Science.gov

Sample records for real-time on-line ultrasonic

  1. Real-time on-line ultrasonic monitoring for bubbles in ceramic 'slip' in pottery pipelines.

    PubMed

    Yim, Geun Tae; Leighton, Timothy G

    2010-01-01

    When casting ceramic items in potteries, liquid 'slip' is passed from a settling tank, through overhead pipelines, before being pumped manually into the moulds. It is not uncommon for bubbles to be introduced into the slip as it passes through the complex piping network, and indeed the presence of bubbles is a major source of financial loss to the ceramics industry worldwide. This is because the bubbles almost always remain undetected until after the ceramic items have been fired in a kiln, during which process bubbles expand and create unwanted holes in the pottery. Since there it is usually an interval of several hours between the injection of the slip into the moulds, and the inspection of the items after firing, such bubble generation goes undetected on the production line during the manufacture of hundreds or even thousands of ceramic units. Not only does this mean hours of wasted staff time, power consumption and production line time: the raw material which makes up these faulty items cannot even be recycled, as fired ceramic cannot be converted back into slip. Currently, the state-of-the-art method for detecting bubbles in the opaque ceramic slip is slow and invasive, can only be used off-line, and requires expertise which is rarely available. This paper describes the invention, engineering and in-factory testing across Europe of an ultrasonic system for real-time monitoring for the presence of bubbles in casting slip. It interprets changes in the scattering statistics accompanying the presence of the bubbles, the latter being detected through perturbations in the received signal when a narrow-band ultrasonic probing wave is transmitted through the slip. The device can be bolted onto the outside of the pipeline, or used in-line. It is automated, and requires no special expertise. The acoustic problems which had to be solved were severe, and included making the system capable of monitoring the slip regardless of the material of pipe (plastic, steel, etc.) and

  2. High-performance liquid chromatography-ultrasonic nebulizer high-power nitrogen microwave-induced plasma mass spectrometry, real-time on-line coupling for selenium speciation analysis.

    PubMed

    Chatterjee, Amit; Shibata, Yasuyuki; Tao, Hiroaki; Tanaka, Atsushi; Morita, Masatoshi

    2004-07-01

    The coupling of a high-power nitrogen (N2) microwave-induced plasma (MIP) mass spectrometry--(MS) (1.3 kW) with high-performance liquid chromatography, connected with concentric nebulizer (CN), ultrasonic nebulizer (USN) and a hydride generation (HG) systems, for the optimization and determination of selenium compounds, has been carried out. The MIP-MS system fulfils the ideal requirement being an on-line real-time chromatographic detector for Se speciation analysis. Interchanging of MIP-MS system fabricated nebulizer (concentric) with an ultrasonic nebulizer increases about 3.4-12 (peak height) and 6.5-10 (peak area) times ion signals for the selenium compounds. The detection limits for selenate, selenite, trimethylselenonium ion (TmSe), selenomethionine (Semet) and selenoethionine (Seet) (in Milli-Q-water) obtained with the optimized HPLC-USN-N2MIP-MS system are 0.11, 0.14, 0.09, 0.14 and 0.10 microg L(-1), respectively, about 12-48 times lower than the HPLC-CN-MIP-MS and 1.5-4.4 (peak height) times lower compared to the HPLC-CN-inductively coupled plasma (ICP)-MS coupling. Considering peak area, the repeatability (R.S.D. for three successive analyses) and intermediate precision (R.S.D. for three successive analyses performed on three different days), achieved for five Se compounds are 0.8-5.6, and 1.1-5.9%, comparable with the HPLC-CN-ICP-MS, HPLC-HG-MIP-MS and HPLC-CN-MIP-MS systems. The combined HPLC-USN-N2MIP-MS has been adequately applied for the determination of Se compounds in certified National Institute for Environmental studies human urine CRM No. 18. The results reasonably agree with the HPLC-CN-ICP-MS values. This encouraging combination may be an alternative ion source of mass spectrometry for coming generation in regard to the selenium speciation analysis. PMID:15296393

  3. REAL TIME ULTRASONIC ALUMINUM SPOT WELD MONITORING SYSTEM

    SciTech Connect

    Regalado, W. Perez; Chertov, A. M.; Maev, R. Gr.

    2010-02-22

    Aluminum alloys pose several properties that make them one of the most popular engineering materials: they have excellent corrosion resistance, and high weight-to-strength ratio. Resistance spot welding of aluminum alloys is widely used today but oxide film and aluminum thermal and electrical properties make spot welding a difficult task. Electrode degradation due to pitting, alloying and mushrooming decreases the weld quality and adjustment of parameters like current and force is required. To realize these adjustments and ensure weld quality, a tool to measure weld quality in real time is required. In this paper, a real time ultrasonic non-destructive evaluation system for aluminum spot welds is presented. The system is able to monitor nugget growth while the spot weld is being made. This is achieved by interpreting the echoes of an ultrasound transducer located in one of the welding electrodes. The transducer receives and transmits an ultrasound signal at different times during the welding cycle. Valuable information of the weld quality is embedded in this signal. The system is able to determine the weld nugget diameter by measuring the delays of the ultrasound signals received during the complete welding cycle. The article presents the system performance on aluminum alloy AA6022.

  4. A storage scheme for the real-time database supporting the on-line commitment

    NASA Astrophysics Data System (ADS)

    Dai, Hong-bin; Jing, Yu-jian; Wang, Hui

    2013-07-01

    The modern SCADA (Supervisory Control and Data acquisition) systems have been applied to various aspects of everyday life. As the time goes on, the requirements of the applications of the systems vary. Thus the data structure of the real-time database, which is the core of a SCADA system, often needs modification. As a result, the commitment consisting of a sequence of configuration operations modifying the data structure of the real-time database is performed from time to time. Though it is simple to perform the off-line commitment by first stopping and then restarting the system, during which all the data in the real-time database are reconstructed. It is much more preferred or in some cases even necessary to perform the on-line commitment, during which the real-time database can still provide real-time service and the system continues working normally. In this paper, a storage scheme of the data in the real-time database is proposed. It helps the real-time database support its on-line commitment, during which real-time service is still available.

  5. LIBRARY INFORMATION PROCESSING USING AN ON-LINE, REAL-TIME COMPUTER SYSTEM.

    ERIC Educational Resources Information Center

    HOLZBAUR, FREDERICK W.; FARRIS, EUGENE H.

    DIRECT MAN-MACHINE COMMUNICATION IS NOW POSSIBLE THROUGH ON-LINE, REAL-TIME TYPEWRITER TERMINALS DIRECTLY CONNECTED TO COMPUTERS. THESE TERMINAL SYSTEMS PERMIT THE OPERATOR, WHETHER ORDER CLERK, CATALOGER, REFERENCE LIBRARIAN OR TYPIST, TO INTERACT WITH THE COMPUTER IN MANIPULATING DATA STORED WITHIN IT. THE IBM ADMINISTRATIVE TERMINAL SYSTEM…

  6. Real Time Target Tracking in a Phantom Using Ultrasonic Imaging

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Corner, G.; Huang, Z.

    In this paper we present a real-time ultrasound image guidance method suitable for tracking the motion of tumors. A 2D ultrasound based motion tracking system was evaluated. A robot was used to control the focused ultrasound and position it at the target that has been segmented from a real-time ultrasound video. Tracking accuracy and precision were investigated using a lesion mimicking phantom. Experiments have been conducted and results show sufficient efficiency of the image guidance algorithm. This work could be developed as the foundation for combining the real time ultrasound imaging tracking and MRI thermometry monitoring non-invasive surgery.

  7. DEVELOPMENT OF AN ON-LINE, REAL-TIME ALPHA RADIATION MEASURING INSTRUMENT FOR LIQUID STREAMS

    SciTech Connect

    Unknown

    1999-06-16

    Thermo Power Corporation has proven the technical viability of an on-line, real-time alpha radionuclide instrument for aqueous sample analysis through laboratory and initial field tests of the instrument. The instrument has been shown to be isotonically sensitive to extremely low (ten parts per trillion, or femto Curies per liter) levels of a broad range of radioisotopes. Performance enhancement and other scaling data obtained during the course of this investigation have shown that on-line, real-time operation is possible, with a sub 30-minute response time analyzing 20 ppb (30 pCi/1) natural uranium. Now that these initial field tests in Oak Ridge, Tennessee have been successfully completed, Thermo Power plans to conduct comprehensive field tests of the instrument. The purpose of these endurance tests will be to determine the endurance characteristics of the Thermo Alpha Monitor for Water when it is used by non-Thermo Power personnel in a series of one or more extended field tests. Such endurance testing is the vital next step towards the commercialization of the Alpha Monitor. Subsequently, it will be possible to provide the DOE with an instrument that has the capability of obtaining rapid feedback about the concentrations of alpha-emitting isotope contamination in effluent water streams (Subsurface Contaminants Focus Area). It will also be useful for process control of remediation and D and D operations such as monitoring scrubber/rinse water radioactivity levels (Mixed Waste, Plutonium and D and D Focus Areas).

  8. High Temperature Ultrasonic Transducer for Real-time Inspection

    NASA Astrophysics Data System (ADS)

    Amini, Mohammad Hossein; Sinclair, Anthony N.; Coyle, Thomas W.

    A broadband ultrasonic transducer with a novel porous ceramic backing layer is introduced to operate at 700 °C. 36° Y-cut lithium niobate (LiNbO3) single crystal was selected for the piezoelectric element. By appropriate choice of constituent materials, porosity and pore size, the acoustic impedance and attenuation of a zirconia-based backing layer were optimized. An active brazing alloy with high temperature and chemical stability was selected to bond the transducer layers together. Prototype transducers have been tested at temperatures up to 700 °C. The experiments confirmed that transducer integrity was maintained.

  9. A true real-time, on-line security system for waterborne pathogen surveillance

    NASA Astrophysics Data System (ADS)

    Adams, John A.; McCarty, David L.

    2008-04-01

    Over the past several years many advances have been made to monitor potable water systems for toxic threats. However, the need for real-time, on-line systems to detect the malicious introduction of deadly pathogens still exists. Municipal water distribution systems, government facilities and buildings, and high profile public events remain vulnerable to terrorist-related biological contamination. After years of research and development, an instrument using multi-angle light scattering (MALS) technology has been introduced to achieve on-line, real-time detection and classification of a waterborne pathogen event. The MALS system utilizes a continuous slip stream of water passing through a flow cell in the instrument. A laser beam, focused perpendicular to the water flow, strikes particles as they pass through the beam generating unique light scattering patterns that are captured by photodetectors. Microorganisms produce patterns termed 'bio-optical signatures' which are comparable to fingerprints. By comparing these bio-optical signatures to an on-board database of microorganism patterns, detection and classification occurs within minutes. If a pattern is not recognized, it is classified as an 'unknown' and the unidentified contaminant is registered as a potential threat. In either case, if the contaminant exceeds a customer's threshold, the system will immediately alert personnel to the contamination event while extracting a sample for confirmation. The system, BioSentry TM, developed by JMAR Technologies is now field-tested and commercially available. BioSentry is cost effective, uses no reagents, operates remotely, and can be used for continuous microbial surveillance in many water treatment environments. Examples of HLS installations will be presented along with data from the US EPA NHSRC Testing and Evaluation Facility.

  10. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    SciTech Connect

    Dennis H. LeMieux

    2004-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land -based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems; a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization.

  11. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    SciTech Connect

    Dennis H. LeMieux

    2005-04-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  12. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    SciTech Connect

    Dennis H. LeMieux

    2005-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Power Generation, Inc proposed a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Power Generation, Inc. has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  13. ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION

    SciTech Connect

    Dennis H. LeMieux

    2002-04-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  14. ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION

    SciTech Connect

    Dennis H. LeMieux

    2003-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability, availability, and maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can, therefore, accelerate the degradation of substrate component materials and eventually lead to a premature failure of critical components and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  15. ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION

    SciTech Connect

    Dennis H. LeMieux

    2003-07-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability, availability, and maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can, therefore, accelerate the degradation of substrate component materials and eventually lead to a premature failure of critical components and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  16. Real-time on-line monitoring of process water for low concentrations of bacteria

    NASA Astrophysics Data System (ADS)

    Adams, John A.; McCarty, David; Crousore, Kristina

    2006-03-01

    Naturally occurring outbreaks of bacteria have the potential to contaminate process water used in semiconductor manufacturing. Bacteria are normally filtered out in the water treatment process, however contamination can still occur from biofilm growth, filter or media break-through, and air vectors. Because there is seldom a residual disinfectant and system sanitation is intermittent, the manufacturer must rely on point of use filters to prevent contamination at critical points in the process. Particle counters in the distribution system can tell when the number of particles is increasing but cannot discriminate bacteria from small silica particles and often are unable to detect smaller gram-negative particles. If an on-line multi-angle light scattering system is used in place of particle counters or in conjunction with them, then the discrimination between silica particles and bacteria can be made and the proper action taken in the distribution system to help identify the contamination source, improve preventative maintenance, and ultimately increase yields. This paper describes the multi-angle light scattering method of detecting bacteria with the BioSentry TM system to provide an effective real-time on-line water monitoring sensor.

  17. Real Time, On Line Crop Monitoring and Analysis with Near Global Landsat-class Mosaics

    NASA Astrophysics Data System (ADS)

    Varlyguin, D.; Hulina, S.; Crutchfield, J.; Reynolds, C. A.; Frantz, R.

    2015-12-01

    The presentation will discuss the current status of GDA technology for operational, automated generation of 10-30 meter near global mosaics of Landsat-class data for visualization, monitoring, and analysis. Current version of the mosaic combines Landsat 8 and Landsat 7. Sentinel-2A imagery will be added once it is operationally available. The mosaics are surface reflectance calibrated and are analysis ready. They offer full spatial resolution and all multi-spectral bands of the source imagery. Each mosaic covers all major agricultural regions of the world and 16 day time window. 2014-most current dates are supported. The mosaics are updated in real-time, as soon as GDA downloads Landsat imagery, calibrates it to the surface reflectances, and generates data gap masks (all typically under 10 minutes for a Landsat scene). The technology eliminates the complex, multi-step, hands-on process of data preparation and provides imagery ready for repetitive, field-to-country analysis of crop conditions, progress, acreages, yield, and production. The mosaics can be used for real-time, on-line interactive mapping and time series drilling via GeoSynergy webGIS platform. The imagery is of great value for improved, persistent monitoring of global croplands and for the operational in-season analysis and mapping of crops across the globe in USDA FAS purview as mandated by the US government. The presentation will overview operational processing of Landsat-class mosaics in support of USDA FAS efforts and will look into 2015 and beyond.

  18. Installation the on-line, real-time EEW array in Tainan City, Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Ruei-Hua; Lin, Ting-Li; Tsai, Cheng-Yung; Wu, Yih-Min

    2015-04-01

    Taiwan is located in the circum-Pacific seismic zone and has been constantly threatened by large, disastrous earthquakes. Nowadays, earthquake early warning ( EEW) system is one of the effective strategies and has been operated in many countries for earthquake hazard mitigation. Supporting by Ministry of Science and Technology, an experimental EEW system consisting of more than 500 MEMS-type of accelerometers (Holland, 2003), named as the "Palert" system, has started operating since June 2012 in Taiwan (Wu and Lin, 2014; Wu et al., 2013). We established a local EEW array in Tainan in real-time and on-line mode based on the Earthworm (USGS) platform. Waveform stacking method is used to enhance the S/N ratio and improve the accuracy of the onsite magnitude estimate (MPd) by treating an array as a single on-site EEW station. Therefore, it can be regarded as a hybrid EEW system and might be installed in the other populated cities. Keywords : earthquake early warning, seismic array, waveform stacking

  19. DEVELOPMENT OF AN ON-LINE, REAL-TIME ALPHA RADIATION MEASURING INSTRUMENT FOR LIQUID STREAMS

    SciTech Connect

    Unknown

    1999-03-14

    The US Department of Energy (DOE) has expressed a need for an on-line, real-time instrument for assaying alpha-emitting radionuclides (uranium and the transuranics) in effluent waters leaving DOE sites to ensure compliance with regulatory limits. Due to the short range of alpha particles in water ({approximately}40 Im), it is necessary now to intermittently collect samples of water and send them to a central laboratory for analysis. A lengthy and costly procedure is used to separate and measure the radionuclides from each sample. Large variations in radionuclide concentrations in the water may go undetected due to the sporadic sampling. Even when detected, the reading may not be representative of the actual stream concentration. To address these issues, the Advanced Technologies Group of Thermo Power Corporation (a Thermo Electron company) is developing a real-time, field-deployable alpha monitor based on a solid-state silicon wafer semiconductor (US Patent 5,652,013 and pending, assigned to the US Department of Energy). The Thermo Water Alpha Monitor will serve to monitor effluent water streams (Subsurface Contaminants Focus Area) and will be suitable for process control of remediation as well as decontamination and decommissioning (D and D) operations, such as monitoring scrubber or rinse water radioactivity levels (Mixed Waste, Plutonium, and D and D Focus Area). It would be applicable for assaying other liquids, such as oil, or solids after proper preconditioning. Rapid isotopic alpha air monitoring is also possible using this technology. This report details the program's accomplishments to date. Most significantly, the Alpha Monitoring Instrument was successfully field demonstrated on water 100X below the Environmental Protection Agency's proposed safe drinking water limit--down to under 1 pCi/1. During the Field Test, the Alpha Monitoring Instrument successfully analyzed isotopic uranium levels on a total of five different surface water, process water, and

  20. DEVELOPMENT OF AN ON-LINE, REAL-TIME ALPHA RADIATION MEASURING INSTRUMENT FOR LIQUID STREAMS

    SciTech Connect

    1996-11-22

    The Department of Energy (DOE) has expressed a need for an on-line, real-time instrument for assaying alpha-emitting radionuclides (uranium and the transuranics) in effluent waters leaving DOE sites to ensure compliance with regulatory limits. Due to the short range of alpha particles in water ({approximately}40 Tm), it is necessary now to intermittently collect samples of water and send them to a central laboratory for analysis. A lengthy and costly procedure is used to separate and measure the radionuclides from each sample. Large variations in radionuclide concentrations in the water may go undetected due to the sporadic sampling. Even when detected, the reading may not be representative of the actual stream concentration. To address these issues, Tecogen, a division of Thermo Power Corporation, a Thermo Electron company, is developing a real-time, field-deployable, alpha monitor based on a solid-state silicon wafer semiconductor (patent pending, to be assigned to the Department of Energy). The Thermo Alpha Monitor (TAM) will serve to monitor effluent water streams (Subsurface Contaminants Focus Area) and will be suitable for process control of remediation as well as decontamination and decommissioning operations, such as monitoring scrubber or rinse water radioactivity levels (Mixed Waste Focus Area and D&D Focus Area). It would be applicable for assaying other liquids, such as oil, or solids after proper preconditioning. Rapid isotopic alpha air monitoring is also possible using this technology. This instrument for direct counting of alpha-emitters in aqueous streams is presently being developed by Thermo Power under a development program funded by the DOE Environmental Management program (DOE-EM), administered by the Morgantown Energy Technology Center (METC). Under this contract, Thermo Power has demonstrated a solid-state, silicon-based semiconductor instrument, which uses a proprietary film-based collection system to quantitatively extract the

  1. Real-time full-field photoacoustic imaging using an ultrasonic camera

    NASA Astrophysics Data System (ADS)

    Balogun, Oluwaseyi; Regez, Brad; Zhang, Hao F.; Krishnaswamy, Sridhar

    2010-03-01

    A photoacoustic imaging system that incorporates a commercial ultrasonic camera for real-time imaging of two-dimensional (2-D) projection planes in tissue at video rate (30 Hz) is presented. The system uses a Q-switched frequency-doubled Nd:YAG pulsed laser for photoacoustic generation. The ultrasonic camera consists of a 2-D 12×12 mm CCD chip with 120×120 piezoelectric sensing elements used for detecting the photoacoustic pressure distribution radiated from the target. An ultrasonic lens system is placed in front of the chip to collect the incoming photoacoustic waves, providing the ability for focusing and imaging at different depths. Compared with other existing photoacoustic imaging techniques, the camera-based system is attractive because it is relatively inexpensive and compact, and it can be tailored for real-time clinical imaging applications. Experimental results detailing the real-time photoacoustic imaging of rubber strings and buried absorbing targets in chicken breast tissue are presented, and the spatial resolution of the system is quantified.

  2. Line-scan hyperspectral imaging for real-time on-line poultry fecal detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The preliminary results demonstrated that high speed line-scan hyperspectral imaging system has a potential for real-time online fecal detection during poultry processing. To improve detection accuracy, fully calibrated images both spatially and spectrally were acquired for further processing. In ad...

  3. Ultrasonic Real-Time Quality Monitoring Of Aluminum Spot Weld Process

    NASA Astrophysics Data System (ADS)

    Perez Regalado, Waldo Josue

    The real-time ultrasonic spot weld monitoring system, introduced by our research group, has been designed for the unsupervised quality characterization of the spot welding process. It comprises the ultrasonic transducer (probe) built into one of the welding electrodes and an electronics hardware unit which gathers information from the transducer, performs real-time weld quality characterization and communicates with the robot programmable logic controller (PLC). The system has been fully developed for the inspection of spot welds manufactured in steel alloys, and has been mainly applied in the automotive industry. In recent years, a variety of materials have been introduced to the automotive industry. These include high strength steels, magnesium alloys, and aluminum alloys. Aluminum alloys have been of particular interest due to their high strength-to-weight ratio. Resistance spot welding requirements for aluminum vary greatly from those of steel. Additionally, the oxide film formed on the aluminum surface increases the heat generation between the copper electrodes and the aluminum plates leading to accelerated electrode deterioration. Preliminary studies showed that the real-time quality inspection system was not able to monitor spot welds manufactured with aluminum. The extensive experimental research, finite element modelling of the aluminum welding process and finite difference modeling of the acoustic wave propagation through the aluminum spot welds presented in this dissertation, revealed that the thermodynamics and hence the acoustic wave propagation through an aluminum and a steel spot weld differ significantly. For this reason, the hardware requirements and the algorithms developed to determine the welds quality from the ultrasonic data used on steel, no longer apply on aluminum spot welds. After updating the system and designing the required algorithms, parameters such as liquid nugget penetration and nugget diameter were available in the ultrasonic data

  4. New Near-Real Time Monitoring of the Ionosphere over Europe Available On-line

    NASA Astrophysics Data System (ADS)

    Chevalier, J. M.; Bergeot, N.; Bruyninx, C.; Pottiaux, E.; Aerts, W.; Baire, Q.; Legrand, J.; Defraigne, P.

    2012-04-01

    With the beginning of the 24th Solar cycle, the increased Solar activity requires having a close eye on the ionosphere for better understanding Space Weather physics and its effects on radio communications. In that frame, near-real time ionospheric models over Europe are now routinely generated at the Royal Observatory of Belgium (ROB). These models are made available to the public through new interactive web pages at the web site of the GNSS team (www.gnss.be) and the Solar Influences Data Analysis Center (www.sidc.be) of ROB. The models are ionospheric Vertical Total Electron Content (VTEC) maps estimated every 15 minutes on a 0.5°x0.5° grid. They use the high-rate GPS observations of the real-time stations in the EUREF Permanent Network (EPN) provided by the ROB NTRIP broadcaster. The maps are published on the ROB web site with a latency of 7-15 minutes with respect to the last GPS measurement included in the 15-minute observation files. In a first step, this paper presents the processing strategy used to generate the VTEC maps: input data, parameter estimation, data cleaning and interpolation method. In addition, the tools developed to further exploit the product are introduced, e.g. on-demand animated VTEC maps. In a second step, the VTEC maps are compared with external ionospheric products and models such as Global Ionospheric Maps and IRI 2011. These new near-real time VTEC maps will allow any user within the geographical scope of the maps to estimate in near-real time the ionospheric delay induced along the signal of any observed satellite. In the future, the web site will continuously be updated in response to evolving user needs. This paper opens doors to discussions with the user community to target their needs.

  5. On-loom, real-time, noncontact detection of fabric defects by ultrasonic imaging.

    SciTech Connect

    Chien, H. T.

    1998-09-08

    A noncontact, on-loom ultrasonic inspection technique was developed for real-time 100% defect inspection of fabrics. A prototype was built and tested successfully on loom. The system is compact, rugged, low cost, requires minimal maintenance, is not sensitive to fabric color and vibration, and can easily be adapted to current loom configurations. Moreover, it can detect defects in both the pick and warp directions. The system is capable of determining the size, location, and orientation of each defect. To further improve the system, air-coupled transducers with higher efficiency and sensitivity need to be developed. Advanced detection algorithms also need to be developed for better classification and categorization of defects in real-time.

  6. Novel Real-Time Diagnosis of the Freezing Process Using an Ultrasonic Transducer

    PubMed Central

    Tseng, Yen-Hsiang; Cheng, Chin-Chi; Cheng, Hong-Ping; Lee, Dasheng

    2015-01-01

    The freezing stage governs several critical parameters of the freeze drying process and the quality of the resulting lyophilized products. This paper presents an integrated ultrasonic transducer (UT) in a stainless steel bottle and its application to real-time diagnostics of the water freezing process. The sensor was directly deposited onto the stainless steel bottle using a sol-gel spray technique. It could operate at temperature range from −100 to 400 °C and uses an ultrasonic pulse-echo technique. The progression of the freezing process, including water-in, freezing point and final phase change of water, were all clearly observed using ultrasound. The ultrasonic signals could indicate the three stages of the freezing process and evaluate the cooling and freezing periods under various processing conditions. The temperature was also adopted for evaluating the cooling and freezing periods. These periods increased with water volume and decreased with shelf temperature (i.e., speed of freezing). This study demonstrates the effectiveness of the ultrasonic sensor and technology for diagnosing and optimizing the process of water freezing to save energy. PMID:25946629

  7. Novel real-time diagnosis of the freezing process using an ultrasonic transducer.

    PubMed

    Tseng, Yen-Hsiang; Cheng, Chin-Chi; Cheng, Hong-Ping; Lee, Dasheng

    2015-01-01

    The freezing stage governs several critical parameters of the freeze drying process and the quality of the resulting lyophilized products. This paper presents an integrated ultrasonic transducer (UT) in a stainless steel bottle and its application to real-time diagnostics of the water freezing process. The sensor was directly deposited onto the stainless steel bottle using a sol-gel spray technique. It could operate at temperature range from -100 to 400 °C and uses an ultrasonic pulse-echo technique. The progression of the freezing process, including water-in, freezing point and final phase change of water, were all clearly observed using ultrasound. The ultrasonic signals could indicate the three stages of the freezing process and evaluate the cooling and freezing periods under various processing conditions. The temperature was also adopted for evaluating the cooling and freezing periods. These periods increased with water volume and decreased with shelf temperature (i.e., speed of freezing). This study demonstrates the effectiveness of the ultrasonic sensor and technology for diagnosing and optimizing the process of water freezing to save energy. PMID:25946629

  8. On-line near-infrared spectrometer to monitor urea removal in real time during hemodialysis.

    PubMed

    Cho, David S; Olesberg, Jonathon T; Flanigan, Michael J; Arnold, Mark A

    2008-08-01

    The ex vivo removal of urea during hemodialysis treatments is monitored in real time with a noninvasive near-infrared spectrometer. The spectrometer uses a temperature-controlled acousto optical tunable filter (AOFT) in conjunction with a thermoelectrically cooled extended wavelength InGaAs detector to provide spectra with a 20 cm(-1) resolution over the combination region (4000-5000 cm(-1)) of the near-infrared spectrum. Spectra are signal averaged over 15 seconds to provide root mean square noise levels of 24 micro-absorbance units for 100% lines generated over the 4600-4500 cm(-1) spectral range. Combination spectra of the spent dialysate stream are collected in real-time as a portion of this stream passes through a sample holder constructed from a 1.1 mm inner diameter tube of Teflon. Real-time spectra are collected during 17 individual dialysis sessions over a period of 10 days. Reference samples were extracted periodically during each session to generate 87 unique samples with corresponding reference concentrations for urea, glucose, lactate, and creatinine. A series of calibration models are generated for urea by using the partial least squares (PLS) algorithm and each model is optimized in terms of number of factors and spectral range. The best calibration model gives a standard error of prediction (SEP) of 0.30 mM based on a random splitting of spectra generated from all 87 reference samples collected across the 17 dialysis sessions. PLS models were also developed by using spectra collected in early sessions to predict urea concentrations from spectra collected in subsequent sessions. SEP values for these prospective models range from 0.37 mM to 0.52 mM. Although higher than when spectra are pooled from all 17 sessions, these prospective SEP values are acceptable for monitoring the hemodialysis process. Selectivity for urea is demonstrated and the selectivity properties of the PLS calibration models are characterized with a pure component selectivity

  9. On-line ultrasonic gas entrainment monitor

    DOEpatents

    Day, Clifford K.; Pedersen, Herbert N.

    1978-01-01

    Apparatus employing ultrasonic energy for detecting and measuring the quantity of gas bubbles present in liquids being transported through pipes. An ultrasonic transducer is positioned along the longitudinal axis of a fluid duct, oriented to transmit acoustic energy radially of the duct around the circumference of the enclosure walls. The back-reflected energy is received centrally of the duct and interpreted as a measure of gas entrainment. One specific embodiment employs a conical reflector to direct the transmitted acoustic energy radially of the duct and redirect the reflected energy back to the transducer for reception. A modified embodiment employs a cylindrical ultrasonic transducer for this purpose.

  10. Laser Ultrasonic System for On-Line Steel Tube Gauging

    NASA Astrophysics Data System (ADS)

    Monchalin, Jean-Pierre; Choquet, Marc; Padioleau, Christian; Néron, Christian; Lévesque, Daniel; Blouin, Alain; Corbeil, Christian; Talbot, Richard; Bendada, Abdelhakim; Lamontagne, Mario; Kolarik, Robert V.; Jeskey, Gerald V.; Dominik, Erich D.; Duly, Larry J.; Samblanet, Kenneth J.; Agger, Steven E.; Roush, Kenneth J.; Mester, Michael L.

    2003-03-01

    A laser-ultrasonic system has been installed on a seamless tubing production line of The Timken Company and is being used to measure on-line the wall thickness of tubes during processing. The seamless process consists essentially in forcing a mandrel through a hot cylindrical billet in rotation and typically results in fairly large wall thickness variations that should be minimized and controlled to respect specifications. The system includes a Q-switched Nd-YAG laser for generation of ultrasound by ablation, a long pulse very stable Nd-YAG laser for detection coupled to a confocal Fabry-Perot interferometer, a pyrometer to measure tube temperature and two laser Doppler velocimeters to measure the coordinates of the probing location at the tube surface. The laser, data acquisition and processing units are housed in a cabin off line and connected to a front coupling head located over the passing tube by optical fibers. The system has been integrated into the plant computer network and provides in real time thickness data to the plant operators. It allow much faster mill setups, has been used since its deployment for inspecting more than 100,000 tubes and has demonstrated very significant savings.

  11. Teaching real-time ultrasonic imaging with a 4-channel sonar array, TI C6711 DSK and MATLAB.

    PubMed

    York, George W P; Welch, Thad B; Wright, Cameron H G

    2005-01-01

    Ultrasonic medical imaging courses often stop at the theory or MATLAB simulation level, since professors find it challenging to give the students the experience of designing a real-time ultrasonic system. Some of the practical problems of working with real-time data from the ultrasonic transducers can be avoided by working at lower frequencies (sonar to low ultrasound) range. To facilitate this, we have created a platform using the ease of MATLAB programming with the real-time processing capability of the low-cost Texas Instruments C6711 DSP starter kit and a 4-channel sonar array. With this platform students can design a B-mode or Color-Mode sonar system in the MATLAB environment. This paper will demonstrate how the platform can be used in the classroom to demonstrate the real-time signal processing stages including beamforming, multi-rate sampling, demodulation, filtering, image processing, echo imaging, and Doppler frequency estimation. PMID:15850134

  12. Real time acousto-ultrasonic NDE technique for monitoring damage in ceramic composites under dynamic loads

    NASA Technical Reports Server (NTRS)

    Tiwari, Anil

    1995-01-01

    Research effort was directed towards developing a near real-time, acousto-ultrasonic (AU), nondestructive evaluation (NDE) tool to study the failure mechanisms of ceramic composites. Progression of damage is monitored in real-time by observing the changes in the received AU signal during the actual test. During the real-time AU test, the AU signals are generated and received by the AU transducers attached to the specimen while it is being subjected to increasing quasi-static loads or cyclic loads (10 Hz, R = 1.0). The received AU signals for 64 successive pulses were gated in the time domain (T = 40.96 micro sec) and then averaged every second over ten load cycles and stored in a computer file during fatigue tests. These averaged gated signals are representative of the damage state of the specimen at that point of its fatigue life. This is also the first major attempt in the development and application of real-time AU for continuously monitoring damage accumulation during fatigue without interrupting the test. The present work has verified the capability of the AU technique to assess the damage state in silicon carbide/calcium aluminosilicate (SiC/CAS) and silicon carbide/ magnesium aluminosilicate (SiC/MAS) ceramic composites. Continuous monitoring of damage initiation and progression under quasi-static ramp loading in tension to failure of unidirectional and cross-ply SiC/CAS and quasi-isotropic SiC/MAS ceramic composite specimens at room temperature was accomplished using near real-time AU parameters. The AU technique was shown to be able to detect the stress levels for the onset and saturation of matrix cracks, respectively. The critical cracking stress level is used as a design stress for brittle matrix composites operating at elevated temperatures. The AU technique has found that the critical cracking stress level is 10-15% below the level presently obtained for design purposes from analytical models. An acousto-ultrasonic stress-strain response (AUSSR) model

  13. Real-time on-line flow cytometry for bioprocess monitoring.

    PubMed

    Broger, Tobias; Odermatt, Res P; Huber, Pascal; Sonnleitner, Bernhard

    2011-07-20

    As the understanding of variation is the key to a good process and product quality one should pay attention to dynamics on the single-cell level. The basic idea of this approach was to qualify and quantify variations on the single-cell level during bioreactor cultivations by monitoring the expression of an eGFP tagged target protein (human membrane protein) using fully automated real-time, flow injection flow cytometry (FI-FCM). The FI-FCM system consists of a sampling- and defoaming- as well as of a dilution-section. It allows a very short monitoring interval (5 min) and is able to dilute the reactor sample by a factor ranging up to more than 10,000. In bioreactor cultivations of recombinant Pichia pastoris expressing the eGFP tagged target protein, high correlations (R(2)≥ 0.97) between the FI-FCM fluorescent signal and other, however, population-averaged fluorescence signals (off-line fluorescence, in situ fluorescence probe) were obtained. FI-FCM is the only method able to distinguish between few cells with high fluorescence and many cells with low fluorescence intensity and proved that cells differ significantly from each other within the population during bioreactor cultivations. Single-cell fluorescence was distributed over a broad range within the cell population. These distributions strongly suggest that (a) the AOX-I promoter is leaky and (b) a fraction of the population is able to express more protein of interest within shorter time and (c) a fraction of the population does not express the fusion protein at all. These findings can help in the selection of high producing, stable strains. To show the platform-independency of the system, it has successfully been tested during bioreactor cultivations of three different strains (P. pastoris, Saccharomyces cerevisiae, Escherichia coli). Along with its applications in PAT, the FI-FCM could be used as a platform-independent (prokaryotes and eukaryotes) method in various other applications; for example in the

  14. In vitro and in vivo real-time imaging with ultrasonic limited diffraction beams.

    PubMed

    Lu, J Y; Song, T K; Kinnick, R R; Greenleaf, J F

    1993-01-01

    Recently, there has been great interest in a new class of solutions to the isotropic/homogeneous scaler wave equation which represents localized waves or limited diffraction beams in electromagnetics, optics, and acoustics. Applications of these solutions to ultrasonic medical imaging, tissue characterization, and nondestructive evaluation of materials have also been reported. The authors report a real-time medical imager which uses limited diffraction Bessel beams, X-waves, Axicons, or conventional beams. Results (in vitro and in vivo) show that the images obtained with limited diffraction beams have higher resolution and good contrast over larger depth of field compared to images obtained with conventional focused beams. These results suggest the potential clinical usefulness of limited diffraction beams. PMID:18218478

  15. Active ultrasonic joint integrity adjudication for real-time structural health monitoring

    NASA Astrophysics Data System (ADS)

    Clayton, Erik H.; Kennel, Matthew B.; Fasel, Timothy R.; Todd, Michael D.; Stabb, Mark C.; Arritt, Brandon J.

    2008-03-01

    The Operationally Responsive Space (ORS) strategy hinges, in part, on realizing technologies which can facilitate the rapid deployment of satellites. Presently, preflight qualification testing and vehicle integration processes are time consumptive and pose as two significant hurdles which must be overcome to effectively enhance US space asset deployment responsiveness. There is a growing demand for innovative embedded Structural Health Monitoring (SHM) technologies which can be seamlessly incorporated onto payload hardware and function in parallel with satellite construction to mitigate lengthy preflight checkout procedures. In this effort our work is focused on the development of a joint connectivity monitoring algorithm which can detect, locate, and assess preload in bolted joint assemblies. Our technology leverages inexpensive, lightweight, flexible thin-film macro-fiber composite (MFC) sensor/actuators with a novel online, data-driven signal processing algorithm. This algorithm inherently relies upon Chaotic Guided Ultrasonic Waves (CGUW) and a novel cross-prediction error classification technique. The efficacy of the monitoring algorithm is evaluated through a series of numerical simulations and experimentally in two test configurations. We conclude with a discussion surrounding further development of this approach into a commercial product as a real-time flight readiness indicator.

  16. Near-real-time measurement of trace volatile organic compounds from combustion processes using an on-line gas chromatography

    SciTech Connect

    Ryan, J.V.; Lemieux, P.M.; Preston, W.T.

    1998-12-31

    The US EPA`s current regulatory approach for combustion and incineration sources considers the use of real-time continuous emission monitors (CEMs) for particulate, metals, and organic compounds to monitor source emissions. Currently, the CEM technologies to support this approach have not been thoroughly developed and/or demonstrated. The EPA`s air Pollution Prevention and Control Division has developed a near-real-time volatile organic compound (VOC) CEM, using an on-line gas chromatograph (OLGC), capable of measuring over 20 VOCs at concentrations typically present in well-operated combustion systems. The OLGC system consists of a sample delivery system, a sample concentrator, and a GC equipped with both flame ionization and electron capture detectors. Application of the OLGC system was initially demonstrated through participation in the 1995 US EPA/DOE CEM demonstration program. Additional work has improved system performance, including increased automation and improved calibration technique. During pilot-scale incineration testing, measurement performance was examined in detail through comparisons to various CEM performance criteria. Specifically, calibration error, calibration drift error, and system bias were examined as a function of full scale and gas concentration. Although OLGC measurement performance was not able to meet standard EPA CEM measurement performance criteria, measurement performance was encouraging. The system demonstrated the ability to perform hourly trace level VOC measurements for as many as 23 different VOCs with boiling points ranging from {minus}23.7 to 180.5 C at a known level of measurement performance. This system is a suitable alternative to VOC reference method measurements which may be performed only intermittently.

  17. Real Time On-line Space Research Laboratory Environment Monitoring with Off-line Trend and Prediction Analysis

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Lin, Paul P.

    2006-01-01

    their g-level contribution to the environment. The system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many Increments of the space station for selected disturbance activities. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential system failure as well as for use by research scientists during their science results analysis. Examples of both real time on-line vibratory disturbance detection and off-line trend analysis are presented in this paper. Several soft computing techniques such as Kohonen s Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.

  18. Real-time measurement of ice growth during simulated and natural icing conditions using ultrasonic pulse-echo techniques

    NASA Technical Reports Server (NTRS)

    Hansman, R. J., Jr.; Kirby, M. S.

    1986-01-01

    Results of tests to measure ice accretion in real-time using ultrasonic pulse-echo techniques are presented. Tests conducted on a 10.2 cm diameter cylinder exposed to simulated icing conditions in the NASA Lewis Icing Research Tunnel and on an 11.4 cm diameter cylinder exposed to natural icing conditions in flight are described. An accuracy of + or - 0.5 mm is achieved for real-time ice thickness measurements. Ice accretion rate is determined by differentiating ice thickness with respect to time. Icing rates measured during simulated and natural icing conditions are compared and related to icing cloud parameters. The ultrasonic signal characteristics are used to detect the presence of surface water on the accreting ice shape and thus to distinguish between dry ice growth and wet growth. The surface roughness of the accreted ice is shown to be related to the width of the echo signal received from the ice surface.

  19. Ultrasonic real-time in-die monitoring of the tablet compaction process-a proof of concept study.

    PubMed

    Stephens, James D; Kowalczyk, Brian R; Hancock, Bruno C; Kaul, Goldi; Cetinkaya, Cetin

    2013-02-14

    The mechanical properties of a drug tablet can affect its performance (e.g., dissolution profile and its physical robustness. An ultrasonic system for real-time in-die tablet mechanical property monitoring during compaction has been demonstrated. The reported set-up is a proof of concept compaction monitoring system which includes an ultrasonic transducer mounted inside the upper punch of the compaction apparatus. This upper punch is utilized to acquire ultrasonic pressure wave phase velocity waveforms and extract the time-of-flight of pressure waves travelling within the compact at a number of compaction force levels during compaction. The reflection coefficients for the waves reflecting from punch tip-powder bed interface are extracted from the acquired waveforms. The reflection coefficient decreases with an increase in compaction force, indicating solidification. The data acquisition methods give an average apparent Young's moduli in the range of 8-20 GPa extracted during the compaction and release/decompression phases in real-time. A monitoring system employing such methods is capable of determining material properties and the integrity of the tablet during compaction. As compared to the millisecond time-scale dwell time of a typical commercial compaction press, the micro-second pulse duration and ToF of an acoustic pulse are sufficiently fast for real-time monitoring. PMID:22989980

  20. NEAR-REAL-TIME MEASUREMENT OF TRACE VOLATILE ORGANIC COMPOUNDS FROM COMBUSTION PROCESSES USING AN ON-LINE GAS CHROMATOGRAPH

    EPA Science Inventory

    The U.S. EPA's current regulatory approach for combustion and incineration sources emphasizes the use of real-time continuous emission monitors (CEMs) for particulate, Metals, and volatile, semivolatile, and of nonvolatile organic compounds to monitor source emissions. Currently...

  1. Real time acousto-ultrasonic NDE technique for monitoring damage in ceramic composites under dynamic loads. Final report

    SciTech Connect

    Tiwari, ANIL

    1995-08-01

    Research effort was directed towards developing a near real-time, acousto-ultrasonic (AU), nondestructive evaluation (NDE) tool to study the failure mechanisms of ceramic composites. Progression of damage is monitored in real-time by observing the changes in the received AU signal during the actual test. During the real-time AU test, the AU signals are generated and received by the AU transducers attached to the specimen while it is being subjected to increasing quasi-static loads or cyclic loads (10 Hz, R = 1.0). The received AU signals for 64 successive pulses were gated in the time domain (T = 40.96 micro sec) and then averaged every second over ten load cycles and stored in a computer file during fatigue tests. These averaged gated signals are representative of the damage state of the specimen at that point of its fatigue life. This is also the first major attempt in the development and application of real-time AU for continuously monitoring damage accumulation during fatigue without interrupting the test. The present work has verified the capability of the AU technique to assess the damage state in silicon carbide/calcium aluminosilicate (SiC/CAS) and silicon carbide/ magnesium aluminosilicate (SiC/MAS) ceramic composites. Continuous monitoring of damage initiation and progression under quasi-static ramp loading in tension to failure of unidirectional and cross-ply SiC/CAS and quasi-isotropic SiC/MAS ceramic composite specimens at room temperature was accomplished using near real-time AU parameters. The AU technique was shown to be able to detect the stress levels for the onset and saturation of matrix cracks, respectively. The critical cracking stress level is used as a design stress for brittle matrix composites operating at elevated temperatures. The AU technique has found that the critical cracking stress level is 10-15% below the level presently obtained for design purposes from analytical models.

  2. Development of real-time motion capture system for 3D on-line games linked with virtual character

    NASA Astrophysics Data System (ADS)

    Kim, Jong Hyeong; Ryu, Young Kee; Cho, Hyung Suck

    2004-10-01

    Motion tracking method is being issued as essential part of the entertainment, medical, sports, education and industry with the development of 3-D virtual reality. Virtual human character in the digital animation and game application has been controlled by interfacing devices; mouse, joysticks, midi-slider, and so on. Those devices could not enable virtual human character to move smoothly and naturally. Furthermore, high-end human motion capture systems in commercial market are expensive and complicated. In this paper, we proposed a practical and fast motion capturing system consisting of optic sensors, and linked the data with 3-D game character with real time. The prototype experiment setup is successfully applied to a boxing game which requires very fast movement of human character.

  3. Dopant-assisted negative photoionization Ion mobility spectrometry coupled with on-line cooling inlet for real-time monitoring H2S concentration in sewer gas.

    PubMed

    Peng, Liying; Jiang, Dandan; Wang, Zhenxin; Hua, Lei; Li, Haiyang

    2016-06-01

    Malodorous hydrogen sulfide (H2S) gas often exists in the sewer system and associates with the problems of releasing the dangerous odor to the atmosphere and causing sewer pipe to be corroded. A simple method is in demand for real-time measuring H2S level in the sewer gas. In this paper, an innovated method based on dopant-assisted negative photoionization ion mobility spectrometry (DANP-IMS) with on-line semiconductor cooling inlet was put forward and successfully applied for the real-time measurement of H2S in sewer gas. The influence of moisture was effectively reduced via an on-line cooling method and a non-equilibrium dilution with drift gas. The limits of quantitation for the H2S in ≥60% relative humidity air could be obtained at ≤79.0ng L(-1) with linear ranges of 129-2064ng L(-1). The H2S concentration in a sewer manhole was successfully determined while its product ions were identified by an ion-mobility time-of-fight mass spectrometry. Finally, the correlation between sewer H2S concentration and the daily routines and habits of residents was investigated through hourly or real-time monitoring the variation of sewer H2S in manholes, indicating the power of this DANP-IMS method in assessing the H2S concentration in sewer system. PMID:27130121

  4. The SAFT-UT (synthetic aperture focusing technique for ultrasonic testing) real-time inspection system: Operational principles and implementation

    SciTech Connect

    Hall, T. E.; Reid, L. D.; Doctor, S. R.

    1988-06-01

    This document provides a technical description of the real-time imaging system developed for rapid flaw detection and characterization utilizing the synthetic aperture focusing technique for ultrasonic testing (SAFT-UT). The complete fieldable system has been designed to perform inservice inspection of light-water reactor components. Software was written on a DEC LSI 11/23 computer system to control data collection. The unprocessed data is transferred to a VAX 11/730 host computer to perform data processing and image display tasks. A parallel architecture peripheral to the host computer, referred to as the Real-Time SAFT Processor, rapidly performs the SAFT processing function. From the host's point of view, this device operates on the SAFT data in such a way that one may consider it to be a specialized or SAFT array processor. A guide to SAFT-UT theory and conventions is included, along with a detailed description of the operation of the software, how to install the software, and a detailed hardware description.

  5. Real time analysis of brain tissue by direct combination of ultrasonic surgical aspiration and sonic spray mass spectrometry.

    PubMed

    Schäfer, Karl-Christian; Balog, Júlia; Szaniszló, Tamás; Szalay, Dániel; Mezey, Géza; Dénes, Júlia; Bognár, László; Oertel, Matthias; Takáts, Zoltán

    2011-10-15

    Direct combination of cavitron ultrasonic surgical aspirator (CUSA) and sonic spray ionization mass spectrometry is presented. A commercially available ultrasonic surgical device was coupled to a Venturi easy ambient sonic-spray ionization (V-EASI) source by directly introducing liquified tissue debris into the Venturi air jet pump. The Venturi air jet pump was found to efficiently nebulize the suspended tissue material for gas phase ion production. The ionization mechanism involving solely pneumatic spraying was associated with that of sonic spray ionization. Positive and negative ionization spectra were obtained from brain and liver samples reflecting the primary application areas of the surgical device. Mass spectra were found to feature predominantly complex lipid-type constituents of tissues in both ion polarity modes. Multiply charged peptide anions were also detected. The influence of instrumental settings was characterized in detail. Venturi pump geometry and flow parameters were found to be critically important in ionization efficiency. Standard solutions of phospholipids and peptides were analyzed in order to test the dynamic range, sensitivity, and suppression effects. The spectra of the intact tissue specimens were found to be highly specific to the histological tissue type. The principal component analysis (PCA) and linear discriminant analysis (LDA) based data analysis method was developed for real-time tissue identification in a surgical environment. The method has been successfully tested on post-mortem and ex vivo human samples including astrocytomas, meningeomas, metastatic brain tumors, and healthy brain tissue. PMID:21916423

  6. Ultrasonic device for real-time sewage velocity and suspended particles concentration measurements.

    PubMed

    Abda, F; Azbaid, A; Ensminger, D; Fischer, S; François, P; Schmitt, P; Pallarès, A

    2009-01-01

    In the frame of a technological research and innovation network in water and environment technologies (RITEAU, Réseau de Recherche et d'Innovation Technologique Eau et Environnement), our research group, in collaboration with industrial partners and other research institutions, has been in charge of the development of a suitable flowmeter: an ultrasonic device measuring simultaneously the water flow and the concentration of size classes of suspended particles. Working on the pulsed ultrasound principle, our multi-frequency device (1 to 14 MHz) allows flow velocity and water height measurement and estimation of suspended solids concentration. Velocity measurements rely on the coherent Doppler principle. A self developed frequency estimator, so called Spectral Identification method, was used and compared to the classical Pulse-Pair method. Several measurements campaigns on one wastewater collector of the French city of Strasbourg gave very satisfactory results and showed smaller standard deviation values for the Doppler frequency extracted by the Spectral Identification method. A specific algorithm was also developed for the water height measurements. It relies on the water surface acoustic impedance rupture and its peak localisation and behaviour in the collected backscattering data. This algorithm was positively tested on long time measurements on the same wastewater collector. A large part of the article is devoted to the measurements of the suspended solids concentrations. Our data analysis consists in the adaptation of the well described acoustic behaviour of sand to the behaviour of wastewater particles. Both acoustic attenuation and acoustic backscattering data over multiple frequencies are analyzed for the extrapolation of size classes and respective concentrations. Under dry weather conditions, the massic backscattering coefficient and the overall size distribution showed similar evolution whatever the measurement site was and were suggesting a global

  7. An experimental setup with ultrasonic gas analyzers and real time analysis of the composition of a binary gas mixture

    NASA Astrophysics Data System (ADS)

    Vacek, V.; Vítek, M.; Doubek, M.

    2013-04-01

    This paper describes an automated measuring apparatus with an ultrasonic gas analyzer and realtime analysis of the composition of the gas. The apparatus is designed for preparing binary gas mixtures and making measurements in a wide range of pressures (from 0.8 bara to 15 bara) and temperatures (between -15°C and 80°C). The apparatus was developed to determine the thermophysical properties of fluorocarbon mixtures for potential use in the cooling circuits of several Large Hadron Collider projects at CERN. The design of its control system took into account the safety and reliability o the gas analyzer, and the need to limit the presence of laboratory personnel. The control system was implemented in PVSS-II, the Supervisory, Control and Data Acquisition standard chosen for LHC and its experiments at CERN. The second part of the paper describes the implementation and verification of the algorithm for continuous real-time determination of the composition of the refrigerant mixture. The algorithm is based on minimizing the quadratic norm fromthe measured data and from the pre-generated look-up tables acquired from the NIST REFPROP software package.

  8. Bedside assistance in freehand ultrasonic diagnosis by real-time visual feedback of 3D scatter diagram of pulsatile tissue-motion

    NASA Astrophysics Data System (ADS)

    Fukuzawa, M.; Kawata, K.; Nakamori, N.; Kitsunezuka, Y.

    2011-03-01

    By real-time visual feedback of 3D scatter diagram of pulsatile tissue-motion, freehand ultrasonic diagnosis of neonatal ischemic diseases has been assisted at the bedside. The 2D ultrasonic movie was taken with a conventional ultrasonic apparatus (ATL HDI5000) and ultrasonic probes of 5-7 MHz with the compact tilt-sensor to measure the probe orientation. The real-time 3D visualization was realized by developing an extended version of the PC-based visualization system. The software was originally developed on the DirectX platform and optimized with the streaming SIMD extensions. The 3D scatter diagram of the latest pulsatile tissues has been continuously generated and visualized as projection image with the ultrasonic movie in the current section more than 15 fps. It revealed the 3D structure of pulsatile tissues such as middle and posterior cerebral arteries, Willis ring and cerebellar arteries, in which pediatricians have great interests in the blood flow because asphyxiated and/or low-birth-weight neonates have a high risk of ischemic diseases such as hypoxic-ischemic encephalopathy and periventricular leukomalacia. Since the pulsatile tissue-motion is due to local blood flow, it can be concluded that the system developed in this work is very useful to assist freehand ultrasonic diagnosis of ischemic diseases in the neonatal cranium.

  9. Capillary electrophoresis for automated on-line monitoring of suspension cultures: Correlating cell density, nutrients and metabolites in near real-time.

    PubMed

    Alhusban, Ala A; Breadmore, Michael C; Gueven, Nuri; Guijt, Rosanne M

    2016-05-12

    Increasingly stringent demands on the production of biopharmaceuticals demand monitoring of process parameters that impact on their quality. We developed an automated platform for on-line, near real-time monitoring of suspension cultures by integrating microfluidic components for cell counting and filtration with a high-resolution separation technique. This enabled the correlation of the growth of a human lymphocyte cell line with changes in the essential metabolic markers, glucose, glutamine, leucine/isoleucine and lactate, determined by Sequential Injection-Capillary Electrophoresis (SI-CE). Using 8.1 mL of media (41 μL per run), the metabolic status and cell density were recorded every 30 min over 4 days. The presented platform is flexible, simple and automated and allows for fast, robust and sensitive analysis with low sample consumption and high sample throughput. It is compatible with up- and out-scaling, and as such provides a promising new solution to meet the future demands in process monitoring in the biopharmaceutical industry. PMID:27114228

  10. Real-Time Monitoring of Heat-Induced Aggregation of β-Lactoglobulin in Aqueous Solutions Using High-Resolution Ultrasonic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ochenduszko, Agnieszka; Buckin, Vitaly

    2010-01-01

    High-resolution ultrasonic spectroscopy was applied for real-time monitoring of the heat-induced denaturation and aggregation processes in aqueous solutions of β-lactoglobulin. The temperature profiles for the ultrasonic velocity and attenuation in the frequency range from 4MHz to 16MHz were measured during heating and cooling cycles, 35°C to 120°C to 35°C, with different heating and cooling rates. Two processes were identified in the heating profiles: transition to the molten globular state followed by formation of protein aggregates. Both processes are accompanied by a decrease in the ultrasonic velocity and an increase in compressibility. The ultrasonic attenuation did not show a significant change during the transition to the molten globule but increased significantly during aggregation. The diameter of the aggregates (calculated from ultrasonic attenuation) was of the order of 100nm and depended on the pH and the heating rate. Variation of pH from 6.0 to 7.5 had a pronounced effect on the size of protein aggregates. Some effect of pH on the intrinsic properties of aggregates was also detected.

  11. Net-zero Building Cluster Simulations and On-line Energy Forecasting for Adaptive and Real-Time Control and Decisions

    NASA Astrophysics Data System (ADS)

    Li, Xiwang

    Buildings consume about 41.1% of primary energy and 74% of the electricity in the U.S. Moreover, it is estimated by the National Energy Technology Laboratory that more than 1/4 of the 713 GW of U.S. electricity demand in 2010 could be dispatchable if only buildings could respond to that dispatch through advanced building energy control and operation strategies and smart grid infrastructure. In this study, it is envisioned that neighboring buildings will have the tendency to form a cluster, an open cyber-physical system to exploit the economic opportunities provided by a smart grid, distributed power generation, and storage devices. Through optimized demand management, these building clusters will then reduce overall primary energy consumption and peak time electricity consumption, and be more resilient to power disruptions. Therefore, this project seeks to develop a Net-zero building cluster simulation testbed and high fidelity energy forecasting models for adaptive and real-time control and decision making strategy development that can be used in a Net-zero building cluster. The following research activities are summarized in this thesis: 1) Development of a building cluster emulator for building cluster control and operation strategy assessment. 2) Development of a novel building energy forecasting methodology using active system identification and data fusion techniques. In this methodology, a systematic approach for building energy system characteristic evaluation, system excitation and model adaptation is included. The developed methodology is compared with other literature-reported building energy forecasting methods; 3) Development of the high fidelity on-line building cluster energy forecasting models, which includes energy forecasting models for buildings, PV panels, batteries and ice tank thermal storage systems 4) Small scale real building validation study to verify the performance of the developed building energy forecasting methodology. The outcomes of

  12. REAL TIME, ON-LINE CHARACTERIZATION OF DIESEL GENERATOR AIR TOXIC EMISSIONS BY RESONANCE ENHANCED MULTI-PHOTON IONIZATION TIME OF FLIGHT MASS SPECTROMETRY

    EPA Science Inventory

    The laser based resonance, enhanced multi-photon ionization time-of-flight mass spectrometry (REMPI-TOFMS) technique has been applied to the exhaust gas stream of a diesel generator to measure, in real time, concentration levels of aromatic air toxics. Volatile organic compounds ...

  13. Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process.

    PubMed

    Zhang, Kuanshuang; Zhou, Zhenggan; Zhou, Jianghua

    2015-09-01

    Application of a laser ultrasonic method is developed for on-line monitoring of the friction stir spot welding (FSSW) process. Based on the technology of FSSW, laser-generated ultrasonic waves in a good weld and nonweld area are simulated by a finite element method. The reflected and transmitted waves are analyzed to disclose the properties of the welded interface. The noncontact-laser ultrasonic-inspection system was established to verify the numerical results. The reflected waves in the good-weld and nonweld area can be distinguished by time-of-flight. The transmitted waves evidently attenuate in the nonweld area in contrast to signal amplitude in the good weld area because of interfacial impedance difference. Laser ultrasonic C-scan images can sufficiently evaluate the intrinsic character of the weld area in comparison with traditional water-immersion ultrasonic testing results. The research results confirm that laser ultrasonics would be an effective method to realize the characterization of FSSW defects. PMID:26368866

  14. Spatial and Temporal Control of Hyperthermia Using Real Time Ultrasonic Thermal Strain Imaging with Motion Compensation, Phantom Study

    PubMed Central

    Foiret, Josquin; Ferrara, Katherine W.

    2015-01-01

    Mild hyperthermia has been successfully employed to induce reversible physiological changes that can directly treat cancer and enhance local drug delivery. In this approach, temperature monitoring is essential to avoid undesirable biological effects that result from thermal damage. For thermal therapies, Magnetic Resonance Imaging (MRI) has been employed to control real-time Focused Ultrasound (FUS) therapies. However, combined ultrasound imaging and therapy systems offer the benefits of simple, low-cost devices that can be broadly applied. To facilitate such technology, ultrasound thermometry has potential to reliably monitor temperature. Control of mild hyperthermia was previously achieved using a proportional-integral-derivative (PID) controller based on thermocouple measurements. Despite accurate temporal control of heating, this method is limited by the single position at which the temperature is measured. Ultrasound thermometry techniques based on exploiting the thermal dependence of acoustic parameters (such as longitudinal velocity) can be extended to create thermal maps and allow an accurate monitoring of temperature with good spatial resolution. However, in vivo applications of this technique have not been fully developed due to the high sensitivity to tissue motion. Here, we propose a motion compensation method based on the acquisition of multiple reference frames prior to treatment. The technique was tested in the presence of 2-D and 3-D physiological-scale motion and was found to provide effective real-time temperature monitoring. PID control of mild hyperthermia in presence of motion was then tested with ultrasound thermometry as feedback and temperature was maintained within 0.3°C of the requested value. PMID:26244783

  15. Spatial and Temporal Control of Hyperthermia Using Real Time Ultrasonic Thermal Strain Imaging with Motion Compensation, Phantom Study.

    PubMed

    Foiret, Josquin; Ferrara, Katherine W

    2015-01-01

    Mild hyperthermia has been successfully employed to induce reversible physiological changes that can directly treat cancer and enhance local drug delivery. In this approach, temperature monitoring is essential to avoid undesirable biological effects that result from thermal damage. For thermal therapies, Magnetic Resonance Imaging (MRI) has been employed to control real-time Focused Ultrasound (FUS) therapies. However, combined ultrasound imaging and therapy systems offer the benefits of simple, low-cost devices that can be broadly applied. To facilitate such technology, ultrasound thermometry has potential to reliably monitor temperature. Control of mild hyperthermia was previously achieved using a proportional-integral-derivative (PID) controller based on thermocouple measurements. Despite accurate temporal control of heating, this method is limited by the single position at which the temperature is measured. Ultrasound thermometry techniques based on exploiting the thermal dependence of acoustic parameters (such as longitudinal velocity) can be extended to create thermal maps and allow an accurate monitoring of temperature with good spatial resolution. However, in vivo applications of this technique have not been fully developed due to the high sensitivity to tissue motion. Here, we propose a motion compensation method based on the acquisition of multiple reference frames prior to treatment. The technique was tested in the presence of 2-D and 3-D physiological-scale motion and was found to provide effective real-time temperature monitoring. PID control of mild hyperthermia in presence of motion was then tested with ultrasound thermometry as feedback and temperature was maintained within 0.3°C of the requested value. PMID:26244783

  16. Multifunctional ultrasonic sensor for on-line tool condition monitoring in turning operations

    SciTech Connect

    Nayfeh, T.H.; Abu-Zahra, N.H.

    1998-03-01

    Machining operations in automated manufacturing centers are, in general, under-performing by 20--80 percent. Optimizing these machining operations requires on-line knowledge of the cutting tool`s condition and the process state. Currently, this information is either not reliable or not available in a timely manner. This in part is due to the lack of suitable sensors which are able to measure on-line directly and accurately one or more of the relevant tool and process variables. A direct, active, ultrasonic method for on-line sensing of the tool condition and the process state in turning operations was developed in this work. Sensing is achieved by using an ultrasonic transducer operating at 10 MHz in a pulse-echo mode to send pulses through the cutting tool. The amplitude and propagation time of the reflected pulses are modulated by the tool nose, flank, temperature, and by the material in contact with the tools. This method has the potential to measure on-line several relevant process and cutting tool parameters directly and accurately through the use of a single sensor. These parameters are tool-workpiece contact, tool gradual wear, tool chipping and tool chatter.

  17. Assessment of multi-phase movements in a gas-gathering pipeline and the relevance to on-line, real-time corrosion monitoring and inhibitor injection

    SciTech Connect

    Baker, M.A.; Asperger, R.G.

    1988-01-01

    A study was conducted to determine the time required for aqueous fluid to travel 100 miles (160 km) from an offshore platform in the Gulf of Mexico to landfill. If this time is short, the corrosivity of the water at landfall may be used as the basis for setting the offshore corrosion inhibitor injection rates. But, for this particular system, the traveling time was found to be long, greater than 65 days. Therefore, the corrosivity as measured on-shore can not be used for online, real-time adjustments of the offshore, corrosion inhibitor chemical pumps.

  18. On-line sequential injection-capillary electrophoresis for near-real-time monitoring of extracellular lactate in cell culture flasks.

    PubMed

    Alhusban, Ala A; Gaudry, Adam J; Breadmore, Michael C; Gueven, Nuri; Guijt, Rosanne M

    2014-01-01

    Cell culture has replaced many in vivo studies because of ethical and regulatory measures as well as the possibility of increased throughput. Analytical assays to determine (bio)chemical changes are often based on end-point measurements rather than on a series of sequential determinations. The purpose of this work is to develop an analytical system for monitoring cell culture based on sequential injection-capillary electrophoresis (SI-CE) with capacitively coupled contactless conductivity detection (C(4)D). The system was applied for monitoring lactate production, an important metabolic indicator, during mammalian cell culture. Using a background electrolyte consisting of 25mM tris(hydroxymethyl)aminomethane, 35mM cyclohexyl-2-aminoethanesulfonic acid with 0.02% poly(ethyleneimine) (PEI) at pH 8.65 and a multilayer polymer coated capillary, lactate could be resolved from other compounds present in media with relative standard deviations 0.07% for intraday electrophoretic mobility and an analysis time of less than 10min. Using the human embryonic kidney cell line HEK293, lactate concentrations in the cell culture medium were measured every 20min over 3 days, requiring only 8.73μL of sample per run. Combining simplicity, portability, automation, high sample throughput, low limits of detection, low sample consumption and the ability to up- and outscale, this new methodology represents a promising technique for near real-time monitoring of chemical changes in diverse cell culture applications. PMID:24309712

  19. Laser ultrasonic system for on-line steel tube gauging and process control

    NASA Astrophysics Data System (ADS)

    Levesque, Daniel; Choquet, Marc; Padioleau, Christian; Neron, Christian; Corbeil, Christian; Talbot, Richard; Bendada, Abdelhakim; Monchalin, Jean-Pierre; Kolarik, Robert V., II; Jeskey, Gerald V.

    2002-11-01

    A laser ultrasonic system has been installed on a seamless tubing production line at The Timken Company and is being used to measure on-line the wall thickness of tubes during processing. The seamless process consists essentially in forcing a mandrel through a hot cylindrical billet in rotation and results in wall thickness variations that should be minimized and controlled to respect specifications. The system includes a Q-switched Nd-YAG laser for the generation of ultrasound by ablation, a long pulse very stable Nd-YAG laser for detection coupled to a confocal Fabry-Perot interferometer. The lasers, data acquisition, and processing units are housed in a cabin off-line and connected to a front coupling head located over the passing tube by optical fibers. The system also includes a fiber-coupled pyrometer to measure tube temperature profile and two fiber-coupled optical velocimeters to measure the coordinates at the probing location on the surface of the passing, rotating hot tube. During the presentation further details of the system will be disclosed, as well as typical results and examples of its diagnostic capability. [Work partially supported by Department of Energy under Award No. DE-FC07-99ID 13651.

  20. Feasibility of real-time treatment feedback using novel filter for eliminating therapeutic ultrasound noise with high-speed ultrasonic imaging in ultrasound-guided high-intensity focused ultrasound treatment

    NASA Astrophysics Data System (ADS)

    Takagi, Ryo; Jimbo, Hayato; Iwasaki, Ryosuke; Tomiyasu, Kentaro; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    In the conventional ultrasonic monitoring of high-intensity focused ultrasound (HIFU) treatment, a significant interval between HIFU shots is required when monitoring target tissue to avoid interference between HIFU noise and RF echo signals. In our previous study, a new filtering method to eliminate only HIFU noise while maintaining tissue signals intact was proposed, and it was shown that the thermal coagulation could be detected during simultaneous HIFU irradiation through off-line processing. In this study, the filtering method and a real-time coagulation detection algorithm were implemented in an ultrasound imaging system, whose use for sequential exposure with multiple foci was demonstrated similarly to a commercial HIFU ablation system. The coagulation was automatically detected by the proposed method during real-time simultaneous HIFU irradiation, and the HIFU exposure time was controlled according to the changes in the tissue. The results imply that ultrasonic monitoring with the filtering and detection methods is useful for true real-time detection of changes in the tissue due to thermal coagulation during HIFU exposure.

  1. On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphitic vs. total carbon detection

    NASA Astrophysics Data System (ADS)

    Barrette, Louis; Turmel, Simon

    2001-06-01

    Chemical composition of iron-ore pellets has a significant impact on their quality and commercial value. Laser-induced breakdown spectroscopy (LIBS) technique has been extensively tested on line, at industrial pelletizing plants. It proved successful at measuring Si, Ca, Mg, Al and graphitic C contents of different iron-ore slurries prior to filtration and pelletizing. For this specific application, the sensitivity of the technique compares with the one obtained from dedicated chemical laboratories. But the real advantage of LIBS technique is that the results are delivered continuously and in real time compared to periodic sampling and standard analytical delays of more than 1 h. Consequently, LIBS gives a more representative reading of the state of the process — particularly when rapid perturbations occur — and allows process optimization and quality improvement. In this work, special attention was given to the fact that the detection system, with specific settings, gives direct measurement for either graphitic carbon (coke breeze) or total carbon (coke breeze, flux and natural carbonate). Graphitic carbon content is a key parameter for both the pellet production cost and its final commercial value. LIBS is a sensitive technique that can detect small variations. But matrix effects affect the spectral lines and it is sometimes difficult to establish universal calibration curve. This problem is partially overcome by the use of a multivariable calibration that corrects for matrix effects and evaluates a confidence level based on expertise for each measurement. Current research is aimed at the development of commercial equipment for continuous industrial use.

  2. Development of a Versatile Laser Ultrasonic System and Application to On-Line Measurement for Process Control of Wall Thickness and Eccentrictiy of Steel Seamless Mechanical Tubing

    SciTech Connect

    Kisner, R.A.; Kercel, S.W.; Damiano, B.; Bingham, P.R.; Gee, T.F.; Tucker, R.W.; Moore, M.R.; Hileman, M.; Emery, M.; Lenarduzzi, R.; Hardy, J.E.; Weaver, K.; Crutcher, R.; Kolarik, R.V., II; Vandervaart, R.H.

    2002-04-24

    Researchers at the Timken Company conceived a project to develop an on-line instrument for wall thickness measurement of steel seamless mechanical tubing based on laser ultrasonic technology. The instrument, which has been installed and tested at a piercing mill, provides data on tube eccentricity and concentricity. Such measurements permit fine-tuning of manufacturing processes to eliminate excess material in the tube wall and therefore provide a more precisely dimensioned product for their customers. The resulting process energy savings are substantial, as is lowered environmental burden. The expected savings are $85.8 million per year in seamless mechanical tube piercing alone. Applied across the industry, this measurement has a potential of reducing energy consumption by 6 x 10{sup 12} BTU per year, greenhouse gas emissions by 0.3 million metric tons carbon equivalent per year, and toxic waste by 0.255 million pounds per year. The principal technical contributors to the project were the Timken Company, Industrial Materials Institute (IMI, a contractor to Timken), and Oak Ridge National Laboratory (ORNL). Timken provided mill access as well as process and metallurgical understanding. Timken researchers had previously developed fundamental ultrasonic analysis methods on which this project is based. IMI developed and fabricated the laser ultrasonic generation and receiver systems. ORNL developed Bayesian and wavelet based real-time signal processing, spread-spectrum wireless communication, and explored feature extraction and pattern recognition methods. The resulting instrument has successfully measured production tubes at one of Timken's piercing mills. This report concentrates on ORNL's contribution through the CRADA mechanism. The three components of ORNL's contribution were met with mixed success. The real-time signal-processing task accomplished its goal of improvement in detecting time of flight information with a minimum of false data. The signal processing

  3. On-Line Measurement of Lubricant Film Thickness Using Ultrasonic Reflection Coefficients

    SciTech Connect

    Drinkwater, B.W.; Dwyer-Joyce, R.S.; Harper, P.

    2004-02-26

    The ultrasonic reflectivity of a lubricant layer between two solid bodies depends on the ultrasonic frequency, the acoustic properties of the liquid and solid, and the layer thickness. In this paper, ultrasonic reflectivity measurements are used as a method for determining the thickness of lubricating films in bearing systems. An ultrasonic transducer is positioned on the outside of a bearing shell such that the wave is focused on the lubricant film layer. For a particular lubricant film the reflected pulse is processed to give a reflection coefficient spectrum. The lubricant film thickness is then obtained from either the layer stiffness or the resonant frequency. The method has been validated using static fluid wedges and the elastohydrodynamic film formed between a ball sliding on a flat. Film thickness values in the range 50-500 nm were recorded which agreed well with theoretical film formation predictions.

  4. Real time monitoring of electroless nickel plating

    NASA Astrophysics Data System (ADS)

    Rains, Aaron E.; Kline, Ronald A.

    2013-01-01

    This work deals with the design and manufacturing of the heat and chemical resistant transducer case required for on-line immersion testing, experimental design, data acquisition and signal processing. Results are presented for several depositions with an accuracy of two ten-thousandths of an inch in coating thickness obtained. Monitoring the deposition rate of Electroless Nickel (EN) plating in-situ will provide measurement of the accurate dimensions of the component being plated, in real time. EN is used as for corrosion and wear protection for automotive an - Electroless Nickel (EN) plating is commonly used for corrosion and wear protection for automotive and aerospace components. It plates evenly and symmetrically, theoretically allowing the part to be plated to its final dimension. Currently the standard approach to monitoring the thickness of the deposited nickel is to remove the component from the plating bath and physically measure the part. This can lead to plating problems such as pitting, non-adhesion of the deposit and contamination of the plating solution. The goal of this research effort is to demonstrate that plating thickness can be rapidly and accurately measured using ultrasonic testing. Here a special housing is designed to allow immersion of the ultrasonic transducers directly into the plating bath. An FFT based signal processing algorithm was developed to resolve closely spaced echoes for precise thickness determination. The technique in this research effort was found to be capable of measuring plating thicknesses to within 0.0002 inches. It is expected that this approach will lead to cost savings in many EN plating operations.

  5. Real-time radiography

    SciTech Connect

    Bossi, R.H.; Oien, C.T.

    1981-02-26

    Real-time radiography is used for imaging both dynamic events and static objects. Fluorescent screens play an important role in converting radiation to light, which is then observed directly or intensified and detected. The radiographic parameters for real-time radiography are similar to conventional film radiography with special emphasis on statistics and magnification. Direct-viewing fluoroscopy uses the human eye as a detector of fluorescent screen light or the light from an intensifier. Remote-viewing systems replace the human observer with a television camera. The remote-viewing systems have many advantages over the direct-viewing conditions such as safety, image enhancement, and the capability to produce permanent records. This report reviews real-time imaging system parameters and components.

  6. Dual-Mode Combined Infra Red and Air-Coupled Ultrasonic Technique for Real-Time Industrial Process Control with Special Reference to the Food Industry

    NASA Astrophysics Data System (ADS)

    Pallav, P.; Hutchins, D. A.; Diamond, G. G.; Gan, T. H.; Hellyer, J. E.

    2008-02-01

    This paper describes the use of air-coupled ultrasound and Near Infra red (NIR) as complimentary techniques for food quality assessment. A major study has been performed, in collaboration with four industrial food companies, to investigate the use of air-coupled ultrasound and NIR to both detect foreign bodies, and to measure certain parameters of interest, such as the amount of a certain additive. The research has demonstrated that air-coupled ultrasound can be used in on-line situations, measuring food materials such as chocolate and cheese. It is also capable of performing measurements on moving sealed metal cans containing food, and is able to detect foreign bodies with the top removed, as encountered just before sealing. NIR has been used as a complimentary technique to test food materials where propagation of air-coupled ultrasound was found to be difficult. This could be due to the presence of air pockets within the food material, as in the case of bread dough.

  7. Real-Time Simulation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Coryphaeus Software, founded in 1989 by former NASA electronic engineer Steve Lakowske, creates real-time 3D software. Designer's Workbench, the company flagship product, is a modeling and simulation tool for the development of both static and dynamic 3D databases. Other products soon followed. Activation, specifically designed for game developers, allows developers to play and test the 3D games before they commit to a target platform. Game publishers can shorten development time and prove the "playability" of the title, maximizing their chances of introducing a smash hit. Another product, EasyT, lets users create massive, realistic representation of Earth terrains that can be viewed and traversed in real time. Finally, EasyScene software control the actions among interactive objects within a virtual world. Coryphaeus products are used on Silican Graphics workstation and supercomputers to simulate real-world performance in synthetic environments. Customers include aerospace, aviation, architectural and engineering firms, game developers, and the entertainment industry.

  8. Real-Time PCR

    NASA Astrophysics Data System (ADS)

    Evrard, A.; Boulle, N.; Lutfalla, G. S.

    Over the past few years there has been a considerable development of DNA amplification by polymerase chain reaction (PCR), and real-time PCR has now superseded conventional PCR techniques in many areas, e.g., the quantification of nucleic acids and genotyping. This new approach is based on the detection and quantification of a fluorescent signal proportional to the amount of amplicons generated by PCR. Real-time detection is achieved by coupling a thermocycler with a fluorimeter. This chapter discusses the general principles of quantitative real-time PCR, the different steps involved in implementing the technique, and some examples of applications in medicine. The polymerase chain reaction (PCR) provides a way of obtaining a large number of copies of a double-stranded DNA fragment of known sequence. This DNA amplification technique, developed in 1985 by K. Mullis (Cetus Corporation), saw a spectacular development over the space of a few years, revolutionising the methods used up to then in molecular biology. Indeed, PCR has many applications, such as the detection of small amounts of DNA, cloning, and quantitative analysis (assaying), each of which will be discussed further below.

  9. Real time Faraday spectrometer

    DOEpatents

    Smith, Jr., Tommy E.; Struve, Kenneth W.; Colella, Nicholas J.

    1991-01-01

    This invention uses a dipole magnet to bend the path of a charged particle beam. As the deflected particles exit the magnet, they are spatially dispersed in the bend-plane of the magnet according to their respective momenta and pass to a plurality of chambers having Faraday probes positioned therein. Both the current and energy distribution of the particles is then determined by the non-intersecting Faraday probes located along the chambers. The Faraday probes are magnetically isolated from each other by thin metal walls of the chambers, effectively providing real time current-versus-energy particle measurements.

  10. Real time automated inspection

    DOEpatents

    Fant, Karl M.; Fundakowski, Richard A.; Levitt, Tod S.; Overland, John E.; Suresh, Bindinganavle R.; Ulrich, Franz W.

    1985-01-01

    A method and apparatus relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges are segmented out by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections.

  11. Real time automated inspection

    DOEpatents

    Fant, K.M.; Fundakowski, R.A.; Levitt, T.S.; Overland, J.E.; Suresh, B.R.; Ulrich, F.W.

    1985-05-21

    A method and apparatus are described relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections. 43 figs.

  12. Real time polarimetric dehazing.

    PubMed

    Mudge, Jason; Virgen, Miguel

    2013-03-20

    Remote sensing is a rich topic due to its utility in gathering detailed accurate information from locations that are not economically feasible traveling destinations or are physically inaccessible. However, poor visibility over long path lengths is problematic for a variety of reasons. Haze induced by light scatter is one cause for poor visibility and is the focus of this article. Image haze comes about as a result of light scattering off particles and into the imaging path causing a haziness to appear on the image. Image processing using polarimetric information of light scatter can be used to mitigate image haze. An imaging polarimeter which provides the Stokes values in real time combined with a "dehazing" algorithm can automate image haze removal for instant applications. Example uses are to improve visual display providing on-the-spot detection or imbedding in an active control loop to improve viewing and tracking while on a moving platform. In addition, removing haze in this manner allows the trade space for a system operational waveband to be opened up to bands which are object matched and not necessarily restricted by scatter effects. PMID:23518739

  13. Real-Time Benchmark Suite

    Energy Science and Technology Software Center (ESTSC)

    1992-01-17

    This software provides a portable benchmark suite for real time kernels. It tests the performance of many of the system calls, as well as the interrupt response time and task response time to interrupts. These numbers provide a baseline for comparing various real-time kernels and hardware platforms.

  14. Steerable real-time sonographically guided needle biopsy.

    PubMed

    Buonocore, E; Skipper, G J

    1981-02-01

    A method for dynamic real-time ultrasonic guidance for percutaneous needle biopsy has been successful in obtaining cytologic and histologic specimens from abdominal masses. The system depends on a real-time ultrasonic transducer that has been rigidly attached to a laterally placed steerable needle holder. Using simple trigonometric functions, a chart has been derived that gives the exact angulation and needle length to produce quick, reliable, guided needle placements. Examples of successful renal, hepatobiliary, and retroperitoneal biopsies are presented. Advantages of this technique include speed, accuracy, low cost, three-dimensional format, and the omission of contrast media and radiation. PMID:6781264

  15. Ultrasonic flow imaging system: A feasibility study

    SciTech Connect

    Sheen, S.H.; Lawrence, W.P.; Chien, H.T.; Raptis, A.C.

    1991-09-01

    This report examines the feasibility and potential problems in developing a real-time ultrasonic flow imaging instrument for on-line monitoring of mixed-phased flows such as coal slurries. State-of-the-art ultrasonic imaging techniques are assessed for this application. Reflection and diffraction tomographies are proposed for further development, including image-reconstruction algorithms and parallel processing systems. A conventional ultrasonic C-scan technique is used to demonstrate the feasibility of imaging the particle motion in a solid/water flow. 13 refs., 11 figs.

  16. Real-time flutter identification

    NASA Technical Reports Server (NTRS)

    Roy, R.; Walker, R.

    1985-01-01

    The techniques and a FORTRAN 77 MOdal Parameter IDentification (MOPID) computer program developed for identification of the frequencies and damping ratios of multiple flutter modes in real time are documented. Physically meaningful model parameterization was combined with state of the art recursive identification techniques and applied to the problem of real time flutter mode monitoring. The performance of the algorithm in terms of convergence speed and parameter estimation error is demonstrated for several simulated data cases, and the results of actual flight data analysis from two different vehicles are presented. It is indicated that the algorithm is capable of real time monitoring of aircraft flutter characteristics with a high degree of reliability.

  17. Some aspects of analytical chemistry as applied to water quality assurance techniques for reclaimed water: The potential use of X-ray fluorescence spectrometry for automated on-line fast real-time simultaneous multi-component analysis of inorganic pollutants in reclaimed water

    NASA Technical Reports Server (NTRS)

    Ling, A. C.; Macpherson, L. H.; Rey, M.

    1981-01-01

    The potential use of isotopically excited energy dispersive X-ray fluorescence (XRF) spectrometry for automated on line fast real time (5 to 15 minutes) simultaneous multicomponent (up to 20) trace (1 to 10 parts per billion) analysis of inorganic pollutants in reclaimed water was examined. Three anionic elements (chromium 6, arsenic and selenium) were studied. The inherent lack of sensitivity of XRF spectrometry for these elements mandates use of a preconcentration technique and various methods were examined, including: several direct and indirect evaporation methods; ion exchange membranes; selective and nonselective precipitation; and complexation processes. It is shown tha XRF spectrometry itself is well suited for automated on line quality assurance, and can provide a nondestructive (and thus sample storage and repeat analysis capabilities) and particularly convenient analytical method. Further, the use of an isotopically excited energy dispersive unit (50 mCi Cd-109 source) coupled with a suitable preconcentration process can provide sufficient sensitivity to achieve the current mandated minimum levels of detection without the need for high power X-ray generating tubes.

  18. Real-time software receiver

    NASA Technical Reports Server (NTRS)

    Ledvina, Brent M. (Inventor); Psiaki, Mark L. (Inventor); Powell, Steven P. (Inventor); Kintner, Jr., Paul M. (Inventor)

    2007-01-01

    A real-time software receiver that executes on a general purpose processor. The software receiver includes data acquisition and correlator modules that perform, in place of hardware correlation, baseband mixing and PRN code correlation using bit-wise parallelism.

  19. Real-time refinery optimization

    SciTech Connect

    Kennedy, J.P.

    1989-05-01

    This article discusses refinery operation with specific consideration of the topics of: gasoline; control projects; catalytic reforming control; hydrocracker control packages; blending optimization; real-time data acquisition; and other plant automation packages.

  20. Real-time software receiver

    NASA Technical Reports Server (NTRS)

    Ledvina, Brent M. (Inventor); Psiaki, Mark L. (Inventor); Powell, Steven P. (Inventor); Kintner, Jr., Paul M. (Inventor)

    2006-01-01

    A real-time software receiver that executes on a general purpose processor. The software receiver includes data acquisition and correlator modules that perform, in place of hardware correlation, baseband mixing and PRN code correlation using bit-wise parallelism.

  1. Real Time Data System (RTDS)

    NASA Technical Reports Server (NTRS)

    Muratore, John F.

    1991-01-01

    Lessons learned from operational real time expert systems are examined. The basic system architecture is discussed. An expert system is any software that performs tasks to a standard that would normally require a human expert. An expert system implies knowledge contained in data rather than code. And an expert system implies the use of heuristics as well as algorithms. The 15 top lessons learned by the operation of a real time data system are presented.

  2. Real-time vision systems

    SciTech Connect

    Johnson, R.; Hernandez, J.E.; Lu, Shin-yee

    1994-11-15

    Many industrial and defence applications require an ability to make instantaneous decisions based on sensor input of a time varying process. Such systems are referred to as `real-time systems` because they process and act on data as it occurs in time. When a vision sensor is used in a real-time system, the processing demands can be quite substantial, with typical data rates of 10-20 million samples per second. A real-time Machine Vision Laboratory (MVL) was established in FY94 to extend our years of experience in developing computer vision algorithms to include the development and implementation of real-time vision systems. The laboratory is equipped with a variety of hardware components, including Datacube image acquisition and processing boards, a Sun workstation, and several different types of CCD cameras, including monochrome and color area cameras and analog and digital line-scan cameras. The equipment is reconfigurable for prototyping different applications. This facility has been used to support several programs at LLNL, including O Division`s Peacemaker and Deadeye Projects as well as the CRADA with the U.S. Textile Industry, CAFE (Computer Aided Fabric Inspection). To date, we have successfully demonstrated several real-time applications: bullet tracking, stereo tracking and ranging, and web inspection. This work has been documented in the ongoing development of a real-time software library.

  3. Turning movement estimation in real time

    SciTech Connect

    Martin, P.T.

    1997-08-01

    Fast processors offer exciting opportunities for real-time traffic monitoring. Conventional transportation planning models that assume stable and predictable travel patterns do not lend themselves to on-line traffic forecasting. This paper describes how a new traffic flow inference model has the potential to determine comprehensive flow information in real time. Its philosophical basis is borrowed from the field of operational research, where it has been used for optimizing water and electricity flows. This paper shows how road traffic turning movement flows can be estimated from link detected flows at small recurrent intervals, in real time. The paper details the formulation of the problem, outlines the structure of the data set that provides the detector data for the model input and observed turning flows for the model evaluation. The theoretical principles that define the model are described briefly. Turning movement flow estimates, at 5-min intervals, from two independent surveys are presented and analyzed. The results show an overall mean coefficient of determination (r{sup 2}) of 79--82% between observed and modeled turning movement flows.

  4. A real-time photogrammetry system based on embedded architecture

    NASA Astrophysics Data System (ADS)

    Zheng, S. Y.; Gui, L.; Wang, X. N.; Ma, D.

    2014-06-01

    In order to meet the demand of real-time spatial data processing and improve the online processing capability of photogrammetric system, a kind of real-time photogrammetry method is proposed in this paper. According to the proposed method, system based on embedded architecture is then designed: using FPGA, ARM+DSP and other embedded computing technology to build specialized hardware operating environment, transplanting and optimizing the existing photogrammetric algorithm to the embedded system, and finally real-time photogrammetric data processing is realized. At last, aerial photogrammetric experiment shows that the method can achieve high-speed and stable on-line processing of photogrammetric data. And the experiment also verifies the feasibility of the proposed real-time photogrammetric system based on embedded architecture. It is the first time to realize real-time aerial photogrammetric system, which can improve the online processing efficiency of photogrammetry to a higher level and broaden the application field of photogrammetry.

  5. Real Time Sonic Boom Display

    NASA Technical Reports Server (NTRS)

    Haering, Ed

    2014-01-01

    This presentation will provide general information about sonic boom mitigation technology to the public in order to supply information to potential partners and licensees. The technology is a combination of flight data, atmospheric data and terrain information implemented into a control room real time display for flight planning. This research is currently being performed and as such, any results and conclusions are ongoing.

  6. Real Time Data System (RTDS)

    NASA Technical Reports Server (NTRS)

    Heindel, Troy A.

    1991-01-01

    Information is given in viewgraph form on the Real Time Data System (RTDS). Topics covered include applications to the Space Station Freedom, the Space Shuttle flight controllers, the Mission Control Center workstations, and the Remote Manipulator Systems (RMS). Also covered are the technology gap, pacing factors, and lessons learned during research.

  7. Real-time tritium imaging

    SciTech Connect

    Malinowski, M.E.

    1981-09-15

    A real-time image of a tritium-containing titanium film has been made by detecting the secondary electrons produced by tritium ..beta.. decay with a simple two-element electrostatic lens and microchannel plate image intensifier. The obtained image indicates that a resolution of better than 100 ..mu..m is currently obtainable and suggests that image magnification to enhance resolution should be possible.

  8. Real Time Data System (RTDS)

    NASA Technical Reports Server (NTRS)

    Heindel, Troy A.

    1991-01-01

    Information is given in viewgraph form on the Real Time Data System (RTDS). The goals are to increase the quality of flight decision making, reduce and enhance flight controller training time, and serve as a near-operations technology test-bed. Information is given on the growth of RTDS; flight control disciplines; RTDS technology deployment in 1987-1989 and 1990-91; a functionality comparison of mainframes and workstations; and technology transfer activities.

  9. [Real time 3D echocardiography].

    PubMed

    Bauer, F; Shiota, T; Thomas, J D

    2001-07-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients. PMID:11494630

  10. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  11. Real-time ultrasound elastography

    NASA Astrophysics Data System (ADS)

    Bae, Unmin; Kim, Yongmin

    2007-03-01

    Ultrasound elastography can provide tissue stiffness information that is complementary to the anatomy and blood flow information offered by conventional ultrasound machines, but it is computationally challenging due to many time-consuming modules and a large amount of data. To facilitate real-time implementations of ultrasound elastography, we have developed new methods that can significantly reduce the computational burden of common processing components in ultrasound elastography, such as the crosscorrelation analysis and spatial filtering applied to displacement and strain estimates. Using the new correlation-based search algorithm, the computational requirement of correlation-based search does not increase with the correlation window size. For typical parameters used in ultrasound elastography, the computation in correlation-based search can be reduced by a factor of more than 30. Median filtering is often performed to suppress the spike-like noise that results from correlation-based search. For fast median filtering, we have developed a method that efficiently finds a new median value utilizing the sort result of the previous pixel. With careful mapping of the new algorithms on digital signal processors, our work has led to development of a clinical ultrasound machine supporting real-time elastography. Our methods can help real-time implementations of various applications including ultrasound elastography, which could lead to increased use of ultrasound elastography in the clinic.

  12. Towards real time diagnostics of Hybrid Welding Laser/GMAW

    SciTech Connect

    McJunkin, T. R.; Kunerth, D. C.; Nichol, C. I.; Todorov, E.; Levesque, S.

    2014-02-18

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  13. Towards Real Time Diagnostics of Hybrid Welding Laser/GMAW

    SciTech Connect

    Timothy Mcjunkin; Dennis C. Kunerth; Corrie Nichol; Evgueni Todorov; Steve Levesque; Feng Yu; Robert Danna Couch

    2013-07-01

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  14. Towards real time diagnostics of Hybrid Welding Laser/GMAW

    NASA Astrophysics Data System (ADS)

    McJunkin, T. R.; Kunerth, D. C.; Nichol, C. I.; Todorov, E.; Levesque, S.

    2014-02-01

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  15. Real-time design with peer tasks

    NASA Technical Reports Server (NTRS)

    Goforth, Andre; Howes, Norman R.; Wood, Jonathan D.; Barnes, Michael J.

    1995-01-01

    We introduce a real-time design methodology for large scale, distributed, parallel architecture, real-time systems (LDPARTS), as an alternative to those methods using rate or dead-line monotonic analysis. In our method the fundamental units of prioritization, work items, are domain specific objects with timing requirements (deadlines) found in user's specification. A work item consists of a collection of tasks of equal priority. Current scheduling theories are applied with artifact deadlines introduced by the designer whereas our method schedules work items to meet user's specification deadlines (sometimes called end-to-end deadlines). Our method supports these scheduling properties. Work item scheduling is based on domain specific importance instead of task level urgency and still meets as many user specification deadlines as can be met by scheduling tasks with respect to urgency. Second, the minimum (closest) on-line deadline that can be guaranteed for a work item of highest importance, scheduled at run time, is approximately the inverse of the throughput, measured in work items per second. Third, throughput is not degraded during overload and instead of resorting to task shedding during overload, the designer can specify which work items to shed. We prove these properties in a mathematical model.

  16. Real-Time MEG Source Localization Using Regional Clustering.

    PubMed

    Dinh, Christoph; Strohmeier, Daniel; Luessi, Martin; Güllmar, Daniel; Baumgarten, Daniel; Haueisen, Jens; Hämäläinen, Matti S

    2015-11-01

    With its millisecond temporal resolution, Magnetoencephalography (MEG) is well suited for real-time monitoring of brain activity. Real-time feedback allows the adaption of the experiment to the subject's reaction and increases time efficiency by shortening acquisition and off-line analysis. Two formidable challenges exist in real-time analysis: the low signal-to-noise ratio (SNR) and the limited time available for computations. Since the low SNR reduces the number of distinguishable sources, we propose an approach which downsizes the source space based on a cortical atlas and allows to discern the sources in the presence of noise. Each cortical region is represented by a small set of dipoles, which is obtained by a clustering algorithm. Using this approach, we adapted dynamic statistical parametric mapping for real-time source localization. In terms of point spread and crosstalk between regions the proposed clustering technique performs better than selecting spatially evenly distributed dipoles. We conducted real-time source localization on MEG data from an auditory experiment. The results demonstrate that the proposed real-time method localizes sources reliably in the superior temporal gyrus. We conclude that real-time source estimation based on MEG is a feasible, useful addition to the standard on-line processing methods, and enables feedback based on neural activity during the measurements. PMID:25782980

  17. Real-time flutter analysis

    NASA Technical Reports Server (NTRS)

    Walker, R.; Gupta, N.

    1984-01-01

    The important algorithm issues necessary to achieve a real time flutter monitoring system; namely, the guidelines for choosing appropriate model forms, reduction of the parameter convergence transient, handling multiple modes, the effect of over parameterization, and estimate accuracy predictions, both online and for experiment design are addressed. An approach for efficiently computing continuous-time flutter parameter Cramer-Rao estimate error bounds were developed. This enables a convincing comparison of theoretical and simulation results, as well as offline studies in preparation for a flight test. Theoretical predictions, simulation and flight test results from the NASA Drones for Aerodynamic and Structural Test (DAST) Program are compared.

  18. Real-time streamflow conditions

    USGS Publications Warehouse

    Graczyk, David J.; Gebert, Warren A.

    1996-01-01

    Would you like to know streamflow conditions before you go fishing in Wisconsin or in more distant locations? Real-time streamflow data throughout Wisconsin and the United States are available on the Internet from the U.S. Geological Survey. You can see if the stream you are interested in fishing is high due to recent rain or low because of an extended dry spell. Flow conditions at more than 100 stream-gaging stations located throughout Wisconsin can be viewed by accessing the Wisconsin District Home Page at: http://wwwdwimdn.er.usgs.gov

  19. Real time infrared aerosol analyzer

    DOEpatents

    Johnson, Stanley A.; Reedy, Gerald T.; Kumar, Romesh

    1990-01-01

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  20. Real-time analysis keratometer

    NASA Technical Reports Server (NTRS)

    Adachi, Iwao P. (Inventor); Adachi, Yoshifumi (Inventor); Frazer, Robert E. (Inventor)

    1987-01-01

    A computer assisted keratometer in which a fiducial line pattern reticle illuminated by CW or pulsed laser light is projected on a corneal surface through lenses, a prismoidal beamsplitter quarterwave plate, and objective optics. The reticle surface is curved as a conjugate of an ideal corneal curvature. The fiducial image reflected from the cornea undergoes a polarization shift through the quarterwave plate and beamsplitter whereby the projected and reflected beams are separated and directed orthogonally. The reflected beam fiducial pattern forms a moire pattern with a replica of the first recticle. This moire pattern contains transverse aberration due to differences in curvature between the cornea and the ideal corneal curvature. The moire pattern is analyzed in real time by computer which displays either the CW moire pattern or a pulsed mode analysis of the transverse aberration of the cornea under observation, in real time. With the eye focused on a plurality of fixation points in succession, a survey of the entire corneal topography is made and a contour map or three dimensional plot of the cornea can be made as a computer readout in addition to corneal radius and refractive power analysis.

  1. Real-time face tracking

    NASA Astrophysics Data System (ADS)

    Liang, Yufeng; Wilder, Joseph

    1998-10-01

    A real-time face tracker is presented in this paper. The system has achieved 15 frames/second tracking using a Pentium 200 PC with a Datacube MaxPCI image processing board and a Panasonic RGB color camera. It tracks human faces in the camera's field of view while people move freely. A stochastic model to characterize the skin color distribution of human skin is used to segment the face and other skin areas from the background. Median filtering is then used to clean up the background noise. Geometric constraints are applied to the segmented image to extract the face from the background. To reduce computation and achieve real-time tracking, 1D projections (horizontal and vertical) of the image are analyzed instead of the 2D image. Run-length- encoding and frequency domain analysis algorithms are used to separate faces from other skin-like blobs. The system is robust to illumination intensity variations and different skin colors. It can be applied to many human-computer interaction applications such as sound locating, lip- reading, gaze tracking and face recognition.

  2. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George I.; Stetson, Howard K.

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto-Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner- TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the

  3. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George; Stetson, Howard

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto- Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner-TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the

  4. Real-time flood forecasting

    USGS Publications Warehouse

    Lai, C.; Tsay, T.-K.; Chien, C.-H.; Wu, I.-L.

    2009-01-01

    Researchers at the Hydroinformatic Research and Development Team (HIRDT) of the National Taiwan University undertook a project to create a real time flood forecasting model, with an aim to predict the current in the Tamsui River Basin. The model was designed based on deterministic approach with mathematic modeling of complex phenomenon, and specific parameter values operated to produce a discrete result. The project also devised a rainfall-stage model that relates the rate of rainfall upland directly to the change of the state of river, and is further related to another typhoon-rainfall model. The geographic information system (GIS) data, based on precise contour model of the terrain, estimate the regions that were perilous to flooding. The HIRDT, in response to the project's progress, also devoted their application of a deterministic model to unsteady flow of thermodynamics to help predict river authorities issue timely warnings and take other emergency measures.

  5. Ultrasonics

    NASA Technical Reports Server (NTRS)

    Leonard, B. E.; Gardner, C. G.

    1973-01-01

    Ultrasonic testing is discussed as a primary means of nondestructive evaluation of subsurface flaws. The advantages and disadvantages are listed. The elementary principles, basic components of test units, scan modes, resonance testing, detection of fatigue cracks, monitoring fatigue crack growth, and determination of residual stress are discussed.

  6. Factorial design for multivariate optimization of an on-line preconcentration system for platinum determination by ultrasonic nebulization coupled to inductively coupled plasma optical emission spectrometry.

    PubMed

    Cerutti, S; Salonia, J A; Ferreira, S L C; Olsina, R A; Martinez, L D

    2004-07-01

    A system for on-line preconcentration and determination of platinum by ultrasonic nebulization (USN) coupled to inductively coupled plasma optical emission spectrometry (ICP-OES) was studied. It is based on the chemical sorption of platinum on a column packed with polyurethane foam loaded with thiocyanate reagent. The optimization step was carried out using two level full factorial design. Three variables (pH, loading flow rate (LFR) and eluent concentration) were regarded as factors in the optimization. Results of the two level factorial design 2(3) with three replicates of the central point for platinum preconcentration, based on the variance analysis (ANOVA), demonstrated that the factors and their interactions are not statistically significant. The proposed procedure allowed the determination of platinum with a detection limit of 0.28mugl(-1). The precision for 10 replicate determinations at 10.0mugl(-1) Pt level was 3.8% relative standard deviation (R.S.D.), calculated from the peak heights obtained. A total enhancement factor of 100 was obtained with respect to ICP-OES using pneumatic nebulization (10 for USN and 10 for preconcentration). A sampling frequency of 50 samples per hour was obtained. The effect of other ions in concentrations agreeing with water samples was studied. The addition/recovery experiments in the samples analyzed demonstrated the accuracy and applicability of the system developed for platinum determination in spiked water samples. PMID:18969536

  7. MISR Level 1 Near Real Time Products

    Atmospheric Science Data Center

    2014-09-15

    Level 1 Near Real Time The MISR Near Real Time Level 1 data products consist of radiance measurements organized in 10-50 minute ... (off-nadir) cameras. The remaining channels are sampled at 1.1 km. ...

  8. Mobile real time radiography system

    SciTech Connect

    Vigil, J.; Taggart, D.; Betts, S.

    1997-11-01

    A 450-keV Mobile Real Time Radiography (RTR) System was delivered to Los Alamos National Laboratory (LANL) in January 1996. It was purchased to inspect containers of radioactive waste produced at (LANL). Since its delivery it has been used to radiograph more than 600 drums of radioactive waste at various LANL sites. It has the capability of inspecting waste containers of various sizes from <1-gal. buckets up to standard waste boxes (SWB, dimensions 54.5 in. x 71 in. x 37 in.). It has three independent x-ray acquisition formats. The primary system used is a 12- in. image intensifier, the second is a 36-in. linear diode array (LDA) and the last is an open system. It is fully self contained with on board generator, HVAC, and a fire suppression system. It is on a 53-ft long x 8-ft. wide x 14-ft. high trailer that can be moved over any highway requiring only an easily obtainable overweight permit because it weights {approximately}38 tons. It was built to conform to industry standards for a cabinet system which does not require an exclusion zone. The fact that this unit is mobile has allowed us to operate where the waste is stored, rather than having to move the waste to a fixed facility.

  9. Students Collecting Real time Data

    NASA Astrophysics Data System (ADS)

    Miller, P.

    2006-05-01

    Students Collecting Real-Time Data The Hawaiian Islands Humpback Whale National Marine Sanctuary has created opportunities for middle and high school students to become Student Researchers and to be involved in real-time marine data collection. It is important that we expose students to different fields of science and encourage them to enter scientific fields of study. The Humpback Whale Sanctuary has an education visitor center in Kihei, Maui. Located right on the beach, the site has become a living classroom facility. There is a traditional Hawaiian fishpond fronting the property. The fishpond wall is being restored, using traditional methods. The site has the incredible opportunity of incorporating Hawaiian cultural practices with scientific studies. The Sanctuary offers opportunities for students to get involved in monitoring and data collection studies. Invasive Seaweed Study: Students are collecting data on invasive seaweed for the University of Hawaii. They pull a large net through the shallow waters. Seaweed is sorted, identified and weighed. The invasive seaweeds are removed. The data is recorded and sent to UH. Remote controlled monitoring boats: The sanctuary has 6 boogie board sized remote controlled boats used to monitor reefs. Boats have a camera with lights on the underside. The boats have water quality monitoring devices and GPS units. The video from the underwater camera is transmitted via a wireless transmission. Students are able to monitor the fish, limu and invertebrate populations on the reef and collect water quality data via television monitors or computers. The boat can also pull a small plankton tow net. Data is being compiled into data bases. Artificial Reef Modules: The Sanctuary has a scientific permit from the state to build and deploy artificial reef modules. High school students are designing and building modules. These are deployed out in the Fishpond fronting the Sanctuary site and students are monitoring them on a weekly basis

  10. Real-Time Data Display

    NASA Technical Reports Server (NTRS)

    Pedings, Marc

    2007-01-01

    RT-Display is a MATLAB-based data acquisition environment designed to use a variety of commercial off-the-shelf (COTS) hardware to digitize analog signals to a standard data format usable by other post-acquisition data analysis tools. This software presents the acquired data in real time using a variety of signal-processing algorithms. The acquired data is stored in a standard Operator Interactive Signal Processing Software (OISPS) data-formatted file. RT-Display is primarily configured to use the Agilent VXI (or equivalent) data acquisition boards used in such systems as MIDDAS (Multi-channel Integrated Dynamic Data Acquisition System). The software is generalized and deployable in almost any testing environment, without limitations or proprietary configuration for a specific test program or project. With the Agilent hardware configured and in place, users can start the program and, in one step, immediately begin digitizing multiple channels of data. Once the acquisition is completed, data is converted into a common binary format that also can be translated to specific formats used by external analysis software, such as OISPS and PC-Signal (product of AI Signal Research Inc.). RT-Display at the time of this reporting was certified on Agilent hardware capable of acquisition up to 196,608 samples per second. Data signals are presented to the user on-screen simultaneously for 16 channels. Each channel can be viewed individually, with a maximum capability of 160 signal channels (depending on hardware configuration). Current signal presentations include: time data, fast Fourier transforms (FFT), and power spectral density plots (PSD). Additional processing algorithms can be easily incorporated into this environment.

  11. Real-time multispectral imaging application for poultry safety inspection

    NASA Astrophysics Data System (ADS)

    Park, Bosoon; Lawrence, Kurt C.; Windham, William R.; Snead, Matthew P.

    2006-02-01

    The ARS imaging research group in Athens, Georgia has developed a real-time multispectral imaging system for fecal and ingesta contaminant detection on broiler carcasses for poultry industry. The industrial scale system includes a common aperture camera with three visible wavelength optical trim filters. This paper demonstrates calibration of common aperture multispectral imaging hardware and real-time image processing software. The software design, especially the Unified Modeling Language (UML) design approach was used to develop real-time image processing software for on-line application. The UML models including class, object, activity, sequence, and collaboration diagram were presented. Both hardware and software for a real-time fecal and ingesta contaminant detection were tested at the pilot-scale poultry processing line. The test results of industrial sacle real-time system showed that the multispectral imaging technique performed well for detecting fecal contaminants with a commercial processing speed (currently 140 birds per minute). The accuracy for the detection of fecal and ingesta contaminates was approximately 96%.

  12. Real Time GPS Positioning and Data Transmission For Rescue Services

    NASA Astrophysics Data System (ADS)

    Cefalo, R.; Degrassi, F.; Manzoni, G.; Moro, A.; Martinolli, S.; Pagurut, R.; Piemonte, A.; Sluga, T.

    Real time differential and interferential kinematic GPS positioning are under test for accurate rescue services by using DARC radio data transmission for RTCM messages from a reference station to the users and by SMS via GSM or GLOBALSTAR from the users to a control centre. EGNOS is under test too. The results of several experi- ments are shown. Problems, advantages and possible improvements with map on line availability and updating are discussed.

  13. VERSE - Virtual Equivalent Real-time Simulation

    NASA Technical Reports Server (NTRS)

    Zheng, Yang; Martin, Bryan J.; Villaume, Nathaniel

    2005-01-01

    Distributed real-time simulations provide important timing validation and hardware in the- loop results for the spacecraft flight software development cycle. Occasionally, the need for higher fidelity modeling and more comprehensive debugging capabilities - combined with a limited amount of computational resources - calls for a non real-time simulation environment that mimics the real-time environment. By creating a non real-time environment that accommodates simulations and flight software designed for a multi-CPU real-time system, we can save development time, cut mission costs, and reduce the likelihood of errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-time Application Interface) into an event driven simulator that runs in virtual real time. Designed to keep the original RTAI architecture as intact as possible, and therefore inheriting RTAI's many capabilities, VERSE was implemented with remarkably little change to the RTAI source code. This small footprint together with use of the same API allows users to easily run the same application in both real-time and virtual time environments. VERSE has been used to build a workstation testbed for NASA's Space Interferometry Mission (SIM PlanetQuest) instrument flight software. With its flexible simulation controls and inexpensive setup and replication costs, VERSE will become an invaluable tool in future mission development.

  14. Design and validation of software for real-time soluble solids content evaluation of peach by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Minmin; Lu, Huishan; Ying, Yibin; Xu, Huirong

    2006-10-01

    Visible/near infrared spectroscopy on-line determination had been widely used in agricultural products and food samples non-destructive internal quality determination. This research proposed to design real-time determination software in order to estimate soluble solids content (SSC) of fruit on line. Functions of the software included real-time spectroscopy pre-processing, real-time spectroscopy viewing, model building, SSC estimating, etc. In addition, Fenghua juicy peaches were used to validate the practicability and the real-time capability. And SSCs of peach samples were predicted by the software on line. The research provided some help to the real-time non-destructive internal quality determination of the fruit. As the important part of the real-time determination, the determination method and technology were fully accordance with the need at real-time and model's precision.

  15. Research in Distributed Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.

    1997-01-01

    This document summarizes the progress we have made on our study of issues concerning the schedulability of real-time systems. Our study has produced several results in the scalability issues of distributed real-time systems. In particular, we have used our techniques to resolve schedulability issues in distributed systems with end-to-end requirements. During the next year (1997-98), we propose to extend the current work to address the modeling and workload characterization issues in distributed real-time systems. In particular, we propose to investigate the effect of different workload models and component models on the design and the subsequent performance of distributed real-time systems.

  16. Clinical experience with real-time ultrasound

    NASA Astrophysics Data System (ADS)

    Chimiak, William J.; Wolfman, Neil T.; Covitz, Wesley

    1995-05-01

    After testing the extended multimedia interface (EMMI) product which is an asynchronous transmission mode (ATM) user to network interface (UNI) of AT&T at the Society for Computer Applications in Radiology conference in Winston-Salem, the Department of Radiology together with AT&T are implementing a tele-ultrasound system to combine real- time ultrasound with the static imaging features of more traditional digital ultrasound systems. Our current ultrasound system archives digital images to an optical disk system. Static images are sent using our digital radiology systems. This could be transferring images from one digital imaging and communications (DICOM)-compliant machine to another, or the current image transfer methodologies. The prototype of a live ultrasound system using the EMMI demonstrated the feasibility of doing live ultrasound. We now are developing the scenarios using a mix of the two methodologies. Utilizing EMMI technology, radiologists at the BGSM review at a workstation both static images and real-time scanning done by a technologist on patients at a remote site in order to render on-line primary diagnosis. Our goal is to test the feasibility of operating an ultrasound laboratory at a remote site utilizing a trained technologist without the necessity of having a full-time radiologist at that site. Initial plans are for a radiologist to review an initial set of static images on a patient taken by the technologist. If further scanning is required, the EMMI is used to transmit real-time imaging and audio using the audio input of a standard microphone system and the National Television Standards Committee (NTSC) output of the ultrasound equipment from the remote site to the radiologist in the department review station. The EMMI digitally encodes this data and places it in an ATM format. This ATM data stream goes to the GCNS2000 and then to the other EMMI where the ATM data stream is decoded into the live studies and voice communication which are then

  17. High-speed real-time NDT inspection systems

    SciTech Connect

    Pagano, D.A.; Norris, J.R.; Rubocki, J. Jr. )

    1993-11-01

    With the ever-increasing importance placed upon environmental concerns, and with all of the regulations governing the steel mill industry, it is necessary for mills to pay critical attention to the quality of the materials they manufacture and sell to their clients. Producing high-quality products has therefore become essential to the financial well-being of every steel mill company. For example, the safe and reliable movement of product through tubular goods has become the goal of the oil and pipeline transmission industries. As a result, testing specifications for both thickness and flaws have been developed either by individual companies or collectively through the American Petroleum Institute. Accordingly, the development of nondestructive high-speed ultrasonic inspection systems utilizing computer-controlled ultrasonic wheels to provide real-time flaw and thickness measurements has become a growing and important technological field in the NDT industry.

  18. Toward Real Time Neural Net Flight Controllers

    NASA Technical Reports Server (NTRS)

    Jorgensen, C. C.; Mah, R. W.; Ross, J.; Lu, Henry, Jr. (Technical Monitor)

    1994-01-01

    NASA Ames Research Center has an ongoing program in neural network control technology targeted toward real time flight demonstrations using a modified F-15 which permits direct inner loop control of actuators, rapid switching between alternative control designs, and substitutable processors. An important part of this program is the ACTIVE flight project which is examining the feasibility of using neural networks in the design, control, and system identification of new aircraft prototypes. This paper discusses two research applications initiated with this objective in mind: utilization of neural networks for wind tunnel aircraft model identification and rapid learning algorithms for on line reconfiguration and control. The first application involves the identification of aerodynamic flight characteristics from analysis of wind tunnel test data. This identification is important in the early stages of aircraft design because complete specification of control architecture's may not be possible even though concept models at varying scales are available for aerodynamic wind tunnel testing. Testing of this type is often a long and expensive process involving measurement of aircraft lift, drag, and moment of inertia at varying angles of attack and control surface configurations. This information in turn can be used in the design of the flight control systems by applying the derived lookup tables to generate piece wise linearized controllers. Thus, reduced costs in tunnel test times and the rapid transfer of wind tunnel insights into prototype controllers becomes an important factor in more efficient generation and testing of new flight systems. NASA Ames Research Center is successfully applying modular neural networks as one way of anticipating small scale aircraft model performances prior to testing, thus reducing the number of in tunnel test hours and potentially, the number of intermediate scaled models required for estimation of surface flow effects.

  19. Real time programming environment for Windows

    SciTech Connect

    LaBelle, D.R.

    1998-04-01

    This document provides a description of the Real Time Programming Environment (RTProE). RTProE tools allow a programmer to create soft real time projects under general, multi-purpose operating systems. The basic features necessary for real time applications are provided by RTProE, leaving the programmer free to concentrate efforts on his specific project. The current version supports Microsoft Windows{trademark} 95 and NT. The tasks of real time synchronization and communication with other programs are handled by RTProE. RTProE includes a generic method for connecting a graphical user interface (GUI) to allow real time control and interaction with the programmer`s product. Topics covered in this paper include real time performance issues, portability, details of shared memory management, code scheduling, application control, Operating System specific concerns and the use of Computer Aided Software Engineering (CASE) tools. The development of RTProE is an important step in the expansion of the real time programming community. The financial costs associated with using the system are minimal. All source code for RTProE has been made publicly available. Any person with access to a personal computer, Windows 95 or NT, and C or FORTRAN compilers can quickly enter the world of real time modeling and simulation.

  20. Making real-time reactive systems reliable

    NASA Technical Reports Server (NTRS)

    Marzullo, Keith; Wood, Mark

    1990-01-01

    A reactive system is characterized by a control program that interacts with an environment (or controlled program). The control program monitors the environment and reacts to significant events by sending commands to the environment. This structure is quite general. Not only are most embedded real time systems reactive systems, but so are monitoring and debugging systems and distributed application management systems. Since reactive systems are usually long running and may control physical equipment, fault tolerance is vital. The research tries to understand the principal issues of fault tolerance in real time reactive systems and to build tools that allow a programmer to design reliable, real time reactive systems. In order to make real time reactive systems reliable, several issues must be addressed: (1) How can a control program be built to tolerate failures of sensors and actuators. To achieve this, a methodology was developed for transforming a control program that references physical value into one that tolerates sensors that can fail and can return inaccurate values; (2) How can the real time reactive system be built to tolerate failures of the control program. Towards this goal, whether the techniques presented can be extended to real time reactive systems is investigated; and (3) How can the environment be specified in a way that is useful for writing a control program. Towards this goal, whether a system with real time constraints can be expressed as an equivalent system without such constraints is also investigated.

  1. The ALMA Real Time Control System

    NASA Astrophysics Data System (ADS)

    Kern, Jeffrey S.; Juerges, Thomas A.; Marson, Ralph G.

    2009-01-01

    The Atacama Large Millimeter Array (ALMA) is a revolutionary millimeter and submillimeter array being developed on the Atacama plateau of northern Chile. An international partnership lead by NRAO, ESO, and NAOJ this powerful and flexible telescope will provide unprecedented observations of this relatively unexplored frequency range. The control subsystem for the Atacama Large Millimeter Array must coordinate the monitor and control of at least sixty six antennas (in four different styles), two correlators, and all of the ancillary equipment (samplers, local oscillators, front ends, etc.). This equipment will be spread over tens of kilometers and operated remotely. Operation of the array requires a robust, scalable, and maintainable real time control system. The real time control system is responsible for monitoring and control of any devices where there are fixed deadlines. Examples in the ALMA context are antenna pointing and fringe tracking. Traditionally the real time portion of a large software system is an intricate and error prone portion of the software. As a result the real time portion is very expensive in terms of effort expended both during construction and during maintenance phases of a project. The ALMA real time control system uses a Linux based real time operating system to interact with the hardware and the CORBA based ALMA Common Software to communicate in the distributed computing environment. Mixing the requirements of real time computing and the non-deterministic CORBA middleware has produced an interesting design. We discuss the architecture, design, and implementation of the ALMA real time control system. Highlight some lessons learned along the way, and justify our assertion that this should be the last large scale real time control system in radio astronomy.

  2. A Real-Time Digital Cardiac Mapping System

    PubMed Central

    Francis, Robert J.; Parson, Ian; Vranesic, Zvonko G.

    1984-01-01

    A digital cardiac mapping system that provides a real-time display of ventricular activation is described. The proposed system is based on a hardware preprocessor that performs activation analysis in real-time, and a microcomputer host that produces an immediate and interactive animation of the cardiac activation sequence. The design of a prototype implementation of the system is presented. The preprocessor is capable of analysing cardiac electrograms to determine local activation times, with a temporal resolution of 1 ms, at 256 electrode sites. The prototype system provides on-line storage of local activation times for one half hour. The display features, which include forward and reverse animation, slow motion, different map formats, event marking and event search, are controlled by an interactive user interface.

  3. Real-time monitoring of landslides

    USGS Publications Warehouse

    Reid, Mark E.; LaHusen, Richard G.; Baum, Rex L.; Kean, Jason W.; Schulz, William H.; Highland, Lynn M.

    2012-01-01

    Landslides cause fatalities and property damage throughout the Nation. To reduce the impact from hazardous landslides, the U.S. Geological Survey develops and uses real-time and near-real-time landslide monitoring systems. Monitoring can detect when hillslopes are primed for sliding and can provide early indications of rapid, catastrophic movement. Continuous information from up-to-the-minute or real-time monitoring provides prompt notification of landslide activity, advances our understanding of landslide behavior, and enables more effective engineering and planning efforts.

  4. Real-Time Monitoring of Active Landslides

    USGS Publications Warehouse

    Reid, Mark E.; LaHusen, Richard G.; Ellis, William L.

    1999-01-01

    Landslides threaten lives and property in every State in the Nation. To reduce the risk from active landslides, the U.S. Geological Survey (USGS) develops and uses real-time landslide monitoring systems. Monitoring can detect early indications of rapid, catastrophic movement. Up-to-the-minute or real-time monitoring provides immediate notification of landslide activity, potentially saving lives and property. Continuous information from real-time monitoring also provides a better understanding of landslide behavior, enabling engineers to create more effective designs for halting landslide movement.

  5. Real time sensor for therapeutic radiation delivery

    DOEpatents

    Bliss, Mary; Craig, Richard A.; Reeder, Paul L.

    1998-01-01

    The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body.

  6. Real time sensor for therapeutic radiation delivery

    DOEpatents

    Bliss, M.; Craig, R.A.; Reeder, P.L.

    1998-01-06

    The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body. 14 figs.

  7. Real-time sensing of fatigue crack damage for information-based decision and control

    NASA Astrophysics Data System (ADS)

    Keller, Eric Evans

    Information-based decision and control for structures that are subject to failure by fatigue cracking is based on the following notion: Maintenance, usage scheduling, and control parameter tuning can be optimized through real time knowledge of the current state of fatigue crack damage. Additionally, if the material properties of a mechanical structure can be identified within a smaller range, then the remaining life prediction of that structure will be substantially more accurate. Information-based decision systems can rely one physical models, estimation of material properties, exact knowledge of usage history, and sensor data to synthesize an accurate snapshot of the current state of damage and the likely remaining life of a structure under given assumed loading. The work outlined in this thesis is structured to enhance the development of information-based decision and control systems. This is achieved by constructing a test facility for laboratory experiments on real-time damage sensing. This test facility makes use of a methodology that has been formulated for fatigue crack model parameter estimation and significantly improves the quality of predictions of remaining life. Specifically, the thesis focuses on development of an on-line fatigue crack damage sensing and life prediction system that is built upon the disciplines of Systems Sciences and Mechanics of Materials. A major part of the research effort has been expended to design and fabricate a test apparatus which allows: (i) measurement and recording of statistical data for fatigue crack growth in metallic materials via different sensing techniques; and (ii) identification of stochastic model parameters for prediction of fatigue crack damage. To this end, this thesis describes the test apparatus and the associated instrumentation based on four different sensing techniques, namely, traveling optical microscopy, ultrasonic flaw detection, Alternating Current Potential Drop (ACPD), and fiber

  8. [Methods Used for Monitoring Cure Reactions in Real-time in an Autoclave

    NASA Technical Reports Server (NTRS)

    Cooper, John B.; Wise, Kent L.; Jensen, Brian J. (Technical Monitor)

    2000-01-01

    The goal of the research was to investigate methods for monitoring cure reactions in real-time in an autoclave. This is of particular importance to NASA Langley Research Center because polyimides were proposed for use in the High Speed Civil Transport (HSCT) program. Understanding the cure chemistry behind the polyimides would allow for intelligent processing of the composites made from their use. This work has led to two publications in peer-reviewed journals and a patent. The journal articles are listed as Appendix A which is on the instrument design of the research and Appendix B which is on the cure chemistry. Also, a patent has been awarded for the instrumental design developed under this grant which is given as Appendix C. There has been a significant amount of research directed at developing methods for monitoring cure reactions in real-time within the autoclave. The various research efforts can be categorized as methods providing either direct chemical bonding information or methods that provide indirect chemical bonding information. Methods falling into the latter category are fluorescence, dielectric loss, ultrasonic and similar type methods. Correlation of such measurements with the underlying chemistry is often quite difficult since these techniques do not allow monitoring of the curing chemistry which is ultimately responsible for material properties. Direct methods such as vibrational spectroscopy, however, can often be easily correlated with the underlying chemistry of a reaction. Such methods include Raman spectroscopy, mid-IR absorbance, and near-IR absorbance. With the recent advances in fiber-optics, these spectroscopic techniques can be applied to remote on-line monitoring.

  9. Real-time smart fluorescence sensor platform

    NASA Astrophysics Data System (ADS)

    Dickens, Jason E.; Vaughn, Mike S.; Taylor, Mervin; Ponstingl, Mike

    2011-06-01

    A novel compact LED array based light induced fluorescence (LIF) sensor has been developed for real-time in-line monitoring of intrinsic fluorophores in the solid and liquid state. The sensor is essential for on-the-spot, routine, and cost effective real-time analysis. The sensor is designed to provide real-time emission response along with various smart sensing parameters to ensure real-time measurement quality that is required for regulated GMP process monitoring applications. This work describes a LIF sensor tailored for solid-phase fluorometry. Fundamental figures of merit, excitation overexposure and smart sensing features required for modern process monitoring and control are discussed within the context of pharmaceutical solid-phase manufacturing and similar applications.

  10. Interferometer real time control development for SIM

    NASA Astrophysics Data System (ADS)

    Bell, Charles E.

    2003-02-01

    Real Time Control (RTC) for the Space Interferometry Mission will build on the real time core interferometer control technology under development at JPL since the mid 1990s, with heritage from the ground based MKII and Palomar Testbed Interferometer projects developed in the late '80s and early '90s. The core software and electronics technology for SIM interferometer real time control is successfully operating on several SIM technology demonstration testbeds, including the Real-time Interferometer Control System Testbed, System Testbed-3, and the Microarcsecond Metrology testbed. This paper provides an overview of the architecture, design, integration, and test of the SIM flight interferometer real time control to meet challenging flight system requirements for the high processor throughput, low-latency interconnect, and precise synchronization to support microarcsecond-level astrometric measurements for greater than five years at 1 AU in Earth-trailing orbit. The electronics and software architecture of the interferometer real time control core and its adaptation to a flight design concept are described. Control loops for pointing and pathlength control within each of four flight interferometers and for coordination of control and data across interferometers are illustrated. The nature of onboard data processing to fit average downlink rates while retaining post-processed astrometric measurement precision and accuracy is also addressed. Interferometer flight software will be developed using a software simulation environment incorporating models of the metrology and starlight sensors and actuators to close the real time control loops. RTC flight software and instrument flight electronics will in turn be integrated utilizing the same simulation architecture for metrology and starlight component models to close real time control loops and verify RTC functionality and performance prior to delivery to flight interferometer system integration at Lockheed Martin

  11. Real-time interferometric synthetic aperture microscopy.

    PubMed

    Ralston, Tyler S; Marks, Daniel L; Carney, P Scott; Boppart, Stephen A

    2008-02-18

    An interferometric synthetic aperture microscopy (ISAM) system design with real-time 2D cross-sectional processing is described in detail. The system can acquire, process, and display the ISAM reconstructed images at frame rates of 2.25 frames per second for 512 X 1024 pixel images. This system provides quantitatively meaningful structural information from previously indistinguishable scattering intensities and provides proof of feasibility for future real-time ISAM systems. PMID:18542337

  12. Processing PCM Data in Real Time

    NASA Technical Reports Server (NTRS)

    Wissink, T. L.

    1982-01-01

    Novel hardware configuration makes it possible for Space Shuttle launch processing system to monitor pulse-code-modulated data in real time. Using two microprogramable "option planes," incoming PCM data are monitored for changes at rate of one frame of data (80 16-bit words) every 10 milliseconds. Real-time PCM processor utilizes CPU in mini-computer and CPU's in two option planes.

  13. Real-time scheduling using minimum search

    NASA Technical Reports Server (NTRS)

    Tadepalli, Prasad; Joshi, Varad

    1992-01-01

    In this paper we consider a simple model of real-time scheduling. We present a real-time scheduling system called RTS which is based on Korf's Minimin algorithm. Experimental results show that the schedule quality initially improves with the amount of look-ahead search and tapers off quickly. So it sppears that reasonably good schedules can be produced with a relatively shallow search.

  14. The LAA real-time benchmarks

    SciTech Connect

    Block, R.K.; Krischer, W.; Lone, S.

    1989-04-01

    In the context of the LAA detector development program a subgroup Real Time Data Processing has tackled the problem of intelligent triggering. The main goal of this group is to show how fast digital devices, implemented as custom-made or commercial processors, can execute some basic algorithms, and how they can be embedded in the data flow between detector readout components and fully programmable commercial processors, which are expected to be the final data processing filter in real time.

  15. Analysis of real-time vibration data

    USGS Publications Warehouse

    Safak, E.

    2005-01-01

    In recent years, a few structures have been instrumented to provide continuous vibration data in real time, recording not only large-amplitude motions generated by extreme loads, but also small-amplitude motions generated by ambient loads. The main objective in continuous recording is to track any changes in structural characteristics, and to detect damage after an extreme event, such as an earthquake or explosion. The Fourier-based spectral analysis methods have been the primary tool to analyze vibration data from structures. In general, such methods do not work well for real-time data, because real-time data are mainly composed of ambient vibrations with very low amplitudes and signal-to-noise ratios. The long duration, linearity, and the stationarity of ambient data, however, allow us to utilize statistical signal processing tools, which can compensate for the adverse effects of low amplitudes and high noise. The analysis of real-time data requires tools and techniques that can be applied in real-time; i.e., data are processed and analyzed while being acquired. This paper presents some of the basic tools and techniques for processing and analyzing real-time vibration data. The topics discussed include utilization of running time windows, tracking mean and mean-square values, filtering, system identification, and damage detection.

  16. ISTAR: Intelligent System for Telemetry Analysis in Real-time

    NASA Technical Reports Server (NTRS)

    Simmons, Charles

    1994-01-01

    The intelligent system for telemetry analysis in real-time (ISTAR) is an advanced vehicle monitoring environment incorporating expert systems, analysis tools, and on-line hypermedia documentation. The system was developed for the Air Force Space and Missile Systems Center (SMC) in Los Angeles, California, in support of the inertial upper stage (IUS) booster vehicle. Over a five year period the system progressed from rapid prototype to operational system. ISTAR has been used to support five IUS missions and countless mission simulations. There were a significant number of lessons learned with respect to integrating an expert system capability into an existing ground system.

  17. Continuous real-time measurement of aqueous cyanide

    DOEpatents

    Rosentreter, Jeffrey J.; Gering, Kevin L.

    2007-03-06

    This invention provides a method and system capable of the continuous, real-time measurement of low concentrations of aqueous free cyanide (CN) using an on-line, flow through system. The system is based on the selective reactivity of cyanide anions and the characteristically nonreactive nature of metallic gold films, wherein this selective reactivity is exploited as an indirect measurement for aqueous cyanide. In the present invention the dissolution of gold, due to the solubilization reaction with the analyte cyanide anion, is monitored using a piezoelectric microbalance contained within a flow cell.

  18. Quantification and threshold detection in real-time hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Driver, Richard D.

    2009-05-01

    The technical challenges of applying hyperspectral imaging techniques to on-line real-time food monitoring is discussed. System optimization must be applied to the design of the hyperspectral imaging spectrograph, the choice and operation of the imaging detector, the design of the illumination system and finally the development of software algorithms to correctly quantify the hyperspectral images. The signal to noise limitation of hyperspectral detection is discussed with particular emphasis on the detection of moving objects at high measurement bandwidths. An example is given of the development of a simple but accurate algorithm for the detection and discrimination of rust particles on leaves.

  19. Experiences with a new real-time-scanner system

    SciTech Connect

    Erhard, A.; Schenk, G.; Moehrle, W.; Montag, H.J.; Wuestenberg, H.

    1996-12-31

    Ultrasonic weld inspection at joint components or constructions during fabrication and for inservice are required in a lot of standards around the world, to avoid catastrophes to the humans and the environment. Due to these facts inspection techniques were developed in the past and in the present to increase the safety during operation. On the other hand also economical requirements coming out more and more to make the used techniques cheaper and faster. The application of phased array techniques has reduced the time for the examination to the half of the time needed with conventional ultrasonic techniques. For the inspection of welds in heavy components with wall thicknesses up to 180 mm, the application of phased array techniques delivers also a big advantage due to the reducing of the number of probes. For weld inspection by wall thicknesses of 15 mm up to 40 mm the examination is carried out using conventional ultrasonic probes moving parallel and perpendicular to the weld manual or mechanical. With a Real-Time-Scanner (RTS) system the perpendicular moving can be carried out electronically controlled. If this scanning is carried out together with the angular scanning of the beam, as known from the phased-array technique, an examination of the weld is possible. The present paper will give information about the RTS system and some information for practical applications.

  20. Real-time GPS monitoring throughout Cascadia

    NASA Astrophysics Data System (ADS)

    Melbourne, T. I.; Santillan, V. M.; Scrivner, C. W.; Szeliga, W. M.; Webb, F.; Abundiz, S.

    2012-12-01

    Over 400 GPS receivers of the combined PANGA and PBO networks currently operate along the Cascadia subduction zone, all of which are high-rate and telemetered in real-time. These receivers span the M9 megathrust, M7 crustal faults beneath population centers, several active Cascades volcanoes, and a host of other hazard sources, and together enable a host of new approaches towards hazards mitigation. Data from the majority of the stations is received in real time at CWU and processed into one-second position estimates using 1) relative positioning within several reference frames constrained by 2) absolute point positioning using streamed satellite orbit and clock corrections. While the former produces lower-noise time series, for earthquakes greater than ~M7 and ground displacements exceeding ~20 cm, point positioning alone is shown to provide very rapid and robust estimates of the location and amplitude of both dynamic strong ground motion and permanent deformation. Raw phase and range observables from stations throughout Cascadia are being processed in real time at JPL and CWU into station positions, which in turn are analyzed also in real-time for earthquake processes at CWU. Our efforts can be broken down into three distinct areas: 1) Real-time point-positioning methodologies, 2) a data aggregator that captures real-time position streams from a variety of processing centers and methodologies (JPL RTGipsy, CWU rtPP, Trimble VRS) and re-streams the data as configurable streams to application clients out anywhere on the web, and 3) a suite of analysis tools that operate on the real-time position streams, including plotting, vectors, peak ground deformation contouring, and finite-fault inversions. This suite is currently bundled within a single client written in JAVA, called 'GPS Cockpit.'

  1. REAL TIME SYSTEM OPERATIONS 2006-2007

    SciTech Connect

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    2008-08-15

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stability monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.

  2. Real-time Enhanced Vision System

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Rahman, Zia-Ur; Jobson, Daniel J.; Woodell, Glenn A.; Harrah, Steven D.

    2005-01-01

    Flying in poor visibility conditions, such as rain, snow, fog or haze, is inherently dangerous. However these conditions can occur at nearly any location, so inevitably pilots must successfully navigate through them. At NASA Langley Research Center (LaRC), under support of the Aviation Safety and Security Program Office and the Systems Engineering Directorate, we are developing an Enhanced Vision System (EVS) that combines image enhancement and synthetic vision elements to assist pilots flying through adverse weather conditions. This system uses a combination of forward-looking infrared and visible sensors for data acquisition. A core function of the system is to enhance and fuse the sensor data in order to increase the information content and quality of the captured imagery. These operations must be performed in real-time for the pilot to use while flying. For image enhancement, we are using the LaRC patented Retinex algorithm since it performs exceptionally well for improving low-contrast range imagery typically seen during poor visibility conditions. In general, real-time operation of the Retinex requires specialized hardware. To date, we have successfully implemented a single-sensor real-time version of the Retinex on several different Digital Signal Processor (DSP) platforms. In this paper we give an overview of the EVS and its performance requirements for real-time enhancement and fusion and we discuss our current real-time Retinex implementations on DSPs.

  3. Real-time enhanced vision system

    NASA Astrophysics Data System (ADS)

    Hines, Glenn D.; Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.; Harrah, Steven D.

    2005-05-01

    Flying in poor visibility conditions, such as rain, snow, fog or haze, is inherently dangerous. However these conditions can occur at nearly any location, so inevitably pilots must successfully navigate through them. At NASA Langley Research Center (LaRC), under support of the Aviation Safety and Security Program Office and the Systems Engineering Directorate, we are developing an Enhanced Vision System (EVS) that combines image enhancement and synthetic vision elements to assist pilots flying through adverse weather conditions. This system uses a combination of forward-looking infrared and visible sensors for data acquisition. A core function of the system is to enhance and fuse the sensor data in order to increase the information content and quality of the captured imagery. These operations must be performed in real-time for the pilot to use while flying. For image enhancement, we are using the LaRC patented Retinex algorithm since it performs exceptionally well for improving low-contrast range imagery typically seen during poor visibility poor visibility conditions. In general, real-time operation of the Retinex requires specialized hardware. To date, we have successfully implemented a single-sensor real-time version of the Retinex on several different Digital Signal Processor (DSP) platforms. In this paper we give an overview of the EVS and its performance requirements for real-time enhancement and fusion and we discuss our current real-time Retinex implementations on DSPs.

  4. Hard Real-Time: C++ Versus RTSJ

    NASA Technical Reports Server (NTRS)

    Dvorak, Daniel L.; Reinholtz, William K.

    2004-01-01

    In the domain of hard real-time systems, which language is better: C++ or the Real-Time Specification for Java (RTSJ)? Although ordinary Java provides a more productive programming environment than C++ due to its automatic memory management, that benefit does not apply to RTSJ when using NoHeapRealtimeThread and non-heap memory areas. As a result, RTSJ programmers must manage non-heap memory explicitly. While that's not a deterrent for veteran real-time programmers-where explicit memory management is common-the lack of certain language features in RTSJ (and Java) makes that manual memory management harder to accomplish safely than in C++. This paper illustrates the problem for practitioners in the context of moving data and managing memory in a real-time producer/consumer pattern. The relative ease of implementation and safety of the C++ programming model suggests that RTSJ has a struggle ahead in the domain of hard real-time applications, despite its other attractive features.

  5. Characterization of real-time computers

    NASA Technical Reports Server (NTRS)

    Shin, K. G.; Krishna, C. M.

    1984-01-01

    A real-time system consists of a computer controller and controlled processes. Despite the synergistic relationship between these two components, they have been traditionally designed and analyzed independently of and separately from each other; namely, computer controllers by computer scientists/engineers and controlled processes by control scientists. As a remedy for this problem, in this report real-time computers are characterized by performance measures based on computer controller response time that are: (1) congruent to the real-time applications, (2) able to offer an objective comparison of rival computer systems, and (3) experimentally measurable/determinable. These measures, unlike others, provide the real-time computer controller with a natural link to controlled processes. In order to demonstrate their utility and power, these measures are first determined for example controlled processes on the basis of control performance functionals. They are then used for two important real-time multiprocessor design applications - the number-power tradeoff and fault-masking and synchronization.

  6. Real-Time Visualization of Tissue Ischemia

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Chrien, Thomas D. (Inventor); Eastwood, Michael L. (Inventor)

    2000-01-01

    A real-time display of tissue ischemia which comprises three CCD video cameras, each with a narrow bandwidth filter at the correct wavelength is discussed. The cameras simultaneously view an area of tissue suspected of having ischemic areas through beamsplitters. The output from each camera is adjusted to give the correct signal intensity for combining with, the others into an image for display. If necessary a digital signal processor (DSP) can implement algorithms for image enhancement prior to display. Current DSP engines are fast enough to give real-time display. Measurement at three, wavelengths, combined into a real-time Red-Green-Blue (RGB) video display with a digital signal processing (DSP) board to implement image algorithms, provides direct visualization of ischemic areas.

  7. Real-time, high frequency QRS electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2006-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as RAZs. RAZs are displayed as go, no-go signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  8. Durham adaptive optics real-time controller.

    PubMed

    Basden, Alastair; Geng, Deli; Myers, Richard; Younger, Eddy

    2010-11-10

    The Durham adaptive optics (AO) real-time controller was initially a proof of concept design for a generic AO control system. It has since been developed into a modern and powerful central-processing-unit-based real-time control system, capable of using hardware acceleration (including field programmable gate arrays and graphical processing units), based primarily around commercial off-the-shelf hardware. It is powerful enough to be used as the real-time controller for all currently planned 8 m class telescope AO systems. Here we give details of this controller and the concepts behind it, and report on performance, including latency and jitter, which is less than 10 μs for small AO systems. PMID:21068868

  9. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, P.P.; Smatlak, D.L.; Cohn, D.R.; Wittle, J.K.; Titus, C.H.; Surma, J.E.

    1995-12-26

    Microwave-induced plasma is described for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. 3 figs.

  10. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, Paul P.; Smatlak, Donna L.; Cohn, Daniel R.; Wittle, J. Kenneth; Titus, Charles H.; Surma, Jeffrey E.

    1995-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.

  11. Real-Time Sensor Validation System Developed

    NASA Technical Reports Server (NTRS)

    Zakrajsek, June F.

    1998-01-01

    Real-time sensor validation improves process monitoring and control system dependability by ensuring data integrity through automated detection of sensor data failures. The NASA Lewis Research Center, Expert Microsystems, and Intelligent Software Associates have developed an innovative sensor validation system that can automatically detect automated sensor failures in real-time for all types of mission-critical systems. This system consists of a sensor validation network development system and a real-time kernel. The network development system provides tools that enable systems engineers to automatically generate software that can be embedded within an application. The sensor validation methodology captured by these tools can be scaled to validate any number of sensors, and permits users to specify system sensitivity. The resulting software reliably detects all types of sensor data failures.

  12. INTA-SAR real-time processor

    SciTech Connect

    Gomez, B.; Leon, J.

    1996-10-01

    This paper presents the INTASAR real time processor development based on a DSP open architecture for processing Synthetic Aperture Radar (SAR) signal. The final designed architecture must consider three different constraints sources: (a) SAR signal characteristics : high dynamic range, and complex SAR imaging algorithms with high computational load (multiprocessing is convenient). (b) Flexible: in connectivity and algorithms to be programmed. (c) Suitable: for on-board and ground working. The real time constraints will be defined by the image acquisition time, within it the INTASAR system will process the rawdata image and finally presents the results in the system monitor. At ground, however, the real time processing is not a constraint, but the high quality image is. The first algorithm implemented in the system was a Range - Doppler one. With the multiprocessor architecture selected, a pipeline processing method is used. 17 refs., 4 figs., 2 tabs.

  13. Real-time cardiac MRI using DSP's.

    PubMed

    Morgan, P N; Iannuzzelli, R J; Epstein, F H; Balaban, R S

    1999-07-01

    A real-time cardiac magnetic resonance imaging (MRI) system has been implemented using digital signal processing (DSP) technology. The system enables real-time acquisition, processing, and display of ungated cardiac movies at moderate video rates of 20 images/s. A custom graphical user interface (GUI) provides interactive control of data acquisition parameters and image display functions. Images can be compressed into moving-picture experts group (MPEG) movies, but are displayed on the console without compression during the scan. Compared to existing real-time MRI systems, implementation with DSP's allows rapid parallel computations, fast data transfers, and greater system flexibility, including the ability to scale to multiple channels, at the expense of somewhat higher component cost. PMID:10504098

  14. Network protocols for real-time applications

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.

    1987-01-01

    The Fiber Distributed Data Interface (FDDI) and the SAE AE-9B High Speed Ring Bus (HSRB) are emerging standards for high-performance token ring local area networks. FDDI was designed to be a general-purpose high-performance network. HSRB was designed specifically for military real-time applications. A workshop was conducted at NASA Ames Research Center in January, 1987 to compare and contrast these protocols with respect to their ability to support real-time applications. This report summarizes workshop presentations and includes an independent comparison of the two protocols. A conclusion reached at the workshop was that current protocols for the upper layers of the Open Systems Interconnection (OSI) network model are inadequate for real-time applications.

  15. Real-time hyperspectral detection and cuing

    NASA Astrophysics Data System (ADS)

    Stellman, Christopher M.; Hazel, Geoff; Bucholtz, Frank; Michalowicz, Joseph V.; Stocker, Alan D.; Schaaf, William

    2000-07-01

    The Dark HORSE 1 (Hyperspectral Overhead Reconnaissance and Surveillance Experiment 1) flight test has demonstrated autonomous, real-time visible hyperspectral detection of military ground targets with real-time cuing of a high- resolution framing camera. An overview of the Dark HORSE 1 hyperspectral sensor system is presented. The system hardware components are described in detail, with an emphasis on the visible hyperspectral sensor and the real- time processor. Descriptions of system software and processing methods are also provided. The recent field experiment in which the Dark HORSE 1 system was employed is described in detail along with an analysis of the collected data. The results evince per-pixel false-alarm rates on the order of 10-5/km2, and demonstrate the improved performance obtained by operating two detection algorithms simultaneously.

  16. Machine vision for real time orbital operations

    NASA Technical Reports Server (NTRS)

    Vinz, Frank L.

    1988-01-01

    Machine vision for automation and robotic operation of Space Station era systems has the potential for increasing the efficiency of orbital servicing, repair, assembly and docking tasks. A machine vision research project is described in which a TV camera is used for inputing visual data to a computer so that image processing may be achieved for real time control of these orbital operations. A technique has resulted from this research which reduces computer memory requirements and greatly increases typical computational speed such that it has the potential for development into a real time orbital machine vision system. This technique is called AI BOSS (Analysis of Images by Box Scan and Syntax).

  17. Automated real-time software development

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Walker, Carrie K.; Turkovich, John J.

    1993-01-01

    A Computer-Aided Software Engineering (CASE) system has been developed at the Charles Stark Draper Laboratory (CSDL) under the direction of the NASA Langley Research Center. The CSDL CASE tool provides an automated method of generating source code and hard copy documentation from functional application engineering specifications. The goal is to significantly reduce the cost of developing and maintaining real-time scientific and engineering software while increasing system reliability. This paper describes CSDL CASE and discusses demonstrations that used the tool to automatically generate real-time application code.

  18. Axial Tomography from Digitized Real Time Radiography

    DOE R&D Accomplishments Database

    Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.

    1985-01-18

    Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.

  19. Software Package For Real-Time Graphics

    NASA Technical Reports Server (NTRS)

    Malone, Jacqueline C.; Moore, Archie L.

    1991-01-01

    Software package for master graphics interactive console (MAGIC) at Western Aeronautical Test Range (WATR) of NASA Ames Research Center provides general-purpose graphical display system for real-time and post-real-time analysis of data. Written in C language and intended for use on workstation of interactive raster imaging system (IRIS) equipped with level-V Unix operating system. Enables flight researchers to create their own displays on basis of individual requirements. Applicable to monitoring of complicated processes in chemical industry.

  20. Real Time Linux - The RTOS for Astronomy?

    NASA Astrophysics Data System (ADS)

    Daly, P. N.

    The BoF was attended by about 30 participants and a free CD of real time Linux-based upon RedHat 5.2-was available. There was a detailed presentation on the nature of real time Linux and the variants for hard real time: New Mexico Tech's RTL and DIAPM's RTAI. Comparison tables between standard Linux and real time Linux responses to time interval generation and interrupt response latency were presented (see elsewhere in these proceedings). The present recommendations are to use RTL for UP machines running the 2.0.x kernels and RTAI for SMP machines running the 2.2.x kernel. Support, both academically and commercially, is available. Some known limitations were presented and the solutions reported e.g., debugging and hardware support. The features of RTAI (scheduler, fifos, shared memory, semaphores, message queues and RPCs) were described. Typical performance statistics were presented: Pentium-based oneshot tasks running > 30kHz, 486-based oneshot tasks running at ~ 10 kHz, periodic timer tasks running in excess of 90 kHz with average zero jitter peaking to ~ 13 mus (UP) and ~ 30 mus (SMP). Some detail on kernel module programming, including coding examples, were presented showing a typical data acquisition system generating simulated (random) data writing to a shared memory buffer and a fifo buffer to communicate between real time Linux and user space. All coding examples were complete and tested under RTAI v0.6 and the 2.2.12 kernel. Finally, arguments were raised in support of real time Linux: it's open source, free under GPL, enables rapid prototyping, has good support and the ability to have a fully functioning workstation capable of co-existing hard real time performance. The counter weight-the negatives-of lack of platforms (x86 and PowerPC only at present), lack of board support, promiscuous root access and the danger of ignorance of real time programming issues were also discussed. See ftp://orion.tuc.noao.edu/pub/pnd/rtlbof.tgz for the StarOffice overheads

  1. Real-Time, Interactive Sonic Boom Display

    NASA Technical Reports Server (NTRS)

    Haering, Jr., Edward A. (Inventor); Plotkin, Kenneth J. (Inventor)

    2012-01-01

    The present invention is an improved real-time, interactive sonic boom display for aircraft. By using physical properties obtained via various sensors and databases, the invention determines, in real-time, sonic boom impacts locations and intensities for aircraft traveling at supersonic speeds. The information is provided to a pilot via a display that lists a selectable set of maneuvers available to the pilot to mitigate sonic boom issues. Upon selection of a maneuver, the information as to the result of the maneuver is displayed and the pilot may proceed with making the maneuver, or provide new data to the system in order to calculate a different maneuver.

  2. Real-Time Occupancy Change Analyzer

    Energy Science and Technology Software Center (ESTSC)

    2005-03-30

    The Real-Time Occupancy Change Analyzer (ROCA) produces an occupancy grid map of an environment around the robot, scans the environment to generate a current obstacle map relative to a current robot position, and converts the current obstacle map to a current occupancy grid map. Changes in the occupancy grid can be reported in real time to support a number of tracking capabilities. The benefit of ROCA is that rather than only providing a vector tomore » the detected change, it provides the actual x,y position of the change.« less

  3. Quantitative Real-Time PCR: Recent Advances.

    PubMed

    Singh, Charanjeet; Roy-Chowdhuri, Sinchita

    2016-01-01

    Quantitative real-time polymerase chain reaction is a technique for simultaneous amplification and product quantification of a target DNA as the process takes place in real time in a "closed-tube" system. Although this technique can provide an absolute quantification of the initial template copy number, quantification relative to a control sample or second sequence is typically adequate. The quantification process employs melting curve analysis and/or fluorescent detection systems and can provide amplification and genotyping in a relatively short time. Here we describe the properties and uses of various fluorescent detection systems used for quantification. PMID:26843055

  4. The Real Time Display Builder (RTDB)

    NASA Technical Reports Server (NTRS)

    Kindred, Erick D.; Bailey, Samuel A., Jr.

    1989-01-01

    The Real Time Display Builder (RTDB) is a prototype interactive graphics tool that builds logic-driven displays. These displays reflect current system status, implement fault detection algorithms in real time, and incorporate the operational knowledge of experienced flight controllers. RTDB utilizes an object-oriented approach that integrates the display symbols with the underlying operational logic. This approach allows the user to specify the screen layout and the driving logic as the display is being built. RTDB is being developed under UNIX in C utilizing the MASSCOMP graphics environment with appropriate functional separation to ease portability to other graphics environments. RTDB grew from the need to develop customized real-time data-driven Space Shuttle systems displays. One display, using initial functionality of the tool, was operational during the orbit phase of STS-26 Discovery. RTDB is being used to produce subsequent displays for the Real Time Data System project currently under development within the Mission Operations Directorate at NASA/JSC. The features of the tool, its current state of development, and its applications are discussed.

  5. Real Time Grid Reliability Management 2005

    SciTech Connect

    Eto, Joe; Eto, Joe; Lesieutre, Bernard; Lewis, Nancy Jo; Parashar, Manu

    2008-07-07

    The increased need to manage California?s electricity grid in real time is a result of the ongoing transition from a system operated by vertically-integrated utilities serving native loads to one operated by an independent system operator supporting competitive energy markets. During this transition period, the traditional approach to reliability management -- construction of new transmission lines -- has not been pursued due to unresolved issues related to the financing and recovery of transmission project costs. In the absence of investments in new transmission infrastructure, the best strategy for managing reliability is to equip system operators with better real-time information about actual operating margins so that they can better understand and manage the risk of operating closer to the edge. A companion strategy is to address known deficiencies in offline modeling tools that are needed to ground the use of improved real-time tools. This project: (1) developed and conducted first-ever demonstrations of two prototype real-time software tools for voltage security assessment and phasor monitoring; and (2) prepared a scoping study on improving load and generator response models. Additional funding through two separate subsequent work authorizations has already been provided to build upon the work initiated in this project.

  6. OPAD-EDIFIS Real-Time Processing

    NASA Technical Reports Server (NTRS)

    Katsinis, Constantine

    1997-01-01

    The Optical Plume Anomaly Detection (OPAD) detects engine hardware degradation of flight vehicles through identification and quantification of elemental species found in the plume by analyzing the plume emission spectra in a real-time mode. Real-time performance of OPAD relies on extensive software which must report metal amounts in the plume faster than once every 0.5 sec. OPAD software previously written by NASA scientists performed most necessary functions at speeds which were far below what is needed for real-time operation. The research presented in this report improved the execution speed of the software by optimizing the code without changing the algorithms and converting it into a parallelized form which is executed in a shared-memory multiprocessor system. The resulting code was subjected to extensive timing analysis. The report also provides suggestions for further performance improvement by (1) identifying areas of algorithm optimization, (2) recommending commercially available multiprocessor architectures and operating systems to support real-time execution and (3) presenting an initial study of fault-tolerance requirements.

  7. Real-Time Operating System/360

    NASA Technical Reports Server (NTRS)

    Hoffman, R. L.; Kopp, R. S.; Mueller, H. H.; Pollan, W. D.; Van Sant, B. W.; Weiler, P. W.

    1969-01-01

    RTOS has a cost savings advantage for real-time applications, such as those with random inputs requiring a flexible data routing facility, display systems simplified by a device independent interface language, and complex applications needing added storage protection and data queuing.

  8. The Power of Real-Time PCR

    ERIC Educational Resources Information Center

    Valasek, Mark A.; Repa, Joyce J.

    2005-01-01

    In recent years, real-time polymerase chain reaction (PCR) has emerged as a robust and widely used methodology for biological investigation because it can detect and quantify very small amounts of specific nucleic acid sequences. As a research tool, a major application of this technology is the rapid and accurate assessment of changes in gene…

  9. Real-Time Multidetector Neutron Spectrometer

    NASA Astrophysics Data System (ADS)

    Drejzin, V. E.; Grimov, A. A.; Logvinov, D. I.

    2016-07-01

    We explain a new approach to constructing a real-time neutron spectrometer, using several detectors with different spectral characteristics and coprocessing the data using a pre-trained neural network. We present the results of simulation and experimental studies on a prototype, demonstrating the effectiveness of this approach.

  10. Real-time distributed multimedia systems

    SciTech Connect

    Rahurkar, S.S.; Bourbakis, N.G.

    1996-12-31

    This paper presents a survey on distributed multimedia systems and discusses real-time issues. In particular, different subsystems are reviewed that impact on multimedia networking, the networking for multimedia, the networked multimedia systems, and the leading edge research and developments efforts and issues in networking.

  11. Real time solar magnetograph Skylab mission Atlas

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Cumings, N. P.

    1975-01-01

    An atlas of all magnetic field observations made during the Skylab missions with the Real Time Solar Magnetograph system located at the Marshall Space Flight Center is presented. Also included are a description of the system and its operation; an outline of the data reductions performed; and a discussion of probable errors, noise, magnetic sensitivity, and system reliability.

  12. Real-Time Blackboards For Sensor Fusions

    NASA Astrophysics Data System (ADS)

    Johnson, Donald H.; Shaw, Scott W.; Reynolds, Steven; Himayat, Nageen

    1989-09-01

    Multi-sensor fusion, at the most basic level, can be cast into a concise, elegant model. Reality demands, however, that this model be modified and augmented. These modifications often result in software systems that are confusing in function and difficult to debug. This problem can be ameliorated by adopting an object-oriented, data-flow programming style. For real-time applications, this approach simplifies data communications and storage management. The concept of object-oriented, data-flow programming is conveniently embodied in the black-board style of software architecture. Blackboard systems allow diverse programs access to a central data base. When the blackboard is described as an object, it can be distributed over multiple processors for real-time applications. Choosing the appropriate parallel architecture is the subject of ongoing research. A prototype blackboard has been constructed to fuse optical image regions and Doppler radar events. The system maintains tracks of simulated targets in real time. The results of this simulation have been used to direct further research on real-time blackboard systems.

  13. Real-time optoacoustic monitoring during thermotherapy

    NASA Astrophysics Data System (ADS)

    Esenaliev, Rinat O.; Larina, Irina V.; Larin, Kirill V.; Motamedi, Massoud

    2000-05-01

    Optoacoustic monitoring of tissue optical properties and speed of sound in real time can provide fast and accurate feedback information during thermotherapy performed with various heating or cooling agents. Amplitude and temporal characteristics of optoacoustic pressure waves are dependent on tissue properties. Detection and measurement of the optoacoustic waves may be used to monitor the extent of tissue hyperthermia, coagulation, or freezing with high resolution and contrast. We studied real-time optoacoustic monitoring of thermal coagulation induced by conductive heating and laser radiation and cryoablation with liquid nitrogen. Q-switched Nd:YAG laser pulses were used as probing radiation to induce optoacoustic waves in tissues. Dramatic changes in optoacoustic signal parameters were detected during tissue freezing and coagulation due to sharp changes in tissue properties. The dimensions of thermally- induced lesions were measured in real time with the optoacoustic technique. Our studies demonstrated that the laser optoacoustic technique is capable of real-time monitoring of tissue coagulation and freezing front with submillimeter spatial resolution. This may allow accurate thermal ablation or cryotherapy of malignant and benign lesions with minimal damage to normal tissues.

  14. Feedback as Real-Time Constructions

    ERIC Educational Resources Information Center

    Keiding, Tina Bering; Qvortrup, Ane

    2014-01-01

    This article offers a re-description of feedback and the significance of time in feedback constructions based on systems theory. It describes feedback as internal, real-time constructions in a learning system. From this perspective, feedback is neither immediate nor delayed, but occurs in the very moment it takes place. This article argues for a…

  15. Solar neutrinos: Real-time experiments

    NASA Astrophysics Data System (ADS)

    Totsuka, Yoji

    1993-04-01

    This report outlines the principle of real-time solar neutrino detection experiments by detecting electrons with suitable target material, via Charged-Current (CC) reaction using conventional counting techniques developed in high-energy physics. Only B-8 neutrinos can be detected by minimum detectable energy of several MeV. The MSW (Mikheyev, Smirnov, Wolfenstein) effect not only distorts the energy spectrum but also induces new type of neutrinos, i.e. mu-neutrinos or tau-neutrinos. These neutrinos do not participate in the CC reaction. Therefore real-time experiment is to be sensitive to Neutral Current (NC) reactions. It is a challenge to eliminate environment background as much as possible and to lower the minimum detectable energy to several 100 keV, which will enable observation of Be-7 neutrinos. Target particles of real-time experiments currently running and under construction or planning are electron, deuteron, or argon. The relevant reactions corresponding to CC reaction and some relevant comments on the following targets are described: (1) electron target; (2) deuteron target; and (3) argon target. On-going experiment and future experiments for real-time neutron detection are also outlined.

  16. REAL TIME CONTROL OF URBAN DRAINAGE NETWORKS

    EPA Science Inventory

    Real-time control (RTC) is a custom-designed, computer-assisted management technology for a specific sewerage network to meet the operational objectives of its collection/conveyance system. RTC can operate in several modes, including a mode that is activated during a wet weather ...

  17. [Real-time ultrasonography in neonatal diagnosis].

    PubMed

    Nogués, A; Morales, A; Munguía, C; Pagola, C; Arena, J

    1982-11-01

    Real time ultrasonography is a diagnostic technique very widely used in pediatrics and with specific applications in neonatology. Bedside its use in Neonatal I.C.U. it has many interesting aspects for intraabdominal and intracranial pathology. In some particular conditions this procedure can be the first diagnostic tool. Conventional X-rays can be performed after sonographic data have been analyzed. PMID:7168508

  18. Ultrasonic techniques for process monitoring and control.

    SciTech Connect

    Chien, H.-T.

    1999-03-24

    Ultrasonic techniques have been applied successfully to process monitoring and control for many industries, such as energy, medical, textile, oil, and material. It helps those industries in quality control, energy efficiency improving, waste reducing, and cost saving. This paper presents four ultrasonic systems, ultrasonic viscometer, on-loom, real-time ultrasonic imaging system, ultrasonic leak detection system, and ultrasonic solid concentration monitoring system, developed at Argonne National Laboratory in the past five years for various applications.

  19. In vivo real-time freehand palpation imaging.

    PubMed

    Hall, Timothy J; Zhu, Yanning; Spalding, Candace S

    2003-03-01

    Previous experience with laboratory fixtures and off-line processing of elasticity data showed that problems occurring in data acquisition often resulted in poor elasticity image quality. A system for real-time estimation and display of tissue elastic properties using a clinical ultrasonic imaging system has been developed. A brief description of that system and the initial clinical tests of that system are reported. Experience with real-time freehand elasticity imaging shows that images with high contrast-to-noise ratios are consistently obtained. Images of breast lesions were acquired with freehand palpation using standard linear-array ultrasound (US) transducers. Results in volunteer patients show that high-quality elasticity images are easily obtained from in vivo breast studies. The key element to successful scanning is real-time visual feedback of B-mode and strain images that guide the patient positioning and compression direction. Results show that individual images of axial strain in tissues can be quite misleading, and that a "movie loop" of side-by-side B-mode and strain images provides significantly more information. Our preliminary data suggest that the strain image sequences for various breast pathologies are unique. For example, strain images of fibroadenomas lose contrast with increasing precompression, but those of invasive ductal carcinoma have high negative contrast (dark relative to "normal" tissue) for a wide range of precompression. In addition, a comparison of the lesion area measured in B-mode vs. strain images, for a representative image from the sequence, appears to be a sensitive criterion for separating invasive ductal carcinoma from cyst and fibroadenoma. PMID:12706194

  20. A miniature real-time volumetric ultrasound imaging system

    NASA Astrophysics Data System (ADS)

    Wygant, Ira O.; Yeh, David T.; Zhuang, Xuefeng; Nikoozadeh, Amin; Oralkan, Omer; Ergun, Arif S.; Karaman, Mustafa; Khuri-Yakub, Butrus T.

    2005-04-01

    Progress made in the development of a miniature real-time volumetric ultrasound imaging system is presented. This system is targeted for use in a 5-mm endoscopic channel and will provide real-time, 30-mm deep, volumetric images. It is being developed as a clinically useful device, to demonstrate a means of integrating the front-end electronics with the transducer array, and to demonstrate the advantages of the capacitive micromachined ultrasonic transducer (CMUT) technology for medical imaging. Presented here is the progress made towards the initial implementation of this system, which is based on a two-dimensional, 16x16 CMUT array. Each CMUT element is 250 um by 250 um and has a 5 MHz center frequency. The elements are connected to bond pads on the back side of the array with 400-um long through-wafer interconnects. The transducer array is flip-chip bonded to a custom-designed integrated circuit that comprises the front-end electronics. The result is that each transducer element is connected to a dedicated pulser and low-noise preamplifier. The pulser generates 25-V, 100-ns wide, unipolar pulses. The preamplifier has an approximate transimpedance gain of 500 kOhm and 3-dB bandwidth of 10 MHz. In the first implementation of the system, one element at a time can be selected for transmit and receive and thus synthetic aperture images can be generated. In future implementations, 16 channels will be active at a given time. These channels will connect to an FPGA-based data acquisition system for real-time image reconstruction.

  1. Ultrasonic Technology

    NASA Astrophysics Data System (ADS)

    Cho, Byoung-Kwan

    Ultrasonic has proven its merit as one of the most promising sensing methods for food quality evaluation due to its non-destructive, noninvasive, precise, rapid, and on-line potential. Ultrasonic is mechanical wave at frequencies above 20 kHz propagating by vibration of the particles in the medium and penetrating through optically opaque materials to provide internal or surface information of physical attributes, such as texture and structure. Ultrasonic non-destructive testing is a way of characterizing materials by transmitting ultrasonic waves into a material, and investigating the characteristics of the transmitted and/or reflected ultrasonic waves. For the purpose of quality measurement of materials, low-intensity ultrasonic with the power level of up to 1 W/cm2 has been used. The low-intensity ultrasonic doesn't cause physical or chemical changes in the properties of the specimen when it transmits through the material. However, high-intensity ultrasonic of the power range above 1 W/cm2 may produce physical/chemical disruption and alteration in the material through which the wave propagates. High-intensity ultrasonic is usually used in cleaning, promotion of chemical reactions, homogenization, etc

  2. Ultrasonic flow measurements for irrigation process monitoring

    NASA Astrophysics Data System (ADS)

    Ziani, Elmostafa; Bennouna, Mustapha; Boissier, Raymond

    2004-02-01

    This paper presents the state of the art of the general principle of liquid flow measurements by ultrasonic method, and problems of flow measurements. We present an ultrasonic flowmeter designed according to smart sensors concept, for the measurement of irrigation water flowing through pipelines or open channels, using the ultrasonic transit time approach. The new flowmeter works on the principle of measuring time delay differences between sound pulses transmitted upstream and downstream in the flowing liquid. The speed of sound in the flowing medium is eliminated as a variable because the flowrate calculations are based on the reciprocals of the transmission times. The transit time difference is digitally measured by means of a suitable, microprocessor controlled logic. This type of ultrasonic flowmeter will be widely used in industry and water management, it is well studied in this work, followed by some experimental results. For pressurized channels, we use one pair of ultrasonic transducer arranged in proper positions and directions of the pipe, in this case, to determine the liquid velocity, a real time on-line analysis taking account the geometries of the hydraulic system, is applied to the obtained ultrasonic data. In the open channels, we use a single or two pairs of ultrasonic emitter-receiver according to the desired performances. Finally, the goals of this work consist in integrating the smart sensor into irrigation systems monitoring in order to evaluate potential advantages and demonstrate their performance, on the other hand, to understand and use ultrasonic approach for determining flow characteristics and improving flow measurements by reducing errors caused by disturbances of the flow profiles.

  3. Real-Time Seismology in Portugal

    NASA Astrophysics Data System (ADS)

    Custodio, S.; Marreiros, C.; Carvalho, S.; Vales, D.; Lima, V.; Carrilho, F.

    2012-12-01

    Portugal is located next to the plate boundary between Eurasia (Iberia) and Africa (Nubia). The country has been repeatedly affected by some of the largest earthquakes, both onshore and offshore, in the historical European record, including the largest historical European earthquake, the great Lisbon earthquake of 1755 (~M8.5). The Portuguese territory has suffered directly the consequences of strong ground shaking (collapse of buildings, etc) and also some of the most destructive consequences of earthquakes (e.g. tsunamis, fires, etc). However, the rate of tectonic deformation in the Portuguese territory is low (the Eurasian-African plates converge at a rate of ~ 5 mm/yr), which results in long recurrence intervals between earthquakes. This low to moderate rate of seismic activity has two major negative effects: 1) it is difficult to study the regional seismo-tectonics with traditional passive methods; 2) the population is little aware of earthquake risk and unprepared to react in case of disaster. In this scenario, real-time seismology is key to monitoring earthquake crisis in real-time, providing early warnings about potentially destructive events, and assisting in the channeling of recovery efforts in case of disaster. In this paper we will present the real-time algorithms implemented at Instituto de Meteorologia (IM), the institution responsible for seismic monitoring in Portugal. In particular, we will focus on the following aspects: 1) Data collection and real-time transmission to the headquarters. Broadband seismological stations are owned and operated by five different institutions. The last years have witnessed an effort for integration, and presently most data arrives at IM lab in real-time. 2) Earthquake location and local magnitude determination. Data is automatically analyzed in order to obtain a first earthquake hypocenter and ML. While this process is mostly automatic, it still requires the revision by an operator, who is available 24h. 3

  4. ALMA Correlator Real-Time Data Processor

    NASA Astrophysics Data System (ADS)

    Pisano, J.; Amestica, R.; Perez, J.

    2005-10-01

    The design of a real-time Linux application utilizing Real-Time Application Interface (RTAI) to process real-time data from the radio astronomy correlator for the Atacama Large Millimeter Array (ALMA) is described. The correlator is a custom-built digital signal processor which computes the cross-correlation function of two digitized signal streams. ALMA will have 64 antennas with 2080 signal streams each with a sample rate of 4 giga-samples per second. The correlator's aggregate data output will be 1 gigabyte per second. The software is defined by hard deadlines with high input and processing data rates, while requiring interfaces to non real-time external computers. The designed computer system - the Correlator Data Processor or CDP, consists of a cluster of 17 SMP computers, 16 of which are compute nodes plus a master controller node all running real-time Linux kernels. Each compute node uses an RTAI kernel module to interface to a 32-bit parallel interface which accepts raw data at 64 megabytes per second in 1 megabyte chunks every 16 milliseconds. These data are transferred to tasks running on multiple CPUs in hard real-time using RTAI's LXRT facility to perform quantization corrections, data windowing, FFTs, and phase corrections for a processing rate of approximately 1 GFLOPS. Highly accurate timing signals are distributed to all seventeen computer nodes in order to synchronize them to other time-dependent devices in the observatory array. RTAI kernel tasks interface to the timing signals providing sub-millisecond timing resolution. The CDP interfaces, via the master node, to other computer systems on an external intra-net for command and control, data storage, and further data (image) processing. The master node accesses these external systems utilizing ALMA Common Software (ACS), a CORBA-based client-server software infrastructure providing logging, monitoring, data delivery, and intra-computer function invocation. The software is being developed in tandem

  5. Ultrasonic Technologies for Advanced Process Monitoring, Measurement, and Control

    SciTech Connect

    Bond, Leonard J. ); Morra, Marino ); Greenwood, Margaret S. ); Bamberger, Judith A. ); Pappas, Richard A. )

    2003-06-02

    Ultrasonic signals are well suited to the characterization of liquids, slurries and multi-phase flows. Ultrasound sensor systems provide real-time, in-situ measurements or visualizations and the sensing systems are compact, rugged and relatively inexpensive. The objective is to develop ultrasonic sensors that (1) can be attached permanently to a pipeline wall, possibly as a spool piece inserted into the line and (2) can clamp onto an existing pipeline wall and be movable to another location. Two examples of systems based on pulse-echo and transmission signal analysis are used to illustrate some of the capabilities of ultrasonic on-line measurements with technologies that have use in the nuclear, petro-chemical, and food process industries.

  6. Real time gamma-ray signature identifier

    DOEpatents

    Rowland, Mark; Gosnell, Tom B.; Ham, Cheryl; Perkins, Dwight; Wong, James

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  7. Real Time Radiation Monitoring Using Nanotechnology

    NASA Technical Reports Server (NTRS)

    Li, Jing (Inventor); Wilkins, Richard T. (Inventor); Hanratty, James J. (Inventor); Lu, Yijiang (Inventor)

    2016-01-01

    System and method for monitoring receipt and estimating flux value, in real time, of incident radiation, using two or more nanostructures (NSs) and associated terminals to provide closed electrical paths and to measure one or more electrical property change values .DELTA.EPV, associated with irradiated NSs, during a sequence of irradiation time intervals. Effects of irradiation, without healing and with healing, of the NSs, are separately modeled for first order and second order healing. Change values.DELTA.EPV are related to flux, to cumulative dose received by NSs, and to radiation and healing effectivity parameters and/or.mu., associated with the NS material and to the flux. Flux and/or dose are estimated in real time, based on EPV change values, using measured .DELTA.EPV values. Threshold dose for specified changes of biological origin (usually undesired) can be estimated. Effects of time-dependent radiation flux are analyzed in pre-healing and healing regimes.

  8. Distributed Real-Time Computing with Harness

    SciTech Connect

    Di Saverio, Emanuele; Cesati, Marco; Di Biagio, Christian; Pennella, Guido; Engelmann, Christian

    2007-01-01

    Modern parallel and distributed computing solutions are often built onto a ''middleware'' software layer providing a higher and common level of service between computational nodes. Harness is an adaptable, plugin-based middleware framework for parallel and distributed computing. This paper reports recent research and development results of using Harness for real-time distributed computing applications in the context of an industrial environment with the needs to perform several safety critical tasks. The presented work exploits the modular architecture of Harness in conjunction with a lightweight threaded implementation to resolve several real-time issues by adding three new Harness plug-ins to provide a prioritized lightweight execution environment, low latency communication facilities, and local timestamped event logging.

  9. Real Time Radiation Exposure And Health Risks

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Barzilla, Janet E.; Semones, Edward J.

    2015-01-01

    Radiation from solar particle events (SPEs) poses a serious threat to future manned missions outside of low Earth orbit (LEO). Accurate characterization of the radiation environment in the inner heliosphere and timely monitoring the health risks to crew are essential steps to ensure the safety of future Mars missions. In this project we plan to develop an approach that can use the particle data from multiple satellites and perform near real-time simulations of radiation exposure and health risks for various exposure scenarios. Time-course profiles of dose rates will be calculated with HZETRN and PDOSE from the energy spectrum and compositions of the particles archived from satellites, and will be validated from recent radiation exposure measurements in space. Real-time estimation of radiation risks will be investigated using ARRBOD. This cross discipline integrated approach can improve risk mitigation by providing critical information for risk assessment and medical guidance to crew during SPEs.

  10. Visualizations for Real-time Pricing Demonstration

    SciTech Connect

    Marinovici, Maria C.; Hammerstrom, Janelle L.; Widergren, Steven E.; Dayley, Greg K.

    2014-10-13

    In this paper, the visualization tools created for monitoring the operations of a real-time pricing demonstration system that runs at a distribution feeder level are presented. The information these tools provide gives insights into demand behavior from automated price responsive devices, distribution feeder characteristics, impact of weather on system’s development, and other significant dynamics. Given the large number of devices that bid into a feeder-level real-time electricity market, new techniques are explored to summarize the present state of the system and contrast that with previous trends as well as future projections. To better understand the system behavior and correctly inform decision-making procedures, effective visualization of the data is imperative.

  11. AMON: Transition to real-time operations

    NASA Astrophysics Data System (ADS)

    Cowen, D. F.; Keivani, A.; Tešić, G.

    2016-04-01

    The Astrophysical Multimessenger Observatory Network (AMON) will link the world's leading high-energy neutrino, cosmic-ray, gamma-ray and gravitational wave observatories by performing real-time coincidence searches for multimessenger sources from observatories' subthreshold data streams. The resulting coincidences will be distributed to interested parties in the form of electronic alerts for real-time follow-up observation. We will present the science case, design elements, current and projected partner observatories, status of the AMON project, and an initial AMON-enabled analysis. The prototype of the AMON server has been online since August 2014 and processing archival data. Currently, we are deploying new high-uptime servers and will be ready to start issuing alerts as early as winter 2015/16.

  12. Real-Time Gauge/Gravity Duality

    SciTech Connect

    Skenderis, Kostas; Rees, Balt C. van

    2008-08-22

    We present a general prescription for the holographic computation of real-time n-point functions in nontrivial states. In quantum field theory such real-time computations involve a choice of a time contour in the complex time plane. The holographic prescription amounts to 'filling in' this contour with bulk solutions: real segments of the contour are filled in with Lorentzian solutions while imaginary segments are filled in with Riemannian solutions and appropriate matching conditions are imposed at the corners of the contour. We illustrate the general discussion by computing the 2-point function of a scalar operator using this prescription and by showing that this leads to an unambiguous answer with the correct i{epsilon} insertions.

  13. Real-Time Imaging of Quantum Entanglement

    PubMed Central

    Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science. PMID:23715056

  14. Real-time remote scientific model validation

    NASA Technical Reports Server (NTRS)

    Frainier, Richard; Groleau, Nicolas

    1994-01-01

    This paper describes flight results from the use of a CLIPS-based validation facility to compare analyzed data from a space life sciences (SLS) experiment to an investigator's preflight model. The comparison, performed in real-time, either confirms or refutes the model and its predictions. This result then becomes the basis for continuing or modifying the investigator's experiment protocol. Typically, neither the astronaut crew in Spacelab nor the ground-based investigator team are able to react to their experiment data in real time. This facility, part of a larger science advisor system called Principal Investigator in a Box, was flown on the space shuttle in October, 1993. The software system aided the conduct of a human vestibular physiology experiment and was able to outperform humans in the tasks of data integrity assurance, data analysis, and scientific model validation. Of twelve preflight hypotheses associated with investigator's model, seven were confirmed and five were rejected or compromised.

  15. "Fast" Is Not "Real-Time": Designing Effective Real-Time AI Systems

    NASA Astrophysics Data System (ADS)

    O'Reilly, Cindy A.; Cromarty, Andrew S.

    1985-04-01

    Realistic practical problem domains (such as robotics, process control, and certain kinds of signal processing) stand to benefit greatly from the application of artificial intelligence techniques. These problem domains are of special interest because they are typified by complex dynamic environments in which the ability to select and initiate a proper response to environmental events in real time is a strict prerequisite to effective environmental interaction. Artificial intelligence systems developed to date have been sheltered from this real-time requirement, however, largely by virtue of their use of simplified problem domains or problem representations. The plethora of colloquial and (in general) mutually inconsistent interpretations of the term "real-time" employed by workers in each of these domains further exacerbates the difficul-ties in effectively applying state-of-the-art problem solving tech-niques to time-critical problems. Indeed, the intellectual waters are by now sufficiently muddied that the pursuit of a rigorous treatment of intelligent real-time performance mandates the redevelopment of proper problem perspective on what "real-time" means, starting from first principles. We present a simple but nonetheless formal definition of real-time performance. We then undertake an analysis of both conventional techniques and AI technology with respect to their ability to meet substantive real-time performance criteria. This analysis provides a basis for specification of problem-independent design requirements for systems that would claim real-time performance. Finally, we discuss the application of these design principles to a pragmatic problem in real-time signal understanding.

  16. REAL TIME BETATRON TUNE CONTROL IN RHIC.

    SciTech Connect

    SCHULTHEISS,C.; CAMERON,P.; MARUSIC,A.; VAN ZEIJTS,J.

    2002-06-02

    Precise control of the betatron tunes is necessary to preserve proton polarization during the RHIC ramp. In addition, control of the tunes during beam deceleration is necessary due to hysteresis in the superconducting magnets. A real-time feedback system to control the betatron tunes during ramping has been developed for use in RHIC. This paper describes this system and presents the results from commissioning the system during the polarized proton run.

  17. Real time computer controlled weld skate

    NASA Technical Reports Server (NTRS)

    Wall, W. A., Jr.

    1977-01-01

    A real time, adaptive control, automatic welding system was developed. This system utilizes the general case geometrical relationships between a weldment and a weld skate to precisely maintain constant weld speed and torch angle along a contoured workplace. The system is compatible with the gas tungsten arc weld process or can be adapted to other weld processes. Heli-arc cutting and machine tool routing operations are possible applications.

  18. Real-time radiographic inspection facility

    NASA Technical Reports Server (NTRS)

    Roberts, E., Jr.

    1977-01-01

    A real time radiographic inspection facility has been developed for nondestructive evaluation applications. It consists of an X-ray source, an X-ray sensitive television imaging system, an electronic analog image processing system, and a digital image processing system. The digital image processing system is composed of a computer with the necessary software to drive the overall facility. Descriptions are given of the design strategy, the facility's components, and its current capabilities.

  19. Real-time RGBD SLAM system

    NASA Astrophysics Data System (ADS)

    Czupryński, BłaŻej; Strupczewski, Adam

    2015-09-01

    A real-time tracking and mapping SLAM system is presented. The developed system uses input from an RGBD sensor and tracks the camera pose from frame to frame. The tracking is based on matched feature points and is performed with respect to selected keyframes. The system is robust and scalable, as an arbitrary number of keyframes can be chosen for visualization and tracking depending on the desired accuracy and speed. The presented system is also a good platform for further research.

  20. Real time closed orbit correction system

    SciTech Connect

    Yu, L.H.; Biscardi, R.; Bittner, J.; Bozoki, E.; Galayda, J.; Krinsky, S.; Nawrocky, R.; Singh, O.; Vignola, G.

    1989-01-01

    We describe a global closed orbit feedback experiment, based upon a real time harmonic analysis of both the orbit movement and the correction magnetic fields. The feedback forces the coefficients of a few harmonics near the betatron tune to vanish, and significantly improves the global orbit stability. We present the results of the experiment in the UV ring using 4 detectors and 4 trims, in which maximum observed displacement was reduced by a factor of between 3 and 4. 4 refs., 3 figs.

  1. Real-Time X-Ray Inspection

    NASA Technical Reports Server (NTRS)

    Bulthuis, Ronald V.

    1988-01-01

    X-ray imaging instrument adapted to continuous scanning. Modern version of fluoroscope enables rapid x-ray inspection of parts. Developed for detection of buckling in insulated ducts. Uses radiation from radioactive gadolinium or thallium source. Instrument weighs only 6 1/2 lb. Quickly scanned by hand along duct surface, providing real-time image. Based on Lixiscope, developed at Goddard Space Flight Center.

  2. Portable real time neutron spectrometry II

    NASA Astrophysics Data System (ADS)

    Maurer, R. H.; Roth, D. R.; Fainchtein, R.; Goldsten, J. O.; Kinnison, J. D.

    2000-01-01

    We describe the continued development of a portable, real-time neutron spectrometer. The spectrometer is composed of two distinct detector systems: a Helium 3 gas filled proportional counter for the lower neutron energy interval between 20 KeV and 2 MeV and a bulk silicon solid state detector for the higher energy interval between 2 MeV and 500 MeV. Modeling and experimental results with mono-energetic neutron beams are reported. .

  3. Real-time contingency handling in MAESTRO

    NASA Technical Reports Server (NTRS)

    Britt, Daniel L.; Geoffroy, Amy L.

    1992-01-01

    A scheduling and resource management system named MAESTRO was interfaced with a Space Station Module Power Management and Distribution (SSM/PMAD) breadboard at MSFC. The combined system serves to illustrate the integration of planning, scheduling, and control in a realistic, complex domain. This paper briefly describes the functional elements of the combined system, including normal and contingency operational scenarios, then focusses on the method used by the scheduler to handle real-time contingencies.

  4. Real-time optical image processing techniques

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1988-01-01

    Nonlinear real-time optical processing on spatial pulse frequency modulation has been pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the modification of micro-channel spatial light modulators (MSLMs). Micro-channel spatial light modulators are modified via the Fabry-Perot method to achieve the high gamma operation required for non-linear operation. Real-time nonlinear processing was performed using the halftone screen and MSLM. The experiments showed the effectiveness of the thresholding and also showed the needs of higher SBP for image processing. The Hughes LCLV has been characterized and found to yield high gamma (about 1.7) when operated in low frequency and low bias mode. Cascading of two LCLVs should also provide enough gamma for nonlinear processing. In this case, the SBP of the LCLV is sufficient but the uniformity of the LCLV needs improvement. These include image correlation, computer generation of holograms, pseudo-color image encoding for image enhancement, and associative-retrieval in neural processing. The discovery of the only known optical method for dynamic range compression of an input image in real-time by using GaAs photorefractive crystals is reported. Finally, a new architecture for non-linear multiple sensory, neural processing has been suggested.

  5. The Raptor Real-Time Processing Architecture

    NASA Astrophysics Data System (ADS)

    Galassi, M.; Starr, D.; Wozniak, P.; Brozdin, K.

    The primary goal of Raptor is ambitious: to identify interesting optical transients from very wide field of view telescopes in real time, and then to quickly point the higher resolution Raptor ``fovea'' cameras and spectrometer to the location of the optical transient. The most interesting of Raptor's many applications is the real-time search for orphan optical counterparts of Gamma Ray Bursts. The sequence of steps (data acquisition, basic calibration, source extraction, astrometry, relative photometry, the smarts of transient identification and elimination of false positives, telescope pointing feedback, etc.) is implemented with a ``component'' approach. All basic elements of the pipeline functionality have been written from scratch or adapted (as in the case of SExtractor for source extraction) to form a consistent modern API operating on memory resident images and source lists. The result is a pipeline which meets our real-time requirements and which can easily operate as a monolithic or distributed processing system. Finally, the Raptor architecture is entirely based on free software (sometimes referred to as ``open source'' software). In this paper we also discuss the interplay between various free software technologies in this type of astronomical problem.

  6. Raptor -- Mining the Sky in Real Time

    NASA Astrophysics Data System (ADS)

    Galassi, M.; Borozdin, K.; Casperson, D.; McGowan, K.; Starr, D.; White, R.; Wozniak, P.; Wren, J.

    2004-06-01

    The primary goal of Raptor is ambitious: to identify interesting optical transients from very wide field of view telescopes in real time, and then to quickly point the higher resolution Raptor ``fovea'' cameras and spectrometer to the location of the optical transient. The most interesting of Raptor's many applications is the real-time search for orphan optical counterparts of Gamma Ray Bursts. The sequence of steps (data acquisition, basic calibration, source extraction, astrometry, relative photometry, the smarts of transient identification and elimination of false positives, telescope pointing feedback...) is implemented with a ``component'' aproach. All basic elements of the pipeline functionality have been written from scratch or adapted (as in the case of SExtractor for source extraction) to form a consistent modern API operating on memory resident images and source lists. The result is a pipeline which meets our real-time requirements and which can easily operate as a monolithic or distributed processing system. Finally: the Raptor architecture is entirely based on free software (sometimes referred to as "open source" software). In this paper we also discuss the interplay between various free software technologies in this type of astronomical problem.

  7. Steering a mobile robot in real time

    NASA Astrophysics Data System (ADS)

    Chuah, Mei C.; Fennema, Claude L., Jr.

    1994-10-01

    Using computer vision for mobile robot navigation has been of interest since the 1960s. This interest is evident in even the earliest robot projects: at SRI International (`Shakey') and at the Stanford University (`Stanford Cart'). These pioneering projects provided a foundation for late work but fell far short of providing real time solutions. Since the mid 1980s, the ARPA sponsored ALV and UGV projects have established a need for real time navigation. To achieve the necessary speed, some researchers have focused on building faster hardware; others have turned to the use of new computational architectures, such as neural nets. The work described in this paper uses another approach that has become known as `perceptual servoing.' Previously reported results show that perceptual servoing is both fast and accurate when used to steer vehicles equipped with precise odometers. When the instrumentation on the vehicle does not give precise measurements of distance traveled, as could be the case for a vehicle traveling on ice or mud, new techniques are required to accommodate the reduced ability to make accurate predictions about motion and control. This paper presents a method that computes estimates of distance traveled using landmarks and path information. The new method continues to perform in real time using modest computational facilities, and results demonstrate the effects of the new implementation on steering accuracy.

  8. Real-time earthquake data feasible

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    Scientists agree that early warning devices and monitoring of both Hurricane Hugo and the Mt. Pinatubo volcanic eruption saved thousands of lives. What would it take to develop this sort of early warning and monitoring system for earthquake activity?Not all that much, claims a panel assigned to study the feasibility, costs, and technology needed to establish a real-time earthquake monitoring (RTEM) system. The panel, drafted by the National Academy of Science's Committee on Seismology, has presented its findings in Real-Time Earthquake Monitoring. The recently released report states that “present technology is entirely capable of recording and processing data so as to provide real-time information, enabling people to mitigate somewhat the earthquake disaster.” RTEM systems would consist of two parts—an early warning system that would give a few seconds warning before severe shaking, and immediate postquake information within minutes of the quake that would give actual measurements of the magnitude. At this time, however, this type of warning system has not been addressed at the national level for the United States and is not included in the National Earthquake Hazard Reduction Program, according to the report.

  9. Real-time monitoring system for microfluidics

    NASA Astrophysics Data System (ADS)

    Sapuppo, F.; Cantelli, G.; Fortuna, L.; Arena, P.; Bucolo, M.

    2007-05-01

    A new non-invasive real-time system for the monitoring and control of microfluidodynamic phenomena is proposed. The general purpose design of such system is suitable for in vitro and in vivo experimental setup and therefore for microfluidic application in the biomedical field such as lab-on-chip and for research studies in the field of microcirculation. The system consists of an ad hoc optical setup for image magnification providing images suitable for image acquisition and processing. The optic system was designed and developed using discrete opto-mechanic components mounted on a breadboard in order to provide an optic path accessible at any point where the information needs to be acquired. The optic sensing, acquisition, and processing were performed using an integrated vision system based on the Cellular Nonlinear Networks (CNNs) analogic technology called Focal Plane Processor (FPP, Eye-RIS, Anafocus) and inserted in the optic path. Ad hoc algorithms were implemented for the real-time analysis and extraction of fluido-dynamic parameters in micro-channels. They were tested on images recorded during in vivo microcirculation experiments on hamsters and then they were applied on images optically acquired and processed in real-time during in vitro experiments on a continuous microfluidic device (serpentine mixer, ThinXXS) with a two-phase fluid.

  10. Real-time realistic skin translucency.

    PubMed

    Jimenez, Jorge; Whelan, David; Sundstedt, Veronica; Gutierrez, Diego

    2010-01-01

    Diffusion theory allows the production of realistic skin renderings. The dipole and multipole models allow for solving challenging diffusion-theory equations efficiently. By using texture-space diffusion, a Gaussian-based approximation, and programmable graphics hardware, developers can create real-time, photorealistic skin renderings. Performing this diffusion in screen space offers advantages that make diffusion approximation practical in scenarios such as games, where having the best possible performance is crucial. However, unlike the texture-space counterpart, the screen-space approach can't simulate transmittance of light through thin geometry; it yields unrealistic results in those cases. A new transmittance algorithm turns the screen-space approach into an efficient global solution, capable of simulating both reflectance and transmittance of light through a multilayered skin model. The transmittance calculations are derived from physical equations, which are implemented through simple texture access. The method performs in real time, requiring no additional memory usage and only minimal additional processing power and memory bandwidth. Despite its simplicity, this practical model manages to reproduce the look of images rendered with other techniques (both offline and real time) such as photon mapping or diffusion approximation. PMID:20650726

  11. Software Analyzes Complex Systems in Real Time

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Expert system software programs, also known as knowledge-based systems, are computer programs that emulate the knowledge and analytical skills of one or more human experts, related to a specific subject. SHINE (Spacecraft Health Inference Engine) is one such program, a software inference engine (expert system) designed by NASA for the purpose of monitoring, analyzing, and diagnosing both real-time and non-real-time systems. It was developed to meet many of the Agency s demanding and rigorous artificial intelligence goals for current and future needs. NASA developed the sophisticated and reusable software based on the experience and requirements of its Jet Propulsion Laboratory s (JPL) Artificial Intelligence Research Group in developing expert systems for space flight operations specifically, the diagnosis of spacecraft health. It was designed to be efficient enough to operate in demanding real time and in limited hardware environments, and to be utilized by non-expert systems applications written in conventional programming languages. The technology is currently used in several ongoing NASA applications, including the Mars Exploration Rovers and the Spacecraft Health Automatic Reasoning Pilot (SHARP) program for the diagnosis of telecommunication anomalies during the Neptune Voyager Encounter. It is also finding applications outside of the Space Agency.

  12. Real-time detection of airborne chemicals

    NASA Astrophysics Data System (ADS)

    Hartenstein, Steven D.; Tremblay, Paul L. A.; Fryer, Michael O.; Kaser, Timothy

    1999-02-01

    Accurate, real time air quality measurements are difficult to make, because real time sensors for some gas species are not specific to a single gas. For example, some carbon dioxide sensors react to hydrogen sulfide. By combining the response of several types of real time gas sensors the Real-time Air Quality Monitoring System (RAQMS) accurately measures many different gases. The sensor suite for the INEEL's Real-time Air Quality Monitoring System (RAQMS) incudes seven, inexpensive, commercially-available chemical sensors for gases associated with air quality. These chemical sensors are marketed as devices to measure carbon dioxide, hydrogen sulfide, carbon monoxide, sulfur dioxide, nitrogen dioxide, water vapor and volatile organic compounds (VOC's). However, these chemical sensors respond to more than a single compound, e.g. both the VOC and the carbon dioxide sensors respond strongly to methane. This multiple sensor response to a given chemical is used to advantage in the RAQMS system, as patterns of responses by the sensors were found to be unique and distinguishable for several chemicals. Therefore, there is the potential that the seven sensors combined output can: (1) provide more accurate measurements of the advertized gases and (2) estimate the presence and quantity of additional gases. The patterns of sensor response can be thought of as clusters of data points in a seven dimensional space. One dimension for each sensor's output. For all of the gases tested, these clusters were separated enough that good quantitative results were obtained. As an example, the prototype RAQMS is able to distinguish methane from butane and predict accurate concentrations of both gases. A mathematical technique for estimating probability density functions from random samples is used to distinguish the data clusters from each other and to make gas concentration estimates. Bayes optimal estimates of gas concentration are calculated using the probability density function. The

  13. Acting to gain information: Real-time reasoning meets real-time perception

    NASA Technical Reports Server (NTRS)

    Rosenschein, Stan

    1994-01-01

    Recent advances in intelligent reactive systems suggest new approaches to the problem of deriving task-relevant information from perceptual systems in real time. The author will describe work in progress aimed at coupling intelligent control mechanisms to real-time perception systems, with special emphasis on frame rate visual measurement systems. A model for integrated reasoning and perception will be discussed, and recent progress in applying these ideas to problems of sensor utilization for efficient recognition and tracking will be described.

  14. Automated dimensional inspection with real-time photogrammetry

    NASA Astrophysics Data System (ADS)

    Beyer, Horst A.

    Real-time photogrammetry, in the sense of on-line digital close-range photogrammetry, has reached a high level of performance. It has evolved from a research topic to a viable technology for a large number of applications. In order to gain acceptance by industrial users the performance must be proven under real-world conditions. This paper reports on a pilot study for the deformation analysis of car bodies in crash tests, successfully performed in cooperation with a car manufacturer. The performance of a prototype of a real-time photogrammetric system (RTPS) was verified under factory floor conditions. An accuracy of better than 1 mm in each coordinate axis was attained within a 5 × 2 × 2 m 3 measurement volume with off-the-shelf CCTV-type solid-state cameras. The measurement task and the requirements of the pilot study are outlined. The measurement configuration, the hardware, and the software used in the test are addressed. The measurement procedure, the pre-calibration of the CCD-cameras, the accuracy, the measurement speed, and the problems encountered in the study are discussed.

  15. Graph-based real-time fault diagnostics

    NASA Technical Reports Server (NTRS)

    Padalkar, S.; Karsai, G.; Sztipanovits, J.

    1988-01-01

    A real-time fault detection and diagnosis capability is absolutely crucial in the design of large-scale space systems. Some of the existing AI-based fault diagnostic techniques like expert systems and qualitative modelling are frequently ill-suited for this purpose. Expert systems are often inadequately structured, difficult to validate and suffer from knowledge acquisition bottlenecks. Qualitative modelling techniques sometimes generate a large number of failure source alternatives, thus hampering speedy diagnosis. In this paper we present a graph-based technique which is well suited for real-time fault diagnosis, structured knowledge representation and acquisition and testing and validation. A Hierarchical Fault Model of the system to be diagnosed is developed. At each level of hierarchy, there exist fault propagation digraphs denoting causal relations between failure modes of subsystems. The edges of such a digraph are weighted with fault propagation time intervals. Efficient and restartable graph algorithms are used for on-line speedy identification of failure source components.

  16. Real-time aqueous tritium monitor using liquid scintillation counting

    SciTech Connect

    Sigg, R.A.; McCarty, J.E.; Livingston, R.R.; Sanders, M.A.

    1994-07-01

    An ability to continuously monitor low-level tritium releases in aqueous effluents is of particular interest to heavy water facilities such as those at the Savannah River Site (SRS) and Canadian CANDU reactors. SRS developed a real-time monitoring system based on flow-through liquid scintillation (LS) counting. Sensitivities of 16 pCi/mL and 1 pCi/mL result from five minute and daily averages of counting data respectively. This sensitivity is about 200 times better than similar methods using solid scintillants. The LS system features uncomplicated sample pretreatment, precise of the cocktail and sample water, system features uncomplicated sample pretreatment, precise proportioning of the cocktail and sample water, on-line quench corrections, cocktail consumption as low as 0.15 mL/min, and response to changes in environmental tritium is less than 30 minutes. Field tests demonstrate that conditions necessary for stable analytical results are achieved.

  17. Real time polarization imaging of weld pool surface

    NASA Astrophysics Data System (ADS)

    Stolz, C.; Coniglio, N.; Mathieu, A.; Aubreton, O.

    2015-04-01

    The search for an efficient on-line monitoring system focused on the real-time analysis of arc welding quality is an active area of research. The topography and the superficial temperature field of the weld pool can provide important information which can be used to regulate the welding parameters for depositing consistent welds. One difficulty relies on accessing this information despite the bright dazzling welding arc. In the present work, Stokes polarimetry and associated shape-from-polarization methods are applied for the analysis of the weld pool through its 810 nm-wavelength infrared emissions. The obtained information can provide a better understanding of the process, such as the usage of the topography to seek Marangoni flows direction, or to have a denser 3D map to improve numerical simulation models.

  18. Real-time structured light depth extraction

    NASA Astrophysics Data System (ADS)

    Keller, Kurtis; Ackerman, Jeremy D.

    2000-03-01

    Gathering depth data using structured light has been a procedure for many different environments and uses. Many of these system are utilized instead of laser line scanning because of their quickness. However, to utilize depth extraction for some applications, in our case laparoscopic surgery, the depth extraction must be in real time. We have developed an apparatus that speeds up the raw image display and grabbing in structured light depth extraction from 30 frames per second to 60 and 180 frames per second. This results in an updated depth and texture map of about 15 times per second versus about 3. This increased update rate allows for real time depth extraction for use in augmented medical/surgical applications. Our miniature, fist-sized projector utilizes an internal ferro-reflective LCD display that is illuminated with cold light from a flex light pipe. The miniature projector, attachable to a laparoscope, displays inverted pairs of structured light into the body where these images are then viewed by a high-speed camera set slightly off axis from the projector that grabs images synchronously. The images from the camera are ported to a graphics-processing card where six frames are worked on simultaneously to extract depth and create mapped textures from these images. This information is then sent to the host computer with 3D coordinate information of the projector/camera and the associated textures. The surgeon is then able to view body images in real time from different locations without physically moving the laparoscope imager/projector, thereby, reducing the trauma of moving laparoscopes in the patient.

  19. Prototype COBRA near-real-time processor

    NASA Astrophysics Data System (ADS)

    Earp, Samuel L.; Marshall, J. W.; Anthony, E. R.

    1996-05-01

    The U.S. Marine Corps COBRA countermine surveillance program has developed, as a risk- reduction alternative, a near real-time processor for the output of the COBRA multispectral camera. This processor has been tested using approximately 13.5 hours of video data from the COBRA DT-0 developmental test, representing approximately 243,000 frames of multispectral data. The results have been very encouraging--the system is robust and the minefield detection performance has met the goals of the COBRA program. The MITRE COBRA prototype processor is built from commercial-off-the-shelf VME bus technology. Video capture is provided by a Transtech TDM 435 capture/display VME card. Control is performed on a GMSV64 Super Sparc card that resides in two VME slots. The compute engine consists of two Pentek 4270 Quad TMS320C40 digital signal processing boards. There are two additional 6U VME boards to provide fast SCSI IO. The system is capable of capturing, digitizing and processing the COBRA data stream at between one-eighth and one-half real-time, depending on processing options. The nominal compute power of the system is 2.2 GOPS, 450 MFLOPS. The system is easily upgradeable due to the open architecture--one proposed upgrade will be to increase the number of available TMS320C40 processors to sixteen, providing real-time performance without compromising the current investment in software and hardware. The software for the system is primarily written in C, with hand-optimized assembler code for portions of the compute kernel. The algorithm that is implemented is based on the MITRE minefield detection algorithm detailed at AeroSense '95. The system development required a registration algorithm--this was the only algorithm development that was performed, the rest of the algorithms coming from previous MITRE effort on the COBRA program. Lessons learned from the development and upgrade/test plans will be presented.

  20. Exploring Earthquakes in Real-Time

    NASA Astrophysics Data System (ADS)

    Bravo, T. K.; Kafka, A. L.; Coleman, B.; Taber, J. J.

    2013-12-01

    Earthquakes capture the attention of students and inspire them to explore the Earth. Adding the ability to view and explore recordings of significant and newsworthy earthquakes in real-time makes the subject even more compelling. To address this opportunity, the Incorporated Research Institutions for Seismology (IRIS), in collaboration with Moravian College, developed ';jAmaSeis', a cross-platform application that enables students to access real-time earthquake waveform data. Students can watch as the seismic waves are recorded on their computer, and can be among the first to analyze the data from an earthquake. jAmaSeis facilitates student centered investigations of seismological concepts using either a low-cost educational seismograph or streamed data from other educational seismographs or from any seismic station that sends data to the IRIS Data Management System. After an earthquake, students can analyze the seismograms to determine characteristics of earthquakes such as time of occurrence, distance from the epicenter to the station, magnitude, and location. The software has been designed to provide graphical clues to guide students in the analysis and assist in their interpretations. Since jAmaSeis can simultaneously record up to three stations from anywhere on the planet, there are numerous opportunities for student driven investigations. For example, students can explore differences in the seismograms from different distances from an earthquake and compare waveforms from different azimuthal directions. Students can simultaneously monitor seismicity at a tectonic plate boundary and in the middle of the plate regardless of their school location. This can help students discover for themselves the ideas underlying seismic wave propagation, regional earthquake hazards, magnitude-frequency relationships, and the details of plate tectonics. The real-time nature of the data keeps the investigations dynamic, and offers students countless opportunities to explore.

  1. Object detection in real-time

    NASA Astrophysics Data System (ADS)

    Solder, Ulrich; Graefe, Volker

    1991-03-01

    An algorithm working on monocular gray-scale image sequences for object detection combined with a road tracker is presented. This algorithm appropriate for the real-time demands of an autonomous car driving with speeds over 40 km/h may be used for triggering obstacle avoidance maneuvers such as coming to a safe stop automatically in front of an obstacle or following another car. Moving and static objects have been detected in real-world experiments on various types of roads even under unfavorable weather conditions. . Morgenthaler and

  2. Real-time failure control (SAFD)

    NASA Technical Reports Server (NTRS)

    Panossian, Hagop V.; Kemp, Victoria R.; Eckerling, Sherry J.

    1990-01-01

    The Real Time Failure Control program involves development of a failure detection algorithm, referred as System for Failure and Anomaly Detection (SAFD), for the Space Shuttle Main Engine (SSME). This failure detection approach is signal-based and it entails monitoring SSME measurement signals based on predetermined and computed mean values and standard deviations. Twenty four engine measurements are included in the algorithm and provisions are made to add more parameters if needed. Six major sections of research are presented: (1) SAFD algorithm development; (2) SAFD simulations; (3) Digital Transient Model failure simulation; (4) closed-loop simulation; (5) SAFD current limitations; and (6) enhancements planned for.

  3. Near real time data processing system

    NASA Astrophysics Data System (ADS)

    Mousessian, Ardvas; Vuu, Christina

    2008-08-01

    Raytheon recently developed and implemented a Near Real Time (NRT) data processing subsystem for Earth Observing System (EOS) Microwave Limb Sounder (MLS3) instrument on NASA Aura spacecraft. The NRT can be viewed as a customized Science Information Processing System (SIPS) where the measurements and information provided by the instrument are expeditiously processed, packaged, and delivered. The purpose of the MLS NRT is to process Level 0 data up through Level 2, and distribute standard data products to the customer within 3-5 hours of the first set of data arrival.

  4. Real-Time Surface Traffic Adviser

    NASA Technical Reports Server (NTRS)

    Glass, Brian J. (Inventor); Spirkovska, Liljana (Inventor); McDermott, William J. (Inventor); Reisman, Ronald J. (Inventor); Gibson, James (Inventor); Iverson, David L. (Inventor)

    2001-01-01

    A real-time data management system which uses data generated at different rates by multiple heterogeneous incompatible data sources are presented. In one embodiment, the invention is as an airport surface traffic data management system (traffic adviser) that electronically interconnects air traffic control, airline, and airport operations user communities to facilitate information sharing and improve taxi queuing. The system uses an expert system to fuse dam from a variety of airline, airport operations, ramp control, and air traffic control sources, in order to establish, predict, and update reference data values for every aircraft surface operation.

  5. Real-time teleteaching in medical physics.

    PubMed

    Woo, M; Ng, Kh

    2008-01-01

    Medical physics is a relatively small professional community, usually with a scarcity of expertise that could greatly benefit students entering the field. However, the reach of the profession can span great geographical distances, making the training of students a difficult task. In addition to the requirement of training new students, the evolving field of medical physics, with its many emerging advanced techniques and technologies, could benefit greatly from ongoing continuing education as well as consultation with experts.Many continuing education courses and workshops are constantly being offered, including many web-based study courses and virtual libraries. However, one mode of education and communication that has not been widely used is the real-time interactive process. Video-based conferencing systems do exist, but these usually require a substantial amount of effort and cost to set up.The authors have been working on promoting the ever-expanding capability of the Internet to facilitate the education of medical physics to students entering the field. A pilot project has been carried out for six years and reported previously. The project is a collaboration between the Department of Medical Physics at the Toronto Odette Cancer Centre in Canada and the Department of Biomedical Imaging at the University of Malaya in Malaysia. Since 2001, medical physics graduate students at the University of Malaya have been taught by lecturers from Toronto every year, using the Internet as the main tool of communication.The pilot study explored the different methods that can be used to provide real-time interactive remote education, and delivered traditional classroom lectures as well as hands-on workshops.Another similar project was started in 2007 to offer real-time teaching to a class of medical physics students at Wuhan University in Hubei, China. There are new challenges as well as new opportunities associated with this project. By building an inventory of tools and

  6. A novel compact real time radiation detector.

    PubMed

    Li, Shiping; Xu, Xiufeng; Cao, Hongrui; Tang, Shibiao; Ding, Baogang; Yin, Zejie

    2012-08-01

    A novel compact real time radiation detector with cost-effective, ultralow power and high sensitivity based on Geiger counter is presented. The power consumption of this detector which employs CMOS electro circuit and ultralow-power microcontroller is down to only 12.8 mW. It can identify the presences of 0.22 μCi (60)Co at a distance of 1.29 m. Furthermore, the detector supports both USB bus and serial interface. It can be used for personal radiation monitoring and also fits the distributed sensor network for radiation detection. PMID:22738843

  7. Real Time Telemetry Data Capture and Storage

    SciTech Connect

    DeAguero, James G.

    1997-05-14

    This program is used to capture telemetry data from remote instrumentation systems. The data can be captured at the rate of 1M bit per second. The data can come in one of several formats, NRZ, RZ, and Bi-Phase. The DECOM software takes the serial data stream and locks on to a unique code word. By tracking the code word the software can strip out the information. Thus the program can display the incoming data real time while saving the data to disk.

  8. Simultaneous real-time data collection methods

    NASA Technical Reports Server (NTRS)

    Klincsek, Thomas

    1992-01-01

    This paper describes the development of electronic test equipment which executes, supervises, and reports on various tests. This validation process uses computers to analyze test results and report conclusions. The test equipment consists of an electronics component and the data collection and reporting unit. The PC software, display screens, and real-time data-base are described. Pass-fail procedures and data replay are discussed. The OS2 operating system and Presentation Manager user interface system were used to create a highly interactive automated system. The system outputs are hardcopy printouts and MS DOS format files which may be used as input for other PC programs.

  9. Real-time radar rainfall estimation

    NASA Astrophysics Data System (ADS)

    Anagnostou, Emmanouil Nikolaos

    1997-08-01

    This research reports on several aspects of real-time monitoring of the spatial and temporal distribution of rainfall from ground-based weather radar. Optimization of the performance of the National Weather Service's Precipitation Processing Subsystem (PPS) is the first objective. This is achieved by developing a calibration procedure which simultaneously estimates the optimal parameter values by providing a global assessment of the system's performance. Evaluation of the system is based on a data set consisting of two months of radar reflectivity measurements, and hourly raingage rainfall accumulations, from the Melbourne, Florida WSR-88D site. Radar-raingage root mean square (RMS) difference reduction up to 20% with respect to the default system parameter values is demonstrated. Investigation of statistical procedures for real-time adjustment of the mean-field systematic radar rainfall error is the second objective. For this purpose, a data- based Monte Carlo simulation experiment is performed. The study uses an extensive data set of hourly radar rainfall products and raingage accumulations from the Tulsa, Oklahoma WSR-88D site. This intercomparison study concluded to a bias procedure which overall appeared to perform better than the other. The main results from this research are: (1) statistical methods with optimal error model parameters perform significantly better than using only bias observations, and (2) bias adjustment is mostly effective in cold season precipitation measurements. Final objective of this research is development of a new real-time radar rainfall estimation algorithm. The new processing steps introduced in this algorithm are beam- height effect correction, vertical integration, rain classification, and continuous range effect correction. Additionally, the algorithm applies advection correction at the gridded rainfall rates to minimize the temporal sampling effect, and its calibration is cast in a recursive formulation with parameters

  10. Real time analysis of voiced sounds

    NASA Technical Reports Server (NTRS)

    Hong, J. P. (Inventor)

    1976-01-01

    A power spectrum analysis of the harmonic content of a voiced sound signal is conducted in real time by phase-lock-loop tracking of the fundamental frequency, (f sub 0) of the signal and successive harmonics (h sub 1 through h sub n) of the fundamental frequency. The analysis also includes measuring the quadrature power and phase of each frequency tracked, differentiating the power measurements of the harmonics in adjacent pairs, and analyzing successive differentials to determine peak power points in the power spectrum for display or use in analysis of voiced sound, such as for voice recognition.

  11. Real-Time Reed-Solomon Decoder

    NASA Technical Reports Server (NTRS)

    Maki, Gary K.; Cameron, Kelly B.; Owsley, Patrick A.

    1994-01-01

    Generic Reed-Solomon decoder fast enough to correct errors in real time in practical applications designed to be implemented in fewer and smaller very-large-scale integrated, VLSI, circuit chips. Configured to operate in pipelined manner. One outstanding aspect of decoder design is that Euclid multiplier and divider modules contain Galoisfield multipliers configured as combinational-logic cells. Operates at speeds greater than older multipliers. Cellular configuration highly regular and requires little interconnection area, making it ideal for implementation in extraordinarily dense VLSI circuitry. Flight electronics single chip version of this technology implemented and available.

  12. [Development of real-time CT fluoroscopy].

    PubMed

    Katada, K; Anno, H; Takeshita, G; Ogura, Y; Koga, S; Ida, Y; Nonomura, K; Kanno, T; Ohashi, A; Sata, S

    1994-10-25

    A new CT system that permits real-time monitoring of CT images was developed. Phantom and volunteer studies revealed that the images were displayed at a rate of six per second with a delay time of 0.83 second with clinically sufficient resolution (256 x 256) using the newly developed fast image processor and partial-reconstruction algorithm. The clinical trial of stereotactic aspiration of intracerebral hematoma was successful. The initial trial with CT fluoroscopy revealed potential usefulness of the system in biopsy and other CT-guided interventions. PMID:9261196

  13. Systems Analyze Water Quality in Real Time

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A water analyzer developed under Small Business Innovation Research (SBIR) contracts with Kennedy Space Center now monitors treatment processes at water and wastewater facilities around the world. Originally designed to provide real-time detection of nutrient levels in hydroponic solutions for growing plants in space, the ChemScan analyzer, produced by ASA Analytics Inc., of Waukesha, Wisconsin, utilizes spectrometry and chemometric algorithms to automatically analyze multiple parameters in the water treatment process with little need for maintenance, calibration, or operator intervention. The company has experienced a compound annual growth rate of 40 percent over its 15-year history as a direct result of the technology's success.

  14. Real-time optical fiber dosimeter probe

    NASA Astrophysics Data System (ADS)

    Croteau, André; Caron, Serge; Rink, Alexandra; Jaffray, David; Mermut, Ozzy

    2011-03-01

    There is a pressing need for a passive optical fiber dosimeter probe for use in real-time monitoring of radiation dose delivered to clinical radiation therapy patients. An optical fiber probe using radiochromic material has been designed and fabricated based on a thin film of the radiochromic material on a dielectric mirror. Measurements of the net optical density vs. time before, during, and after irradiation at a rate of 500cGy/minute to a total dose of 5 Gy were performed. Net optical densities increased from 0.2 to 2.0 for radiochromic thin film thicknesses of 2 to 20 μm, respectively.

  15. Real-time applications of neural nets

    SciTech Connect

    Spencer, J.E. )

    1989-10-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas e.g. improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. In this paper, such issues are considered, examples given and possibilities discussed.

  16. Residential Real-time Price Response Simulation

    SciTech Connect

    Widergren, Steven E.; Subbarao, Krishnappa; Chassin, David P.; Fuller, Jason C.; Pratt, Robert G.

    2011-10-10

    The electric industry is gaining experience with innovative price responsive demand pilots and limited roll-outs to customers. One of these pilots is investigating real-time pricing signals to engage end-use systems and local distributed generation and storage in a distributed optimization process. Attractive aspects about the approach include strong scalability characteristics, simplified interfaces between automation devices, and the adaptability to integrate a wide variety of devices and systems. Experience in this nascent field is revealing a rich array of for engineering decisions and the application of complexity theory. To test the decisions, computer simulations are used to reveal insights about design, demand elasticity, and the limits of response (including consumer fatigue). Agent-based approaches lend themselves well in the simulation to modeling the participation and interaction of each piece of equipment on a distribution feeder. This paper discusses rate design and simulation experiences at the distribution feeder level where consumers and their HVAC systems and water heaters on a feeder receive real-time pricing signals.

  17. NSTX power supply real time controller

    SciTech Connect

    Neumeyer, C.; Hatcher, R.; Marsala, R.; Ramakrishnan, S.

    2000-01-06

    The NSTX is a new national facility for the study of plasma confinement, heating, and current drive in a low aspect ratio, spherical torus (ST) configuration. The ST configuration is an alternate magnetic confinement concept which is characterized by high beta (ratio plasma pressure to magnetic field pressure) and low toroidal field compared to conventional tokamaks, and could provide a pathway to the realization of a practical fusion power source. The NSTX depends on a real time, high speed, synchronous, and deterministic control system acting on a system of thyristor rectifier power supplies to (1) establish the initial magnetic field configuration; (2) initiate plasma within the vacuum vessel; (3) inductively drive plasma current; and (4) control plasma position and shape. For the initial ``day 0'' 1st plasma operations (Feb. 1999), the system was limited to closed loop proportional-integral current control of the power supplies based on preprogrammed reference waveforms. For the ``day 1'' phase of operations beginning Sept. 1999 the loop has been closed on plasma current and position. This paper focuses on the Power Supply Real Time Controller (PSRTC).

  18. Real-time adaptive video image enhancement

    NASA Astrophysics Data System (ADS)

    Garside, John R.; Harrison, Chris G.

    1999-07-01

    As part of a continuing collaboration between the University of Manchester and British Aerospace, a signal processing array has been constructed to demonstrate that it is feasible to compensate a video signal for the degradation caused by atmospheric haze in real-time. Previously reported work has shown good agreement between a simple physical model of light scattering by atmospheric haze and the observed loss of contrast. This model predicts a characteristic relationship between contrast loss in the image and the range from the camera to the scene. For an airborne camera, the slant-range to a point on the ground may be estimated from the airplane's pose, as reported by the inertial navigation system, and the contrast may be obtained from the camera's output. Fusing data from these two streams provides a means of estimating model parameters such as the visibility and the overall illumination of the scene. This knowledge allows the same model to be applied in reverse, thus restoring the contrast lost to atmospheric haze. An efficient approximation of range is vital for a real-time implementation of the method. Preliminary results show that an adaptive approach to fitting the model's parameters, exploiting the temporal correlation between video frames, leads to a robust implementation with a significantly accelerated throughput.

  19. Real-time computed optical interferometric tomography

    NASA Astrophysics Data System (ADS)

    Shemonski, Nathan D.; Liu, Yuan-Zhi; Ahmad, Adeel; Adie, Steven G.; Carney, P. Scott; Boppart, Stephen A.

    2014-03-01

    High-resolution tomography is of great importance to many areas of biomedical imaging, but with it comes several apparent tradeoffs such as a narrowing depth-of-field and increasing optical aberrations. Overcoming these challenges has attracted many hardware and computational solutions. Hardware solutions, though, can become bulky or expensive and computational approaches can require high computing power or large processing times. This study demonstrates memory efficient implementations of interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO) - two computational approaches for overcoming the depthof- field limitation and the effect of optical aberrations in optical coherence tomography (OCT). Traditionally requiring lengthy post processing, here we report implementations of ISAM and CAO on a single GPU for real-time in vivo imaging. Real-time, camera-limited ISAM processing enabled reliable acquisition of stable data for in vivo imaging, and CAO processing on the same GPU is shown to quickly correct static aberrations. These algorithmic advances hold the promise for high-resolution volumetric imaging in time-sensitive situations as well as enabling aberrationfree cellular-level volumetric tomography.

  20. Real-time Raman sensing without spectrometer

    NASA Astrophysics Data System (ADS)

    Kim, Min Ju; Kim, Sungho; Yang, Timothy K.; Kumar, Dinesh; Bae, Sung Chul

    2015-03-01

    Raman spectroscopy has been a powerful tool in various fields of science and technology ranging from analytical chemistry to biomedical imaging. In spite of unique features, Raman spectroscopy has also some limitations. Among them are weak Raman signal compared to strong fluorescence and relatively complicated setup with expensive and bulky spectrometer. In order to increase the sensitivity of Raman technique, many clever attempts have been made and some of them were very successful including CARS, SRS, and so on. However, these still requires expensive and more complicated setup. In this work, we have attempted to build a real-time compact Raman sensor without spectrometer. Conventional spectrometer was replaced with a narrow-band optical filter and alternatively modulated two lasers with slightly different wavelengths. At one laser, Raman signal from a target molecule was transmitted through the optical filter. At the other laser, this signal was blocked by the optical filter and could not be detected by photon detector. The alternative modulation of two lasers will modulate the Raman signal from a target molecule at the same modulation frequency. This modulated weak Raman signal was amplified by a lock-in amplifier. The advantages of this setup include compactness, low cost, real-time monitoring, and so on. We have tested the sensitivity of this setup and we found that it doesn't have enough sensitivity to detect single molecule-level, but it is still good enough to monitor the change of major chemical composition in the sample.

  1. Real-time computerized annotation of pictures.

    PubMed

    Li, Jia; Wang, James Z

    2008-06-01

    Developing effective methods for automated annotation of digital pictures continues to challenge computer scientists. The capability of annotating pictures by computers can lead to breakthroughs in a wide range of applications, including Web image search, online picture-sharing communities, and scientific experiments. In this work, the authors developed new optimization and estimation techniques to address two fundamental problems in machine learning. These new techniques serve as the basis for the Automatic Linguistic Indexing of Pictures - Real Time (ALIPR) system of fully automatic and high speed annotation for online pictures. In particular, the D2-clustering method, in the same spirit as k-means for vectors, is developed to group objects represented by bags of weighted vectors. Moreover, a generalized mixture modeling technique (kernel smoothing as a special case) for non-vector data is developed using the novel concept of Hypothetical Local Mapping (HLM). ALIPR has been tested by thousands of pictures from an Internet photo-sharing site, unrelated to the source of those pictures used in the training process. Its performance has also been studied at an online demo site where arbitrary users provide pictures of their choices and indicate the correctness of each annotation word. The experimental results show that a single computer processor can suggest annotation terms in real-time and with good accuracy. PMID:18421105

  2. Real-Time Flight Envelope Monitoring System

    NASA Technical Reports Server (NTRS)

    Kerho, Michael; Bragg, Michael B.; Ansell, Phillip J.

    2012-01-01

    The objective of this effort was to show that real-time aircraft control-surface hinge-moment information could be used to provide a robust and reliable prediction of vehicle performance and control authority degradation. For a given airfoil section with a control surface -- be it a wing with an aileron, rudder, or elevator -- the control-surface hinge moment is sensitive to the aerodynamic characteristics of the section. As a result, changes in the aerodynamics of the section due to angle-of-attack or environmental effects such as icing, heavy rain, surface contaminants, bird strikes, or battle damage will affect the control surface hinge moment. These changes include both the magnitude of the hinge moment and its sign in a time-averaged sense, and the variation of the hinge moment with time. The current program attempts to take the real-time hinge moment information from the aircraft control surfaces and develop a system to predict aircraft envelope boundaries across a range of conditions, alerting the flight crew to reductions in aircraft controllability and flight boundaries.

  3. Real Time Simulation of Power Grid Disruptions

    SciTech Connect

    Chinthavali, Supriya; Dimitrovski, Aleksandar D; Fernandez, Steven J; Groer, Christopher S; Nutaro, James J; Olama, Mohammed M; Omitaomu, Olufemi A; Shankar, Mallikarjun; Spafford, Kyle L; Vacaliuc, Bogdan

    2012-11-01

    DOE-OE and DOE-SC workshops (Reference 1-3) identified the key power grid problem that requires insight addressable by the next generation of exascale computing is coupling of real-time data streams (1-2 TB per hour) as the streams are ingested to dynamic models. These models would then identify predicted disruptions in time (2-4 seconds) to trigger the smart grid s self healing functions. This project attempted to establish the feasibility of this approach and defined the scientific issues, and demonstrated example solutions to important smart grid simulation problems. These objectives were accomplished by 1) using the existing frequency recorders on the national grid to establish a representative and scalable real-time data stream; 2) invoking ORNL signature identification algorithms; 3) modeling dynamically a representative region of the Eastern interconnect using an institutional cluster, measuring the scalability and computational benchmarks for a national capability; and 4) constructing a prototype simulation for the system s concept of smart grid deployment. The delivered ORNL enduring capability included: 1) data processing and simulation metrics to design a national capability justifying exascale applications; 2) Software and intellectual property built around the example solutions; 3) demonstrated dynamic models to design few second self-healing.

  4. Real-time sensor data validation

    NASA Technical Reports Server (NTRS)

    Bickmore, Timothy W.

    1994-01-01

    This report describes the status of an on-going effort to develop software capable of detecting sensor failures on rocket engines in real time. This software could be used in a rocket engine controller to prevent the erroneous shutdown of an engine due to sensor failures which would otherwise be interpreted as engine failures by the control software. The approach taken combines analytical redundancy with Bayesian belief networks to provide a solution which has well defined real-time characteristics and well-defined error rates. Analytical redundancy is a technique in which a sensor's value is predicted by using values from other sensors and known or empirically derived mathematical relations. A set of sensors and a set of relations among them form a network of cross-checks which can be used to periodically validate all of the sensors in the network. Bayesian belief networks provide a method of determining if each of the sensors in the network is valid, given the results of the cross-checks. This approach has been successfully demonstrated on the Technology Test Bed Engine at the NASA Marshall Space Flight Center. Current efforts are focused on extending the system to provide a validation capability for 100 sensors on the Space Shuttle Main Engine.

  5. Real-time applications of neural nets

    SciTech Connect

    Spencer, J.E.

    1989-05-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas, e.g., improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. Such issues are considered, examples given and possibilities discussed. 21 refs., 6 figs.

  6. Machine learning for real time remote detection

    NASA Astrophysics Data System (ADS)

    Labbé, Benjamin; Fournier, Jérôme; Henaff, Gilles; Bascle, Bénédicte; Canu, Stéphane

    2010-10-01

    Infrared systems are key to providing enhanced capability to military forces such as automatic control of threats and prevention from air, naval and ground attacks. Key requirements for such a system to produce operational benefits are real-time processing as well as high efficiency in terms of detection and false alarm rate. These are serious issues since the system must deal with a large number of objects and categories to be recognized (small vehicles, armored vehicles, planes, buildings, etc.). Statistical learning based algorithms are promising candidates to meet these requirements when using selected discriminant features and real-time implementation. This paper proposes a new decision architecture benefiting from recent advances in machine learning by using an effective method for level set estimation. While building decision function, the proposed approach performs variable selection based on a discriminative criterion. Moreover, the use of level set makes it possible to manage rejection of unknown or ambiguous objects thus preserving the false alarm rate. Experimental evidences reported on real world infrared images demonstrate the validity of our approach.

  7. Real-time PCR in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Becker, Holger; Hlawatsch, Nadine; Klemm, Richard; Moche, Christian; Hansen-Hagge, Thomas; Gärtner, Claudia

    2014-03-01

    A central method in a standard biochemical laboratory is represented by the polymerase chain reaction (PCR), therefore many attempts have been performed so far to implement this technique in lab-on-a-chip (LOC) devices. PCR is an ideal candidate for miniaturization because of a reduction of assay time and decreased costs for expensive bio-chemicals. In case of the "classical" PCR, detection is done by identification of DNA fragments electrophoretically separated in agarose gels. This method is meanwhile frequently replaced by the so-called Real-Time-PCR because here the exponential increase of amplificates can be observed directly by measurement of DNA interacting fluorescent dyes. Two main methods for on-chip PCRs are available: traditional "batch" PCR in chambers on a chip using thermal cycling, requiring about 30 minutes for a typical PCR protocol and continuous-flow PCR, where the liquid is guided over stationary temperature zones. In the latter case, the PCR protocol can be as fast as 5 minutes. In the presented work, a proof of concept is demonstrated for a real-time-detection of PCR products in microfluidic systems.

  8. 3D MR imaging in real time

    NASA Astrophysics Data System (ADS)

    Guttman, Michael A.; McVeigh, Elliot R.

    2001-05-01

    A system has been developed to produce live 3D volume renderings from an MR scanner. Whereas real-time 2D MR imaging has been demonstrated by several groups, 3D volumes are currently rendered off-line to gain greater understanding of anatomical structures. For example, surgical planning is sometimes performed by viewing 2D images or 3D renderings from previously acquired image data. A disadvantage of this approach is misregistration which could occur if the anatomy changes due to normal muscle contractions or surgical manipulation. The ability to produce volume renderings in real-time and present them in the magnet room could eliminate this problem, and enable or benefit other types of interventional procedures. The system uses the data stream generated by a fast 2D multi- slice pulse sequence to update a volume rendering immediately after a new slice is available. We demonstrate some basic types of user interaction with the rendering during imaging at a rate of up to 20 frames per second.

  9. FPGA-based real-time anisotropic diffusion filtering of 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Castro-Pareja, Carlos R.; Dandekar, Omkar S.; Shekhar, Raj

    2005-02-01

    Three-dimensional ultrasonic imaging, especially the emerging real-time version of it, is particularly valuable in medical applications such as echocardiography, obstetrics and surgical navigation. A known problem with ultrasound images is their high level of speckle noise. Anisotropic diffusion filtering has been shown to be effective in enhancing the visual quality of 3D ultrasound images and as preprocessing prior to advanced image processing. However, due to its arithmetic complexity and the sheer size of 3D ultrasound images, it is not possible to perform online, real-time anisotropic diffusion filtering using standard software implementations. We present an FPGA-based architecture that allows performing anisotropic diffusion filtering of 3D images at acquisition rates, thus enabling the use of this filtering technique in real-time applications, such as visualization, registration and volume rendering.

  10. Real-Time Ellipsometry-Based Transmission Ultrasound Imaging

    SciTech Connect

    Kallman, J S; Poco, J F; Ashby, A E

    2007-02-14

    Ultrasonic imaging is a valuable tool for non-destructive evaluation and medical diagnosis. Reflection mode is exclusively used for medical imaging, and is most frequently used for nondestructive evaluation (NDE) because of the relative speed of acquisition. Reflection mode imaging is qualitative, yielding little information about material properties, and usually only about material interfaces. Transmission imaging can be used in 3D reconstructions to yield quantitative information: sound speed and attenuation. Unfortunately, traditional scanning methods of acquiring transmission data are very slow, requiring on the order of 20 minutes per image. The sensing of acoustic pressure fields as optical images can significantly speed data acquisition. An entire 2D acoustic pressure field can be acquired in under a second. The speed of data acquisition for a 2D view makes it feasible to obtain multiple views of an object. With multiple views, 3D reconstruction becomes possible. A fast, compact (no big magnets or accelerators), inexpensive, 3D imaging technology that uses no ionizing radiation could be a boon to the NDE and medical communities. 2D transmission images could be examined in real time to give the ultrasonic equivalent of a fluoroscope, or accumulated in such a way as to acquire phase and amplitude data over multiple views for 3D reconstruction (for breast cancer imaging, for example). Composite panels produced for the aircraft and automobile industries could be inspected in near real time, and inspection of attenuating materials such as ceramics and high explosives would be possible. There are currently three optical-readout imaging transmission ultrasound technologies available. One is based on frustrated total internal reflection (FTIR) [1,2], one on Fabry-Perot interferometry [3], and another on critical angle modulation [4]. Each of these techniques has its problems. The FTIR based system cannot currently be scaled to large aperture sizes, the Fabry

  11. Real-Time and Near Real-Time Data for Space Weather Applications and Services

    NASA Astrophysics Data System (ADS)

    Singer, H. J.; Balch, C. C.; Biesecker, D. A.; Matsuo, T.; Onsager, T. G.

    2015-12-01

    Space weather can be defined as conditions in the vicinity of Earth and in the interplanetary environment that are caused primarily by solar processes and influenced by conditions on Earth and its atmosphere. Examples of space weather are the conditions that result from geomagnetic storms, solar particle events, and bursts of intense solar flare radiation. These conditions can have impacts on modern-day technologies such as GPS or electric power grids and on human activities such as astronauts living on the International Space Station or explorers traveling to the moon or Mars. While the ultimate space weather goal is accurate prediction of future space weather conditions, for many applications and services, we rely on real-time and near-real time observations and model results for the specification of current conditions. In this presentation, we will describe the space weather system and the need for real-time and near-real time data that drive the system, characterize conditions in the space environment, and are used by models for assimilation and validation. Currently available data will be assessed and a vision for future needs will be given. The challenges for establishing real-time data requirements, as well as acquiring, processing, and disseminating the data will be described, including national and international collaborations. In addition to describing how the data are used for official government products, we will also give examples of how these data are used by both the public and private sector for new applications that serve the public.

  12. Filming protein fibrillogenesis in real time

    NASA Astrophysics Data System (ADS)

    Bella, Angelo; Shaw, Michael; Ray, Santanu; Ryadnov, Maxim G.

    2014-12-01

    Protein fibrillogenesis is a universal tool of nano-to-micro scale construction supporting different forms of biological function. Its exploitable potential in nanoscience and technology is substantial, but the direct observation of homogeneous fibre growth able to underpin a kinetic-based rationale for building customized nanostructures in situ is lacking. Here we introduce a kinetic model of de novo protein fibrillogenesis which we imaged at the nanoscale and in real time, filmed. The model helped to reveal that, in contrast to heterogeneous amyloid assemblies, homogeneous protein recruitment is principally characterized by uniform rates of cooperative growth at both ends of growing fibers, bi-directional growth, with lateral growth arrested at a post-seeding stage. The model provides a foundation for in situ engineering of sequence-prescribed fibrous architectures.

  13. Near real-time stereo vision system

    NASA Astrophysics Data System (ADS)

    Matthies, Larry H.; Anderson, Charles H.

    1991-12-01

    The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.

  14. Near real-time stereo vision system

    NASA Astrophysics Data System (ADS)

    Anderson, Charles H.; Matthies, Larry H.

    1993-01-01

    The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.

  15. REAL TIME DATA FOR REMEDIATION ACTIVITIES [11505

    SciTech Connect

    BROCK CT

    2011-01-13

    Health physicists from the CH2M HILL Plateau Remediation Company collaborated with Berkeley Nucleonics Corporation to modify the SAM 940 isotope identifier instrument to be used for nuclear waste remediation. These modifications coupled with existing capabilities of the SAM 940 have proven to be invaluable during remediation activities, reducing disposal costs by allowing swift remediation of targeted areas that have been identified as having isotopes of concern (IOC), and eliminating multiple visits to sites by declaring an excavation site clear of IOCs before demobilizing from the site. These advantages are enabled by accumulating spectral data for specific isotopes that is nearly 100 percent free of false positives, which are filtered out in 'real time.'

  16. Real-time slicing of data space

    SciTech Connect

    Crawfis, R.A.

    1996-07-01

    Real-time rendering of iso-contour surfaces is problematic for large complex data sets. In this paper, an algorithm is presented that allows very rapid representation of an interval set surrounding a iso-contour surface. The algorithm draws upon three main ideas. A fast indexing scheme is used to select only those data points near the contour surface. Hardware assisted splatting is then employed on these data points to produce a volume rendering of the interval set. Finally, by shifting a small window through the indexing scheme or data space, animated volumes are produced showing the changing contour values. In addition to allowing fast selection and rendering of the data, the indexing scheme allows a much compressed representation of the data by eliminating ``noise`` data points.

  17. Real time speech formant analyzer and display

    DOEpatents

    Holland, George E.; Struve, Walter S.; Homer, John F.

    1987-01-01

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user.

  18. Real time speech formant analyzer and display

    DOEpatents

    Holland, G.E.; Struve, W.S.; Homer, J.F.

    1987-02-03

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user. 19 figs.

  19. In-line real time air monitor

    DOEpatents

    Wise, M.B.; Thompson, C.V.

    1998-07-14

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds. 3 figs.

  20. Real-time, face recognition technology

    SciTech Connect

    Brady, S.

    1995-11-01

    The Institute for Scientific Computing Research (ISCR) at Lawrence Livermore National Laboratory recently developed the real-time, face recognition technology KEN. KEN uses novel imaging devices such as silicon retinas developed at Caltech or off-the-shelf CCD cameras to acquire images of a face and to compare them to a database of known faces in a robust fashion. The KEN-Online project makes that recognition technology accessible through the World Wide Web (WWW), an internet service that has recently seen explosive growth. A WWW client can submit face images, add them to the database of known faces and submit other pictures that the system tries to recognize. KEN-Online serves to evaluate the recognition technology and grow a large face database. KEN-Online includes the use of public domain tools such as mSQL for its name-database and perl scripts to assist the uploading of images.

  1. Modeling fibril fragmentation in real-time

    NASA Astrophysics Data System (ADS)

    Tan, Pengzhen; Hong, Liu

    2013-08-01

    During the application of the mass-action-equation models to the study of amyloid fiber formation, time-consuming numerical calculations constitute a major bottleneck. To conquer this difficulty, here an alternative efficient method is introduced for the fragmentation-only model. It includes two basic steps: (1) simulate close-formed time-evolutionary equations for the number concentration P(t) derived from the moment-closure method; (2) reconstruct the detailed fiber length distribution based on the knowledge of moments obtained in the first step. Compared to direct calculation, our method speeds up the performance by at least 10 000 times (from days to seconds). The accuracy is also satisfactory if suitable functions for the approximate fibril length distribution are taken. Further application to the sonication studies on PI264-b-PFS48 micelles performed by Guerin et al. confirms our method is very promising for the real-time analysis of the experiments on fibril fragmentation.

  2. Filming protein fibrillogenesis in real time

    PubMed Central

    Bella, Angelo; Shaw, Michael; Ray, Santanu; Ryadnov, Maxim G.

    2014-01-01

    Protein fibrillogenesis is a universal tool of nano-to-micro scale construction supporting different forms of biological function. Its exploitable potential in nanoscience and technology is substantial, but the direct observation of homogeneous fibre growth able to underpin a kinetic-based rationale for building customized nanostructures in situ is lacking. Here we introduce a kinetic model of de novo protein fibrillogenesis which we imaged at the nanoscale and in real time, filmed. The model helped to reveal that, in contrast to heterogeneous amyloid assemblies, homogeneous protein recruitment is principally characterized by uniform rates of cooperative growth at both ends of growing fibers, bi-directional growth, with lateral growth arrested at a post-seeding stage. The model provides a foundation for in situ engineering of sequence-prescribed fibrous architectures. PMID:25519825

  3. Near real-time traffic routing

    NASA Technical Reports Server (NTRS)

    Yang, Chaowei (Inventor); Cao, Ying (Inventor); Xie, Jibo (Inventor); Zhou, Bin (Inventor)

    2012-01-01

    A near real-time physical transportation network routing system comprising: a traffic simulation computing grid and a dynamic traffic routing service computing grid. The traffic simulator produces traffic network travel time predictions for a physical transportation network using a traffic simulation model and common input data. The physical transportation network is divided into a multiple sections. Each section has a primary zone and a buffer zone. The traffic simulation computing grid includes multiple of traffic simulation computing nodes. The common input data includes static network characteristics, an origin-destination data table, dynamic traffic information data and historical traffic data. The dynamic traffic routing service computing grid includes multiple dynamic traffic routing computing nodes and generates traffic route(s) using the traffic network travel time predictions.

  4. Terrestrial Real-Time Volcano Monitoring

    NASA Astrophysics Data System (ADS)

    Franke, M.

    2013-12-01

    As volcano monitoring involves more and different sensors from seismic to GPS receivers, from video and thermal cameras to multi-parameter probes measuring temperature, ph values and humidity in the ground and the air, it becomes important to design real-time networks that integrate and leverage the multitude of available parameters. In order to do so some simple principles need to be observed: a) a common time base for all measurements, b) a packetized general data communication protocol for acquisition and distribution, c) an open and well documented interface to the data permitting standard and emerging innovative processing, and d) an intuitive visualization platform for scientists and civil defense personnel. Although mentioned as simple principles, the list above does not necessarily lead to obvious solutions or integrated systems, which is, however, required to take advantage of the available data. Only once the different data streams are put into context to each other in terms of time and location can a broader view be obtained and additional information extracted. The presentation is a summary of currently available technologies and how they can achieve the goal of an integrated real-time volcano monitoring system. A common time base are standard for seismic and GPS networks. In different projects we extended this to video feeds and time-lapse photography. Other probes have been integrated with vault interface enclosures (VIE) as used in the Transportable Array (TA) of the USArray. The VIE can accommodate the sensors employed in volcano monitoring. The TA has shown that Antelope is a versatile and robust middleware. It provides the required packetized general communication protocol that is independent from the actual physical communication link leaving the network design to adopt appropriate and possible hybrid solutions. This applies for the data acquisition and the data/information dissemination providing both a much needed collaboration platform, as

  5. Identifying financial crises in real time

    NASA Astrophysics Data System (ADS)

    da Fonseca, Eder Lucio; Ferreira, Fernando F.; Muruganandam, Paulsamy; Cerdeira, Hilda A.

    2013-03-01

    Following the thermodynamic formulation of a multifractal measure that was shown to enable the detection of large fluctuations at an early stage, here we propose a new index which permits us to distinguish events like financial crises in real time. We calculate the partition function from which we can obtain thermodynamic quantities analogous to the free energy and specific heat. The index is defined as the normalized energy variation and it can be used to study the behavior of stochastic time series, such as financial market daily data. Famous financial market crashes-Black Thursday (1929), Black Monday (1987) and the subprime crisis (2008)-are identified with clear and robust results. The method is also applied to the market fluctuations of 2011. From these results it appears as if the apparent crisis of 2011 is of a different nature to the other three. We also show that the analysis has forecasting capabilities.

  6. Real Time Correction of Aircraft Flight Fonfiguration

    NASA Technical Reports Server (NTRS)

    Schipper, John F. (Inventor)

    2009-01-01

    Method and system for monitoring and analyzing, in real time, variation with time of an aircraft flight parameter. A time-dependent recovery band, defined by first and second recovery band boundaries that are spaced apart at at least one time point, is constructed for a selected flight parameter and for a selected time recovery time interval length .DELTA.t(FP;rec). A flight parameter, having a value FP(t=t.sub.p) at a time t=t.sub.p, is likely to be able to recover to a reference flight parameter value FP(t';ref), lying in a band of reference flight parameter values FP(t';ref;CB), within a time interval given by t.sub.p.ltoreq.t'.ltoreq.t.sub.p.DELTA.t(FP;rec), if (or only if) the flight parameter value lies between the first and second recovery band boundary traces.

  7. Real-time forecasts of dengue epidemics

    NASA Astrophysics Data System (ADS)

    Yamana, T. K.; Shaman, J. L.

    2015-12-01

    Dengue is a mosquito-borne viral disease prevalent in the tropics and subtropics, with an estimated 2.5 billion people at risk of transmission. In many areas with endemic dengue, disease transmission is seasonal but prone to high inter-annual variability with occasional severe epidemics. Predicting and preparing for periods of higher than average transmission is a significant public health challenge. Here we present a model of dengue transmission and a framework for optimizing model simulations with real-time observational data of dengue cases and environmental variables in order to generate ensemble-based forecasts of the timing and severity of disease outbreaks. The model-inference system is validated using synthetic data and dengue outbreak records. Retrospective forecasts are generated for a number of locations and the accuracy of these forecasts is quantified.

  8. Real-time value-driven diagnosis

    NASA Technical Reports Server (NTRS)

    Dambrosio, Bruce

    1995-01-01

    Diagnosis is often thought of as an isolated task in theoretical reasoning (reasoning with the goal of updating our beliefs about the world). We present a decision-theoretic interpretation of diagnosis as a task in practical reasoning (reasoning with the goal of acting in the world), and sketch components of our approach to this task. These components include an abstract problem description, a decision-theoretic model of the basic task, a set of inference methods suitable for evaluating the decision representation in real-time, and a control architecture to provide the needed continuing coordination between the agent and its environment. A principal contribution of this work is the representation and inference methods we have developed, which extend previously available probabilistic inference methods and narrow, somewhat, the gap between probabilistic and logical models of diagnosis.

  9. In-line real time air monitor

    DOEpatents

    Wise, Marcus B.; Thompson, Cyril V.

    1998-01-01

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds.

  10. A operational real time flood forecasting chain

    NASA Astrophysics Data System (ADS)

    Arena, N.; Cavallo, A.; Giannoni, F.; Turato, B.

    2003-04-01

    Extreme floods forecast represent an important modeling challenge for which it is crucial to utilize the simplest model representations that capture the dominant controls of extreme flood response. For extreme floods, the spatio-temporal structure of rainfall and drainage network structure often play a fundamental role. The integrated meteo-hydrologic real time forecasting chain in use at the Hydrometorological Center of Liguria Region is presented with particular regard to a specific case study. The meteorological forecasts are performed through the use of traditional means as Numerical Weather Predictions models at different resolutions and an innovative tool for the now-casting prediction as the meteorological Radar. The elements of the hydrologic model are a Hortonian infiltration model and a GIUH-based network response model. The basin scales of interest range from approximately 50 - 1,000 km2. The case study is the November 23-26, 2002 event.

  11. Wi-Fi real time location systems

    NASA Astrophysics Data System (ADS)

    Doll, Benjamin A.

    This thesis objective was to determine the viability of utilizing an untrained Wi-Fi. real time location system as a GPS alternative for indoor environments. Background. research showed that GPS is rarely able to penetrate buildings to provide reliable. location data. The benefit of having location information in a facility and how they might. be used for disaster or emergency relief personnel and their resources motivated this. research. A building was selected with a well-deployed Wi-Fi infrastructure and its. untrained location feature was used to determine the distance between the specified. test points and the system identified location. It was found that the average distance. from the test point throughout the facility was 14.3 feet 80% of the time. This fell within. the defined viable range and supported that an untrained Wi-Fi RTLS system could be a. viable solution for GPS's lack of availability indoors.

  12. Real-time snapshot hyperspectral imaging endoscope

    PubMed Central

    Kester, Robert T.; Bedard, Noah; Gao, Liang; Tkaczyk, Tomasz S.

    2011-01-01

    Hyperspectral imaging has tremendous potential to detect important molecular biomarkers of early cancer based on their unique spectral signatures. Several drawbacks have limited its use for in vivo screening applications: most notably the poor temporal and spatial resolution, high expense, and low optical throughput of existing hyperspectral imagers. We present the development of a new real-time hyperspectral endoscope (called the image mapping spectroscopy endoscope) based on an image mapping technique capable of addressing these challenges. The parallel high throughput nature of this technique enables the device to operate at frame rates of 5.2 frames per second while collecting a (x, y, λ) datacube of 350 × 350 × 48. We have successfully imaged tissue in vivo, resolving a vasculature pattern of the lower lip while simultaneously detecting oxy-hemoglobin. PMID:21639573

  13. A Measure of Real-Time Intelligence

    NASA Astrophysics Data System (ADS)

    Gavane, Vaibhav

    2013-03-01

    We propose a new measure of intelligence for general reinforcement learning agents, based on the notion that an agent's environment can change at any step of execution of the agent. That is, an agent is considered to be interacting with its environment in real-time. In this sense, the resulting intelligence measure is more general than the universal intelligence measure (Legg and Hutter, 2007) and the anytime universal intelligence test (Hernández-Orallo and Dowe, 2010). A major advantage of the measure is that an agent's computational complexity is factored into the measure in a natural manner. We show that there exist agents with intelligence arbitrarily close to the theoretical maximum, and that the intelligence of agents depends on their parallel processing capability. We thus believe that the measure can provide a better evaluation of agents and guidance for building practical agents with high intelligence.

  14. A Flexible Real-Time Architecture

    SciTech Connect

    WICKSTROM,GREGORY L.

    2000-08-17

    Assuring hard real-time characteristics of I/O associated with embedded software is often a difficult task. Input-Output related statements are often intermixed with the computational code, resulting in I/O timing that is dependent on the execution path and computational load. One way to mitigate this problem is through the use of interrupts. However, the non-determinism that is introduced by interrupt driven I/O may be so difficult to analyze that it is prohibited in some high consequence systems. This paper describes a balanced hardware/software solution to obtain consistent interrupt-free I/O timing, and results in software that is much more amenable to analysis.

  15. Real-Time Inspection Of Currency

    NASA Astrophysics Data System (ADS)

    Blazek, Henry

    1986-12-01

    An automatic inspection machine, designed and manufactured by the Perkin-Elmer Corporation for the U.S. Bureau of Engraving and Printing, is capable of real-time inspection of currency at rates compatible with the output of modern high-speed printing presses. Inspection is accomplished by comparing test notes (in 32-per-sheet format) with reference notes stored in the memory of a digital computer. This paper describes the development of algorithms for detecting defective notes, one of the key problems solved during the development of the inspection system. Results achieved on an analytical model, used for predicting probability of false alarms and probability of detecting typically defective notes, are compared to those obtained by system simulation.

  16. Cerebral Autoregulation Real-Time Monitoring

    PubMed Central

    Tsalach, Adi; Ratner, Eliahu; Lokshin, Stas; Silman, Zmira; Breskin, Ilan; Budin, Nahum; Kamar, Moshe

    2016-01-01

    Cerebral autoregulation is a mechanism which maintains constant cerebral blood flow (CBF) despite changes in mean arterial pressure (MAP). Assessing whether this mechanism is intact or impaired and determining its boundaries is important in many clinical settings, where primary or secondary injuries to the brain may occur. Herein we describe the development of a new ultrasound tagged near infra red light monitor which tracks CBF trends, in parallel, it continuously measures blood pressure and correlates them to produce a real time autoregulation index. Its performance is validated in both in-vitro experiment and a pre-clinical case study. Results suggest that using such a tool, autoregulation boundaries as well as its impairment or functioning can be identified and assessed. It may therefore assist in individualized MAP management to ensure adequate organ perfusion and reduce the risk of postoperative complications, and might play an important role in patient care. PMID:27571474

  17. Real Time Monitor of Grid job executions

    NASA Astrophysics Data System (ADS)

    Colling, D. J.; Martyniak, J.; McGough, A. S.; Křenek, A.; Sitera, J.; Mulač, M.; Dvořák, F.

    2010-04-01

    In this paper we describe the architecture and operation of the Real Time Monitor (RTM), developed by the Grid team in the HEP group at Imperial College London. This is arguably the most popular dissemination tool within the EGEE [1] Grid. Having been used, on many occasions including GridFest and LHC inauguration events held at CERN in October 2008. The RTM gathers information from EGEE sites hosting Logging and Bookkeeping (LB) services. Information is cached locally at a dedicated server at Imperial College London and made available for clients to use in near real time. The system consists of three main components: the RTM server, enquirer and an apache Web Server which is queried by clients. The RTM server queries the LB servers at fixed time intervals, collecting job related information and storing this in a local database. Job related data includes not only job state (i.e. Scheduled, Waiting, Running or Done) along with timing information but also other attributes such as Virtual Organization and Computing Element (CE) queue - if known. The job data stored in the RTM database is read by the enquirer every minute and converted to an XML format which is stored on a Web Server. This decouples the RTM server database from the client removing the bottleneck problem caused by many clients simultaneously accessing the database. This information can be visualized through either a 2D or 3D Java based client with live job data either being overlaid on to a 2 dimensional map of the world or rendered in 3 dimensions over a globe map using OpenGL.

  18. Passive Global, Real-Time TEC Monitoring

    NASA Astrophysics Data System (ADS)

    Pongratz, M. B.

    2002-12-01

    Sensors are being developed to provide a satellite-based VHF global lightning monitor (e.g. Suszcynsky, et al., "VHF Global Lightning and Severe Storm Monitoring from Space: Storm-level Characterization of VHF Lightning Emissions," EOS Trans. AGU 2001 Fall Mt. Prog. And Abstr. 82, No. 47, F143, 2001). Dispersive effects of propagation of the lightning electromagnetic wave through the ionospheric and plasmaspheric plasmas cause the higher frequency components to arrive at the satellite before lower frequency components. From the time-of-arrival at several frequencies we can derive the TEC between the satellite and the lightning. Using multi-satellite techniques we can geolocate the lightning and the ionospheric penetration point quite accurately. A single ground station could provide essentially real-time regional TEC coverage. Four ground stations could provide global, real-time TEC measurements to supplement existing ground-based systems, especially over broad ocean areas. We expect several lightning detections per satellite per minute. Temporal resolution will be limited only by ground segment processing. Spatial coverage and resolution will be limited by lightning occurrence, but many commercial sector TEC requirements are also correlated to lightning occurrence. With our FORTE (Fast On-orbit Recording of Transient Events) satellite we sense lightning over most of the globe including the oceans. We expect to determine TEC spatial gradients with tens of km resolution. This capability should be especially useful in severe convective weather to aircraft using GPS-based navigation, e.g. the FAA's Wide Area Augmentation System (WAAS).

  19. Towards real time speckle controlled retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Bliedtner, Katharina; Seifert, Eric; Stockmann, Leoni; Effe, Lisa; Brinkmann, Ralf

    2016-03-01

    Photocoagulation is a laser treatment widely used for the therapy of several retinal diseases. Intra- and inter-individual variations of the ocular transmission, light scattering and the retinal absorption makes it impossible to achieve a uniform effective exposure and hence a uniform damage throughout the therapy. A real-time monitoring and control of the induced damage is highly requested. Here, an approach to realize a real time optical feedback using dynamic speckle analysis is presented. A 532 nm continuous wave Nd:YAG laser is used for coagulation. During coagulation, speckle dynamics are monitored by a coherent object illumination using a 633nm HeNe laser and analyzed by a CMOS camera with a frame rate up to 1 kHz. It is obvious that a control system needs to determine whether the desired damage is achieved to shut down the system in a fraction of the exposure time. Here we use a fast and simple adaption of the generalized difference algorithm to analyze the speckle movements. This algorithm runs on a FPGA and is able to calculate a feedback value which is correlated to the thermal and coagulation induced tissue motion and thus the achieved damage. For different spot sizes (50-200 μm) and different exposure times (50-500 ms) the algorithm shows the ability to discriminate between different categories of retinal pigment epithelial damage ex-vivo in enucleated porcine eyes. Furthermore in-vivo experiments in rabbits show the ability of the system to determine tissue changes in living tissue during coagulation.

  20. Compact snapshot real-time imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Kudenov, Michael W.; Dereniak, Eustace L.

    2011-11-01

    The described spectral imaging system, referred to as a Snapshot Hyperspectral Imaging Fourier Transform (SHIFT) spectrometer, is capable of acquiring spectral image data of a scene in a single integration of a camera, is ultra-compact, inexpensive (commercial off-the-shelf), has no moving parts, and can produce datacubes (x, y, λ) in real time. Based on the multiple-image FTS originally developed by A. Hirai [1], the presented device offers significant advantages over his original implementation. Namely, its birefringent nature results in a common-path interferometer which makes the spectrometer insensitive to vibration. Furthermore, it enables the potential of making the instrument ultra-compact, thereby improving the portability of the sensor. By combining a birefringent interferometer with a lenslet array, the entire spectrometer consumes approximately 15×15×20 mm3, excluding the imaging camera. The theory of the birefringent FTS is provided, followed by details of its specific embodiment and a laboratory proof of concept of the sensor. Post-processing is currently accomplished in Matlab, but progress is underway in developing real-time reconstruction capabilities with software programmed on a graphics processing unit (GPU). It is anticipated that processing of >30 datacubes per second can be achieved with modest GPU hardware, with spatial/spectral data of or exceeding 256×256 spatial resolution elements and 60 spectral bands over the visible (400-800 nm) spectrum. Data were collected outdoors, demonstrating the sensor's ability to resolve spectral signatures in standard outdoor lighting and environmental conditions as well as retinal imaging.

  1. On-Line, Real-Time Diagnostics of a Single Fluid Atomization System

    NASA Technical Reports Server (NTRS)

    DelshadKhatibi, P.; Ilbagi, A.; Henein, H.

    2012-01-01

    A drop tube-Impulse Atomization technique was used to produce copper droplets. In this method, energy is transferred to a liquid by plunger movement resulting in spherical droplets emanating from orifices. A mathematical model of the evolution of droplet velocity and temperature at various heights for different sized droplets was developed. A two-color pyrometer, DPV-2000, and a shadowgraph were used to measure droplets radiant energy, diameter and velocity. The temperature values from the model were used to assess the two color pyrometer assumption over the temperature range of measurement. The DVP 2000 measurements were found to be dependent of droplet size wavelength and position of droplets below the atomizing nozzle. By calibrating the instrument for effective emissivity over the range of measurements, the thermal history of droplets may be recorded using a single color pyrometer approach.

  2. Real time inverse filter focusing through iterative time reversal.

    PubMed

    Montaldo, Gabriel; Tanter, Mickaël; Fink, Mathias

    2004-02-01

    In order to achieve an optimal focusing through heterogeneous media we need to build the inverse filter of the propagation operator. Time reversal is an easy and robust way to achieve such an inverse filter in nondissipative media. However, as soon as losses appear in the medium, time reversal is not equivalent to the inverse filter anymore. Consequently, it does not produce the optimal focusing and beam degradations may appear. In such cases, we showed in previous works that the optimal focusing can be recovered by using the so-called spatiotemporal inverse filter technique. This process requires the presence of a complete set of receivers inside the medium. It allows one to reach the optimal focusing even in extreme situations such as ultrasonic focusing through human skull or audible sound focusing in strongly reverberant rooms. But, this technique is time consuming and implied fastidious numerical calculations. In this paper we propose a new way to process this inverse filter focusing technique in real time and without any calculation. The new process is based on iterative time reversal process. Contrary to the classical inverse filter technique, this iteration does not require any computation and achieves the inverse filter in an experimental way using wave propagation instead of computational power. The convergence from time reversal to inverse filter during the iterative process is theoretically explained. Finally, the feasibility of this iterative technique is experimentally demonstrated for ultrasound applications. PMID:15000188

  3. Real-Time Measurement of Vehicle Exhaust Gas Flow

    SciTech Connect

    Hardy, J.E.; Hylton, J.O.; Joy, R.D.; McKnight, T.E.

    1999-06-28

    A flow measurement system was developed to measure, in real-time, the exhaust gas flow from vehicies. This new system was based on the vortex shedding principle using ultrasonic detectors for sensing the shed vortices. The flow meter was designed to measure flow over a range of 1 to 366 Ips with an inaccuracy of ~1o/0 of reading. Additionally, the meter was engineered to cause minimal pressure drop (less than 125mm of water), to function in a high temperature environment (up to 650oC) with thermal transients of 15 oC/s, and to have a response time of 0.1 seconds for a 10% to 90!40 step change. The flow meter was also configured to measure hi-directional flow. Several flow meter prototypes were fabricated, tested, and calibrated in air, simulated exhaust gas, and actual exhaust gas. Testing included gas temperatures to 600oC, step response experiments, and flow rates from O to 360 lps in air and exhaust gas. Two prototypes have been tested extensively at NIST and two additional meters have been installed in exhaust gas flow lines for over one year. This new flow meter design has shown to be accurate, durabIe, fast responding, and to have a wide rangeabi~ity.

  4. Real-time temperature determination during retinal photocoagulation on patients

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf; Koinzer, Stefan; Schlott, Kerstin; Ptaszynski, Lars; Bever, Marco; Baade, Alexander; Luft, Susanne; Miura, Yoko; Roider, Johann; Birngruber, Reginald

    2012-06-01

    The induced thermal damage in retinal photocoagulation depends on the temperature increase and the time of irradiation. The temperature rise is unknown due to intraocular variations in light transmission, scattering and grade of absorption in the retinal pigment epithelium (RPE) and the choroid. Thus, in clinical practice, often stronger and deeper coagulations are applied than therapeutically needed, which can lead to extended neuroretinal damage and strong pain perception. This work focuses on an optoacoustic (OA) method to determine the temperature rise in real-time during photocoagulation by repetitively exciting thermoelastic pressure transients with nanosecond probe laser pulses, which are simultaneously applied to the treatment radiation. The temperature-dependent pressure amplitudes are non-invasively detected at the cornea with an ultrasonic transducer embedded in the contact lens. During clinical treatment, temperature courses as predicted by heat diffusion theory are observed in most cases. For laser spot diameters of 100 and 300 μm, and irradiation times of 100 and 200 ms, respectively, peak temperatures range between 70°C and 85°C for mild coagulations. The obtained data look very promising for the realization of a feedback-controlled treatment, which automatically generates preselected and reproducible coagulation strengths, unburdens the ophthalmologist from manual laser dosage, and minimizes adverse effects and pain for the patient.

  5. A tool for modeling concurrent real-time computation

    NASA Technical Reports Server (NTRS)

    Sharma, D. D.; Huang, Shie-Rei; Bhatt, Rahul; Sridharan, N. S.

    1990-01-01

    Real-time computation is a significant area of research in general, and in AI in particular. The complexity of practical real-time problems demands use of knowledge-based problem solving techniques while satisfying real-time performance constraints. Since the demands of a complex real-time problem cannot be predicted (owing to the dynamic nature of the environment) powerful dynamic resource control techniques are needed to monitor and control the performance. A real-time computation model for a real-time tool, an implementation of the QP-Net simulator on a Symbolics machine, and an implementation on a Butterfly multiprocessor machine are briefly described.

  6. Real-time data flow and product generating for GNSS

    NASA Technical Reports Server (NTRS)

    Muellerschoen, Ronald J.; Caissy, Mark

    2004-01-01

    The last IGS workshop with the theme 'Towards Real-Time' resulted in the design of a prototype for real-time data and sharing within the IGS. A prototype real-time network is being established that will serve as a test bed for real-time activities within the IGS. We review the developments of the prototype and discuss some of the existing methods and related products of real-time GNSS systems. Recommendations are made concerning real-time data distribution and product generation.

  7. [Real-time forecasting model for monitoring pollutant with differential optical absorption spectroscopy].

    PubMed

    Li, Su-Wen; Liu, Wen-Qing; Xie, Pin-Hua; Wang, Feng-Sui; Yang, Yi-Jun

    2009-11-01

    For real-time and on-line monitoring DOAS (differential optical absorption spectroscopy) system, a model based on an improved Elman network for monitoring pollutant concentrations was proposed. In order to reduce the systematical complexity, the forecasting factors have been obtained based on the step-wise regression method. The forecasting factors were current concentrations, temperature and relative humidity, and wind speed and wind direction. The dynamic back propagation (BP) algorithm was used for creating training set. The experiment results show that the predicted value follows the real well. So the modified Elman network can meet the demand of DOAS system's real time forecasting. PMID:20101985

  8. Real Time Seismic Prediction while Drilling

    NASA Astrophysics Data System (ADS)

    Schilling, F. R.; Bohlen, T.; Edelmann, T.; Kassel, A.; Heim, A.; Gehring, M.; Lüth, S.; Giese, R.; Jaksch, K.; Rechlin, A.; Kopf, M.; Stahlmann, J.; Gattermann, J.; Bruns, B.

    2009-12-01

    Efficient and safe drilling is a prerequisite to enhance the mobility of people and goods, to improve the traffic as well as utility infrastructure of growing megacities, and to ensure the growing energy demand while building geothermal and in hydroelectric power plants. Construction within the underground is often building within the unknown. An enhanced risk potential for people and the underground building may arise if drilling enters fracture zones, karsts, brittle rocks, mixed solid and soft rocks, caves, or anthropogenic obstacles. Knowing about the material behavior ahead of the drilling allows reducing the risk during drilling and construction operation. In drilling operations direct observations from boreholes can be complemented with geophysical investigations. In this presentation we focus on “real time” seismic prediction while drilling which is seen as a prerequisite while using geophysical methods in modern drilling operations. In solid rocks P- and S-wave velocity, refraction and reflection as well as seismic wave attenuation can be used for the interpretation of structures ahead of the drilling. An Integrated Seismic Imaging System (ISIS) for exploration ahead of a construction is used, where a pneumatic hammer or a magnetostrictive vibration source generate repetitive signals behind the tunneling machine. Tube waves are generated which travel along the tunnel to the working face. There the tube waves are converted to mainly S- but also P-Waves which interact with the formation ahead of the heading face. The reflected or refracted waves travel back to the working front are converted back to tube waves and recorded using three-component geophones which are fit into the tips of anchor rods. In near real time, the ISIS software allows for an integrated 3D imaging and interpretation of the observed data, geological and geotechnical parameters. Fracture zones, heterogeneities, and variations in the rock properties can be revealed during the drilling

  9. Teaching with Real-Time Seismic Data

    NASA Astrophysics Data System (ADS)

    Baldwin, T. K.; Ortiz, A.; Hall-Wallace, M.; Taber, J.; Braile, L.

    2002-12-01

    Many terabytes of digital seismic data have been gathered in the past decade. These data include summary tables of events as well as raw seismograms. The event information, which can be plotted, analyzed statistically and interpreted in the context of plate tectonics and geologic hazards, make excellent classroom investigations. However, the bulk of the data are raw seismograms that require advanced knowledge and specific software to analyze and manipulate thus, they are generally inaccessible to a non-seismologist. To make real-time seismic data more accessible to students in high schools and colleges, we are developing a network of school seismometers through the IRIS Seismometer in Schools Program. The goal of this program is to promote seismology as a platform for teaching principles of physics and Earth science in schools across the nation. When studying plate tectonics and earthquakes, a seismometer in the classroom promotes awareness of earthquake activity around the world and provides an opportunity to teach with real-time data and real-world examples. The AS-1 seismometer is a low cost, durable, yet precise instrument that allows students to both investigate how a seismometer works and the recordings of the instrument, making it ideal for student and classroom use. The AS-1 recording and analysis software, AmaSeis, is simple to use yet includes all the basic tools needed for analysis: waveform display, filtering, and phase picking. The software also includes travel time curves to determine event distance and location. The seismometer keeps time using the computer's clock, which can be updated regularly through the Internet. While each instrument's response is unique, it is possible to calibrate the instrument and determine accurate magnitudes for events. In the past year our efforts have resulted in teachers using the seismometer effectively in high school classrooms. For example, using data from their own station and several others, students located

  10. CRANS - CONFIGURABLE REAL-TIME ANALYSIS SYSTEM

    NASA Technical Reports Server (NTRS)

    Mccluney, K.

    1994-01-01

    In a real-time environment, the results of changes or failures in a complex, interconnected system need evaluation quickly. Tabulations showing the effects of changes and/or failures of a given item in the system are generally only useful for a single input, and only with regard to that item. Subsequent changes become harder to evaluate as combinations of failures produce a cascade effect. When confronted by multiple indicated failures in the system, it becomes necessary to determine a single cause. In this case, failure tables are not very helpful. CRANS, the Configurable Real-time ANalysis System, can interpret a logic tree, constructed by the user, describing a complex system and determine the effects of changes and failures in it. Items in the tree are related to each other by Boolean operators. The user is then able to change the state of these items (ON/OFF FAILED/UNFAILED). The program then evaluates the logic tree based on these changes and determines any resultant changes to other items in the tree. CRANS can also search for a common cause for multiple item failures, and allow the user to explore the logic tree from within the program. A "help" mode and a reference check provide the user with a means of exploring an item's underlying logic from within the program. A commonality check determines single point failures for an item or group of items. Output is in the form of a user-defined matrix or matrices of colored boxes, each box representing an item or set of items from the logic tree. Input is via mouse selection of the matrix boxes, using the mouse buttons to toggle the state of the item. CRANS is written in C-language and requires the MIT X Window System, Version 11 Revision 4 or Revision 5. It requires 78K of RAM for execution and a three button mouse. It has been successfully implemented on Sun4 workstations running SunOS, HP9000 workstations running HP-UX, and DECstations running ULTRIX. No executable is provided on the distribution medium; however

  11. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema

    Zhang, Song

    2012-08-29

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  12. Real-time accumulative computation motion detectors.

    PubMed

    Fernández-Caballero, Antonio; López, María Teresa; Castillo, José Carlos; Maldonado-Bascón, Saturnino

    2009-01-01

    The neurally inspired accumulative computation (AC) method and its application to motion detection have been introduced in the past years. This paper revisits the fact that many researchers have explored the relationship between neural networks and finite state machines. Indeed, finite state machines constitute the best characterized computational model, whereas artificial neural networks have become a very successful tool for modeling and problem solving. The article shows how to reach real-time performance after using a model described as a finite state machine. This paper introduces two steps towards that direction: (a) A simplification of the general AC method is performed by formally transforming it into a finite state machine. (b) A hardware implementation in FPGA of such a designed AC module, as well as an 8-AC motion detector, providing promising performance results. We also offer two case studies of the use of AC motion detectors in surveillance applications, namely infrared-based people segmentation and color-based people tracking, respectively. PMID:22303161

  13. Real-Time 3D Visualization

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Butler Hine, former director of the Intelligent Mechanism Group (IMG) at Ames Research Center, and five others partnered to start Fourth Planet, Inc., a visualization company that specializes in the intuitive visual representation of dynamic, real-time data over the Internet and Intranet. Over a five-year period, the then NASA researchers performed ten robotic field missions in harsh climes to mimic the end- to-end operations of automated vehicles trekking across another world under control from Earth. The core software technology for these missions was the Virtual Environment Vehicle Interface (VEVI). Fourth Planet has released VEVI4, the fourth generation of the VEVI software, and NetVision. VEVI4 is a cutting-edge computer graphics simulation and remote control applications tool. The NetVision package allows large companies to view and analyze in virtual 3D space such things as the health or performance of their computer network or locate a trouble spot on an electric power grid. Other products are forthcoming. Fourth Planet is currently part of the NASA/Ames Technology Commercialization Center, a business incubator for start-up companies.

  14. Real-Time Accumulative Computation Motion Detectors

    PubMed Central

    Fernández-Caballero, Antonio; López, María Teresa; Castillo, José Carlos; Maldonado-Bascón, Saturnino

    2009-01-01

    The neurally inspired accumulative computation (AC) method and its application to motion detection have been introduced in the past years. This paper revisits the fact that many researchers have explored the relationship between neural networks and finite state machines. Indeed, finite state machines constitute the best characterized computational model, whereas artificial neural networks have become a very successful tool for modeling and problem solving. The article shows how to reach real-time performance after using a model described as a finite state machine. This paper introduces two steps towards that direction: (a) A simplification of the general AC method is performed by formally transforming it into a finite state machine. (b) A hardware implementation in FPGA of such a designed AC module, as well as an 8-AC motion detector, providing promising performance results. We also offer two case studies of the use of AC motion detectors in surveillance applications, namely infrared-based people segmentation and color-based people tracking, respectively. PMID:22303161

  15. Real-time multi-view deconvolution

    PubMed Central

    Schmid, Benjamin; Huisken, Jan

    2015-01-01

    Summary: In light-sheet microscopy, overall image content and resolution are improved by acquiring and fusing multiple views of the sample from different directions. State-of-the-art multi-view (MV) deconvolution simultaneously fuses and deconvolves the images in 3D, but processing takes a multiple of the acquisition time and constitutes the bottleneck in the imaging pipeline. Here, we show that MV deconvolution in 3D can finally be achieved in real-time by processing cross-sectional planes individually on the massively parallel architecture of a graphics processing unit (GPU). Our approximation is valid in the typical case where the rotation axis lies in the imaging plane. Availability and implementation: Source code and binaries are available on github (https://github.com/bene51/), native code under the repository ‘gpu_deconvolution’, Java wrappers implementing Fiji plugins under ‘SPIM_Reconstruction_Cuda’. Contact: bschmid@mpi-cbg.de or huisken@mpi-cbg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26112291

  16. Real-Time Principal-Component Analysis

    NASA Technical Reports Server (NTRS)

    Duong, Vu; Duong, Tuan

    2005-01-01

    A recently written computer program implements dominant-element-based gradient descent and dynamic initial learning rate (DOGEDYN), which was described in Method of Real-Time Principal-Component Analysis (NPO-40034) NASA Tech Briefs, Vol. 29, No. 1 (January 2005), page 59. To recapitulate: DOGEDYN is a method of sequential principal-component analysis (PCA) suitable for such applications as data compression and extraction of features from sets of data. In DOGEDYN, input data are represented as a sequence of vectors acquired at sampling times. The learning algorithm in DOGEDYN involves sequential extraction of principal vectors by means of a gradient descent in which only the dominant element is used at each iteration. Each iteration includes updating of elements of a weight matrix by amounts proportional to a dynamic initial learning rate chosen to increase the rate of convergence by compensating for the energy lost through the previous extraction of principal components. In comparison with a prior method of gradient-descent-based sequential PCA, DOGEDYN involves less computation and offers a greater rate of learning convergence. The sequential DOGEDYN computations require less memory than would parallel computations for the same purpose. The DOGEDYN software can be executed on a personal computer.

  17. Real-time neural coding of memory.

    PubMed

    Tsien, Joe Z

    2007-01-01

    Recent identification of network-level functional coding units, termed neural cliques, in the hippocampus has allowed real-time patterns of memory traces to be mathematically described, intuitively visualized, and dynamically deciphered. Any given episodic event is represented and encoded by the activation of a set of neural clique assemblies that are organized in a categorical and hierarchical manner. This hierarchical feature-encoding pyramid is invariantly composed of the general feature-encoding clique at the bottom, sub-general feature-encoding cliques in the middle, and highly specific feature-encoding cliques at the top. This hierarchical and categorical organization of neural clique assemblies provides the network-level mechanism the capability of not only achieving vast storage capacity, but also generating commonalities from the individual behavioral episodes and converting them to the abstract concepts and generalized knowledge that are essential for intelligence and adaptive behaviors. Furthermore, activation patterns of the neural clique assemblies can be mathematically converted to strings of binary codes that would permit universal categorizations of the brain's internal representations across individuals and species. Such universal brain codes can also potentially facilitate the unprecedented brain-machine interface communications. PMID:17925242

  18. Real-time optoacoustic monitoring of stroke

    NASA Astrophysics Data System (ADS)

    Kneipp, Moritz; Turner, Jake; Hambauer, Sebastian; Krieg, Sandro M.; Lehmberg, Jens; Lindauer, Ute; Razansky, Daniel

    2014-03-01

    Characterizing disease progression and identifying possible therapeutic interventions in stroke is greatly aided by the use of longitudinal function imaging studies. In this study, we investigate the applicability of real-time multispectral optoacoustic tomography (MSOT) as a tool for non-invasive monitoring of the progression of stroke in the whole brain. The middle cerebral artery occlusion (MCAO) method was used to induce stroke. Mice were imaged under isoflurane anesthesia preoperatively and at several time points during and after the 60-minute occlusion. The animals were sacrificed after 24 hours and their excised brains frozen at -80°C for sectioning. The cryosection were stained using H&E staining to identify the ischemic lesion. Major vessels are readily identifiable in the whole mouse head in the in vivo optoacoustic scans. During ischemia, a reduction in cerebral blood volume is detectable in the cortex. Post ischemia, spectral unmixing of the optoacoustic signals shows an asymmetry of the deoxygenated hemoglobin in the hemisphere affected by MCAO. This hypoxic area was mainly located around the boundary of the ischemic lesion and was therefore identified as the ischemic penumbra. Non-invasive functional MSOT imaging is able to visualize the hypoxic penumbra in brains affected by stroke. Stopping the spread of the infarct area and revitalizing the penumbra is central in stroke research, this new imaging technique may therefore prove to be a valuable tool in the monitoring and developing new treatments.

  19. Real-time pricing's hidden surprise

    SciTech Connect

    Siddiqi, R.; Woodley, J.

    1994-03-01

    The electric utility industry in the United States and the rest of the world is in the midst of profound change, with various models of regulation and nonregulation being tested. The United States has opted for an incremental approach to changes in fundamental aspects of the industry. Other countries, most notably the United Kingdom, are in the process of deregulation. These different structures rely on and result in dramatically different markets. While market structures may differ, similar approaches to service designs are evolving. Specifically, service options based on pricing are proliferating, and customers are being given the opportunity to select from a menu of options. This is in marked contrast to the rigid tariff structures that presuppose monopoly status to achieve utility goals. Strong parallels may be drawn between the pool-pricing options and associated hedging mechanisms offered in England and Wales, and the two-part tariff-based real-time pricing (RTP) programs in the United States. The latter service design, which is undergoing experimentation at Georgia Power Co., and in pilot operation at Niagara Mohawk Power Corp., has been criticized as too complex and not reflecting a competitive pricing structure. However, the similarity between two-part tariff programs and pool-pricing services (offered in the U.K. to a significantly larger customer base, under greater competition) undercuts these criticisms.

  20. Real-time DIRCM system modeling

    NASA Astrophysics Data System (ADS)

    Petersson, Mikael

    2004-12-01

    Directed infrared countermeasures (DIRCM) play an increasingly important role in electronic warfare to counteract threats posed by infrared seekers. The usefulness and performance of such countermeasures depend, for example, on atmospheric conditions (attenuation and turbulence) and platform vibrations, causing pointing and tracking errors for the laser beam and reducing the power transferred to the seeker aperture. These problems make it interesting to simulate the performance of a DIRCM system in order to understand how easy or difficult it is to counteract an approaching threat and evaluate limiting factors in various situations. This paper describes a DIRCM model that has been developed, including atmospheric effects such as attenuation and turbulence as well as closed loop tracking algorithms, where the retro reflex of the laser is used for the pointing control of the beam. The DIRCM model is part of a large simulation framework (EWSim), which also incorporates several descriptions of different seekers (e.g. reticle, rosette, centroid, nutating cross) and models of robot dynamics. Effects of a jamming laser on a specific threat can be readily verified by simulations within this framework. The duel between missile and countermeasure is simulated in near real-time and visualized graphically in 3D. A typical simulation with a reticle seeker jammed by a modulated laser is included in the paper.

  1. Near Real Time Ship Detection Experiments

    NASA Astrophysics Data System (ADS)

    Brusch, S.; Lehner, S.; Schwarz, E.; Fritz, T.

    2010-04-01

    A new Near Real Time (NRT) ship detection processor SAINT (SAR AIS Integrated Toolbox) was developed in the framework of the ESA project MARISS. Data are received at DLRs ground segment DLR-BN (Neustrelitz, Germany). Results of the ship detection are available on ftp server within 30 min after the acquisition started. The detectability of ships on Synthetic Aperture Radar (SAR) ERS-2, ENVISAT ASAR and TerraSAR-X (TS-X) images is validated by coastal (live) AIS and space AIS. The monitoring areas chosen for surveillance are the North-, Baltic Sea, and Cape Town. The detectability in respect to environmental parameters like wind field, sea state, currents and changing coastlines due to tidal effects is investigated. In the South Atlantic a tracking experiment of the German research vessel Polarstern has been performed. Issues of piracy in particular in respect to ships hijacked at the Somali coast are discussed. Some examples using high resolution images from TerraSAR-X are given.

  2. Recommendations for real-time speech MRI.

    PubMed

    Lingala, Sajan Goud; Sutton, Brad P; Miquel, Marc E; Nayak, Krishna S

    2016-01-01

    Real-time magnetic resonance imaging (RT-MRI) is being increasingly used for speech and vocal production research studies. Several imaging protocols have emerged based on advances in RT-MRI acquisition, reconstruction, and audio-processing methods. This review summarizes the state-of-the-art, discusses technical considerations, and provides specific guidance for new groups entering this field. We provide recommendations for performing RT-MRI of the upper airway. This is a consensus statement stemming from the ISMRM-endorsed Speech MRI summit held in Los Angeles, February 2014. A major unmet need identified at the summit was the need for consensus on protocols that can be easily adapted by researchers equipped with conventional MRI systems. To this end, we provide a discussion of tradeoffs in RT-MRI in terms of acquisition requirements, a priori assumptions, artifacts, computational load, and performance for different speech tasks. We provide four recommended protocols and identify appropriate acquisition and reconstruction tools. We list pointers to open-source software that facilitate implementation. We conclude by discussing current open challenges in the methodological aspects of RT-MRI of speech. PMID:26174802

  3. High sensitivity real-time NVR monitor

    NASA Technical Reports Server (NTRS)

    Bowers, William D. (Inventor); Chuan, Raymond L. (Inventor)

    1997-01-01

    A real time non-volatile residue (NVR) monitor, which utilizes surface acoustic wave (SAW) resonators to detect molecular contamination in a given environment. The SAW resonators operate at a resonant frequency of approximately 200 MHz-2,000 MHz which enables the NVR monitor to detect molecular contamination on the order of 10.sup.-11 g-cm.sup.-2 to 10.sup.-13 g-cm.sup.2. The NVR monitor utilizes active temperature control of (SAW) resonators to achieve a stable resonant frequency. The temperature control system of the NVR monitor is able to directly heat and cool the SAW resonators utilizing a thermoelectric element to maintain the resonators at a present temperature independent of the environmental conditions. In order to enable the direct heating and cooling of the SAW resonators, the SAW resonators are operatively mounted to a heat sink. In one embodiment, the heat sink is located in between the SAW resonators and an electronic circuit board which contains at least a portion of the SAW control electronics. The electrical leads of the SAW resonators are connected through the heat sink to the circuit board via an electronic path which prevents inaccurate frequency measurement.

  4. Optimizing near real time accountability for reprocessing.

    SciTech Connect

    Cipiti, Benjamin B.

    2010-06-01

    Near Real Time Accountability (NRTA) of actinides at high precision in reprocessing plants has been a long sought-after goal in the safeguards community. Achieving this goal is hampered by the difficulty of making precision measurements in the reprocessing environment, equipment cost, and impact to plant operations. Thus the design of future reprocessing plants requires an optimization of different approaches. The Separations and Safeguards Performance Model, developed at Sandia National Laboratories, was used to evaluate a number of NRTA strategies in a UREX+ reprocessing plant. Strategies examined include the incorporation of additional actinide measurements of internal plant vessels, more use of process monitoring data, and the option of periodic draining of inventory to key tanks. Preliminary results show that the addition of measurement technologies can increase the overall measurement uncertainty due to additional error propagation, so care must be taken when designing an advanced system. Initial results also show that relying on a combination of different NRTA techniques will likely be the best option. The model provides a platform for integrating all the data. The modeling results for the different NRTA options under various material loss conditions will be presented.

  5. Real-time holographic camera system

    NASA Astrophysics Data System (ADS)

    Bazhenov, Mikhail Y.; Grabovski, Vitaly V.; Stolyarenko, Alexandr V.; Zahaykevich, George A.

    1997-04-01

    The holographic camera system for surface-relief hologram multiple reversible registration is presented. Photosensitive media is a single-layer photothermoplastic polymer on a glass substrate with conductive layer. This exclude a charges accumulation in the polymer volume and permits to realize an efficient enhancement of latent electrostatic image and its fast pulse heating development. The processes of charging, photogeneration, carriers transport, fast development and erasing, image enhancement were studied in detail and optimized. In order to improve some defects of photothermoplastic recording, originating from influences of circumstances and recording conditions, some new processes were developed: (1) fast charging with pulses corona in closed dielectric volume, (2) optoelectronic enhancement of electrostatic image, and (3) fast pulsed development with automatically controlled temperature rate. The dust-proof recording camera with built-in highvoltage power supply, thermo- and photosensors was designed to meet the needs of real-time or multiple- exposure interferometry, holographic training recording, holographic storage systems, correlation investigations and pattern recognition.

  6. Handheld real-time PCR device.

    PubMed

    Ahrberg, Christian D; Ilic, Bojan Robert; Manz, Andreas; Neužil, Pavel

    2016-02-01

    Here we report one of the smallest real-time polymerase chain reaction (PCR) systems to date with an approximate size of 100 mm × 60 mm × 33 mm. The system is an autonomous unit requiring an external 12 V power supply. Four simultaneous reactions are performed in the form of virtual reaction chambers (VRCs) where a ≈200 nL sample is covered with mineral oil and placed on a glass cover slip. Fast, 40 cycle amplification of an amplicon from the H7N9 gene was used to demonstrate the PCR performance. The standard curve slope was -3.02 ± 0.16 cycles at threshold per decade (mean ± standard deviation) corresponding to an amplification efficiency of 0.91 ± 0.05 per cycle (mean ± standard deviation). The PCR device was capable of detecting a single deoxyribonucleic acid (DNA) copy. These results further suggest that our handheld PCR device may have broad, technologically-relevant applications extending to rapid detection of infectious diseases in small clinics. PMID:26753557

  7. Towards real-time image quality assessment

    NASA Astrophysics Data System (ADS)

    Geary, Bobby; Grecos, Christos

    2011-03-01

    We introduce a real-time implementation and evaluation of a new fast accurate full reference based image quality metric. The popular general image quality metric known as the Structural Similarity Index Metric (SSIM) has been shown to be an effective, efficient and useful, finding many practical and theoretical applications. Recently the authors have proposed an enhanced version of the SSIM algorithm known as the Rotated Gaussian Discrimination Metric (RGDM). This approach uses a Gaussian-like discrimination function to evaluate local contrast and luminance. RGDM was inspired by an exploration of local statistical parameter variations in relation to variation of Mean Opinion Score (MOS) for a range of particular distortion types. In this paper we out-line the salient features of the derivation of RGDM and show how analyses of local statistics of distortion type necessitate variation in discrimination function width. Results on the LIVE image database show tight banding of RGDM metric value when plotted against mean opinion score indicating the usefulness of this metric. We then explore a number of strategies for algorithmic speed-up including the application of Integral Images for patch based computation optimisation, cost reduction for the evaluation of the discrimination function and general loop unrolling. We also employ fast Single Instruction Multiple Data (SIMD) intrinsics and explore data parallel decomposition on a multi-core Intel Processor.

  8. Technology test bed engine real-time failure control

    NASA Astrophysics Data System (ADS)

    Panossian, Hagop V.; Kemp, Victoria R.

    1992-10-01

    The Real-Time Failure Control (RTFC) program involves development of a failure detection algorithm, for the Space Shuttle Main Engine (SSME). This failure detection approach is signal-based and entails monitoring SSME measurement signals based on predetermined as well as on-line computed mean and standard deviation values. Twenty-four engine measurements are monitored in the algorithm and provisions are made to add more parameters if needed. Each of the first values of every measurement signal at the algorithm start is checked against safety limits placed around a pre-computed engine-to-engine mean value (MV) with a bandwidth equal to a given multiple of the pre-computed standard deviation (SD). If several parameters are out of the bounds of these limits a failure is signaled. During the first two seconds (after algorithm start) a moving average (MA) and a SD is computed on-line in real-time. The moving average of each parameter is computed by averaging the incoming signal measurement with the four most recent previous signal measurements. The moving average is updated at every sampling interval (40 msec) and is checked against a similar safety band around the initial signal value for each parameter. If several anomalies are registered, a failure is signaled by the algorithm. At the end of the two-second interval the MA is fixed as the mean value for the rest of the algorithm operation and a safety band is placed above and below this value equal to a multiple of the computed SD. However, the safety band is adjusted by adjusting the mean value when propellant tank repressurization and venting take place. 'Influence Coefficients' are used to make the necessary adjustments to the safety limits of those parameters that are affected by repressurization and venting or valve closure and opening. The MA is, in both cases, continuously updated and checked against the safety band. Once more, if several parameters exceed the limits a failure is signaled. At the start of every

  9. Technology test bed engine real-time failure control

    NASA Technical Reports Server (NTRS)

    Panossian, Hagop V.; Kemp, Victoria R.

    1992-01-01

    The Real-Time Failure Control (RTFC) program involves development of a failure detection algorithm, for the Space Shuttle Main Engine (SSME). This failure detection approach is signal-based and entails monitoring SSME measurement signals based on predetermined as well as on-line computed mean and standard deviation values. Twenty-four engine measurements are monitored in the algorithm and provisions are made to add more parameters if needed. Each of the first values of every measurement signal at the algorithm start is checked against safety limits placed around a pre-computed engine-to-engine mean value (MV) with a bandwidth equal to a given multiple of the pre-computed standard deviation (SD). If several parameters are out of the bounds of these limits a failure is signaled. During the first two seconds (after algorithm start) a moving average (MA) and a SD is computed on-line in real-time. The moving average of each parameter is computed by averaging the incoming signal measurement with the four most recent previous signal measurements. The moving average is updated at every sampling interval (40 msec) and is checked against a similar safety band around the initial signal value for each parameter. If several anomalies are registered, a failure is signaled by the algorithm. At the end of the two-second interval the MA is fixed as the mean value for the rest of the algorithm operation and a safety band is placed above and below this value equal to a multiple of the computed SD. However, the safety band is adjusted by adjusting the mean value when propellant tank repressurization and venting take place. 'Influence Coefficients' are used to make the necessary adjustments to the safety limits of those parameters that are affected by repressurization and venting or valve closure and opening. The MA is, in both cases, continuously updated and checked against the safety band. Once more, if several parameters exceed the limits a failure is signaled. At the start of every

  10. Real-time support for high performance aircraft operation

    NASA Technical Reports Server (NTRS)

    Vidal, Jacques J.

    1989-01-01

    The feasibility of real-time processing schemes using artificial neural networks (ANNs) is investigated. A rationale for digital neural nets is presented and a general processor architecture for control applications is illustrated. Research results on ANN structures for real-time applications are given. Research results on ANN algorithms for real-time control are also shown.

  11. 17 CFR 38.157 - Real-time market monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false Real-time market monitoring... DESIGNATED CONTRACT MARKETS Compliance With Rules § 38.157 Real-time market monitoring. A designated contract market must conduct real-time market monitoring of all trading activity on its electronic...

  12. 17 CFR 38.157 - Real-time market monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 1 2014-04-01 2014-04-01 false Real-time market monitoring... DESIGNATED CONTRACT MARKETS Compliance With Rules § 38.157 Real-time market monitoring. A designated contract market must conduct real-time market monitoring of all trading activity on its electronic...

  13. Progress in using real-time GPS for seismic monitoring of the Cascadia megathrust

    NASA Astrophysics Data System (ADS)

    Szeliga, W. M.; Melbourne, T. I.; Santillan, V. M.; Scrivner, C.; Webb, F.

    2014-12-01

    We report on progress in our development of a comprehensive real-time GPS-based seismic monitoring system for the Cascadia subduction zone. This system is based on 1 Hz point position estimates computed in the ITRF08 reference frame. Convergence from phase and range observables to point position estimates is accelerated using a Kalman filter based, on-line stream editor. Positions are estimated using a short-arc approach and algorithms from JPL's GIPSY-OASIS software with satellite clock and orbit products from the International GNSS Service (IGS). The resulting positions show typical RMS scatter of 2.5 cm in the horizontal and 5 cm in the vertical with latencies below 2 seconds. To facilitate the use of these point position streams for applications such as seismic monitoring, we broadcast real-time positions and covariances using custom-built streaming software. This software is capable of buffering 24-hour streams for hundreds of stations and providing them through a REST-ful web interface. To demonstrate the power of this approach, we have developed a Java-based front-end that provides a real-time visual display of time-series, vector displacement, and contoured peak ground displacement. We have also implemented continuous estimation of finite fault slip along the Cascadia megathrust using an NIF approach. The resulting continuous slip distributions are combined with pre-computed tsunami Green's functions to generate real-time tsunami run-up estimates for the entire Cascadia coastal margin. This Java-based front-end is available for download through the PANGA website. We currently analyze 80 PBO and PANGA stations along the Cascadia margin and are gearing up to process all 400+ real-time stations operating in the Pacific Northwest, many of which are currently telemetered in real-time to CWU. These will serve as milestones towards our over-arching goal of extending our processing to include all of the available real-time streams from the Pacific rim. In addition

  14. Improved process control through real-time measurement of mineral content

    SciTech Connect

    Turler, Daniel; Karaca, Murat; Davis, William B.; Giauque, Robert D.; Hopkins, Deborah

    2001-11-02

    In a highly collaborative research and development project with mining and university partners, sensors and data-analysis tools are being developed for rock-mass characterization and real-time measurement of mineral content. Determining mineralogy prior to mucking in an open-pit mine is important for routing the material to the appropriate processing stream. A possible alternative to lab assay of dust and cuttings obtained from drill holes is continuous on-line sampling and real-time x-ray fluorescence (XRF) spectroscopy. Results presented demonstrate that statistical analyses combined with XRF data can be employed to identify minerals and, possibly, different rock types. The objective is to create a detailed three-dimensional mineralogical map in real time that would improve downstream process efficiency.

  15. Apparatus Characterizes Transient Voltages in Real Time

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro

    2005-01-01

    is received, a volatile memory is filled with data for a total time of 200 ms. After the data are transferred to nonvolatile memory, the recorder rearms itself within 400 ms to enable recording of subsequent transients. Unfortunately, the recorded data must be retrieved through a serial communication link. Depending on the amount of data recorded, the memory can be filled before retrieval is completed. Although large amounts of data are recorded and retrieved, only a small part of the information (the selected parameters) is usually required. The present transient-voltage recorder provides the required information, without incurring the overhead associated with the recording, storage, and retrieval of complete transient-waveform data. In operation, this apparatus processes transient voltage waveforms in real time to extract and record the selected parameters. An analog-to-digital converter that operates at a speed of as much as 100 mega-samples per second is used to sample a transient waveform. A real-time comparator and peak detector are implemented by use of fast field-programmable gate arrays.

  16. Public Science with Real-Time Experiments

    NASA Astrophysics Data System (ADS)

    Lenardic, A.

    2013-12-01

    One of the best ways for professional scientists to engage in public outreach is to get outside of the university and/or lab walls and go out into the public. That is, go to public spaces to do some science experiments with the public - this includes students of all ages that constitute that public. Technological advance in portable measurement gear now allow one to do real, or near real, time experiments in outdoor, public spaces. We have been running a meta-experiment of this sort, aimed at the public display of science, for about a year now in Houston TX at the Lee and Joe Jamail Skatepark. The project goes under the title of Sk8Lab Houston and has introduced students of all ages to the power of scientific experimentation. We bring a portable science pack with us to the park. The pack has a range of wireless measurement gear that allow experiments to be done on the spot. Some of the experiments are designed by us but many are designed on by whoever suggests them to us that day. Over time the Sk8Lab scientists have built up a level of "trust" with the people who frequent the park (no one feels like we are gonna grade them at the park and they know that the learning is not on some regimented clock). This has broken down some learning walls and allowed for a more informal mode of exploration and a more genuine mode of experimentation (as compared to what often happens in class labs when students feel like they are just being forced to reproduce some known result). We will describe some of the test case experiments we have run and also discuss some of the trials, tribulations, and happy successes (many unplanned) along the way.

  17. Real time PV manufacturing diagnostic system

    SciTech Connect

    Kochergin, Vladimir; Crawford, Michael A.

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  18. Real-Time Feature Tracking Using Homography

    NASA Technical Reports Server (NTRS)

    Clouse, Daniel S.; Cheng, Yang; Ansar, Adnan I.; Trotz, David C.; Padgett, Curtis W.

    2010-01-01

    This software finds feature point correspondences in sequences of images. It is designed for feature matching in aerial imagery. Feature matching is a fundamental step in a number of important image processing operations: calibrating the cameras in a camera array, stabilizing images in aerial movies, geo-registration of images, and generating high-fidelity surface maps from aerial movies. The method uses a Shi-Tomasi corner detector and normalized cross-correlation. This process is likely to result in the production of some mismatches. The feature set is cleaned up using the assumption that there is a large planar patch visible in both images. At high altitude, this assumption is often reasonable. A mathematical transformation, called an homography, is developed that allows us to predict the position in image 2 of any point on the plane in image 1. Any feature pair that is inconsistent with the homography is thrown out. The output of the process is a set of feature pairs, and the homography. The algorithms in this innovation are well known, but the new implementation improves the process in several ways. It runs in real-time at 2 Hz on 64-megapixel imagery. The new Shi-Tomasi corner detector tries to produce the requested number of features by automatically adjusting the minimum distance between found features. The homography-finding code now uses an implementation of the RANSAC algorithm that adjusts the number of iterations automatically to achieve a pre-set probability of missing a set of inliers. The new interface allows the caller to pass in a set of predetermined points in one of the images. This allows the ability to track the same set of points through multiple frames.

  19. A real-time prediction of UTC

    NASA Astrophysics Data System (ADS)

    Thomas, Claudine; Allan, David W.

    1994-05-01

    The reference time scale for all scientific and technologic applications on the Earth, the Universal Coordinated Time (UTC), must be as stable, reliable, and accurate as possible. With this in view the BIPM and before it the BIH, have always calculated and then disseminated UTC with a delay of about 80 days. There are three fundamental reasons for doing this: (1) It takes some weeks for data, gathered from some 200 clocks spread world-wide, to be collected and for errors to be eliminated; (2) changes in clock rates can only be measured with high precision well after the fact; and (3) the measurement noise originating in time links, in particular using Loran-C, is smoothed out only when averaging over an extended period. Until mid-1992, the ultimate stability of UTC was reached at averaging times of about 100 days and corresponded to an Allan deviation sigma(sub y)(tau) of about 1,5x10(exp -14) then compared to the best primary clock in the world, the PTB CS2. For several years now, a predicted UTC has been computed by the USNO through an extrapolation of the values as published in deferred time by the BIPM. This is made available through the USNO Series 4, through the USNO Automated Data Service, and through GPS signals. Due to the instability of UTC, the poor predictability of the available clocks, and the intentional SA degradation of GPS signals, the real-time access to this extrapolated UTC has represented the true deferred-time UTC only to within several hundreds of nanoseconds.

  20. A real-time prediction of UTC

    NASA Technical Reports Server (NTRS)

    Thomas, Claudine; Allan, David W.

    1994-01-01

    The reference time scale for all scientific and technologic applications on the Earth, the Universal Coordinated Time (UTC), must be as stable, reliable, and accurate as possible. With this in view the BIPM and before it the BIH, have always calculated and then disseminated UTC with a delay of about 80 days. There are three fundamental reasons for doing this: (1) It takes some weeks for data, gathered from some 200 clocks spread world-wide, to be collected and for errors to be eliminated; (2) changes in clock rates can only be measured with high precision well after the fact; and (3) the measurement noise originating in time links, in particular using Loran-C, is smoothed out only when averaging over an extended period. Until mid-1992, the ultimate stability of UTC was reached at averaging times of about 100 days and corresponded to an Allan deviation sigma(sub y)(tau) of about 1,5x10(exp -14) then compared to the best primary clock in the world, the PTB CS2. For several years now, a predicted UTC has been computed by the USNO through an extrapolation of the values as published in deferred time by the BIPM. This is made available through the USNO Series 4, through the USNO Automated Data Service, and through GPS signals. Due to the instability of UTC, the poor predictability of the available clocks, and the intentional SA degradation of GPS signals, the real-time access to this extrapolated UTC has represented the true deferred-time UTC only to within several hundreds of nanoseconds.

  1. Real-time CHAMP (RTC) infrared scene generation program

    NASA Astrophysics Data System (ADS)

    Crow, Dennis R.; Coker, Charles F.

    2001-08-01

    The Real-Time CHAMP (RTC) program is a computer simulation used to provide time varying high-fidelity infrared simulations of airborne vehicles and backgrounds in real- time. RTC is currently being utilized to provide real-time infrared imagery to support closed-loop digital and hardware-in-the-loop simulations. RTC computational algorithms take advantage of parametric databases created by its non real-time companion code (CHAMP--Composite Hardbody and Missile Plume) to allow accurate infrared imagery to be generated at real-time frame rates.

  2. Real-time multispectral imaging system for online poultry fecal inspection using UML

    NASA Astrophysics Data System (ADS)

    Park, Bosoon; Kise, Michio; Lawrence, Kurt C.; Windham, William R.; Smith, Douglas P.; Thai, Chi N.

    2006-10-01

    A prototype real-time multispectral imaging system for fecal and ingesta contaminant detection on broiler carcasses has been developed. The prototype system includes a common aperture camera with three optical trim filters (517, 565 and 802-nm wavelength), which were selected by visible/NIR spectroscopy and validated by a hyperspectral imaging system with decision tree algorithm. The on-line testing results showed that the multispectral imaging technique can be used effectively for detecting feces (from duodenum, ceca, and colon) and ingesta on the surface of poultry carcasses with a processing speed of 140 birds per minute. This paper demonstrated both multispectral imaging hardware and real-time image processing software. For the software development, the Unified Modeling Language (UML) design approach was used for on-line application. The UML models included class, object, activity, sequence, and collaboration diagram. User interface model included seventeen inputs and six outputs. A window based real-time image processing software composed of eleven components, which represented class, architecture, and activity. Both hardware and software for a real-time fecal detection were tested at the pilot-scale poultry processing plant. The run-time of the software including online calibration was fast enough to inspect carcasses on-line with an industry requirement. Based on the preliminary test at the pilot-scale processing line, the system was able to acquire poultry images in real-time. According to the test results, the imaging system is reliable for the harsh environments and UML based image processing software is flexible and easy to be updated when additional parameters are needed for in-plant trials.

  3. Continuous real-time photoacoustic demodulation via field programmable gate array for dynamic imaging of zebrafish cardiac cycle.

    PubMed

    Mattison, Scott P; Shelton, Ryan L; Maxson, Ryan T; Applegate, Brian E

    2013-01-01

    A four dimensional data set of the cardiac cycle of a zebrafish embryo was acquired using postacquisition synchronization of real time photoacoustic b-scans. Utilizing an off-axis photoacoustic microscopy (OA-PAM) setup, we have expanded upon our previous work with OA-PAM to develop a system that can sustain 100 kHz line rates while demodulating the bipolar photoacoustic signal in real-time. Real-time processing was accomplished by quadrature demodulation on a Field Programmable Gate Array (FPGA) in line with the signal digitizer. Simulated data acquisition verified the system is capable of real-time processing up to a line rate of 1 MHz. Galvanometer-scanning of the excitation laser inside the focus of the ultrasonic transducer enables real data acquisition of a 200 by 200 by 200 pixel, volumetric data set across a 2 millimeter field of view at a rate of 2.5 Hz. PMID:24010007

  4. Satellite clock corrections estimation to accomplish real time ppp: experiments for brazilian real time network

    NASA Astrophysics Data System (ADS)

    Marques, Haroldo; Monico, João; Aquino, Marcio; Melo, Weyller

    2014-05-01

    The real time PPP method requires the availability of real time precise orbits and satellites clocks corrections. Currently, it is possible to apply the solutions of clocks and orbits available by BKG within the context of IGS Pilot project or by using the operational predicted IGU ephemeris. The accuracy of the satellite position available in the IGU is enough for several applications requiring good quality. However, the satellites clocks corrections do not provide enough accuracy (3 ns ~ 0.9 m) to accomplish real time PPP with the same level of accuracy. Therefore, for real time PPP application it is necessary to further research and develop appropriated methodologies for estimating the satellite clock corrections in real time with better accuracy. Currently, it is possible to apply the real time solutions of clocks and orbits available by Federal Agency for Cartography and Geodesy (BKG) within the context of IGS Pilot project. The BKG corrections are disseminated by a new proposed format of the RTCM 3.x and can be applied in the broadcasted orbits and clocks. Some investigations have been proposed for the estimation of the satellite clock corrections using GNSS code and phase observable at the double difference level between satellites and epochs (MERVAT, DOUSA, 2007). Another possibility consists of applying a Kalman Filter in the PPP network mode (HAUSCHILD, 2010) and it is also possible the integration of both methods, using network PPP and observables at double difference level in specific time intervals (ZHANG; LI; GUO, 2010). For this work the methodology adopted consists in the estimation of the satellite clock corrections based on the data adjustment in the PPP mode, but for a network of GNSS stations. The clock solution can be solved by using two types of observables: code smoothed by carrier phase or undifferenced code together with carrier phase. In the former, we estimate receiver clock error; satellite clock correction and troposphere, considering

  5. Real-time trajectory optimization on parallel processors

    NASA Technical Reports Server (NTRS)

    Psiaki, Mark L.

    1993-01-01

    A parallel algorithm has been developed for rapidly solving trajectory optimization problems. The goal of the work has been to develop an algorithm that is suitable to do real-time, on-line optimal guidance through repeated solution of a trajectory optimization problem. The algorithm has been developed on an INTEL iPSC/860 message passing parallel processor. It uses a zero-order-hold discretization of a continuous-time problem and solves the resulting nonlinear programming problem using a custom-designed augmented Lagrangian nonlinear programming algorithm. The algorithm achieves parallelism of function, derivative, and search direction calculations through the principle of domain decomposition applied along the time axis. It has been encoded and tested on 3 example problems, the Goddard problem, the acceleration-limited, planar minimum-time to the origin problem, and a National Aerospace Plane minimum-fuel ascent guidance problem. Execution times as fast as 118 sec of wall clock time have been achieved for a 128-stage Goddard problem solved on 32 processors. A 32-stage minimum-time problem has been solved in 151 sec on 32 processors. A 32-stage National Aerospace Plane problem required 2 hours when solved on 32 processors. A speed-up factor of 7.2 has been achieved by using 32-nodes instead of 1-node to solve a 64-stage Goddard problem.

  6. Instrumentation development for real time brainwave monitoring.

    SciTech Connect

    Anderson, Lawrence Frederick; Clough, Benjamin W.

    2005-12-01

    The human brain functions through a chemically-induced biological process which operates in a manner similar to electrical systems. The signal resulting from this biochemical process can actually be monitored and read using tools and having patterns similar to those found in electrical and electronics engineering. The primary signature of this electrical activity is the ''brain wave'', which looks remarkably similar to the output of many electrical systems. Likewise, the device currently used in medical arenas to read brain electrical activity is the electroencephalogram (EEG) which is synonymous with a multi-channel oscilloscope reading. Brain wave readings and recordings for medical purposes are traditionally taken in clinical settings such as hospitals, laboratories or diagnostic clinics. The signal is captured via externally applied scalp electrodes using semi-viscous gel to reduce impedance. The signal will be in the 10 to 100 microvolt range. In other instances, where surgeons are attempting to isolate particular types of minute brain signals, the electrodes may actually be temporarily implanted in the brain during a preliminary procedure. The current configurations of equipment required for EEGs involve large recording instruments, many electrodes, wires, and large amounts of hard disk space devoted to storing large files of brain wave data which are then eventually analyzed for patterns of concern. Advances in sensors, signal processing, data storage and microelectronics over the last decade would seem to have paved the way for the realization of devices capable of ''real time'' external monitoring, and possible assessment, of brain activity. A myriad of applications for such a capability are likewise presenting themselves, including the ability to assess brain functioning, level of functioning and malfunctioning. Our plan is to develop the sensors, signal processing, and portable instrumentation package which could capture, analyze, and communicate

  7. Real Time Seismic Loss Estimation in Italy

    NASA Astrophysics Data System (ADS)

    Goretti, A.; Sabetta, F.

    2009-04-01

    By more than 15 years the Seismic Risk Office is able to perform a real-time evaluation of the earthquake potential loss in any part of Italy. Once the epicentre and the magnitude of the earthquake are made available by the National Institute for Geophysiscs and Volca-nology, the model, based on the Italian Geographic Information Sys-tems, is able to evaluate the extent of the damaged area and the consequences on the built environment. In recent years the model has been significantly improved with new methodologies able to conditioning the uncertainties using observa-tions coming from the fields during the first days after the event. However it is reputed that the main challenges in loss analysis are related to the input data, more than to methodologies. Unlike the ur-ban scenario, where the missing data can be collected with enough accuracy, the country-wise analysis requires the use of existing data bases, often collected for other purposed than seismic scenario evaluation, and hence in some way lacking of completeness and homogeneity. Soil properties, building inventory and population dis-tribution are the main input data that are to be known in any site of the whole Italian territory. To this end the National Census on Popu-lation and Dwellings has provided information on the residential building types and the population that lives in that building types. The critical buildings, such as Hospital, Fire Brigade Stations, Schools, are not included in the inventory, since the national plan for seismic risk assessment of critical buildings is still under way. The choice of a proper soil motion parameter, its attenuation with distance and the building type fragility are important ingredients of the model as well. The presentation will focus on the above mentioned issues, highlight-ing the different data sets used and their accuracy, and comparing the model, input data and results when geographical areas with dif-ferent extent are considered: from the urban scenarios

  8. Real Time Wide Area Radiation Surveillance System

    NASA Astrophysics Data System (ADS)

    Biafore, M.

    2012-04-01

    We present the REWARD project, financed within the FP7 programme, theme SEC-2011.1.5-1 (Development of detection capabilities of difficult to detect radioactive sources and nuclear materials - Capability Project). Within this project, we propose a novel mobile system for real time, wide area radiation surveillance. The system is based on the integration of new miniaturized solid-state radiation sensors: a CdZnTe detector for gamma radiation and a high efficiency neutron detector based on novel silicon technologies. The sensing unit will include a wireless communication interface to send the data remotely to a monitoring base station which also uses a GPS system to calculate the position of the tag. The system will also incorporate middleware and high level software to provide web-service interfaces for the exchange of information, and that will offer top level functionalities as management of users, mobile tags and environment data and alarms, database storage and management and a web-based graphical user interface. Effort will be spent to ensure that the software is modular and re-usable across as many architectural levels as possible. Finally, an expert system will continuously analyze the information from the radiation sensor and correlate it with historical data from the tag location in order to generate an alarm when an abnormal situation is detected. The system will be useful for many different scenarios, including such lost radioactive sources and radioactive contamination. It will be possible to deploy in emergency units and in general in any type of mobile or static equipment. The sensing units will be highly portable thanks to their low size and low energy consumption. The complete system will be scalable in terms of complexity and cost and will offer very high precision on both the measurement and the location of the radiation. The modularity and flexibility of the system will allow for a realistic introduction to the market. Authorities may start with a

  9. Real-time Forensic Disaster Analysis

    NASA Astrophysics Data System (ADS)

    Wenzel, F.; Daniell, J.; Khazai, B.; Mühr, B.; Kunz-Plapp, T.; Markus, M.; Vervaeck, A.

    2012-04-01

    The Center for Disaster Management and Risk Reduction Technology (CEDIM, www.cedim.de) - an interdisciplinary research center founded by the German Research Centre for Geoscience (GFZ) and Karlsruhe Institute of Technology (KIT) - has embarked on a new style of disaster research known as Forensic Disaster Analysis. The notion has been coined by the Integrated Research on Disaster Risk initiative (IRDR, www.irdrinternational.org) launched by ICSU in 2010. It has been defined as an approach to studying natural disasters that aims at uncovering the root causes of disasters through in-depth investigations that go beyond the reconnaissance reports and case studies typically conducted after disasters. In adopting this comprehensive understanding of disasters CEDIM adds a real-time component to the assessment and evaluation process. By comprehensive we mean that most if not all relevant aspects of disasters are considered and jointly analysed. This includes the impact (human, economy, and infrastructure), comparisons with recent historic events, social vulnerability, reconstruction and long-term impacts on livelihood issues. The forensic disaster analysis research mode is thus best characterized as "event-based research" through systematic investigation of critical issues arising after a disaster across various inter-related areas. The forensic approach requires (a) availability of global data bases regarding previous earthquake losses, socio-economic parameters, building stock information, etc.; (b) leveraging platforms such as the EERI clearing house, relief-web, and the many sources of local and international sources where information is organized; and (c) rapid access to critical information (e.g., crowd sourcing techniques) to improve our understanding of the complex dynamics of disasters. The main scientific questions being addressed are: What are critical factors that control loss of life, of infrastructure, and for economy? What are the critical interactions

  10. Real-Time Wireless Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Valencia, Emilio J.; Perotti, Jose; Lucena, Angel; Mata, Carlos

    2007-01-01

    Current and future aerospace requirements demand the creation of a new breed of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors must possess a high degree of intelligence to provide critical data efficiently and in real-time. Intelligence will include self-calibration, self-health assessment, and pre-processing of raw data at the sensor level. Most of these features are already incorporated in the Wireless Sensors Network (SensorNet(TradeMark)), developed by the Instrumentation Group at Kennedy Space Center (KSC). A system based on the SensorNet(TradeMark) architecture consists of data collection point(s) called Central Stations (CS) and intelligent sensors called Remote Stations (RS) where one or more CSs can be accommodated depending on the specific application. The CS's major function is to establish communications with the Remote Stations and to poll each RS for data and health information. The CS also collects, stores and distributes these data to the appropriate systems requiring the information. The system has the ability to perform point-to-point, multi-point and relay mode communications with an autonomous self-diagnosis of each communications link. Upon detection of a communication failure, the system automatically reconfigures to establish new communication paths. These communication paths are automatically and autonomously selected as the best paths by the system based on the existing operating environment. The data acquisition system currently under development at KSC consists of the SensorNet(TradeMark) wireless sensors as the remote stations and the central station called the Radio Frequency Health Node (RFHN). The RFF1N is the central station which remotely communicates with the SensorNet(TradeMark) sensors to control them and to receive data. The system's salient feature is the ability to provide deterministic sensor data with accurate time stamps for both time critical and non

  11. Real Time Flux Control in PM Motors

    SciTech Connect

    Otaduy, P.J.

    2005-09-27

    Significant research at the Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) is being conducted to develop ways to increase (1) torque, (2) speed range, and (3) efficiency of traction electric motors for hybrid electric vehicles (HEV) within existing current and voltage bounds. Current is limited by the inverter semiconductor devices' capability and voltage is limited by the stator wire insulation's ability to withstand the maximum back-electromotive force (emf), which occurs at the upper end of the speed range. One research track has been to explore ways to control the path and magnitude of magnetic flux while the motor is operating. The phrase, real time flux control (RTFC), refers to this mode of operation in which system parameters are changed while the motor is operating to improve its performance and speed range. RTFC has potential to meet an increased torque demand by introducing additional flux through the main air gap from an external source. It can augment the speed range by diverting flux away from the main air gap to reduce back-emf at high speeds. Conventional RTFC technology is known as vector control [1]. Vector control decomposes the stator current into two components; one that produces torque and a second that opposes (weakens) the magnetic field generated by the rotor, thereby requiring more overall stator current and reducing the efficiency. Efficiency can be improved by selecting a RTFC method that reduces the back-emf without increasing the average current. This favors methods that use pulse currents or very low currents to achieve field weakening. Foremost in ORNL's effort to develop flux control is the work of J. S. Hsu. Early research [2,3] introduced direct control of air-gap flux in permanent magnet (PM) machines and demonstrated it with a flux-controlled generator. The configuration eliminates the problem of demagnetization because it diverts all the flux from the magnets instead of

  12. Fast Simulation of Tsunamis in Real Time

    NASA Astrophysics Data System (ADS)

    Fryer, G. J.; Wang, D.; Becker, N. C.; Weinstein, S. A.; Walsh, D.

    2011-12-01

    The U.S. Tsunami Warning Centers primarily base their wave height forecasts on precomputed tsunami scenarios, such as the SIFT model (Standby Inundation Forecasting of Tsunamis) developed by NOAA's Center for Tsunami Research. In SIFT, tsunami simulations for about 1600 individual earthquake sources, each 100x50 km, define shallow subduction worldwide. These simulations are stored in a database and combined linearly to make up the tsunami from any great earthquake. Precomputation is necessary because the nonlinear shallow-water wave equations are too time consuming to compute during an event. While such scenario-based models are valuable, they tacitly assume all energy in a tsunami comes from thrust at the décollement. The thrust assumption is often violated (e.g., 1933 Sanriku, 2007 Kurils, 2009 Samoa), while a significant number of tsunamigenic earthquakes are completely unrelated to subduction (e.g., 1812 Santa Barbara, 1939 Accra, 1975 Kalapana). Finally, parts of some subduction zones are so poorly defined that precomputations may be of little value (e.g., 1762 Arakan, 1755 Lisbon). For all such sources, a fast means of estimating tsunami size is essential. At the Pacific Tsunami Warning Center, we have been using our model RIFT (Real-time Inundation Forecasting of Tsunamis) experimentally for two years. RIFT is fast by design: it solves only the linearized form of the equations. At 4 arc-minutes resolution calculations for the entire Pacific take just a few minutes on an 8-processor Linux box. Part of the rationale for developing RIFT was earthquakes of M 7.8 or smaller, which approach the lower limit of the more complex SIFT's abilities. For such events we currently issue a fixed warning to areas within 1,000 km of the source, which typically means a lot of over-warning. With sources defined by W-phase CMTs, exhaustive comparison with runup data shows that we can reduce the warning area significantly. Even before CMTs are available, we routinely run models

  13. Real time UAV autonomy through offline calculations

    NASA Astrophysics Data System (ADS)

    Jung, Sunghun

    . Once one or several targets are detected, UAVs near the target are manipulated to approach to the target. If the number of detected targets is more than one, UAVs are evenly grouped to track targets. After a specific period of time, UAVs hand off and continue their original tasks. Thirdly, Emergency algorithm is generated to avoid losses of UAVs when UAVs have system failures. If one UAV is out of fuel or control during the mission, the Emergency algorithm brings the malfunctioning UAV to the point of departure and let the rest UAVs to continue an aerial reconnaissance. An UAV which finishes its task the earliest will continue to search a region which the failed UAV is supposed to search. In addition, Emergency algorithm prevents UAVs colliding into each other by using emergency altitude. Overall, the framework developed here facilitates the solution of several mission planning problems. The robustness built into our discretization of space and time permits feedback corrections on real-time to vehicle trajectories. The library of off-line solutions proposed and developed here minimizes computational overhead during operations.

  14. Easy and hard testbeds for real-time search algorithms

    SciTech Connect

    Koenig, S.; Simmons, R.G.

    1996-12-31

    Although researchers have studied which factors influence the behavior of traditional search algorithms, currently not much is known about how domain properties influence the performance of real-time search algorithms. In this paper we demonstrate, both theoretically and experimentally, that Eulerian state spaces (a super set of undirected state spaces) are very easy for some existing real-time search algorithms to solve: even real-time search algorithms that can be intractable, in general, are efficient for Eulerian state spaces. Because traditional real-time search testbeds (such as the eight puzzle and gridworlds) are Eulerian, they cannot be used to distinguish between efficient and inefficient real-time search algorithms. It follows that one has to use non-Eulerian domains to demonstrate the general superiority of a given algorithm. To this end, we present two classes of hard-to-search state spaces and demonstrate the performance of various real-time search algorithms on them.

  15. Real-time and postprocessing holographic effects in dichromated pullulan.

    PubMed

    Savić, Svetlana; Pantelić, Dejan; Jakovijević, Dragica

    2002-08-01

    Experimental results concerning both real-time and postprocessing (after-development) behavior of a novel photosensitive material, dichromate-sensitized pullulan (DCP), are investigated. The exposure mechanism and possibilities for controlling holographic grating properties are discussed. We have shown that it is possible to maximize the diffraction efficiency of interference gratings after development by controlling diffraction efficiency in real time. Stronger real-time effects of DCP compared with those of dichromated gelatin are achieved. PMID:12153075

  16. Severe storms measurement system real time data processing and displays

    NASA Technical Reports Server (NTRS)

    Jeffreys, H. B.

    1980-01-01

    The objectives of the system are to provide the system operator with real time system performance check and to provide data recording of all SSMS data. Meteorologists are provided with real time indication of meteorological data measurements including aid for directing flight profiles in real time and aid for directing SSMS operations. A day-to-day feedback is provided to meteorologists, system operators, and flight crews for flight planning on subsequent flight tests days.

  17. Methods for real-time speech processing on Unix

    SciTech Connect

    Romberger, A.

    1982-01-01

    The author discusses computer programming done at the University of California, Berkeley, in support of research work in the area of speech analysis and synthesis. The purpose of this programming is to set up a system for doing real-time speech sampling using the Unix operating system. Two alternative approaches to real time work on Unix are discussed. The first approach is to do the real-time input/output on a secondary (satellite) machine that is not running Unix. The second approach is to do the real-time input/output on the main machine with the aid of special hardware.

  18. The Real Time Mission Monitor: A Platform for Real Time Environmental Data Integration and Display during NASA Field Campaigns

    NASA Astrophysics Data System (ADS)

    He, M.; Hardin, D. M.; Goodman, M.; Blakeslee, R.

    2008-05-01

    The Real Time Mission Monitor (RTMM) is an interactive visualization application based on Google Earth, that provides situational awareness and field asset management during NASA field campaigns. The RTMM can integrate data and imagery from numerous sources including GOES-12, GOES-10, and TRMM satellites. Simultaneously, it can display data and imagery from surface observations including Nexrad, NPOL and SMART- R radars. In addition to all these it can display output from models and real-time flight tracks of all aircraft involved in the experiment. In some instances the RTMM can also display measurements from scientific instruments as they are being flown. All data are recorded and archived in an on-line system enabling playback and review of all sorties. This is invaluable in preparing for future deployments and in exercising case studies. The RTMM facilitates pre-flight planning, in-flight monitoring, development of adaptive flight strategies and post- flight data analyses and assessments. Since the RTMM is available via the internet - during the actual experiment - project managers, scientists and mission planners can collaborate no matter where they are located as long as they have a viable internet connection. In addition, the system is open so that the general public can also view the experiment, in-progress, with Google Earth. Predecessors of RTMM were originally deployed in 2002 as part of the Altus Cumulus Electrification Study (ACES) to monitor uninhabited aerial vehicles near thunderstorms. In 2005 an interactive Java-based web prototype supported the airborne Lightning Instrument Package (LIP) during the Tropical Cloud Systems and Processes (TCSP) experiment. In 2006 the technology was adapted to the 3D Google Earth virtual globe and in 2007 its capabilities were extended to support multiple NASA aircraft (ER-2, WB-57, DC-8) during Tropical Composition, Clouds and Climate Coupling (TC4) experiment and 2007 Summer Aerosonde field study. In April 2008

  19. Boresonic testing utilizing multi-channel C-scan imaging in real time

    SciTech Connect

    Porter, J.P.; Morrison, J.W.

    1994-12-31

    Boreside nondestructive inspection techniques capable of detecting small, yet potentially dangerous flaws in turbine/generator rotors have been developed and utilized for several years. Test methods have ranged from simple hand scanning to very complex computer driven data acquisition systems. Under the direction of Northeast Inspection Services, Inc., an automated computer controlled ultrasonic recording apparatus (ACCURA) system has been developed, evaluated by EPRI, and utilized in the field to perform boresonic tests. The system provides real time multi-channel C-scan imaging of ultrasonic reflectors. Numerical data table files are stored in ASCII format for use in engineering analyses for flaw evaluation and lifetime prediction. A number of applications ranging from turbine rotor tests for detection of near bore indications to peripheral circumferential crack detection in generator rotors are described to illustrate the versatility of the system. The sensitivity and detection reliability of the system are also discussed.

  20. On-Line Library Housekeeping Systems. A Survey

    ERIC Educational Resources Information Center

    McAllister, Caryl

    1971-01-01

    A general discussion of on-line procedures, batch and real-time updating, types of files and indexes, terminals, and the use of a general-purpose data management system as a vehicle for on-line operation is followed by an Appendix giving detailed information on each on the known systems. (14 references) (Author/NH)

  1. REAL-TIME ENVIRONMENTAL MONITORING: APPLICATIONS FOR HOMELAND SECURITY

    EPA Science Inventory

    Real-time monitoring technology developed as part of the EMPACT program has a variety of potential applications. These tools can measure a variety of potential contaminants in the air, water, in buildings, or in the soil. Real-time monitoring technology allows these detection sys...

  2. 75 FR 68418 - Real-Time System Management Information Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... successful real-time information program. A Request for Comments was published on May 4, 2006, at 71 FR 26399... 14, 2009, at 74 FR 1993. The purpose was to propose the establishment of minimum parameters and... Federal Highway Administration 23 CFR Part 511 RIN 2125-AF19 Real-Time System Management...

  3. 76 FR 42536 - Real-Time System Management Information Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... System Management Information Program on November 8, 2010, at 75 FR 68418. The final rule document also... Federal Highway Administration 23 CFR Part 511 RIN 2125-AF19 Real-Time System Management Information... available and share traffic and travel conditions information via real-time information programs as...

  4. REAL-TIME PCR ASSAY DEVELOPMENT FOR MULTIPLE MAIZE PATHOGENS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This talk presents updates on the development of real-time PCR assays for two seedborne pathogens of maize, Pantoea (Erwinia) stewartii, the causal agent of Stewart's bacterial wilt, and Stenocarpella (Diplodia) maydis, the causal agent of Diplodia ear rot. We developed primers and a real-time PCR p...

  5. COMPUTER-CONTROLLED, REAL-TIME AUTOMOBILE EMISSIONS MONITORING SYSTEM

    EPA Science Inventory

    A minicomputer controlled automotive emissions sampling and analysis system (the Real-Time System) was developed to determine vehicular modal emissions over various test cycles. This data acquisition system can sample real-time emissions at a rate of 10 samples/s. A buffer utiliz...

  6. Real-time hyperspectral imaging for food safety applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multispectral imaging systems with selected bands can commonly be used for real-time applications of food processing. Recent research has demonstrated several image processing methods including binning, noise removal filter, and appropriate morphological analysis in real-time mode can remove most fa...

  7. "Real-Time" Case Studies in Organizational Communication

    ERIC Educational Resources Information Center

    Long, Shawn D.

    2005-01-01

    This article presents an activity that integrates theory and application by examining the multiple communication events affecting a single organization in "real time" over the course of an academic term. The "real-time" case study (RTCS) avails students of the opportunity to examine organizational communication events as they are occurring in…

  8. Real-time fault diagnosis for propulsion systems

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Guo, Ten-Huei; Delaat, John C.; Duyar, Ahmet

    1991-01-01

    Current research toward real time fault diagnosis for propulsion systems at NASA-Lewis is described. The research is being applied to both air breathing and rocket propulsion systems. Topics include fault detection methods including neural networks, system modeling, and real time implementations.

  9. Hardware for a real-time multiprocessor simulator

    NASA Technical Reports Server (NTRS)

    Blech, R. A.; Arpasi, D. J.

    1984-01-01

    The hardware for a real time multiprocessor simulator (RTMPS) developed at the NASA Lewis Research Center is described. The RTMPS is a multiple microprocessor system used to investigate the application of parallel processing concepts to real time simulation. It is designed to provide flexible data exchange paths between processors by using off the shelf microcomputer boards and minimal customized interfacing. A dedicated operator interface allows easy setup of the simulator and quick interpreting of simulation data. Simulations for the RTMPS are coded in a NASA designed real time multiprocessor language (RTMPL). This language is high level and geared to the multiprocessor environment. A real time multiprocessor operating system (RTMPOS) has also been developed that provides a user friendly operator interface. The RTMPS and supporting software are currently operational and are being evaluated at Lewis. The results of this evaluation will be used to specify the design of an optimized parallel processing system for real time simulation of dynamic systems.

  10. A real-time simulator of a turbofan engine

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Delaat, John C.; Merrill, Walter C.

    1989-01-01

    A real-time digital simulator of a Pratt and Whitney F100 engine has been developed for real-time code verification and for actuator diagnosis during full-scale engine testing. This self-contained unit can operate in an open-loop stand-alone mode or as part of closed-loop control system. It can also be used for control system design and development. Tests conducted in conjunction with the NASA Advanced Detection, Isolation, and Accommodation program show that the simulator is a valuable tool for real-time code verification and as a real-time actuator simulator for actuator fault diagnosis. Although currently a small perturbation model, advances in microprocessor hardware should allow the simulator to evolve into a real-time, full-envelope, full engine simulation.

  11. Real-Time MENTAT programming language and architecture

    NASA Technical Reports Server (NTRS)

    Grimshaw, Andrew S.; Silberman, Ami; Liu, Jane W. S.

    1989-01-01

    Real-time MENTAT, a programming environment designed to simplify the task of programming real-time applications in distributed and parallel environments, is described. It is based on the same data-driven computation model and object-oriented programming paradigm as MENTAT. It provides an easy-to-use mechanism to exploit parallelism, language constructs for the expression and enforcement of timing constraints, and run-time support for scheduling and exciting real-time programs. The real-time MENTAT programming language is an extended C++. The extensions are added to facilitate automatic detection of data flow and generation of data flow graphs, to express the timing constraints of individual granules of computation, and to provide scheduling directives for the runtime system. A high-level view of the real-time MENTAT system architecture and programming language constructs is provided.

  12. Recent advances to obtain real - Time displacements for engineering applications

    USGS Publications Warehouse

    Celebi, M.

    2005-01-01

    This paper presents recent developments and approaches (using GPS technology and real-time double-integration) to obtain displacements and, in turn, drift ratios, in real-time or near real-time to meet the needs of the engineering and user community in seismic monitoring and assessing the functionality and damage condition of structures. Drift ratios computed in near real-time allow technical assessment of the damage condition of a building. Relevant parameters, such as the type of connections and story structural characteristics (including geometry) are used in computing drifts corresponding to several pre-selected threshold stages of damage. Thus, drift ratios determined from real-time monitoring can be compared to pre-computed threshold drift ratios. The approaches described herein can be used for performance evaluation of structures and can be considered as building health-monitoring applications.

  13. Real-time image processing for rapid contaminant detection on broiler carcasses

    NASA Astrophysics Data System (ADS)

    Park, Bosoon; Lawrence, Kurt C.; Windham, William R.; Snead, M. Preston

    2004-11-01

    Recently, the imaging research group at Russell Research Center, ARS in Athens, Georgia has developed a real-time multispectral imaging system for fecal and ingesta contaminant detection on broiler carcasses. The prototype system includes a common aperture camera with three optical trim filters (515.4, 566.4 and 631-nm wavelength), which were selected by visible/NIR spectroscopy and validated by a hyperspectral imaging system. The preliminary results showed that the multispectral imaging technique can be used effectively for detecting feces (from duodenum, ceca, and colon) and ingesta on the surface of poultry carcasses with a processing speed of 140 birds per minute. The accuracy for the detection of fecal and ingesta contaminates was 96%. However, the system contains many false positives including scabs, feathers, and boundaries. This paper demonstrates calibration of common aperture multispectral imaging hardware and real-time multispectral image processing software. The software design, especially the Unified Modeling Language (UML) design approach was used to develop real-time image processing software for on-line application. The UML models including class, object, activity, sequence, and collaboration diagram were discussed. Both hardware and software for a real-time fecal and ingesta contaminant detection were tested at the pilot-scale poultry processing line.

  14. Analytical ultrasonics for characterization of metallurgical microstructures and transformations

    NASA Technical Reports Server (NTRS)

    Rosen, M.

    1986-01-01

    The application of contact (piezoelectric) and noncontact (laser generation and detection) ultrasonic techniques for dynamic investigation of precipitation hardening processes in aluminum alloys, as well as crystallization and phase transformation in rapidly solidified amorphous and microcrystalline alloys is discussed. From the variations of the sound velocity and attenuation the precipitation mechanism and kinetics were determined. In addition, a correlation was established between the observed changes in the velocity and attenuation and the mechanical properties of age-hardenable aluminum alloys. The behavior of the elastic moduli, determined ultrasonically, were found to be sensitive to relaxation, crystallization and phase decomposition phenomena in rapidly solidified metallic glasses. Analytical ultrasonics enables determination of the activation energies and growth parameters of the reactions. Therefrom theoretical models can be constructed to explain the changes in mechanical and physical properties upon heat treatment of glassy alloys. The composition dependence of the elastic moduli in amorphous Cu-Zr alloys was found to be related to the glass transition temperature, and consequently to the glass forming ability of these alloys. Dynamic ultrasonic analysis was found to be feasible for on-line, real-time, monitoring of metallurgical processes.

  15. Reviewing real-time performance of nuclear reactor safety systems

    SciTech Connect

    Preckshot, G.G.

    1993-08-01

    The purpose of this paper is to recommend regulatory guidance for reviewers examining real-time performance of computer-based safety systems used in nuclear power plants. Three areas of guidance are covered in this report. The first area covers how to determine if, when, and what prototypes should be required of developers to make a convincing demonstration that specific problems have been solved or that performance goals have been met. The second area has recommendations for timing analyses that will prove that the real-time system will meet its safety-imposed deadlines. The third area has description of means for assessing expected or actual real-time performance before, during, and after development is completed. To ensure that the delivered real-time software product meets performance goals, the paper recommends certain types of code-execution and communications scheduling. Technical background is provided in the appendix on methods of timing analysis, scheduling real-time computations, prototyping, real-time software development approaches, modeling and measurement, and real-time operating systems.

  16. Space Shuttle Main Engine real time stability analysis

    NASA Astrophysics Data System (ADS)

    Kuo, F. Y.

    1993-06-01

    The Space Shuttle Main Engine (SSME) is a reusable, high performance, liquid rocket engine with variable thrust. The engine control system continuously monitors the engine parameters and issues propellant valve control signals in accordance with the thrust and mixture ratio commands. A real time engine simulation lab was installed at MSFC to verify flight software and to perform engine dynamic analysis. A real time engine model was developed on the AD100 computer system. This model provides sufficient fidelity on the dynamics of major engine components and yet simplified enough to be executed in real time. The hardware-in-the-loop type simulation and analysis becomes necessary as NASA is continuously improving the SSME technology, some with significant changes in the dynamics of the engine. The many issues of interfaces between new components and the engine can be better understood and be resolved prior to the firing of the engine. In this paper, the SSME real time simulation Lab at the MSFC, the SSME real time model, SSME engine and control system stability analysis, both in real time and non-real time is presented.

  17. High-density FPGAs for real-time video processing

    NASA Astrophysics Data System (ADS)

    Nordhauser, Steven; Beckstead, Jeffrey A.; Castracane, James; Koltai, Peter J.; Mouzakes, Jason; Simkulet, Michelle D.

    1997-04-01

    The use of an off-the-shelf general purpose processing system supplied by Giga Operations as applied to real-time video applications is described. The system is modular enough to be used in many scientific and industrial applications and powerful enough to maintain the throughput required for real-time video processing. This hardware and the associated programming environment has enabled InterScience to pursue research in real-time data compression, real-time Electronic Speckle Pattern Interferometry (ESPI) image processing, and industrial quality control and manufacturing. The system is based on Xilinx 4000 series field programmable gate arrays with associated static and dynamic random access memory in an architecture optimized for video processing on either the VL-Bus or PCI. This paper will focus on the design and development of a real-time frame subtractor for ESPI using this technology. Examples of the improvement in research capability provided by real-time frame subtraction are shown, including images from biomedical experiments. Further applications, based on this system are described. These include real-time data compression, quality control for production lines as part of an automated inspection system and a multi-camera security system allowing motion estimation to automatically prioritize camera selection.

  18. Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature

    NASA Astrophysics Data System (ADS)

    Fronheiser, Matthew P.; Ermilov, Sergey A.; Brecht, Hans-Peter; Conjusteau, Andre; Su, Richard; Mehta, Ketan; Oraevsky, Alexander A.

    2010-03-01

    We present our findings from a real-time laser optoacoustic imaging system (LOIS). The system utilizes a Q-switched Nd:YAG laser; a standard 128-channel ultrasonic linear array probe; custom electronics and custom software to collect, process, and display optoacoustic (OA) images at 10 Hz. We propose that this system be used during preoperative mapping of forearm vessels for hemodialysis treatment. To demonstrate the real-time imaging capabilities of the system, we show OA images of forearm vessels in a volunteer and compare our results to ultrasound images of the same region. Our OA images show blood vessels in high contrast. Manipulations with the probe enable us to locate and track arteries and veins of a forearm in real time. We also demonstrate the ability to combine a series of OA image slices into a volume for spatial representation of the vascular network. Finally, we use frame-by-frame analysis of the recorded OA video to measure dynamic changes of the crossection of the ulnar artery.

  19. Computer automation of ultrasonic testing. [inspection of ultrasonic welding

    NASA Technical Reports Server (NTRS)

    Yee, B. G. W.; Kerlin, E. E.; Gardner, A. H.; Dunmyer, D.; Wells, T. G.; Robinson, A. R.; Kunselman, J. S.; Walker, T. C.

    1974-01-01

    Report describes a prototype computer-automated ultrasonic system developed for the inspection of weldments. This system can be operated in three modes: manual, automatic, and computer-controlled. In the computer-controlled mode, the system will automatically acquire, process, analyze, store, and display ultrasonic inspection data in real-time. Flaw size (in cross-section), location (depth), and type (porosity-like or crack-like) can be automatically discerned and displayed. The results and pertinent parameters are recorded.

  20. Photometric sensor system for a non-invasive real-time hemoglobin monitoring

    NASA Astrophysics Data System (ADS)

    Timm, Ulrich; Kraitl, Jens; Schnurstein, Kirstin; Ewald, Hartmut

    2013-03-01

    Hemoglobin (Hb) is an important component of red blood cells. The primary function of Hb is the transport of oxygen from the lungs to the tissue and carbon dioxide back to the lungs. The Hb concentration in human blood is an important parameter in evaluating the physiological status of an individual and an essential parameter in every blood count. Invasive methods are used to measure the Hb concentration, whereby blood is taken from the patient and subsequently analyzed. Apart from the discomfort of drawing blood samples, an added disadvantage of this method is the delay between the blood collection and its analysis, which does not allow real time patient monitoring in critical situations. A non-invasive method allows pain free continuous on-line patient monitoring with minimum risk of infection and facilitates real time data monitoring allowing immediate clinical reaction to the measured data.

  1. Biosensor-based real-time monitoring of paracetamol photocatalytic degradation.

    PubMed

    Calas-Blanchard, Carole; Istamboulié, Georges; Bontoux, Margot; Plantard, Gaël; Goetz, Vincent; Noguer, Thierry

    2015-07-01

    This paper presents for the first time the integration of a biosensor for the on-line, real-time monitoring of a photocatalytic degradation process. Paracetamol was used as a model molecule due to its wide use and occurrence in environmental waters. The biosensor was developed based on tyrosinase immobilization in a polyvinylalcohol photocrosslinkable polymer. It was inserted in a computer-controlled flow system installed besides a photocatalytic reactor including titanium dioxide (TiO2) as photocatalyst. It was shown that the biosensor was able to accurately monitor the paracetamol degradation with time. Compared with conventional HPLC analysis, the described device provides a real-time information on the reaction advancement, allowing a better control of the photodegradation process. PMID:25828801

  2. Expert systems for real-time monitoring and fault diagnosis

    NASA Technical Reports Server (NTRS)

    Edwards, S. J.; Caglayan, A. K.

    1989-01-01

    Methods for building real-time onboard expert systems were investigated, and the use of expert systems technology was demonstrated in improving the performance of current real-time onboard monitoring and fault diagnosis applications. The potential applications of the proposed research include an expert system environment allowing the integration of expert systems into conventional time-critical application solutions, a grammar for describing the discrete event behavior of monitoring and fault diagnosis systems, and their applications to new real-time hardware fault diagnosis and monitoring systems for aircraft.

  3. Method for Real-Time Model Based Structural Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Smith, Timothy A. (Inventor); Urnes, James M., Sr. (Inventor); Reichenbach, Eric Y. (Inventor)

    2015-01-01

    A system and methods for real-time model based vehicle structural anomaly detection are disclosed. A real-time measurement corresponding to a location on a vehicle structure during an operation of the vehicle is received, and the real-time measurement is compared to expected operation data for the location to provide a modeling error signal. A statistical significance of the modeling error signal to provide an error significance is calculated, and a persistence of the error significance is determined. A structural anomaly is indicated, if the persistence exceeds a persistence threshold value.

  4. Real-time Avatar Animation from a Single Image

    PubMed Central

    Saragih, Jason M.; Lucey, Simon; Cohn, Jeffrey F.

    2014-01-01

    A real time facial puppetry system is presented. Compared with existing systems, the proposed method requires no special hardware, runs in real time (23 frames-per-second), and requires only a single image of the avatar and user. The user’s facial expression is captured through a real-time 3D non-rigid tracking system. Expression transfer is achieved by combining a generic expression model with synthetically generated examples that better capture person specific characteristics. Performance of the system is evaluated on avatars of real people as well as masks and cartoon characters. PMID:24598812

  5. Information display and interaction in real-time environments

    NASA Technical Reports Server (NTRS)

    Bocast, A. K.

    1983-01-01

    The available information bandwidth as a funcion of system's complexity and time constraints in a real time control environment were examined. Modern interactive graphics techniques provide very high bandwidth data displays. In real time control environments, effective information interaction rates are a function not only of machine data technologies but of human information processing capabilities and the four dimensional resolution of available interaction techniques. The available information bandwidth as a function of system's complexity and time constraints in a real time control environment were examined.

  6. Hardware and software platform for real-time processing and visualization of echographic radiofrequency signals.

    PubMed

    Scabia, Marco; Biagi, Elena; Masotti, Leonardo

    2002-10-01

    In this paper the architecture of a hardware and software platform, for ultrasonic investigation is presented. The platform, used in conjunction with an analog front-end hardware for driving the ultrasonic transducers of any commercial echograph, having the radiofrequency echo signal access, make it possible to dispose of a powerful echographic system for experimenting any processing technique, also in a clinical environment in which real-time operation mode is an essential prerequisite. The platform transforms any echograph into a test-system for evaluating the diagnostic effectiveness of new investigation techniques. A particular user interface was designed in order to allow a real-time and simultaneous visualization of the results produced in the different stages of the chosen processing procedure. This is aimed at obtaining a better optimization of the processing algorithm. The most important platform aspect, which also constitutes the basic differentiation with respect to similar systems, is the direct processing of the radiofrequency echo signal, which is essential for a complete analysis of the particular ultrasound-media interaction phenomenon. The platform completely integrates the architecture of a personal computer (PC) giving rise to several benefits, such as the quick technological evolution in the PC field and an extreme degree of programmability for different applications. The PC also constitutes the user interface, as a flexible and intuitive visualization support, and performs some software signal processing, by custom algorithms and commercial libraries. The realized close synergy between hardware and software allows the acquisition and real-time processing of the echographic radiofrequency (RF) signal with fast data representation. PMID:12403146

  7. LABKA. A real-time computer system for the clinical laboratory.

    PubMed

    Christiansen, J U; Maruard, C D; Nielsen, H C

    1989-01-01

    This paper provides an introduction to the real-time clinical laboratory information system (LABKA), which is implemented on a Hewlett-Packard 1000 system. The system is optimized for fast data handling combined with easy control of on-line results, data flow, and linking of related information. The design of LABKA is based on the principle of having a short reporting time together with simplified working procedures. The system can be adjusted to small as well as very large laboratories. Data control is achieved by status information being returned to the operator in real-time, thus avoiding having to use matching lists. This information is presented immediately in response to the procedure which has caused the error. This method of early error detection simplifies working procedures, inhibits accumulation of errors, and increases the flexibility and speed of data reporting. As a result, the number of requested stat analyses has been reduced by 50 percent. Working lists are not generally used. Instead, requisition information is transferred on-line to the instruments on request. A fourth-generation program system for entry, calculation, and test of manually entered data, called RUCAT (1), has been developed. This system enables the user to define forms on vdu-terminals, specify calculations, and test all manually entered data. The LABKA system can also produce cumulative reporting as standard reporting, in real time, fast and in a very high print quality. The real-time demands have strongly influenced the design and layout of the lab files and system design. PMID:2772556

  8. Distributed real-time model-based diagnosis

    NASA Technical Reports Server (NTRS)

    Barrett, A. C.; Chung, S. H.

    2003-01-01

    This paper presents an approach to onboard anomaly diagnosis that combines the simplicity and real-time guarantee of a rule-based diagnosis system with the specification ease and coverage guarantees of a model-based diagnosis system.

  9. A multiprocessing architecture for real-time monitoring

    NASA Technical Reports Server (NTRS)

    Laffey, Thomas J.; Schmidt, James L.; Read, Jackson Y.; Kao, Simon M.

    1987-01-01

    A multiprocessing architecture for performing real time monitoring and analysis using knowledge-based problem solving techniques is discussed. To handle asynchronous inputs and perform in real time, the system consists of three or more separate processes which run concurrently on one or more processors and communicate via a message passing scheme. The Data Management Process gathers, compresses, scales and sends the incoming telemetry data to other tasks. The Inference Process consists of a proprietary high performance inference engine that runs at 1000 rules per second using telemetry data to perform real time analysis on the state and health of the Space Telescope. The multiprocessing architecture has been interfaced to a simulator and is able to process the incoming telemetry in real time.

  10. Real-time interactive speech technology at Threshold Technology, Incorporated

    NASA Technical Reports Server (NTRS)

    Herscher, Marvin B.

    1977-01-01

    Basic real-time isolated-word recognition techniques are reviewed. Industrial applications of voice technology are described in chronological order of their development. Future research efforts are also discussed.

  11. Real-time earthquake monitoring: Early warning and rapid response

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A panel was established to investigate the subject of real-time earthquake monitoring (RTEM) and suggest recommendations on the feasibility of using a real-time earthquake warning system to mitigate earthquake damage in regions of the United States. The findings of the investigation and the related recommendations are described in this report. A brief review of existing real-time seismic systems is presented with particular emphasis given to the current California seismic networks. Specific applications of a real-time monitoring system are discussed along with issues related to system deployment and technical feasibility. In addition, several non-technical considerations are addressed including cost-benefit analysis, public perceptions, safety, and liability.

  12. Real-time holography on bacteriorhodopsin-based materials

    NASA Astrophysics Data System (ADS)

    Taranenko, Victor B.

    1998-09-01

    The main properties and mechanisms of photoresponse of the bacteriohodopsin-based materials are presented. Fields of their potential applications in the real-time holography and nonlinear optics are discussed.

  13. Cluster Computing for Embedded/Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Katz, D.; Kepner, J.

    1999-01-01

    Embedded and real-time systems, like other computing systems, seek to maximize computing power for a given price, and thus can significantly benefit from the advancing capabilities of cluster computing.

  14. Estimating correlation for a real-time measure of connectivity.

    PubMed

    Arunkumar, Akhil; Panday, Ashish; Joshi, Bharat; Ravindran, Arun; Zaveri, Hitten P

    2012-01-01

    There has recently been considerable interest in connectivity analysis of fMRI and scalp and intracranial EEG time-series. The computational requirements of the pair-wise correlation (PWC), the core time-series measure used to estimate connectivity, presents a challenge to the real-time estimation of the PWC between all pairs of multiple time-series. We describe a parallel algorithm for computing PWC in real-time for streaming data from multiple channels. The algorithm was implemented on the Intel Xeon™ and IBM Cell Broadband Engine™ platforms. We evaluated time to estimate correlation for signals recorded with different acquisition parameters as a comparison to real-time constraints. We demonstrate that the execution time of these efficient implementations meet real-time constraints in most instances. PMID:23367098

  15. Hard-real-time resource management for autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Gat, E.

    2000-01-01

    This paper describes tickets, a computational mechanism for hard-real-time autonomous resource management. Autonomous spacecraftcontrol can be considered abstractly as a computational process whose outputs are spacecraft commands.

  16. Real-time data compression of broadcast video signals

    NASA Technical Reports Server (NTRS)

    Shalkauser, Mary Jo W. (Inventor); Whyte, Wayne A., Jr. (Inventor); Barnes, Scott P. (Inventor)

    1991-01-01

    A non-adaptive predictor, a nonuniform quantizer, and a multi-level Huffman coder are incorporated into a differential pulse code modulation system for coding and decoding broadcast video signals in real time.

  17. Real-time data compression of broadcast video signals

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary J. (Inventor); Whyte, Wayne A., Jr. (Inventor); Barnes, Scott P. (Inventor)

    1990-01-01

    A non-adaptive predictor, a nonuniform quantizer, and a multi-level Huffman coder are incorporated into a differential pulse code modulation system for coding and decoding broadcast video signals in real time.

  18. The Effects of Real-Time Interactive Multimedia Teleradiology System

    PubMed Central

    Al-Safadi, Lilac

    2016-01-01

    This study describes the design of a real-time interactive multimedia teleradiology system and assesses how the system is used by referring physicians in point-of-care situations and supports or hinders aspects of physician-radiologist interaction. We developed a real-time multimedia teleradiology management system that automates the transfer of images and radiologists' reports and surveyed physicians to triangulate the findings and to verify the realism and results of the experiment. The web-based survey was delivered to 150 physicians from a range of specialties. The survey was completed by 72% of physicians. Data showed a correlation between rich interactivity, satisfaction, and effectiveness. The results of our experiments suggest that real-time multimedia teleradiology systems are valued by referring physicians and may have the potential for enhancing their practice and improving patient care and highlight the critical role of multimedia technologies to provide real-time multimode interactivity in current medical care. PMID:27294118

  19. Challenges of AVHRR Vegetation Data for Real Time Applications

    NASA Technical Reports Server (NTRS)

    Brown, Molly

    2008-01-01

    Remote sensing data has long been used to monitor global ecosystems for floods and droughts and AVHRR data, as one of the first product, has many users interested in receiving the data within hours of acquisition. With the introduction of a new series of sensors in 2000 (the AVHRR/3 series), the quality of the NDVI datasets available for real time environmental monitoring has declined. This paper provides evidence of problems of cloud contamination, calibration and noise in the real time data which are not present in the historical AVHRR NDVIg dataset. These differences introduce significant uncertainty in the use of the real time data, degrading their utility for detecting climate variations in near real time.

  20. Real-time and reliable human detection in clutter scene

    NASA Astrophysics Data System (ADS)

    Tan, Yumei; Luo, Xiaoshu; Xia, Haiying

    2013-10-01

    To solve the problem that traditional HOG approach for human detection can not achieve real-time detection due to its time-consuming detection, an efficient algorithm based on first segmentation then identify method for real-time human detection is proposed to achieve real-time human detection in clutter scene. Firstly, the ViBe algorithm is used to segment all possible human target regions quickly, and more accurate moving objects is obtained by using the YUV color space to eliminate the shadow; secondly, using the body geometry knowledge can help to found the valid human areas by screening the regions of interest; finally, linear support vector machine (SVM) classifier and HOG are applied to train for human body classifier, to achieve accurate positioning of human body's locations. The results of our comparative experiments demonstrated that the approach proposed can obtain high accuracy, good real-time performance and strong robustness.

  1. Real-Time Parameter Estimation in the Frequency Domain

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1999-01-01

    A method for real-time estimation of parameters in a linear dynamic state space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight for indirect adaptive or reconfigurable control. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle HARV) were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than 1 cycle of the dominant dynamic mode natural frequencies, using control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements, and could be implemented aboard an aircraft in real time.

  2. High speed, real-time, camera bandwidth converter

    DOEpatents

    Bower, Dan E; Bloom, David A; Curry, James R

    2014-10-21

    Image data from a CMOS sensor with 10 bit resolution is reformatted in real time to allow the data to stream through communications equipment that is designed to transport data with 8 bit resolution. The incoming image data has 10 bit resolution. The communication equipment can transport image data with 8 bit resolution. Image data with 10 bit resolution is transmitted in real-time, without a frame delay, through the communication equipment by reformatting the image data.

  3. An Evaluation of Real-Time Zenith Total Delay Estimates

    NASA Astrophysics Data System (ADS)

    Ahmed, F.; Teferle, F. N.; Bingley, R.; Laurichesse, D.

    2012-12-01

    The use of modern low-latency Numerical Weather Prediction (NWP) models by meteorological institutions to improve nowcasting operations requires the accurate and timely estimation of the Zenith Total Delay (ZTD). Observations from Global Navigation Satellite Systems (GNSS) can be processed to obtain such ZTD estimates. As of now, meeting the established requirements on the latency (as low as 5 min) and accuracy (up to few millimeters) of the ZTD for its use in nowcasting applications stands as a challenge. However, using, for example, the real-time orbit and clock products from the recently established IGS Real-Time Service, it is possible to estimate the ZTD by different processing strategies and each strategy can result in a different level of accuracy. The Bundesamt für Kartographie und Geodäsie Ntrip Client (BNC) can provide ZTD estimates in real-time using precise point positioning (PPP) without integer ambiguity resolution. Recently, the Centre National d'Etudes Spatiales (CNES) has released a modified version of BNC which produces ZTD estimates in real-time with integer-PPP, i.e. PPP with integer ambiguity resolution using their integer-recovery clock and widelane phase bias information. trackRT from MIT and RTNet from GPS Solutions Inc are also capable of providing real-time estimates of the ZTD. In this study, we present an evaluation of the real-time ZTD estimates obtained from different GNSS processing systems. Furthermore, we compare the real-time estimates to those from a near real-time system and the IGS Final Troposphere products.

  4. Can Real-Time Data Also Be Climate Quality?

    NASA Astrophysics Data System (ADS)

    Brewer, M.; Wentz, F. J.

    2015-12-01

    GMI, AMSR-2 and WindSat herald a new era of highly accurate and timely microwave data products. Traditionally, there has been a large divide between real-time and re-analysis data products. What if these completely separate processing systems could be merged? Through advanced modeling and physically based algorithms, Remote Sensing Systems (RSS) has narrowed the gap between real-time and research-quality. Satellite microwave ocean products have proven useful for a wide array of timely Earth science applications. Through cloud SST capabilities have enormously benefited tropical cyclone forecasting and day to day fisheries management, to name a few. Oceanic wind vectors enhance operational safety of shipping and recreational boating. Atmospheric rivers are of import to many human endeavors, as are cloud cover and knowledge of precipitation events. Some activities benefit from both climate and real-time operational data used in conjunction. RSS has been consistently improving microwave Earth Science Data Records (ESDRs) for several decades, while making near real-time data publicly available for semi-operational use. These data streams have often been produced in 2 stages: near real-time, followed by research quality final files. Over the years, we have seen this time delay shrink from months or weeks to mere hours. As well, we have seen the quality of near real-time data improve to the point where the distinction starts to blur. We continue to work towards better and faster RFI filtering, adaptive algorithms and improved real-time validation statistics for earlier detection of problems. Can it be possible to produce climate quality data in real-time, and what would the advantages be? We will try to answer these questions…

  5. Real-time transesophageal echocardiography facilitates antegrade balloon aortic valvuloplasty

    PubMed Central

    Ito, Kazato; Yano, Kentaro; Tanaka, Chiharu; Nakashoji, Tomohiro; Tonomura, Daisuke; Takehara, Kosuke; Kino, Naoto; Yoshida, Masataka; Kurotobi, Toshiya; Tsuchida, Takao; Fukumoto, Hitoshi

    2016-01-01

    We report two cases of severe aortic stenosis (AS) where antegrade balloon aortic valvuloplasty (BAV) was performed under real-time transesophageal echocardiography (TEE) guidance. Real-time TEE can provide useful information for evaluating the aortic valve response to valvuloplasty during the procedure. It was led with the intentional wire-bias technique in order to compress the severely calcified leaflet, and consequently allowed the balloon to reach the largest possible size and achieve full expansion of the aortic annulus. PMID:27054107

  6. Real time simulator with Ti floating point digital signal processor

    SciTech Connect

    Razazian, K.; Bobis, J.P.; Dieckman, S.L.; Raptis, A.C.

    1994-08-01

    This paper describes the design and operation of a Real Time Simulator using Texas Instruments TMS320C30 digital signal processor. This system operates with two banks of memory which provide the input data to digital signal processor chip. This feature enables the TMS320C30 to be utilized in variety of applications for which external connections to acquire input data is not needed. In addition, some practical applications of this Real Time Simulator are discussed.

  7. Real-time shipboard orbit determination using Kalman filtering techniques

    NASA Technical Reports Server (NTRS)

    Brammer, R. F.

    1974-01-01

    The real-time tracking and orbit determination program used on board the NASA tracking ship, the USNS Vanguard, is described in this paper. The computer program uses a variety of filtering algorithms, including an extended Kalman filter, to derive real-time orbit determinations (position-velocity state vectors) from shipboard tracking and navigation data. Results from Apollo missions are given to show that orbital parameters can be estimated quickly and accurately using these methods.

  8. Real-time flight test data distribution and display

    NASA Technical Reports Server (NTRS)

    Nesel, Michael C.; Hammons, Kevin R.

    1988-01-01

    Enhancements to the real-time processing and display systems of the NASA Western Aeronautical Test Range are described. Display processing has been moved out of the telemetry and radar acquisition processing systems super-minicomputers into user/client interactive graphic workstations. Real-time data is provided to the workstations by way of Ethernet. Future enhancement plans include use of fiber optic cable to replace the Ethernet.

  9. Real-Time Optical Correlator Based On GaAs

    NASA Technical Reports Server (NTRS)

    Liu, Tsuen-Hsi; Cheng, Li-Jen

    1992-01-01

    Apparatus performs correlation between input image and reference image in real time by means of degenerate four-wave mixing in photorefractive crystal, which serves as real-time holographic medium. Gallium arsenide chosen to be photorefractive material in this application because at frame rate and level of illumination used in experiments, offers adequate diffraction efficiency. Frame rates as high as 1,000 s to negative 1st power achievable.

  10. Vector processing enhancements for real-time image analysis.

    SciTech Connect

    Shoaf, S.; APS Engineering Support Division

    2008-01-01

    A real-time image analysis system was developed for beam imaging diagnostics. An Apple Power Mac G5 with an Active Silicon LFG frame grabber was used to capture video images that were processed and analyzed. Software routines were created to utilize vector-processing hardware to reduce the time to process images as compared to conventional methods. These improvements allow for more advanced image processing diagnostics to be performed in real time.

  11. Real-time laser holographic Interferometry for aerodynamics

    NASA Technical Reports Server (NTRS)

    Lee, George

    1987-01-01

    Recent developments in thermoplastic recording holograms and advancements in automated image digitalization and analysis make real-time laser holographic interferometry feasible for two-dimensional flows such as airfoil flows. Typical airfoil measurements would include airfoil presssure distributions, wake and boundary layer profiles, and flow field density contours. This paper addresses some of the problems and requirements of a real-time laser holographic interferometer.

  12. Real-time laser holographic interferometry for aerodynamics

    NASA Technical Reports Server (NTRS)

    Lee, George

    1987-01-01

    Recent developments in thermoplastic recording holograms and advancements in automated image digitalization and analysis make real-time laser holographic interferometry feasible for two-dimensional flows such as airfoil flows. Typical airfoil measurements would include airfoil pressure distributions, wake and boundary layer profiles, and flow field density contours. This paper addresses some of the problems and requirements of a real-time laser holographic interferometer.

  13. Real Time Quantitative Radiological Monitoring Equipment for Environmental Assessment

    SciTech Connect

    John R. Giles; Lyle G. Roybal; Michael V. Carpenter

    2006-03-01

    The Idaho National Laboratory (INL) has developed a suite of systems that rapidly scan, analyze, and characterize radiological contamination in soil. These systems have been successfully deployed at several Department of Energy (DOE) laboratories and Cold War Legacy closure sites. Traditionally, these systems have been used during the characterization and remediation of radiologically contaminated soils and surfaces; however, subsequent to the terrorist attacks of September 11, 2001, the applications of these systems have expanded to include homeland security operations for first response, continuing assessment and verification of cleanup activities in the event of the detonation of a radiological dispersal device. The core system components are a detector, a spectral analyzer, and a global positioning system (GPS). The system is computer controlled by menu-driven, user-friendly custom software designed for a technician-level operator. A wide variety of detectors have been used including several configurations of sodium iodide (NaI) and high-purity germanium (HPGe) detectors, and a large area proportional counter designed for the detection of x-rays from actinides such as Am-241 and Pu-238. Systems have been deployed from several platforms including a small all-terrain vehicle (ATV), hand-pushed carts, a backpack mounted unit, and an excavator mounted unit used where personnel safety considerations are paramount. The INL has advanced this concept, and expanded the system functionality to create an integrated, field-deployed analytical system through the use of tailored analysis and operations software. Customized, site specific software is assembled from a supporting toolbox of algorithms that streamline the data acquisition, analysis and reporting process. These algorithms include region specific spectral stripping, automated energy calibration, background subtraction, activity calculations based on measured detector efficiencies, and on-line data quality checks

  14. Real-time measurements of local myocardium motion and arterial wall thickening.

    PubMed

    Kanai, H; Koiwa, Y; Zhang, J

    1999-01-01

    We have already developed a new method, namely, the phased tracking method, to track the movement of the heart wall and arterial wall accurately based on both the phase and magnitude of the demodulated signals to determine the instantaneous position of an object. This method has been realized by an off-line measurement system, which cannot be applied to transient evaluation of rapid response of the cardiovascular system to physiological stress. In this paper, therefore, a real-time system to measure change in the thickness of the myocardium and the arterial wall is presented. In this system, an analytic signal from standard ultrasonic diagnostic equipment is analogue-to-digital (A/D) converted at a sampling frequency of 1 MHz. By pipelining and parallel processing using four high-speed digital signal processing (DSP) chips, the method described is realized in real time. The tracking results for both sides of the heart and/or arterial wall are superimposed on the M (motion)-mode image in the work station (WS), and the thickness changes of the heart and/or arterial wall are also displayed and digital-to-analogue (D/A) converted in real time. From the regional change in thickness of the heart wall, spatial distribution of myocardial motility and contractility can be evaluated. For the arterial wall, its local elasticity can be evaluated by referring to the blood pressure. In in vivo experiments, the rapid response of the change in wall thickness of the carotid artery to the dose of the nitroglycerine (NTG) is evaluated. This new real-time system offers potential for quantitative diagnosis of myocardial motility, early stage atherosclerosis, and the transient evaluation of the rapid response of the cardiovascular system to physiological stress. PMID:18244316

  15. Real-time feedback from iterative electronic structure calculations.

    PubMed

    Vaucher, Alain C; Haag, Moritz P; Reiher, Markus

    2016-04-01

    Real-time feedback from iterative electronic structure calculations requires to mediate between the inherently unpredictable execution times of the iterative algorithm used and the necessity to provide data in fixed and short time intervals for real-time rendering. We introduce the concept of a mediator as a component able to deal with infrequent and unpredictable reference data to generate reliable feedback. In the context of real-time quantum chemistry, the mediator takes the form of a surrogate potential that has the same local shape as the first-principles potential and can be evaluated efficiently to deliver atomic forces as real-time feedback. The surrogate potential is updated continuously by electronic structure calculations and guarantees to provide a reliable response to the operator for any molecular structure. To demonstrate the application of iterative electronic structure methods in real-time reactivity exploration, we implement self-consistent semiempirical methods as the data source and apply the surrogate-potential mediator to deliver reliable real-time feedback. © 2015 Wiley Periodicals, Inc. PMID:26678030

  16. Head movement compensation in real-time magnetoencephalographic recordings

    PubMed Central

    Little, Graham; Boe, Shaun; Bardouille, Timothy

    2014-01-01

    Neurofeedback- and brain-computer interface (BCI)-based interventions can be implemented using real-time analysis of magnetoencephalographic (MEG) recordings. Head movement during MEG recordings, however, can lead to inaccurate estimates of brain activity, reducing the efficacy of the intervention. Most real-time applications in MEG have utilized analyses that do not correct for head movement. Effective means of correcting for head movement are needed to optimize the use of MEG in such applications. Here we provide preliminary validation of a novel analysis technique, real-time source estimation (rtSE), that measures head movement and generates corrected current source time course estimates in real-time. rtSE was applied while recording a calibrated phantom to determine phantom position localization accuracy and source amplitude estimation accuracy under stationary and moving conditions. Results were compared to off-line analysis methods to assess validity of the rtSE technique. The rtSE method allowed for accurate estimation of current source activity at the source-level in real-time, and accounted for movement of the source due to changes in phantom position. The rtSE technique requires modifications and specialized analysis of the following MEG work flow steps.•Data acquisition•Head position estimation•Source localization•Real-time source estimation This work explains the technical details and validates each of these steps. PMID:26150963

  17. Adaptive Interface Approach Using a Real Time Biocybernetic System: Control of Hazardous Awareness

    NASA Technical Reports Server (NTRS)

    Ray, William J.

    2002-01-01

    The focus of this current grant was to continue our work which focused on the manner in which psychophysiological markers can be used to index hazardous states of awareness and to explore the feasibility of developing on-line systems that utilize real time feedback to modify on-going behavioral processes. In this work we have incorporated a multifaceted approach which includes psychophysiological, subjective, and performance based measures. We have considered this from both an internal and external perspective as reflected in work from a variety of labs.

  18. A Real-Time Spectroscopic Sensor for Monitoring Laser Welding Processes

    PubMed Central

    Sibillano, Teresa; Ancona, Antonio; Berardi, Vincenzo; Lugarà, Pietro Mario

    2009-01-01

    In this paper we report on the development of a sensor for real time monitoring of laser welding processes based on spectroscopic techniques. The system is based on the acquisition of the optical spectra emitted from the laser generated plasma plume and their use to implement an on-line algorithm for both the calculation of the plasma electron temperature and the analysis of the correlations between selected spectral lines. The sensor has been patented and it is currently available on the market. PMID:22412317

  19. Real-Time Monitoring of Alpha Emissions. Final report, FY 1994

    SciTech Connect

    Gritzo, R.; Fowler, M.; Wouters, J.

    1994-12-31

    A technology is being developed for on-line, real-time monitoring of mixed and low-level incinerator stacks for levels of airborne alpha activity. The Large-Volume Flow Thru Detector System uses a detector composed of multiple parallel plates of scintillating material fabricated so that the entire stack gas stream flows directly through the inter-plate volume. This report is largely a compilation of 3 reports on background reduction, once-through flow tests, and the aeronautical/mechanical engineering work. The full text of each report is included as an appendix.

  20. Application Research of Two Real-Time Fault Diagnostic Methods in the Nuclear Power Plants

    SciTech Connect

    Chun-Li Xie; Yong-Kuo Liu; Hong Xia

    2006-07-01

    In order to guarantee the safety of nuclear power plants (NPP), we built two real-time fault diagnosis systems adopting VISUAL BAS6.0 programming language, which apply neural network technology and data fusion technology respectively. The fault diagnosis systems interchange data with the simulator timely utilizing communication interface. We insert faults on simulator to test the two systems on line. The advantages and disadvantages are illuminated and contrasted through analyzing the faults diagnostic results off- line, which establish the foundation for the further research and application to the fault diagnosis system of the nuclear power plants. (authors)

  1. Development of the new physical method for real time spot weld quality evaluation using ultrasound

    NASA Astrophysics Data System (ADS)

    Chertov, Andriy M.

    Since the invention of resistance spot welding, the manufacturers have been concerned about the quality assurance of the joints. One of the most promising directions in quality inspection is the real time ultrasonic nondestructive evaluation. In such a system, the acoustic signals are sent through the spot weld during welding and then analyzed to characterize the quality of the joint. Many research groups are currently working to develop a reliable inspection method. In this dissertation the new physical method of resistance spot weld quality monitoring is presented. It differs from all other ultrasonic methods by the physical principles of inspection. The multilayered structure of the spot weld with varying physical properties is investigated with short pulses of longitudinal ultrasonic waves. Unlike other methods, the developed technology works in reflection mode. The waves bring back the information which, after careful analysis, can be used to evaluate the weld quality. The complex structure of the weldment modifies the waves in different ways which, makes it hard to accurately measure the physical properties of the weldment. The frequency-dependent attenuation of the sound, diffraction, and beam divergence - all contribute to the signal distraction. These factors are fully studied, and ways to minimize them are presented. After application of pattern recognition routines, the weld characteristics are submitted to fuzzy logic algorithm, and the weld is characterized. The current level of the system development allowed the installation of two prototype machines at one assembly plant. The technology is now under thorough evaluation for robustness and accuracy in an industrial environment.

  2. Real-time in-die compaction monitoring of dry-coated tablets.

    PubMed

    Liu, Jingfei; Stephens, James D; Kowalczyk, Brian R; Cetinkaya, Cetin

    2011-07-29

    The practicability of a pulse-echo ultrasonic approach developed for the real-time quality monitoring of dry-coated tablets in the tablet press during compaction is evaluated. The punch-tablet interface (i.e., steel-tablet) is the boundary condition that dictates the viability of acoustic in-die compaction monitoring. The current study utilizes compacted tablets with a simulated punch-tablet interface to achieve the required waveform detectability levels needed for in-die compaction monitoring. The geometric and mechanical properties of a dry-coated tablet are crucial to its structural functions and therapeutic effectiveness, therefore they are monitored especially when the control of dissolution rates of their active ingredients are critically important. Acquired pulse-echo ultrasonic waveforms in the tablet could provide the time-of-flight information needed to determine the thickness, elasticity and/or integrity of the relevant layer, and bonding quality between layers depending on the given parameters. Since the amplitudes of the reflected waves are extremely low due to the high acoustic impedance mismatches of tablet materials and die/punch materials, signal processing techniques are required to extract the wave arrival times. In current study, it is demonstrated that the reflection of an ultrasonic pulse generated by a transducer embedded in a die or a punch from the coat-core interface can be acquired by the same transducer. PMID:21605647

  3. Real-time dynamic simulation of the Cassini spacecraft using DARTS. Part 2: Parallel/vectorized real-time implementation

    NASA Technical Reports Server (NTRS)

    Fijany, A.; Roberts, J. A.; Jain, A.; Man, G. K.

    1993-01-01

    Part 1 of this paper presented the requirements for the real-time simulation of Cassini spacecraft along with some discussion of the DARTS algorithm. Here, in Part 2 we discuss the development and implementation of parallel/vectorized DARTS algorithm and architecture for real-time simulation. Development of the fast algorithms and architecture for real-time hardware-in-the-loop simulation of spacecraft dynamics is motivated by the fact that it represents a hard real-time problem, in the sense that the correctness of the simulation depends on both the numerical accuracy and the exact timing of the computation. For a given model fidelity, the computation should be computed within a predefined time period. Further reduction in computation time allows increasing the fidelity of the model (i.e., inclusion of more flexible modes) and the integration routine.

  4. A Comprehensive Software System for Interactive, Real-time, Visual 3D Deterministic and Stochastic Groundwater Modeling

    NASA Astrophysics Data System (ADS)

    Li, S.

    2002-05-01

    Interactive, real-time Monte Carlo and conditional Monte Carlo simulation. Real-time, visual, and recursive computation of head, conductivity, velocity, concentration, flux statistics and probabilities GIS capabilities and integrating multiple basemap overlays in mixed raster and vector formats (GIS shapefile, AutoCAD DXF, bitmap, JPG, GIF format) High level and grid independent conceptual modeling. Interactive and visual specification and editing of model domain and aquifer properties and stresses over any arbitrarily-shaped area at any point in time in the process of model construction, simulation, and analysis Automatic grid generation and automatic conversion of conceptual representation to numerical models. Multiple geological layers, automatic subdivision of one geological layer into multiple sub-computational layers. Context Sensitive On-line Help The new modeling paradigm transforms the way we perform groundwater modeling. It dramatically simplifies the modeling process and improves the productivity of model-based site characterization activities. The software provides an enabling tool for groundwater professionals, site planners, managers, and regulators to conduct site investigation and experiment in "real time" with sampling, management, and remedial options.

  5. Evaluation of Open-Source Hard Real Time Software Packages

    NASA Technical Reports Server (NTRS)

    Mattei, Nicholas S.

    2004-01-01

    Reliable software is, at times, hard to find. No piece of software can be guaranteed to work in every situation that may arise during its use here at Glenn Research Center or in space. The job of the Software Assurance (SA) group in the Risk Management Office is to rigorously test the software in an effort to ensure it matches the contract specifications. In some cases the SA team also researches new alternatives for selected software packages. This testing and research is an integral part of the department of Safety and Mission Assurance. Real Time operation in reference to a computer system is a particular style of handing the timing and manner with which inputs and outputs are handled. A real time system executes these commands and appropriate processing within a defined timing constraint. Within this definition there are two other classifications of real time systems: hard and soft. A soft real time system is one in which if the particular timing constraints are not rigidly met there will be no critical results. On the other hand, a hard real time system is one in which if the timing constraints are not met the results could be catastrophic. An example of a soft real time system is a DVD decoder. If the particular piece of data from the input is not decoded and displayed to the screen at exactly the correct moment nothing critical will become of it, the user may not even notice it. However, a hard real time system is needed to control the timing of fuel injections or steering on the Space Shuttle; a delay of even a fraction of a second could be catastrophic in such a complex system. The current real time system employed by most NASA projects is Wind River's VxWorks operating system. This is a proprietary operating system that can be configured to work with many of NASA s needs and it provides very accurate and reliable hard real time performance. The down side is that since it is a proprietary operating system it is also costly to implement. The prospect of

  6. Real-time airborne hyperspectral imaging of land mines

    NASA Astrophysics Data System (ADS)

    Ivanco, Tyler; Achal, Steve; McFee, John E.; Anger, Cliff; Young, Jane

    2007-04-01

    DRDC Suffeld and Itres Research have jointly investigated the use of visible and infrared hyperspectral imaging (HSI) for surface and buried land mine detection since 1989. These studies have demonstrated reliable passive HSI detection of surface-laid mines, based on their reflectance spectra, from airborne and ground-based platforms. Commercial HSI instruments collect and store image data at aircraft speeds, but the data are analysed off- line. This is useful for humanitarian demining, but unacceptable for military countermine operations. We have developed a hardware and software system with algorithms that can process the raw hyperspectral data in real time to detect mines. The custom algorithms perform radiometric correction of the raw data, then classify pixels of the corrected data, referencing a spectral signature library. The classification results are stored and displayed in real time, that is, within a few frame times of the data acquisition. Such real-time mine detection was demonstrated for the first time from a slowly moving land vehicle in March 2000. This paper describes an improved system which can achieve real-time detection of mines from an airborne platform, with its commensurately higher data rates. The system is presently compatible with the Itres family of visible/near infrared, short wave infrared and thermal infrared pushbroom hyperspectral imagers and its broadband thermal infrared pushbroom imager. Experiments to detect mines from an airborne platform in real time were conducted at DRDC Suffield in November 2006. Surface-laid land mines were detected in real time from a slowly moving helicopter with generally good detection rates and low false alarm rates. To the authors' knowledge, this is the first time that land mines have been detected from an airborne platform in real time using hyperspectral imaging.

  7. Geomagnetic Observatory Data for Real-Time Applications

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.

    2015-12-01

    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  8. Real-Time Tropospheric Delay Estimation using IGS Products

    NASA Astrophysics Data System (ADS)

    Stürze, Andrea; Liu, Sha; Söhne, Wolfgang

    2014-05-01

    The Federal Agency for Cartography and Geodesy (BKG) routinely provides zenith tropospheric delay (ZTD) parameter for the assimilation in numerical weather models since more than 10 years. Up to now the results flowing into the EUREF Permanent Network (EPN) or E-GVAP (EUMETNET EIG GNSS water vapour programme) analysis are based on batch processing of GPS+GLONASS observations in differential network mode. For the recently started COST Action ES1206 about "Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate" (GNSS4SWEC), however, rapid updates in the analysis of the atmospheric state for nowcasting applications require changing the processing strategy towards real-time. In the RTCM SC104 (Radio Technical Commission for Maritime Services, Special Committee 104) a format combining the advantages of Precise Point Positioning (PPP) and Real-Time Kinematic (RTK) is under development. The so-called State Space Representation approach is defining corrections, which will be transferred in real-time to the user e.g. via NTRIP (Network Transport of RTCM via Internet Protocol). Meanwhile messages for precise orbits, satellite clocks and code biases compatible to the basic PPP mode using IGS products are defined. Consequently, the IGS Real-Time Service (RTS) was launched in 2013 in order to extend the well-known precise orbit and clock products by a real-time component. Further messages e.g. with respect to ionosphere or phase biases are foreseen. Depending on the level of refinement, so different accuracies up to the RTK level shall be reachable. In co-operation of BKG and the Technical University of Darmstadt the real-time software GEMon (GREF EUREF Monitoring) is under development. GEMon is able to process GPS and GLONASS observation and RTS product data streams in PPP mode. Furthermore, several state-of-the-art troposphere models, for example based on numerical weather prediction data, are implemented. Hence, it

  9. The improved broadband Real-Time Seismic Network in Romania

    NASA Astrophysics Data System (ADS)

    Neagoe, C.; Ionescu, C.

    2009-04-01

    Starting with 2002 the National Institute for Earth Physics (NIEP) has developed its real-time digital seismic network. This network consists of 96 seismic stations of which 48 broad band and short period stations and two seismic arrays are transmitted in real-time. The real time seismic stations are equipped with Quanterra Q330 and K2 digitizers, broadband seismometers (STS2, CMG40T, CMG 3ESP, CMG3T) and strong motions sensors Kinemetrics episensors (+/- 2g). SeedLink and AntelopeTM (installed on MARMOT) program packages are used for real-time (RT) data acquisition and exchange. The communication from digital seismic stations to the National Data Center in Bucharest is assured by 5 providers (GPRS, VPN, satellite communication, radio lease line and internet), which will assure the back-up communications lines. The processing centre runs BRTT's AntelopeTM 4.10 data acquisition and processing software on 2 workstations for real-time processing and post processing. The Antelope Real-Time System is also providing automatic event detection, arrival picking, event location and magnitude calculation. It provides graphical display and reporting within near-real-time after a local or regional event occurred. Also at the data center was implemented a system to collect macroseismic information using the internet on which macro seismic intensity maps are generated. In the near future at the data center will be install Seiscomp 3 data acquisition processing software on a workstation. The software will run in parallel with Antelope software as a back-up. The present network will be expanded in the near future. In the first half of 2009 NIEP will install 8 additional broad band stations in Romanian territory, which also will be transmitted to the data center in real time. The Romanian Seismic Network is permanently exchanging real -time waveform data with IRIS, ORFEUS and different European countries through internet. In Romania, magnitude and location of an earthquake are now

  10. Real-time data acquisition system for monitoring patients in an intensive care unit (ICU)

    NASA Astrophysics Data System (ADS)

    Mahmoud, Mohamed

    2003-04-01

    In Intensive Care Unit (ICU) patient"s physiological variables such as heart rate, blood pressure, temperature, ventilation and brain activity are constantly monitored on-line, and medicine doses are given to ensure that these variables remain within desired limits. Such data are vital not only for on-line but also for off-line analyses and for medical staff training. Furthermore, in cases of deceased patients it is very important to retrieve these data in order to investigate the causes of deaths. This paper is introducing a design of a Real-Time Data Acquisition System for monitoring patients in Intensive Care Unit (ICU). The proposed design is implemented on a standard personal computer (PC) and operating system without using any sophisticated hardware or interface devices.

  11. Spatio-temporal modeling for real-time ozone forecasting

    PubMed Central

    Paci, Lucia; Gelfand, Alan E.; Holland, David M.

    2013-01-01

    The accurate assessment of exposure to ambient ozone concentrations is important for informing the public and pollution monitoring agencies about ozone levels that may lead to adverse health effects. High-resolution air quality information can offer significant health benefits by leading to improved environmental decisions. A practical challenge facing the U.S. Environmental Protection Agency (USEPA) is to provide real-time forecasting of current 8-hour average ozone exposure over the entire conterminous United States. Such real-time forecasting is now provided as spatial forecast maps of current 8-hour average ozone defined as the average of the previous four hours, current hour, and predictions for the next three hours. Current 8-hour average patterns are updated hourly throughout the day on the EPA-AIRNow web site. The contribution here is to show how we can substantially improve upon current real-time forecasting systems. To enable such forecasting, we introduce a downscaler fusion model based on first differences of real-time monitoring data and numerical model output. The model has a flexible coefficient structure and uses an efficient computational strategy to fit model parameters. Our hybrid computational strategy blends continuous background updated model fitting with real-time predictions. Model validation analyses show that we are achieving very accurate and precise ozone forecasts. PMID:24010052

  12. A multiprocessing architecture for real-time monitoring

    NASA Technical Reports Server (NTRS)

    Schmidt, James L.; Kao, Simon M.; Read, Jackson Y.; Weitzenkamp, Scott M.; Laffey, Thomas J.

    1988-01-01

    A multitasking architecture for performing real-time monitoring and analysis using knowledge-based problem solving techniques is described. To handle asynchronous inputs and perform in real time, the system consists of three or more distributed processes which run concurrently and communicate via a message passing scheme. The Data Management Process acquires, compresses, and routes the incoming sensor data to other processes. The Inference Process consists of a high performance inference engine that performs a real-time analysis on the state and health of the physical system. The I/O Process receives sensor data from the Data Management Process and status messages and recommendations from the Inference Process, updates its graphical displays in real time, and acts as the interface to the console operator. The distributed architecture has been interfaced to an actual spacecraft (NASA's Hubble Space Telescope) and is able to process the incoming telemetry in real-time (i.e., several hundred data changes per second). The system is being used in two locations for different purposes: (1) in Sunnyville, California at the Space Telescope Test Control Center it is used in the preflight testing of the vehicle; and (2) in Greenbelt, Maryland at NASA/Goddard it is being used on an experimental basis in flight operations for health and safety monitoring.

  13. Real-time simulation of thermal shadows with EMIT

    NASA Astrophysics Data System (ADS)

    Klein, Andreas; Oberhofer, Stefan; Schätz, Peter; Nischwitz, Alfred; Obermeier, Paul

    2016-05-01

    Modern missile systems use infrared imaging for tracking or target detection algorithms. The development and validation processes of these missile systems need high fidelity simulations capable of stimulating the sensors in real-time with infrared image sequences from a synthetic 3D environment. The Extensible Multispectral Image Generation Toolset (EMIT) is a modular software library developed at MBDA Germany for the generation of physics-based infrared images in real-time. EMIT is able to render radiance images in full 32-bit floating point precision using state of the art computer graphics cards and advanced shader programs. An important functionality of an infrared image generation toolset is the simulation of thermal shadows as these may cause matching errors in tracking algorithms. However, for real-time simulations, such as hardware in the loop simulations (HWIL) of infrared seekers, thermal shadows are often neglected or precomputed as they require a thermal balance calculation in four-dimensions (3D geometry in one-dimensional time up to several hours in the past). In this paper we will show the novel real-time thermal simulation of EMIT. Our thermal simulation is capable of simulating thermal effects in real-time environments, such as thermal shadows resulting from the occlusion of direct and indirect irradiance. We conclude our paper with the practical use of EMIT in a missile HWIL simulation.

  14. IGS Real-Time Service - Status And Future Developments

    NASA Astrophysics Data System (ADS)

    Rülke, Axel; Agrotis, Loukis; Caissy, Mark; Habrich, Heinz; Neumaier, Peter; Söhne, Wolfgang; Weber, Georg

    2014-05-01

    The International GNSS Service (IGS) provides high quality products for a large variety of scientific and engineering GNSS applications. Well known post-processing results are satellite ephemeris and station coordinates in a global reference frame, Earth orientation and atmospheric parameters. With its Real-Time Service now the IGS extends its capability to support applications requiring real-time access to products. In this paper we introduce the latest status of the IGS Real-Time Service (IGS RTS) and describe its Initial Operational Capability (IOC). Components of the implemented infrastructure are described and an overview on available products and their usage is presented. The product quality is evaluated in view of applications such as real-time Precise Point Positioning (PPP). The plan is to declare Full Operational Capability (FOC) in 2014, as soon as the IGS Governing Board is satisfied with the accuracy and availability of the GNSS products. Hence the presentation closes with an outlook on progress towards real-time multi-GNSS in IGS.

  15. Real-Time Data Use for Operational Space Weather Products

    NASA Astrophysics Data System (ADS)

    Quigley, S.; Nobis, T. E.

    2010-12-01

    The Space Vehicles Directorate of the Air Force Research Laboratory (AFRL/RVBX) and the Space Environment Division of the Space and Missile Systems Center (AFSPC SYAG/WMLE) have combined efforts to design, develop, test, implement, and validate numerical and graphical products for Air Force Space Command’s (AFSPC) Space Environmental Effects Fusion System (SEEFS). These products were developed to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense weapons, navigation, communications, and surveillance systems in real/near-real time. This real-time attribute is the primary factor in allowing for actual operational product output, but it’s also responsible for a variety of detrimental effects that need to be considered, researched, mitigated, or otherwise eliminated in future/upgrade product applications. This presentation will provide brief overviews of the SEEFS products, along with information and recommendations concerned with their near/real-time data acquisition and use, to include: input data requirements, inputs/outputs ownership, observation cadence, transmission/receipt links and cadence, data latency, quality control, error propagation and associated confidence level applications, and ensemble model run potentials. Validation issues related to real-time data will also be addressed, along with recommendations for new real-time data archiving that should prove operationally beneficial.

  16. A Practical Approach to Implementing Real-Time Semantics

    NASA Technical Reports Server (NTRS)

    Luettgen, Gerald; Bhat, Girish; Cleaveland, Rance

    1999-01-01

    This paper investigates implementations of process algebras which are suitable for modeling concurrent real-time systems. It suggests an approach for efficiently implementing real-time semantics using dynamic priorities. For this purpose a proces algebra with dynamic priority is defined, whose semantics corresponds one-to-one to traditional real-time semantics. The advantage of the dynamic-priority approach is that it drastically reduces the state-space sizes of the systems in question while preserving all properties of their functional and real-time behavior. The utility of the technique is demonstrated by a case study which deals with the formal modeling and verification of the SCSI-2 bus-protocol. The case study is carried out in the Concurrency Workbench of North Carolina, an automated verification tool in which the process algebra with dynamic priority is implemented. It turns out that the state space of the bus-protocol model is about an order of magnitude smaller than the one resulting from real-time semantics. The accuracy of the model is proved by applying model checking for verifying several mandatory properties of the bus protocol.

  17. Real-time hierarchically distributed processing network interaction simulation

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Wu, C.

    1987-01-01

    The Telerobot Testbed is a hierarchically distributed processing system which is linked together through a standard, commercial Ethernet. Standard Ethernet systems are primarily designed to manage non-real-time information transfer. Therefore, collisions on the net (i.e., two or more sources attempting to send data at the same time) are managed by randomly rescheduling one of the sources to retransmit at a later time interval. Although acceptable for transmitting noncritical data such as mail, this particular feature is unacceptable for real-time hierarchical command and control systems such as the Telerobot. Data transfer and scheduling simulations, such as token ring, offer solutions to collision management, but do not appropriately characterize real-time data transfer/interactions for robotic systems. Therefore, models like these do not provide a viable simulation environment for understanding real-time network loading. A real-time network loading model is being developed which allows processor-to-processor interactions to be simulated, collisions (and respective probabilities) to be logged, collision-prone areas to be identified, and network control variable adjustments to be reentered as a means of examining and reducing collision-prone regimes that occur in the process of simulating a complete task sequence.

  18. Real-time operating systems at higher control

    SciTech Connect

    Jensen, E.D.

    1995-01-01

    Although virtually all development of real-time operating systems focuses on the lowest of the three traditional control levels, sheet economics demands higher level real-time OSs. Meeting this demand requires a major change in the mindset of the people who have been focusing on the lowest level of control. {open_quotes}These people are trying to deal with an elephant`s tail, but they don`t realize that there is an elephant attached to it.{close_quotes} For more than three decades, the historical real-time mindset, concepts and techniques have been driven by a particular pair of contexts. First is the application context, which can be characterized as {open_quotes}small, simple, centralized, static subsystems for low-level, sampled data, monitoring and first-order control.{close_quotes} Second is the hardware context, characterized by a scarcity of hardware resources due to size, weight, power and cost considerations. Both of these contexts are changing dramatically in ways that {open_quotes}have a significant impact on the concepts and techniques of real-time computing.{close_quotes} Hardware now offers much higher performance and the real-time domain is expanding upward in the application control hierarchy.

  19. Development of VIS/NIR spectroscopic system for real-time prediction of fresh pork quality

    NASA Astrophysics Data System (ADS)

    Zhang, Haiyun; Peng, Yankun; Zhao, Songwei; Sasao, Akira

    2013-05-01

    Quality attributes of fresh meat will influence nutritional value and consumers' purchasing power. The aim of the research was to develop a prototype for real-time detection of quality in meat. It consisted of hardware system and software system. A VIS/NIR spectrograph in the range of 350 to 1100 nm was used to collect the spectral data. In order to acquire more potential information of the sample, optical fiber multiplexer was used. A conveyable and cylindrical device was designed and fabricated to hold optical fibers from multiplexer. High power halogen tungsten lamp was collected as the light source. The spectral data were obtained with the exposure time of 2.17ms from the surface of the sample by press down the trigger switch on the self-developed system. The system could automatically acquire, process, display and save the data. Moreover the quality could be predicted on-line. A total of 55 fresh pork samples were used to develop prediction model for real time detection. The spectral data were pretreated with standard normalized variant (SNV) and partial least squares regression (PLSR) was used to develop prediction model. The correlation coefficient and root mean square error of the validation set for water content and pH were 0.810, 0.653, and 0.803, 0.098 respectively. The research shows that the real-time non-destructive detection system based on VIS/NIR spectroscopy can be efficient to predict the quality of fresh meat.

  20. Line-scan hyperspectral imaging for real-time poultry fecal detection

    NASA Astrophysics Data System (ADS)

    Park, Bosoon; Yoon, Seung-Chul; Windham, William R.; Lawrence, Kurt C.; Heitschmidt, G. W.; Kim, Moon S.; Chao, Kaunglin

    2010-04-01

    The ARS multispectral imaging system with three-band common aperture camera was able to inspect fecal contaminants in real-time mode during poultry processing. Recent study has demonstrated several image processing methods including binning, cuticle removal filter, median filter, and morphological analysis in real-time mode could remove false positive errors. The ARS research groups and their industry partner are now merging the fecal detection and systemically disease detection systems onto a common platform using line-scan hyperspectral imaging system. This system will aid in commercialization by creating one hyperspectral imaging system with user-defined wavelengths that can be installed in different locations of the processing line to solve significant food safety problems. Therefore, this research demonstrated the feasibility of line-scan hyperspectral imaging system in terms of processing speed and detection accuracy for a real-time, on-line fecal detection at current processing speed (140 birds per minute) of commercial poultry plant. The newly developed line-scan hyperspectral imaging system could improve Food Safety Inspection Service (FSIS)'s poultry safety inspection program significantly.

  1. Utilizing real-time and near real-time data in the iNtegrated Space Weather Analysis System

    NASA Astrophysics Data System (ADS)

    Maddox, M. M.; Mullinix, R. E.; Rastaetter, L.; Pulkkinen, A.; Zheng, Y.; Berrios, D.; Hesse, M.; Kuznetsova, M. M.; Taktakishvili, A.; Chulaki, A.; Shim, J.; Bakshi, S. S.; Patel, K. D.; Jain, P.

    2010-12-01

    Access to near real-time and real-time space weather data is essential to accurately specifying and forecasting the space environment. The Space Weather Desk at NASA Goddard Space Flight Center's Space Weather Laboratory provides vital space weather forecasting services primarily to NASA robotic mission operators, as well as external space weather stakeholders including the Air Force Weather Agency. A key component in this activity is the iNtegrated Space Weather Analysis System which is a joint development project at NASA GSFC between the Space Weather Laboratory, Community Coordinated Modeling Center, Applied Engineering & Technology Directorate, and NASA HQ Office Of Chief Engineer. The iSWA system was developed to address technical challenges in acquiring and disseminating space weather environment information. A key design driver for the iSWA system was to generate and present vast amounts of space weather resources in an intuitive, user-configurable, and adaptable format - thus enabling users to respond to current and future space weather impacts as well as enabling post-impact analysis. Having access to near real-time and real-time data is essential to not only ensuring that relevant observational data is available for analysis - but also in ensuring that models can be driven with the requisite input parameters at proper and efficient temporal and spacial resolutions. The iSWA system currently manages over 250 unique near-real and real-time data feeds from various sources consisting of both observational and simulation data. A comprehensive suite of actionable space weather analysis tools and products are generated and provided utilizing a mixture of the ingested data - enabling new capabilities in quickly assessing past, present, and expected space weather effects. This paper will highlight current and future iSWA system capabilities and also discuss some of the challenges and lessons-learned in dealing with diverse real-time and near-real time space

  2. Real-time measurement of mental workload: A feasibility study

    NASA Technical Reports Server (NTRS)

    Kramer, Arthur; Humphrey, Darryl; Sirevaag, Erik; Mecklinger, Axel

    1990-01-01

    The primary goal of the study was to explore the utility of event-related brain potentials (ERP) as real-time measures of workload. To this end, subjects performed two different tasks both separately and together. One task required that subjects monitor a bank of constantly changing gauges and detect critical deviations. Difficulty was varied by changing the predictability of the gauges. The second task was mental arithmetic. Difficulty was varied by requiring subjects to perform operations on either two or three columns of numbers. Two conditions that could easily be distinguished on the basis of performance measures were selected for the real-time evaluation of ERPs. A bootstrapping approach was adopted in which one thousand samples of n trials (n = 1, 3, 5 ...65) were classified using several measures of P300 and Slow Wave amplitude. Classification accuracies of 85 percent were achieved with 25 trials. Results are discussed in terms of potential enhancements for real-time recording.

  3. Explaining How to Play Real-Time Strategy Games

    NASA Astrophysics Data System (ADS)

    Metoyer, Ronald; Stumpf, Simone; Neumann, Christoph; Dodge, Jonathan; Cao, Jill; Schnabel, Aaron

    Real-time strategy games share many aspects with real situations in domains such as battle planning, air traffic control, and emergency response team management which makes them appealing test-beds for Artificial Intelligence (AI) and machine learning. End user annotations could help to provide supplemental information for learning algorithms, especially when training data is sparse. This paper presents a formative study to uncover how experienced users explain game play in real-time strategy games. We report the results of our analysis of explanations and discuss their characteristics that could support the design of systems for use by experienced real-time strategy game users in specifying or annotating strategy-oriented behavior.

  4. Safe Runtime Verification of Real-Time Properties

    NASA Astrophysics Data System (ADS)

    Colombo, Christian; Pace, Gordon J.; Schneider, Gerardo

    Introducing a monitor on a system typically changes the system’s behaviour by slowing the system down and increasing memory consumption. This may possibly result in creating new bugs, or possibly even ‘fixing’ bugs, only to reappear as the monitor is removed. Properties written in a real-time logic, such as duration calculus, can be particularly sensitive to such changes induced through monitoring. The same problem occurs in other scenarios such as when a system is ported to a faster machine. In this paper, we identify a class of real-time properties, in duration calculus, which are monotonic under the slowing down (speeding up) of the underlying system. We apply this approach to the real-time runtime monitoring tool Larva, where we use duration calculus as a monitoring property specification language, so we automatically identify properties which can be shown to be monotonic with respect to system re-timing.

  5. A Scheduling Algorithm for Replicated Real-Time Tasks

    NASA Technical Reports Server (NTRS)

    Yu, Albert C.; Lin, Kwei-Jay

    1991-01-01

    We present an algorithm for scheduling real-time periodic tasks on a multiprocessor system under fault-tolerant requirement. Our approach incorporates both the redundancy and masking technique and the imprecise computation model. Since the tasks in hard real-time systems have stringent timing constraints, the redundancy and masking technique are more appropriate than the rollback techniques which usually require extra time for error recovery. The imprecise computation model provides flexible functionality by trading off the quality of the result produced by a task with the amount of processing time required to produce it. It therefore permits the performance of a real-time system to degrade gracefully. We evaluate the algorithm by stochastic analysis and Monte Carlo simulations. The results show that the algorithm is resilient under hardware failures.

  6. Real time capable infrared thermography for ASDEX Upgrade

    SciTech Connect

    Sieglin, B. Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S.

    2015-11-15

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today’s fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  7. Training recurrent neurocontrollers for real-time applications.

    PubMed

    Prokhorov, Danil V

    2007-07-01

    In this paper, we introduce a new approach to train recurrent neurocontrollers for real-time applications. We begin with training a recurrent neurocontroller for robustness on high-fidelity models of physical systems. For training, we use a recently developed derivative-free Kalman filter method which we enhance for controller training. After training, we fix weights of our recurrent neurocontroller and deploy it in an embedded environment. Then, we carry out additional training of the neurocontroller by adapting in real time its internal state (short-term memory), rather than its weights (long-term memory). Such real-time training is done with a new combination of simultaneous perturbation stochastic approximation (SPSA) and adaptive critic. Our critic is also a recurrent neural network (RNN), and it is trained by stochastic meta-descent (SMD) for increased efficiency. Our approach is applied to two important practical problems, electronic throttle control and hybrid electric vehicle control, with apparent performance improvement. PMID:17668657

  8. Test applications for heterogeneous real-time network testbed

    SciTech Connect

    Mines, R.F.; Knightly, E.W.

    1994-07-01

    This paper investigates several applications for a heterogeneous real-time network testbed. The network is heterogeneous in terms of network devices, technologies, protocols, and algorithms. The network is real-time in that its services can provide per-connection end-to-end performance guarantees. Although different parts of the network use different algorithms, all components have the necessary mechanisms to provide performance guarantees: admission control and priority scheduling. Three applications for this network are described in this paper: a video conferencing tool, a tool for combustion modeling using distributed computing, and an MPEG video archival system. Each has minimum performance requirements that must be provided by the network. By analyzing these applications, we provide insights to the traffic characteristics and performance requirements of practical real-time loads.

  9. Continuous real-time water information: an important Kansas resource

    USGS Publications Warehouse

    Loving, Brian L.; Putnam, James E.; Turk, Donita M.

    2014-01-01

    Continuous real-time information on streams, lakes, and groundwater is an important Kansas resource that can safeguard lives and property, and ensure adequate water resources for a healthy State economy. The U.S. Geological Survey (USGS) operates approximately 230 water-monitoring stations at Kansas streams, lakes, and groundwater sites. Most of these stations are funded cooperatively in partnerships with local, tribal, State, or other Federal agencies. The USGS real-time water-monitoring network provides long-term, accurate, and objective information that meets the needs of many customers. Whether the customer is a water-management or water-quality agency, an emergency planner, a power or navigational official, a farmer, a canoeist, or a fisherman, all can benefit from the continuous real-time water information gathered by the USGS.

  10. Intelligent data management for real-time spacecraft monitoring

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Gasser, Les; Abramson, Bruce

    1992-01-01

    Real-time AI systems have begun to address the challenge of restructuring problem solving to meet real-time constraints by making key trade-offs that pursue less than optimal strategies with minimal impact on system goals. Several approaches for adapting to dynamic changes in system operating conditions are known. However, simultaneously adapting system decision criteria in a principled way has been difficult. Towards this end, a general technique for dynamically making such trade-offs using a combination of decision theory and domain knowledge has been developed. Multi-attribute utility theory (MAUT), a decision theoretic approach for making one-time decisions is discussed and dynamic trade-off evaluation is described as a knowledge-based extension of MAUT that is suitable for highly dynamic real-time environments, and provides an example of dynamic trade-off evaluation applied to a specific data management trade-off in a real-world spacecraft monitoring application.

  11. Single-protein nanomechanical mass spectrometry in real time

    PubMed Central

    Hanay, M.S.; Kelber, S.; Naik, A.K.; Chi, D.; Hentz, S.; Bullard, E.C.; Colinet, E.; Duraffourg, L.; Roukes, M.L.

    2012-01-01

    Nanoelectromechanical systems (NEMS) resonators can detect mass with exceptional sensitivity. Previously, mass spectra from several hundred adsorption events were assembled in NEMS-based mass spectrometry using statistical analysis. Here, we report the first realization of single-molecule NEMS-based mass spectrometry in real time. As each molecule in the sample adsorbs upon the NEMS resonator, its mass and the position-of-adsorption are determined by continuously tracking two driven vibrational modes of the device. We demonstrate the potential of multimode NEMS-based mass spectrometry by analyzing IgM antibody complexes in real-time. NEMS-MS is a unique and promising new form of mass spectrometry: it can resolve neutral species, provides resolving power that increases markedly for very large masses, and allows acquisition of spectra, molecule-by-molecule, in real-time. PMID:22922541

  12. Real-Time Parameter Estimation Using Output Error

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.

    2014-01-01

    Output-error parameter estimation, normally a post- ight batch technique, was applied to real-time dynamic modeling problems. Variations on the traditional algorithm were investigated with the goal of making the method suitable for operation in real time. Im- plementation recommendations are given that are dependent on the modeling problem of interest. Application to ight test data showed that accurate parameter estimates and un- certainties for the short-period dynamics model were available every 2 s using time domain data, or every 3 s using frequency domain data. The data compatibility problem was also solved in real time, providing corrected sensor measurements every 4 s. If uncertainty corrections for colored residuals are omitted, this rate can be increased to every 0.5 s.

  13. Real-time structured light intraoral 3D measurement pipeline

    NASA Astrophysics Data System (ADS)

    Gheorghe, Radu; Tchouprakov, Andrei; Sokolov, Roman

    2013-02-01

    Computer aided design and manufacturing (CAD/CAM) is increasingly becoming a standard feature and service provided to patients in dentist offices and denture manufacturing laboratories. Although the quality of the tools and data has slowly improved in the last years, due to various surface measurement challenges, practical, accurate, invivo, real-time 3D high quality data acquisition and processing still needs improving. Advances in GPU computational power have allowed for achieving near real-time 3D intraoral in-vivo scanning of patient's teeth. We explore in this paper, from a real-time perspective, a hardware-software-GPU solution that addresses all the requirements mentioned before. Moreover we exemplify and quantify the hard and soft deadlines required by such a system and illustrate how they are supported in our implementation.

  14. Towards real-time medical diagnostics using hyperspectral imaging technology

    NASA Astrophysics Data System (ADS)

    Bjorgan, Asgeir; Randeberg, Lise L.

    2015-07-01

    Hyperspectral imaging provides non-contact, high resolution spectral images which has a substantial diagnostic potential. This can be used for e.g. diagnosis and early detection of arthritis in finger joints. Processing speed is currently a limitation for clinical use of the technique. A real-time system for analysis and visualization using GPU processing and threaded CPU processing is presented. Images showing blood oxygenation, blood volume fraction and vessel enhanced images are among the data calculated in real-time. This study shows the potential of real-time processing in this context. A combination of the processing modules will be used in detection of arthritic finger joints from hyperspectral reflectance and transmittance data.

  15. Coordinated scheduling for dynamic real-time systems

    NASA Technical Reports Server (NTRS)

    Natarajan, Swaminathan; Zhao, Wei

    1994-01-01

    In this project, we addressed issues in coordinated scheduling for dynamic real-time systems. In particular, we concentrated on design and implementation of a new distributed real-time system called R-Shell. The design objective of R-Shell is to provide computing support for space programs that have large, complex, fault-tolerant distributed real-time applications. In R-shell, the approach is based on the concept of scheduling agents, which reside in the application run-time environment, and are customized to provide just those resource management functions which are needed by the specific application. With this approach, we avoid the need for a sophisticated OS which provides a variety of generalized functionality, while still not burdening application programmers with heavy responsibility for resource management. In this report, we discuss the R-Shell approach, summarize the achievement of the project, and describe a preliminary prototype of R-Shell system.

  16. Integrated real-time fracture-diagnostics instrumentation system

    SciTech Connect

    Engi, D

    1983-01-01

    The use of an integrated, real-time fracture-diagnostics instrumentation system for the control of the fracturing treatment during massive hydraulic fracturing is proposed. The proposed system consists of four subsystems: an internal-fracture-pressure measurement system, a fluid-flow measurement system, a borehole seismic system, and a surface-electric-potential measurement system. This use of borehole seismic and surface-electric-potential measurements, which are essentially away-from-the-wellbore measurements, in conjunction with the use of the more commonly used types of measurements, i.e., at-the-wellbore pressure and fluid-flow measurements, is a distinctive feature of the composite real-time diagnostics system. Currently, the real-time capabilities of the individual subsystems are being developed, and the problems associated with their integration into a complete, computer-linked instrumentation system are being addressed. 2 figures.

  17. Continuous focus tracking for real-time optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cobb, Michael J.; Liu, Xiumei; Li, Xingde

    2005-07-01

    We report an approach to achieving continuous focus tracking and a depth-independent transverse resolution for real-time optical coherence tomography (OCT) imaging. Continuous real-time focus tracking is permitted by use of a lateral-priority image acquisition sequence in which the depth-scanning rate is equivalent to the imaging frame rate. Real-time OCT imaging with continuous focus tracking is performed at 1 frame/s by reciprocal translation of a rapid lateral-scanning miniature imaging probe (e.g., an endoscope). The optical path length in the reference arm is scanned synchronously to ensure that the coherence gate coincides with the imaging beam focus. The image quality improvement is experimentally demonstrated by imaging a tissue phantom embedded with polystyrene microspheres and rabbit esophageal tissues.

  18. Real-Time Statistical Modeling of Blood Sugar.

    PubMed

    Otoom, Mwaffaq; Alshraideh, Hussam; Almasaeid, Hisham M; López-de-Ipiña, Diego; Bravo, José

    2015-10-01

    Diabetes is considered a chronic disease that incurs various types of cost to the world. One major challenge in the control of Diabetes is the real time determination of the proper insulin dose. In this paper, we develop a prototype for real time blood sugar control, integrated with the cloud. Our system controls blood sugar by observing the blood sugar level and accordingly determining the appropriate insulin dose based on patient's historical data, all in real time and automatically. To determine the appropriate insulin dose, we propose two statistical models for modeling blood sugar profiles, namely ARIMA and Markov-based model. Our experiment used to evaluate the performance of the two models shows that the ARIMA model outperforms the Markov-based model in terms of prediction accuracy. PMID:26303151

  19. Real-Time Parameter Estimation in the Frequency Domain

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2000-01-01

    A method for real-time estimation of parameters in a linear dynamic state-space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than one cycle of the dominant dynamic mode, using no a priori information, with control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements and could be implemented

  20. Real time capable infrared thermography for ASDEX Upgrade.

    PubMed

    Sieglin, B; Faitsch, M; Herrmann, A; Brucker, B; Eich, T; Kammerloher, L; Martinov, S

    2015-11-01

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today's fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW. PMID:26628130

  1. A framework for building real-time expert systems

    NASA Technical Reports Server (NTRS)

    Lee, S. Daniel

    1991-01-01

    The Space Station Freedom is an example of complex systems that require both traditional and artificial intelligence (AI) real-time methodologies. It was mandated that Ada should be used for all new software development projects. The station also requires distributed processing. Catastrophic failures on the station can cause the transmission system to malfunction for a long period of time, during which ground-based expert systems cannot provide any assistance to the crisis situation on the station. This is even more critical for other NASA projects that would have longer transmission delays (e.g., the lunar base, Mars missions, etc.). To address these issues, a distributed agent architecture (DAA) is proposed that can support a variety of paradigms based on both traditional real-time computing and AI. The proposed testbed for DAA is an autonomous power expert (APEX) which is a real-time monitoring and diagnosis expert system for the electrical power distribution system of the space station.

  2. Building flexible real-time systems using the Flex language

    NASA Technical Reports Server (NTRS)

    Kenny, Kevin B.; Lin, Kwei-Jay

    1991-01-01

    The design and implementation of a real-time programming language called Flex, which is a derivative of C++, are presented. It is shown how different types of timing requirements might be expressed and enforced in Flex, how they might be fulfilled in a flexible way using different program models, and how the programming environment can help in making binding and scheduling decisions. The timing constraint primitives in Flex are easy to use yet powerful enough to define both independent and relative timing constraints. Program models like imprecise computation and performance polymorphism can carry out flexible real-time programs. In addition, programmers can use a performance measurement tool that produces statistically correct timing models to predict the expected execution time of a program and to help make binding decisions. A real-time programming environment is also presented.

  3. Online gaming for learning optimal team strategies in real time

    NASA Astrophysics Data System (ADS)

    Hudas, Gregory; Lewis, F. L.; Vamvoudakis, K. G.

    2010-04-01

    This paper first presents an overall view for dynamical decision-making in teams, both cooperative and competitive. Strategies for team decision problems, including optimal control, zero-sum 2-player games (H-infinity control) and so on are normally solved for off-line by solving associated matrix equations such as the Riccati equation. However, using that approach, players cannot change their objectives online in real time without calling for a completely new off-line solution for the new strategies. Therefore, in this paper we give a method for learning optimal team strategies online in real time as team dynamical play unfolds. In the linear quadratic regulator case, for instance, the method learns the Riccati equation solution online without ever solving the Riccati equation. This allows for truly dynamical team decisions where objective functions can change in real time and the system dynamics can be time-varying.

  4. Real time capable infrared thermography for ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Sieglin, B.; Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S.

    2015-11-01

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today's fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  5. A real-time VLC to UART protocol conversion system

    NASA Astrophysics Data System (ADS)

    Deng, Jian-zhi; Yao, Meng; Cheng, Xiao-hui; Deng, Zhuo-hong

    2016-07-01

    A real-time visible light communication (VLC) to universal asynchronous receiver/transmitter (UART) conversion system is made up of a transmitter with a light emitting diode (LED) and a receiver with a photodiode (PD), by which a VLC system is connected to traditional communication modes, and the data are transferred by wireless visible light. UART packets are converted to light packets by the modulation of a 10 kHz on-off-keying (OOK) light signal, and the data losses in the transportation are avoided by the protection of a data buffer mechanism. The experimental results reveal that the real-time VLC to UART conversion system can provide a real-time VLC transmission way for two UART devices in not less than 10 m at a baud rate not less than 19 200 Bd with stable ambient lighting at the same time.

  6. Effective Product Recommendation using the Real-Time Web

    NASA Astrophysics Data System (ADS)

    Esparza, Sandra Garcia; O'Mahony, Michael P.; Smyth, Barry

    The so-called real-time web (RTW) is a web of opinions, comments, and personal viewpoints, often expressed in the form of short, 140-character text messages providing abbreviated and highly personalized commentary in real-time. Today, Twitter is undoubtedly the king of the RTW. It boasts 190 million users and generates in the region of 65m tweets per day1. This RTW data is far from the structured data (movie ratings, product features, etc.) that is familiar to recommender systems research but it is useful to consider its applicability to recommendation scenarios. In this paper we consider harnessing the real-time opinions of users, expressed through the Twitter-like short textual reviews available on the Blippr service (www.blippr.com). In particular we describe how users and products can be represented from the terms used in their associated reviews and describe experiments to highlight the recommendation potential of this RTW data-source and approach.

  7. Real-Time WINDMI Predictions of Geomagnetic Storm and Substorms

    NASA Astrophysics Data System (ADS)

    Mays, M. L.; Horton, W.; Spencer, E.; Kozyra, J. U.

    2008-12-01

    Real-Time WINMDI is plasma physics-based, nonlinear dynamical model of the coupled solar WIND Magentosphere-Ionosphere system. Using upstream solar wind particle and field data, a system of nonlinear ordinary differential equations is solved numerically to describe the energy transfer from the solar wind to the magnetosphere-ionosphere system. The physics model WINMDI divides the incoming power into energy stored in multiple regions of M-I system and has been verified on GEM storm data in Spencer et al. (2007). The system of nonlinear ordinary differential equations, which describes energy transfer into, and between dominant components of the nightside magnetosphere and ionosphere, is solved numerically to determine the state of each component. The low-dimensional model characterizes the energy stored in the ring current and the region 1 field-aligned current which are use to compute model Dst and AL values. Real-time solar wind plasma parameters, available from ACE, are downloaded every 10 minutes to compute the input solar wind driving voltage for the model. Real-Time WINDMI computes model Dst and AL values about 1-2 hours before index data is available at the Kyoto WDC Quicklook website. Results are shown on the Real-Time WINDMI website. We present statistics for Real-Time WINDMI performance from 2006 to present and also compare the results for different input driving voltages. We plan to compare the database of Real-Time WINDMI Dst predictions with other ring current models which contain different loss and energization processes. The work is supported by NSF grant ATM-0638480.

  8. Simultaneous real-time monitoring of multiple cortical systems

    NASA Astrophysics Data System (ADS)

    Gupta, Disha; Hill, N. Jeremy; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L.; Schalk, Gerwin

    2014-10-01

    Objective. Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance. Approach. We study these questions using electrocorticographic signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (six for offline parameter optimization, six for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main results. Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelopes. These decoders were trained separately and executed simultaneously in real time. Significance. This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple

  9. High performance real-time flight simulation at NASA Langley

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II

    1994-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be deterministic and be completed in as short a time as possible. This includes simulation mathematical model computational and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, personnel at NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to a standard input/output system to provide for high bandwidth, low latency data acquisition and distribution. The Computer Automated Measurement and Control technology (IEEE standard 595) was extended to meet the performance requirements for real-time simulation. This technology extension increased the effective bandwidth by a factor of ten and increased the performance of modules necessary for simulator communications. This technology is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications of this technology are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC have completed the development of the use of supercomputers for simulation mathematical model computational to support real-time flight simulation. This includes the development of a real-time operating system and the development of specialized software and hardware for the CAMAC simulator network. This work, coupled with the use of an open systems software architecture, has advanced the state of the art in real time flight simulation. The data acquisition technology innovation and experience with recent developments in this technology are described.

  10. Toward Real Time Data Analysis for Smart Grids

    SciTech Connect

    Yin, Jian; Gorton, Ian; Sharma, Poorva

    2012-11-10

    This paper describes the architecture and design of a novel system for supporting large-scale real-time data analysis for future power grid systems. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components of the grid. As a result, the whole system becomes highly dynamic and requires constant adjusting based on real time data. Even though millions of sensors such as phase measurement units (PMU) and smart meters are being widely deployed, a data layer that can analyze this amount of data in real time is needed. Unlike the data fabric in other cloud services, the data layer for smart grids has some unique design requirements. First, this layer must provide real time guarantees. Second, this layer must be scalable to allow a large number of applications to access the data from millions of sensors in real time. Third, reliability is critical and this layer must be able to continue to provide service in face of failures. Fourth, this layer must be secure. We address these challenges though a scalable system architecture that integrates the I/O and data processing capability in a devise set of devices. Data process operations can be placed anywhere from sensors, data storage devices, to control centers. We further employ compression to improve performance. We design a lightweight compression customized for power grid data. Our system can reduce end-to-end response time by reduce I/O overhead through compression and overlap compression operations with I/O. The initial prototype of our system was demonstrated with several use cases from PNNL’s FPGI and show that our system can provide real time guarantees to a diverse set of applications.

  11. Geologic hazard monitoring with real-time GPS (Invited)

    NASA Astrophysics Data System (ADS)

    Lisowski, M.; Langbein, J. O.; Murray-Moraleda, J. R.; Poland, M. P.; Hudnut, K. W.; Cervelli, P. F.; King, N. E.

    2009-12-01

    The USGS Earthquake and Volcano Hazards Science Centers are developing a high-rate (1-s epoch), real-time ground deformation monitoring system using data streamed from continuously recording GPS stations. We began by evaluating the ability of GPS data reduction software to recover offsets in a displacement test data set generated by offsetting a GPS antenna by measured amounts. We found that offsets as large as several meters and as small as 1 cm could be reliably resolved. Our methods and initial results were summarized in USGS Open File Report 1235 (http://pubs.usgs.gov/of/2006/1235/of2006-1235.pdf). Further evaluation of GPS software using raw data from the report and real-time GPS data were conducted after publication of the report. Based upon these results, we selected software that could produce both double difference (baseline) and single difference (point positioning) solutions. Using this software, we are now running real-time, 1-s, fixed-ambiguity, double-difference solutions for USGS deformation monitoring networks in Southern California, the San Francisco Bay Area, Long Valley, and at several Cascades volcanoes. GPS data are streamed over the Internet to processing centers in Pasadena, CA, and Vancouver, WA. Solutions are generally reliable, but we note solution gaps caused by the breakdown in the GPS data streams and intervals when baseline ambiguities are not resolved in some of the longer (>50 km) baselines. We have not yet attempted real-time point-position solutions because we lack accurate real-time satellite clock corrections. We plan to implement this technique in the future by either calculating satellite clock corrections using a network of stations or by applying corrections produced by JPL. We currently generate alarms for data gaps in the real-time GPS solutions and plan to automate displacement anomaly detection using an algorithm that removes common-mode and multi-path noise.

  12. Operational real-time GPS-enhanced earthquake early warning

    NASA Astrophysics Data System (ADS)

    Grapenthin, R.; Johanson, I. A.; Allen, R. M.

    2014-10-01

    Moment magnitudes for large earthquakes (Mw≥7.0) derived in real time from near-field seismic data can be underestimated due to instrument limitations, ground tilting, and saturation of frequency/amplitude-magnitude relationships. Real-time high-rate GPS resolves the buildup of static surface displacements with the S wave arrival (assuming nonsupershear rupture), thus enabling the estimation of slip on a finite fault and the event's geodetic moment. Recently, a range of high-rate GPS strategies have been demonstrated on off-line data. Here we present the first operational system for real-time GPS-enhanced earthquake early warning as implemented at the Berkeley Seismological Laboratory (BSL) and currently analyzing real-time data for Northern California. The BSL generates real-time position estimates operationally using data from 62 GPS stations in Northern California. A fully triangulated network defines 170+ station pairs processed with the software trackRT. The BSL uses G-larmS, the Geodetic Alarm System, to analyze these positioning time series and determine static offsets and preevent quality parameters. G-larmS derives and broadcasts finite fault and magnitude information through least-squares inversion of the static offsets for slip based on a priori fault orientation and location information. This system tightly integrates seismic alarm systems (CISN-ShakeAlert, ElarmS-2) as it uses their P wave detections to trigger its processing; quality control runs continuously. We use a synthetic Hayward Fault earthquake scenario on real-time streams to demonstrate recovery of slip and magnitude. Reanalysis of the Mw7.2 El Mayor-Cucapah earthquake tests the impact of dynamic motions on offset estimation. Using these test cases, we explore sensitivities to disturbances of a priori constraints (origin time, location, and fault strike/dip).

  13. Magneto-optical system for high speed real time imaging

    NASA Astrophysics Data System (ADS)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  14. Real-time monitoring for low-level pollution

    SciTech Connect

    Kishkovich, O.P.; Joffe, M.A.

    1997-11-01

    Real-time monitors provide a valuable addition to the arsenal of air-sampling methods used for IAQ applications. They are accurate, dependable, flexible, and provide IAQ professionals with more detailed quantitative information. RTM improves efficiency of many IAQ sampling applications and, in some cases, cannot be matched by other sampling techniques. Adequate instrumentation for demanding IAQ applications is available today. Future needs are expanding the range of pollutants that can be monitored with real-time instruments, improving reliability and portability of monitoring instrumentation, and devising cost-effective multiplexing schemes for multi-point RTM sampling.

  15. Spectral decontamination of a real-time helicopter simulation

    NASA Technical Reports Server (NTRS)

    Mcfarland, R. E.

    1983-01-01

    Nonlinear mathematical models of a rotor system, referred to as rotating blade-element models, produce steady-state, high-frequency harmonics of significant magnitude. In a discrete simulation model, certain of these harmonics may be incompatible with realistic real-time computational constraints because of their aliasing into the operational low-pass region. However, the energy is an aliased harmonic may be suppressed by increasing the computation rate of an isolated, causal nonlinearity and using an appropriate filter. This decontamination technique is applied to Sikorsky's real-time model of the Black Hawk helicopter, as supplied to NASA for handling-qualities investigations.

  16. Optoelectronic radar receiver for real-time radar imaging

    NASA Astrophysics Data System (ADS)

    Wasilousky, Peter A.; Pape, Dennis R.; Carter, James A., III; Sunderlin, Tim A.

    1995-08-01

    We have previously presented the architecture and basic analytic results for a functional 1D pipelined hybrid optical/digital processing concept capable of generating a target range- doppler profile in real time. Here we address the fundamental system processing algorithm and hardware development issues in some detail. The approach to performing real-time phase correction of the individual range profiles is outlined, along with the basic system operational runtime algorithms and system processing pipeline. A description of the receiver hardware and its component functionality in terms of the presented operational theory is given as well.

  17. Real-Time Multiprocessor Programming Language (RTMPL) user's manual

    NASA Technical Reports Server (NTRS)

    Arpasi, D. J.

    1985-01-01

    A real-time multiprocessor programming language (RTMPL) has been developed to provide for high-order programming of real-time simulations on systems of distributed computers. RTMPL is a structured, engineering-oriented language. The RTMPL utility supports a variety of multiprocessor configurations and types by generating assembly language programs according to user-specified targeting information. Many programming functions are assumed by the utility (e.g., data transfer and scaling) to reduce the programming chore. This manual describes RTMPL from a user's viewpoint. Source generation, applications, utility operation, and utility output are detailed. An example simulation is generated to illustrate many RTMPL features.

  18. Infrared Signature Analysis: Real Time Monitoring Of Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Bangs, Edmund R.

    1988-01-01

    The ability to monitor manufacturing processes in an adaptive control mode and perform an inspection in real time is of interest to fabricators in the pressure vessel, aerospace, automotive, nuclear and shipbuilding industries. Results of a series of experiments using infrared thermography as the principal sensing mode are presented to show how artificial intelligence contained in infrared isotherm, contains vast critical process variables. Image processing computer software development has demonstrated in a spot welding application how the process can be monitored and controlled in real time. The IR vision sensor program is now under way. Research thus far has focused on fusion welding, resistance spot welding and metal removal.

  19. Handheld portable real-time tracking and communications device

    DOEpatents

    Wiseman, James M.; Riblett, Jr., Loren E.; Green, Karl L.; Hunter, John A.; Cook, III, Robert N.; Stevens, James R.

    2012-05-22

    Portable handheld real-time tracking and communications devices include; a controller module, communications module including global positioning and mesh network radio module, data transfer and storage module, and a user interface module enclosed in a water-resistant enclosure. Real-time tracking and communications devices can be used by protective force, security and first responder personnel to provide situational awareness allowing for enhance coordination and effectiveness in rapid response situations. Such devices communicate to other authorized devices via mobile ad-hoc wireless networks, and do not require fixed infrastructure for their operation.

  20. A heterogeneous hierarchical architecture for real-time computing

    SciTech Connect

    Skroch, D.A.; Fornaro, R.J.

    1988-12-01

    The need for high-speed data acquisition and control algorithms has prompted continued research in the area of multiprocessor systems and related programming techniques. The result presented here is a unique hardware and software architecture for high-speed real-time computer systems. The implementation of a prototype of this architecture has required the integration of architecture, operating systems and programming languages into a cohesive unit. This report describes a Heterogeneous Hierarchial Architecture for Real-Time (H{sup 2} ART) and system software for program loading and interprocessor communication.

  1. Rapid Real-Time SpaceWire Emulation

    NASA Astrophysics Data System (ADS)

    Mudie, Stephen; Parkes, Steve; Dunstan, Martin

    2015-09-01

    The SpaceWire Electronic Ground Support Equipment (EGSE) test and development unit from STAR-Dundee can be used to very rapidly emulate real-time behaviour of SpaceWire equipment. The behaviour of the equipment to emulate is described in a script using a SpaceWire specific scripting language. Once configured the SpaceWire EGSE unit operates independent of software. This paper describes three camera emulation scripts to demonstrate the rapid real-time SpaceWire emulation possible using the SpaceWire EGSE.

  2. Real-time pseudocolor coding thermal ghost imaging.

    PubMed

    Duan, Deyang; Xia, Yunjie

    2014-01-01

    In this work, a color ghost image of a black-and-white object is obtained by a real-time pseudocolor coding technique that includes equal spatial frequency pseudocolor coding and equal density pseudocolor coding. This method makes the black-and-white ghost image more conducive to observation. Furthermore, since the ghost imaging comes from the intensity cross-correlations of the two beams, ghost imaging with the real-time pseudocolor coding technique is better than classical optical imaging with the same technique in overcoming the effects of light interference. PMID:24561954

  3. Apollo experience report: Real-time display system

    NASA Technical Reports Server (NTRS)

    Sullivan, C. J.; Burbank, L. W.

    1976-01-01

    The real time display system used in the Apollo Program is described; the systematic organization of the system, which resulted from hardware/software trade-offs and the establishment of system criteria, is emphasized. Each basic requirement of the real time display system was met by a separate subsystem. The computer input multiplexer subsystem, the plotting display subsystem, the digital display subsystem, and the digital television subsystem are described. Also described are the automated display design and the generation of precision photographic reference slides required for the three display subsystems.

  4. Handling Flight-Research Data In Real Time

    NASA Technical Reports Server (NTRS)

    Moore, Archie L.

    1988-01-01

    Researchers at widely separated locations able to participate in tests and analyze data immediately. Basic data-handling needs common: Communicates with vehicle, pilot, and test team; Acquires, computes, and displays data; knows exact location of research vehicle at all times. Continuing challenge for designers and operators of ground support facilities to perform tasks in real time and present integrated results to research team in real time. Paper presents several approaches to satisfaction of requirements of representative types of aircraft research programs at NASA Western Aeronautical Test Range of Ames Research Center.

  5. A Real-Time Nonvolatile Residue (NVR) Monitor

    NASA Technical Reports Server (NTRS)

    Bowers, William D.; Chuan, Raymond L.

    1995-01-01

    New development and application of device described in "Surface-Acoustic-Wave Piezoelectric Microbalance," (LAR-14476). Active sensing element of Real-Time NVR Monitor comprises pair of piezoelectric surface-acoustic-wave resonators resonating at frequency of 200 MHz. Bare, uncoated resonator exposed to atmosphere and directly in contact with airborne volatile and nonvolatile materials leaving residues on surface. Resonant frequency of exposed resonator decreases with increasing mass of adsorbed residue; resulting beat frequency between two resonators increases with mass and serves as sensitive real-time indication of airborne contaminants or non-volatile residue.

  6. Photoacoustic monitoring of real time blood and hemolymph sedimentation

    NASA Astrophysics Data System (ADS)

    Landa, A.; Alvarado-Gil, J. J.; Gutíerrez-Juárez, G.; Vargas-Luna, M.

    2003-01-01

    The dynamics of blood and hemolymph sedimentation is studied in real time using the photoacoustic technique. A modified configuration of a conventional photoacoustic cell is used, where the advantage of this methodology is that the sample is not illuminated directly and that the process can be monitored through the measurement of the thermal contact between a reference material and the blood. It is demonstrated that during the process the thermal effusivity decreases at the region of contact between the sample and the reference materials. The usefulness of these results in real time monitoring using photothermal techniques is discussed.

  7. Real-Time, High-Frequency QRS Electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; DePalma, Jude L.; Moradi, Saeed

    2003-01-01

    An electronic system that performs real-time analysis of the low-amplitude, high-frequency, ordinarily invisible components of the QRS portion of an electrocardiographic signal in real time has been developed. Whereas the signals readily visible on a conventional electrocardiogram (ECG) have amplitudes of the order of a millivolt and are characterized by frequencies <100 Hz, the ordinarily invisible components have amplitudes in the microvolt range and are characterized by frequencies from about 150 to about 250 Hz. Deviations of these high-frequency components from a normal pattern can be indicative of myocardial ischemia or myocardial infarction

  8. Integration of Real-Time Data Into Building Automation Systems

    SciTech Connect

    Mark J. Stunder; Perry Sebastian; Brenda A. Chube; Michael D. Koontz

    2003-04-16

    The project goal was to investigate the possibility of using predictive real-time information from the Internet as an input to building management system algorithms. The objectives were to identify the types of information most valuable to commercial and residential building owners, managers, and system designers. To comprehensively investigate and document currently available electronic real-time information suitable for use in building management systems. Verify the reliability of the information and recommend accreditation methods for data and providers. Assess methodologies to automatically retrieve and utilize the information. Characterize equipment required to implement automated integration. Demonstrate the feasibility and benefits of using the information in building management systems. Identify evolutionary control strategies.

  9. Real-time optical holographic tracking of multiple objects

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Liu, Hua-Kuang

    1989-01-01

    A coherent optical correlation technique for real-time simultaneous tracking of several different objects making independent movements is described, and experimental results are presented. An evaluation of this system compared with digital computing systems is made. The real-time processing capability is obtained through the use of a liquid crystal television spatial light modulator and a dichromated gelatin multifocus hololens. A coded reference beam is utilized in the separation of the output correlation plane associated with each input target so that independent tracking can be achieved.

  10. Principles of real-time sonography in modern obstetrics

    SciTech Connect

    Perone, N.

    1984-01-01

    Introductory chapters assist the obstetrician in establishing an office-based ultrasound facility and choosing real-time ultrasound equipment. The author then offers step-by-step, superbly illustrated instructions on evaluation of the fetus in utero. Special attention is devoted to use of ultrasound in early pregnancy, antenatal assessment of fetal growth, evaluation of the placenta, diagnosis of congenital defects, and monitoring of fetal activity. Also included are chapters on the use of real-time sonography in invasive procedures such as amniocentesis and on sonographic study of gallbladder function in pregnancy.

  11. ARTEMIS: Ares Real Time Environments for Modeling, Integration, and Simulation

    NASA Technical Reports Server (NTRS)

    Hughes, Ryan; Walker, David

    2009-01-01

    This slide presentation reviews the use of ARTEMIS in the development and testing of the ARES launch vehicles. Ares Real Time Environment for Modeling, Simulation and Integration (ARTEMIS) is the real time simulation supporting Ares I hardware-in-the-loop (HWIL) testing. ARTEMIS accurately models all Ares/Orion/Ground subsystems which interact with Ares avionics components from pre-launch through orbit insertion The ARTEMIS System integration Lab, and the STIF architecture is reviewed. The functional components of ARTEMIS are outlined. An overview of the models and a block diagram is presented.

  12. Magneto-optical system for high speed real time imaging.

    PubMed

    Baziljevich, M; Barness, D; Sinvani, M; Perel, E; Shaulov, A; Yeshurun, Y

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated. PMID:22938303

  13. Real-Time Holographic Image Correction Using Bacteriorhodopsin

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1994-01-01

    We present experimental results of one-way coherent imaging through a thin phase-aberrating medium using a holographic technique with bacteriorhodopsin as a real-time holographic material. Bacteriorhodopsin is well suited for the application when the aberration is time varying because of its real-time writing and erasing characteristics, sensitivity, and spatial resolution. We show results with final image resolution of greater than 20 line pairs/mm and high signal-to-noise ratio using a polarization-holography approach.

  14. Processing system for real-time holographic video computation

    NASA Astrophysics Data System (ADS)

    Nwodoh, Thomas A.; Bove, V. Michael, Jr.; Watlington, John A.; Benton, Stephen A.

    1999-08-01

    This paper discusses the Chidi holographic video processing system (called Holo-Chidi) used for real-time computation of computer generated holograms and the subsequent display of the holograms at video frame rates. Chidi is a reconfigurable multimedia processing system designed at the MIT Media Laboratory for real-time synthesis and analysis of multimedia data in general and digital video frames in particular. Holo-Chidi which is an adaptation of Chidi, comprises two main components: the sets of processor cards and the display interface cards.

  15. Real-time data compressor for Eos-class missions

    NASA Technical Reports Server (NTRS)

    Lee, Jun-Ji; Fang, Wai-Chi; Rice, Robert

    1987-01-01

    A conceptual design for a real-time VLSI compressor capable of processing rate up to one gigabit per second is presented. This scheme is capable of providing a three-to-one distortion-free data reduction factor to both the High Resolution Imaging Spectrometer and processed SAR imaging data. The design uses a VLSI parallel/piplined architecture capable of processing at a real time rate. The design consists of a parallel array of VLSI compressor modules. Each module is built on a single customized VLSI chip using existing state-of-the-art semiconductor technology.

  16. A real time spectrum to dose conversion system

    NASA Technical Reports Server (NTRS)

    Farmer, B. J.; Johnson, J. H.; Bagwell, R. G.

    1972-01-01

    A system has been developed which permits the determination of dose in real time or near real time directly from the pulse-height output of a radiation spectrometer. The technique involves the use of the resolution matrix of a spectrometer, the radiation energy-to-dose conversion function, and the geometrical factors, although the order of matrix operations is reversed. The new technique yields a result which is mathematically identical to the standard method while requiring no matrix manipulations or resolution matrix storage in the remote computer. It utilizes only a single function for each type dose required and each geometric factor involved.

  17. Real-time SPECT and 2D ultrasound image registration.

    PubMed

    Bucki, Marek; Chassat, Fabrice; Galdames, Francisco; Asahi, Takeshi; Pizarro, Daniel; Lobo, Gabriel

    2007-01-01

    In this paper we present a technique for fully automatic, real-time 3D SPECT (Single Photon Emitting Computed Tomography) and 2D ultrasound image registration. We use this technique in the context of kidney lesion diagnosis. Our registration algorithm allows a physician to perform an ultrasound exam after a SPECT image has been acquired and see in real time the registration of both modalities. An automatic segmentation algorithm has been implemented in order to display in 3D the positions of the acquired US images with respect to the organs. PMID:18044572

  18. Real-time linear predictive analysis of speech using multimicroprocessors

    SciTech Connect

    Seethardman, S.; Radhakrishnan, T.; Suen, C.Y.

    1982-01-01

    Many applications of linear predictive coding (often known as LPC) of speech signals require a system capable of performing the complete LPC analysis in real time. This paper describes a pipeline network consisting of several general purpose microprocessors, primarily suitable for complete LPC analysis of a 10-pole model with a sampling frequency of 10 khz and a frame rate of 100 hz in real time. The proposed system is different from the previous systems, which either employed special purpose hardware or produced an analysis at a lower frame rate. 27 references.

  19. Real-time measurement system for in-plane displacement and strain based on vision

    NASA Astrophysics Data System (ADS)

    Luo, Tao; Jin, Yi; Zhu, Ye; Zhai, Chao

    2013-08-01

    In this paper, combining optical measurement with conventional material testing machine, a real-time in-plane displacement and strain measurement system is built, which is applied to the material testing machine. This system can realize displacement and strain measurement of a large deformation sample moreover it can observe the sample crack on line. The change of displacement field is obtained through the change of center coordinate of each point of a grid lattice in the surface of the testing sample, according to two-dimensional sort coding for the grid in the traditional automated grid method, in this paper, an improved one-dimensional code method is adopted which make calculating speed much faster and the algorithm more adaptable. The measurement of the stability and precision of this system are made using the calibration board whose position precision is about 1.5 micron. The results show that the short-time stability of this system is about 0.5micron. At last, this system is used for strain measurement in a sample tension test, and the result shows that the system can acquire in-plane displacement and strain measurement results accurately and real-time, the velocity of image processing can reach 10 frame per second; or it can observe sample crack on line and storage the test process, the max velocity of observation and storage is 100 frame per second.

  20. Optimizing and real-time control of biofilm formation, growth and renewal in denitrifying biofilter.

    PubMed

    Liu, Xiuhong; Wang, Hongchen; Long, Feng; Qi, Lu; Fan, Haitao

    2016-06-01

    A pilot-scale denitrifying biofilter (DNBF) with a treatment capacity of 600m(3)/d was used to study real-time control of biofilm formation, removal and renewal. The results showed biofilm formation, growth and removal can be well controlled using on-line monitored turbidity. The status of filter layer condition can be well indicated by Turb break points on turbidity profile. There was a very good linear relationship between biofilm growth degree (Xbiof) and filter clogging degree (Cfilter) with R(2) higher than 0.99. Filter layer clogging coefficient (Yc) lower than 0.27 can be used to determine stable filter layer condition. Since variations of turbidity during backwash well fitted normal distribution with R(2) higher than 0.96, biofilm removal during backwash also can be well optimized by turbidity. Although biofilm structure and nirK-coding denitrifying communities using different carbon sources were much more different, DNBF was still successfully and stably optimized and real-time controlled via on-line turbidity. PMID:26994461

  1. Centralized remote structural monitoring and management of real-time data

    NASA Astrophysics Data System (ADS)

    Han, Liting; Newhook, John P.; Mufti, Aftab A.

    2004-07-01

    Structural health monitoring (SHM) activities in civil engineering are increasing at a rapid pace in both research and field applications. This paper addresses the specific issue of incorporating internet technology into a structural health monitoring program. The issue of data volume versus communication speed is discussed along with a practical solution employed by ISIS Canada. The approach is illustrated through reference to several current case studies which include two bridges and a statue. It is seen that although the specifics of the projects and monitoring needs are different, the manner in which on-line monitoring can be conducted is very similar and easily allows for centralized monitoring. A general framework for website construction integrating sensing data and web camera options are presented. Issues related to simple real-time performance indices versus more comprehensive complex data analysis are discussed. Examples of on-line websites which allow visualization of new and historic data are presented. The paper also discusses future activities and research needs related to centralized remote structural monitoring and management of real-time data.

  2. Real-time sensing and monitoring in robotic gas metal arc welding

    NASA Astrophysics Data System (ADS)

    Wu, C. S.; Gao, J. Q.; Hu, J. K.

    2007-01-01

    A real-time monitoring system is developed for detecting abnormal conditions in robotic gas metal arc welding. The butt-joint test pieces with simulated large gaps are used to intentionally introduce step disturbance of welding conditions. During the welding process, the welding voltage and current signals are sampled and processed on-line to extract the characteristic information reflecting the process quality. After the first statistical processing, it is found that seven statistical parameters (the mean, standard deviation, coefficient of variance and kurtosis of welding voltage; the mean, coefficient of variance and kurtosis of welding current) show variations during the step disturbance. Through the second statistical processing of the means of the welding voltage for subgroups of continuous measurement, the statistical control chart is obtained, and an SPC (statistical process control)-based on-line identifying method is developed. Ten robotic welding experiments are conducted to verify the real-time monitoring system. It is found that the correct identification rates for normal and abnormal welding conditions are 100% and 95%, respectively.

  3. Lessons Learned from Real-Time, Event-Based Internet Science Communications

    NASA Technical Reports Server (NTRS)

    Phillips, T.; Myszka, E.; Gallagher, D. L.; Adams, M. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. The focus of sharing science activities in real-time has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases, broadcasts accommodate active feedback and questions from Internet participants. Through these projects a pattern has emerged in the level of interest or popularity with the public. The pattern differentiates projects that include science from those that do not, All real-time, event-based Internet activities have captured public interest at a level not achieved through science stories or educator resource material exclusively. The worst event-based activity attracted more interest than the best written science story. One truly rewarding lesson learned through these projects is that the public recognizes the importance and excitement of being part of scientific discovery. Flying a camera to 100,000 feet altitude isn't as interesting to the public as searching for viable life-forms at these oxygen-poor altitudes. The details of these real-time, event-based projects and lessons learned will be discussed.

  4. Real-time FPGA architectures for space-time frequency-planar MDSP

    NASA Astrophysics Data System (ADS)

    Madanayake, Arjuna

    In recent times, a variety of applications have emerged for real-time VLSI multidimensional digital filters, of which many draw upon broadband plane-wave filtering for array-based beam-forming and the processing of image sequences in video signals. This thesis describes recent progress with real-time hardware architectures for spatio-temporal multidimensional digital filters. The frequency-planar filter is a fundamental building block for many useful multidimensional digital filters including linear trajectory filters and plane-wave filters having beam, fan and cone shaped passbands. The proposed architectures for implementing the abovementioned frequency-planar building blocks can be broadly classified as systolic-array architectures and raster scanned architectures. The systolic-array architectures employ massively-parallel structures for very high throughput signal processing, with typical applications in RF beam-forming for wireless communications, microwave imaging, radar, radio astronomy, and navigation. The scanned-array structures have very low circuit complexity compared to systolic-arrays. However, the real-time throughput levels are correspondingly lower, and therefore, these architectures are most suited for slower applications such as ultrasonic imaging, digital video, sonar, and directional audio. A novel multidimensional look-ahead based speed optimization method is proposed for increasing the real-time computational throughput of the architectures. Furthermore, the 2D/3D frequency-planar filters, which conventionally require sampled linear and rectangular sensor arrays, have been extended to curvilinear coordinate systems using circular and toroidal sensor arrays, leading to applications such as the highly-selective directional enhancement of concentric broadband spiral-waves and the directional enhancement of linear flows on the surface of a torus. Prototype FPGA circuit implementations are provided for the proposed systolic-array processors

  5. A method of real-time detection for distant moving obstacles by monocular vision

    NASA Astrophysics Data System (ADS)

    Jia, Bao-zhi; Zhu, Ming

    2013-12-01

    In this paper, we propose an approach for detection of distant moving obstacles like cars and bicycles by a monocular camera to cooperate with ultrasonic sensors in low-cost condition. We are aiming at detecting distant obstacles that move toward our autonomous navigation car in order to give alarm and keep away from them. Method of frame differencing is applied to find obstacles after compensation of camera's ego-motion. Meanwhile, each obstacle is separated from others in an independent area and given a confidence level to indicate whether it is coming closer. The results on an open dataset and our own autonomous navigation car have proved that the method is effective for detection of distant moving obstacles in real-time.

  6. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Cho, Y.; Chang, C.-C.; Wang, L. V.; Zou, J.

    2016-02-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT.

  7. Real-time depth-resolved fiber optic Raman endoscopy for in vivo diagnosis of gastric precancer

    NASA Astrophysics Data System (ADS)

    Bergholt, Mads S.; Zheng, Wei; Ho, Khek Yu; Yeoh, Khay Guan; Teh, Ming; So, Jimmy B. Y.; Huang, Zhiwei

    2014-03-01

    Raman spectroscopy represents a unique optical vibrational technique based on the fundamental premise of inelastic light scattering. Raman spectroscopy enables histopathological assessment at the biomolecular level. We have developed a fiber-optic depth-resolved near-infrared (NIR) Raman endoscopy technique integrated with on-line diagnostic algorithms for in vivo real-time epithelial diagnostics under multimodal wide-field imaging (i.e., white light reflectance (WLR), narrow-band imaging (NBI), autofluorescence imaging (AFI)) modalities. A selection of 450 patients who previously underwent Raman endoscopy (n=1900 spectra) was used to render diagnostic models for identifying gastric precancer (i.e., dysplasia) based on probabilistic partial least squares (PLS) - discriminant analysis (DA). The on-line Raman endoscopy technique was tested prospectively on (n=5) patients for real-time in vivo gastric epithelium tissue diagnosis. The fiber-optic confocal Raman endoscopic technique developed could prospectively identify gastric dysplasia in real-time with a sensitivity: 81.3% (61/75) and specificity 88.3% (188/213) on spectrum basis. On lesion basis, all dysplastic lesions were identified. This study successfully demonstrates for the first time the prospective real-time in vivo diagnosis of gastric precancer using depth-resolved Raman endoscopy.

  8. Hybrid system GMSK digital receiver implementation in real time

    NASA Technical Reports Server (NTRS)

    Koshal, Sanjiv

    1995-01-01

    This paper is concerned with the design, simulation, and implementation of a hybrid system using the GMSK type of signal format for phase modulation and demodulation. The performance of the designed transceiver structure is evaluated using the bit error rate (BER) curves. The simulated system was also successfully implemented in real time.

  9. Waste collection multi objective model with real time traceability data.

    PubMed

    Faccio, Maurizio; Persona, Alessandro; Zanin, Giorgia

    2011-12-01

    Waste collection is a highly visible municipal service that involves large expenditures and difficult operational problems, plus it is expensive to operate in terms of investment costs (i.e. vehicles fleet), operational costs (i.e. fuel, maintenances) and environmental costs (i.e. emissions, noise and traffic congestions). Modern traceability devices, like volumetric sensors, identification RFID (Radio Frequency Identification) systems, GPRS (General Packet Radio Service) and GPS (Global Positioning System) technology, permit to obtain data in real time, which is fundamental to implement an efficient and innovative waste collection routing model. The basic idea is that knowing the real time data of each vehicle and the real time replenishment level at each bin makes it possible to decide, in function of the waste generation pattern, what bin should be emptied and what should not, optimizing different aspects like the total covered distance, the necessary number of vehicles and the environmental impact. This paper describes a framework about the traceability technology available in the optimization of solid waste collection, and introduces an innovative vehicle routing model integrated with the real time traceability data, starting the application in an Italian city of about 100,000 inhabitants. The model is tested and validated using simulation and an economical feasibility study is reported at the end of the paper. PMID:21821406

  10. Real-time Control and Modeling of Plasma Etching

    NASA Astrophysics Data System (ADS)

    Sarfaty, M.; Baum, C.; Harper, M.; Hershkowitz, N.; Shohet, J. L.

    1997-10-01

    The relatively high process rates in high density plasma tools as well as the shrinking thickness of the films, require fast estimate of the process state in order to implement real-time advanced process control. The fast etch rate estimate, within one second, in a single spot size of 1-2 mm and the time averaged rates across the wafer are obtained by a combined use of an in-situ two-color laser interferometer and a full wafer image interferometer, respectively. The gas phase state is monitored by optical emission spectroscopy and a residual gas analyzer. The magnetically confined ICP tool state, including gas flow, pressure, and RF power to the antenna and the electrostatic chuck, is computer controlled and monitored. The absolute thickness of the film is determined during the process, thus providing an end-point prediction. The advantages of two-color laser interferometry for real-time process monitoring, development and control will be described. Langmuir kinetics modeling of the measured etch rates of polysilicon and SiO2 films in Cl2 and CF4 discharges using tool state parameters will be described. The etch rate model enabled us to develop a model-based real-time control algorithm. The achieved real-time control of plasma etch rates of un-patterned SiO2 and polysilicon films will be described. This work is funded by NSF grant No. EEC-8721545.

  11. Distributed simulation using a real-time shared memory network

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Mattern, Duane L.; Wong, Edmond; Musgrave, Jeffrey L.

    1993-01-01

    The Advanced Control Technology Branch of the NASA Lewis Research Center performs research in the area of advanced digital controls for aeronautic and space propulsion systems. This work requires the real-time implementation of both control software and complex dynamical models of the propulsion system. We are implementing these systems in a distributed, multi-vendor computer environment. Therefore, a need exists for real-time communication and synchronization between the distributed multi-vendor computers. A shared memory network is a potential solution which offers several advantages over other real-time communication approaches. A candidate shared memory network was tested for basic performance. The shared memory network was then used to implement a distributed simulation of a ramjet engine. The accuracy and execution time of the distributed simulation was measured and compared to the performance of the non-partitioned simulation. The ease of partitioning the simulation, the minimal time required to develop for communication between the processors and the resulting execution time all indicate that the shared memory network is a real-time communication technique worthy of serious consideration.

  12. Real-time segmentation by Active Geometric Functions.

    PubMed

    Duan, Qi; Angelini, Elsa D; Laine, Andrew F

    2010-06-01

    Recent advances in 4D imaging and real-time imaging provide image data with clinically important cardiac dynamic information at high spatial or temporal resolution. However, the enormous amount of information contained in these data has also raised a challenge for traditional image analysis algorithms in terms of efficiency. In this paper, a novel deformable model framework, Active Geometric Functions (AGF), is introduced to tackle the real-time segmentation problem. As an implicit framework paralleling to level-set, AGF has mathematical advantages in efficiency and computational complexity as well as several flexible feature similar to level-set framework. AGF is demonstrated in two cardiac applications: endocardial segmentation in 4D ultrasound and myocardial segmentation in MRI with super high temporal resolution. In both applications, AGF can perform real-time segmentation in several milliseconds per frame, which was less than the acquisition time per frame. Segmentation results are compared to manual tracing with comparable performance with inter-observer variability. The ability of such real-time segmentation will not only facilitate the diagnoses and workflow, but also enables novel applications such as interventional guidance and interactive image acquisition with online segmentation. PMID:19800708

  13. Real-Time Capture of Student Reasoning While Writing

    ERIC Educational Resources Information Center

    Franklin, Scott V.; Hermsen, Lisa M.

    2014-01-01

    We present a new approach to investigating student reasoning while writing: real-time capture of the dynamics of the writing process. Key-capture or video software is used to record the entire writing episode, including all pauses, deletions, insertions, and revisions. A succinct shorthand, "S notation," is used to highlight significant…

  14. Improving performance of real-time multispectral imaging system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A real-time multispectral imaging system can be a science-based tool for fecal and ingesta contaminant detection during poultry processing. For the implementation of this imaging system at commercial poultry processing plant, false positive errors must be removed. For doing this, we tested and imp...

  15. Leading the Charge for Real-Time Data

    ERIC Educational Resources Information Center

    Aarons, Dakarai I.

    2009-01-01

    Well before the idea of using data to manage schools gained prominence on the national stage, Oklahoma's Western Heights school district had made the ideal of real-time, data-driven decisionmaking a reality. Back in 2001, Superintendent Joe Kitchens was already being spotlighted for his focus on creating a longitudinal-data system that would give…

  16. How Language Learners Comprehend and Produce Language in Real Time

    ERIC Educational Resources Information Center

    Libben, Gary

    2006-01-01

    This paper does a fine job of advancing discussion concerning a question that is indeed quite underrepresented in the literature, that is, how language learners comprehend and produce language in real time. The paper is firmly rooted in the dual mechanism approach to language processing and takes as its starting point the assumption that normal…

  17. Rendering energy-conservative scenes in real time

    NASA Astrophysics Data System (ADS)

    Olson, Eric M.; Garbo, Dennis L.; Crow, Dennis R.; Coker, Charles F.

    1997-07-01

    Real-time infrared (IR) scene generation from HardWare-in- the-Loop (HWIL) testing of IR seeker systems is a complex problem due to the required frame rates and image fidelity. High frame rates are required for current generation seeker systems to perform designation, discrimination, identification, tracking, and aimpoint selection tasks. Computational requirements for IR signature phenomenology and sensor effects have been difficult to perform in real- time to support HWIL testing. Commercial scene generation hardware is rapidly improving and is becoming a viable solution for HWIL testing activities being conducted at the Kinetic Kill Vehicle Hardware-in-the-Loop Simulator facility at Eglin AFB, Florida. This paper presents computational techniques performed to overcome IR scene rendering errors incurred with commercially available hardware and software for real-time scene generation in support of HWIL testing. These techniques provide an acceptable solution to real-time IR scene generation that strikes a balance between physical accuracy and image framing rates. The results of these techniques are investigated as they pertain to rendering accuracy and speed for target objects which begin as a point source during acquisition and develop into an extended source representation during aimpoint selection.

  18. Quantitative Detection of Spiroplasma Citri by Real Time PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a need to develop an accurate and rapid method to detect Spiroplasma citri, the causal agent of citrus stubborn disease for use in epidemiology studies. Quantitative real-time PCR was developed for detection of S. citri. Two sets of primers based on sequences from the P58 putative adhesin ...

  19. Learning and Design with Online Real-Time Collaboration

    ERIC Educational Resources Information Center

    Stevenson, Michael; Hedberg, John G.

    2013-01-01

    This paper explores the use of emerging Cloud technologies that support real-time online collaboration. It considers the extent to which these technologies can be leveraged to develop complex skillsets supporting interaction between multiple learners in online spaces. In a pilot study that closely examines how groups of learners translate two…

  20. Real-time PCR for Strongyloides stercoralis-associated meningitis.

    PubMed

    Nadir, Eyal; Grossman, Tamar; Ciobotaro, Pnina; Attali, Malka; Barkan, Daniel; Bardenstein, Rita; Zimhony, Oren

    2016-03-01

    Four immunocompromised patients, immigrants from Ethiopia, presented with diverse clinical manifestations of meningitis associated with Strongyloides stercoralis dissemination as determined by identification of intestinal larvae. The cerebrospinal fluid of 3 patients was tested by a validated (for stool) real-time PCR for S. stercoralis and was found positive, establishing this association. PMID:26704620