Science.gov

Sample records for real time mass

  1. Single-protein nanomechanical mass spectrometry in real time

    PubMed Central

    Hanay, M.S.; Kelber, S.; Naik, A.K.; Chi, D.; Hentz, S.; Bullard, E.C.; Colinet, E.; Duraffourg, L.; Roukes, M.L.

    2012-01-01

    Nanoelectromechanical systems (NEMS) resonators can detect mass with exceptional sensitivity. Previously, mass spectra from several hundred adsorption events were assembled in NEMS-based mass spectrometry using statistical analysis. Here, we report the first realization of single-molecule NEMS-based mass spectrometry in real time. As each molecule in the sample adsorbs upon the NEMS resonator, its mass and the position-of-adsorption are determined by continuously tracking two driven vibrational modes of the device. We demonstrate the potential of multimode NEMS-based mass spectrometry by analyzing IgM antibody complexes in real-time. NEMS-MS is a unique and promising new form of mass spectrometry: it can resolve neutral species, provides resolving power that increases markedly for very large masses, and allows acquisition of spectra, molecule-by-molecule, in real-time. PMID:22922541

  2. Petroleomics by Direct Analysis in Real Time-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Romão, Wanderson; Tose, Lilian V.; Vaz, Boniek G.; Sama, Sara G.; Lobinski, Ryszard; Giusti, Pierre; Carrier, Hervé; Bouyssiere, Brice

    2016-01-01

    The analysis of crude oil and its fractions by applying ambient ionization techniques remains underexplored in mass spectrometry (MS). Direct analysis in real time (DART) in the positive-ion mode was coupled to a linear quadrupole ion trap Orbitrap mass spectrometer (LTQ Orbitrap) to analyze crude oil, paraffin samples, and porphyrin standard compounds. The ionization parameters of DART-MS were optimized for crude oil analysis. DART-MS rendered the optimum conditions of the operation using paper as the substrate, T = 400°C, helium as the carrier gas, and a sample concentration ≥6 mg mL-1. In the crude oils analysis, the DART(+)-Orbitrap mass spectra detected the typical N, NO, and O-containing compounds. In the paraffin samples, oxidized hydrocarbon species (Ox classes, where x = 1-4) with double-bond equivalent of 1-4 were detected, and their structures and connectivity were confirmed by collision-induced dissociation (CID) experiments. DART(+)-MS has identified the porphyrin standard compounds as [M + H]+ ions of m/ z 615.2502 and 680.1763, where M = C44H30N4 and C44H28N4OV, respectively, based on the formula assignment and by phenyl losses observed on CID experiments.

  3. Petroleomics by Direct Analysis in Real Time-Mass Spectrometry.

    PubMed

    Romão, Wanderson; Tose, Lilian V; Vaz, Boniek G; Sama, Sara G; Lobinski, Ryszard; Giusti, Pierre; Carrier, Hervé; Bouyssiere, Brice

    2016-01-01

    The analysis of crude oil and its fractions by applying ambient ionization techniques remains underexplored in mass spectrometry (MS). Direct analysis in real time (DART) in the positive-ion mode was coupled to a linear quadrupole ion trap Orbitrap mass spectrometer (LTQ Orbitrap) to analyze crude oil, paraffin samples, and porphyrin standard compounds. The ionization parameters of DART-MS were optimized for crude oil analysis. DART-MS rendered the optimum conditions of the operation using paper as the substrate, T = 400°C, helium as the carrier gas, and a sample concentration ≥6 mg mL(-1). In the crude oils analysis, the DART(+)-Orbitrap mass spectra detected the typical N, NO, and O-containing compounds. In the paraffin samples, oxidized hydrocarbon species (Ox classes, where x = 1-4) with double-bond equivalent of 1-4 were detected, and their structures and connectivity were confirmed by collision-induced dissociation (CID) experiments. DART(+)-MS has identified the porphyrin standard compounds as [M + H](+) ions of m/z 615.2502 and 680.1763, where M = C44H30N4 and C44H28N4OV, respectively, based on the formula assignment and by phenyl losses observed on CID experiments. PMID:26432579

  4. Mass spectrometer for real-time metabolism monitoring during anesthesia

    NASA Astrophysics Data System (ADS)

    Elizarov, A. Yu.; Levshankov, A. I.

    2012-06-01

    Mass-spectrometric monitoring of metabolism (CO2/O2) in the inspiration-expiration regime is used to estimate the anesthetic protection of the patient against surgical stimulation during combined anesthesia. A correlation between the anesthetic protection of the patient and the metabolic rate is demonstrated, and the periodic variation of the metabolic rate with time is found. The sevoflurane metabolism products and intravenous analgesic fentanyl are found in the blowing air of the patient during anesthesia.

  5. Real Time Online Correction of Mass Shifts and Intensity Fluctuations in Extractive Electrospray Ionization Mass Spectrometry.

    PubMed

    Tian, Yong; Yu, Miao; Chen, Jian; Liu, Chunxiao; Shi, Jianbo; Chen, Huanwen; Jiang, Guibin

    2015-12-15

    Real time online calibration of mass shift and intensity fluctuation to improve the accuracy of measurements for identification and quantitation in trace mass spectrometric analysis was demonstrated using extractive electrospray ionization mass spectrometry (EESI-MS). The signals of authentic compounds (e.g., lysine (Lys), proline (Pro), and histidine (His)) spiked into the extractive solution for the EESI process were used as the references to calibrate the signal of analytes (e.g., methionine (Met)) in the untreated sample solution. The intensity of the analyte signal was recorded simultaneously with the reference signals. The analyte signals at a given time point were calibrated on the basis of these correlation factors and real time signal response of the reference. The calibrated signal of Met at 10 μg L(-1) was improved with a better signal-to-noise ratio (S/N from 2.3 to 4.3), better linearity (R(2) from 0.9758 to 0.9980), and reduced relative standard deviation (RSD from 9.8% to 6.0%). The shift of mass-to-charge ratio of Met signal between the detected and theoretical values was decreased from 247 ± 133 to -7 ± 167 ppm for 50 min of detection using a linear ion trap mass analyzer and was reduced from -0.27 ± 0.60 to -0.12 ± 0.23 ppm for 50 min of detection using an Orbitrap mass analyzer (P = 95%). This method has been validated using a certified standard amino acids solution (GBW(E)100062) and applied for quantitative detection of amino acids in chicken feed, urine, nutritional drink, and facial mask samples, showing that the method is useful to improve the accuracy of mass spectrometric analysis. PMID:26595410

  6. Real time in situ chemical characterization of submicrometer organic particles using direct analysis in real time-mass spectrometry.

    PubMed

    Nah, Theodora; Chan, ManNin; Leone, Stephen R; Wilson, Kevin R

    2013-02-19

    Direct analysis in real time mass spectrometry (DART-MS) is used to analyze the surface chemical composition of nanometer-sized organic aerosol particles in real time at atmospheric pressure. By introducing a stream of particles in between the DART ionization source and the atmospheric pressure inlet of the mass spectrometer, the aerosol is exposed to a thermal flow of helium or nitrogen gas containing some fraction of metastable helium atoms or nitrogen molecules. In this configuration, the molecular constituents of organic particles are desorbed, ionized, and detected with reduced molecular ion fragmentation, allowing for compositional identification. Aerosol particles detected include alkanes, alkenes, acids, esters, alcohols, aldehydes, and amino acids. The ion signal produced by DART-MS scales with the aerosol surface area rather than volume, suggesting that DART-MS is a viable technique to measure the chemical composition of the particle interface. For oleic acid, particle size measurements of the aerosol stream exiting the ionization region suggest that the probing depth depends upon the desorption temperature, and the probing depth is estimated to be on the order of 5 nm for a 185 nm diameter particle at a DART heater temperature of 500 °C with nitrogen as the DART gas. The reaction of ozone with submicrometer oleic acid particles is measured to demonstrate the ability of this technique to identify products and quantify reaction rates in a heterogeneous reaction. PMID:23330910

  7. Real-Time Particle Mass Spectrometry Based on Resonant Micro Strings

    PubMed Central

    Schmid, Silvan; Dohn, Søren; Boisen, Anja

    2010-01-01

    Micro- and nanomechanical resonators are widely being used as mass sensors due to their unprecedented mass sensitivity. We present a simple closed-form expression which allows a fast and quantitative calculation of the position and mass of individual particles placed on a micro or nano string by measuring the resonant frequency shifts of the first two bending modes. The method has been tested by detecting the mass spectrum of micro particles placed on a micro string. This method enables real-time mass spectrometry necessary for applications such as personal monitoring devices for the assessment of the exposure dose of airborne nanoparticles. PMID:22163642

  8. In vivo Real-Time Mass Spectrometry for Guided Surgery Application.

    PubMed

    Fatou, Benoit; Saudemont, Philippe; Leblanc, Eric; Vinatier, Denis; Mesdag, Violette; Wisztorski, Maxence; Focsa, Cristian; Salzet, Michel; Ziskind, Michael; Fournier, Isabelle

    2016-01-01

    Here we describe a new instrument (SpiderMass) designed for in vivo and real-time analysis. In this instrument ion production is performed remotely from the MS instrument and the generated ions are transported in real-time to the MS analyzer. Ion production is promoted by Resonant Infrared Laser Ablation (RIR-LA) based on the highly effective excitation of O-H bonds in water molecules naturally present in most biological samples. The retrieved molecular patterns are specific to the cell phenotypes and benign versus cancer regions of patient biopsies can be easily differentiated. We also demonstrate by analysis of human skin that SpiderMass can be used under in vivo conditions with minimal damage and pain. Furthermore SpiderMass can also be used for real-time drug metabolism and pharmacokinetic (DMPK) analysis or food safety topics. SpiderMass is thus the first MS based system designed for in vivo real-time analysis under minimally invasive conditions. PMID:27189490

  9. In vivo Real-Time Mass Spectrometry for Guided Surgery Application

    PubMed Central

    Fatou, Benoit; Saudemont, Philippe; Leblanc, Eric; Vinatier, Denis; Mesdag, Violette; Wisztorski, Maxence; Focsa, Cristian; Salzet, Michel; Ziskind, Michael; Fournier, Isabelle

    2016-01-01

    Here we describe a new instrument (SpiderMass) designed for in vivo and real-time analysis. In this instrument ion production is performed remotely from the MS instrument and the generated ions are transported in real-time to the MS analyzer. Ion production is promoted by Resonant Infrared Laser Ablation (RIR-LA) based on the highly effective excitation of O-H bonds in water molecules naturally present in most biological samples. The retrieved molecular patterns are specific to the cell phenotypes and benign versus cancer regions of patient biopsies can be easily differentiated. We also demonstrate by analysis of human skin that SpiderMass can be used under in vivo conditions with minimal damage and pain. Furthermore SpiderMass can also be used for real-time drug metabolism and pharmacokinetic (DMPK) analysis or food safety topics. SpiderMass is thus the first MS based system designed for in vivo real-time analysis under minimally invasive conditions. PMID:27189490

  10. REAL-TIME BROAD SPECTRUM CHARACTERIZATION OF HAZARDOUS WASTE BY MEMBRANE INTRODUCTION MASS SPECTROMETRY

    EPA Science Inventory

    We propose to expand the real-time monitoring capabilities of Membrane Introduction Mass Spectrometry (MIMS) to the pivotal problem of Mixed Hazardous Wastes, with secondary emphasis on monitoring incinerator stack gases for both organics and toxic metals. The methodologies devel...

  11. Portable Dew Point Mass Spectrometry System for Real-Time Gas and Moisture Analysis

    NASA Technical Reports Server (NTRS)

    Arkin, C.; Gillespie, Stacey; Ratzel, Christopher

    2010-01-01

    A portable instrument incorporates both mass spectrometry and dew point measurement to provide real-time, quantitative gas measurements of helium, nitrogen, oxygen, argon, and carbon dioxide, along with real-time, quantitative moisture analysis. The Portable Dew Point Mass Spectrometry (PDP-MS) system comprises a single quadrupole mass spectrometer and a high vacuum system consisting of a turbopump and a diaphragm-backing pump. A capacitive membrane dew point sensor was placed upstream of the MS, but still within the pressure-flow control pneumatic region. Pressure-flow control was achieved with an upstream precision metering valve, a capacitance diaphragm gauge, and a downstream mass flow controller. User configurable LabVIEW software was developed to provide real-time concentration data for the MS, dew point monitor, and sample delivery system pressure control, pressure and flow monitoring, and recording. The system has been designed to include in situ, NIST-traceable calibration. Certain sample tubing retains sufficient water that even if the sample is dry, the sample tube will desorb water to an amount resulting in moisture concentration errors up to 500 ppm for as long as 10 minutes. It was determined that Bev-A-Line IV was the best sample line to use. As a result of this issue, it is prudent to add a high-level humidity sensor to PDP-MS so such events can be prevented in the future.

  12. Real-time Sample Analysis using Sampling Probe and Miniature Mass Spectrometer

    PubMed Central

    Chen, Chien-Hsun; Lin, Ziqing; Tian, Ran; Shi, Riyi; Cooks, R. Graham; Ouyang, Zheng

    2016-01-01

    A miniature mass spectrometry system with a sampling probe has been developed for real-time analysis of chemicals from sample surfaces. The sampling probe is 1.5m in length and is comprised of one channel for introducing the spray and the other channel for transferring the charged species back to the Mini MS. This system provides a solution to the problem of real-time mass spectrometry analysis of a three-dimensional object in the field and is successful with compounds including those in inks, agrochemicals, explosives, and animal tissues. This system can be implemented in the form of a backpack MS with a sampling probe for forensic analysis or in the form of a compact MS with an intra-surgical probe for tissue analysis. PMID:26237577

  13. Real-time sample analysis using a sampling probe and miniature mass spectrometer.

    PubMed

    Chen, Chien-Hsun; Lin, Ziqing; Tian, Ran; Shi, Riyi; Cooks, R Graham; Ouyang, Zheng

    2015-09-01

    A miniature mass spectrometry system with a sampling probe has been developed for real-time analysis of chemicals from sample surfaces. The sampling probe is 1.5 m in length and is comprised of one channel for introducing the spray and the other channel for transferring the charged species back to the Mini MS. This system provides a solution to the problem of real-time mass spectrometry analysis of a three-dimensional object in the field and is successful with compounds including those in inks, agrochemicals, explosives, and animal tissues. This system can be implemented in the form of a backpack MS with a sampling probe for forensic analysis or in the form of a compact MS with an intrasurgical probe for tissue analysis. PMID:26237577

  14. Real-Time Digitization of Metabolomics Patterns from a Living System Using Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Heinemann, Joshua; Noon, Brigit; Mohigmi, Mohammad J.; Mazurie, Aurélien; Dickensheets, David L.; Bothner, Brian

    2014-10-01

    The real-time quantification of changes in intracellular metabolic activities has the potential to vastly improve upon traditional transcriptomics and metabolomics assays for the prediction of current and future cellular phenotypes. This is in part because intracellular processes reveal themselves as specific temporal patterns of variation in metabolite abundance that can be detected with existing signal processing algorithms. Although metabolite abundance levels can be quantified by mass spectrometry (MS), large-scale real-time monitoring of metabolite abundance has yet to be realized because of technological limitations for fast extraction of metabolites from cells and biological fluids. To address this issue, we have designed a microfluidic-based inline small molecule extraction system, which allows for continuous metabolomic analysis of living systems using MS. The system requires minimal supervision, and has been successful at real-time monitoring of bacteria and blood. Feature-based pattern analysis of Escherichia coli growth and stress revealed cyclic patterns and forecastable metabolic trajectories. Using these trajectories, future phenotypes could be inferred as they exhibit predictable transitions in both growth and stress related changes. Herein, we describe an interface for tracking metabolic changes directly from blood or cell suspension in real-time.

  15. Real-time measurement of sodium chloride in individual aerosol particles by mass spectrometry

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Friedlander, S. K.

    1985-01-01

    The method of particle analysis by mass spectrometry has been applied to the quantitative measurement of sodium chloride in individual particles on a real-time basis. Particles of known masses are individually introduced, in the form of a beam, into a miniature Knudsen cell oven (1600 K). The oven is fabricated from rhenium metal sheet (0.018 mm thick) and is situated in the ion source of a quadrupole mass spectrometer. A particle once inside the oven is trapped and completely volatilized; this overcomes the problem of partial volatilization due to particles bouncing from the filament surface. Individual particles are thermally volatilized and ionized inside the rhenium oven, and produce discrete sodium ion pulses whose intensities are measured with the quadrupole mass spectrometer. An ion pulse width of several milliseconds (4-12 ms) is found for particles in the mass range 1.3 x 10 to the -13th to 5.4 x 10 to the -11th g. The sodium ion intensity is found to be proportional to the particle mass to the 0.86-power. The intensity distribution for monodisperse aerosol particles possesses a geometric standard deviation of 1.09, showing that the method can be used for the determination of the mass distribution function with good resolution in a polydisperse aerosol.

  16. In Vivo and Real-time Monitoring of Secondary Metabolites of Living Organisms by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Wang, Lei; Ye, Wen-Cai; Yao, Zhong-Ping

    2013-07-01

    Secondary metabolites are compounds that are important for the survival and propagation of animals and plants. Our current understanding on the roles and secretion mechanism of secondary metabolites is limited by the existing techniques that typically cannot provide transient and dynamic information about the metabolic processes. In this manuscript, by detecting venoms secreted by living scorpion and toad upon attack and variation of alkaloids in living Catharanthus roseus upon stimulation, which represent three different sampling methods for living organisms, we demonstrated that in vivo and real-time monitoring of secondary metabolites released from living animals and plants could be readily achieved by using field-induced direct ionization mass spectrometry.

  17. Real Time Monitoring of Containerless Microreactions in Acoustically Levitated Droplets via Ambient Ionization Mass Spectrometry.

    PubMed

    Crawford, Elizabeth A; Esen, Cemal; Volmer, Dietrich A

    2016-09-01

    Direct in-droplet (in stillo) microreaction monitoring using acoustically levitated micro droplets has been achieved by combining acoustic (ultrasonic) levitation for the first time with real time ambient tandem mass spectrometry (MS/MS). The acoustic levitation and inherent mixing of microliter volumes of reactants (3 μL droplets), yielding total reaction volumes of 6 μL, supported monitoring the acid-catalyzed degradation reaction of erythromycin A. This reaction was chosen to demonstrate the proof-of-principle of directly monitoring in stillo microreactions via hyphenated acoustic levitation and ambient ionization mass spectrometry. The microreactions took place completely in stillo over 30, 60, and 120 s within the containerless stable central pressure node of an acoustic levitator, thus readily promoting reaction miniaturization. For the evaluation of the miniaturized in stillo reactions, the degradation reactions were also carried out in vials (in vitro) with a total reaction volume of 400 μL. The reacted in vitro mixtures (6 μL total) were similarly introduced into the acoustic levitator prior to ambient ionization MS/MS analysis. The in stillo miniaturized reactions provided immediate real-time snap-shots of the degradation process for more accurate reaction monitoring and used a fraction of the reactants, while the larger scale in vitro reactions only yielded general reaction information. PMID:27505037

  18. Real-Time Cellular Exometabolome Analysis with a Microfluidic-Mass Spectrometry Platform

    PubMed Central

    Marasco, Christina C.; Enders, Jeffrey R.; Seale, Kevin T.; McLean, John A.; Wikswo, John P.

    2015-01-01

    To address the challenges of tracking the multitude of signaling molecules and metabolites that is the basis of biological complexity, we describe a strategy to expand the analytical techniques for dynamic systems biology. Using microfluidics, online desalting, and mass spectrometry technologies, we constructed and validated a platform well suited for sampling the cellular microenvironment with high temporal resolution. Our platform achieves success in: automated cellular stimulation and microenvironment control; reduced non-specific adsorption to polydimethylsiloxane due to surface passivation; real-time online sample collection; near real-time sample preparation for salt removal; and real-time online mass spectrometry. When compared against the benchmark of “in-culture” experiments combined with ultraperformance liquid chromatography-electrospray ionization-ion mobility-mass spectrometry (UPLC-ESI-IM-MS), our platform alleviates the volume challenge issues caused by dilution of autocrine and paracrine signaling and dramatically reduces sample preparation and data collection time, while reducing undesirable external influence from various manual methods of manipulating cells and media (e.g., cell centrifugation). To validate this system biologically, we focused on cellular responses of Jurkat T cells to microenvironmental stimuli. Application of these stimuli, in conjunction with the cell’s metabolic processes, results in changes in consumption of nutrients and secretion of biomolecules (collectively, the exometabolome), which enable communication with other cells or tissues and elimination of waste. Naïve and experienced T-cell metabolism of cocaine is used as an exemplary system to confirm the platform’s capability, highlight its potential for metabolite discovery applications, and explore immunological memory of T-cell drug exposure. Our platform proved capable of detecting metabolomic variations between naïve and experienced Jurkat T cells and

  19. Real-time cellular exometabolome analysis with a microfluidic-mass spectrometry platform.

    PubMed

    Marasco, Christina C; Enders, Jeffrey R; Seale, Kevin T; McLean, John A; Wikswo, John P

    2015-01-01

    To address the challenges of tracking the multitude of signaling molecules and metabolites that is the basis of biological complexity, we describe a strategy to expand the analytical techniques for dynamic systems biology. Using microfluidics, online desalting, and mass spectrometry technologies, we constructed and validated a platform well suited for sampling the cellular microenvironment with high temporal resolution. Our platform achieves success in: automated cellular stimulation and microenvironment control; reduced non-specific adsorption to polydimethylsiloxane due to surface passivation; real-time online sample collection; near real-time sample preparation for salt removal; and real-time online mass spectrometry. When compared against the benchmark of "in-culture" experiments combined with ultraperformance liquid chromatography-electrospray ionization-ion mobility-mass spectrometry (UPLC-ESI-IM-MS), our platform alleviates the volume challenge issues caused by dilution of autocrine and paracrine signaling and dramatically reduces sample preparation and data collection time, while reducing undesirable external influence from various manual methods of manipulating cells and media (e.g., cell centrifugation). To validate this system biologically, we focused on cellular responses of Jurkat T cells to microenvironmental stimuli. Application of these stimuli, in conjunction with the cell's metabolic processes, results in changes in consumption of nutrients and secretion of biomolecules (collectively, the exometabolome), which enable communication with other cells or tissues and elimination of waste. Naïve and experienced T-cell metabolism of cocaine is used as an exemplary system to confirm the platform's capability, highlight its potential for metabolite discovery applications, and explore immunological memory of T-cell drug exposure. Our platform proved capable of detecting metabolomic variations between naïve and experienced Jurkat T cells and highlights the

  20. Globally referenced real time monitoring of mass movements using monoscopic time-lapse photography.

    NASA Astrophysics Data System (ADS)

    Kenner, Robert; Phillips, Marcia; Buchroithner, Manfred

    2016-04-01

    The creep movement of a rock glacier was monitored in daily resolution using images of an automatic in-situ time-lapse camera (AC). Displacements were calculated between the images in 2D image coordinates using the imaging velocimetry algorithm of Roesgen and Totaro, 1995. To georeference and scale these displacements, a creep velocity field captured once by a terrestrial laser scan (TLS) repeat measurement was used. The laser scan point cloud and the creep velocity vector field were projected in image coordinates of the AC to obtain a georeferencing mask, a scale mask and an azimuth mask for the 2D displacements calculated between two images. The scale mask was obtained by comparing the TLS derived displacement vectors with those of the AC, referring to a common measurement period. The automatic procedure includes the following work steps: 1. Offsets between two images are identified and corrected based on image parts representing unchanged terrain. 2. 2D displacements are calculated between all chronological image sequences. 3. Faulty displacement vectors are eliminated based on a predefined threshold for spatial direction differences. 4. The remaining displacements are georeferenced, scaled and attributed with individual displacement directions (azimuths) in global coordinates. 5. In addition to the displacement values, displacement velocities and accelerations are calculated using the date of the images. 6. For chronologically successive displacement vector fields, the spatial mean of the relative velocity is defined and expressed as a percentage of the first displacement velocity in the series. The time series of the relative velocities is expressed in chart form. 7. The spatial resolution of all georeferenced output data sets is homogenized, as they were influenced by the central projection of the photos. The described procedure proved to be a reliable, low cost method to monitor mass wasting processes. Even under difficult conditions, like thin snow coverage

  1. Real-time monitoring of volatile organic compounds using chemical ionization mass spectroscopy: Final report

    SciTech Connect

    Thornberg, S.M.; Mowry, C.D.; Keenan, M.R.; Bender, S.F.A.; Owen, T.

    1997-04-01

    Volatile organic compound (VOC) emission to the atmosphere is of great concern to semiconductor manufacturing industries, research laboratories, the public, and regulatory agencies. Some industries are seeking ways to reduce emissions by reducing VOCs at the point of use (or generation). This paper discusses the requirements, design, calibration, and use of a sampling inlet/quadrupole mass spectrometer system for monitoring VOCs in a semiconductor manufacturing production line. The system uses chemical ionization to monitor compounds typically found in the lithography processes used to manufacture semiconductor devices (e.g., acetone, photoresist). The system was designed to be transportable from tool to tool in the production line and to give the operator real-time feedback so the process(es) can be adjusted to minimize VOC emissions. Detection limits ranging from the high ppb range for acetone to the low ppm range fore other lithography chemicals were achieved using chemical ionization mass spectroscopy at a data acquisition rate of approximately 1 mass spectral scan (30 to 200 daltons) per second. A demonstration of exhaust VOC monitoring was performed at a working semiconductor fabrication facility during actual wafer processing.

  2. Real-time monitoring of enzymatic DNA hydrolysis by electrospray ionization mass spectrometry.

    PubMed

    van den Heuvel, Robert H H; Gato, Sara; Versluis, Cees; Gerbaux, Pascal; Kleanthous, Colin; Heck, Albert J R

    2005-01-01

    A fast and direct method for the monitoring of enzymatic DNA hydrolysis was developed using electrospray ionization mass spectrometry. We incorporated the use of a robotic chip-based electrospray ionization source for increased reproducibility and throughput. The mass spectrometry method allows the detection of DNA fragments and intact non-covalent protein-DNA complexes in a single experiment. We used the method to monitor in real-time single-stranded (ss) DNA hydrolysis by colicin E9 DNase and to characterize transient non-covalent E9 DNase-DNA complexes present during the hydrolysis reaction. The mass spectra showed that E9 DNase interacts with ssDNA in the absence of a divalent metal ion, but is strictly dependent on Ni2+ or Co2+ for ssDNA hydrolysis. We demonstrated that the sequence selectivity of E9 DNase is dependent on the ratio protein:ssDNA or the ssDNA concentration and that only 3'-hydroxy and 5'-phosphate termini are produced. It was also shown that the homologous E7 DNase is reactive with Zn2+ as transition metal ion and that this DNase displays a different sequence selectivity. The method described is of general use to analyze the reactivity and specificity of nucleases. PMID:15956101

  3. Quality by Design Study of the Direct Analysis in Real Time Mass Spectrometry Response

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Chen, Teng; Zeng, Shanshan; Qu, Haibin

    2013-12-01

    A mass spectrometry method has been developed using the Quality by Design (QbD) principle. Direct analysis in real time mass spectrometry (DART-MS) was adopted to analyze a pharmaceutical preparation. A fishbone diagram for DART-MS and the Plackett-Burman design were utilized to evaluate the impact of a number of factors on the method performance. Multivariate regression and Pareto ranking analysis indicated that the temperature, determined distance, and sampler speed were statistically significant (P < 0.05). Furthermore, the Box-Behnken design combined with response surface analysis was then employed to study the relationships between these three factors and the quality of the DART-MS analysis. The analytical design space of DART-MS was thus constructed and its robustness was validated. In this presented approach, method performance was mathematically described as a composite desirability function of the critical quality attributes (CQAs). Two terms of method validation, including analytical repeatability and method robustness, were carried out at an operating work point. Finally, the validated method was successfully applied to the pharmaceutical quality assurance in different manufacturing batches. These results revealed that the QbD concept was practical in DART-MS method development. Meanwhile, the determined quality was controlled by the analytical design space. This presented strategy provided a tutorial to the development of a robust QbD-compliant mass spectrometry method for industrial quality control.

  4. Demonstration of real-time monitoring of a photolithographic exposure process using chemical ionization mass spectrometry

    SciTech Connect

    Mowry, C.D.

    1998-02-01

    Silicon wafers are coated with photoresist and exposed to ultraviolet (UV) light in a laboratory to simulate typical conditions expected in an actual semiconductor manufacturing process tool. Air is drawn through the exposure chamber and analyzed using chemical ionization mass spectrometry (CI/MS). Species that evaporate or outgas from the wafer are thus detected. The purpose of such analyses is to determine the potential of CI/MS as a real-time process monitoring tool. Results demonstrate that CI/MS can remotely detect the products evolved before, during, and after wafer UV exposure; and that the quantity and type of products vary with the photoresist coated on the wafer. Such monitoring could provide semiconductor manufacturers benefits in quality control and process analysis. Tool and photoresist manufacturers could also realize benefits from this measurement technique with respect to new tool, method, or photoresist development. The benefits realized can lead to improved device yields and reduced product and development costs.

  5. Characterisation of indoor airborne particles by using real-time aerosol mass spectrometry.

    PubMed

    Dall'Osto, Manuel; Harrison, Roy M; Charpantidou, E; Loupa, G; Rapsomanikis, S

    2007-10-01

    An Aerosol Time-of-Flight Mass Spectrometer (ATOFMS; TSI 3800) was deployed to Athens (Greece) during August 2003. The instrument provides information on a polydisperse aerosol, acquiring precise aerodynamic diameter (+/-1%) within the range 0.3 to 3 mum and individual particle positive and negative mass spectral data in real time. Sampling was carried out indoors and outdoors at an office in a building on a minor road in the city centre and various outdoor and indoor sources were identified. Specific outdoor particles such as dust and carbon particles were detected in indoor air. The generation of particles from indoor sources was studied and several different types of particle were found to be present in environmental tobacco smoke (ETS): three were potassium-rich (with differing proportions of carbon) emitted directly in the exhaled mainstream smoke. Two other types arose mainly when the cigarette was left smouldering on an ash-tray. Another particle type exhibited a strong signal at m/z 84, most likely due to a nicotine fragment. The temporal trend of this specific particle type showed likely condensation of semi-volatile constituents on existing potassium-rich particles. A release of insect repellent in the room was also successfully monitored. PMID:17628640

  6. Real-time 2D separation by LC × differential ion mobility hyphenated to mass spectrometry.

    PubMed

    Varesio, Emmanuel; Le Blanc, J C Yves; Hopfgartner, Gérard

    2012-03-01

    The liquid chromatography-mass spectrometry (LC-MS) analysis of complex samples such as biological fluid extracts is widespread when searching for new biomarkers as in metabolomics. The success of this hyphenation resides in the orthogonality of both separation techniques. However, there are frequent cases where compounds are co-eluting and the resolving power of mass spectrometry (MS) is not sufficient (e.g., isobaric compounds and interfering isotopic clusters). Different strategies are discussed to solve these cases and a mixture of eight compounds (i.e., bromazepam, chlorprothixene, clonapzepam, fendiline, flusilazol, oxfendazole, oxycodone, and pamaquine) with identical nominal mass (i.e., m/z 316) is taken to illustrate them. Among the different approaches, high-resolution mass spectrometry or liquid chromatography (i.e., UHPLC) can easily separate these compounds. Another technique, mostly used with low resolving power MS analyzers, is differential ion mobility spectrometry (DMS), where analytes are gas-phase separated according to their size-to-charge ratio. Detailed investigations of the addition of different polar modifiers (i.e., methanol, ethanol, and isopropanol) into the transport gas (nitrogen) to enhance the peak capacity of the technique were carried out. Finally, a complex urine sample fortified with 36 compounds of various chemical properties was analyzed by real-time 2D separation LC×DMS-MS(/MS). The addition of this orthogonal gas-phase separation technique in the LC-MS(/MS) hyphenation greatly improved data quality by resolving composite MS/MS spectra, which is mandatory in metabolomics when performing database generation and search. PMID:22006241

  7. Advanced Automation for Ion Trap Mass Spectrometry-New Opportunities for Real-Time Autonomous Analysis

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Wong, C. M.; Salmonson, J. D.; Yost, R. A.; Griffin, T. P.; Yates, N. A.; Lawless, James G. (Technical Monitor)

    1994-01-01

    The utility of MS/MS for both target compound analysis and the structure elucidation of unknowns has been described in a number of references. A broader acceptance of this technique has not yet been realized as it requires large, complex, and costly instrumentation which has not been competitive with more conventional techniques. Recent advancements in ion trap mass spectrometry promise to change this situation. Although the ion trap's small size, sensitivity, and ability to perform multiple stages of mass spectrometry have made it eminently suitable for on-line, real-time monitoring applications, advance automation techniques are required to make these capabilities more accessible to non-experts. Towards this end we have developed custom software for the design and implementation of MS/MS experiments. This software allows the user to take full advantage of the ion trap's versatility with respect to ionization techniques, scan proxies, and ion accumulation/ejection methods. Additionally, expert system software has been developed for autonomous target compound analysis. This software has been linked to ion trap control software and a commercial data system to bring all of the steps in the analysis cycle under control of the expert system. These software development efforts and their utilization for a number of trace analysis applications will be described.

  8. MALDI mass spectrometry imaging analysis of pituitary adenomas for near-real-time tumor delineation

    PubMed Central

    Calligaris, David; Feldman, Daniel R.; Norton, Isaiah; Olubiyi, Olutayo; Changelian, Armen N.; Machaidze, Revaz; Vestal, Matthew L.; Laws, Edward R.; Dunn, Ian F.; Santagata, Sandro; Agar, Nathalie Y. R.

    2015-01-01

    We present a proof of concept study designed to support the clinical development of mass spectrometry imaging (MSI) for the detection of pituitary tumors during surgery. We analyzed by matrix-assisted laser desorption/ionization (MALDI) MSI six nonpathological (NP) human pituitary glands and 45 hormone secreting and nonsecreting (NS) human pituitary adenomas. We show that the distribution of pituitary hormones such as prolactin (PRL), growth hormone (GH), adrenocorticotropic hormone (ACTH), and thyroid stimulating hormone (TSH) in both normal and tumor tissues can be assessed by using this approach. The presence of most of the pituitary hormones was confirmed by using MS/MS and pseudo-MS/MS methods, and subtyping of pituitary adenomas was performed by using principal component analysis (PCA) and support vector machine (SVM). Our proof of concept study demonstrates that MALDI MSI could be used to directly detect excessive hormonal production from functional pituitary adenomas and generally classify pituitary adenomas by using statistical and machine learning analyses. The tissue characterization can be completed in fewer than 30 min and could therefore be applied for the near-real-time detection and delineation of pituitary tumors for intraoperative surgical decision-making. PMID:26216958

  9. Newborn screening of phenylketonuria using direct analysis in real time (DART) mass spectrometry.

    PubMed

    Wang, Chunyan; Zhu, Hongbin; Cai, Zongwei; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying

    2013-04-01

    Phenylketonuria (PKU) is commonly included in the newborn screening panel of most countries, with various techniques being used for quantification of L-phenylalanine (Phe). To diagnose PKU as early as possible in newborn screening, a rapid and simple method of analysis was developed. Using direct analysis in real time (DART) ionization coupled with triple-quadrupole tandem mass spectrometry (TQ-MS/MS) and with use of a 12 DIP-it tip scanner autosampler in positive ion mode, we analyzed dried blood spot (DBS) samples from PKU newborns. The concentration of Phe was determined using multiple reaction monitoring mode with the nondeuterated internal standard N,N-dimethylphenylalanine. The results of the analysis of DBS samples from newborns indicated that the DART-TQ-MS/MS method is fast, accurate, and reproducible. The results prove that this assay as a newborn screen for PKU can be performed in 18 s per sample for the quantification of Phe in DBS samples. DART-TQ-MS/MS analysis of the Phe concentration in DBS samples allowed us to screen newborns for PKU. This innovative protocol is rapid and can be effectively applied on a routine basis to analyze a large number of samples in PKU newborn screening and PKU patient monitoring. PMID:23397086

  10. Monitoring Enzymatic Reactions in Real Time Using Venturi Easy Ambient Sonic-Spray Ionization Mass Spectrometry

    PubMed Central

    2016-01-01

    We developed a technique to monitor spatially confined surface reactions with mass spectrometry under ambient conditions, without the need for voltage or organic solvents. Fused-silica capillaries immersed in an aqueous solution, positioned in close proximity to each other and the functionalized surface, created a laminar flow junction with a resulting reaction volume of ∼5 pL. The setup was operated with a syringe pump, delivering reagents to the surface through a fused-silica capillary. The other fused-silica capillary was connected to a Venturi easy ambient sonic-spray ionization source, sampling the resulting analytes at a slightly higher flow rate compared to the feeding capillary. The combined effects of the inflow and outflow maintains a chemical microenvironment, where the rate of advective transport overcomes diffusion. We show proof-of-concept where acetylcholinesterase was immobilized on an organosiloxane polymer through electrostatic interactions. The hydrolysis of acetylcholine by acetylcholinesterase into choline was monitored in real-time for a range of acetylcholine concentrations, fused-silica capillary geometries, and operating flow rates. Higher reaction rates and conversion yields were observed with increasing acetylcholine concentrations, as would be expected. PMID:27249533

  11. MALDI mass spectrometry imaging analysis of pituitary adenomas for near-real-time tumor delineation.

    PubMed

    Calligaris, David; Feldman, Daniel R; Norton, Isaiah; Olubiyi, Olutayo; Changelian, Armen N; Machaidze, Revaz; Vestal, Matthew L; Laws, Edward R; Dunn, Ian F; Santagata, Sandro; Agar, Nathalie Y R

    2015-08-11

    We present a proof of concept study designed to support the clinical development of mass spectrometry imaging (MSI) for the detection of pituitary tumors during surgery. We analyzed by matrix-assisted laser desorption/ionization (MALDI) MSI six nonpathological (NP) human pituitary glands and 45 hormone secreting and nonsecreting (NS) human pituitary adenomas. We show that the distribution of pituitary hormones such as prolactin (PRL), growth hormone (GH), adrenocorticotropic hormone (ACTH), and thyroid stimulating hormone (TSH) in both normal and tumor tissues can be assessed by using this approach. The presence of most of the pituitary hormones was confirmed by using MS/MS and pseudo-MS/MS methods, and subtyping of pituitary adenomas was performed by using principal component analysis (PCA) and support vector machine (SVM). Our proof of concept study demonstrates that MALDI MSI could be used to directly detect excessive hormonal production from functional pituitary adenomas and generally classify pituitary adenomas by using statistical and machine learning analyses. The tissue characterization can be completed in fewer than 30 min and could therefore be applied for the near-real-time detection and delineation of pituitary tumors for intraoperative surgical decision-making. PMID:26216958

  12. Interface for Online Coupling of Surface Plasmon Resonance to Direct Analysis in Real Time Mass Spectrometry.

    PubMed

    Zhang, Yiding; Li, Xianjiang; Nie, Honggang; Yang, Li; Li, Ze; Bai, Yu; Niu, Li; Song, Daqian; Liu, Huwei

    2015-07-01

    The online coupling of surface plasmon resonance (SPR) with mass spectrometry (MS) has been highly desired for the complementary information provided by each of the two techniques. In this work, a novel interface for direct and online coupling of SPR to direct analysis in real time (DART) MS was developed. A spray tip connected with the outlet of the SPR flow solution was conducted as the sampling part of the DART-MS, with which the online coupling interface of SPR-MS was realized. Four model samples, acetaminophen, metronidazole, quinine, and hippuric acid, dissolved in three kinds of common buffers were used in the SPR-DART-MS experiments for performance evaluation of the interface and the optimization of DART conditions. The results showed consistent signal changes and high tolerance of nonvolatile salts of this SPR-MS system, demonstrating the feasibility of the interface for online coupling of SPR with MS and the potential application in the characterization of interaction under physiological conditions. PMID:26067340

  13. Monitoring Enzymatic Reactions in Real Time Using Venturi Easy Ambient Sonic-Spray Ionization Mass Spectrometry.

    PubMed

    Jansson, Erik T; Dulay, Maria T; Zare, Richard N

    2016-06-21

    We developed a technique to monitor spatially confined surface reactions with mass spectrometry under ambient conditions, without the need for voltage or organic solvents. Fused-silica capillaries immersed in an aqueous solution, positioned in close proximity to each other and the functionalized surface, created a laminar flow junction with a resulting reaction volume of ∼5 pL. The setup was operated with a syringe pump, delivering reagents to the surface through a fused-silica capillary. The other fused-silica capillary was connected to a Venturi easy ambient sonic-spray ionization source, sampling the resulting analytes at a slightly higher flow rate compared to the feeding capillary. The combined effects of the inflow and outflow maintains a chemical microenvironment, where the rate of advective transport overcomes diffusion. We show proof-of-concept where acetylcholinesterase was immobilized on an organosiloxane polymer through electrostatic interactions. The hydrolysis of acetylcholine by acetylcholinesterase into choline was monitored in real-time for a range of acetylcholine concentrations, fused-silica capillary geometries, and operating flow rates. Higher reaction rates and conversion yields were observed with increasing acetylcholine concentrations, as would be expected. PMID:27249533

  14. Determination of left ventricular volume, ejection fraction, and myocardial mass by real-time three-dimensional echocardiography

    NASA Technical Reports Server (NTRS)

    Qin, J. X.; Shiota, T.; Thomas, J. D.

    2000-01-01

    Reconstructed three-dimensional (3-D) echocardiography is an accurate and reproducible method of assessing left ventricular (LV) functions. However, it has limitations for clinical study due to the requirement of complex computer and echocardiographic analysis systems, electrocardiographic/respiratory gating, and prolonged imaging times. Real-time 3-D echocardiography has a major advantage of conveniently visualizing the entire cardiac anatomy in three dimensions and of potentially accurately quantifying LV volumes, ejection fractions, and myocardial mass in patients even in the presence of an LV aneurysm. Although the image quality of the current real-time 3-D echocardiographic methods is not optimal, its widespread clinical application is possible because of the convenient and fast image acquisition. We review real-time 3-D echocardiographic image acquisition and quantitative analysis for the evaluation of LV function and LV mass.

  15. Effect of Body Mass Index on Intrafraction Prostate Displacement Monitored by Real-Time Electromagnetic Tracking

    SciTech Connect

    Butler, Wayne M.; Morris, Mallory N.; Merrick, Gregory S.; Kurko, Brian S.; Murray, Brian C.

    2012-10-01

    Purpose: To evaluate, using real-time monitoring of implanted radiofrequency transponders, the intrafraction prostate displacement of patients as a function of body mass index (BMI). Methods and Materials: The motions of Beacon radiofrequency transponders (Calypso Medical Technologies, Seattle, WA) implanted in the prostate glands of 66 men were monitored throughout the course of intensity modulated radiation therapy. Data were acquired at 10 Hz from setup to the end of treatment, but only the 1.7 million data points with a 'beam on' tag were used in the analysis. There were 21 obese patients, with BMI {>=}30 and 45 nonobese patients in the study. Results: Mean displacements were least in the left-right lateral direction (0.56 {+-} 0.24 mm) and approximately twice that magnitude in the superior-inferior and anterior-posterior directions. The net vector displacement was larger still, 1.95 {+-} 0.47 mm. Stratified by BMI cohort, the mean displacements per patient in the 3 Cartesian axes as well as the net vector for patients with BMI {>=}30 were slightly less (<0.2 mm) but not significantly different than the corresponding values for patients with lower BMIs. As a surrogate for the magnitude of oscillatory noise, the standard deviation for displacements in all measured planes showed no significant differences in the prostate positional variability between the lower and higher BMI groups. Histograms of prostate displacements showed a lower frequency of large displacements in obese patients, and there were no significant differences in short-term and long-term velocity distributions. Conclusions: After patients were positioned accurately using implanted radiofrequency transponders, the intrafractional displacements in the lateral, superior-inferior, and anterior-posterior directions as well as the net vector displacements were smaller, but not significantly so, for obese men than for those with lower BMI.

  16. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry.

    PubMed

    Bandura, Dmitry R; Baranov, Vladimir I; Ornatsky, Olga I; Antonov, Alexei; Kinach, Robert; Lou, Xudong; Pavlov, Serguei; Vorobiev, Sergey; Dick, John E; Tanner, Scott D

    2009-08-15

    A novel instrument for real time analysis of individual biological cells or other microparticles is described. The instrument is based on inductively coupled plasma time-of-flight mass spectrometry and comprises a three-aperture plasma-vacuum interface, a dc quadrupole turning optics for decoupling ions from neutral components, an rf quadrupole ion guide discriminating against low-mass dominant plasma ions, a point-to-parallel focusing dc quadrupole doublet, an orthogonal acceleration reflectron analyzer, a discrete dynode fast ion detector, and an 8-bit 1 GHz digitizer. A high spectrum generation frequency of 76.8 kHz provides capability for collecting multiple spectra from each particle-induced transient ion cloud, typically of 200-300 micros duration. It is shown that the transients can be resolved and characterized individually at a peak frequency of 1100 particles per second. Design considerations and optimization data are presented. The figures of merit of the instrument are measured under standard inductively coupled plasma (ICP) operating conditions (<3% cerium oxide ratio). At mass resolution (full width at half-maximum) M/DeltaM > 900 for m/z = 159, the sensitivity with a standard sample introduction system of >1.4 x 10(8) ion counts per second per mg L(-1) of Tb and an abundance sensitivity of (6 x 10(-4))-(1.4 x 10(-3)) (trailing and leading masses, respectively) are shown. The mass range (m/z = 125-215) and abundance sensitivity are sufficient for elemental immunoassay with up to 60 distinct available elemental tags. When <15 elemental tags are used, a higher sensitivity mode at lower resolution (M/DeltaM > 500) can be used, which provides >2.4 x 10(8) cps per mg L(-1) of Tb, at (1.5 x 10(-3))-(5.0 x 10(-3)) abundance sensitivity. The real-time simultaneous detection of multiple isotopes from individual 1.8 microm polystyrene beads labeled with lanthanides is shown. A real time single cell 20 antigen expression assay of model cell lines and leukemia

  17. Determination of Dicyandiamide in Powdered Milk Using Direct Analysis in Real Time Quadrupole Time-of-Flight Tandem Mass Spectrometry.

    PubMed

    Zhang, Liya; Yong, Wei; Liu, Jiahui; Wang, Sai; Chen, Qilong; Guo, Tianyang; Zhang, Jichuan; Tan, Tianwei; Su, Haijia; Dong, Yiyang

    2015-08-01

    The direct analysis in real time (DART) ionization source coupled with quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) system has the capability to desorb analytes directly from samples without sample cleanup or chromatographic separation. In this work, a method based on DART/Q-TOF MS/MS has been developed for rapid identification of dicyandiamide (DCD) present in powdered milk. Simple sample extraction procedure employing acetonitrile-water (80:20, v/v) mixture was followed by direct, high-throughput determination of sample extracts spread on a steel mesh of the transmission module by mass spectrometry under ambient conditions. The method has been evaluated for both qualitative and quantitative analysis of DCD in powdered milk. Variables including experimental apparatus, DART gas heater temperature, sample presentation speed, and vacuum pressure were investigated. The quantitative method was validated with respect to linearity, sensitivity, repeatability, precision, and accuracy by using external standards. After optimization of these parameters, a limit of detection (LOD) of 100 μg kg(-1) was obtained for DCD with a linear working range from 100 to 10000 μg kg(-1) and a satisfactory correlation coefficient (R(2)) of 0.9997. Good recovery (80.08%-106.47%) and repeatability (RSD = 3.0%-5.4%) were achieved for DCD. The DART/Q-TOF MS/MS-based method provides a rapid, efficient, and powerful scheme to analyze DCD in powdered milk with limited sample preparation, thus reducing time and complexity of quality control. PMID:25930094

  18. Determination of Dicyandiamide in Powdered Milk Using Direct Analysis in Real Time Quadrupole Time-of-Flight Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Liya; Yong, Wei; Liu, Jiahui; Wang, Sai; Chen, Qilong; Guo, Tianyang; Zhang, Jichuan; Tan, Tianwei; Su, Haijia; Dong, Yiyang

    2015-08-01

    The direct analysis in real time (DART) ionization source coupled with quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) system has the capability to desorb analytes directly from samples without sample cleanup or chromatographic separation. In this work, a method based on DART/Q-TOF MS/MS has been developed for rapid identification of dicyandiamide (DCD) present in powdered milk. Simple sample extraction procedure employing acetonitrile-water (80:20, v/v) mixture was followed by direct, high-throughput determination of sample extracts spread on a steel mesh of the transmission module by mass spectrometry under ambient conditions. The method has been evaluated for both qualitative and quantitative analysis of DCD in powdered milk. Variables including experimental apparatus, DART gas heater temperature, sample presentation speed, and vacuum pressure were investigated. The quantitative method was validated with respect to linearity, sensitivity, repeatability, precision, and accuracy by using external standards. After optimization of these parameters, a limit of detection (LOD) of 100 μg kg-1 was obtained for DCD with a linear working range from 100 to 10000 μg kg-1 and a satisfactory correlation coefficient (R2) of 0.9997. Good recovery (80.08%-106.47%) and repeatability (RSD = 3.0%-5.4%) were achieved for DCD. The DART/Q-TOF MS/MS-based method provides a rapid, efficient, and powerful scheme to analyze DCD in powdered milk with limited sample preparation, thus reducing time and complexity of quality control.

  19. Determination of T-2 and HT-2 toxins from maize by direct analysis in real time mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Direct analysis in real time (DART) ionization coupled to mass spectrometry (MS) was used for the rapid quantitative analysis of T-2 toxin, and the related HT-2 toxin, extracted from corn. Sample preparation procedures and instrument parameters were optimized to obtain sensitive and accurate determi...

  20. News at Nine: The value of near-real time data for reaching mass media

    NASA Astrophysics Data System (ADS)

    Allen, J.; Ward, K.; Simmon, R. B.; Carlowicz, M. J.; Scott, M.; Przyborski, P. D.; Voiland, A. P.

    2012-12-01

    NASA's Earth Observatory (EO) is an online publication featuring NASA Earth science news and images. Since its inception in 1999, the EO team has relied heavily on near-real time satellite data to publish imagery of breaking news events, such as volcanoes, floods, fires, and dust storms. Major news outlets (Associated Press, The Weather Channel, CNN, etc.) have regularly republished Earth Observatory imagery in their coverage of events. Because of the nature of modern 24-hour news cycle, media almost always want near-real time coverage; providing it depends heavily on rapid data turnaround, user-friendly data systems, and fast data access. We will discuss how we use near-real time data and provide examples of how data systems have been transformed in the past 13 years. We will offer some thoughts on best practices (from the view of a user) in expedited data systems and the positive effect of those practices on public awareness of our content.. Finally, we will share how we work with science teams to see the potential stories in their data and the value of providing the data in a timely fashionAcquired October 9, 2010, this natural-color image shows the toxic sludge spill from an alumina plant in southern Hungary.

  1. Combining Heat and Mass Flux Methods for Estimating Real-Time Evaporation from a Water Surface

    NASA Astrophysics Data System (ADS)

    Mathis, T. J.; Schladow, G.; Hook, S. J.

    2015-12-01

    Quantifying the heat and mass fluxes associated with evaporation from lakes and reservoirs is achallenge for hydrologists and water managers. This is in large part due to a lack of comprehensivemeasurement data for most systems, which is itself related to the inherent difficulties associated withmeasuring turbulent quantities. An alternative to direct measurement is to develop better models for theevaporative flux, based on the mean terms (as opposed to the turbulent terms) that drive evaporation.Algorithms for the evaporative heat and mass flux must reflect changes in heat storage in the system aswell as the other components of a mass balance (inflow, outflow, and precipitation). The energy budget basedapproach requires records of all the other energy fluxes across the air-water interface to separateout the latent heat component. Other approaches utilize the similarity between atmospheric velocity,temperature and humidity profiles. This study seeks to combine these approaches to build and calibrateheat flux models that can be used to accurately recreate a long-term record of mass storage changefrom a sub-set of meteorological data, lake surface temperature data, and hydrologic observations. Highfrequency lake level data are used to check that the mass balance is in fact achieved. Good agreement isshown between the heat flux methods and the mass balance results through comparison with a three-yearrecord of lake level. The results demonstrate that a combination of mass and heat flux approaches canbe used to generate accurate values of evaporation on daily or even sub-daily time-scales.

  2. Direct Analysis in Real Time (DART) of an Organothiophosphate at Ultrahigh Resolution by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Tandem Mass Spectrometry

    PubMed Central

    Prokai, Laszlo; Stevens, Stanley M.

    2016-01-01

    Direct analysis in real time (DART) is a recently developed ambient ionization technique for mass spectrometry to enable rapid and sensitive analyses with little or no sample preparation. After swab-based field sampling, the organothiophosphate malathion was analyzed using DART-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Mass resolution was documented to be over 800,000 in full-scan MS mode and over 1,000,000 for an MS/MS product ion produced by collision-induced dissociation of the protonated analyte. Mass measurement accuracy below 1 ppm was obtained for all DART-generated ions that belonged to the test compound in the mass spectra acquired using only external mass calibration. This high mass measurement accuracy, achievable at present only through FTMS, was required for unequivocal identification of the corresponding molecular formulae. PMID:26784186

  3. Direct Analysis in Real Time (DART) of an Organothiophosphate at Ultrahigh Resolution by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Tandem Mass Spectrometry.

    PubMed

    Prokai, Laszlo; Stevens, Stanley M

    2016-01-01

    Direct analysis in real time (DART) is a recently developed ambient ionization technique for mass spectrometry to enable rapid and sensitive analyses with little or no sample preparation. After swab-based field sampling, the organothiophosphate malathion was analyzed using DART-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Mass resolution was documented to be over 800,000 in full-scan MS mode and over 1,000,000 for an MS/MS product ion produced by collision-induced dissociation of the protonated analyte. Mass measurement accuracy below 1 ppm was obtained for all DART-generated ions that belonged to the test compound in the mass spectra acquired using only external mass calibration. This high mass measurement accuracy, achievable at present only through FTMS, was required for unequivocal identification of the corresponding molecular formulae. PMID:26784186

  4. REAL TIME, ON-LINE CHARACTERIZATION OF DIESEL GENERATOR AIR TOXIC EMISSIONS BY RESONANCE ENHANCED MULTI-PHOTON IONIZATION TIME OF FLIGHT MASS SPECTROMETRY

    EPA Science Inventory

    The laser based resonance, enhanced multi-photon ionization time-of-flight mass spectrometry (REMPI-TOFMS) technique has been applied to the exhaust gas stream of a diesel generator to measure, in real time, concentration levels of aromatic air toxics. Volatile organic compounds ...

  5. Real-Time Mass Spectrometry Monitoring of Oak Wood Toasting: Elucidating Aroma Development Relevant to Oak-aged Wine Quality

    NASA Astrophysics Data System (ADS)

    Farrell, Ross R.; Wellinger, Marco; Gloess, Alexia N.; Nichols, David S.; Breadmore, Michael C.; Shellie, Robert A.; Yeretzian, Chahan

    2015-11-01

    We introduce a real-time method to monitor the evolution of oak aromas during the oak toasting process. French and American oak wood boards were toasted in an oven at three different temperatures, while the process-gas was continuously transferred to the inlet of a proton-transfer-reaction time-of-flight mass spectrometer for online monitoring. Oak wood aroma compounds important for their sensory contribution to oak-aged wine were tentatively identified based on soft ionization and molecular mass. The time-intensity profiles revealed toasting process dynamics illustrating in real-time how different compounds evolve from the oak wood during toasting. Sufficient sensitivity was achieved to observe spikes in volatile concentrations related to cracking phenomena on the oak wood surface. The polysaccharide-derived compounds exhibited similar profiles; whilst for lignin-derived compounds eugenol formation differed from that of vanillin and guaiacol at lower toasting temperatures. Significant generation of oak lactone from precursors was evident at 225 oC. Statistical processing of the real-time aroma data showed similarities and differences between individual oak boards and oak wood sourced from the different origins. This study enriches our understanding of the oak toasting process and demonstrates a new analytical approach for research on wood volatiles.

  6. Real-Time Mass Spectrometry Monitoring of Oak Wood Toasting: Elucidating Aroma Development Relevant to Oak-aged Wine Quality.

    PubMed

    Farrell, Ross R; Wellinger, Marco; Gloess, Alexia N; Nichols, David S; Breadmore, Michael C; Shellie, Robert A; Yeretzian, Chahan

    2015-01-01

    We introduce a real-time method to monitor the evolution of oak aromas during the oak toasting process. French and American oak wood boards were toasted in an oven at three different temperatures, while the process-gas was continuously transferred to the inlet of a proton-transfer-reaction time-of-flight mass spectrometer for online monitoring. Oak wood aroma compounds important for their sensory contribution to oak-aged wine were tentatively identified based on soft ionization and molecular mass. The time-intensity profiles revealed toasting process dynamics illustrating in real-time how different compounds evolve from the oak wood during toasting. Sufficient sensitivity was achieved to observe spikes in volatile concentrations related to cracking phenomena on the oak wood surface. The polysaccharide-derived compounds exhibited similar profiles; whilst for lignin-derived compounds eugenol formation differed from that of vanillin and guaiacol at lower toasting temperatures. Significant generation of oak lactone from precursors was evident at 225 (o)C. Statistical processing of the real-time aroma data showed similarities and differences between individual oak boards and oak wood sourced from the different origins. This study enriches our understanding of the oak toasting process and demonstrates a new analytical approach for research on wood volatiles. PMID:26610612

  7. Real-Time Mass Spectrometry Monitoring of Oak Wood Toasting: Elucidating Aroma Development Relevant to Oak-aged Wine Quality

    PubMed Central

    Farrell, Ross R.; Wellinger, Marco; Gloess, Alexia N.; Nichols, David S.; Breadmore, Michael C.; Shellie, Robert A.; Yeretzian, Chahan

    2015-01-01

    We introduce a real-time method to monitor the evolution of oak aromas during the oak toasting process. French and American oak wood boards were toasted in an oven at three different temperatures, while the process-gas was continuously transferred to the inlet of a proton-transfer-reaction time-of-flight mass spectrometer for online monitoring. Oak wood aroma compounds important for their sensory contribution to oak-aged wine were tentatively identified based on soft ionization and molecular mass. The time-intensity profiles revealed toasting process dynamics illustrating in real-time how different compounds evolve from the oak wood during toasting. Sufficient sensitivity was achieved to observe spikes in volatile concentrations related to cracking phenomena on the oak wood surface. The polysaccharide-derived compounds exhibited similar profiles; whilst for lignin-derived compounds eugenol formation differed from that of vanillin and guaiacol at lower toasting temperatures. Significant generation of oak lactone from precursors was evident at 225 oC. Statistical processing of the real-time aroma data showed similarities and differences between individual oak boards and oak wood sourced from the different origins. This study enriches our understanding of the oak toasting process and demonstrates a new analytical approach for research on wood volatiles. PMID:26610612

  8. Real time mass flux measurements of gas-solid suspensions at low velocities

    SciTech Connect

    Saunders, J H; Chao, B T; Soo, S L

    1981-01-01

    In previous work, measurement of the particulate mass flux was made based upon a novel electrostatic technique. A small conducting wire sensor was inserted in the flow and as each particle hit the sensor an individual pulse of current was identified. Through suitable electronic circuitry, the number of pulses in a given time were counted. This was a direct measure of the number of particle-probe collisions which was related to local particle mass flow. The technique is currently limited to monodisperse suspensions. A primary advantage of the impact counter system is that the output does not depend upon the magnitude of the actual charge transfer. As long as the pulses are sufficiently above the noise level, variations in charge transfer will not affect the measurement. For the current work, the technique was applied to vertical gas-solid flow where the fluid velocity was slightly above the particle terminal velocity. Under these conditions a sufficient signal to noise ratio was not found. The Cheng-Soo charge transfer theory indicated that the low particle-sensor impact velocity was responsible. The probe system was then modified by extracting a particulate sample isokinetically and accelerating the particles to a sufficient velocity by an area reduction in the sampling tube. With this technique the signal to noise ratio was about 12 to 1. Mass flux results are shown to compare favorably with filter collection and weighing.

  9. High-performance hardware implementation of a parallel database search engine for real-time peptide mass fingerprinting

    PubMed Central

    Bogdán, István A.; Rivers, Jenny; Beynon, Robert J.; Coca, Daniel

    2008-01-01

    Motivation: Peptide mass fingerprinting (PMF) is a method for protein identification in which a protein is fragmented by a defined cleavage protocol (usually proteolysis with trypsin), and the masses of these products constitute a ‘fingerprint’ that can be searched against theoretical fingerprints of all known proteins. In the first stage of PMF, the raw mass spectrometric data are processed to generate a peptide mass list. In the second stage this protein fingerprint is used to search a database of known proteins for the best protein match. Although current software solutions can typically deliver a match in a relatively short time, a system that can find a match in real time could change the way in which PMF is deployed and presented. In a paper published earlier we presented a hardware design of a raw mass spectra processor that, when implemented in Field Programmable Gate Array (FPGA) hardware, achieves almost 170-fold speed gain relative to a conventional software implementation running on a dual processor server. In this article we present a complementary hardware realization of a parallel database search engine that, when running on a Xilinx Virtex 2 FPGA at 100 MHz, delivers 1800-fold speed-up compared with an equivalent C software routine, running on a 3.06 GHz Xeon workstation. The inherent scalability of the design means that processing speed can be multiplied by deploying the design on multiple FPGAs. The database search processor and the mass spectra processor, running on a reconfigurable computing platform, provide a complete real-time PMF protein identification solution. Contact: d.coca@sheffield.ac.uk PMID:18453553

  10. Detection of nicotine as an indicator of tobacco smoke by direct analysis in real time (DART) tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kuki, Ákos; Nagy, Lajos; Nagy, Tibor; Zsuga, Miklós; Kéki, Sándor

    2015-01-01

    The residual tobacco smoke contamination (thirdhand smoke, THS) on the clothes of a smoker was examined by direct analysis in real time (DART) mass spectrometry. DART-MS enabled sensitive and selective analysis of nicotine as the indicator of tobacco smoke pollution. Tandem mass spectrometric (MS/MS) experiments were also performed to confirm the identification of nicotine. Transferred thirdhand smoke originated from the fingers of a smoker onto other objects was also detected by DART mass spectrometry. DART-MS/MS was utilized for monitoring the secondhand tobacco smoke (SHS) in the air of the laboratory using nicotine as an indicator. To the best of our knowledge, this is the first report on the application of DART-MS and DART-MS/MS to the detection of thirdhand smoke and to the monitoring of secondhand smoke.

  11. Real-Time Analysis of Water by Membrane Introduction/Laser Ionization Time-of-Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Oser, H.; Irwin, A.; Mullen, C.; Coggiola, M. J.

    2005-12-01

    Two photon resonance enhanced multiphoton ionization (REMPI) has been shown to be an unique ionization method for mass spectrometry with high sensitivity and selectivity. This method has been used for about thirty years for fundamental studies in molecular spectroscopy and dynamics, but recently has been examined and developed as a tool for fast, rapid on-line monitoring of complex gas mixtures. The list of reported successful applications includes on-line monitoring of combustion processes, monitoring of automotive exhaust and the formation chemistry of Polychlorinated Dioxins/Furans in waste incineration. At SRI International we are studying the REMPI method for analytical purposes for the determination of trace amounts of hazardous air pollutants, toxics in vehicle exhausts, breath analysis, cancer drugs, and explosives. Since REMPI is a gas phase method, REMPI applications have been limited and applied to gas phase systems or in conjunction with a combination of laser desorption and subsequent laser ionization. We describe here for the first time a combination of MIMS and REMPI with time-of flight mass spectrometry (ToF MS), which allows the direct analysis of water samples. The application of ToF MS offers some advantages like high transmission, robustness, and the ability to record a mass spectrum per each laser shot The objective of this research was the detection of trace amounts of aromatic contaminants particularly BETX in aqueous solutions without interference or clogging of the inlet due to the vastly greater amount of water. To our knowledge, this combination of membrane introduction, laser photoionization and ToF MS has not been examined previously. A significant feature of MIMS is the simultaneous introduction of all analytes into the mass spectrometer. This results in a rapid analytical method, suitable for on-line applications. However, the application of conventional ionization methods presumably electron impact, making the analysis of complex

  12. Rapid detection of hazardous chemicals in textiles by direct analysis in real-time mass spectrometry (DART-MS).

    PubMed

    Antal, Borbála; Kuki, Ákos; Nagy, Lajos; Nagy, Tibor; Zsuga, Miklós; Kéki, Sándor

    2016-07-01

    Residues of chemicals on clothing products were examined by direct analysis in real-time (DART) mass spectrometry. Our experiments have revealed the presence of more than 40 chemicals in 15 different clothing items. The identification was confirmed by DART tandem mass spectrometry (MS/MS) experiments for 14 compounds. The most commonly detected hazardous substances were nonylphenol ethoxylates (NPEs), phthalic acid esters (phthalates), amines released by azo dyes, and quinoline derivates. DART-MS was able to detect NPEs on the skin of the person wearing the clothing item contaminated by NPE residuals. Automated data acquisition and processing method was developed and tested for the recognition of NPE residues thereby reducing the analysis time. PMID:27236310

  13. Acoustic Emission and Velocity Measurements using a Modular Borehole Prototype Tool to Provide Real Time Rock Mass Characterization.

    NASA Astrophysics Data System (ADS)

    Collins, D. S.; Pettitt, W. S.; Young, R. P.

    2003-04-01

    Permanent changes to rock mass properties can occur due to the application of excavation or thermal induced stresses. This project involves the design of hardware and software for the long term monitoring of a rock volume, and the real time analysis and interpretation of induced microcracks and their properties. A set of borehole sondes have been designed with each sonde containing up to 6 sensor modules. Each piezoelectric sensor is dual mode allowing it to either transmit an ultrasonic pulse through a rock mass, or receive ultrasonic waveform data. Good coupling of the sensors with the borehole wall is achieved through a motorized clamping mechanism. The borehole sondes are connected to a surface interface box and digital acquisition system and controlled by a laptop computer. The system allows acoustic emission (AE) data to be recorded at all times using programmable trigger logic. The AE data is processed in real time for 3D source location and magnitude, with further analysis such as mechanism type available offline. Additionally the system allows velocity surveys to be automatically performed at pre-defined times. A modelling component of the project, using a 3D dynamic finite difference code, is investigating the effect that different microcrack distributions have on velocity waveform data in terms of time and frequency amplitude. The modelling codes will be validated using data recorded from laboratory tests on rocks with known crack fabrics, and then used in insitu experimental tests. This modelling information will be used to help interpret, in real time, microcrack characteristics such as crack density, size, and fluid content. The technology has applications in a number of branches of geotechnical and civil engineering including radioactive waste storage, mining, dams, bridges, and oil reservoir monitoring.

  14. Sensitivity "Hot Spots" in the Direct Analysis in Real Time Mass Spectrometry of Nerve Agent Simulants

    NASA Astrophysics Data System (ADS)

    Harris, Glenn A.; Falcone, Caitlin E.; Fernández, Facundo M.

    2012-01-01

    Presented here are findings describing the spatial-dependence of sensitivity and ion suppression effects observed with direct analysis in real time (DART). Continuous liquid infusion of dimethyl methyl phosphonate (DMMP) revealed that ion yield "hot spots" did not always correspond with the highest temperature regions within the ionization space. For instance, at lower concentrations (50 and 100 μM), the highest sensitivities were in the middle of the ionization region at 200 °C where there was a shorter ion transport distance, and the heat available to thermally desorb neutrals was moderate. Conversely, at higher DMMP concentrations (500 μM), the highest ion yield was directly in front of the DART source at 200 °C where it was exposed to the highest temperature for thermal desorption. In matching experiments, differential analyte volatility was observed to play a smaller role in relative ion suppression than differences in proton affinity and the relative sampling positions of analytes. At equimolar concentrations sampled at the same position, suppression was as high as 26× between isoquinoline (proton affinity 952 kJ mol-1, boiling point 242 °C) and p-anisidine (proton affinity 900 kJ mol-1, boiling point 243 °C). This effect was exacerbated when sampling positions of the two analytes differed, reaching levels of relative suppression as high as 4543.0× ± 1406.0. To mitigate this level of relative ion suppression, sampling positions and molar ratios of the analytes were modified to create conditions in which ion suppression was negligible.

  15. The coupling of direct analysis in real time ionization to Fourier transform ion cyclotron resonance mass spectrometry for ultrahigh-resolution mass analysis.

    PubMed

    Rummel, Julia L; McKenna, Amy M; Marshall, Alan G; Eyler, John R; Powell, David H

    2010-03-01

    Direct Analysis in Real Time (DART) is an ambient ionization technique for mass spectrometry that provides rapid and sensitive analyses with little or no sample preparation. DART has been reported primarily for mass analyzers of low to moderate resolving power such as quadrupole ion traps and time-of-flight (TOF) mass spectrometers. In the current work, a custom-built DART source has been successfully coupled to two different Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers for the first time. Comparison of spectra of the isobaric compounds, diisopropyl methylphosphonate and theophylline, acquired by 4.7 T FT-ICR MS and TOF MS, demonstrates that the TOF resolving power can be insufficient for compositionally complex samples. 9.4 T FT-ICR MS yielded the highest mass resolving power yet reported with DART ionization for 1,2-benzanthracene and 9,10-diphenylanthracene. Polycyclic aromatic hydrocarbons exhibit a spatial dependence in ionization mechanisms between the DART source and the mass spectrometer. The feasibility of analyzing a variety of samples was established with the introduction and analysis of food products and crude oil samples. DART FT-ICR MS provides complex sample analysis that is rapid, highly selective and information-rich, but limited to relatively low-mass analytes. PMID:20187081

  16. Real-Time Quantitative Analysis of H2, He, O2, and Ar by Quadrupole Ion Trap Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Ottens, Andrew K.; Harrison, W. W.; Griffin, Timothy P.; Helms, William R.; Voska, N. (Technical Monitor)

    2002-01-01

    The use of a quadrupole ion trap mass spectrometer for quantitative analysis of hydrogen and helium as well as other permanent gases is demonstrated. The customized instrument utilizes the mass selective instability mode of mass analysis as with commercial instruments; however, this instrument operates at a greater RF trapping frequency and without a buffer gas. With these differences, a useable mass range from 2 to over 50 Da is achieved, as required by NASA for monitoring the Space Shuttle during a launch countdown. The performance of the ion trap is evaluated using part-per-million concentrations of hydrogen, helium, oxygen and argon mixed into a nitrogen gas stream. Relative accuracy and precision when quantitating the four analytes were better than the NASA-required minimum of 10% error and 5% deviation, respectively. Limits of detection were below the NASA requirement of 25-ppm hydrogen and 100-ppm helium; those for oxygen and argon were slightly higher than the requirement. The instrument provided adequate performance at fast data recording rates, demonstrating the utility of an ion trap mass spectrometer as a real-time quantitative monitoring device for permanent gas analysis.

  17. Direct analysis in real time mass spectrometry of potential by-products from homemade nitrate ester explosive synthesis.

    PubMed

    Sisco, Edward; Forbes, Thomas P

    2016-04-01

    This work demonstrates the coupling of direct analysis in real time (DART) ionization with time-of-flight mass spectrometry (MS) in an off-axis configuration for the trace detection and analysis of potential partially nitrated and dimerized by-products of homemade nitrate ester explosive synthesis. Five compounds relating to the synthesis of nitroglycerin (NG) and pentaerythritol tetranitrate (PETN) were examined. Deprotonated ions and adducts with molecular oxygen, nitrite, and nitrate were observed in the mass spectral responses of these compounds. A global optimum temperature of 350 °C for the by-products investigated here enabled single nanogram to sub nanogram trace detection. Matrix effects were examined through a series of mixtures containing one or more compounds (sugar alcohol precursors, by-products, and/or explosives) across a range of mass loadings. The explosives MS responses experienced competitive ionization in the presence of all by-products. The magnitude of this influence corresponded to both the degree of by-product nitration and the relative mass loading of the by-product to the explosive. This work provides a characterization of potential by-products from homemade nitrate ester synthesis, including matrix effects and potential challenges that might arise from the trace detection of homemade explosives (HMEs) containing impurities. Detection and understanding of HME impurities and complex mixtures may provide valuable information for the screening and sourcing of homemade nitrate ester explosives. PMID:26838397

  18. Real-time monitoring of trace-level VOCs by an ultrasensitive compact lamp-based VUV photoionization mass spectrometer

    NASA Astrophysics Data System (ADS)

    Sun, W. Q.; Shu, J. N.; Zhang, P.; Li, Z.; Li, N. N.; Liang, M.; Yang, B.

    2015-06-01

    In this study, we report on the development of a compact lamp-based vacuum ultraviolet (VUV) photoionization mass spectrometer (PIMS; hereafter referred to as VUV-PIMS) in our laboratory; it is composed of a radio frequency-powered VUV lamp, a VUV photoionizer, an ion-immigration region, and a reflection time-of-flight mass spectrometer. By utilizing the novel photoionizer consisting of a photoionization cavity and a VUV light baffle, extremely low background noise was obtained. An ultrasensitive detection limit (2σ) of 3 pptv was achieved for benzene after an acquisition time of 10 s. To examine its potential for application in real-time sample monitoring, the developed VUV-PIMS was employed for the continuous measurement of urban air for six days in Beijing, China. Strong signals of trace-level volatile organic compounds such as benzene and its alkylated derivatives were observed in the mass spectra. These initial experimental results reveal that the instrument can be used for the online monitoring of trace-level species in the atmosphere.

  19. Real-time Detection of Particulate Chemical Composition Near Agricultural Facilities Using Mass Spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural facilities are the source of many types of particles and gases that can exhibit an influence on air quality. Emissions potentially impacting air quality from agricultural sources have become a concern for various state and federal regulatory agencies. Particle mass concentration influe...

  20. Early, Real-Time Medical Diagnosis of Botulism by Endopeptidase-Mass Spectrometry.

    PubMed

    Rosen, Osnat; Feldberg, Liron; Gura, Sigalit; Brosh-Nissimov, Tal; Guri, Alex; Zimhony, Oren; Shapiro, Eli; Beth-Din, Adi; Stein, Dana; Ozeri, Eyal; Barnea, Ada; Turgeman, Amram; Ben David, Alon; Schwartz, Arieh; Elhanany, Eytan; Diamant, Eran; Yitzhaki, Shmuel; Zichel, Ran

    2015-12-15

    Botulinum toxin was detected in patient serum using Endopeptidase-mass-spectrometry assay, although all conventional tests provided negative results. Antitoxin was administered, resulting in patient improvement. Implementing this highly sensitive and rapid assay will improve preparedness for foodborne botulism and deliberate exposure. PMID:26420800

  1. Real-time viscosity and mass density sensors requiring microliter sample volume based on nanomechanical resonators.

    PubMed

    Bircher, Benjamin A; Duempelmann, Luc; Renggli, Kasper; Lang, Hans Peter; Gerber, Christoph; Bruns, Nico; Braun, Thomas

    2013-09-17

    A microcantilever based method for fluid viscosity and mass density measurements with high temporal resolution and microliter sample consumption is presented. Nanomechanical cantilever vibration is driven by photothermal excitation and detected by an optical beam deflection system using two laser beams of different wavelengths. The theoretical framework relating cantilever response to the viscosity and mass density of the surrounding fluid was extended to consider higher flexural modes vibrating at high Reynolds numbers. The performance of the developed sensor and extended theory was validated over a viscosity range of 1-20 mPa·s and a corresponding mass density range of 998-1176 kg/m(3) using reference fluids. Separating sample plugs from the carrier fluid by a two-phase configuration in combination with a microfluidic flow cell, allowed samples of 5 μL to be sequentially measured under continuous flow, opening the method to fast and reliable screening applications. To demonstrate the study of dynamic processes, the viscosity and mass density changes occurring during the free radical polymerization of acrylamide were monitored and compared to published data. Shear-thinning was observed in the viscosity data at higher flexural modes, which vibrate at elevated frequencies. Rheokinetic models allowed the monomer-to-polymer conversion to be tracked in spite of the shear-thinning behavior, and could be applied to study the kinetics of unknown processes. PMID:23905589

  2. FINAL REPORT. REAL-TIME BROAD SPECTRUM CHARACTERIZATION OF HAZARDOUS WASTE BY MEMBRANE INTRODUCTION MASS SPECTROMETRY

    EPA Science Inventory

    The goal of this project was to expand the range of chemical species that may be detected by membrane introduction mass spectrometry (MIMS) in environmental, and specifically in Mixed Waste, monitoring and characterization applications. There were three major thrusts to this work...

  3. Real-time monitoring of volatile organic compounds using chemical ionization mass spectrometry

    DOEpatents

    Mowry, Curtis Dale; Thornberg, Steven Michael

    1999-01-01

    A system for on-line quantitative monitoring of volatile organic compounds (VOCs) includes pressure reduction means for carrying a gaseous sample from a first location to a measuring input location maintained at a low pressure, the system utilizing active feedback to keep both the vapor flow and pressure to a chemical ionization mode mass spectrometer constant. A multiple input manifold for VOC and gas distribution permits a combination of calibration gases or samples to be applied to the spectrometer.

  4. Determination of T-2 and HT-2 toxins from maize by direct analysis in real time - mass spectrometry (DART-MS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ambient desorption ionization techniques, such as laser desorption with electrospray ionization assistance (ELDI), direct analysis in real time (DART) and desorption electrospray ionization (DESI) have been developed as alternatives to traditional mass spectrometric-based methods. Such techniques al...

  5. Direct Analysis in Real Time-Mass Spectrometry for the Rapid Detection of Metabolites of Aconite Alkaloids in Intestinal Bacteria

    NASA Astrophysics Data System (ADS)

    Li, Xue; Hou, Guangyue; Xing, Junpeng; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying

    2014-12-01

    In the present work, direct analysis of real time ionization combined with multi-stage tandem mass spectrometry (DART-MSn) was used to investigate the metabolic profile of aconite alkaloids in rat intestinal bacteria. A total of 36 metabolites from three aconite alkaloids were identified by using DART-MSn, and the feasibility of quantitative analysis of these analytes was examined. Key parameters of the DART ion source, such as helium gas temperature and pressure, the source-to-MS distance, and the speed of the autosampler, were optimized to achieve high sensitivity, enhance reproducibility, and reduce the occurrence of fragmentation. The instrument analysis time for one sample can be less than 10 s for this method. Compared with ESI-MS and UPLC-MS, the DART-MS is more efficient for directly detecting metabolic samples, and has the advantage of being a simple, high-speed, high-throughput method.

  6. Temperature-dependent release of volatile organic compounds of eucalypts by direct analysis in real time (DART) mass spectrometry.

    PubMed

    Maleknia, Simin D; Vail, Teresa M; Cody, Robert B; Sparkman, David O; Bell, Tina L; Adams, Mark A

    2009-08-01

    A method is described for the rapid identification of biogenic, volatile organic compounds (VOCs) emitted by plants, including the analysis of the temperature dependence of those emissions. Direct analysis in real time (DART) enabled ionization of VOCs from stem and leaf of several eucalyptus species including E. cinerea, E. citriodora, E. nicholii and E. sideroxylon. Plant tissues were placed directly in the gap between the DART ionization source skimmer and the capillary inlet of the time-of-flight (TOF) mass spectrometer. Temperature-dependent emission of VOCs was achieved by adjusting the temperature of the helium gas into the DART ionization source at 50, 100, 200 and 300 degrees C, which enabled direct evaporation of compounds, up to the onset of pyrolysis of plant fibres (i.e. cellulose and lignin). Accurate mass measurements facilitated by TOF mass spectrometry provided elemental compositions for the VOCs. A wide range of compounds was detected from simple organic compounds (i.e. methanol and acetone) to a series of monoterpenes (i.e. pinene, camphene, cymene, eucalyptol) common to many plant species, as well as several less abundant sesquiterpenes and flavonoids (i.e. naringenin, spathulenol, eucalyptin) with antioxidant and antimicrobial properties. The leaf and stem tissues for all four eucalypt species showed similar compounds. The relative abundances of methanol and ethanol were greater in stem wood than in leaf tissue suggesting that DART could be used to investigate the tissue-specific transport and emissions of VOCs. PMID:19551840

  7. Real-Time Elastography and Contrast-Enhanced Ultrasonography in the Evaluation of Testicular Masses: A Comparative Prospective Study.

    PubMed

    Schröder, Claudia; Lock, Guntram; Schmidt, Christa; Löning, Thomas; Dieckmann, Klaus-Peter

    2016-08-01

    This study investigates the usefulness of contrast-enhanced ultrasound (CEUS) and real-time elastography (RTE) for the characterization of testicular masses by comparing pre-operative ultrasound findings with post-operative histology. Sixty-seven patients with 68 sonographically detected testicular masses underwent B-mode, color-coded Doppler sonography (CCDS), CEUS and RTE according to defined criteria. For RTE, elasticity score (ES), difference of elasticity score (D-ES), strain ratio (SR) and size quotient (Qsize) were evaluated. Histopathologically, 54/68 testicular lesions were neoplastic (47 malignant, 7 benign). Descriptive statistics revealed the following results (neoplastic vs. non-neoplastic) for sensitivity, specificity, positive predictive value, negative predictive value and accuracy, respectively: B-mode, 100%, 43%, 87%, 100%, 88%; CCDS 81%, 86%, 96%, 55%, 82%; CEUS 93%, 85%, 96%, 73%, 91%; ES 98%, 25%, 85%, 75%, 85%; D-ES 98%, 50%, 90%, 83%, 89%; SR 90%, 45%, 86%, 56%, 81%; and Qsize 57%, 83%, 94%, 28%, 61%. B-mode with CCDS remains the standard for assessing testicular masses. In characterization of testicular lesions, CEUS clearly outperformed all other modalities. Our study does not support the routine use of RTE in testicular ultrasonography because of its low specificity. PMID:27181687

  8. Real-time monitoring of the progress of polymerization reactions directly on surfaces at open atmosphere by ambient mass spectrometry.

    PubMed

    Nørgaard, Asger W; Vaz, Boniek G; Lauritsen, Frants R; Eberlin, Marcos N

    2010-12-15

    The progress of an on-surface polymerization process involving alkyl and perfluoroalkyl silanes and siloxanes was monitored in real-time via easy ambient sonic spray ionization mass spectrometry (EASI-MS). When sprayed on surfaces, the organosilicon compounds present in commercially available nanofilm products (NFPs) react by condensation to form a polymeric coating. A NFP for coating of floor materials (NFP-1) and a second NFP for coating tiles and ceramics (NFP-2) were applied to glass, filter paper or cotton surfaces and the progress of the polymerization was monitored by slowly scanning the surface. Via EASI(+)-MS monitoring, significant changes in the composition of hydrolysates and condensates of 1H,1H,2H,2H-perfluorooctyl triisopropoxysilane (NFP-1) and hexadecyl triethoxysilane (NFP-2) were observed over time. The abundances of the hydrolyzed species decreased compared with those of the non-hydrolysed species for both NFP-1 and NFP-2 and the heavier oligomers became relatively more abundant over a period of 15-20 min. A similar tendency favouring the heavier oligomers was observed via EASI(-)-MS. This work illustrates the potential of ambient mass spectrometry for the direct monitoring of polymerization reactions on surfaces. PMID:21072800

  9. Real time analysis of brain tissue by direct combination of ultrasonic surgical aspiration and sonic spray mass spectrometry.

    PubMed

    Schäfer, Karl-Christian; Balog, Júlia; Szaniszló, Tamás; Szalay, Dániel; Mezey, Géza; Dénes, Júlia; Bognár, László; Oertel, Matthias; Takáts, Zoltán

    2011-10-15

    Direct combination of cavitron ultrasonic surgical aspirator (CUSA) and sonic spray ionization mass spectrometry is presented. A commercially available ultrasonic surgical device was coupled to a Venturi easy ambient sonic-spray ionization (V-EASI) source by directly introducing liquified tissue debris into the Venturi air jet pump. The Venturi air jet pump was found to efficiently nebulize the suspended tissue material for gas phase ion production. The ionization mechanism involving solely pneumatic spraying was associated with that of sonic spray ionization. Positive and negative ionization spectra were obtained from brain and liver samples reflecting the primary application areas of the surgical device. Mass spectra were found to feature predominantly complex lipid-type constituents of tissues in both ion polarity modes. Multiply charged peptide anions were also detected. The influence of instrumental settings was characterized in detail. Venturi pump geometry and flow parameters were found to be critically important in ionization efficiency. Standard solutions of phospholipids and peptides were analyzed in order to test the dynamic range, sensitivity, and suppression effects. The spectra of the intact tissue specimens were found to be highly specific to the histological tissue type. The principal component analysis (PCA) and linear discriminant analysis (LDA) based data analysis method was developed for real-time tissue identification in a surgical environment. The method has been successfully tested on post-mortem and ex vivo human samples including astrocytomas, meningeomas, metastatic brain tumors, and healthy brain tissue. PMID:21916423

  10. An improved method for the determination of 5-hydroxymethylfurfural in Shenfu injection by direct analysis in real time-quadrupole time-of-flight mass spectrometry.

    PubMed

    Gao, Wen; Qi, Lian-Wen; Liu, Charles C; Wang, Rui; Li, Ping; Yang, Hua

    2016-07-01

    The emergence of direct analysis in real time (DART) ion source provides the great possibility for rapid analysis of hazardous substance in drugs. DART mass spectrometry (DART-MS) enabled the conducting of a fast and non-contact analysis of various samples, including solid or liquid ones, without complex sample preparation or chromatographic separation. In this study, a modified DART-quadrupole time-of-flight mass spectrometry (DART-QTOF-MS) method was developed for identification and determination of 5-hydroxymethylfurfural (5-HMF) in Shenfu (SF) injection. The quantitative transfer of sample solution was introduced to the glass tips of DIP-it sampler at a fixed volume, which significantly increases the repeatability and accuracy of analytical results. The protonated ion of dibutyl phthalate in the atmosphere was used as the reference mass for TOF-MS recalibration during the data acquisition for constant high accuracy mass measurements. Finally, the developed DART-MS method was used to determine 5-HMF in seven batches of SF injection, and the contents of 5-HMF were not higher than 100 µg/mL. The results obtained were further confirmed by an ultra-high performance liquid chromatography combined with triple quadrupole mass spectrometer (UHPLC-QQQ-MS). The overall results demonstrated that the DART-QTOF-MS method could be applied as an alternative technique for rapid monitoring 5-HMF in herbal medicine injection. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26197974

  11. Real-time radiography

    SciTech Connect

    Bossi, R.H.; Oien, C.T.

    1981-02-26

    Real-time radiography is used for imaging both dynamic events and static objects. Fluorescent screens play an important role in converting radiation to light, which is then observed directly or intensified and detected. The radiographic parameters for real-time radiography are similar to conventional film radiography with special emphasis on statistics and magnification. Direct-viewing fluoroscopy uses the human eye as a detector of fluorescent screen light or the light from an intensifier. Remote-viewing systems replace the human observer with a television camera. The remote-viewing systems have many advantages over the direct-viewing conditions such as safety, image enhancement, and the capability to produce permanent records. This report reviews real-time imaging system parameters and components.

  12. Real-Time Simulation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Coryphaeus Software, founded in 1989 by former NASA electronic engineer Steve Lakowske, creates real-time 3D software. Designer's Workbench, the company flagship product, is a modeling and simulation tool for the development of both static and dynamic 3D databases. Other products soon followed. Activation, specifically designed for game developers, allows developers to play and test the 3D games before they commit to a target platform. Game publishers can shorten development time and prove the "playability" of the title, maximizing their chances of introducing a smash hit. Another product, EasyT, lets users create massive, realistic representation of Earth terrains that can be viewed and traversed in real time. Finally, EasyScene software control the actions among interactive objects within a virtual world. Coryphaeus products are used on Silican Graphics workstation and supercomputers to simulate real-world performance in synthetic environments. Customers include aerospace, aviation, architectural and engineering firms, game developers, and the entertainment industry.

  13. Purification of pharmaceutical preparations using thin-layer chromatography to obtain mass spectra with Direct Analysis in Real Time and accurate mass spectrometry.

    PubMed

    Wood, Jessica L; Steiner, Robert R

    2011-06-01

    Forensic analysis of pharmaceutical preparations requires a comparative analysis with a standard of the suspected drug in order to identify the active ingredient. Purchasing analytical standards can be expensive or unattainable from the drug manufacturers. Direct Analysis in Real Time (DART™) is a novel, ambient ionization technique, typically coupled with a JEOL AccuTOF™ (accurate mass) mass spectrometer. While a fast and easy technique to perform, a drawback of using DART™ is the lack of component separation of mixtures prior to ionization. Various in-house pharmaceutical preparations were purified using thin-layer chromatography (TLC) and mass spectra were subsequently obtained using the AccuTOF™- DART™ technique. Utilizing TLC prior to sample introduction provides a simple, low-cost solution to acquiring mass spectra of the purified preparation. Each spectrum was compared against an in-house molecular formula list to confirm the accurate mass elemental compositions. Spectra of purified ingredients of known pharmaceuticals were added to an in-house library for use as comparators for casework samples. Resolving isomers from one another can be accomplished using collision-induced dissociation after ionization. Challenges arose when the pharmaceutical preparation required an optimized TLC solvent to achieve proper separation and purity of the standard. Purified spectra were obtained for 91 preparations and included in an in-house drug standard library. Primary standards would only need to be purchased when pharmaceutical preparations not previously encountered are submitted for comparative analysis. TLC prior to DART™ analysis demonstrates a time efficient and cost saving technique for the forensic drug analysis community. Copyright © 2011 John Wiley & Sons, Ltd. PMID:21548141

  14. Prospects of real-time single-particle biological aerosol analysis: A comparison between laser-induced breakdown spectroscopy and aerosol time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Beddows, D. C. S.; Telle, H. H.

    2005-08-01

    In this paper we discuss the prospects of real-time, in situ laser-induced breakdown spectroscopy applied for the identification and classification of bio-aerosols (including species of potential bio-hazard) within common urban aerosol mixtures. In particular, we address the issues associated with the picking out of bio-aerosols against common background aerosol particles, comparing laser-induced breakdown spectroscopy measurements with data from a mobile single-particle aerosol mass spectrometer (ATOFMS). The data from the latter provide statistical data over an extended period of time, highlighting the variation of the background composition. While single-particle bio-aerosols are detectable in principle, potential problems with small (˜ 1 μm size) bio-aerosols have been identified; constituents of the air mass other than background aerosols, e.g. gaseous CO 2 in conjunction with common background aerosols, may prevent unique recognition of the bio-particles. We discuss whether it is likely that laser-induced breakdown spectroscopy on its own can provide reliable, real-time identification of bio-aerosol in an urban environment, and it is suggested that more than one technique should be or would have to be used. A case for using a combination of laser-induced breakdown spectroscopy and Raman (and/or) laser-induced fluorescence spectroscopy is made.

  15. Electro-thermal vaporization direct analysis in real time-mass spectrometry for water contaminant analysis during space missions.

    PubMed

    Dwivedi, Prabha; Gazda, Daniel B; Keelor, Joel D; Limero, Thomas F; Wallace, William T; Macatangay, Ariel V; Fernández, Facundo M

    2013-10-15

    The development of a direct analysis in real time-mass spectrometry (DART-MS) method and first prototype vaporizer for the detection of low molecular weight (∼30-100 Da) contaminants representative of those detected in water samples from the International Space Station is reported. A temperature-programmable, electro-thermal vaporizer (ETV) was designed, constructed, and evaluated as a sampling interface for DART-MS. The ETV facilitates analysis of water samples with minimum user intervention while maximizing analytical sensitivity and sample throughput. The integrated DART-ETV-MS methodology was evaluated in both positive and negative ion modes to (1) determine experimental conditions suitable for coupling DART with ETV as a sample inlet and ionization platform for time-of-flight MS, (2) to identify analyte response ions, (3) to determine the detection limit and dynamic range for target analyte measurement, and (4) to determine the reproducibility of measurements made with the method when using manual sample introduction into the vaporizer. Nitrogen was used as the DART working gas, and the target analytes chosen for the study were ethyl acetate, acetone, acetaldehyde, ethanol, ethylene glycol, dimethylsilanediol, formaldehyde, isopropanol, methanol, methylethyl ketone, methylsulfone, propylene glycol, and trimethylsilanol. PMID:24050110

  16. Real time analysis of lead-containing atmospheric particles in Beijing during springtime by single particle aerosol mass spectrometry.

    PubMed

    Ma, Li; Li, Mei; Huang, Zhengxu; Li, Lei; Gao, Wei; Nian, Huiqing; Zou, Lilin; Fu, Zhong; Gao, Jian; Chai, Fahe; Zhou, Zhen

    2016-07-01

    Using a single particle aerosol mass spectrometer (SPAMS), the chemical composition and size distributions of lead (Pb)-containing particles with diameter from 0.1 μm to 2.0 μm in Beijing were analyzed in the spring of 2011 during clear, hazy, and dusty days. Based on mass spectral features of particles, cluster analysis was applied to Pb-containing particles, and six major classes were acquired consisting of K-rich, carboneous, Fe-rich, dust, Pb-rich, and Cl-rich particles. Pb-containing particles accounted for 4.2-5.3%, 21.8-22.7%, and 3.2% of total particle number during clear, hazy and dusty days, respectively. K-rich particles are a major contribution to Pb-containing particles, varying from 30.8% to 82.1% of total number of Pb-containing particles, lowest during dusty days and highest during hazy days. The results reflect that the chemical composition and amount of Pb-containing particles has been affected by meteorological conditions as well as the emissions of natural and anthropogenic sources. K-rich particles and carbonaceous particles could be mainly assigned to the emissions of coal combustion. Other classes of Pb-containing particles may be associated with metallurgical processes, coal combustion, dust, and waste incineration etc. In addition, Pb-containing particles during dusty days were first time studied by SPAMS. This method could provide a powerful tool for monitoring and controlling of Pb pollution in real time. PMID:27085059

  17. Real-time trace detection and identification of chemical warfare agent simulants using recent advances in proton transfer reaction time-of-flight mass spectrometry.

    PubMed

    Petersson, Fredrik; Sulzer, Philipp; Mayhew, Chris A; Watts, Peter; Jordan, Alfons; Märk, Lukas; Märk, Tilmann D

    2009-12-01

    This work demonstrates for the first time the potential of using recent developments in proton transfer reaction mass spectrometry for the rapid detection and identification of chemical warfare agents (CWAs) in real-time. A high-resolution (m/Deltam up to 8000) and high-sensitivity (approximately 50 cps/ppbv) proton transfer reaction time-of-flight mass spectrometer (PTR-TOF 8000 from Ionicon Analytik GmBH) has been successfully used to detect a number of CWA simulants at room temperature; namely dimethyl methylphosphonate, diethyl methylphosphonate, diisopropyl methylphosphonate, dipropylene glycol monomethyl ether and 2-chloroethyl ethyl sulfide. Importantly, we demonstrate in this paper the potential to identify CWAs with a high level of confidence in complex chemical environments, where multiple threat agents and interferents could also be present in trace amounts, thereby reducing the risk of false positives. Instantaneous detection and identification of trace quantities of chemical threats using proton transfer reaction mass spectrometry could form the basis for a timely warning system capability with greater precision and accuracy than is currently provided by existing analytical technologies. PMID:19902419

  18. Plant seed species identification from chemical fingerprints: a high-throughput application of direct analysis in real time mass spectrometry.

    PubMed

    Lesiak, Ashton D; Cody, Robert B; Dane, A John; Musah, Rabi A

    2015-09-01

    Plant species identification based on the morphological features of plant parts is a well-established science in botany. However, species identification from seeds has largely been unexplored, despite the fact that the seeds contain all of the genetic information that distinguishes one plant from another. Using seeds of genus Datura plants, we show here that the mass spectrum-derived chemical fingerprints for seeds of the same species are similar. On the other hand, seeds from different species within the same genus display distinct chemical signatures, even though they may contain similar characteristic biomarkers. The intraspecies chemical signature similarities on the one hand, and interspecies fingerprint differences on the other, can be processed by multivariate statistical analysis methods to enable rapid species-level identification and differentiation. The chemical fingerprints can be acquired rapidly and in a high-throughput manner by direct analysis in real time mass spectrometry (DART-MS) analysis of the seeds in their native form, without use of a solvent extract. Importantly, knowledge of the identity of the detected molecules is not required for species level identification. However, confirmation of the presence within the seeds of various characteristic tropane and other alkaloids, including atropine, scopolamine, scopoline, tropine, tropinone, and tyramine, was accomplished by comparison of the in-source collision-induced dissociation (CID) fragmentation patterns of authentic standards, to the fragmentation patterns observed in the seeds when analyzed under similar in-source CID conditions. The advantages, applications, and implications of the chemometric processing of DART-MS derived seed chemical signatures for species level identification and differentiation are discussed. PMID:26237339

  19. Analysis of Silicones Released from Household Items and Baby Articles by Direct Analysis in Real Time-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Gross, Jürgen H.

    2015-03-01

    Direct analysis in real time-mass spectrometry (DART-MS) enables screening of articles of daily use made of polydimethylsiloxanes (PDMS), commonly known as silicone rubber, to assess their tendency to release low molecular weight silicone oligomers. DART-MS analyses were performed on a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Flexible silicone baking molds, a watch band, and a dough scraper, as baby articles different brands of pacifiers, nipples, and a teething ring have been examined. While somewhat arbitrarily chosen, the set can be regarded as representative of household items, baby articles, and other objects made of silicone rubber. For comparison, two brands of silicone septa and as blanks a glass slide and a latex pacifier were included. Differences between the objects were mainly observed in terms of molecular weight distribution and occasional release of other compounds in addition to PDMS. Other than that, all objects made of silicone rubber released significant amounts of PDMS during DART analysis. To provide a coarse quantification, a calibration based on silicone oil was established, which delivered PDMS losses from 20 μg to >100 μg during the 16-s period per measurement. Also, the extraction of baking molds in rapeseed oil demonstrated a PDMS release at the level of 1 μg mg-1. These findings indicate a potential health hazard from frequent or long-term use of such items. This work does not intend to blame certain brands of such articles. Nonetheless, a higher level of awareness of this source of daily silicone intake is suggested.

  20. Improvement in ionization efficiency of direct analysis in real time-mass spectrometry (DART-MS) by corona discharge.

    PubMed

    Sekimoto, Kanako; Sakakura, Motoshi; Kawamukai, Takatomo; Hike, Hiroshi; Shiota, Teruhisa; Usui, Fumihiko; Bando, Yasuhiko; Takayama, Mitsuo

    2016-08-01

    Herein it is shown that a combination of direct analysis in real time (DART) with a corona discharge system consisting of only a needle electrode easily improves DART ionization efficiency. Positive and negative DC corona discharges led to a formation of abundant excited helium atoms as well as the reactant ions H3O(+)(H2O)n and O2˙(-) in the DART analyte ionization area. These phenomena resulted in an increase in the absolute intensities of (de)protonated analytes by a factor of 2-20 over conventional DART. The other analyte ions detected in this corona-DART system (i.e., molecular ions, fragment ions, oxygenated (de)protonated analytes, dehydrogenated deprotonated analytes, and negative ion adducts) were quite similar to those obtained from DART alone. This indicates a lack of side reactions due to the corona discharge. The change in the relative intensities of individual analyte-related ions due to the combination of a corona discharge system with DART suggests that there is no effect of the abundant excited helium in the analyte ionization area on the fragmentation processes or enhancement of oxidation due to hydroxyl radicals HO˙. Furthermore, it was found that the corona-DART combination can be applied to the highly sensitive analysis of n-alkanes, in which the alkanes are ionized as positive ions via hydride abstraction and oxidation, independent of the type of alkane or the mass spectrometer used. PMID:27346064

  1. Argon direct analysis in real time mass spectrometry in conjunction with makeup solvents: a method for analysis of labile compounds.

    PubMed

    Yang, Hongmei; Wan, Debin; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying

    2013-02-01

    Helium direct analysis in real time (He-DART) mass spectrometry (MS) analysis of labile compounds usually tends to be challenging because of the occurrence of prominent fragmentation, which obscures the assigning of an ion to an independent species or merely a fragment in a mixture. In the present work, argon DART (Ar-DART) MS in conjunction with makeup solvents has been demonstrated to analyze a variety of labile compounds including nucleosides, alkaloids, glucose, and other small molecules. The results presented here confirm that Ar-DART can generate significantly less energetic ions than conventional He-DART and is able to produce the intact molecular ions with little or no fragmentation in both positive and negative ion modes. Adding a makeup solvent (absolute ethyl alcohol, methanol, fluorobenzene, or acetone) to the argon gas stream at the exit of the DART ion source can result in 1-2 orders of magnitude increase in detection signals. The sensitivity attainable by Ar-DART was found to be comparable to that by He-DART. The investigation of influence of solvents improves our understanding of the fundamental desorption and ionization processes in DART. The practical application of this rapid and high throughput method is demonstrated by the successful analysis of a natural product (Crude Kusnezoff Monkshood) extract, demonstrating the great potential in mixture research. PMID:23252884

  2. Monolith dip-it: a bifunctional device for improving the sensitivity of direct analysis in real time mass spectrometry.

    PubMed

    Li, Xianjiang; Li, Ze; Wang, Xin; Nie, Honggang; Zhang, Yiding; Bai, Yu; Liu, Huwei

    2016-08-01

    A bifunctional monolith dip-it was fabricated and applied for improving the sensitivity of direct analysis in real time mass spectrometry (DART-MS). This monolith dip-it device was prepared by in situ polymerization of poly(BMA-EDMA-MAA) monolith in the glass capillary of dip-it. As a solid-phase microextraction (SPME) device, it showed strong affinity to four Sudan dyes through hydrophilic interaction and hydrogen bond interaction. As a sample loading device, it could be directly analyzed by DART-MS without organic solvent elution or laser desorption. As a result, this device is environmentally friendly, and used for fast analysis. Under optimized conditions, the limits of detection for four analytes were 5-10 ng mL(-1) and the linear ranges covered more than two orders of magnitude. Finally, the developed method has been applied for the analysis of chili powder and the recoveries for spiked analytes were in the range of 83.2% to 115.1% demonstrating that this device is an efficient sampler for DART-MS analysis and the proposed method could find more applications in different areas like food analysis. PMID:27306918

  3. Determination of the aflatoxin AFB1 from corn by direct analysis in real time-mass spectrometry (DART-MS).

    PubMed

    Busman, Mark; Liu, Jihong; Zhong, Hongjian; Bobell, John R; Maragos, Chris M

    2014-01-01

    Direct analysis in real time (DART) ionisation coupled to a high-resolution mass spectrometer (MS) was used for screening of aflatoxins from a variety of surfaces and the rapid quantitative analysis of a common form of aflatoxin, AFB1, extracted from corn. Sample preparation procedure and instrument parameter settings were optimised to obtain sensitive and accurate determination of aflatoxin AFB1. 84:16 acetonitrile water extracts of corn were analysed by DART-MS. The lowest calibration level (LCL) for aflatoxin AFB1 was 4 μg kg⁻¹. Quantitative analysis was performed with the use of matrix-matched standards employing the ¹³C-labelled internal standard for AFB1. DART-MS of spiked corn extracts gave linear response in the range 4-1000 μg kg⁻¹. Good recoveries (94-110%) and repeatabilities (RSD = 0.7-6.9%) were obtained at spiking levels of 20 and 100 μg kg⁻¹ with the use of an isotope dilution technique. Trueness of data obtained for AFB1 in maize by DART-MS was demonstrated by analysis of corn certified reference materials. PMID:24588621

  4. Applications of proton transfer reaction time-of-flight mass spectrometry for the sensitive and rapid real-time detection of solid high explosives

    NASA Astrophysics Data System (ADS)

    Mayhew, C. A.; Sulzer, P.; Petersson, F.; Haidacher, S.; Jordan, A.; Märk, L.; Watts, P.; Märk, T. D.

    2010-01-01

    Using recent developments in proton transfer reaction mass spectrometry, proof-of-principle investigations are reported here to illustrate the capabilities of detecting solid explosives in real-time. Two proton transfer reaction time-of-flight mass spectrometers (Ionicon Analytik) have been used in this study. One has an enhanced mass resolution (m/[Delta]m up to 8000) and high sensitivity (~50 cps/ppbv). The second has enhanced sensitivity (~250 cps/ppbv) whilst still retaining high resolution capabilities (m/[Delta]m up to 2000). Both of these instruments have been successfully used to identify solid explosives (RDX, TNT, HMX, PETN and Semtex A) by analyzing the headspace above small quantities of samples at room temperature and from trace quantities not visible to the naked eye placed on surfaces. For the trace measurements a simple pre-concentration and thermal desorption technique was devised and used. Importantly, we demonstrate the unambiguous identification of threat agents in complex chemical environments, where multiple threat agents and interferents may be present, thereby eliminating false positives. This is of considerable benefit to security and for the fight against terrorism.

  5. Real-time, high-resolution quantitative measurement of multiple soil gas emissions: selected ion flow tube mass spectrometry.

    PubMed

    Milligan, D B; Wilson, P F; Mautner, M N; Freeman, C G; McEwan, M J; Clough, T J; Sherlock, R R

    2002-01-01

    A new technique is presented for the rapid, high-resolution identification and quantification of multiple trace gases above soils, at concentrations down to 0.01 microL L(-1) (10 ppb). The technique, selected ion flow tube mass spectrometry (SIFT-MS), utilizes chemical ionization reagent ions that react with trace gases but not with the major air components (N2, O2, Ar, CO2). This allows the real-time measurement of multiple trace gases without the need for preconcentration, trapping, or chromatographic separation. The technique is demonstrated by monitoring the emission of ammonia and nitric oxide, and the search for volatile organics, above containerized soil samples treated with synthetic cattle urine. In this model system, NH3 emissions peaked after 24 h at 2000 nmol m(-2) s(-1) and integrated to approximately 7% of the urea N applied, while NO emissions peaked about 25 d after urine addition at approximately 140 nmol m(-2) s(-1) and integrated to approximately 10% of the applied urea N. The monitoring of organics along with NH3 and NO was demonstrated in soils treated with synthetic urine, pyridine, and dimethylamine. No emission of volatile nitrogen organics from the urine treatments was observed at levels >0.01% of the applied nitrogen. The SIFT method allows the simultaneous in situ measurement of multiple gas components with a high spatial resolution of < 10 cm and time resolution <20 s. These capabilities allow, for example, identification of emission hotspots, and measurement of localized and rapid variations above agricultural and contaminated soils, as well as integrated emissions over longer periods. PMID:11931442

  6. Real-Time PCR

    NASA Astrophysics Data System (ADS)

    Evrard, A.; Boulle, N.; Lutfalla, G. S.

    Over the past few years there has been a considerable development of DNA amplification by polymerase chain reaction (PCR), and real-time PCR has now superseded conventional PCR techniques in many areas, e.g., the quantification of nucleic acids and genotyping. This new approach is based on the detection and quantification of a fluorescent signal proportional to the amount of amplicons generated by PCR. Real-time detection is achieved by coupling a thermocycler with a fluorimeter. This chapter discusses the general principles of quantitative real-time PCR, the different steps involved in implementing the technique, and some examples of applications in medicine. The polymerase chain reaction (PCR) provides a way of obtaining a large number of copies of a double-stranded DNA fragment of known sequence. This DNA amplification technique, developed in 1985 by K. Mullis (Cetus Corporation), saw a spectacular development over the space of a few years, revolutionising the methods used up to then in molecular biology. Indeed, PCR has many applications, such as the detection of small amounts of DNA, cloning, and quantitative analysis (assaying), each of which will be discussed further below.

  7. In cleanroom, sub-ppb real-time monitoring of volatile organic compounds using proton-transfer reaction/time of flight/mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hayeck, Nathalie; Maillot, Philippe; Vitrani, Thomas; Pic, Nicolas; Wortham, Henri; Gligorovski, Sasho; Temime-Roussel, Brice; Mizzi, Aurélie; Poulet, Irène

    2014-04-01

    Refractory compounds such as Trimethylsilanol (TMS) and other organic compounds such as propylene glycol methyl ether acetate (PGMEA) used in the photolithography area of microelectronic cleanrooms have irreversible dramatic impact on optical lenses used on photolithography tools. There is a need for real-time, continuous measurements of organic contaminants in representative cleanroom environment especially in lithography zone. Such information is essential to properly evaluate the impact of organic contamination on optical lenses. In this study, a Proton-Transfer Reaction-Time-of-Flight Mass spectrometer (PTR-TOF-MS) was applied for real-time and continuous monitoring of fugitive organic contamination induced by the fabrication process. Three types of measurements were carried out using the PTR-TOF-MS in order to detect the volatile organic compounds (VOCs) next to the tools in the photolithography area and at the upstream and downstream of chemical filters used to purge the air in the cleanroom environment. A validation and verification of the results obtained with PTR-TOF-MS was performed by comparing these results with those obtained with an off-line technique that is Automated Thermal Desorber - Gas Chromatography - Mass Spectrometry (ATD-GC-MS) used as a reference analytical method. The emerged results from the PTR-TOF-MS analysis exhibited the temporal variation of the VOCs levels in the cleanroom environment during the fabrication process. While comparing the results emerging from the two techniques, a good agreement was found between the results obtained with PTR-TOF-MS and those obtained with ATD-GC-MS for the PGMEA, toluene and xylene. Regarding TMS, a significant difference was observed ascribed to the technical performance of both instruments.

  8. Real time Faraday spectrometer

    DOEpatents

    Smith, Jr., Tommy E.; Struve, Kenneth W.; Colella, Nicholas J.

    1991-01-01

    This invention uses a dipole magnet to bend the path of a charged particle beam. As the deflected particles exit the magnet, they are spatially dispersed in the bend-plane of the magnet according to their respective momenta and pass to a plurality of chambers having Faraday probes positioned therein. Both the current and energy distribution of the particles is then determined by the non-intersecting Faraday probes located along the chambers. The Faraday probes are magnetically isolated from each other by thin metal walls of the chambers, effectively providing real time current-versus-energy particle measurements.

  9. [Real time 3D echocardiography].

    PubMed

    Bauer, F; Shiota, T; Thomas, J D

    2001-07-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients. PMID:11494630

  10. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  11. Real time automated inspection

    DOEpatents

    Fant, Karl M.; Fundakowski, Richard A.; Levitt, Tod S.; Overland, John E.; Suresh, Bindinganavle R.; Ulrich, Franz W.

    1985-01-01

    A method and apparatus relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges are segmented out by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections.

  12. Real time automated inspection

    DOEpatents

    Fant, K.M.; Fundakowski, R.A.; Levitt, T.S.; Overland, J.E.; Suresh, B.R.; Ulrich, F.W.

    1985-05-21

    A method and apparatus are described relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections. 43 figs.

  13. Soft Ionization of Saturated Hydrocarbons, Alcohols and Nonpolar Compounds by Negative-Ion Direct Analysis in Real-Time Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Cody, Robert B.; Dane, A. John

    2013-03-01

    Large polarizable n-alkanes (approximately C18 and larger), alcohols, and other nonpolar compounds can be detected as negative ions when sample solutions are injected directly into the sampling orifice of the atmospheric pressure interface of the time-of-flight mass spectrometer with the direct analysis in real time (DART) ion source operating in negative-ion mode. The mass spectra are dominated by peaks corresponding to [M + O2]‾•. No fragmentation is observed, making this a very soft ionization technique for samples that are otherwise difficult to analyze by DART. Detection limits for cholesterol were determined to be in the low nanogram range.

  14. Real-Time 3D Fluoroscopy-Guided Large Core Needle Biopsy of Renal Masses: A Critical Early Evaluation According to the IDEAL Recommendations

    SciTech Connect

    Kroeze, Stephanie G. C.; Huisman, Merel; Verkooijen, Helena M.; Diest, Paul J. van; Ruud Bosch, J. L. H.; Bosch, Maurice A. A. J. van den

    2012-06-15

    Introduction: Three-dimensional (3D) real-time fluoroscopy cone beam CT is a promising new technique for image-guided biopsy of solid tumors. We evaluated the technical feasibility, diagnostic accuracy, and complications of this technique for guidance of large-core needle biopsy in patients with suspicious renal masses. Methods: Thirteen patients with 13 suspicious renal masses underwent large-core needle biopsy under 3D real-time fluoroscopy cone beam CT guidance. Imaging acquisition and subsequent 3D reconstruction was done by a mobile flat-panel detector (FD) C-arm system to plan the needle path. Large-core needle biopsies were taken by the interventional radiologist. Technical success, accuracy, and safety were evaluated according to the Innovation, Development, Exploration, Assessment, Long-term study (IDEAL) recommendations. Results: Median tumor size was 2.6 (range, 1.0-14.0) cm. In ten (77%) patients, the histological diagnosis corresponded to the imaging findings: five were malignancies, five benign lesions. Technical feasibility was 77% (10/13); in three patients biopsy results were inconclusive. The lesion size of these three patients was <2.5 cm. One patient developed a minor complication. Median follow-up was 16.0 (range, 6.4-19.8) months. Conclusions: 3D real-time fluoroscopy cone beam CT-guided biopsy of renal masses is feasible and safe. However, these first results suggest that diagnostic accuracy may be limited in patients with renal masses <2.5 cm.

  15. Combined use of direct analysis in real-time/Orbitrap mass spectrometry and micro-Raman spectroscopy for the comprehensive characterization of real explosive samples.

    PubMed

    Bridoux, Maxime C; Schwarzenberg, Adrián; Schramm, Sébastien; Cole, Richard B

    2016-08-01

    Direct Analysis in Real Time (DART™) high-resolution Orbitrap™ mass spectrometry (HRMS) in combination with Raman microscopy was used for the detailed molecular level characterization of explosives including not only the charge but also the complex matrix of binders, plasticizers, polymers, and other possible organic additives. A total of 15 defused military weapons including grenades, mines, rockets, submunitions, and mortars were examined. Swabs and wipes were used to collect trace (residual) amounts of explosives and their organic constituents from the defused military weapons and micrometer-size explosive particles were transferred using a vacuum suction-impact collection device (vacuum impactor) from wipe and swap samples to an impaction plate made of carbon. The particles deposited on the carbon plate were then characterized using micro-Raman spectroscopy followed by DART-HRMS providing fingerprint signatures of orthogonal nature. The optical microscope of the micro-Raman spectrometer was first used to localize and characterize the explosive charge on the impaction plate which was then targeted for identification by DART-HRMS analysis in both the negative and positive modes. Raman spectra of the explosives TNT, RDX and PETN were acquired from micrometer size particles and characterized by the presence of their characteristic Raman bands obtained directly at the surface of the impaction plate nondestructively without further sample preparation. Negative mode DART-HRMS confirmed the types of charges contained in the weapons (mainly TNT, RDX, HMX, and PETN; either as individual components or as mixtures). These energetic compounds were mainly detected as deprotonated species [M-H](-), or as adduct [M + (35)Cl](-), [M + (37)Cl](-), or [M + NO3](-) anions. Chloride adducts were promoted in the heated DART reagent gas by adding chloroform vapors to the helium stream using an "in-house" delivery method. When the polarity was switched to positive mode

  16. Real time polarimetric dehazing.

    PubMed

    Mudge, Jason; Virgen, Miguel

    2013-03-20

    Remote sensing is a rich topic due to its utility in gathering detailed accurate information from locations that are not economically feasible traveling destinations or are physically inaccessible. However, poor visibility over long path lengths is problematic for a variety of reasons. Haze induced by light scatter is one cause for poor visibility and is the focus of this article. Image haze comes about as a result of light scattering off particles and into the imaging path causing a haziness to appear on the image. Image processing using polarimetric information of light scatter can be used to mitigate image haze. An imaging polarimeter which provides the Stokes values in real time combined with a "dehazing" algorithm can automate image haze removal for instant applications. Example uses are to improve visual display providing on-the-spot detection or imbedding in an active control loop to improve viewing and tracking while on a moving platform. In addition, removing haze in this manner allows the trade space for a system operational waveband to be opened up to bands which are object matched and not necessarily restricted by scatter effects. PMID:23518739

  17. Barrow real-time sea ice mass balance data: ingestion, processing, dissemination and archival of multi-sensor data

    NASA Astrophysics Data System (ADS)

    Grimes, J.; Mahoney, A. R.; Heinrichs, T. A.; Eicken, H.

    2012-12-01

    Sensor data can be highly variable in nature and also varied depending on the physical quantity being observed, sensor hardware and sampling parameters. The sea ice mass balance site (MBS) operated in Barrow by the University of Alaska Fairbanks (http://seaice.alaska.edu/gi/observatories/barrow_sealevel) is a multisensor platform consisting of a thermistor string, air and water temperature sensors, acoustic altimeters above and below the ice and a humidity sensor. Each sensor has a unique specification and configuration. The data from multiple sensors are combined to generate sea ice data products. For example, ice thickness is calculated from the positions of the upper and lower ice surfaces, which are determined using data from downward-looking and upward-looking acoustic altimeters above and below the ice, respectively. As a data clearinghouse, the Geographic Information Network of Alaska (GINA) processes real time data from many sources, including the Barrow MBS. Doing so requires a system that is easy to use, yet also offers the flexibility to handle data from multisensor observing platforms. In the case of the Barrow MBS, the metadata system needs to accommodate the addition of new and retirement of old sensors from year to year as well as instrument configuration changes caused by, for example, spring melt or inquisitive polar bears. We also require ease of use for both administrators and end users. Here we present the data and processing steps of using sensor data system powered by the NoSQL storage engine, MongoDB. The system has been developed to ingest, process, disseminate and archive data from the Barrow MBS. Storing sensor data in a generalized format, from many different sources, is a challenging task, especially for traditional SQL databases with a set schema. MongoDB is a NoSQL (not only SQL) database that does not require a fixed schema. There are several advantages using this model over the traditional relational database management system (RDBMS

  18. Real-Time Benchmark Suite

    Energy Science and Technology Software Center (ESTSC)

    1992-01-17

    This software provides a portable benchmark suite for real time kernels. It tests the performance of many of the system calls, as well as the interrupt response time and task response time to interrupts. These numbers provide a baseline for comparing various real-time kernels and hardware platforms.

  19. Analysis of carbohydrates in Fusarium verticillioides using size-exclusion HPLC – DRI and direct analysis in real time ionization – time-of-flight – mass spectrometry (DART-MS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Direct analysis in real time ionization – time-of-flight – mass spectrometry (DART-MS) and size-exclusion HPLC – DRI are used, respectively, to qualitatively and quantitatively determine the carbohydrates extracted from the corn rot fungus Fusarium verticillioides. In situ permethylation in the DART...

  20. Autonomous in situ analysis and real-time chemical detection using a backpack miniature mass spectrometer: concept, instrumentation development, and performance.

    PubMed

    Hendricks, Paul I; Dalgleish, Jon K; Shelley, Jacob T; Kirleis, Matthew A; McNicholas, Matthew T; Li, Linfan; Chen, Tsung-Chi; Chen, Chien-Hsun; Duncan, Jason S; Boudreau, Frank; Noll, Robert J; Denton, John P; Roach, Timothy A; Ouyang, Zheng; Cooks, R Graham

    2014-03-18

    A major design objective of portable mass spectrometers is the ability to perform in situ chemical analysis on target samples in their native states in the undisturbed environment. The miniature instrument described here is fully contained in a wearable backpack (10 kg) with a geometry-independent low-temperature plasma (LTP) ion source integrated into a hand-held head unit (2 kg) to allow direct surface sampling and analysis. Detection of chemical warfare agent (CWA) simulants, illicit drugs, and explosives is demonstrated at nanogram levels directly from surfaces in near real time including those that have complex geometries, those that are heat-sensitive, and those bearing complex sample matrices. The instrument consumes an average of 65 W of power and can be operated autonomously under battery power for ca. 1.5 h, including the initial pump-down of the manifold. The maximum mass-to-charge ratio is 925 Th with mass resolution of 1-2 amu full width at half-maximun (fwhm) across the mass range. Multiple stages of tandem analysis can be performed to identify individual compounds in complex mixtures. Both positive and negative ion modes are available. A graphical user interface (GUI) is available for novice users to facilitate data acquisition and real-time spectral matching. PMID:24521448

  1. A field-portable membrane introduction mass spectrometer for real-time quantitation and spatial mapping of atmospheric and aqueous contaminants.

    PubMed

    Bell, Ryan J; Davey, Nicholas G; Martinsen, Morten; Collin-Hansen, Christian; Krogh, Erik T; Gill, Christopher G

    2015-02-01

    Environmental concentrations of volatile and semivolatile organic compounds (VOC/SVOCs) can vary dramatically in time and space under the influence of environmental conditions. In an industrial setting, multiple point and diffuse sources can contribute to fugitive emissions. Assessments and monitoring programs using periodic grab sampling provide limited information, often with delay times of days or weeks. We report the development and use of a novel, portable membrane introduction mass spectrometry (MIMS) system capable of resolving and quantifying VOC and SVOCs with high spatial and temporal resolution, in the field, in real-time. An electron impact ionization cylindrical ion trap mass spectrometer modified with a capillary hollow fiber polydimethylsiloxane membrane interface was used for continuous air and water sampling. Tandem mass spectrometry and selected ion monitoring scans performed in series allowed for the quantitation of target analytes, and full scan mode was used to survey for unexpected analytes. Predeployment and in-field external calibrations were combined with a continuously infused internal standard to enable real-time quantitation and monitor instrument performance. The system was operated in a moving vehicle with internet-linked data processing and storage. Software development to integrate MIMS and relevant meta-data for visualization and geospatial presentation in Google Earth is presented. Continuous quantitation enables the capture of transient events that may be missed or under-represented by traditional grab sampling strategies. Real-time geospatial maps of chemical concentration enable adaptive sampling and in-field decision support. Sample datasets presented in this work were collected in Northern Alberta in 2010-2012. PMID:25477082

  2. A Field-Portable Membrane Introduction Mass Spectrometer for Real-time Quantitation and Spatial Mapping of Atmospheric and Aqueous Contaminants

    NASA Astrophysics Data System (ADS)

    Bell, Ryan J.; Davey, Nicholas G.; Martinsen, Morten; Collin-Hansen, Christian; Krogh, Erik T.; Gill, Christopher G.

    2015-02-01

    Environmental concentrations of volatile and semivolatile organic compounds (VOC/SVOCs) can vary dramatically in time and space under the influence of environmental conditions. In an industrial setting, multiple point and diffuse sources can contribute to fugitive emissions. Assessments and monitoring programs using periodic grab sampling provide limited information, often with delay times of days or weeks. We report the development and use of a novel, portable membrane introduction mass spectrometry (MIMS) system capable of resolving and quantifying VOC and SVOCs with high spatial and temporal resolution, in the field, in real-time. An electron impact ionization cylindrical ion trap mass spectrometer modified with a capillary hollow fiber polydimethylsiloxane membrane interface was used for continuous air and water sampling. Tandem mass spectrometry and selected ion monitoring scans performed in series allowed for the quantitation of target analytes, and full scan mode was used to survey for unexpected analytes. Predeployment and in-field external calibrations were combined with a continuously infused internal standard to enable real-time quantitation and monitor instrument performance. The system was operated in a moving vehicle with internet-linked data processing and storage. Software development to integrate MIMS and relevant meta-data for visualization and geospatial presentation in Google Earth is presented. Continuous quantitation enables the capture of transient events that may be missed or under-represented by traditional grab sampling strategies. Real-time geospatial maps of chemical concentration enable adaptive sampling and in-field decision support. Sample datasets presented in this work were collected in Northern Alberta in 2010-2012.

  3. Evaluating a direct swabbing method for screening pesticides on fruit and vegetable surfaces using Direct Analysis in Real Time (DART) coupled to an Exactive benchtop orbitrap mass spectrometer.

    PubMed

    Crawford, Elizabeth; Musselman, Brian

    2012-07-01

    Rapid screening of pesticides present on the surfaces of fruits and vegetables has been facilitated by using a Direct Analysis in Real Time (DART(®)) open air surface desorption ionization source coupled to an Exactive(®) high-resolution accurate mass benchtop orbitrap mass spectrometer. The use of cotton and polyester cleaning swabs to collect and retain pesticides for subsequent open air desorption ionization is demonstrated by sampling the surface of various produce to which solutions of pesticides have been applied at levels 10 and 100 times below the tolerance levels established by the United States Environmental Protection Agency (US EPA). Samples analyzed include cherry tomatoes, oranges, peaches and carrots each chosen for their surface characteristics which include: smooth, pitted, fuzzy, and rough respectively. Results from the direct analysis of fungicides on store-bought oranges are also described. In all cases, the swabs were introduced directly into the heated ionizing gas of the DART source resulting in production of protonated pesticide molecules within seconds of sampling. Operation of the orbitrap mass spectrometer at 25,000 full-width half maximum resolution was sufficient to generate high-quality accurate mass data. Stable external mass calibration eliminated the need for addition of standards typically required for mass calibration, thus allowing multiple analyses to be completed without instrument recalibration. PMID:22362280

  4. Thin-layer chromatography/direct analysis in real time time-of-flight mass spectrometry and isotope dilution to analyze organophosphorus insecticides in fatty foods.

    PubMed

    Kiguchi, Osamu; Oka, Kazuko; Tamada, Masafumi; Kobayashi, Takashi; Onodera, Jun

    2014-11-28

    To assess food safety emergencies caused by highly hazardous chemical-tainted foods, simultaneous analysis of organophosphorus insecticides in fatty foods such as precooked foods was conducted using thin-layer chromatography/direct analysis in real time time-of-flight mass spectrometry (TLC/DART-TOFMS) and isotope dilution technique. Polar (methamidophos and acephate) and nonpolar organophosphorus insecticides (fenitrothion, diazinon, and EPN) were studied. Experiments to ascertain chromatographic patterns using TLC/DART-TOFMS reveal that it was more useful than GC/MS or GC/MS/MS for the simultaneous analyses of polar and nonpolar pesticides, while obviating the addition of a protective agent for tailing effects of polar pesticides. Lower helium gas temperature (260°C) for DART-TOFMS was suitable for the simultaneous analysis of target pesticides. Linearities were achieved respectively at a lower standard concentration range (0.05-5 μg) for diazinon and EPN and at a higher standard concentration range (2.5-25 μg) for methamidophos, acephate, and fenitrothion. Their respective coefficients of determination were ≥ 0.9989 and ≥ 0.9959. A few higher repeatabilities (RSDs) for diazinon and EPN were found (>20%), although isotope dilution technique was used. Application to the HPTLC plate without an automatic TLC sampler might be inferred as a cause of their higher RSDs. Detection limits were estimated in the higher picogram range for diazinon and EPN, and in the lower nanogram range for methamidophos, acephate, and fenitrothion. Aside from methamidophos, recovery results (n=3) obtained using a highly insecticide-tainted fatty food (dumpling) and raw food (grapefruit) samples (10mg/kg) using TLC/DART-TOFMS with both complex and simpler cleanups were not as susceptible to matrix effects (95-121%; RSD, 1.3-14%) as those using GC/MS/MS (102-117%; RSD, 0.4-8.5%), although dumpling samples using GC/MS were remarkably susceptible to matrix effects. The coupled method of

  5. Quantitative real-time monitoring of multi-elements in airborne particulates by direct introduction into an inductively coupled plasma mass spectrometer

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshinari; Sato, Hikaru; Hiyoshi, Katsuhiro; Furuta, Naoki

    2012-10-01

    A new calibration system for real-time determination of trace elements in airborne particulates was developed. Airborne particulates were directly introduced into an inductively coupled plasma mass spectrometer, and the concentrations of 15 trace elements were determined by means of an external calibration method. External standard solutions were nebulized by an ultrasonic nebulizer (USN) coupled with a desolvation system, and the resulting aerosol was introduced into the plasma. The efficiency of sample introduction via the USN was calculated by two methods: (1) the introduction of a Cr standard solution via the USN was compared with introduction of a Cr(CO)6 standard gas via a standard gas generator and (2) the aerosol generated by the USN was trapped on filters and then analyzed. The Cr introduction efficiencies obtained by the two methods were the same, and the introduction efficiencies of the other elements were equal to the introduction efficiency of Cr. Our results indicated that our calibration method for introduction efficiency worked well for the 15 elements (Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Mo, Sn, Sb, Ba, Tl and Pb). The real-time data and the filter-collection data agreed well for elements with low-melting oxides (V, Co, As, Mo, Sb, Tl, and Pb). In contrast, the real-time data were smaller than the filter-collection data for elements with high-melting oxides (Ti, Cr, Mn, Ni, Cu, Zn, Sn, and Ba). This result implies that the oxides of these 8 elements were not completely fused, vaporized, atomized, and ionized in the initial radiation zone of the inductively coupled plasma. However, quantitative real-time monitoring can be realized after correction for the element recoveries which can be calculated from the ratio of real-time data/filter-collection data.

  6. Detection of polydimethylsiloxanes transferred from silicone-coated parchment paper to baked goods using direct analysis in real time mass spectrometry.

    PubMed

    Jakob, Andreas; Crawford, Elizabeth A; Gross, Jürgen H

    2016-04-01

    The non-stick properties of parchment papers are achieved by polydimethylsiloxane (PDMS) coatings. During baking, PDMS can thus be extracted from the silicone-coated parchment into the baked goods. Positive-ion direct analysis in real time (DART) mass spectrometry (MS) is highly efficient for the analysis of PDMS. A DART-SVP source was coupled to a quadrupole-time-of-flight mass spectrometer to detect PDMS on the contact surface of baked goods after use of silicone-coated parchment papers. DART spectra from the bottom surface of baked cookies and pizzas exhibited signals because of PDMS ions of the general formula [(C2H6SiO)n  + NH4 ](+) in the m/z 800-1900 range. PMID:27041660

  7. Intact Endogenous Metabolite Analysis of Mice Liver by Probe Electrospray Ionization/Triple Quadrupole Tandem Mass Spectrometry and Its Preliminary Application to in Vivo Real-Time Analysis.

    PubMed

    Zaitsu, Kei; Hayashi, Yumi; Murata, Tasuku; Ohara, Tomomi; Nakagiri, Kenta; Kusano, Maiko; Nakajima, Hiroki; Nakajima, Tamie; Ishikawa, Tetsuya; Tsuchihashi, Hitoshi; Ishii, Akira

    2016-04-01

    Probe electrospray ionization (PESI) is a recently developed ionization technique that enables the direct detection of endogenous compounds like metabolites without sample preparation. In this study, we have demonstrated the first combination use of PESI with triple quadrupole tandem mass spectrometry (MS/MS), which was then applied to intact endogenous metabolite analysis of mice liver, achieving detection of 26 metabolites including amino acids, organic acids, and sugars. To investigate its practicality, metabolic profiles of control and CCl4-induced acute hepatic injury mouse model were measured by the developed method. Results showed clear separation of the two groups in score plots of principal component analysis and identified taurine as the primary contributor to group separation. The results were further validated by the established gas chromatography/MS/MS method, demonstrating the present method's usefulness. In addition, we preliminarily applied the method to real-time analysis of an intact liver of a living mouse. We successfully achieved monitoring of the real-time changes of two tricarboxylic acid cycle intermediates, α-ketoglutaric acid and fumaric acid, in the liver immediately after pyruvic acid injection via a cannulated tube to the portal vein. The present method achieved an intact analysis of metabolites in liver without sample preparation, and it also demonstrates future possibility to establish in vivo real-time metabolome analysis of living animals by PESI/MS/MS. PMID:26958983

  8. Real Time Baseball Database

    NASA Astrophysics Data System (ADS)

    Fukue, Yasuhiro

    The author describes the system outline, features and operations of "Nikkan Sports Realtime Basaball Database" which was developed and operated by Nikkan Sports Shimbun, K. K. The system enables to input numerical data of professional baseball games as they proceed simultaneously, and execute data updating at realtime, just-in-time. Other than serving as supporting tool for prepareing newspapers it is also available for broadcasting media, general users through NTT dial Q2 and others.

  9. Rapid fingerprinting of sterols and related compounds in vegetable and animal oils and phytosterol enriched- margarines by transmission mode direct analysis in real time mass spectrometry.

    PubMed

    Alberici, Rosana M; Fernandes, Gabriel D; Porcari, Andréia M; Eberlin, Marcos N; Barrera-Arellano, Daniel; Fernández, Facundo M

    2016-11-15

    Plant-derived sterols, often referred to as phytosterols, are important constituents of plant membranes where they assist in maintaining phospholipid bilayer stability. Consumption of phytosterols has been suggested to positively affect human health by reducing cholesterol levels in blood via inhibition of its absorption in the small intestine, thus protecting against heart attack and stroke. Sterols are challenging analytes for mass spectrometry, since their low polarity makes them difficult to ionize by both electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI), typically requiring derivatization steps to overcome their low ionization efficiencies. We present a fast and reliable method to characterize the composition of phytosterols in vegetable oils and enriched margarines. The method requires no derivatization steps or sample extraction procedures thanks to the use of transmission mode direct analysis in real time mass spectrometry (TM-DART-MS). PMID:27283681

  10. Real-time flutter identification

    NASA Technical Reports Server (NTRS)

    Roy, R.; Walker, R.

    1985-01-01

    The techniques and a FORTRAN 77 MOdal Parameter IDentification (MOPID) computer program developed for identification of the frequencies and damping ratios of multiple flutter modes in real time are documented. Physically meaningful model parameterization was combined with state of the art recursive identification techniques and applied to the problem of real time flutter mode monitoring. The performance of the algorithm in terms of convergence speed and parameter estimation error is demonstrated for several simulated data cases, and the results of actual flight data analysis from two different vehicles are presented. It is indicated that the algorithm is capable of real time monitoring of aircraft flutter characteristics with a high degree of reliability.

  11. Real-time vision systems

    SciTech Connect

    Johnson, R.; Hernandez, J.E.; Lu, Shin-yee

    1994-11-15

    Many industrial and defence applications require an ability to make instantaneous decisions based on sensor input of a time varying process. Such systems are referred to as `real-time systems` because they process and act on data as it occurs in time. When a vision sensor is used in a real-time system, the processing demands can be quite substantial, with typical data rates of 10-20 million samples per second. A real-time Machine Vision Laboratory (MVL) was established in FY94 to extend our years of experience in developing computer vision algorithms to include the development and implementation of real-time vision systems. The laboratory is equipped with a variety of hardware components, including Datacube image acquisition and processing boards, a Sun workstation, and several different types of CCD cameras, including monochrome and color area cameras and analog and digital line-scan cameras. The equipment is reconfigurable for prototyping different applications. This facility has been used to support several programs at LLNL, including O Division`s Peacemaker and Deadeye Projects as well as the CRADA with the U.S. Textile Industry, CAFE (Computer Aided Fabric Inspection). To date, we have successfully demonstrated several real-time applications: bullet tracking, stereo tracking and ranging, and web inspection. This work has been documented in the ongoing development of a real-time software library.

  12. Real-time software receiver

    NASA Technical Reports Server (NTRS)

    Ledvina, Brent M. (Inventor); Psiaki, Mark L. (Inventor); Powell, Steven P. (Inventor); Kintner, Jr., Paul M. (Inventor)

    2007-01-01

    A real-time software receiver that executes on a general purpose processor. The software receiver includes data acquisition and correlator modules that perform, in place of hardware correlation, baseband mixing and PRN code correlation using bit-wise parallelism.

  13. Real-time refinery optimization

    SciTech Connect

    Kennedy, J.P.

    1989-05-01

    This article discusses refinery operation with specific consideration of the topics of: gasoline; control projects; catalytic reforming control; hydrocracker control packages; blending optimization; real-time data acquisition; and other plant automation packages.

  14. Real-time software receiver

    NASA Technical Reports Server (NTRS)

    Ledvina, Brent M. (Inventor); Psiaki, Mark L. (Inventor); Powell, Steven P. (Inventor); Kintner, Jr., Paul M. (Inventor)

    2006-01-01

    A real-time software receiver that executes on a general purpose processor. The software receiver includes data acquisition and correlator modules that perform, in place of hardware correlation, baseband mixing and PRN code correlation using bit-wise parallelism.

  15. Real Time Data System (RTDS)

    NASA Technical Reports Server (NTRS)

    Muratore, John F.

    1991-01-01

    Lessons learned from operational real time expert systems are examined. The basic system architecture is discussed. An expert system is any software that performs tasks to a standard that would normally require a human expert. An expert system implies knowledge contained in data rather than code. And an expert system implies the use of heuristics as well as algorithms. The 15 top lessons learned by the operation of a real time data system are presented.

  16. Real-Time Analysis of Individual Airborne Microparticles Using Laser Ablation Mass Spectroscopy and Genetically Trained Neural Networks

    SciTech Connect

    Parker, E.P.; Rosenthal, S.E.; Trahan, M.W.; Wagner, J.S.

    1999-01-22

    We are developing a method for analysis of airborne microparticles based on laser ablation of individual molecules in an ion trap mass spectrometer. Airborne particles enter the spectrometer through a differentially-pumped inlet, are detected by light scattered from two CW laser beams, and sampled by a pulsed excimer laser as they pass through the center of the ion trap electrodes. After the laser pulse, the stored ions are separated by conventional ion trap methods. The mass spectra are then analyzed using genetically-trained neural networks (NNs). A number of mass spectra are averaged to obtain training cases which contain a recognizable spectral signature. Averaged spectra for a bacteria and a non-bacteria are shown to the NNs, the response evaluated, and the weights of the connections between neurodes adjusted by a Genetic Algorithm (GA) such that the output from the NN ranges from 0 for non-bacteria to 1 for bacteria. This process is iterated until the population of the GA converges or satisfies predetermined stopping criteria. Using this type of bipolar training we have obtained generalizing NNs able to distinguish five new bacteria from five new non-bacteria, none of which were used in training the NN.

  17. Direct analysis in real time - high resolution mass spectrometry (DART-HRMS): a high throughput strategy for identification and quantification of anabolic steroid esters.

    PubMed

    Doué, Mickael; Dervilly-Pinel, Gaud; Pouponneau, Karinne; Monteau, Fabrice; Le Bizec, Bruno

    2015-07-01

    High throughput screening is essential for doping, forensic, and food safety laboratories. While hyphenated chromatography-mass spectrometry (MS) remains the approach of choice, recent ambient MS techniques, such as direct analysis in real time (DART), offer more rapid and more versatile strategies and thus gain in popularity. In this study, the potential of DART hyphenated with Orbitrap-MS for fast identification and quantification of 21 anabolic steroid esters has been evaluated. Direct analysis in high resolution scan mode allowed steroid esters screening by accurate mass measurement (Resolution = 60 000 and mass error < 3 ppm). Steroid esters identification was further supported by collision-induced dissociation (CID) experiments through the generation of two additional ions. Moreover, the use of labelled internal standards allowed quantitative data to be recovered based on isotopic dilution approach. Linearity (R(2)  > 0.99), dynamic range (from 1 to 1000 ng mL(-1) ), bias (<10%), sensitivity (1 ng mL(-1) ), repeatability and reproducibility (RSD < 20%) were evaluated as similar to those obtained with hyphenated chromatography-mass spectrometry techniques. This innovative high throughput approach was successfully applied for the characterization of oily commercial preparations, and thus fits the needs of the competent authorities in the fight against forbidden or counterfeited substances. PMID:25262809

  18. The classification of inkjet inks using AccuTOF™ DART™ (Direct Analysis in Real Time) mass spectrometry--a preliminary study.

    PubMed

    Houlgrave, Stephanie; LaPorte, Gerald M; Stephens, Joseph C; Wilson, Justin L

    2013-05-01

    A novel approach for the analysis of inkjet inks is being reported. A time-of-flight mass spectrometer, coupled with a Direct Analysis in Real Time (DART™) ion source (AccuTOF™ DART™), was used to determine if inkjet inks from various manufacturers and models of printers could be reliably differentiated, characterized, and identified. A total of 217 ink standards were analyzed. As inkjet printing often involves the use of multiple colors (e.g., cyan, magenta, yellow, and black) to form an image or text, two different approaches to creating a library of standards and sampling methods were evaluated for implementation in a standard operating procedure. This research will show that a microscopic examination of the region of interest is requisite to identify what colors were utilized during the printing process, prior to comparing with known standards. Finally, blind testing was administered with 10 unknown samples to assess the validity and accuracy of the methodology. PMID:23489054

  19. REFIR - The operational FutureVolc multi-parameter system providing a best estimate of mass eruption rate during ongoing eruptions in near real-time

    NASA Astrophysics Data System (ADS)

    Dürig, Tobias

    2016-04-01

    Volcanic ash injected into the atmosphere poses a serious threat for aviation. Forecasting the concentration of ash promptly requires detailed knowledge of eruption source parameters. However, monitoring an ongoing eruption and quantifying the mass flux in real-time is a considerable challenge. Due to the large uncertainties affecting present-day models, best estimates are often obtained by the application of integrated approaches. One example for this strategy is represented by the EU supersite project "FutureVolc" which aims to monitor eruptions of volcanoes in Iceland. A quasi-autonomous multi-parameter system, denoted "REFIR", has been developed. REFIR makes use of streaming data provided by a multitude of sensors, e.g. by C- and X-band radars, web-cam based plume height tracking systems, imaging ultra-violet and infrared cameras and electric field sensors. These observations are used with plume models that also consider the current local wind and other atmospheric conditions, and a best estimate of source parameters, including the mass eruption rate, is provided in near real-time (within a time interval of 5 minutes) as soon as an eruption has started. Since neither the time nor the location of the next Icelandic eruption is known the system has been developed with a guiding principle of maximum flexibility, and it can effortlessly be implemented elsewhere needing minimum adoption to local conditions. Moreover, it is designed to be easily upgraded, which allows future extension of the existing monitoring network, learning from new events, and incorporating new technologies and model improvements. Data-flow, features and integrated models within REFIR will be presented and strategies for implementing potential future research developments on ash plume dynamics will be discussed.

  20. An architecture for real time data acquisition and online signal processing for high throughput tandem mass spectrometry

    SciTech Connect

    Shah, Anuj R.; Jaitly, Navdeep; Zuljevic, Nino; Monroe, Matthew E.; Liyu, Andrei V.; Polpitiya, Ashoka D.; Adkins, Joshua N.; Belov, Mikhail E.; Anderson, Gordon A.; Smith, Richard D.; Gorton, Ian

    2010-12-09

    Independent, greedy collection of data events using simple heuristics results in massive over-sampling of the prominent data features in large-scale studies over what should be achievable through “intelligent,” online acquisition of such data. As a result, data generated are more aptly described as a collection of a large number of small experiments rather than a true large-scale experiment. Nevertheless, achieving “intelligent,” online control requires tight interplay between state-of-the-art, data-intensive computing infrastructure developments and analytical algorithms. In this paper, we propose a Software Architecture for Mass spectrometry-based Proteomics coupled with Liquid chromatography Experiments (SAMPLE) to develop an “intelligent” online control and analysis system to significantly enhance the information content from each sensor (in this case, a mass spectrometer). Using online analysis of data events as they are collected and decision theory to optimize the collection of events during an experiment, we aim to maximize the information content generated during an experiment by the use of pre-existing knowledge to optimize the dynamic collection of events.

  1. Design of a Portable, Battery-Powered Quadrupole Mass Spectrometer for Real-Time Sampling of Materials

    SciTech Connect

    T. R. Dillingham, T. L. Porter, D. M. Cornelison, R. J. Venedam

    2009-04-01

    We have designed and constructed a low cost, portable, battery-powered quadrupole mass spectrometer for use in the materials analysis of gaseous, liquid or solid field samples. The system may be configured for continuous sampling of ambient gas samples, or for the analysis of small solid, liquid or gas samples in sealed glass vials. The system is capable of measuring partial pressures down to the 10<-10> Torr range, and may be operated on battery power for several hours in a field deployment. Information is presented on the specific design parameters and on the testing of the instrument. Preliminary results are reported for solid dinitrotoluene (DNT) and for chlorinated hydrocarbons and other contaminants in water.

  2. Enzymatic Hydrolysis of Polyester Thin Films: Real-Time Analysis of Film Mass Changes and Dissipation Dynamics.

    PubMed

    Zumstein, Michael Thomas; Kohler, Hans-Peter E; McNeill, Kristopher; Sander, Michael

    2016-01-01

    Cleavage of ester bonds by extracellular microbial hydrolases is considered a key step during the breakdown of biodegradable polyester materials in natural and engineered systems. Here we present a novel analytical approach for simultaneous detection of changes in the masses and rigidities of polyester thin films during enzymatic hydrolysis using a Quartz Crystal Microbalance with Dissipation monitoring (QCM-D). In experiments with poly(butylene succinate) (PBS) and the lipase of Rhizopus oryzae (RoL), we detected complete hydrolysis of PBS thin films at pH 5 and 40 °C that proceeded through soft and water-rich film intermediates. Increasing the temperature from 20 to 40 °C resulted in a larger increase of the enzymatic hydrolysis rate of PBS than of nonpolymeric dibutyl adipate. This finding was ascribed to elevated accessibility of ester bonds to the catalytic site of RoL due to increasing polyester chain mobility. When the pH of the solution was changed from 5 to 7, initial hydrolysis rates were little affected, while a softer film intermediate that lead to incomplete film hydrolysis was formed. Hydrolysis dynamics of PBS, poly(butylene adipate), poly(lactic acid), and poly(ethylene terephthalate) in assays with RoL showed distinct differences that we attribute to differences in the polyester structure. PMID:26599203

  3. Real-time quadrupole mass spectrometer analysis of gas in boreholefluid samples acquired using the U-Tube sampling methodology

    SciTech Connect

    Freifeld, Barry M.; Trautz, Robert C.

    2006-01-11

    Sampling of fluids in deep boreholes is challenging becauseof the necessity to minimize external contamination and maintain sampleintegrity during recovery. The U-tube sampling methodology was developedto collect large volume, multiphase samples at in situ pressures. As apermanent or semi-permanent installation, the U-tube can be used forrapidly acquiring multiple samples or it may be installed for long-termmonitoring applications. The U-tube was first deployed in Liberty County,TX to monitor crosswell CO2 injection as part of the Frio CO2sequestration experiment. Analysis of gases (dissolved or separate phase)was performed in the field using a quadrupole mass spectrometer, whichserved as the basis for determining the arrival of the CO2 plume. Thepresence of oxygen and argon in elevated concentrations, along withreduced methane concentration, indicate sample alteration caused by theintroduction of surface fluids during borehole completion. Despiteproducing the well to eliminate non-native fluids, measurementsdemonstrate that contamination persists until the immiscible CO2injection swept formation fluid into the observationwellbore.

  4. (Un)targeted Scanning of Locks of Hair for Drugs of Abuse by Direct Analysis in Real Time-High-Resolution Mass Spectrometry.

    PubMed

    Duvivier, Wilco F; van Putten, Marc R; van Beek, Teris A; Nielen, Michel W F

    2016-02-16

    Forensic hair evidence can be used to obtain retrospective timelines of drug use by analysis of hair segments. However, this is a laborious and time-consuming process, and mass spectrometric (MS) imaging techniques, which show great potential for single-hair targeted analysis, are less useful due to differences in hair growth rate between individual hairs. As an alternative, a fast untargeted analysis method was developed that uses direct analysis in real time-high-resolution mass spectrometry (DART-HRMS) to longitudinally scan intact locks of hair without extensive sample preparation or segmentation. The hair scan method was validated for cocaine against an accredited liquid chromatography/tandem mass spectrometry (LC/MS/MS) method. The detection limit for cocaine in hair was found to comply with the cutoff value of 0.5 ng/mg recommended by the Society of Hair Testing; that is, the DART hair scan method is amenable to forensic cases. Under DART conditions, no significant thermal degradation of cocaine occurred. The standard DART spot size of 5.1 ± 1.1 mm could be improved to 3.3 ± 1.0 mm, corresponding to approximately 10 days of hair growth, by using a high spatial resolution exit cone. By use of data-dependent product ion scans, multiple drugs of abuse could be detected in a single drug user hair scan with confirmation of identity by both exact mass and MS/HRMS fragmentation patterns. Furthermore, full-scan high-resolution data were retrospectively interrogated versus a list of more than 100 compounds and revealed additional hits and temporal profiles in good correlation with reported drug use. PMID:26813807

  5. Towards monitoring real-time cellular response using an integrated microfluidics-MALDI/nESI-ion mobility-mass spectrometry platform

    PubMed Central

    Enders, Jeffrey R.; Marasco, Christina C.; Kole, Ayeeshik; Nguyen, Bao; Sundarapandian, Sevugarajan; Seale, Kevin T.; Wikswo, John P.; McLean, John A.

    2014-01-01

    The combination of microfluidic cell trapping devices with ion mobility-mass spectrometry offers the potential for elucidating in real time the dynamic responses of small populations of cells to paracrine signals, changes in metabolite levels, and delivery of drugs and toxins. Preliminary experiments examining peptides in methanol and recording the interactions of yeast and Jurkat cells with their superfusate have identified instrumental setup and control parameters and on-line desalting procedures. Numerous initial experiments demonstrate and validate this new instrumental platform. Future outlooks and potential applications are addressed, specifically how this instrumentation may be used for fully automated systems biology studies of the significantly interdependent, dynamic internal workings of cellular metabolic and signaling pathways. PMID:21073240

  6. Direct analysis in real time (DART) mass spectrometry of nucleotides and nucleosides: elucidation of a novel fragment [C5H5O]+ and its in-source adducts.

    PubMed

    Curtis, Matthew; Minier, Mikael A; Chitranshi, Priyanka; Sparkman, O David; Jones, Patrick R; Xue, Liang

    2010-08-01

    Direct analysis in real time (DART) mass spectrometry is a recently developed innovative technology, which has shown broad applications for fast and convenient analysis of complex samples. Due to the ease of sample preparation, we have recently initiated an investigation of the feasibility of detecting nucleotides and nucleosides using the DART-AccuTOF instrument, which we will refer to as the DART mass spectrometer. Our experimental results reveal that the ions representing the intact molecules of nucleotides are not detectable in either positive-ion or negative-ion mode. Instead, all four natural nucleotides fragment in the DART ion source, and a common fragment ion, [C(5)H(5)O](+) (1), is observed, which is probably formed via multiple-elimination reactions. Interestingly, 1 can form adducts with nucleobases in different molar ratios in the DART ion source. In contrast to nucleotides, the ions representing the intact molecules of nucleosides are detected in both positive-ion and negative-ion mode using DART mass spectrometry. Surprisingly, the fragmentation pattern of nucleosides is different from that of nucleotides in the DART ion source. In the cases of nucleosides (under positive-ion conditions), the production of 1 is not observed, indicating that the phosphate group plays an important role for the multiple eliminations observed in the spectra of nucleotides. The in-source reactions described in the present work show the complexity of the conditions in the DART ion source, and we hope that our results illustrate a better understanding about DART mass spectrometry. PMID:20451406

  7. Real Time Sonic Boom Display

    NASA Technical Reports Server (NTRS)

    Haering, Ed

    2014-01-01

    This presentation will provide general information about sonic boom mitigation technology to the public in order to supply information to potential partners and licensees. The technology is a combination of flight data, atmospheric data and terrain information implemented into a control room real time display for flight planning. This research is currently being performed and as such, any results and conclusions are ongoing.

  8. Real Time Data System (RTDS)

    NASA Technical Reports Server (NTRS)

    Heindel, Troy A.

    1991-01-01

    Information is given in viewgraph form on the Real Time Data System (RTDS). Topics covered include applications to the Space Station Freedom, the Space Shuttle flight controllers, the Mission Control Center workstations, and the Remote Manipulator Systems (RMS). Also covered are the technology gap, pacing factors, and lessons learned during research.

  9. Determination of organic UV filters in water by stir bar sorptive extraction and direct analysis in real-time mass spectrometry.

    PubMed

    Haunschmidt, Manuela; Klampfl, Christian W; Buchberger, Wolfgang; Hertsens, Robert

    2010-05-01

    A screening method for analyzing environmental waters contaminated with UV filters using direct analysis in real-time mass spectrometry (DART-MS) was developed. To demonstrate the suitability of DART-MS a test set of seven organic UV filters, namely benzophenone-3 (BP-3), ethylhexyl dimethyl p-aminobenzoate (OD-PABA), 4-t-butyl-4'-methoxydibenzoylmethane (BM-DBM), homomethyl salicylate (HMS), 2-(ethylhexyl) salicylate (EHS), octocrylene (OC), and 4-methylbenzylidene camphor (4-MBC), was defined. In the first step, standard solutions of the analytes prepared in methanol were investigated in order to determine optimum parameters for the DART-MS. Because of the very low concentrations of UV filters expected in environmental water samples, a pre-concentration step using stir bar sorptive extraction was performed. DART-MS allows the direct, simple and rapid semi-quantitative analysis of the analytes enriched on the surface of the polydimethylsiloxane-coated stir bars. The optimized method provided calibration curves with correlation coefficients R > 0.959, repeatability from 5% (for 4-MBC) to 30% (for BM-DBM) relative standard deviation and limits of detection lower than 40 ng L(-1) for all analytes. Finally, real lake water samples from locations with typical leisure activities were analyzed. Results obtained with the developed DART-MS method were cross-checked by confirmatory analysis using thermodesorption gas chromatography mass spectrometry (TD-GC-MS). Thereby, it could be demonstrated that both analytical methods provide comparable concentrations for the UV filters in the lake water samples. PMID:20127322

  10. Direct peel monitoring of xenobiotics in fruit by direct analysis in real time coupled to a linear quadrupole ion trap-orbitrap mass spectrometer.

    PubMed

    Farré, Marinella; Picó, Yolanda; Barceló, Damià

    2013-03-01

    Study of xenobiotics present in fruit peel by exposing it (without any pretreatment) to direct analysis in real time coupled to a high-resolution orbitrap mass spectrometer (DART-HRMS) is reported for the first time. Variables such as DART gas heater temperature and pressure, source-to-MS distance, and sample velocity are investigated. The analysis of one sample by DART-MS lasts ca. 1 min, and the benefits of both high-resolution and tandem mass spectrometry to elucidate nontarget or unknown compounds are combined. Identification of postharvest fungicides, antioxidants, and sugars in fruit peel is performed in the positive ion mode. A possible elemental formula is suggested for marker components. The lowest imazalil concentration that could be detected by this system is 1 ng (equivalent to a concentration of ca. 300 μg kg(-1)), which is well below the maximum residue limit. For oranges and apples, direct peel exposition demonstrated good interday precision (within 20% for any concentration) and proper linearity (R(2) ≥ 0.99), with a dynamic range from 1 to 2500 ng for apple. A comparison of the results obtained using the direct peel screening DART-based method is made with those obtained by DART analysis of solvent extracts, as well as those obtained analyzing these extracts by ultrahigh-performance liquid chromatography orbitrap mass spectrometry (UHPLC-Orbitrap). The results are in good agreement. Thus, the proposed method proves to be quantitatively accurate with indisputable identification specificity. As an independent method, the approach of direct scanning of peel is of high interest and of potential future within food analysis to guarantee safety, quality, and authenticity. PMID:23356415

  11. Real Time Data System (RTDS)

    NASA Technical Reports Server (NTRS)

    Heindel, Troy A.

    1991-01-01

    Information is given in viewgraph form on the Real Time Data System (RTDS). The goals are to increase the quality of flight decision making, reduce and enhance flight controller training time, and serve as a near-operations technology test-bed. Information is given on the growth of RTDS; flight control disciplines; RTDS technology deployment in 1987-1989 and 1990-91; a functionality comparison of mainframes and workstations; and technology transfer activities.

  12. Prediction of acrylamide formation in biscuits based on fingerprint data generated by ambient ionization mass spectrometry employing direct analysis in real time (DART) ion source.

    PubMed

    Vaclavik, Lukas; Capuano, Edoardo; Gökmen, Vural; Hajslova, Jana

    2015-04-15

    The objective of this study is the evaluation of the potential of high-throughput direct analysis in real time-high resolution mass spectrometry (DART-HRMS) fingerprinting and multivariate regression analysis in prediction of the extent of acrylamide formation in biscuit samples prepared by various recipes and baking conditions. Information-rich mass spectral fingerprints were obtained by analysis of biscuit extracts for preparation of which aqueous methanol was used. The principal component analysis (PCA) of the acquired data revealed an apparent clustering of samples according to the extent of heat-treatment applied during the baking of the biscuits. The regression model for prediction of acrylamide in biscuits was obtained by partial least square regression (PLSR) analysis of the data matrix representing combined positive and negative ionization mode fingerprints. The model provided a least root mean square error of cross validation (RMSECV) equal to an acrylamide concentration of 5.4 μg kg(-1) and standard error of prediction (SEP) of 14.8 μg kg(-1). The results obtained indicate that this strategy can be used to accurately predict the amounts of acrylamide formed during baking of biscuits. Such rapid estimation of acrylamide concentration can become a useful tool in evaluation of the effectivity of processes aiming at mitigation of this food processing contaminant. However, the robustness this approach with respect to variability in the chemical composition of ingredients used for preparation of biscuits should be tested further. PMID:25466025

  13. Real-time flavor analysis: optimization of a proton-transfer-mass spectrometer and comparison with an atmospheric pressure chemical ionization mass spectrometer with an MS-nose interface.

    PubMed

    Avison, Shane J

    2013-03-01

    Two techniques are recognized for the real-time analysis of flavors during eating and drinking, atmospheric pressure chemical ionization mass spectrometry (APCI-MS), and proton transfer reaction mass spectrometry (PTR-MS). APCI-MS was developed for the analysis of flavors and fragrances, whereas PTR-MS was originally developed and optimized for the analysis of atmospheric pollutants. Here, the suitability of the two techniques for real-time flavor analysis is compared, using a varied range of common flavor compounds. An Ionicon PTR-MS was first optimized and then its performance critically compared with that of APCI-MS. Performance was gauged using the capacity for soft ionization, dynamic linear range, and limit of detection. Optimization of the PTR-MS increased the average sensitivity by a factor of more than 3. However, even with this increase in sensitivity, the Limit of Detection was typically 10 times higher and the Dynamic Linear Range ten times narrower than that of the APCI-MS. PMID:23394597

  14. Real-time monitoring of fragrance release from cotton towels by low thermal mass gas chromatography using a longitudinally modulating cryogenic system for headspace sampling and injection.

    PubMed

    Haefliger, Olivier P; Jeckelmann, Nicolas; Ouali, Lahoussine; León, Géraldine

    2010-01-15

    An innovative headspace sampling and injection system for gas chromatography was designed using a longitudinally modulating cryogenic system mounted around the sampling loop of a two-position loop injector. The setup was hyphenated to a fast low thermal mass gas chromatograph, allowing transient concentrations of semivolatile analytes to be monitored in real time with a time resolution of 4.5 min. The performance of the instrument, and in particular its cryotrapping efficiency, was characterized using a mixture of long-chain alkanes, methyl esters, ethyl esters, and alcohols of different volatilities. The device was found to be ideally suited to the analysis of semivolatile compounds with boiling points ranging between 190 and 320 degrees C, which are typical for a majority of perfumery raw materials. The new instrument was successfully used to monitor the release of eight odorant compounds from cotton towels to which fabric softener had been applied that alternatively contained the fragrance in free form or in microencapsulated form. The analytical results, unprecedented in their level of precision and time resolution for such an application, evidenced the major impact of microencapsulation technology on the kinetics of fragrance release during the drying of the towels and on the triggering of additional fragrance release by applying mechanical stress to the fabric to rupture the microcapsule walls. PMID:20025230

  15. Real-time ultrasound elastography

    NASA Astrophysics Data System (ADS)

    Bae, Unmin; Kim, Yongmin

    2007-03-01

    Ultrasound elastography can provide tissue stiffness information that is complementary to the anatomy and blood flow information offered by conventional ultrasound machines, but it is computationally challenging due to many time-consuming modules and a large amount of data. To facilitate real-time implementations of ultrasound elastography, we have developed new methods that can significantly reduce the computational burden of common processing components in ultrasound elastography, such as the crosscorrelation analysis and spatial filtering applied to displacement and strain estimates. Using the new correlation-based search algorithm, the computational requirement of correlation-based search does not increase with the correlation window size. For typical parameters used in ultrasound elastography, the computation in correlation-based search can be reduced by a factor of more than 30. Median filtering is often performed to suppress the spike-like noise that results from correlation-based search. For fast median filtering, we have developed a method that efficiently finds a new median value utilizing the sort result of the previous pixel. With careful mapping of the new algorithms on digital signal processors, our work has led to development of a clinical ultrasound machine supporting real-time elastography. Our methods can help real-time implementations of various applications including ultrasound elastography, which could lead to increased use of ultrasound elastography in the clinic.

  16. Real-Time Identification of Bacteria and Candida Species in Positive Blood Culture Broths by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry▿

    PubMed Central

    Ferroni, Agnès; Suarez, Stéphanie; Beretti, Jean-Luc; Dauphin, Brunhilde; Bille, Emmanuelle; Meyer, Julie; Bougnoux, Marie-Elisabeth; Alanio, Alexandre; Berche, Patrick; Nassif, Xavier

    2010-01-01

    Delays in the identification of microorganisms are a barrier to the establishment of adequate empirical antibiotic therapy of bacteremia. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) allows the identification of microorganisms directly from colonies within minutes. In this study, we have adapted and tested this technology for use with blood culture broths, thus allowing identification in less than 30 min once the blood culture is detected as positive. Our method is based on the selective recovery of bacteria by adding a detergent that solubilizes blood cells but not microbial membranes. Microorganisms are then extracted by centrifugation and analyzed by MALDI-TOF-MS. This strategy was first tested by inoculating various bacterial and fungal species into negative blood culture bottles. We then tested positive patient blood or fluid samples grown in blood culture bottles, and the results obtained by MALDI-TOF-MS were compared with those obtained using conventional strategies. Three hundred twelve spiked bottles and 434 positive cultures from patients were analyzed. Among monomicrobial fluids, MALDI-TOF-MS allowed a reliable identification at the species, group, and genus/family level in 91%, 5%, and 2% of cases, respectively, in 20 min. In only 2% of these samples, MALDI-TOF MS did not yield any result. When blood cultures were multibacterial, identification was improved by using specific databases based on the Gram staining results. MALDI-TOF-MS is currently the fastest technique to accurately identify microorganisms grown in positive blood culture broths. PMID:20237092

  17. Direct Analysis in Real Time by Mass Spectrometric Technique for Determining the Variation in Metabolite Profiles of Cinnamomum tamala Nees and Eberm Genotypes

    PubMed Central

    Singh, Vineeta; Gupta, Atul Kumar; Singh, S. P.; Kumar, Anil

    2012-01-01

    Cinnamomum tamala Nees & Eberm. is an important traditional medicinal plant, mentioned in various ancient literatures such as Ayurveda. Several of its medicinal properties have recently been proved. To characterize diversity in terms of metabolite profiles of Cinnamomum tamala Nees and Eberm genotypes, a newly emerging mass spectral ionization technique direct time in real time (DART) is very helpful. The DART ion source has been used to analyze an extremely wide range of phytochemicals present in leaves of Cinnamomum tamala. Ten genotypes were assessed for the presence of different phytochemicals. Phytochemical analysis showed the presence of mainly terpenes and phenols. These constituents vary in the different genotypes of Cinnamomum tamala. Principal component analysis has also been employed to analyze the DART data of these Cinnamomum genotypes. The result shows that the genotype of Cinnamomum tamala could be differentiated using DART MS data. The active components present in Cinnamomum tamala may be contributing significantly to high amount of antioxidant property of leaves and, in turn, conditional effects for diabetic patients. PMID:22701361

  18. Direct analysis in real time-mass spectrometry (DART-MS) for rapid qualitative screening of toxic glycols in glycerin-containing products.

    PubMed

    Self, Randy L

    2013-06-01

    In 2007, the United States Food and Drug Administration released guidance recommending testing of glycerin used in regulated consumer products, such as cough syrup preparations, toothpaste, and other pharmaceutical and food products, for the toxic compounds ethylene glycol and diethylene glycol. Regulatory laboratories routinely test glycerin, and products containing glycerin or related compounds for these toxic glycols, using an official gas chromatographic method, to ensure the safety of these products. The current work describes a companion technique to compliment this GC-FID method utilizing Orbitrap mass spectrometry with direct analysis in real time ionization to rapidly screen these samples qualitatively, with results in as little as five seconds, with no sample preparation required. This allows the more time and resource intensive method to be reserved for those rare cases when these compounds are detected, potentially greatly improving laboratory efficiency. The technique was evaluated for qualitative sensitivity and repeatability, and compared against the GC-FID method. The method appears to perform well against these metrics. PMID:23584076

  19. Real-time tritium imaging

    SciTech Connect

    Malinowski, M.E.

    1981-09-15

    A real-time image of a tritium-containing titanium film has been made by detecting the secondary electrons produced by tritium ..beta.. decay with a simple two-element electrostatic lens and microchannel plate image intensifier. The obtained image indicates that a resolution of better than 100 ..mu..m is currently obtainable and suggests that image magnification to enhance resolution should be possible.

  20. Abstraction Planning in Real Time

    NASA Technical Reports Server (NTRS)

    Washington, Richard

    1994-01-01

    When a planning agent works in a complex, real-world domain, it is unable to plan for and store all possible contingencies and problem situations ahead of time. The agent needs to be able to fall back on an ability to construct plans at run time under time constraints. This thesis presents a method for planning at run time that incrementally builds up plans at multiple levels of abstraction. The plans are continually updated by information from the world, allowing the planner to adjust its plan to a changing world during the planning process. All the information is represented over intervals of time, allowing the planner to reason about durations, deadlines, and delays within its plan. In addition to the method, the thesis presents a formal model of the planning process and uses the model to investigate planning strategies. The method has been implemented, and experiments have been run to validate the overall approach and the theoretical model.

  1. Real-time flutter analysis

    NASA Technical Reports Server (NTRS)

    Walker, R.; Gupta, N.

    1984-01-01

    The important algorithm issues necessary to achieve a real time flutter monitoring system; namely, the guidelines for choosing appropriate model forms, reduction of the parameter convergence transient, handling multiple modes, the effect of over parameterization, and estimate accuracy predictions, both online and for experiment design are addressed. An approach for efficiently computing continuous-time flutter parameter Cramer-Rao estimate error bounds were developed. This enables a convincing comparison of theoretical and simulation results, as well as offline studies in preparation for a flight test. Theoretical predictions, simulation and flight test results from the NASA Drones for Aerodynamic and Structural Test (DAST) Program are compared.

  2. Assessing direct analysis in real-time-mass spectrometry (DART-MS) for the rapid identification of additives in food packaging.

    PubMed

    Ackerman, L K; Noonan, G O; Begley, T H

    2009-12-01

    The ambient ionization technique direct analysis in real time (DART) was characterized and evaluated for the screening of food packaging for the presence of packaging additives using a benchtop mass spectrometer (MS). Approximate optimum conditions were determined for 13 common food-packaging additives, including plasticizers, anti-oxidants, colorants, grease-proofers, and ultraviolet light stabilizers. Method sensitivity and linearity were evaluated using solutions and characterized polymer samples. Additionally, the response of a model additive (di-ethyl-hexyl-phthalate) was examined across a range of sample positions, DART, and MS conditions (temperature, voltage and helium flow). Under optimal conditions, molecular ion (M+H+) was the major ion for most additives. Additive responses were highly sensitive to sample and DART source orientation, as well as to DART flow rates, temperatures, and MS inlet voltages, respectively. DART-MS response was neither consistently linear nor quantitative in this setting, and sensitivity varied by additive. All additives studied were rapidly identified in multiple food-packaging materials by DART-MS/MS, suggesting this technique can be used to screen food packaging rapidly. However, method sensitivity and quantitation requires further study and improvement. PMID:19753496

  3. Rapid screening for the adulterants of Berberis aristata using direct analysis in real-time mass spectrometry and principal component analysis for discrimination.

    PubMed

    Bajpai, Vikas; Singh, Awantika; Arya, Kamal Ram; Srivastava, Mukesh; Kumar, Brijesh

    2015-01-01

    Adulteration or substitution of commercial Berberis aristata and its herbal products with inferior-quality substituents is very common. Metabolic profiling of B. aristata, along with its common adulterants/contaminants/substituents such as B. asiatica, Mahonia borealis and Coscinium fenestratum, was rapidly carried out using direct analysis in real-time mass spectrometry (DART MS) to generate the chemical fingerprints for the differentiation of these species. Phytochemical analysis showed the presence of mainly alkaloids. The identified alkaloids were berberrubine, berberine, jatrorrhizine, ketoberberine, palmatine, dihydropalmatine or 7,8-dihydro-8-hydroxyberberine, berbamine and pakistanamine. Berberine, which was mainly reported from the root and stem bark of B. aristata, was also identified in the leaf along with chlorogenic acid. The DART MS data have been subjected to principal component analysis (PCA). The resulting score plots showed clustering and clear differentiation of the species and plant parts. It is thus apparent that the technique of DART MS followed by PCA is a quick and reliable method for the direct profiling of B. aristata and its adulterant plants and plant parts. The study reports the rapid analytical method to identify the possibility of illegal adulteration/contamination/substitution in potential plant materials and herbal extracts. PMID:25739096

  4. Real-time viable-cell mass monitoring in high-cell-density fed-batch glutathione fermentation by Saccharomyces cerevisiae T65 in industrial complex medium.

    PubMed

    Xiong, Zhi-Qiang; Guo, Mei-Jin; Guo, Yuan-Xin; Chu, Ju; Zhuang, Ying-Ping; Zhang, Si-Liang

    2008-04-01

    An on-line monitoring of viable-cell mass in high-cell-density fed-batch cultivations of Saccharomyces cerevisiae grown on an industrial complex medium was performed with an in situ capacitance probe fitted to a 50-l fermentor. Conventional off-line biomass determinations of several parameters, including dry cell weight (DCW), optical density at 600 nm wavelength (OD(600)), packed mycelial volume (PMV) and number of colony forming units (CFU), were performed throughout the bioprocess and then compared with on-line viable-cell concentrations measured using a capacitance probe. Capacitance versus viable biomass and all off-line biomass assay values were compared during glutathione fermentation in industrial complex culture media. As a result, the relationship between the number of colony forming units and capacitance with a correlation coefficient (R) of 0.995 was achieved. Simultaneously, compared with those determined by at-line indirect estimation methods including oxygen uptake rate (OUR) and carbon dioxide evolution rate (CER), the specific growth rates estimated by on-line capacitance measurement could be more reliable during glutathione fermentation. Therefore, it is concluded that a capacitance probe is a practical tool for real-time viable biomass monitoring in high-cell-density fed-batch cultivation in a complex medium. PMID:18499059

  5. Rapid detection by direct analysis in real time-mass spectrometry (DART-MS) of psychoactive plant drugs of abuse: the case of Mitragyna speciosa aka "Kratom".

    PubMed

    Lesiak, Ashton D; Cody, Robert B; Dane, A John; Musah, Rabi A

    2014-09-01

    Mitragyna speciosa, also known commonly as "Kratom" or "Ketum", is a plant with psychoactive properties that have been attributed to the presence of various indole alkaloids such as mitragynine and 7-hydroxymitragynine. M. speciosa use is gaining popularity internationally as a natural and legal alternative to narcotics. As a drug of abuse, its detection and identification are not straightforward, since M. speciosa plant material is not particularly distinctive. Here, we show that direct analysis in real time-mass spectrometry (DART-MS) can be used not only to rapidly identify M. speciosa plant material and distinguish it from other plants, but also to distinguish between M. speciosa plant varieties, based on differences between their chemical profiles. The method is rapid and the analysis expeditious. Plant material such as that found at a crime scene can be analyzed directly with no sample pre-preparation steps. Furthermore, we show that the basis set of principal components that permit characterization of the plant material can be used to positively identify M. speciosa. PMID:25086346

  6. Abstraction Planning in Real Time

    NASA Technical Reports Server (NTRS)

    Washington, R.

    1994-01-01

    When a planning agent works in a complex, real-world domain, it is unable to plan for and store all possible contingencies and problem situations ahead of time. This thesis presents a method for planning a run time that incrementally builds up plans at multiple levels of abstraction. The plans are continually updated by information from the world, allowing the planner to adjust its plan to a changing world during the planning process. All the information is represented over intervals of time, allowing the planner to reason about durations, deadlines, and delays within its plan. In addition to the method, the thesis presents a formal model of the planning process and uses the model to investigate planning strategies.

  7. Real-time streamflow conditions

    USGS Publications Warehouse

    Graczyk, David J.; Gebert, Warren A.

    1996-01-01

    Would you like to know streamflow conditions before you go fishing in Wisconsin or in more distant locations? Real-time streamflow data throughout Wisconsin and the United States are available on the Internet from the U.S. Geological Survey. You can see if the stream you are interested in fishing is high due to recent rain or low because of an extended dry spell. Flow conditions at more than 100 stream-gaging stations located throughout Wisconsin can be viewed by accessing the Wisconsin District Home Page at: http://wwwdwimdn.er.usgs.gov

  8. Real time infrared aerosol analyzer

    DOEpatents

    Johnson, Stanley A.; Reedy, Gerald T.; Kumar, Romesh

    1990-01-01

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  9. Real-time Measurement of Secondary Organic Aerosols From The Photo-oxidation of Toluene Using Atmospheric Pressure Chemical Ionisation Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Collin, F.; Arias, M. C.; Merritt, J. V.; Hastie, D. R.

    A system has been developed to study the chemical composition of secondary or- ganic aerosol (SOA) from the photo-oxidation of hydrocarbons using real-time atmo- spheric pressure chemical ionisation triple quadrupole mass spectrometry (APCI/MS- MS) analysis. To complement existing work with a smog chamber, a two-litre dynamic reaction cell has been built. This has a residence time of around two minutes (instead of several hours for smog chamber experiments), thus permitting on-line analysis. Sample gases are introduced into the air stream and irradiated by a 1000 W xenon arc lamp. Af- ter dilution, some of the mixture from the reaction cell is introduced in the MS ion source via a heated probe, with the particle number density being determined by a condensation nucleus counter on the remainder. The focus so far has been on SOA from the photo-oxidation of toluene by HO radicals in presence of NO, with the HO radicals being generated by the photolysis of Isopy- lNitrite (IPN). Prior to performing analyses on the SOA, target compounds (detected in the particulate phase in other studies) were selected and three ions designated to make a fingerprint for each compound. Finally, by using either a denuder, a granu- lar bed diffusion battery or a filter, both gas and particulate phases have been studied independently and compared. Preliminary results show that a number of target compounds, such as methylglyoxylic acid, benzaldehyde or cresol, have been detected in both gas and particulate phases. Most of these compounds appear to be present mainly in the gas phase. An exhaustive identification of organic compounds is a part of the on-going work.

  10. Real-time analysis keratometer

    NASA Technical Reports Server (NTRS)

    Adachi, Iwao P. (Inventor); Adachi, Yoshifumi (Inventor); Frazer, Robert E. (Inventor)

    1987-01-01

    A computer assisted keratometer in which a fiducial line pattern reticle illuminated by CW or pulsed laser light is projected on a corneal surface through lenses, a prismoidal beamsplitter quarterwave plate, and objective optics. The reticle surface is curved as a conjugate of an ideal corneal curvature. The fiducial image reflected from the cornea undergoes a polarization shift through the quarterwave plate and beamsplitter whereby the projected and reflected beams are separated and directed orthogonally. The reflected beam fiducial pattern forms a moire pattern with a replica of the first recticle. This moire pattern contains transverse aberration due to differences in curvature between the cornea and the ideal corneal curvature. The moire pattern is analyzed in real time by computer which displays either the CW moire pattern or a pulsed mode analysis of the transverse aberration of the cornea under observation, in real time. With the eye focused on a plurality of fixation points in succession, a survey of the entire corneal topography is made and a contour map or three dimensional plot of the cornea can be made as a computer readout in addition to corneal radius and refractive power analysis.

  11. Real-time face tracking

    NASA Astrophysics Data System (ADS)

    Liang, Yufeng; Wilder, Joseph

    1998-10-01

    A real-time face tracker is presented in this paper. The system has achieved 15 frames/second tracking using a Pentium 200 PC with a Datacube MaxPCI image processing board and a Panasonic RGB color camera. It tracks human faces in the camera's field of view while people move freely. A stochastic model to characterize the skin color distribution of human skin is used to segment the face and other skin areas from the background. Median filtering is then used to clean up the background noise. Geometric constraints are applied to the segmented image to extract the face from the background. To reduce computation and achieve real-time tracking, 1D projections (horizontal and vertical) of the image are analyzed instead of the 2D image. Run-length- encoding and frequency domain analysis algorithms are used to separate faces from other skin-like blobs. The system is robust to illumination intensity variations and different skin colors. It can be applied to many human-computer interaction applications such as sound locating, lip- reading, gaze tracking and face recognition.

  12. Real-time flood forecasting

    USGS Publications Warehouse

    Lai, C.; Tsay, T.-K.; Chien, C.-H.; Wu, I.-L.

    2009-01-01

    Researchers at the Hydroinformatic Research and Development Team (HIRDT) of the National Taiwan University undertook a project to create a real time flood forecasting model, with an aim to predict the current in the Tamsui River Basin. The model was designed based on deterministic approach with mathematic modeling of complex phenomenon, and specific parameter values operated to produce a discrete result. The project also devised a rainfall-stage model that relates the rate of rainfall upland directly to the change of the state of river, and is further related to another typhoon-rainfall model. The geographic information system (GIS) data, based on precise contour model of the terrain, estimate the regions that were perilous to flooding. The HIRDT, in response to the project's progress, also devoted their application of a deterministic model to unsteady flow of thermodynamics to help predict river authorities issue timely warnings and take other emergency measures.

  13. Real-time analysis of ambient organic aerosols using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS)

    NASA Astrophysics Data System (ADS)

    Brüggemann, Martin; Karu, Einar; Stelzer, Torsten; Hoffmann, Thorsten

    2015-04-01

    Organic aerosol accounts for a major fraction of atmospheric aerosols and has implications on the earth's climate and human health. However, due to the chemical complexity its measurement remains a major challenge for analytical instrumentation.1 Here, we present the development, characterization and application of a new soft ionization technique that allows mass spectrometric real-time detection of organic compounds in ambient aerosols. The aerosol flowing atmospheric-pressure afterglow (AeroFAPA) ion source utilizes a helium glow discharge plasma to produce excited helium species and primary reagent ions. Ionization of the analytes occurs in the afterglow region after thermal desorption and results mainly in intact molecular ions, facilitating the interpretation of the acquired mass spectra. In the past, similar approaches were used to detect pesticides, explosives or illicit drugs on a variety of surfaces.2,3 In contrast, the AeroFAPA source operates 'online' and allows the detection of organic compounds in aerosols without a prior precipitation or sampling step. To our knowledge, this is the first application of an atmospheric-pressure glow discharge ionization technique to ambient aerosol samples. We illustrate that changes in aerosol composition and concentration are detected on the time scale of seconds and in the ng-m-3 range. Additionally, the successful application of AeroFAPA-MS during a field study in a mixed forest region in Central Europe is presented. Several oxidation products of monoterpenes were clearly identified using the possibility to perform tandem MS experiments. The acquired data are in agreement with previous studies and demonstrate that AeroFAPA-MS is a suitable tool for organic aerosol analysis. Furthermore, these results reveal the potential of this technique to enable new insights into aerosol formation, growth and transformation in the atmosphere. References: 1) IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The

  14. Office Chromatography: Precise printing of sample solutions on miniaturized thin-layer phases and utilization for scanning Direct Analysis in Real Time mass spectrometry.

    PubMed

    Häbe, Tim T; Morlock, Gertrud E

    2015-09-25

    Office Chromatography combines achievements in office technologies with miniaturized planar chromatography. In the life sciences, printing of materials became an accepted technique, whereas in separation science, the use of printers for chromatography is at its infancy. A bubble-jet printer was modified for exact application on miniaturized plates. Technical modifications included the removal of all unnecessary parts and the improvement of the positioning system, purge unit and sample supply system. Evaluation was performed via a slide scanner and image evaluation software. Printing of a food dye mixture solution (n=5) led to a calculated mean deposition volume of 13±1nL/mm(2) per print-cycle. A mean determination coefficient (R(2); n=5) of 0.9990 was obtained for application of increasing volumes, executed via increasing band widths of 50-200μm (corresponding to 2-8nL). Using larger band widths and multiple print jobs, deposition volumes of up to the microliter scale represented an alternative to cost-intensive standard equipment. After print, separation, detection and digital evaluation of five food dyes, mean R(2) (n=5) were obtained between 0.9977 and 0.9995. The accuracy of printing was proven by mean recovery rates of 101-105% with repeatabilities of 3-7% (%RSD, n=5). The transfer to nanostructured ultrathin-layer plates proved the synergetic potential of these fields of research. First, this modified printer was suited for printing of finely graduated scales of three preservatives for determination of the spatial resolution of scanning Direct Analysis in Real Time mass spectrometry. PMID:26303254

  15. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George I.; Stetson, Howard K.

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto-Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner- TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the

  16. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George; Stetson, Howard

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto- Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner-TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the

  17. FIELD EVALUATION OF A MODIFIED DATARAM MIE SCATTERING MONITOR FOR REAL-TIME PM2.5 MASS CONCENTRATION MEASUREMENTS. (R827352C005)

    EPA Science Inventory

    In this paper, we investigated the feasibility of using a modified DataRAM nephelometer (RAM-1, MIE Inc., Billerica, MA) as a continuous PM2.5 monitor to measure concentrations of ambient and concentrated aerosols in real time. The DataRAM operated with a diffusion ...

  18. Determination of the aflatoxin M1 (AFM1) from milk by direct analysis in real time - mass spectrometry (DART-MS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Certain fungi that grow on crops can produce aflatoxins, which are highly carcinogenic. One of these, aflatoxin B1 can be metabolized by mammals to aflatoxin M1, a form that retains potent carcinogenicity and which can be excreted into milk. Direct analysis in real time (DART) ionization coupled to ...

  19. Monitoring in Situ Anaerobic Alkylbenzene Biodegradation Based on Mass Spectrometric Detection of Unique Metabolites or Real-Time PCR Detection of a Catabolic Gene

    NASA Astrophysics Data System (ADS)

    Beller, H. R.; Kane, S. R.

    2002-12-01

    Monitored natural attenuation (MNA) can be a cost-effective and viable approach for remediation of hydrocarbon-contaminated groundwater. However, regulatory acceptance of the approach is often contingent on monitoring that can convincingly demonstrate the role of microbial degradation. Recent advances in anaerobic hydrocarbon biochemistry, analytical chemistry, and molecular biology have fostered the development of powerful new techniques that can be applied to MNA of BTEX (benzene, toluene, ethylbenzene, and xylenes). Here we report two independent methods that have been developed to monitor in situ, anaerobic biodegradation of toluene and xylenes. A method has been developed for rapid, sensitive, and highly selective detection of distinctive indicators of anaerobic alkylbenzene metabolism. The target metabolites, benzylsuccinic acid (BS) and methylbenzylsuccinic acid (MeBS) isomers, have no known sources other than anaerobic toluene or xylene degradation; thus, their mere presence in groundwater provides definitive evidence of in situ metabolism. The method, which involves small sample size (<1 mL) and no extraction/concentration steps, relies on isotope dilution liquid chromatography/tandem mass spectrometry (LC/MS/MS) with selected reaction monitoring. Detection limits for benzylsuccinates were determined to be ca. 0.3 μg/L and accuracy and precision were favorable in a groundwater matrix. The LC/MS/MS method was used to characterize geographic and temporal distributions of benzylsuccinates in an anaerobic, hydrocarbon-contaminated aquifer. BS was never detected and MeBS isomers were detected in the three wells with the highest concentrations of BTEX; MeBS concentrations ranged from <0.3 to 205 μg/L. A strong linear correlation was found between concentrations of total MeBS isomers and their parent compounds, xylenes. A monitoring method based on real-time Polymerase Chain Reaction (PCR) analysis has been developed to specifically quantify populations of

  20. MISR Level 1 Near Real Time Products

    Atmospheric Science Data Center

    2014-09-15

    Level 1 Near Real Time The MISR Near Real Time Level 1 data products consist of radiance measurements organized in 10-50 minute ... (off-nadir) cameras. The remaining channels are sampled at 1.1 km. ...

  1. Real-Time Data Display

    NASA Technical Reports Server (NTRS)

    Pedings, Marc

    2007-01-01

    RT-Display is a MATLAB-based data acquisition environment designed to use a variety of commercial off-the-shelf (COTS) hardware to digitize analog signals to a standard data format usable by other post-acquisition data analysis tools. This software presents the acquired data in real time using a variety of signal-processing algorithms. The acquired data is stored in a standard Operator Interactive Signal Processing Software (OISPS) data-formatted file. RT-Display is primarily configured to use the Agilent VXI (or equivalent) data acquisition boards used in such systems as MIDDAS (Multi-channel Integrated Dynamic Data Acquisition System). The software is generalized and deployable in almost any testing environment, without limitations or proprietary configuration for a specific test program or project. With the Agilent hardware configured and in place, users can start the program and, in one step, immediately begin digitizing multiple channels of data. Once the acquisition is completed, data is converted into a common binary format that also can be translated to specific formats used by external analysis software, such as OISPS and PC-Signal (product of AI Signal Research Inc.). RT-Display at the time of this reporting was certified on Agilent hardware capable of acquisition up to 196,608 samples per second. Data signals are presented to the user on-screen simultaneously for 16 channels. Each channel can be viewed individually, with a maximum capability of 160 signal channels (depending on hardware configuration). Current signal presentations include: time data, fast Fourier transforms (FFT), and power spectral density plots (PSD). Additional processing algorithms can be easily incorporated into this environment.

  2. Modeling fibril fragmentation in real-time

    NASA Astrophysics Data System (ADS)

    Tan, Pengzhen; Hong, Liu

    2013-08-01

    During the application of the mass-action-equation models to the study of amyloid fiber formation, time-consuming numerical calculations constitute a major bottleneck. To conquer this difficulty, here an alternative efficient method is introduced for the fragmentation-only model. It includes two basic steps: (1) simulate close-formed time-evolutionary equations for the number concentration P(t) derived from the moment-closure method; (2) reconstruct the detailed fiber length distribution based on the knowledge of moments obtained in the first step. Compared to direct calculation, our method speeds up the performance by at least 10 000 times (from days to seconds). The accuracy is also satisfactory if suitable functions for the approximate fibril length distribution are taken. Further application to the sonication studies on PI264-b-PFS48 micelles performed by Guerin et al. confirms our method is very promising for the real-time analysis of the experiments on fibril fragmentation.

  3. Mobile real time radiography system

    SciTech Connect

    Vigil, J.; Taggart, D.; Betts, S.

    1997-11-01

    A 450-keV Mobile Real Time Radiography (RTR) System was delivered to Los Alamos National Laboratory (LANL) in January 1996. It was purchased to inspect containers of radioactive waste produced at (LANL). Since its delivery it has been used to radiograph more than 600 drums of radioactive waste at various LANL sites. It has the capability of inspecting waste containers of various sizes from <1-gal. buckets up to standard waste boxes (SWB, dimensions 54.5 in. x 71 in. x 37 in.). It has three independent x-ray acquisition formats. The primary system used is a 12- in. image intensifier, the second is a 36-in. linear diode array (LDA) and the last is an open system. It is fully self contained with on board generator, HVAC, and a fire suppression system. It is on a 53-ft long x 8-ft. wide x 14-ft. high trailer that can be moved over any highway requiring only an easily obtainable overweight permit because it weights {approximately}38 tons. It was built to conform to industry standards for a cabinet system which does not require an exclusion zone. The fact that this unit is mobile has allowed us to operate where the waste is stored, rather than having to move the waste to a fixed facility.

  4. Combining Two-Dimensional Diffusion-Ordered Nuclear Magnetic Resonance Spectroscopy, Imaging Desorption Electrospray Ionization Mass Spectrometry, and Direct Analysis in Real-Time Mass Spectrometry for the Integral Investigation of Counterfeit Pharmaceuticals

    PubMed Central

    Nyadong, Leonard; Harris, Glenn A.; Balayssac, Stéphane; Galhena, Asiri S.; Malet-Martino, Myriam; Martino, Robert; Parry, R. Mitchell; Wang, May Dongmei; Fernández, Facundo M.; Gilard, Véronique

    2016-01-01

    During the past decade, there has been a marked increase in the number of reported cases involving counterfeit medicines in developing and developed countries. Particularly, artesunate-based antimalarial drugs have been targeted, because of their high demand and cost. Counterfeit antimalarials can cause death and can contribute to the growing problem of drug resistance, particularly in southeast Asia. In this study, the complementarity of two-dimensional diffusion-ordered 1H nuclear magnetic resonance spectroscopy (2D DOSY 1H NMR) with direct analysis in real-time mass spectrometry (DART MS) and desorption electrospray ionization mass spectrometry (DESI MS) was assessed for pharmaceutical forensic purposes. Fourteen different artesunate tablets, representative of what can be purchased from informal sources in southeast Asia, were investigated with these techniques. The expected active pharmaceutical ingredient was detected in only five formulations via both nuclear magnetic resonance (NMR) and mass spectrometry (MS) methods. Common organic excipients such as sucrose, lactose, stearate, dextrin, and starch were also detected. The graphical representation of DOSY 1H NMR results proved very useful for establishing similarities among groups of samples, enabling counterfeit drug “chemotyping”. In addition to bulk- and surface-average analyses, spatially resolved information on the surface composition of counterfeit and genuine antimalarial formulations was obtained using DESI MS that was performed in the imaging mode, which enabled one to visualize the homogeneity of both genuine and counterfeit drug samples. Overall, this study suggests that 2D DOSY 1H NMR, combined with ambient MS, comprises a powerful suite of instrumental analysis methodologies for the integral characterization of counterfeit antimalarials. PMID:19453162

  5. Towards depth profiling of organic aerosols in real time using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS)

    NASA Astrophysics Data System (ADS)

    Brüggemann, Martin; Hoffmann, Thorsten

    2014-05-01

    Organic aerosol accounts for a substantial fraction of tropospheric aerosol and has implications on the earth's climate and human health. However, the characterization of its chemical composition and transformations remain a major challenge and is still connected to large uncertainties (IPCC, 2013). Recent measurements revealed that organic aerosol particles may reside in an amorphous or semi-solid phase state which impedes the diffusion within the particles (Virtanen et al., 2010; Shiraiwa et al., 2011). This means that reaction products which are formed on the surface of a particle, e.g. by OH, NO3 or ozone chemistry, cannot diffuse into the particle's core and remain at the surface. Eventually, this leads to particles with a core/shell structure. In the particles' cores the initial compounds are preserved whereas the shells contain mainly the oxidation products. By analyzing the particles' cores and shells separately, thus, it is possible to obtain valuable information on the formation and evolution of the aerosols' particle and gas phase. Here we present the development of the aerosol flowing atmospheric-pressure afterglow (AeroFAPA) technique which allows the mass spectrometric analysis of organic aerosols in real time. The AeroFAPA is an ion source based on a helium glow discharge at atmospheric pressure. The plasma produces excited helium species and primary reagent ions which are transferred into the afterglow region where the ionization of the analytes takes place. Due to temperatures of only 80 ° C to 150 ° C and ambient pressure in the afterglow region, the ionization is very soft and almost no fragmentation of organic molecules is observed. Thus, the obtained mass spectra are easy to interpret and no extensive data analysis procedure is necessary. Additionally, first results of a combination of the AeroFAPA-MS with a scanning mobility particle sizer (SMPS) suggest that it is not only possible to analyze the entire particle phase but rather that a

  6. Understanding the Mechanisms Enabling an Ultra-high Efficiency Moving Wire Interface for Real-time Carbon 14 Accelerator Mass Spectrometry Quantitation of Samples Suspended in Solvent

    NASA Astrophysics Data System (ADS)

    Thomas, Avraham Thaler

    Carbon 14 (14C) quantitation by accelerator mass spectrometry (AMS) is a powerfully sensitive and uniquely quantitative tool for tracking labeled carbonaceous molecules in biological systems. This is due to 14C's low natural abundance of 1 ppt, the nominal difference in biological activity between an unlabeled and a 14C-labeled molecule, and the ability of AMS to measure isotopic ratios independently of a sample's other characteristics. To make AMS more broadly accessible, a moving wire interface for real-time coupling of high pressure liquid chromatography (HPLC) to AMS and high throughput AMS quantitation of minute single samples has been developed. Prior to this work, samples needed to be converted to solid carbon before measurement. This conversion process has many steps and requires that the sample size be large enough to allow precise handling of the resulting graphite. These factors make the process susceptible to error and time consuming, as well as requiring 0.5 ug of carbon. Samples which do not contain enough carbon, such as HPLC fractions, must be bulked up. This adds background and increases effort. The moving wire interface overcomes these limitations by automating sample processing. Samples placed on the wire are transported through a solvent removal stage followed by a combustion stage after which the combustion products are directed to a gas accepting ion source. The ion source converts the carbon from the CO2 combustion product into C ions, from which an isotopic ratio can be determined by AMS. Although moving wire interfaces have been implemented for various tasks since 1964, the efficiency of these systems at transferring fluid from an HPLC to the wire was only 3%, the efficiency of transferring combustion products from the combustion oven to ion source was only 30%, the flow and composition of the carrier gas from the combustion oven to the ion source needed to be optimized for coupling to an AMS gas accepting ion source and the drying ovens

  7. Students Collecting Real time Data

    NASA Astrophysics Data System (ADS)

    Miller, P.

    2006-05-01

    Students Collecting Real-Time Data The Hawaiian Islands Humpback Whale National Marine Sanctuary has created opportunities for middle and high school students to become Student Researchers and to be involved in real-time marine data collection. It is important that we expose students to different fields of science and encourage them to enter scientific fields of study. The Humpback Whale Sanctuary has an education visitor center in Kihei, Maui. Located right on the beach, the site has become a living classroom facility. There is a traditional Hawaiian fishpond fronting the property. The fishpond wall is being restored, using traditional methods. The site has the incredible opportunity of incorporating Hawaiian cultural practices with scientific studies. The Sanctuary offers opportunities for students to get involved in monitoring and data collection studies. Invasive Seaweed Study: Students are collecting data on invasive seaweed for the University of Hawaii. They pull a large net through the shallow waters. Seaweed is sorted, identified and weighed. The invasive seaweeds are removed. The data is recorded and sent to UH. Remote controlled monitoring boats: The sanctuary has 6 boogie board sized remote controlled boats used to monitor reefs. Boats have a camera with lights on the underside. The boats have water quality monitoring devices and GPS units. The video from the underwater camera is transmitted via a wireless transmission. Students are able to monitor the fish, limu and invertebrate populations on the reef and collect water quality data via television monitors or computers. The boat can also pull a small plankton tow net. Data is being compiled into data bases. Artificial Reef Modules: The Sanctuary has a scientific permit from the state to build and deploy artificial reef modules. High school students are designing and building modules. These are deployed out in the Fishpond fronting the Sanctuary site and students are monitoring them on a weekly basis

  8. VERSE - Virtual Equivalent Real-time Simulation

    NASA Technical Reports Server (NTRS)

    Zheng, Yang; Martin, Bryan J.; Villaume, Nathaniel

    2005-01-01

    Distributed real-time simulations provide important timing validation and hardware in the- loop results for the spacecraft flight software development cycle. Occasionally, the need for higher fidelity modeling and more comprehensive debugging capabilities - combined with a limited amount of computational resources - calls for a non real-time simulation environment that mimics the real-time environment. By creating a non real-time environment that accommodates simulations and flight software designed for a multi-CPU real-time system, we can save development time, cut mission costs, and reduce the likelihood of errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-time Application Interface) into an event driven simulator that runs in virtual real time. Designed to keep the original RTAI architecture as intact as possible, and therefore inheriting RTAI's many capabilities, VERSE was implemented with remarkably little change to the RTAI source code. This small footprint together with use of the same API allows users to easily run the same application in both real-time and virtual time environments. VERSE has been used to build a workstation testbed for NASA's Space Interferometry Mission (SIM PlanetQuest) instrument flight software. With its flexible simulation controls and inexpensive setup and replication costs, VERSE will become an invaluable tool in future mission development.

  9. Determination of cocaine and methadone in urine samples by thin-film solid-phase microextraction and direct analysis in real time (DART) coupled with tandem mass spectrometry.

    PubMed

    Rodriguez-Lafuente, Angel; Mirnaghi, Fatemeh S; Pawliszyn, Janusz

    2013-12-01

    The use of thin-film solid-phase microextraction (SPME) as the sampling preparation step before direct analysis in real time (DART) was evaluated for the determination of two prohibited doping substances, cocaine and methadone, in urine samples. Results showed that thin-film SPME improves the detectability of these compounds: signal-to-blank ratios of 5 (cocaine) and 13 (methadone) were obtained in the analysis of 0.5 ng/ml in human urine. Thin-film SPME also provides efficient sample cleanup, avoiding contamination of the ion source by salt residues from the urine samples. Extraction time was established in 10 min, thus providing relatively short analysis time and high throughput when combined with a 96-well shaker and coupled with DART technique. PMID:23685960

  10. Real-time analysis of aromatics in combustion engine exhaust by resonance-enhanced multiphoton ionisation time-of-flight mass spectrometry (REMPI-TOF-MS): a robust tool for chassis dynamometer testing.

    PubMed

    Adam, T W; Clairotte, M; Streibel, T; Elsasser, M; Pommeres, A; Manfredi, U; Carriero, M; Martini, G; Sklorz, M; Krasenbrink, A; Astorga, C; Zimmermann, R

    2012-07-01

    Resonance-enhanced multiphoton ionisation time-of-flight mass spectrometry (REMPI-TOF-MS) is a robust method for real-time analysis of monocyclic and polycyclic aromatic hydrocarbons in complex emissions. A mobile system has been developed which enables direct analysis on site. In this paper, we utilize a multicomponent calibration scheme based on the analytes' photo-ionisation cross-sections relative to a calibrated species. This allows semi-quantification of a great number of components by only calibrating one compound of choice, here toluene. The cross-sections were determined by injecting nebulised solutions of aromatic compounds into the TOF-MS ion source with the help of a HPLC pump. Then, REMPI-TOF-MS was implemented at various chassis dynamometers and test cells and the exhaust of the following vehicles and engines investigated: a compression ignition light-duty (LD) passenger car, a compression ignition LD van, two spark ignition LD passenger cars, 2 two-stroke mopeds, and a two-stroke engine of a string gas trimmer. The quantitative time profiles of benzene are shown. The results indicate that two-stroke engines are a significant source for toxic and cancerogenic compounds. Air pollution and health effects caused by gardening equipment might still be underestimated. PMID:22644155

  11. Research in Distributed Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.

    1997-01-01

    This document summarizes the progress we have made on our study of issues concerning the schedulability of real-time systems. Our study has produced several results in the scalability issues of distributed real-time systems. In particular, we have used our techniques to resolve schedulability issues in distributed systems with end-to-end requirements. During the next year (1997-98), we propose to extend the current work to address the modeling and workload characterization issues in distributed real-time systems. In particular, we propose to investigate the effect of different workload models and component models on the design and the subsequent performance of distributed real-time systems.

  12. Long-term real-time monitoring catalytic synthesis of ammonia in a microreactor by VUV-lamp-based charge-transfer ionization time-of-flight mass spectrometry.

    PubMed

    Xie, Yuanyuan; Hua, Lei; Hou, Keyong; Chen, Ping; Zhao, Wuduo; Chen, Wendong; Ju, Bangyu; Li, Haiyang

    2014-08-01

    With respect to massive consumption of ammonia and rigorous industrial synthesis conditions, many studies have been devoted to investigating more environmentally benign catalysts for ammonia synthesis under moderate conditions. However, traditional methods for analysis of synthesized ammonia (e.g., off-line ion chromatography (IC) and chemical titration) suffer from poor sensitivity, low time resolution, and sample manipulations. In this work, charge-transfer ionization (CTI) with O2(+) as the reagent ion based on a vacuum ultraviolet (VUV) lamp in a time-of-flight mass spectrometer (CTI-TOFMS) has been applied for real-time monitoring of the ammonia synthesis in a microreactor. For the necessity of long-term stable monitoring, a self-adjustment algorithm for stabilizing O2(+) ion intensity was developed to automatically compensate the attenuation of the O2(+) ion yield in the ion source as a result of the oxidation of the photoelectric electrode and contamination on the MgF2 window of the VUV lamp. A wide linear calibration curve in the concentration range of 0.2-1000 ppmv with a correlation coefficient (R(2)) of 0.9986 was achieved, and the limit of quantification (LOQ) for NH3 was in ppbv. Microcatalytic synthesis of ammonia with three catalysts prepared by transition-metal/carbon nanotubes was tested, and the rapid changes of NH3 conversion rates with the reaction temperatures were quantitatively measured with a time resolution of 30 s. The high-time-resolution CTI-TOFMS could not only achieve the equilibrium conversion rates of NH3 rapidly but also monitor the activity variations with respect to investigated catalysts during ammonia synthesis reactions. PMID:24968116

  13. Real-time analysis of organic compounds in ship engine aerosol emissions using resonance-enhanced multiphoton ionisation and proton transfer mass spectrometry.

    PubMed

    Radischat, Christian; Sippula, Olli; Stengel, Benjamin; Klingbeil, Sophie; Sklorz, Martin; Rabe, Rom; Streibel, Thorsten; Harndorf, Horst; Zimmermann, Ralf

    2015-08-01

    Organic combustion aerosols from a marine medium-speed diesel engine, capable to run on distillate (diesel fuel) and residual fuels (heavy fuel oil), were investigated under various operating conditions and engine parameters. The online chemical characterisation of the organic components was conducted using a resonance-enhanced multiphoton ionisation time-of-flight mass spectrometer (REMPI TOF MS) and a proton transfer reaction-quadrupole mass spectrometer (PTR-QMS). Oxygenated species, alkenes and aromatic hydrocarbons were characterised. Especially the aromatic hydrocarbons and their alkylated derivatives were very prominent in the exhaust of both fuels. Emission factors of known health-hazardous compounds (e.g. mono- and poly-aromatic hydrocarbons) were calculated and found in higher amounts for heavy fuel oil (HFO) at typical engine loadings. Lower engine loads lead in general to increasing emissions for both fuels for almost every compound, e.g. naphthalene emissions varied for diesel fuel exhaust between 0.7 mg/kWh (75 % engine load, late start of injection (SOI)) and 11.8 mg/kWh (10 % engine load, late SOI) and for HFO exhaust between 3.3 and 60.5 mg/kWh, respectively. Both used mass spectrometric techniques showed that they are particularly suitable methods for online monitoring of combustion compounds and very helpful for the characterisation of health-relevant substances. Graphical abstract Three-dimensional REMPI data of organic species in diesel fuel and heavy fuel oil exhaust. PMID:25600686

  14. In-line real time air monitor

    DOEpatents

    Wise, M.B.; Thompson, C.V.

    1998-07-14

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds. 3 figs.

  15. In-line real time air monitor

    DOEpatents

    Wise, Marcus B.; Thompson, Cyril V.

    1998-01-01

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds.

  16. Volatile Organic Compound emissions from soil: using Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS) for the real time observation of microbial processes

    NASA Astrophysics Data System (ADS)

    Veres, P. R.; Behrendt, T.; Klapthor, A.; Meixner, F. X.; Williams, J.

    2014-08-01

    In this study we report on the emissions of volatile organic compounds (VOC) and nitric oxide (NO) from two contrasting soils (equatorial rainforest and arid cotton field) analyzed in a laboratory based dynamic chamber system. The effect of soil moisture and soil temperature on VOC and NO emission was examined in laboratory incubation experiments by measuring as a pre-saturated soil dried out. Our results suggest that real time monitoring of VOC emissions from soil using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) instrument can be used to improve our understanding of the release mechanisms of trace gases (e.g. NO, N2O) that are involved in the nitrogen cycle. Moreover, we report on the release rate of various VOC species, many of which exhibit a temperature dependent response indicative of biological production, namely a temperature amplification factor (Q10) ∼ 2-3. Contrary to the conventional modeling of NO emissions from soils, that the release of NO from the overall community across the range of soil water content can be modeled as an optimum function, we suggest that VOC measurements indicate there exist multiple distinct contributing microbial guilds releasing NO. These microbial guilds could likely be individually identified with the observed VOC profiles. Using a cotton field soil sample from a Sache oasis (Taklimakan desert, Xinijang, P. R. China), we identify five VOC emission groups with varying degrees of NO co-emission. An equatorial rainforest soil (Suriname) was shown to emit a variety of VOC including acetaldehyde, acetone, DMS, formaldehyde, and isoprene that vary strongly and individually as a function of temperature and soil moisture content. PTR-TOF-MS with high time resolution, sensitivity, and molecular specificity is an ideal tool for the real time analysis of VOC and NO emitting processes in soil systems. These experiments can be used as a template for future experiments to more completely and specifically

  17. Real time programming environment for Windows

    SciTech Connect

    LaBelle, D.R.

    1998-04-01

    This document provides a description of the Real Time Programming Environment (RTProE). RTProE tools allow a programmer to create soft real time projects under general, multi-purpose operating systems. The basic features necessary for real time applications are provided by RTProE, leaving the programmer free to concentrate efforts on his specific project. The current version supports Microsoft Windows{trademark} 95 and NT. The tasks of real time synchronization and communication with other programs are handled by RTProE. RTProE includes a generic method for connecting a graphical user interface (GUI) to allow real time control and interaction with the programmer`s product. Topics covered in this paper include real time performance issues, portability, details of shared memory management, code scheduling, application control, Operating System specific concerns and the use of Computer Aided Software Engineering (CASE) tools. The development of RTProE is an important step in the expansion of the real time programming community. The financial costs associated with using the system are minimal. All source code for RTProE has been made publicly available. Any person with access to a personal computer, Windows 95 or NT, and C or FORTRAN compilers can quickly enter the world of real time modeling and simulation.

  18. Making real-time reactive systems reliable

    NASA Technical Reports Server (NTRS)

    Marzullo, Keith; Wood, Mark

    1990-01-01

    A reactive system is characterized by a control program that interacts with an environment (or controlled program). The control program monitors the environment and reacts to significant events by sending commands to the environment. This structure is quite general. Not only are most embedded real time systems reactive systems, but so are monitoring and debugging systems and distributed application management systems. Since reactive systems are usually long running and may control physical equipment, fault tolerance is vital. The research tries to understand the principal issues of fault tolerance in real time reactive systems and to build tools that allow a programmer to design reliable, real time reactive systems. In order to make real time reactive systems reliable, several issues must be addressed: (1) How can a control program be built to tolerate failures of sensors and actuators. To achieve this, a methodology was developed for transforming a control program that references physical value into one that tolerates sensors that can fail and can return inaccurate values; (2) How can the real time reactive system be built to tolerate failures of the control program. Towards this goal, whether the techniques presented can be extended to real time reactive systems is investigated; and (3) How can the environment be specified in a way that is useful for writing a control program. Towards this goal, whether a system with real time constraints can be expressed as an equivalent system without such constraints is also investigated.

  19. Investigation of Volatiles Emitted from Freshly Cut Onions (Allium cepa L.) by Real Time Proton-Transfer Reaction-Mass Spectrometry (PTR-MS)

    PubMed Central

    Løkke, Mette Marie; Edelenbos, Merete; Larsen, Erik; Feilberg, Anders

    2012-01-01

    Volatile organic compounds (VOCs) in cut onions (Allium cepa L.) were continuously measured by PTR-MS during the first 120 min after cutting. The headspace composition changed rapidly due to the very reactive volatile sulfurous compounds emitted from onion tissue after cell disruption. Mass spectral signals corresponding to propanethial S-oxide (the lachrymatory factor) and breakdown products of this compound dominated 0–10 min after cutting. Subsequently, propanethiol and dipropyl disulfide predominantly appeared, together with traces of thiosulfinates. The concentrations of these compounds reached a maximum at 60 min after cutting. Propanethiol was present in highest concentrations and had an odor activity value 20 times higher than dipropyl disulfide. Thus, propanethiol is suggested to be the main source of the characteristic onion odor. Monitoring the rapid changes of VOCs in the headspace of cut onion necessitates a high time resolution, and PTR-MS is demonstrated to be a very suitable method for monitoring the headspace of freshly cut onions directly after cutting without extraction or pre-concentration. PMID:23443367

  20. The ALMA Real Time Control System

    NASA Astrophysics Data System (ADS)

    Kern, Jeffrey S.; Juerges, Thomas A.; Marson, Ralph G.

    2009-01-01

    The Atacama Large Millimeter Array (ALMA) is a revolutionary millimeter and submillimeter array being developed on the Atacama plateau of northern Chile. An international partnership lead by NRAO, ESO, and NAOJ this powerful and flexible telescope will provide unprecedented observations of this relatively unexplored frequency range. The control subsystem for the Atacama Large Millimeter Array must coordinate the monitor and control of at least sixty six antennas (in four different styles), two correlators, and all of the ancillary equipment (samplers, local oscillators, front ends, etc.). This equipment will be spread over tens of kilometers and operated remotely. Operation of the array requires a robust, scalable, and maintainable real time control system. The real time control system is responsible for monitoring and control of any devices where there are fixed deadlines. Examples in the ALMA context are antenna pointing and fringe tracking. Traditionally the real time portion of a large software system is an intricate and error prone portion of the software. As a result the real time portion is very expensive in terms of effort expended both during construction and during maintenance phases of a project. The ALMA real time control system uses a Linux based real time operating system to interact with the hardware and the CORBA based ALMA Common Software to communicate in the distributed computing environment. Mixing the requirements of real time computing and the non-deterministic CORBA middleware has produced an interesting design. We discuss the architecture, design, and implementation of the ALMA real time control system. Highlight some lessons learned along the way, and justify our assertion that this should be the last large scale real time control system in radio astronomy.

  1. Real-time analysis of sulfur-containing volatiles in Brassica plants infested with root-feeding Delia radicum larvae using proton-transfer reaction mass spectrometry

    PubMed Central

    van Dam, Nicole M.; Samudrala, Devasena; Harren, Frans J. M.; Cristescu, Simona M

    2012-01-01

    Background and aims Plants damaged by herbivores emit a variety of volatile organic compounds (VOCs). Here we used proton-transfer reaction mass spectrometry (PTR-MS) as a sensitive detection method for online analysis of herbivore-induced VOCs. Previously, it was found that Brassica nigra plants emit several sulfur-containing VOCs when attacked by cabbage root fly (Delia radicum) larvae with m/z 60 as a marker for the formation of allylisothiocyanate from the glucosinolate sinigrin. We tested the hypothesis that m/z 60 emission occurs only in plants with sinigrin in their roots. Additionally, we tested the hypothesis that methanethiol, dimethylsulfide and dimethyldisulfide are only emitted after larval infestation. Methodology Proton-transfer reaction mass spectrometry was used to track sulfur-containing VOCs from six different species of Brassica over time. The roots were either artificially damaged or infested with cabbage root fly larvae. Glucosinolate profiles of the roots were analysed using high-pressure liquid chromatography and compared with VOC emissions. Principal results Brassica nigra, B. juncea and B. napus primarily emitted m/z 60 directly after artificial damage or root fly infestation. Sulfide and methanethiol emissions from B. nigra and B. juncea also increased after larval damage but much later (6–12 h after damage). Brassica rapa, B. oleracea and B. carinata principally emitted methanethiol after artificial and after larval damage. Brassica oleracea and B. carinata showed some increase in m/z 60 emission after larval damage. Comparison with root glucosinolate profiles revealed that sinigrin cannot be the only precursor for m/z 60. Conclusions The principal compound emitted after root damage is determined by the plant species, and not by damage type or root glucosinolate composition. Once determined, the principal compounds may be used as markers for identifying damaged or infested plants. Further analyses of plant enzymes involved in the

  2. Real-time monitoring of landslides

    USGS Publications Warehouse

    Reid, Mark E.; LaHusen, Richard G.; Baum, Rex L.; Kean, Jason W.; Schulz, William H.; Highland, Lynn M.

    2012-01-01

    Landslides cause fatalities and property damage throughout the Nation. To reduce the impact from hazardous landslides, the U.S. Geological Survey develops and uses real-time and near-real-time landslide monitoring systems. Monitoring can detect when hillslopes are primed for sliding and can provide early indications of rapid, catastrophic movement. Continuous information from up-to-the-minute or real-time monitoring provides prompt notification of landslide activity, advances our understanding of landslide behavior, and enables more effective engineering and planning efforts.

  3. Real-Time Monitoring of Active Landslides

    USGS Publications Warehouse

    Reid, Mark E.; LaHusen, Richard G.; Ellis, William L.

    1999-01-01

    Landslides threaten lives and property in every State in the Nation. To reduce the risk from active landslides, the U.S. Geological Survey (USGS) develops and uses real-time landslide monitoring systems. Monitoring can detect early indications of rapid, catastrophic movement. Up-to-the-minute or real-time monitoring provides immediate notification of landslide activity, potentially saving lives and property. Continuous information from real-time monitoring also provides a better understanding of landslide behavior, enabling engineers to create more effective designs for halting landslide movement.

  4. Real time sensor for therapeutic radiation delivery

    DOEpatents

    Bliss, Mary; Craig, Richard A.; Reeder, Paul L.

    1998-01-01

    The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body.

  5. Real time sensor for therapeutic radiation delivery

    DOEpatents

    Bliss, M.; Craig, R.A.; Reeder, P.L.

    1998-01-06

    The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body. 14 figs.

  6. Monitoring apoptosis in real time.

    PubMed

    Green, Allan M; Steinmetz, Neil D

    2002-01-01

    clinical responses. A single site study in 15 subjects with 1-year follow-up has suggested that increased posttreatment Tc 99m-rh annexin uptake is associated with improved time to progression of disease and survival time. In vivo imaging of cell death may have the potential to improve the treatment of cancer patients by allowing rapid, objective, patient-by-patient assessment of the efficacy of tumor cell killing. PMID:11999952

  7. Direct analysis in real time high resolution mass spectrometry as a tool for rapid characterization of mind-altering plant materials and revelation of supplement adulteration--The case of Kanna.

    PubMed

    Lesiak, Ashton D; Cody, Robert B; Ubukata, Masaaki; Musah, Rabi A

    2016-03-01

    We demonstrate the utility of direct analysis in real time ionization coupled with high resolution time-of-flight mass spectrometry (DART-HRTOFMS) in revealing the adulteration of commercially available Sceletium tortuosum, a mind-altering plant-based drug commonly known as Kanna. Accurate masses consistent with alkaloids previously isolated from S. tortuosum plant material enabled identification of the products as Kanna, and in-source collision-induced dissociation (CID) confirmed the presence of one of these alkaloids, hordenine, while simultaneously revealing the presence of an adulterant. The stimulant ephedrine, which has been banned in herbal products and supplements, was confirmed to be present in a sample through the use of in-source CID. High-throughput DART-HRTOFMS was shown to be a powerful tool to not only screen plant-based drugs of abuse for psychotropic alkaloids, but also to reveal the presence of scheduled substances and adulterants. PMID:26821203

  8. A Real-Time Nonvolatile Residue (NVR) Monitor

    NASA Technical Reports Server (NTRS)

    Bowers, William D.; Chuan, Raymond L.

    1995-01-01

    New development and application of device described in "Surface-Acoustic-Wave Piezoelectric Microbalance," (LAR-14476). Active sensing element of Real-Time NVR Monitor comprises pair of piezoelectric surface-acoustic-wave resonators resonating at frequency of 200 MHz. Bare, uncoated resonator exposed to atmosphere and directly in contact with airborne volatile and nonvolatile materials leaving residues on surface. Resonant frequency of exposed resonator decreases with increasing mass of adsorbed residue; resulting beat frequency between two resonators increases with mass and serves as sensitive real-time indication of airborne contaminants or non-volatile residue.

  9. Analysis of real-time vibration data

    USGS Publications Warehouse

    Safak, E.

    2005-01-01

    In recent years, a few structures have been instrumented to provide continuous vibration data in real time, recording not only large-amplitude motions generated by extreme loads, but also small-amplitude motions generated by ambient loads. The main objective in continuous recording is to track any changes in structural characteristics, and to detect damage after an extreme event, such as an earthquake or explosion. The Fourier-based spectral analysis methods have been the primary tool to analyze vibration data from structures. In general, such methods do not work well for real-time data, because real-time data are mainly composed of ambient vibrations with very low amplitudes and signal-to-noise ratios. The long duration, linearity, and the stationarity of ambient data, however, allow us to utilize statistical signal processing tools, which can compensate for the adverse effects of low amplitudes and high noise. The analysis of real-time data requires tools and techniques that can be applied in real-time; i.e., data are processed and analyzed while being acquired. This paper presents some of the basic tools and techniques for processing and analyzing real-time vibration data. The topics discussed include utilization of running time windows, tracking mean and mean-square values, filtering, system identification, and damage detection.

  10. Real-time smart fluorescence sensor platform

    NASA Astrophysics Data System (ADS)

    Dickens, Jason E.; Vaughn, Mike S.; Taylor, Mervin; Ponstingl, Mike

    2011-06-01

    A novel compact LED array based light induced fluorescence (LIF) sensor has been developed for real-time in-line monitoring of intrinsic fluorophores in the solid and liquid state. The sensor is essential for on-the-spot, routine, and cost effective real-time analysis. The sensor is designed to provide real-time emission response along with various smart sensing parameters to ensure real-time measurement quality that is required for regulated GMP process monitoring applications. This work describes a LIF sensor tailored for solid-phase fluorometry. Fundamental figures of merit, excitation overexposure and smart sensing features required for modern process monitoring and control are discussed within the context of pharmaceutical solid-phase manufacturing and similar applications.

  11. Interferometer real time control development for SIM

    NASA Astrophysics Data System (ADS)

    Bell, Charles E.

    2003-02-01

    Real Time Control (RTC) for the Space Interferometry Mission will build on the real time core interferometer control technology under development at JPL since the mid 1990s, with heritage from the ground based MKII and Palomar Testbed Interferometer projects developed in the late '80s and early '90s. The core software and electronics technology for SIM interferometer real time control is successfully operating on several SIM technology demonstration testbeds, including the Real-time Interferometer Control System Testbed, System Testbed-3, and the Microarcsecond Metrology testbed. This paper provides an overview of the architecture, design, integration, and test of the SIM flight interferometer real time control to meet challenging flight system requirements for the high processor throughput, low-latency interconnect, and precise synchronization to support microarcsecond-level astrometric measurements for greater than five years at 1 AU in Earth-trailing orbit. The electronics and software architecture of the interferometer real time control core and its adaptation to a flight design concept are described. Control loops for pointing and pathlength control within each of four flight interferometers and for coordination of control and data across interferometers are illustrated. The nature of onboard data processing to fit average downlink rates while retaining post-processed astrometric measurement precision and accuracy is also addressed. Interferometer flight software will be developed using a software simulation environment incorporating models of the metrology and starlight sensors and actuators to close the real time control loops. RTC flight software and instrument flight electronics will in turn be integrated utilizing the same simulation architecture for metrology and starlight component models to close real time control loops and verify RTC functionality and performance prior to delivery to flight interferometer system integration at Lockheed Martin

  12. Real-time interferometric synthetic aperture microscopy.

    PubMed

    Ralston, Tyler S; Marks, Daniel L; Carney, P Scott; Boppart, Stephen A

    2008-02-18

    An interferometric synthetic aperture microscopy (ISAM) system design with real-time 2D cross-sectional processing is described in detail. The system can acquire, process, and display the ISAM reconstructed images at frame rates of 2.25 frames per second for 512 X 1024 pixel images. This system provides quantitatively meaningful structural information from previously indistinguishable scattering intensities and provides proof of feasibility for future real-time ISAM systems. PMID:18542337

  13. Processing PCM Data in Real Time

    NASA Technical Reports Server (NTRS)

    Wissink, T. L.

    1982-01-01

    Novel hardware configuration makes it possible for Space Shuttle launch processing system to monitor pulse-code-modulated data in real time. Using two microprogramable "option planes," incoming PCM data are monitored for changes at rate of one frame of data (80 16-bit words) every 10 milliseconds. Real-time PCM processor utilizes CPU in mini-computer and CPU's in two option planes.

  14. Real-time scheduling using minimum search

    NASA Technical Reports Server (NTRS)

    Tadepalli, Prasad; Joshi, Varad

    1992-01-01

    In this paper we consider a simple model of real-time scheduling. We present a real-time scheduling system called RTS which is based on Korf's Minimin algorithm. Experimental results show that the schedule quality initially improves with the amount of look-ahead search and tapers off quickly. So it sppears that reasonably good schedules can be produced with a relatively shallow search.

  15. The LAA real-time benchmarks

    SciTech Connect

    Block, R.K.; Krischer, W.; Lone, S.

    1989-04-01

    In the context of the LAA detector development program a subgroup Real Time Data Processing has tackled the problem of intelligent triggering. The main goal of this group is to show how fast digital devices, implemented as custom-made or commercial processors, can execute some basic algorithms, and how they can be embedded in the data flow between detector readout components and fully programmable commercial processors, which are expected to be the final data processing filter in real time.

  16. Quantitation of aflatoxins from corn and other food related materials by direct analysis in real time - mass spectrometry (DART-MS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ambient ionization coupled to mass spectrometry continues to be applied to new analytical problems, facilitating the rapid and convenient analysis of a variety of analytes. Recently, demonstrations of ambient ionization mass spectrometry applied to quantitative analysis of mycotoxins have been shown...

  17. Characterization of a real-time tracer for Isoprene Epoxydiols-derived Secondary Organic Aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; de Sá, S. S.; Martin, S. T.; Hu, M.; Budisulistiorini, S. H.; Riva, M.; Surratt, J. D.; St. Clair, J. M.; Isaacman-Van Wertz, G.; Yee, L. D.; Goldstein, A. H.; Carbone, S.; Artaxo, P.; de Gouw, J. A.; Koss, A.; Wisthaler, A.; Mikoviny, T.; Karl, T.; Kaser, L.; Jud, W.; Hansel, A.; Docherty, K. S.; Robinson, N. H.; Coe, H.; Allan, J. D.; Canagaratna, M. R.; Paulot, F.; Jimenez, J. L.

    2015-04-01

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene low-NO oxidation pathways, was quantified by applying Positive Matrix Factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of OA in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the SOAS study, 78% of IEPOX-SOA is accounted for the measured molecular tracers, making it the highest level of molecular identification of an ambient SOA component to our knowledge. Enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O ( fC5H6O = C5H6O+/OA) across multiple field, chamber and source datasets. A background of ~ 1.7 ± 0.1‰ is observed in studies strongly influenced by urban, biomass-burning and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.8‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7‰). Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12-40‰) but varies substantially between locations, which is shown to reflect large variations in its detailed molecular composition. The low fC5H6O (< 3‰) observed in non IEPOX-derived isoprene-SOA indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA from

  18. Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; de Sá, S. S.; McKinney, K.; Martin, S. T.; Hu, M.; Budisulistiorini, S. H.; Riva, M.; Surratt, J. D.; St. Clair, J. M.; Isaacman-Van Wertz, G.; Yee, L. D.; Goldstein, A. H.; Carbone, S.; Brito, J.; Artaxo, P.; de Gouw, J. A.; Koss, A.; Wisthaler, A.; Mikoviny, T.; Karl, T.; Kaser, L.; Jud, W.; Hansel, A.; Docherty, K. S.; Alexander, M. L.; Robinson, N. H.; Coe, H.; Allan, J. D.; Canagaratna, M. R.; Paulot, F.; Jimenez, J. L.

    2015-10-01

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene oxidation pathways, was quantified by applying positive matrix factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of organic aerosol (OA) in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the Southern Oxidant and Aerosol Study (SOAS), 78 % of PMF-resolved IEPOX-SOA is accounted by the measured IEPOX-SOA molecular tracers (2-methyltetrols, C5-Triols, and IEPOX-derived organosulfate and its dimers), making it the highest level of molecular identification of an ambient SOA component to our knowledge. An enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O (fC5H6O= C5H6O+/OA) across multiple field, chamber, and source data sets. A background of ~ 1.7 ± 0.1 ‰ (‰ = parts per thousand) is observed in studies strongly influenced by urban, biomass-burning, and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.6 ‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0 ‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7 ‰), which leaves some room to separate both contributions to OA. Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2 ‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12-40 ‰) but varies substantially between locations, which is shown to reflect

  19. Characterization of a real-time tracer for Isoprene Epoxydiols-derived Secondary Organic Aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    DOE PAGESBeta

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; et al

    2015-04-16

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene low-NO oxidation pathways, was quantified by applying Positive Matrix Factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of OA in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the SOAS study, 78% of IEPOX-SOA is accounted for the measured molecular tracers, making itmore » the highest level of molecular identification of an ambient SOA component to our knowledge. Enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O ( fC5H6O = C5H6O+/OA) across multiple field, chamber and source datasets. A background of ~ 1.7 ± 0.1‰ is observed in studies strongly influenced by urban, biomass-burning and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.8‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7‰). Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12–40‰) but varies substantially between locations, which is shown to reflect large variations in its detailed molecular composition. The low fC5H6O (< 3‰) observed in non IEPOX-derived isoprene-SOA indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA

  20. Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    DOE PAGESBeta

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; et al

    2015-10-23

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene oxidation pathways, was quantified by applying positive matrix factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of organic aerosol (OA) in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the Southern Oxidant and Aerosol Study (SOAS), 78 % of PMF-resolved IEPOX-SOA is accountedmore » by the measured IEPOX-SOA molecular tracers (2-methyltetrols, C5-Triols, and IEPOX-derived organosulfate and its dimers), making it the highest level of molecular identification of an ambient SOA component to our knowledge. An enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O (fC5H6O= C5H6O+/OA) across multiple field, chamber, and source data sets. A background of ~ 1.7 ± 0.1 ‰ (‰ = parts per thousand) is observed in studies strongly influenced by urban, biomass-burning, and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.6 ‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0 ‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7 ‰), which leaves some room to separate both contributions to OA. Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2 ‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12–40 ‰) but varies substantially between locations, which is shown

  1. Real-time GPS monitoring throughout Cascadia

    NASA Astrophysics Data System (ADS)

    Melbourne, T. I.; Santillan, V. M.; Scrivner, C. W.; Szeliga, W. M.; Webb, F.; Abundiz, S.

    2012-12-01

    Over 400 GPS receivers of the combined PANGA and PBO networks currently operate along the Cascadia subduction zone, all of which are high-rate and telemetered in real-time. These receivers span the M9 megathrust, M7 crustal faults beneath population centers, several active Cascades volcanoes, and a host of other hazard sources, and together enable a host of new approaches towards hazards mitigation. Data from the majority of the stations is received in real time at CWU and processed into one-second position estimates using 1) relative positioning within several reference frames constrained by 2) absolute point positioning using streamed satellite orbit and clock corrections. While the former produces lower-noise time series, for earthquakes greater than ~M7 and ground displacements exceeding ~20 cm, point positioning alone is shown to provide very rapid and robust estimates of the location and amplitude of both dynamic strong ground motion and permanent deformation. Raw phase and range observables from stations throughout Cascadia are being processed in real time at JPL and CWU into station positions, which in turn are analyzed also in real-time for earthquake processes at CWU. Our efforts can be broken down into three distinct areas: 1) Real-time point-positioning methodologies, 2) a data aggregator that captures real-time position streams from a variety of processing centers and methodologies (JPL RTGipsy, CWU rtPP, Trimble VRS) and re-streams the data as configurable streams to application clients out anywhere on the web, and 3) a suite of analysis tools that operate on the real-time position streams, including plotting, vectors, peak ground deformation contouring, and finite-fault inversions. This suite is currently bundled within a single client written in JAVA, called 'GPS Cockpit.'

  2. REAL TIME SYSTEM OPERATIONS 2006-2007

    SciTech Connect

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    2008-08-15

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stability monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.

  3. Real-time, high frequency QRS electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2006-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as RAZs. RAZs are displayed as go, no-go signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  4. Characterization of real-time computers

    NASA Technical Reports Server (NTRS)

    Shin, K. G.; Krishna, C. M.

    1984-01-01

    A real-time system consists of a computer controller and controlled processes. Despite the synergistic relationship between these two components, they have been traditionally designed and analyzed independently of and separately from each other; namely, computer controllers by computer scientists/engineers and controlled processes by control scientists. As a remedy for this problem, in this report real-time computers are characterized by performance measures based on computer controller response time that are: (1) congruent to the real-time applications, (2) able to offer an objective comparison of rival computer systems, and (3) experimentally measurable/determinable. These measures, unlike others, provide the real-time computer controller with a natural link to controlled processes. In order to demonstrate their utility and power, these measures are first determined for example controlled processes on the basis of control performance functionals. They are then used for two important real-time multiprocessor design applications - the number-power tradeoff and fault-masking and synchronization.

  5. INTA-SAR real-time processor

    SciTech Connect

    Gomez, B.; Leon, J.

    1996-10-01

    This paper presents the INTASAR real time processor development based on a DSP open architecture for processing Synthetic Aperture Radar (SAR) signal. The final designed architecture must consider three different constraints sources: (a) SAR signal characteristics : high dynamic range, and complex SAR imaging algorithms with high computational load (multiprocessing is convenient). (b) Flexible: in connectivity and algorithms to be programmed. (c) Suitable: for on-board and ground working. The real time constraints will be defined by the image acquisition time, within it the INTASAR system will process the rawdata image and finally presents the results in the system monitor. At ground, however, the real time processing is not a constraint, but the high quality image is. The first algorithm implemented in the system was a Range - Doppler one. With the multiprocessor architecture selected, a pipeline processing method is used. 17 refs., 4 figs., 2 tabs.

  6. Real-Time Gauge/Gravity Duality

    SciTech Connect

    Skenderis, Kostas; Rees, Balt C. van

    2008-08-22

    We present a general prescription for the holographic computation of real-time n-point functions in nontrivial states. In quantum field theory such real-time computations involve a choice of a time contour in the complex time plane. The holographic prescription amounts to 'filling in' this contour with bulk solutions: real segments of the contour are filled in with Lorentzian solutions while imaginary segments are filled in with Riemannian solutions and appropriate matching conditions are imposed at the corners of the contour. We illustrate the general discussion by computing the 2-point function of a scalar operator using this prescription and by showing that this leads to an unambiguous answer with the correct i{epsilon} insertions.

  7. Quantitative Real-Time PCR: Recent Advances.

    PubMed

    Singh, Charanjeet; Roy-Chowdhuri, Sinchita

    2016-01-01

    Quantitative real-time polymerase chain reaction is a technique for simultaneous amplification and product quantification of a target DNA as the process takes place in real time in a "closed-tube" system. Although this technique can provide an absolute quantification of the initial template copy number, quantification relative to a control sample or second sequence is typically adequate. The quantification process employs melting curve analysis and/or fluorescent detection systems and can provide amplification and genotyping in a relatively short time. Here we describe the properties and uses of various fluorescent detection systems used for quantification. PMID:26843055

  8. Real-time Enhanced Vision System

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Rahman, Zia-Ur; Jobson, Daniel J.; Woodell, Glenn A.; Harrah, Steven D.

    2005-01-01

    Flying in poor visibility conditions, such as rain, snow, fog or haze, is inherently dangerous. However these conditions can occur at nearly any location, so inevitably pilots must successfully navigate through them. At NASA Langley Research Center (LaRC), under support of the Aviation Safety and Security Program Office and the Systems Engineering Directorate, we are developing an Enhanced Vision System (EVS) that combines image enhancement and synthetic vision elements to assist pilots flying through adverse weather conditions. This system uses a combination of forward-looking infrared and visible sensors for data acquisition. A core function of the system is to enhance and fuse the sensor data in order to increase the information content and quality of the captured imagery. These operations must be performed in real-time for the pilot to use while flying. For image enhancement, we are using the LaRC patented Retinex algorithm since it performs exceptionally well for improving low-contrast range imagery typically seen during poor visibility conditions. In general, real-time operation of the Retinex requires specialized hardware. To date, we have successfully implemented a single-sensor real-time version of the Retinex on several different Digital Signal Processor (DSP) platforms. In this paper we give an overview of the EVS and its performance requirements for real-time enhancement and fusion and we discuss our current real-time Retinex implementations on DSPs.

  9. Real-time enhanced vision system

    NASA Astrophysics Data System (ADS)

    Hines, Glenn D.; Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.; Harrah, Steven D.

    2005-05-01

    Flying in poor visibility conditions, such as rain, snow, fog or haze, is inherently dangerous. However these conditions can occur at nearly any location, so inevitably pilots must successfully navigate through them. At NASA Langley Research Center (LaRC), under support of the Aviation Safety and Security Program Office and the Systems Engineering Directorate, we are developing an Enhanced Vision System (EVS) that combines image enhancement and synthetic vision elements to assist pilots flying through adverse weather conditions. This system uses a combination of forward-looking infrared and visible sensors for data acquisition. A core function of the system is to enhance and fuse the sensor data in order to increase the information content and quality of the captured imagery. These operations must be performed in real-time for the pilot to use while flying. For image enhancement, we are using the LaRC patented Retinex algorithm since it performs exceptionally well for improving low-contrast range imagery typically seen during poor visibility poor visibility conditions. In general, real-time operation of the Retinex requires specialized hardware. To date, we have successfully implemented a single-sensor real-time version of the Retinex on several different Digital Signal Processor (DSP) platforms. In this paper we give an overview of the EVS and its performance requirements for real-time enhancement and fusion and we discuss our current real-time Retinex implementations on DSPs.

  10. Hard Real-Time: C++ Versus RTSJ

    NASA Technical Reports Server (NTRS)

    Dvorak, Daniel L.; Reinholtz, William K.

    2004-01-01

    In the domain of hard real-time systems, which language is better: C++ or the Real-Time Specification for Java (RTSJ)? Although ordinary Java provides a more productive programming environment than C++ due to its automatic memory management, that benefit does not apply to RTSJ when using NoHeapRealtimeThread and non-heap memory areas. As a result, RTSJ programmers must manage non-heap memory explicitly. While that's not a deterrent for veteran real-time programmers-where explicit memory management is common-the lack of certain language features in RTSJ (and Java) makes that manual memory management harder to accomplish safely than in C++. This paper illustrates the problem for practitioners in the context of moving data and managing memory in a real-time producer/consumer pattern. The relative ease of implementation and safety of the C++ programming model suggests that RTSJ has a struggle ahead in the domain of hard real-time applications, despite its other attractive features.

  11. Feedback as Real-Time Constructions

    ERIC Educational Resources Information Center

    Keiding, Tina Bering; Qvortrup, Ane

    2014-01-01

    This article offers a re-description of feedback and the significance of time in feedback constructions based on systems theory. It describes feedback as internal, real-time constructions in a learning system. From this perspective, feedback is neither immediate nor delayed, but occurs in the very moment it takes place. This article argues for a…

  12. Time of flight mass spectrometer

    DOEpatents

    Ulbricht, Jr., William H.

    1984-01-01

    A time-of-flight mass spectrometer is described in which ions are desorbed from a sample by nuclear fission fragments, such that desorption occurs at the surface of the sample impinged upon by the fission fragments. This configuration allows for the sample to be of any thickness, and eliminates the need for complicated sample preparation.

  13. Real-Time Visualization of Tissue Ischemia

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Chrien, Thomas D. (Inventor); Eastwood, Michael L. (Inventor)

    2000-01-01

    A real-time display of tissue ischemia which comprises three CCD video cameras, each with a narrow bandwidth filter at the correct wavelength is discussed. The cameras simultaneously view an area of tissue suspected of having ischemic areas through beamsplitters. The output from each camera is adjusted to give the correct signal intensity for combining with, the others into an image for display. If necessary a digital signal processor (DSP) can implement algorithms for image enhancement prior to display. Current DSP engines are fast enough to give real-time display. Measurement at three, wavelengths, combined into a real-time Red-Green-Blue (RGB) video display with a digital signal processing (DSP) board to implement image algorithms, provides direct visualization of ischemic areas.

  14. Durham adaptive optics real-time controller.

    PubMed

    Basden, Alastair; Geng, Deli; Myers, Richard; Younger, Eddy

    2010-11-10

    The Durham adaptive optics (AO) real-time controller was initially a proof of concept design for a generic AO control system. It has since been developed into a modern and powerful central-processing-unit-based real-time control system, capable of using hardware acceleration (including field programmable gate arrays and graphical processing units), based primarily around commercial off-the-shelf hardware. It is powerful enough to be used as the real-time controller for all currently planned 8 m class telescope AO systems. Here we give details of this controller and the concepts behind it, and report on performance, including latency and jitter, which is less than 10 μs for small AO systems. PMID:21068868

  15. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, P.P.; Smatlak, D.L.; Cohn, D.R.; Wittle, J.K.; Titus, C.H.; Surma, J.E.

    1995-12-26

    Microwave-induced plasma is described for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. 3 figs.

  16. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, Paul P.; Smatlak, Donna L.; Cohn, Daniel R.; Wittle, J. Kenneth; Titus, Charles H.; Surma, Jeffrey E.

    1995-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.

  17. Real-Time Sensor Validation System Developed

    NASA Technical Reports Server (NTRS)

    Zakrajsek, June F.

    1998-01-01

    Real-time sensor validation improves process monitoring and control system dependability by ensuring data integrity through automated detection of sensor data failures. The NASA Lewis Research Center, Expert Microsystems, and Intelligent Software Associates have developed an innovative sensor validation system that can automatically detect automated sensor failures in real-time for all types of mission-critical systems. This system consists of a sensor validation network development system and a real-time kernel. The network development system provides tools that enable systems engineers to automatically generate software that can be embedded within an application. The sensor validation methodology captured by these tools can be scaled to validate any number of sensors, and permits users to specify system sensitivity. The resulting software reliably detects all types of sensor data failures.

  18. Real-time cardiac MRI using DSP's.

    PubMed

    Morgan, P N; Iannuzzelli, R J; Epstein, F H; Balaban, R S

    1999-07-01

    A real-time cardiac magnetic resonance imaging (MRI) system has been implemented using digital signal processing (DSP) technology. The system enables real-time acquisition, processing, and display of ungated cardiac movies at moderate video rates of 20 images/s. A custom graphical user interface (GUI) provides interactive control of data acquisition parameters and image display functions. Images can be compressed into moving-picture experts group (MPEG) movies, but are displayed on the console without compression during the scan. Compared to existing real-time MRI systems, implementation with DSP's allows rapid parallel computations, fast data transfers, and greater system flexibility, including the ability to scale to multiple channels, at the expense of somewhat higher component cost. PMID:10504098

  19. Network protocols for real-time applications

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.

    1987-01-01

    The Fiber Distributed Data Interface (FDDI) and the SAE AE-9B High Speed Ring Bus (HSRB) are emerging standards for high-performance token ring local area networks. FDDI was designed to be a general-purpose high-performance network. HSRB was designed specifically for military real-time applications. A workshop was conducted at NASA Ames Research Center in January, 1987 to compare and contrast these protocols with respect to their ability to support real-time applications. This report summarizes workshop presentations and includes an independent comparison of the two protocols. A conclusion reached at the workshop was that current protocols for the upper layers of the Open Systems Interconnection (OSI) network model are inadequate for real-time applications.

  20. Real-time hyperspectral detection and cuing

    NASA Astrophysics Data System (ADS)

    Stellman, Christopher M.; Hazel, Geoff; Bucholtz, Frank; Michalowicz, Joseph V.; Stocker, Alan D.; Schaaf, William

    2000-07-01

    The Dark HORSE 1 (Hyperspectral Overhead Reconnaissance and Surveillance Experiment 1) flight test has demonstrated autonomous, real-time visible hyperspectral detection of military ground targets with real-time cuing of a high- resolution framing camera. An overview of the Dark HORSE 1 hyperspectral sensor system is presented. The system hardware components are described in detail, with an emphasis on the visible hyperspectral sensor and the real- time processor. Descriptions of system software and processing methods are also provided. The recent field experiment in which the Dark HORSE 1 system was employed is described in detail along with an analysis of the collected data. The results evince per-pixel false-alarm rates on the order of 10-5/km2, and demonstrate the improved performance obtained by operating two detection algorithms simultaneously.

  1. Real Time Linux - The RTOS for Astronomy?

    NASA Astrophysics Data System (ADS)

    Daly, P. N.

    The BoF was attended by about 30 participants and a free CD of real time Linux-based upon RedHat 5.2-was available. There was a detailed presentation on the nature of real time Linux and the variants for hard real time: New Mexico Tech's RTL and DIAPM's RTAI. Comparison tables between standard Linux and real time Linux responses to time interval generation and interrupt response latency were presented (see elsewhere in these proceedings). The present recommendations are to use RTL for UP machines running the 2.0.x kernels and RTAI for SMP machines running the 2.2.x kernel. Support, both academically and commercially, is available. Some known limitations were presented and the solutions reported e.g., debugging and hardware support. The features of RTAI (scheduler, fifos, shared memory, semaphores, message queues and RPCs) were described. Typical performance statistics were presented: Pentium-based oneshot tasks running > 30kHz, 486-based oneshot tasks running at ~ 10 kHz, periodic timer tasks running in excess of 90 kHz with average zero jitter peaking to ~ 13 mus (UP) and ~ 30 mus (SMP). Some detail on kernel module programming, including coding examples, were presented showing a typical data acquisition system generating simulated (random) data writing to a shared memory buffer and a fifo buffer to communicate between real time Linux and user space. All coding examples were complete and tested under RTAI v0.6 and the 2.2.12 kernel. Finally, arguments were raised in support of real time Linux: it's open source, free under GPL, enables rapid prototyping, has good support and the ability to have a fully functioning workstation capable of co-existing hard real time performance. The counter weight-the negatives-of lack of platforms (x86 and PowerPC only at present), lack of board support, promiscuous root access and the danger of ignorance of real time programming issues were also discussed. See ftp://orion.tuc.noao.edu/pub/pnd/rtlbof.tgz for the StarOffice overheads

  2. Making Real-Time Data "Real" for General Interest Users

    NASA Astrophysics Data System (ADS)

    Hotaling, L.

    2003-04-01

    Helping educators realize the benefits of integrating technology into curricula to effectively engage student learning and improve student achievement, particularly in science and mathematics, is the core mission of the Center for Improved Engineering and Science Education (CIESE). To achieve our mission, we focus on projects utilizing real-time data available from the Internet, and collaborative projects utilizing the Internet's potential to reach peers and experts around the world. As a member of the Mid-Atlantic Center for Ocean Sciences Education Excellence (COSEE), the Center for Improved Engineering and Science Education (CIESE), is committed to delivering relevant ocean science education to diverse audiences, including K-12 teachers, students, coastal managers, families and tourists. The highest priority of the Mid-Atlantic COSEE is to involve scientists and educators in the translation of data and information from the coastal observatories into instructional materials and products usable by educators and the public. A combination of three regional observing systems, the New Jersey Shelf Observing System (NJSOS), Chesapeake Bay Observing System (CBOS), and the York River observing system will provide the scientific backbone for an integrated program of science and education that improves user access to, and understanding of, modern ocean science and how it affects our daily lives. At present, the Mid-Atlantic COSEE offers three projects that enable users to apply and validate scientific concepts to real world situations. (1) The Gulf Stream Voyage is an online multidisciplinary project that utilizes both real-time data and primary source materials to help guide students to discover the science and history of the Gulf Stream current. (2) C.O.O.L. Classroom is an online project that utilizes concepts and real-time data collected through the NJSOS. The C.O.O.L. Classroom is based on the concept of the Rutgers-IMCS Coastal Ocean Observation Laboratory, a real

  3. Machine vision for real time orbital operations

    NASA Technical Reports Server (NTRS)

    Vinz, Frank L.

    1988-01-01

    Machine vision for automation and robotic operation of Space Station era systems has the potential for increasing the efficiency of orbital servicing, repair, assembly and docking tasks. A machine vision research project is described in which a TV camera is used for inputing visual data to a computer so that image processing may be achieved for real time control of these orbital operations. A technique has resulted from this research which reduces computer memory requirements and greatly increases typical computational speed such that it has the potential for development into a real time orbital machine vision system. This technique is called AI BOSS (Analysis of Images by Box Scan and Syntax).

  4. Automated real-time software development

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Walker, Carrie K.; Turkovich, John J.

    1993-01-01

    A Computer-Aided Software Engineering (CASE) system has been developed at the Charles Stark Draper Laboratory (CSDL) under the direction of the NASA Langley Research Center. The CSDL CASE tool provides an automated method of generating source code and hard copy documentation from functional application engineering specifications. The goal is to significantly reduce the cost of developing and maintaining real-time scientific and engineering software while increasing system reliability. This paper describes CSDL CASE and discusses demonstrations that used the tool to automatically generate real-time application code.

  5. Axial Tomography from Digitized Real Time Radiography

    DOE R&D Accomplishments Database

    Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.

    1985-01-18

    Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.

  6. Software Package For Real-Time Graphics

    NASA Technical Reports Server (NTRS)

    Malone, Jacqueline C.; Moore, Archie L.

    1991-01-01

    Software package for master graphics interactive console (MAGIC) at Western Aeronautical Test Range (WATR) of NASA Ames Research Center provides general-purpose graphical display system for real-time and post-real-time analysis of data. Written in C language and intended for use on workstation of interactive raster imaging system (IRIS) equipped with level-V Unix operating system. Enables flight researchers to create their own displays on basis of individual requirements. Applicable to monitoring of complicated processes in chemical industry.

  7. Real-Time, Interactive Sonic Boom Display

    NASA Technical Reports Server (NTRS)

    Haering, Jr., Edward A. (Inventor); Plotkin, Kenneth J. (Inventor)

    2012-01-01

    The present invention is an improved real-time, interactive sonic boom display for aircraft. By using physical properties obtained via various sensors and databases, the invention determines, in real-time, sonic boom impacts locations and intensities for aircraft traveling at supersonic speeds. The information is provided to a pilot via a display that lists a selectable set of maneuvers available to the pilot to mitigate sonic boom issues. Upon selection of a maneuver, the information as to the result of the maneuver is displayed and the pilot may proceed with making the maneuver, or provide new data to the system in order to calculate a different maneuver.

  8. Real-Time Occupancy Change Analyzer

    Energy Science and Technology Software Center (ESTSC)

    2005-03-30

    The Real-Time Occupancy Change Analyzer (ROCA) produces an occupancy grid map of an environment around the robot, scans the environment to generate a current obstacle map relative to a current robot position, and converts the current obstacle map to a current occupancy grid map. Changes in the occupancy grid can be reported in real time to support a number of tracking capabilities. The benefit of ROCA is that rather than only providing a vector tomore » the detected change, it provides the actual x,y position of the change.« less

  9. Mass assembly through cosmic time

    NASA Astrophysics Data System (ADS)

    Bundy, K.

    2016-06-01

    Structure in the universe is expected to grow hierarchically, with smaller systems merging to form larger ones as a function of time. Various galaxy formation models predict that hierarchical growth is also relevant for the galaxy distribution as characterized by stellar mass, but attempts to confirm this observationally have been challenging. While many studies agree that massive galaxies have grown significantly in size (factors of 5-6) since redshifts of 2-3, no evidence for corresponding growth in stellar mass has been detected, in large part due to statistical limitations from the small volumes probed by redshift surveys. Using the 140 square degree Stripe 82 Massive Galaxy Catalog, I report new constraints on high-mass growth histories since z=0.65 with unprecedented statistics. Remarkably, no convincing evidence for growth is detected. I discuss possible explanations, including the effects of tidal stripping and the growth of outer components which may have gone undetected in past imaging data sets.

  10. OPAD-EDIFIS Real-Time Processing

    NASA Technical Reports Server (NTRS)

    Katsinis, Constantine

    1997-01-01

    The Optical Plume Anomaly Detection (OPAD) detects engine hardware degradation of flight vehicles through identification and quantification of elemental species found in the plume by analyzing the plume emission spectra in a real-time mode. Real-time performance of OPAD relies on extensive software which must report metal amounts in the plume faster than once every 0.5 sec. OPAD software previously written by NASA scientists performed most necessary functions at speeds which were far below what is needed for real-time operation. The research presented in this report improved the execution speed of the software by optimizing the code without changing the algorithms and converting it into a parallelized form which is executed in a shared-memory multiprocessor system. The resulting code was subjected to extensive timing analysis. The report also provides suggestions for further performance improvement by (1) identifying areas of algorithm optimization, (2) recommending commercially available multiprocessor architectures and operating systems to support real-time execution and (3) presenting an initial study of fault-tolerance requirements.

  11. Complete chemical analysis of aerosol particles in real-time

    SciTech Connect

    Yang, Mo; Reilly, P.T.A.; Gieray, R.A.; Whitten, W.B.; Ramsey, J.M.

    1996-12-31

    Real-time mass spectrometry of individual aerosol particles using an ion trap mass spectrometer is described. The microparticles are sampled directly from the air by a particle inlet system into the vacuum chamber. An incoming particle is detected as it passes through two CW laser beams and a pulsed laser is triggered to intercept the particle for laser ablation ionization at the center of the ion trap. The produced ions are analyzed by the ion trap mass spectrometer. Ions of interest are selected and dissociated through collision with buffer gas atoms for further fragmentation analysis. Real-time chemical analyses of inorganic, organic, and bacterial aerosol articles have been demonstrated. It has been confirmed that the velocity and the size of the incoming particles highly correlate to each other. The performance of the inlet system, particle detection, and preliminary results are discussed.

  12. Steerable real-time sonographically guided needle biopsy.

    PubMed

    Buonocore, E; Skipper, G J

    1981-02-01

    A method for dynamic real-time ultrasonic guidance for percutaneous needle biopsy has been successful in obtaining cytologic and histologic specimens from abdominal masses. The system depends on a real-time ultrasonic transducer that has been rigidly attached to a laterally placed steerable needle holder. Using simple trigonometric functions, a chart has been derived that gives the exact angulation and needle length to produce quick, reliable, guided needle placements. Examples of successful renal, hepatobiliary, and retroperitoneal biopsies are presented. Advantages of this technique include speed, accuracy, low cost, three-dimensional format, and the omission of contrast media and radiation. PMID:6781264

  13. The Real Time Display Builder (RTDB)

    NASA Technical Reports Server (NTRS)

    Kindred, Erick D.; Bailey, Samuel A., Jr.

    1989-01-01

    The Real Time Display Builder (RTDB) is a prototype interactive graphics tool that builds logic-driven displays. These displays reflect current system status, implement fault detection algorithms in real time, and incorporate the operational knowledge of experienced flight controllers. RTDB utilizes an object-oriented approach that integrates the display symbols with the underlying operational logic. This approach allows the user to specify the screen layout and the driving logic as the display is being built. RTDB is being developed under UNIX in C utilizing the MASSCOMP graphics environment with appropriate functional separation to ease portability to other graphics environments. RTDB grew from the need to develop customized real-time data-driven Space Shuttle systems displays. One display, using initial functionality of the tool, was operational during the orbit phase of STS-26 Discovery. RTDB is being used to produce subsequent displays for the Real Time Data System project currently under development within the Mission Operations Directorate at NASA/JSC. The features of the tool, its current state of development, and its applications are discussed.

  14. Real Time Grid Reliability Management 2005

    SciTech Connect

    Eto, Joe; Eto, Joe; Lesieutre, Bernard; Lewis, Nancy Jo; Parashar, Manu

    2008-07-07

    The increased need to manage California?s electricity grid in real time is a result of the ongoing transition from a system operated by vertically-integrated utilities serving native loads to one operated by an independent system operator supporting competitive energy markets. During this transition period, the traditional approach to reliability management -- construction of new transmission lines -- has not been pursued due to unresolved issues related to the financing and recovery of transmission project costs. In the absence of investments in new transmission infrastructure, the best strategy for managing reliability is to equip system operators with better real-time information about actual operating margins so that they can better understand and manage the risk of operating closer to the edge. A companion strategy is to address known deficiencies in offline modeling tools that are needed to ground the use of improved real-time tools. This project: (1) developed and conducted first-ever demonstrations of two prototype real-time software tools for voltage security assessment and phasor monitoring; and (2) prepared a scoping study on improving load and generator response models. Additional funding through two separate subsequent work authorizations has already been provided to build upon the work initiated in this project.

  15. Real-Time Operating System/360

    NASA Technical Reports Server (NTRS)

    Hoffman, R. L.; Kopp, R. S.; Mueller, H. H.; Pollan, W. D.; Van Sant, B. W.; Weiler, P. W.

    1969-01-01

    RTOS has a cost savings advantage for real-time applications, such as those with random inputs requiring a flexible data routing facility, display systems simplified by a device independent interface language, and complex applications needing added storage protection and data queuing.

  16. The Power of Real-Time PCR

    ERIC Educational Resources Information Center

    Valasek, Mark A.; Repa, Joyce J.

    2005-01-01

    In recent years, real-time polymerase chain reaction (PCR) has emerged as a robust and widely used methodology for biological investigation because it can detect and quantify very small amounts of specific nucleic acid sequences. As a research tool, a major application of this technology is the rapid and accurate assessment of changes in gene…

  17. Real-Time Multidetector Neutron Spectrometer

    NASA Astrophysics Data System (ADS)

    Drejzin, V. E.; Grimov, A. A.; Logvinov, D. I.

    2016-07-01

    We explain a new approach to constructing a real-time neutron spectrometer, using several detectors with different spectral characteristics and coprocessing the data using a pre-trained neural network. We present the results of simulation and experimental studies on a prototype, demonstrating the effectiveness of this approach.

  18. Real-time distributed multimedia systems

    SciTech Connect

    Rahurkar, S.S.; Bourbakis, N.G.

    1996-12-31

    This paper presents a survey on distributed multimedia systems and discusses real-time issues. In particular, different subsystems are reviewed that impact on multimedia networking, the networking for multimedia, the networked multimedia systems, and the leading edge research and developments efforts and issues in networking.

  19. Real time solar magnetograph Skylab mission Atlas

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Cumings, N. P.

    1975-01-01

    An atlas of all magnetic field observations made during the Skylab missions with the Real Time Solar Magnetograph system located at the Marshall Space Flight Center is presented. Also included are a description of the system and its operation; an outline of the data reductions performed; and a discussion of probable errors, noise, magnetic sensitivity, and system reliability.

  20. Real-Time Blackboards For Sensor Fusions

    NASA Astrophysics Data System (ADS)

    Johnson, Donald H.; Shaw, Scott W.; Reynolds, Steven; Himayat, Nageen

    1989-09-01

    Multi-sensor fusion, at the most basic level, can be cast into a concise, elegant model. Reality demands, however, that this model be modified and augmented. These modifications often result in software systems that are confusing in function and difficult to debug. This problem can be ameliorated by adopting an object-oriented, data-flow programming style. For real-time applications, this approach simplifies data communications and storage management. The concept of object-oriented, data-flow programming is conveniently embodied in the black-board style of software architecture. Blackboard systems allow diverse programs access to a central data base. When the blackboard is described as an object, it can be distributed over multiple processors for real-time applications. Choosing the appropriate parallel architecture is the subject of ongoing research. A prototype blackboard has been constructed to fuse optical image regions and Doppler radar events. The system maintains tracks of simulated targets in real time. The results of this simulation have been used to direct further research on real-time blackboard systems.

  1. Real-time optoacoustic monitoring during thermotherapy

    NASA Astrophysics Data System (ADS)

    Esenaliev, Rinat O.; Larina, Irina V.; Larin, Kirill V.; Motamedi, Massoud

    2000-05-01

    Optoacoustic monitoring of tissue optical properties and speed of sound in real time can provide fast and accurate feedback information during thermotherapy performed with various heating or cooling agents. Amplitude and temporal characteristics of optoacoustic pressure waves are dependent on tissue properties. Detection and measurement of the optoacoustic waves may be used to monitor the extent of tissue hyperthermia, coagulation, or freezing with high resolution and contrast. We studied real-time optoacoustic monitoring of thermal coagulation induced by conductive heating and laser radiation and cryoablation with liquid nitrogen. Q-switched Nd:YAG laser pulses were used as probing radiation to induce optoacoustic waves in tissues. Dramatic changes in optoacoustic signal parameters were detected during tissue freezing and coagulation due to sharp changes in tissue properties. The dimensions of thermally- induced lesions were measured in real time with the optoacoustic technique. Our studies demonstrated that the laser optoacoustic technique is capable of real-time monitoring of tissue coagulation and freezing front with submillimeter spatial resolution. This may allow accurate thermal ablation or cryotherapy of malignant and benign lesions with minimal damage to normal tissues.

  2. Solar neutrinos: Real-time experiments

    NASA Astrophysics Data System (ADS)

    Totsuka, Yoji

    1993-04-01

    This report outlines the principle of real-time solar neutrino detection experiments by detecting electrons with suitable target material, via Charged-Current (CC) reaction using conventional counting techniques developed in high-energy physics. Only B-8 neutrinos can be detected by minimum detectable energy of several MeV. The MSW (Mikheyev, Smirnov, Wolfenstein) effect not only distorts the energy spectrum but also induces new type of neutrinos, i.e. mu-neutrinos or tau-neutrinos. These neutrinos do not participate in the CC reaction. Therefore real-time experiment is to be sensitive to Neutral Current (NC) reactions. It is a challenge to eliminate environment background as much as possible and to lower the minimum detectable energy to several 100 keV, which will enable observation of Be-7 neutrinos. Target particles of real-time experiments currently running and under construction or planning are electron, deuteron, or argon. The relevant reactions corresponding to CC reaction and some relevant comments on the following targets are described: (1) electron target; (2) deuteron target; and (3) argon target. On-going experiment and future experiments for real-time neutron detection are also outlined.

  3. REAL TIME CONTROL OF URBAN DRAINAGE NETWORKS

    EPA Science Inventory

    Real-time control (RTC) is a custom-designed, computer-assisted management technology for a specific sewerage network to meet the operational objectives of its collection/conveyance system. RTC can operate in several modes, including a mode that is activated during a wet weather ...

  4. [Real-time ultrasonography in neonatal diagnosis].

    PubMed

    Nogués, A; Morales, A; Munguía, C; Pagola, C; Arena, J

    1982-11-01

    Real time ultrasonography is a diagnostic technique very widely used in pediatrics and with specific applications in neonatology. Bedside its use in Neonatal I.C.U. it has many interesting aspects for intraabdominal and intracranial pathology. In some particular conditions this procedure can be the first diagnostic tool. Conventional X-rays can be performed after sonographic data have been analyzed. PMID:7168508

  5. ALMA Correlator Real-Time Data Processor

    NASA Astrophysics Data System (ADS)

    Pisano, J.; Amestica, R.; Perez, J.

    2005-10-01

    The design of a real-time Linux application utilizing Real-Time Application Interface (RTAI) to process real-time data from the radio astronomy correlator for the Atacama Large Millimeter Array (ALMA) is described. The correlator is a custom-built digital signal processor which computes the cross-correlation function of two digitized signal streams. ALMA will have 64 antennas with 2080 signal streams each with a sample rate of 4 giga-samples per second. The correlator's aggregate data output will be 1 gigabyte per second. The software is defined by hard deadlines with high input and processing data rates, while requiring interfaces to non real-time external computers. The designed computer system - the Correlator Data Processor or CDP, consists of a cluster of 17 SMP computers, 16 of which are compute nodes plus a master controller node all running real-time Linux kernels. Each compute node uses an RTAI kernel module to interface to a 32-bit parallel interface which accepts raw data at 64 megabytes per second in 1 megabyte chunks every 16 milliseconds. These data are transferred to tasks running on multiple CPUs in hard real-time using RTAI's LXRT facility to perform quantization corrections, data windowing, FFTs, and phase corrections for a processing rate of approximately 1 GFLOPS. Highly accurate timing signals are distributed to all seventeen computer nodes in order to synchronize them to other time-dependent devices in the observatory array. RTAI kernel tasks interface to the timing signals providing sub-millisecond timing resolution. The CDP interfaces, via the master node, to other computer systems on an external intra-net for command and control, data storage, and further data (image) processing. The master node accesses these external systems utilizing ALMA Common Software (ACS), a CORBA-based client-server software infrastructure providing logging, monitoring, data delivery, and intra-computer function invocation. The software is being developed in tandem

  6. Real-time air monitoring of mustard gas and Lewisite 1 by detecting their in-line reaction products by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow ion introduction.

    PubMed

    Okumura, Akihiko; Takada, Yasuaki; Watanabe, Susumu; Hashimoto, Hiroaki; Ezawa, Naoya; Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Kondo, Tomohide; Nagashima, Hisayuki; Nagoya, Tomoki

    2015-01-20

    A new method enabling sensitive real-time air monitoring of highly reactive chemical warfare agents, namely, mustard gas (HD) and Lewisite 1 (L1), by detecting ions of their in-line reaction products instead of intact agents, is proposed. The method is based on corona discharge-initiated atmospheric pressure chemical ionization coupled with ion trap tandem mass spectrometry (MS(n)) via counterflow ion introduction. Therefore, it allows for highly sensitive and specific real-time detection of a broad range of airborne compounds. In-line chemical reactions, ionization reactions, and ion fragmentations of these agents were investigated. Mustard gas is oxygenated in small quantity by reactive oxygen species generated in the corona discharge. With increasing air humidity, the MS(2) signal intensity of protonated molecules of mono-oxygenated HD decreases but exceeds that of dominantly existing intact HD. This result can be explained in view of proton affinity. Lewisite 1 is hydrolyzed and oxidized. As the humidity increases from zero, the signal of the final product, namely, didechlorinated, dihydroxylated, and mono-oxygenated L1, quickly increases and reaches a plateau, giving the highest MS(2) and MS(3) signals among those of L1 and its reaction products. The addition of minimal moisture gives the highest signal intensity, even under low humidity. The method was demonstrated to provide sufficient analytical performance to meet the requirements concerning hygienic management and counter-terrorism. It will be the first practical method, in view of sensitivity and specificity, for real-time air monitoring of HD and L1 without sample pretreatment. PMID:25553788

  7. Real Time Radiation Monitoring Using Nanotechnology

    NASA Technical Reports Server (NTRS)

    Li, Jing (Inventor); Wilkins, Richard T. (Inventor); Hanratty, James J. (Inventor); Lu, Yijiang (Inventor)

    2016-01-01

    System and method for monitoring receipt and estimating flux value, in real time, of incident radiation, using two or more nanostructures (NSs) and associated terminals to provide closed electrical paths and to measure one or more electrical property change values .DELTA.EPV, associated with irradiated NSs, during a sequence of irradiation time intervals. Effects of irradiation, without healing and with healing, of the NSs, are separately modeled for first order and second order healing. Change values.DELTA.EPV are related to flux, to cumulative dose received by NSs, and to radiation and healing effectivity parameters and/or.mu., associated with the NS material and to the flux. Flux and/or dose are estimated in real time, based on EPV change values, using measured .DELTA.EPV values. Threshold dose for specified changes of biological origin (usually undesired) can be estimated. Effects of time-dependent radiation flux are analyzed in pre-healing and healing regimes.

  8. Real Time Radiation Exposure And Health Risks

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Barzilla, Janet E.; Semones, Edward J.

    2015-01-01

    Radiation from solar particle events (SPEs) poses a serious threat to future manned missions outside of low Earth orbit (LEO). Accurate characterization of the radiation environment in the inner heliosphere and timely monitoring the health risks to crew are essential steps to ensure the safety of future Mars missions. In this project we plan to develop an approach that can use the particle data from multiple satellites and perform near real-time simulations of radiation exposure and health risks for various exposure scenarios. Time-course profiles of dose rates will be calculated with HZETRN and PDOSE from the energy spectrum and compositions of the particles archived from satellites, and will be validated from recent radiation exposure measurements in space. Real-time estimation of radiation risks will be investigated using ARRBOD. This cross discipline integrated approach can improve risk mitigation by providing critical information for risk assessment and medical guidance to crew during SPEs.

  9. Detection and Quantification of Benzothiazoles in Exhaled Breath and Exhaled Breath Condensate by Real-Time Secondary Electrospray Ionization-High-Resolution Mass Spectrometry and Ultra-High Performance Liquid Chromatography.

    PubMed

    García-Gómez, Diego; Bregy, Lukas; Nussbaumer-Ochsner, Yvonne; Gaisl, Thomas; Kohler, Malcolm; Zenobi, Renato

    2015-10-20

    2-Subtituted benzothiazoles are widely used industrial chemicals whose occurrence in environmental samples has been shown to be ubiquitous. However, knowledge about human exposure to these compounds and their excretion route is still scarce. Here, we demonstrate for the first time the detection of benzothiazole derivatives in exhaled breath. Real-time analysis of breath was carried out by means of secondary electrospray ionization coupled to high-resolution mass spectrometry. This coupling allowed not only the detection of these compounds in breath with a sensitivity in the pptv range but also their robust identification by comparing tandem high-resolution mass spectra from breath and standards. For further confirmation, benzothiazoles were also determined in exhaled breath condensate samples by means of ultra high-performance liquid chromatography. This approach strengthened the identification as a result of excellent matches in retention times and also allowed quantification. An estimated total daily exhalation of ca. 20 μg day(-1) was calculated for the six benzothiazole derivatives found in breath. PMID:26390299

  10. Object detection in real-time

    NASA Astrophysics Data System (ADS)

    Solder, Ulrich; Graefe, Volker

    1991-03-01

    An algorithm working on monocular gray-scale image sequences for object detection combined with a road tracker is presented. This algorithm appropriate for the real-time demands of an autonomous car driving with speeds over 40 km/h may be used for triggering obstacle avoidance maneuvers such as coming to a safe stop automatically in front of an obstacle or following another car. Moving and static objects have been detected in real-world experiments on various types of roads even under unfavorable weather conditions. . Morgenthaler and

  11. Characterization and quantification of intact 26S proteasome proteins by real-time measurement of intrinsic fluorescence prior to top-down mass spectrometry.

    PubMed

    Russell, Jason D; Scalf, Mark; Book, Adam J; Ladror, Daniel T; Vierstra, Richard D; Smith, Lloyd M; Coon, Joshua J

    2013-01-01

    Quantification of gas-phase intact protein ions by mass spectrometry (MS) is impeded by highly-variable ionization, ion transmission, and ion detection efficiencies. Therefore, quantification of proteins using MS-associated techniques is almost exclusively done after proteolysis where peptides serve as proxies for estimating protein abundance. Advances in instrumentation, protein separations, and informatics have made large-scale sequencing of intact proteins using top-down proteomics accessible to the proteomics community; yet quantification of proteins using a top-down workflow has largely been unaddressed. Here we describe a label-free approach to determine the abundance of intact proteins separated by nanoflow liquid chromatography prior to MS analysis by using solution-phase measurements of ultraviolet light-induced intrinsic fluorescence (UV-IF). UV-IF is measured directly at the electrospray interface just prior to the capillary exit where proteins containing at least one tryptophan residue are readily detected. UV-IF quantification was demonstrated using commercially available protein standards and provided more accurate and precise protein quantification than MS ion current. We evaluated the parallel use of UV-IF and top-down tandem MS for quantification and identification of protein subunits and associated proteins from an affinity-purified 26S proteasome sample from Arabidopsis thaliana. We identified 26 unique proteins and quantified 13 tryptophan-containing species. Our analyses discovered previously unidentified N-terminal processing of the β6 (PBF1) and β7 (PBG1) subunit - such processing of PBG1 may generate a heretofore unknown additional protease active site upon cleavage. In addition, our approach permitted the unambiguous identification and quantification both isoforms of the proteasome-associated protein DSS1. PMID:23536786

  12. Real Time RF Simulator (RTS) and control

    SciTech Connect

    Cancelo, G.; Armiento, C.; Treptow, K.; Vignoni, A.; Zmuda, T.; /Fermilab

    2008-10-01

    The multi-cavity RTS allows LLRF algorithm development and lab testing prior to commissioning with real cavities and cryomodules. The RTS is a valuable tool since it models the functions, errors and disturbances of real RF systems. The advantage of a RTS over an off-line simulator is that it can be implemented on the actual LLRF hardware, on the same FPGA and processor, and run at the same speed of the LLRF control loop. Additionally the RTS can be shared by collaborators who do not have access to RF systems or when the systems are not available to LLRF engineers. The RTS simulator incorporates hardware, firmware and software errors and limitations of a real implementation, which would be hard to identify and time consuming to model in off-line simulations.

  13. Real Time Pricing and the Real Live Firm

    SciTech Connect

    Moezzi, Mithra; Goldman, Charles; Sezgen, Osman; Bharvirkar, Ranjit; Hopper, Nicole

    2004-05-26

    Energy economists have long argued the benefits of real time pricing (RTP) of electricity. Their basis for modeling customers response to short-term fluctuations in electricity prices are based on theories of rational firm behavior, where management strives to minimize operating costs and optimize profit, and labor, capital and energy are potential substitutes in the firm's production function. How well do private firms and public sector institutions operating conditions, knowledge structures, decision-making practices, and external relationships comport with these assumptions and how might this impact price response? We discuss these issues on the basis of interviews with 29 large (over 2 MW) industrial, commercial, and institutional customers in the Niagara Mohawk Power Corporation service territory that have faced day-ahead electricity market prices since 1998. We look at stories interviewees told about why and how they respond to RTP, why some customers report that they can't, and why even if they can, they don't. Some firms respond as theorized, and we describe their load curtailment strategies. About half of our interviewees reported that they were unable to either shift or forego electricity consumption even when prices are high ($0.50/kWh). Reasons customers gave for why they weren't price-responsive include implicit value placed on reliability, pricing structures, lack of flexibility in adjusting production inputs, just-in-time practices, perceived barriers to onsite generation, and insufficient time. We draw these observations into a framework that could help refine economic theory of dynamic pricing by providing real-world descriptions of how firms behave and why.

  14. Real Time Correction of Aircraft Flight Fonfiguration

    NASA Technical Reports Server (NTRS)

    Schipper, John F. (Inventor)

    2009-01-01

    Method and system for monitoring and analyzing, in real time, variation with time of an aircraft flight parameter. A time-dependent recovery band, defined by first and second recovery band boundaries that are spaced apart at at least one time point, is constructed for a selected flight parameter and for a selected time recovery time interval length .DELTA.t(FP;rec). A flight parameter, having a value FP(t=t.sub.p) at a time t=t.sub.p, is likely to be able to recover to a reference flight parameter value FP(t';ref), lying in a band of reference flight parameter values FP(t';ref;CB), within a time interval given by t.sub.p.ltoreq.t'.ltoreq.t.sub.p.DELTA.t(FP;rec), if (or only if) the flight parameter value lies between the first and second recovery band boundary traces.

  15. Real time gamma-ray signature identifier

    DOEpatents

    Rowland, Mark; Gosnell, Tom B.; Ham, Cheryl; Perkins, Dwight; Wong, James

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  16. Real-Time Seismology in Portugal

    NASA Astrophysics Data System (ADS)

    Custodio, S.; Marreiros, C.; Carvalho, S.; Vales, D.; Lima, V.; Carrilho, F.

    2012-12-01

    Portugal is located next to the plate boundary between Eurasia (Iberia) and Africa (Nubia). The country has been repeatedly affected by some of the largest earthquakes, both onshore and offshore, in the historical European record, including the largest historical European earthquake, the great Lisbon earthquake of 1755 (~M8.5). The Portuguese territory has suffered directly the consequences of strong ground shaking (collapse of buildings, etc) and also some of the most destructive consequences of earthquakes (e.g. tsunamis, fires, etc). However, the rate of tectonic deformation in the Portuguese territory is low (the Eurasian-African plates converge at a rate of ~ 5 mm/yr), which results in long recurrence intervals between earthquakes. This low to moderate rate of seismic activity has two major negative effects: 1) it is difficult to study the regional seismo-tectonics with traditional passive methods; 2) the population is little aware of earthquake risk and unprepared to react in case of disaster. In this scenario, real-time seismology is key to monitoring earthquake crisis in real-time, providing early warnings about potentially destructive events, and assisting in the channeling of recovery efforts in case of disaster. In this paper we will present the real-time algorithms implemented at Instituto de Meteorologia (IM), the institution responsible for seismic monitoring in Portugal. In particular, we will focus on the following aspects: 1) Data collection and real-time transmission to the headquarters. Broadband seismological stations are owned and operated by five different institutions. The last years have witnessed an effort for integration, and presently most data arrives at IM lab in real-time. 2) Earthquake location and local magnitude determination. Data is automatically analyzed in order to obtain a first earthquake hypocenter and ML. While this process is mostly automatic, it still requires the revision by an operator, who is available 24h. 3

  17. "Fast" Is Not "Real-Time": Designing Effective Real-Time AI Systems

    NASA Astrophysics Data System (ADS)

    O'Reilly, Cindy A.; Cromarty, Andrew S.

    1985-04-01

    Realistic practical problem domains (such as robotics, process control, and certain kinds of signal processing) stand to benefit greatly from the application of artificial intelligence techniques. These problem domains are of special interest because they are typified by complex dynamic environments in which the ability to select and initiate a proper response to environmental events in real time is a strict prerequisite to effective environmental interaction. Artificial intelligence systems developed to date have been sheltered from this real-time requirement, however, largely by virtue of their use of simplified problem domains or problem representations. The plethora of colloquial and (in general) mutually inconsistent interpretations of the term "real-time" employed by workers in each of these domains further exacerbates the difficul-ties in effectively applying state-of-the-art problem solving tech-niques to time-critical problems. Indeed, the intellectual waters are by now sufficiently muddied that the pursuit of a rigorous treatment of intelligent real-time performance mandates the redevelopment of proper problem perspective on what "real-time" means, starting from first principles. We present a simple but nonetheless formal definition of real-time performance. We then undertake an analysis of both conventional techniques and AI technology with respect to their ability to meet substantive real-time performance criteria. This analysis provides a basis for specification of problem-independent design requirements for systems that would claim real-time performance. Finally, we discuss the application of these design principles to a pragmatic problem in real-time signal understanding.

  18. Real-time earthquake data feasible

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    Scientists agree that early warning devices and monitoring of both Hurricane Hugo and the Mt. Pinatubo volcanic eruption saved thousands of lives. What would it take to develop this sort of early warning and monitoring system for earthquake activity?Not all that much, claims a panel assigned to study the feasibility, costs, and technology needed to establish a real-time earthquake monitoring (RTEM) system. The panel, drafted by the National Academy of Science's Committee on Seismology, has presented its findings in Real-Time Earthquake Monitoring. The recently released report states that “present technology is entirely capable of recording and processing data so as to provide real-time information, enabling people to mitigate somewhat the earthquake disaster.” RTEM systems would consist of two parts—an early warning system that would give a few seconds warning before severe shaking, and immediate postquake information within minutes of the quake that would give actual measurements of the magnitude. At this time, however, this type of warning system has not been addressed at the national level for the United States and is not included in the National Earthquake Hazard Reduction Program, according to the report.

  19. Distributed Real-Time Computing with Harness

    SciTech Connect

    Di Saverio, Emanuele; Cesati, Marco; Di Biagio, Christian; Pennella, Guido; Engelmann, Christian

    2007-01-01

    Modern parallel and distributed computing solutions are often built onto a ''middleware'' software layer providing a higher and common level of service between computational nodes. Harness is an adaptable, plugin-based middleware framework for parallel and distributed computing. This paper reports recent research and development results of using Harness for real-time distributed computing applications in the context of an industrial environment with the needs to perform several safety critical tasks. The presented work exploits the modular architecture of Harness in conjunction with a lightweight threaded implementation to resolve several real-time issues by adding three new Harness plug-ins to provide a prioritized lightweight execution environment, low latency communication facilities, and local timestamped event logging.

  20. Visualizations for Real-time Pricing Demonstration

    SciTech Connect

    Marinovici, Maria C.; Hammerstrom, Janelle L.; Widergren, Steven E.; Dayley, Greg K.

    2014-10-13

    In this paper, the visualization tools created for monitoring the operations of a real-time pricing demonstration system that runs at a distribution feeder level are presented. The information these tools provide gives insights into demand behavior from automated price responsive devices, distribution feeder characteristics, impact of weather on system’s development, and other significant dynamics. Given the large number of devices that bid into a feeder-level real-time electricity market, new techniques are explored to summarize the present state of the system and contrast that with previous trends as well as future projections. To better understand the system behavior and correctly inform decision-making procedures, effective visualization of the data is imperative.

  1. AMON: Transition to real-time operations

    NASA Astrophysics Data System (ADS)

    Cowen, D. F.; Keivani, A.; Tešić, G.

    2016-04-01

    The Astrophysical Multimessenger Observatory Network (AMON) will link the world's leading high-energy neutrino, cosmic-ray, gamma-ray and gravitational wave observatories by performing real-time coincidence searches for multimessenger sources from observatories' subthreshold data streams. The resulting coincidences will be distributed to interested parties in the form of electronic alerts for real-time follow-up observation. We will present the science case, design elements, current and projected partner observatories, status of the AMON project, and an initial AMON-enabled analysis. The prototype of the AMON server has been online since August 2014 and processing archival data. Currently, we are deploying new high-uptime servers and will be ready to start issuing alerts as early as winter 2015/16.

  2. Real-Time Imaging of Quantum Entanglement

    PubMed Central

    Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science. PMID:23715056

  3. Real-time remote scientific model validation

    NASA Technical Reports Server (NTRS)

    Frainier, Richard; Groleau, Nicolas

    1994-01-01

    This paper describes flight results from the use of a CLIPS-based validation facility to compare analyzed data from a space life sciences (SLS) experiment to an investigator's preflight model. The comparison, performed in real-time, either confirms or refutes the model and its predictions. This result then becomes the basis for continuing or modifying the investigator's experiment protocol. Typically, neither the astronaut crew in Spacelab nor the ground-based investigator team are able to react to their experiment data in real time. This facility, part of a larger science advisor system called Principal Investigator in a Box, was flown on the space shuttle in October, 1993. The software system aided the conduct of a human vestibular physiology experiment and was able to outperform humans in the tasks of data integrity assurance, data analysis, and scientific model validation. Of twelve preflight hypotheses associated with investigator's model, seven were confirmed and five were rejected or compromised.

  4. REAL TIME BETATRON TUNE CONTROL IN RHIC.

    SciTech Connect

    SCHULTHEISS,C.; CAMERON,P.; MARUSIC,A.; VAN ZEIJTS,J.

    2002-06-02

    Precise control of the betatron tunes is necessary to preserve proton polarization during the RHIC ramp. In addition, control of the tunes during beam deceleration is necessary due to hysteresis in the superconducting magnets. A real-time feedback system to control the betatron tunes during ramping has been developed for use in RHIC. This paper describes this system and presents the results from commissioning the system during the polarized proton run.

  5. Real time computer controlled weld skate

    NASA Technical Reports Server (NTRS)

    Wall, W. A., Jr.

    1977-01-01

    A real time, adaptive control, automatic welding system was developed. This system utilizes the general case geometrical relationships between a weldment and a weld skate to precisely maintain constant weld speed and torch angle along a contoured workplace. The system is compatible with the gas tungsten arc weld process or can be adapted to other weld processes. Heli-arc cutting and machine tool routing operations are possible applications.

  6. Real-time radiographic inspection facility

    NASA Technical Reports Server (NTRS)

    Roberts, E., Jr.

    1977-01-01

    A real time radiographic inspection facility has been developed for nondestructive evaluation applications. It consists of an X-ray source, an X-ray sensitive television imaging system, an electronic analog image processing system, and a digital image processing system. The digital image processing system is composed of a computer with the necessary software to drive the overall facility. Descriptions are given of the design strategy, the facility's components, and its current capabilities.

  7. Real-time RGBD SLAM system

    NASA Astrophysics Data System (ADS)

    Czupryński, BłaŻej; Strupczewski, Adam

    2015-09-01

    A real-time tracking and mapping SLAM system is presented. The developed system uses input from an RGBD sensor and tracks the camera pose from frame to frame. The tracking is based on matched feature points and is performed with respect to selected keyframes. The system is robust and scalable, as an arbitrary number of keyframes can be chosen for visualization and tracking depending on the desired accuracy and speed. The presented system is also a good platform for further research.

  8. Real time closed orbit correction system

    SciTech Connect

    Yu, L.H.; Biscardi, R.; Bittner, J.; Bozoki, E.; Galayda, J.; Krinsky, S.; Nawrocky, R.; Singh, O.; Vignola, G.

    1989-01-01

    We describe a global closed orbit feedback experiment, based upon a real time harmonic analysis of both the orbit movement and the correction magnetic fields. The feedback forces the coefficients of a few harmonics near the betatron tune to vanish, and significantly improves the global orbit stability. We present the results of the experiment in the UV ring using 4 detectors and 4 trims, in which maximum observed displacement was reduced by a factor of between 3 and 4. 4 refs., 3 figs.

  9. Real-Time X-Ray Inspection

    NASA Technical Reports Server (NTRS)

    Bulthuis, Ronald V.

    1988-01-01

    X-ray imaging instrument adapted to continuous scanning. Modern version of fluoroscope enables rapid x-ray inspection of parts. Developed for detection of buckling in insulated ducts. Uses radiation from radioactive gadolinium or thallium source. Instrument weighs only 6 1/2 lb. Quickly scanned by hand along duct surface, providing real-time image. Based on Lixiscope, developed at Goddard Space Flight Center.

  10. Portable real time neutron spectrometry II

    NASA Astrophysics Data System (ADS)

    Maurer, R. H.; Roth, D. R.; Fainchtein, R.; Goldsten, J. O.; Kinnison, J. D.

    2000-01-01

    We describe the continued development of a portable, real-time neutron spectrometer. The spectrometer is composed of two distinct detector systems: a Helium 3 gas filled proportional counter for the lower neutron energy interval between 20 KeV and 2 MeV and a bulk silicon solid state detector for the higher energy interval between 2 MeV and 500 MeV. Modeling and experimental results with mono-energetic neutron beams are reported. .

  11. Real-time contingency handling in MAESTRO

    NASA Technical Reports Server (NTRS)

    Britt, Daniel L.; Geoffroy, Amy L.

    1992-01-01

    A scheduling and resource management system named MAESTRO was interfaced with a Space Station Module Power Management and Distribution (SSM/PMAD) breadboard at MSFC. The combined system serves to illustrate the integration of planning, scheduling, and control in a realistic, complex domain. This paper briefly describes the functional elements of the combined system, including normal and contingency operational scenarios, then focusses on the method used by the scheduler to handle real-time contingencies.

  12. Real-time optical image processing techniques

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1988-01-01

    Nonlinear real-time optical processing on spatial pulse frequency modulation has been pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the modification of micro-channel spatial light modulators (MSLMs). Micro-channel spatial light modulators are modified via the Fabry-Perot method to achieve the high gamma operation required for non-linear operation. Real-time nonlinear processing was performed using the halftone screen and MSLM. The experiments showed the effectiveness of the thresholding and also showed the needs of higher SBP for image processing. The Hughes LCLV has been characterized and found to yield high gamma (about 1.7) when operated in low frequency and low bias mode. Cascading of two LCLVs should also provide enough gamma for nonlinear processing. In this case, the SBP of the LCLV is sufficient but the uniformity of the LCLV needs improvement. These include image correlation, computer generation of holograms, pseudo-color image encoding for image enhancement, and associative-retrieval in neural processing. The discovery of the only known optical method for dynamic range compression of an input image in real-time by using GaAs photorefractive crystals is reported. Finally, a new architecture for non-linear multiple sensory, neural processing has been suggested.

  13. The Raptor Real-Time Processing Architecture

    NASA Astrophysics Data System (ADS)

    Galassi, M.; Starr, D.; Wozniak, P.; Brozdin, K.

    The primary goal of Raptor is ambitious: to identify interesting optical transients from very wide field of view telescopes in real time, and then to quickly point the higher resolution Raptor ``fovea'' cameras and spectrometer to the location of the optical transient. The most interesting of Raptor's many applications is the real-time search for orphan optical counterparts of Gamma Ray Bursts. The sequence of steps (data acquisition, basic calibration, source extraction, astrometry, relative photometry, the smarts of transient identification and elimination of false positives, telescope pointing feedback, etc.) is implemented with a ``component'' approach. All basic elements of the pipeline functionality have been written from scratch or adapted (as in the case of SExtractor for source extraction) to form a consistent modern API operating on memory resident images and source lists. The result is a pipeline which meets our real-time requirements and which can easily operate as a monolithic or distributed processing system. Finally, the Raptor architecture is entirely based on free software (sometimes referred to as ``open source'' software). In this paper we also discuss the interplay between various free software technologies in this type of astronomical problem.

  14. Raptor -- Mining the Sky in Real Time

    NASA Astrophysics Data System (ADS)

    Galassi, M.; Borozdin, K.; Casperson, D.; McGowan, K.; Starr, D.; White, R.; Wozniak, P.; Wren, J.

    2004-06-01

    The primary goal of Raptor is ambitious: to identify interesting optical transients from very wide field of view telescopes in real time, and then to quickly point the higher resolution Raptor ``fovea'' cameras and spectrometer to the location of the optical transient. The most interesting of Raptor's many applications is the real-time search for orphan optical counterparts of Gamma Ray Bursts. The sequence of steps (data acquisition, basic calibration, source extraction, astrometry, relative photometry, the smarts of transient identification and elimination of false positives, telescope pointing feedback...) is implemented with a ``component'' aproach. All basic elements of the pipeline functionality have been written from scratch or adapted (as in the case of SExtractor for source extraction) to form a consistent modern API operating on memory resident images and source lists. The result is a pipeline which meets our real-time requirements and which can easily operate as a monolithic or distributed processing system. Finally: the Raptor architecture is entirely based on free software (sometimes referred to as "open source" software). In this paper we also discuss the interplay between various free software technologies in this type of astronomical problem.

  15. Steering a mobile robot in real time

    NASA Astrophysics Data System (ADS)

    Chuah, Mei C.; Fennema, Claude L., Jr.

    1994-10-01

    Using computer vision for mobile robot navigation has been of interest since the 1960s. This interest is evident in even the earliest robot projects: at SRI International (`Shakey') and at the Stanford University (`Stanford Cart'). These pioneering projects provided a foundation for late work but fell far short of providing real time solutions. Since the mid 1980s, the ARPA sponsored ALV and UGV projects have established a need for real time navigation. To achieve the necessary speed, some researchers have focused on building faster hardware; others have turned to the use of new computational architectures, such as neural nets. The work described in this paper uses another approach that has become known as `perceptual servoing.' Previously reported results show that perceptual servoing is both fast and accurate when used to steer vehicles equipped with precise odometers. When the instrumentation on the vehicle does not give precise measurements of distance traveled, as could be the case for a vehicle traveling on ice or mud, new techniques are required to accommodate the reduced ability to make accurate predictions about motion and control. This paper presents a method that computes estimates of distance traveled using landmarks and path information. The new method continues to perform in real time using modest computational facilities, and results demonstrate the effects of the new implementation on steering accuracy.

  16. Real-time monitoring system for microfluidics

    NASA Astrophysics Data System (ADS)

    Sapuppo, F.; Cantelli, G.; Fortuna, L.; Arena, P.; Bucolo, M.

    2007-05-01

    A new non-invasive real-time system for the monitoring and control of microfluidodynamic phenomena is proposed. The general purpose design of such system is suitable for in vitro and in vivo experimental setup and therefore for microfluidic application in the biomedical field such as lab-on-chip and for research studies in the field of microcirculation. The system consists of an ad hoc optical setup for image magnification providing images suitable for image acquisition and processing. The optic system was designed and developed using discrete opto-mechanic components mounted on a breadboard in order to provide an optic path accessible at any point where the information needs to be acquired. The optic sensing, acquisition, and processing were performed using an integrated vision system based on the Cellular Nonlinear Networks (CNNs) analogic technology called Focal Plane Processor (FPP, Eye-RIS, Anafocus) and inserted in the optic path. Ad hoc algorithms were implemented for the real-time analysis and extraction of fluido-dynamic parameters in micro-channels. They were tested on images recorded during in vivo microcirculation experiments on hamsters and then they were applied on images optically acquired and processed in real-time during in vitro experiments on a continuous microfluidic device (serpentine mixer, ThinXXS) with a two-phase fluid.

  17. Real-time realistic skin translucency.

    PubMed

    Jimenez, Jorge; Whelan, David; Sundstedt, Veronica; Gutierrez, Diego

    2010-01-01

    Diffusion theory allows the production of realistic skin renderings. The dipole and multipole models allow for solving challenging diffusion-theory equations efficiently. By using texture-space diffusion, a Gaussian-based approximation, and programmable graphics hardware, developers can create real-time, photorealistic skin renderings. Performing this diffusion in screen space offers advantages that make diffusion approximation practical in scenarios such as games, where having the best possible performance is crucial. However, unlike the texture-space counterpart, the screen-space approach can't simulate transmittance of light through thin geometry; it yields unrealistic results in those cases. A new transmittance algorithm turns the screen-space approach into an efficient global solution, capable of simulating both reflectance and transmittance of light through a multilayered skin model. The transmittance calculations are derived from physical equations, which are implemented through simple texture access. The method performs in real time, requiring no additional memory usage and only minimal additional processing power and memory bandwidth. Despite its simplicity, this practical model manages to reproduce the look of images rendered with other techniques (both offline and real time) such as photon mapping or diffusion approximation. PMID:20650726

  18. Software Analyzes Complex Systems in Real Time

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Expert system software programs, also known as knowledge-based systems, are computer programs that emulate the knowledge and analytical skills of one or more human experts, related to a specific subject. SHINE (Spacecraft Health Inference Engine) is one such program, a software inference engine (expert system) designed by NASA for the purpose of monitoring, analyzing, and diagnosing both real-time and non-real-time systems. It was developed to meet many of the Agency s demanding and rigorous artificial intelligence goals for current and future needs. NASA developed the sophisticated and reusable software based on the experience and requirements of its Jet Propulsion Laboratory s (JPL) Artificial Intelligence Research Group in developing expert systems for space flight operations specifically, the diagnosis of spacecraft health. It was designed to be efficient enough to operate in demanding real time and in limited hardware environments, and to be utilized by non-expert systems applications written in conventional programming languages. The technology is currently used in several ongoing NASA applications, including the Mars Exploration Rovers and the Spacecraft Health Automatic Reasoning Pilot (SHARP) program for the diagnosis of telecommunication anomalies during the Neptune Voyager Encounter. It is also finding applications outside of the Space Agency.

  19. Turning movement estimation in real time

    SciTech Connect

    Martin, P.T.

    1997-08-01

    Fast processors offer exciting opportunities for real-time traffic monitoring. Conventional transportation planning models that assume stable and predictable travel patterns do not lend themselves to on-line traffic forecasting. This paper describes how a new traffic flow inference model has the potential to determine comprehensive flow information in real time. Its philosophical basis is borrowed from the field of operational research, where it has been used for optimizing water and electricity flows. This paper shows how road traffic turning movement flows can be estimated from link detected flows at small recurrent intervals, in real time. The paper details the formulation of the problem, outlines the structure of the data set that provides the detector data for the model input and observed turning flows for the model evaluation. The theoretical principles that define the model are described briefly. Turning movement flow estimates, at 5-min intervals, from two independent surveys are presented and analyzed. The results show an overall mean coefficient of determination (r{sup 2}) of 79--82% between observed and modeled turning movement flows.

  20. Real-time detection of airborne chemicals

    NASA Astrophysics Data System (ADS)

    Hartenstein, Steven D.; Tremblay, Paul L. A.; Fryer, Michael O.; Kaser, Timothy

    1999-02-01

    Accurate, real time air quality measurements are difficult to make, because real time sensors for some gas species are not specific to a single gas. For example, some carbon dioxide sensors react to hydrogen sulfide. By combining the response of several types of real time gas sensors the Real-time Air Quality Monitoring System (RAQMS) accurately measures many different gases. The sensor suite for the INEEL's Real-time Air Quality Monitoring System (RAQMS) incudes seven, inexpensive, commercially-available chemical sensors for gases associated with air quality. These chemical sensors are marketed as devices to measure carbon dioxide, hydrogen sulfide, carbon monoxide, sulfur dioxide, nitrogen dioxide, water vapor and volatile organic compounds (VOC's). However, these chemical sensors respond to more than a single compound, e.g. both the VOC and the carbon dioxide sensors respond strongly to methane. This multiple sensor response to a given chemical is used to advantage in the RAQMS system, as patterns of responses by the sensors were found to be unique and distinguishable for several chemicals. Therefore, there is the potential that the seven sensors combined output can: (1) provide more accurate measurements of the advertized gases and (2) estimate the presence and quantity of additional gases. The patterns of sensor response can be thought of as clusters of data points in a seven dimensional space. One dimension for each sensor's output. For all of the gases tested, these clusters were separated enough that good quantitative results were obtained. As an example, the prototype RAQMS is able to distinguish methane from butane and predict accurate concentrations of both gases. A mathematical technique for estimating probability density functions from random samples is used to distinguish the data clusters from each other and to make gas concentration estimates. Bayes optimal estimates of gas concentration are calculated using the probability density function. The

  1. [Development of real-time CT fluoroscopy].

    PubMed

    Katada, K; Anno, H; Takeshita, G; Ogura, Y; Koga, S; Ida, Y; Nonomura, K; Kanno, T; Ohashi, A; Sata, S

    1994-10-25

    A new CT system that permits real-time monitoring of CT images was developed. Phantom and volunteer studies revealed that the images were displayed at a rate of six per second with a delay time of 0.83 second with clinically sufficient resolution (256 x 256) using the newly developed fast image processor and partial-reconstruction algorithm. The clinical trial of stereotactic aspiration of intracerebral hematoma was successful. The initial trial with CT fluoroscopy revealed potential usefulness of the system in biopsy and other CT-guided interventions. PMID:9261196

  2. Real-time optical fiber dosimeter probe

    NASA Astrophysics Data System (ADS)

    Croteau, André; Caron, Serge; Rink, Alexandra; Jaffray, David; Mermut, Ozzy

    2011-03-01

    There is a pressing need for a passive optical fiber dosimeter probe for use in real-time monitoring of radiation dose delivered to clinical radiation therapy patients. An optical fiber probe using radiochromic material has been designed and fabricated based on a thin film of the radiochromic material on a dielectric mirror. Measurements of the net optical density vs. time before, during, and after irradiation at a rate of 500cGy/minute to a total dose of 5 Gy were performed. Net optical densities increased from 0.2 to 2.0 for radiochromic thin film thicknesses of 2 to 20 μm, respectively.

  3. The stability and generation pattern of thermally formed isocyanic acid (ICA) in air - potential and limitations of proton transfer reaction-mass spectrometry (PTR-MS) for real-time workroom atmosphere measurements.

    PubMed

    Jankowski, Mikolaj Jan; Olsen, Raymond; Thomassen, Yngvar; Molander, Paal

    2016-07-13

    Isocyanic acid (ICA) in vapour phase has been reported to be of unstable nature, making the occupational hygienic relevance of ICA questionable. The stability of pure ICA in clean air at different humidity conditions was investigated by Fourier transform-infrared spectrometric (FT-IR) measurements. Furthermore, the stability of ICA in a complex atmosphere representative thermal degradation hot-work procedures were examined by performing parallel measurements by proton transfer reaction-mass spectrometric (PTR-MS) instrumentation and off-line denuder air sampling using di-n-butylamine (as a derivatization agent prior to liquid chromatography mass spectrometric (LC-MS) determination). The apparent half-life of ICA in pure ICA atmospheres was 16 to 4 hours at absolute humidity (AH) in the range 4.2 to 14.6 g m(-3), respectively. In a complex atmosphere at an initial AH of 9.6 g m(-3) the apparent half-life of ICA was 8 hours, as measured with the denuder method. Thus, thermally formed ICA is to be considered as a potential occupational hazard with regard to inhalation. The generation pattern of ICA formed during controlled gradient (100-540 °C) thermal decomposition of different polymers in the presence of air was examined by parallel PTR-MS and denuder air sampling. According to measurement by denuder sampling ICA was the dominant aliphatic isocyanate formed during the thermal decomposition of all polymers. The real-time measurements of the decomposed polymers revealed different ICA generation patterns, with initial appearance of thermally released ICA in the temperature range 200-260 °C. The PTR-MS ICA measurements was however affected by mass overlap from other decomposition products at m/z 44, illustrated by a [ICA]Denuder/[ICA]PTR-MS ratio ranging from 0.04 to 0.90. These findings limits the potential use of PTR-MS for real time measurements of thermally released ICA in field, suggesting parallel sampling with short-term sequential off-line methodology. PMID

  4. Acting to gain information: Real-time reasoning meets real-time perception

    NASA Technical Reports Server (NTRS)

    Rosenschein, Stan

    1994-01-01

    Recent advances in intelligent reactive systems suggest new approaches to the problem of deriving task-relevant information from perceptual systems in real time. The author will describe work in progress aimed at coupling intelligent control mechanisms to real-time perception systems, with special emphasis on frame rate visual measurement systems. A model for integrated reasoning and perception will be discussed, and recent progress in applying these ideas to problems of sensor utilization for efficient recognition and tracking will be described.

  5. Machine learning for real time remote detection

    NASA Astrophysics Data System (ADS)

    Labbé, Benjamin; Fournier, Jérôme; Henaff, Gilles; Bascle, Bénédicte; Canu, Stéphane

    2010-10-01

    Infrared systems are key to providing enhanced capability to military forces such as automatic control of threats and prevention from air, naval and ground attacks. Key requirements for such a system to produce operational benefits are real-time processing as well as high efficiency in terms of detection and false alarm rate. These are serious issues since the system must deal with a large number of objects and categories to be recognized (small vehicles, armored vehicles, planes, buildings, etc.). Statistical learning based algorithms are promising candidates to meet these requirements when using selected discriminant features and real-time implementation. This paper proposes a new decision architecture benefiting from recent advances in machine learning by using an effective method for level set estimation. While building decision function, the proposed approach performs variable selection based on a discriminative criterion. Moreover, the use of level set makes it possible to manage rejection of unknown or ambiguous objects thus preserving the false alarm rate. Experimental evidences reported on real world infrared images demonstrate the validity of our approach.

  6. Subsystem real-time time dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Krishtal, Alisa; Ceresoli, Davide; Pavanello, Michele

    2015-04-01

    We present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na4 cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated.

  7. Real-time structured light depth extraction

    NASA Astrophysics Data System (ADS)

    Keller, Kurtis; Ackerman, Jeremy D.

    2000-03-01

    Gathering depth data using structured light has been a procedure for many different environments and uses. Many of these system are utilized instead of laser line scanning because of their quickness. However, to utilize depth extraction for some applications, in our case laparoscopic surgery, the depth extraction must be in real time. We have developed an apparatus that speeds up the raw image display and grabbing in structured light depth extraction from 30 frames per second to 60 and 180 frames per second. This results in an updated depth and texture map of about 15 times per second versus about 3. This increased update rate allows for real time depth extraction for use in augmented medical/surgical applications. Our miniature, fist-sized projector utilizes an internal ferro-reflective LCD display that is illuminated with cold light from a flex light pipe. The miniature projector, attachable to a laparoscope, displays inverted pairs of structured light into the body where these images are then viewed by a high-speed camera set slightly off axis from the projector that grabs images synchronously. The images from the camera are ported to a graphics-processing card where six frames are worked on simultaneously to extract depth and create mapped textures from these images. This information is then sent to the host computer with 3D coordinate information of the projector/camera and the associated textures. The surgeon is then able to view body images in real time from different locations without physically moving the laparoscope imager/projector, thereby, reducing the trauma of moving laparoscopes in the patient.

  8. Exploring Earthquakes in Real-Time

    NASA Astrophysics Data System (ADS)

    Bravo, T. K.; Kafka, A. L.; Coleman, B.; Taber, J. J.

    2013-12-01

    Earthquakes capture the attention of students and inspire them to explore the Earth. Adding the ability to view and explore recordings of significant and newsworthy earthquakes in real-time makes the subject even more compelling. To address this opportunity, the Incorporated Research Institutions for Seismology (IRIS), in collaboration with Moravian College, developed ';jAmaSeis', a cross-platform application that enables students to access real-time earthquake waveform data. Students can watch as the seismic waves are recorded on their computer, and can be among the first to analyze the data from an earthquake. jAmaSeis facilitates student centered investigations of seismological concepts using either a low-cost educational seismograph or streamed data from other educational seismographs or from any seismic station that sends data to the IRIS Data Management System. After an earthquake, students can analyze the seismograms to determine characteristics of earthquakes such as time of occurrence, distance from the epicenter to the station, magnitude, and location. The software has been designed to provide graphical clues to guide students in the analysis and assist in their interpretations. Since jAmaSeis can simultaneously record up to three stations from anywhere on the planet, there are numerous opportunities for student driven investigations. For example, students can explore differences in the seismograms from different distances from an earthquake and compare waveforms from different azimuthal directions. Students can simultaneously monitor seismicity at a tectonic plate boundary and in the middle of the plate regardless of their school location. This can help students discover for themselves the ideas underlying seismic wave propagation, regional earthquake hazards, magnitude-frequency relationships, and the details of plate tectonics. The real-time nature of the data keeps the investigations dynamic, and offers students countless opportunities to explore.

  9. Real-time computed optical interferometric tomography

    NASA Astrophysics Data System (ADS)

    Shemonski, Nathan D.; Liu, Yuan-Zhi; Ahmad, Adeel; Adie, Steven G.; Carney, P. Scott; Boppart, Stephen A.

    2014-03-01

    High-resolution tomography is of great importance to many areas of biomedical imaging, but with it comes several apparent tradeoffs such as a narrowing depth-of-field and increasing optical aberrations. Overcoming these challenges has attracted many hardware and computational solutions. Hardware solutions, though, can become bulky or expensive and computational approaches can require high computing power or large processing times. This study demonstrates memory efficient implementations of interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO) - two computational approaches for overcoming the depthof- field limitation and the effect of optical aberrations in optical coherence tomography (OCT). Traditionally requiring lengthy post processing, here we report implementations of ISAM and CAO on a single GPU for real-time in vivo imaging. Real-time, camera-limited ISAM processing enabled reliable acquisition of stable data for in vivo imaging, and CAO processing on the same GPU is shown to quickly correct static aberrations. These algorithmic advances hold the promise for high-resolution volumetric imaging in time-sensitive situations as well as enabling aberrationfree cellular-level volumetric tomography.

  10. Real-Time Flight Envelope Monitoring System

    NASA Technical Reports Server (NTRS)

    Kerho, Michael; Bragg, Michael B.; Ansell, Phillip J.

    2012-01-01

    The objective of this effort was to show that real-time aircraft control-surface hinge-moment information could be used to provide a robust and reliable prediction of vehicle performance and control authority degradation. For a given airfoil section with a control surface -- be it a wing with an aileron, rudder, or elevator -- the control-surface hinge moment is sensitive to the aerodynamic characteristics of the section. As a result, changes in the aerodynamics of the section due to angle-of-attack or environmental effects such as icing, heavy rain, surface contaminants, bird strikes, or battle damage will affect the control surface hinge moment. These changes include both the magnitude of the hinge moment and its sign in a time-averaged sense, and the variation of the hinge moment with time. The current program attempts to take the real-time hinge moment information from the aircraft control surfaces and develop a system to predict aircraft envelope boundaries across a range of conditions, alerting the flight crew to reductions in aircraft controllability and flight boundaries.

  11. Real-time design with peer tasks

    NASA Technical Reports Server (NTRS)

    Goforth, Andre; Howes, Norman R.; Wood, Jonathan D.; Barnes, Michael J.

    1995-01-01

    We introduce a real-time design methodology for large scale, distributed, parallel architecture, real-time systems (LDPARTS), as an alternative to those methods using rate or dead-line monotonic analysis. In our method the fundamental units of prioritization, work items, are domain specific objects with timing requirements (deadlines) found in user's specification. A work item consists of a collection of tasks of equal priority. Current scheduling theories are applied with artifact deadlines introduced by the designer whereas our method schedules work items to meet user's specification deadlines (sometimes called end-to-end deadlines). Our method supports these scheduling properties. Work item scheduling is based on domain specific importance instead of task level urgency and still meets as many user specification deadlines as can be met by scheduling tasks with respect to urgency. Second, the minimum (closest) on-line deadline that can be guaranteed for a work item of highest importance, scheduled at run time, is approximately the inverse of the throughput, measured in work items per second. Third, throughput is not degraded during overload and instead of resorting to task shedding during overload, the designer can specify which work items to shed. We prove these properties in a mathematical model.

  12. Prototype COBRA near-real-time processor

    NASA Astrophysics Data System (ADS)

    Earp, Samuel L.; Marshall, J. W.; Anthony, E. R.

    1996-05-01

    The U.S. Marine Corps COBRA countermine surveillance program has developed, as a risk- reduction alternative, a near real-time processor for the output of the COBRA multispectral camera. This processor has been tested using approximately 13.5 hours of video data from the COBRA DT-0 developmental test, representing approximately 243,000 frames of multispectral data. The results have been very encouraging--the system is robust and the minefield detection performance has met the goals of the COBRA program. The MITRE COBRA prototype processor is built from commercial-off-the-shelf VME bus technology. Video capture is provided by a Transtech TDM 435 capture/display VME card. Control is performed on a GMSV64 Super Sparc card that resides in two VME slots. The compute engine consists of two Pentek 4270 Quad TMS320C40 digital signal processing boards. There are two additional 6U VME boards to provide fast SCSI IO. The system is capable of capturing, digitizing and processing the COBRA data stream at between one-eighth and one-half real-time, depending on processing options. The nominal compute power of the system is 2.2 GOPS, 450 MFLOPS. The system is easily upgradeable due to the open architecture--one proposed upgrade will be to increase the number of available TMS320C40 processors to sixteen, providing real-time performance without compromising the current investment in software and hardware. The software for the system is primarily written in C, with hand-optimized assembler code for portions of the compute kernel. The algorithm that is implemented is based on the MITRE minefield detection algorithm detailed at AeroSense '95. The system development required a registration algorithm--this was the only algorithm development that was performed, the rest of the algorithms coming from previous MITRE effort on the COBRA program. Lessons learned from the development and upgrade/test plans will be presented.

  13. Near real-time traffic routing

    NASA Technical Reports Server (NTRS)

    Yang, Chaowei (Inventor); Cao, Ying (Inventor); Xie, Jibo (Inventor); Zhou, Bin (Inventor)

    2012-01-01

    A near real-time physical transportation network routing system comprising: a traffic simulation computing grid and a dynamic traffic routing service computing grid. The traffic simulator produces traffic network travel time predictions for a physical transportation network using a traffic simulation model and common input data. The physical transportation network is divided into a multiple sections. Each section has a primary zone and a buffer zone. The traffic simulation computing grid includes multiple of traffic simulation computing nodes. The common input data includes static network characteristics, an origin-destination data table, dynamic traffic information data and historical traffic data. The dynamic traffic routing service computing grid includes multiple dynamic traffic routing computing nodes and generates traffic route(s) using the traffic network travel time predictions.

  14. A Flexible Real-Time Architecture

    SciTech Connect

    WICKSTROM,GREGORY L.

    2000-08-17

    Assuring hard real-time characteristics of I/O associated with embedded software is often a difficult task. Input-Output related statements are often intermixed with the computational code, resulting in I/O timing that is dependent on the execution path and computational load. One way to mitigate this problem is through the use of interrupts. However, the non-determinism that is introduced by interrupt driven I/O may be so difficult to analyze that it is prohibited in some high consequence systems. This paper describes a balanced hardware/software solution to obtain consistent interrupt-free I/O timing, and results in software that is much more amenable to analysis.

  15. Real-time applications of neural nets

    SciTech Connect

    Spencer, J.E. )

    1989-10-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas e.g. improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. In this paper, such issues are considered, examples given and possibilities discussed.

  16. Real Time Simulation of Power Grid Disruptions

    SciTech Connect

    Chinthavali, Supriya; Dimitrovski, Aleksandar D; Fernandez, Steven J; Groer, Christopher S; Nutaro, James J; Olama, Mohammed M; Omitaomu, Olufemi A; Shankar, Mallikarjun; Spafford, Kyle L; Vacaliuc, Bogdan

    2012-11-01

    DOE-OE and DOE-SC workshops (Reference 1-3) identified the key power grid problem that requires insight addressable by the next generation of exascale computing is coupling of real-time data streams (1-2 TB per hour) as the streams are ingested to dynamic models. These models would then identify predicted disruptions in time (2-4 seconds) to trigger the smart grid s self healing functions. This project attempted to establish the feasibility of this approach and defined the scientific issues, and demonstrated example solutions to important smart grid simulation problems. These objectives were accomplished by 1) using the existing frequency recorders on the national grid to establish a representative and scalable real-time data stream; 2) invoking ORNL signature identification algorithms; 3) modeling dynamically a representative region of the Eastern interconnect using an institutional cluster, measuring the scalability and computational benchmarks for a national capability; and 4) constructing a prototype simulation for the system s concept of smart grid deployment. The delivered ORNL enduring capability included: 1) data processing and simulation metrics to design a national capability justifying exascale applications; 2) Software and intellectual property built around the example solutions; 3) demonstrated dynamic models to design few second self-healing.

  17. Real-time applications of neural nets

    SciTech Connect

    Spencer, J.E.

    1989-05-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas, e.g., improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. Such issues are considered, examples given and possibilities discussed. 21 refs., 6 figs.

  18. Real-time PCR in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Becker, Holger; Hlawatsch, Nadine; Klemm, Richard; Moche, Christian; Hansen-Hagge, Thomas; Gärtner, Claudia

    2014-03-01

    A central method in a standard biochemical laboratory is represented by the polymerase chain reaction (PCR), therefore many attempts have been performed so far to implement this technique in lab-on-a-chip (LOC) devices. PCR is an ideal candidate for miniaturization because of a reduction of assay time and decreased costs for expensive bio-chemicals. In case of the "classical" PCR, detection is done by identification of DNA fragments electrophoretically separated in agarose gels. This method is meanwhile frequently replaced by the so-called Real-Time-PCR because here the exponential increase of amplificates can be observed directly by measurement of DNA interacting fluorescent dyes. Two main methods for on-chip PCRs are available: traditional "batch" PCR in chambers on a chip using thermal cycling, requiring about 30 minutes for a typical PCR protocol and continuous-flow PCR, where the liquid is guided over stationary temperature zones. In the latter case, the PCR protocol can be as fast as 5 minutes. In the presented work, a proof of concept is demonstrated for a real-time-detection of PCR products in microfluidic systems.

  19. Teaching with Real-Time Seismic Data

    NASA Astrophysics Data System (ADS)

    Baldwin, T. K.; Ortiz, A.; Hall-Wallace, M.; Taber, J.; Braile, L.

    2002-12-01

    Many terabytes of digital seismic data have been gathered in the past decade. These data include summary tables of events as well as raw seismograms. The event information, which can be plotted, analyzed statistically and interpreted in the context of plate tectonics and geologic hazards, make excellent classroom investigations. However, the bulk of the data are raw seismograms that require advanced knowledge and specific software to analyze and manipulate thus, they are generally inaccessible to a non-seismologist. To make real-time seismic data more accessible to students in high schools and colleges, we are developing a network of school seismometers through the IRIS Seismometer in Schools Program. The goal of this program is to promote seismology as a platform for teaching principles of physics and Earth science in schools across the nation. When studying plate tectonics and earthquakes, a seismometer in the classroom promotes awareness of earthquake activity around the world and provides an opportunity to teach with real-time data and real-world examples. The AS-1 seismometer is a low cost, durable, yet precise instrument that allows students to both investigate how a seismometer works and the recordings of the instrument, making it ideal for student and classroom use. The AS-1 recording and analysis software, AmaSeis, is simple to use yet includes all the basic tools needed for analysis: waveform display, filtering, and phase picking. The software also includes travel time curves to determine event distance and location. The seismometer keeps time using the computer's clock, which can be updated regularly through the Internet. While each instrument's response is unique, it is possible to calibrate the instrument and determine accurate magnitudes for events. In the past year our efforts have resulted in teachers using the seismometer effectively in high school classrooms. For example, using data from their own station and several others, students located

  20. Real-time failure control (SAFD)

    NASA Technical Reports Server (NTRS)

    Panossian, Hagop V.; Kemp, Victoria R.; Eckerling, Sherry J.

    1990-01-01

    The Real Time Failure Control program involves development of a failure detection algorithm, referred as System for Failure and Anomaly Detection (SAFD), for the Space Shuttle Main Engine (SSME). This failure detection approach is signal-based and it entails monitoring SSME measurement signals based on predetermined and computed mean values and standard deviations. Twenty four engine measurements are included in the algorithm and provisions are made to add more parameters if needed. Six major sections of research are presented: (1) SAFD algorithm development; (2) SAFD simulations; (3) Digital Transient Model failure simulation; (4) closed-loop simulation; (5) SAFD current limitations; and (6) enhancements planned for.

  1. Near real time data processing system

    NASA Astrophysics Data System (ADS)

    Mousessian, Ardvas; Vuu, Christina

    2008-08-01

    Raytheon recently developed and implemented a Near Real Time (NRT) data processing subsystem for Earth Observing System (EOS) Microwave Limb Sounder (MLS3) instrument on NASA Aura spacecraft. The NRT can be viewed as a customized Science Information Processing System (SIPS) where the measurements and information provided by the instrument are expeditiously processed, packaged, and delivered. The purpose of the MLS NRT is to process Level 0 data up through Level 2, and distribute standard data products to the customer within 3-5 hours of the first set of data arrival.

  2. Real-Time Surface Traffic Adviser

    NASA Technical Reports Server (NTRS)

    Glass, Brian J. (Inventor); Spirkovska, Liljana (Inventor); McDermott, William J. (Inventor); Reisman, Ronald J. (Inventor); Gibson, James (Inventor); Iverson, David L. (Inventor)

    2001-01-01

    A real-time data management system which uses data generated at different rates by multiple heterogeneous incompatible data sources are presented. In one embodiment, the invention is as an airport surface traffic data management system (traffic adviser) that electronically interconnects air traffic control, airline, and airport operations user communities to facilitate information sharing and improve taxi queuing. The system uses an expert system to fuse dam from a variety of airline, airport operations, ramp control, and air traffic control sources, in order to establish, predict, and update reference data values for every aircraft surface operation.

  3. Real-time teleteaching in medical physics.

    PubMed

    Woo, M; Ng, Kh

    2008-01-01

    Medical physics is a relatively small professional community, usually with a scarcity of expertise that could greatly benefit students entering the field. However, the reach of the profession can span great geographical distances, making the training of students a difficult task. In addition to the requirement of training new students, the evolving field of medical physics, with its many emerging advanced techniques and technologies, could benefit greatly from ongoing continuing education as well as consultation with experts.Many continuing education courses and workshops are constantly being offered, including many web-based study courses and virtual libraries. However, one mode of education and communication that has not been widely used is the real-time interactive process. Video-based conferencing systems do exist, but these usually require a substantial amount of effort and cost to set up.The authors have been working on promoting the ever-expanding capability of the Internet to facilitate the education of medical physics to students entering the field. A pilot project has been carried out for six years and reported previously. The project is a collaboration between the Department of Medical Physics at the Toronto Odette Cancer Centre in Canada and the Department of Biomedical Imaging at the University of Malaya in Malaysia. Since 2001, medical physics graduate students at the University of Malaya have been taught by lecturers from Toronto every year, using the Internet as the main tool of communication.The pilot study explored the different methods that can be used to provide real-time interactive remote education, and delivered traditional classroom lectures as well as hands-on workshops.Another similar project was started in 2007 to offer real-time teaching to a class of medical physics students at Wuhan University in Hubei, China. There are new challenges as well as new opportunities associated with this project. By building an inventory of tools and

  4. A novel compact real time radiation detector.

    PubMed

    Li, Shiping; Xu, Xiufeng; Cao, Hongrui; Tang, Shibiao; Ding, Baogang; Yin, Zejie

    2012-08-01

    A novel compact real time radiation detector with cost-effective, ultralow power and high sensitivity based on Geiger counter is presented. The power consumption of this detector which employs CMOS electro circuit and ultralow-power microcontroller is down to only 12.8 mW. It can identify the presences of 0.22 μCi (60)Co at a distance of 1.29 m. Furthermore, the detector supports both USB bus and serial interface. It can be used for personal radiation monitoring and also fits the distributed sensor network for radiation detection. PMID:22738843

  5. Real Time Telemetry Data Capture and Storage

    SciTech Connect

    DeAguero, James G.

    1997-05-14

    This program is used to capture telemetry data from remote instrumentation systems. The data can be captured at the rate of 1M bit per second. The data can come in one of several formats, NRZ, RZ, and Bi-Phase. The DECOM software takes the serial data stream and locks on to a unique code word. By tracking the code word the software can strip out the information. Thus the program can display the incoming data real time while saving the data to disk.

  6. Simultaneous real-time data collection methods

    NASA Technical Reports Server (NTRS)

    Klincsek, Thomas

    1992-01-01

    This paper describes the development of electronic test equipment which executes, supervises, and reports on various tests. This validation process uses computers to analyze test results and report conclusions. The test equipment consists of an electronics component and the data collection and reporting unit. The PC software, display screens, and real-time data-base are described. Pass-fail procedures and data replay are discussed. The OS2 operating system and Presentation Manager user interface system were used to create a highly interactive automated system. The system outputs are hardcopy printouts and MS DOS format files which may be used as input for other PC programs.

  7. Real-time radar rainfall estimation

    NASA Astrophysics Data System (ADS)

    Anagnostou, Emmanouil Nikolaos

    1997-08-01

    This research reports on several aspects of real-time monitoring of the spatial and temporal distribution of rainfall from ground-based weather radar. Optimization of the performance of the National Weather Service's Precipitation Processing Subsystem (PPS) is the first objective. This is achieved by developing a calibration procedure which simultaneously estimates the optimal parameter values by providing a global assessment of the system's performance. Evaluation of the system is based on a data set consisting of two months of radar reflectivity measurements, and hourly raingage rainfall accumulations, from the Melbourne, Florida WSR-88D site. Radar-raingage root mean square (RMS) difference reduction up to 20% with respect to the default system parameter values is demonstrated. Investigation of statistical procedures for real-time adjustment of the mean-field systematic radar rainfall error is the second objective. For this purpose, a data- based Monte Carlo simulation experiment is performed. The study uses an extensive data set of hourly radar rainfall products and raingage accumulations from the Tulsa, Oklahoma WSR-88D site. This intercomparison study concluded to a bias procedure which overall appeared to perform better than the other. The main results from this research are: (1) statistical methods with optimal error model parameters perform significantly better than using only bias observations, and (2) bias adjustment is mostly effective in cold season precipitation measurements. Final objective of this research is development of a new real-time radar rainfall estimation algorithm. The new processing steps introduced in this algorithm are beam- height effect correction, vertical integration, rain classification, and continuous range effect correction. Additionally, the algorithm applies advection correction at the gridded rainfall rates to minimize the temporal sampling effect, and its calibration is cast in a recursive formulation with parameters

  8. Real time analysis of voiced sounds

    NASA Technical Reports Server (NTRS)

    Hong, J. P. (Inventor)

    1976-01-01

    A power spectrum analysis of the harmonic content of a voiced sound signal is conducted in real time by phase-lock-loop tracking of the fundamental frequency, (f sub 0) of the signal and successive harmonics (h sub 1 through h sub n) of the fundamental frequency. The analysis also includes measuring the quadrature power and phase of each frequency tracked, differentiating the power measurements of the harmonics in adjacent pairs, and analyzing successive differentials to determine peak power points in the power spectrum for display or use in analysis of voiced sound, such as for voice recognition.

  9. Real-Time Reed-Solomon Decoder

    NASA Technical Reports Server (NTRS)

    Maki, Gary K.; Cameron, Kelly B.; Owsley, Patrick A.

    1994-01-01

    Generic Reed-Solomon decoder fast enough to correct errors in real time in practical applications designed to be implemented in fewer and smaller very-large-scale integrated, VLSI, circuit chips. Configured to operate in pipelined manner. One outstanding aspect of decoder design is that Euclid multiplier and divider modules contain Galoisfield multipliers configured as combinational-logic cells. Operates at speeds greater than older multipliers. Cellular configuration highly regular and requires little interconnection area, making it ideal for implementation in extraordinarily dense VLSI circuitry. Flight electronics single chip version of this technology implemented and available.

  10. Systems Analyze Water Quality in Real Time

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A water analyzer developed under Small Business Innovation Research (SBIR) contracts with Kennedy Space Center now monitors treatment processes at water and wastewater facilities around the world. Originally designed to provide real-time detection of nutrient levels in hydroponic solutions for growing plants in space, the ChemScan analyzer, produced by ASA Analytics Inc., of Waukesha, Wisconsin, utilizes spectrometry and chemometric algorithms to automatically analyze multiple parameters in the water treatment process with little need for maintenance, calibration, or operator intervention. The company has experienced a compound annual growth rate of 40 percent over its 15-year history as a direct result of the technology's success.

  11. Solid-phase extraction with the metal-organic framework MIL-101(Cr) combined with direct analysis in real time mass spectrometry for the fast analysis of triazine herbicides.

    PubMed

    Li, Xianjiang; Xing, Jiawei; Chang, Cuilan; Wang, Xin; Bai, Yu; Yan, Xiuping; Liu, Huwei

    2014-06-01

    MIL-101(Cr) is an excellent metal-organic framework with high surface area and nanoscale cavities, making it promising in solid-phase extraction. Herein, we used MIL-101(Cr) as a solid-phase extraction packing material combined with fast detection of direct analysis in real time mass spectrometry (DART-MS) for the analysis of triazine herbicides. After systematic optimization of the operation parameters, including the gas temperature of DART, the moving speed of the 1D platform, solvent for desorption, amount of MIL-101(Cr) extraction time, eluent volume and salt concentration, this method can realize the simultaneous detection of five kinds of triazine herbicides. The limits of detection were 0.1∼0.2 ng/mL and the linear ranges covered more than two orders of magnitude with the quantitation limits of 0.5∼1 ng/mL. Moreover, the developed method has been applied for the analysis of lake water samples and the recoveries for spiked analytes were in the range of 85∼110%. These results showed that solid-phase extraction with metal-organic frameworks is an efficient sample preparation approach for DART-MS analysis and could find more applications in environmental analysis. PMID:24771587

  12. Real-time fractal signal processing in the time domain

    NASA Astrophysics Data System (ADS)

    Hartmann, András; Mukli, Péter; Nagy, Zoltán; Kocsis, László; Hermán, Péter; Eke, András

    2013-01-01

    Fractal analysis has proven useful for the quantitative characterization of complex time series by scale-free statistical measures in various applications. The analysis has commonly been done offline with the signal being resident in memory in full length, and the processing carried out in several distinct passes. However, in many relevant applications, such as monitoring or forecasting, algorithms are needed to capture changes in the fractal measure real-time. Here we introduce real-time variants of the Detrended Fluctuation Analysis (DFA) and the closely related Signal Summation Conversion (SSC) methods, which are suitable to estimate the fractal exponent in one pass. Compared to offline algorithms, the precision is the same, the memory requirement is significantly lower, and the execution time depends on the same factors but with different rates. Our tests show that dynamic changes in the fractal parameter can be efficiently detected. We demonstrate the applicability of our real-time methods on signals of cerebral hemodynamics acquired during open-heart surgery.

  13. Terrestrial Real-Time Volcano Monitoring

    NASA Astrophysics Data System (ADS)

    Franke, M.

    2013-12-01

    As volcano monitoring involves more and different sensors from seismic to GPS receivers, from video and thermal cameras to multi-parameter probes measuring temperature, ph values and humidity in the ground and the air, it becomes important to design real-time networks that integrate and leverage the multitude of available parameters. In order to do so some simple principles need to be observed: a) a common time base for all measurements, b) a packetized general data communication protocol for acquisition and distribution, c) an open and well documented interface to the data permitting standard and emerging innovative processing, and d) an intuitive visualization platform for scientists and civil defense personnel. Although mentioned as simple principles, the list above does not necessarily lead to obvious solutions or integrated systems, which is, however, required to take advantage of the available data. Only once the different data streams are put into context to each other in terms of time and location can a broader view be obtained and additional information extracted. The presentation is a summary of currently available technologies and how they can achieve the goal of an integrated real-time volcano monitoring system. A common time base are standard for seismic and GPS networks. In different projects we extended this to video feeds and time-lapse photography. Other probes have been integrated with vault interface enclosures (VIE) as used in the Transportable Array (TA) of the USArray. The VIE can accommodate the sensors employed in volcano monitoring. The TA has shown that Antelope is a versatile and robust middleware. It provides the required packetized general communication protocol that is independent from the actual physical communication link leaving the network design to adopt appropriate and possible hybrid solutions. This applies for the data acquisition and the data/information dissemination providing both a much needed collaboration platform, as

  14. Residential Real-time Price Response Simulation

    SciTech Connect

    Widergren, Steven E.; Subbarao, Krishnappa; Chassin, David P.; Fuller, Jason C.; Pratt, Robert G.

    2011-10-10

    The electric industry is gaining experience with innovative price responsive demand pilots and limited roll-outs to customers. One of these pilots is investigating real-time pricing signals to engage end-use systems and local distributed generation and storage in a distributed optimization process. Attractive aspects about the approach include strong scalability characteristics, simplified interfaces between automation devices, and the adaptability to integrate a wide variety of devices and systems. Experience in this nascent field is revealing a rich array of for engineering decisions and the application of complexity theory. To test the decisions, computer simulations are used to reveal insights about design, demand elasticity, and the limits of response (including consumer fatigue). Agent-based approaches lend themselves well in the simulation to modeling the participation and interaction of each piece of equipment on a distribution feeder. This paper discusses rate design and simulation experiences at the distribution feeder level where consumers and their HVAC systems and water heaters on a feeder receive real-time pricing signals.

  15. NSTX power supply real time controller

    SciTech Connect

    Neumeyer, C.; Hatcher, R.; Marsala, R.; Ramakrishnan, S.

    2000-01-06

    The NSTX is a new national facility for the study of plasma confinement, heating, and current drive in a low aspect ratio, spherical torus (ST) configuration. The ST configuration is an alternate magnetic confinement concept which is characterized by high beta (ratio plasma pressure to magnetic field pressure) and low toroidal field compared to conventional tokamaks, and could provide a pathway to the realization of a practical fusion power source. The NSTX depends on a real time, high speed, synchronous, and deterministic control system acting on a system of thyristor rectifier power supplies to (1) establish the initial magnetic field configuration; (2) initiate plasma within the vacuum vessel; (3) inductively drive plasma current; and (4) control plasma position and shape. For the initial ``day 0'' 1st plasma operations (Feb. 1999), the system was limited to closed loop proportional-integral current control of the power supplies based on preprogrammed reference waveforms. For the ``day 1'' phase of operations beginning Sept. 1999 the loop has been closed on plasma current and position. This paper focuses on the Power Supply Real Time Controller (PSRTC).

  16. Real-time adaptive video image enhancement

    NASA Astrophysics Data System (ADS)

    Garside, John R.; Harrison, Chris G.

    1999-07-01

    As part of a continuing collaboration between the University of Manchester and British Aerospace, a signal processing array has been constructed to demonstrate that it is feasible to compensate a video signal for the degradation caused by atmospheric haze in real-time. Previously reported work has shown good agreement between a simple physical model of light scattering by atmospheric haze and the observed loss of contrast. This model predicts a characteristic relationship between contrast loss in the image and the range from the camera to the scene. For an airborne camera, the slant-range to a point on the ground may be estimated from the airplane's pose, as reported by the inertial navigation system, and the contrast may be obtained from the camera's output. Fusing data from these two streams provides a means of estimating model parameters such as the visibility and the overall illumination of the scene. This knowledge allows the same model to be applied in reverse, thus restoring the contrast lost to atmospheric haze. An efficient approximation of range is vital for a real-time implementation of the method. Preliminary results show that an adaptive approach to fitting the model's parameters, exploiting the temporal correlation between video frames, leads to a robust implementation with a significantly accelerated throughput.

  17. Real-time Raman sensing without spectrometer

    NASA Astrophysics Data System (ADS)

    Kim, Min Ju; Kim, Sungho; Yang, Timothy K.; Kumar, Dinesh; Bae, Sung Chul

    2015-03-01

    Raman spectroscopy has been a powerful tool in various fields of science and technology ranging from analytical chemistry to biomedical imaging. In spite of unique features, Raman spectroscopy has also some limitations. Among them are weak Raman signal compared to strong fluorescence and relatively complicated setup with expensive and bulky spectrometer. In order to increase the sensitivity of Raman technique, many clever attempts have been made and some of them were very successful including CARS, SRS, and so on. However, these still requires expensive and more complicated setup. In this work, we have attempted to build a real-time compact Raman sensor without spectrometer. Conventional spectrometer was replaced with a narrow-band optical filter and alternatively modulated two lasers with slightly different wavelengths. At one laser, Raman signal from a target molecule was transmitted through the optical filter. At the other laser, this signal was blocked by the optical filter and could not be detected by photon detector. The alternative modulation of two lasers will modulate the Raman signal from a target molecule at the same modulation frequency. This modulated weak Raman signal was amplified by a lock-in amplifier. The advantages of this setup include compactness, low cost, real-time monitoring, and so on. We have tested the sensitivity of this setup and we found that it doesn't have enough sensitivity to detect single molecule-level, but it is still good enough to monitor the change of major chemical composition in the sample.

  18. Real-time computerized annotation of pictures.

    PubMed

    Li, Jia; Wang, James Z

    2008-06-01

    Developing effective methods for automated annotation of digital pictures continues to challenge computer scientists. The capability of annotating pictures by computers can lead to breakthroughs in a wide range of applications, including Web image search, online picture-sharing communities, and scientific experiments. In this work, the authors developed new optimization and estimation techniques to address two fundamental problems in machine learning. These new techniques serve as the basis for the Automatic Linguistic Indexing of Pictures - Real Time (ALIPR) system of fully automatic and high speed annotation for online pictures. In particular, the D2-clustering method, in the same spirit as k-means for vectors, is developed to group objects represented by bags of weighted vectors. Moreover, a generalized mixture modeling technique (kernel smoothing as a special case) for non-vector data is developed using the novel concept of Hypothetical Local Mapping (HLM). ALIPR has been tested by thousands of pictures from an Internet photo-sharing site, unrelated to the source of those pictures used in the training process. Its performance has also been studied at an online demo site where arbitrary users provide pictures of their choices and indicate the correctness of each annotation word. The experimental results show that a single computer processor can suggest annotation terms in real-time and with good accuracy. PMID:18421105

  19. Real-time sensor data validation

    NASA Technical Reports Server (NTRS)

    Bickmore, Timothy W.

    1994-01-01

    This report describes the status of an on-going effort to develop software capable of detecting sensor failures on rocket engines in real time. This software could be used in a rocket engine controller to prevent the erroneous shutdown of an engine due to sensor failures which would otherwise be interpreted as engine failures by the control software. The approach taken combines analytical redundancy with Bayesian belief networks to provide a solution which has well defined real-time characteristics and well-defined error rates. Analytical redundancy is a technique in which a sensor's value is predicted by using values from other sensors and known or empirically derived mathematical relations. A set of sensors and a set of relations among them form a network of cross-checks which can be used to periodically validate all of the sensors in the network. Bayesian belief networks provide a method of determining if each of the sensors in the network is valid, given the results of the cross-checks. This approach has been successfully demonstrated on the Technology Test Bed Engine at the NASA Marshall Space Flight Center. Current efforts are focused on extending the system to provide a validation capability for 100 sensors on the Space Shuttle Main Engine.

  20. 3D MR imaging in real time

    NASA Astrophysics Data System (ADS)

    Guttman, Michael A.; McVeigh, Elliot R.

    2001-05-01

    A system has been developed to produce live 3D volume renderings from an MR scanner. Whereas real-time 2D MR imaging has been demonstrated by several groups, 3D volumes are currently rendered off-line to gain greater understanding of anatomical structures. For example, surgical planning is sometimes performed by viewing 2D images or 3D renderings from previously acquired image data. A disadvantage of this approach is misregistration which could occur if the anatomy changes due to normal muscle contractions or surgical manipulation. The ability to produce volume renderings in real-time and present them in the magnet room could eliminate this problem, and enable or benefit other types of interventional procedures. The system uses the data stream generated by a fast 2D multi- slice pulse sequence to update a volume rendering immediately after a new slice is available. We demonstrate some basic types of user interaction with the rendering during imaging at a rate of up to 20 frames per second.

  1. Real-Time and Near Real-Time Data for Space Weather Applications and Services

    NASA Astrophysics Data System (ADS)

    Singer, H. J.; Balch, C. C.; Biesecker, D. A.; Matsuo, T.; Onsager, T. G.

    2015-12-01

    Space weather can be defined as conditions in the vicinity of Earth and in the interplanetary environment that are caused primarily by solar processes and influenced by conditions on Earth and its atmosphere. Examples of space weather are the conditions that result from geomagnetic storms, solar particle events, and bursts of intense solar flare radiation. These conditions can have impacts on modern-day technologies such as GPS or electric power grids and on human activities such as astronauts living on the International Space Station or explorers traveling to the moon or Mars. While the ultimate space weather goal is accurate prediction of future space weather conditions, for many applications and services, we rely on real-time and near-real time observations and model results for the specification of current conditions. In this presentation, we will describe the space weather system and the need for real-time and near-real time data that drive the system, characterize conditions in the space environment, and are used by models for assimilation and validation. Currently available data will be assessed and a vision for future needs will be given. The challenges for establishing real-time data requirements, as well as acquiring, processing, and disseminating the data will be described, including national and international collaborations. In addition to describing how the data are used for official government products, we will also give examples of how these data are used by both the public and private sector for new applications that serve the public.

  2. Identifying financial crises in real time

    NASA Astrophysics Data System (ADS)

    da Fonseca, Eder Lucio; Ferreira, Fernando F.; Muruganandam, Paulsamy; Cerdeira, Hilda A.

    2013-03-01

    Following the thermodynamic formulation of a multifractal measure that was shown to enable the detection of large fluctuations at an early stage, here we propose a new index which permits us to distinguish events like financial crises in real time. We calculate the partition function from which we can obtain thermodynamic quantities analogous to the free energy and specific heat. The index is defined as the normalized energy variation and it can be used to study the behavior of stochastic time series, such as financial market daily data. Famous financial market crashes-Black Thursday (1929), Black Monday (1987) and the subprime crisis (2008)-are identified with clear and robust results. The method is also applied to the market fluctuations of 2011. From these results it appears as if the apparent crisis of 2011 is of a different nature to the other three. We also show that the analysis has forecasting capabilities.

  3. Real-time forecasts of dengue epidemics

    NASA Astrophysics Data System (ADS)

    Yamana, T. K.; Shaman, J. L.

    2015-12-01

    Dengue is a mosquito-borne viral disease prevalent in the tropics and subtropics, with an estimated 2.5 billion people at risk of transmission. In many areas with endemic dengue, disease transmission is seasonal but prone to high inter-annual variability with occasional severe epidemics. Predicting and preparing for periods of higher than average transmission is a significant public health challenge. Here we present a model of dengue transmission and a framework for optimizing model simulations with real-time observational data of dengue cases and environmental variables in order to generate ensemble-based forecasts of the timing and severity of disease outbreaks. The model-inference system is validated using synthetic data and dengue outbreak records. Retrospective forecasts are generated for a number of locations and the accuracy of these forecasts is quantified.

  4. Wi-Fi real time location systems

    NASA Astrophysics Data System (ADS)

    Doll, Benjamin A.

    This thesis objective was to determine the viability of utilizing an untrained Wi-Fi. real time location system as a GPS alternative for indoor environments. Background. research showed that GPS is rarely able to penetrate buildings to provide reliable. location data. The benefit of having location information in a facility and how they might. be used for disaster or emergency relief personnel and their resources motivated this. research. A building was selected with a well-deployed Wi-Fi infrastructure and its. untrained location feature was used to determine the distance between the specified. test points and the system identified location. It was found that the average distance. from the test point throughout the facility was 14.3 feet 80% of the time. This fell within. the defined viable range and supported that an untrained Wi-Fi RTLS system could be a. viable solution for GPS's lack of availability indoors.

  5. Exploding Nitromethane in Silico, in Real Time.

    PubMed

    Fileti, Eudes Eterno; Chaban, Vitaly V; Prezhdo, Oleg V

    2014-10-01

    Nitromethane (NM) is widely applied in chemical technology as a solvent for extraction, cleaning, and chemical synthesis. NM was considered safe for a long time, until a railroad tanker car exploded in 1958. We investigate the detonation kinetics and explosion reaction mechanisms in a variety of systems consisting of NM, molecular oxygen, and water vapor. Reactive molecular dynamics allows us to simulate reactions in time-domain, as they occur in real life. High polarity of the NM molecule is shown to play a key role, driving the first exothermic step of the reaction. Rapid temperature and pressure growth stimulate the subsequent reaction steps. Oxygen is important for faster oxidation, whereas its optimal concentration is in agreement with the proposed reaction mechanism. Addition of water (50 mol %) inhibits detonation; however, water does not prevent detonation entirely. The reported results provide important insights for improving applications of NM and preserving the safety of industrial processes. PMID:26278455

  6. Real Time Monitor of Grid job executions

    NASA Astrophysics Data System (ADS)

    Colling, D. J.; Martyniak, J.; McGough, A. S.; Křenek, A.; Sitera, J.; Mulač, M.; Dvořák, F.

    2010-04-01

    In this paper we describe the architecture and operation of the Real Time Monitor (RTM), developed by the Grid team in the HEP group at Imperial College London. This is arguably the most popular dissemination tool within the EGEE [1] Grid. Having been used, on many occasions including GridFest and LHC inauguration events held at CERN in October 2008. The RTM gathers information from EGEE sites hosting Logging and Bookkeeping (LB) services. Information is cached locally at a dedicated server at Imperial College London and made available for clients to use in near real time. The system consists of three main components: the RTM server, enquirer and an apache Web Server which is queried by clients. The RTM server queries the LB servers at fixed time intervals, collecting job related information and storing this in a local database. Job related data includes not only job state (i.e. Scheduled, Waiting, Running or Done) along with timing information but also other attributes such as Virtual Organization and Computing Element (CE) queue - if known. The job data stored in the RTM database is read by the enquirer every minute and converted to an XML format which is stored on a Web Server. This decouples the RTM server database from the client removing the bottleneck problem caused by many clients simultaneously accessing the database. This information can be visualized through either a 2D or 3D Java based client with live job data either being overlaid on to a 2 dimensional map of the world or rendered in 3 dimensions over a globe map using OpenGL.

  7. Towards real time speckle controlled retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Bliedtner, Katharina; Seifert, Eric; Stockmann, Leoni; Effe, Lisa; Brinkmann, Ralf

    2016-03-01

    Photocoagulation is a laser treatment widely used for the therapy of several retinal diseases. Intra- and inter-individual variations of the ocular transmission, light scattering and the retinal absorption makes it impossible to achieve a uniform effective exposure and hence a uniform damage throughout the therapy. A real-time monitoring and control of the induced damage is highly requested. Here, an approach to realize a real time optical feedback using dynamic speckle analysis is presented. A 532 nm continuous wave Nd:YAG laser is used for coagulation. During coagulation, speckle dynamics are monitored by a coherent object illumination using a 633nm HeNe laser and analyzed by a CMOS camera with a frame rate up to 1 kHz. It is obvious that a control system needs to determine whether the desired damage is achieved to shut down the system in a fraction of the exposure time. Here we use a fast and simple adaption of the generalized difference algorithm to analyze the speckle movements. This algorithm runs on a FPGA and is able to calculate a feedback value which is correlated to the thermal and coagulation induced tissue motion and thus the achieved damage. For different spot sizes (50-200 μm) and different exposure times (50-500 ms) the algorithm shows the ability to discriminate between different categories of retinal pigment epithelial damage ex-vivo in enucleated porcine eyes. Furthermore in-vivo experiments in rabbits show the ability of the system to determine tissue changes in living tissue during coagulation.

  8. Real-time airborne particle analyzer

    DOEpatents

    Reilly, Peter T.A.

    2012-10-16

    An aerosol particle analyzer includes a laser ablation chamber, a gas-filled conduit, and a mass spectrometer. The laser ablation chamber can be operated at a low pressure, which can be from 0.1 mTorr to 30 mTorr. The ablated ions are transferred into a gas-filled conduit. The gas-filled conduit reduces the electrical charge and the speed of ablated ions as they collide and mix with buffer gases in the gas-filled conduit. Preferably, the gas filled-conduit includes an electromagnetic multipole structure that collimates the nascent ions into a beam, which is guided into the mass spectrometer. Because the gas-filled conduit allows storage of vast quantities of the ions from the ablated particles, the ions from a single ablated particle can be analyzed multiple times and by a variety of techniques to supply statistically meaningful analysis of composition and isotope ratios.

  9. Real-time gas and particle-phase organic acids measurement at a forest site using chemical ionization high-resolution time-of-flight mass spectrometry during BEACHON-RoMBAS

    NASA Astrophysics Data System (ADS)

    Yatavelli, L. R.; Stark, H.; Kimmel, J.; Cubison, M.; Day, D. A.; Jayne, J.; Thornton, J. A.; Worsnop, D. R.; Jimenez, J. L.

    2011-12-01

    We present measurement of organic acids in gas and aerosol particles conducted in a ponderosa pine forest during July and August 2011 as part of the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS; http://tinyurl.com/BEACHON-RoMBAS). The measurement technique is based on chemical ionization, high-resolution time-of-flight mass spectrometry and utilizes a Micro-Orifice Volatilization Impactor [MOVI-CI-HR-ToFMS; Yatavelli et al., AS&T, 2010] to collect sub-micron aerosol particles while simultaneously measuring the gas-phase composition. The collected particles are subsequently analyzed by temperature-programmed thermal desorption. The reagent ion chosen for this campaign is the acetate anion (CH3C(O)O-, m/z 59), which reacts selectively via proton transfer with compounds that are stronger gas-phase acids than acetic acid [Veres et al., IJMS, 2008]. Preliminary results show substantial particle-phase concentrations of biogenic oxidation products such as hydroxy-glutaric acid, pinic acid, pinonic acid, and hydroxy-pinonic acid along with numerous lower and higher molecular weight organic acids. Correlations of the organic acid concentrations with meteorological, gas and aerosol parameters measured by other instrumentation are investigated in order to understand the formation, transformation, and partitioning of gas and particle-phase organic acids in a forested environment dominated by terpenes.

  10. Passive Global, Real-Time TEC Monitoring

    NASA Astrophysics Data System (ADS)

    Pongratz, M. B.

    2002-12-01

    Sensors are being developed to provide a satellite-based VHF global lightning monitor (e.g. Suszcynsky, et al., "VHF Global Lightning and Severe Storm Monitoring from Space: Storm-level Characterization of VHF Lightning Emissions," EOS Trans. AGU 2001 Fall Mt. Prog. And Abstr. 82, No. 47, F143, 2001). Dispersive effects of propagation of the lightning electromagnetic wave through the ionospheric and plasmaspheric plasmas cause the higher frequency components to arrive at the satellite before lower frequency components. From the time-of-arrival at several frequencies we can derive the TEC between the satellite and the lightning. Using multi-satellite techniques we can geolocate the lightning and the ionospheric penetration point quite accurately. A single ground station could provide essentially real-time regional TEC coverage. Four ground stations could provide global, real-time TEC measurements to supplement existing ground-based systems, especially over broad ocean areas. We expect several lightning detections per satellite per minute. Temporal resolution will be limited only by ground segment processing. Spatial coverage and resolution will be limited by lightning occurrence, but many commercial sector TEC requirements are also correlated to lightning occurrence. With our FORTE (Fast On-orbit Recording of Transient Events) satellite we sense lightning over most of the globe including the oceans. We expect to determine TEC spatial gradients with tens of km resolution. This capability should be especially useful in severe convective weather to aircraft using GPS-based navigation, e.g. the FAA's Wide Area Augmentation System (WAAS).

  11. High-performance liquid chromatography-ultrasonic nebulizer high-power nitrogen microwave-induced plasma mass spectrometry, real-time on-line coupling for selenium speciation analysis.

    PubMed

    Chatterjee, Amit; Shibata, Yasuyuki; Tao, Hiroaki; Tanaka, Atsushi; Morita, Masatoshi

    2004-07-01

    The coupling of a high-power nitrogen (N2) microwave-induced plasma (MIP) mass spectrometry--(MS) (1.3 kW) with high-performance liquid chromatography, connected with concentric nebulizer (CN), ultrasonic nebulizer (USN) and a hydride generation (HG) systems, for the optimization and determination of selenium compounds, has been carried out. The MIP-MS system fulfils the ideal requirement being an on-line real-time chromatographic detector for Se speciation analysis. Interchanging of MIP-MS system fabricated nebulizer (concentric) with an ultrasonic nebulizer increases about 3.4-12 (peak height) and 6.5-10 (peak area) times ion signals for the selenium compounds. The detection limits for selenate, selenite, trimethylselenonium ion (TmSe), selenomethionine (Semet) and selenoethionine (Seet) (in Milli-Q-water) obtained with the optimized HPLC-USN-N2MIP-MS system are 0.11, 0.14, 0.09, 0.14 and 0.10 microg L(-1), respectively, about 12-48 times lower than the HPLC-CN-MIP-MS and 1.5-4.4 (peak height) times lower compared to the HPLC-CN-inductively coupled plasma (ICP)-MS coupling. Considering peak area, the repeatability (R.S.D. for three successive analyses) and intermediate precision (R.S.D. for three successive analyses performed on three different days), achieved for five Se compounds are 0.8-5.6, and 1.1-5.9%, comparable with the HPLC-CN-ICP-MS, HPLC-HG-MIP-MS and HPLC-CN-MIP-MS systems. The combined HPLC-USN-N2MIP-MS has been adequately applied for the determination of Se compounds in certified National Institute for Environmental studies human urine CRM No. 18. The results reasonably agree with the HPLC-CN-ICP-MS values. This encouraging combination may be an alternative ion source of mass spectrometry for coming generation in regard to the selenium speciation analysis. PMID:15296393

  12. A real-time prediction of UTC

    NASA Astrophysics Data System (ADS)

    Thomas, Claudine; Allan, David W.

    1994-05-01

    The reference time scale for all scientific and technologic applications on the Earth, the Universal Coordinated Time (UTC), must be as stable, reliable, and accurate as possible. With this in view the BIPM and before it the BIH, have always calculated and then disseminated UTC with a delay of about 80 days. There are three fundamental reasons for doing this: (1) It takes some weeks for data, gathered from some 200 clocks spread world-wide, to be collected and for errors to be eliminated; (2) changes in clock rates can only be measured with high precision well after the fact; and (3) the measurement noise originating in time links, in particular using Loran-C, is smoothed out only when averaging over an extended period. Until mid-1992, the ultimate stability of UTC was reached at averaging times of about 100 days and corresponded to an Allan deviation sigma(sub y)(tau) of about 1,5x10(exp -14) then compared to the best primary clock in the world, the PTB CS2. For several years now, a predicted UTC has been computed by the USNO through an extrapolation of the values as published in deferred time by the BIPM. This is made available through the USNO Series 4, through the USNO Automated Data Service, and through GPS signals. Due to the instability of UTC, the poor predictability of the available clocks, and the intentional SA degradation of GPS signals, the real-time access to this extrapolated UTC has represented the true deferred-time UTC only to within several hundreds of nanoseconds.

  13. A real-time prediction of UTC

    NASA Technical Reports Server (NTRS)

    Thomas, Claudine; Allan, David W.

    1994-01-01

    The reference time scale for all scientific and technologic applications on the Earth, the Universal Coordinated Time (UTC), must be as stable, reliable, and accurate as possible. With this in view the BIPM and before it the BIH, have always calculated and then disseminated UTC with a delay of about 80 days. There are three fundamental reasons for doing this: (1) It takes some weeks for data, gathered from some 200 clocks spread world-wide, to be collected and for errors to be eliminated; (2) changes in clock rates can only be measured with high precision well after the fact; and (3) the measurement noise originating in time links, in particular using Loran-C, is smoothed out only when averaging over an extended period. Until mid-1992, the ultimate stability of UTC was reached at averaging times of about 100 days and corresponded to an Allan deviation sigma(sub y)(tau) of about 1,5x10(exp -14) then compared to the best primary clock in the world, the PTB CS2. For several years now, a predicted UTC has been computed by the USNO through an extrapolation of the values as published in deferred time by the BIPM. This is made available through the USNO Series 4, through the USNO Automated Data Service, and through GPS signals. Due to the instability of UTC, the poor predictability of the available clocks, and the intentional SA degradation of GPS signals, the real-time access to this extrapolated UTC has represented the true deferred-time UTC only to within several hundreds of nanoseconds.

  14. A tool for modeling concurrent real-time computation

    NASA Technical Reports Server (NTRS)

    Sharma, D. D.; Huang, Shie-Rei; Bhatt, Rahul; Sridharan, N. S.

    1990-01-01

    Real-time computation is a significant area of research in general, and in AI in particular. The complexity of practical real-time problems demands use of knowledge-based problem solving techniques while satisfying real-time performance constraints. Since the demands of a complex real-time problem cannot be predicted (owing to the dynamic nature of the environment) powerful dynamic resource control techniques are needed to monitor and control the performance. A real-time computation model for a real-time tool, an implementation of the QP-Net simulator on a Symbolics machine, and an implementation on a Butterfly multiprocessor machine are briefly described.

  15. Real-time data flow and product generating for GNSS

    NASA Technical Reports Server (NTRS)

    Muellerschoen, Ronald J.; Caissy, Mark

    2004-01-01

    The last IGS workshop with the theme 'Towards Real-Time' resulted in the design of a prototype for real-time data and sharing within the IGS. A prototype real-time network is being established that will serve as a test bed for real-time activities within the IGS. We review the developments of the prototype and discuss some of the existing methods and related products of real-time GNSS systems. Recommendations are made concerning real-time data distribution and product generation.

  16. Filming protein fibrillogenesis in real time

    NASA Astrophysics Data System (ADS)

    Bella, Angelo; Shaw, Michael; Ray, Santanu; Ryadnov, Maxim G.

    2014-12-01

    Protein fibrillogenesis is a universal tool of nano-to-micro scale construction supporting different forms of biological function. Its exploitable potential in nanoscience and technology is substantial, but the direct observation of homogeneous fibre growth able to underpin a kinetic-based rationale for building customized nanostructures in situ is lacking. Here we introduce a kinetic model of de novo protein fibrillogenesis which we imaged at the nanoscale and in real time, filmed. The model helped to reveal that, in contrast to heterogeneous amyloid assemblies, homogeneous protein recruitment is principally characterized by uniform rates of cooperative growth at both ends of growing fibers, bi-directional growth, with lateral growth arrested at a post-seeding stage. The model provides a foundation for in situ engineering of sequence-prescribed fibrous architectures.

  17. Near real-time stereo vision system

    NASA Astrophysics Data System (ADS)

    Matthies, Larry H.; Anderson, Charles H.

    1991-12-01

    The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.

  18. Near real-time stereo vision system

    NASA Astrophysics Data System (ADS)

    Anderson, Charles H.; Matthies, Larry H.

    1993-01-01

    The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.

  19. REAL TIME DATA FOR REMEDIATION ACTIVITIES [11505

    SciTech Connect

    BROCK CT

    2011-01-13

    Health physicists from the CH2M HILL Plateau Remediation Company collaborated with Berkeley Nucleonics Corporation to modify the SAM 940 isotope identifier instrument to be used for nuclear waste remediation. These modifications coupled with existing capabilities of the SAM 940 have proven to be invaluable during remediation activities, reducing disposal costs by allowing swift remediation of targeted areas that have been identified as having isotopes of concern (IOC), and eliminating multiple visits to sites by declaring an excavation site clear of IOCs before demobilizing from the site. These advantages are enabled by accumulating spectral data for specific isotopes that is nearly 100 percent free of false positives, which are filtered out in 'real time.'

  20. Real-time slicing of data space

    SciTech Connect

    Crawfis, R.A.

    1996-07-01

    Real-time rendering of iso-contour surfaces is problematic for large complex data sets. In this paper, an algorithm is presented that allows very rapid representation of an interval set surrounding a iso-contour surface. The algorithm draws upon three main ideas. A fast indexing scheme is used to select only those data points near the contour surface. Hardware assisted splatting is then employed on these data points to produce a volume rendering of the interval set. Finally, by shifting a small window through the indexing scheme or data space, animated volumes are produced showing the changing contour values. In addition to allowing fast selection and rendering of the data, the indexing scheme allows a much compressed representation of the data by eliminating ``noise`` data points.

  1. Real time speech formant analyzer and display

    DOEpatents

    Holland, George E.; Struve, Walter S.; Homer, John F.

    1987-01-01

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user.

  2. Real time speech formant analyzer and display

    DOEpatents

    Holland, G.E.; Struve, W.S.; Homer, J.F.

    1987-02-03

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user. 19 figs.

  3. Real-time, face recognition technology

    SciTech Connect

    Brady, S.

    1995-11-01

    The Institute for Scientific Computing Research (ISCR) at Lawrence Livermore National Laboratory recently developed the real-time, face recognition technology KEN. KEN uses novel imaging devices such as silicon retinas developed at Caltech or off-the-shelf CCD cameras to acquire images of a face and to compare them to a database of known faces in a robust fashion. The KEN-Online project makes that recognition technology accessible through the World Wide Web (WWW), an internet service that has recently seen explosive growth. A WWW client can submit face images, add them to the database of known faces and submit other pictures that the system tries to recognize. KEN-Online serves to evaluate the recognition technology and grow a large face database. KEN-Online includes the use of public domain tools such as mSQL for its name-database and perl scripts to assist the uploading of images.

  4. Filming protein fibrillogenesis in real time

    PubMed Central

    Bella, Angelo; Shaw, Michael; Ray, Santanu; Ryadnov, Maxim G.

    2014-01-01

    Protein fibrillogenesis is a universal tool of nano-to-micro scale construction supporting different forms of biological function. Its exploitable potential in nanoscience and technology is substantial, but the direct observation of homogeneous fibre growth able to underpin a kinetic-based rationale for building customized nanostructures in situ is lacking. Here we introduce a kinetic model of de novo protein fibrillogenesis which we imaged at the nanoscale and in real time, filmed. The model helped to reveal that, in contrast to heterogeneous amyloid assemblies, homogeneous protein recruitment is principally characterized by uniform rates of cooperative growth at both ends of growing fibers, bi-directional growth, with lateral growth arrested at a post-seeding stage. The model provides a foundation for in situ engineering of sequence-prescribed fibrous architectures. PMID:25519825

  5. Real-time value-driven diagnosis

    NASA Technical Reports Server (NTRS)

    Dambrosio, Bruce

    1995-01-01

    Diagnosis is often thought of as an isolated task in theoretical reasoning (reasoning with the goal of updating our beliefs about the world). We present a decision-theoretic interpretation of diagnosis as a task in practical reasoning (reasoning with the goal of acting in the world), and sketch components of our approach to this task. These components include an abstract problem description, a decision-theoretic model of the basic task, a set of inference methods suitable for evaluating the decision representation in real-time, and a control architecture to provide the needed continuing coordination between the agent and its environment. A principal contribution of this work is the representation and inference methods we have developed, which extend previously available probabilistic inference methods and narrow, somewhat, the gap between probabilistic and logical models of diagnosis.

  6. A operational real time flood forecasting chain

    NASA Astrophysics Data System (ADS)

    Arena, N.; Cavallo, A.; Giannoni, F.; Turato, B.

    2003-04-01

    Extreme floods forecast represent an important modeling challenge for which it is crucial to utilize the simplest model representations that capture the dominant controls of extreme flood response. For extreme floods, the spatio-temporal structure of rainfall and drainage network structure often play a fundamental role. The integrated meteo-hydrologic real time forecasting chain in use at the Hydrometorological Center of Liguria Region is presented with particular regard to a specific case study. The meteorological forecasts are performed through the use of traditional means as Numerical Weather Predictions models at different resolutions and an innovative tool for the now-casting prediction as the meteorological Radar. The elements of the hydrologic model are a Hortonian infiltration model and a GIUH-based network response model. The basin scales of interest range from approximately 50 - 1,000 km2. The case study is the November 23-26, 2002 event.

  7. Real-time snapshot hyperspectral imaging endoscope

    PubMed Central

    Kester, Robert T.; Bedard, Noah; Gao, Liang; Tkaczyk, Tomasz S.

    2011-01-01

    Hyperspectral imaging has tremendous potential to detect important molecular biomarkers of early cancer based on their unique spectral signatures. Several drawbacks have limited its use for in vivo screening applications: most notably the poor temporal and spatial resolution, high expense, and low optical throughput of existing hyperspectral imagers. We present the development of a new real-time hyperspectral endoscope (called the image mapping spectroscopy endoscope) based on an image mapping technique capable of addressing these challenges. The parallel high throughput nature of this technique enables the device to operate at frame rates of 5.2 frames per second while collecting a (x, y, λ) datacube of 350 × 350 × 48. We have successfully imaged tissue in vivo, resolving a vasculature pattern of the lower lip while simultaneously detecting oxy-hemoglobin. PMID:21639573

  8. A Measure of Real-Time Intelligence

    NASA Astrophysics Data System (ADS)

    Gavane, Vaibhav

    2013-03-01

    We propose a new measure of intelligence for general reinforcement learning agents, based on the notion that an agent's environment can change at any step of execution of the agent. That is, an agent is considered to be interacting with its environment in real-time. In this sense, the resulting intelligence measure is more general than the universal intelligence measure (Legg and Hutter, 2007) and the anytime universal intelligence test (Hernández-Orallo and Dowe, 2010). A major advantage of the measure is that an agent's computational complexity is factored into the measure in a natural manner. We show that there exist agents with intelligence arbitrarily close to the theoretical maximum, and that the intelligence of agents depends on their parallel processing capability. We thus believe that the measure can provide a better evaluation of agents and guidance for building practical agents with high intelligence.

  9. Real-Time Inspection Of Currency

    NASA Astrophysics Data System (ADS)

    Blazek, Henry

    1986-12-01

    An automatic inspection machine, designed and manufactured by the Perkin-Elmer Corporation for the U.S. Bureau of Engraving and Printing, is capable of real-time inspection of currency at rates compatible with the output of modern high-speed printing presses. Inspection is accomplished by comparing test notes (in 32-per-sheet format) with reference notes stored in the memory of a digital computer. This paper describes the development of algorithms for detecting defective notes, one of the key problems solved during the development of the inspection system. Results achieved on an analytical model, used for predicting probability of false alarms and probability of detecting typically defective notes, are compared to those obtained by system simulation.

  10. Cerebral Autoregulation Real-Time Monitoring

    PubMed Central

    Tsalach, Adi; Ratner, Eliahu; Lokshin, Stas; Silman, Zmira; Breskin, Ilan; Budin, Nahum; Kamar, Moshe

    2016-01-01

    Cerebral autoregulation is a mechanism which maintains constant cerebral blood flow (CBF) despite changes in mean arterial pressure (MAP). Assessing whether this mechanism is intact or impaired and determining its boundaries is important in many clinical settings, where primary or secondary injuries to the brain may occur. Herein we describe the development of a new ultrasound tagged near infra red light monitor which tracks CBF trends, in parallel, it continuously measures blood pressure and correlates them to produce a real time autoregulation index. Its performance is validated in both in-vitro experiment and a pre-clinical case study. Results suggest that using such a tool, autoregulation boundaries as well as its impairment or functioning can be identified and assessed. It may therefore assist in individualized MAP management to ensure adequate organ perfusion and reduce the risk of postoperative complications, and might play an important role in patient care. PMID:27571474

  11. Public Science with Real-Time Experiments

    NASA Astrophysics Data System (ADS)

    Lenardic, A.

    2013-12-01

    One of the best ways for professional scientists to engage in public outreach is to get outside of the university and/or lab walls and go out into the public. That is, go to public spaces to do some science experiments with the public - this includes students of all ages that constitute that public. Technological advance in portable measurement gear now allow one to do real, or near real, time experiments in outdoor, public spaces. We have been running a meta-experiment of this sort, aimed at the public display of science, for about a year now in Houston TX at the Lee and Joe Jamail Skatepark. The project goes under the title of Sk8Lab Houston and has introduced students of all ages to the power of scientific experimentation. We bring a portable science pack with us to the park. The pack has a range of wireless measurement gear that allow experiments to be done on the spot. Some of the experiments are designed by us but many are designed on by whoever suggests them to us that day. Over time the Sk8Lab scientists have built up a level of "trust" with the people who frequent the park (no one feels like we are gonna grade them at the park and they know that the learning is not on some regimented clock). This has broken down some learning walls and allowed for a more informal mode of exploration and a more genuine mode of experimentation (as compared to what often happens in class labs when students feel like they are just being forced to reproduce some known result). We will describe some of the test case experiments we have run and also discuss some of the trials, tribulations, and happy successes (many unplanned) along the way.

  12. Compact snapshot real-time imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Kudenov, Michael W.; Dereniak, Eustace L.

    2011-11-01

    The described spectral imaging system, referred to as a Snapshot Hyperspectral Imaging Fourier Transform (SHIFT) spectrometer, is capable of acquiring spectral image data of a scene in a single integration of a camera, is ultra-compact, inexpensive (commercial off-the-shelf), has no moving parts, and can produce datacubes (x, y, λ) in real time. Based on the multiple-image FTS originally developed by A. Hirai [1], the presented device offers significant advantages over his original implementation. Namely, its birefringent nature results in a common-path interferometer which makes the spectrometer insensitive to vibration. Furthermore, it enables the potential of making the instrument ultra-compact, thereby improving the portability of the sensor. By combining a birefringent interferometer with a lenslet array, the entire spectrometer consumes approximately 15×15×20 mm3, excluding the imaging camera. The theory of the birefringent FTS is provided, followed by details of its specific embodiment and a laboratory proof of concept of the sensor. Post-processing is currently accomplished in Matlab, but progress is underway in developing real-time reconstruction capabilities with software programmed on a graphics processing unit (GPU). It is anticipated that processing of >30 datacubes per second can be achieved with modest GPU hardware, with spatial/spectral data of or exceeding 256×256 spatial resolution elements and 60 spectral bands over the visible (400-800 nm) spectrum. Data were collected outdoors, demonstrating the sensor's ability to resolve spectral signatures in standard outdoor lighting and environmental conditions as well as retinal imaging.

  13. Subsystem real-time time dependent density functional theory.

    PubMed

    Krishtal, Alisa; Ceresoli, Davide; Pavanello, Michele

    2015-04-21

    We present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na4 cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated. PMID:25903875

  14. Real Time Seismic Prediction while Drilling

    NASA Astrophysics Data System (ADS)

    Schilling, F. R.; Bohlen, T.; Edelmann, T.; Kassel, A.; Heim, A.; Gehring, M.; Lüth, S.; Giese, R.; Jaksch, K.; Rechlin, A.; Kopf, M.; Stahlmann, J.; Gattermann, J.; Bruns, B.

    2009-12-01

    Efficient and safe drilling is a prerequisite to enhance the mobility of people and goods, to improve the traffic as well as utility infrastructure of growing megacities, and to ensure the growing energy demand while building geothermal and in hydroelectric power plants. Construction within the underground is often building within the unknown. An enhanced risk potential for people and the underground building may arise if drilling enters fracture zones, karsts, brittle rocks, mixed solid and soft rocks, caves, or anthropogenic obstacles. Knowing about the material behavior ahead of the drilling allows reducing the risk during drilling and construction operation. In drilling operations direct observations from boreholes can be complemented with geophysical investigations. In this presentation we focus on “real time” seismic prediction while drilling which is seen as a prerequisite while using geophysical methods in modern drilling operations. In solid rocks P- and S-wave velocity, refraction and reflection as well as seismic wave attenuation can be used for the interpretation of structures ahead of the drilling. An Integrated Seismic Imaging System (ISIS) for exploration ahead of a construction is used, where a pneumatic hammer or a magnetostrictive vibration source generate repetitive signals behind the tunneling machine. Tube waves are generated which travel along the tunnel to the working face. There the tube waves are converted to mainly S- but also P-Waves which interact with the formation ahead of the heading face. The reflected or refracted waves travel back to the working front are converted back to tube waves and recorded using three-component geophones which are fit into the tips of anchor rods. In near real time, the ISIS software allows for an integrated 3D imaging and interpretation of the observed data, geological and geotechnical parameters. Fracture zones, heterogeneities, and variations in the rock properties can be revealed during the drilling

  15. Real-time chemical analysis of aerosol particles

    SciTech Connect

    Yang, M.; Whitten, W.B.; Ramsey, J.M.

    1995-04-01

    An important aspect of environmental atmospheric monitoring requires the characterization of airborne microparticles and aerosols. Unfortunately, traditional sample collection and handling techniques are prone to contamination and interference effects that can render an analysis invalid. These problems can be avoided by using real-time atmospheric sampling techniques followed by immediate mass spectrometric analysis. The former is achieved in these experiments via a two state differential pumping scheme that is attached directly to a commercially available quadruple ion trap mass spectrometer. Particles produced by an external particle generator enter the apparatus and immediately pass through two cw laser/fiberoptic based detectors positioned two centimeters apart. Timing electronics measure the time between detection events, estimate the particles arrival in the center of the ion trap and control the firing of a YAG laser. Ions produced when the UV laser light ablates the particle`s surface are stored by the ion trap for mass analysis. Ion trap mass spectrometers have several advantages over conventional time-of-flight instruments. First, they are capable of MS/MS analysis by the collisional dissociation of a stored species, This permits complete chemical characterization of airborne samples. Second, ion traps are small and lend themselves to portable, field oriented applications.

  16. A high sensitivity real-time NVR monitor. [Nonvolatile Residue

    NASA Technical Reports Server (NTRS)

    Bowers, William D.; Chuan, R. L.

    1992-01-01

    The use of a temperature-controlled 200-MHz SAW resonator piezoelectric mass microbalance to monitor the mass of nonvolatile residue (NVR) deposited on its surface in real time is reported. The fundamental frequency of this device is mainly dependent on the configuration of the transducers and not on the thickness of the substrate. Therefore, higher operating frequencies can be achieved without reducing the thickness of the crystal. The real-time instrument was integrated onto a conventional stainless steel NVR plate and operated flawlessly over a 14-d period at Kennedy Space Center and successfully measured less than 1 ng/sq cm d NVR contamination. Contamination episodes detected by the instrument were correlated with scheduled activities on the test stand. Under the assumption of a baseline noise level of +/- 2 Hz, the absolute mass lower limit of detection would be 0.065 ng/sq cm. This would enable the detection of a daily NVR deposition rate of less than 0.1 ng/sq cm d.

  17. Clinical experience with real-time ultrasound

    NASA Astrophysics Data System (ADS)

    Chimiak, William J.; Wolfman, Neil T.; Covitz, Wesley

    1995-05-01

    After testing the extended multimedia interface (EMMI) product which is an asynchronous transmission mode (ATM) user to network interface (UNI) of AT&T at the Society for Computer Applications in Radiology conference in Winston-Salem, the Department of Radiology together with AT&T are implementing a tele-ultrasound system to combine real- time ultrasound with the static imaging features of more traditional digital ultrasound systems. Our current ultrasound system archives digital images to an optical disk system. Static images are sent using our digital radiology systems. This could be transferring images from one digital imaging and communications (DICOM)-compliant machine to another, or the current image transfer methodologies. The prototype of a live ultrasound system using the EMMI demonstrated the feasibility of doing live ultrasound. We now are developing the scenarios using a mix of the two methodologies. Utilizing EMMI technology, radiologists at the BGSM review at a workstation both static images and real-time scanning done by a technologist on patients at a remote site in order to render on-line primary diagnosis. Our goal is to test the feasibility of operating an ultrasound laboratory at a remote site utilizing a trained technologist without the necessity of having a full-time radiologist at that site. Initial plans are for a radiologist to review an initial set of static images on a patient taken by the technologist. If further scanning is required, the EMMI is used to transmit real-time imaging and audio using the audio input of a standard microphone system and the National Television Standards Committee (NTSC) output of the ultrasound equipment from the remote site to the radiologist in the department review station. The EMMI digitally encodes this data and places it in an ATM format. This ATM data stream goes to the GCNS2000 and then to the other EMMI where the ATM data stream is decoded into the live studies and voice communication which are then

  18. Capability of a Mobile Monitoring System to Provide Real-Time Data Broadcasting and Near Real-Time Source Attribution

    NASA Astrophysics Data System (ADS)

    Erickson, M.; Olaguer, J.; Wijesinghe, A.; Colvin, J.; Neish, B.; Williams, J.

    2014-12-01

    It is becoming increasingly important to understand the emissions and health effects of industrial facilities. Many areas have no or limited sustained monitoring capabilities, making it difficult to quantify the major pollution sources affecting human health, especially in fence line communities. Developments in real-time monitoring and micro-scale modeling offer unique ways to tackle these complex issues. This presentation will demonstrate the capability of coupling real-time observations with micro-scale modeling to provide real-time information and near real-time source attribution. The Houston Advanced Research Center constructed the Mobile Acquisition of Real-time Concentrations (MARC) laboratory. MARC consists of a Ford E-350 passenger van outfitted with a Proton Transfer Reaction Mass Spectrometer (PTR-MS) and meteorological equipment. This allows for the fast measurement of various VOCs important to air quality. The data recorded from the van is uploaded to an off-site database and the information is broadcast to a website in real-time. This provides for off-site monitoring of MARC's observations, which allows off-site personnel to provide immediate input to the MARC operators on how to best achieve project objectives. The information stored in the database can also be used to provide near real-time source attribution. An inverse model has been used to ascertain the amount, location, and timing of emissions based on MARC measurements in the vicinity of industrial sites. The inverse model is based on a 3D micro-scale Eulerian forward and adjoint air quality model known as the HARC model. The HARC model uses output from the Quick Urban and Industrial Complex (QUIC) wind model and requires a 3D digital model of the monitored facility based on lidar or industrial permit data. MARC is one of the instrument platforms deployed during the 2014 Benzene and other Toxics Exposure Study (BEE-TEX) in Houston, TX. The main goal of the study is to quantify and explain the

  19. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema

    Zhang, Song

    2012-08-29

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  20. Real-time multi-view deconvolution

    PubMed Central

    Schmid, Benjamin; Huisken, Jan

    2015-01-01

    Summary: In light-sheet microscopy, overall image content and resolution are improved by acquiring and fusing multiple views of the sample from different directions. State-of-the-art multi-view (MV) deconvolution simultaneously fuses and deconvolves the images in 3D, but processing takes a multiple of the acquisition time and constitutes the bottleneck in the imaging pipeline. Here, we show that MV deconvolution in 3D can finally be achieved in real-time by processing cross-sectional planes individually on the massively parallel architecture of a graphics processing unit (GPU). Our approximation is valid in the typical case where the rotation axis lies in the imaging plane. Availability and implementation: Source code and binaries are available on github (https://github.com/bene51/), native code under the repository ‘gpu_deconvolution’, Java wrappers implementing Fiji plugins under ‘SPIM_Reconstruction_Cuda’. Contact: bschmid@mpi-cbg.de or huisken@mpi-cbg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26112291

  1. Real-Time Principal-Component Analysis

    NASA Technical Reports Server (NTRS)

    Duong, Vu; Duong, Tuan

    2005-01-01

    A recently written computer program implements dominant-element-based gradient descent and dynamic initial learning rate (DOGEDYN), which was described in Method of Real-Time Principal-Component Analysis (NPO-40034) NASA Tech Briefs, Vol. 29, No. 1 (January 2005), page 59. To recapitulate: DOGEDYN is a method of sequential principal-component analysis (PCA) suitable for such applications as data compression and extraction of features from sets of data. In DOGEDYN, input data are represented as a sequence of vectors acquired at sampling times. The learning algorithm in DOGEDYN involves sequential extraction of principal vectors by means of a gradient descent in which only the dominant element is used at each iteration. Each iteration includes updating of elements of a weight matrix by amounts proportional to a dynamic initial learning rate chosen to increase the rate of convergence by compensating for the energy lost through the previous extraction of principal components. In comparison with a prior method of gradient-descent-based sequential PCA, DOGEDYN involves less computation and offers a greater rate of learning convergence. The sequential DOGEDYN computations require less memory than would parallel computations for the same purpose. The DOGEDYN software can be executed on a personal computer.

  2. Real-time optoacoustic monitoring of stroke

    NASA Astrophysics Data System (ADS)

    Kneipp, Moritz; Turner, Jake; Hambauer, Sebastian; Krieg, Sandro M.; Lehmberg, Jens; Lindauer, Ute; Razansky, Daniel

    2014-03-01

    Characterizing disease progression and identifying possible therapeutic interventions in stroke is greatly aided by the use of longitudinal function imaging studies. In this study, we investigate the applicability of real-time multispectral optoacoustic tomography (MSOT) as a tool for non-invasive monitoring of the progression of stroke in the whole brain. The middle cerebral artery occlusion (MCAO) method was used to induce stroke. Mice were imaged under isoflurane anesthesia preoperatively and at several time points during and after the 60-minute occlusion. The animals were sacrificed after 24 hours and their excised brains frozen at -80°C for sectioning. The cryosection were stained using H&E staining to identify the ischemic lesion. Major vessels are readily identifiable in the whole mouse head in the in vivo optoacoustic scans. During ischemia, a reduction in cerebral blood volume is detectable in the cortex. Post ischemia, spectral unmixing of the optoacoustic signals shows an asymmetry of the deoxygenated hemoglobin in the hemisphere affected by MCAO. This hypoxic area was mainly located around the boundary of the ischemic lesion and was therefore identified as the ischemic penumbra. Non-invasive functional MSOT imaging is able to visualize the hypoxic penumbra in brains affected by stroke. Stopping the spread of the infarct area and revitalizing the penumbra is central in stroke research, this new imaging technique may therefore prove to be a valuable tool in the monitoring and developing new treatments.

  3. Meson mass at real and imaginary chemical potentials

    NASA Astrophysics Data System (ADS)

    Kashiwa, Kouji; Matsuzaki, Masayuki; Kouno, Hiroaki; Sakai, Yuji; Yahiro, Masanobu

    2009-04-01

    Chemical-potential dependence of pi and sigma meson masses is analyzed at both real and imaginary chemical potentials, μR and μI, by using the Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model that possesses both the extended Z3 symmetry and chiral symmetry. In the μI region, the meson masses have the Roberge-Weiss periodicity. The μI dependence of the meson masses becomes stronger as temperature increases. We argue that meson masses and physical quantities in the μR region will be determined from lattice QCD data on meson masses in the μI region by using the PNJL model, if the data are measured in the future.

  4. Meson mass at real and imaginary chemical potentials

    SciTech Connect

    Kashiwa, Kouji; Sakai, Yuji; Yahiro, Masanobu; Matsuzaki, Masayuki; Kouno, Hiroaki

    2009-04-01

    Chemical-potential dependence of pi and sigma meson masses is analyzed at both real and imaginary chemical potentials, {mu}{sub R} and {mu}{sub I}, by using the Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model that possesses both the extended Z{sub 3} symmetry and chiral symmetry. In the {mu}{sub I} region, the meson masses have the Roberge-Weiss periodicity. The {mu}{sub I} dependence of the meson masses becomes stronger as temperature increases. We argue that meson masses and physical quantities in the {mu}{sub R} region will be determined from lattice QCD data on meson masses in the {mu}{sub I} region by using the PNJL model, if the data are measured in the future.

  5. CRANS - CONFIGURABLE REAL-TIME ANALYSIS SYSTEM

    NASA Technical Reports Server (NTRS)

    Mccluney, K.

    1994-01-01

    In a real-time environment, the results of changes or failures in a complex, interconnected system need evaluation quickly. Tabulations showing the effects of changes and/or failures of a given item in the system are generally only useful for a single input, and only with regard to that item. Subsequent changes become harder to evaluate as combinations of failures produce a cascade effect. When confronted by multiple indicated failures in the system, it becomes necessary to determine a single cause. In this case, failure tables are not very helpful. CRANS, the Configurable Real-time ANalysis System, can interpret a logic tree, constructed by the user, describing a complex system and determine the effects of changes and failures in it. Items in the tree are related to each other by Boolean operators. The user is then able to change the state of these items (ON/OFF FAILED/UNFAILED). The program then evaluates the logic tree based on these changes and determines any resultant changes to other items in the tree. CRANS can also search for a common cause for multiple item failures, and allow the user to explore the logic tree from within the program. A "help" mode and a reference check provide the user with a means of exploring an item's underlying logic from within the program. A commonality check determines single point failures for an item or group of items. Output is in the form of a user-defined matrix or matrices of colored boxes, each box representing an item or set of items from the logic tree. Input is via mouse selection of the matrix boxes, using the mouse buttons to toggle the state of the item. CRANS is written in C-language and requires the MIT X Window System, Version 11 Revision 4 or Revision 5. It requires 78K of RAM for execution and a three button mouse. It has been successfully implemented on Sun4 workstations running SunOS, HP9000 workstations running HP-UX, and DECstations running ULTRIX. No executable is provided on the distribution medium; however

  6. Real-time support for high performance aircraft operation

    NASA Technical Reports Server (NTRS)

    Vidal, Jacques J.

    1989-01-01

    The feasibility of real-time processing schemes using artificial neural networks (ANNs) is investigated. A rationale for digital neural nets is presented and a general processor architecture for control applications is illustrated. Research results on ANN structures for real-time applications are given. Research results on ANN algorithms for real-time control are also shown.

  7. 17 CFR 38.157 - Real-time market monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false Real-time market monitoring... DESIGNATED CONTRACT MARKETS Compliance With Rules § 38.157 Real-time market monitoring. A designated contract market must conduct real-time market monitoring of all trading activity on its electronic...

  8. 17 CFR 38.157 - Real-time market monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 1 2014-04-01 2014-04-01 false Real-time market monitoring... DESIGNATED CONTRACT MARKETS Compliance With Rules § 38.157 Real-time market monitoring. A designated contract market must conduct real-time market monitoring of all trading activity on its electronic...

  9. Real-time CHAMP (RTC) infrared scene generation program

    NASA Astrophysics Data System (ADS)

    Crow, Dennis R.; Coker, Charles F.

    2001-08-01

    The Real-Time CHAMP (RTC) program is a computer simulation used to provide time varying high-fidelity infrared simulations of airborne vehicles and backgrounds in real- time. RTC is currently being utilized to provide real-time infrared imagery to support closed-loop digital and hardware-in-the-loop simulations. RTC computational algorithms take advantage of parametric databases created by its non real-time companion code (CHAMP--Composite Hardbody and Missile Plume) to allow accurate infrared imagery to be generated at real-time frame rates.

  10. Real-time accumulative computation motion detectors.

    PubMed

    Fernández-Caballero, Antonio; López, María Teresa; Castillo, José Carlos; Maldonado-Bascón, Saturnino

    2009-01-01

    The neurally inspired accumulative computation (AC) method and its application to motion detection have been introduced in the past years. This paper revisits the fact that many researchers have explored the relationship between neural networks and finite state machines. Indeed, finite state machines constitute the best characterized computational model, whereas artificial neural networks have become a very successful tool for modeling and problem solving. The article shows how to reach real-time performance after using a model described as a finite state machine. This paper introduces two steps towards that direction: (a) A simplification of the general AC method is performed by formally transforming it into a finite state machine. (b) A hardware implementation in FPGA of such a designed AC module, as well as an 8-AC motion detector, providing promising performance results. We also offer two case studies of the use of AC motion detectors in surveillance applications, namely infrared-based people segmentation and color-based people tracking, respectively. PMID:22303161

  11. Real-Time 3D Visualization

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Butler Hine, former director of the Intelligent Mechanism Group (IMG) at Ames Research Center, and five others partnered to start Fourth Planet, Inc., a visualization company that specializes in the intuitive visual representation of dynamic, real-time data over the Internet and Intranet. Over a five-year period, the then NASA researchers performed ten robotic field missions in harsh climes to mimic the end- to-end operations of automated vehicles trekking across another world under control from Earth. The core software technology for these missions was the Virtual Environment Vehicle Interface (VEVI). Fourth Planet has released VEVI4, the fourth generation of the VEVI software, and NetVision. VEVI4 is a cutting-edge computer graphics simulation and remote control applications tool. The NetVision package allows large companies to view and analyze in virtual 3D space such things as the health or performance of their computer network or locate a trouble spot on an electric power grid. Other products are forthcoming. Fourth Planet is currently part of the NASA/Ames Technology Commercialization Center, a business incubator for start-up companies.

  12. Real-Time Accumulative Computation Motion Detectors

    PubMed Central

    Fernández-Caballero, Antonio; López, María Teresa; Castillo, José Carlos; Maldonado-Bascón, Saturnino

    2009-01-01

    The neurally inspired accumulative computation (AC) method and its application to motion detection have been introduced in the past years. This paper revisits the fact that many researchers have explored the relationship between neural networks and finite state machines. Indeed, finite state machines constitute the best characterized computational model, whereas artificial neural networks have become a very successful tool for modeling and problem solving. The article shows how to reach real-time performance after using a model described as a finite state machine. This paper introduces two steps towards that direction: (a) A simplification of the general AC method is performed by formally transforming it into a finite state machine. (b) A hardware implementation in FPGA of such a designed AC module, as well as an 8-AC motion detector, providing promising performance results. We also offer two case studies of the use of AC motion detectors in surveillance applications, namely infrared-based people segmentation and color-based people tracking, respectively. PMID:22303161

  13. Real-time neural coding of memory.

    PubMed

    Tsien, Joe Z

    2007-01-01

    Recent identification of network-level functional coding units, termed neural cliques, in the hippocampus has allowed real-time patterns of memory traces to be mathematically described, intuitively visualized, and dynamically deciphered. Any given episodic event is represented and encoded by the activation of a set of neural clique assemblies that are organized in a categorical and hierarchical manner. This hierarchical feature-encoding pyramid is invariantly composed of the general feature-encoding clique at the bottom, sub-general feature-encoding cliques in the middle, and highly specific feature-encoding cliques at the top. This hierarchical and categorical organization of neural clique assemblies provides the network-level mechanism the capability of not only achieving vast storage capacity, but also generating commonalities from the individual behavioral episodes and converting them to the abstract concepts and generalized knowledge that are essential for intelligence and adaptive behaviors. Furthermore, activation patterns of the neural clique assemblies can be mathematically converted to strings of binary codes that would permit universal categorizations of the brain's internal representations across individuals and species. Such universal brain codes can also potentially facilitate the unprecedented brain-machine interface communications. PMID:17925242

  14. Real-time pricing's hidden surprise

    SciTech Connect

    Siddiqi, R.; Woodley, J.

    1994-03-01

    The electric utility industry in the United States and the rest of the world is in the midst of profound change, with various models of regulation and nonregulation being tested. The United States has opted for an incremental approach to changes in fundamental aspects of the industry. Other countries, most notably the United Kingdom, are in the process of deregulation. These different structures rely on and result in dramatically different markets. While market structures may differ, similar approaches to service designs are evolving. Specifically, service options based on pricing are proliferating, and customers are being given the opportunity to select from a menu of options. This is in marked contrast to the rigid tariff structures that presuppose monopoly status to achieve utility goals. Strong parallels may be drawn between the pool-pricing options and associated hedging mechanisms offered in England and Wales, and the two-part tariff-based real-time pricing (RTP) programs in the United States. The latter service design, which is undergoing experimentation at Georgia Power Co., and in pilot operation at Niagara Mohawk Power Corp., has been criticized as too complex and not reflecting a competitive pricing structure. However, the similarity between two-part tariff programs and pool-pricing services (offered in the U.K. to a significantly larger customer base, under greater competition) undercuts these criticisms.

  15. Real-time DIRCM system modeling

    NASA Astrophysics Data System (ADS)

    Petersson, Mikael

    2004-12-01

    Directed infrared countermeasures (DIRCM) play an increasingly important role in electronic warfare to counteract threats posed by infrared seekers. The usefulness and performance of such countermeasures depend, for example, on atmospheric conditions (attenuation and turbulence) and platform vibrations, causing pointing and tracking errors for the laser beam and reducing the power transferred to the seeker aperture. These problems make it interesting to simulate the performance of a DIRCM system in order to understand how easy or difficult it is to counteract an approaching threat and evaluate limiting factors in various situations. This paper describes a DIRCM model that has been developed, including atmospheric effects such as attenuation and turbulence as well as closed loop tracking algorithms, where the retro reflex of the laser is used for the pointing control of the beam. The DIRCM model is part of a large simulation framework (EWSim), which also incorporates several descriptions of different seekers (e.g. reticle, rosette, centroid, nutating cross) and models of robot dynamics. Effects of a jamming laser on a specific threat can be readily verified by simulations within this framework. The duel between missile and countermeasure is simulated in near real-time and visualized graphically in 3D. A typical simulation with a reticle seeker jammed by a modulated laser is included in the paper.

  16. Near Real Time Ship Detection Experiments

    NASA Astrophysics Data System (ADS)

    Brusch, S.; Lehner, S.; Schwarz, E.; Fritz, T.

    2010-04-01

    A new Near Real Time (NRT) ship detection processor SAINT (SAR AIS Integrated Toolbox) was developed in the framework of the ESA project MARISS. Data are received at DLRs ground segment DLR-BN (Neustrelitz, Germany). Results of the ship detection are available on ftp server within 30 min after the acquisition started. The detectability of ships on Synthetic Aperture Radar (SAR) ERS-2, ENVISAT ASAR and TerraSAR-X (TS-X) images is validated by coastal (live) AIS and space AIS. The monitoring areas chosen for surveillance are the North-, Baltic Sea, and Cape Town. The detectability in respect to environmental parameters like wind field, sea state, currents and changing coastlines due to tidal effects is investigated. In the South Atlantic a tracking experiment of the German research vessel Polarstern has been performed. Issues of piracy in particular in respect to ships hijacked at the Somali coast are discussed. Some examples using high resolution images from TerraSAR-X are given.

  17. Recommendations for real-time speech MRI.

    PubMed

    Lingala, Sajan Goud; Sutton, Brad P; Miquel, Marc E; Nayak, Krishna S

    2016-01-01

    Real-time magnetic resonance imaging (RT-MRI) is being increasingly used for speech and vocal production research studies. Several imaging protocols have emerged based on advances in RT-MRI acquisition, reconstruction, and audio-processing methods. This review summarizes the state-of-the-art, discusses technical considerations, and provides specific guidance for new groups entering this field. We provide recommendations for performing RT-MRI of the upper airway. This is a consensus statement stemming from the ISMRM-endorsed Speech MRI summit held in Los Angeles, February 2014. A major unmet need identified at the summit was the need for consensus on protocols that can be easily adapted by researchers equipped with conventional MRI systems. To this end, we provide a discussion of tradeoffs in RT-MRI in terms of acquisition requirements, a priori assumptions, artifacts, computational load, and performance for different speech tasks. We provide four recommended protocols and identify appropriate acquisition and reconstruction tools. We list pointers to open-source software that facilitate implementation. We conclude by discussing current open challenges in the methodological aspects of RT-MRI of speech. PMID:26174802

  18. High sensitivity real-time NVR monitor

    NASA Technical Reports Server (NTRS)

    Bowers, William D. (Inventor); Chuan, Raymond L. (Inventor)

    1997-01-01

    A real time non-volatile residue (NVR) monitor, which utilizes surface acoustic wave (SAW) resonators to detect molecular contamination in a given environment. The SAW resonators operate at a resonant frequency of approximately 200 MHz-2,000 MHz which enables the NVR monitor to detect molecular contamination on the order of 10.sup.-11 g-cm.sup.-2 to 10.sup.-13 g-cm.sup.2. The NVR monitor utilizes active temperature control of (SAW) resonators to achieve a stable resonant frequency. The temperature control system of the NVR monitor is able to directly heat and cool the SAW resonators utilizing a thermoelectric element to maintain the resonators at a present temperature independent of the environmental conditions. In order to enable the direct heating and cooling of the SAW resonators, the SAW resonators are operatively mounted to a heat sink. In one embodiment, the heat sink is located in between the SAW resonators and an electronic circuit board which contains at least a portion of the SAW control electronics. The electrical leads of the SAW resonators are connected through the heat sink to the circuit board via an electronic path which prevents inaccurate frequency measurement.

  19. Optimizing near real time accountability for reprocessing.

    SciTech Connect

    Cipiti, Benjamin B.

    2010-06-01

    Near Real Time Accountability (NRTA) of actinides at high precision in reprocessing plants has been a long sought-after goal in the safeguards community. Achieving this goal is hampered by the difficulty of making precision measurements in the reprocessing environment, equipment cost, and impact to plant operations. Thus the design of future reprocessing plants requires an optimization of different approaches. The Separations and Safeguards Performance Model, developed at Sandia National Laboratories, was used to evaluate a number of NRTA strategies in a UREX+ reprocessing plant. Strategies examined include the incorporation of additional actinide measurements of internal plant vessels, more use of process monitoring data, and the option of periodic draining of inventory to key tanks. Preliminary results show that the addition of measurement technologies can increase the overall measurement uncertainty due to additional error propagation, so care must be taken when designing an advanced system. Initial results also show that relying on a combination of different NRTA techniques will likely be the best option. The model provides a platform for integrating all the data. The modeling results for the different NRTA options under various material loss conditions will be presented.

  20. Real-time holographic camera system

    NASA Astrophysics Data System (ADS)

    Bazhenov, Mikhail Y.; Grabovski, Vitaly V.; Stolyarenko, Alexandr V.; Zahaykevich, George A.

    1997-04-01

    The holographic camera system for surface-relief hologram multiple reversible registration is presented. Photosensitive media is a single-layer photothermoplastic polymer on a glass substrate with conductive layer. This exclude a charges accumulation in the polymer volume and permits to realize an efficient enhancement of latent electrostatic image and its fast pulse heating development. The processes of charging, photogeneration, carriers transport, fast development and erasing, image enhancement were studied in detail and optimized. In order to improve some defects of photothermoplastic recording, originating from influences of circumstances and recording conditions, some new processes were developed: (1) fast charging with pulses corona in closed dielectric volume, (2) optoelectronic enhancement of electrostatic image, and (3) fast pulsed development with automatically controlled temperature rate. The dust-proof recording camera with built-in highvoltage power supply, thermo- and photosensors was designed to meet the needs of real-time or multiple- exposure interferometry, holographic training recording, holographic storage systems, correlation investigations and pattern recognition.

  1. Handheld real-time PCR device.

    PubMed

    Ahrberg, Christian D; Ilic, Bojan Robert; Manz, Andreas; Neužil, Pavel

    2016-02-01

    Here we report one of the smallest real-time polymerase chain reaction (PCR) systems to date with an approximate size of 100 mm × 60 mm × 33 mm. The system is an autonomous unit requiring an external 12 V power supply. Four simultaneous reactions are performed in the form of virtual reaction chambers (VRCs) where a ≈200 nL sample is covered with mineral oil and placed on a glass cover slip. Fast, 40 cycle amplification of an amplicon from the H7N9 gene was used to demonstrate the PCR performance. The standard curve slope was -3.02 ± 0.16 cycles at threshold per decade (mean ± standard deviation) corresponding to an amplification efficiency of 0.91 ± 0.05 per cycle (mean ± standard deviation). The PCR device was capable of detecting a single deoxyribonucleic acid (DNA) copy. These results further suggest that our handheld PCR device may have broad, technologically-relevant applications extending to rapid detection of infectious diseases in small clinics. PMID:26753557

  2. Towards real-time image quality assessment

    NASA Astrophysics Data System (ADS)

    Geary, Bobby; Grecos, Christos

    2011-03-01

    We introduce a real-time implementation and evaluation of a new fast accurate full reference based image quality metric. The popular general image quality metric known as the Structural Similarity Index Metric (SSIM) has been shown to be an effective, efficient and useful, finding many practical and theoretical applications. Recently the authors have proposed an enhanced version of the SSIM algorithm known as the Rotated Gaussian Discrimination Metric (RGDM). This approach uses a Gaussian-like discrimination function to evaluate local contrast and luminance. RGDM was inspired by an exploration of local statistical parameter variations in relation to variation of Mean Opinion Score (MOS) for a range of particular distortion types. In this paper we out-line the salient features of the derivation of RGDM and show how analyses of local statistics of distortion type necessitate variation in discrimination function width. Results on the LIVE image database show tight banding of RGDM metric value when plotted against mean opinion score indicating the usefulness of this metric. We then explore a number of strategies for algorithmic speed-up including the application of Integral Images for patch based computation optimisation, cost reduction for the evaluation of the discrimination function and general loop unrolling. We also employ fast Single Instruction Multiple Data (SIMD) intrinsics and explore data parallel decomposition on a multi-core Intel Processor.

  3. Real time inverse filter focusing through iterative time reversal.

    PubMed

    Montaldo, Gabriel; Tanter, Mickaël; Fink, Mathias

    2004-02-01

    In order to achieve an optimal focusing through heterogeneous media we need to build the inverse filter of the propagation operator. Time reversal is an easy and robust way to achieve such an inverse filter in nondissipative media. However, as soon as losses appear in the medium, time reversal is not equivalent to the inverse filter anymore. Consequently, it does not produce the optimal focusing and beam degradations may appear. In such cases, we showed in previous works that the optimal focusing can be recovered by using the so-called spatiotemporal inverse filter technique. This process requires the presence of a complete set of receivers inside the medium. It allows one to reach the optimal focusing even in extreme situations such as ultrasonic focusing through human skull or audible sound focusing in strongly reverberant rooms. But, this technique is time consuming and implied fastidious numerical calculations. In this paper we propose a new way to process this inverse filter focusing technique in real time and without any calculation. The new process is based on iterative time reversal process. Contrary to the classical inverse filter technique, this iteration does not require any computation and achieves the inverse filter in an experimental way using wave propagation instead of computational power. The convergence from time reversal to inverse filter during the iterative process is theoretically explained. Finally, the feasibility of this iterative technique is experimentally demonstrated for ultrasound applications. PMID:15000188

  4. Toward Real Time Neural Net Flight Controllers

    NASA Technical Reports Server (NTRS)

    Jorgensen, C. C.; Mah, R. W.; Ross, J.; Lu, Henry, Jr. (Technical Monitor)

    1994-01-01

    NASA Ames Research Center has an ongoing program in neural network control technology targeted toward real time flight demonstrations using a modified F-15 which permits direct inner loop control of actuators, rapid switching between alternative control designs, and substitutable processors. An important part of this program is the ACTIVE flight project which is examining the feasibility of using neural networks in the design, control, and system identification of new aircraft prototypes. This paper discusses two research applications initiated with this objective in mind: utilization of neural networks for wind tunnel aircraft model identification and rapid learning algorithms for on line reconfiguration and control. The first application involves the identification of aerodynamic flight characteristics from analysis of wind tunnel test data. This identification is important in the early stages of aircraft design because complete specification of control architecture's may not be possible even though concept models at varying scales are available for aerodynamic wind tunnel testing. Testing of this type is often a long and expensive process involving measurement of aircraft lift, drag, and moment of inertia at varying angles of attack and control surface configurations. This information in turn can be used in the design of the flight control systems by applying the derived lookup tables to generate piece wise linearized controllers. Thus, reduced costs in tunnel test times and the rapid transfer of wind tunnel insights into prototype controllers becomes an important factor in more efficient generation and testing of new flight systems. NASA Ames Research Center is successfully applying modular neural networks as one way of anticipating small scale aircraft model performances prior to testing, thus reducing the number of in tunnel test hours and potentially, the number of intermediate scaled models required for estimation of surface flow effects.

  5. Apparatus Characterizes Transient Voltages in Real Time

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro

    2005-01-01

    is received, a volatile memory is filled with data for a total time of 200 ms. After the data are transferred to nonvolatile memory, the recorder rearms itself within 400 ms to enable recording of subsequent transients. Unfortunately, the recorded data must be retrieved through a serial communication link. Depending on the amount of data recorded, the memory can be filled before retrieval is completed. Although large amounts of data are recorded and retrieved, only a small part of the information (the selected parameters) is usually required. The present transient-voltage recorder provides the required information, without incurring the overhead associated with the recording, storage, and retrieval of complete transient-waveform data. In operation, this apparatus processes transient voltage waveforms in real time to extract and record the selected parameters. An analog-to-digital converter that operates at a speed of as much as 100 mega-samples per second is used to sample a transient waveform. A real-time comparator and peak detector are implemented by use of fast field-programmable gate arrays.

  6. Real time PV manufacturing diagnostic system

    SciTech Connect

    Kochergin, Vladimir; Crawford, Michael A.

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  7. Real time monitoring of electroless nickel plating

    NASA Astrophysics Data System (ADS)

    Rains, Aaron E.; Kline, Ronald A.

    2013-01-01

    This work deals with the design and manufacturing of the heat and chemical resistant transducer case required for on-line immersion testing, experimental design, data acquisition and signal processing. Results are presented for several depositions with an accuracy of two ten-thousandths of an inch in coating thickness obtained. Monitoring the deposition rate of Electroless Nickel (EN) plating in-situ will provide measurement of the accurate dimensions of the component being plated, in real time. EN is used as for corrosion and wear protection for automotive an - Electroless Nickel (EN) plating is commonly used for corrosion and wear protection for automotive and aerospace components. It plates evenly and symmetrically, theoretically allowing the part to be plated to its final dimension. Currently the standard approach to monitoring the thickness of the deposited nickel is to remove the component from the plating bath and physically measure the part. This can lead to plating problems such as pitting, non-adhesion of the deposit and contamination of the plating solution. The goal of this research effort is to demonstrate that plating thickness can be rapidly and accurately measured using ultrasonic testing. Here a special housing is designed to allow immersion of the ultrasonic transducers directly into the plating bath. An FFT based signal processing algorithm was developed to resolve closely spaced echoes for precise thickness determination. The technique in this research effort was found to be capable of measuring plating thicknesses to within 0.0002 inches. It is expected that this approach will lead to cost savings in many EN plating operations.

  8. Real-Time Feature Tracking Using Homography

    NASA Technical Reports Server (NTRS)

    Clouse, Daniel S.; Cheng, Yang; Ansar, Adnan I.; Trotz, David C.; Padgett, Curtis W.

    2010-01-01

    This software finds feature point correspondences in sequences of images. It is designed for feature matching in aerial imagery. Feature matching is a fundamental step in a number of important image processing operations: calibrating the cameras in a camera array, stabilizing images in aerial movies, geo-registration of images, and generating high-fidelity surface maps from aerial movies. The method uses a Shi-Tomasi corner detector and normalized cross-correlation. This process is likely to result in the production of some mismatches. The feature set is cleaned up using the assumption that there is a large planar patch visible in both images. At high altitude, this assumption is often reasonable. A mathematical transformation, called an homography, is developed that allows us to predict the position in image 2 of any point on the plane in image 1. Any feature pair that is inconsistent with the homography is thrown out. The output of the process is a set of feature pairs, and the homography. The algorithms in this innovation are well known, but the new implementation improves the process in several ways. It runs in real-time at 2 Hz on 64-megapixel imagery. The new Shi-Tomasi corner detector tries to produce the requested number of features by automatically adjusting the minimum distance between found features. The homography-finding code now uses an implementation of the RANSAC algorithm that adjusts the number of iterations automatically to achieve a pre-set probability of missing a set of inliers. The new interface allows the caller to pass in a set of predetermined points in one of the images. This allows the ability to track the same set of points through multiple frames.

  9. Satellite clock corrections estimation to accomplish real time ppp: experiments for brazilian real time network

    NASA Astrophysics Data System (ADS)

    Marques, Haroldo; Monico, João; Aquino, Marcio; Melo, Weyller

    2014-05-01

    The real time PPP method requires the availability of real time precise orbits and satellites clocks corrections. Currently, it is possible to apply the solutions of clocks and orbits available by BKG within the context of IGS Pilot project or by using the operational predicted IGU ephemeris. The accuracy of the satellite position available in the IGU is enough for several applications requiring good quality. However, the satellites clocks corrections do not provide enough accuracy (3 ns ~ 0.9 m) to accomplish real time PPP with the same level of accuracy. Therefore, for real time PPP application it is necessary to further research and develop appropriated methodologies for estimating the satellite clock corrections in real time with better accuracy. Currently, it is possible to apply the real time solutions of clocks and orbits available by Federal Agency for Cartography and Geodesy (BKG) within the context of IGS Pilot project. The BKG corrections are disseminated by a new proposed format of the RTCM 3.x and can be applied in the broadcasted orbits and clocks. Some investigations have been proposed for the estimation of the satellite clock corrections using GNSS code and phase observable at the double difference level between satellites and epochs (MERVAT, DOUSA, 2007). Another possibility consists of applying a Kalman Filter in the PPP network mode (HAUSCHILD, 2010) and it is also possible the integration of both methods, using network PPP and observables at double difference level in specific time intervals (ZHANG; LI; GUO, 2010). For this work the methodology adopted consists in the estimation of the satellite clock corrections based on the data adjustment in the PPP mode, but for a network of GNSS stations. The clock solution can be solved by using two types of observables: code smoothed by carrier phase or undifferenced code together with carrier phase. In the former, we estimate receiver clock error; satellite clock correction and troposphere, considering

  10. Real-Time Wireless Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Valencia, Emilio J.; Perotti, Jose; Lucena, Angel; Mata, Carlos

    2007-01-01

    Current and future aerospace requirements demand the creation of a new breed of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors must possess a high degree of intelligence to provide critical data efficiently and in real-time. Intelligence will include self-calibration, self-health assessment, and pre-processing of raw data at the sensor level. Most of these features are already incorporated in the Wireless Sensors Network (SensorNet(TradeMark)), developed by the Instrumentation Group at Kennedy Space Center (KSC). A system based on the SensorNet(TradeMark) architecture consists of data collection point(s) called Central Stations (CS) and intelligent sensors called Remote Stations (RS) where one or more CSs can be accommodated depending on the specific application. The CS's major function is to establish communications with the Remote Stations and to poll each RS for data and health information. The CS also collects, stores and distributes these data to the appropriate systems requiring the information. The system has the ability to perform point-to-point, multi-point and relay mode communications with an autonomous self-diagnosis of each communications link. Upon detection of a communication failure, the system automatically reconfigures to establish new communication paths. These communication paths are automatically and autonomously selected as the best paths by the system based on the existing operating environment. The data acquisition system currently under development at KSC consists of the SensorNet(TradeMark) wireless sensors as the remote stations and the central station called the Radio Frequency Health Node (RFHN). The RFF1N is the central station which remotely communicates with the SensorNet(TradeMark) sensors to control them and to receive data. The system's salient feature is the ability to provide deterministic sensor data with accurate time stamps for both time critical and non-time

  11. Real time UAV autonomy through offline calculations

    NASA Astrophysics Data System (ADS)

    Jung, Sunghun

    . Once one or several targets are detected, UAVs near the target are manipulated to approach to the target. If the number of detected targets is more than one, UAVs are evenly grouped to track targets. After a specific period of time, UAVs hand off and continue their original tasks. Thirdly, Emergency algorithm is generated to avoid losses of UAVs when UAVs have system failures. If one UAV is out of fuel or control during the mission, the Emergency algorithm brings the malfunctioning UAV to the point of departure and let the rest UAVs to continue an aerial reconnaissance. An UAV which finishes its task the earliest will continue to search a region which the failed UAV is supposed to search. In addition, Emergency algorithm prevents UAVs colliding into each other by using emergency altitude. Overall, the framework developed here facilitates the solution of several mission planning problems. The robustness built into our discretization of space and time permits feedback corrections on real-time to vehicle trajectories. The library of off-line solutions proposed and developed here minimizes computational overhead during operations.

  12. Real time tests for long lead-time forecasting of the magnetic field vectors within CMEs

    NASA Astrophysics Data System (ADS)

    Savani, Neel; Vourlidas, Angelos; Pulkkinen, Antti; Wold, Alexandra M.

    2016-07-01

    The direction of magnetic vectors within coronal mass ejections, CMEs, has significant importance for forecasting terrestrial behavior. We have developed a technique to estimate the time-varying magnetic field at Earth for periods within CMEs (Savani et al 2015, 2016). This technique reduces the complex dynamics in order to create a reliable prediction methodology to operate everyday under robust conditions. In this presentation, we focus on the results and skill scores of the forecasting technique calculated from 40 historical CME events from the pre-STEREO mission. Since these results provided substantial improvements in the long lead-time Kp index forecasts, we have now begun testing under real-time conditions. We will also show the preliminary results of our methodology under these real-time conditions within the CCMC hosted at NASA Goddard Space Flight Center.

  13. Instrumentation development for real time brainwave monitoring.

    SciTech Connect

    Anderson, Lawrence Frederick; Clough, Benjamin W.

    2005-12-01

    The human brain functions through a chemically-induced biological process which operates in a manner similar to electrical systems. The signal resulting from this biochemical process can actually be monitored and read using tools and having patterns similar to those found in electrical and electronics engineering. The primary signature of this electrical activity is the ''brain wave'', which looks remarkably similar to the output of many electrical systems. Likewise, the device currently used in medical arenas to read brain electrical activity is the electroencephalogram (EEG) which is synonymous with a multi-channel oscilloscope reading. Brain wave readings and recordings for medical purposes are traditionally taken in clinical settings such as hospitals, laboratories or diagnostic clinics. The signal is captured via externally applied scalp electrodes using semi-viscous gel to reduce impedance. The signal will be in the 10 to 100 microvolt range. In other instances, where surgeons are attempting to isolate particular types of minute brain signals, the electrodes may actually be temporarily implanted in the brain during a preliminary procedure. The current configurations of equipment required for EEGs involve large recording instruments, many electrodes, wires, and large amounts of hard disk space devoted to storing large files of brain wave data which are then eventually analyzed for patterns of concern. Advances in sensors, signal processing, data storage and microelectronics over the last decade would seem to have paved the way for the realization of devices capable of ''real time'' external monitoring, and possible assessment, of brain activity. A myriad of applications for such a capability are likewise presenting themselves, including the ability to assess brain functioning, level of functioning and malfunctioning. Our plan is to develop the sensors, signal processing, and portable instrumentation package which could capture, analyze, and communicate

  14. Real Time Seismic Loss Estimation in Italy

    NASA Astrophysics Data System (ADS)

    Goretti, A.; Sabetta, F.

    2009-04-01

    By more than 15 years the Seismic Risk Office is able to perform a real-time evaluation of the earthquake potential loss in any part of Italy. Once the epicentre and the magnitude of the earthquake are made available by the National Institute for Geophysiscs and Volca-nology, the model, based on the Italian Geographic Information Sys-tems, is able to evaluate the extent of the damaged area and the consequences on the built environment. In recent years the model has been significantly improved with new methodologies able to conditioning the uncertainties using observa-tions coming from the fields during the first days after the event. However it is reputed that the main challenges in loss analysis are related to the input data, more than to methodologies. Unlike the ur-ban scenario, where the missing data can be collected with enough accuracy, the country-wise analysis requires the use of existing data bases, often collected for other purposed than seismic scenario evaluation, and hence in some way lacking of completeness and homogeneity. Soil properties, building inventory and population dis-tribution are the main input data that are to be known in any site of the whole Italian territory. To this end the National Census on Popu-lation and Dwellings has provided information on the residential building types and the population that lives in that building types. The critical buildings, such as Hospital, Fire Brigade Stations, Schools, are not included in the inventory, since the national plan for seismic risk assessment of critical buildings is still under way. The choice of a proper soil motion parameter, its attenuation with distance and the building type fragility are important ingredients of the model as well. The presentation will focus on the above mentioned issues, highlight-ing the different data sets used and their accuracy, and comparing the model, input data and results when geographical areas with dif-ferent extent are considered: from the urban scenarios

  15. Real Time Wide Area Radiation Surveillance System

    NASA Astrophysics Data System (ADS)

    Biafore, M.

    2012-04-01

    We present the REWARD project, financed within the FP7 programme, theme SEC-2011.1.5-1 (Development of detection capabilities of difficult to detect radioactive sources and nuclear materials - Capability Project). Within this project, we propose a novel mobile system for real time, wide area radiation surveillance. The system is based on the integration of new miniaturized solid-state radiation sensors: a CdZnTe detector for gamma radiation and a high efficiency neutron detector based on novel silicon technologies. The sensing unit will include a wireless communication interface to send the data remotely to a monitoring base station which also uses a GPS system to calculate the position of the tag. The system will also incorporate middleware and high level software to provide web-service interfaces for the exchange of information, and that will offer top level functionalities as management of users, mobile tags and environment data and alarms, database storage and management and a web-based graphical user interface. Effort will be spent to ensure that the software is modular and re-usable across as many architectural levels as possible. Finally, an expert system will continuously analyze the information from the radiation sensor and correlate it with historical data from the tag location in order to generate an alarm when an abnormal situation is detected. The system will be useful for many different scenarios, including such lost radioactive sources and radioactive contamination. It will be possible to deploy in emergency units and in general in any type of mobile or static equipment. The sensing units will be highly portable thanks to their low size and low energy consumption. The complete system will be scalable in terms of complexity and cost and will offer very high precision on both the measurement and the location of the radiation. The modularity and flexibility of the system will allow for a realistic introduction to the market. Authorities may start with a

  16. Real-time Forensic Disaster Analysis

    NASA Astrophysics Data System (ADS)

    Wenzel, F.; Daniell, J.; Khazai, B.; Mühr, B.; Kunz-Plapp, T.; Markus, M.; Vervaeck, A.

    2012-04-01

    The Center for Disaster Management and Risk Reduction Technology (CEDIM, www.cedim.de) - an interdisciplinary research center founded by the German Research Centre for Geoscience (GFZ) and Karlsruhe Institute of Technology (KIT) - has embarked on a new style of disaster research known as Forensic Disaster Analysis. The notion has been coined by the Integrated Research on Disaster Risk initiative (IRDR, www.irdrinternational.org) launched by ICSU in 2010. It has been defined as an approach to studying natural disasters that aims at uncovering the root causes of disasters through in-depth investigations that go beyond the reconnaissance reports and case studies typically conducted after disasters. In adopting this comprehensive understanding of disasters CEDIM adds a real-time component to the assessment and evaluation process. By comprehensive we mean that most if not all relevant aspects of disasters are considered and jointly analysed. This includes the impact (human, economy, and infrastructure), comparisons with recent historic events, social vulnerability, reconstruction and long-term impacts on livelihood issues. The forensic disaster analysis research mode is thus best characterized as "event-based research" through systematic investigation of critical issues arising after a disaster across various inter-related areas. The forensic approach requires (a) availability of global data bases regarding previous earthquake losses, socio-economic parameters, building stock information, etc.; (b) leveraging platforms such as the EERI clearing house, relief-web, and the many sources of local and international sources where information is organized; and (c) rapid access to critical information (e.g., crowd sourcing techniques) to improve our understanding of the complex dynamics of disasters. The main scientific questions being addressed are: What are critical factors that control loss of life, of infrastructure, and for economy? What are the critical interactions

  17. Near Real-Time Processing of Proteomics Data Using Hadoop.

    PubMed

    Hillman, Chris; Ahmad, Yasmeen; Whitehorn, Mark; Cobley, Andy

    2014-03-01

    This article presents a near real-time processing solution using MapReduce and Hadoop. The solution is aimed at some of the data management and processing challenges facing the life sciences community. Research into genes and their product proteins generates huge volumes of data that must be extensively preprocessed before any biological insight can be gained. In order to carry out this processing in a timely manner, we have investigated the use of techniques from the big data field. These are applied specifically to process data resulting from mass spectrometers in the course of proteomic experiments. Here we present methods of handling the raw data in Hadoop, and then we investigate a process for preprocessing the data using Java code and the MapReduce framework to identify 2D and 3D peaks. PMID:27447310

  18. Fast Simulation of Tsunamis in Real Time

    NASA Astrophysics Data System (ADS)

    Fryer, G. J.; Wang, D.; Becker, N. C.; Weinstein, S. A.; Walsh, D.

    2011-12-01

    The U.S. Tsunami Warning Centers primarily base their wave height forecasts on precomputed tsunami scenarios, such as the SIFT model (Standby Inundation Forecasting of Tsunamis) developed by NOAA's Center for Tsunami Research. In SIFT, tsunami simulations for about 1600 individual earthquake sources, each 100x50 km, define shallow subduction worldwide. These simulations are stored in a database and combined linearly to make up the tsunami from any great earthquake. Precomputation is necessary because the nonlinear shallow-water wave equations are too time consuming to compute during an event. While such scenario-based models are valuable, they tacitly assume all energy in a tsunami comes from thrust at the décollement. The thrust assumption is often violated (e.g., 1933 Sanriku, 2007 Kurils, 2009 Samoa), while a significant number of tsunamigenic earthquakes are completely unrelated to subduction (e.g., 1812 Santa Barbara, 1939 Accra, 1975 Kalapana). Finally, parts of some subduction zones are so poorly defined that precomputations may be of little value (e.g., 1762 Arakan, 1755 Lisbon). For all such sources, a fast means of estimating tsunami size is essential. At the Pacific Tsunami Warning Center, we have been using our model RIFT (Real-time Inundation Forecasting of Tsunamis) experimentally for two years. RIFT is fast by design: it solves only the linearized form of the equations. At 4 arc-minutes resolution calculations for the entire Pacific take just a few minutes on an 8-processor Linux box. Part of the rationale for developing RIFT was earthquakes of M 7.8 or smaller, which approach the lower limit of the more complex SIFT's abilities. For such events we currently issue a fixed warning to areas within 1,000 km of the source, which typically means a lot of over-warning. With sources defined by W-phase CMTs, exhaustive comparison with runup data shows that we can reduce the warning area significantly. Even before CMTs are available, we routinely run models

  19. Easy and hard testbeds for real-time search algorithms

    SciTech Connect

    Koenig, S.; Simmons, R.G.

    1996-12-31

    Although researchers have studied which factors influence the behavior of traditional search algorithms, currently not much is known about how domain properties influence the performance of real-time search algorithms. In this paper we demonstrate, both theoretically and experimentally, that Eulerian state spaces (a super set of undirected state spaces) are very easy for some existing real-time search algorithms to solve: even real-time search algorithms that can be intractable, in general, are efficient for Eulerian state spaces. Because traditional real-time search testbeds (such as the eight puzzle and gridworlds) are Eulerian, they cannot be used to distinguish between efficient and inefficient real-time search algorithms. It follows that one has to use non-Eulerian domains to demonstrate the general superiority of a given algorithm. To this end, we present two classes of hard-to-search state spaces and demonstrate the performance of various real-time search algorithms on them.

  20. Real Time Flux Control in PM Motors

    SciTech Connect

    Otaduy, P.J.

    2005-09-27

    Significant research at the Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) is being conducted to develop ways to increase (1) torque, (2) speed range, and (3) efficiency of traction electric motors for hybrid electric vehicles (HEV) within existing current and voltage bounds. Current is limited by the inverter semiconductor devices' capability and voltage is limited by the stator wire insulation's ability to withstand the maximum back-electromotive force (emf), which occurs at the upper end of the speed range. One research track has been to explore ways to control the path and magnitude of magnetic flux while the motor is operating. The phrase, real time flux control (RTFC), refers to this mode of operation in which system parameters are changed while the motor is operating to improve its performance and speed range. RTFC has potential to meet an increased torque demand by introducing additional flux through the main air gap from an external source. It can augment the speed range by diverting flux away from the main air gap to reduce back-emf at high speeds. Conventional RTFC technology is known as vector control [1]. Vector control decomposes the stator current into two components; one that produces torque and a second that opposes (weakens) the magnetic field generated by the rotor, thereby requiring more overall stator current and reducing the efficiency. Efficiency can be improved by selecting a RTFC method that reduces the back-emf without increasing the average current. This favors methods that use pulse currents or very low currents to achieve field weakening. Foremost in ORNL's effort to develop flux control is the work of J. S. Hsu. Early research [2,3] introduced direct control of air-gap flux in permanent magnet (PM) machines and demonstrated it with a flux-controlled generator. The configuration eliminates the problem of demagnetization because it diverts all the flux from the magnets instead of

  1. Real-time and postprocessing holographic effects in dichromated pullulan.

    PubMed

    Savić, Svetlana; Pantelić, Dejan; Jakovijević, Dragica

    2002-08-01

    Experimental results concerning both real-time and postprocessing (after-development) behavior of a novel photosensitive material, dichromate-sensitized pullulan (DCP), are investigated. The exposure mechanism and possibilities for controlling holographic grating properties are discussed. We have shown that it is possible to maximize the diffraction efficiency of interference gratings after development by controlling diffraction efficiency in real time. Stronger real-time effects of DCP compared with those of dichromated gelatin are achieved. PMID:12153075

  2. Severe storms measurement system real time data processing and displays

    NASA Technical Reports Server (NTRS)

    Jeffreys, H. B.

    1980-01-01

    The objectives of the system are to provide the system operator with real time system performance check and to provide data recording of all SSMS data. Meteorologists are provided with real time indication of meteorological data measurements including aid for directing flight profiles in real time and aid for directing SSMS operations. A day-to-day feedback is provided to meteorologists, system operators, and flight crews for flight planning on subsequent flight tests days.

  3. Real-Time MENTAT programming language and architecture

    NASA Technical Reports Server (NTRS)

    Grimshaw, Andrew S.; Silberman, Ami; Liu, Jane W. S.

    1989-01-01

    Real-time MENTAT, a programming environment designed to simplify the task of programming real-time applications in distributed and parallel environments, is described. It is based on the same data-driven computation model and object-oriented programming paradigm as MENTAT. It provides an easy-to-use mechanism to exploit parallelism, language constructs for the expression and enforcement of timing constraints, and run-time support for scheduling and exciting real-time programs. The real-time MENTAT programming language is an extended C++. The extensions are added to facilitate automatic detection of data flow and generation of data flow graphs, to express the timing constraints of individual granules of computation, and to provide scheduling directives for the runtime system. A high-level view of the real-time MENTAT system architecture and programming language constructs is provided.

  4. Methods for real-time speech processing on Unix

    SciTech Connect

    Romberger, A.

    1982-01-01

    The author discusses computer programming done at the University of California, Berkeley, in support of research work in the area of speech analysis and synthesis. The purpose of this programming is to set up a system for doing real-time speech sampling using the Unix operating system. Two alternative approaches to real time work on Unix are discussed. The first approach is to do the real-time input/output on a secondary (satellite) machine that is not running Unix. The second approach is to do the real-time input/output on the main machine with the aid of special hardware.

  5. Compact time-of-flight mass spectrometer

    SciTech Connect

    Belov, A.S.; Kubalov, S.A.; Kuzik, V.F.; Yakushev, V.P.

    1986-02-01

    This paper describes a time-of-flight mass spectrometer developed for measuring the parameters of a pulsed hydrogen beam. The duration of an electron-beam current pulse in the ionizer of the mass spectrometer can be varied within 2-20 usec, the pulse electron current is 0.6 mA, and the electron energy is 250 eV. The time resolution of the mass spectrometer is determined by the repetition period of the electron-beam current pulses and is 40 usec. The mass spectrometer has 100% transmission in the direction of motion of molecular-beam particles. The dimension of the mass spectrometer is 7 cm in this direction. The mass resolution is sufficient for determination of the composition of the hydrogen beam.

  6. Real time simulation using position sensing

    NASA Technical Reports Server (NTRS)

    Studor, George F. (Inventor); Womack, Robert W. (Inventor); Hilferty, Michael F. (Inventor); Isbell, William B. (Inventor); Taylor, Jason A. (Inventor); Bacon, Bruce R. (Inventor)

    2000-01-01

    An interactive exercise system including exercise equipment having a resistance system, a speed sensor, a controller that varies the resistance setting of the exercise equipment, and a playback device for playing pre-recorded video and audio. The controller, operating in conjunction with speed information from the speed sensor and terrain information from media table files, dynamically varies the resistance setting of the exercise equipment in order to simulate varying degrees of difficulty while the playback device concurrently plays back the video and audio to create the simulation that the user is exercising in a natural setting such as a real-world exercise course.

  7. A Circuit Model of Real Time Human Body Hydration.

    PubMed

    Asogwa, Clement Ogugua; Teshome, Assefa K; Collins, Stephen F; Lai, Daniel T H

    2016-06-01

    Changes in human body hydration leading to excess fluid losses or overload affects the body fluid's ability to provide the necessary support for healthy living. We propose a time-dependent circuit model of real-time human body hydration, which models the human body tissue as a signal transmission medium. The circuit model predicts the attenuation of a propagating electrical signal. Hydration rates are modeled by a time constant τ, which characterizes the individual specific metabolic function of the body part measured. We define a surrogate human body anthropometric parameter θ by the muscle-fat ratio and comparing it with the body mass index (BMI), we find theoretically, the rate of hydration varying from 1.73 dB/min, for high θ and low τ to 0.05 dB/min for low θ and high τ. We compare these theoretical values with empirical measurements and show that real-time changes in human body hydration can be observed by measuring signal attenuation. We took empirical measurements using a vector network analyzer and obtained different hydration rates for various BMI, ranging from 0.6 dB/min for 22.7 [Formula: see text] down to 0.04 dB/min for 41.2 [Formula: see text]. We conclude that the galvanic coupling circuit model can predict changes in the volume of the body fluid, which are essential in diagnosing and monitoring treatment of body fluid disorder. Individuals with high BMI would have higher time-dependent biological characteristic, lower metabolic rate, and lower rate of hydration. PMID:26485354

  8. Real-time Avatar Animation from a Single Image

    PubMed Central

    Saragih, Jason M.; Lucey, Simon; Cohn, Jeffrey F.

    2014-01-01

    A real time facial puppetry system is presented. Compared with existing systems, the proposed method requires no special hardware, runs in real time (23 frames-per-second), and requires only a single image of the avatar and user. The user’s facial expression is captured through a real-time 3D non-rigid tracking system. Expression transfer is achieved by combining a generic expression model with synthetically generated examples that better capture person specific characteristics. Performance of the system is evaluated on avatars of real people as well as masks and cartoon characters. PMID:24598812

  9. A real-time photogrammetry system based on embedded architecture

    NASA Astrophysics Data System (ADS)

    Zheng, S. Y.; Gui, L.; Wang, X. N.; Ma, D.

    2014-06-01

    In order to meet the demand of real-time spatial data processing and improve the online processing capability of photogrammetric system, a kind of real-time photogrammetry method is proposed in this paper. According to the proposed method, system based on embedded architecture is then designed: using FPGA, ARM+DSP and other embedded computing technology to build specialized hardware operating environment, transplanting and optimizing the existing photogrammetric algorithm to the embedded system, and finally real-time photogrammetric data processing is realized. At last, aerial photogrammetric experiment shows that the method can achieve high-speed and stable on-line processing of photogrammetric data. And the experiment also verifies the feasibility of the proposed real-time photogrammetric system based on embedded architecture. It is the first time to realize real-time aerial photogrammetric system, which can improve the online processing efficiency of photogrammetry to a higher level and broaden the application field of photogrammetry.

  10. Estimating correlation for a real-time measure of connectivity.

    PubMed

    Arunkumar, Akhil; Panday, Ashish; Joshi, Bharat; Ravindran, Arun; Zaveri, Hitten P

    2012-01-01

    There has recently been considerable interest in connectivity analysis of fMRI and scalp and intracranial EEG time-series. The computational requirements of the pair-wise correlation (PWC), the core time-series measure used to estimate connectivity, presents a challenge to the real-time estimation of the PWC between all pairs of multiple time-series. We describe a parallel algorithm for computing PWC in real-time for streaming data from multiple channels. The algorithm was implemented on the Intel Xeon™ and IBM Cell Broadband Engine™ platforms. We evaluated time to estimate correlation for signals recorded with different acquisition parameters as a comparison to real-time constraints. We demonstrate that the execution time of these efficient implementations meet real-time constraints in most instances. PMID:23367098

  11. REAL-TIME ENVIRONMENTAL MONITORING: APPLICATIONS FOR HOMELAND SECURITY

    EPA Science Inventory

    Real-time monitoring technology developed as part of the EMPACT program has a variety of potential applications. These tools can measure a variety of potential contaminants in the air, water, in buildings, or in the soil. Real-time monitoring technology allows these detection sys...

  12. 75 FR 68418 - Real-Time System Management Information Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... successful real-time information program. A Request for Comments was published on May 4, 2006, at 71 FR 26399... 14, 2009, at 74 FR 1993. The purpose was to propose the establishment of minimum parameters and... Federal Highway Administration 23 CFR Part 511 RIN 2125-AF19 Real-Time System Management...

  13. 76 FR 42536 - Real-Time System Management Information Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... System Management Information Program on November 8, 2010, at 75 FR 68418. The final rule document also... Federal Highway Administration 23 CFR Part 511 RIN 2125-AF19 Real-Time System Management Information... available and share traffic and travel conditions information via real-time information programs as...

  14. REAL-TIME PCR ASSAY DEVELOPMENT FOR MULTIPLE MAIZE PATHOGENS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This talk presents updates on the development of real-time PCR assays for two seedborne pathogens of maize, Pantoea (Erwinia) stewartii, the causal agent of Stewart's bacterial wilt, and Stenocarpella (Diplodia) maydis, the causal agent of Diplodia ear rot. We developed primers and a real-time PCR p...

  15. COMPUTER-CONTROLLED, REAL-TIME AUTOMOBILE EMISSIONS MONITORING SYSTEM

    EPA Science Inventory

    A minicomputer controlled automotive emissions sampling and analysis system (the Real-Time System) was developed to determine vehicular modal emissions over various test cycles. This data acquisition system can sample real-time emissions at a rate of 10 samples/s. A buffer utiliz...

  16. Real-time hyperspectral imaging for food safety applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multispectral imaging systems with selected bands can commonly be used for real-time applications of food processing. Recent research has demonstrated several image processing methods including binning, noise removal filter, and appropriate morphological analysis in real-time mode can remove most fa...

  17. "Real-Time" Case Studies in Organizational Communication

    ERIC Educational Resources Information Center

    Long, Shawn D.

    2005-01-01

    This article presents an activity that integrates theory and application by examining the multiple communication events affecting a single organization in "real time" over the course of an academic term. The "real-time" case study (RTCS) avails students of the opportunity to examine organizational communication events as they are occurring in…

  18. Real-time fault diagnosis for propulsion systems

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Guo, Ten-Huei; Delaat, John C.; Duyar, Ahmet

    1991-01-01

    Current research toward real time fault diagnosis for propulsion systems at NASA-Lewis is described. The research is being applied to both air breathing and rocket propulsion systems. Topics include fault detection methods including neural networks, system modeling, and real time implementations.

  19. A Methodology for Tsunami Wave Propagation Forecast in Real Time

    NASA Astrophysics Data System (ADS)

    Wang, D.; Walsh, D.; Becker, N. C.; Fryer, G. J.

    2009-12-01

    U.S. Tsunami Warning Centers (TWCs) forecast tsunami wave heights using databases of pre-computed tsunami scenarios such as the Standby Inundation Forecasting of Tsunamis (SIFT) model developed by the Pacific Marine Environmental Laboratory and the database model of the West Coast and Alaska Tsunami Warning Center. These models, however, cannot anticipate all possible earthquake hypocenters and focal mechanisms. We have therefore developed a new wave-height model complimentary to the database approach that uses real-time earthquake parameters to produce a real-time wave propagation forecast, a model we call real-time inundation forecasting of tsunamis (RIFT). Our model employs a mass-conserving second order finite difference method of linear shallow water equations with a leapfrog scheme in time and a staggered grid in space. The model's user may customize its domain by selecting one of twenty predefined ocean basins and marginal seas. The user may also let RIFT choose the computation domain automatically, in which case it will determine its computational domain by calculating tsunami travel time for the earthquake to cover the region specified by the TWCs' warning criteria based on the earthquake's magnitude. For example, the US Tsunami Warning Centers will issue a Tsunami Warning for the region within three hours travel time from the epicenter of a magnitude 7.9 earthquake. We demonstrate that RIFT can produce a tsunami wave-height forecast for this region at 4-arc-minute resolution in less than one minute using a modern 4-CPU Linux workstation, including the time needed to dynamically compute the boundaries of the domain. The user may also use smaller domains to generate a tsunami forecast much more quickly when an earthquake poses only a local tsunami threat, such as a large earthquake in Hawaii. In this case, the model can forecast tsunami wave heights for the entire state of Hawaii in less than five seconds at 1-arc-minute resolution. RIFT needs an earthquake

  20. Information display and interaction in real-time environments

    NASA Technical Reports Server (NTRS)

    Bocast, A. K.

    1983-01-01

    The available information bandwidth as a funcion of system's complexity and time constraints in a real time control environment were examined. Modern interactive graphics techniques provide very high bandwidth data displays. In real time control environments, effective information interaction rates are a function not only of machine data technologies but of human information processing capabilities and the four dimensional resolution of available interaction techniques. The available information bandwidth as a function of system's complexity and time constraints in a real time control environment were examined.

  1. Hardware for a real-time multiprocessor simulator

    NASA Technical Reports Server (NTRS)

    Blech, R. A.; Arpasi, D. J.

    1984-01-01

    The hardware for a real time multiprocessor simulator (RTMPS) developed at the NASA Lewis Research Center is described. The RTMPS is a multiple microprocessor system used to investigate the application of parallel processing concepts to real time simulation. It is designed to provide flexible data exchange paths between processors by using off the shelf microcomputer boards and minimal customized interfacing. A dedicated operator interface allows easy setup of the simulator and quick interpreting of simulation data. Simulations for the RTMPS are coded in a NASA designed real time multiprocessor language (RTMPL). This language is high level and geared to the multiprocessor environment. A real time multiprocessor operating system (RTMPOS) has also been developed that provides a user friendly operator interface. The RTMPS and supporting software are currently operational and are being evaluated at Lewis. The results of this evaluation will be used to specify the design of an optimized parallel processing system for real time simulation of dynamic systems.

  2. A real-time simulator of a turbofan engine

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Delaat, John C.; Merrill, Walter C.

    1989-01-01

    A real-time digital simulator of a Pratt and Whitney F100 engine has been developed for real-time code verification and for actuator diagnosis during full-scale engine testing. This self-contained unit can operate in an open-loop stand-alone mode or as part of closed-loop control system. It can also be used for control system design and development. Tests conducted in conjunction with the NASA Advanced Detection, Isolation, and Accommodation program show that the simulator is a valuable tool for real-time code verification and as a real-time actuator simulator for actuator fault diagnosis. Although currently a small perturbation model, advances in microprocessor hardware should allow the simulator to evolve into a real-time, full-envelope, full engine simulation.

  3. Recent advances to obtain real - Time displacements for engineering applications

    USGS Publications Warehouse

    Celebi, M.

    2005-01-01

    This paper presents recent developments and approaches (using GPS technology and real-time double-integration) to obtain displacements and, in turn, drift ratios, in real-time or near real-time to meet the needs of the engineering and user community in seismic monitoring and assessing the functionality and damage condition of structures. Drift ratios computed in near real-time allow technical assessment of the damage condition of a building. Relevant parameters, such as the type of connections and story structural characteristics (including geometry) are used in computing drifts corresponding to several pre-selected threshold stages of damage. Thus, drift ratios determined from real-time monitoring can be compared to pre-computed threshold drift ratios. The approaches described herein can be used for performance evaluation of structures and can be considered as building health-monitoring applications.

  4. Reviewing real-time performance of nuclear reactor safety systems

    SciTech Connect

    Preckshot, G.G.

    1993-08-01

    The purpose of this paper is to recommend regulatory guidance for reviewers examining real-time performance of computer-based safety systems used in nuclear power plants. Three areas of guidance are covered in this report. The first area covers how to determine if, when, and what prototypes should be required of developers to make a convincing demonstration that specific problems have been solved or that performance goals have been met. The second area has recommendations for timing analyses that will prove that the real-time system will meet its safety-imposed deadlines. The third area has description of means for assessing expected or actual real-time performance before, during, and after development is completed. To ensure that the delivered real-time software product meets performance goals, the paper recommends certain types of code-execution and communications scheduling. Technical background is provided in the appendix on methods of timing analysis, scheduling real-time computations, prototyping, real-time software development approaches, modeling and measurement, and real-time operating systems.

  5. Real-Time MEG Source Localization Using Regional Clustering.

    PubMed

    Dinh, Christoph; Strohmeier, Daniel; Luessi, Martin; Güllmar, Daniel; Baumgarten, Daniel; Haueisen, Jens; Hämäläinen, Matti S

    2015-11-01

    With its millisecond temporal resolution, Magnetoencephalography (MEG) is well suited for real-time monitoring of brain activity. Real-time feedback allows the adaption of the experiment to the subject's reaction and increases time efficiency by shortening acquisition and off-line analysis. Two formidable challenges exist in real-time analysis: the low signal-to-noise ratio (SNR) and the limited time available for computations. Since the low SNR reduces the number of distinguishable sources, we propose an approach which downsizes the source space based on a cortical atlas and allows to discern the sources in the presence of noise. Each cortical region is represented by a small set of dipoles, which is obtained by a clustering algorithm. Using this approach, we adapted dynamic statistical parametric mapping for real-time source localization. In terms of point spread and crosstalk between regions the proposed clustering technique performs better than selecting spatially evenly distributed dipoles. We conducted real-time source localization on MEG data from an auditory experiment. The results demonstrate that the proposed real-time method localizes sources reliably in the superior temporal gyrus. We conclude that real-time source estimation based on MEG is a feasible, useful addition to the standard on-line processing methods, and enables feedback based on neural activity during the measurements. PMID:25782980

  6. Overview of real-time computer systems technical analysis of the Modcomp implementation of a proprietary system MAX IV'' and real-time UNIX system REAL/IX''

    SciTech Connect

    Cummings, J.

    1990-10-01

    There many applications throughout industry and government requiring real-time computing. Any application that monitors and/or controls a process would fit into this category. Some examples are: Nuclear power plants, Steel mills, Space program, etc. General Atomics uses eight real-time computer systems for control and high speed data acquisition required to run the nuclear fusion experiments. Real-Time computing can be defined as the ability to respond to asynchronous external events in a predictable (preferably fast) time frame. Real-Time computer systems are similar to other computers in many ways and may by used for general computing requirements such as Time-Sharing. However special hardware, operating systems and software had to be developed to meet the requirement for real-time computing. Traditionally, real-time computing has been a realm of proprietary operating systems with real-time applications written in FORTRAN and assembly language. In the past, these systems adequately served the needs of the real-time world. Many of these systems that were developed 15 years ago are still being used today. However the real-time world is now changing, demanding new systems to be developed. This paper gives a description of general real-time computer systems and how they differ from other systems. However, the main purpose of this paper is to give a detailed technical description of the hardware and operating systems of an existing proprietary system and a real-time UNIX system. The two real-time computer systems described in detail are Modcomp Classic III/95 with the MAX IV operating system and Modcomp TRI-D 9750 with the REAL/IX.2 operating system.

  7. Expert systems for real-time monitoring and fault diagnosis

    NASA Technical Reports Server (NTRS)

    Edwards, S. J.; Caglayan, A. K.

    1989-01-01

    Methods for building real-time onboard expert systems were investigated, and the use of expert systems technology was demonstrated in improving the performance of current real-time onboard monitoring and fault diagnosis applications. The potential applications of the proposed research include an expert system environment allowing the integration of expert systems into conventional time-critical application solutions, a grammar for describing the discrete event behavior of monitoring and fault diagnosis systems, and their applications to new real-time hardware fault diagnosis and monitoring systems for aircraft.

  8. A class of kernel based real-time elastography algorithms.

    PubMed

    Kibria, Md Golam; Hasan, Md Kamrul

    2015-08-01

    In this paper, a novel real-time kernel-based and gradient-based Phase Root Seeking (PRS) algorithm for ultrasound elastography is proposed. The signal-to-noise ratio of the strain image resulting from this method is improved by minimizing the cross-correlation discrepancy between the pre- and post-compression radio frequency signals with an adaptive temporal stretching method and employing built-in smoothing through an exponentially weighted neighborhood kernel in the displacement calculation. Unlike conventional PRS algorithms, displacement due to tissue compression is estimated from the root of the weighted average of the zero-lag cross-correlation phases of the pair of corresponding analytic pre- and post-compression windows in the neighborhood kernel. In addition to the proposed one, the other time- and frequency-domain elastography algorithms (Ara et al., 2013; Hussain et al., 2012; Hasan et al., 2012) proposed by our group are also implemented in real-time using Java where the computations are serially executed or parallely executed in multiple processors with efficient memory management. Simulation results using finite element modeling simulation phantom show that the proposed method significantly improves the strain image quality in terms of elastographic signal-to-noise ratio (SNRe), elastographic contrast-to-noise ratio (CNRe) and mean structural similarity (MSSIM) for strains as high as 4% as compared to other reported techniques in the literature. Strain images obtained for the experimental phantom as well as in vivo breast data of malignant or benign masses also show the efficacy of our proposed method over the other reported techniques in the literature. PMID:25929595

  9. Real-Time Geospatial Data Viewer (RETIGO)

    EPA Science Inventory

    This is a web-based method that allows the users to upload their air monitoring data and explore the data on graphical interface. The method is optimized for mobile monitoring data sets, showing the data on a map, on a time series, and referenced to a hypothesized line and/or poi...

  10. Real-time atmospheric chemistry field instrumentation.

    PubMed

    Farmer, Delphine K; Jimenez, Jose L

    2010-10-01

    Quantifying the concentrations of trace atmospheric species in complex, reactive, and constantly changing gas and particle mixtures is challenging. This article provides a broad overview of recent advances in instrumentation used for analyzing ambient gases and particles continuously and with fast time resolution during field campaigns. PMID:20722374

  11. Novor: Real-Time Peptide de Novo Sequencing Software

    NASA Astrophysics Data System (ADS)

    Ma, Bin

    2015-11-01

    De novo sequencing software has been widely used in proteomics to sequence new peptides from tandem mass spectrometry data. This study presents a new software tool, Novor, to greatly improve both the speed and accuracy of today's peptide de novo sequencing analyses. To improve the accuracy, Novor's scoring functions are based on two large decision trees built from a peptide spectral library with more than 300,000 spectra with machine learning. Important knowledge about peptide fragmentation is extracted automatically from the library and incorporated into the scoring functions. The decision tree model also enables efficient score calculation and contributes to the speed improvement. To further improve the speed, a two-stage algorithmic approach, namely dynamic programming and refinement, is used. The software program was also carefully optimized. On the testing datasets, Novor sequenced 7%-37% more correct residues than the state-of-the-art de novo sequencing tool, PEAKS, while being an order of magnitude faster. Novor can de novo sequence more than 300 MS/MS spectra per second on a laptop computer. The speed surpasses the acquisition speed of today's mass spectrometer and, therefore, opens a new possibility to de novo sequence in real time while the spectrometer is acquiring the spectral data.

  12. Real time chemical dynamics at surfaces

    NASA Astrophysics Data System (ADS)

    Bonn, M.; Kleyn, A. W.; Kroes, G. J.

    2002-03-01

    It is a major goal in surface science to make movies of molecules on surfaces, in which the reaction of the molecules on the surface can be followed on a femtosecond time scale, with sub-nanometer resolution. By moving the actors (the molecules) to precisely determined positions on the stage (the surface) at some well-defined moment in time, and subsequently making a space- and time-resolved documentary of what happens next, we would be able to understand the reactive interactions between molecules on surfaces in the greatest possible detail. This would enable us to set the stage and bring together the actors in such a way as to produce the chemical outcomes our society needs, by improving existing catalysts and designing novel catalysts, and by engineering novel reactions on surfaces. Any future director of such movies needs to know which techniques (i.e., which theoretical and experimental methods) hold promise for movie making, what has been done with these techniques, and what can be done with appropriate extensions. The methods we discuss are: (i) the time-dependent wave packet method, which is a theoretical method for simulating molecule-surface reactions with sub-nanometer resolution on a femtosecond time scale, (ii) molecular beam experiments, which allow detailed investigation of the molecule-surface interaction at a molecular level, and (iii) time-resolved laser pump-probe experiments, which allow reactions to be studied with femtosecond resolution. In particular, we discuss (i) theoretical studies of the dissociation reaction of hydrogen on metal surfaces, the reactive system presently understood at the greatest level of detail, (ii) the reactive and non-reactive scattering of heavy diatomics (NO,CO) from metal surfaces, and (iii) the competition between reaction of coadsorbed CO with O and desorption of CO, again on a metal surface. We examine possibilities to extend these methods to make movies at the desired level of detail. We also discuss which

  13. Real-time adaptive aircraft scheduling

    NASA Technical Reports Server (NTRS)

    Kolitz, Stephan E.; Terrab, Mostafa

    1990-01-01

    One of the most important functions of any air traffic management system is the assignment of ground-holding times to flights, i.e., the determination of whether and by how much the take-off of a particular aircraft headed for a congested part of the air traffic control (ATC) system should be postponed in order to reduce the likelihood and extent of airborne delays. An analysis is presented for the fundamental case in which flights from many destinations must be scheduled for arrival at a single congested airport; the formulation is also useful in scheduling the landing of airborne flights within the extended terminal area. A set of approaches is described for addressing a deterministic and a probabilistic version of this problem. For the deterministic case, where airport capacities are known and fixed, several models were developed with associated low-order polynomial-time algorithms. For general delay cost functions, these algorithms find an optimal solution. Under a particular natural assumption regarding the delay cost function, an extremely fast (O(n ln n)) algorithm was developed. For the probabilistic case, using an estimated probability distribution of airport capacities, a model was developed with an associated low-order polynomial-time heuristic algorithm with useful properties.

  14. Toward Real Time Uavs' Image Mosaicking

    NASA Astrophysics Data System (ADS)

    Mehrdad, S.; Satari, M.; Safdary, M.; Moallem, P.

    2016-06-01

    Anyone knows that sudden catastrophes can instantly do great damage. Fast and accurate acquisition of catastrophe information is an essential task for minimize life and property damage. Compared with other ways of catastrophe data acquisition, UAV based platforms can optimize time, cost and accuracy of the data acquisition, as a result UAVs' data has become the first choice in such condition. In this paper, a novel and fast strategy is proposed for registering and mosaicking of UAVs' image data. Firstly, imprecise image positions are used to find adjoining frames. Then matching process is done by a novel matching method. With keeping Sift in mind, this fast matching method is introduced, which uses images exposure time geometry, SIFT point detector and rBRIEF descriptor vector in order to match points efficiency, and by efficiency we mean not only time efficiency but also elimination of mismatch points. This method uses each image sequence imprecise attitude in order to use Epipolar geometry to both restricting search space of matching and eliminating mismatch points. In consideration of reaching to images imprecise attitude and positions we calibrated the UAV's sensors. After matching process, RANSAC is used to eliminate mismatched tie points. In order to obtain final mosaic, image histograms are equalized and a weighted average method is used to image composition in overlapping areas. The total RMSE over all matching points is 1.72 m.

  15. 17 CFR 43.3 - Method and timing for real-time public reporting.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... COMMISSION (CONTINUED) REAL-TIME PUBLIC REPORTING § 43.3 Method and timing for real-time public reporting. (a) Responsibilities of parties to a swap to report swap transaction and pricing data in real-time—(1) In general. A... repositories in providing the public dissemination of swap transaction and pricing data in...

  16. 17 CFR 43.3 - Method and timing for real-time public reporting.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... COMMISSION REAL-TIME PUBLIC REPORTING § 43.3 Method and timing for real-time public reporting. (a) Responsibilities of parties to a swap to report swap transaction and pricing data in real-time—(1) In general. A... repositories in providing the public dissemination of swap transaction and pricing data in...

  17. 17 CFR 43.3 - Method and timing for real-time public reporting.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... COMMISSION REAL-TIME PUBLIC REPORTING § 43.3 Method and timing for real-time public reporting. (a) Responsibilities of parties to a swap to report swap transaction and pricing data in real-time—(1) In general. A... repositories in providing the public dissemination of swap transaction and pricing data in...

  18. Direct Real-Time Detection of Vapors from Explosive Compounds

    SciTech Connect

    Ewing, Robert G.; Clowers, Brian H.; Atkinson, David A.

    2013-10-03

    The real-time detection of vapors from low volatility explosives including PETN, tetryl, RDX and nitroglycerine along with various compositions containing these substances is demonstrated. This was accomplished with an atmospheric flow tube (AFT) using a non-radioactive ionization source and coupled to a mass spectrometer. Direct vapor detection was demonstrated in less than 5 seconds at ambient temperature without sample pre-concentration. The several seconds of residence time of analytes in the AFT provides a significant opportunity for reactant ions to interact with analyte vapors to achieve ionization. This extended reaction time, combined with the selective ionization using the nitrate reactant ions (NO3- and NO3-•HNO3), enables highly sensitive explosives detection. Observed signals from diluted explosive vapors indicate detection limits below 10 ppqv using selected ion monitoring (SIM) of the explosive-nitrate adduct at m/z 349, 378, 284 and 289 for tetryl, PETN, RDX and NG respectively. Also provided is a demonstration of the vapor detection from 10 different energetic formulations, including double base propellants, plastic explosives and commercial blasting explosives using SIM for the NG, PETN and RDX product ions.

  19. Direct real-time detection of vapors from explosive compounds.

    PubMed

    Ewing, Robert G; Clowers, Brian H; Atkinson, David A

    2013-11-19

    The real-time detection of vapors from low volatility explosives including PETN, tetryl, RDX, and nitroglycerine along with various compositions containing these substances was demonstrated. This was accomplished with an atmospheric flow tube (AFT) using a nonradioactive ionization source coupled to a mass spectrometer. Direct vapor detection was accomplished in less than 5 s at ambient temperature without sample preconcentration. The several seconds of residence time of analytes in the AFT provided a significant opportunity for reactant ions to interact with analyte vapors to achieve ionization. This extended reaction time, combined with the selective ionization using the nitrate reactant ions (NO3(-) and NO3(-)·HNO3), enabled highly sensitive explosives detection from explosive vapors present in ambient laboratory air. Observed signals from diluted explosive vapors indicated detection limits below 10 ppqv using selected ion monitoring (SIM) of the explosive-nitrate adduct at m/z 349, 378, 284, and 289 for tetryl, PETN, RDX, and NG, respectively. Also provided is a demonstration of the vapor detection from 10 different energetic formulations sampled in ambient laboratory air, including double base propellants, plastic explosives, and commercial blasting explosives using SIM for the NG, PETN, and RDX product ions. PMID:24090362

  20. Real-time application of the drag based model

    NASA Astrophysics Data System (ADS)

    Žic, Tomislav; Temmer, Manuela; Vršnak, Bojan

    2016-04-01

    The drag-based model (DBM) is an analytical model which is usually used for calculating kinematics of coronal mass ejections (CMEs) in the interplanetary space, prediction of the CME arrival times and impact speeds at arbitrary targets in the heliosphere. The main assumption of the model is that beyond a distance of about 20 solar radii from the Sun, the drag is dominant in the interplanetary space. The previous version of DBM relied on the rough assumption of averaged, unperturbed and constant environmental conditions as well as constant CME properties throughout the entire interplanetary CME propagation. The continuation of our work consists of enhancing the model into a form which uses a time dependent and perturbed environment without constraints on CME properties and distance forecasting. The extension provides the possibility of application in various scenarios, such as automatic least-square fitting on initial CME kinematic data suitable for a real-time forecasting of CME kinematics, or embedding the DBM into pre-calculated interplanetary ambient conditions provided by advanced numerical simulations (for example, codes of ENLIL, EUHFORIA, etc.). A demonstration of the enhanced DBM is available on the web-site: http://www.geof.unizg.hr/~tzic/dbm.html. We acknowledge the support of European Social Fund under the "PoKRet" project.

  1. Space Shuttle Main Engine real time stability analysis

    NASA Astrophysics Data System (ADS)

    Kuo, F. Y.

    1993-06-01

    The Space Shuttle Main Engine (SSME) is a reusable, high performance, liquid rocket engine with variable thrust. The engine control system continuously monitors the engine parameters and issues propellant valve control signals in accordance with the thrust and mixture ratio commands. A real time engine simulation lab was installed at MSFC to verify flight software and to perform engine dynamic analysis. A real time engine model was developed on the AD100 computer system. This model provides sufficient fidelity on the dynamics of major engine components and yet simplified enough to be executed in real time. The hardware-in-the-loop type simulation and analysis becomes necessary as NASA is continuously improving the SSME technology, some with significant changes in the dynamics of the engine. The many issues of interfaces between new components and the engine can be better understood and be resolved prior to the firing of the engine. In this paper, the SSME real time simulation Lab at the MSFC, the SSME real time model, SSME engine and control system stability analysis, both in real time and non-real time is presented.

  2. High-density FPGAs for real-time video processing

    NASA Astrophysics Data System (ADS)

    Nordhauser, Steven; Beckstead, Jeffrey A.; Castracane, James; Koltai, Peter J.; Mouzakes, Jason; Simkulet, Michelle D.

    1997-04-01

    The use of an off-the-shelf general purpose processing system supplied by Giga Operations as applied to real-time video applications is described. The system is modular enough to be used in many scientific and industrial applications and powerful enough to maintain the throughput required for real-time video processing. This hardware and the associated programming environment has enabled InterScience to pursue research in real-time data compression, real-time Electronic Speckle Pattern Interferometry (ESPI) image processing, and industrial quality control and manufacturing. The system is based on Xilinx 4000 series field programmable gate arrays with associated static and dynamic random access memory in an architecture optimized for video processing on either the VL-Bus or PCI. This paper will focus on the design and development of a real-time frame subtractor for ESPI using this technology. Examples of the improvement in research capability provided by real-time frame subtraction are shown, including images from biomedical experiments. Further applications, based on this system are described. These include real-time data compression, quality control for production lines as part of an automated inspection system and a multi-camera security system allowing motion estimation to automatically prioritize camera selection.

  3. Real-time monitoring of in situ gas-phase H/D exchange reactions of cations by atmospheric pressure helium plasma ionization mass spectrometry (HePI-MS).

    PubMed

    Attygalle, Athula B; Gangam, Rekha; Pavlov, Julius

    2014-01-01

    An enclosed atmospheric-pressure helium-plasma ionization (HePI-MS) source avoids, or minimizes, undesired back-exchange reactions usually encountered during deuterium incorporation experiments under ambient-pressure open-source conditions. A simple adaptation of an ESI source provides an economical way of conducting gas phase hydrogen/deuterium (H/D) exchange reactions (HDX) in real time without the need for complicated hardware modifications. For example, the spectrum of [(2)H8]toluene recorded under exposed ambient conditions showed the base peak at m/z 96 due to fast leaching of ring hydrogens because of interactions with H2O vapor present in the open source. Such D/H exchanges are rapidly reversed if the deuterium-depleted [(2)H8]toluene is exposed to D2O vapor. In addition to the enumeration of labile protons, our procedure enables the identification of protonation sites in molecules unambiguously, by the number of H/D exchanges observed in real time. For example, molecules such as tetrahydrofuran and pyridine protonate at the heteroatom and consequently undergo only one H/D exchange, whereas ethylbenzene, which protonates at a ring position of the aromatic ring, undergoes six H/D exchanges. In addition, carbocations generated in situ by in-source fragmentation of precursor protonated species, such as benzyl alcohol, do not undergo any rapid H/D exchanges. Because radical cations, second-generation cations (ions formed by losing a small molecule from a precursor ion), or those formed by hydride abstraction do not undergo rapid H/D exchanges, our technique provides a way to distinguish these ions from protonated molecules. PMID:24325360

  4. Vector processing enhancements for real-time image analysis.

    SciTech Connect

    Shoaf, S.; APS Engineering Support Division

    2008-01-01

    A real-time image analysis system was developed for beam imaging diagnostics. An Apple Power Mac G5 with an Active Silicon LFG frame grabber was used to capture video images that were processed and analyzed. Software routines were created to utilize vector-processing hardware to reduce the time to process images as compared to conventional methods. These improvements allow for more advanced image processing diagnostics to be performed in real time.

  5. Real Time Telemetry Data Capture and Storage

    Energy Science and Technology Software Center (ESTSC)

    1997-05-14

    This program is used to capture telemetry data from remote instrumentation systems. The data can be captured at the rate of 1M bit per second. The data can come in one of several formats, NRZ, RZ, and Bi-Phase. The DECOM software takes the serial data stream and locks on to a unique code word. By tracking the code word the software can strip out the information. Thus the program can display the incoming data realmore » time while saving the data to disk.« less

  6. Black Hole Formation in Real Time

    NASA Astrophysics Data System (ADS)

    Nissanke, Samaya

    2015-08-01

    Gravity plays a fundamental role in the formation, evolution and fate of stars. However, it remains unclear how massive stars, almost always in pairs, end their lives as extreme gravity objects (neutron stars and black holes) and what their eventual fate is. The physics driving these events in strong-field gravity are complex, rich but still remain elusive. Theoretical work in general relativity has long predicted that the formation of black holes through neutron star mergers emit vast amounts of gravitational radiation, through gravitational waves (GWs), and conventional electromagnetic (EM) radiation. Observing GWs and EM radiation from these elusive short-lived mergers remains one of the holy grails of modern astronomy and is only now possible with a suite of new time-domain telescopes and experiments. I will first review the most recent advances in this blossoming field of EM+GW astronomy, which combines three active disciplines: time-domain astronomy, computational astrophysics and general relativity. I will discuss the promises of this new convergence by illustrating the wealth of astrophysical information that a combined EM+GW measurement would immediately bring. I will then outline the main challenges that lie ahead for this new field in pinpointing the sky location of neutron star mergers using GW detectors and optical and radio wide-field synoptic surveys.

  7. PERFORMANCE RESULTS OF JET-REMPI AS A REAL-TIME PCDD/F EMISSION MONITOR

    EPA Science Inventory

    The Jet REMPI monitor was recently tested on a hazardous-waste firing boiler for its ability to determine real time concentrations of polychlorinated dibenzodioxins and dibenzofurans (PCDDs/Fs). Jet REMPI consists of a laser system coupled with a time of flight mass spectrometer ...

  8. Real-time dynamic simulation of the Cassini spacecraft using DARTS. Part 2: Parallel/vectorized real-time implementation

    NASA Technical Reports Server (NTRS)

    Fijany, A.; Roberts, J. A.; Jain, A.; Man, G. K.

    1993-01-01

    Part 1 of this paper presented the requirements for the real-time simulation of Cassini spacecraft along with some discussion of the DARTS algorithm. Here, in Part 2 we discuss the development and implementation of parallel/vectorized DARTS algorithm and architecture for real-time simulation. Development of the fast algorithms and architecture for real-time hardware-in-the-loop simulation of spacecraft dynamics is motivated by the fact that it represents a hard real-time problem, in the sense that the correctness of the simulation depends on both the numerical accuracy and the exact timing of the computation. For a given model fidelity, the computation should be computed within a predefined time period. Further reduction in computation time allows increasing the fidelity of the model (i.e., inclusion of more flexible modes) and the integration routine.

  9. Method for Real-Time Model Based Structural Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Smith, Timothy A. (Inventor); Urnes, James M., Sr. (Inventor); Reichenbach, Eric Y. (Inventor)

    2015-01-01

    A system and methods for real-time model based vehicle structural anomaly detection are disclosed. A real-time measurement corresponding to a location on a vehicle structure during an operation of the vehicle is received, and the real-time measurement is compared to expected operation data for the location to provide a modeling error signal. A statistical significance of the modeling error signal to provide an error significance is calculated, and a persistence of the error significance is determined. A structural anomaly is indicated, if the persistence exceeds a persistence threshold value.

  10. Real Time Target Tracking in a Phantom Using Ultrasonic Imaging

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Corner, G.; Huang, Z.

    In this paper we present a real-time ultrasound image guidance method suitable for tracking the motion of tumors. A 2D ultrasound based motion tracking system was evaluated. A robot was used to control the focused ultrasound and position it at the target that has been segmented from a real-time ultrasound video. Tracking accuracy and precision were investigated using a lesion mimicking phantom. Experiments have been conducted and results show sufficient efficiency of the image guidance algorithm. This work could be developed as the foundation for combining the real time ultrasound imaging tracking and MRI thermometry monitoring non-invasive surgery.

  11. Can Real-Time Data Also Be Climate Quality?

    NASA Astrophysics Data System (ADS)

    Brewer, M.; Wentz, F. J.

    2015-12-01

    GMI, AMSR-2 and WindSat herald a new era of highly accurate and timely microwave data products. Traditionally, there has been a large divide between real-time and re-analysis data products. What if these completely separate processing systems could be merged? Through advanced modeling and physically based algorithms, Remote Sensing Systems (RSS) has narrowed the gap between real-time and research-quality. Satellite microwave ocean products have proven useful for a wide array of timely Earth science applications. Through cloud SST capabilities have enormously benefited tropical cyclone forecasting and day to day fisheries management, to name a few. Oceanic wind vectors enhance operational safety of shipping and recreational boating. Atmospheric rivers are of import to many human endeavors, as are cloud cover and knowledge of precipitation events. Some activities benefit from both climate and real-time operational data used in conjunction. RSS has been consistently improving microwave Earth Science Data Records (ESDRs) for several decades, while making near real-time data publicly available for semi-operational use. These data streams have often been produced in 2 stages: near real-time, followed by research quality final files. Over the years, we have seen this time delay shrink from months or weeks to mere hours. As well, we have seen the quality of near real-time data improve to the point where the distinction starts to blur. We continue to work towards better and faster RFI filtering, adaptive algorithms and improved real-time validation statistics for earlier detection of problems. Can it be possible to produce climate quality data in real-time, and what would the advantages be? We will try to answer these questions…

  12. Real-time cosmography with redshift derivatives

    NASA Astrophysics Data System (ADS)

    Martins, C. J. A. P.; Martinelli, M.; Calabrese, E.; Ramos, M. P. L. P.

    2016-08-01

    The drift in the redshift of objects passively following the cosmological expansion has long been recognized as a key model-independent probe of cosmology. Here, we study the cosmological relevance of measurements of time or redshift derivatives of this drift, arguing that the combination of first and second redshift derivatives is a powerful test of the Λ CDM cosmological model. In particular, the latter can be obtained numerically from a set of measurements of the drift at different redshifts. We show that, in the low-redshift limit, a measurement of the derivative of the drift can provide a constraint on the jerk parameter, which is j =1 for flat Λ CDM , while generically j ≠1 for other models. We emphasize that such a measurement is well within the reach of the ELT-HIRES and SKA Phase 2 array surveys.

  13. Noninvasive real-time imaging of apoptosis.

    PubMed

    Laxman, Bharathi; Hall, Daniel E; Bhojani, Mahaveer Swaroop; Hamstra, Daniel A; Chenevert, Thomas L; Ross, Brian D; Rehemtulla, Alnawaz

    2002-12-24

    Strict coordination of proliferation and programmed cell death (apoptosis) is essential for normal physiology. An imbalance in these two opposing processes results in various diseases including AIDS, neurodegenerative disorders, myelodysplastic syndromes, ischemiareperfusion injury, cancer, autoimmune disease, among others. Objective and quantitative noninvasive imaging of apoptosis would be a significant advance for rapid and dynamic screening as well as validation of experimental therapeutic agents. Here, we report the development of a recombinant luciferase reporter molecule that when expressed in mammalian cells has attenuated levels of reporter activity. In cells undergoing apoptosis, a caspase-3-specific cleavage of the recombinant product occurs, resulting in the restoration of luciferase activity that can be detected in living animals with bioluminescence imaging. The ability to image apoptosis noninvasively and dynamically over time provides an opportunity for high-throughput screening of proapoptotic and antiapoptotic compounds and for target validation in vivo in both cell lines and transgenic animals. PMID:12475931

  14. Real time control for NASA robotic gripper

    NASA Technical Reports Server (NTRS)

    Salter, Carole A.; Baras, John S.

    1990-01-01

    The ability to easily manipulate objects in a zero gravity environment will pay a key role in future space activities. Emphasis will be placed on robotic manipulation. This will serve to increase astronaut safety and utility in addition to several other benefits. The aim is to develop control laws for the zero gravity robotic end effectors. A hybrid force/position controller will be used. Sensory data available to the controller are obtained from an array of strain gauges and a linear potentiometer. Applying well known optimal control theoretical principles, the control which minimizes the transition time between positions is obtained. A robust force control scheme is developed which allows the desired holding force to be achieved smoothly without oscillation. In addition, an algorithm is found to determine contact force and contact location.

  15. Real-time and reliable human detection in clutter scene

    NASA Astrophysics Data System (ADS)

    Tan, Yumei; Luo, Xiaoshu; Xia, Haiying

    2013-10-01

    To solve the problem that traditional HOG approach for human detection can not achieve real-time detection due to its time-consuming detection, an efficient algorithm based on first segmentation then identify method for real-time human detection is proposed to achieve real-time human detection in clutter scene. Firstly, the ViBe algorithm is used to segment all possible human target regions quickly, and more accurate moving objects is obtained by using the YUV color space to eliminate the shadow; secondly, using the body geometry knowledge can help to found the valid human areas by screening the regions of interest; finally, linear support vector machine (SVM) classifier and HOG are applied to train for human body classifier, to achieve accurate positioning of human body's locations. The results of our comparative experiments demonstrated that the approach proposed can obtain high accuracy, good real-time performance and strong robustness.

  16. Real-Time Deposition Monitor for Ultrathin Conductive Films

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline

    2011-01-01

    continuous, real-time monitoring of film deposition. For use with different films, the device would need to be calibrated to provide an understanding of how film thickness is related to film conductivity, as the device is responding primarily to conductivity effects (and not to mass loading effects) in this ultrathin film regime.

  17. Near real-time skin deformation mapping

    NASA Astrophysics Data System (ADS)

    Kacenjar, Steve; Chen, Suzie; Jafri, Madiha; Wall, Brian; Pedersen, Richard; Bezozo, Richard

    2013-02-01

    A novel in vivo approach is described that provides large area mapping of the mechanical properties of the skin in human patients. Such information is important in the understanding of skin health, cosmetic surgery[1], aging, and impacts of sun exposure. Currently, several methods have been developed to estimate the local biomechanical properties of the skin, including the use of a physical biopsy of local areas of the skin (in vitro methods) [2, 3, and 4], and also the use of non-invasive methods (in vivo) [5, 6, and 7]. All such methods examine localized areas of the skin. Our approach examines the local elastic properties via the generation of field displacement maps of the skin created using time-sequence imaging [9] with 2D digital imaging correlation (DIC) [10]. In this approach, large areas of the skin are reviewed rapidly, and skin displacement maps are generated showing the contour maps of skin deformation. These maps are then used to precisely register skin images for purposes of diagnostic comparison. This paper reports on our mapping and registration approach, and demonstrates its ability to accurately measure the skin deformation through a described nulling interpolation process. The result of local translational DIC alignment is compared using this interpolation process. The effectiveness of the approach is reported in terms of residual RMS, image entropy measures, and differential segmented regional errors.

  18. Real Time Observation of DNA Nanotube Assembly

    NASA Astrophysics Data System (ADS)

    Verde, Lisa Val

    2006-03-01

    DNA nanotubes are of interest for applications ranging from nanofabrication to biophysical studies. The DNA Nanotubes used in this research are self-assembling structures composed of DNA double-crossover tiles. These tiles are simply two connected helices composed of five single stranded DNA oligomers. Each tile exposes four sticky ends responsible for the linkage between neighboring tiles. This linkage creates the nanotube lattice, with intrinsic curvature. The curvature orients each tile with a 60^o angle from the previous one so that six tiles make up the circumference of a nanotube. Nanotube stability depends on conditions such as ionic strength and temperature. A PCR machine is used to anneal the strands into nanotubes. A duplicated annealing process was constructed under a light microscope. PVP (polyvinyl prolidone) coated glass both confined the DNA nanotubes to a 2-3 μm focal plane and prevented them from sticking to the sample surface. By the time the tubes were long enough to track (>= 3 μm), they continued to lengthen primarily via end-to-end joining with some reaching lengths greater than 100 μm. These observations helped define more efficient annealing protocols that resulted in tubes with fewer imperfections.

  19. Real time viability detection of bacterial spores

    DOEpatents

    Vanderberg, Laura A.; Herdendorf, Timothy J.; Obiso, Richard J.

    2003-07-29

    This invention relates to a process for detecting the presence of viable bacterial spores in a sample and to a spore detection system, the process including placing a sample in a germination medium for a period of time sufficient for commitment of any present viable bacterial spores to occur, mixing the sample with a solution of a lanthanide capable of forming a fluorescent complex with dipicolinic acid, and, measuring the sample for the presence of dipicolinic acid, and the system including a germination chamber having inlets from a sample chamber, a germinant chamber and a bleach chamber, the germination chamber further including an outlet through a filtering means, the outlet connected to a detection chamber, the detection chamber having an inlet from a fluorescence promoting metal chamber and the detection chamber including a spectral excitation source and a means of measuring emission spectra from a sample, the detection chamber further connected to a waste chamber. A germination reaction mixture useful for promoting commitment of any viable bacterial spores in a sample including a combination of L-alanine, L-asparagine and D-glucose is also described.

  20. Real-time feedback from iterative electronic structure calculations.

    PubMed

    Vaucher, Alain C; Haag, Moritz P; Reiher, Markus

    2016-04-01

    Real-time feedback from iterative electronic structure calculations requires to mediate between the inherently unpredictable execution times of the iterative algorithm used and the necessity to provide data in fixed and short time intervals for real-time rendering. We introduce the concept of a mediator as a component able to deal with infrequent and unpredictable reference data to generate reliable feedback. In the context of real-time quantum chemistry, the mediator takes the form of a surrogate potential that has the same local shape as the first-principles potential and can be evaluated efficiently to deliver atomic forces as real-time feedback. The surrogate potential is updated continuously by electronic structure calculations and guarantees to provide a reliable response to the operator for any molecular structure. To demonstrate the application of iterative electronic structure methods in real-time reactivity exploration, we implement self-consistent semiempirical methods as the data source and apply the surrogate-potential mediator to deliver reliable real-time feedback. © 2015 Wiley Periodicals, Inc. PMID:26678030

  1. Building flexible real-time systems using the Flex language

    NASA Technical Reports Server (NTRS)

    Kenny, Kevin B.; Lin, Kwei-Jay

    1991-01-01

    The design and implementation of a real-time programming language called Flex, which is a derivative of C++, are presented. It is shown how different types of timing requirements might be expressed and enforced in Flex, how they might be fulfilled in a flexible way using different program models, and how the programming environment can help in making binding and scheduling decisions. The timing constraint primitives in Flex are easy to use yet powerful enough to define both independent and relative timing constraints. Program models like imprecise computation and performance polymorphism can carry out flexible real-time programs. In addition, programmers can use a performance measurement tool that produces statistically correct timing models to predict the expected execution time of a program and to help make binding decisions. A real-time programming environment is also presented.

  2. Reference genes in real-time PCR.

    PubMed

    Kozera, Bartłomiej; Rapacz, Marcin

    2013-11-01

    This paper aims to discuss various aspects of the use of reference genes in qPCR technique used in the thousands of present studies. Most frequently, these are housekeeping genes and they must meet several criteria so that they can lay claim to the name. Lots of papers report that in different conditions, for different organisms and even tissues the basic assumption—the constant level of the expression is not maintained for many genes that seem to be perfect candidates. Moreover, their transcription can not be affected by experimental factors. Sounds simple and clear but a great number of designed protocols and lack of consistency among them brings confusion on how to perform experiment properly. Since during selection of the most stable normalizing gene we can not use any reference gene, different ways and algorithms for their selection were developed. Such methods, including examples of best normalizing genes in some specific cases and possible mistakes are presented based on available sources. Numerous examples of reference genes applications, which are usually in too few numbers in relevant articles not allowing to make a solid fundament for a reader, will be shown along with instructive compilations to make an evidence for presented statements and an arrangement of future qPCR experiments. To include all the pitfalls and problems associated with the normalization methods there is no way not to begin from sample preparation and its storage going through candidate gene selection, primer design and statistical analysis. This is important because numerous short reviews available cover the topic only in lesser extent at the same time giving the reader false conviction of complete topic recognition. PMID:24078518

  3. The First Real-Time Tsunami Animation

    NASA Astrophysics Data System (ADS)

    Becker, N. C.; Wang, D.; McCreery, C.; Weinstein, S.; Ward, B.

    2014-12-01

    For the first time a U.S. tsunami warning center created and issued a tsunami forecast model animation while the tsunami was still crossing an ocean. Pacific Tsunami Warning Center (PTWC) scientists had predicted they would have this ability (Becker et al., 2012) with their RIFT forecast model (Wang et al., 2009) by using rapidly-determined W-phase centroid-moment tensor earthquake focal mechanisms as tsunami sources in the RIFT model (Wang et al., 2012). PTWC then acquired its own YouTube channel in 2013 for its outreach efforts that showed animations of historic tsunamis (Becker et al., 2013), but could also be a platform for sharing future tsunami animations. The 8.2 Mw earthquake of 1 April 2014 prompted PTWC to issue official warnings for a dangerous tsunami in Chile, Peru and Ecuador. PTWC ended these warnings five hours later, then issued its new tsunami marine hazard product (i.e., no coastal evacuations) for the State of Hawaii. With the international warning canceled but with a domestic hazard still present PTWC generated a forecast model animation and uploaded it to its YouTube channel six hours before the arrival of the first waves in Hawaii. PTWC also gave copies of this animation to television reporters who in turn passed it on to their national broadcast networks. PTWC then created a version for NOAA's Science on a Sphere system so it could be shown on these exhibits as the tsunami was still crossing the Pacific Ocean. While it is difficult to determine how many people saw this animation since local, national, and international news networks showed it in their broadcasts, PTWC's YouTube channel provides some statistics. As of 1 August 2014 this animation has garnered more than 650,000 views. Previous animations, typically released during significant anniversaries, rarely get more than 10,000 views, and even then only when external websites share them. Clearly there is a high demand for a tsunami graphic that shows both the speed and the severity of a

  4. An Evaluation of Real-Time Zenith Total Delay Estimates

    NASA Astrophysics Data System (ADS)

    Ahmed, F.; Teferle, F. N.; Bingley, R.; Laurichesse, D.

    2012-12-01

    The use of modern low-latency Numerical Weather Prediction (NWP) models by meteorological institutions to improve nowcasting operations requires the accurate and timely estimation of the Zenith Total Delay (ZTD). Observations from Global Navigation Satellite Systems (GNSS) can be processed to obtain such ZTD estimates. As of now, meeting the established requirements on the latency (as low as 5 min) and accuracy (up to few millimeters) of the ZTD for its use in nowcasting applications stands as a challenge. However, using, for example, the real-time orbit and clock products from the recently established IGS Real-Time Service, it is possible to estimate the ZTD by different processing strategies and each strategy can result in a different level of accuracy. The Bundesamt für Kartographie und Geodäsie Ntrip Client (BNC) can provide ZTD estimates in real-time using precise point positioning (PPP) without integer ambiguity resolution. Recently, the Centre National d'Etudes Spatiales (CNES) has released a modified version of BNC which produces ZTD estimates in real-time with integer-PPP, i.e. PPP with integer ambiguity resolution using their integer-recovery clock and widelane phase bias information. trackRT from MIT and RTNet from GPS Solutions Inc are also capable of providing real-time estimates of the ZTD. In this study, we present an evaluation of the real-time ZTD estimates obtained from different GNSS processing systems. Furthermore, we compare the real-time estimates to those from a near real-time system and the IGS Final Troposphere products.

  5. Head movement compensation in real-time magnetoencephalographic recordings

    PubMed Central

    Little, Graham; Boe, Shaun; Bardouille, Timothy

    2014-01-01

    Neurofeedback- and brain-computer interface (BCI)-based interventions can be implemented using real-time analysis of magnetoencephalographic (MEG) recordings. Head movement during MEG recordings, however, can lead to inaccurate estimates of brain activity, reducing the efficacy of the intervention. Most real-time applications in MEG have utilized analyses that do not correct for head movement. Effective means of correcting for head movement are needed to optimize the use of MEG in such applications. Here we provide preliminary validation of a novel analysis technique, real-time source estimation (rtSE), that measures head movement and generates corrected current source time course estimates in real-time. rtSE was applied while recording a calibrated phantom to determine phantom position localization accuracy and source amplitude estimation accuracy under stationary and moving conditions. Results were compared to off-line analysis methods to assess validity of the rtSE technique. The rtSE method allowed for accurate estimation of current source activity at the source-level in real-time, and accounted for movement of the source due to changes in phantom position. The rtSE technique requires modifications and specialized analysis of the following MEG work flow steps.•Data acquisition•Head position estimation•Source localization•Real-time source estimation This work explains the technical details and validates each of these steps. PMID:26150963

  6. Distributed real-time model-based diagnosis

    NASA Technical Reports Server (NTRS)

    Barrett, A. C.; Chung, S. H.

    2003-01-01

    This paper presents an approach to onboard anomaly diagnosis that combines the simplicity and real-time guarantee of a rule-based diagnosis system with the specification ease and coverage guarantees of a model-based diagnosis system.

  7. A multiprocessing architecture for real-time monitoring

    NASA Technical Reports Server (NTRS)

    Laffey, Thomas J.; Schmidt, James L.; Read, Jackson Y.; Kao, Simon M.

    1987-01-01

    A multiprocessing architecture for performing real time monitoring and analysis using knowledge-based problem solving techniques is discussed. To handle asynchronous inputs and perform in real time, the system consists of three or more separate processes which run concurrently on one or more processors and communicate via a message passing scheme. The Data Management Process gathers, compresses, scales and sends the incoming telemetry data to other tasks. The Inference Process consists of a proprietary high performance inference engine that runs at 1000 rules per second using telemetry data to perform real time analysis on the state and health of the Space Telescope. The multiprocessing architecture has been interfaced to a simulator and is able to process the incoming telemetry in real time.

  8. Real-time interactive speech technology at Threshold Technology, Incorporated

    NASA Technical Reports Server (NTRS)

    Herscher, Marvin B.

    1977-01-01

    Basic real-time isolated-word recognition techniques are reviewed. Industrial applications of voice technology are described in chronological order of their development. Future research efforts are also discussed.

  9. Real-time earthquake monitoring: Early warning and rapid response

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A panel was established to investigate the subject of real-time earthquake monitoring (RTEM) and suggest recommendations on the feasibility of using a real-time earthquake warning system to mitigate earthquake damage in regions of the United States. The findings of the investigation and the related recommendations are described in this report. A brief review of existing real-time seismic systems is presented with particular emphasis given to the current California seismic networks. Specific applications of a real-time monitoring system are discussed along with issues related to system deployment and technical feasibility. In addition, several non-technical considerations are addressed including cost-benefit analysis, public perceptions, safety, and liability.

  10. Real-time holography on bacteriorhodopsin-based materials

    NASA Astrophysics Data System (ADS)

    Taranenko, Victor B.

    1998-09-01

    The main properties and mechanisms of photoresponse of the bacteriohodopsin-based materials are presented. Fields of their potential applications in the real-time holography and nonlinear optics are discussed.

  11. Cluster Computing for Embedded/Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Katz, D.; Kepner, J.

    1999-01-01

    Embedded and real-time systems, like other computing systems, seek to maximize computing power for a given price, and thus can significantly benefit from the advancing capabilities of cluster computing.

  12. Intelligent data management for real-time spacecraft monitoring

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Gasser, Les; Abramson, Bruce

    1992-01-01

    Real-time AI systems have begun to address the challenge of restructuring problem solving to meet real-time constraints by making key trade-offs that pursue less than optimal strategies with minimal impact on system goals. Several approaches for adapting to dynamic changes in system operating conditions are known. However, simultaneously adapting system decision criteria in a principled way has been difficult. Towards this end, a general technique for dynamically making such trade-offs using a combination of decision theory and domain knowledge has been developed. Multi-attribute utility theory (MAUT), a decision theoretic approach for making one-time decisions is discussed and dynamic trade-off evaluation is described as a knowledge-based extension of MAUT that is suitable for highly dynamic real-time environments, and provides an example of dynamic trade-off evaluation applied to a specific data management trade-off in a real-world spacecraft monitoring application.

  13. Hard-real-time resource management for autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Gat, E.

    2000-01-01

    This paper describes tickets, a computational mechanism for hard-real-time autonomous resource management. Autonomous spacecraftcontrol can be considered abstractly as a computational process whose outputs are spacecraft commands.

  14. Real-time data compression of broadcast video signals

    NASA Technical Reports Server (NTRS)

    Shalkauser, Mary Jo W. (Inventor); Whyte, Wayne A., Jr. (Inventor); Barnes, Scott P. (Inventor)

    1991-01-01

    A non-adaptive predictor, a nonuniform quantizer, and a multi-level Huffman coder are incorporated into a differential pulse code modulation system for coding and decoding broadcast video signals in real time.

  15. Real-time data compression of broadcast video signals

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary J. (Inventor); Whyte, Wayne A., Jr. (Inventor); Barnes, Scott P. (Inventor)

    1990-01-01

    A non-adaptive predictor, a nonuniform quantizer, and a multi-level Huffman coder are incorporated into a differential pulse code modulation system for coding and decoding broadcast video signals in real time.

  16. The Effects of Real-Time Interactive Multimedia Teleradiology System

    PubMed Central

    Al-Safadi, Lilac

    2016-01-01

    This study describes the design of a real-time interactive multimedia teleradiology system and assesses how the system is used by referring physicians in point-of-care situations and supports or hinders aspects of physician-radiologist interaction. We developed a real-time multimedia teleradiology management system that automates the transfer of images and radiologists' reports and surveyed physicians to triangulate the findings and to verify the realism and results of the experiment. The web-based survey was delivered to 150 physicians from a range of specialties. The survey was completed by 72% of physicians. Data showed a correlation between rich interactivity, satisfaction, and effectiveness. The results of our experiments suggest that real-time multimedia teleradiology systems are valued by referring physicians and may have the potential for enhancing their practice and improving patient care and highlight the critical role of multimedia technologies to provide real-time multimode interactivity in current medical care. PMID:27294118

  17. Challenges of AVHRR Vegetation Data for Real Time Applications

    NASA Technical Reports Server (NTRS)

    Brown, Molly

    2008-01-01

    Remote sensing data has long been used to monitor global ecosystems for floods and droughts and AVHRR data, as one of the first product, has many users interested in receiving the data within hours of acquisition. With the introduction of a new series of sensors in 2000 (the AVHRR/3 series), the quality of the NDVI datasets available for real time environmental monitoring has declined. This paper provides evidence of problems of cloud contamination, calibration and noise in the real time data which are not present in the historical AVHRR NDVIg dataset. These differences introduce significant uncertainty in the use of the real time data, degrading their utility for detecting climate variations in near real time.

  18. Real-Time Parameter Estimation in the Frequency Domain

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1999-01-01

    A method for real-time estimation of parameters in a linear dynamic state space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight for indirect adaptive or reconfigurable control. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle HARV) were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than 1 cycle of the dominant dynamic mode natural frequencies, using control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements, and could be implemented aboard an aircraft in real time.

  19. Evaluation of Open-Source Hard Real Time Software Packages

    NASA Technical Reports Server (NTRS)

    Mattei, Nicholas S.

    2004-01-01

    Reliable software is, at times, hard to find. No piece of software can be guaranteed to work in every situation that may arise during its use here at Glenn Research Center or in space. The job of the Software Assurance (SA) group in the Risk Management Office is to rigorously test the software in an effort to ensure it matches the contract specifications. In some cases the SA team also researches new alternatives for selected software packages. This testing and research is an integral part of the department of Safety and Mission Assurance. Real Time operation in reference to a computer system is a particular style of handing the timing and manner with which inputs and outputs are handled. A real time system executes these commands and appropriate processing within a defined timing constraint. Within this definition there are two other classifications of real time systems: hard and soft. A soft real time system is one in which if the particular timing constraints are not rigidly met there will be no critical results. On the other hand, a hard real time system is one in which if the timing constraints are not met the results could be catastrophic. An example of a soft real time system is a DVD decoder. If the particular piece of data from the input is not decoded and displayed to the screen at exactly the correct moment nothing critical will become of it, the user may not even notice it. However, a hard real time system is needed to control the timing of fuel injections or steering on the Space Shuttle; a delay of even a fraction of a second could be catastrophic in such a complex system. The current real time system employed by most NASA projects is Wind River's VxWorks operating system. This is a proprietary operating system that can be configured to work with many of NASA s needs and it provides very accurate and reliable hard real time performance. The down side is that since it is a proprietary operating system it is also costly to implement. The prospect of

  20. High speed, real-time, camera bandwidth converter

    DOEpatents

    Bower, Dan E; Bloom, David A; Curry, James R

    2014-10-21

    Image data from a CMOS sensor with 10 bit resolution is reformatted in real time to allow the data to stream through communications equipment that is designed to transport data with 8 bit resolution. The incoming image data has 10 bit resolution. The communication equipment can transport image data with 8 bit resolution. Image data with 10 bit resolution is transmitted in real-time, without a frame delay, through the communication equipment by reformatting the image data.

  1. Real-time transesophageal echocardiography facilitates antegrade balloon aortic valvuloplasty

    PubMed Central

    Ito, Kazato; Yano, Kentaro; Tanaka, Chiharu; Nakashoji, Tomohiro; Tonomura, Daisuke; Takehara, Kosuke; Kino, Naoto; Yoshida, Masataka; Kurotobi, Toshiya; Tsuchida, Takao; Fukumoto, Hitoshi

    2016-01-01

    We report two cases of severe aortic stenosis (AS) where antegrade balloon aortic valvuloplasty (BAV) was performed under real-time transesophageal echocardiography (TEE) guidance. Real-time TEE can provide useful information for evaluating the aortic valve response to valvuloplasty during the procedure. It was led with the intentional wire-bias technique in order to compress the severely calcified leaflet, and consequently allowed the balloon to reach the largest possible size and achieve full expansion of the aortic annulus. PMID:27054107

  2. Real time simulator with Ti floating point digital signal processor

    SciTech Connect

    Razazian, K.; Bobis, J.P.; Dieckman, S.L.; Raptis, A.C.

    1994-08-01

    This paper describes the design and operation of a Real Time Simulator using Texas Instruments TMS320C30 digital signal processor. This system operates with two banks of memory which provide the input data to digital signal processor chip. This feature enables the TMS320C30 to be utilized in variety of applications for which external connections to acquire input data is not needed. In addition, some practical applications of this Real Time Simulator are discussed.

  3. Real-time shipboard orbit determination using Kalman filtering techniques

    NASA Technical Reports Server (NTRS)

    Brammer, R. F.

    1974-01-01

    The real-time tracking and orbit determination program used on board the NASA tracking ship, the USNS Vanguard, is described in this paper. The computer program uses a variety of filtering algorithms, including an extended Kalman filter, to derive real-time orbit determinations (position-velocity state vectors) from shipboard tracking and navigation data. Results from Apollo missions are given to show that orbital parameters can be estimated quickly and accurately using these methods.

  4. Real-time flight test data distribution and display

    NASA Technical Reports Server (NTRS)

    Nesel, Michael C.; Hammons, Kevin R.

    1988-01-01

    Enhancements to the real-time processing and display systems of the NASA Western Aeronautical Test Range are described. Display processing has been moved out of the telemetry and radar acquisition processing systems super-minicomputers into user/client interactive graphic workstations. Real-time data is provided to the workstations by way of Ethernet. Future enhancement plans include use of fiber optic cable to replace the Ethernet.

  5. Real-Time Optical Correlator Based On GaAs

    NASA Technical Reports Server (NTRS)

    Liu, Tsuen-Hsi; Cheng, Li-Jen

    1992-01-01

    Apparatus performs correlation between input image and reference image in real time by means of degenerate four-wave mixing in photorefractive crystal, which serves as real-time holographic medium. Gallium arsenide chosen to be photorefractive material in this application because at frame rate and level of illumination used in experiments, offers adequate diffraction efficiency. Frame rates as high as 1,000 s to negative 1st power achievable.

  6. Real-time laser holographic Interferometry for aerodynamics

    NASA Technical Reports Server (NTRS)

    Lee, George

    1987-01-01

    Recent developments in thermoplastic recording holograms and advancements in automated image digitalization and analysis make real-time laser holographic interferometry feasible for two-dimensional flows such as airfoil flows. Typical airfoil measurements would include airfoil presssure distributions, wake and boundary layer profiles, and flow field density contours. This paper addresses some of the problems and requirements of a real-time laser holographic interferometer.

  7. Real-time laser holographic interferometry for aerodynamics

    NASA Technical Reports Server (NTRS)

    Lee, George

    1987-01-01

    Recent developments in thermoplastic recording holograms and advancements in automated image digitalization and analysis make real-time laser holographic interferometry feasible for two-dimensional flows such as airfoil flows. Typical airfoil measurements would include airfoil pressure distributions, wake and boundary layer profiles, and flow field density contours. This paper addresses some of the problems and requirements of a real-time laser holographic interferometer.

  8. Real-time airborne hyperspectral imaging of land mines

    NASA Astrophysics Data System (ADS)

    Ivanco, Tyler; Achal, Steve; McFee, John E.; Anger, Cliff; Young, Jane

    2007-04-01

    DRDC Suffeld and Itres Research have jointly investigated the use of visible and infrared hyperspectral imaging (HSI) for surface and buried land mine detection since 1989. These studies have demonstrated reliable passive HSI detection of surface-laid mines, based on their reflectance spectra, from airborne and ground-based platforms. Commercial HSI instruments collect and store image data at aircraft speeds, but the data are analysed off- line. This is useful for humanitarian demining, but unacceptable for military countermine operations. We have developed a hardware and software system with algorithms that can process the raw hyperspectral data in real time to detect mines. The custom algorithms perform radiometric correction of the raw data, then classify pixels of the corrected data, referencing a spectral signature library. The classification results are stored and displayed in real time, that is, within a few frame times of the data acquisition. Such real-time mine detection was demonstrated for the first time from a slowly moving land vehicle in March 2000. This paper describes an improved system which can achieve real-time detection of mines from an airborne platform, with its commensurately higher data rates. The system is presently compatible with the Itres family of visible/near infrared, short wave infrared and thermal infrared pushbroom hyperspectral imagers and its broadband thermal infrared pushbroom imager. Experiments to detect mines from an airborne platform in real time were conducted at DRDC Suffield in November 2006. Surface-laid land mines were detected in real time from a slowly moving helicopter with generally good detection rates and low false alarm rates. To the authors' knowledge, this is the first time that land mines have been detected from an airborne platform in real time using hyperspectral imaging.

  9. Detailed gas and diesel vehicle emissions: PTR-MS measurements of real-time VOC profiles and comprehensive characterization of primary emissions for IVOC, SVOC, and LVOC by gas chromatography with vacuum ultra-violet ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Drozd, G.; Frodin, B.; Zhao, Y.; Franklin, J. P.; Cross, E. S.; Saleh, R.; Saliba, G.; Lambe, A. T.; Sardar, S.; Maldonado, H.; Russell, L. M.; Kroll, J. H.; Robinson, A. L.; Goldstein, A. H.

    2015-12-01

    Over the past fifteen years US vehicle emissions standards have dramatically improved, with the goal of reducing urban air pollution. Recent studies demonstrate secondary organic aerosol (SOA) to be the dominant contributor to urban organic aerosol, but controversy remains regarding the contributions of different vehicle types to SOA. Increased potency for SOA formation from non methane hydrocarbons (NMHC) from newer vehicles that meet tighter emission standards has also been observed. Both speciation and temporal resolution of vehicular emissions are critical for predicting SOA formation. The relative importance of diesel and gasoline emissions to SOA formation depends critically on speciation. Experiments were conducted at the California Air Resources Board Haagen-Smit Laboratory to better understand SOA formation for low, ultra-low, super ultra-low and partial zero emission vehicles (LEV, ULEV, SULEV, PZEV). Exhaust was sampled on filters and adsorbent tubes to measure intermediate-, semi-, and low-volatility NMHC (IVOC, SVOC, LVOC). A proton-transfer-reaction mass spectrometer (PTR-MS) measured volatile organics (VOC) emissions with high time-resolution. Analysis of filters and adsorbent tubes using gas chromatography with vacuum-ultra-violet ionization mass spectrometry provided unprecedented characterization of emissions according to degree of branching, number of cyclic rings, aromaticity, and molecular weight. ULEV vehicles show the composition distributions of primary particulate emissions peak for compounds in the SVOC range. PZEV vehicle emissions peak in the IVOC range. Diesel vehicles have up to ten times higher emissions than gasoline vehicles; their distributions have significant IVOC levels and peak in the SVOC/LVOC range. Our measurements are used to predict potential SOA formation by vehicle standard class and the relative SOA formation for diesel and gasoline vehicles. PTR-MS measurement show VOC emissions after cold start occur almost entirely

  10. A Formal Model for Real-Time Parallel Computation

    SciTech Connect

    Hui, Peter SY; Chikkagoudar, Satish

    2012-12-29

    The imposition of real-time constraints on a parallel computing environment--- specifically high-performance, cluster-computing systems--- introduces a variety of challenges with respect to the formal verification of the system's timing properties. In this paper, we briefly motivate the need for such a system, and we introduce an automaton-based method for performing such formal verification. We define the concept of a consistent parallel timing system: a hybrid system consisting of a set of timed automata (specifically, timed Buechi automata as well as a timed variant of standard finite automata), intended to model the timing properties of a well-behaved real-time parallel system. Finally, we give a brief case study to demonstrate the concepts in the paper: a parallel matrix multiplication kernel which operates within provable upper time bounds. We give the algorithm used, a corresponding consistent parallel timing system, and empirical results showing that the system operates under the specified timing constraints.

  11. A Scheduling Algorithm for Replicated Real-Time Tasks

    NASA Technical Reports Server (NTRS)

    Yu, Albert C.; Lin, Kwei-Jay

    1991-01-01

    We present an algorithm for scheduling real-time periodic tasks on a multiprocessor system under fault-tolerant requirement. Our approach incorporates both the redundancy and masking technique and the imprecise computation model. Since the tasks in hard real-time systems have stringent timing constraints, the redundancy and masking technique are more appropriate than the rollback techniques which usually require extra time for error recovery. The imprecise computation model provides flexible functionality by trading off the quality of the result produced by a task with the amount of processing time required to produce it. It therefore permits the performance of a real-time system to degrade gracefully. We evaluate the algorithm by stochastic analysis and Monte Carlo simulations. The results show that the algorithm is resilient under hardware failures.

  12. Explaining How to Play Real-Time Strategy Games

    NASA Astrophysics Data System (ADS)

    Metoyer, Ronald; Stumpf, Simone; Neumann, Christoph; Dodge, Jonathan; Cao, Jill; Schnabel, Aaron

    Real-time strategy games share many aspects with real situations in domains such as battle planning, air traffic control, and emergency response team management which makes them appealing test-beds for Artificial Intelligence (AI) and machine learning. End user annotations could help to provide supplemental information for learning algorithms, especially when training data is sparse. This paper presents a formative study to uncover how experienced users explain game play in real-time strategy games. We report the results of our analysis of explanations and discuss their characteristics that could support the design of systems for use by experienced real-time strategy game users in specifying or annotating strategy-oriented behavior.

  13. Real-Time Data Use for Operational Space Weather Products

    NASA Astrophysics Data System (ADS)

    Quigley, S.; Nobis, T. E.

    2010-12-01

    The Space Vehicles Directorate of the Air Force Research Laboratory (AFRL/RVBX) and the Space Environment Division of the Space and Missile Systems Center (AFSPC SYAG/WMLE) have combined efforts to design, develop, test, implement, and validate numerical and graphical products for Air Force Space Command’s (AFSPC) Space Environmental Effects Fusion System (SEEFS). These products were developed to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense weapons, navigation, communications, and surveillance systems in real/near-real time. This real-time attribute is the primary factor in allowing for actual operational product output, but it’s also responsible for a variety of detrimental effects that need to be considered, researched, mitigated, or otherwise eliminated in future/upgrade product applications. This presentation will provide brief overviews of the SEEFS products, along with information and recommendations concerned with their near/real-time data acquisition and use, to include: input data requirements, inputs/outputs ownership, observation cadence, transmission/receipt links and cadence, data latency, quality control, error propagation and associated confidence level applications, and ensemble model run potentials. Validation issues related to real-time data will also be addressed, along with recommendations for new real-time data archiving that should prove operationally beneficial.

  14. Majorana mass, time reversal symmetry, and the dimension of space

    NASA Astrophysics Data System (ADS)

    Herbut, Igor F.

    2013-04-01

    The Weyl fermions with a well defined chirality are known to demand that the dimension of space which they inhabit must be odd. It is shown here, however, that not all odd dimensional spaces are equally good hosts: in particular, an arbitrary number of chiral Weyl fermions can acquire a Majorana type of mass only in three (modulo eight) dimensions. The argument utilizes (a) the precise analogy between the Majorana mass term and the coupling of time-reversed Weyl fermions, and (b) the conditions on the requisite time reversal operator, which are implied by the real representations of Clifford algebras. In particular, it is shown that the latter allows only an even number of Majorana-massive Weyl fermions in seven (modulo eight) spatial dimensions. The theorem connects the observed odd number of neutrino flavors, the time reversal symmetry, and the dimension of our space and strengthens the argument for the possible violation of the lepton number conservation law.

  15. Geomagnetic Observatory Data for Real-Time Applications

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.

    2015-12-01

    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  16. Real-time hierarchically distributed processing network interaction simulation

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Wu, C.

    1987-01-01

    The Telerobot Testbed is a hierarchically distributed processing system which is linked together through a standard, commercial Ethernet. Standard Ethernet systems are primarily designed to manage non-real-time information transfer. Therefore, collisions on the net (i.e., two or more sources attempting to send data at the same time) are managed by randomly rescheduling one of the sources to retransmit at a later time interval. Although acceptable for transmitting noncritical data such as mail, this particular feature is unacceptable for real-time hierarchical command and control systems such as the Telerobot. Data transfer and scheduling simulations, such as token ring, offer solutions to collision management, but do not appropriately characterize real-time data transfer/interactions for robotic systems. Therefore, models like these do not provide a viable simulation environment for understanding real-time network loading. A real-time network loading model is being developed which allows processor-to-processor interactions to be simulated, collisions (and respective probabilities) to be logged, collision-prone areas to be identified, and network control variable adjustments to be reentered as a means of examining and reducing collision-prone regimes that occur in the process of simulating a complete task sequence.

  17. 3D virtual colonoscopy with real-time volume rendering

    NASA Astrophysics Data System (ADS)

    Wan, Ming; Li, Wei J.; Kreeger, Kevin; Bitter, Ingmar; Kaufman, Arie E.; Liang, Zhengrong; Chen, Dongqing; Wax, Mark R.

    2000-04-01

    In our previous work, we developed a virtual colonoscopy system on a high-end 16-processor SGI Challenge with an expensive hardware graphics accelerator. The goal of this work is to port the system to a low cost PC in order to increase its availability for mass screening. Recently, Mitsubishi Electric has developed a volume-rendering PC board, called VolumePro, which includes 128 MB of RAM and vg500 rendering chip. The vg500 chip, based on Cube-4 technology, can render a 2563 volume at 30 frames per second. High image quality of volume rendering inside the colon is guaranteed by the full lighting model and 3D interpolation supported by the vg500 chip. However, the VolumePro board is lacking some features required by our interactive colon navigation. First, VolumePro currently does not support perspective projection which is paramount for interior colon navigation. Second, the patient colon data is usually much larger than 2563 and cannot be rendered in real-time. In this paper, we present our solutions to these problems, including simulated perspective projection and axis aligned boxing techniques, and demonstrate the high performance of our virtual colonoscopy system on low cost PCs.

  18. Real-time multi-mode neutron multiplicity counter

    DOEpatents

    Rowland, Mark S; Alvarez, Raymond A

    2013-02-26

    Embodiments are directed to a digital data acquisition method that collects data regarding nuclear fission at high rates and performs real-time preprocessing of large volumes of data into directly useable forms for use in a system that performs non-destructive assaying of nuclear material and assemblies for mass and multiplication of special nuclear material (SNM). Pulses from a multi-detector array are fed in parallel to individual inputs that are tied to individual bits in a digital word. Data is collected by loading a word at the individual bit level in parallel, to reduce the latency associated with current shift-register systems. The word is read at regular intervals, all bits simultaneously, with no manipulation. The word is passed to a number of storage locations for subsequent processing, thereby removing the front-end problem of pulse pileup. The word is used simultaneously in several internal processing schemes that assemble the data in a number of more directly useable forms. The detector includes a multi-mode counter that executes a number of different count algorithms in parallel to determine different attributes of the count data.

  19. Utilizing real-time and near real-time data in the iNtegrated Space Weather Analysis System

    NASA Astrophysics Data System (ADS)

    Maddox, M. M.; Mullinix, R. E.; Rastaetter, L.; Pulkkinen, A.; Zheng, Y.; Berrios, D.; Hesse, M.; Kuznetsova, M. M.; Taktakishvili, A.; Chulaki, A.; Shim, J.; Bakshi, S. S.; Patel, K. D.; Jain, P.

    2010-12-01

    Access to near real-time and real-time space weather data is essential to accurately specifying and forecasting the space environment. The Space Weather Desk at NASA Goddard Space Flight Center's Space Weather Laboratory provides vital space weather forecasting services primarily to NASA robotic mission operators, as well as external space weather stakeholders including the Air Force Weather Agency. A key component in this activity is the iNtegrated Space Weather Analysis System which is a joint development project at NASA GSFC between the Space Weather Laboratory, Community Coordinated Modeling Center, Applied Engineering & Technology Directorate, and NASA HQ Office Of Chief Engineer. The iSWA system was developed to address technical challenges in acquiring and disseminating space weather environment information. A key design driver for the iSWA system was to generate and present vast amounts of space weather resources in an intuitive, user-configurable, and adaptable format - thus enabling users to respond to current and future space weather impacts as well as enabling post-impact analysis. Having access to near real-time and real-time data is essential to not only ensuring that relevant observational data is available for analysis - but also in ensuring that models can be driven with the requisite input parameters at proper and efficient temporal and spacial resolutions. The iSWA system currently manages over 250 unique near-real and real-time data feeds from various sources consisting of both observational and simulation data. A comprehensive suite of actionable space weather analysis tools and products are generated and provided utilizing a mixture of the ingested data - enabling new capabilities in quickly assessing past, present, and expected space weather effects. This paper will highlight current and future iSWA system capabilities and also discuss some of the challenges and lessons-learned in dealing with diverse real-time and near-real time space

  20. Real-time simulation of thermal shadows with EMIT

    NASA Astrophysics Data System (ADS)

    Klein, Andreas; Oberhofer, Stefan; Schätz, Peter; Nischwitz, Alfred; Obermeier, Paul

    2016-05-01

    Modern missile systems use infrared imaging for tracking or target detection algorithms. The development and validation processes of these missile systems need high fidelity simulations capable of stimulating the sensors in real-time with infrared image sequences from a synthetic 3D environment. The Extensible Multispectral Image Generation Toolset (EMIT) is a modular software library developed at MBDA Germany for the generation of physics-based infrared images in real-time. EMIT is able to render radiance images in full 32-bit floating point precision using state of the art computer graphics cards and advanced shader programs. An important functionality of an infrared image generation toolset is the simulation of thermal shadows as these may cause matching errors in tracking algorithms. However, for real-time simulations, such as hardware in the loop simulations (HWIL) of infrared seekers, thermal shadows are often neglected or precomputed as they require a thermal balance calculation in four-dimensions (3D geometry in one-dimensional time up to several hours in the past). In this paper we will show the novel real-time thermal simulation of EMIT. Our thermal simulation is capable of simulating thermal effects in real-time environments, such as thermal shadows resulting from the occlusion of direct and indirect irradiance. We conclude our paper with the practical use of EMIT in a missile HWIL simulation.