. We examine two case studies based on empirical data, in which barcoding and taxonomy benefit from increased information content. On the basis of data from the first case study, we designate a barcoded neotype of the European medicinal leech, Hirudo medicinalis, on morphological and geographical grounds. PMID:21171864

  5. BOLDMirror: a global mirror system of DNA barcode data.

    PubMed

    Liu, D; Liu, L; Guo, G; Wang, W; Sun, Q; Parani, M; Ma, J

    2013-11-01

    DNA barcoding is a novel concept for taxonomic identification using short, specific genetic markers and has been applied to study a large number of eukaryotes. The huge amount of data output generated by DNA barcoding requires well-organized information systems. Besides the Barcode of Life Data system (BOLD) established in Canada, the mirror system is also important for the international barcode of life project (iBOL). For this purpose, we developed the BOLDMirror, a global mirror system of DNA barcode data. It is open-sourced and can run on the LAMP (Linux + Apache + MySQL + PHP) environment. BOLDMirror has data synchronization, data representation and statistics modules, and also provides spaces to store user operation history. BOLDMirror can be accessed at http://www.boldmirror.net and several countries have used it to setup their site of DNA barcoding. PMID:23280134

  6. Application of PDF417 symbology for 'DNA Barcoding'.

    PubMed

    Kumar, N Pradeep; Rajavel, A R; Jambulingam, P

    2008-05-01

    DNA sequences consisting of about 600 base pairs of the 5' region of the cytochrome c oxidase subunit 1 (COI) gene has been proposed as DNA Barcodes for taxonomical identification of species in different animals. We evaluated the application of two-dimensional barcodes for 'DNA Barcoding'. 'PDF417' symbology was applied to convert DNA Barcode sequences already proposed [N. Pradeep Kumar, A.R. Rajavel, R. Natarajan, P. Jambulingam, DNA Barcodes can distinguish species of Indian mosquitoes (Diptera: Culicidae). J. Med. Entomol. 77 (2007) 1-7.] for 10 different species of mosquitoes prevalent in India. Decoding of these digital images using 2-D scanner and a suitable software reproduced the input DNA sequences unchanged. This analysis indicated the utility of PDF417 for 'DNA Barcoding', which could be of definite use for taxonomic documentation of animals. PMID:18282635

  7. Simple, multiplexed, PCR-based barcoding of DNA enables sensitive mutation detection in liquid biopsies using sequencing.

    PubMed

    Ståhlberg, Anders; Krzyzanowski, Paul M; Jackson, Jennifer B; Egyud, Matthew; Stein, Lincoln; Godfrey, Tony E

    2016-06-20

    Detection of cell-free DNA in liquid biopsies offers great potential for use in non-invasive prenatal testing and as a cancer biomarker. Fetal and tumor DNA fractions however can be extremely low in these samples and ultra-sensitive methods are required for their detection. Here, we report an extremely simple and fast method for introduction of barcodes into DNA libraries made from 5 ng of DNA. Barcoded adapter primers are designed with an oligonucleotide hairpin structure to protect the molecular barcodes during the first rounds of polymerase chain reaction (PCR) and prevent them from participating in mis-priming events. Our approach enables high-level multiplexing and next-generation sequencing library construction with flexible library content. We show that uniform libraries of 1-, 5-, 13- and 31-plex can be generated. Utilizing the barcodes to generate consensus reads for each original DNA molecule reduces background sequencing noise and allows detection of variant alleles below 0.1% frequency in clonal cell line DNA and in cell-free plasma DNA. Thus, our approach bridges the gap between the highly sensitive but specific capabilities of digital PCR, which only allows a limited number of variants to be analyzed, with the broad target capability of next-generation sequencing which traditionally lacks the sensitivity to detect rare variants. PMID:27060140

  8. Simple, multiplexed, PCR-based barcoding of DNA enables sensitive mutation detection in liquid biopsies using sequencing

    PubMed Central

    Ståhlberg, Anders; Krzyzanowski, Paul M.; Jackson, Jennifer B.; Egyud, Matthew; Stein, Lincoln; Godfrey, Tony E.

    2016-01-01

    Detection of cell-free DNA in liquid biopsies offers great potential for use in non-invasive prenatal testing and as a cancer biomarker. Fetal and tumor DNA fractions however can be extremely low in these samples and ultra-sensitive methods are required for their detection. Here, we report an extremely simple and fast method for introduction of barcodes into DNA libraries made from 5 ng of DNA. Barcoded adapter primers are designed with an oligonucleotide hairpin structure to protect the molecular barcodes during the first rounds of polymerase chain reaction (PCR) and prevent them from participating in mis-priming events. Our approach enables high-level multiplexing and next-generation sequencing library construction with flexible library content. We show that uniform libraries of 1-, 5-, 13- and 31-plex can be generated. Utilizing the barcodes to generate consensus reads for each original DNA molecule reduces background sequencing noise and allows detection of variant alleles below 0.1% frequency in clonal cell line DNA and in cell-free plasma DNA. Thus, our approach bridges the gap between the highly sensitive but specific capabilities of digital PCR, which only allows a limited number of variants to be analyzed, with the broad target capability of next-generation sequencing which traditionally lacks the sensitivity to detect rare variants. PMID:27060140

  9. The optical system design and application of micro 2D barcode

    NASA Astrophysics Data System (ADS)

    Zhu, Yi-jia; Li, Liang-liang; Qian, Cheng; Liang, Zhong-cheng

    2010-11-01

    We show an optical system of micro visual tag which is based on the principle of microscope and the property of QR Code. Unlike current optical tag, such as barcodes, must be read within a short rang and occupy valuable physical space on products, the new tags can be shrunk to several millimeters and captured from a distance of over 0.5 meters. We design the transmitter according to the parameters of camera lens. We also take the detection range and apertures into account, meanwhile conduct simulations and experiments. The result shows that: the tag can be captured from a long distance, and the amplified image is able to accurately be decoded.

  10. A DNA mini-barcode for land plants.

    PubMed

    Little, Damon P

    2014-05-01

    Small portions of the barcode region - mini-barcodes - may be used in place of full-length barcodes to overcome DNA degradation for samples with poor DNA preservation. 591,491,286 rbcL mini-barcode primer combinations were electronically evaluated for PCR universality, and two novel highly universal sets of priming sites were identified. Novel and published rbcL mini-barcode primers were evaluated for PCR amplification [determined with a validated electronic simulation (n = 2765) and empirically (n = 188)], Sanger sequence quality [determined empirically (n = 188)], and taxonomic discrimination [determined empirically (n = 30,472)]. PCR amplification for all mini-barcodes, as estimated by validated electronic simulation, was successful for 90.2-99.8% of species. Overall Sanger sequence quality for mini-barcodes was very low - the best mini-barcode tested produced sequences of adequate quality (B20 ≥ 0.5) for 74.5% of samples. The majority of mini-barcodes provide correct identifications of families in excess of 70.1% of the time. Discriminatory power noticeably decreased at lower taxonomic levels. At the species level, the discriminatory power of the best mini-barcode was less than 38.2%. For samples believed to contain DNA from only one species, an investigator should attempt to sequence, in decreasing order of utility and probability of success, mini-barcodes F (rbcL1/rbcLB), D (F52/R193) and K (F517/R604). For samples believed to contain DNA from more than one species, an investigator should amplify and sequence mini-barcode D (F52/R193). PMID:24286499

  11. Teaching Reading

    ERIC Educational Resources Information Center

    Day, Richard R.

    2013-01-01

    "Teaching Reading" uncovers the interactive processes that happen when people learn to read and translates them into a comprehensive easy-to-follow guide on how to teach reading. Richard Day's revelations on the nature of reading, reading strategies, reading fluency, reading comprehension, and reading objectives make fascinating…

  12. Critical factors for assembling a high volume of DNA barcodes

    PubMed Central

    Hajibabaei, Mehrdad; deWaard, Jeremy R; Ivanova, Natalia V; Ratnasingham, Sujeevan; Dooh, Robert T; Kirk, Stephanie L; Mackie, Paula M; Hebert, Paul D.N

    2005-01-01

    Large-scale DNA barcoding projects are now moving toward activation while the creation of a comprehensive barcode library for eukaryotes will ultimately require the acquisition of some 100 million barcodes. To satisfy this need, analytical facilities must adopt protocols that can support the rapid, cost-effective assembly of barcodes. In this paper we discuss the prospects for establishing high volume DNA barcoding facilities by evaluating key steps in the analytical chain from specimens to barcodes. Alliances with members of the taxonomic community represent the most effective strategy for provisioning the analytical chain with specimens. The optimal protocols for DNA extraction and subsequent PCR amplification of the barcode region depend strongly on their condition, but production targets of 100K barcode records per year are now feasible for facilities working with compliant specimens. The analysis of museum collections is currently challenging, but PCR cocktails that combine polymerases with repair enzyme(s) promise future success. Barcode analysis is already a cost-effective option for species identification in some situations and this will increasingly be the case as reference libraries are assembled and analytical protocols are simplified. PMID:16214753

  13. Barcoding of fresh water fishes from Pakistan.

    PubMed

    Karim, Asma; Iqbal, Asad; Akhtar, Rehan; Rizwan, Muhammad; Amar, Ali; Qamar, Usman; Jahan, Shah

    2016-07-01

    DNA bar-coding is a taxonomic method that uses small genetic markers in organisms' mitochondrial DNA (mt DNA) for identification of particular species. It uses sequence diversity in a 658-base pair fragment near the 5' end of the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene as a tool for species identification. DNA barcoding is more accurate and reliable method as compared with the morphological identification. It is equally useful in juveniles as well as adult stages of fishes. The present study was conducted to identify three farm fish species of Pakistan (Cyprinus carpio, Cirrhinus mrigala, and Ctenopharyngodon idella) genetically. All of them belonged to family cyprinidae. CO1 gene was amplified. PCR products were sequenced and analyzed by bioinformatic software. Conspecific, congenric, and confamilial k2P nucleotide divergence was estimated. From these findings, it was concluded that the gene sequence, CO1, may serve as milestone for the identification of related species at molecular level. PMID:25980661

  14. Laboratory information management systems for DNA barcoding.

    PubMed

    Parker, Meaghan; Stones-Havas, Steven; Starger, Craig; Meyer, Christopher

    2012-01-01

    In the field of molecular biology, laboratory information management systems (LIMSs) have been created to track workflows through a process pipeline. For the purposes of DNA barcoding, this workflow involves tracking tissues through extraction, PCR, cycle sequencing, and consensus assembly. Importantly, a LIMS that serves the DNA barcoding community must link required elements for public submissions (e.g., primers, trace files) that are generated in the molecular lab with specimen metadata. Here, we demonstrate an example workflow of a specimen's entry into the LIMS database to the publishing of the specimen's genetic data to a public database using Geneious bioinformatics software. Throughout the process, the connections between steps in the workflow are maintained to facilitate post-processing annotation, structured reporting, and fully transparent edits to reduce subjectivity and increase repeatability. PMID:22684961

  15. DNA barcoding of endangered Indian Paphiopedilum species.

    PubMed

    Parveen, Iffat; Singh, Hemant K; Raghuvanshi, Saurabh; Pradhan, Udai C; Babbar, Shashi B

    2012-01-01

    The indiscriminate collections of Paphiopedilum species from the wild for their exotic ornamental flowers have rendered these plants endangered. Although the trade of these endangered species from the wild is strictly forbidden, it continues unabated in one or other forms that elude the current identification methods. DNA barcoding that offers identification of a species even if only a small fragment of the organism at any stage of development is available could be of great utility in scrutinizing the illegal trade of both endangered plant and animal species. Therefore, this study was undertaken to develop DNA barcodes of Indian species of Paphiopedilum along with their three natural hybrids using loci from both the chloroplast and nuclear genomes. The five loci tested for their potential as effective barcodes were RNA polymerase-β subunit (rpoB), RNA polymerase-β' subunit (rpoC1), Rubisco large subunit (rbcL) and maturase K (matK) from the chloroplast genome and nuclear ribosomal internal transcribed spacer (nrITS) from the nuclear genome. The intra- and inter-specific divergence values and species discrimination rates were calculated by Kimura 2 parameter (K2P) method using mega 4.0. The matK with 0.9% average inter-specific divergence value yielded 100% species resolution, thus could distinguish all the eight species of Paphiopedilum unequivocally. The species identification capability of these sequences was further confirmed as each of the matK sequences was found to be unique for the species when a blast analysis of these sequences was carried out on NCBI. nrITS, although had 4.4% average inter-specific divergence value, afforded only 50% species resolution. DNA barcodes of the three hybrids also reflected their parentage. PMID:21951639

  16. Advancing taxonomy and bioinventories with DNA barcodes

    PubMed Central

    2016-01-01

    We use three examples—field and ecology-based inventories in Costa Rica and Papua New Guinea and a museum and taxonomic-based inventory of the moth family Geometridae—to demonstrate the use of DNA barcoding (a short sequence of the mitochondrial COI gene) in biodiversity inventories, from facilitating workflows of identification of freshly collected specimens from the field, to describing the overall diversity of megadiverse taxa from museum collections, and most importantly linking the fresh specimens, the general museum collections and historic type specimens. The process also flushes out unexpected sibling species hiding under long-applied scientific names, thereby clarifying and parsing previously mixed collateral data. The Barcode of Life Database has matured to an essential interactive platform for the multi-authored and multi-process collaboration. The BIN system of creating and tracking DNA sequence-based clusters as proxies for species has become a powerful way around some parts of the ‘taxonomic impediment’, especially in entomology, by providing fast but testable and tractable species hypotheses, tools for visualizing the distribution of those in time and space and an interim naming system for communication. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481791

  17. The seven deadly sins of DNA barcoding.

    PubMed

    Collins, R A; Cruickshank, R H

    2013-11-01

    Despite the broad benefits that DNA barcoding can bring to a diverse range of biological disciplines, a number of shortcomings still exist in terms of the experimental design of studies incorporating this approach. One underlying reason for this lies in the confusion that often exists between species discovery and specimen identification, and this is reflected in the way that hypotheses are generated and tested. Although these aims can be associated, they are quite distinct and require different methodological approaches, but their conflation has led to the frequently inappropriate use of commonly used analytical methods such as neighbour-joining trees, bootstrap resampling and fixed distance thresholds. Furthermore, the misidentification of voucher specimens can also have serious implications for end users of reference libraries such as the Barcode of Life Data Systems, and in this regard we advocate increased diligence in the a priori identification of specimens to be used for this purpose. This commentary provides an assessment of seven deficiencies that we identify as common in the DNA barcoding literature, and outline some potential improvements for its adaptation and adoption towards more reliable and accurate outcomes. PMID:23280099

  18. Advancing taxonomy and bioinventories with DNA barcodes.

    PubMed

    Miller, Scott E; Hausmann, Axel; Hallwachs, Winnie; Janzen, Daniel H

    2016-09-01

    We use three examples-field and ecology-based inventories in Costa Rica and Papua New Guinea and a museum and taxonomic-based inventory of the moth family Geometridae-to demonstrate the use of DNA barcoding (a short sequence of the mitochondrial COI gene) in biodiversity inventories, from facilitating workflows of identification of freshly collected specimens from the field, to describing the overall diversity of megadiverse taxa from museum collections, and most importantly linking the fresh specimens, the general museum collections and historic type specimens. The process also flushes out unexpected sibling species hiding under long-applied scientific names, thereby clarifying and parsing previously mixed collateral data. The Barcode of Life Database has matured to an essential interactive platform for the multi-authored and multi-process collaboration. The BIN system of creating and tracking DNA sequence-based clusters as proxies for species has become a powerful way around some parts of the 'taxonomic impediment', especially in entomology, by providing fast but testable and tractable species hypotheses, tools for visualizing the distribution of those in time and space and an interim naming system for communication.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481791

  19. Does a global DNA barcoding gap exist in Annelida?

    PubMed

    Kvist, Sebastian

    2016-05-01

    Accurate identification of unknown specimens by means of DNA barcoding is contingent on the presence of a DNA barcoding gap, among other factors, as its absence may result in dubious specimen identifications - false negatives or positives. Whereas the utility of DNA barcoding would be greatly reduced in the absence of a distinct and sufficiently sized barcoding gap, the limits of intraspecific and interspecific distances are seldom thoroughly inspected across comprehensive sampling. The present study aims to illuminate this aspect of barcoding in a comprehensive manner for the animal phylum Annelida. All cytochrome c oxidase subunit I sequences (cox1 gene; the chosen region for zoological DNA barcoding) present in GenBank for Annelida, as well as for "Polychaeta", "Oligochaeta", and Hirudinea separately, were downloaded and curated for length, coverage and potential contaminations. The final datasets consisted of 9782 (Annelida), 5545 ("Polychaeta"), 3639 ("Oligochaeta"), and 598 (Hirudinea) cox1 sequences and these were either (i) used as is in an automated global barcoding gap detection analysis or (ii) further analyzed for genetic distances, separated into bins containing intraspecific and interspecific comparisons and plotted in a graph to visualize any potential global barcoding gap. Over 70 million pairwise genetic comparisons were made and results suggest that although there is a tendency towards separation, no distinct or sufficiently sized global barcoding gap exists in either of the datasets rendering future barcoding efforts at risk of erroneous specimen identifications (but local barcoding gaps may still exist allowing for the identification of specimens at lower taxonomic ranks). This seems to be especially true for earthworm taxa, which account for fully 35% of the total number of interspecific comparisons that show 0% divergence. PMID:25431824

  20. Promise and Challenge of DNA Barcoding in Venus Slipper (Paphiopedilum)

    PubMed Central

    Guo, Yan-Yan; Huang, Lai-Qiang; Liu, Zhong-Jian; Wang, Xiao-Quan

    2016-01-01

    Orchidaceae are one of the largest families of flowering plants, with over 27,000 species described and all orchids are listed in CITES. Moreover, the seedlings of orchid species from the same genus are similar. The objective of DNA barcoding is rapid, accurate, and automated species identification, which may be used to identify illegally traded endangered species from vegetative specimens of Paphiopedilum (Venus slipper), a flagship group for plant conservation with high ornamental and commercial values. Here, we selected eight chloroplast barcodes and nrITS to evaluate their suitability in Venus slippers. The results indicate that all tested barcodes had no barcoding gap and the core plant barcodes showed low resolution for the identification of Venus slippers (18.86%). Of the single-locus barcodes, nrITS is the most efficient for the species identification of the genus (52.27%), whereas matK + atpF-atpH is the most efficient multi-locus combination (28.97%). Therefore, we recommend the combination of matK + atpF-atpH + ITS as a barcode for Venus slippers. Furthermore, there is an upper limit of resolution of the candidate barcodes, and only half of the taxa with multiple samples were identified successfully. The low efficiency of these candidate barcodes in Venus slippers may be caused by relatively recent speciation, the upper limit of the barcodes, and/or the sampling density. Although the discriminatory power is relatively low, DNA barcoding may be a promising tool to identify species involved in illegal trade, which has broad applications and is valuable for orchid conservation. PMID:26752741

  1. Promise and Challenge of DNA Barcoding in Venus Slipper (Paphiopedilum).

    PubMed

    Guo, Yan-Yan; Huang, Lai-Qiang; Liu, Zhong-Jian; Wang, Xiao-Quan

    2016-01-01

    Orchidaceae are one of the largest families of flowering plants, with over 27,000 species described and all orchids are listed in CITES. Moreover, the seedlings of orchid species from the same genus are similar. The objective of DNA barcoding is rapid, accurate, and automated species identification, which may be used to identify illegally traded endangered species from vegetative specimens of Paphiopedilum (Venus slipper), a flagship group for plant conservation with high ornamental and commercial values. Here, we selected eight chloroplast barcodes and nrITS to evaluate their suitability in Venus slippers. The results indicate that all tested barcodes had no barcoding gap and the core plant barcodes showed low resolution for the identification of Venus slippers (18.86%). Of the single-locus barcodes, nrITS is the most efficient for the species identification of the genus (52.27%), whereas matK + atpF-atpH is the most efficient multi-locus combination (28.97%). Therefore, we recommend the combination of matK + atpF-atpH + ITS as a barcode for Venus slippers. Furthermore, there is an upper limit of resolution of the candidate barcodes, and only half of the taxa with multiple samples were identified successfully. The low efficiency of these candidate barcodes in Venus slippers may be caused by relatively recent speciation, the upper limit of the barcodes, and/or the sampling density. Although the discriminatory power is relatively low, DNA barcoding may be a promising tool to identify species involved in illegal trade, which has broad applications and is valuable for orchid conservation. PMID:26752741

  2. Evaluation of candidate barcoding markers in Orinus (Poaceae).

    PubMed

    Su, X; Liu, Y P; Chen, Z; Chen, K L

    2016-01-01

    Orinus is an alpine endemic genus of Poaceae. Because of the imperfect specimens, high level of intraspecific morphological variability, and homoplasies of morphological characters, it is relatively difficult to delimitate species of Orinus by using morphology alone. To this end, the DNA barcoding has shown great potential in identifying species. The present study is the first attempt to test the feasibility of four proposed DNA barcoding markers (matK, rbcL, trnH-psbA, and ITS) in identifying four currently revised species of Orinus from the Qinghai-Tibetan Plateau (QTP). Among all the single-barcode candidates, the differentiation power was the highest for the nuclear internal transcribed spacer (ITS), while the chloroplast barcodes matK (M), rbcL (R), and trnH-psbA (H) could not identify the species. Meanwhile, the differentiation efficiency of the nuclear ITS (I) was also higher than any two- or three-locus combination of chloroplast barcodes, or even a combination of ITS and any chloroplast barcode except H + I and R + I. All the combinations of chloroplast barcodes plus the nuclear ITS, H + I, and R + I differentiated the highest portion of species. The highest differentiation rate for the barcodes or barcode combinations examined here was 100% (H + I and R + I). In summary, this case study showed that the nuclear ITS region represents a more promising barcode than any maternally inherited chloroplast region or combination of chloroplast regions in differentiating Orinus species from the QTP. Moreover, combining the ITS region with chloroplast regions may improve the barcoding success rate. PMID:27173245

  3. Vought F4U-1D Corsair

    NASA Technical Reports Server (NTRS)

    1945-01-01

    Vought F4U-1D Corsair: In February and March of 1945 this Corsair was examined in the NACA's 30 x 60 Full Scale Tunnel at Langley Field. The F4U-1D has rockets mounted on its wings for this test. After installation and during testing, the wings would be lowered to their flight position.

  4. What do plant pathologists want from the Fungal Barcoding Initiative?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant pathologists want from the Fungal Barcoding Initiative what everyone wants, specifically a fast, accurate identification of their causal plant pathogen resulting in a scientific name that synthesizes current knowledge of that organism. It sounds so easy! Yet, accurate DNA barcodes can only b...

  5. Bar-Code System for a Microbiological Laboratory

    NASA Technical Reports Server (NTRS)

    Law, Jennifer; Kirschner, Larry

    2007-01-01

    A bar-code system has been assembled for a microbiological laboratory that must examine a large number of samples. The system includes a commercial bar-code reader, computer hardware and software components, plus custom-designed database software. The software generates a user-friendly, menu-driven interface.

  6. Dissecting host-associated communities with DNA barcodes

    PubMed Central

    Pierce, Naomi E.

    2016-01-01

    DNA barcoding and metabarcoding methods have been invaluable in the study of interactions between host organisms and their symbiotic communities. Barcodes can help identify individual symbionts that are difficult to distinguish using morphological characters, and provide a way to classify undescribed species. Entire symbiont communities can be characterized rapidly using barcoding and especially metabarcoding methods, which is often crucial for isolating ecological signal from the substantial variation among individual hosts. Furthermore, barcodes allow the evolutionary histories of symbionts and their hosts to be assessed simultaneously and in reference to one another. Here, we describe three projects illustrating the utility of barcodes for studying symbiotic interactions: first, we consider communities of arthropods found in the ant-occupied domatia of the East African ant-plant Vachellia (Acacia) drepanolobium; second, we examine communities of arthropod and protozoan inquilines in three species of Nepenthes pitcher plant in South East Asia; third, we investigate communities of gut bacteria of South American ants in the genus Cephalotes. Advances in sequencing and computation, and greater database connectivity, will continue to expand the utility of barcoding methods for the study of species interactions, especially if barcoding can be approached flexibly by making use of alternative genetic loci, metagenomes and whole-genome data. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481780

  7. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  8. Barcoding of Collections in ARL Libraries. SPEC Kit 124.

    ERIC Educational Resources Information Center

    Kennedy, Gail A.; Lach, Michael J., Jr.

    The process of identifying items in a library's collection by assigning to each a unique machine readable code has been generally referred to as barcoding. Barcoding is often one of the first critical projects a library will embark upon in the process of automation. This Systems and Procedures Exchange Center (SPEC) kit addresses many of the major…

  9. Dissecting host-associated communities with DNA barcodes.

    PubMed

    Baker, Christopher C M; Bittleston, Leonora S; Sanders, Jon G; Pierce, Naomi E

    2016-09-01

    DNA barcoding and metabarcoding methods have been invaluable in the study of interactions between host organisms and their symbiotic communities. Barcodes can help identify individual symbionts that are difficult to distinguish using morphological characters, and provide a way to classify undescribed species. Entire symbiont communities can be characterized rapidly using barcoding and especially metabarcoding methods, which is often crucial for isolating ecological signal from the substantial variation among individual hosts. Furthermore, barcodes allow the evolutionary histories of symbionts and their hosts to be assessed simultaneously and in reference to one another. Here, we describe three projects illustrating the utility of barcodes for studying symbiotic interactions: first, we consider communities of arthropods found in the ant-occupied domatia of the East African ant-plant Vachellia (Acacia) drepanolobium; second, we examine communities of arthropod and protozoan inquilines in three species of Nepenthes pitcher plant in South East Asia; third, we investigate communities of gut bacteria of South American ants in the genus Cephalotes Advances in sequencing and computation, and greater database connectivity, will continue to expand the utility of barcoding methods for the study of species interactions, especially if barcoding can be approached flexibly by making use of alternative genetic loci, metagenomes and whole-genome data.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481780

  10. DNA Barcoding of Catfish: Species Authentication and Phylogenetic Assessment

    PubMed Central

    Wong, Li Lian; Peatman, Eric; Lu, Jianguo; Kucuktas, Huseyin; He, Shunping; Zhou, Chuanjiang; Na-nakorn, Uthairat; Liu, Zhanjiang

    2011-01-01

    As the global market for fisheries and aquaculture products expands, mislabeling of these products has become a growing concern in the food safety arena. Molecular species identification techniques hold the potential for rapid, accurate assessment of proper labeling. Here we developed and evaluated DNA barcodes for use in differentiating United States domestic and imported catfish species. First, we sequenced 651 base-pair barcodes from the cytochrome oxidase I (COI) gene from individuals of 9 species (and an Ictalurid hybrid) of domestic and imported catfish in accordance with standard DNA barcoding protocols. These included domestic Ictalurid catfish, and representative imported species from the families of Clariidae and Pangasiidae. Alignment of individual sequences from within a given species revealed highly consistent barcodes (98% similarity on average). These alignments allowed the development and analyses of consensus barcode sequences for each species and comparison with limited sequences in public databases (GenBank and Barcode of Life Data Systems). Validation tests carried out in blinded studies and with commercially purchased catfish samples (both frozen and fresh) revealed the reliability of DNA barcoding for differentiating between these catfish species. The developed protocols and consensus barcodes are valuable resources as increasing market and governmental scrutiny is placed on catfish and other fisheries and aquaculture products labeling in the United States. PMID:21423623

  11. Multilocus inference of species trees and DNA barcoding.

    PubMed

    Mallo, Diego; Posada, David

    2016-09-01

    The unprecedented amount of data resulting from next-generation sequencing has opened a new era in phylogenetic estimation. Although large datasets should, in theory, increase phylogenetic resolution, massive, multilocus datasets have uncovered a great deal of phylogenetic incongruence among different genomic regions, due both to stochastic error and to the action of different evolutionary process such as incomplete lineage sorting, gene duplication and loss and horizontal gene transfer. This incongruence violates one of the fundamental assumptions of the DNA barcoding approach, which assumes that gene history and species history are identical. In this review, we explain some of the most important challenges we will have to face to reconstruct the history of species, and the advantages and disadvantages of different strategies for the phylogenetic analysis of multilocus data. In particular, we describe the evolutionary events that can generate species tree-gene tree discordance, compare the most popular methods for species tree reconstruction, highlight the challenges we need to face when using them and discuss their potential utility in barcoding. Current barcoding methods sacrifice a great amount of statistical power by only considering one locus, and a transition to multilocus barcodes would not only improve current barcoding methods, but also facilitate an eventual transition to species-tree-based barcoding strategies, which could better accommodate scenarios where the barcode gap is too small or inexistent.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481787

  12. 3D barcodes: theoretical aspects and practical implementation

    NASA Astrophysics Data System (ADS)

    Gladstein, David; Kakarala, Ramakrishna; Baharav, Zachi

    2015-02-01

    This paper introduces the concept of three dimensional (3D) barcodes. A 3D barcode is composed of an array of 3D cells, called modules, and each can be either filled or empty, corresponding to two possible values of a bit. These barcodes have great theoretical promise thanks to their very large information capacity, which grows as the cube of the linear size of the barcode, and in addition are becoming practically manufacturable thanks to the ubiquitous use of 3D printers. In order to make these 3D barcodes practical for consumers, it is important to keep the decoding simple using commonly available means like smartphones. We therefore limit ourselves to decoding mechanisms based only on three projections of the barcode, which imply specific constraints on the barcode itself. The three projections produce the marginal sums of the 3D cube, which are the counts of filled-in modules along each Cartesian axis. In this paper we present some of the theoretical aspects of the 2D and 3D cases, and describe the resulting complexity of the 3D case. We then describe a method to reduce these complexities into a practical application. The method features an asymmetric coding scheme, where the decoder is much simpler than the encoder. We close by demonstrating 3D barcodes we created and their usability.

  13. Multilocus inference of species trees and DNA barcoding

    PubMed Central

    2016-01-01

    The unprecedented amount of data resulting from next-generation sequencing has opened a new era in phylogenetic estimation. Although large datasets should, in theory, increase phylogenetic resolution, massive, multilocus datasets have uncovered a great deal of phylogenetic incongruence among different genomic regions, due both to stochastic error and to the action of different evolutionary process such as incomplete lineage sorting, gene duplication and loss and horizontal gene transfer. This incongruence violates one of the fundamental assumptions of the DNA barcoding approach, which assumes that gene history and species history are identical. In this review, we explain some of the most important challenges we will have to face to reconstruct the history of species, and the advantages and disadvantages of different strategies for the phylogenetic analysis of multilocus data. In particular, we describe the evolutionary events that can generate species tree—gene tree discordance, compare the most popular methods for species tree reconstruction, highlight the challenges we need to face when using them and discuss their potential utility in barcoding. Current barcoding methods sacrifice a great amount of statistical power by only considering one locus, and a transition to multilocus barcodes would not only improve current barcoding methods, but also facilitate an eventual transition to species-tree-based barcoding strategies, which could better accommodate scenarios where the barcode gap is too small or inexistent. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481787

  14. Multiplexing clonality: combining RGB marking and genetic barcoding.

    PubMed

    Cornils, Kerstin; Thielecke, Lars; Hüser, Svenja; Forgber, Michael; Thomaschewski, Michael; Kleist, Nadja; Hussein, Kais; Riecken, Kristoffer; Volz, Tassilo; Gerdes, Sebastian; Glauche, Ingmar; Dahl, Andreas; Dandri, Maura; Roeder, Ingo; Fehse, Boris

    2014-04-01

    RGB marking and DNA barcoding are two cutting-edge technologies in the field of clonal cell marking. To combine the virtues of both approaches, we equipped LeGO vectors encoding red, green or blue fluorescent proteins with complex DNA barcodes carrying color-specific signatures. For these vectors, we generated highly complex plasmid libraries that were used for the production of barcoded lentiviral vector particles. In proof-of-principle experiments, we used barcoded vectors for RGB marking of cell lines and primary murine hepatocytes. We applied single-cell polymerase chain reaction to decipher barcode signatures of individual RGB-marked cells expressing defined color hues. This enabled us to prove clonal identity of cells with one and the same RGB color. Also, we made use of barcoded vectors to investigate clonal development of leukemia induced by ectopic oncogene expression in murine hematopoietic cells. In conclusion, by combining RGB marking and DNA barcoding, we have established a novel technique for the unambiguous genetic marking of individual cells in the context of normal regeneration as well as malignant outgrowth. Moreover, the introduction of color-specific signatures in barcodes will facilitate studies on the impact of different variables (e.g. vector type, transgenes, culture conditions) in the context of competitive repopulation studies. PMID:24476916

  15. Multiplexing clonality: combining RGB marking and genetic barcoding

    PubMed Central

    Cornils, Kerstin; Thielecke, Lars; Hüser, Svenja; Forgber, Michael; Thomaschewski, Michael; Kleist, Nadja; Hussein, Kais; Riecken, Kristoffer; Volz, Tassilo; Gerdes, Sebastian; Glauche, Ingmar; Dahl, Andreas; Dandri, Maura; Roeder, Ingo; Fehse, Boris

    2014-01-01

    RGB marking and DNA barcoding are two cutting-edge technologies in the field of clonal cell marking. To combine the virtues of both approaches, we equipped LeGO vectors encoding red, green or blue fluorescent proteins with complex DNA barcodes carrying color-specific signatures. For these vectors, we generated highly complex plasmid libraries that were used for the production of barcoded lentiviral vector particles. In proof-of-principle experiments, we used barcoded vectors for RGB marking of cell lines and primary murine hepatocytes. We applied single-cell polymerase chain reaction to decipher barcode signatures of individual RGB-marked cells expressing defined color hues. This enabled us to prove clonal identity of cells with one and the same RGB color. Also, we made use of barcoded vectors to investigate clonal development of leukemia induced by ectopic oncogene expression in murine hematopoietic cells. In conclusion, by combining RGB marking and DNA barcoding, we have established a novel technique for the unambiguous genetic marking of individual cells in the context of normal regeneration as well as malignant outgrowth. Moreover, the introduction of color-specific signatures in barcodes will facilitate studies on the impact of different variables (e.g. vector type, transgenes, culture conditions) in the context of competitive repopulation studies. PMID:24476916

  16. Identification of Indian crocodile species through DNA barcodes.

    PubMed

    Meganathan, P R; Dubey, Bhawna; Jogayya, Kothakota Naga; Haque, Ikramul

    2013-07-01

    The biodiversity of India includes three crocodile species, Crocodylus palustris, Crocodylus porosus, and Gavialis gangeticus, whose status is threatened due to bushmeat crisis and illegal hunting. The crocodilian conservation management requires novel techniques to help forensic analysts to reveal species identity. DNA barcoding is a species identification technique, where a partial cytochrome c oxidase subunit 1 gene is used as a marker for species identification. Herein, the DNA barcoding technique is evaluated for three Indian crocodiles by analyzing an approximately 750-bp barcode region. The alignment result shows interspecific variations between sequences for discrimination of the three Indian crocodiles leading to species identification. The phylogenetic analyses also substantiate the established crocodilian relationships, which add further advantage to use this DNA barcoding approach for Indian crocodiles. This study provides preliminary evidences for the use of DNA barcoding technique in the identification of Indian crocodile species. PMID:23718785

  17. DNA barcoding to fishes: current status and future directions.

    PubMed

    Bhattacharya, Manojit; Sharma, Ashish Ranjan; Patra, Bidhan Chandra; Sharma, Garima; Seo, Eun-Min; Nam, Ju-Suk; Chakraborty, Chiranjib; Lee, Sang-Soo

    2016-07-01

    DNA barcoding appears to be a promising approach for taxonomic identification, characterization, and discovery of newer species, facilitating biodiversity studies. It helps researchers to appreciate genetic and evolutionary associations by collection of molecular, morphological, and distributional data. Fish DNA barcoding, based on the sequencing of a uniform area of Cytochrome C Oxidase type I (COI) gene, has received significant interest as an accurate tool for species identification, authentication, and phylogenetic analysis. The aim of this review article was to investigate recent global status, approaches, and future direction of DNA barcoding in fisheries sectors. We have tried to highlight its possible impacts, complications, and validation issues at species levels for biodiversity analysis. Moreover, an effort has been put forward to understand issues related to various marker genes associated with barcode process as primer sequences and have concluded barcode promotion as an indispensable tool of molecular biology for the development of taxonomic support systems. PMID:26057011

  18. Commercial Teas Highlight Plant DNA Barcode Identification Successes and Obstacles

    PubMed Central

    Stoeckle, Mark Y.; Gamble, Catherine C.; Kirpekar, Rohan; Young, Grace; Ahmed, Selena; Little, Damon P.

    2011-01-01

    Appearance does not easily identify the dried plant fragments used to prepare teas to species. Here we test recovery of standard DNA barcodes for land plants from a large array of commercial tea products and analyze their performance in identifying tea constituents using existing databases. Most (90%) of 146 tea products yielded rbcL or matK barcodes using a standard protocol. Matching DNA identifications to listed ingredients was limited by incomplete databases for the two markers, shared or nearly identical barcodes among some species, and lack of standard common names for plant species. About 1/3 of herbal teas generated DNA identifications not found on labels. Broad scale adoption of plant DNA barcoding may require algorithms that place search results in context of standard plant names and character-based keys for distinguishing closely-related species. Demonstrating the importance of accessible plant barcoding, our findings indicate unlisted ingredients are common in herbal teas. PMID:22355561

  19. Gold Nanoparticles-Based Barcode Analysis for Detection of Norepinephrine.

    PubMed

    An, Jeung Hee; Lee, Kwon-Jai; Choi, Jeong-Woo

    2016-02-01

    Nanotechnology-based bio-barcode amplification analysis offers an innovative approach for detecting neurotransmitters. We evaluated the efficacy of this method for detecting norepinephrine in normal and oxidative-stress damaged dopaminergic cells. Our approach use a combination of DNA barcodes and bead-based immunoassays for detecting neurotransmitters with surface-enhanced Raman spectroscopy (SERS), and provides polymerase chain reaction (PCR)-like sensitivity. This method relies on magnetic Dynabeads containing antibodies and nanoparticles that are loaded both with DNA barcords and with antibodies that can sandwich the target protein captured by the Dynabead-bound antibodies. The aggregate sandwich structures are magnetically separated from the solution and treated to remove the conjugated barcode DNA. The DNA barcodes are then identified by SERS and PCR analysis. The concentration of norepinephrine in dopaminergic cells can be readily detected using the bio-barcode assay, which is a rapid, high-throughput screening tool for detecting neurotransmitters. PMID:27305769

  20. [Screening potential DNA barcode regions of genus Papaver].

    PubMed

    Zhang, Shuang; Liu, Yu-jing; Wu, Yan-sheng; Cao, Ying; Yuan, Yuan

    2015-08-01

    DNA barcoding is an effective technique in species identification. To determine the candidate sequences which can be used as DNA barcode to identify in Papaver genus, five potential sequences (ITS, matK, psbA-trnH, rbcL, trnL-trnF) were screened. 69 sequences were downloaded from Genbank, including 21 ITS sequences, 10 matK sequences, 8 psbA-trnH sequences, 14 rbcL sequences and 16 trnL-trnF sequences. Mega 6.0 was used to analysis the comparison of sequences. By the methods of calculating the distances in intraspecific and interspecific divergences, evaluating DNA barcoding gap and constructing NJ and UPMGA phylogenetic trees. The sequence trnL-trnF performed best. In conclusion, trnL-trnF can be considered as a novel DNA barcode in Papaver genus, other four sequences can be as combination barcode for identification. PMID:26677693

  1. [Hydrophidae identification through analysis on Cyt b gene barcode].

    PubMed

    Liao, Li-xi; Zeng, Ke-wu; Tu, Peng-fei

    2015-08-01

    Hydrophidae, one of the precious traditional Chinese medicines, is generally drily preserved to prevent corruption, but it is hard to identify the species of Hydrophidae through the appearance because of the change due to the drying process. The identification through analysis on gene barcode, a new technique in species identification, can avoid the problem. The gene barcodes of the 6 species of Hydrophidae like Lapemis hardwickii were aquired through DNA extraction and gene sequencing. These barcodes were then in sequence alignment and test the identification efficency by BLAST. Our results revealed that the barcode sequences performed high identification efficiency, and had obvious difference between intra- and inter-species. These all indicated that Cyt b DNA barcoding can confirm the Hydrophidae identification. PMID:26790288

  2. Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA

    NASA Astrophysics Data System (ADS)

    Lin, Chenxiang; Jungmann, Ralf; Leifer, Andrew M.; Li, Chao; Levner, Daniel; Church, George M.; Shih, William M.; Yin, Peng

    2012-10-01

    The identification and differentiation of a large number of distinct molecular species with high temporal and spatial resolution is a major challenge in biomedical science. Fluorescence microscopy is a powerful tool, but its multiplexing ability is limited by the number of spectrally distinguishable fluorophores. Here, we used (deoxy)ribonucleic acid (DNA)-origami technology to construct submicrometre nanorods that act as fluorescent barcodes. We demonstrate that spatial control over the positioning of fluorophores on the surface of a stiff DNA nanorod can produce 216 distinct barcodes that can be decoded unambiguously using epifluorescence or total internal reflection fluorescence microscopy. Barcodes with higher spatial information density were demonstrated via the construction of super-resolution barcodes with features spaced by ˜40 nm. One species of the barcodes was used to tag yeast surface receptors, which suggests their potential applications as in situ imaging probes for diverse biomolecular and cellular entities in their native environments.

  3. Highly-multiplexed barcode sequencing: an efficient method for parallel analysis of pooled samples

    PubMed Central

    Smith, Andrew M.; Heisler, Lawrence E.; St.Onge, Robert P.; Farias-Hesson, Eveline; Wallace, Iain M.; Bodeau, John; Harris, Adam N.; Perry, Kathleen M.; Giaever, Guri; Pourmand, Nader; Nislow, Corey

    2010-01-01

    Next-generation sequencing has proven an extremely effective technology for molecular counting applications where the number of sequence reads provides a digital readout for RNA-seq, ChIP-seq, Tn-seq and other applications. The extremely large number of sequence reads that can be obtained per run permits the analysis of increasingly complex samples. For lower complexity samples, however, a point of diminishing returns is reached when the number of counts per sequence results in oversampling with no increase in data quality. A solution to making next-generation sequencing as efficient and affordable as possible involves assaying multiple samples in a single run. Here, we report the successful 96-plexing of complex pools of DNA barcoded yeast mutants and show that such ‘Bar-seq’ assessment of these samples is comparable with data provided by barcode microarrays, the current benchmark for this application. The cost reduction and increased throughput permitted by highly multiplexed sequencing will greatly expand the scope of chemogenomics assays and, equally importantly, the approach is suitable for other sequence counting applications that could benefit from massive parallelization. PMID:20460461

  4. Anticounterfeit protection of pharmaceutical products with spatial mapping of X-ray-detectable barcodes and logos.

    PubMed

    Musumeci, Daniele; Hu, Chunhua; Ward, Michael D

    2011-10-01

    Counterfeit pharmaceutical products are a global threat to public health, and they undermine the credibility and the financial success of the producers of genuine products. The escalating circulation of counterfeit drugs demands new anticounterfeit measures that permit rapid screening, are nondestructive, and cannot be circumvented easily. Herein we describe a micro-X-ray diffraction (μ-XRD) protocol for this purpose capable of reading barcodes and logos fabricated on various substrates using soft-lithography stamping of compounds that can be read by X-ray diffraction but are invisible to the naked eye or optical microscopy. This method is demonstrated with barcodes and logos of compounds, approved by the Food and Drug Administration, printed on flat substrates as well as commercial aspirin and ibuprofen tablets. The μ-XRD protocol is nondestructive, automated, and user-friendly and can be used to certify the authenticity of drug tablets by mapping hidden patterns printed under the tablet coating and on packages. PMID:21877684

  5. DNA barcodes from century-old type specimens using next-generation sequencing.

    PubMed

    Prosser, Sean W J; deWaard, Jeremy R; Miller, Scott E; Hebert, Paul D N

    2016-03-01

    Type specimens have high scientific importance because they provide the only certain connection between the application of a Linnean name and a physical specimen. Many other individuals may have been identified as a particular species, but their linkage to the taxon concept is inferential. Because type specimens are often more than a century old and have experienced conditions unfavourable for DNA preservation, success in sequence recovery has been uncertain. This study addresses this challenge by employing next-generation sequencing (NGS) to recover sequences for the barcode region of the cytochrome c oxidase 1 gene from small amounts of template DNA. DNA quality was first screened in more than 1800 century-old type specimens of Lepidoptera by attempting to recover 164-bp and 94-bp reads via Sanger sequencing. This analysis permitted the assignment of each specimen to one of three DNA quality categories - high (164-bp sequence), medium (94-bp sequence) or low (no sequence). Ten specimens from each category were subsequently analysed via a PCR-based NGS protocol requiring very little template DNA. It recovered sequence information from all specimens with average read lengths ranging from 458 bp to 610 bp for the three DNA categories. By sequencing ten specimens in each NGS run, costs were similar to Sanger analysis. Future increases in the number of specimens processed in each run promise substantial reductions in cost, making it possible to anticipate a future where barcode sequences are available from most type specimens. PMID:26426290

  6. An In silico approach for the evaluation of DNA barcodes

    PubMed Central

    2010-01-01

    Background DNA barcoding is a key tool for assessing biodiversity in both taxonomic and environmental studies. Essential features of barcodes include their applicability to a wide spectrum of taxa and their ability to identify even closely related species. Several DNA regions have been proposed as barcodes and the region selected strongly influences the output of a study. However, formal comparisons between barcodes remained limited until now. Here we present a standard method for evaluating barcode quality, based on the use of a new bioinformatic tool that performs in silico PCR over large databases. We illustrate this approach by comparing the taxonomic coverage and the resolution of several DNA regions already proposed for the barcoding of vertebrates. To assess the relationship between in silico and in vitro PCR, we also developed specific primers amplifying different species of Felidae, and we tested them using both kinds of PCR Results Tests on specific primers confirmed the correspondence between in silico and in vitro PCR. Nevertheless, results of in silico and in vitro PCRs can be somehow different, also because tuning PCR conditions can increase the performance of primers with limited taxonomic coverage. The in silico evaluation of DNA barcodes showed a strong variation of taxonomic coverage (i.e., universality): barcodes based on highly degenerated primers and those corresponding to the conserved region of the Cyt-b showed the highest coverage. As expected, longer barcodes had a better resolution than shorter ones, which are however more convenient for ecological studies analysing environmental samples. Conclusions In silico PCR could be used to improve the performance of a study, by allowing the preliminary comparison of several DNA regions in order to identify the most appropriate barcode depending on the study aims. PMID:20637073

  7. Comparative Analysis of Korean Human Gut Microbiota by Barcoded Pyrosequencing

    PubMed Central

    Nam, Young-Do; Jung, Mi-Ja; Roh, Seong Woon; Kim, Min-Soo; Bae, Jin-Woo

    2011-01-01

    Human gut microbiota plays important roles in harvesting energy from the diet, stimulating the proliferation of the intestinal epithelium, developing the immune system, and regulating fat storage in the host. Characterization of gut microbiota, however, has been limited to western people and is not sufficiently extensive to fully describe microbial communities. In this study, we investigated the overall composition of the gut microbiota and its host specificity and temporal stability in 20 Koreans using 454-pyrosequencing with barcoded primers targeting the V1 to V3 region of the bacterial 16S rRNA gene. A total of 303,402 high quality reads covered each sample and 8,427 reads were analyzed on average. The results were compared with those of individuals from the USA, China and Japan. In general, microbial communities were dominated by five previously identified phyla: Actinobacteria, Firmicutes, Bacteroidetes, Fusobacteria, and Proteobacteria. UPGMA cluster analysis showed that the species composition of gut microbiota was host-specific and stable over the duration of the test period, but the relative abundance of each member fluctuated. 43 core Korean gut microbiota were identified by comparison of sequences from each individual, of which 15 species level phylotypes were related to previously-reported butyrate-producing bacteria. UniFrac analysis revealed that human gut microbiota differed between countries: Korea, USA, Japan and China, but tended to vary less between individual Koreans, suggesting that gut microbial composition is related to internal and external characteristics of each country member such as host genetics and diet styles. PMID:21829445

  8. Reading(s).

    ERIC Educational Resources Information Center

    Summerfield, Geoffrey; Summerfield, Judith

    Developed for college English courses, this book presents selections of poetry, short stories, and commentary intended to invite different ways of reading and interpreting literature. An introduction provides an overview of the book's content, as well as a discussion of how to read. The first section, "Entering a Language," considers the…

  9. Digital biomagnetism: Electrodeposited multilayer magnetic barcodes

    NASA Astrophysics Data System (ADS)

    Palfreyman, Justin J.; Cooper, Joshaniel F. K.; van Belle, Frieda; Hong, Bingyan; Hayward, Tom J.; Lopalco, Maria; Bradley, Mark; Mitrelias, Thanos; Bland, J. Anthony C.

    2009-05-01

    A novel magnetic encoding technique for performing high-throughput biological assays is presented. Electrodeposited Ni/Cu and Co/Cu multilayer pillar structures with a diameter of 15 μm and a thickness up to 10 μm are presented as "magnetic barcodes", where the number of unique codes possible increases exponentially with a linear increase in length. A gold cap facilitates the growth of self-assembled monolayers (SAMs), while microdrop printing allows efficient generation of large libraries of tagged probes. Coercivity-tuning techniques are used to exploit a non-proximity encoding methodology compatible with microfluidic flow.

  10. Environmental Barcoding Reveals Massive Dinoflagellate Diversity in Marine Environments

    PubMed Central

    Stern, Rowena F.; Horak, Ales; Andrew, Rose L.; Coffroth, Mary-Alice; Andersen, Robert A.; Küpper, Frithjof C.; Jameson, Ian; Hoppenrath, Mona; Véron, Benoît; Kasai, Fumai; Brand, Jerry; James, Erick R.; Keeling, Patrick J.

    2010-01-01

    Background Dinoflagellates are an ecologically important group of protists with important functions as primary producers, coral symbionts and in toxic red tides. Although widely studied, the natural diversity of dinoflagellates is not well known. DNA barcoding has been utilized successfully for many protist groups. We used this approach to systematically sample known “species”, as a reference to measure the natural diversity in three marine environments. Methodology/Principal Findings In this study, we assembled a large cytochrome c oxidase 1 (COI) barcode database from 8 public algal culture collections plus 3 private collections worldwide resulting in 336 individual barcodes linked to specific cultures. We demonstrate that COI can identify to the species level in 15 dinoflagellate genera, generally in agreement with existing species names. Exceptions were found in species belonging to genera that were generally already known to be taxonomically challenging, such as Alexandrium or Symbiodinium. Using this barcode database as a baseline for cultured dinoflagellate diversity, we investigated the natural diversity in three diverse marine environments (Northeast Pacific, Northwest Atlantic, and Caribbean), including an evaluation of single-cell barcoding to identify uncultivated groups. From all three environments, the great majority of barcodes were not represented by any known cultured dinoflagellate, and we also observed an explosion in the diversity of genera that previously contained a modest number of known species, belonging to Kareniaceae. In total, 91.5% of non-identical environmental barcodes represent distinct species, but only 51 out of 603 unique environmental barcodes could be linked to cultured species using a conservative cut-off based on distances between cultured species. Conclusions/Significance COI barcoding was successful in identifying species from 70% of cultured genera. When applied to environmental samples, it revealed a massive amount of

  11. DNA Barcoding Identifies Argentine Fishes from Marine and Brackish Waters

    PubMed Central

    Mabragaña, Ezequiel; Díaz de Astarloa, Juan Martín; Hanner, Robert; Zhang, Junbin; González Castro, Mariano

    2011-01-01

    Background DNA barcoding has been advanced as a promising tool to aid species identification and discovery through the use of short, standardized gene targets. Despite extensive taxonomic studies, for a variety of reasons the identification of fishes can be problematic, even for experts. DNA barcoding is proving to be a useful tool in this context. However, its broad application is impeded by the need to construct a comprehensive reference sequence library for all fish species. Here, we make a regional contribution to this grand challenge by calibrating the species discrimination efficiency of barcoding among 125 Argentine fish species, representing nearly one third of the known fauna, and examine the utility of these data to address several key taxonomic uncertainties pertaining to species in this region. Methodology/Principal Findings Specimens were collected and morphologically identified during crusies conducted between 2005 and 2008. The standard BARCODE fragment of COI was amplified and bi-directionally sequenced from 577 specimens (mean of 5 specimens/species), and all specimens and sequence data were archived and interrogated using analytical tools available on the Barcode of Life Data System (BOLD; www.barcodinglife.org). Nearly all species exhibited discrete clusters of closely related haplogroups which permitted the discrimination of 95% of the species (i.e. 119/125) examined while cases of shared haplotypes were detected among just three species-pairs. Notably, barcoding aided the identification of a new species of skate, Dipturus argentinensis, permitted the recognition of Genypterus brasiliensis as a valid species and questions the generic assignment of Paralichthys isosceles. Conclusions/Significance This study constitutes a significant contribution to the global barcode reference sequence library for fishes and demonstrates the utility of barcoding for regional species identification. As an independent assessment of alpha taxonomy, barcodes provide

  12. Covert thermal barcodes based on phase change nanoparticles

    PubMed Central

    Duong, Binh; Liu, Helin; Ma, Liyuan; Su, Ming

    2014-01-01

    An unmet need is to develop covert barcodes that can be used to track-trace objects, and authenticate documents. This paper describes a new nanoparticle-based covert barcode system, in which a selected panel of solid-to-liquid phase change nanoparticles with discrete and sharp melting peaks is added in a variety of objects such as explosive derivative, drug, polymer, and ink. This method has high labeling capacity owing to the small sizes of nanoparticles, sharp melting peaks, and large scan range of thermal analysis. The thermal barcode can enhance forensic investigation by its technical readiness, structural covertness, and robustness. PMID:24901064

  13. Covert thermal barcodes based on phase change nanoparticles

    NASA Astrophysics Data System (ADS)

    Duong, Binh; Liu, Helin; Ma, Liyuan; Su, Ming

    2014-06-01

    An unmet need is to develop covert barcodes that can be used to track-trace objects, and authenticate documents. This paper describes a new nanoparticle-based covert barcode system, in which a selected panel of solid-to-liquid phase change nanoparticles with discrete and sharp melting peaks is added in a variety of objects such as explosive derivative, drug, polymer, and ink. This method has high labeling capacity owing to the small sizes of nanoparticles, sharp melting peaks, and large scan range of thermal analysis. The thermal barcode can enhance forensic investigation by its technical readiness, structural covertness, and robustness.

  14. Identification of Scleractinian Coral Recruits Using Fluorescent Censusing and DNA Barcoding Techniques

    PubMed Central

    Hsu, Chia-Min; de Palmas, Stéphane; Kuo, Chao-Yang; Denis, Vianney; Chen, Chaolun Allen

    2014-01-01

    The identification of coral recruits has been problematic due to a lack of definitive morphological characters being available for higher taxonomic resolution. In this study, we tested whether fluorescent detection of coral recruits used in combinations of different DNA-barcoding markers (cytochrome oxidase I gene [COI], open reading frame [ORF], and nuclear Pax-C intron [PaxC]) could be useful for increasing the resolution of coral spat identification in ecological studies. One hundred and fifty settlement plates were emplaced at nine sites on the fringing reefs of Kenting National Park in southern Taiwan between April 2011 and September 2012. A total of 248 living coral spats and juveniles (with basal areas ranging from 0.21 to 134.57 mm2) were detected on the plates with the aid of fluorescent light and collected for molecular analyses. Using the COI DNA barcoding technique, 90.3% (224/248) of coral spats were successfully identified into six genera, including Acropora, Isopora, Montipora, Pocillopora, Porites, and Pavona. PaxC further separated I. cuneata and I. palifera of Isopora from Acropora, and ORF successfully identified the species of Pocillopora (except P. meandrina and P. eydouxi). Moreover, other cnidarian species such as actinarians, zoanthids, and Millepora species were visually found using fluorescence and identified by COI DNA barcoding. This combination of existing approaches greatly improved the taxonomic resolution of early coral life stages, which to date has been mainly limited to the family level based on skeletal identification. Overall, this study suggests important improvements for the identification of coral recruits in ecological studies. PMID:25211345

  15. Identification of scleractinian coral recruits using fluorescent censusing and DNA barcoding techniques.

    PubMed

    Hsu, Chia-Min; de Palmas, Stéphane; Kuo, Chao-Yang; Denis, Vianney; Chen, Chaolun Allen

    2014-01-01

    The identification of coral recruits has been problematic due to a lack of definitive morphological characters being available for higher taxonomic resolution. In this study, we tested whether fluorescent detection of coral recruits used in combinations of different DNA-barcoding markers (cytochrome oxidase I gene [COI], open reading frame [ORF], and nuclear Pax-C intron [PaxC]) could be useful for increasing the resolution of coral spat identification in ecological studies. One hundred and fifty settlement plates were emplaced at nine sites on the fringing reefs of Kenting National Park in southern Taiwan between April 2011 and September 2012. A total of 248 living coral spats and juveniles (with basal areas ranging from 0.21 to 134.57 mm(2)) were detected on the plates with the aid of fluorescent light and collected for molecular analyses. Using the COI DNA barcoding technique, 90.3% (224/248) of coral spats were successfully identified into six genera, including Acropora, Isopora, Montipora, Pocillopora, Porites, and Pavona. PaxC further separated I. cuneata and I. palifera of Isopora from Acropora, and ORF successfully identified the species of Pocillopora (except P. meandrina and P. eydouxi). Moreover, other cnidarian species such as actinarians, zoanthids, and Millepora species were visually found using fluorescence and identified by COI DNA barcoding. This combination of existing approaches greatly improved the taxonomic resolution of early coral life stages, which to date has been mainly limited to the family level based on skeletal identification. Overall, this study suggests important improvements for the identification of coral recruits in ecological studies. PMID:25211345

  16. Scaling up the 454 Titanium Library Construction and Pooling of Barcoded Libraries

    SciTech Connect

    Phung, Wilson; Hack, Christopher; Shapiro, Harris; Lucas, Susan; Cheng, Jan-Fang

    2009-03-23

    We have been developing a high throughput 454 library construction process at the Joint Genome Institute to meet the needs of de novo sequencing a large number of microbial and eukaryote genomes, EST, and metagenome projects. We have been focusing efforts in three areas: (1) modifying the current process to allow the construction of 454 standard libraries on a 96-well format; (2) developing a robotic platform to perform the 454 library construction; and (3) designing molecular barcodes to allow pooling and sorting of many different samples. In the development of a high throughput process to scale up the number of libraries by adapting the process to a 96-well plate format, the key process change involves the replacement of gel electrophoresis for size selection with Solid Phase Reversible Immobilization (SPRI) beads. Although the standard deviation of the insert sizes increases, the overall quality sequence and distribution of the reads in the genome has not changed. The manual process of constructing 454 shotgun libraries on 96-well plates is a time-consuming, labor-intensive, and ergonomically hazardous process; we have been experimenting to program a BioMek robot to perform the library construction. This will not only enable library construction to be completed in a single day, but will also minimize any ergonomic risk. In addition, we have implemented a set of molecular barcodes (AKA Multiple Identifiers or MID) and a pooling process that allows us to sequence many targets simultaneously. Here we will present the testing of pooling a set of selected fosmids derived from the endomycorrhizal fungus Glomus intraradices. By combining the robotic library construction process and the use of molecular barcodes, it is now possible to sequence hundreds of fosmids that represent a minimal tiling path of this genome. Here we present the progress and the challenges of developing these scaled-up processes.

  17. Reading Faster

    ERIC Educational Resources Information Center

    Nation, Paul

    2009-01-01

    This article describes the visual nature of the reading process as it relates to reading speed. It points out that there is a physical limit on normal reading speed and beyond this limit the reading process will be different from normal reading where almost every word is attended to. The article describes a range of activities for developing…

  18. Reading Recovery.

    ERIC Educational Resources Information Center

    Jones, Joanna R., Ed.

    1992-01-01

    This issue of the Arizona Reading Journal focuses on the theme "reading recovery" and includes the following articles: "Why Is an Inservice Programme for Reading Recovery Teachers Necessary?" (Marie M. Clay); "What Is Reading Recovery?" (Gay Su Pinnell); "Teaching a Hard To Teach Child" (Constance A. Compton); "Reading Recovery in Arizona--A…

  19. DNA barcoding Satyrine butterflies (Lepidoptera: Nymphalidae) in China.

    PubMed

    Yang, Mingsheng; Zhai, Qing; Yang, Zhaofu; Zhang, Yalin

    2016-07-01

    We investigated the effectiveness of the standard 648 bp mitochondrial COI barcode region in discriminating among Satyrine species from China. A total of 214 COI sequences were obtained from 90 species, including 34 species that have never been barcoded. Analyses of genetic divergence show that the mean interspecific genetic divergence is about 16-fold higher than within species, and little overlap occurs between them. Neighbour-joining (NJ) analyses showed that 48 of the 50 species with two or more individuals, including two cases with deep intraspecific divergence (>3%), are monophyletic. Furthermore, when our sequences are combined with the conspecific sequences sampled from distantly geographic regions, the "barcoding gap" still exists, and all related species are recovered to be monophyletic in NJ analysis. Our study demonstrates that COI barcoding is effective in discriminating among the satyrine species of China, and provides a reference library for their future molecular identification. PMID:26017046

  20. DNA barcoding in animal species: progress, potential and pitfalls.

    PubMed

    Waugh, John

    2007-02-01

    Despite 250 years of work in systematics, the majority of species remains to be identified. Rising extinction rates and the need for increased biological monitoring lend urgency to this task. DNA sequencing, with key sequences serving as a "barcode", has therefore been proposed as a technology that might expedite species identification. In particular, the mitochondrial cytochrome c oxidase subunit 1 gene has been employed as a possible DNA marker for species and a number of studies in a variety of taxa have accordingly been carried out to examine its efficacy. In general, these studies demonstrate that DNA barcoding resolves most species, although some taxa have proved intractable. In some studies, barcoding provided a means of highlighting potential cryptic, synonymous or extinct species as well as matching adults with immature specimens. Higher taxa, however, have not been resolved as accurately as species. Nonetheless, DNA barcoding appears to offer a means of identifying species and may become a standard tool. PMID:17226815

  1. Does DNA barcoding improve performance of traditional stream bioassessment metrics?

    EPA Science Inventory

    Benthic macroinvertebrate community composition is used to assess wetland and stream condition and to help differentiate the effects of stressors among sites. Deoxyribonucleic acid (DNA) barcoding has been promoted as a way to increase taxonomic resolution and, thereby, to increa...

  2. Fused number representation systems and their barcode applications

    NASA Astrophysics Data System (ADS)

    Agaian, Sarkis

    2010-01-01

    In this paper we focus on: a) enhancing the performance of existing barcode systems and b) building a barcode system for mobile applications. First we introduce a new concept of generating a parametric number representation system by fusing a number of representation systems that use multiplication, addition, and other operations. Second we show how one can generate a secure, reliable, and high capacity color barcode by using the fused system. The representation, symbols, and colors may be used as encryption keys that can be encoded into barcodes, thus eliminating the direct dependence on cryptographic techniques. To supply an extra layer of security, the fused system also allows one to encrypt given data using different types of encryption methods. In addition, this fused system can be used to improve image processing applications and cryptography.

  3. Application Research of QRCode Barcode in Validation of Express Delivery

    NASA Astrophysics Data System (ADS)

    Liu, Zhihai; Zeng, Qingliang; Wang, Chenglong; Lu, Qing

    The barcode technology has become an important way in the field of information input and identify automatically. With the outstanding features of big storage capacity, secure, rich encoding character set and fast decoding, the two-dimensional(2D) QRcode(Quick Response Barcode) has become an important choice of commerce barcode. The development of wireless communications technology and the popularization and application of mobile device has set the foundation of 2D barcode used in business. In this paper, the characteristics and the compositions of 2D QRcode are described, the secure validation workflows and contents of QRcode in goods express delivery are discussed, the encoding process of QRcode is showed, and the system framework is analyzed and established. At last, the system compositions and functions of each part are discussed.

  4. DNA barcoding of Jamaican bats: implications to Neotropical biodiversity.

    PubMed

    K Lim, Burton; Arcila Hernandez, Lina Maria

    2016-07-01

    We report on the first comprehensive DNA barcoding survey of bats from Jamaica and compare the genetic variation to similar species on South America and Central America. Bats comprise the majority of mammalian diversity in typical lowland forest in the Neotropics, but the Caribbean is one noticeable geographic gap in the International Barcode of Life reference database. Of the 20 known species reported from Jamaica, half were DNA barcoded and were genetically distinct with interspecific variation ranging from 17 to 33%. By contrast, intraspecific variation ranged from 0 to 0.5% indicating that the barcode gap was sufficient in differentiating bat species diversity in Jamaica. The low levels of intraspecific divergence indicate that the populations within each species are relatively homogeneous across the island. There were, however, several cases of high sequence divergence for widely distributed species that occur on both the Caribbean islands and the continental mainland, which warrant further taxonomic study. PMID:27158792

  5. Supervised DNA Barcodes species classification: analysis, comparisons and results

    PubMed Central

    2014-01-01

    Background Specific fragments, coming from short portions of DNA (e.g., mitochondrial, nuclear, and plastid sequences), have been defined as DNA Barcode and can be used as markers for organisms of the main life kingdoms. Species classification with DNA Barcode sequences has been proven effective on different organisms. Indeed, specific gene regions have been identified as Barcode: COI in animals, rbcL and matK in plants, and ITS in fungi. The classification problem assigns an unknown specimen to a known species by analyzing its Barcode. This task has to be supported with reliable methods and algorithms. Methods In this work the efficacy of supervised machine learning methods to classify species with DNA Barcode sequences is shown. The Weka software suite, which includes a collection of supervised classification methods, is adopted to address the task of DNA Barcode analysis. Classifier families are tested on synthetic and empirical datasets belonging to the animal, fungus, and plant kingdoms. In particular, the function-based method Support Vector Machines (SVM), the rule-based RIPPER, the decision tree C4.5, and the Naïve Bayes method are considered. Additionally, the classification results are compared with respect to ad-hoc and well-established DNA Barcode classification methods. Results A software that converts the DNA Barcode FASTA sequences to the Weka format is released, to adapt different input formats and to allow the execution of the classification procedure. The analysis of results on synthetic and real datasets shows that SVM and Naïve Bayes outperform on average the other considered classifiers, although they do not provide a human interpretable classification model. Rule-based methods have slightly inferior classification performances, but deliver the species specific positions and nucleotide assignments. On synthetic data the supervised machine learning methods obtain superior classification performances with respect to the traditional DNA Barcode

  6. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2010-12-14

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  7. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2013-03-26

    Graded core/shell semiconductor nanorods and shapped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  8. Multicolor symbology for remotely scannable 2D barcodes

    NASA Astrophysics Data System (ADS)

    Wissner-Gross, Alexander D.; Sullivan, Timothy M.

    2008-03-01

    There has been much recent interest in mobile systems for augmented reality. However, existing visual tagging solutions are not robust at the low resolutions typical of current camera phones or at the low solid angles needed for "across-the-room" reality augmentation. In this paper, we propose a new 2D barcode symbology that uses multiple colors in order to address these challenges. We present preliminary results, showing the detection of example barcodes in this scheme over a range of angles.

  9. Magnetic phase diagrams of barcode-type nanostructures

    NASA Astrophysics Data System (ADS)

    Leighton, B.; Suarez, O. J.; Landeros, P.; Escrig, J.

    2009-09-01

    The magnetic configurations of barcode-type magnetic nanostructures consisting of alternate ferromagnetic and nonmagnetic layers arranged within a multilayer nanotube structure are investigated as a function of their geometry. Based on a continuum approach we have obtained analytical expressions for the energy which lead us to obtain phase diagrams giving the relative stability of characteristic internal magnetic configurations of the barcode-type nanostructures.

  10. DNA barcoding: a new tool for palm taxonomists?

    PubMed Central

    Jeanson, Marc L.; Labat, Jean-Noël; Little, Damon P.

    2011-01-01

    Background and Aims In the last decade, a new tool – DNA barcoding – was proposed to identify species. The technique of DNA barcoding is still being developed. The Consortium for the Barcode of Life's Plant Working Group (CBOL-PWG) selected two core markers (matK and rbcL) that now must be tested in as many taxa as possible. Although the taxonomy of palms (Arecaceae/Palmae) has been greatly improved in the past decades, taxonomic problems remain. Species complexes, for example, could significantly benefit from DNA barcoding. Palms have never before been subjected to a DNA barcoding test. Methods For this study, 40 out of the 48 species of the southeast Asian tribe Caryoteae (subfamily Coryphoideae) were included. In total, four DNA markers – three plastid encoded (matK, rbcL and psbA-trnH) and one nuclear encoded (nrITS2) – were analysed to determine if adequate variation exists to discriminate among species. Key Results The combination of three markers – matK, rbcL and nrITS2 – results in 92 % species discrimination. This rate is high for a barcoding experiment. The two core markers suggested by the CBOL-PWG, rbcL and matK, have a low species discrimination rate and need to be supplemented by another marker. In Caryoteae, nrITS2 should be chosen over psbA-trnH to supplement the two ‘core’ markers. Conclusions For the first time a test of DNA barcoding was conducted in Arecaceae. Considering that palms have highly variable mutation rates compared with other angiosperms, the results presented here are encouraging for developing DNA barcoding as a useful tool to identify species within this ecologically important tropical plant family. PMID:21757475

  11. jMOTU and Taxonerator: Turning DNA Barcode Sequences into Annotated Operational Taxonomic Units

    PubMed Central

    Blaxter, Mark

    2011-01-01

    Background DNA barcoding and other DNA sequence-based techniques for investigating and estimating biodiversity require explicit methods for associating individual sequences with taxa, as it is at the taxon level that biodiversity is assessed. For many projects, the bioinformatic analyses required pose problems for laboratories whose prime expertise is not in bioinformatics. User-friendly tools are required for both clustering sequences into molecular operational taxonomic units (MOTU) and for associating these MOTU with known organismal taxonomies. Results Here we present jMOTU, a Java program for the analysis of DNA barcode datasets that uses an explicit, determinate algorithm to define MOTU. We demonstrate its usefulness for both individual specimen-based Sanger sequencing surveys and bulk-environment metagenetic surveys using long-read next-generation sequencing data. jMOTU is driven through a graphical user interface, and can analyse tens of thousands of sequences in a short time on a desktop computer. A companion program, Taxonerator, that adds traditional taxonomic annotation to MOTU, is also presented. Clustering and taxonomic annotation data are stored in a relational database, and are thus amenable to subsequent data mining and web presentation. Conclusions jMOTU efficiently and robustly identifies the molecular taxa present in survey datasets, and Taxonerator decorates the MOTU with putative identifications. jMOTU and Taxonerator are freely available from http://www.nematodes.org/. PMID:21541350

  12. Direct Chloroplast Sequencing: Comparison of Sequencing Platforms and Analysis Tools for Whole Chloroplast Barcoding

    PubMed Central

    Brozynska, Marta; Furtado, Agnelo; Henry, Robert James

    2014-01-01

    Direct sequencing of total plant DNA using next generation sequencing technologies generates a whole chloroplast genome sequence that has the potential to provide a barcode for use in plant and food identification. Advances in DNA sequencing platforms may make this an attractive approach for routine plant identification. The HiSeq (Illumina) and Ion Torrent (Life Technology) sequencing platforms were used to sequence total DNA from rice to identify polymorphisms in the whole chloroplast genome sequence of a wild rice plant relative to cultivated rice (cv. Nipponbare). Consensus chloroplast sequences were produced by mapping sequence reads to the reference rice chloroplast genome or by de novo assembly and mapping of the resulting contigs to the reference sequence. A total of 122 polymorphisms (SNPs and indels) between the wild and cultivated rice chloroplasts were predicted by these different sequencing and analysis methods. Of these, a total of 102 polymorphisms including 90 SNPs were predicted by both platforms. Indels were more variable with different sequencing methods, with almost all discrepancies found in homopolymers. The Ion Torrent platform gave no apparent false SNP but was less reliable for indels. The methods should be suitable for routine barcoding using appropriate combinations of sequencing platform and data analysis. PMID:25329378

  13. Identification of Chemical-Genetic Interactions via Parallel Analysis of Barcoded Yeast Strains.

    PubMed

    Suresh, Sundari; Schlecht, Ulrich; Xu, Weihong; Miranda, Molly; Davis, Ronald W; Nislow, Corey; Giaever, Guri; St Onge, Robert P

    2016-01-01

    The Yeast Knockout Collection is a complete set of gene deletion strains for the budding yeast, Saccharomyces cerevisiae In each strain, one of approximately 6000 open-reading frames is replaced with a dominant selectable marker flanked by two DNA barcodes. These barcodes, which are unique to each gene, allow the growth of thousands of strains to be individually measured from a single pooled culture. The collection, and other resources that followed, has ushered in a new era in chemical biology, enabling unbiased and systematic identification of chemical-genetic interactions (CGIs) with remarkable ease. CGIs link bioactive compounds to biological processes, and hence can reveal the mechanism of action of growth-inhibitory compounds in vivo, including those of antifungal, antibiotic, and anticancer drugs. The chemogenomic profiling method described here measures the sensitivity induced in yeast heterozygous and homozygous deletion strains in the presence of a chemical inhibitor of growth (termed haploinsufficiency profiling and homozygous profiling, respectively, or HIPHOP). The protocol is both scalable and amenable to automation. After competitive growth of yeast knockout collection cultures, with and without chemical inhibitors, CGIs can be identified and quantified using either array- or sequencing-based approaches as described here. PMID:27587778

  14. Performance analysis on a new binary amplitude-based phase-only-encoded barcode

    NASA Astrophysics Data System (ADS)

    Wu, Xu; Hu, Jiasheng; Wu, Kenan; Lin, Yong

    2008-03-01

    In this paper, we propose a new encoding method to make a binary amplitude-based phase-only-encoded barcode in a security system based on the conventional random phase encoding technique. In this method, the values of the phase distribution in the system are quantified with a high phase level, and afterwards the result is encoded into a binary matrix based on the rule of decimal-binary conversion. The binary matrix is arranged specially and printed as the 2-D anti-counterfeit label which can be printed by standard halftoning technology and read by optical scanning device. It is obvious that the higher phase level could be chosen to obtain the better reconstruction image in the improved method and the fabrication is also very convenient. In additions, computer simulations and optical scanning experiments are illustrated in detail. The tolerance to data loss of the encoded barcode is also studied particularly. The results show that the presented encoding method has advantage of robustness and high security, and very convenient to be popularized in practice.

  15. 1D ferrimagnetism in homometallic chains

    NASA Astrophysics Data System (ADS)

    Coronado, E.; Gómez-García, C. J.; Borrás-Almenar, J. J.

    1990-05-01

    The magnetic properties of the cobalt zigzag chain Co(bpy)(NCS)2 (bpy=2,2'-bipyridine) are discussed on the basis of an Ising-chain model that takes into account alternating Landé factors. It is emphasized, for the first time, that a homometallic chain containing only one type of site can give rise to a 1D ferrimagneticlike behavior.

  16. DESIGN PACKAGE 1D SYSTEM SAFETY ANALYSIS

    SciTech Connect

    L.R. Eisler

    1995-02-02

    The purpose of this analysis is to systematically identify and evaluate hazards related to the Yucca Mountain Project Exploratory Studies Facility (ESF) Design Package 1D, Surface Facilities, (for a list of design items included in the package 1D system safety analysis see section 3). This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach was used since a radiological System Safety analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the Design Package 1D structures/systems/components in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the structure/system/component (S/S/C) design, (2) add safety devices and capabilities to the designs that reduce risk, (3) provide devices that detect and warn personnel of hazardous conditions, and (4) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the Design Package 1D structures/systems/components (S/S/Cs) during normal operations excluding hazards occurring during maintenance and ''off normal'' operations.

  17. Multibow: digital spectral barcodes for cell tracing.

    PubMed

    Xiong, Fengzhu; Obholzer, Nikolaus D; Noche, Ramil R; Megason, Sean G

    2015-01-01

    We introduce a multicolor labeling strategy (Multibow) for cell tracing experiments in developmental and regenerative processes. Building on Brainbow-based approaches that produce colors by differential expression levels of different fluorescent proteins, Multibow adds a layer of label diversity by introducing a binary code in which reporters are initially OFF and then probabilistically ON or OFF following Cre recombination. We have developed a library of constructs that contains seven different colors and three different subcellular localizations. Combining constructs from this library in the presence of Cre generates cells labeled with multiple independently expressed colors based on if each construct is ON or OFF following recombination. These labels form a unique "barcode" that allows the tracking of the cell and its clonal progenies in addition to expression level differences of each color. We tested Multibow in zebrafish which validates its design concept and suggests its utility for cell tracing applications in development and regeneration. PMID:26010570

  18. Identifying Fishes through DNA Barcodes and Microarrays

    PubMed Central

    Kochzius, Marc; Seidel, Christian; Antoniou, Aglaia; Botla, Sandeep Kumar; Campo, Daniel; Cariani, Alessia; Vazquez, Eva Garcia; Hauschild, Janet; Hervet, Caroline; Hjörleifsdottir, Sigridur; Hreggvidsson, Gudmundur; Kappel, Kristina; Landi, Monica; Magoulas, Antonios; Marteinsson, Viggo; Nölte, Manfred; Planes, Serge; Tinti, Fausto; Turan, Cemal; Venugopal, Moleyur N.; Weber, Hannes; Blohm, Dietmar

    2010-01-01

    Background International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection. Methodology/Principal Findings This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S), cytochrome b (cyt b), and cytochrome oxidase subunit I (COI) for the identification of 50 European marine fish species by combining techniques of “DNA barcoding” and microarrays. In a DNA barcoding approach, neighbour Joining (NJ) phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the “position of label” effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (>90%) renders the DNA barcoding marker as rather unsuitable for this high-throughput technology. Conclusions/Significance Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products. PMID

  19. 76 FR 23749 - Intelligent Mail Package Barcode (IMpb) Implementation for Commercial Parcels

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ... 111 Intelligent Mail Package Barcode (IMpb) Implementation for Commercial Parcels AGENCY: Postal... currently enhancing its operational capability to allow for the scanning of Intelligent Mail package..., payment, and reporting. Intelligent Mail package barcodes also include specific ``mail class...

  20. DNA barcoding in the media: does coverage of cool science reflect its social context?

    PubMed

    Geary, Janis; Camicioli, Emma; Bubela, Tania

    2016-09-01

    Paul Hebert and colleagues first described DNA barcoding in 2003, which led to international efforts to promote and coordinate its use. Since its inception, DNA barcoding has generated considerable media coverage. We analysed whether this coverage reflected both the scientific and social mandates of international barcoding organizations. We searched newspaper databases to identify 900 English-language articles from 2003 to 2013. Coverage of the science of DNA barcoding was highly positive but lacked context for key topics. Coverage omissions pose challenges for public understanding of the science and applications of DNA barcoding; these included coverage of governance structures and issues related to the sharing of genetic resources across national borders. Our analysis provided insight into how barcoding communication efforts have translated into media coverage; more targeted communication efforts may focus media attention on previously omitted, but important topics. Our analysis is timely as the DNA barcoding community works to establish the International Society for the Barcode of Life. PMID:27463361

  1. DNA barcoding of the vegetable leafminer Liriomyza sativae Blanchard (Diptera: Agromyzidae) in Bangladesh

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA barcoding revealed the presence of the polyphagous leafminer pest Liriomyza sativae Blanchard in Bangladesh. DNA barcode sequences for mitochondrial COI were generated for Agromyzidae larvae, pupae and adults collected from field populations across Bangladesh. BLAST sequence similarity searches ...

  2. Reading Rituals

    ERIC Educational Resources Information Center

    Manzo, Kathleen Kennedy

    2007-01-01

    The Ogden, Utah schools have used the mandates of the federal Reading First grant program to transform reading instruction and student achievement in low-performing schools. Reading First was approved by Congress in 2001 under the No Child Left Behind Act to bring scientifically based reading methods and materials to struggling schools. The $1…

  3. Reading Comics

    ERIC Educational Resources Information Center

    Tilley, Carol L.

    2008-01-01

    Many adults, even librarians who willingly add comics to their collections, often dismiss the importance of comics. Compared to reading "real" books, reading comics appears to be a simple task and compared to reading no books, reading comics might be preferable. After all, comics do have words, but the plentiful pictures seem to carry most of the…

  4. Preparation of 1D nanostructures using biomolecules

    NASA Astrophysics Data System (ADS)

    Pruneanu, Stela; Olenic, Liliana; Barbu Tudoran, Lucian; Kacso, Irina; Farha Al-Said, Said A.; Hassanien, Reda; Houlton, Andrew; Horrocks, Benjamin R.

    2009-08-01

    In this paper we have shown that one-dimensional (1D) particle arrays can be obtained using biomolecules, like DNA or amino-acids. Nano-arrays of silver and gold were prepared in a single-step synthesis, by exploiting the binding abilities of λ-DNA and L-Arginine. The morphology and optical properties of these nanostructures were investigated using AFM, TEM and UV-Vis absorption spectroscopy.

  5. Coalescence phenomena in 1D silver nanostructures

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Wing, C.; Pérez-Alvarez, M.; Mondragón-Galicia, G.; Arenas-Alatorre, J.; Gutiérrez-Wing, M. T.; Henk, M. C.; Negulescu, I. I.; Rusch, K. A.

    2009-07-01

    Different coalescence processes on 1D silver nanostructures synthesized by a PVP assisted reaction in ethylene glycol at 160 °C were studied experimentally and theoretically. Analysis by TEM and HRTEM shows different defects found on the body of these materials, suggesting that they were induced by previous coalescence processes in the synthesis stage. TEM observations showed that irradiation with the electron beam eliminates the boundaries formed near the edges of the structures, suggesting that this process can be carried out by the application of other means of energy (i.e. thermal). These results were also confirmed by theoretical calculations by Monte Carlo simulations using a Sutton-Chen potential. A theoretical study by molecular dynamics simulation of the different coalescence processes on 1D silver nanostructures is presented, showing a surface energy driven sequence followed to form the final coalesced structure. Calculations were made at 1000-1300 K, which is near the melting temperature of silver (1234 K). Based on these results, it is proposed that 1D nanostructures can grow through a secondary mechanism based on coalescence, without losing their dimensionality.

  6. Centrosome Positioning in 1D Cell Migration

    NASA Astrophysics Data System (ADS)

    Adlerz, Katrina; Aranda-Espinoza, Helim

    During cell migration, the positioning of the centrosome and nucleus define a cell's polarity. For a cell migrating on a two-dimensional substrate the centrosome is positioned in front of the nucleus. Under one-dimensional confinement, however, the centrosome is positioned behind the nucleus in 60% of cells. It is known that the centrosome is positioned by CDC42 and dynein for cells moving on a 2D substrate in a wound-healing assay. It is currently unknown, however, if this is also true for cells moving under 1D confinement, where the centrosome position is often reversed. Therefore, centrosome positioning was studied in cells migrating under 1D confinement, which mimics cells migrating through 3D matrices. 3 to 5 μm fibronectin lines were stamped onto a glass substrate and cells with fluorescently labeled nuclei and centrosomes migrated on the lines. Our results show that when a cell changes directions the centrosome position is maintained. That is, when the centrosome is between the nucleus and the cell's trailing edge and the cell changes direction, the centrosome will be translocated across the nucleus to the back of the cell again. A dynein inhibitor did have an influence on centrosome positioning in 1D migration and change of directions.

  7. Tctex1d2 Is a Negative Regulator of GLUT4 Translocation and Glucose Uptake.

    PubMed

    Shimoda, Yoko; Okada, Shuichi; Yamada, Eijiro; Pessin, Jeffrey E; Yamada, Masanobu

    2015-10-01

    Tctex1d2 (Tctex1 domain containing 2) is an open reading frame that encodes for a functionally unknown protein that contains a Tctex1 domain found in dynein light chain family members. Examination of gene expression during adipogenesis demonstrated a marked increase in Tctex1d2 protein expression that was essentially undetectable in preadipocytes and markedly induced during 3T3-L1 adipocyte differentiation. Tctex1d2 overexpression significantly inhibited insulin-stimulated glucose transporter 4 (GLUT4) translocation and 2-deoxyglucose uptake. In contrast, Tctex1d2 knockdown significantly increased insulin-stimulated GLUT4 translocation and 2-deoxyglucose uptake. However, acute insulin stimulation (up to 30 min) in 3T3-L1 adipocytes with overexpression or knockdown of Tctex1d2 had no effect on Akt phosphorylation, a critical signal transduction target required for GLUT4 translocation. Although overexpression of Tctex1d2 had no significant effect on GLUT4 internalization, Tctex1d2 was found to associate with syntaxin 4 in an insulin-dependent manner and inhibit Doc2b binding to syntaxin 4. In addition, glucose-dependent insulinotropic polypeptide rescued the Tctex1d2 inhibition of insulin-stimulated GLUT4 translocation by suppressing the Tctex1d2-syntaxin 4 interaction and increasing Doc2b-Synatxin4 interactions. Taking these results together, we hypothesized that Tctex1d2 is a novel syntaxin 4 binding protein that functions as a negative regulator of GLUT4 plasma membrane translocation through inhibition of the Doc2b-syntaxin 4 interaction. PMID:26200093

  8. Microfluidic barcode assay for antibody-based confirmatory diagnostics.

    PubMed

    Araz, M Kursad; Apori, Akwasi A; Salisbury, Cleo M; Herr, Amy E

    2013-10-01

    Confirmatory diagnostics offer high clinical sensitivity and specificity typically by assaying multiple disease biomarkers. Employed in clinical laboratory settings, such assays confirm a positive screening diagnostic result. These important multiplexed confirmatory assays require hours to complete. To address this performance gap, we introduce a simple 'single inlet, single outlet' microchannel architecture with multiplexed analyte detection capability. A streptavidin-functionalized, channel-filling polyacrylamide gel in a straight glass microchannel operates as a 3D scaffold for a purely electrophoretic yet heterogeneous immunoassay. Biotin and biotinylated capture reagents are patterned in discrete regions along the axis of the microchannel resulting in a barcode-like pattern of reagents and spacers. To characterize barcode fabrication, an empirical study of patterning behaviour was conducted across a range of electromigration and binding reaction timescales. We apply the heterogeneous barcode immunoassay to detection of human antibodies against hepatitis C virus and human immunodeficiency virus antigens. Serum was electrophoresed through the barcode patterned gel, allowing capture of antibody targets. We assess assay performance across a range of Damkohler numbers. Compared to clinical immunoblots that require 4-10 h long sample incubation steps with concomitant 8-20 h total assay durations; directed electromigration and reaction in the microfluidic barcode assay leads to a 10 min sample incubation step and a 30 min total assay duration. Further, the barcode assay reports clinically relevant sensitivity (25 ng ml(-1) in 2% human sera) comparable to standard HCV confirmatory diagnostics. Given the low voltage, low power and automated operation, we see the streamlined microfluidic barcode assay as a step towards rapid confirmatory diagnostics for a low-resource clinical laboratory setting. PMID:23925585

  9. International Barcode of Life: Evolution of a global research community.

    PubMed

    Adamowicz, Sarah J

    2015-05-01

    The 6th International Barcode of Life Conference (Guelph, Canada, 18-21 August 2015), themed Barcodes to Biomes, showcases the latest developments in DNA barcoding research and its diverse applications. The meeting also provides a venue for a global research community to share ideas and to initiate collaborations. All plenary and contributed abstracts are being published as an open-access special issue of Genome. Here, I use a comparison with the 3rd Conference (Mexico City, 2009) to highlight 10 recent and emerging trends that are apparent among the contributed abstracts. One of the outstanding trends is the rising proportion of abstracts that focus upon multiple socio-economically important applications of DNA barcoding, including studies of agricultural pests, quarantine and invasive species, wildlife forensics, disease vectors, biomonitoring of ecosystem health, and marketplace surveys evaluating the authenticity of seafood products and medicinal plants. Other key movements include the use of barcoding and metabarcoding approaches for dietary analyses-and for studies of food webs spanning three or more trophic levels-as well as the spread of next-generation sequencing methods in multiple contexts. In combination with the rising taxonomic and geographic scope of many barcoding iniatives, these developments suggest that several important questions in biology are becoming tractable. "What is this specimen on an agricultural shipment?", "Who eats whom in this whole food web?", and even "How many species are there?" are questions that may be answered in time periods ranging from a few years to one or a few decades. The next phases of DNA barcoding may expand yet further into prediction of community shifts with climate change and improved management of biological resources. PMID:26444714

  10. Patterns of DNA Barcode Variation in Canadian Marine Molluscs

    PubMed Central

    Layton, Kara K.S.; Martel, André L.; Hebert, Paul DN.

    2014-01-01

    Background Molluscs are the most diverse marine phylum and this high diversity has resulted in considerable taxonomic problems. Because the number of species in Canadian oceans remains uncertain, there is a need to incorporate molecular methods into species identifications. A 648 base pair segment of the cytochrome c oxidase subunit I gene has proven useful for the identification and discovery of species in many animal lineages. While the utility of DNA barcoding in molluscs has been demonstrated in other studies, this is the first effort to construct a DNA barcode registry for marine molluscs across such a large geographic area. Methodology/Principal Findings This study examines patterns of DNA barcode variation in 227 species of Canadian marine molluscs. Intraspecific sequence divergences ranged from 0–26.4% and a barcode gap existed for most taxa. Eleven cases of relatively deep (>2%) intraspecific divergence were detected, suggesting the possible presence of overlooked species. Structural variation was detected in COI with indels found in 37 species, mostly bivalves. Some indels were present in divergent lineages, primarily in the region of the first external loop, suggesting certain areas are hotspots for change. Lastly, mean GC content varied substantially among orders (24.5%–46.5%), and showed a significant positive correlation with nearest neighbour distances. Conclusions/Significance DNA barcoding is an effective tool for the identification of Canadian marine molluscs and for revealing possible cases of overlooked species. Some species with deep intraspecific divergence showed a biogeographic partition between lineages on the Atlantic, Arctic and Pacific coasts, suggesting the role of Pleistocene glaciations in the subdivision of their populations. Indels were prevalent in the barcode region of the COI gene in bivalves and gastropods. This study highlights the efficacy of DNA barcoding for providing insights into sequence variation across a broad

  11. Managing Archival Collections in an Automated Environment: The Joys of Barcoding

    ERIC Educational Resources Information Center

    Hamburger, Susan; Charles, Jane Veronica

    2006-01-01

    In a desire for automated collection control, archival repositories are adopting barcoding from their library and records center colleagues. This article discusses the planning, design, and implementation phases of barcoding. The authors focus on reasons for barcoding, security benefits, in-room circulation tracking, potential for gathering…

  12. Pay Attention to the Overlooked Cryptic Diversity in Existing Barcoding Data: the Case of Mollusca with Character-Based DNA Barcoding.

    PubMed

    Zou, Shanmei; Li, Qi

    2016-06-01

    With the global biodiversity crisis, DNA barcoding aims for fast species identification and cryptic species diversity revelation. For more than 10 years, large amounts of DNA barcode data have been accumulating in publicly available databases, most of which were conducted by distance or tree-building methods that have often been argued, especially for cryptic species revelation. In this context, overlooked cryptic diversity may exist in the available barcoding data. The character-based DNA barcoding, however, has a good chance for detecting the overlooked cryptic diversity. In this study, marine mollusk was as the ideal case for detecting the overlooked potential cryptic species from existing cytochrome c oxidase I (COI) sequences with character-based DNA barcode. A total of 1081 COI sequences of mollusks, belonging to 176 species of 25 families of Gastropoda, Cephalopoda, and Lamellibranchia, were conducted by character analysis. As a whole, the character-based barcoding results were consistent with previous distance and tree-building analysis for species discrimination. More importantly, quite a number of species analyzed were divided into distinct clades with unique diagnostical characters. Based on the concept of cryptic species revelation of character-based barcoding, these species divided into separate taxonomic groups might be potential cryptic species. The detection of the overlooked potential cryptic diversity proves that the character-based barcoding mode possesses more advantages of revealing cryptic biodiversity. With the development of DNA barcoding, making the best use of barcoding data is worthy of our attention for species conservation. PMID:26899167

  13. Sliding Window Analyses for Optimal Selection of Mini-Barcodes, and Application to 454-Pyrosequencing for Specimen Identification from Degraded DNA

    PubMed Central

    Boyer, Stephane; Brown, Samuel D. J.; Collins, Rupert A.; Cruickshank, Robert H.; Lefort, Marie-Caroline; Malumbres-Olarte, Jagoba; Wratten, Stephen D.

    2012-01-01

    DNA barcoding remains a challenge when applied to diet analyses, ancient DNA studies, environmental DNA samples and, more generally, in any cases where DNA samples have not been adequately preserved. Because the size of the commonly used barcoding marker (COI) is over 600 base pairs (bp), amplification fails when the DNA molecule is degraded into smaller fragments. However, relevant information for specimen identification may not be evenly distributed along the barcoding region, and a shorter target can be sufficient for identification purposes. This study proposes a new, widely applicable, method to compare the performance of all potential ‘mini-barcodes’ for a given molecular marker and to objectively select the shortest and most informative one. Our method is based on a sliding window analysis implemented in the new R package SPIDER (Species IDentity and Evolution in R). This method is applicable to any taxon and any molecular marker. Here, it was tested on earthworm DNA that had been degraded through digestion by carnivorous landsnails. A 100 bp region of 16 S rDNA was selected as the shortest informative fragment (mini-barcode) required for accurate specimen identification. Corresponding primers were designed and used to amplify degraded earthworm (prey) DNA from 46 landsnail (predator) faeces using 454-pyrosequencing. This led to the detection of 18 earthworm species in the diet of the snail. We encourage molecular ecologists to use this method to objectively select the most informative region of the gene they aim to amplify from degraded DNA. The method and tools provided here, can be particularly useful (1) when dealing with degraded DNA for which only small fragments can be amplified, (2) for cases where no consensus has yet been reached on the appropriate barcode gene, or (3) to allow direct analysis of short reads derived from massively parallel sequencing without the need for bioinformatic consolidation. PMID:22666489

  14. A comparative analysis of DNA barcode microarray feature size

    PubMed Central

    Ammar, Ron; Smith, Andrew M; Heisler, Lawrence E; Giaever, Guri; Nislow, Corey

    2009-01-01

    Background Microarrays are an invaluable tool in many modern genomic studies. It is generally perceived that decreasing the size of microarray features leads to arrays with higher resolution (due to greater feature density), but this increase in resolution can compromise sensitivity. Results We demonstrate that barcode microarrays with smaller features are equally capable of detecting variation in DNA barcode intensity when compared to larger feature sizes within a specific microarray platform. The barcodes used in this study are the well-characterized set derived from the Yeast KnockOut (YKO) collection used for screens of pooled yeast (Saccharomyces cerevisiae) deletion mutants. We treated these pools with the glycosylation inhibitor tunicamycin as a test compound. Three generations of barcode microarrays at 30, 8 and 5 μm features sizes independently identified the primary target of tunicamycin to be ALG7. Conclusion We show that the data obtained with 5 μm feature size is of comparable quality to the 30 μm size and propose that further shrinking of features could yield barcode microarrays with equal or greater resolving power and, more importantly, higher density. PMID:19825181

  15. Increasing global participation in genetics research through DNA barcoding.

    PubMed

    Adamowicz, Sarah J; Steinke, Dirk

    2015-12-01

    DNA barcoding--the sequencing of short, standardized DNA regions for specimen identification and species discovery--has promised to facilitate rapid access to biodiversity knowledge by diverse users. Here, we advance our opinion that increased global participation in genetics research is beneficial, both to scientists and for science, and explore the premise that DNA barcoding can help to democratize participation in genetics research. We examine publication patterns (2003-2014) in the DNA barcoding literature and compare trends with those in the broader, related domain of genomics. While genomics is the older and much larger field, the number of nations contributing to the published literature is similar between disciplines. Meanwhile, DNA barcoding exhibits a higher pace of growth in the number of publications as well as greater evenness among nations in their proportional contribution to total authorships. This exploration revealed DNA barcoding to be a highly international discipline, with growing participation by researchers in especially biodiverse nations. We briefly consider several of the challenges that may hinder further participation in genetics research, including access to training and molecular facilities as well as policy relating to the movement of genetic resources. PMID:26642251

  16. DNA Barcoding of Japanese Click Beetles (Coleoptera, Elateridae)

    PubMed Central

    Oba, Yuichi; Ôhira, Hitoo; Murase, Yukio; Moriyama, Akihiko; Kumazawa, Yoshinori

    2015-01-01

    Click beetles (Coleoptera: Elateridae) represent one of the largest groups of beetle insects. Some click beetles in larval form, known as wireworms, are destructive agricultural pests. Morphological identification of click beetles is generally difficult and requires taxonomic expertise. This study reports on the DNA barcoding of Japanese click beetles to enable their rapid and accurate identification. We collected and assembled 762 cytochrome oxidase subunit I barcode sequences from 275 species, which cover approximately 75% of the common species found on the Japanese main island, Honshu. This barcode library also contains 20 out of the 21 potential pest species recorded in Japan. Our analysis shows that most morphologically identified species form distinct phylogenetic clusters separated from each other by large molecular distances. This supports the general usefulness of the DNA barcoding approach for quick and reliable identification of Japanese elaterid species for environmental impact assessment, agricultural pest control, and biodiversity analysis. On the other hand, the taxonomic boundary in dozens of species did not agree with the boundary of barcode index numbers (a criterion for sequence-based species delimitation). These findings urge taxonomic reinvestigation of these mismatched taxa. PMID:25636000

  17. High capacity color barcodes using dot orientation and color separability

    NASA Astrophysics Data System (ADS)

    Bulan, Orhan; Monga, Vishal; Sharma, Gaurav

    2009-02-01

    Barcodes are widely utilized for embedding data in printed format to provide automated identification and tracking capabilities in a number of applications. In these applications, it is desirable to maximize the number of bits embedded per unit print area in order to either reduce the area requirements of the barcodes or to offer an increased payload, which in turn enlarges the class of applications for these barcodes. In this paper, we present a new high capacity color barcode. Our method operates by embedding independent data in two different printer colorant channels via halftone-dot orientation modulation. In the print, the dots of the two colorants occupy the same spatial region. At the detector, however, by using the complementary sensor channels to estimate the colorant channels we can recover the data in each individual colorant channel. The method therefore (approximately) doubles the capacity of encoding methods based on a single colorant channel and provides an embedding rate that is higher than other known barcode alternatives. The effectiveness of the proposed technique is demonstrated by experiments conducted on Xerographic printers. Data embedded at a high density by using the two cyan and yellow colorant channels for halftone dot orientation modulation is successfully recovered by using the red and blue channels for the detection, with an overall symbol error rate that is quite small.

  18. 1-D EQUILIBRIUM DISCRETE DIFFUSION MONTE CARLO

    SciTech Connect

    T. EVANS; ET AL

    2000-08-01

    We present a new hybrid Monte Carlo method for 1-D equilibrium diffusion problems in which the radiation field coexists with matter in local thermodynamic equilibrium. This method, the Equilibrium Discrete Diffusion Monte Carlo (EqDDMC) method, combines Monte Carlo particles with spatially discrete diffusion solutions. We verify the EqDDMC method with computational results from three slab problems. The EqDDMC method represents an incremental step toward applying this hybrid methodology to non-equilibrium diffusion, where it could be simultaneously coupled to Monte Carlo transport.

  19. A 1-D dusty plasma photonic crystal

    SciTech Connect

    Mitu, M. L.; Ticoş, C. M.; Toader, D.; Banu, N.; Scurtu, A.

    2013-09-21

    It is demonstrated numerically that a 1-D plasma crystal made of micron size cylindrical dust particles can, in principle, work as a photonic crystal for terahertz waves. The dust rods are parallel to each other and arranged in a linear string forming a periodic structure of dielectric-plasma regions. The dispersion equation is found by solving the waves equation with the boundary conditions at the dust-plasma interface and taking into account the dielectric permittivity of the dust material and plasma. The wavelength of the electromagnetic waves is in the range of a few hundred microns, close to the interparticle separation distance. The band gaps of the 1-D plasma crystal are numerically found for different types of dust materials, separation distances between the dust rods and rod diameters. The distance between levitated dust rods forming a string in rf plasma is shown experimentally to vary over a relatively wide range, from 650 μm to about 1350 μm, depending on the rf power fed into the discharge.

  20. DNA Barcoding Identifies Illegal Parrot Trade.

    PubMed

    Gonçalves, Priscila F M; Oliveira-Marques, Adriana R; Matsumoto, Tania E; Miyaki, Cristina Y

    2015-01-01

    Illegal trade threatens the survival of many wild species, and molecular forensics can shed light on various questions raised during the investigation of cases of illegal trade. Among these questions is the identity of the species involved. Here we report a case of a man who was caught in a Brazilian airport trying to travel with 58 avian eggs. He claimed they were quail eggs, but authorities suspected they were from parrots. The embryos never hatched and it was not possible to identify them based on morphology. As 29% of parrot species are endangered, the identity of the species involved was important to establish a stronger criminal case. Thus, we identified the embryos' species based on the analyses of mitochondrial DNA sequences (cytochrome c oxidase subunit I gene [COI] and 16S ribosomal DNA). Embryonic COI sequences were compared with those deposited in BOLD (The Barcode of Life Data System) while their 16S sequences were compared with GenBank sequences. Clustering analysis based on neighbor-joining was also performed using parrot COI and 16S sequences deposited in BOLD and GenBank. The results, based on both genes, indicated that 57 embryos were parrots (Alipiopsitta xanthops, Ara ararauna, and the [Amazona aestiva/A. ochrocephala] complex), and 1 was an owl. This kind of data can help criminal investigations and to design species-specific anti-poaching strategies, and demonstrate how DNA sequence analysis in the identification of bird species is a powerful conservation tool. PMID:26245790

  1. DNA Barcoding and Pharmacovigilance of Herbal Medicines.

    PubMed

    de Boer, Hugo J; Ichim, Mihael C; Newmaster, Steven G

    2015-07-01

    Pharmacovigilance of herbal medicines relies on the product label information regarding the ingredients and the adherence to good manufacturing practices along the commercialisation chain. Several studies have shown that substitution of plant species occurs in herbal medicines, and this in turn poses a challenge to herbal pharmacovigilance as adverse reactions might be due to adulterated or added ingredients. Authentication of constituents in herbal medicines using analytical chemistry methods can help detect contaminants and toxins, but are often limited or incapable of detecting the source of the contamination. Recent developments in molecular plant identification using DNA sequence data enable accurate identification of plant species from herbal medicines using defined DNA markers. Identification of multiple constituent species from compound herbal medicines using amplicon metabarcoding enables verification of labelled ingredients and detection of substituted, adulterated and added species. DNA barcoding is proving to be a powerful method to assess species composition in herbal medicines and has the potential to be used as a standard method in herbal pharmacovigilance research of adverse reactions to specific products. PMID:26076652

  2. Stellar Spectroscopy: Barcodes to the Stars

    NASA Astrophysics Data System (ADS)

    Sarrazine, Angela R.

    2011-01-01

    Peering at the night sky, and more specifically, at all the stars overhead, one begins to wonder: How do astronomers determine the composition of stars if they cannot travel to them and return samples to Earth for use in a laboratory? One way in which astronomers can make these determinations is by using the "starlight” itself. Spectroscopy is a powerful tool in astronomy. The analysis of stellar spectra can reveal the composition, temperature, and velocity of an object as well as several other pieces of information. In an effort to increase student understanding of how spectroscopy works, an analogy to barcodes has been employed with 9th grade students. Young students are very familiar with the scanning technology currently utilized at most stores. While not a one to one analogy of the process, students can begin to understand that the series of black and white lines, the width of the lines, and the spacing between assists the computer in identifying the item for purchase. By a similar token, an astronomer looks at the spectral lines of a star and based upon the thickness, separation, and location of the lines can begin to determine some of the properties of the celestial object.

  3. DNA Barcoding the Heliothinae (Lepidoptera: Noctuidae) of Australia and Utility of DNA Barcodes for Pest Identification in Helicoverpa and Relatives

    PubMed Central

    Gopurenko, David

    2016-01-01

    Helicoverpa and Heliothis species include some of the world’s most significant crop pests, causing billions of dollars of losses globally. As such, a number are regulated quarantine species. For quarantine agencies, the most crucial issue is distinguishing native species from exotics, yet even this task is often not feasible because of poorly known local faunas and the difficulties of identifying closely related species, especially the immature stages. DNA barcoding is a scalable molecular diagnostic method that could provide the solution to this problem, however there has been no large-scale test of the efficacy of DNA barcodes for identifying the Heliothinae of any region of the world to date. This study fills that gap by DNA barcoding the entire heliothine moth fauna of Australia, bar one rare species, and comparing results with existing public domain resources. We find that DNA barcodes provide robust discrimination of all of the major pest species sampled, but poor discrimination of Australian Heliocheilus species, and we discuss ways to improve the use of DNA barcodes for identification of pests. PMID:27509042

  4. DNA Barcoding the Heliothinae (Lepidoptera: Noctuidae) of Australia and Utility of DNA Barcodes for Pest Identification in Helicoverpa and Relatives.

    PubMed

    Mitchell, Andrew; Gopurenko, David

    2016-01-01

    Helicoverpa and Heliothis species include some of the world's most significant crop pests, causing billions of dollars of losses globally. As such, a number are regulated quarantine species. For quarantine agencies, the most crucial issue is distinguishing native species from exotics, yet even this task is often not feasible because of poorly known local faunas and the difficulties of identifying closely related species, especially the immature stages. DNA barcoding is a scalable molecular diagnostic method that could provide the solution to this problem, however there has been no large-scale test of the efficacy of DNA barcodes for identifying the Heliothinae of any region of the world to date. This study fills that gap by DNA barcoding the entire heliothine moth fauna of Australia, bar one rare species, and comparing results with existing public domain resources. We find that DNA barcodes provide robust discrimination of all of the major pest species sampled, but poor discrimination of Australian Heliocheilus species, and we discuss ways to improve the use of DNA barcodes for identification of pests. PMID:27509042

  5. DNA barcoding reveals a cryptic nemertean invasion in Atlantic and Mediterranean waters

    NASA Astrophysics Data System (ADS)

    Fernández-Álvarez, Fernando Ángel; Machordom, Annie

    2013-09-01

    For several groups, like nemerteans, morphology-based identification is a hard discipline, but DNA barcoding may help non-experts in the identification process. In this study, DNA barcoding is used to reveal the cryptic invasion of Pacific Cephalothrix cf. simula into Atlantic and Mediterranean coasts. Although DNA barcoding is a promising method for the identification of Nemertea, only 6 % of the known number of nemertean species is currently associated with a correct DNA barcode. Therefore, additional morphological and molecular studies are necessary to advance the utility of DNA barcoding in the characterisation of possible nemertean alien invasions.

  6. Photocleavable DNA barcode-antibody conjugates allow sensitive and multiplexed protein analysis in single cell

    PubMed Central

    Agasti, Sarit S.; Liong, Monty; Peterson, Vanessa M.; Lee, Hakho; Weissleder, Ralph

    2012-01-01

    DNA barcoding is an attractive technology as it allows sensitive and multiplexed target analysis. However, DNA barcoding of cellular proteins remains challenging, primarily because barcode amplification and readout techniques are often incompatible with the cellular microenvironment. Here, we describe the development and validation of a photocleavable DNA barcode-antibody conjugate method for rapid, quantitative and multiplexed detection of proteins in single live cells. Following target binding, this method allows DNA barcodes to be photoreleased in solution, enabling easy isolation, amplification and readout. As a proof of principle, we demonstrate sensitive and multiplexed detection of protein biomarkers in a variety of cancer cells. PMID:23092113

  7. Pollen DNA barcoding: current applications and future prospects.

    PubMed

    Bell, Karen L; de Vere, Natasha; Keller, Alexander; Richardson, Rodney T; Gous, Annemarie; Burgess, Kevin S; Brosi, Berry J

    2016-09-01

    Identification of the species origin of pollen has many applications, including assessment of plant-pollinator networks, reconstruction of ancient plant communities, product authentication, allergen monitoring, and forensics. Such applications, however, have previously been limited by microscopy-based identification of pollen, which is slow, has low taxonomic resolution, and has few expert practitioners. One alternative is pollen DNA barcoding, which could overcome these issues. Recent studies demonstrate that both chloroplast and nuclear barcoding markers can be amplified from pollen. These recent validations of pollen metabarcoding indicate that now is the time for researchers in various fields to consider applying these methods to their research programs. In this paper, we review the nascent field of pollen DNA barcoding and discuss potential new applications of this technology, highlighting existing limitations and future research developments that will improve its utility in a wide range of applications. PMID:27322652

  8. The changing epitome of species identification - DNA barcoding.

    PubMed

    Ajmal Ali, M; Gyulai, Gábor; Hidvégi, Norbert; Kerti, Balázs; Al Hemaid, Fahad M A; Pandey, Arun K; Lee, Joongku

    2014-07-01

    The discipline taxonomy (the science of naming and classifying organisms, the original bioinformatics and a basis for all biology) is fundamentally important in ensuring the quality of life of future human generation on the earth; yet over the past few decades, the teaching and research funding in taxonomy have declined because of its classical way of practice which lead the discipline many a times to a subject of opinion, and this ultimately gave birth to several problems and challenges, and therefore the taxonomist became an endangered race in the era of genomics. Now taxonomy suddenly became fashionable again due to revolutionary approaches in taxonomy called DNA barcoding (a novel technology to provide rapid, accurate, and automated species identifications using short orthologous DNA sequences). In DNA barcoding, complete data set can be obtained from a single specimen irrespective to morphological or life stage characters. The core idea of DNA barcoding is based on the fact that the highly conserved stretches of DNA, either coding or non coding regions, vary at very minor degree during the evolution within the species. Sequences suggested to be useful in DNA barcoding include cytoplasmic mitochondrial DNA (e.g. cox1) and chloroplast DNA (e.g. rbcL, trnL-F, matK, ndhF, and atpB rbcL), and nuclear DNA (ITS, and house keeping genes e.g. gapdh). The plant DNA barcoding is now transitioning the epitome of species identification; and thus, ultimately helping in the molecularization of taxonomy, a need of the hour. The 'DNA barcodes' show promise in providing a practical, standardized, species-level identification tool that can be used for biodiversity assessment, life history and ecological studies, forensic analysis, and many more. PMID:24955007

  9. The unholy trinity: taxonomy, species delimitation and DNA barcoding

    PubMed Central

    DeSalle, Rob; Egan, Mary G; Siddall, Mark

    2005-01-01

    Recent excitement over the development of an initiative to generate DNA sequences for all named species on the planet has in our opinion generated two major areas of contention as to how this ‘DNA barcoding’ initiative should proceed. It is critical that these two issues are clarified and resolved, before the use of DNA as a tool for taxonomy and species delimitation can be universalized. The first issue concerns how DNA data are to be used in the context of this initiative; this is the DNA barcode reader problem (or barcoder problem). Currently, many of the published studies under this initiative have used tree building methods and more precisely distance approaches to the construction of the trees that are used to place certain DNA sequences into a taxonomic context. The second problem involves the reaction of the taxonomic community to the directives of the ‘DNA barcoding’ initiative. This issue is extremely important in that the classical taxonomic approach and the DNA approach will need to be reconciled in order for the ‘DNA barcoding’ initiative to proceed with any kind of community acceptance. In fact, we feel that DNA barcoding is a misnomer. Our preference is for the title of the London meetings—Barcoding Life. In this paper we discuss these two concerns generated around the DNA barcoding initiative and attempt to present a phylogenetic systematic framework for an improved barcoder as well as a taxonomic framework for interweaving classical taxonomy with the goals of ‘DNA barcoding’. PMID:16214748

  10. Counting animal species with DNA barcodes: Canadian insects

    PubMed Central

    Ratnasingham, Sujeevan; Zakharov, Evgeny V.; Telfer, Angela C.; Levesque-Beaudin, Valerie; Milton, Megan A.; Pedersen, Stephanie; Jannetta, Paul; deWaard, Jeremy R.

    2016-01-01

    Recent estimates suggest that the global insect fauna includes fewer than six million species, but this projection is very uncertain because taxonomic work has been limited on some highly diverse groups. Validation of current estimates minimally requires the investigation of all lineages that are diverse enough to have a substantial impact on the final species count. This study represents a first step in this direction; it employs DNA barcoding to evaluate patterns of species richness in 27 orders of Canadian insects. The analysis of over one million specimens revealed species counts congruent with earlier results for most orders. However, Diptera and Hymenoptera were unexpectedly diverse, representing two-thirds of the 46 937 barcode index numbers (=species) detected. Correspondence checks between known species and barcoded taxa showed that sampling was incomplete, a result confirmed by extrapolations from the barcode results which suggest the occurrence of at least 94 000 species of insects in Canada, a near doubling from the prior estimate of 54 000 species. One dipteran family, the Cecidomyiidae, was extraordinarily diverse with an estimated 16 000 species, a 10-fold increase from its predicted diversity. If Canada possesses about 1% of the global fauna, as it does for known taxa, the results of this study suggest the presence of 10 million insect species with about 1.8 million of these taxa in the Cecidomyiidae. If so, the global species count for this fly family may exceed the combined total for all 142 beetle families. If extended to more geographical regions and to all hyperdiverse groups, DNA barcoding can rapidly resolve the current uncertainty surrounding a species count for the animal kingdom. A newly detailed understanding of species diversity may illuminate processes important in speciation, as suggested by the discovery that the most diverse insect lineages in Canada employ an unusual mode of reproduction, haplodiploidy. This article is part of the

  11. DNA Barcoding Works in Practice but Not in (Neutral) Theory

    PubMed Central

    2014-01-01

    Background DNA barcode differences within animal species are usually much less than differences among species, making it generally straightforward to match unknowns to a reference library. Here we aim to better understand the evolutionary mechanisms underlying this usual “barcode gap” pattern. We employ avian barcode libraries to test a central prediction of neutral theory, namely, intraspecific variation equals 2 Nµ, where N is population size and µ is mutations per site per generation. Birds are uniquely suited for this task: they have the best-known species limits, are well represented in barcode libraries, and, most critically, are the only large group with documented census population sizes. In addition, we ask if mitochondrial molecular clock measurements conform to neutral theory prediction of clock rate equals µ. Results Intraspecific COI barcode variation was uniformly low regardless of census population size (n = 142 species in 15 families). Apparent outliers reflected lumping of reproductively isolated populations or hybrid lineages. Re-analysis of a published survey of cytochrome b variation in diverse birds (n = 93 species in 39 families) further confirmed uniformly low intraspecific variation. Hybridization/gene flow among species/populations was the main limitation to DNA barcode identification. Conclusions/Significance To our knowledge, this is the first large study of animal mitochondrial diversity using actual census population sizes and the first to test outliers for population structure. Our finding of universally low intraspecific variation contradicts a central prediction of neutral theory and is not readily accounted for by commonly proposed ad hoc modifications. We argue that the weight of evidence–low intraspecific variation and the molecular clock–indicates neutral evolution plays a minor role in mitochondrial sequence evolution. As an alternate paradigm consistent with empirical data, we propose extreme purifying

  12. Counting animal species with DNA barcodes: Canadian insects.

    PubMed

    Hebert, Paul D N; Ratnasingham, Sujeevan; Zakharov, Evgeny V; Telfer, Angela C; Levesque-Beaudin, Valerie; Milton, Megan A; Pedersen, Stephanie; Jannetta, Paul; deWaard, Jeremy R

    2016-09-01

    Recent estimates suggest that the global insect fauna includes fewer than six million species, but this projection is very uncertain because taxonomic work has been limited on some highly diverse groups. Validation of current estimates minimally requires the investigation of all lineages that are diverse enough to have a substantial impact on the final species count. This study represents a first step in this direction; it employs DNA barcoding to evaluate patterns of species richness in 27 orders of Canadian insects. The analysis of over one million specimens revealed species counts congruent with earlier results for most orders. However, Diptera and Hymenoptera were unexpectedly diverse, representing two-thirds of the 46 937 barcode index numbers (=species) detected. Correspondence checks between known species and barcoded taxa showed that sampling was incomplete, a result confirmed by extrapolations from the barcode results which suggest the occurrence of at least 94 000 species of insects in Canada, a near doubling from the prior estimate of 54 000 species. One dipteran family, the Cecidomyiidae, was extraordinarily diverse with an estimated 16 000 species, a 10-fold increase from its predicted diversity. If Canada possesses about 1% of the global fauna, as it does for known taxa, the results of this study suggest the presence of 10 million insect species with about 1.8 million of these taxa in the Cecidomyiidae. If so, the global species count for this fly family may exceed the combined total for all 142 beetle families. If extended to more geographical regions and to all hyperdiverse groups, DNA barcoding can rapidly resolve the current uncertainty surrounding a species count for the animal kingdom. A newly detailed understanding of species diversity may illuminate processes important in speciation, as suggested by the discovery that the most diverse insect lineages in Canada employ an unusual mode of reproduction, haplodiploidy.This article is part of the

  13. Simultaneous detection of randomly arranged multiple barcodes using time division multiplexing technique

    NASA Astrophysics Data System (ADS)

    Haider, Saad Md. Jaglul; Islam, Md. Kafiul

    2010-02-01

    A method of detecting multiple barcodes simultaneously using time division multiplexing technique has been proposed in this paper to minimize the effective time needed for handling multiple tags of barcodes and to lessen the overall workload. Available barcode detection systems can handle multiple types of barcode but a single barcode at a time. This is not so efficient and can create large queue and chaos in places like mega shopping malls or large warehouses where we need to scan huge number of barcodes daily. Our proposed system is expected to improve the real time identification of goods or products on production lines and in automated warehouses or in mega shopping malls in a much more convenient and efficient way. For identifying of multiple barcodes simultaneously, a particular arrangement and orientation of LASER scanner and reflector have been used with a special curve shaped basement where the barcodes are placed. An effective and novel algorithm is developed to extract information from multiple barcodes which introduces starting pattern and ending pattern in barcodes with bit stuffing technique for the convenience of multiple detections. CRC technique is also used for trustworthiness of detection. The overall system enhances the existing single barcode detection system by a great amount although it is easy to implement and use.

  14. A diffractive barcode using diffusion-dot lines to form intersected bright bars with different orientations

    NASA Astrophysics Data System (ADS)

    Lih Yeh, Sheng; Lin, Shyh Tsong; Wu, Ming Wei

    2010-11-01

    Conventional barcodes can perform well for the data management of commercial products, but they cannot be used for anti-counterfeiting. Therefore, this paper will propose a new barcode with macro- and micro-anti-counterfeiting features. A barcode image for a conventional barcode is composed of parallel bars with different widths, whereas a barcode image for the new barcode is composed of intersected bars with different orientations. Codes for the proposed barcode are composed of bright bars along four possible orientations only. The proposed barcode pattern possesses many parallel diffusion-dot lines. Because diffusion-dot lines can diffract a laser beam to form different bright bar arrangements corresponding to different codes, the proposed barcode is called a 'diffractive barcode' here. There are brightness and length differences between the bars in a bright bar image and the differences are difficult to counterfeit, so the macrofeatures can be used for anti-counterfeiting. On the other hand, because the appearances of the diffusion dots are special and they cannot be reproduced, the microfeatures can be used for anti-counterfeiting. Moreover, both the encoding and decoding work of the diffractive barcode are easy.

  15. DNA Barcoding of genus Hexacentrus in China reveals cryptic diversity within Hexacentrus japonicus (Orthoptera, Tettigoniidae)

    PubMed Central

    Guo, Hui-Fang; Guan, Bei; Shi, Fu-Ming; Zhou, Zhi-Jun

    2016-01-01

    Abstract DNA barcoding has been proved successful to provide resolution beyond the boundaries of morphological information. Hence, a study was undertaken to establish DNA barcodes for all morphologically determined Hexacentrus species in China collections. In total, 83 specimens of five Hexacentrus species were barcoded using standard mitochondrial cytochrome c oxidase subunit I (COI) gene. Except for Hexacentrus japonicus, barcode gaps were present in the remaining Hexacentrus species. Taxon ID tree generated seven BOLD’s barcode index numbers (BINs), four of which were in agreement with the morphological species. For Hexacentrus japonicus, the maximum intraspecific divergence (4.43%) produced a minimal overlap (0.64%), and 19 specimens were divided into three different BINs. There may be cryptic species within the current Hexacentrus japonicus. This study adds to a growing body of DNA barcodes that have become available for katydids, and shows that a DNA barcoding approach enables the identification of known Hexacentrus species with a very high resolution. PMID:27408576

  16. Multicultural Reading

    ERIC Educational Resources Information Center

    Veltze, Linda

    2004-01-01

    Multicultural reading advocates believe in the power of literature to transform and to change people's lives. They take seriously the arguments that racism and prejudice can be lessened through multicultural reading, and also that children from undervalued societal groups who read books that depict people like themselves in a positive light will…

  17. DNA barcode-based molecular identification system for fish species.

    PubMed

    Kim, Sungmin; Eo, Hae-Seok; Koo, Hyeyoung; Choi, Jun-Kil; Kim, Won

    2010-12-01

    In this study, we applied DNA barcoding to identify species using short DNA sequence analysis. We examined the utility of DNA barcoding by identifying 53 Korean freshwater fish species, 233 other freshwater fish species, and 1339 saltwater fish species. We successfully developed a web-based molecular identification system for fish (MISF) using a profile hidden Markov model. MISF facilitates efficient and reliable species identification, overcoming the limitations of conventional taxonomic approaches. MISF is freely accessible at http://bioinfosys.snu.ac.kr:8080/MISF/misf.jsp . PMID:21110132

  18. Denture bar-coding: An innovative technique in forensic dentistry

    PubMed Central

    Dineshshankar, Janardhanam; Venkateshwaran, Rajendran; Vidhya, J.; Anuradha, R.; Mary, Gold Pealin; Pradeep, R.; Senthileagappan, A. R.

    2015-01-01

    Denture markers play an important role in forensic odontology and also in identifying a person. A number of methods are there for identifying dentures from a less expensive technique to a more expensive technique. Out of different denture markers, the bar-coding system is a way of collecting data from the mobile. Even a huge amount of data can be stored in that. It can be easily incorporated during acrylization of the denture and thus could be helpful in identification. This article reviews the strengths of bar-coding and how easily it can be used in the routine procedure. PMID:26538876

  19. Identification of Traceability Barcode Based on Phase Correlation Algorithm

    NASA Astrophysics Data System (ADS)

    Lang, Liying; Zhang, Xiaofang

    In the paper phase correlation algorithm based on Fourier transform is applied to the traceability barcode identification, which is a widely used method of image registration. And there is the rotation-invariant phase correlation algorithm which combines polar coordinate transform with phase correlation, that they can recognize the barcode with partly destroyed and rotated. The paper provides the analysis and simulation for the algorithm using Matlab, the results show that the algorithm has the advantages of good real-time and high performance. And it improves the matching precision and reduces the calculation by optimizing the rotation-invariant phase correlation.

  20. 1D-VAR Retrieval Using Superchannels

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel; Larar, Allen; Smith, William L.; Schluessel, Peter; Mango, Stephen; SaintGermain, Karen

    2008-01-01

    Since modern ultra-spectral remote sensors have thousands of channels, it is difficult to include all of them in a 1D-var retrieval system. We will describe a physical inversion algorithm, which includes all available channels for the atmospheric temperature, moisture, cloud, and surface parameter retrievals. Both the forward model and the inversion algorithm compress the channel radiances into super channels. These super channels are obtained by projecting the radiance spectra onto a set of pre-calculated eigenvectors. The forward model provides both super channel properties and jacobian in EOF space directly. For ultra-spectral sensors such as Infrared Atmospheric Sounding Interferometer (IASI) and the NPOESS Airborne Sounder Testbed Interferometer (NAST), a compression ratio of more than 80 can be achieved, leading to a significant reduction in computations involved in an inversion process. Results will be shown applying the algorithm to real IASI and NAST data.

  1. Detection and characterisation of the biopollutant Xenostrobus securis (Lamarck 1819) Asturian population from DNA Barcoding and eBarcoding.

    PubMed

    Devloo-Delva, Floriaan; Miralles, Laura; Ardura, Alba; Borrell, Yaisel J; Pejovic, Ivana; Tsartsianidou, Valentina; Garcia-Vazquez, Eva

    2016-04-15

    DNA efficiently contributes to detect and understand marine invasions. In 2014 the potential biological pollutant pygmy mussel (Xenostrobus securis) was observed for the first time in the Avilés estuary (Asturias, Bay of Biscay). The goal of this study was to assess the stage of invasion, based on demographic and genetic (DNA Barcoding) characteristics, and to develop a molecular tool for surveying the species in environmental DNA. A total of 130 individuals were analysed for the DNA Barcode cytochrome oxidase I gene in order to determine genetic diversity, population structure, expansion trends, and to inferring introduction hits. Reproduction was evidenced by bimodal size distributions of 1597 mussels. High population genetic variation and genetically distinct clades might suggest multiple introductions from several source populations. Finally, species-specific primers were developed within the DNA barcode for PCR amplification from water samples in order to enabling rapid detection of the species in initial expansion stages. PMID:26971231

  2. Feasibility and Limitations of Vaccine Two-Dimensional Barcoding Using Mobile Devices

    PubMed Central

    Bell, Cameron; Guerinet, Julien

    2016-01-01

    Background Two-dimensional (2D) barcoding has the potential to enhance documentation of vaccine encounters at the point of care. However, this is currently limited to environments equipped with dedicated barcode scanners and compatible record systems. Mobile devices may present a cost-effective alternative to leverage 2D vaccine vial barcodes and improve vaccine product-specific information residing in digital health records. Objective Mobile devices have the potential to capture product-specific information from 2D vaccine vial barcodes. We sought to examine the feasibility, performance, and potential limitations of scanning 2D barcodes on vaccine vials using 4 different mobile phones. Methods A unique barcode scanning app was developed for Android and iOS operating systems. The impact of 4 variables on the scan success rate, data accuracy, and time to scan were examined: barcode size, curvature, fading, and ambient lighting conditions. Two experimenters performed 4 trials 10 times each, amounting to a total of 2160 barcode scan attempts. Results Of the 1832 successful scans performed in this evaluation, zero produced incorrect data. Five-millimeter barcodes were the slowest to scan, although only by 0.5 seconds on average. Barcodes with up to 50% fading had a 100% success rate, but success rate deteriorated beyond 60% fading. Curved barcodes took longer to scan compared with flat, but success rate deterioration was only observed at a vial diameter of 10 mm. Light conditions did not affect success rate or scan time between 500 lux and 20 lux. Conditions below 20 lux impeded the device’s ability to scan successfully. Variability in scan time was observed across devices in all trials performed. Conclusions 2D vaccine barcoding is possible using mobile devices and is successful under the majority of conditions examined. Manufacturers utilizing 2D barcodes should take into consideration the impact of factors that limit scan success rates. Future studies should

  3. An Integrated RFID and Barcode Tagged Item Inventory System for Deployment at New Brunswick Laboratory

    SciTech Connect

    Younkin, James R; Kuhn, Michael J; Gradle, Colleen; Preston, Lynne; Thomas, Brigham B.; Laymance, Leesa K; Kuziel, Ron

    2012-01-01

    New Brunswick Laboratory (NBL) has a numerous inventory containing thousands of plutonium and uranium certified reference materials. The current manual inventory process is well established but is a lengthy process which requires significant oversight and double checking to ensure correctness. Oak Ridge National Laboratory has worked with NBL to develop and deploy a new inventory system which utilizes handheld computers with barcode scanners and radio frequency identification (RFID) readers termed the Tagged Item Inventory System (TIIS). Certified reference materials are identified by labels which incorporate RFID tags and barcodes. The label printing process and RFID tag association process are integrated into the main desktop software application. Software on the handheld computers syncs with software on designated desktop machines and the NBL inventory database to provide a seamless inventory process. This process includes: 1) identifying items to be inventoried, 2) downloading the current inventory information to the handheld computer, 3) using the handheld to read item and location labels, and 4) syncing the handheld computer with a designated desktop machine to analyze the results, print reports, etc. The security of this inventory software has been a major concern. Designated roles linked to authenticated logins are used to control access to the desktop software while password protection and badge verification are used to control access to the handheld computers. The overall system design and deployment at NBL will be presented. The performance of the system will also be discussed with respect to a small piece of the overall inventory. Future work includes performing a full inventory at NBL with the Tagged Item Inventory System and comparing performance, cost, and radiation exposures to the current manual inventory process.

  4. Identification of Rays through DNA Barcoding: An Application for Ecologists

    PubMed Central

    Cerutti-Pereyra, Florencia; Meekan, Mark G.; Wei, Nu-Wei V.; O'Shea, Owen; Bradshaw, Corey J. A.; Austin, Chris M.

    2012-01-01

    DNA barcoding potentially offers scientists who are not expert taxonomists a powerful tool to support the accuracy of field studies involving taxa that are diverse and difficult to identify. The taxonomy of rays has received reasonable attention in Australia, although the fauna in remote locations such as Ningaloo Reef, Western Australia is poorly studied and the identification of some species in the field is problematic. Here, we report an application of DNA-barcoding to the identification of 16 species (from 10 genera) of tropical rays as part of an ecological study. Analysis of the dataset combined across all samples grouped sequences into clearly defined operational taxonomic units, with two conspicuous exceptions: the Neotrygon kuhlii species complex and the Aetobatus species complex. In the field, the group that presented the most difficulties for identification was the spotted whiptail rays, referred to as the ‘uarnak’ complex. Two sets of problems limited the successful application of DNA barcoding: (1) the presence of cryptic species, species complexes with unresolved taxonomic status and intra-specific geographical variation, and (2) insufficient numbers of entries in online databases that have been verified taxonomically, and the presence of lodged sequences in databases with inconsistent names. Nevertheless, we demonstrate the potential of the DNA barcoding approach to confirm field identifications and to highlight species complexes where taxonomic uncertainty might confound ecological data. PMID:22701556

  5. Multiplex single-molecule interaction profiling of DNA barcoded proteins

    PubMed Central

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E.; Vidal, Marc; Church, George M.

    2014-01-01

    In contrast with advances in massively parallel DNA sequencing1, high-throughput protein analyses2-4 are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule (SM) protein detection achieved using optical methods5 is limited by the number of spectrally nonoverlapping chromophores. Here, we introduce a single molecular interaction-sequencing (SMI-Seq) technology for parallel protein interaction profiling leveraging SM advantages. DNA barcodes are attached to proteins collectively via ribosome display6 or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide (PAA) thin film to construct a random SM array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies)7 and analyzed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimeter. Furthermore, protein interactions can be measured based on the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor (GPCR) and antibody binding profiling, were demonstrated. SMI-Seq enables “library vs. library” screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity. PMID:25252978

  6. DNA barcoding of parasitic nematodes: is it kosher?

    PubMed

    Siddall, Mark E; Kvist, Sebastion; Phillips, Anna; Oceguera-Figuero, Alejandro

    2012-06-01

    Nematode parasites were encountered in kosher-certified fish meat and roe, and the question was raised as to whether or not these food products were kosher as concerns food preparation standards-a matter that pertains to the identity and, by extension, the life cycle of the parasites. To ascertain the identities of parasitic nematodes, given the distorted or damaged nature of the specimens, molecular techniques were applied in the form of DNA barcoding. To our knowledge, this is the first application of this technique to an obviously cultural concern as opposed to one of health or economic significance. Results, based both on cytochrome c oxidase subunits I and II, suggested that the parasite species found in the fish products are anisakine species that do not inhabit the intestinal lumen of the fish hosts examined. Thus, there was no evidence of failure to adhere to food preparation practices consistent with the proscriptions of Orthodox Judaism. Notwithstanding the success of DNA barcoding in determining at least the higher taxonomic identities of the parasites, some shortcomings of the DNA barcoding pipeline as it pertains to nematode parasites were encountered; specifically, the paucity of data available for the DNA barcoding locus, even for very common nematode taxa. PMID:22300283

  7. A simulation study of sample size for DNA barcoding.

    PubMed

    Luo, Arong; Lan, Haiqiang; Ling, Cheng; Zhang, Aibing; Shi, Lei; Ho, Simon Y W; Zhu, Chaodong

    2015-12-01

    For some groups of organisms, DNA barcoding can provide a useful tool in taxonomy, evolutionary biology, and biodiversity assessment. However, the efficacy of DNA barcoding depends on the degree of sampling per species, because a large enough sample size is needed to provide a reliable estimate of genetic polymorphism and for delimiting species. We used a simulation approach to examine the effects of sample size on four estimators of genetic polymorphism related to DNA barcoding: mismatch distribution, nucleotide diversity, the number of haplotypes, and maximum pairwise distance. Our results showed that mismatch distributions derived from subsamples of ≥20 individuals usually bore a close resemblance to that of the full dataset. Estimates of nucleotide diversity from subsamples of ≥20 individuals tended to be bell-shaped around that of the full dataset, whereas estimates from smaller subsamples were not. As expected, greater sampling generally led to an increase in the number of haplotypes. We also found that subsamples of ≥20 individuals allowed a good estimate of the maximum pairwise distance of the full dataset, while smaller ones were associated with a high probability of underestimation. Overall, our study confirms the expectation that larger samples are beneficial for the efficacy of DNA barcoding and suggests that a minimum sample size of 20 individuals is needed in practice for each population. PMID:26811761

  8. Use of DNA barcodes to identify flowering plants

    PubMed Central

    Kress, W. John; Wurdack, Kenneth J.; Zimmer, Elizabeth A.; Weigt, Lee A.; Janzen, Daniel H.

    2005-01-01

    Methods for identifying species by using short orthologous DNA sequences, known as “DNA barcodes,” have been proposed and initiated to facilitate biodiversity studies, identify juveniles, associate sexes, and enhance forensic analyses. The cytochrome c oxidase 1 sequence, which has been found to be widely applicable in animal barcoding, is not appropriate for most species of plants because of a much slower rate of cytochrome c oxidase 1 gene evolution in higher plants than in animals. We therefore propose the nuclear internal transcribed spacer region and the plastid trnH-psbA intergenic spacer as potentially usable DNA regions for applying barcoding to flowering plants. The internal transcribed spacer is the most commonly sequenced locus used in plant phylogenetic investigations at the species level and shows high levels of interspecific divergence. The trnH-psbA spacer, although short (≈450-bp), is the most variable plastid region in angiosperms and is easily amplified across a broad range of land plants. Comparison of the total plastid genomes of tobacco and deadly nightshade enhanced with trials on widely divergent angiosperm taxa, including closely related species in seven plant families and a group of species sampled from a local flora encompassing 50 plant families (for a total of 99 species, 80 genera, and 53 families), suggest that the sequences in this pair of loci have the potential to discriminate among the largest number of plant species for barcoding purposes. PMID:15928076

  9. Barcoding of live human PBMC for multiplexed mass cytometry*

    PubMed Central

    Mei, Henrik E.; Leipold, Michael D.; Schulz, Axel Ronald; Chester, Cariad; Maecker, Holden T.

    2014-01-01

    Mass cytometry is developing as a means of multiparametric single cell analysis. Here, we present an approach to barcoding separate live human PBMC samples for combined preparation and acquisition on a CyTOF® instrument. Using six different anti-CD45 antibody (Ab) conjugates labeled with Pd104, Pd106, Pd108, Pd110, In113, and In115, respectively, we barcoded up to 20 samples with unique combinations of exactly three different CD45 Ab tags. Cell events carrying more than or less than three different tags were excluded from analyses during Boolean data deconvolution, allowing for precise sample assignment and the electronic removal of cell aggregates. Data from barcoded samples matched data from corresponding individually stained and acquired samples, at cell event recoveries similar to individual sample analyses. The approach greatly reduced technical noise and minimizes unwanted cell doublet events in mass cytometry data, and reduces wet work and antibody consumption. It also eliminates sample-to-sample carryover and the requirement of instrument cleaning between samples, thereby effectively reducing overall instrument runtime. Hence, CD45-barcoding facilitates accuracy of mass cytometric immunophenotyping studies, thus supporting biomarker discovery efforts, and should be applicable to fluorescence flow cytometry as well. PMID:25609839

  10. Telling plant species apart with DNA: from barcodes to genomes

    PubMed Central

    Li, De-Zhu; van der Bank, Michelle

    2016-01-01

    Land plants underpin a multitude of ecosystem functions, support human livelihoods and represent a critically important component of terrestrial biodiversity—yet many tens of thousands of species await discovery, and plant identification remains a substantial challenge, especially where material is juvenile, fragmented or processed. In this opinion article, we tackle two main topics. Firstly, we provide a short summary of the strengths and limitations of plant DNA barcoding for addressing these issues. Secondly, we discuss options for enhancing current plant barcodes, focusing on increasing discriminatory power via either gene capture of nuclear markers or genome skimming. The former has the advantage of establishing a defined set of target loci maximizing efficiency of sequencing effort, data storage and analysis. The challenge is developing a probe set for large numbers of nuclear markers that works over sufficient phylogenetic breadth. Genome skimming has the advantage of using existing protocols and being backward compatible with existing barcodes; and the depth of sequence coverage can be increased as sequencing costs fall. Its non-targeted nature does, however, present a major informatics challenge for upscaling to large sample sets. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481790

  11. A Retrospective Approach to Testing the DNA Barcoding Method

    PubMed Central

    Chapple, David G.; Ritchie, Peter A.

    2013-01-01

    A decade ago, DNA barcoding was proposed as a standardised method for identifying existing species and speeding the discovery of new species. Yet, despite its numerous successes across a range of taxa, its frequent failures have brought into question its accuracy as a short-cut taxonomic method. We use a retrospective approach, applying the method to the classification of New Zealand skinks as it stood in 1977 (primarily based upon morphological characters), and compare it to the current taxonomy reached using both morphological and molecular approaches. For the 1977 dataset, DNA barcoding had moderate-high success in identifying specimens (78-98%), and correctly flagging specimens that have since been confirmed as distinct taxa (77-100%). But most matching methods failed to detect the species complexes that were present in 1977. For the current dataset, there was moderate-high success in identifying specimens (53-99%). For both datasets, the capacity to discover new species was dependent on the methodological approach used. Species delimitation in New Zealand skinks was hindered by the absence of either a local or global barcoding gap, a result of recent speciation events and hybridisation. Whilst DNA barcoding is potentially useful for specimen identification and species discovery in New Zealand skinks, its error rate could hinder the progress of documenting biodiversity in this group. We suggest that integrated taxonomic approaches are more effective at discovering and describing biodiversity. PMID:24244283

  12. Telling plant species apart with DNA: from barcodes to genomes.

    PubMed

    Hollingsworth, Peter M; Li, De-Zhu; van der Bank, Michelle; Twyford, Alex D

    2016-09-01

    Land plants underpin a multitude of ecosystem functions, support human livelihoods and represent a critically important component of terrestrial biodiversity-yet many tens of thousands of species await discovery, and plant identification remains a substantial challenge, especially where material is juvenile, fragmented or processed. In this opinion article, we tackle two main topics. Firstly, we provide a short summary of the strengths and limitations of plant DNA barcoding for addressing these issues. Secondly, we discuss options for enhancing current plant barcodes, focusing on increasing discriminatory power via either gene capture of nuclear markers or genome skimming. The former has the advantage of establishing a defined set of target loci maximizing efficiency of sequencing effort, data storage and analysis. The challenge is developing a probe set for large numbers of nuclear markers that works over sufficient phylogenetic breadth. Genome skimming has the advantage of using existing protocols and being backward compatible with existing barcodes; and the depth of sequence coverage can be increased as sequencing costs fall. Its non-targeted nature does, however, present a major informatics challenge for upscaling to large sample sets.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481790

  13. Looking back on a decade of barcoding crustaceans.

    PubMed

    Raupach, Michael J; Radulovici, Adriana E

    2015-01-01

    Species identification represents a pivotal component for large-scale biodiversity studies and conservation planning but represents a challenge for many taxa when using morphological traits only. Consequently, alternative identification methods based on molecular markers have been proposed. In this context, DNA barcoding has become a popular and accepted method for the identification of unknown animals across all life stages by comparison to a reference library. In this review we examine the progress of barcoding studies for the Crustacea using the Web of Science data base from 2003 to 2014. All references were classified in terms of taxonomy covered, subject area (identification/library, genetic variability, species descriptions, phylogenetics, methods, pseudogenes/numts), habitat, geographical area, authors, journals, citations, and the use of the Barcode of Life Data Systems (BOLD). Our analysis revealed a total number of 164 barcoding studies for crustaceans with a preference for malacostracan crustaceans, in particular Decapoda, and for building reference libraries in order to identify organisms. So far, BOLD did not establish itself as a popular informatics platform among carcinologists although it offers many advantages for standardized data storage, analyses and publication. PMID:26798245

  14. Looking back on a decade of barcoding crustaceans

    PubMed Central

    Raupach, Michael J.; Radulovici, Adriana E.

    2015-01-01

    Abstract Species identification represents a pivotal component for large-scale biodiversity studies and conservation planning but represents a challenge for many taxa when using morphological traits only. Consequently, alternative identification methods based on molecular markers have been proposed. In this context, DNA barcoding has become a popular and accepted method for the identification of unknown animals across all life stages by comparison to a reference library. In this review we examine the progress of barcoding studies for the Crustacea using the Web of Science data base from 2003 to 2014. All references were classified in terms of taxonomy covered, subject area (identification/library, genetic variability, species descriptions, phylogenetics, methods, pseudogenes/numts), habitat, geographical area, authors, journals, citations, and the use of the Barcode of Life Data Systems (BOLD). Our analysis revealed a total number of 164 barcoding studies for crustaceans with a preference for malacostracan crustaceans, in particular Decapoda, and for building reference libraries in order to identify organisms. So far, BOLD did not establish itself as a popular informatics platform among carcinologists although it offers many advantages for standardized data storage, analyses and publication. PMID:26798245

  15. DNA barcoding of medicinal plant material for identification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of the increasing demand for herbal remedies and for authentication of the source material, it is vital to provide a single database containing information about authentic plant materials and their potential adulterants. The database should provide DNA barcodes for data retrieval and similar...

  16. DNA Barcode Authentication of Saw Palmetto Herbal Dietary Supplements

    PubMed Central

    Little, Damon P.; Jeanson, Marc L.

    2013-01-01

    Herbal dietary supplements made from saw palmetto (Serenoa repens; Arecaceae) fruit are commonly consumed to ameliorate benign prostate hyperplasia. A novel DNA mini–barcode assay to accurately identify [specificity = 1.00 (95% confidence interval = 0.74–1.00); sensitivity = 1.00 (95% confidence interval = 0.66–1.00); n = 31] saw palmetto dietary supplements was designed from a DNA barcode reference library created for this purpose. The mini–barcodes were used to estimate the frequency of mislabeled saw palmetto herbal dietary supplements on the market in the United States of America. Of the 37 supplements examined, amplifiable DNA could be extracted from 34 (92%). Mini–barcode analysis of these supplements demonstrated that 29 (85%) contain saw palmetto and that 2 (6%) supplements contain related species that cannot be legally sold as herbal dietary supplements in the United States of America. The identity of 3 (9%) supplements could not be conclusively determined. PMID:24343362

  17. Untangling taxonomy: a DNA barcode reference library for Canadian spiders.

    PubMed

    Blagoev, Gergin A; deWaard, Jeremy R; Ratnasingham, Sujeevan; deWaard, Stephanie L; Lu, Liuqiong; Robertson, James; Telfer, Angela C; Hebert, Paul D N

    2016-01-01

    Approximately 1460 species of spiders have been reported from Canada, 3% of the global fauna. This study provides a DNA barcode reference library for 1018 of these species based upon the analysis of more than 30,000 specimens. The sequence results show a clear barcode gap in most cases with a mean intraspecific divergence of 0.78% vs. a minimum nearest-neighbour (NN) distance averaging 7.85%. The sequences were assigned to 1359 Barcode index numbers (BINs) with 1344 of these BINs composed of specimens belonging to a single currently recognized species. There was a perfect correspondence between BIN membership and a known species in 795 cases, while another 197 species were assigned to two or more BINs (556 in total). A few other species (26) were involved in BIN merges or in a combination of merges and splits. There was only a weak relationship between the number of specimens analysed for a species and its BIN count. However, three species were clear outliers with their specimens being placed in 11-22 BINs. Although all BIN splits need further study to clarify the taxonomic status of the entities involved, DNA barcodes discriminated 98% of the 1018 species. The present survey conservatively revealed 16 species new to science, 52 species new to Canada and major range extensions for 426 species. However, if most BIN splits detected in this study reflect cryptic taxa, the true species count for Canadian spiders could be 30-50% higher than currently recognized. PMID:26175299

  18. Clinical Validation of Quantum Dot Barcode Diagnostic Technology.

    PubMed

    Kim, Jisung; Biondi, Mia J; Feld, Jordan J; Chan, Warren C W

    2016-04-26

    There has been a major focus on the clinical translation of emerging technologies for diagnosing patients with infectious diseases, cancer, heart disease, and diabetes. However, most developments still remain at the academic stage where researchers use spiked target molecules to demonstrate the utility of a technology and assess the analytical performance. This approach does not account for the biological complexities and variabilities of human patient samples. As a technology matures and potentially becomes clinically viable, one important intermediate step in the translation process is to conduct a full clinical validation of the technology using a large number of patient samples. Here, we present a full detailed clinical validation of Quantum Dot (QD) barcode technology for diagnosing patients infected with Hepatitis B Virus (HBV). We further demonstrate that the detection of multiple regions of the viral genome using multiplexed QD barcodes improved clinical sensitivity from 54.9-66.7% to 80.4-90.5%, and describe how to use QD barcodes for optimal clinical diagnosis of patients. The use of QDs in biology and medicine was first introduced in 1998 but has not reached clinical care. This study describes our long-term systematic development strategy to advance QD technology to a clinically feasible product for diagnosing patients. Our "blueprint" for translating the QD barcode research concept could be adapted for other nanotechnologies, to efficiently advance diagnostic techniques discovered in the academic laboratory to patient care. PMID:27035744

  19. Reducing medical errors through barcoding at the point of care.

    PubMed

    Nichols, James H; Bartholomew, Cathy; Brunton, Mary; Cintron, Carlos; Elliott, Sheila; McGirr, Joan; Morsi, Deborah; Scott, Sue; Seipel, Joseph; Sinha, Daisy

    2004-01-01

    Medical errors are a major concern in health care today. Errors in point-of-care testing (POCT) are particularly problematic because the test is conducted by clinical operators at the site of patient care and immediate medical action is taken on the results prior to review by the laboratory. The Performance Improvement Program at Baystate Health System, Springfield, Massachusetts, noted a number of identification errors occurring with glucose and blood gas POCT devices. Incorrect patient account numbers that were attached to POCT results prevented the results from being transmitted to the patient's medical record and appropriately billed. In the worst case, they could lead to results being transferred to the wrong patient's chart and inappropriate medical treatment. Our first action was to lock-out operators who repeatedly made identification errors (3-Strike Rule), requiring operators to be counseled and retrained after their third error. The 3-Strike Rule significantly decreased our glucose meter errors (p = 0.014) but did not have an impact on the rate of our blood gas errors (p = 0.378). Neither device approached our ultimate goal of zero tolerance. A Failure Mode and Effects Analysis (FMEA) was conducted to determine the various processes that could lead to an identification error. A primary source of system failure was the manual entry of 14 digits for each test, five numbers for operator and nine numbers for patient account identification. Patient barcoding was implemented to automate the data entry process, and after an initial familiarization period, resulted in significant improvements in error rates for both the glucose (p = 0.0007) and blood gas devices (p = 0.048). Despite the improvements, error rates with barcoding still did not achieve zero errors. Operators continued to utilize manual data entry when the barcode scan was unsuccessful or unavailable, and some patients were found to have incorrect patient account numbers due to hospital transfer

  20. Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding

    PubMed Central

    Janzen, Daniel H; Hajibabaei, Mehrdad; Burns, John M; Hallwachs, Winnie; Remigio, Ed; Hebert, Paul D.N

    2005-01-01

    By facilitating bioliteracy, DNA barcoding has the potential to improve the way the world relates to wild biodiversity. Here we describe the early stages of the use of cox1 barcoding to supplement and strengthen the taxonomic platform underpinning the inventory of thousands of sympatric species of caterpillars in tropical dry forest, cloud forest and rain forest in northwestern Costa Rica. The results show that barcoding a biologically complex biota unambiguously distinguishes among 97% of more than 1000 species of reared Lepidoptera. Those few species whose barcodes overlap are closely related and not confused with other species. Barcoding also has revealed a substantial number of cryptic species among morphologically defined species, associated sexes, and reinforced identification of species that are difficult to distinguish morphologically. For barcoding to achieve its full potential, (i) ability to rapidly and cheaply barcode older museum specimens is urgent, (ii) museums need to address the opportunity and responsibility for housing large numbers of barcode voucher specimens, (iii) substantial resources need be mustered to support the taxonomic side of the partnership with barcoding, and (iv) hand-held field-friendly barcorder must emerge as a mutualism with the taxasphere and the barcoding initiative, in a manner such that its use generates a resource base for the taxonomic process as well as a tool for the user. PMID:16214742

  1. A DNA Mini-Barcoding System for Authentication of Processed Fish Products.

    PubMed

    Shokralla, Shadi; Hellberg, Rosalee S; Handy, Sara M; King, Ian; Hajibabaei, Mehrdad

    2015-01-01

    Species substitution is a form of seafood fraud for the purpose of economic gain. DNA barcoding utilizes species-specific DNA sequence information for specimen identification. Previous work has established the usability of short DNA sequences-mini-barcodes-for identification of specimens harboring degraded DNA. This study aims at establishing a DNA mini-barcoding system for all fish species commonly used in processed fish products in North America. Six mini-barcode primer pairs targeting short (127-314 bp) fragments of the cytochrome c oxidase I (CO1) DNA barcode region were developed by examining over 8,000 DNA barcodes from species in the U.S. Food and Drug Administration (FDA) Seafood List. The mini-barcode primer pairs were then tested against 44 processed fish products representing a range of species and product types. Of the 44 products, 41 (93.2%) could be identified at the species or genus level. The greatest mini-barcoding success rate found with an individual primer pair was 88.6% compared to 20.5% success rate achieved by the full-length DNA barcode primers. Overall, this study presents a mini-barcoding system that can be used to identify a wide range of fish species in commercial products and may be utilized in high throughput DNA sequencing for authentication of heavily processed fish products. PMID:26516098

  2. DNA barcoding in plants: evolution and applications of in silico approaches and resources.

    PubMed

    Bhargava, Mili; Sharma, Ashok

    2013-06-01

    Bioinformatics has played an important role in the analysis of DNA barcoding data. The process of DNA barcoding initially involves the available data collection from the existing databases. Many databases have been developed in recent years, e.g. MMDBD [Medicinal Materials DNA Barcode Database], BioBarcode, etc. In case of non-availability of sequences, sequencing has to be done in vitro for which a recently developed software ecoPrimers can be helpful. This is followed by multiple sequence alignment. Further, basic sequence statistics computation and phylogenetic analysis can be performed by MEGA and PHYLIP/PAUP tools respectively. Some of the recent tools for in silico and statistical analysis specifically designed for barcoding viz. CAOS (Character Based DNA Barcoding), BRONX (DNA Barcode Sequence Identification Incorporating Taxonomic Hierarchy and within Taxon Variability), Spider (Analysis of species identity and evolution, particularly DNA barcoding), jMOTU and Taxonerator (Turning DNA Barcode Sequences into Annotated OTUs), OTUbase (Analysis of OTU data and taxonomic data), SAP (Statistical Assignment Package), etc. have been discussed and analysed in this review. The paper presents a comprehensive overview of the various in silico methods, tools, softwares and databases used for DNA barcoding of plants. PMID:23500333

  3. Analyzing Mosquito (Diptera: Culicidae) Diversity in Pakistan by DNA Barcoding

    PubMed Central

    Ashfaq, Muhammad; Hebert, Paul D. N.; Mirza, Jawwad H.; Khan, Arif M.; Zafar, Yusuf; Mirza, M. Sajjad

    2014-01-01

    Background Although they are important disease vectors mosquito biodiversity in Pakistan is poorly known. Recent epidemics of dengue fever have revealed the need for more detailed understanding of the diversity and distributions of mosquito species in this region. DNA barcoding improves the accuracy of mosquito inventories because morphological differences between many species are subtle, leading to misidentifications. Methodology/Principal Findings Sequence variation in the barcode region of the mitochondrial COI gene was used to identify mosquito species, reveal genetic diversity, and map the distribution of the dengue-vector species in Pakistan. Analysis of 1684 mosquitoes from 491 sites in Punjab and Khyber Pakhtunkhwa during 2010–2013 revealed 32 species with the assemblage dominated by Culex quinquefasciatus (61% of the collection). The genus Aedes (Stegomyia) comprised 15% of the specimens, and was represented by six taxa with the two dengue vector species, Ae. albopictus and Ae. aegypti, dominant and broadly distributed. Anopheles made up another 6% of the catch with An. subpictus dominating. Barcode sequence divergence in conspecific specimens ranged from 0–2.4%, while congeneric species showed from 2.3–17.8% divergence. A global haplotype analysis of disease-vectors showed the presence of multiple haplotypes, although a single haplotype of each dengue-vector species was dominant in most countries. Geographic distribution of Ae. aegypti and Ae. albopictus showed the later species was dominant and found in both rural and urban environments. Conclusions As the first DNA-based analysis of mosquitoes in Pakistan, this study has begun the construction of a barcode reference library for the mosquitoes of this region. Levels of genetic diversity varied among species. Because of its capacity to differentiate species, even those with subtle morphological differences, DNA barcoding aids accurate tracking of vector populations. PMID:24827460

  4. DNA Barcoding of Sigmodontine Rodents: Identifying Wildlife Reservoirs of Zoonoses

    PubMed Central

    Müller, Lívia; Gonçalves, Gislene L.; Cordeiro-Estrela, Pedro; Marinho, Jorge R.; Althoff, Sérgio L.; Testoni, André. F.; González, Enrique M.; Freitas, Thales R. O.

    2013-01-01

    Species identification through DNA barcoding is a tool to be added to taxonomic procedures, once it has been validated. Applying barcoding techniques in public health would aid in the identification and correct delimitation of the distribution of rodents from the subfamily Sigmodontinae. These rodents are reservoirs of etiological agents of zoonoses including arenaviruses, hantaviruses, Chagas disease and leishmaniasis. In this study we compared distance-based and probabilistic phylogenetic inference methods to evaluate the performance of cytochrome c oxidase subunit I (COI) in sigmodontine identification. A total of 130 sequences from 21 field-trapped species (13 genera), mainly from southern Brazil, were generated and analyzed, together with 58 GenBank sequences (24 species; 10 genera). Preliminary analysis revealed a 9.5% rate of misidentifications in the field, mainly of juveniles, which were reclassified after examination of external morphological characters and chromosome numbers. Distance and model-based methods of tree reconstruction retrieved similar topologies and monophyly for most species. Kernel density estimation of the distance distribution showed a clear barcoding gap with overlapping of intraspecific and interspecific densities < 1% and 21 species with mean intraspecific distance < 2%. Five species that are reservoirs of hantaviruses could be identified through DNA barcodes. Additionally, we provide information for the description of a putative new species, as well as the first COI sequence of the recently described genus Drymoreomys. The data also indicated an expansion of the distribution of Calomys tener. We emphasize that DNA barcoding should be used in combination with other taxonomic and systematic procedures in an integrative framework and based on properly identified museum collections, to improve identification procedures, especially in epidemiological surveillance and ecological assessments. PMID:24244670

  5. Identification of North Sea molluscs with DNA barcoding.

    PubMed

    Barco, Andrea; Raupach, Michael J; Laakmann, Silke; Neumann, Hermann; Knebelsberger, Thomas

    2016-01-01

    Sequence-based specimen identification, known as DNA barcoding, is a common method complementing traditional morphology-based taxonomic assignments. The fundamental resource in DNA barcoding is the availability of a taxonomically reliable sequence database to use as a reference for sequence comparisons. Here, we provide a reference library including 579 sequences of the mitochondrial cytochrome c oxidase subunit I for 113 North Sea mollusc species. We tested the efficacy of this library by simulating a sequence-based specimen identification scenario using Best Match, Best Close Match (BCM) and All Species Barcode (ASB) criteria with three different threshold values. Each identification result was compared with our prior morphology-based taxonomic assignments. Our simulation resulted in 87.7% congruent identifications (93.8% when excluding singletons). The highest number of congruent identifications was obtained with BCM and ASB and a 0.05 threshold. We also compared identifications with genetic clustering (Barcode Index Numbers, BINs) computed by the Barcode of Life Datasystem (BOLD). About 68% of our morphological identifications were congruent with BINs created by BOLD. Forty-nine sequences were clustered in 16 discordant BINs, and these were divided in two classes: sequences from different species clustered in a single BIN and conspecific sequences divided in more BINs. Whereas former incongruences were probably caused by BOLD entries in need of a taxonomic update, the latter incongruences regarded taxa requiring further investigations. These include species with amphi-Atlantic distribution, whose genetic structure should be evaluated over their entire range to produce a reliable sequence-based identification system. PMID:26095230

  6. DNA Barcode Detects High Genetic Structure within Neotropical Bird Species

    PubMed Central

    Tavares, Erika Sendra; Gonçalves, Priscila; Miyaki, Cristina Yumi; Baker, Allan J.

    2011-01-01

    Background Towards lower latitudes the number of recognized species is not only higher, but also phylogeographic subdivision within species is more pronounced. Moreover, new genetically isolated populations are often described in recent phylogenies of Neotropical birds suggesting that the number of species in the region is underestimated. Previous COI barcoding of Argentinean bird species showed more complex patterns of regional divergence in the Neotropical than in the North American avifauna. Methods and Findings Here we analyzed 1,431 samples from 561 different species to extend the Neotropical bird barcode survey to lower latitudes, and detected even higher geographic structure within species than reported previously. About 93% (520) of the species were identified correctly from their DNA barcodes. The remaining 41 species were not monophyletic in their COI sequences because they shared barcode sequences with closely related species (N = 21) or contained very divergent clusters suggestive of putative new species embedded within the gene tree (N = 20). Deep intraspecific divergences overlapping with among-species differences were detected in 48 species, often with samples from large geographic areas and several including multiple subspecies. This strong population genetic structure often coincided with breaks between different ecoregions or areas of endemism. Conclusions The taxonomic uncertainty associated with the high incidence of non-monophyletic species and discovery of putative species obscures studies of historical patterns of species diversification in the Neotropical region. We showed that COI barcodes are a valuable tool to indicate which taxa would benefit from more extensive taxonomic revisions with multilocus approaches. Moreover, our results support hypotheses that the megadiversity of birds in the region is associated with multiple geographic processes starting well before the Quaternary and extending to more recent geological periods

  7. The changing epitome of species identification – DNA barcoding

    PubMed Central

    Ajmal Ali, M.; Gyulai, Gábor; Hidvégi, Norbert; Kerti, Balázs; Al Hemaid, Fahad M.A.; Pandey, Arun K.; Lee, Joongku

    2014-01-01

    The discipline taxonomy (the science of naming and classifying organisms, the original bioinformatics and a basis for all biology) is fundamentally important in ensuring the quality of life of future human generation on the earth; yet over the past few decades, the teaching and research funding in taxonomy have declined because of its classical way of practice which lead the discipline many a times to a subject of opinion, and this ultimately gave birth to several problems and challenges, and therefore the taxonomist became an endangered race in the era of genomics. Now taxonomy suddenly became fashionable again due to revolutionary approaches in taxonomy called DNA barcoding (a novel technology to provide rapid, accurate, and automated species identifications using short orthologous DNA sequences). In DNA barcoding, complete data set can be obtained from a single specimen irrespective to morphological or life stage characters. The core idea of DNA barcoding is based on the fact that the highly conserved stretches of DNA, either coding or non coding regions, vary at very minor degree during the evolution within the species. Sequences suggested to be useful in DNA barcoding include cytoplasmic mitochondrial DNA (e.g. cox1) and chloroplast DNA (e.g. rbcL, trnL-F, matK, ndhF, and atpB rbcL), and nuclear DNA (ITS, and house keeping genes e.g. gapdh). The plant DNA barcoding is now transitioning the epitome of species identification; and thus, ultimately helping in the molecularization of taxonomy, a need of the hour. The ‘DNA barcodes’ show promise in providing a practical, standardized, species-level identification tool that can be used for biodiversity assessment, life history and ecological studies, forensic analysis, and many more. PMID:24955007

  8. 1D-1D Coulomb drag in a 6 Million Mobility Bi-layer Heterostructure

    NASA Astrophysics Data System (ADS)

    Bilodeau, Simon; Laroche, Dominique; Xia, Jian-Sheng; Lilly, Mike; Reno, John; Pfeiffer, Loren; West, Ken; Gervais, Guillaume

    We report Coulomb drag measurements in vertically-coupled quantum wires. The wires are fabricated in GaAs/AlGaAs bilayer heterostructures grown from two different MBE chambers: one at Sandia National Laboratories (1.2M mobility), and the other at Princeton University (6M mobility). The previously observed positive and negative drag signals are seen in both types of devices, demonstrating the robustness of the result. However, attempts to determine the temperature dependence of the drag signal in the 1D regime proved challenging in the higher mobility heterostructure (Princeton), in part because of difficulties in aligning the wires within the same transverse subband configuration. Nevertheless, this work, performed at the Microkelvin laboratory of the University of Florida, is an important proof-of-concept for future investigations of the temperature dependence of the 1D-1D drag signal down to a few mK. Such an experiment could confirm the Luttinger charge density wave interlocking predicted to occur in the wires. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL8500.

  9. Numerical Analysis of Magnetic Field Distribution of Magnetic Micro-barcodes for Suspension Assay Technology

    NASA Astrophysics Data System (ADS)

    Son, Vo Thanh; Anandakumar, S.; Kim, CheolGi; Jeong, Jong-Ruyl

    2011-12-01

    In this study, we have investigated real-time decoding feasibility of magnetic micro-barcodes in a microfluidic channel by using numerical analysis of magnetic field distribution of the micro-barcodes. The vector potential model based on a molecular current has been used to obtain magnetic stray field distribution of ferromagnetic bars which consisting of the micro-barcodes. It reveals that the stray field distribution of the micro-barcodes strongly depends on the geometries of the ferromagnetic bar. Interestingly enough, we have found that one can avoide the miniaturization process of a magnetic sensor device needed to increase the sensitivity by optimizing the geometries of micro-barcodes. We also estimate a magnetic sensor response depending on flying height and lateral misalignment of the micro-barcodes over the sensor position and found that control of the flying height is crucial factor to enhance the detection sensitivity and reproducibility of a magnetic sensor signal in the suspension assay technology.

  10. Application of the digital watermarking technique in 2D barcode certificate anti-counterfeit systems

    NASA Astrophysics Data System (ADS)

    Chen, MuSheng; Lin, ShunDa

    2011-06-01

    At present, two dimensional barcode has been used in many fields. The safety of information in barcode is important, so this article brings up an effective two dimensional barcode encryption technology to assure it. Either two-dimensional barcode or digital watermarking technique is one of the most important parts and research focuses in anti-counterfeit fields. This paper designs and realizes a whole set of certificate administration system based on QRcode. On this platform the digital watermarking technique based on the spatial domain is used to encrypt the two dimensional barcode. The combination of two dimensional barcode and digital watermarking can improve the security and secrecy of personal information, and realize real anti-counterfeit certificates.

  11. Understanding 1D Electrostatic Dust Levitation

    NASA Astrophysics Data System (ADS)

    Hartzell, C. M.; Scheeres, D. J.

    2011-12-01

    Electrostatically-dominated dust motion has been hypothesized since the Lunar Horizon Glow was observed by the Surveyor spacecraft. The hypothesized occurence of this phenomenon was naturally extended to asteroids due to their small gravities. Additionally, it has been suggested that the dust ponds observed on Eros by the NEAR mission may be created by electrostatically-dominated dust transport. Previous attempts to numerically model dust motion on the Moon and Eros have been stymied by poorly understood dust launching mechanisms. As a result, the initial velocity and charge of dust particles used in numerical simulations may or may not have any relevance to the actual conditions occurring in situ. It has been seen that properly tuned initial states (velocity and charge) result in dust particles levitating above the surface in both 1D and 2D simulations. Levitation is of interest to planetary scientists since it provides a way to quickly redistribute the surface dust particles over a body. However, there is currently no method to predict whether or not a certain initial state will result in levitation. We have developed a method to provide constraints on the initial states that result in levitation as a function of dust particle size and central body gravity. Additionally, our method can be applied to several models of the plasma sheath. Thus, we limit the guesswork involved in determining which initial conditions result in levitation. We provide a more detailed understanding of levitation phenomena couched in terms of the commonly recognized spring-mass system. This method of understanding dust motion removes the dependency on the launching mechanism, which remains fraught with controversy. Once a feasible dust launching mechanism is identified (be it micrometeoroid bombardment or electrostatic lofting), our method will allow the community to quickly ascertain if dust levitation will occur in situ or if it is simply a numerical artifact. In addition to

  12. Against Readings

    ERIC Educational Resources Information Center

    Edmundson, Mark

    2009-01-01

    Edmundson states that if he could make one wish for the members of his profession, college and university professors of literature, he would wish that for one year, two, three, or five, they would give up readings. By "a reading," he means the application of an analytical vocabulary to describe and (usually) to judge a work of literary art.…

  13. Read Arizona.

    ERIC Educational Resources Information Center

    Arizona State Dept. of Library, Archives and Public Records, Phoenix.

    This manual, designed to help public libraries in Arizona to plan their summer reading programs for children, celebrates the 25th anniversary of the Arizona Reading Program. The material in the manual is prepared for libraries to adapt for their own uses. Chapters of the manual include: (1) Introductory Materials; (2) Goals, Objectives and…

  14. Required Reading

    ERIC Educational Resources Information Center

    Janko, Edmund

    2002-01-01

    In this article, the author insists that those seeking public office prove their literary mettle. As an English teacher, he does have a litmus test for all public officials, judges and senators included--a reading litmus test. He would require that all candidates and nominees have read and reflected on a nucleus of works whose ideas and insights…

  15. Reading Lab.

    ERIC Educational Resources Information Center

    Burt, Lorna

    This guide is intended for use in conducting a reading lab for a broad group of workers ranging from nonreaders to persons reading at a fifth-grade level. Presented first is a course overview that includes the following: information on the course's targeted population, student selection process, and demographics; strategies for adult remediation;…

  16. Repeated Reading.

    ERIC Educational Resources Information Center

    Moyer, Sandra B.

    1982-01-01

    The article reviews research on the use of multiple oral rereading (MOR) with reading disabled students. MOR uses daily practice on a selection of little difficulty. Its effectiveness in increasing fluency (accuracy and speed) is examined, and the role of redundancy in three types of reading models is analyzed. (CL)

  17. Reading Remixed

    ERIC Educational Resources Information Center

    Valenza, Joyce Kasman; Stephens, Wendy

    2012-01-01

    Critics claim that digital technologies are killing reading, but these teacher-librarians have observed that teens are as excited about reading as they ever were. Online communities give these readers opportunities to get to know authors, communicate with other fans, and learn more about books of interest. Publishers and authors are responding to…

  18. Teaching Reading.

    ERIC Educational Resources Information Center

    Ricketts, Mary

    1980-01-01

    Described are five approaches to teaching reading: Language Experience, Modified Alphabet, Linguistic, Programmed, and Basal. It is suggested that a good teacher, well trained, certified in his or her profession, an active participant in professional organizations, can teach reading successfully using almost any approach. (KC)

  19. Reading Aloud

    ERIC Educational Resources Information Center

    Delo, Lynda

    2008-01-01

    Many resources are available to elementary teachers who wish to support science learning with literature. Unfortunately, somewhere between middle school and high school, the emphasis on using literature to teach science content--particularly the exercise of reading aloud--has all but disappeared. However, the practice of reading aloud is helpful…

  20. Reading Programs.

    ERIC Educational Resources Information Center

    Au, Kathryn

    2001-01-01

    Notes that a major issue in literacy instruction today is whether commercial reading programs emphasizing phonemic awareness and phonics are more effective than teacher-designed programs that focus on literature-based reading and process writing with integrated skill instruction. Reviews two books that address this controversy. Presents seven…

  1. Barcoding a Quantified Food Web: Crypsis, Concepts, Ecology and Hypotheses

    PubMed Central

    Smith, M. Alex; Eveleigh, Eldon S.; McCann, Kevin S.; Merilo, Mark T.; McCarthy, Peter C.; Van Rooyen, Kathleen I.

    2011-01-01

    The efficient and effective monitoring of individuals and populations is critically dependent on correct species identification. While this point may seem obvious, identifying the majority of the more than 100 natural enemies involved in the spruce budworm (Choristoneura fumiferana – SBW) food web remains a non-trivial endeavor. Insect parasitoids play a major role in the processes governing the population dynamics of SBW throughout eastern North America. However, these species are at the leading edge of the taxonomic impediment and integrating standardized identification capacity into existing field programs would provide clear benefits. We asked to what extent DNA barcoding the SBW food web would alter our understanding of the diversity and connectence of the food web and the frequency of generalists vs. specialists in different forest habitats. We DNA barcoded over 10% of the insects collected from the SBW food web in three New Brunswick forest plots from 1983 to 1993. For 30% of these specimens, we amplified at least one additional nuclear region. When the nodes of the food web were estimated based on barcode divergences (using molecular operational taxonomic units (MOTU) or phylogenetic diversity (PD) – the food web became much more diverse and connectence was reduced. We tested one measure of food web structure (the “bird feeder effect”) and found no difference compared to the morphologically based predictions. Many, but not all, of the presumably polyphagous parasitoids now appear to be morphologically-cryptic host-specialists. To our knowledge, this project is the first to barcode a food web in which interactions have already been well-documented and described in space, time and abundance. It is poised to be a system in which field-based methods permit the identification capacity required by forestry scientists. Food web barcoding provided an effective tool for the accurate identification of all species involved in the cascading effects of future

  2. Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna?

    PubMed Central

    2013-01-01

    Background The megadiverse Neotropical freshwater ichthyofauna is the richest in the world with approximately 6,000 recognized species. Interestingly, they are distributed among only 17 orders, and almost 80% of them belong to only three orders: Characiformes, Siluriformes and Perciformes. Moreover, evidence based on molecular data has shown that most of the diversification of the Neotropical ichthyofauna occurred recently. These characteristics make the taxonomy and identification of this fauna a great challenge, even when using molecular approaches. In this context, the present study aimed to test the effectiveness of the barcoding methodology (COI gene) to identify the mega diverse freshwater fish fauna from the Neotropical region. For this purpose, 254 species of fishes were analyzed from the Upper Parana River basin, an area representative of the larger Neotropical region. Results Of the 254 species analyzed, 252 were correctly identified by their barcode sequences (99.2%). The main K2P intra- and inter-specific genetic divergence values (0.3% and 6.8%, respectively) were relatively low compared with similar values reported in the literature, reflecting the higher number of closely related species belonging to a few higher taxa and their recent radiation. Moreover, for 84 pairs of species that showed low levels of genetic divergence (<2%), application of a complementary character-based nucleotide diagnostic approach proved useful in discriminating them. Additionally, 14 species displayed high intra-specific genetic divergence (>2%), pointing to at least 23 strong candidates for new species. Conclusions Our study is the first to examine a large number of freshwater fish species from the Neotropical area, including a large number of closely related species. The results confirmed the efficacy of the barcoding methodology to identify a recently radiated, megadiverse fauna, discriminating 99.2% of the analyzed species. The power of the barcode sequences to identify

  3. DNA barcode goes two-dimensions: DNA QR code web server.

    PubMed

    Liu, Chang; Shi, Linchun; Xu, Xiaolan; Li, Huan; Xing, Hang; Liang, Dong; Jiang, Kun; Pang, Xiaohui; Song, Jingyuan; Chen, Shilin

    2012-01-01

    The DNA barcoding technology uses a standard region of DNA sequence for species identification and discovery. At present, "DNA barcode" actually refers to DNA sequences, which are not amenable to information storage, recognition, and retrieval. Our aim is to identify the best symbology that can represent DNA barcode sequences in practical applications. A comprehensive set of sequences for five DNA barcode markers ITS2, rbcL, matK, psbA-trnH, and CO1 was used as the test data. Fifty-three different types of one-dimensional and ten two-dimensional barcode symbologies were compared based on different criteria, such as coding capacity, compression efficiency, and error detection ability. The quick response (QR) code was found to have the largest coding capacity and relatively high compression ratio. To facilitate the further usage of QR code-based DNA barcodes, a web server was developed and is accessible at http://qrfordna.dnsalias.org. The web server allows users to retrieve the QR code for a species of interests, convert a DNA sequence to and from a QR code, and perform species identification based on local and global sequence similarities. In summary, the first comprehensive evaluation of various barcode symbologies has been carried out. The QR code has been found to be the most appropriate symbology for DNA barcode sequences. A web server has also been constructed to allow biologists to utilize QR codes in practical DNA barcoding applications. PMID:22574113

  4. DNA barcode analysis of butterfly species from Pakistan points towards regional endemism

    PubMed Central

    Ashfaq, Muhammad; Akhtar, Saleem; Khan, Arif M; Adamowicz, Sarah J; Hebert, Paul D N

    2013-01-01

    DNA barcodes were obtained for 81 butterfly species belonging to 52 genera from sites in north-central Pakistan to test the utility of barcoding for their identification and to gain a better understanding of regional barcode variation. These species represent 25% of the butterfly fauna of Pakistan and belong to five families, although the Nymphalidae were dominant, comprising 38% of the total specimens. Barcode analysis showed that maximum conspecific divergence was 1.6%, while there was 1.7–14.3% divergence from the nearest neighbour species. Barcode records for 55 species showed <2% sequence divergence to records in the Barcode of Life Data Systems (BOLD), but only 26 of these cases involved specimens from neighbouring India and Central Asia. Analysis revealed that most species showed little incremental sequence variation when specimens from other regions were considered, but a threefold increase was noted in a few cases. There was a clear gap between maximum intraspecific and minimum nearest neighbour distance for all 81 species. Neighbour-joining cluster analysis showed that members of each species formed a monophyletic cluster with strong bootstrap support. The barcode results revealed two provisional species that could not be clearly linked to known taxa, while 24 other species gained their first coverage. Future work should extend the barcode reference library to include all butterfly species from Pakistan as well as neighbouring countries to gain a better understanding of regional variation in barcode sequences in this topographically and climatically complex region. PMID:23789612

  5. A DNA Mini-Barcoding System for Authentication of Processed Fish Products

    PubMed Central

    Shokralla, Shadi; Hellberg, Rosalee S.; Handy, Sara M.; King, Ian; Hajibabaei, Mehrdad

    2015-01-01

    Species substitution is a form of seafood fraud for the purpose of economic gain. DNA barcoding utilizes species-specific DNA sequence information for specimen identification. Previous work has established the usability of short DNA sequences—mini-barcodes—for identification of specimens harboring degraded DNA. This study aims at establishing a DNA mini-barcoding system for all fish species commonly used in processed fish products in North America. Six mini-barcode primer pairs targeting short (127–314 bp) fragments of the cytochrome c oxidase I (CO1) DNA barcode region were developed by examining over 8,000 DNA barcodes from species in the U.S. Food and Drug Administration (FDA) Seafood List. The mini-barcode primer pairs were then tested against 44 processed fish products representing a range of species and product types. Of the 44 products, 41 (93.2%) could be identified at the species or genus level. The greatest mini-barcoding success rate found with an individual primer pair was 88.6% compared to 20.5% success rate achieved by the full-length DNA barcode primers. Overall, this study presents a mini-barcoding system that can be used to identify a wide range of fish species in commercial products and may be utilized in high throughput DNA sequencing for authentication of heavily processed fish products. PMID:26516098

  6. DNA barcode information for the sugar cane moth borer Diatraea saccharalis.

    PubMed

    Bravo, J P; Silva, J L C; Munhoz, R E F; Fernandez, M A

    2008-01-01

    We reviewed the use and relevance of barcodes for insect studies and investigated the barcode sequence of Diatraea saccharalis. This sequence has a high level of homology (99%) with the barcode sequence of the Crambidae (Lepidoptera). The sequence data can be used to construct relationships between species, allowing a multidisciplinary approach for taxonomy, which includes morphological, molecular and distribution data, all of which are essential for the understanding of biodiversity. The D. saccharalis barcode is a previously undescribed sequence that could be used to analyze Lepidoptera biology. PMID:18767242

  7. DNA Barcoding the Canadian Arctic Flora: Core Plastid Barcodes (rbcL + matK) for 490 Vascular Plant Species

    PubMed Central

    Saarela, Jeffery M.; Sokoloff, Paul C.; Gillespie, Lynn J.; Consaul, Laurie L.; Bull, Roger D.

    2013-01-01

    Accurate identification of Arctic plant species is critical for understanding potential climate-induced changes in their diversity and distributions. To facilitate rapid identification we generated DNA barcodes for the core plastid barcode loci (rbcL and matK) for 490 vascular plant species, representing nearly half of the Canadian Arctic flora and 93% of the flora of the Canadian Arctic Archipelago. Sequence recovery was higher for rbcL than matK (93% and 81%), and rbcL was easier to recover than matK from herbarium specimens (92% and 77%). Distance-based and sequence-similarity analyses of combined rbcL + matK data discriminate 97% of genera, 56% of species, and 7% of infraspecific taxa. There is a significant negative correlation between the number of species sampled per genus and the percent species resolution per genus. We characterize barcode variation in detail in the ten largest genera sampled (Carex, Draba, Festuca, Pedicularis, Poa, Potentilla, Puccinellia, Ranunculus, Salix, and Saxifraga) in the context of their phylogenetic relationships and taxonomy. Discrimination with the core barcode loci in these genera ranges from 0% in Salix to 85% in Carex. Haplotype variation in multiple genera does not correspond to species boundaries, including Taraxacum, in which the distribution of plastid haplotypes among Arctic species is consistent with plastid variation documented in non-Arctic species. Introgression of Poa glauca plastid DNA into multiple individuals of P. hartzii is problematic for identification of these species with DNA barcodes. Of three supplementary barcode loci (psbA–trnH, psbK–psbI, atpF–atpH) collected for a subset of Poa and Puccinellia species, only atpF–atpH improved discrimination in Puccinellia, compared with rbcL and matK. Variation in matK in Vaccinium uliginosum and rbcL in Saxifraga oppositifolia corresponds to variation in other loci used to characterize the phylogeographic histories of these Arctic-alpine species. PMID

  8. System Design Considerations In Bar-Code Laser Scanning

    NASA Astrophysics Data System (ADS)

    Barkan, Eric; Swartz, Jerome

    1984-08-01

    The unified transfer function approach to the design of laser barcode scanner signal acquisition hardware is considered. The treatment of seemingly disparate system areas such as the optical train, the scanning spot, the electrical filter circuits, the effects of noise, and printing errors is presented using linear systems theory. Such important issues as determination of depth of modulation, filter specification, tolerancing of optical components, and optimi-zation of system performance in the presence of noise are discussed. The concept of effective spot size to allow for impact of optical system and analog processing circuitry upon depth of modulation is introduced. Considerations are limited primarily to Gaussian spot profiles, but also apply to more general cases. Attention is paid to realistic bar-code symbol models and to implications with respect to printing tolerances.

  9. The effect of geographical scale of sampling on DNA barcoding.

    PubMed

    Bergsten, Johannes; Bilton, David T; Fujisawa, Tomochika; Elliott, Miranda; Monaghan, Michael T; Balke, Michael; Hendrich, Lars; Geijer, Joja; Herrmann, Jan; Foster, Garth N; Ribera, Ignacio; Nilsson, Anders N; Barraclough, Timothy G; Vogler, Alfried P

    2012-10-01

    Eight years after DNA barcoding was formally proposed on a large scale, CO1 sequences are rapidly accumulating from around the world. While studies to date have mostly targeted local or regional species assemblages, the recent launch of the global iBOL project (International Barcode of Life), highlights the need to understand the effects of geographical scale on Barcoding's goals. Sampling has been central in the debate on DNA Barcoding, but the effect of the geographical scale of sampling has not yet been thoroughly and explicitly tested with empirical data. Here, we present a CO1 data set of aquatic predaceous diving beetles of the tribe Agabini, sampled throughout Europe, and use it to investigate how the geographic scale of sampling affects 1) the estimated intraspecific variation of species, 2) the genetic distance to the most closely related heterospecific, 3) the ratio of intraspecific and interspecific variation, 4) the frequency of taxonomically recognized species found to be monophyletic, and 5) query identification performance based on 6 different species assignment methods. Intraspecific variation was significantly correlated with the geographical scale of sampling (R-square = 0.7), and more than half of the species with 10 or more sampled individuals (N = 29) showed higher intraspecific variation than 1% sequence divergence. In contrast, the distance to the closest heterospecific showed a significant decrease with increasing geographical scale of sampling. The average genetic distance dropped from > 7% for samples within 1 km, to < 3.5% for samples up to > 6000 km apart. Over a third of the species were not monophyletic, and the proportion increased through locally, nationally, regionally, and continentally restricted subsets of the data. The success of identifying queries decreased with increasing spatial scale of sampling; liberal methods declined from 100% to around 90%, whereas strict methods dropped to below 50% at continental scales. The

  10. The Effect of Geographical Scale of Sampling on DNA Barcoding

    PubMed Central

    Bergsten, Johannes; Bilton, David T.; Fujisawa, Tomochika; Elliott, Miranda; Monaghan, Michael T.; Balke, Michael; Hendrich, Lars; Geijer, Joja; Herrmann, Jan; Foster, Garth N.; Ribera, Ignacio; Nilsson, Anders N.; Barraclough, Timothy G.; Vogler, Alfried P.

    2012-01-01

    Eight years after DNA barcoding was formally proposed on a large scale, CO1 sequences are rapidly accumulating from around the world. While studies to date have mostly targeted local or regional species assemblages, the recent launch of the global iBOL project (International Barcode of Life), highlights the need to understand the effects of geographical scale on Barcoding's goals. Sampling has been central in the debate on DNA Barcoding, but the effect of the geographical scale of sampling has not yet been thoroughly and explicitly tested with empirical data. Here, we present a CO1 data set of aquatic predaceous diving beetles of the tribe Agabini, sampled throughout Europe, and use it to investigate how the geographic scale of sampling affects 1) the estimated intraspecific variation of species, 2) the genetic distance to the most closely related heterospecific, 3) the ratio of intraspecific and interspecific variation, 4) the frequency of taxonomically recognized species found to be monophyletic, and 5) query identification performance based on 6 different species assignment methods. Intraspecific variation was significantly correlated with the geographical scale of sampling (R-square = 0.7), and more than half of the species with 10 or more sampled individuals (N = 29) showed higher intraspecific variation than 1% sequence divergence. In contrast, the distance to the closest heterospecific showed a significant decrease with increasing geographical scale of sampling. The average genetic distance dropped from > 7% for samples within 1 km, to < 3.5% for samples up to > 6000 km apart. Over a third of the species were not monophyletic, and the proportion increased through locally, nationally, regionally, and continentally restricted subsets of the data. The success of identifying queries decreased with increasing spatial scale of sampling; liberal methods declined from 100% to around 90%, whereas strict methods dropped to below 50% at continental scales. The