Sample records for real-time on-line ultrasonic

  1. Real-time on-line ultrasonic monitoring for bubbles in ceramic 'slip' in pottery pipelines.

    PubMed

    Yim, Geun Tae; Leighton, Timothy G

    2010-01-01

    When casting ceramic items in potteries, liquid 'slip' is passed from a settling tank, through overhead pipelines, before being pumped manually into the moulds. It is not uncommon for bubbles to be introduced into the slip as it passes through the complex piping network, and indeed the presence of bubbles is a major source of financial loss to the ceramics industry worldwide. This is because the bubbles almost always remain undetected until after the ceramic items have been fired in a kiln, during which process bubbles expand and create unwanted holes in the pottery. Since there it is usually an interval of several hours between the injection of the slip into the moulds, and the inspection of the items after firing, such bubble generation goes undetected on the production line during the manufacture of hundreds or even thousands of ceramic units. Not only does this mean hours of wasted staff time, power consumption and production line time: the raw material which makes up these faulty items cannot even be recycled, as fired ceramic cannot be converted back into slip. Currently, the state-of-the-art method for detecting bubbles in the opaque ceramic slip is slow and invasive, can only be used off-line, and requires expertise which is rarely available. This paper describes the invention, engineering and in-factory testing across Europe of an ultrasonic system for real-time monitoring for the presence of bubbles in casting slip. It interprets changes in the scattering statistics accompanying the presence of the bubbles, the latter being detected through perturbations in the received signal when a narrow-band ultrasonic probing wave is transmitted through the slip. The device can be bolted onto the outside of the pipeline, or used in-line. It is automated, and requires no special expertise. The acoustic problems which had to be solved were severe, and included making the system capable of monitoring the slip regardless of the material of pipe (plastic, steel, etc.) and

  2. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Cho, Y.; Chang, C.-C.; Wang, L. V.; Zou, J.

    2016-02-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT.

  3. Ultrasonic Real-Time Quality Monitoring Of Aluminum Spot Weld Process

    NASA Astrophysics Data System (ADS)

    Perez Regalado, Waldo Josue

    The real-time ultrasonic spot weld monitoring system, introduced by our research group, has been designed for the unsupervised quality characterization of the spot welding process. It comprises the ultrasonic transducer (probe) built into one of the welding electrodes and an electronics hardware unit which gathers information from the transducer, performs real-time weld quality characterization and communicates with the robot programmable logic controller (PLC). The system has been fully developed for the inspection of spot welds manufactured in steel alloys, and has been mainly applied in the automotive industry. In recent years, a variety of materials have been introduced to the automotive industry. These include high strength steels, magnesium alloys, and aluminum alloys. Aluminum alloys have been of particular interest due to their high strength-to-weight ratio. Resistance spot welding requirements for aluminum vary greatly from those of steel. Additionally, the oxide film formed on the aluminum surface increases the heat generation between the copper electrodes and the aluminum plates leading to accelerated electrode deterioration. Preliminary studies showed that the real-time quality inspection system was not able to monitor spot welds manufactured with aluminum. The extensive experimental research, finite element modelling of the aluminum welding process and finite difference modeling of the acoustic wave propagation through the aluminum spot welds presented in this dissertation, revealed that the thermodynamics and hence the acoustic wave propagation through an aluminum and a steel spot weld differ significantly. For this reason, the hardware requirements and the algorithms developed to determine the welds quality from the ultrasonic data used on steel, no longer apply on aluminum spot welds. After updating the system and designing the required algorithms, parameters such as liquid nugget penetration and nugget diameter were available in the ultrasonic data

  4. On-loom, real-time, noncontact detection of fabric defects by ultrasonic imaging.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, H. T.

    1998-09-08

    A noncontact, on-loom ultrasonic inspection technique was developed for real-time 100% defect inspection of fabrics. A prototype was built and tested successfully on loom. The system is compact, rugged, low cost, requires minimal maintenance, is not sensitive to fabric color and vibration, and can easily be adapted to current loom configurations. Moreover, it can detect defects in both the pick and warp directions. The system is capable of determining the size, location, and orientation of each defect. To further improve the system, air-coupled transducers with higher efficiency and sensitivity need to be developed. Advanced detection algorithms also need to bemore » developed for better classification and categorization of defects in real-time.« less

  5. Real time monitoring of accelerated chemical reactions by ultrasonication-assisted spray ionization mass spectrometry.

    PubMed

    Lin, Shu-Hsuan; Lo, Ta-Ju; Kuo, Fang-Yin; Chen, Yu-Chie

    2014-01-01

    Ultrasonication has been used to accelerate chemical reactions. It would be ideal if ultrasonication-assisted chemical reactions could be monitored by suitable detection tools such as mass spectrometry in real time. It would be helpful to clarify reaction intermediates/products and to have a better understanding of reaction mechanism. In this work, we developed a system for ultrasonication-assisted spray ionization mass spectrometry (UASI-MS) with an ~1.7 MHz ultrasonic transducer to monitor chemical reactions in real time. We demonstrated that simply depositing a sample solution on the MHz-based ultrasonic transducer, which was placed in front of the orifice of a mass spectrometer, the analyte signals can be readily detected by the mass spectrometer. Singly and multiply charged ions from small and large molecules, respectively, can be observed in the UASI mass spectra. Furthermore, the ultrasonic transducer used in the UASI setup accelerates the chemical reactions while being monitored via UASI-MS. The feasibility of using this approach for real-time acceleration/monitoring of chemical reactions was demonstrated. The reactions of Girard T reagent and hydroxylamine with steroids were used as the model reactions. Upon the deposition of reactant solutions on the ultrasonic transducer, the intermediate/product ions are readily generated and instantaneously monitored using MS within 1 s. Additionally, we also showed the possibility of using this reactive UASI-MS approach to assist the confirmation of trace steroids from complex urine samples by monitoring the generation of the product ions. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Real-time ultrasonic weld evaluation system

    NASA Astrophysics Data System (ADS)

    Katragadda, Gopichand; Nair, Satish; Liu, Harry; Brown, Lawrence M.

    1996-11-01

    Ultrasonic testing techniques are currently used as an alternative to radiography for detecting, classifying,and sizing weld defects, and for evaluating weld quality. Typically, ultrasonic weld inspections are performed manually, which require significant operator expertise and time. Thus, in recent years, the emphasis is to develop automated methods to aid or replace operators in critical weld inspections where inspection time, reliability, and operator safety are major issues. During this period, significant advances wee made in the areas of weld defect classification and sizing. Very few of these methods, however have found their way into the market, largely due to the lack of an integrated approach enabling real-time implementation. Also, not much research effort was directed in improving weld acceptance criteria. This paper presents an integrated system utilizing state-of-the-art techniques for a complete automation of the weld inspection procedure. The modules discussed include transducer tracking, classification, sizing, and weld acceptance criteria. Transducer tracking was studied by experimentally evaluating sonic and optical position tracking techniques. Details for this evaluation are presented. Classification is obtained using a multi-layer perceptron. Results from different feature extraction schemes, including a new method based on a combination of time and frequency-domain signal representations are given. Algorithms developed to automate defect registration and sizing are discussed. A fuzzy-logic acceptance criteria for weld acceptance is presented describing how this scheme provides improved robustness compared to the traditional flow-diagram standards.

  7. A storage scheme for the real-time database supporting the on-line commitment

    NASA Astrophysics Data System (ADS)

    Dai, Hong-bin; Jing, Yu-jian; Wang, Hui

    2013-07-01

    The modern SCADA (Supervisory Control and Data acquisition) systems have been applied to various aspects of everyday life. As the time goes on, the requirements of the applications of the systems vary. Thus the data structure of the real-time database, which is the core of a SCADA system, often needs modification. As a result, the commitment consisting of a sequence of configuration operations modifying the data structure of the real-time database is performed from time to time. Though it is simple to perform the off-line commitment by first stopping and then restarting the system, during which all the data in the real-time database are reconstructed. It is much more preferred or in some cases even necessary to perform the on-line commitment, during which the real-time database can still provide real-time service and the system continues working normally. In this paper, a storage scheme of the data in the real-time database is proposed. It helps the real-time database support its on-line commitment, during which real-time service is still available.

  8. Laser Ultrasonic System for On-Line Steel Tube Gauging

    NASA Astrophysics Data System (ADS)

    Monchalin, Jean-Pierre; Choquet, Marc; Padioleau, Christian; Néron, Christian; Lévesque, Daniel; Blouin, Alain; Corbeil, Christian; Talbot, Richard; Bendada, Abdelhakim; Lamontagne, Mario; Kolarik, Robert V.; Jeskey, Gerald V.; Dominik, Erich D.; Duly, Larry J.; Samblanet, Kenneth J.; Agger, Steven E.; Roush, Kenneth J.; Mester, Michael L.

    2003-03-01

    A laser-ultrasonic system has been installed on a seamless tubing production line of The Timken Company and is being used to measure on-line the wall thickness of tubes during processing. The seamless process consists essentially in forcing a mandrel through a hot cylindrical billet in rotation and typically results in fairly large wall thickness variations that should be minimized and controlled to respect specifications. The system includes a Q-switched Nd-YAG laser for generation of ultrasound by ablation, a long pulse very stable Nd-YAG laser for detection coupled to a confocal Fabry-Perot interferometer, a pyrometer to measure tube temperature and two laser Doppler velocimeters to measure the coordinates of the probing location at the tube surface. The laser, data acquisition and processing units are housed in a cabin off line and connected to a front coupling head located over the passing tube by optical fibers. The system has been integrated into the plant computer network and provides in real time thickness data to the plant operators. It allow much faster mill setups, has been used since its deployment for inspecting more than 100,000 tubes and has demonstrated very significant savings.

  9. A parallelizable real-time motion tracking algorithm with applications to ultrasonic strain imaging.

    PubMed

    Jiang, J; Hall, T J

    2007-07-07

    Ultrasound-based mechanical strain imaging systems utilize signals from conventional diagnostic ultrasound systems to image tissue elasticity contrast that provides new diagnostically valuable information. Previous works (Hall et al 2003 Ultrasound Med. Biol. 29 427, Zhu and Hall 2002 Ultrason. Imaging 24 161) demonstrated that uniaxial deformation with minimal elevation motion is preferred for breast strain imaging and real-time strain image feedback to operators is important to accomplish this goal. The work reported here enhances the real-time speckle tracking algorithm with two significant modifications. One fundamental change is that the proposed algorithm is a column-based algorithm (a column is defined by a line of data parallel to the ultrasound beam direction, i.e. an A-line), as opposed to a row-based algorithm (a row is defined by a line of data perpendicular to the ultrasound beam direction). Then, displacement estimates from its adjacent columns provide good guidance for motion tracking in a significantly reduced search region to reduce computational cost. Consequently, the process of displacement estimation can be naturally split into at least two separated tasks, computed in parallel, propagating outward from the center of the region of interest (ROI). The proposed algorithm has been implemented and optimized in a Windows system as a stand-alone ANSI C++ program. Results of preliminary tests, using numerical and tissue-mimicking phantoms, and in vivo tissue data, suggest that high contrast strain images can be consistently obtained with frame rates (10 frames s(-1)) that exceed our previous methods.

  10. A parallelizable real-time motion tracking algorithm with applications to ultrasonic strain imaging

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Hall, T. J.

    2007-07-01

    Ultrasound-based mechanical strain imaging systems utilize signals from conventional diagnostic ultrasound systems to image tissue elasticity contrast that provides new diagnostically valuable information. Previous works (Hall et al 2003 Ultrasound Med. Biol. 29 427, Zhu and Hall 2002 Ultrason. Imaging 24 161) demonstrated that uniaxial deformation with minimal elevation motion is preferred for breast strain imaging and real-time strain image feedback to operators is important to accomplish this goal. The work reported here enhances the real-time speckle tracking algorithm with two significant modifications. One fundamental change is that the proposed algorithm is a column-based algorithm (a column is defined by a line of data parallel to the ultrasound beam direction, i.e. an A-line), as opposed to a row-based algorithm (a row is defined by a line of data perpendicular to the ultrasound beam direction). Then, displacement estimates from its adjacent columns provide good guidance for motion tracking in a significantly reduced search region to reduce computational cost. Consequently, the process of displacement estimation can be naturally split into at least two separated tasks, computed in parallel, propagating outward from the center of the region of interest (ROI). The proposed algorithm has been implemented and optimized in a Windows® system as a stand-alone ANSI C++ program. Results of preliminary tests, using numerical and tissue-mimicking phantoms, and in vivo tissue data, suggest that high contrast strain images can be consistently obtained with frame rates (10 frames s-1) that exceed our previous methods.

  11. Novel Real-Time Temperature Diagnosis of Conventional Hot-Embossing Process Using an Ultrasonic Transducer

    PubMed Central

    Cheng, Chin-Chi; Yang, Sen-Yeu; Lee, Dasheng

    2014-01-01

    This paper presents an integrated high temperature ultrasonic transducer (HTUT) on a sensor insert and its application for real-time diagnostics of the conventional hot embossing process to fabricate V-cut patterns. The sensor was directly deposited onto the sensor insert of the hot embossing mold by using a sol-gel spray technique. It could operate at temperatures higher than 400 °C and uses an ultrasonic pulse-echo technique. The ultrasonic velocity could indicate the three statuses of the hot embossing process and also evaluate the replication of V-cut patterns on a plastic plate under various processing conditions. The progression of the process, including mold closure, plastic plate softening, cooling and plate detachment inside the mold, was clearly observed using ultrasound. For an ultrasonic velocity range from 2197.4 to 2435.9 m/s, the height of the V-cut pattern decreased from 23.0 to 3.2 μm linearly, with a ratio of −0.078 μm/(m/s). The incompleteness of the replication of the V-cut patterns could be indirectly observed by the ultrasonic signals. This study demonstrates the effectiveness of the ultrasonic sensors and technology for diagnosing the replicating condition of microstructures during the conventional hot embossing process. PMID:25330051

  12. Laser-Generated Ultrasonic Source for a Real-Time Dry-Contact Imaging System

    NASA Astrophysics Data System (ADS)

    Petculescu, G.; Zhou, Y.; Komsky, I.; Krishnaswamy, S.

    2006-03-01

    A laser-generated ultrasonic source, to be used with a real-time imaging device, was developed. The ultrasound is generated in the thermoelastic regime, in a composite layer composed of absorbing particles (carbon) and silicone rubber. The composite layer plays three roles: of absorption, constriction and dry-coupling. The central frequency of the generated pulse was controlled by varying the absorption depth of the generation layer. The maximum peak frequency obtained was 4MHz. When additional constriction was provided to the composite layer, the amplitude of the generated signal increased further, due to the large thermal expansion coefficient of the silicone. Images using the laser-generated ultrasonic source were taken.

  13. Novel Real-Time Diagnosis of the Freezing Process Using an Ultrasonic Transducer

    PubMed Central

    Tseng, Yen-Hsiang; Cheng, Chin-Chi; Cheng, Hong-Ping; Lee, Dasheng

    2015-01-01

    The freezing stage governs several critical parameters of the freeze drying process and the quality of the resulting lyophilized products. This paper presents an integrated ultrasonic transducer (UT) in a stainless steel bottle and its application to real-time diagnostics of the water freezing process. The sensor was directly deposited onto the stainless steel bottle using a sol-gel spray technique. It could operate at temperature range from −100 to 400 °C and uses an ultrasonic pulse-echo technique. The progression of the freezing process, including water-in, freezing point and final phase change of water, were all clearly observed using ultrasound. The ultrasonic signals could indicate the three stages of the freezing process and evaluate the cooling and freezing periods under various processing conditions. The temperature was also adopted for evaluating the cooling and freezing periods. These periods increased with water volume and decreased with shelf temperature (i.e., speed of freezing). This study demonstrates the effectiveness of the ultrasonic sensor and technology for diagnosing and optimizing the process of water freezing to save energy. PMID:25946629

  14. Ultrasonic real-time in-die monitoring of the tablet compaction process-a proof of concept study.

    PubMed

    Stephens, James D; Kowalczyk, Brian R; Hancock, Bruno C; Kaul, Goldi; Cetinkaya, Cetin

    2013-02-14

    The mechanical properties of a drug tablet can affect its performance (e.g., dissolution profile and its physical robustness. An ultrasonic system for real-time in-die tablet mechanical property monitoring during compaction has been demonstrated. The reported set-up is a proof of concept compaction monitoring system which includes an ultrasonic transducer mounted inside the upper punch of the compaction apparatus. This upper punch is utilized to acquire ultrasonic pressure wave phase velocity waveforms and extract the time-of-flight of pressure waves travelling within the compact at a number of compaction force levels during compaction. The reflection coefficients for the waves reflecting from punch tip-powder bed interface are extracted from the acquired waveforms. The reflection coefficient decreases with an increase in compaction force, indicating solidification. The data acquisition methods give an average apparent Young's moduli in the range of 8-20 GPa extracted during the compaction and release/decompression phases in real-time. A monitoring system employing such methods is capable of determining material properties and the integrity of the tablet during compaction. As compared to the millisecond time-scale dwell time of a typical commercial compaction press, the micro-second pulse duration and ToF of an acoustic pulse are sufficiently fast for real-time monitoring. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Study of ultrasonic thermometry based on ultrasonic time-of-flight measurement

    NASA Astrophysics Data System (ADS)

    Jia, Ruixi; Xiong, Qingyu; Wang, Lijie; Wang, Kai; Shen, Xuehua; Liang, Shan; Shi, Xin

    2016-03-01

    Ultrasonic thermometry is a kind of acoustic pyrometry and it has been evolving as a new temperature measurement technology for various environment. However, the accurate measurement of the ultrasonic time-of-flight is the key for ultrasonic thermometry. In this paper, we study the ultrasonic thermometry technique based on ultrasonic time-of-flight measurement with a pair of ultrasonic transducers for transmitting and receiving signal. The ultrasonic transducers are installed in a single path which ultrasonic travels. In order to validate the performance of ultrasonic thermometry, we make a contrast about the absolute error between the measured temperature value and the practical one. With and without heater source, the experimental results indicate ultrasonic thermometry has high precision of temperature measurement.

  16. Bedside assistance in freehand ultrasonic diagnosis by real-time visual feedback of 3D scatter diagram of pulsatile tissue-motion

    NASA Astrophysics Data System (ADS)

    Fukuzawa, M.; Kawata, K.; Nakamori, N.; Kitsunezuka, Y.

    2011-03-01

    By real-time visual feedback of 3D scatter diagram of pulsatile tissue-motion, freehand ultrasonic diagnosis of neonatal ischemic diseases has been assisted at the bedside. The 2D ultrasonic movie was taken with a conventional ultrasonic apparatus (ATL HDI5000) and ultrasonic probes of 5-7 MHz with the compact tilt-sensor to measure the probe orientation. The real-time 3D visualization was realized by developing an extended version of the PC-based visualization system. The software was originally developed on the DirectX platform and optimized with the streaming SIMD extensions. The 3D scatter diagram of the latest pulsatile tissues has been continuously generated and visualized as projection image with the ultrasonic movie in the current section more than 15 fps. It revealed the 3D structure of pulsatile tissues such as middle and posterior cerebral arteries, Willis ring and cerebellar arteries, in which pediatricians have great interests in the blood flow because asphyxiated and/or low-birth-weight neonates have a high risk of ischemic diseases such as hypoxic-ischemic encephalopathy and periventricular leukomalacia. Since the pulsatile tissue-motion is due to local blood flow, it can be concluded that the system developed in this work is very useful to assist freehand ultrasonic diagnosis of ischemic diseases in the neonatal cranium.

  17. LIBRARY INFORMATION PROCESSING USING AN ON-LINE, REAL-TIME COMPUTER SYSTEM.

    ERIC Educational Resources Information Center

    HOLZBAUR, FREDERICK W.; FARRIS, EUGENE H.

    DIRECT MAN-MACHINE COMMUNICATION IS NOW POSSIBLE THROUGH ON-LINE, REAL-TIME TYPEWRITER TERMINALS DIRECTLY CONNECTED TO COMPUTERS. THESE TERMINAL SYSTEMS PERMIT THE OPERATOR, WHETHER ORDER CLERK, CATALOGER, REFERENCE LIBRARIAN OR TYPIST, TO INTERACT WITH THE COMPUTER IN MANIPULATING DATA STORED WITHIN IT. THE IBM ADMINISTRATIVE TERMINAL SYSTEM…

  18. In-line mixing states monitoring of suspensions using ultrasonic reflection technique.

    PubMed

    Zhan, Xiaobin; Yang, Yili; Liang, Jian; Zou, Dajun; Zhang, Jiaqi; Feng, Luyi; Shi, Tielin; Li, Xiwen

    2016-02-01

    Based on the measurement of echo signal changes caused by different concentration distributions in the mixing process, a simple ultrasonic reflection technique is proposed for in-line monitoring of the mixing states of suspensions in an agitated tank in this study. The relation between the echo signals and the concentration of suspensions is studied, and the mixing process of suspensions is tracked by in-line measurement of ultrasonic echo signals using two ultrasonic sensors. Through the analysis of echo signals over time, the mixing states of suspensions are obtained, and the homogeneity of suspensions is quantified. With the proposed technique, the effects of impeller diameter and agitation speed on the mixing process are studied, and the optimal agitation speed and the minimum mixing time to achieve the maximum homogeneity are acquired under different operating conditions and design parameters. The proposed technique is stable and feasible and shows great potential for in-line monitoring of mixing states of suspensions. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process.

    PubMed

    Zhang, Kuanshuang; Zhou, Zhenggan; Zhou, Jianghua

    2015-09-01

    Application of a laser ultrasonic method is developed for on-line monitoring of the friction stir spot welding (FSSW) process. Based on the technology of FSSW, laser-generated ultrasonic waves in a good weld and nonweld area are simulated by a finite element method. The reflected and transmitted waves are analyzed to disclose the properties of the welded interface. The noncontact-laser ultrasonic-inspection system was established to verify the numerical results. The reflected waves in the good-weld and nonweld area can be distinguished by time-of-flight. The transmitted waves evidently attenuate in the nonweld area in contrast to signal amplitude in the good weld area because of interfacial impedance difference. Laser ultrasonic C-scan images can sufficiently evaluate the intrinsic character of the weld area in comparison with traditional water-immersion ultrasonic testing results. The research results confirm that laser ultrasonics would be an effective method to realize the characterization of FSSW defects.

  20. In-line real time air monitor

    DOEpatents

    Wise, M.B.; Thompson, C.V.

    1998-07-14

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds. 3 figs.

  1. In-line real time air monitor

    DOEpatents

    Wise, Marcus B.; Thompson, Cyril V.

    1998-01-01

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds.

  2. Rapid Analysis of Ingredients in Cream Using Ultrasonic Mist-Direct Analysis in Real-Time Time-of-Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Shimada, Haruo; Maeno, Katsuyuki; Kinoshita, Kazumasa; Shida, Yasuo

    2017-07-01

    A novel method for the simultaneous detection of ingredients in pharmaceutical applications such as creams and lotions was developed. An ultrasonic atomizer has been used to produce a mist containing ingredients. The analyte molecules in the mist can be ionized by using direct analysis in real time (DART) at lower temperature than traditionally used, and we thus solved the problem of normal DART-MS measurement using a high-temperature gas. Thereby, molecular-related ions of heat-unstable components and nonvolatile components became detectable. The deprotonated molecular ion of glycyrrhizic acid (m/z 821), which is unstable at high temperatures, was detected without pyrolysis by ultrasonic mist-DART-MS using unheated helium gas, although it was not detected by normal DART-MS using heated helium gas. The cationized molecular ions of derivatives of polyethylene glycol fatty acid monoesters, which are nonvolatile compounds, were also detected as m/z peaks observed from 800 to 2300. Although the protonated molecular ion of tocopherol acetate was not detected in ionization by ultrasonic mist, it was detected by ultrasonic mist-DART-MS even in the emulsion. It was not necessary to dissolve a sample completely to detect its ions. This method enabled us to obtain the composition of pharmaceutical applications simply and rapidly.

  3. Real-time on-line space research laboratory environment monitoring with off-line trend and prediction analysis

    NASA Astrophysics Data System (ADS)

    Jules, Kenol; Lin, Paul P.

    2007-06-01

    With the International Space Station currently operational, a significant amount of acceleration data is being down-linked, processed and analyzed daily on the ground on a continuous basis for the space station reduced gravity environment characterization, the vehicle design requirements verification and science data collection. To help understand the impact of the unique spacecraft environment on the science data, an artificial intelligence monitoring system was developed, which detects in near real time any change in the reduced gravity environment susceptible to affect the on-going experiments. Using a dynamic graphical display, the monitoring system allows science teams, at any time and any location, to see the active vibration disturbances, such as pumps, fans, compressor, crew exercise, re-boost and extra-vehicular activities that might impact the reduced gravity environment the experiments are exposed to. The monitoring system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many increments (an increment usually lasts 6 months) collected onboard the station for selected disturbances. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential systems failures. The monitoring system has two operating modes: online and offline. Both near real-time on-line vibratory disturbance detection and off-line detection and trend analysis are discussed in this paper.

  4. A digital, constant-frequency pulsed phase-locked-loop instrument for real-time, absolute ultrasonic phase measurements

    NASA Astrophysics Data System (ADS)

    Haldren, H. A.; Perey, D. F.; Yost, W. T.; Cramer, K. E.; Gupta, M. C.

    2018-05-01

    A digitally controlled instrument for conducting single-frequency and swept-frequency ultrasonic phase measurements has been developed based on a constant-frequency pulsed phase-locked-loop (CFPPLL) design. This instrument uses a pair of direct digital synthesizers to generate an ultrasonically transceived tone-burst and an internal reference wave for phase comparison. Real-time, constant-frequency phase tracking in an interrogated specimen is possible with a resolution of 0.000 38 rad (0.022°), and swept-frequency phase measurements can be obtained. Using phase measurements, an absolute thickness in borosilicate glass is presented to show the instrument's efficacy, and these results are compared to conventional ultrasonic pulse-echo time-of-flight (ToF) measurements. The newly developed instrument predicted the thickness with a mean error of -0.04 μm and a standard deviation of error of 1.35 μm. Additionally, the CFPPLL instrument shows a lower measured phase error in the absence of changing temperature and couplant thickness than high-resolution cross-correlation ToF measurements at a similar signal-to-noise ratio. By showing higher accuracy and precision than conventional pulse-echo ToF measurements and lower phase errors than cross-correlation ToF measurements, the new digitally controlled CFPPLL instrument provides high-resolution absolute ultrasonic velocity or path-length measurements in solids or liquids, as well as tracking of material property changes with high sensitivity. The ability to obtain absolute phase measurements allows for many new applications than possible with previous ultrasonic pulsed phase-locked loop instruments. In addition to improved resolution, swept-frequency phase measurements add useful capability in measuring properties of layered structures, such as bonded joints, or materials which exhibit non-linear frequency-dependent behavior, such as dispersive media.

  5. Real time acousto-ultrasonic NDE technique for monitoring damage in ceramic composites under dynamic loads

    NASA Technical Reports Server (NTRS)

    Tiwari, Anil

    1995-01-01

    Research effort was directed towards developing a near real-time, acousto-ultrasonic (AU), nondestructive evaluation (NDE) tool to study the failure mechanisms of ceramic composites. Progression of damage is monitored in real-time by observing the changes in the received AU signal during the actual test. During the real-time AU test, the AU signals are generated and received by the AU transducers attached to the specimen while it is being subjected to increasing quasi-static loads or cyclic loads (10 Hz, R = 1.0). The received AU signals for 64 successive pulses were gated in the time domain (T = 40.96 micro sec) and then averaged every second over ten load cycles and stored in a computer file during fatigue tests. These averaged gated signals are representative of the damage state of the specimen at that point of its fatigue life. This is also the first major attempt in the development and application of real-time AU for continuously monitoring damage accumulation during fatigue without interrupting the test. The present work has verified the capability of the AU technique to assess the damage state in silicon carbide/calcium aluminosilicate (SiC/CAS) and silicon carbide/ magnesium aluminosilicate (SiC/MAS) ceramic composites. Continuous monitoring of damage initiation and progression under quasi-static ramp loading in tension to failure of unidirectional and cross-ply SiC/CAS and quasi-isotropic SiC/MAS ceramic composite specimens at room temperature was accomplished using near real-time AU parameters. The AU technique was shown to be able to detect the stress levels for the onset and saturation of matrix cracks, respectively. The critical cracking stress level is used as a design stress for brittle matrix composites operating at elevated temperatures. The AU technique has found that the critical cracking stress level is 10-15% below the level presently obtained for design purposes from analytical models. An acousto-ultrasonic stress-strain response (AUSSR) model

  6. Real-time fMRI processing with physiological noise correction - Comparison with off-line analysis.

    PubMed

    Misaki, Masaya; Barzigar, Nafise; Zotev, Vadim; Phillips, Raquel; Cheng, Samuel; Bodurka, Jerzy

    2015-12-30

    While applications of real-time functional magnetic resonance imaging (rtfMRI) are growing rapidly, there are still limitations in real-time data processing compared to off-line analysis. We developed a proof-of-concept real-time fMRI processing (rtfMRIp) system utilizing a personal computer (PC) with a dedicated graphic processing unit (GPU) to demonstrate that it is now possible to perform intensive whole-brain fMRI data processing in real-time. The rtfMRIp performs slice-timing correction, motion correction, spatial smoothing, signal scaling, and general linear model (GLM) analysis with multiple noise regressors including physiological noise modeled with cardiac (RETROICOR) and respiration volume per time (RVT). The whole-brain data analysis with more than 100,000voxels and more than 250volumes is completed in less than 300ms, much faster than the time required to acquire the fMRI volume. Real-time processing implementation cannot be identical to off-line analysis when time-course information is used, such as in slice-timing correction, signal scaling, and GLM. We verified that reduced slice-timing correction for real-time analysis had comparable output with off-line analysis. The real-time GLM analysis, however, showed over-fitting when the number of sampled volumes was small. Our system implemented real-time RETROICOR and RVT physiological noise corrections for the first time and it is capable of processing these steps on all available data at a given time, without need for recursive algorithms. Comprehensive data processing in rtfMRI is possible with a PC, while the number of samples should be considered in real-time GLM. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Real-time detection of intracellular reactive oxygen species and mitochondrial membrane potential in THP-1 macrophages during ultrasonic irradiation for optimal sonodynamic therapy.

    PubMed

    Sun, Xin; Xu, Haobo; Shen, Jing; Guo, Shuyuan; Shi, Sa; Dan, Juhua; Tian, Fang; Tian, Yanfeng; Tian, Ye

    2015-01-01

    Reactive oxygen species (ROS) elevation and mitochondrial membrane potential (MMP) loss have been proven recently to be involved in sonodynamic therapy (SDT)-induced macrophage apoptosis and necrosis. This study aims to develop an experimental system to monitor intracellular ROS and MMP in real-time during ultrasonic irradiation in order to achieve optimal effect in SDT. Cultured THP-1 derived macrophages were incubated with 5-aminolevulinic acid (ALA), and then sonicated at different intensities. Intracellular ROS elevation and MMP loss were detected in real-time by fluorospectrophotometer using fluorescence probe DCFH-DA and jc-1, respectively. Ultrasound at low intensities (less than 0.48W/cm(2)) had no influence on ROS and MMP in macrophages, whereas at an intensity of 0.48W/cm(2), ROS elevation and MMP loss were observed during ultrasonic irradiation. These effects were strongly enhanced in the presence of ALA. Quantitative analysis showed that ROS elevation and MMP loss monotonically increased with the rise of ultrasonic intensity between 0.48 and 1.16W/cm(2). SDT at 0.48 and 0.84W/cm(2) induced mainly apoptosis in THP-1 macrophages while SDT at 1.16W/cm(2) mainly cell necrosis. This study supports the validity and potential utility of real-time ROS and MMP detection as a dosimetric tool for the determination of optimal SDT. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. An online real time ultrasonic NDT system for the quality control of spot welding in the automotive industry

    NASA Astrophysics Data System (ADS)

    Athi, N.; Wylie, S. R.; Cullen, J. D.; Al-Jader, M.; Al-Shamma'a, A. I.; Shaw, A.

    2009-07-01

    Resistance spot welding is the main joining technique used for the fabrication of body-in-white structures in the automotive industry. The quality of the welds depends on the profile of the spot welding electrode cap. The increased use of zinc coated steel in the industry increases wear rate of the caps, making quality control more difficult. This paper presents a novel online real time ultrasonic NDE system for resistance spot welding which evaluates every weld as it is formed. SEM results are presented to show the alloying of the electrode caps.

  9. Competitive On-Line Scheduling for Overloaded Real-Time Systems

    DTIC Science & Technology

    1993-09-01

    Real - Time Systems by Gilad Koren a dissertation submitted in partial fulfillment of the requirements...Overloaded Real - Time Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK...1.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 1.1.1 Real - Time Systems : : : : : : : : : : : : : : : : : : : : : : : : : : : :

  10. Real-Time Noise Removal for Line-Scanning Hyperspectral Devices Using a Minimum Noise Fraction-Based Approach

    PubMed Central

    Bjorgan, Asgeir; Randeberg, Lise Lyngsnes

    2015-01-01

    Processing line-by-line and in real-time can be convenient for some applications of line-scanning hyperspectral imaging technology. Some types of processing, like inverse modeling and spectral analysis, can be sensitive to noise. The MNF (minimum noise fraction) transform provides suitable denoising performance, but requires full image availability for the estimation of image and noise statistics. In this work, a modified algorithm is proposed. Incrementally-updated statistics enables the algorithm to denoise the image line-by-line. The denoising performance has been compared to conventional MNF and found to be equal. With a satisfying denoising performance and real-time implementation, the developed algorithm can denoise line-scanned hyperspectral images in real-time. The elimination of waiting time before denoised data are available is an important step towards real-time visualization of processed hyperspectral data. The source code can be found at http://www.github.com/ntnu-bioopt/mnf. This includes an implementation of conventional MNF denoising. PMID:25654717

  11. Real Time On-line Space Research Laboratory Environment Monitoring with Off-line Trend and Prediction Analysis

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Lin, Paul P.

    2006-01-01

    their g-level contribution to the environment. The system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many Increments of the space station for selected disturbance activities. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential system failure as well as for use by research scientists during their science results analysis. Examples of both real time on-line vibratory disturbance detection and off-line trend analysis are presented in this paper. Several soft computing techniques such as Kohonen s Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.

  12. A true real-time, on-line security system for waterborne pathogen surveillance

    NASA Astrophysics Data System (ADS)

    Adams, John A.; McCarty, David L.

    2008-04-01

    Over the past several years many advances have been made to monitor potable water systems for toxic threats. However, the need for real-time, on-line systems to detect the malicious introduction of deadly pathogens still exists. Municipal water distribution systems, government facilities and buildings, and high profile public events remain vulnerable to terrorist-related biological contamination. After years of research and development, an instrument using multi-angle light scattering (MALS) technology has been introduced to achieve on-line, real-time detection and classification of a waterborne pathogen event. The MALS system utilizes a continuous slip stream of water passing through a flow cell in the instrument. A laser beam, focused perpendicular to the water flow, strikes particles as they pass through the beam generating unique light scattering patterns that are captured by photodetectors. Microorganisms produce patterns termed 'bio-optical signatures' which are comparable to fingerprints. By comparing these bio-optical signatures to an on-board database of microorganism patterns, detection and classification occurs within minutes. If a pattern is not recognized, it is classified as an 'unknown' and the unidentified contaminant is registered as a potential threat. In either case, if the contaminant exceeds a customer's threshold, the system will immediately alert personnel to the contamination event while extracting a sample for confirmation. The system, BioSentry TM, developed by JMAR Technologies is now field-tested and commercially available. BioSentry is cost effective, uses no reagents, operates remotely, and can be used for continuous microbial surveillance in many water treatment environments. Examples of HLS installations will be presented along with data from the US EPA NHSRC Testing and Evaluation Facility.

  13. Achieving Real-Time Tracking Mobile Wireless Sensors Using SE-KFA

    NASA Astrophysics Data System (ADS)

    Kadhim Hoomod, Haider, Dr.; Al-Chalabi, Sadeem Marouf M.

    2018-05-01

    Nowadays, Real-Time Achievement is very important in different fields, like: Auto transport control, some medical applications, celestial body tracking, controlling agent movements, detections and monitoring, etc. This can be tested by different kinds of detection devices, which named "sensors" as such as: infrared sensors, ultrasonic sensor, radars in general, laser light sensor, and so like. Ultrasonic Sensor is the most fundamental one and it has great impact and challenges comparing with others especially when navigating (as an agent). In this paper, concerning to the ultrasonic sensor, sensor(s) detecting and delimitation by themselves then navigate inside a limited area to estimating Real-Time using Speed Equation with Kalman Filter Algorithm as an intelligent estimation algorithm. Then trying to calculate the error comparing to the factual rate of tracking. This paper used Ultrasonic Sensor HC-SR04 with Arduino-UNO as Microcontroller.

  14. Ultrasonic flow measurements for irrigation process monitoring

    NASA Astrophysics Data System (ADS)

    Ziani, Elmostafa; Bennouna, Mustapha; Boissier, Raymond

    2004-02-01

    This paper presents the state of the art of the general principle of liquid flow measurements by ultrasonic method, and problems of flow measurements. We present an ultrasonic flowmeter designed according to smart sensors concept, for the measurement of irrigation water flowing through pipelines or open channels, using the ultrasonic transit time approach. The new flowmeter works on the principle of measuring time delay differences between sound pulses transmitted upstream and downstream in the flowing liquid. The speed of sound in the flowing medium is eliminated as a variable because the flowrate calculations are based on the reciprocals of the transmission times. The transit time difference is digitally measured by means of a suitable, microprocessor controlled logic. This type of ultrasonic flowmeter will be widely used in industry and water management, it is well studied in this work, followed by some experimental results. For pressurized channels, we use one pair of ultrasonic transducer arranged in proper positions and directions of the pipe, in this case, to determine the liquid velocity, a real time on-line analysis taking account the geometries of the hydraulic system, is applied to the obtained ultrasonic data. In the open channels, we use a single or two pairs of ultrasonic emitter-receiver according to the desired performances. Finally, the goals of this work consist in integrating the smart sensor into irrigation systems monitoring in order to evaluate potential advantages and demonstrate their performance, on the other hand, to understand and use ultrasonic approach for determining flow characteristics and improving flow measurements by reducing errors caused by disturbances of the flow profiles.

  15. Effects of push/pull perfusion and ultrasonication on the extraction efficiencies of phthalate esters in sports drink samples using on-line hollow-fiber liquid-phase microextraction.

    PubMed

    Chao, Yu-Ying; Lee, Chien-Hung; Chien, Tzu-Yang; Shih, Yu-Hsuan; Lu, Yin-An; Kuo, Ting-Hsuan; Huang, Yeou-Lih

    2013-08-28

    In previous studies, we developed a process, on-line ultrasound-assisted push/pull perfusion hollow-fiber liquid-phase microextraction (UA-PPP-HF-LPME), combining the techniques of push/pull perfusion (PPP) and ultrasonication with hollow-fiber liquid-phase microextraction (HF-LPME), to achieve rapid extraction of acidic phenols from water samples. In this present study, we further evaluated three more-advanced and novel effects of PPP and ultrasonication on the extraction efficiencies of neutral high-molecular-weight phthalate esters (HPAEs) in sports drinks. First, we found that inner-fiber fluid leakage occurs only in push-only perfusion-based and pull-only perfusion-based HF-LPME, but not in the PPP mode. Second, we identified a significant negative interaction between ultrasonication and temperature. Third, we found that the extraction time of the newly proposed system could be shortened by more than 93%. From an investigation of the factors affecting UA-PPP-HF-LPME, we established optimal extraction conditions and achieved acceptable on-line enrichment factors of 92-146 for HPAEs with a sampling time of just 2 min.

  16. Real-time biscuit tile image segmentation method based on edge detection.

    PubMed

    Matić, Tomislav; Aleksi, Ivan; Hocenski, Željko; Kraus, Dieter

    2018-05-01

    In this paper we propose a novel real-time Biscuit Tile Segmentation (BTS) method for images from ceramic tile production line. BTS method is based on signal change detection and contour tracing with a main goal of separating tile pixels from background in images captured on the production line. Usually, human operators are visually inspecting and classifying produced ceramic tiles. Computer vision and image processing techniques can automate visual inspection process if they fulfill real-time requirements. Important step in this process is a real-time tile pixels segmentation. BTS method is implemented for parallel execution on a GPU device to satisfy the real-time constraints of tile production line. BTS method outperforms 2D threshold-based methods, 1D edge detection methods and contour-based methods. Proposed BTS method is in use in the biscuit tile production line. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  17. On-line ultrasonic gas entrainment monitor

    DOEpatents

    Day, Clifford K.; Pedersen, Herbert N.

    1978-01-01

    Apparatus employing ultrasonic energy for detecting and measuring the quantity of gas bubbles present in liquids being transported through pipes. An ultrasonic transducer is positioned along the longitudinal axis of a fluid duct, oriented to transmit acoustic energy radially of the duct around the circumference of the enclosure walls. The back-reflected energy is received centrally of the duct and interpreted as a measure of gas entrainment. One specific embodiment employs a conical reflector to direct the transmitted acoustic energy radially of the duct and redirect the reflected energy back to the transducer for reception. A modified embodiment employs a cylindrical ultrasonic transducer for this purpose.

  18. Climate Signals: An On-Line Digital Platform for Mapping Climate Change Impacts in Real Time

    NASA Astrophysics Data System (ADS)

    Cutting, H.

    2016-12-01

    Climate Signals is an on-line digital platform for cataloging and mapping the impacts of climate change. The CS platform specifies and details the chains of connections between greenhouse gas emissions and individual climate events. Currently in open-beta release, the platform is designed to to engage and serve the general public, news media, and policy-makers, particularly in real-time during extreme climate events. Climate Signals consists of a curated relational database of events and their links to climate change, a mapping engine, and a gallery of climate change monitors offering real-time data. For each event in the database, an infographic engine provides a custom attribution "tree" that illustrates the connections to climate change. In addition, links to key contextual resources are aggregated and curated for each event. All event records are fully annotated with detailed source citations and corresponding hyper links. The system of attribution used to link events to climate change in real-time is detailed here. This open-beta release is offered for public user testing and engagement. Launched in May 2016, the operation of this platform offers lessons for public engagement in climate change impacts.

  19. Development of a Laboratory Synchrophasor Network and an Application to Estimate Transmission Line Parameters in Real Time

    NASA Astrophysics Data System (ADS)

    Almiron Bonnin, Rubens Eduardo

    The development of an experimental synchrophasors network and application of synchrophasors for real-time transmission line parameter monitoring are presented in this thesis. In the laboratory setup, a power system is simulated in a RTDS real-time digital simulator, and the simulated voltages and currents are input to hardware phasor measurement units (PMUs) through the analog outputs of the simulator. Time synchronizing signals for the PMU devices are supplied from a common GPS clock. The real time data collected from PMUs are sent to a phasor data concentrator (PDC) through Ethernet using the TCP/IP protocol. A real-time transmission line parameter monitoring application program that uses the synchrophasor data provided by the PDC is implemented and validated. The experimental synchrophasor network developed in this thesis is expected to be used in research on synchrophasor applications as well as in graduate and undergraduate teaching.

  20. Ultrasonic Phased Array Compressive Imaging in Time and Frequency Domain: Simulation, Experimental Verification and Real Application

    PubMed Central

    Bai, Zhiliang; Chen, Shili; Jia, Lecheng; Zeng, Zhoumo

    2018-01-01

    Embracing the fact that one can recover certain signals and images from far fewer measurements than traditional methods use, compressive sensing (CS) provides solutions to huge amounts of data collection in phased array-based material characterization. This article describes how a CS framework can be utilized to effectively compress ultrasonic phased array images in time and frequency domains. By projecting the image onto its Discrete Cosine transform domain, a novel scheme was implemented to verify the potentiality of CS for data reduction, as well as to explore its reconstruction accuracy. The results from CIVA simulations indicate that both time and frequency domain CS can accurately reconstruct array images using samples less than the minimum requirements of the Nyquist theorem. For experimental verification of three types of artificial flaws, although a considerable data reduction can be achieved with defects clearly preserved, it is currently impossible to break Nyquist limitation in the time domain. Fortunately, qualified recovery in the frequency domain makes it happen, meaning a real breakthrough for phased array image reconstruction. As a case study, the proposed CS procedure is applied to the inspection of an engine cylinder cavity containing different pit defects and the results show that orthogonal matching pursuit (OMP)-based CS guarantees the performance for real application. PMID:29738452

  1. Real-time line matching from stereo images using a nonparametric transform of spatial relations and texture information

    NASA Astrophysics Data System (ADS)

    Park, Jonghee; Yoon, Kuk-Jin

    2015-02-01

    We propose a real-time line matching method for stereo systems. To achieve real-time performance while retaining a high level of matching precision, we first propose a nonparametric transform to represent the spatial relations between neighboring lines and nearby textures as a binary stream. Since the length of a line can vary across images, the matching costs between lines are computed within an overlap area (OA) based on the binary stream. The OA is determined for each line pair by employing the properties of a rectified image pair. Finally, the line correspondence is determined using a winner-takes-all method with a left-right consistency check. To reduce the computational time requirements further, we filter out unreliable matching candidates in advance based on their rectification properties. The performance of the proposed method was compared with state-of-the-art methods in terms of the computational time, matching precision, and recall. The proposed method required 47 ms to match lines from an image pair in the KITTI dataset with an average precision of 95%. We also verified the proposed method under image blur, illumination variation, and viewpoint changes.

  2. Ultrasonic Determination Of Recrystallization

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1988-01-01

    State of recrystallization identified. Measurement of ultrasonic attenuation shows promise as means of detecting recrystallization in metal. Technique applicable to real-time acoustic monitoring of thermomechanical treatments. Starting with work-hardened material, one ultrasonically determines effect of annealing, using correlation between ultrasonic attenuation and temperature.

  3. Ultrasonic sensing of GMAW: Laser/EMAT defect detection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, N.M.; Johnson, J.A.; Larsen, E.D.

    1992-08-01

    In-process ultrasonic sensing of welding allows detection of weld defects in real time. A noncontacting ultrasonic system is being developed to operate in a production environment. The principal components are a pulsed laser for ultrasound generation and an electromagnetic acoustic transducer (EMAT) for ultrasound reception. A PC-based data acquisition system determines the quality of the weld on a pass-by-pass basis. The laser/EMAT system interrogates the area in the weld volume where defects are most likely to occur. This area of interest is identified by computer calculations on a pass-by-pass basis using weld planning information provided by the off-line programmer. Themore » absence of a signal above the threshold level in the computer-calculated time interval indicates a disruption of the sound path by a defect. The ultrasonic sensor system then provides an input signal to the weld controller about the defect condition. 8 refs.« less

  4. Interactive signal analysis and ultrasonic data collection system user's manual

    NASA Technical Reports Server (NTRS)

    Smith, G. R.

    1978-01-01

    The interactive signal analysis and ultrasonic data collection system (ECHO1) is a real time data acquisition and display system. ECHO1 executed on a PDP-11/45 computer under the RT11 real time operating system. Extensive operator interaction provided the requisite parameters to the data collection, calculation, and data modules. Data were acquired in real time from a pulse echo ultrasonic system using a Biomation Model 8100 transient recorder. The data consisted of 2084 intensity values representing the amplitude of pulses transmitted and received by the ultrasonic unit.

  5. Custom ultrasonic instrumentation for flow measurement and real-time binary gas analysis in the CERN ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Alhroob, M.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Boyd, G.; Crespo-Lopez, O.; Degeorge, C.; Deterre, C.; Di Girolamo, B.; Doubek, M.; Favre, G.; Hallewell, G.; Katunin, S.; Lombard, D.; Madsen, A.; McMahon, S.; Nagai, K.; O'Rourke, A.; Pearson, B.; Robinson, D.; Rossi, C.; Rozanov, A.; Stanecka, E.; Strauss, M.; Vacek, V.; Vaglio, R.; Young, J.; Zwalinski, L.

    2017-01-01

    The development of custom ultrasonic instrumentation was motivated by the need for continuous real-time monitoring of possible leaks and mass flow measurement in the evaporative cooling systems of the ATLAS silicon trackers. The instruments use pairs of ultrasonic transducers transmitting sound bursts and measuring transit times in opposite directions. The gas flow rate is calculated from the difference in transit times, while the sound velocity is deduced from their average. The gas composition is then evaluated by comparison with a molar composition vs. sound velocity database, based on the direct dependence between sound velocity and component molar concentration in a gas mixture at a known temperature and pressure. The instrumentation has been developed in several geometries, with five instruments now integrated and in continuous operation within the ATLAS Detector Control System (DCS) and its finite state machine. One instrument monitors C3F8 coolant leaks into the Pixel detector N2 envelope with a molar resolution better than 2ṡ 10-5, and has indicated a level of 0.14 % when all the cooling loops of the recently re-installed Pixel detector are operational. Another instrument monitors air ingress into the C3F8 condenser of the new C3F8 thermosiphon coolant recirculator, with sub-percent precision. The recent effect of the introduction of a small quantity of N2 volume into the 9.5 m3 total volume of the thermosiphon system was clearly seen with this instrument. Custom microcontroller-based readout has been developed for the instruments, allowing readout into the ATLAS DCS via Modbus TCP/IP on Ethernet. The instrumentation has many potential applications where continuous binary gas composition is required, including in hydrocarbon and anaesthetic gas mixtures.

  6. Real-time nondestructive monitoring of the gas tungsten arc welding (GTAW) process by combined airborne acoustic emission and non-contact ultrasonics

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Basantes-Defaz, Alexandra-Del-Carmen; Abbasi, Zeynab; Yuhas, Donald; Ozevin, Didem; Indacochea, Ernesto

    2018-03-01

    Welding is a key manufacturing process for many industries and may introduce defects into the welded parts causing significant negative impacts, potentially ruining high-cost pieces. Therefore, a real-time process monitoring method is important to implement for avoiding producing a low-quality weld. Due to high surface temperature and possible contamination of surface by contact transducers, the welding process should be monitored via non-contact transducers. In this paper, airborne acoustic emission (AE) transducers tuned at 60 kHz and non-contact ultrasonic testing (UT) transducers tuned at 500 kHz are implemented for real time weld monitoring. AE is a passive nondestructive evaluation method that listens for the process noise, and provides information about the uniformity of manufacturing process. UT provides more quantitative information about weld defects. One of the most common weld defects as burn-through is investigated. The influences of weld defects on AE signatures (time-driven data) and UT signals (received signal energy, change in peak frequency) are presented. The level of burn-through damage is defined by using single method or combine AE/UT methods.

  7. An efficient ASIC implementation of 16-channel on-line recursive ICA processor for real-time EEG system.

    PubMed

    Fang, Wai-Chi; Huang, Kuan-Ju; Chou, Chia-Ching; Chang, Jui-Chung; Cauwenberghs, Gert; Jung, Tzyy-Ping

    2014-01-01

    This is a proposal for an efficient very-large-scale integration (VLSI) design, 16-channel on-line recursive independent component analysis (ORICA) processor ASIC for real-time EEG system, implemented with TSMC 40 nm CMOS technology. ORICA is appropriate to be used in real-time EEG system to separate artifacts because of its highly efficient and real-time process features. The proposed ORICA processor is composed of an ORICA processing unit and a singular value decomposition (SVD) processing unit. Compared with previous work [1], this proposed ORICA processor has enhanced effectiveness and reduced hardware complexity by utilizing a deeper pipeline architecture, shared arithmetic processing unit, and shared registers. The 16-channel random signals which contain 8-channel super-Gaussian and 8-channel sub-Gaussian components are used to analyze the dependence of the source components, and the average correlation coefficient is 0.95452 between the original source signals and extracted ORICA signals. Finally, the proposed ORICA processor ASIC is implemented with TSMC 40 nm CMOS technology, and it consumes 15.72 mW at 100 MHz operating frequency.

  8. Real Time, On Line Crop Monitoring and Analysis with Near Global Landsat-class Mosaics

    NASA Astrophysics Data System (ADS)

    Varlyguin, D.; Hulina, S.; Crutchfield, J.; Reynolds, C. A.; Frantz, R.

    2015-12-01

    The presentation will discuss the current status of GDA technology for operational, automated generation of 10-30 meter near global mosaics of Landsat-class data for visualization, monitoring, and analysis. Current version of the mosaic combines Landsat 8 and Landsat 7. Sentinel-2A imagery will be added once it is operationally available. The mosaics are surface reflectance calibrated and are analysis ready. They offer full spatial resolution and all multi-spectral bands of the source imagery. Each mosaic covers all major agricultural regions of the world and 16 day time window. 2014-most current dates are supported. The mosaics are updated in real-time, as soon as GDA downloads Landsat imagery, calibrates it to the surface reflectances, and generates data gap masks (all typically under 10 minutes for a Landsat scene). The technology eliminates the complex, multi-step, hands-on process of data preparation and provides imagery ready for repetitive, field-to-country analysis of crop conditions, progress, acreages, yield, and production. The mosaics can be used for real-time, on-line interactive mapping and time series drilling via GeoSynergy webGIS platform. The imagery is of great value for improved, persistent monitoring of global croplands and for the operational in-season analysis and mapping of crops across the globe in USDA FAS purview as mandated by the US government. The presentation will overview operational processing of Landsat-class mosaics in support of USDA FAS efforts and will look into 2015 and beyond.

  9. Ultrasonic Evaluation and Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Susan L.; Anderson, Michael T.; Diaz, Aaron A.

    2015-10-01

    Ultrasonic evaluation of materials for material characterization and flaw detection is as simple as manually moving a single-element probe across a speci-men and looking at an oscilloscope display in real time or as complex as automatically (under computer control) scanning a phased-array probe across a specimen and collecting encoded data for immediate or off-line data analyses. The reliability of the results in the second technique is greatly increased because of a higher density of measurements per scanned area and measurements that can be more precisely related to the specimen geometry. This chapter will briefly discuss applications of the collection ofmore » spatially encoded data and focus primarily on the off-line analyses in the form of data imaging. Pacific Northwest National Laboratory (PNNL) has been involved with as-sessing and advancing the reliability of inservice inspections of nuclear power plant components for over 35 years. Modern ultrasonic imaging techniques such as the synthetic aperture focusing technique (SAFT), phased-array (PA) technolo-gy and sound field mapping have undergone considerable improvements to effec-tively assess and better understand material constraints.« less

  10. A self optimizing synthetic organic reactor system using real-time in-line NMR spectroscopy.

    PubMed

    Sans, Victor; Porwol, Luzian; Dragone, Vincenza; Cronin, Leroy

    2015-02-01

    A configurable platform for synthetic chemistry incorporating an in-line benchtop NMR that is capable of monitoring and controlling organic reactions in real-time is presented. The platform is controlled via a modular LabView software control system for the hardware, NMR, data analysis and feedback optimization. Using this platform we report the real-time advanced structural characterization of reaction mixtures, including 19 F, 13 C, DEPT, 2D NMR spectroscopy (COSY, HSQC and 19 F-COSY) for the first time. Finally, the potential of this technique is demonstrated through the optimization of a catalytic organic reaction in real-time, showing its applicability to self-optimizing systems using criteria such as stereoselectivity, multi-nuclear measurements or 2D correlations.

  11. Non-intrusive ultrasonic liquid-in-line detector for small diameter tubes

    DOEpatents

    Piper, Thomas C.

    1982-01-01

    An arrangement for deleting liquid in a line, using non-intrusive ultrasonic techniques is disclosed. In this arrangement, four piezoelectric crystals are arranged in pairs about a 0.072 inch o.d. pipe. An ultrasonic tone burst is transmitted along the pipe, between crystal pairs, and the amplitude of the received tone burst indicates the absence/presence of liquid in the pipe.

  12. Real Time Target Tracking in a Phantom Using Ultrasonic Imaging

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Corner, G.; Huang, Z.

    In this paper we present a real-time ultrasound image guidance method suitable for tracking the motion of tumors. A 2D ultrasound based motion tracking system was evaluated. A robot was used to control the focused ultrasound and position it at the target that has been segmented from a real-time ultrasound video. Tracking accuracy and precision were investigated using a lesion mimicking phantom. Experiments have been conducted and results show sufficient efficiency of the image guidance algorithm. This work could be developed as the foundation for combining the real time ultrasound imaging tracking and MRI thermometry monitoring non-invasive surgery.

  13. Vector Doppler: spatial sampling analysis and presentation techniques for real-time systems

    NASA Astrophysics Data System (ADS)

    Capineri, Lorenzo; Scabia, Marco; Masotti, Leonardo F.

    2001-05-01

    The aim of the vector Doppler (VD) technique is the quantitative reconstruction of a velocity field independently of the ultrasonic probe axis to flow angle. In particular vector Doppler is interesting for studying vascular pathologies related to complex blood flow conditions. Clinical applications require a real-time operating mode and the capability to perform Doppler measurements over a defined volume. The combination of these two characteristics produces a real-time vector velocity map. In previous works the authors investigated the theory of pulsed wave (PW) vector Doppler and developed an experimental system capable of producing off-line 3D vector velocity maps. Afterwards, for producing dynamic velocity vector maps, we realized a new 2D vector Doppler system based on a modified commercial echograph. The measurement and presentation of a vector velocity field requires a correct spatial sampling that must satisfy the Shannon criterion. In this work we tackled this problem, establishing a relationship between sampling steps and scanning system characteristics. Another problem posed by the vector Doppler technique is the data representation in real-time that should be easy to interpret for the physician. With this in mine we attempted a multimedia solution that uses both interpolated images and sound to represent the information of the measured vector velocity map. These presentation techniques were experimented for real-time scanning on flow phantoms and preliminary measurements in vivo on a human carotid artery.

  14. Measurement of hydroxyl radical production in ultrasonic aqueous solutions by a novel chemiluminescence method.

    PubMed

    Hu, Yufei; Zhang, Zhujun; Yang, Chunyan

    2008-07-01

    Measurement methods for ultrasonic fields are important for reasons of safety. The investigation of an ultrasonic field can be performed by detecting the yield of hydroxyl radicals resulting from ultrasonic cavitations. In this paper, a novel method is introduced for detecting hydroxyl radicals by a chemiluminescence (CL) reaction of luminol-hydrogen peroxide (H2O2)-K5[Cu(HIO6)2](DPC). The yield of hydroxyl radicals is calculated directly by the relative CL intensity according to the corresponding concentration of H2O2. This proposed CL method makes it possible to perform an in-line and real-time assay of hydroxyl radicals in an ultrasonic aqueous solution. With flow injection (FI) technology, this novel CL reaction is sensitive enough to detect ultra trace amounts of H2O2 with a limit of detection (3sigma) of 4.1 x 10(-11) mol L(-1). The influences of ultrasonic output power and ultrasonic treatment time on the yield of hydroxyl radicals by an ultrasound generator were also studied. The results indicate that the amount of hydroxyl radicals increases with the increase of ultrasonic output power (< or = 15 W mL(-1)). There is a linear relationship between the time of ultrasonic treatment and the yield of H2O2. The ultrasonic field of an ultrasonic cleaning baths has been measured by calculating the yield of hydroxyl radicals.

  15. Analysis of dynamic accumulative damage about the lining structure of high speed railway’s tunnel based on ultrasonic testing technology

    NASA Astrophysics Data System (ADS)

    Wang, Xiang-qiu; Zhang, Huojun; Xie, Wen-xi

    2017-08-01

    Based on the similar material model test of full tunnel, the theory of elastic wave propagation and the testing technology of intelligent ultrasonic wave had been used to research the dynamic accumulative damage characteristics of tunnel’s lining structure under the dynamic loads of high speed train. For the more, the dynamic damage variable of lining structure of high speed railway’s tunnel was obtained. The results shown that the dynamic cumulative damage of lining structure increases nonlinearly with the times of cumulative vibration, the weakest part of dynamic cumulative damage is the arch foot of tunnel. Much more attention should be paid to the design and operation management of high speed railway’s tunnel.

  16. Damage Characterization and Real-Time Health Monitoring of Aerospace Materials Using Innovative NDE Tools

    NASA Astrophysics Data System (ADS)

    Matikas, Theodore E.

    2010-07-01

    The objective of this work is to characterize the damage and monitor in real-time aging structural components used in aerospace applications by means of advanced nondestructive evaluation techniques. Two novel experimental methodologies are used in this study, based on ultrasonic microscopy and nonlinear acoustics. It is demonstrated in this work that ultrasonic microscopy can be successfully utilized for local elastic property measurement, crack-size determination as well as for interfacial damage evaluation in high-temperature materials, such as metal matrix composites. Nonlinear acoustics enables real-time monitoring of material degradation in aerospace structures. When a sinusoidal ultrasonic wave of a given frequency and of sufficient amplitude is introduced into a nonharmonic solid, the fundamental wave distorts as it propagates, and therefore the second and higher harmonics of the fundamental frequency are generated. Measurements of the amplitude of these harmonics provide information on the coefficient of second- and higher-order terms of the stress-strain relation for a nonlinear solid. It is shown in this article that the material bulk nonlinear parameter for metallic alloy samples at different fatigue levels exhibits large changes compared to linear ultrasonic parameters, such as velocity and attenuation.

  17. Infusion-line pressure as a real-time monitor of convection-enhanced delivery in pre-clinical models.

    PubMed

    Lam, Miu Fei; Foo, Stacy W L; Thomas, Meghan G; Lind, Christopher R P

    2014-01-15

    Acute convection-enhanced delivery (CED) is a neurosurgical delivery technique that allows for precise and uniform distribution of an infusate to a brain structure. It remains experimental due to difficulties in ensuring successful delivery. Real-time monitoring is able to provide immediate feedback on cannula placement, infusate distribution, and if the infusion is proceeding as planned or is failing due to reflux or catheter obstruction. Pressure gradient is the driving force behind CED, with the infusion pressure being directly proportional to the flow-rate. The aim of this study was to assess the feasibility of using infusion-line pressure profiling to distinguish in real-time between succeeding and failing CED infusions. To do so we delivered cresyl violet dye at 0.5, 1.0 and 2.0 μl/min via CED in vitro using 0.6% agarose gel and in vivo to the rat striatum. Infusions that failed in agarose gel models could only be differentiated late during the procedures. In the rat in vivo model, the infusion-line profiles of obstructed infusions were not distinctive from those of successful infusions. Intraoperative magnetic resonance imaging (MRI) is used for real-time visualisation of cannula placement and infusate distribution. Particularly for animal pre-clinical work, it would be advantageous to supplement MRI with a cheap, accessible technique to monitor infusions and provide a real-time measure of infusion success or failure. Infusion-line pressure monitoring was of limited value in identifying successful CED with small volume infusions, whilst its utility for large volume infusion remains unknown. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  18. Real time analysis of brain tissue by direct combination of ultrasonic surgical aspiration and sonic spray mass spectrometry.

    PubMed

    Schäfer, Karl-Christian; Balog, Júlia; Szaniszló, Tamás; Szalay, Dániel; Mezey, Géza; Dénes, Júlia; Bognár, László; Oertel, Matthias; Takáts, Zoltán

    2011-10-15

    Direct combination of cavitron ultrasonic surgical aspirator (CUSA) and sonic spray ionization mass spectrometry is presented. A commercially available ultrasonic surgical device was coupled to a Venturi easy ambient sonic-spray ionization (V-EASI) source by directly introducing liquified tissue debris into the Venturi air jet pump. The Venturi air jet pump was found to efficiently nebulize the suspended tissue material for gas phase ion production. The ionization mechanism involving solely pneumatic spraying was associated with that of sonic spray ionization. Positive and negative ionization spectra were obtained from brain and liver samples reflecting the primary application areas of the surgical device. Mass spectra were found to feature predominantly complex lipid-type constituents of tissues in both ion polarity modes. Multiply charged peptide anions were also detected. The influence of instrumental settings was characterized in detail. Venturi pump geometry and flow parameters were found to be critically important in ionization efficiency. Standard solutions of phospholipids and peptides were analyzed in order to test the dynamic range, sensitivity, and suppression effects. The spectra of the intact tissue specimens were found to be highly specific to the histological tissue type. The principal component analysis (PCA) and linear discriminant analysis (LDA) based data analysis method was developed for real-time tissue identification in a surgical environment. The method has been successfully tested on post-mortem and ex vivo human samples including astrocytomas, meningeomas, metastatic brain tumors, and healthy brain tissue. © 2011 American Chemical Society

  19. A pipeline VLSI design of fast singular value decomposition processor for real-time EEG system based on on-line recursive independent component analysis.

    PubMed

    Huang, Kuan-Ju; Shih, Wei-Yeh; Chang, Jui Chung; Feng, Chih Wei; Fang, Wai-Chi

    2013-01-01

    This paper presents a pipeline VLSI design of fast singular value decomposition (SVD) processor for real-time electroencephalography (EEG) system based on on-line recursive independent component analysis (ORICA). Since SVD is used frequently in computations of the real-time EEG system, a low-latency and high-accuracy SVD processor is essential. During the EEG system process, the proposed SVD processor aims to solve the diagonal, inverse and inverse square root matrices of the target matrices in real time. Generally, SVD requires a huge amount of computation in hardware implementation. Therefore, this work proposes a novel design concept for data flow updating to assist the pipeline VLSI implementation. The SVD processor can greatly improve the feasibility of real-time EEG system applications such as brain computer interfaces (BCIs). The proposed architecture is implemented using TSMC 90 nm CMOS technology. The sample rate of EEG raw data adopts 128 Hz. The core size of the SVD processor is 580×580 um(2), and the speed of operation frequency is 20MHz. It consumes 0.774mW of power during the 8-channel EEG system per execution time.

  20. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis H. LeMieux

    2004-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land -based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCsmore » have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems; a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization.« less

  1. Real-time seam tracking control system based on line laser visions

    NASA Astrophysics Data System (ADS)

    Zou, Yanbiao; Wang, Yanbo; Zhou, Weilin; Chen, Xiangzhi

    2018-07-01

    A set of six-degree-of-freedom robotic welding automatic tracking platform was designed in this study to realize the real-time tracking of weld seams. Moreover, the feature point tracking method and the adaptive fuzzy control algorithm in the welding process were studied and analyzed. A laser vision sensor and its measuring principle were designed and studied, respectively. Before welding, the initial coordinate values of the feature points were obtained using morphological methods. After welding, the target tracking method based on Gaussian kernel was used to extract the real-time feature points of the weld. An adaptive fuzzy controller was designed to input the deviation value of the feature points and the change rate of the deviation into the controller. The quantization factors, scale factor, and weight function were adjusted in real time. The input and output domains, fuzzy rules, and membership functions were constantly updated to generate a series of smooth bias robot voltage. Three groups of experiments were conducted on different types of curve welds in a strong arc and splash noise environment using the welding current of 120 A short-circuit Metal Active Gas (MAG) Arc Welding. The tracking error was less than 0.32 mm and the sensor's metrical frequency can be up to 20 Hz. The end of the torch run smooth during welding. Weld trajectory can be tracked accurately, thereby satisfying the requirements of welding applications.

  2. Real time monitoring of electroless nickel plating

    NASA Astrophysics Data System (ADS)

    Rains, Aaron E.; Kline, Ronald A.

    2013-01-01

    This work deals with the design and manufacturing of the heat and chemical resistant transducer case required for on-line immersion testing, experimental design, data acquisition and signal processing. Results are presented for several depositions with an accuracy of two ten-thousandths of an inch in coating thickness obtained. Monitoring the deposition rate of Electroless Nickel (EN) plating in-situ will provide measurement of the accurate dimensions of the component being plated, in real time. EN is used as for corrosion and wear protection for automotive an - Electroless Nickel (EN) plating is commonly used for corrosion and wear protection for automotive and aerospace components. It plates evenly and symmetrically, theoretically allowing the part to be plated to its final dimension. Currently the standard approach to monitoring the thickness of the deposited nickel is to remove the component from the plating bath and physically measure the part. This can lead to plating problems such as pitting, non-adhesion of the deposit and contamination of the plating solution. The goal of this research effort is to demonstrate that plating thickness can be rapidly and accurately measured using ultrasonic testing. Here a special housing is designed to allow immersion of the ultrasonic transducers directly into the plating bath. An FFT based signal processing algorithm was developed to resolve closely spaced echoes for precise thickness determination. The technique in this research effort was found to be capable of measuring plating thicknesses to within 0.0002 inches. It is expected that this approach will lead to cost savings in many EN plating operations.

  3. High Temperature Ultrasonic Transducer for Real-time Inspection

    NASA Astrophysics Data System (ADS)

    Amini, Mohammad Hossein; Sinclair, Anthony N.; Coyle, Thomas W.

    A broadband ultrasonic transducer with a novel porous ceramic backing layer is introduced to operate at 700 °C. 36° Y-cut lithium niobate (LiNbO3) single crystal was selected for the piezoelectric element. By appropriate choice of constituent materials, porosity and pore size, the acoustic impedance and attenuation of a zirconia-based backing layer were optimized. An active brazing alloy with high temperature and chemical stability was selected to bond the transducer layers together. Prototype transducers have been tested at temperatures up to 700 °C. The experiments confirmed that transducer integrity was maintained.

  4. Auto-Gopher: A Wire-Line Rotary-Hammer Ultrasonic Drill

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bao, Xiaogi; Bar-Cohen, Yoseph; Chen, Beck

    2011-01-01

    Developing technologies that would enable NASA to sample rock, soil, and ice by coring, drilling or abrading at a significant depth is of great importance for a large number of in-situ exploration missions as well as for earth applications. Proven techniques to sample Mars subsurface will be critical for future NASA astrobiology missions that will search for records of past and present life on the planet, as well as, the search for water and other resources. A deep corer, called Auto-Gopher, is currently being developed as a joint effort of the JPL's NDEAA laboratory and Honeybee Robotics Corp. The Auto-Gopher is a wire-line rotary-hammer drill that combines rock breaking by hammering using an ultrasonic actuator and cuttings removal by rotating a fluted bit. The hammering mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) that has been developed as an adaptable tool for many of drilling and coring applications. The USDC uses an intermediate free-flying mass to transform the high frequency vibrations of the horn tip into a sonic hammering of a drill bit. The USDC concept was used in a previous task to develop an Ultrasonic/Sonic Ice Gopher. The lessons learned from testing the ice gopher were implemented into the design of the Auto-Gopher by inducing a rotary motion onto the fluted coring bit. A wire-line version of such a system would allow penetration of significant depth without a large increase in mass. A laboratory version of the corer was developed in the NDEAA lab to determine the design and drive parameters of the integrated system. The design configuration lab version of the design and fabrication and preliminary testing results are presented in this paper

  5. A 3D ultrasound scanner: real time filtering and rendering algorithms.

    PubMed

    Cifarelli, D; Ruggiero, C; Brusacà, M; Mazzarella, M

    1997-01-01

    The work described here has been carried out within a collaborative project between DIST and ESAOTE BIOMEDICA aiming to set up a new ultrasonic scanner performing 3D reconstruction. A system is being set up to process and display 3D ultrasonic data in a fast, economical and user friendly way to help the physician during diagnosis. A comparison is presented among several algorithms for digital filtering, data segmentation and rendering for real time, PC based, three-dimensional reconstruction from B-mode ultrasonic biomedical images. Several algorithms for digital filtering have been compared as relates to processing time and to final image quality. Three-dimensional data segmentation techniques and rendering has been carried out with special reference to user friendly features for foreseeable applications and reconstruction speed.

  6. A micromachined silicon parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT)

    NASA Astrophysics Data System (ADS)

    Cho, Young Y.; Chang, Cheng-Chung; Wang, Lihong V.; Zou, Jun

    2015-03-01

    To achieve real-time photoacoustic tomography (PAT), massive transducer arrays and data acquisition (DAQ) electronics are needed to receive the PA signals simultaneously, which results in complex and high-cost ultrasound receiver systems. To address this issue, we have developed a new PA data acquisition approach using acoustic time delay. Optical fibers were used as parallel acoustic delay lines (PADLs) to create different time delays in multiple channels of PA signals. This makes the PA signals reach a single-element transducer at different times. As a result, they can be properly received by single-channel DAQ electronics. However, due to their small diameter and fragility, using optical fiber as acoustic delay lines poses a number of challenges in the design, construction and packaging of the PADLs, thereby limiting their performances and use in real imaging applications. In this paper, we report the development of new silicon PADLs, which are directly made from silicon wafers using advanced micromachining technologies. The silicon PADLs have very low acoustic attenuation and distortion. A linear array of 16 silicon PADLs were assembled into a handheld package with one common input port and one common output port. To demonstrate its real-time PAT capability, the silicon PADL array (with its output port interfaced with a single-element transducer) was used to receive 16 channels of PA signals simultaneously from a tissue-mimicking optical phantom sample. The reconstructed PA image matches well with the imaging target. Therefore, the silicon PADL array can provide a 16× reduction in the ultrasound DAQ channels for real-time PAT.

  7. Computer automation of ultrasonic testing. [inspection of ultrasonic welding

    NASA Technical Reports Server (NTRS)

    Yee, B. G. W.; Kerlin, E. E.; Gardner, A. H.; Dunmyer, D.; Wells, T. G.; Robinson, A. R.; Kunselman, J. S.; Walker, T. C.

    1974-01-01

    Report describes a prototype computer-automated ultrasonic system developed for the inspection of weldments. This system can be operated in three modes: manual, automatic, and computer-controlled. In the computer-controlled mode, the system will automatically acquire, process, analyze, store, and display ultrasonic inspection data in real-time. Flaw size (in cross-section), location (depth), and type (porosity-like or crack-like) can be automatically discerned and displayed. The results and pertinent parameters are recorded.

  8. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis H. LeMieux

    2005-04-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs havemore » been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.« less

  9. ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis H. LeMieux

    2003-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability, availability, and maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCsmore » have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can, therefore, accelerate the degradation of substrate component materials and eventually lead to a premature failure of critical components and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.« less

  10. ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis H. LeMieux

    2003-07-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability, availability, and maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCsmore » have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can, therefore, accelerate the degradation of substrate component materials and eventually lead to a premature failure of critical components and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.« less

  11. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis H. LeMieux

    2005-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Power Generation, Inc proposed a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs havemore » been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Power Generation, Inc. has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.« less

  12. Off-line and real-time monitoring of acetaminophen photodegradation by an electrochemical sensor.

    PubMed

    Berto, Silvia; Carena, Luca; Chiavazza, Enrico; Marletti, Matteo; Fin, Andrea; Giacomino, Agnese; Malandrino, Mery; Barolo, Claudia; Prenesti, Enrico; Vione, Davide

    2018-08-01

    The photochemistry of N-acetyl-para-aminophenol (acetaminophen, APAP) is here investigated by using differential pulse voltammetry (DPV) analysis to monitor APAP photodegradation upon steady-state irradiation. The purpose of this work is to assess the applicability of DPV to monitor the photochemical behaviour of xenobiotics, along with the development of an electrochemical set-up for the real-time monitoring of APAP photodegradation. We here investigated the APAP photoreactivity towards the main photogenerated reactive transients species occurring in sunlit surface waters (hydroxyl radical HO, carbonate radical CO 3 - , excited triplet state of anthraquinone-2-sulfonate used as proxy of the chromophoric DOM, and singlet oxygen 1 O 2 ), and determined relevant kinetic parameters. A standard procedure based on UV detection coupled with liquid chromatography (HPLC-UV) was used under identical experimental conditions to compare and verify the DPV-based results. The latter were in agreement with HPLC data, with the exception of the triplet-sensitized processes. In the other cases, DPV could be used as an alternative to the well-tested but more costly and time-consuming HPLC-UV technique. We have also assessed the reaction rate constant between APAP and HO by real-time DPV, which allowed for the monitoring of APAP photodegradation inside the irradiation chamber. Unfortunately, real-time DPV measurements are likely to be affected by temperature variations of the irradiated samples. Overall, DPV appeared as a fast, cheap and reasonably reliable technique when used for the off-line monitoring of APAP photodegradation. When a suitable real-time procedure is developed, it could become a very straightforward method to study the photochemical behaviour of electroactive xenobiotics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Non-intrusive ultrasonic liquid-in-line detector for small diameter tubes. [Patent application

    DOEpatents

    Piper, T.C.

    1980-09-24

    An arrangement for detecting liquids in a line, using non-intrusive ultrasonic techniques is disclosed. In this arrangement, four piezoelectric crystals are arranged in pairs about a 0.078 inch o.d. pipe. An ultrasonic tone burst is transmitted along the pipe, between crystal pairs, and the amplitude of the received tone burst indicates the absence/presence of liquid in the pipe.

  14. Towards Real Time Diagnostics of Hybrid Welding Laser/GMAW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timothy Mcjunkin; Dennis C. Kunerth; Corrie Nichol

    2013-07-01

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defectsmore » or precursors to defects and correct when possible during the weld process.« less

  15. Towards real time diagnostics of Hybrid Welding Laser/GMAW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McJunkin, T. R.; Kunerth, D. C.; Nichol, C. I.

    2014-02-18

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defectsmore » or precursors to defects and correct when possible during the weld process.« less

  16. Towards real time diagnostics of Hybrid Welding Laser/GMAW

    NASA Astrophysics Data System (ADS)

    McJunkin, T. R.; Kunerth, D. C.; Nichol, C. I.; Todorov, E.; Levesque, S.

    2014-02-01

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  17. High-Performance Scanning Acousto-Ultrasonic System

    NASA Technical Reports Server (NTRS)

    Roth, Don; Martin, Richard; Kautz, Harold; Cosgriff, Laura; Gyekenyesi, Andrew

    2006-01-01

    (multimode) acousto-ultrasonic response of the specimen is utilized. The analysis is performed by custom software that extracts parameters of signals in the time and frequency domains. The computer hardware and software provide both real-time and postscan processing and display options. For example, oscilloscope displays of waveforms and power spectral densities are available in real time. Images can be computed while scanning continues. Signals can be digitally preprocessed and/or post-processed by filtering, windowing, time-segmenting, and running-waveform-averaging algorithms. In addition, the software affords options for off-line simulation of the waveform-data-acquisition and scanning processes. In tests, the system has been shown to be capable of characterizing microstructural changes and defects in SiC/SiC and C/SiC ceramic-matrix composites. Delaminations, variations in density, microstructural changes attributable to infiltration by silicon, and crack-space indications (defined in the next sentence) have been revealed in images formed from several time- and frequency-domain parameters of scanning acousto-ultrasonic signals. The crack-space indications were image features that were not revealed by other nondestructive testing methods and are so named because they turned out to mark locations where cracking eventually occurred.

  18. Analytical ultrasonics for characterization of metallurgical microstructures and transformations

    NASA Technical Reports Server (NTRS)

    Rosen, M.

    1986-01-01

    The application of contact (piezoelectric) and noncontact (laser generation and detection) ultrasonic techniques for dynamic investigation of precipitation hardening processes in aluminum alloys, as well as crystallization and phase transformation in rapidly solidified amorphous and microcrystalline alloys is discussed. From the variations of the sound velocity and attenuation the precipitation mechanism and kinetics were determined. In addition, a correlation was established between the observed changes in the velocity and attenuation and the mechanical properties of age-hardenable aluminum alloys. The behavior of the elastic moduli, determined ultrasonically, were found to be sensitive to relaxation, crystallization and phase decomposition phenomena in rapidly solidified metallic glasses. Analytical ultrasonics enables determination of the activation energies and growth parameters of the reactions. Therefrom theoretical models can be constructed to explain the changes in mechanical and physical properties upon heat treatment of glassy alloys. The composition dependence of the elastic moduli in amorphous Cu-Zr alloys was found to be related to the glass transition temperature, and consequently to the glass forming ability of these alloys. Dynamic ultrasonic analysis was found to be feasible for on-line, real-time, monitoring of metallurgical processes.

  19. Real-time Monitoring Of Damage Evolution In Aerospace Materials Using Nonlinear Acoustics

    NASA Astrophysics Data System (ADS)

    Matikas, T. E.; Paipetis, A.; Kostopoulos, V.

    2008-06-01

    This work deals with the development of a novel non-destructive technique based on nonlinear acoustics, enabling real-time monitoring of material degradation in aerospace structures. When a sinusoidal ultrasonic wave of a given frequency and of sufficient amplitude is introduced into a nonlinear or an-harmonic solid, the fundamental wave distorts as it propagates, so that the second and higher harmonics of the fundamental frequency are generated. The measurement of the amplitude of these harmonics provides information on the coefficient of the second and higher order terms of the stress-strain relation for a nonlinear solid. It is demonstrated here that the material bulk nonlinear parameter for titanium alloy samples at different fatigue levels exhibits large changes compared to linear ultrasonic parameters such as velocity and attenuation. However, the use of bulk ultrasonic waves has serious disadvantages for the health monitoring of aerospace structures since it requires the placement of ultrasonic transducers on two, perfectly parallel, opposite sides of the samples. Such a setup is hardly feasible in real field conditions. For this reason, surface acoustic waves (SAW) were used in this study enabling the in-situ characterization of fatigue damage. The experimental setup for measuring the material nonlinear parameter using SAW was realised and the feasibility of the technique for health monitoring of aerospace structures was evaluated.

  20. Comparing the Happiness Effects of Real and On-Line Friends

    PubMed Central

    Helliwell, John F.; Huang, Haifang

    2013-01-01

    A recent large Canadian survey permits us to compare face-to-face (‘real-life’) and on-line social networks as sources of subjective well-being. The sample of 5,000 is drawn randomly from an on-line pool of respondents, a group well placed to have and value on-line friendships. We find three key results. First, the number of real-life friends is positively correlated with subjective well-being (SWB) even after controlling for income, demographic variables and personality differences. Doubling the number of friends in real life has an equivalent effect on well-being as a 50% increase in income. Second, the size of online networks is largely uncorrelated with subjective well-being. Third, we find that real-life friends are much more important for people who are single, divorced, separated or widowed than they are for people who are married or living with a partner. Findings from large international surveys (the European Social Surveys 2002–2008) are used to confirm the importance of real-life social networks to SWB; they also indicate a significantly smaller value of social networks to married or partnered couples. PMID:24019875

  1. Ultrasonic ranging and data telemetry system

    DOEpatents

    Brashear, Hugh R.; Blair, Michael S.; Phelps, James E.; Bauer, Martin L.; Nowlin, Charles H.

    1990-01-01

    An ultrasonic ranging and data telemetry system determines a surveyor's position and automatically links it with other simultaneously taken survey data. An ultrasonic and radio frequency (rf) transmitter are carried by the surveyor in a backpack. The surveyor's position is determined by calculations that use the measured transmission times of an airborne ultrasonic pulse transmitted from the backpack to two or more prepositioned ultrasonic transceivers. Once a second, rf communications are used both to synchronize the ultrasonic pulse transmission-time measurements and to transmit other simultaneously taken survey data. The rf communications are interpreted by a portable receiver and microcomputer which are brought to the property site. A video display attached to the computer provides real-time visual monitoring of the survey progress and site coverage.

  2. Axial Tomography from Digitized Real Time Radiography

    DOE R&D Accomplishments Database

    Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.

    1985-01-18

    Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.

  3. New Near-Real Time Monitoring of the Ionosphere over Europe Available On-line

    NASA Astrophysics Data System (ADS)

    Chevalier, J. M.; Bergeot, N.; Bruyninx, C.; Pottiaux, E.; Aerts, W.; Baire, Q.; Legrand, J.; Defraigne, P.

    2012-04-01

    With the beginning of the 24th Solar cycle, the increased Solar activity requires having a close eye on the ionosphere for better understanding Space Weather physics and its effects on radio communications. In that frame, near-real time ionospheric models over Europe are now routinely generated at the Royal Observatory of Belgium (ROB). These models are made available to the public through new interactive web pages at the web site of the GNSS team (www.gnss.be) and the Solar Influences Data Analysis Center (www.sidc.be) of ROB. The models are ionospheric Vertical Total Electron Content (VTEC) maps estimated every 15 minutes on a 0.5°x0.5° grid. They use the high-rate GPS observations of the real-time stations in the EUREF Permanent Network (EPN) provided by the ROB NTRIP broadcaster. The maps are published on the ROB web site with a latency of 7-15 minutes with respect to the last GPS measurement included in the 15-minute observation files. In a first step, this paper presents the processing strategy used to generate the VTEC maps: input data, parameter estimation, data cleaning and interpolation method. In addition, the tools developed to further exploit the product are introduced, e.g. on-demand animated VTEC maps. In a second step, the VTEC maps are compared with external ionospheric products and models such as Global Ionospheric Maps and IRI 2011. These new near-real time VTEC maps will allow any user within the geographical scope of the maps to estimate in near-real time the ionospheric delay induced along the signal of any observed satellite. In the future, the web site will continuously be updated in response to evolving user needs. This paper opens doors to discussions with the user community to target their needs.

  4. A study on low-cost, high-accuracy, and real-time stereo vision algorithms for UAV power line inspection

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu; Zhang, Baomin; Zhao, Xun; Li, Cong; Lu, Cunyue

    2018-04-01

    Conventional stereo vision algorithms suffer from high levels of hardware resource utilization due to algorithm complexity, or poor levels of accuracy caused by inadequacies in the matching algorithm. To address these issues, we have proposed a stereo range-finding technique that produces an excellent balance between cost, matching accuracy and real-time performance, for power line inspection using UAV. This was achieved through the introduction of a special image preprocessing algorithm and a weighted local stereo matching algorithm, as well as the design of a corresponding hardware architecture. Stereo vision systems based on this technique have a lower level of resource usage and also a higher level of matching accuracy following hardware acceleration. To validate the effectiveness of our technique, a stereo vision system based on our improved algorithms were implemented using the Spartan 6 FPGA. In comparative experiments, it was shown that the system using the improved algorithms outperformed the system based on the unimproved algorithms, in terms of resource utilization and matching accuracy. In particular, Block RAM usage was reduced by 19%, and the improved system was also able to output range-finding data in real time.

  5. Fourier Collocation Approach With Mesh Refinement Method for Simulating Transit-Time Ultrasonic Flowmeters Under Multiphase Flow Conditions.

    PubMed

    Simurda, Matej; Duggen, Lars; Basse, Nils T; Lassen, Benny

    2018-02-01

    A numerical model for transit-time ultrasonic flowmeters operating under multiphase flow conditions previously presented by us is extended by mesh refinement and grid point redistribution. The method solves modified first-order stress-velocity equations of elastodynamics with additional terms to account for the effect of the background flow. Spatial derivatives are calculated by a Fourier collocation scheme allowing the use of the fast Fourier transform, while the time integration is realized by the explicit third-order Runge-Kutta finite-difference scheme. The method is compared against analytical solutions and experimental measurements to verify the benefit of using mapped grids. Additionally, a study of clamp-on and in-line ultrasonic flowmeters operating under multiphase flow conditions is carried out.

  6. Bulk-wave ultrasonic propagation imagers

    NASA Astrophysics Data System (ADS)

    Abbas, Syed Haider; Lee, Jung-Ryul

    2018-03-01

    Laser-based ultrasound systems are described that utilize the ultrasonic bulk-wave sensing to detect the damages and flaws in the aerospace structures. These systems apply pulse-echo or through transmission methods to detect longitudinal through-the-thickness bulk-waves. These thermoelastic waves are generated using Q-switched laser and non-contact sensing is performed using a laser Doppler vibrometer (LDV). Laser-based raster scanning is performed by either twoaxis translation stage for linear-scanning or galvanometer-based laser mirror scanner for angular-scanning. In all ultrasonic propagation imagers, the ultrasonic data is captured and processed in real-time and the ultrasonic propagation can be visualized during scanning. The scanning speed can go up to 1.8 kHz for two-axis linear translation stage based B-UPIs and 10 kHz for galvanometer-based laser mirror scanners. In contrast with the other available ultrasound systems, these systems have the advantage of high-speed, non-contact, real-time, and non-destructive inspection. In this paper, the description of all bulk-wave ultrasonic imagers (B-UPIs) are presented and their advantages are discussed. Experiments are performed with these system on various structures to proof the integrity of their results. The C-scan results produced from non-dispersive, through-the-thickness, bulk-wave detection show good agreement in detection of structural variances and damage location in all inspected structures. These results show that bulk-wave UPIs can be used for in-situ NDE of engineering structures.

  7. Off-line real-time FTIR analysis of a process step in imipenem production

    NASA Astrophysics Data System (ADS)

    Boaz, Jhansi R.; Thomas, Scott M.; Meyerhoffer, Steven M.; Staskiewicz, Steven J.; Lynch, Joseph E.; Egan, Richard S.; Ellison, Dean K.

    1992-08-01

    We have developed an FT-IR method, using a Spectra-Tech Monit-IR 400 systems, to monitor off-line the completion of a reaction in real-time. The reaction is moisture-sensitive and analysis by more conventional methods (normal-phase HPLC) is difficult to reproduce. The FT-IR method is based on the shift of a diazo band when a conjugated beta-diketone is transformed into a silyl enol ether during the reaction. The reaction mixture is examined directly by IR and does not require sample workup. Data acquisition time is less than one minute. The method has been validated for specificity, precision and accuracy. The results obtained by the FT-IR method for known mixtures and in-process samples compare favorably with those from a normal-phase HPLC method.

  8. Echodentography based on nonlinear time reversal tomography: Ultrasonic nonlinear signature identification

    NASA Astrophysics Data System (ADS)

    Santos, Serge Dos; Farova, Zuzana; Kus, Vaclav; Prevorovsky, Zdenek

    2012-05-01

    This paper examines possibilities of using Nonlinear Elastic Wave Spectroscopy (NEWS) methods in dental investigations. Themain task consisted in imaging cracks or other degradation signatures located in dentin close to the Enamel-Dentine Junction (EDJ). NEWS approach was investigated experimentally with a new bi-modal acousto-optic set-up based on the chirp-coded nonlinear ultrasonic time reversal (TR) concepts. Complex internal structure of the tooth is analyzed by the TR-NEWS procedure adapted to tomography-like imaging of the tooth damages. Ultrasonic instrumentation with 10 MHz bandwidth has been set together including laser vibrometer used to detect responses of the tooth on its excitation carried out by a contact piezoelectric transducer. Bi-modal TR-NEWS images of the tooth were created before and after focusing, which resulted from the time compression. The polar B-scan of the tooth realized with TR-NEWS procedure is suggested to be applied as a new echodentography imaging.

  9. Real-time visual simulation of APT system based on RTW and Vega

    NASA Astrophysics Data System (ADS)

    Xiong, Shuai; Fu, Chengyu; Tang, Tao

    2012-10-01

    The Matlab/Simulink simulation model of APT (acquisition, pointing and tracking) system is analyzed and established. Then the model's C code which can be used for real-time simulation is generated by RTW (Real-Time Workshop). Practical experiments show, the simulation result of running the C code is the same as running the Simulink model directly in the Matlab environment. MultiGen-Vega is a real-time 3D scene simulation software system. With it and OpenGL, the APT scene simulation platform is developed and used to render and display the virtual scenes of the APT system. To add some necessary graphics effects to the virtual scenes real-time, GLSL (OpenGL Shading Language) shaders are used based on programmable GPU. By calling the C code, the scene simulation platform can adjust the system parameters on-line and get APT system's real-time simulation data to drive the scenes. Practical application shows that this visual simulation platform has high efficiency, low charge and good simulation effect.

  10. Ultrasonic sensing of GMAW: Laser/EMAT defect detection system. [Gas Metal Arc Welding (GMAW), Electromagnetic acoustic transducer (EMAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, N.M.; Johnson, J.A.; Larsen, E.D.

    1992-01-01

    In-process ultrasonic sensing of welding allows detection of weld defects in real time. A noncontacting ultrasonic system is being developed to operate in a production environment. The principal components are a pulsed laser for ultrasound generation and an electromagnetic acoustic transducer (EMAT) for ultrasound reception. A PC-based data acquisition system determines the quality of the weld on a pass-by-pass basis. The laser/EMAT system interrogates the area in the weld volume where defects are most likely to occur. This area of interest is identified by computer calculations on a pass-by-pass basis using weld planning information provided by the off-line programmer. Themore » absence of a signal above the threshold level in the computer-calculated time interval indicates a disruption of the sound path by a defect. The ultrasonic sensor system then provides an input signal to the weld controller about the defect condition. 8 refs.« less

  11. Gas ultrasonic flow rate measurement through genetic-ant colony optimization based on the ultrasonic pulse received signal model

    NASA Astrophysics Data System (ADS)

    Hou, Huirang; Zheng, Dandan; Nie, Laixiao

    2015-04-01

    For gas ultrasonic flowmeters, the signals received by ultrasonic sensors are susceptible to noise interference. If signals are mingled with noise, a large error in flow measurement can be caused by triggering mistakenly using the traditional double-threshold method. To solve this problem, genetic-ant colony optimization (GACO) based on the ultrasonic pulse received signal model is proposed. Furthermore, in consideration of the real-time performance of the flow measurement system, the improvement of processing only the first three cycles of the received signals rather than the whole signal is proposed. Simulation results show that the GACO algorithm has the best estimation accuracy and ant-noise ability compared with the genetic algorithm, ant colony optimization, double-threshold and enveloped zero-crossing. Local convergence doesn’t appear with the GACO algorithm until -10 dB. For the GACO algorithm, the converging accuracy and converging speed and the amount of computation are further improved when using the first three cycles (called GACO-3cycles). Experimental results involving actual received signals show that the accuracy of single-gas ultrasonic flow rate measurement can reach 0.5% with GACO-3 cycles, which is better than with the double-threshold method.

  12. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, Donald W.; Johnson, John A.; Smartt, Herschel B.

    1987-01-01

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  13. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, D.W.; Johnson, J.A.; Smartt, H.B.

    1985-09-04

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  14. Dopant-assisted negative photoionization Ion mobility spectrometry coupled with on-line cooling inlet for real-time monitoring H2S concentration in sewer gas.

    PubMed

    Peng, Liying; Jiang, Dandan; Wang, Zhenxin; Hua, Lei; Li, Haiyang

    2016-06-01

    Malodorous hydrogen sulfide (H2S) gas often exists in the sewer system and associates with the problems of releasing the dangerous odor to the atmosphere and causing sewer pipe to be corroded. A simple method is in demand for real-time measuring H2S level in the sewer gas. In this paper, an innovated method based on dopant-assisted negative photoionization ion mobility spectrometry (DANP-IMS) with on-line semiconductor cooling inlet was put forward and successfully applied for the real-time measurement of H2S in sewer gas. The influence of moisture was effectively reduced via an on-line cooling method and a non-equilibrium dilution with drift gas. The limits of quantitation for the H2S in ≥60% relative humidity air could be obtained at ≤79.0ng L(-1) with linear ranges of 129-2064ng L(-1). The H2S concentration in a sewer manhole was successfully determined while its product ions were identified by an ion-mobility time-of-fight mass spectrometry. Finally, the correlation between sewer H2S concentration and the daily routines and habits of residents was investigated through hourly or real-time monitoring the variation of sewer H2S in manholes, indicating the power of this DANP-IMS method in assessing the H2S concentration in sewer system. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Time reversal for ultrasonic transcranial surgery and echographic imaging

    NASA Astrophysics Data System (ADS)

    Tanter, Mickael; Aubry, Jean-Francois; Vignon, Francois; Fink, Mathias

    2005-09-01

    High-intensity focused ultrasound (HIFU) is able to induce non-invasively controlled and selective destruction of tissues by focusing ultrasonic beams within organs, analogous to a magnifying glass that concentrates enough sunlight to burn a hole in paper. The brain is an attractive organ in which to perform ultrasonic tissue ablation, but such an application has been hampered by the strong defocusing effect of the skull bone. Our group has been involved in this topic for several years, providing proofs of concept and proposing technological solutions to this problem. Thanks to a high-power time-reversal mirror, presented here are in vivo thermal lesions induced through the skull of 12 sheep. Thermal lesions were confirmed by T2-weighted magnetic resonance post-treatment images and histological examination. These results provide striking evidence that noninvasive ultrasound brain surgery is feasible. A recent approach for high-resolution brain ultrasonic imaging will also be discussed with a skull aberration correction technique based on twin arrays technology. The correction of transcranial ultrasonic images is implemented on a new generation of time-reversal mirrors relying on a fully programmable transmit and receive beamformer.

  16. Ultrasonic technique for detection of liquids in copper tubing process lines

    NASA Astrophysics Data System (ADS)

    Dudley, W. A.

    1980-10-01

    An ultrasonic pulse-echo method developed for semiquantitative measurement of liquid levels in copper tubing is described. This ultrasonic approach is of particular value when used as a pre-maintenance diagnostic tool in repairing process lines containing hazardous liquids. Performance tests show that water and similar liquids can be directly detected to fill levels as low as 1/16 in. For water fills below 1/16 in., direct level detection is impractical because of signal resolution limitations. However, this fill condition is indirectly measurable and is detected by the effect of observed degradation of the adjacent wall echo pattern. Fill conditions for liquids associated with high sound attenuation such as oil can be indirectly determined.

  17. An Improved Scheduling Algorithm for Data Transmission in Ultrasonic Phased Arrays with Multi-Group Ultrasonic Sensors

    PubMed Central

    Tang, Wenming; Liu, Guixiong; Li, Yuzhong; Tan, Daji

    2017-01-01

    High data transmission efficiency is a key requirement for an ultrasonic phased array with multi-group ultrasonic sensors. Here, a novel FIFOs scheduling algorithm was proposed and the data transmission efficiency with hardware technology was improved. This algorithm includes FIFOs as caches for the ultrasonic scanning data obtained from the sensors with the output data in a bandwidth-sharing way, on the basis of which an optimal length ratio of all the FIFOs is achieved, allowing the reading operations to be switched among all the FIFOs without time slot waiting. Therefore, this algorithm enhances the utilization ratio of the reading bandwidth resources so as to obtain higher efficiency than the traditional scheduling algorithms. The reliability and validity of the algorithm are substantiated after its implementation in the field programmable gate array (FPGA) technology, and the bandwidth utilization ratio and the real-time performance of the ultrasonic phased array are enhanced. PMID:29035345

  18. Recent progress in online ultrasonic process monitoring

    NASA Astrophysics Data System (ADS)

    Wen, Szu-Sheng L.; Chen, Tzu-Fang; Ramos-Franca, Demartonne; Nguyen, Ky T.; Jen, Cheng-Kuei; Ihara, Ikuo; Derdouri, A.; Garcia-Rejon, Andres

    1998-03-01

    On-line ultrasonic monitoring of polymer co-extrusion and gas-assisted injection molding are presented. During the co- extrusion of high density polyethylene and Santoprene ultrasonic sensors consisting of piezoelectric transducers and clad ultrasonic buffer rods are used to detect the interface between these two polymers and the stability of the extrusion. The same ultrasonic sensor also measures the surface temperature of the extruded polymer. The results indicate that temperature measurements using ultrasound have a faster response time than those obtained by conventional thermocouple. In gas-assisted injection molding the polymer and gas flow front positions are monitored simultaneously. This information may be used to control the plunger movement.

  19. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, D.W.; Johnson, J.A.; Smartt, H.B.

    1987-12-15

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder is disclosed. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws. 5 figs.

  20. Effect of ultrasonic vibration time on the Cu/Sn-Ag-Cu/Cu joint soldered by low-power-high-frequency ultrasonic-assisted reflow soldering.

    PubMed

    Tan, Ai Ting; Tan, Ai Wen; Yusof, Farazila

    2017-01-01

    Techniques to improve solder joint reliability have been the recent research focus in the electronic packaging industry. In this study, Cu/SAC305/Cu solder joints were fabricated using a low-power high-frequency ultrasonic-assisted reflow soldering approach where non-ultrasonic-treated samples were served as control sample. The effect of ultrasonic vibration (USV) time (within 6s) on the solder joint properties was characterized systematically. Results showed that the solder matrix microstructure was refined at 1.5s of USV, but coarsen when the USV time reached 3s and above. The solder matrix hardness increased when the solder matrix was refined, but decreased when the solder matrix coarsened. The interfacial intermetallic compound (IMC) layer thickness was found to decrease with increasing USV time, except for the USV-treated sample with 1.5s. This is attributed to the insufficient USV time during the reflow stage and consequently accelerated the Cu dissolution at the joint interface during the post-ultrasonic reflow stage. All the USV-treated samples possessed higher shear strength than the control sample due to the USV-induced-degassing effect. The shear strength of the USV-treated sample with 6s was the lowest among the USV-treated samples due to the formation of plate-like Ag 3 Sn that may act as the crack initiation site. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Realization of a multipath ultrasonic gas flowmeter based on transit-time technique.

    PubMed

    Chen, Qiang; Li, Weihua; Wu, Jiangtao

    2014-01-01

    A microcomputer-based ultrasonic gas flowmeter with transit-time method is presented. Modules of the flowmeter are designed systematically, including the acoustic path arrangement, ultrasound emission and reception module, transit-time measurement module, the software and so on. Four 200 kHz transducers forming two acoustic paths are used to send and receive ultrasound simultaneously. The synchronization of the transducers can eliminate the influence caused by the inherent switch time in simple chord flowmeter. The distribution of the acoustic paths on the mechanical apparatus follows the Tailored integration, which could reduce the inherent error by 2-3% compared with the Gaussian integration commonly used in the ultrasonic flowmeter now. This work also develops timing modules to determine the flight time of the acoustic signal. The timing mechanism is different from the traditional method. The timing circuit here adopts high capability chip TDC-GP2, with the typical resolution of 50 ps. The software of Labview is used to receive data from the circuit and calculate the gas flow value. Finally, the two paths flowmeter has been calibrated and validated on the test facilities for air flow in Shaanxi Institute of Measurement & Testing. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Micromachined silicon acoustic delay line with improved structural stability and acoustic directivity for real-time photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Cho, Young; Kumar, Akhil; Xu, Song; Zou, Jun

    2017-03-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. However, as its length increases to provide longer delay time, the delay line becomes more vulnerable to structural instability due to reduced mechanical stiffness. In addition, the small cross-section area of the delay line results in a large acoustic acceptance angle and therefore poor directivity. To address these two issues, this paper reports the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, a new tapered design for the input terminal of the delay line was also investigate to improve its acoustic directivity by reducing the acoustic acceptance angle. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays.

  3. Digital ultrasonic signal processing: Primary ultrasonics task and transducer characterization use and detailed description

    NASA Technical Reports Server (NTRS)

    Hammond, P. L.

    1979-01-01

    This manual describes the use of the primary ultrasonics task (PUT) and the transducer characterization system (XC) for the collection, processing, and recording of data received from a pulse-echo ultrasonic system. Both PUT and XC include five primary functions common to many real-time data acquisition systems. Some of these functions are implemented using the same code in both systems. The solicitation and acceptance of operator control input is emphasized. Those operations not under user control are explained.

  4. Underwater detection by using ultrasonic sensor

    NASA Astrophysics Data System (ADS)

    Bakar, S. A. A.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    This paper described the low cost implementation of hardware and software in developing the system of ultrasonic which can visualize the feedback of sound in the form of measured distance through mobile phone and monitoring the frequency of detection by using real time graph of Java application. A single waterproof transducer of JSN-SR04T had been used to determine the distance of an object based on operation of the classic pulse echo detection method underwater. In this experiment, the system was tested by placing the housing which consisted of Arduino UNO, Bluetooth module of HC-06, ultrasonic sensor and LEDs at the top of the box and the transducer was immersed in the water. The system which had been tested for detection in vertical form was found to be capable of reporting through the use of colored LEDs as indicator to the relative proximity of object distance underwater form the sensor. As a conclusion, the system can detect the presence of an object underwater within the range of ultrasonic sensor and display the measured distance onto the mobile phone and the real time graph had been successfully generated.

  5. Real-time trichromatic holographic interferometry: preliminary study

    NASA Astrophysics Data System (ADS)

    Albe, Felix; Bastide, Myriam; Desse, Jean-Michel; Tribillon, Jean-Louis H.

    1998-08-01

    In this paper we relate our preliminary experiments on real- time trichromatic holographic interferometry. For this purpose a CW `white' laser (argon and krypton of Coherent- Radiation, Spectrum model 70) is used. This laser produces about 10 wavelengths. A system consisting of birefringent plates and polarizers allows to select a trichromatic TEM00 triplet: blue line ((lambda) equals 476 nm, 100 mW), green line ((lambda) equals 514 nm, 100 mW) and red line ((lambda) equals 647 nm, 100 mW). In a first stage we recorded a trichromatic reflection hologram with a separate reference beam on a single-layer silver-halide panchromatic plate (PFG 03C). After processing, the hologram is put back into the original recording set-up, as in classical experiments on real-time monochromatic holographic interferometry. So we observe interference fringes between the 3 reconstructed waves and the 3 actual waves. The interference fringes of the phenomenon are observed on a screen and recorded by a video camera at 25 frames per second. A color video film of about 3 minutes of duration is presented. Some examples related to phase objects are presented (hot airflow from a candle, airflow from a hand). The actual results show the possibility of using this technique to study, in real time, aerodynamic wakes and mechanical deformation.

  6. Computerized Ultrasonic Testing System (CUTS) for in-process thickness determination

    NASA Technical Reports Server (NTRS)

    Frankel, J.; Doxbeck, M.; Schroeder, S. C.; Abbate, A.

    1994-01-01

    A Computerized Ultrasonic Testing System (CUTS) was developed to measure, in real-time, the rate of deposition and thickness of chromium plated on the inside of thick steel tubes. The measurements are made from the outside of the tubes with the ultrasonic pulse-echo technique. The resolution of the system is 2.5 micron. (0.0001 in.) and the accuracy is better than 10 micron (0.0004 in.). The thickness is measured using six transducers mounted at different locations on the tube. In addition, two transducers are mounted on two reference standards, thereby allowing the system to be continuously calibrated. The tube temperature varies during the process, thus the input from eight thermocouples, located at the measurement sites, is used to calculate and compensate for the change in return time of the ultrasonic echo due to the temperature dependence of the sound velocity. CUTS is applicable to any commercial process where real-time change of thickness of a sample has to be known, with the advantage of facilitating increased efficiency and of improving process control.

  7. Global approach for the validation of an in-line Raman spectroscopic method to determine the API content in real-time during a hot-melt extrusion process.

    PubMed

    Netchacovitch, L; Thiry, J; De Bleye, C; Dumont, E; Cailletaud, J; Sacré, P-Y; Evrard, B; Hubert, Ph; Ziemons, E

    2017-08-15

    Since the Food and Drug Administration (FDA) published a guidance based on the Process Analytical Technology (PAT) approach, real-time analyses during manufacturing processes are in real expansion. In this study, in-line Raman spectroscopic analyses were performed during a Hot-Melt Extrusion (HME) process to determine the Active Pharmaceutical Ingredient (API) content in real-time. The method was validated based on a univariate and a multivariate approach and the analytical performances of the obtained models were compared. Moreover, on one hand, in-line data were correlated with the real API concentration present in the sample quantified by a previously validated off-line confocal Raman microspectroscopic method. On the other hand, in-line data were also treated in function of the concentration based on the weighing of the components in the prepared mixture. The importance of developing quantitative methods based on the use of a reference method was thus highlighted. The method was validated according to the total error approach fixing the acceptance limits at ±15% and the α risk at ±5%. This method reaches the requirements of the European Pharmacopeia norms for the uniformity of content of single-dose preparations. The validation proves that future results will be in the acceptance limits with a previously defined probability. Finally, the in-line validated method was compared with the off-line one to demonstrate its ability to be used in routine analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Real-time Shakemap implementation in Austria

    NASA Astrophysics Data System (ADS)

    Weginger, Stefan; Jia, Yan; Papi Isaba, Maria; Horn, Nikolaus

    2017-04-01

    ShakeMaps provide near-real-time maps of ground motion and shaking intensity following significant earthquakes. They are automatically generated within a few minutes after occurrence of an earthquake. We tested and included the USGS ShakeMap 4.0 (experimental code) based on python in the Antelope real-time system with local modified GMPE and Site Effects based on the conditions in Austria. The ShakeMaps are provided in terms of Intensity, PGA, PGV and PSA. Future presentation of ShakeMap contour lines and Ground Motion Parameter with interactive maps and data exchange over Web-Services are shown.

  9. Real-time continuous-wave terahertz line scanner based on a compact 1 × 240 InGaAs Schottky barrier diode array detector.

    PubMed

    Han, Sang-Pil; Ko, Hyunsung; Kim, Namje; Lee, Won-Hui; Moon, Kiwon; Lee, Il-Min; Lee, Eui Su; Lee, Dong Hun; Lee, Wangjoo; Han, Seong-Tae; Choi, Sung-Wook; Park, Kyung Hyun

    2014-11-17

    We demonstrate real-time continuous-wave terahertz (THz) line-scanned imaging based on a 1 × 240 InGaAs Schottky barrier diode (SBD) array detector with a scan velocity of 25 cm/s, a scan line length of 12 cm, and a pixel size of 0.5 × 0.5 mm². Foreign substances, such as a paper clip with a spatial resolution of approximately 1 mm that is hidden under a cracker, are clearly detected by this THz line-scanning system. The system consists of the SBD array detector, a 200-GHz gyrotron source, a conveyor system, and several optical components such as a high-density polyethylene cylindrical lens, metal cylindrical mirror, and THz wire-grid polarizer. Using the THz polarizer, the signal-to-noise ratio of the SBD array detector improves because the quality of the source beam is enhanced.

  10. In-Line Ultrasonic Monitoring for Sediments Stuck on Inner Wall of a Polyvinyl Chloride Pipe

    PubMed Central

    2014-01-01

    This research verified the applicability and effectiveness of the ultrasonic monitoring of sediments stuck on the inner wall of polyvinyl chloride (PVC) pipes. For identifying the transmittance of acoustic energy and the speed of sound in the PVC material, the pulse-echo ultrasonic testing was conducted for PVC sheets of different thicknesses. To simulate the solidified sediment, the hot melt adhesive (HMA) was covered on the inner wall of the PVC pipe in different heights. From the experiment, the speeds of sound in the PVC and the HMA materials were obtained as about 2258 and 2000 m/s, respectively. The thickness of the materials was calculated through the signal processing such as taking the absolute value and low pass filtering, the echo detection, and the measurement of the time of flight. The errors between actual and measured thicknesses of PVC sheets were below 5%. In the case of the substance stuck on the inner wall, the errors were below 2.5%. Since the pulse-echo ultrasonic inspection is available on the outer surface and its measurement accuracy was over 95%, it can be an efficient and effective in-service structural health monitoring for the sediment on the wall of PVC pipes. PMID:25243223

  11. Capability of a Mobile Monitoring System to Provide Real-Time Data Broadcasting and Near Real-Time Source Attribution

    NASA Astrophysics Data System (ADS)

    Erickson, M.; Olaguer, J.; Wijesinghe, A.; Colvin, J.; Neish, B.; Williams, J.

    2014-12-01

    It is becoming increasingly important to understand the emissions and health effects of industrial facilities. Many areas have no or limited sustained monitoring capabilities, making it difficult to quantify the major pollution sources affecting human health, especially in fence line communities. Developments in real-time monitoring and micro-scale modeling offer unique ways to tackle these complex issues. This presentation will demonstrate the capability of coupling real-time observations with micro-scale modeling to provide real-time information and near real-time source attribution. The Houston Advanced Research Center constructed the Mobile Acquisition of Real-time Concentrations (MARC) laboratory. MARC consists of a Ford E-350 passenger van outfitted with a Proton Transfer Reaction Mass Spectrometer (PTR-MS) and meteorological equipment. This allows for the fast measurement of various VOCs important to air quality. The data recorded from the van is uploaded to an off-site database and the information is broadcast to a website in real-time. This provides for off-site monitoring of MARC's observations, which allows off-site personnel to provide immediate input to the MARC operators on how to best achieve project objectives. The information stored in the database can also be used to provide near real-time source attribution. An inverse model has been used to ascertain the amount, location, and timing of emissions based on MARC measurements in the vicinity of industrial sites. The inverse model is based on a 3D micro-scale Eulerian forward and adjoint air quality model known as the HARC model. The HARC model uses output from the Quick Urban and Industrial Complex (QUIC) wind model and requires a 3D digital model of the monitored facility based on lidar or industrial permit data. MARC is one of the instrument platforms deployed during the 2014 Benzene and other Toxics Exposure Study (BEE-TEX) in Houston, TX. The main goal of the study is to quantify and explain the

  12. Real-time polarization-sensitive optical coherence tomography data processing with parallel computing

    PubMed Central

    Liu, Gangjun; Zhang, Jun; Yu, Lingfeng; Xie, Tuqiang; Chen, Zhongping

    2010-01-01

    With the increase of the A-line speed of optical coherence tomography (OCT) systems, real-time processing of acquired data has become a bottleneck. The shared-memory parallel computing technique is used to process OCT data in real time. The real-time processing power of a quad-core personal computer (PC) is analyzed. It is shown that the quad-core PC could provide real-time OCT data processing ability of more than 80K A-lines per second. A real-time, fiber-based, swept source polarization-sensitive OCT system with 20K A-line speed is demonstrated with this technique. The real-time 2D and 3D polarization-sensitive imaging of chicken muscle and pig tendon is also demonstrated. PMID:19904337

  13. Real-time plasma control based on the ISTTOK tomography diagnostica)

    NASA Astrophysics Data System (ADS)

    Carvalho, P. J.; Carvalho, B. B.; Neto, A.; Coelho, R.; Fernandes, H.; Sousa, J.; Varandas, C.; Chávez-Alarcón, E.; Herrera-Velázquez, J. J. E.

    2008-10-01

    The presently available processing power in generic processing units (GPUs) combined with state-of-the-art programmable logic devices benefits the implementation of complex, real-time driven, data processing algorithms for plasma diagnostics. A tomographic reconstruction diagnostic has been developed for the ISTTOK tokamak, based on three linear pinhole cameras each with ten lines of sight. The plasma emissivity in a poloidal cross section is computed locally on a submillisecond time scale, using a Fourier-Bessel algorithm, allowing the use of the output signals for active plasma position control. The data acquisition and reconstruction (DAR) system is based on ATCA technology and consists of one acquisition board with integrated field programmable gate array (FPGA) capabilities and a dual-core Pentium module running real-time application interface (RTAI) Linux. In this paper, the DAR real-time firmware/software implementation is presented, based on (i) front-end digital processing in the FPGA; (ii) a device driver specially developed for the board which enables streaming data acquisition to the host GPU; and (iii) a fast reconstruction algorithm running in Linux RTAI. This system behaves as a module of the central ISTTOK control and data acquisition system (FIRESIGNAL). Preliminary results of the above experimental setup are presented and a performance benchmarking against the magnetic coil diagnostic is shown.

  14. Transmission line relay mis-operation detection based on time-synchronized field data

    DOE PAGES

    Esmaeilian, Ahad; Popovic, Tomo; Kezunovic, Mladen

    2015-05-04

    In this paper, a real-time tool to detect transmission line relay mis-operation is implemented. The tool uses time-synchronized measurements obtained from both ends of the line during disturbances. The proposed fault analysis tool comes into the picture only after the protective device has operated and tripped the line. The proposed methodology is able not only to detect, classify, and locate transmission line faults, but also to accurately confirm whether the line was tripped due to a mis-operation of protective relays. The analysis report includes either detailed description of the fault type and location or detection of relay mis-operation. As such,more » it can be a source of very useful information to support the system restoration. The focus of the paper is on the implementation requirements that allow practical application of the methodology, which is illustrated using the field data obtained the real power system. Testing and validation is done using the field data recorded by digital fault recorders and protective relays. The test data included several hundreds of event records corresponding to both relay mis-operations and actual faults. The discussion of results addresses various challenges encountered during the implementation and validation of the presented methodology.« less

  15. Implementation of real-time ultrasound in a thoracic surgery practice.

    PubMed

    Coonar, Aman S; Hughes, Jacqueline A; Walker, Susan; dePerrot, Marc; Waddell, Thomas K; Pierre, Andrew F; Darling, Gail E; Johnston, Michael R; Keshavjee, Shaf

    2009-05-01

    The purpose of this study was to implement real-time transthoracic ultrasound in a thoracic surgery and lung transplant practice. Ultrasound units that are light, small, robust, and portable are now available. Obstacles to use include demarcation issues between specialties, training, and a perception that basic ultrasound may be difficult to use. The experience of implementing this is described. After a training period, 62 studies were performed in 4 months. Patients and clinicians gave positive feedback. The learning time was short, and with ultrasonic guidance, all interventional procedures were successful at the first attempt, without any complications. Basic transthoracic ultrasound was found to be easy to learn and use by thoracic surgeons, fellows, and specialist nurses. Patients were appreciative. Real-time use may have genuine advantages to patient care.

  16. Evaluation of Real-Time and Off-Line Performance of the Virtual Seismologist Earthquake Early Warning Algorithm in Switzerland

    NASA Astrophysics Data System (ADS)

    Behr, Yannik; Clinton, John; Cua, Georgia; Cauzzi, Carlo; Heimers, Stefan; Kästli, Philipp; Becker, Jan; Heaton, Thomas

    2013-04-01

    The Virtual Seismologist (VS) method is a Bayesian approach to regional network-based earthquake early warning (EEW) originally formulated by Cua and Heaton (2007). Implementation of VS into real-time EEW codes has been an on-going effort of the Swiss Seismological Service at ETH Zürich since 2006, with support from ETH Zürich, various European projects, and the United States Geological Survey (USGS). VS is one of three EEW algorithms that form the basis of the California Integrated Seismic Network (CISN) ShakeAlert system, a USGS-funded prototype end-to-end EEW system that could potentially be implemented in California. In Europe, VS is currently operating as a real-time test system in Switzerland. As part of the on-going EU project REAKT (Strategies and Tools for Real-Time Earthquake Risk Reduction), VS installations in southern Italy, western Greece, Istanbul, Romania, and Iceland are planned or underway. In Switzerland, VS has been running in real-time on stations monitored by the Swiss Seismological Service (including stations from Austria, France, Germany, and Italy) since 2010. While originally based on the Earthworm system it has recently been ported to the SeisComp3 system. Besides taking advantage of SeisComp3's picking and phase association capabilities it greatly simplifies the potential installation of VS at networks in particular those already running SeisComp3. We present the architecture of the new SeisComp3 based version and compare its results from off-line tests with the real-time performance of VS in Switzerland over the past two years. We further show that the empirical relationships used by VS to estimate magnitudes and ground motion, originally derived from southern California data, perform well in Switzerland.

  17. Real-time PCR assay is superior to other methods for the detection of mycoplasma contamination in the cell lines of the National Cell Bank of Iran.

    PubMed

    Molla Kazemiha, Vahid; Bonakdar, Shahin; Amanzadeh, Amir; Azari, Shahram; Memarnejadian, Arash; Shahbazi, Shirin; Shokrgozar, Mohammad Ali; Mahdian, Reza

    2016-08-01

    Mycoplasmas are the most important contaminants of cell cultures throughout the world. They are considered as a major problem in biological studies and biopharmaceutical economic issues. In this study, our aim was to find the best standard technique as a rapid method with high sensitivity, specificity and accuracy for the detection of mycoplasma contamination in the cell lines of the National Cell Bank of Iran. Thirty cell lines suspected to mycoplasma contamination were evaluated by five different techniques including microbial culture, indirect DNA DAPI staining, enzymatic mycoalert(®) assay, conventional PCR and real-time PCR. Five mycoplasma-contaminated cell lines were assigned as positive controls and five mycoplasma-free cell lines as negative controls. The enzymatic method was performed using the mycoalert(®) mycoplasma detection kit. Real-time PCR technique was conducted by PromoKine diagnostic kits. In the conventional PCR method, mycoplasma genus-specific primers were designed to analyze the sequences based on a fixed and common region on 16S ribosomal RNA with PCR product size of 425 bp. Mycoplasma contamination was observed in 60, 56.66, 53.33, 46.66 and 33.33 % of 30 different cell cultures by real-time PCR, PCR, enzymatic mycoalert(®), indirect DNA DAPI staining and microbial culture methods, respectively. The analysis of the results of the different methods showed that the real-time PCR assay was superior the other methods with the sensitivity, specificity, accuracy, predictive value of positive and negative results of 100 %. These values were 94.44, 100, 96.77, 100 and 92.85 % for the conventional PCR method, respectively. Therefore, this study showed that real-time PCR and PCR assays based on the common sequences in the 16S ribosomal RNA are reliable methods with high sensitivity, specificity and accuracy for detection of mycoplasma contamination in cell cultures and other biological products.

  18. Robust real-time horizon detection in full-motion video

    NASA Astrophysics Data System (ADS)

    Young, Grace B.; Bagnall, Bryan; Lane, Corey; Parameswaran, Shibin

    2014-06-01

    The ability to detect the horizon on a real-time basis in full-motion video is an important capability to aid and facilitate real-time processing of full-motion videos for the purposes such as object detection, recognition and other video/image segmentation applications. In this paper, we propose a method for real-time horizon detection that is designed to be used as a front-end processing unit for a real-time marine object detection system that carries out object detection and tracking on full-motion videos captured by ship/harbor-mounted cameras, Unmanned Aerial Vehicles (UAVs) or any other method of surveillance for Maritime Domain Awareness (MDA). Unlike existing horizon detection work, we cannot assume a priori the angle or nature (for e.g. straight line) of the horizon, due to the nature of the application domain and the data. Therefore, the proposed real-time algorithm is designed to identify the horizon at any angle and irrespective of objects appearing close to and/or occluding the horizon line (for e.g. trees, vehicles at a distance) by accounting for its non-linear nature. We use a simple two-stage hierarchical methodology, leveraging color-based features, to quickly isolate the region of the image containing the horizon and then perform a more ne-grained horizon detection operation. In this paper, we present our real-time horizon detection results using our algorithm on real-world full-motion video data from a variety of surveillance sensors like UAVs and ship mounted cameras con rming the real-time applicability of this method and its ability to detect horizon with no a priori assumptions.

  19. Near real-time digital holographic microscope based on GPU parallel computing

    NASA Astrophysics Data System (ADS)

    Zhu, Gang; Zhao, Zhixiong; Wang, Huarui; Yang, Yan

    2018-01-01

    A transmission near real-time digital holographic microscope with in-line and off-axis light path is presented, in which the parallel computing technology based on compute unified device architecture (CUDA) and digital holographic microscopy are combined. Compared to other holographic microscopes, which have to implement reconstruction in multiple focal planes and are time-consuming the reconstruction speed of the near real-time digital holographic microscope can be greatly improved with the parallel computing technology based on CUDA, so it is especially suitable for measurements of particle field in micrometer and nanometer scale. Simulations and experiments show that the proposed transmission digital holographic microscope can accurately measure and display the velocity of particle field in micrometer scale, and the average velocity error is lower than 10%.With the graphic processing units(GPU), the computing time of the 100 reconstruction planes(512×512 grids) is lower than 120ms, while it is 4.9s using traditional reconstruction method by CPU. The reconstruction speed has been raised by 40 times. In other words, it can handle holograms at 8.3 frames per second and the near real-time measurement and display of particle velocity field are realized. The real-time three-dimensional reconstruction of particle velocity field is expected to achieve by further optimization of software and hardware. Keywords: digital holographic microscope,

  20. Ultrasonic guided wave for monitoring corrosion of steel bar

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Qin, Lei; Huang, Bosheng

    2018-01-01

    Steel corrosion of reinforced concrete structures has become a serious problem all over the word. In this paper, the work aims at monitoring steel corrosion using ultrasonic guided wave (UGW). Ultrasonic guided wave monitoring is a dynamic and non-destructive testing technology. The advantages of ultrasonic guided wave monitoring for reinforcement corrosion are real-time, online and continuous. In addition, it can judge the different stages of steel bar corrosion, which achieved non-destructive detection.

  1. Real-time door detection for indoor autonomous vehicle

    NASA Astrophysics Data System (ADS)

    He, Zhihao; Zhu, Ming

    2017-07-01

    Indoor Autonomous Vehicle(IAV) is used in many indoor scenes. Such as hotels and hospitals. Door detection is a key issue to guide the IAV into rooms. In this paper, we consider door detection in the use of indoor navigation of IAV. Since real-time properties are important for real-world IAV, the detection algorithm must be fast enough. Most monocular-camera based door detection model need a perfect detection of the four line segments of the door or the four corners. But in many situations, line segments could be extended or cut off. And there could be many false detected corners. And few of them can distinguish doors from door-like objects with door-like shape effectively. We proposed a 2-D vision model of the door that is made up of line segments. The number of parts detected is used to determine the possibility of a door. Our algorithm is tested on a database of doors.1 The robustness and real-time are verified. The precision is 89.4%. Average time consumed for processing a 640x320 figure is 44.73ms.

  2. [Methods Used for Monitoring Cure Reactions in Real-time in an Autoclave

    NASA Technical Reports Server (NTRS)

    Cooper, John B.; Wise, Kent L.; Jensen, Brian J. (Technical Monitor)

    2000-01-01

    The goal of the research was to investigate methods for monitoring cure reactions in real-time in an autoclave. This is of particular importance to NASA Langley Research Center because polyimides were proposed for use in the High Speed Civil Transport (HSCT) program. Understanding the cure chemistry behind the polyimides would allow for intelligent processing of the composites made from their use. This work has led to two publications in peer-reviewed journals and a patent. The journal articles are listed as Appendix A which is on the instrument design of the research and Appendix B which is on the cure chemistry. Also, a patent has been awarded for the instrumental design developed under this grant which is given as Appendix C. There has been a significant amount of research directed at developing methods for monitoring cure reactions in real-time within the autoclave. The various research efforts can be categorized as methods providing either direct chemical bonding information or methods that provide indirect chemical bonding information. Methods falling into the latter category are fluorescence, dielectric loss, ultrasonic and similar type methods. Correlation of such measurements with the underlying chemistry is often quite difficult since these techniques do not allow monitoring of the curing chemistry which is ultimately responsible for material properties. Direct methods such as vibrational spectroscopy, however, can often be easily correlated with the underlying chemistry of a reaction. Such methods include Raman spectroscopy, mid-IR absorbance, and near-IR absorbance. With the recent advances in fiber-optics, these spectroscopic techniques can be applied to remote on-line monitoring.

  3. Development of glucose measurement system based on pulsed laser-induced ultrasonic method

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Wan, Bin; Liu, Guodong; Xiong, Zhihua

    2016-09-01

    In this study, a kind of glucose measurement system based on pulsed-induced ultrasonic technique was established. In this system, the lateral detection mode was used, the Nd: YAG pumped optical parametric oscillator (OPO) pulsed laser was used as the excitation source, the high sensitivity ultrasonic transducer was used as the signal detector to capture the photoacoustic signals of the glucose. In the experiments, the real-time photoacoustic signals of glucose aqueous solutions with different concentrations were captured by ultrasonic transducer and digital oscilloscope. Moreover, the photoacoustic peak-to-peak values were gotten in the wavelength range from 1300nm to 2300nm. The characteristic absorption wavelengths of glucose were determined via the difference spectral method and second derivative method. In addition, the prediction models of predicting glucose concentrations were established via the multivariable linear regression algorithm and the optimal prediction model of corresponding optimal wavelengths. Results showed that the performance of the glucose system based on the pulsed-induced ultrasonic detection method was feasible. Therefore, the measurement scheme and prediction model have some potential value in the fields of non-invasive monitoring the concentration of the glucose gradient, especially in the food safety and biomedical fields.

  4. A robust indicator based on singular value decomposition for flaw feature detection from noisy ultrasonic signals

    NASA Astrophysics Data System (ADS)

    Cui, Ximing; Wang, Zhe; Kang, Yihua; Pu, Haiming; Deng, Zhiyang

    2018-05-01

    Singular value decomposition (SVD) has been proven to be an effective de-noising tool for flaw echo signal feature detection in ultrasonic non-destructive evaluation (NDE). However, the uncertainty in the arbitrary manner of the selection of an effective singular value weakens the robustness of this technique. Improper selection of effective singular values will lead to bad performance of SVD de-noising. What is more, the computational complexity of SVD is too large for it to be applied in real-time applications. In this paper, to eliminate the uncertainty in SVD de-noising, a novel flaw indicator, named the maximum singular value indicator (MSI), based on short-time SVD (STSVD), is proposed for flaw feature detection from a measured signal in ultrasonic NDE. In this technique, the measured signal is first truncated into overlapping short-time data segments to put feature information of a transient flaw echo signal in local field, and then the MSI can be obtained from the SVD of each short-time data segment. Research shows that this indicator can clearly indicate the location of ultrasonic flaw signals, and the computational complexity of this STSVD-based indicator is significantly reduced with the algorithm proposed in this paper. Both simulation and experiments show that this technique is very efficient for real-time application in flaw detection from noisy data.

  5. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George I.; Stetson, Howard K.

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto-Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner- TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the

  6. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George; Stetson, Howard

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto- Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner-TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the

  7. Amide I SFG Spectral Line Width Probes the Lipid-Peptide and Peptide-Peptide Interactions at Cell Membrane In Situ and in Real Time.

    PubMed

    Zhang, Baixiong; Tan, Junjun; Li, Chuanzhao; Zhang, Jiahui; Ye, Shuji

    2018-06-13

    The balance of lipid-peptide and peptide-peptide interactions at cell membrane is essential to a large variety of cellular processes. In this study, we have experimentally demonstrated for the first time that sum frequency generation vibrational spectroscopy can be used to probe the peptide-peptide and lipid-peptide interactions in cell membrane in situ and in real time by determination of the line width of amide I band of protein backbone. Using a "benchmark" model of α-helical WALP23, it is found that the dominated lipid-peptide interaction causes a narrow line width of the amide I band, whereas the peptide-peptide interaction can markedly broaden the line width. When WALP23 molecules insert into the lipid bilayer, a quite narrow line width of the amide I band is observed because of the lipid-peptide interaction. In contrast, when the peptide lies down on the bilayer surface, the line width of amide I band becomes very broad owing to the peptide-peptide interaction. In terms of the real-time change in the line width, the transition from peptide-peptide interaction to lipid-peptide interaction is monitored during the insertion of WALP23 into 1,2-dipalmitoyl- sn-glycero-3-phospho-(1'- rac-glycerol) (DPPG) lipid bilayer. The dephasing time of a pure α-helical WALP23 in 1-palmitoyl-2-oleoyl- sn-glycero-3-phospho-(1'- rac-glycerol) and DPPG bilayer is determined to be 2.2 and 0.64 ps, respectively. The peptide-peptide interaction can largely accelerate the dephasing time.

  8. Real-time diagnostics of the reusable rocket engine using on-line system identification

    NASA Technical Reports Server (NTRS)

    Guo, T.-H.; Merrill, W.; Duyar, A.

    1990-01-01

    A model-based failure diagnosis system has been proposed for real-time diagnosis of SSME failures. Actuation, sensor, and system degradation failure modes are all considered by the proposed system. In the case of SSME actuation failures, it was shown that real-time identification can effectively be used for failure diagnosis purposes. It is a direct approach since it reduces the detection, isolation, and the estimation of the extent of the failures to the comparison of parameter values before and after the failure. As with any model-based failure detection system, the proposed approach requires a fault model that embodies the essential characteristics of the failure process. The proposed diagnosis approach has the added advantage that it can be used as part of an intelligent control system for failure accommodation purposes.

  9. Inspection of additive manufactured parts using laser ultrasonics

    NASA Astrophysics Data System (ADS)

    Lévesque, D.; Bescond, C.; Lord, M.; Cao, X.; Wanjara, P.; Monchalin, J.-P.

    2016-02-01

    Additive manufacturing is a novel technology of high importance for global sustainability of resources. As additive manufacturing involves typically layer-by-layer fusion of the feedstock (wire or powder), an important characteristic of the fabricated metallic structural parts, such as those used in aero-engines, is the performance, which is highly related to the presence of defects, such as cracks, lack of fusion or bonding between layers, and porosity. For this purpose, laser ultrasonics is very attractive due to its non-contact nature and is especially suited for the analysis of parts of complex geometries. In addition, the technique is well adapted to online implementation and real-time measurement during the manufacturing process. The inspection can be performed from either the top deposited layer or the underside of the substrate and the defects can be visualized using laser ultrasonics combined with the synthetic aperture focusing technique (SAFT). In this work, a variety of results obtained off-line on INCONEL® 718 and Ti-6Al-4V coupons that were manufactured using laser powder, laser wire, or electron beam wire deposition are reported and most defects detected were further confirmed by X-ray micro-computed tomography.

  10. On Real-Time Systems Using Local Area Networks.

    DTIC Science & Technology

    1987-07-01

    87-35 July, 1987 CS-TR-1892 On Real - Time Systems Using Local Area Networks*I VShem-Tov Levi Department of Computer Science Satish K. Tripathit...1892 On Real - Time Systems Using Local Area Networks* Shem-Tov Levi Department of Computer Science Satish K. Tripathit Department of Computer Science...constraints and the clock systems that feed the time to real - time systems . A model for real-time system based on LAN communication is presented in

  11. Automatic Match between Delimitation Line and Real Terrain Based on Least-Cost Path Analysis

    NASA Astrophysics Data System (ADS)

    Feng, C. Q.; Jiang, N.; Zhang, X. N.; Ma, J.

    2013-11-01

    Nowadays, during the international negotiation on separating dispute areas, manual adjusting is lonely applied to the match between delimitation line and real terrain, which not only consumes much time and great labor force, but also cannot ensure high precision. Concerning that, the paper mainly explores automatic match between them and study its general solution based on Least -Cost Path Analysis. First, under the guidelines of delimitation laws, the cost layer is acquired through special disposals of delimitation line and terrain features line. Second, a new delimitation line gets constructed with the help of Least-Cost Path Analysis. Third, the whole automatic match model is built via Module Builder in order to share and reuse it. Finally, the result of automatic match is analyzed from many different aspects, including delimitation laws, two-sided benefits and so on. Consequently, a conclusion is made that the method of automatic match is feasible and effective.

  12. Fast-tracking determination of homozygous transgenic lines and transgene stacking using a reliable quantitative real-time PCR assay.

    PubMed

    Wang, Xianghong; Jiang, Daiming; Yang, Daichang

    2015-01-01

    The selection of homozygous lines is a crucial step in the characterization of newly generated transgenic plants. This is particularly time- and labor-consuming when transgenic stacking is required. Here, we report a fast and accurate method based on quantitative real-time PCR with a rice gene RBE4 as a reference gene for selection of homozygous lines when using multiple transgenic stacking in rice. Use of this method allowed can be used to determine the stacking of up to three transgenes within four generations. Selection accuracy reached 100 % for a single locus and 92.3 % for two loci. This method confers distinct advantages over current transgenic research methodologies, as it is more accurate, rapid, and reliable. Therefore, this protocol could be used to efficiently select homozygous plants and to expedite time- and labor-consuming processes normally required for multiple transgene stacking. This protocol was standardized for determination of multiple gene stacking in molecular breeding via marker-assisted selection.

  13. Ultrasonic Time Reversal Mirrors

    NASA Astrophysics Data System (ADS)

    Fink, Mathias; Montaldo, Gabriel; Tanter, Mickael

    2004-11-01

    For more than ten years, time reversal techniques have been developed in many different fields of applications including detection of defects in solids, underwater acoustics, room acoustics and also ultrasound medical imaging and therapy. The essential property that makes time reversed acoustics possible is that the underlying physical process of wave propagation would be unchanged if time were reversed. In a non dissipative medium, the equations governing the waves guarantee that for every burst of sound that diverges from a source there exists in theory a set of waves that would precisely retrace the path of the sound back to the source. If the source is pointlike, this allows focusing back on the source whatever the medium complexity. For this reason, time reversal represents a very powerful adaptive focusing technique for complex media. The generation of this reconverging wave can be achieved by using Time Reversal Mirrors (TRM). It is made of arrays of ultrasonic reversible piezoelectric transducers that can record the wavefield coming from the sources and send back its time-reversed version in the medium. It relies on the use of fully programmable multi-channel electronics. In this paper we present some applications of iterative time reversal mirrors to target detection in medical applications.

  14. Continuous Ultrasonic Inspection of Extruded Wood-Plastic Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Brian J.; Bender, Donald A.

    Nondestructive evaluation (NDE) techniques are needed for in-line monitoring of wood-plastic composite (WPC) quality during manufacturing for process control. Through-transmission ultrasonic inspection is useful in characterizing stiffness and detecting cracks and voids in a range of materials; however, little is documented about ultrasound propagation in WPC materials. The objectives of this research were to determine applicable ultrasonic transducer frequencies, coupling methods, configurations and placements for wave speed monitoring and web defect detection within an extrusion process; to quantify the effects of temperature on ultrasonic parameters; and to develop a prototype ultrasonic inspection system for a full-size extrusion line. An angledmore » beam, water-coupled ultrasonic inspection system using a pair of 50-kHz narrowband transducers was adequate for monitoring wave speed parallel to the extrusion direction. For locating internal web defects, water-coupled, 500-kHz broadband ultrasonic transducers were used in a through-thickness transmission setup. Temperature compensation factors were developed to adjust ultrasonic wave speed measurements. The prototype inspection system was demonstrated in a 55 mm conical twin-screw extrusion line.« less

  15. Real-time trajectory optimization on parallel processors

    NASA Technical Reports Server (NTRS)

    Psiaki, Mark L.

    1993-01-01

    A parallel algorithm has been developed for rapidly solving trajectory optimization problems. The goal of the work has been to develop an algorithm that is suitable to do real-time, on-line optimal guidance through repeated solution of a trajectory optimization problem. The algorithm has been developed on an INTEL iPSC/860 message passing parallel processor. It uses a zero-order-hold discretization of a continuous-time problem and solves the resulting nonlinear programming problem using a custom-designed augmented Lagrangian nonlinear programming algorithm. The algorithm achieves parallelism of function, derivative, and search direction calculations through the principle of domain decomposition applied along the time axis. It has been encoded and tested on 3 example problems, the Goddard problem, the acceleration-limited, planar minimum-time to the origin problem, and a National Aerospace Plane minimum-fuel ascent guidance problem. Execution times as fast as 118 sec of wall clock time have been achieved for a 128-stage Goddard problem solved on 32 processors. A 32-stage minimum-time problem has been solved in 151 sec on 32 processors. A 32-stage National Aerospace Plane problem required 2 hours when solved on 32 processors. A speed-up factor of 7.2 has been achieved by using 32-nodes instead of 1-node to solve a 64-stage Goddard problem.

  16. Real-time Magnetic Resonance Imaging Guidance for Cardiovascular Procedures

    PubMed Central

    Horvath, Keith A.; Li, Ming; Mazilu, Dumitru; Guttman, Michael A.; McVeigh, Elliot R.

    2008-01-01

    Magnetic resonance imaging (MRI) of the cardiovascular system has proven to be an invaluable diagnostic tool. Given the ability to allow for real-time imaging, MRI guidance of intraoperative procedures can provide superb visualization which can facilitate a variety of interventions and minimize the trauma of the operations as well. In addition to the anatomic detail, MRI can provide intraoperative assessment of organ and device function. Instruments and devices can be marked to enhance visualization and tracking. All of which is an advance over standard x-ray or ultrasonic imaging. PMID:18395633

  17. Real-time design with peer tasks

    NASA Technical Reports Server (NTRS)

    Goforth, Andre; Howes, Norman R.; Wood, Jonathan D.; Barnes, Michael J.

    1995-01-01

    We introduce a real-time design methodology for large scale, distributed, parallel architecture, real-time systems (LDPARTS), as an alternative to those methods using rate or dead-line monotonic analysis. In our method the fundamental units of prioritization, work items, are domain specific objects with timing requirements (deadlines) found in user's specification. A work item consists of a collection of tasks of equal priority. Current scheduling theories are applied with artifact deadlines introduced by the designer whereas our method schedules work items to meet user's specification deadlines (sometimes called end-to-end deadlines). Our method supports these scheduling properties. Work item scheduling is based on domain specific importance instead of task level urgency and still meets as many user specification deadlines as can be met by scheduling tasks with respect to urgency. Second, the minimum (closest) on-line deadline that can be guaranteed for a work item of highest importance, scheduled at run time, is approximately the inverse of the throughput, measured in work items per second. Third, throughput is not degraded during overload and instead of resorting to task shedding during overload, the designer can specify which work items to shed. We prove these properties in a mathematical model.

  18. Laser ultrasonics for bulk-density distribution measurement on green ceramic tiles

    NASA Astrophysics Data System (ADS)

    Revel, G. M.; Cavuto, A.; Pandarese, G.

    2016-10-01

    In this paper a Laser Ultrasonics (LUT) system is developed and applied to measure bulk density distribution of green ceramic tiles, which are porous materials with low heat conductivity. Bulk density of green ceramic bodies is a fundamental parameter to be kept under control in the industrial production of ceramic tiles. The LUT system proposed is based on a Nd:YAG pulsed laser for excitation and an air-coupled electro-capacitive transducer for detection. The paper reports experimental apparent bulk-density measurements on white ceramic bodies after a calibration procedures. The performances observed are better than those previously achieved by authors using air-coupled ultrasonic probes for both emission and detection, allowing to reduce average uncertainty down to about ±6 kg/m3 (±0.3%), thanks to the increase in excitation efficiency and lateral resolution, while maintaining potential flexibility for on-line application. The laser ultrasonic procedure proposed is available for both on-line and off-line application. In this last case it is possible to obtain bulk density maps with high spatial resolution by a 2D scan without interrupting the production process.

  19. The improved broadband Real-Time Seismic Network in Romania

    NASA Astrophysics Data System (ADS)

    Neagoe, C.; Ionescu, C.

    2009-04-01

    Starting with 2002 the National Institute for Earth Physics (NIEP) has developed its real-time digital seismic network. This network consists of 96 seismic stations of which 48 broad band and short period stations and two seismic arrays are transmitted in real-time. The real time seismic stations are equipped with Quanterra Q330 and K2 digitizers, broadband seismometers (STS2, CMG40T, CMG 3ESP, CMG3T) and strong motions sensors Kinemetrics episensors (+/- 2g). SeedLink and AntelopeTM (installed on MARMOT) program packages are used for real-time (RT) data acquisition and exchange. The communication from digital seismic stations to the National Data Center in Bucharest is assured by 5 providers (GPRS, VPN, satellite communication, radio lease line and internet), which will assure the back-up communications lines. The processing centre runs BRTT's AntelopeTM 4.10 data acquisition and processing software on 2 workstations for real-time processing and post processing. The Antelope Real-Time System is also providing automatic event detection, arrival picking, event location and magnitude calculation. It provides graphical display and reporting within near-real-time after a local or regional event occurred. Also at the data center was implemented a system to collect macroseismic information using the internet on which macro seismic intensity maps are generated. In the near future at the data center will be install Seiscomp 3 data acquisition processing software on a workstation. The software will run in parallel with Antelope software as a back-up. The present network will be expanded in the near future. In the first half of 2009 NIEP will install 8 additional broad band stations in Romanian territory, which also will be transmitted to the data center in real time. The Romanian Seismic Network is permanently exchanging real -time waveform data with IRIS, ORFEUS and different European countries through internet. In Romania, magnitude and location of an earthquake are now

  20. Influence of gas law on ultrasonic behaviour of porous media under pressure.

    PubMed

    Griffiths, S; Ayrault, C

    2010-06-01

    This paper deals with the influence of gas law on ultrasonic behaviour of porous media when the saturating fluid is high pressured. Previous works have demonstrated that ultrasonic transmission through a porous sample with variations of the static pressure (up to 18 bars) of the saturating fluid allows the characterization of high damping materials. In these studies, the perfect gas law was used to link static pressure and density, which is disputable for high pressures. This paper compares the effects of real and perfect gas laws on modeled transmission coefficient for porous foams at these pressures. Direct simulations and a mechanical parameters estimation from minimization show that results are very similar in both cases. The real gas law is thus not necessary to describe the acoustic behaviour of porous media at low ultrasonic frequencies (100 kHz) up to 20 bars. 2010 Elsevier B.V. All rights reserved.

  1. Ultrasonic nondestructive materials characterization

    NASA Technical Reports Server (NTRS)

    Green, R. E., Jr.

    1986-01-01

    A brief review of ultrasonic wave propagation in solid materials is presented with consideration of the altered behavior in anisotropic and nonlinear elastic materials in comparison with isotropic and linear elastic materials. Some experimental results are described in which ultrasonic velocity and attenuation measurements give insight into materials microstructure and associated mechanical properties. Recent developments with laser beam non-contact generation and detection of ultrasound are presented. The results of several years of experimental measurements using high-power ultrasound are discussed, which provide substantial evidence of the inability of presently accepted theories to fully explain the interaction of ultrasound with solid materials. Finally, a special synchrotron X-ray topographic system is described which affords the possibility of observing direct interaction of ultrasonic waves with the microstructural features of real crystalline solid materials for the first time.

  2. A real-time control system for the control of suspended interferometers based on hybrid computing techniques

    NASA Astrophysics Data System (ADS)

    Acernese, Fausto; Barone, Fabrizio; De Rosa, Rosario; Eleuteri, Antonio; Milano, Leopoldo; Pardi, Silvio; Ricciardi, Iolanda; Russo, Guido

    2004-09-01

    One of the main requirements of a digital system for the control of interferometric detectors of gravitational waves is the computing power, that is a direct consequence of the increasing complexity of the digital algorithms necessary for the control signals generation. For this specific task many specialized non standard real-time architectures have been developed, often very expensive and difficult to upgrade. On the other hand, such computing power is generally fully available for off-line applications on standard Pc based systems. Therefore, a possible and obvious solution may be provided by the integration of both the real-time and off-line architecture resulting in a hybrid control system architecture based on standards available components, trying to get both the advantages of the perfect data synchronization provided by the real-time systems and by the large computing power available on Pc based systems. Such integration may be provided by the implementation of the link between the two different architectures through the standard Ethernet network, whose data transfer speed is largely increasing in these years, using the TCP/IP, UDP and raw Ethernet protocols. In this paper we describe the architecture of an hybrid Ethernet based real-time control system prototype we implemented in Napoli, discussing its characteristics and performances. Finally we discuss a possible application to the real-time control of a suspended mass of the mode cleaner of the 3m prototype optical interferometer for gravitational wave detection (IDGW-3P) operational in Napoli.

  3. Quantitative ultrasonic testing of acoustically anisotropic materials with verification on austenitic and dissimilar weld joints

    NASA Astrophysics Data System (ADS)

    Boller, C.; Pudovikov, S.; Bulavinov, A.

    2012-05-01

    Austenitic stainless steel materials are widely used in a variety of industry sectors. In particular, the material is qualified to meet the design criteria of high quality in safety related applications. For example, the primary loop of the most of the nuclear power plants in the world, due to high durability and corrosion resistance, is made of this material. Certain operating conditions may cause a range of changes in the integrity of the component, and therefore require nondestructive testing at reasonable intervals. These in-service inspections are often performed using ultrasonic techniques, in particular when cracking is of specific concern. However, the coarse, dendritic grain structure of the weld material, formed during the welding process, is extreme and unpredictably anisotropic. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of ultrasonic Phased Array techniques becomes desirable. The "Sampling Phased Array" technique, invented and developed by Fraunhofer IZFP, allows the acquisition of time signals (A-scans) for each individual transducer element of the array along with fast image reconstruction techniques based on synthetic focusing algorithms. The reconstruction considers the sound propagation from each image pixel to the individual sensor element. For anisotropic media, where the sound beam is deflected and the sound path is not known a-priori, a novel phase adjustment technique called "Reverse Phase Matching" is implemented. By taking into account the anisotropy and inhomogeneity of the weld structure, a ray tracing algorithm for modeling the acoustic wave propagation and calculating the sound propagation time is applied. This technique can be utilized for 2D and 3D real time image reconstruction. The

  4. Real-Time CORBA

    DTIC Science & Technology

    2000-10-01

    control systems and prototyped the approach by porting the ILU ORB from Xerox to the Lynx real - time operating system . They then provided a distributed...compliant real - time operating system , a real-time ORB, and an ODMG-compliant real-time ODBMS [12]. The MITRE system is an infrastructure for...the server’s local operating system can handle. For instance, on a node controlled by the VXWorks real - time operating system with 256 local

  5. Online gaming for learning optimal team strategies in real time

    NASA Astrophysics Data System (ADS)

    Hudas, Gregory; Lewis, F. L.; Vamvoudakis, K. G.

    2010-04-01

    This paper first presents an overall view for dynamical decision-making in teams, both cooperative and competitive. Strategies for team decision problems, including optimal control, zero-sum 2-player games (H-infinity control) and so on are normally solved for off-line by solving associated matrix equations such as the Riccati equation. However, using that approach, players cannot change their objectives online in real time without calling for a completely new off-line solution for the new strategies. Therefore, in this paper we give a method for learning optimal team strategies online in real time as team dynamical play unfolds. In the linear quadratic regulator case, for instance, the method learns the Riccati equation solution online without ever solving the Riccati equation. This allows for truly dynamical team decisions where objective functions can change in real time and the system dynamics can be time-varying.

  6. [Effects of ultrasonic pretreatment on drying characteristics of sewage sludge].

    PubMed

    Li, Run-Dong; Yang, Yu-Ting; Li, Yan-Long; Niu, Hui-Chang; Wei, Li-Hong; Sun, Yang; Ke, Xin

    2009-11-01

    The high water content of sewage sludge has engendered many inconveniences to its treatment and disposal. While ultrasonic takes on unique advantages on the sludge drying because of its high ultrasonic power, mighty penetrating capability and the ability of causing cavitations. Thus this research studies the characteristics influences of ultrasonic bring to the sludge drying and effects of the exposure time, ultrasonic generator power, temperatures of ultrasonic and drying temperature on the drying characteristics of dewatered sludge. Results indicate that ultrasonic pretreatment could speed up evaporation of the free water in sludge surface and help to end the drying stage with constant speed. In addition, ultrasonic treatment can effectively improve the sludge drying efficiency which could be more evident with the rise of the ultrasonic power (100-250 W), ultrasonic temperature and drying temperature. If dried under low temperature such as 105 degrees C, sludge will have premium drying characteristics when radiated under ultrasound for a shorter time such as 3 min. In the end, the ultrasonic treatment is expected to be an effective way to the low-cost sludge drying and also be an important reference to the optimization of the sludge drying process because of its effects on the increase of sludge drying efficiency.

  7. An in-line spectrophotometer on a centrifugal microfluidic platform for real-time protein determination and calibration.

    PubMed

    Ding, Zhaoxiong; Zhang, Dongying; Wang, Guanghui; Tang, Minghui; Dong, Yumin; Zhang, Yixin; Ho, Ho-Pui; Zhang, Xuping

    2016-09-21

    In this paper, an in-line, low-cost, miniature and portable spectrophotometric detection system is presented and used for fast protein determination and calibration in centrifugal microfluidics. Our portable detection system is configured with paired emitter and detector diodes (PEDD), where the light beam between both LEDs is collimated with enhanced system tolerance. It is the first time that a physical model of PEDD is clearly presented, which could be modelled as a photosensitive RC oscillator. A portable centrifugal microfluidic system that contains a wireless port in real-time communication with a smartphone has been built to show that PEDD is an effective strategy for conducting rapid protein bioassays with detection performance comparable to that of a UV-vis spectrophotometer. The choice of centrifugal microfluidics offers the unique benefits of highly parallel fluidic actuation at high accuracy while there is no need for a pump, as inertial forces are present within the entire spinning disc and accurately controlled by varying the spinning speed. As a demonstration experiment, we have conducted the Bradford assay for bovine serum albumin (BSA) concentration calibration from 0 to 2 mg mL(-1). Moreover, a novel centrifugal disc with a spiral microchannel is proposed for automatic distribution and metering of the sample to all the parallel reactions at one time. The reported lab-on-a-disc scheme with PEDD detection may offer a solution for high-throughput assays, such as protein density calibration, drug screening and drug solubility measurement that require the handling of a large number of reactions in parallel.

  8. Toroidal sensor arrays for real-time photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Bychkov, Anton S.; Cherepetskaya, Elena B.; Karabutov, Alexander A.; Makarov, Vladimir A.

    2017-07-01

    This article addresses theoretical and numerical investigation of image formation in photoacoustic (PA) imaging with complex-shaped concave sensor arrays. The spatial resolution and the size of sensitivity region of PA and laser ultrasonic (LU) imaging systems are assessed using sensitivity maps and spatial resolution maps in the image plane. This paper also discusses the relationship between the size of high-sensitivity regions and the spatial resolution of real-time imaging systems utilizing toroidal arrays. It is shown that the use of arrays with toroidal geometry significantly improves the diagnostic capabilities of PA and LU imaging to investigate biological objects, rocks, and composite materials.

  9. Real-time logic modelling on SpaceWire

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Ma, Yunpeng; Fei, Haidong; Wang, Xingyou

    2017-04-01

    A SpaceWire is a standard for on-board satellite networks as the basis for future data-handling architectures. However, it cannot meet the deterministic requirement for safety/time critical application in spacecraft, where the delay of real-time (RT) message streams must be guaranteed. Therefore, SpaceWire-D is developed that provides deterministic delivery over a SpaceWire network. Formal analysis and verification of real-time systems is critical to their development and safe implementation, and is a prerequisite for obtaining their safety certification. Failure to meet specified timing constraints such as deadlines in hard real-time systems may lead to catastrophic results. In this paper, a formal verification method, Real-Time Logic (RTL), has been proposed to specify and verify timing properties of SpaceWire-D network. Based on the principal of SpaceWire-D protocol, we firstly analyze the timing properties of fundamental transactions, such as RMAP WRITE, and RMAP READ. After that, the RMAP WRITE transaction structure is modeled in Real-Time Logic (RTL) and Presburger Arithmetic representations. And then, the associated constraint graph and safety analysis is provided. Finally, it is suggested that RTL method can be useful for the protocol evaluation and provision of recommendation for further protocol evolutions.

  10. Real-time radionuclide identification in γ-emitter mixtures based on spiking neural network.

    PubMed

    Bobin, C; Bichler, O; Lourenço, V; Thiam, C; Thévenin, M

    2016-03-01

    Portal radiation monitors dedicated to the prevention of illegal traffic of nuclear materials at international borders need to deliver as fast as possible a radionuclide identification of a potential radiological threat. Spectrometry techniques applied to identify the radionuclides contributing to γ-emitter mixtures are usually performed using off-line spectrum analysis. As an alternative to these usual methods, a real-time processing based on an artificial neural network and Bayes' rule is proposed for fast radionuclide identification. The validation of this real-time approach was carried out using γ-emitter spectra ((241)Am, (133)Ba, (207)Bi, (60)Co, (137)Cs) obtained with a high-efficiency well-type NaI(Tl). The first tests showed that the proposed algorithm enables a fast identification of each γ-emitting radionuclide using the information given by the whole spectrum. Based on an iterative process, the on-line analysis only needs low-statistics spectra without energy calibration to identify the nature of a radiological threat. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Volumetric Real-Time Imaging Using a CMUT Ring Array

    PubMed Central

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N.; O’Donnell, Matthew; Sahn, David J.; Khuri-Yakub, Butrus T.

    2012-01-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods—flash, classic phased array (CPA), and synthetic phased array (SPA)—were used in the study. For SPA imaging, two techniques to improve the image quality—Hadamard coding and aperture weighting—were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-to-noise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming. PMID:22718870

  12. Volumetric real-time imaging using a CMUT ring array.

    PubMed

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N; O'Donnell, Matthew; Sahn, David J; Khuri-Yakub, Butrus T

    2012-06-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods--flash, classic phased array (CPA), and synthetic phased array (SPA)--were used in the study. For SPA imaging, two techniques to improve the image quality--Hadamard coding and aperture weighting--were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-to-noise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming.

  13. High-speed real-time heterodyne interferometry using software-defined radio.

    PubMed

    Riobo, L M; Veiras, F E; Gonzalez, M G; Garea, M T; Sorichetti, P A

    2018-01-10

    This paper describes the design and performance of a phase demodulation scheme based on software-defined radio (SDR), applied in heterodyne interferometry. The phase retrieval is performed in real time by means of a low-cost SDR with a wideband optoelectronic front-end. Compared to other demodulation schemes, the system is quite simpler, versatile, and of lower cost. The performance of the demodulator is demonstrated by measuring the displacement per volt of a thin-film polymeric piezoelectric transducer based on polyvinylidene fluoride for ultrasonic applications. We measured displacements between 3.5 pm and 122 pm with 7% relative uncertainty, in the frequency range from 20 kHz to 1 MHz.

  14. Potential and limitation of mid-infrared attenuated total reflectance spectroscopy for real time analysis of raw milk in milking lines.

    PubMed

    Linker, Raphael; Etzion, Yael

    2009-02-01

    Real-time information about milk composition would be very useful for managing the milking process. Mid-infrared spectroscopy, which relies on fundamental modes of molecular vibrations, is routinely used for off-line analysis of milk and the purpose of the present study was to investigate the potential of attenuated total reflectance mid-infrared spectroscopy for real-time analysis of milk in milking lines. The study was conducted with 189 samples from over 70 cows that were collected during an 18 months period. Principal component analysis, wavelets and neural networks were used to develop various models for predicting protein and fat concentration. Although reasonable protein models were obtained for some seasonal sub-datasets (determination errors line analysis, these results show that the potential of mid-infrared attenuated total reflectance spectroscopy for in-line milk analysis is indeed quite limited.

  15. High Temperature Ultrasonic Probe and Pulse-Echo Probe Mounting Fixture for Testing and Blind Alignment on Steam Pipes

    NASA Technical Reports Server (NTRS)

    Lih, Shyh-Shiuh (Inventor); Takano, Nobuyuki (Inventor); Lee, Hyeong Jae (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Ostlund, Patrick N. (Inventor)

    2017-01-01

    A high temperature ultrasonic probe and a mounting fixture for attaching and aligning the probe to a steam pipe using blind alignment. The high temperature ultrasonic probe includes a piezoelectric transducer having a high temperature. The probe provides both transmitting and receiving functionality. The mounting fixture allows the high temperature ultrasonic probe to be accurately aligned to the bottom external surface of the steam pipe so that the presence of liquid water in the steam pipe can be monitored. The mounting fixture with a mounted high temperature ultrasonic probe are used to conduct health monitoring of steam pipes and to track the height of condensed water through the wall in real-time.

  16. Perception SoC Based on an Ultrasonic Array of Sensors: Efficient DSP Core Implementation and Subsequent Experimental Results

    NASA Astrophysics Data System (ADS)

    Kassem, A.; Sawan, M.; Boukadoum, M.; Haidar, A.

    2005-12-01

    We are concerned with the design, implementation, and validation of a perception SoC based on an ultrasonic array of sensors. The proposed SoC is dedicated to ultrasonic echography applications. A rapid prototyping platform is used to implement and validate the new architecture of the digital signal processing (DSP) core. The proposed DSP core efficiently integrates all of the necessary ultrasonic B-mode processing modules. It includes digital beamforming, quadrature demodulation of RF signals, digital filtering, and envelope detection of the received signals. This system handles 128 scan lines and 6400 samples per scan line with a[InlineEquation not available: see fulltext.] angle of view span. The design uses a minimum size lookup memory to store the initial scan information. Rapid prototyping using an ARM/FPGA combination is used to validate the operation of the described system. This system offers significant advantages of portability and a rapid time to market.

  17. Apparatus and method for ultrasonic treatment of a liquid

    DOEpatents

    Chandler, Darrell P.; Posakony, Gerald J.; Bond, Leonard J.; Bruckner-Lea, Cynthia J.

    2006-04-04

    The present invention is an apparatus for ultrasonically treating a liquid to generate a product. The apparatus is capable of treating a continuously-flowing, or intermittently-flowing, liquid along a line segment coincident with the flow path of the liquid. The apparatus has one or more ultrasonic transducers positioned asymmetrically about the line segment. The ultrasonic field encompasses the line segment and the ultrasonic energy may be concentrated along the line segment. Lysing treatments have been successfully achieved with efficiencies of greater than 99% using ultrasound at MHz frequencies without erosion or heating problems and without the need for chemical or mechanical pretreatment, or contrast agents. The present invention overcomes drawbacks of current ultrasonic treatments beyond lysing and opens up new sonochemical and sonophysical processing opportunities.

  18. Ultrasonic Interferometers Revisited

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2007-01-01

    I have been tinkering with ultrasonic transducers once more. In earlier notes I reported on optics-like experiments performed with ultrasonics, described a number of ultrasonic interferometers, and showed how ultrasonic transducers can be used for Fourier analysis. This time I became interested in trying the technique of using two detectors in…

  19. Real-time position reconstruction with hippocampal place cells.

    PubMed

    Guger, Christoph; Gener, Thomas; Pennartz, Cyriel M A; Brotons-Mas, Jorge R; Edlinger, Günter; Bermúdez I Badia, S; Verschure, Paul; Schaffelhofer, Stefan; Sanchez-Vives, Maria V

    2011-01-01

    Brain-computer interfaces (BCI) are using the electroencephalogram, the electrocorticogram and trains of action potentials as inputs to analyze brain activity for communication purposes and/or the control of external devices. Thus far it is not known whether a BCI system can be developed that utilizes the states of brain structures that are situated well below the cortical surface, such as the hippocampus. In order to address this question we used the activity of hippocampal place cells (PCs) to predict the position of an rodent in real-time. First, spike activity was recorded from the hippocampus during foraging and analyzed off-line to optimize the spike sorting and position reconstruction algorithm of rats. Then the spike activity was recorded and analyzed in real-time. The rat was running in a box of 80 cm × 80 cm and its locomotor movement was captured with a video tracking system. Data were acquired to calculate the rat's trajectories and to identify place fields. Then a Bayesian classifier was trained to predict the position of the rat given its neural activity. This information was used in subsequent trials to predict the rat's position in real-time. The real-time experiments were successfully performed and yielded an error between 12.2 and 17.4% using 5-6 neurons. It must be noted here that the encoding step was done with data recorded before the real-time experiment and comparable accuracies between off-line (mean error of 15.9% for three rats) and real-time experiments (mean error of 14.7%) were achieved. The experiment shows proof of principle that position reconstruction can be done in real-time, that PCs were stable and spike sorting was robust enough to generalize from the training run to the real-time reconstruction phase of the experiment. Real-time reconstruction may be used for a variety of purposes, including creating behavioral-neuronal feedback loops or for implementing neuroprosthetic control.

  20. Real-Time Position Reconstruction with Hippocampal Place Cells

    PubMed Central

    Guger, Christoph; Gener, Thomas; Pennartz, Cyriel M. A.; Brotons-Mas, Jorge R.; Edlinger, Günter; Bermúdez i Badia, S.; Verschure, Paul; Schaffelhofer, Stefan; Sanchez-Vives, Maria V.

    2011-01-01

    Brain–computer interfaces (BCI) are using the electroencephalogram, the electrocorticogram and trains of action potentials as inputs to analyze brain activity for communication purposes and/or the control of external devices. Thus far it is not known whether a BCI system can be developed that utilizes the states of brain structures that are situated well below the cortical surface, such as the hippocampus. In order to address this question we used the activity of hippocampal place cells (PCs) to predict the position of an rodent in real-time. First, spike activity was recorded from the hippocampus during foraging and analyzed off-line to optimize the spike sorting and position reconstruction algorithm of rats. Then the spike activity was recorded and analyzed in real-time. The rat was running in a box of 80 cm × 80 cm and its locomotor movement was captured with a video tracking system. Data were acquired to calculate the rat's trajectories and to identify place fields. Then a Bayesian classifier was trained to predict the position of the rat given its neural activity. This information was used in subsequent trials to predict the rat's position in real-time. The real-time experiments were successfully performed and yielded an error between 12.2 and 17.4% using 5–6 neurons. It must be noted here that the encoding step was done with data recorded before the real-time experiment and comparable accuracies between off-line (mean error of 15.9% for three rats) and real-time experiments (mean error of 14.7%) were achieved. The experiment shows proof of principle that position reconstruction can be done in real-time, that PCs were stable and spike sorting was robust enough to generalize from the training run to the real-time reconstruction phase of the experiment. Real-time reconstruction may be used for a variety of purposes, including creating behavioral–neuronal feedback loops or for implementing neuroprosthetic control. PMID:21808603

  1. Ultrasonic Surface Measurements for the investigation of superficial alteration of natural stones

    NASA Astrophysics Data System (ADS)

    Meier, Thomas; Auras, Michael; Bilgili, Filiz; Christen, Sandra; Cristiano, Luigia; Krompholz, Rolf; Mosca, Ilaria; Rose, David

    2013-04-01

    Seismic waveform analysis is applicable also to the centimeter and decimeter scale for non-destructive testing of pavement, facades, plaster, sculptures, or load-bearing structures like pillars. Mostly transmission measurements are performed and travel-times of first arriving P-waves are considered that have limited resolution for the upper centimeters of an object. In contrast, surface measurements are well suited to quantify superficial alterations of material properties e.g. due to weathering. A number of surface measurements have been carried out in the laboratory as well as on real structures in order to study systematically the information content of ultrasonic waveforms and their variability under real conditions. As a preposition for ultrasonic waveform analysis, reproducible, broad-band measurements have to be carried out with a definite radiation pattern and an about 1 mm accuracy of the measurement geometry. We used special coupling devices for effective ultrasonic surface measurements in the laboratory as well as at real objects. Samples of concrete with varying composition and samples of natural stone - marble, tuff, and sandstone - were repeatedly weathered and tested by ultrasonic measurements. The resistance of the samples to weathering and the penetration depth of the weathering are analyzed. Furthermore, material specific calibration curves for changes in velocities of elastic waves due to weathering can be obtained by these tests. Tests on real structures have been carried out for marble (Schlossbrücke, Berlin) and sandstone (Porta Nigra, Trier). Altogether, these test measurements show clearly that despite of the internal inhomogeneity of many real objects, their surface roughness and topography especially ultrasonic Rayleigh waves are well suited to study material alterations in the upper centimeters. Dispersion of Rayleigh waves may be inverted for shear-wave velocity as a function of depth.

  2. Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble signature

    PubMed Central

    Gâteau, Jérôme; Marsac, Laurent; Pernot, Mathieu; Aubry, Jean-Francois; Tanter, Mickaël; Fink, Mathias

    2010-01-01

    Brain treatment through the skull with High Intensity Focused Ultrasound (HIFU) can be achieved with multichannel arrays and adaptive focusing techniques such as time-reversal. This method requires a reference signal to be either emitted by a real source embedded in brain tissues or computed from a virtual source, using the acoustic properties of the skull derived from CT images. This non-invasive computational method focuses with precision, but suffers from modeling and repositioning errors that reduce the accessible acoustic pressure at the focus in comparison with fully experimental time-reversal using an implanted hydrophone. In this paper, this simulation-based targeting has been used experimentally as a first step for focusing through an ex vivo human skull at a single location. It has enabled the creation of a cavitation bubble at focus that spontaneously emitted an ultrasonic wave received by the array. This active source signal has allowed 97%±1.1% of the reference pressure (hydrophone-based) to be restored at the geometrical focus. To target points around the focus with an optimal pressure level, conventional electronic steering from the initial focus has been combined with bubble generation. Thanks to step by step bubble generation, the electronic steering capabilities of the array through the skull were improved. PMID:19770084

  3. Zernike ultrasonic tomography for fluid velocity imaging based on pipeline intrusive time-of-flight measurements.

    PubMed

    Besic, Nikola; Vasile, Gabriel; Anghel, Andrei; Petrut, Teodor-Ion; Ioana, Cornel; Stankovic, Srdjan; Girard, Alexandre; d'Urso, Guy

    2014-11-01

    In this paper, we propose a novel ultrasonic tomography method for pipeline flow field imaging, based on the Zernike polynomial series. Having intrusive multipath time-offlight ultrasonic measurements (difference in flight time and speed of ultrasound) at the input, we provide at the output tomograms of the fluid velocity components (axial, radial, and orthoradial velocity). Principally, by representing these velocities as Zernike polynomial series, we reduce the tomography problem to an ill-posed problem of finding the coefficients of the series, relying on the acquired ultrasonic measurements. Thereupon, this problem is treated by applying and comparing Tikhonov regularization and quadratically constrained ℓ1 minimization. To enhance the comparative analysis, we additionally introduce sparsity, by employing SVD-based filtering in selecting Zernike polynomials which are to be included in the series. The first approach-Tikhonov regularization without filtering, is used because it is the most suitable method. The performances are quantitatively tested by considering a residual norm and by estimating the flow using the axial velocity tomogram. Finally, the obtained results show the relative residual norm and the error in flow estimation, respectively, ~0.3% and ~1.6% for the less turbulent flow and ~0.5% and ~1.8% for the turbulent flow. Additionally, a qualitative validation is performed by proximate matching of the derived tomograms with a flow physical model.

  4. Real Time Revisited

    NASA Astrophysics Data System (ADS)

    Allen, Phillip G.

    1985-12-01

    The call for abolishing photo reconnaissance in favor of real time is once more being heard. Ten years ago the same cries were being heard with the introduction of the Charge Coupled Device (CCD). The real time system problems that existed then and stopped real time proliferation have not been solved. The lack of an organized program by either DoD or industry has hampered any efforts to solve the problems, and as such, very little has happened in real time in the last ten years. Real time is not a replacement for photo, just as photo is not a replacement for infra-red or radar. Operational real time sensors can be designed only after their role has been defined and improvements made to the weak links in the system. Plodding ahead on a real time reconnaissance suite without benefit of evaluation of utility will allow this same paper to be used ten years from now.

  5. Real-time dangling objects sensing: A preliminary design of mobile headset ancillary device for visual impaired.

    PubMed

    Lin, C H; Cheng, P H; Shen, S T

    2014-01-01

    Blinds and severe visual impairments can utilize tactile sticks to assist their walking. However, they cannot fully understand the dangling objects in front of their walking routes. This research proposed a mobile real-time dangling objects sensing (RDOS) prototype, which is located on the cap to sense any front barrier. This device utilized cheap ultrasonic sensor to act as another complement eye for blinds to understand the front dangling objects. Meanwhile, the RDOS device can dynamically adjust the sensor's front angle that is depended on the user's body height and promote the sensing accuracy. Meanwhile, two major required algorithms, height-angle measurement and ultrasonic sensor alignment, are proposed with this prototype. The research team also integrated the RDOS device prototype with mobile Android devices by communicating with Bluetooth to record the walking route.

  6. Real-Time Non-Intrusive Assessment of Viewing Distance during Computer Use.

    PubMed

    Argilés, Marc; Cardona, Genís; Pérez-Cabré, Elisabet; Pérez-Magrané, Ramon; Morcego, Bernardo; Gispets, Joan

    2016-12-01

    To develop and test the sensitivity of an ultrasound-based sensor to assess the viewing distance of visual display terminals operators in real-time conditions. A modified ultrasound sensor was attached to a computer display to assess viewing distance in real time. Sensor functionality was tested on a sample of 20 healthy participants while they conducted four 10-minute randomly presented typical computer tasks (a match-three puzzle game, a video documentary, a task requiring participants to complete a series of sentences, and a predefined internet search). The ultrasound sensor offered good measurement repeatability. Game, text completion, and web search tasks were conducted at shorter viewing distances (54.4 cm [95% CI 51.3-57.5 cm], 54.5 cm [95% CI 51.1-58.0 cm], and 54.5 cm [95% CI 51.4-57.7 cm], respectively) than the video task (62.3 cm [95% CI 58.9-65.7 cm]). Statistically significant differences were found between the video task and the other three tasks (all p < 0.05). Range of viewing distances (from 22 to 27 cm) was similar for all tasks (F = 0.996; p = 0.413). Real-time assessment of the viewing distance of computer users with a non-intrusive ultrasonic device disclosed a task-dependent pattern.

  7. Real-time analysis keratometer

    NASA Technical Reports Server (NTRS)

    Adachi, Iwao P. (Inventor); Adachi, Yoshifumi (Inventor); Frazer, Robert E. (Inventor)

    1987-01-01

    A computer assisted keratometer in which a fiducial line pattern reticle illuminated by CW or pulsed laser light is projected on a corneal surface through lenses, a prismoidal beamsplitter quarterwave plate, and objective optics. The reticle surface is curved as a conjugate of an ideal corneal curvature. The fiducial image reflected from the cornea undergoes a polarization shift through the quarterwave plate and beamsplitter whereby the projected and reflected beams are separated and directed orthogonally. The reflected beam fiducial pattern forms a moire pattern with a replica of the first recticle. This moire pattern contains transverse aberration due to differences in curvature between the cornea and the ideal corneal curvature. The moire pattern is analyzed in real time by computer which displays either the CW moire pattern or a pulsed mode analysis of the transverse aberration of the cornea under observation, in real time. With the eye focused on a plurality of fixation points in succession, a survey of the entire corneal topography is made and a contour map or three dimensional plot of the cornea can be made as a computer readout in addition to corneal radius and refractive power analysis.

  8. Real-Time Telemetry System for Monitoring Motion of Ships Based on Inertial Sensors.

    PubMed

    Núñez, José M; Araújo, Marta G; García-Tuñón, I

    2017-04-25

    A telemetry system for real-time monitoring of the motions, position, speed and course of a ship at sea is presented in this work. The system, conceived as a subsystem of a radar cross-section measurement unit, could also be used in other applications as ships dynamics characterization, on-board cranes, antenna stabilizers, etc. This system was designed to be stand-alone, reliable, easy to deploy, low-cost and free of requirements related to stabilization procedures. In order to achieve such a unique combination of functionalities, we have developed a telemetry system based on redundant inertial and magnetic sensors and GPS (Global Positioning System) measurements. It provides a proper data storage and also has real-time radio data transmission capabilities to an on-shore station. The output of the system can be used either for on-line or off-line processing. Additionally, the system uses dual technologies and COTS (Commercial Off-The-Shelf) components. Motion-positioning measurements and radio data link tests were successfully carried out in several ships of the Spanish Navy, proving the compliance with the design targets and validating our telemetry system.

  9. Real-Time Telemetry System for Monitoring Motion of Ships Based on Inertial Sensors

    PubMed Central

    Núñez, José M.; Araújo, Marta G.; García-Tuñón, I.

    2017-01-01

    A telemetry system for real-time monitoring of the motions, position, speed and course of a ship at sea is presented in this work. The system, conceived as a subsystem of a radar cross-section measurement unit, could also be used in other applications as ships dynamics characterization, on-board cranes, antenna stabilizers, etc. This system was designed to be stand-alone, reliable, easy to deploy, low-cost and free of requirements related to stabilization procedures. In order to achieve such a unique combination of functionalities, we have developed a telemetry system based on redundant inertial and magnetic sensors and GPS (Global Positioning System) measurements. It provides a proper data storage and also has real-time radio data transmission capabilities to an on-shore station. The output of the system can be used either for on-line or off-line processing. Additionally, the system uses dual technologies and COTS (Commercial Off-The-Shelf) components. Motion-positioning measurements and radio data link tests were successfully carried out in several ships of the Spanish Navy, proving the compliance with the design targets and validating our telemetry system. PMID:28441330

  10. Controlling Real-Time Processes On The Space Station With Expert Systems

    NASA Astrophysics Data System (ADS)

    Leinweber, David; Perry, John

    1987-02-01

    Many aspects of space station operations involve continuous control of real-time processes. These processes include electrical power system monitoring, propulsion system health and maintenance, environmental and life support systems, space suit checkout, on-board manufacturing, and servicing of attached vehicles such as satellites, shuttles, orbital maneuvering vehicles, orbital transfer vehicles and remote teleoperators. Traditionally, monitoring of these critical real-time processes has been done by trained human experts monitoring telemetry data. However, the long duration of space station missions and the high cost of crew time in space creates a powerful economic incentive for the development of highly autonomous knowledge-based expert control procedures for these space stations. In addition to controlling the normal operations of these processes, the expert systems must also be able to quickly respond to anomalous events, determine their cause and initiate corrective actions in a safe and timely manner. This must be accomplished without excessive diversion of system resources from ongoing control activities and any events beyond the scope of the expert control and diagnosis functions must be recognized and brought to the attention of human operators. Real-time sensor based expert systems (as opposed to off-line, consulting or planning systems receiving data via the keyboard) pose particular problems associated with sensor failures, sensor degradation and data consistency, which must be explicitly handled in an efficient manner. A set of these systems must also be able to work together in a cooperative manner. This paper describes the requirements for real-time expert systems in space station control, and presents prototype implementations of space station expert control procedures in PICON (process intelligent control). PICON is a real-time expert system shell which operates in parallel with distributed data acquisition systems. It incorporates a specialized

  11. Apparatus and method for ultrasonic treatment of a liquid

    DOEpatents

    Chandler, Darrell P [Richland, WA; Posakony, Gerald J [Richland, WA; Bond, Leonard J [Richland, WA; Bruckner-Lea, Cynthia J [Richland, WA

    2003-01-14

    The present invention is an apparatus and method for ultrasonically treating a liquid to generate a product. The apparatus is capable of treating a continuously-flowing, or intermittently-flowing, liquid along a line segment coincident with the flow path of the liquid. The apparatus has one or more ultrasonic transducers positioned asymmetrically about the line segment. The ultrasonic field encompasses the line segment and the ultrasonic energy may be concentrated along the line segment. Lysing treatments have been successfully achieved with efficiencies of greater than 99% using ultrasound at MHz frequencies without erosion or heating problems and without the need for chemical or mechanical pretreatment, or contrast agents. The present invention overcomes drawbacks of current ultrasonic treatments beyond lysing and opens up new sonochemical and sonophysical processing opportunities.

  12. Method and apparatus for ultrasonic doppler velocimetry using speed of sound and reflection mode pulsed wideband doppler

    DOEpatents

    Shekarriz, Alireza; Sheen, David M.

    2000-01-01

    According to the present invention, a method and apparatus rely upon tomographic measurement of the speed of sound and fluid velocity in a pipe. The invention provides a more accurate profile of velocity within flow fields where the speed of sound varies within the cross-section of the pipe. This profile is obtained by reconstruction of the velocity profile from the local speed of sound measurement simultaneously with the flow velocity. The method of the present invention is real-time tomographic ultrasonic Doppler velocimetry utilizing a to plurality of ultrasonic transmission and reflection measurements along two orthogonal sets of parallel acoustic lines-of-sight. The fluid velocity profile and the acoustic velocity profile are determined by iteration between determining a fluid velocity profile and measuring local acoustic velocity until convergence is reached.

  13. Real-Time Mapping alert system; characteristics and capabilities

    USGS Publications Warehouse

    Torres, L.A.; Lambert, S.C.; Liebermann, T.D.

    1995-01-01

    The U.S. Geological Survey has an extensive hydrologic network that records and transmits precipitation, stage, discharge, and other water-related data on a real-time basis to an automated data processing system. Data values are recorded on electronic data collection platforms at field sampling sites. These values are transmitted by means of orbiting satellites to receiving ground stations, and by way of telecommunication lines to a U.S. Geological Survey office where they are processed on a computer system. Data that exceed predefined thresholds are identified as alert values. The current alert status at monitoring sites within a state or region is of critical importance during floods, hurricanes, and other extreme hydrologic events. This report describes the characteristics and capabilities of a series of computer programs for real-time mapping of hydrologic data. The software provides interactive graphics display and query of hydrologic information from the network in a real-time, map-based, menu-driven environment.

  14. Real time automated inspection

    DOEpatents

    Fant, Karl M.; Fundakowski, Richard A.; Levitt, Tod S.; Overland, John E.; Suresh, Bindinganavle R.; Ulrich, Franz W.

    1985-01-01

    A method and apparatus relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges are segmented out by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections.

  15. Real time automated inspection

    DOEpatents

    Fant, K.M.; Fundakowski, R.A.; Levitt, T.S.; Overland, J.E.; Suresh, B.R.; Ulrich, F.W.

    1985-05-21

    A method and apparatus are described relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections. 43 figs.

  16. Remote consulting based on ultrasonic digital immages and dynamic ultrasonic sequences

    NASA Astrophysics Data System (ADS)

    Margan, Anamarija; Rustemović, Nadan

    2006-03-01

    Telematic ultrasonic diagnostics is a relatively new tool in providing health care to patients in remote, islolated communities. Our project facility, "The Virtual Polyclinic - A Specialists' Consulting Network for the Islands", is located on the island of Cres in the Adriatic Sea in Croatia and has been extending telemedical services to the archipelago population since 2000. Telemedicine applications include consulting services by specialists at the University Clinical Hospital Center Rebro in Zagreb and at "Magdalena", a leading cardiology clinic in Croatia. After several years of experience with static high resolution ultrasonic digital immages for referral consulting diagnostics purposes, we now also use dynamic ultrasonic sequences in a project with the Department of Emmergency Gastroenterology at Rebro in Zagreb. The aim of the ongoing project is to compare the advantages and shortcomings in transmitting static ultrasonic digital immages and live sequences of ultrasonic examination in telematic diagnostics. Ultrasonic examination is a dynamic process in which the diagnostic accuracy is highly dependent on the dynamic moment of an ultrasound probe and signal. Our first results indicate that in diffuse parenchymal organ pathology the progression and the follow up of a disease is better presented to a remote consulting specialist by dynamic ultrasound sequences. However, the changes that involve only one part of a parenchymal organ can be suitably presented by static ultrasonic digital images alone. Furthermore, we need less time for digital imaging and such tele-consultations overall are more economical. Our previous telemedicine research and practice proved that we can greatly improve the level of medical care in remote healthcare facilities and cut healthcare costs considerably. The experience in the ongoing project points to a conclusion that we can further optimize remote diagnostics benefits by a right choice of telematic application thus reaching a

  17. Real-time gas sensing based on optical feedback in a terahertz quantum-cascade laser.

    PubMed

    Hagelschuer, Till; Wienold, Martin; Richter, Heiko; Schrottke, Lutz; Grahn, Holger T; Hübers, Heinz-Wilhelm

    2017-11-27

    We report on real-time gas sensing with a terahertz quantum-cascade laser (QCL). The method is solely based on the modulation of the external cavity length, exploiting the intermediate optical feedback regime. While the QCL is operated in continuous-wave mode, optical feedback results in a change of the QCL frequency as well as its terminal voltage. The first effect is exploited to tune the lasing frequency across a molecular absorption line. The second effect is used for the detection of the self-mixing signal. This allows for fast measurement times on the order of 10 ms per spectrum and for real-time measurements of gas concentrations with a rate of 100 Hz. This technique is demonstrated with a mixture of D 2 O and CH 3 OD in an absorption cell.

  18. Soft sensor for real-time cement fineness estimation.

    PubMed

    Stanišić, Darko; Jorgovanović, Nikola; Popov, Nikola; Čongradac, Velimir

    2015-03-01

    This paper describes the design and implementation of soft sensors to estimate cement fineness. Soft sensors are mathematical models that use available data to provide real-time information on process variables when the information, for whatever reason, is not available by direct measurement. In this application, soft sensors are used to provide information on process variable normally provided by off-line laboratory tests performed at large time intervals. Cement fineness is one of the crucial parameters that define the quality of produced cement. Providing real-time information on cement fineness using soft sensors can overcome limitations and problems that originate from a lack of information between two laboratory tests. The model inputs were selected from candidate process variables using an information theoretic approach. Models based on multi-layer perceptrons were developed, and their ability to estimate cement fineness of laboratory samples was analyzed. Models that had the best performance, and capacity to adopt changes in the cement grinding circuit were selected to implement soft sensors. Soft sensors were tested using data from a continuous cement production to demonstrate their use in real-time fineness estimation. Their performance was highly satisfactory, and the sensors proved to be capable of providing valuable information on cement grinding circuit performance. After successful off-line tests, soft sensors were implemented and installed in the control room of a cement factory. Results on the site confirm results obtained by tests conducted during soft sensor development. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Real-Time Systems

    DTIC Science & Technology

    1992-02-01

    Postgraduate School Autonomous Under Vehicle (AUV) are then examined. Autonomous underwater vehicle (AUV), hard real-time system, real - time operating system , real-time programming language, real-time system, soft real-time system.

  20. Real-time sensing of fatigue crack damage for information-based decision and control

    NASA Astrophysics Data System (ADS)

    Keller, Eric Evans

    Information-based decision and control for structures that are subject to failure by fatigue cracking is based on the following notion: Maintenance, usage scheduling, and control parameter tuning can be optimized through real time knowledge of the current state of fatigue crack damage. Additionally, if the material properties of a mechanical structure can be identified within a smaller range, then the remaining life prediction of that structure will be substantially more accurate. Information-based decision systems can rely one physical models, estimation of material properties, exact knowledge of usage history, and sensor data to synthesize an accurate snapshot of the current state of damage and the likely remaining life of a structure under given assumed loading. The work outlined in this thesis is structured to enhance the development of information-based decision and control systems. This is achieved by constructing a test facility for laboratory experiments on real-time damage sensing. This test facility makes use of a methodology that has been formulated for fatigue crack model parameter estimation and significantly improves the quality of predictions of remaining life. Specifically, the thesis focuses on development of an on-line fatigue crack damage sensing and life prediction system that is built upon the disciplines of Systems Sciences and Mechanics of Materials. A major part of the research effort has been expended to design and fabricate a test apparatus which allows: (i) measurement and recording of statistical data for fatigue crack growth in metallic materials via different sensing techniques; and (ii) identification of stochastic model parameters for prediction of fatigue crack damage. To this end, this thesis describes the test apparatus and the associated instrumentation based on four different sensing techniques, namely, traveling optical microscopy, ultrasonic flaw detection, Alternating Current Potential Drop (ACPD), and fiber

  1. Real-time monitoring of river water quality using in-line continuous acquisition of fluorescence excitation and emission matrices

    NASA Astrophysics Data System (ADS)

    Carstea, E.; Baker, A.; Johnson, R.; Reynolds, D. M.

    2009-12-01

    In-line fluorescence EEM monitoring has been performed over an eleven-day period for Bournbrook River, Birmingham, UK. River water was diverted to a portable laboratory via a continuous flow pump and filter system. Fluorescence excitation-emission matrices data was recorded every 3 minutes using a flow cell (1cm pathlength) coupled to a fiber optic probe. This real-time fluorescence EEM data (Excitation, 225-400 nm at 5 nm steps, emission, 280-500 nm at 2 nm steps) was collected 'in-line'and directly compared with the spectrophotometric properties and physical and chemical parameters of river water samples collected off-line at known time intervals. Over the monitoring period, minor pollution pulses from cross connections were detected and identified hourly along with a random diesel pollution event. This work addresses the practicalities of measuring and detecting fluorescence EEM in the field and discusses the potential of this technological approach for further understanding important hydrological and biogeochemical processes. Problems associated with fouling and system failure are also reported. Example of the data generated from the continuous fluorescence EEM monitoring.

  2. Real time capable infrared thermography for ASDEX Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sieglin, B., E-mail: Bernhard.Sieglin@ipp.mpg.de; Faitsch, M.; Herrmann, A.

    2015-11-15

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today’s fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The cameramore » communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.« less

  3. Biosensor-based real-time monitoring of paracetamol photocatalytic degradation.

    PubMed

    Calas-Blanchard, Carole; Istamboulié, Georges; Bontoux, Margot; Plantard, Gaël; Goetz, Vincent; Noguer, Thierry

    2015-07-01

    This paper presents for the first time the integration of a biosensor for the on-line, real-time monitoring of a photocatalytic degradation process. Paracetamol was used as a model molecule due to its wide use and occurrence in environmental waters. The biosensor was developed based on tyrosinase immobilization in a polyvinylalcohol photocrosslinkable polymer. It was inserted in a computer-controlled flow system installed besides a photocatalytic reactor including titanium dioxide (TiO2) as photocatalyst. It was shown that the biosensor was able to accurately monitor the paracetamol degradation with time. Compared with conventional HPLC analysis, the described device provides a real-time information on the reaction advancement, allowing a better control of the photodegradation process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. User Friendly Real Time Display

    NASA Astrophysics Data System (ADS)

    McCarthy, Denise M.; McCracken, Bill

    1989-02-01

    Real-time viewing of high resolution infrared line scan reconnaissance imagery is greatly facilitated using Honeywell's Real Time Display in conjunction with a D-500 Infrared Reconnaissance System. The Real-Time Display (RTD) provides the capability of on-board review of high resolution infrared imagery using the wide infrared dynamic range of the D-500 infrared receiver to maximum advantage. The scan converter accepts, processes, and displays imagery from four channels of the IR Receiver after formatting by a multiplexer. The scan converter interfaces with a standard RS-170 video monitor. Detailed review and on-board analysis of infrared reconnaissance imagery stored on a videotape is easily accomplished using the many user-friendly features of the RTD. Using a convenient joystick controller, on-screen mode menus, and a moveable cursor, the operator can examine scenes of interest at four different display magnifications using a four step bidirectional zoom. Imagery areas of interest are first noted using the scrolling wide field display mode at 8x reduced display resolution. On noting an area of interest, the imagery can be marked on the tape record for future recovery and a freeze frame mode can be initiated. The operator can then move the cursor to the area of interest and zoom to higher display magnification for 4x, 2x, and lx display resolutions so that the full 4096 x 4096 pixel infrared frame can be matched to the 512 x 512 pixel display frame. At 8x wide field display magnification the full line scanner field of view is displayed at 8x reduced resolution. There are two selectable modes of obtaining this reduced resolution. The operator can use the default method, which averages the signal from an 8 x 8 pixel group, or it is also possible to select the peak signal of the 8 x 8 pixel block to represent the entire block on the display. In this alternate peak-signal display the wide field can be effectively scanned for hot objects which are more likely to be

  5. Coherent anti-stokes Raman spectroscopy for detecting explosives in real time

    NASA Astrophysics Data System (ADS)

    Dogariu, Arthur; Pidwerbetsky, Alex

    2012-06-01

    We demonstrate real-time stand-off detection and imaging of trace explosives using collinear, backscattered Coherent Anti-Stokes Raman Spectroscopy (CARS). Using a hybrid time-resolved broad-band CARS we identify nanograms of explosives on the millisecond time scale. The broad-band excitation in the near-mid-infrared region excites the vibrational modes in the fingerprint region, and the time-delayed probe beam ensures the reduction of any non-resonant contributions to the CARS signal. The strong coherent enhancement allows for recording Raman spectra in real-time. We demonstrate stand-off detection by acquiring, analyzing, and identifying vibrational fingerprints in real-time with very high sensitivity and selectivity. By extending the focused region from a 100-micron sized spot to a 5mm long line we can obtain the spectral information from an extended region of the remote target with high spatial resolution. We demonstrate fast hyperspectral imaging by one-dimensional scanning of the Line-CARS. The three-dimensional data structure contains the vibrational spectra of the target at each sampled location, which allows for chemical mapping of the remote target.

  6. Graph-based real-time fault diagnostics

    NASA Technical Reports Server (NTRS)

    Padalkar, S.; Karsai, G.; Sztipanovits, J.

    1988-01-01

    A real-time fault detection and diagnosis capability is absolutely crucial in the design of large-scale space systems. Some of the existing AI-based fault diagnostic techniques like expert systems and qualitative modelling are frequently ill-suited for this purpose. Expert systems are often inadequately structured, difficult to validate and suffer from knowledge acquisition bottlenecks. Qualitative modelling techniques sometimes generate a large number of failure source alternatives, thus hampering speedy diagnosis. In this paper we present a graph-based technique which is well suited for real-time fault diagnosis, structured knowledge representation and acquisition and testing and validation. A Hierarchical Fault Model of the system to be diagnosed is developed. At each level of hierarchy, there exist fault propagation digraphs denoting causal relations between failure modes of subsystems. The edges of such a digraph are weighted with fault propagation time intervals. Efficient and restartable graph algorithms are used for on-line speedy identification of failure source components.

  7. On-line sequential injection-capillary electrophoresis for near-real-time monitoring of extracellular lactate in cell culture flasks.

    PubMed

    Alhusban, Ala A; Gaudry, Adam J; Breadmore, Michael C; Gueven, Nuri; Guijt, Rosanne M

    2014-01-03

    Cell culture has replaced many in vivo studies because of ethical and regulatory measures as well as the possibility of increased throughput. Analytical assays to determine (bio)chemical changes are often based on end-point measurements rather than on a series of sequential determinations. The purpose of this work is to develop an analytical system for monitoring cell culture based on sequential injection-capillary electrophoresis (SI-CE) with capacitively coupled contactless conductivity detection (C(4)D). The system was applied for monitoring lactate production, an important metabolic indicator, during mammalian cell culture. Using a background electrolyte consisting of 25mM tris(hydroxymethyl)aminomethane, 35mM cyclohexyl-2-aminoethanesulfonic acid with 0.02% poly(ethyleneimine) (PEI) at pH 8.65 and a multilayer polymer coated capillary, lactate could be resolved from other compounds present in media with relative standard deviations 0.07% for intraday electrophoretic mobility and an analysis time of less than 10min. Using the human embryonic kidney cell line HEK293, lactate concentrations in the cell culture medium were measured every 20min over 3 days, requiring only 8.73μL of sample per run. Combining simplicity, portability, automation, high sample throughput, low limits of detection, low sample consumption and the ability to up- and outscale, this new methodology represents a promising technique for near real-time monitoring of chemical changes in diverse cell culture applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Versatile analog pulse height computer performs real-time arithmetic operations

    NASA Technical Reports Server (NTRS)

    Brenner, R.; Strauss, M. G.

    1967-01-01

    Multipurpose analog pulse height computer performs real-time arithmetic operations on relatively fast pulses. This computer can be used for identification of charged particles, pulse shape discrimination, division of signals from position sensitive detectors, and other on-line data reduction techniques.

  9. Real-Time Mapping alert system; user's manual

    USGS Publications Warehouse

    Torres, L.A.

    1996-01-01

    The U.S. Geological Survey has an extensive hydrologic network that records and transmits precipitation, stage, discharge, and other water- related data on a real-time basis to an automated data processing system. Data values are recorded on electronic data collection platforms at field monitoring sites. These values are transmitted by means of orbiting satellites to receiving ground stations, and by way of telecommunication lines to a U.S. Geological Survey office where they are processed on a computer system. Data that exceed predefined thresholds are identified as alert values. These alert values can help keep water- resource specialists informed of current hydrologic conditions. The current alert status at monitoring sites is of critical importance during floods, hurricanes, and other extreme hydrologic events where quick analysis of the situation is needed. This manual provides instructions for using the Real-Time Mapping software, a series of computer programs developed by the U.S. Geological Survey for quick analysis of hydrologic conditions, and guides users through a basic interactive session. The software provides interactive graphics display and query of real-time information in a map-based, menu-driven environment.

  10. "Fast" Is Not "Real-Time": Designing Effective Real-Time AI Systems

    NASA Astrophysics Data System (ADS)

    O'Reilly, Cindy A.; Cromarty, Andrew S.

    1985-04-01

    Realistic practical problem domains (such as robotics, process control, and certain kinds of signal processing) stand to benefit greatly from the application of artificial intelligence techniques. These problem domains are of special interest because they are typified by complex dynamic environments in which the ability to select and initiate a proper response to environmental events in real time is a strict prerequisite to effective environmental interaction. Artificial intelligence systems developed to date have been sheltered from this real-time requirement, however, largely by virtue of their use of simplified problem domains or problem representations. The plethora of colloquial and (in general) mutually inconsistent interpretations of the term "real-time" employed by workers in each of these domains further exacerbates the difficul-ties in effectively applying state-of-the-art problem solving tech-niques to time-critical problems. Indeed, the intellectual waters are by now sufficiently muddied that the pursuit of a rigorous treatment of intelligent real-time performance mandates the redevelopment of proper problem perspective on what "real-time" means, starting from first principles. We present a simple but nonetheless formal definition of real-time performance. We then undertake an analysis of both conventional techniques and AI technology with respect to their ability to meet substantive real-time performance criteria. This analysis provides a basis for specification of problem-independent design requirements for systems that would claim real-time performance. Finally, we discuss the application of these design principles to a pragmatic problem in real-time signal understanding.

  11. Implementation of High Time Delay Accuracy of Ultrasonic Phased Array Based on Interpolation CIC Filter

    PubMed Central

    Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu

    2017-01-01

    In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter’s pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection. PMID:29023385

  12. Implementation of High Time Delay Accuracy of Ultrasonic Phased Array Based on Interpolation CIC Filter.

    PubMed

    Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu

    2017-10-12

    In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter's pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.

  13. Ultrasonic Transducer Irradiation Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, Joshua; Palmer, Joe; Ramuhalli, Pradeep

    2015-02-01

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changesmore » (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10 21 n/cm 2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric transducer and two

  14. Irradiation Testing of Ultrasonic Transducers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian

    2014-07-30

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphologymore » changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.« less

  15. Experimental investigation by laser ultrasonics for high speed train axle diagnostics.

    PubMed

    Cavuto, A; Martarelli, M; Pandarese, G; Revel, G M; Tomasini, E P

    2015-01-01

    The present paper demonstrates the applicability of a laser-ultrasonic procedure to improve the performances of train axle ultrasonic inspection. The method exploits an air-coupled ultrasonic probe that detects the ultrasonic waves generated by a high-power pulsed laser. As a result, the measurement chain is completely non-contact, from generation to detection, this making it possible to considerably speed up inspection time and make the set-up more flexible. The main advantage of the technique developed is that it works in thermo-elastic regime and it therefore can be considered as a non-destructive method. The laser-ultrasonic procedure investigated has been applied for the inspection of a real high speed train axle provided by the Italian railway company (Trenitalia), on which typical fatigue defects have been expressly created according to standard specifications. A dedicated test bench has been developed so as to rotate the axle with the angle control and to speed up the inspection of the axle surface. The laser-ultrasonic procedure proposed can be automated and is potentially suitable for regular inspection of train axles. The main achievements of the activity described in this paper are: – the study of the effective applicability of laser-ultrasonics for the diagnostic of train hollow axles with variable sections by means of a numerical FE model, – the carrying out of an automated experiment on a real train axle, – the analysis of the sensitivity to experimental parameters, like laser source – receiving probe distance and receiving probe angular position, – the demonstration that the technique is suitable for the detection of surface defects purposely created on the train axle. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Real-time operation without a real-time operating system for instrument control and data acquisition

    NASA Astrophysics Data System (ADS)

    Klein, Randolf; Poglitsch, Albrecht; Fumi, Fabio; Geis, Norbert; Hamidouche, Murad; Hoenle, Rainer; Looney, Leslie; Raab, Walfried; Viehhauser, Werner

    2004-09-01

    We are building the Field-Imaging Far-Infrared Line Spectrometer (FIFI LS) for the US-German airborne observatory SOFIA. The detector read-out system is driven by a clock signal at a certain frequency. This signal has to be provided and all other sub-systems have to work synchronously to this clock. The data generated by the instrument has to be received by a computer in a timely manner. Usually these requirements are met with a real-time operating system (RTOS). In this presentation we want to show how we meet these demands differently avoiding the stiffness of an RTOS. Digital I/O-cards with a large buffer separate the asynchronous working computers and the synchronous working instrument. The advantage is that the data processing computers do not need to process the data in real-time. It is sufficient that the computer can process the incoming data stream on average. But since the data is read-in synchronously, problems of relating commands and responses (data) have to be solved: The data is arriving at a fixed rate. The receiving I/O-card buffers the data in its buffer until the computer can access it. To relate the data to commands sent previously, the data is tagged by counters in the read-out electronics. These counters count the system's heartbeat and signals derived from that. The heartbeat and control signals synchronous with the heartbeat are sent by an I/O-card working as pattern generator. Its buffer gets continously programmed with a pattern which is clocked out on the control lines. A counter in the I/O-card keeps track of the amount of pattern words clocked out. By reading this counter, the computer knows the state of the instrument or knows the meaning of the data that will arrive with a certain time-tag.

  17. A video-based real-time adaptive vehicle-counting system for urban roads.

    PubMed

    Liu, Fei; Zeng, Zhiyuan; Jiang, Rong

    2017-01-01

    In developing nations, many expanding cities are facing challenges that result from the overwhelming numbers of people and vehicles. Collecting real-time, reliable and precise traffic flow information is crucial for urban traffic management. The main purpose of this paper is to develop an adaptive model that can assess the real-time vehicle counts on urban roads using computer vision technologies. This paper proposes an automatic real-time background update algorithm for vehicle detection and an adaptive pattern for vehicle counting based on the virtual loop and detection line methods. In addition, a new robust detection method is introduced to monitor the real-time traffic congestion state of road section. A prototype system has been developed and installed on an urban road for testing. The results show that the system is robust, with a real-time counting accuracy exceeding 99% in most field scenarios.

  18. A video-based real-time adaptive vehicle-counting system for urban roads

    PubMed Central

    2017-01-01

    In developing nations, many expanding cities are facing challenges that result from the overwhelming numbers of people and vehicles. Collecting real-time, reliable and precise traffic flow information is crucial for urban traffic management. The main purpose of this paper is to develop an adaptive model that can assess the real-time vehicle counts on urban roads using computer vision technologies. This paper proposes an automatic real-time background update algorithm for vehicle detection and an adaptive pattern for vehicle counting based on the virtual loop and detection line methods. In addition, a new robust detection method is introduced to monitor the real-time traffic congestion state of road section. A prototype system has been developed and installed on an urban road for testing. The results show that the system is robust, with a real-time counting accuracy exceeding 99% in most field scenarios. PMID:29135984

  19. Ultrasonic Clothes Dryer Dries Clothes in Half the Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Scientists at Oak Ridge National Laboratory are about to change the way that you do laundry. They recently developed an ultrasonic drying concept that uses vibrations instead of heat to dry clothes. This technology is expected to be up to five times more efficient than today’s products and will dry your clothes in half the time. In about two years, researchers took this basic science concept and recently developed it into a full-scale press dryer and clothes dryer drum – setting the stage for it to one day go to market through partners like General Electric Appliances. The ultrasonic dryer,more » which is supported by the Department of Energy’s Building Technologies Office, is expected to cut drying time to about 20 minutes per load – down significantly from the average 50 minutes it currently takes Americans to do their laundry.« less

  20. Runtime verification of embedded real-time systems.

    PubMed

    Reinbacher, Thomas; Függer, Matthias; Brauer, Jörg

    We present a runtime verification framework that allows on-line monitoring of past-time Metric Temporal Logic (ptMTL) specifications in a discrete time setting. We design observer algorithms for the time-bounded modalities of ptMTL, which take advantage of the highly parallel nature of hardware designs. The algorithms can be translated into efficient hardware blocks, which are designed for reconfigurability, thus, facilitate applications of the framework in both a prototyping and a post-deployment phase of embedded real-time systems. We provide formal correctness proofs for all presented observer algorithms and analyze their time and space complexity. For example, for the most general operator considered, the time-bounded Since operator, we obtain a time complexity that is doubly logarithmic both in the point in time the operator is executed and the operator's time bounds. This result is promising with respect to a self-contained, non-interfering monitoring approach that evaluates real-time specifications in parallel to the system-under-test. We implement our framework on a Field Programmable Gate Array platform and use extensive simulation and logic synthesis runs to assess the benefits of the approach in terms of resource usage and operating frequency.

  1. Ultrasonic liquid-in-line detector for tubes

    DOEpatents

    Piper, Thomas C.

    1991-01-01

    An apparatus and method for detecting the presence of liquid in pipes or tubes using ultrasonic techniques A first piezoelectric crystal is coupled to the outside of the pipe or tube at the location where liquid in the tube is to be detected. A second piezoelectric crystal is coupled to the outside of the pipe or tube at the same location along the tube but circumferentially displaced from the first crystal by an angle around the pipe or tube of less than 180.degree.. Liquid in the pipe or tube is detected by measuring the attenuation of an ultrasonic signal sent by the first piezoelectric crystal and received by the second piezoelectric crystal.

  2. Ultrasonic sensor based defect detection and characterisation of ceramics.

    PubMed

    Kesharaju, Manasa; Nagarajah, Romesh; Zhang, Tonzhua; Crouch, Ian

    2014-01-01

    Ceramic tiles, used in body armour systems, are currently inspected visually offline using an X-ray technique that is both time consuming and very expensive. The aim of this research is to develop a methodology to detect, locate and classify various manufacturing defects in Reaction Sintered Silicon Carbide (RSSC) ceramic tiles, using an ultrasonic sensing technique. Defects such as free silicon, un-sintered silicon carbide material and conventional porosity are often difficult to detect using conventional X-radiography. An alternative inspection system was developed to detect defects in ceramic components using an Artificial Neural Network (ANN) based signal processing technique. The inspection methodology proposed focuses on pre-processing of signals, de-noising, wavelet decomposition, feature extraction and post-processing of the signals for classification purposes. This research contributes to developing an on-line inspection system that would be far more cost effective than present methods and, moreover, assist manufacturers in checking the location of high density areas, defects and enable real time quality control, including the implementation of accept/reject criteria. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. A real-time MTFC algorithm of space remote-sensing camera based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhao, Liting; Huang, Gang; Lin, Zhe

    2018-01-01

    A real-time MTFC algorithm of space remote-sensing camera based on FPGA was designed. The algorithm can provide real-time image processing to enhance image clarity when the remote-sensing camera running on-orbit. The image restoration algorithm adopted modular design. The MTF measurement calculation module on-orbit had the function of calculating the edge extension function, line extension function, ESF difference operation, normalization MTF and MTFC parameters. The MTFC image filtering and noise suppression had the function of filtering algorithm and effectively suppressing the noise. The algorithm used System Generator to design the image processing algorithms to simplify the design structure of system and the process redesign. The image gray gradient dot sharpness edge contrast and median-high frequency were enhanced. The image SNR after recovery reduced less than 1 dB compared to the original image. The image restoration system can be widely used in various fields.

  4. Automatic parquet block sorting using real-time spectral classification

    NASA Astrophysics Data System (ADS)

    Astrom, Anders; Astrand, Erik; Johansson, Magnus

    1999-03-01

    This paper presents a real-time spectral classification system based on the PGP spectrograph and a smart image sensor. The PGP is a spectrograph which extracts the spectral information from a scene and projects the information on an image sensor, which is a method often referred to as Imaging Spectroscopy. The classification is based on linear models and categorizes a number of pixels along a line. Previous systems adopting this method have used standard sensors, which often resulted in poor performance. The new system, however, is based on a patented near-sensor classification method, which exploits analogue features on the smart image sensor. The method reduces the enormous amount of data to be processed at an early stage, thus making true real-time spectral classification possible. The system has been evaluated on hardwood parquet boards showing very good results. The color defects considered in the experiments were blue stain, white sapwood, yellow decay and red decay. In addition to these four defect classes, a reference class was used to indicate correct surface color. The system calculates a statistical measure for each parquet block, giving the pixel defect percentage. The patented method makes it possible to run at very high speeds with a high spectral discrimination ability. Using a powerful illuminator, the system can run with a line frequency exceeding 2000 line/s. This opens up the possibility to maintain high production speed and still measure with good resolution.

  5. Improving the axial resolution in time-reversed ultrasonically encoded (TRUE) optical focusing with dual ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Yang, Qiang; Xu, Xiao; Lai, Puxiang; Sang, Xinzhu; Wang, Lihong V.

    2014-03-01

    Focusing light inside highly scattering media beyond the ballistic regime is a challenging task in biomedical optical imaging, manipulation, and therapy. This challenge can be overcome by time reversing ultrasonically encoded (TRUE) diffuse light to the ultrasonic focus inside a turbid medium. In TRUE optical focusing, a photorefractive crystal or polymer is used as the phase conjugate mirror for optical time reversal. Accordingly, a relatively long ultrasound burst, whose duration matches the response time of the photorefractive material, is used to encode the diffuse light. With this long ultrasound burst, the resolution of the TRUE focus along the acoustic axis is poor. In this work, we used two transducers, emitting two intersecting ultrasound beams at 3.4 MHz and 3.6 MHz respectively, to modulate the diffuse light within their intersection volume at the beat frequency. We show that light encoded at the beat frequency can be time-reversed and converge to the intersection volume. Experimentally, TRUE focusing with an acoustic axial resolution of ~1.1 mm was demonstrated inside turbid media, agreeing with the theoretical estimation.

  6. Microelectrical Impedance Spectroscopy for the Differentiation between Normal and Cancerous Human Urothelial Cell Lines: Real-Time Electrical Impedance Measurement at an Optimal Frequency

    PubMed Central

    Park, Yangkyu; Kim, Hyeon Woo; Yun, Joho; Seo, Seungwan; Park, Chang-Ju; Lee, Jeong Zoo; Lee, Jong-Hyun

    2016-01-01

    Purpose. To distinguish between normal (SV-HUC-1) and cancerous (TCCSUP) human urothelial cell lines using microelectrical impedance spectroscopy (μEIS). Materials and Methods. Two types of μEIS devices were designed and used in combination to measure the impedance of SV-HUC-1 and TCCSUP cells flowing through the channels of the devices. The first device (μEIS-OF) was designed to determine the optimal frequency at which the impedance of two cell lines is most distinguishable. The μEIS-OF trapped the flowing cells and measured their impedance at a frequency ranging from 5 kHz to 1 MHz. The second device (μEIS-RT) was designed for real-time impedance measurement of the cells at the optimal frequency. The impedance was measured instantaneously as the cells passed the sensing electrodes of μEIS-RT. Results. The optimal frequency, which maximized the average difference of the amplitude and phase angle between the two cell lines (p < 0.001), was determined to be 119 kHz. The real-time impedance of the cell lines was measured at 119 kHz; the two cell lines differed significantly in terms of amplitude and phase angle (p < 0.001). Conclusion. The μEIS-RT can discriminate SV-HUC-1 and TCCSUP cells by measuring the impedance at the optimal frequency determined by the μEIS-OF. PMID:26998490

  7. Acoustic Emission and Velocity Measurements using a Modular Borehole Prototype Tool to Provide Real Time Rock Mass Characterization.

    NASA Astrophysics Data System (ADS)

    Collins, D. S.; Pettitt, W. S.; Young, R. P.

    2003-04-01

    Permanent changes to rock mass properties can occur due to the application of excavation or thermal induced stresses. This project involves the design of hardware and software for the long term monitoring of a rock volume, and the real time analysis and interpretation of induced microcracks and their properties. A set of borehole sondes have been designed with each sonde containing up to 6 sensor modules. Each piezoelectric sensor is dual mode allowing it to either transmit an ultrasonic pulse through a rock mass, or receive ultrasonic waveform data. Good coupling of the sensors with the borehole wall is achieved through a motorized clamping mechanism. The borehole sondes are connected to a surface interface box and digital acquisition system and controlled by a laptop computer. The system allows acoustic emission (AE) data to be recorded at all times using programmable trigger logic. The AE data is processed in real time for 3D source location and magnitude, with further analysis such as mechanism type available offline. Additionally the system allows velocity surveys to be automatically performed at pre-defined times. A modelling component of the project, using a 3D dynamic finite difference code, is investigating the effect that different microcrack distributions have on velocity waveform data in terms of time and frequency amplitude. The modelling codes will be validated using data recorded from laboratory tests on rocks with known crack fabrics, and then used in insitu experimental tests. This modelling information will be used to help interpret, in real time, microcrack characteristics such as crack density, size, and fluid content. The technology has applications in a number of branches of geotechnical and civil engineering including radioactive waste storage, mining, dams, bridges, and oil reservoir monitoring.

  8. Net-zero Building Cluster Simulations and On-line Energy Forecasting for Adaptive and Real-Time Control and Decisions

    NASA Astrophysics Data System (ADS)

    Li, Xiwang

    Buildings consume about 41.1% of primary energy and 74% of the electricity in the U.S. Moreover, it is estimated by the National Energy Technology Laboratory that more than 1/4 of the 713 GW of U.S. electricity demand in 2010 could be dispatchable if only buildings could respond to that dispatch through advanced building energy control and operation strategies and smart grid infrastructure. In this study, it is envisioned that neighboring buildings will have the tendency to form a cluster, an open cyber-physical system to exploit the economic opportunities provided by a smart grid, distributed power generation, and storage devices. Through optimized demand management, these building clusters will then reduce overall primary energy consumption and peak time electricity consumption, and be more resilient to power disruptions. Therefore, this project seeks to develop a Net-zero building cluster simulation testbed and high fidelity energy forecasting models for adaptive and real-time control and decision making strategy development that can be used in a Net-zero building cluster. The following research activities are summarized in this thesis: 1) Development of a building cluster emulator for building cluster control and operation strategy assessment. 2) Development of a novel building energy forecasting methodology using active system identification and data fusion techniques. In this methodology, a systematic approach for building energy system characteristic evaluation, system excitation and model adaptation is included. The developed methodology is compared with other literature-reported building energy forecasting methods; 3) Development of the high fidelity on-line building cluster energy forecasting models, which includes energy forecasting models for buildings, PV panels, batteries and ice tank thermal storage systems 4) Small scale real building validation study to verify the performance of the developed building energy forecasting methodology. The outcomes of

  9. Real-time operating system timing jitter and its impact on motor control

    NASA Astrophysics Data System (ADS)

    Proctor, Frederick M.; Shackleford, William P.

    2001-12-01

    General-purpose microprocessors are increasingly being used for control applications due to their widespread availability and software support for non-control functions like networking and operator interfaces. Two classes of real-time operating systems (RTOS) exist for these systems. The traditional RTOS serves as the sole operating system, and provides all OS services. Examples include ETS, LynxOS, QNX, Windows CE and VxWorks. RTOS extensions add real-time scheduling capabilities to non-real-time OSes, and provide minimal services needed for the time-critical portions of an application. Examples include RTAI and RTL for Linux, and HyperKernel, OnTime and RTX for Windows NT. Timing jitter is an issue in these systems, due to hardware effects such as bus locking, caches and pipelines, and software effects from mutual exclusion resource locks, non-preemtible critical sections, disabled interrupts, and multiple code paths in the scheduler. Jitter is typically on the order of a microsecond to a few tens of microseconds for hard real-time operating systems, and ranges from milliseconds to seconds in the worst case for soft real-time operating systems. The question of its significance on the performance of a controller arises. Naturally, the smaller the scheduling period required for a control task, the more significant is the impact of timing jitter. Aside from this intuitive relationship is the greater significance of timing on open-loop control, such as for stepper motors, than for closed-loop control, such as for servo motors. Techniques for measuring timing jitter are discussed, and comparisons between various platforms are presented. Techniques to reduce jitter or mitigate its effects are presented. The impact of jitter on stepper motor control is analyzed.

  10. A real-time spectroscopic sensor for monitoring laser welding processes.

    PubMed

    Sibillano, Teresa; Ancona, Antonio; Berardi, Vincenzo; Lugarà, Pietro Mario

    2009-01-01

    In this paper we report on the development of a sensor for real time monitoring of laser welding processes based on spectroscopic techniques. The system is based on the acquisition of the optical spectra emitted from the laser generated plasma plume and their use to implement an on-line algorithm for both the calculation of the plasma electron temperature and the analysis of the correlations between selected spectral lines. The sensor has been patented and it is currently available on the market.

  11. Effects of computing time delay on real-time control systems

    NASA Technical Reports Server (NTRS)

    Shin, Kang G.; Cui, Xianzhong

    1988-01-01

    The reliability of a real-time digital control system depends not only on the reliability of the hardware and software used, but also on the speed in executing control algorithms. The latter is due to the negative effects of computing time delay on control system performance. For a given sampling interval, the effects of computing time delay are classified into the delay problem and the loss problem. Analysis of these two problems is presented as a means of evaluating real-time control systems. As an example, both the self-tuning predicted (STP) control and Proportional-Integral-Derivative (PID) control are applied to the problem of tracking robot trajectories, and their respective effects of computing time delay on control performance are comparatively evaluated. For this example, the STP (PID) controller is shown to outperform the PID (STP) controller in coping with the delay (loss) problem.

  12. Directional templates for real-time detection of coronal axis rotated faces

    NASA Astrophysics Data System (ADS)

    Perez, Claudio A.; Estevez, Pablo A.; Garate, Patricio

    2004-10-01

    Real-time face and iris detection on video images has gained renewed attention because of multiple possible applications in studying eye function, drowsiness detection, virtual keyboard interfaces, face recognition, video processing and multimedia retrieval. In this paper, a study is presented on using directional templates in the detection of faces rotated in the coronal axis. The templates are built by extracting the directional image information from the regions of the eyes, nose and mouth. The face position is determined by computing a line integral using the templates over the face directional image. The line integral reaches a maximum when it coincides with the face position. It is shown an improvement in localization selectivity by the increased value in the line integral computed with the directional template. Besides, improvements in the line integral value for face size and face rotation angle was also found through the computation of the line integral using the directional template. Based on these results the new templates should improve selectivity and hence provide the means to restrict computations to a fewer number of templates and restrict the region of search during the face and eye tracking procedure. The proposed method is real time, completely non invasive and was applied with no background limitation and normal illumination conditions in an indoor environment.

  13. Ultrasonic device for real-time sewage velocity and suspended particles concentration measurements.

    PubMed

    Abda, F; Azbaid, A; Ensminger, D; Fischer, S; François, P; Schmitt, P; Pallarès, A

    2009-01-01

    In the frame of a technological research and innovation network in water and environment technologies (RITEAU, Réseau de Recherche et d'Innovation Technologique Eau et Environnement), our research group, in collaboration with industrial partners and other research institutions, has been in charge of the development of a suitable flowmeter: an ultrasonic device measuring simultaneously the water flow and the concentration of size classes of suspended particles. Working on the pulsed ultrasound principle, our multi-frequency device (1 to 14 MHz) allows flow velocity and water height measurement and estimation of suspended solids concentration. Velocity measurements rely on the coherent Doppler principle. A self developed frequency estimator, so called Spectral Identification method, was used and compared to the classical Pulse-Pair method. Several measurements campaigns on one wastewater collector of the French city of Strasbourg gave very satisfactory results and showed smaller standard deviation values for the Doppler frequency extracted by the Spectral Identification method. A specific algorithm was also developed for the water height measurements. It relies on the water surface acoustic impedance rupture and its peak localisation and behaviour in the collected backscattering data. This algorithm was positively tested on long time measurements on the same wastewater collector. A large part of the article is devoted to the measurements of the suspended solids concentrations. Our data analysis consists in the adaptation of the well described acoustic behaviour of sand to the behaviour of wastewater particles. Both acoustic attenuation and acoustic backscattering data over multiple frequencies are analyzed for the extrapolation of size classes and respective concentrations. Under dry weather conditions, the massic backscattering coefficient and the overall size distribution showed similar evolution whatever the measurement site was and were suggesting a global

  14. Structural health monitoring of pipelines rehabilitated with lining technology

    NASA Astrophysics Data System (ADS)

    Farhidzadeh, Alireza; Dehghan-Niri, Ehsan; Salamone, Salvatore

    2014-03-01

    Damage detection of pipeline systems is a tedious and time consuming job due to digging requirement, accessibility, interference with other facilities, and being extremely wide spread in metropolitans. Therefore, a real-time and automated monitoring system can pervasively reduce labor work, time, and expenditures. This paper presents the results of an experimental study aimed at monitoring the performance of full scale pipe lining systems, subjected to static and dynamic (seismic) loading, using Acoustic Emission (AE) technique and Guided Ultrasonic Waves (GUWs). Particularly, two damage mechanisms are investigated: 1) delamination between pipeline and liner as the early indicator of damage, and 2) onset of nonlinearity and incipient failure of the liner as critical damage state.

  15. Using the analysis of stress waves to build research for experimentation on ultrasonic film measurement

    NASA Astrophysics Data System (ADS)

    Chang, Shi-Shing; Wu, John H.

    1993-09-01

    After the 2th world war, although the application of ultrasonic wave in industries is becoming more and more popular. But due to the restriction of the precise equivelent , experimental method and the support of the basic theoremsetc. Ultrasonic wave is not applied in precise measurement. Nowadays due to many conditions - the improvement in the production technic, the precise of the equivelent, causes to increase the application of ultrasonic wave. But it's still limited due to the lack of measurement and analysis theorem. In this paper, first we caculate translation of the stress wave (elastic wave) in material for the free surface of material by a normal impulse load. as the theorem analysis base in real application. It is applied to an experiment of film measurement. We can find the partical motion in material and the arriving time of wave front. Then we can estimate the thickness of layers and can prove the actual condition with the result of experiment. This resarch is not only in the theoretical investigation but also in setting overall the measurement system, and excutes the following three experiments: the thickness measurement of two layers, the thickness measurement of film material. the thickness measurement of air propagation. About the data processing, we relied on the frequency analysis to evalute the time difference of two overlapped ultrasonic wave signal. in the meanwhile. we also designed several computer programs to assist the sonic wave identification and signal analysis.

  16. Genotype identification of Math1/LacZ knockout mice based on real-time PCR with SYBR Green I dye.

    PubMed

    Krizhanovsky, Valery; Golenser, Esther; Ben-Arie, Nissim

    2004-07-30

    Knockout mice are widely used in all fields of biomedical research. Determining the genotype of every newborn mouse is a tedious task, usually performed by Southern blot hybridization or Polymerase Chain Reaction (PCR). We describe here a quick and simple genotype identification assay based on real-time PCR and SYBR Green I dye, without using fluorescent primers. The discrimination between the wild type and targeted alleles is based on a PCR design that leads to a different melting temperature for each product. The identification of the genotype is obvious immediately after amplification, and no post-PCR manipulations are needed, reducing cost and time. Therefore, while the real-time PCR amplification increases the sensitivity, the fact that the reactions tubes are never opened after amplification, reduces the risk of contamination and eliminates errors, which are common during the repeated handling of dozens of samples from the same mouse line. The protocol we provide was tested on Math1 knockout mice, but is general, and may be utilized for any knockout line and real-time thermocycler, without any further modification, accessories or special reagents. Copyright 2004 Elsevier B.V.

  17. Real-time stylistic prediction for whole-body human motions.

    PubMed

    Matsubara, Takamitsu; Hyon, Sang-Ho; Morimoto, Jun

    2012-01-01

    The ability to predict human motion is crucial in several contexts such as human tracking by computer vision and the synthesis of human-like computer graphics. Previous work has focused on off-line processes with well-segmented data; however, many applications such as robotics require real-time control with efficient computation. In this paper, we propose a novel approach called real-time stylistic prediction for whole-body human motions to satisfy these requirements. This approach uses a novel generative model to represent a whole-body human motion including rhythmic motion (e.g., walking) and discrete motion (e.g., jumping). The generative model is composed of a low-dimensional state (phase) dynamics and a two-factor observation model, allowing it to capture the diversity of motion styles in humans. A real-time adaptation algorithm was derived to estimate both state variables and style parameter of the model from non-stationary unlabeled sequential observations. Moreover, with a simple modification, the algorithm allows real-time adaptation even from incomplete (partial) observations. Based on the estimated state and style, a future motion sequence can be accurately predicted. In our implementation, it takes less than 15 ms for both adaptation and prediction at each observation. Our real-time stylistic prediction was evaluated for human walking, running, and jumping behaviors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Real-time Kp predictions from ACE real time solar wind

    NASA Astrophysics Data System (ADS)

    Detman, Thomas; Joselyn, Joann

    1999-06-01

    The Advanced Composition Explorer (ACE) spacecraft provides nearly continuous monitoring of solar wind plasma, magnetic fields, and energetic particles from the Sun-Earth L1 Lagrange point upstream of Earth in the solar wind. The Space Environment Center (SEC) in Boulder receives ACE telemetry from a group of international network of tracking stations. One-minute, and 1-hour averages of solar wind speed, density, temperature, and magnetic field components are posted on SEC's World Wide Web page within 3 to 5 minutes after they are measured. The ACE Real Time Solar Wind (RTSW) can be used to provide real-time warnings and short term forecasts of geomagnetic storms based on the (traditional) Kp index. Here, we use historical data to evaluate the performance of the first real-time Kp prediction algorithm to become operational.

  19. Head movement compensation in real-time magnetoencephalographic recordings.

    PubMed

    Little, Graham; Boe, Shaun; Bardouille, Timothy

    2014-01-01

    Neurofeedback- and brain-computer interface (BCI)-based interventions can be implemented using real-time analysis of magnetoencephalographic (MEG) recordings. Head movement during MEG recordings, however, can lead to inaccurate estimates of brain activity, reducing the efficacy of the intervention. Most real-time applications in MEG have utilized analyses that do not correct for head movement. Effective means of correcting for head movement are needed to optimize the use of MEG in such applications. Here we provide preliminary validation of a novel analysis technique, real-time source estimation (rtSE), that measures head movement and generates corrected current source time course estimates in real-time. rtSE was applied while recording a calibrated phantom to determine phantom position localization accuracy and source amplitude estimation accuracy under stationary and moving conditions. Results were compared to off-line analysis methods to assess validity of the rtSE technique. The rtSE method allowed for accurate estimation of current source activity at the source-level in real-time, and accounted for movement of the source due to changes in phantom position. The rtSE technique requires modifications and specialized analysis of the following MEG work flow steps.•Data acquisition•Head position estimation•Source localization•Real-time source estimation This work explains the technical details and validates each of these steps.

  20. Optical mapping system with real-time control capability.

    PubMed

    Iravanian, Shahriar; Christini, David J

    2007-10-01

    Real-time, closed-loop intervention is an emerging experiment-control method that promises to provide invaluable new insight into cardiac electrophysiology. One example is the investigation of closed-loop feedback control of cardiac activity (e.g., alternans) as a possible method of preventing arrhythmia onset. To date, such methods have been investigated only in vitro using microelectrode systems, which are hindered by poor spatial resolution and are not well suited for atrial or ventricular tissue preparations. We have developed a system that uses optical mapping techniques and an electrical stimulator as the sensory and effector arms, respectively, of a closed-loop, real-time control system. The system consists of a 2,048 x 1 pixel line-scan charge-coupled device camera that records optical signals from the tissue. Custom-image processing and control software, which is implemented on top of a hard real-time operation system (RTAI Linux), process the data and make control decisions with a deterministic delay of <1 ms. The system is tested in two ways: 1) it is used to control, in real time, simulated optical signals of electrical alternans; and 2) it uses precisely timed, feedback-controlled initiation of antitachycardia pacing to terminate reentrant arrhythmias in an arterially perfused swine right ventricle stained with voltage-sensitive fluorescent dye 4{beta-[2-(di-n-butylamino)-6-napathy]vinyl}pyridinium (di-4-ANEPPS). Thus real-time control of cardiac activity using optical mapping techniques is feasible. Such a system is attractive because it offers greater measurement resolution than the electrode-based systems with which real-time control has been used previously.

  1. Assessment of powder blend uniformity: Comparison of real-time NIR blend monitoring with stratified sampling in combination with HPLC and at-line NIR Chemical Imaging.

    PubMed

    Bakri, Barbara; Weimer, Marco; Hauck, Gerrit; Reich, Gabriele

    2015-11-01

    Scope of the study was (1) to develop a lean quantitative calibration for real-time near-infrared (NIR) blend monitoring, which meets the requirements in early development of pharmaceutical products and (2) to compare the prediction performance of this approach with the results obtained from stratified sampling using a sample thief in combination with off-line high pressure liquid chromatography (HPLC) and at-line near-infrared chemical imaging (NIRCI). Tablets were manufactured from powder blends and analyzed with NIRCI and HPLC to verify the real-time results. The model formulation contained 25% w/w naproxen as a cohesive active pharmaceutical ingredient (API), microcrystalline cellulose and croscarmellose sodium as cohesive excipients and free-flowing mannitol. Five in-line NIR calibration approaches, all using the spectra from the end of the blending process as reference for PLS modeling, were compared in terms of selectivity, precision, prediction accuracy and robustness. High selectivity could be achieved with a "reduced" approach i.e. API and time saving approach (35% reduction of API amount) based on six concentration levels of the API with three levels realized by three independent powder blends and the additional levels obtained by simply increasing the API concentration in these blends. Accuracy and robustness were further improved by combining this calibration set with a second independent data set comprising different excipient concentrations and reflecting different environmental conditions. The combined calibration model was used to monitor the blending process of independent batches. For this model formulation the target concentration of the API could be achieved within 3 min indicating a short blending time. The in-line NIR approach was verified by stratified sampling HPLC and NIRCI results. All three methods revealed comparable results regarding blend end point determination. Differences in both mean API concentration and RSD values could be

  2. A novel ultrasonic phased array inspection system to NDT for offshore platform structures

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Shan, Baohua; Wang, Xin; Ou, Jinping

    2007-01-01

    A novel ultrasonic phased array detection system is developed for nondestructive testing (NDT). The purpose of the system is to make acquisition of data in real-time from 64-element ultrasonic phased array transducer, and to enable real- time processing of the acquired data. The system is composed of five main parts: master unit, main board, eight transmit/receive units, a 64-element transducer and an external PC. The system can be used with 64 element transducers, excite 32 elements, receive and sample echo signals form 32 elements simultaneously at 62.5MHz with 8 bit precision. The external PC is used as the user interface showing the real time images and controls overall operation of the system through USB serial link. The use of Universal Serial Bus (USB) improves the transform speed and reduces hardware interface complexity. The program of the system is written in Visual C++.NET and is platform independent.

  3. High-speed real-time OFDM transmission based on FPGA

    NASA Astrophysics Data System (ADS)

    Xiao, Xin; Li, Fan; Yu, Jianjun

    2016-02-01

    In this paper, we review our recent research progresses on real-time orthogonal frequency division multiplexing (OFDM) transmission based on FPGA. We successfully demonstrated four-channel wavelength-division multiplexing (WDM) 256.51Gb/s 16-ary quadrature amplitude modulation (16QAM)-OFDM signal transmission system for short-reach optical amplifier free inter-connection with real-time reception. Four optical carriers are modulated by four different 16QAM-OFDM signals via 10G-class direct modulation lasers (DMLs). We achieved highest capacity real-time reception optical OFDM signal transmission over 2.4-km SMF with the bit-error ratio (BER) under soft-decision forward error correction (SD-FEC) limitation of 2.4×10-2. In order to achieve higher spectrum efficiency (SE), we demonstrate 4-channel high level QAM-OFDM transmission over 20-km SMF-28 with real-time reception. 58.72-Gb/s 256QAM-OFDM and 56.4-Gb/s 128QAM-OFDM signal transmission within 25-GHz grid is achieved with the BER under 2.4×10-2 and real-time reception.

  4. [Ultrasonic sludge treatment and its application on aerobic digestion].

    PubMed

    Li, Huan; Jin, Yi-ying; Nie, Yong-feng; Li, Lei; Yang, Hai-ying

    2007-07-01

    In order to enhance the degradation efficiency of waste activated sludge (WAS) in conventional aerobic digestion, various ultrasonic assisted treatment methods were investigated including ultrasonic disintegration of influent sludge, ultrasonic improvement of influent sludge activity and ultrasonic disintegration of return sludge. Firstly the effects of ultrasonic sludge treatment were studied to choose appropriate ultrasonic parameters, and then the experiments of aerobic digestion with different ultrasonic treatments were carried out. The results show that 1.0 W/mL, 10 minutes ultrasonic treatment can increase soluble chemical oxygen demand (SCOD) in the supernatant phase of sludge sample by 5.4 times and decrease total suspended solid (TSS) by 16%; 0.05 W/mL, 10 min ultrasonic treatment can increase the specific oxygen uptake rate (SOUR) of sludge sample by 29%. The two kinds of ultrasonic influent sludge pretreatment can't improve aerobic digestion effectively. Ultrasonic return sludge disintegration can enhance the volatile suspended solid (VSS) degradation ratio by 15%. Furthermore, the settlement performance of digested sludge is still good and the pollutant concentrations of supernatant phase increase slightly. So ultrasonic return sludge disintegration is considered as the most appropriate assisted treatment mode for aerobic digestion.

  5. Ultrasonic signal enhancement by resonator techniques

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1973-01-01

    Ultrasonic resonators increase experimental sensitivity to acoustic dispersion and changes in attenuation. Experimental sensitivity enhancement line shapes are presented which were obtained by modulating the acoustic properties of a CdS resonator with a light beam. Small changes in light level are made to produce almost pure absorptive or dispersive changes in the resonator signal. This effect is due to the coupling of the ultrasonic wave to the CdS conductivity which is proportional to incident light intensity. The resonator conductivity is adjusted in this manner to obtain both dispersive and absorptive sensitivity enhancement line shapes. The data presented verify previous thoretical calculations based on a propagating wave model.

  6. Novel ultrasonic real-time scanner featuring servo controlled transducers displaying a sector image.

    PubMed

    Matzuk, T; Skolnick, M L

    1978-07-01

    This paper describes a new real-time servo controlled sector scanner that produces high resolution images and has functionally programmable features similar to phased array systems, but possesses the simplicity of design and low cost best achievable in a mechanical sector scanner. The unique feature is the transducer head which contains a single moving part--the transducer--enclosed within a light-weight, hand held, and vibration free case. The frame rate, sector width, stop action angle, are all operator programmable. The frame rate can be varied from 12 to 30 frames s-1 and the sector width from 0 degrees to 60 degrees. Conversion from sector to time motion (T/M) modes are instant and two options are available, a freeze position high density T/M and a low density T/M obtainable simultaneously during sector visualization. Unusual electronic features are: automatic gain control, electronic recording of images on video tape in rf format, and ability to post-process images during video playback to extract T/M display and to change time gain control (tgc) and image size.

  7. The Real Time Correction of Stereoscopic Images: From the Serial to a Parallel Treatment

    NASA Astrophysics Data System (ADS)

    Irki, Zohir; Devy, Michel; Achour, Karim; Azzaz, Mohamed Salah

    2008-06-01

    The correction of the stereoscopic images is a task which consists in replacing acquired images by other images having the same properties but which are simpler to use in the other stages of stereovision. The use of the pre-calculated tables, built during an off line calibration step, made it possible to carry out the off line stereoscopic images rectification. An improvement of the built tables made it possible to carry out the real time rectification. In this paper, we describe an improvement of the real time correction approach so it can be exploited for a possible implementation on an FPGA component. This improvement holds in account the real time aspect of the correction and the available resources that can offer the FPGA Type Stratix 1S40F780C5.

  8. Noninvasive measurement of cerebrospinal fluid flow using an ultrasonic transit time flow sensor: a preliminary study.

    PubMed

    Pennell, Thomas; Yi, Juneyoung L; Kaufman, Bruce A; Krishnamurthy, Satish

    2016-03-01

    OBJECT Mechanical failure-which is the primary cause of CSF shunt malfunction-is not readily diagnosed, and the specific reasons for mechanical failure are not easily discerned. Prior attempts to measure CSF flow noninvasively have lacked the ability to either quantitatively or qualitatively obtain data. To address these needs, this preliminary study evaluates an ultrasonic transit time flow sensor in pediatric and adult patients with external ventricular drains (EVDs). One goal was to confirm the stated accuracy of the sensor in a clinical setting. A second goal was to observe the sensor's capability to record real-time continuous CSF flow. The final goal was to observe recordings during instances of flow blockage or lack of flow in order to determine the sensor's ability to identify these changes. METHODS A total of 5 pediatric and 11 adult patients who had received EVDs for the treatment of hydrocephalus were studied in a hospital setting. The primary EVD was connected to a secondary study EVD that contained a fluid-filled pressure transducer and an in-line transit time flow sensor. Comparisons were made between the weight of the drainage bag and the flow measured via the sensor in order to confirm its accuracy. Data from the pressure transducer and the flow sensor were recorded continuously at 100 Hz for a period of 24 hours by a data acquisition system, while the hourly CSF flow into the drip chamber was recorded manually. Changes in the patient's neurological status and their time points were noted. RESULTS The flow sensor demonstrated a proven accuracy of ± 15% or ± 2 ml/hr. The flow sensor allowed real-time continuous flow waveform data recordings. Dynamic analysis of CSF flow waveforms allowed the calculation of the pressure-volume index. Lastly, the sensor was able to diagnose a blocked catheter and distinguish between the blockage and lack of flow. CONCLUSIONS The Transonic flow sensor accurately measures CSF output within ± 15% or ± 2 ml

  9. Software Design for Real-Time Systems on Parallel Computers: Formal Specifications.

    DTIC Science & Technology

    1996-04-01

    This research investigated the important issues related to the analysis and design of real - time systems targeted to parallel architectures. In...particular, the software specification models for real - time systems on parallel architectures were evaluated. A survey of current formal methods for...uniprocessor real - time systems specifications was conducted to determine their extensibility in specifying real - time systems on parallel architectures. In

  10. Real-Time Safety Risk Assessment Based on a Real-Time Location System for Hydropower Construction Sites

    PubMed Central

    Fan, Qixiang; Qiang, Maoshan

    2014-01-01

    The concern for workers' safety in construction industry is reflected in many studies focusing on static safety risk identification and assessment. However, studies on real-time safety risk assessment aimed at reducing uncertainty and supporting quick response are rare. A method for real-time safety risk assessment (RTSRA) to implement a dynamic evaluation of worker safety states on construction site has been proposed in this paper. The method provides construction managers who are in charge of safety with more abundant information to reduce the uncertainty of the site. A quantitative calculation formula, integrating the influence of static and dynamic hazards and that of safety supervisors, is established to link the safety risk of workers with the locations of on-site assets. By employing the hidden Markov model (HMM), the RTSRA provides a mechanism for processing location data provided by the real-time location system (RTLS) and analyzing the probability distributions of different states in terms of false positives and negatives. Simulation analysis demonstrated the logic of the proposed method and how it works. Application case shows that the proposed RTSRA is both feasible and effective in managing construction project safety concerns. PMID:25114958

  11. Real-time safety risk assessment based on a real-time location system for hydropower construction sites.

    PubMed

    Jiang, Hanchen; Lin, Peng; Fan, Qixiang; Qiang, Maoshan

    2014-01-01

    The concern for workers' safety in construction industry is reflected in many studies focusing on static safety risk identification and assessment. However, studies on real-time safety risk assessment aimed at reducing uncertainty and supporting quick response are rare. A method for real-time safety risk assessment (RTSRA) to implement a dynamic evaluation of worker safety states on construction site has been proposed in this paper. The method provides construction managers who are in charge of safety with more abundant information to reduce the uncertainty of the site. A quantitative calculation formula, integrating the influence of static and dynamic hazards and that of safety supervisors, is established to link the safety risk of workers with the locations of on-site assets. By employing the hidden Markov model (HMM), the RTSRA provides a mechanism for processing location data provided by the real-time location system (RTLS) and analyzing the probability distributions of different states in terms of false positives and negatives. Simulation analysis demonstrated the logic of the proposed method and how it works. Application case shows that the proposed RTSRA is both feasible and effective in managing construction project safety concerns.

  12. Numerical experiment for ultrasonic-measurement-integrated simulation of three-dimensional unsteady blood flow.

    PubMed

    Funamoto, Kenichi; Hayase, Toshiyuki; Saijo, Yoshifumi; Yambe, Tomoyuki

    2008-08-01

    Integration of ultrasonic measurement and numerical simulation is a possible way to break through limitations of existing methods for obtaining complete information on hemodynamics. We herein propose Ultrasonic-Measurement-Integrated (UMI) simulation, in which feedback signals based on the optimal estimation of errors in the velocity vector determined by measured and computed Doppler velocities at feedback points are added to the governing equations. With an eye towards practical implementation of UMI simulation with real measurement data, its efficiency for three-dimensional unsteady blood flow analysis and a method for treating low time resolution of ultrasonic measurement were investigated by a numerical experiment dealing with complicated blood flow in an aneurysm. Even when simplified boundary conditions were applied, the UMI simulation reduced the errors of velocity and pressure to 31% and 53% in the feedback domain which covered the aneurysm, respectively. Local maximum wall shear stress was estimated, showing both the proper position and the value with 1% deviance. A properly designed intermittent feedback applied only at the time when measurement data were obtained had the same computational accuracy as feedback applied at every computational time step. Hence, this feedback method is a possible solution to overcome the insufficient time resolution of ultrasonic measurement.

  13. Ultrasonic analysis to discriminate bread dough of different types of flour

    NASA Astrophysics Data System (ADS)

    García-Álvarez, J.; Rosell, C. M.; García-Hernández, M. J.; Chávez, J. A.; Turó, A.; Salazar, J.

    2012-12-01

    Many varieties of bread are prepared using flour coming from wheat. However, there are other types of flours milled from rice, legumes and some fruits and vegetables that are also suitable for baking purposes, used alone or in combination with wheat flour. The type of flour employed strongly influences the dough consistency, which is a relevant property for determining the dough potential for breadmaking purposes. Traditional methods for dough testing are relatively expensive, time-consuming, off-line and often require skilled operators. In this work, ultrasonic analysis are performed in order to obtain acoustic properties of bread dough samples prepared using two different types of flour, wheat flour and rice flour. The dough acoustic properties can be related to its viscoelastic characteristics, which in turn determine the dough feasibility for baking. The main advantages of the ultrasonic dough testing can be, among others, its low cost, fast, hygienic and on-line performance. The obtained results point out the potential of the ultrasonic analysis to discriminate doughs of different types of flour.

  14. Introducing Undergraduate Students to Real-Time PCR

    ERIC Educational Resources Information Center

    Hancock, Dale; Funnell, Alister; Jack, Briony; Johnston, Jill

    2010-01-01

    An experiment is conducted, which in four 3 h laboratory sessions, introduces third year undergraduate Biochemistry students to the technique of real-time PCR in a biological context. The model used is a murine erythroleukemia cell line (MEL cells). These continuously cycling, immature red blood cells, arrested at an early stage in erythropoiesis,…

  15. Non-line-of-sight (NLOS), secure, low-probability of intercept (LPI), antijam (AJ), high frequency (HF), real time video communication system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lupinetti, F.

    1988-01-01

    This paper outlines a video communication system capable of non-line-of-sight (NLOS), secure, low-probability of intercept (LPI), antijam, real time transmission and reception of video information in a tactical enviroment. An introduction to a class of ternary PN sequences is presented to familiarize the reader with yet another avenue for spreading and despreading baseband information. The use of the high frequency (HF) band (1.5 to 30 MHz) for real time video transmission is suggested to allow NLOS communication. The spreading of the baseband information by means of multiple nontrivially different ternary pseudonoise (PN) sequence is used in order to assure encryptionmore » of the signal, enhanced security, a good degree of LPI, and good antijam features. 18 refs., 3 figs., 1 tab.« less

  16. Time-of-flight dependency on transducer separation distance in a reflective-path guided-wave ultrasonic flow meter at zero flow conditions.

    PubMed

    Aanes, Magne; Kippersund, Remi Andre; Lohne, Kjetil Daae; Frøysa, Kjell-Eivind; Lunde, Per

    2017-08-01

    Transit-time flow meters based on guided ultrasonic wave propagation in the pipe spool have several advantages compared to traditional inline ultrasonic flow metering. The extended interrogation field, obtained by continuous leakage from guided waves traveling in the pipe wall, increases robustness toward entrained particles or gas in the flow. In reflective-path guided-wave ultrasonic flow meters (GW-UFMs), the flow equations are derived from signals propagating solely in the pipe wall and from signals passing twice through the fluid. In addition to the time-of-flight (TOF) through the fluid, the fluid path experiences an additional time delay upon reflection at the opposite pipe wall due to specular and non-specular reflections. The present work investigates the influence of these reflections on the TOF in a reflective-path GW-UFM as a function of transducer separation distance at zero flow conditions. Two models are used to describe the signal propagation through the system: (i) a transient full-wave finite element model, and (ii) a combined plane-wave and ray-tracing model. The study shows that a range-dependent time delay is associated with the reflection of the fluid path, introducing transmitter-receiver distance dependence. Based on these results, the applicability of the flow equations derived using model (ii) is discussed.

  17. Time-localized frequency analysis of ultrasonic guided waves for nondestructive testing

    NASA Astrophysics Data System (ADS)

    Shin, Hyeon Jae; Song, Sung-Jin

    2000-05-01

    A time-localized frequency (TLF) analysis is employed for the guided wave mode identification and improved guided wave applications. For the analysis of time-localized frequency contents of digitized ultrasonic signals, TLF analysis consists of splitting the time domain signal into overlapping segments, weighting each with the hanning window, and forming the columns of discrete Fourier transforms. The result is presented by a frequency versus time domain diagram showing frequency variation along the signal arrival time. For the demonstration of the utility of TLF analysis, an experimental group velocity dispersion pattern obtained by TLF analysis is compared with the dispersion diagram obtained by theory of elasticity. Sample piping is carbon steel piping that is used for the transportation of natural gas underground. Guided wave propagation characteristic on the piping is considered with TLF analysis and wave structure concepts. TLF analysis is used for the detection of simulated corrosion defects and the assessment of weld joint using ultrasonic guided waves. TLF analysis has revealed that the difficulty of mode identification in multi-mode propagation could be overcome. Group velocity dispersion pattern obtained by TLF analysis agrees well with theoretical results.

  18. Near Real-Time Call Detail Record ETL Flows

    NASA Astrophysics Data System (ADS)

    Cochinwala, Munir; Panagos, Euthimios

    Telecommunication companies face significant business challenges as they strive to reduce subscriber churn and increase average revenue per user (ARPU) by offering new services and incorporating new functionality into existing services. The increased number of service offerings and available functionality result in an ever growing volume of call detail records (CDRs). For many services (e.g., pre-paid), CDRs need to be processed and analyzed in near real-time for several reasons, including charging, on-line subscriber access to their accounts, and analytics for predicting subscriber usage and preventing fraudulent activity. In this paper, we describe the challenges associated with near real-time extract, transform, and load (ETL) of CDR data warehouse flows for supporting both the operational and business intelligence needs of telecommunication services, and we present our approach to addressing these challenges.

  19. Real-time ground motions monitoring system developed by Raspberry Pi 3

    NASA Astrophysics Data System (ADS)

    Chen, P.; Jang, J. P.; Chang, H.; Lin, C. R.; Lin, P. P.; Wang, C. C.

    2016-12-01

    Ground-motions seismic stations are usually installed in the special geological area, like high possibility landslide area, active volcanoes, or nearby faults, to real-time monitor the possible geo-hazards. Base on the demands, three main issues needs to be considered: size, low-power consumption and real-time data transmission. Raspberry Pi 3 has the suitable characteristics to fit our requests. Thus, we develop a real-time ground motions monitoring system by Raspberry Pi 3. The Raspberry Pi has the credit-card-sized with single-board computers. The operating system is based on the programmable Linux system.The volume is only 85.6 by 53.98 by 17 mm with USB and Ethernet interfaces. The power supply is only needed 5 Volts and 2.1 A. It is easy to get power by using solar power and transmit the real-time data through Ethernet or by the mobile signal through USB adapter. As Raspberry Pi still a kind of small computer, the service, software or GUI can be very flexibly developed, such as the basic web server, ftp server, SSH connection, and real-time visualization interface tool etc. Until now, we have developed ten instruments with on-line/ real-time data transmission and have installed in the Taiping Mountain in Taiwan to motor the geohazard like mudslide.

  20. Tunable time-reversal cavity for high-pressure ultrasonic pulses generation: A tradeoff between transmission and time compression

    NASA Astrophysics Data System (ADS)

    Arnal, Bastien; Pernot, Mathieu; Fink, Mathias; Tanter, Mickael

    2012-08-01

    This Letter presents a time reversal cavity that has both a high reverberation time and a good transmission factor. A multiple scattering medium has been embedded inside a fluid-filled reverberating cavity. This allows creating smart ultrasonic sources able to generate very high pressure pulses at the focus outside the cavity with large steering capabilities. Experiments demonstrate a 25 dB gain in pressure at the focus. This concept will enable us to convert conventional ultrasonic imaging probes driven by low power electronics into high power probes for therapeutic applications requiring high pressure focused pulses, such as histotripsy or lithotripsy.

  1. Continuous real-time measurement of aqueous cyanide

    DOEpatents

    Rosentreter, Jeffrey J.; Gering, Kevin L.

    2007-03-06

    This invention provides a method and system capable of the continuous, real-time measurement of low concentrations of aqueous free cyanide (CN) using an on-line, flow through system. The system is based on the selective reactivity of cyanide anions and the characteristically nonreactive nature of metallic gold films, wherein this selective reactivity is exploited as an indirect measurement for aqueous cyanide. In the present invention the dissolution of gold, due to the solubilization reaction with the analyte cyanide anion, is monitored using a piezoelectric microbalance contained within a flow cell.

  2. A bio-inspired real-time capable artificial lateral line system for freestream flow measurements.

    PubMed

    Abels, C; Qualtieri, A; De Vittorio, M; Megill, W M; Rizzi, F

    2016-06-03

    To enhance today's artificial flow sensing capabilities in aerial and underwater robotics, future robots could be equipped with a large number of miniaturized sensors distributed over the surface to provide high resolution measurement of the surrounding fluid flow. In this work we show a linear array of closely separated bio-inspired micro-electro-mechanical flow sensors whose sensing mechanism is based on a piezoresistive strain-gauge along a stress-driven cantilever beam, mimicking the biological superficial neuromasts found in the lateral line organ of fishes. Aiming to improve state-of-the-art flow sensing capability in autonomously flying and swimming robots, our artificial lateral line system was designed and developed to feature multi-parameter freestream flow measurements which provide information about (1) local flow velocities as measured by the signal amplitudes from the individual cantilevers as well as (2) propagation velocity, (3) linear forward/backward direction along the cantilever beam orientation and (4) periodicity of pulses or pulse trains determined by cross-correlating sensor signals. A real-time capable cross-correlation procedure was developed which makes it possible to extract freestream flow direction and velocity information from flow fluctuations. The computed flow velocities deviate from a commercial system by 0.09 m s(-1) at 0.5 m s(-1) and 0.15 m s(-1) at 1.0 m s(-1) flow velocity for a sampling rate of 240 Hz and a sensor distance of 38 mm. Although experiments were performed in air, the presented flow sensing system can be applied to underwater vehicles as well, once the sensors are embedded in a waterproof micro-electro-mechanical systems package.

  3. New real-time algorithms for arbitrary, high precision function generation with applications to acoustic transducer excitation

    NASA Astrophysics Data System (ADS)

    Gaydecki, P.

    2009-07-01

    A system is described for the design, downloading and execution of arbitrary functions, intended for use with acoustic and low-frequency ultrasonic transducers in condition monitoring and materials testing applications. The instrumentation comprises a software design tool and a powerful real-time digital signal processor unit, operating at 580 million multiplication-accumulations per second (MMACs). The embedded firmware employs both an established look-up table approach and a new function interpolation technique to generate the real-time signals with very high precision and flexibility. Using total harmonic distortion (THD) analysis, the purity of the waveforms have been compared with those generated using traditional analogue function generators; this analysis has confirmed that the new instrument has a consistently superior signal-to-noise ratio.

  4. A Review on Real-Time 3D Ultrasound Imaging Technology

    PubMed Central

    Zeng, Zhaozheng

    2017-01-01

    Real-time three-dimensional (3D) ultrasound (US) has attracted much more attention in medical researches because it provides interactive feedback to help clinicians acquire high-quality images as well as timely spatial information of the scanned area and hence is necessary in intraoperative ultrasound examinations. Plenty of publications have been declared to complete the real-time or near real-time visualization of 3D ultrasound using volumetric probes or the routinely used two-dimensional (2D) probes. So far, a review on how to design an interactive system with appropriate processing algorithms remains missing, resulting in the lack of systematic understanding of the relevant technology. In this article, previous and the latest work on designing a real-time or near real-time 3D ultrasound imaging system are reviewed. Specifically, the data acquisition techniques, reconstruction algorithms, volume rendering methods, and clinical applications are presented. Moreover, the advantages and disadvantages of state-of-the-art approaches are discussed in detail. PMID:28459067

  5. A Review on Real-Time 3D Ultrasound Imaging Technology.

    PubMed

    Huang, Qinghua; Zeng, Zhaozheng

    2017-01-01

    Real-time three-dimensional (3D) ultrasound (US) has attracted much more attention in medical researches because it provides interactive feedback to help clinicians acquire high-quality images as well as timely spatial information of the scanned area and hence is necessary in intraoperative ultrasound examinations. Plenty of publications have been declared to complete the real-time or near real-time visualization of 3D ultrasound using volumetric probes or the routinely used two-dimensional (2D) probes. So far, a review on how to design an interactive system with appropriate processing algorithms remains missing, resulting in the lack of systematic understanding of the relevant technology. In this article, previous and the latest work on designing a real-time or near real-time 3D ultrasound imaging system are reviewed. Specifically, the data acquisition techniques, reconstruction algorithms, volume rendering methods, and clinical applications are presented. Moreover, the advantages and disadvantages of state-of-the-art approaches are discussed in detail.

  6. FPGA-based architecture for real-time data reduction of ultrasound signals.

    PubMed

    Soto-Cajiga, J A; Pedraza-Ortega, J C; Rubio-Gonzalez, C; Bandala-Sanchez, M; Romero-Troncoso, R de J

    2012-02-01

    This paper describes a novel method for on-line real-time data reduction of radiofrequency (RF) ultrasound signals. The approach is based on a field programmable gate array (FPGA) system intended mainly for steel thickness measurements. Ultrasound data reduction is desirable when: (1) direct measurements performed by an operator are not accessible; (2) it is required to store a considerable amount of data; (3) the application requires measuring at very high speeds; and (4) the physical space for the embedded hardware is limited. All the aforementioned scenarios can be present in applications such as pipeline inspection where data reduction is traditionally performed on-line using pipeline inspection gauges (PIG). The method proposed in this work consists of identifying and storing in real-time only the time of occurrence (TOO) and the maximum amplitude of each echo present in a given RF ultrasound signal. The method is tested with a dedicated immersion system where a significant data reduction with an average of 96.5% is achieved. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Portable real-time fluorescence cytometry of microscale cell culture analog devices

    NASA Astrophysics Data System (ADS)

    Kim, Donghyun; Tatosian, Daniel A.; Shuler, Michael L.

    2006-02-01

    A portable fluorescence cytometric system that provides a modular platform for quantitative real-time image measurements has been used to explore the applicability to investigating cellular events on multiple time scales. For a short time scale, we investigated the real-time dynamics of uptake of daunorubicin, a chemotherapeutic agent, in cultured mouse L-cells in a micro cell culture analog compartment using the fluorescent cytometric system. The green fluorescent protein (GFP) expression to monitor induction of pre-specified genes, which occurs on a much longer time scale, has also been measured. Here GFP fluorescence from a doxycycline inducible promoter in a mouse L-cell line was determined. Additionally, a system based on inexpensive LEDs showed performance comparable to a broadband light source based system and reduced photobleaching compared to microscopic examination.

  8. Fault Tolerant Real-Time Systems

    DTIC Science & Technology

    1993-09-30

    The ART (Advanced Real-Time Technology) Project of Carnegie Mellon University is engaged in wide ranging research on hard real - time systems . The...including hardware and software fault tolerance using temporal redundancy and analytic redundancy to permit the construction of real - time systems whose

  9. A Real-Time System for Lane Detection Based on FPGA and DSP

    NASA Astrophysics Data System (ADS)

    Xiao, Jing; Li, Shutao; Sun, Bin

    2016-12-01

    This paper presents a real-time lane detection system including edge detection and improved Hough Transform based lane detection algorithm and its hardware implementation with field programmable gate array (FPGA) and digital signal processor (DSP). Firstly, gradient amplitude and direction information are combined to extract lane edge information. Then, the information is used to determine the region of interest. Finally, the lanes are extracted by using improved Hough Transform. The image processing module of the system consists of FPGA and DSP. Particularly, the algorithms implemented in FPGA are working in pipeline and processing in parallel so that the system can run in real-time. In addition, DSP realizes lane line extraction and display function with an improved Hough Transform. The experimental results show that the proposed system is able to detect lanes under different road situations efficiently and effectively.

  10. Effect of seed age on gold nanorod formation. A microfluidic, real-time investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watt, John; Hance, Bradley G.; Anderson, Rachel S.

    We report a real time investigation into the effect of seed age on the growth of gold nanorods using a microfluidic reaction apparatus. Through small-angle X-ray scattering (SAXS) and ultraviolet–visible spectroscopy (UV–vis) analysis, we observe the seeds aging in accordance with Ostwald ripening. A seed solution is then aged in situ and continuously injected into a microfluidic chip to initiate rod growth. We track nanorod formation in real time using in-line ultraviolet–visible and near-infrared (UV–vis–NIR) monitoring and observe a dramatic decrease in yield with increasing seed age. We then demonstrate that, by diluting the gold seed solution immediately following synthesis,more » the rate of aging can be reduced and nanorods synthesized continuously, in good yield. As a result, these findings suggest ultrasmall, catalytically active seeds, which are rapidly lost due to ripening and are critical for the formation of gold nanorods.« less

  11. Effect of seed age on gold nanorod formation. A microfluidic, real-time investigation

    DOE PAGES

    Watt, John; Hance, Bradley G.; Anderson, Rachel S.; ...

    2015-09-02

    We report a real time investigation into the effect of seed age on the growth of gold nanorods using a microfluidic reaction apparatus. Through small-angle X-ray scattering (SAXS) and ultraviolet–visible spectroscopy (UV–vis) analysis, we observe the seeds aging in accordance with Ostwald ripening. A seed solution is then aged in situ and continuously injected into a microfluidic chip to initiate rod growth. We track nanorod formation in real time using in-line ultraviolet–visible and near-infrared (UV–vis–NIR) monitoring and observe a dramatic decrease in yield with increasing seed age. We then demonstrate that, by diluting the gold seed solution immediately following synthesis,more » the rate of aging can be reduced and nanorods synthesized continuously, in good yield. As a result, these findings suggest ultrasmall, catalytically active seeds, which are rapidly lost due to ripening and are critical for the formation of gold nanorods.« less

  12. On-line high-speed rail defect detection.

    DOT National Transportation Integrated Search

    2004-10-01

    This report presents the results of phase 2 of the project On-line high-speed rail defect detection aimed at improving the reliability and the speed of current defect detection in rails. Ultrasonic guided waves, traveling in the rail running di...

  13. Study of the Effects of Ultrasonic Waves on the Reproductive Integrity of Mammalian Cells Cultured in Vitro

    NASA Technical Reports Server (NTRS)

    Martins, B. I.

    1971-01-01

    The effects of monochromatic ultrasonic waves of 0.1, 0.5, 1.0, 2.0 and, 3.3 MHz frequency on the colony-forming ability of mammalian cells (M3-1,V79, Chang's and T-1) cultured in vitro have been studied to determine the nature of the action of ultrasonic energy on biological systems at the cellular level. The combined effect of ultrasound and X-rays has also been studied. It is concluded: (1) Ultrasonic irradiation causes both lethal and sublethal damage. (2) There is a threshold dose rate for lethal effects. (3) The effectiveness of ultrasonic waves in causing cell death probably depends on the frequency and the amplitude of the waves for a given cell line, indicating a possible resonance phenomenon.

  14. Real-Time PCR-Based Quantitation Method for the Genetically Modified Soybean Line GTS 40-3-2.

    PubMed

    Kitta, Kazumi; Takabatake, Reona; Mano, Junichi

    2016-01-01

    This chapter describes a real-time PCR-based method for quantitation of the relative amount of genetically modified (GM) soybean line GTS 40-3-2 [Roundup Ready(®) soybean (RRS)] contained in a batch. The method targets a taxon-specific soybean gene (lectin gene, Le1) and the specific DNA construct junction region between the Petunia hybrida chloroplast transit peptide sequence and the Agrobacterium 5-enolpyruvylshikimate-3-phosphate synthase gene (epsps) sequence present in GTS 40-3-2. The method employs plasmid pMulSL2 as a reference material in order to quantify the relative amount of GTS 40-3-2 in soybean samples using a conversion factor (Cf) equal to the ratio of the RRS-specific DNA to the taxon-specific DNA in representative genuine GTS 40-3-2 seeds.

  15. Real-Time Inhibitor Recession Measurements in the Space Shuttle Reusable Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    McWhorter, Bruce B.; Ewing, Mark E.; McCool, Alex (Technical Monitor)

    2001-01-01

    Real-time char line recession measurements were made on propellant inhibitors of the Space Shuttle Reusable Solid Rocket Motor (RSRM). The RSRM FSM-8 static test motor propellant inhibitors (composed of a rubber insulation material) were successfully instrumented with eroding potentiometers and thermocouples. The data was used to establish inhibitor recession versus time relationships. Normally, pre-fire and post-fire insulation thickness measurements establish the thermal performance of an ablating insulation material. However, post-fire inhibitor decomposition and recession measurements are complicated by the fact that most of the inhibitor is back during motor operation. It is therefore a difficult task to evaluate the thermal protection offered by the inhibitor material. Real-time measurements would help this task. The instrumentation program for this static test motor marks the first time that real-time inhibitors. This report presents that data for the center and aft field joint forward facing inhibitors. The data was primarily used to measure char line recession of the forward face of the inhibitors which provides inhibitor thickness reduction versus time data. The data was also used to estimate the inhibitor height versus time relationship during motor operation.

  16. [Treatment of carbonization effluent by the ultrasonic radiation and activated sludge process].

    PubMed

    Ning, Ping; Xu, Jinqiu; Huang, Dongbin; Ma, Xiaoli; Xu, Xiaojun; Li, Ziyan

    2003-05-01

    The paper deals with the degradation of organic pollutants by the ultrasonic irradiation-activated sludge process. The treatment of the real coking wastewater of Kunming coke making-gas plant was studied with the water quality model. Using the ultrasonic irradiation-activated sludge process the organic pollutants in the real coking wastewater can be degraded effectively. The influence factors of the ultrasonic degradation effect such as initial concentration, aerated gas and ultrasonic density were investigated and mechanism was explored. The result shows that the ultrasonic degradation effect was high with the decrease of initial concentration of the CODCr, the presence of aerated gas and the increase of ultrasonic density. At the initial CODCr concentration of 807 mg/L, when air acted as aerated gas and only air itself (no ultrasound) was exerted on the wastewater, the degradation rate of the CODCr will be 4.5%. However, when the ultrasound of the intensity of 119.4 kW/m2 was exerted on the wastewater, the degradation rate of the CODCr will be 65%. Compared with the activated sludge process alone, the combination of the ultrasonic irradiation and activated sludge process can increase the degradation rate of the CODCr from 45% to 81%. The oxygen consumption rate of the carbonization effluent obviously decreased in the presence of the activated sludge. This shows the carbonization effluent is not biotoxic behind the ultrasonic irradiation.

  17. Design of signal reception and processing system of embedded ultrasonic endoscope

    NASA Astrophysics Data System (ADS)

    Li, Ming; Yu, Feng; Zhang, Ruiqiang; Li, Yan; Chen, Xiaodong; Yu, Daoyin

    2009-11-01

    Embedded Ultrasonic Endoscope, based on embedded microprocessor and embedded real-time operating system, sends a micro ultrasonic probe into coelom through the biopsy channel of the Electronic Endoscope to get the fault histology features of digestive organs by rotary scanning, and acquires the pictures of the alimentary canal mucosal surface. At the same time, ultrasonic signals are processed by signal reception and processing system, forming images of the full histology of the digestive organs. Signal Reception and Processing System is an important component of Embedded Ultrasonic Endoscope. However, the traditional design, using multi-level amplifiers and special digital processing circuits to implement signal reception and processing, is no longer satisfying the standards of high-performance, miniaturization and low power requirements that embedded system requires, and as a result of the high noise that multi-level amplifier brought, the extraction of small signal becomes hard. Therefore, this paper presents a method of signal reception and processing based on double variable gain amplifier and FPGA, increasing the flexibility and dynamic range of the Signal Reception and Processing System, improving system noise level, and reducing power consumption. Finally, we set up the embedded experiment system, using a transducer with the center frequency of 8MHz to scan membrane samples, and display the image of ultrasonic echo reflected by each layer of membrane, with a frame rate of 5Hz, verifying the correctness of the system.

  18. Characterization of nuclear graphite elastic properties using laser ultrasonic methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Fan W; Han, Karen; Olasov, Lauren R

    2015-01-01

    Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have beenmore » made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements« less

  19. Real-time photoacoustic imaging of rat deep brain: hemodynamic responses to hypoxia

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Iwazaki, Hideaki; Ida, Taiichiro; Hosaka, Tomoya; Kawaguchi, Yasushi; Nawashiro, Hiroshi; Sato, Shunichi

    2013-03-01

    Hemodynamic responses of the brain to hypoxia or ischemia are one of the major interests in neurosurgery and neuroscience. In this study, we performed real-time transcutaneous PA imaging of the rat brain that was exposed to a hypoxic stress and investigated depth-resolved responses of the brain, including the hippocampus. A linear-array 8ch 10-MHz ultrasonic sensor (measurement length, 10 mm) was placed on the shaved scalp. Nanosecond, 570-nm and 595- nm light pulses were used to excite PA signals indicating cerebral blood volume (CBV) and blood deoxygenation, respectively. Under spontaneous respiration, inhalation gas was switched from air to nitrogen, and then reswitched to oxygen, during which real-time PA imaging was performed continuously. High-contrast PA signals were observed from the depth regions corresponding to the scalp, skull, cortex and hippocampus. After starting hypoxia, PA signals at 595 nm increased immediately in both the cortex and hippocampus for about 1.5 min, showing hemoglobin deoxygenation. On the other hand, PA signals at 570 nm coming from these regions did not increase in the early phase but started to increase at about 1.5 min after starting hypoxia, indicating reactive hyperemia to hypoxia. During hypoxia, PA signals coming from the scalp decreased transiently, which is presumably due to compensatory response in the peripheral tissue to preserve blood perfusion in the brain. The reoxygenation caused a gradual recovery of these PA signals. These findings demonstrate the usefulness of PA imaging for real-time, depth-resolved observation of cerebral hemodynamics.

  20. Centralized remote structural monitoring and management of real-time data

    NASA Astrophysics Data System (ADS)

    Han, Liting; Newhook, John P.; Mufti, Aftab A.

    2004-07-01

    Structural health monitoring (SHM) activities in civil engineering are increasing at a rapid pace in both research and field applications. This paper addresses the specific issue of incorporating internet technology into a structural health monitoring program. The issue of data volume versus communication speed is discussed along with a practical solution employed by ISIS Canada. The approach is illustrated through reference to several current case studies which include two bridges and a statue. It is seen that although the specifics of the projects and monitoring needs are different, the manner in which on-line monitoring can be conducted is very similar and easily allows for centralized monitoring. A general framework for website construction integrating sensing data and web camera options are presented. Issues related to simple real-time performance indices versus more comprehensive complex data analysis are discussed. Examples of on-line websites which allow visualization of new and historic data are presented. The paper also discusses future activities and research needs related to centralized remote structural monitoring and management of real-time data.

  1. Influence of the Ultrasonic Power Applied on Freeze Drying Kinetics

    NASA Astrophysics Data System (ADS)

    Brines, C.; Mulet, A.; García-Pérez, J. V.; Riera, E.; Cárcel, J. A.

    The atmospheric freeze drying (AFD) constitutes an interesting alternative to vacuum freeze drying providing products with similar quality at lowest cost. However, the long process time needed represent an important drawback. In this sense, the application of high intensity ultrasound can enhance heat and mass transfer and intensify the operation. In hot air drying operation, the ultrasonic effects are dependent on the process variables such as air velocity, internal sample structure or ultrasonic power applied. However, in AFD processes, the internal structure of material or the air velocity has not significant influence on the magnitude of ultrasonic effects. The aim of this work was to determine the influence on drying kinetics of the ultrasonic power applied during the AFD of apple. For that purpose, AFD experiments (-10 °C, 2 m/s and 15% relative humidity) of apple slabs (cv. Granny Smith, 30 x 30 x 10 mm) were carried out with ultrasound application (21 kHz) at different power levels (0, 10.3, 20.5 and 30.8 kW/m3). The drying kinetics was obtained from the initial moisture content and the weight evolution of samples during drying. Experimental results showed a significant (p<0.05) influence of the ultrasound application on drying. Thus, drying time was shorter as higher the ultrasonic power applied. From modeling, it was observed that the effective diffusion coefficient identified was 4.8 times higher when ultrasound was applied at the lowest power tested (10.3 kW/m3) that illustrated the high intensification potential of ultrasound application in the AFD.

  2. Development of an automated ultrasonic testing system

    NASA Astrophysics Data System (ADS)

    Shuxiang, Jiao; Wong, Brian Stephen

    2005-04-01

    Non-Destructive Testing is necessary in areas where defects in structures emerge over time due to wear and tear and structural integrity is necessary to maintain its usability. However, manual testing results in many limitations: high training cost, long training procedure, and worse, the inconsistent test results. A prime objective of this project is to develop an automatic Non-Destructive testing system for a shaft of the wheel axle of a railway carriage. Various methods, such as the neural network, pattern recognition methods and knowledge-based system are used for the artificial intelligence problem. In this paper, a statistical pattern recognition approach, Classification Tree is applied. Before feature selection, a thorough study on the ultrasonic signals produced was carried out. Based on the analysis of the ultrasonic signals, three signal processing methods were developed to enhance the ultrasonic signals: Cross-Correlation, Zero-Phase filter and Averaging. The target of this step is to reduce the noise and make the signal character more distinguishable. Four features: 1. The Auto Regressive Model Coefficients. 2. Standard Deviation. 3. Pearson Correlation 4. Dispersion Uniformity Degree are selected. And then a Classification Tree is created and applied to recognize the peak positions and amplitudes. Searching local maximum is carried out before feature computing. This procedure reduces much computation time in the real-time testing. Based on this algorithm, a software package called SOFRA was developed to recognize the peaks, calibrate automatically and test a simulated shaft automatically. The automatic calibration procedure and the automatic shaft testing procedure are developed.

  3. An ultrasonic sensor system based on a two-dimensional state method for highway vehicle violation detection applications.

    PubMed

    Liu, Jun; Han, Jiuqiang; Lv, Hongqiang; Li, Bing

    2015-04-16

    With the continuing growth of highway construction and vehicle use expansion all over the world, highway vehicle traffic rule violation (TRV) detection has become more and more important so as to avoid traffic accidents and injuries in intelligent transportation systems (ITS) and vehicular ad hoc networks (VANETs). Since very few works have contributed to solve the TRV detection problem by moving vehicle measurements and surveillance devices, this paper develops a novel parallel ultrasonic sensor system that can be used to identify the TRV behavior of a host vehicle in real-time. Then a two-dimensional state method is proposed, utilizing the spacial state and time sequential states from the data of two parallel ultrasonic sensors to detect and count the highway vehicle violations. Finally, the theoretical TRV identification probability is analyzed, and actual experiments are conducted on different highway segments with various driving speeds, which indicates that the identification accuracy of the proposed method can reach about 90.97%.

  4. An Ultrasonic Sensor System Based on a Two-Dimensional State Method for Highway Vehicle Violation Detection Applications

    PubMed Central

    Liu, Jun; Han, Jiuqiang; Lv, Hongqiang; Li, Bing

    2015-01-01

    With the continuing growth of highway construction and vehicle use expansion all over the world, highway vehicle traffic rule violation (TRV) detection has become more and more important so as to avoid traffic accidents and injuries in intelligent transportation systems (ITS) and vehicular ad hoc networks (VANETs). Since very few works have contributed to solve the TRV detection problem by moving vehicle measurements and surveillance devices, this paper develops a novel parallel ultrasonic sensor system that can be used to identify the TRV behavior of a host vehicle in real-time. Then a two-dimensional state method is proposed, utilizing the spacial state and time sequential states from the data of two parallel ultrasonic sensors to detect and count the highway vehicle violations. Finally, the theoretical TRV identification probability is analyzed, and actual experiments are conducted on different highway segments with various driving speeds, which indicates that the identification accuracy of the proposed method can reach about 90.97%. PMID:25894940

  5. Ultrasonic hyperactivation of cellulase immobilized on magnetic nanoparticles.

    PubMed

    Ladole, Mayur Ramrao; Mevada, Jayesh Sevantilal; Pandit, Aniruddha Bhalchandra

    2017-09-01

    In the present work, effect of low power, low frequency ultrasound on cellulase immobilized magnetic nanoparticles (cellulase@MNPs) was studied. To gain maximum activity recovery in cellulase@MNPs various parameters viz. ratio of MNPs:cellulase, concentration of glutaraldehyde and cross-linking time were optimized. The influence of ultrasonic power on cellulase@MNPs was studied. Under ultrasonic conditions at 24kHz, 6W power, and 6min of incubation time there was almost 3.6 fold increased in the catalytic activity of immobilized cellulase over the control. Results also indicated that there was improvement in pH and temperature stability of cellulase@MNPs. Furthermore, thermal deactivation energy required was more in cellulase@MNPs than that of the free cellulase. Secondary structural analysis revealed that there were conformational changes in free cellulase and cellulase@MNPs before and after sonication which might be responsible for enhanced activity after ultrasonication. Finally, the influence of ultrasound and cellulase@MNPs for biomass hydrolysis was studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. [Development of a system for ultrasonic three-dimensional reconstruction of fetus].

    PubMed

    Baba, K

    1989-04-01

    We have developed a system for ultrasonic three-dimensional (3-D) fetus reconstruction using computers. Either a real-time linear array probe or a convex array probe of an ultrasonic scanner was mounted on a position sensor arm of a manual compound scanner in order to detect the position of the probe. A microcomputer was used to convert the position information to what could be recorded on a video tape as an image. This image was superimposed on the ultrasonic tomographic image simultaneously with a superimposer and recorded on a video tape. Fetuses in utero were scanned in seven cases. More than forty ultrasonic section image on the video tape were fed into a minicomputer. The shape of the fetus was displayed three-dimensionally by means of computer graphics. The computer-generated display produced a 3-D image of the fetus and showed the usefulness and accuracy of this system. Since it took only a few seconds for data collection by ultrasonic inspection, fetal movement did not adversely affect the results. Data input took about ten minutes for 40 slices, and 3-D reconstruction and display took about two minutes. The system made it possible to observe and record the 3-D image of the fetus in utero non-invasively and therefore is expected to make it much easier to obtain a 3-D picture of the fetus in utero.

  7. On-Line Library Housekeeping Systems. A Survey

    ERIC Educational Resources Information Center

    McAllister, Caryl

    1971-01-01

    A general discussion of on-line procedures, batch and real-time updating, types of files and indexes, terminals, and the use of a general-purpose data management system as a vehicle for on-line operation is followed by an Appendix giving detailed information on each on the known systems. (14 references) (Author/NH)

  8. An Augmented Lagrangian Filter Method for Real-Time Embedded Optimization

    DOE PAGES

    Chiang, Nai -Yuan; Huang, Rui; Zavala, Victor M.

    2017-04-17

    We present a filter line-search algorithm for nonconvex continuous optimization that combines an augmented Lagrangian function and a constraint violation metric to accept and reject steps. The approach is motivated by real-time optimization applications that need to be executed on embedded computing platforms with limited memory and processor speeds. The proposed method enables primal–dual regularization of the linear algebra system that in turn permits the use of solution strategies with lower computing overheads. We prove that the proposed algorithm is globally convergent and we demonstrate the developments using a nonconvex real-time optimization application for a building heating, ventilation, and airmore » conditioning system. Our numerical tests are performed on a standard processor and on an embedded platform. Lastly, we demonstrate that the approach reduces solution times by a factor of over 1000.« less

  9. An Augmented Lagrangian Filter Method for Real-Time Embedded Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Nai -Yuan; Huang, Rui; Zavala, Victor M.

    We present a filter line-search algorithm for nonconvex continuous optimization that combines an augmented Lagrangian function and a constraint violation metric to accept and reject steps. The approach is motivated by real-time optimization applications that need to be executed on embedded computing platforms with limited memory and processor speeds. The proposed method enables primal–dual regularization of the linear algebra system that in turn permits the use of solution strategies with lower computing overheads. We prove that the proposed algorithm is globally convergent and we demonstrate the developments using a nonconvex real-time optimization application for a building heating, ventilation, and airmore » conditioning system. Our numerical tests are performed on a standard processor and on an embedded platform. Lastly, we demonstrate that the approach reduces solution times by a factor of over 1000.« less

  10. A real-time and closed-loop control algorithm for cascaded multilevel inverter based on artificial neural network.

    PubMed

    Wang, Libing; Mao, Chengxiong; Wang, Dan; Lu, Jiming; Zhang, Junfeng; Chen, Xun

    2014-01-01

    In order to control the cascaded H-bridges (CHB) converter with staircase modulation strategy in a real-time manner, a real-time and closed-loop control algorithm based on artificial neural network (ANN) for three-phase CHB converter is proposed in this paper. It costs little computation time and memory. It has two steps. In the first step, hierarchical particle swarm optimizer with time-varying acceleration coefficient (HPSO-TVAC) algorithm is employed to minimize the total harmonic distortion (THD) and generate the optimal switching angles offline. In the second step, part of optimal switching angles are used to train an ANN and the well-designed ANN can generate optimal switching angles in a real-time manner. Compared with previous real-time algorithm, the proposed algorithm is suitable for a wider range of modulation index and results in a smaller THD and a lower calculation time. Furthermore, the well-designed ANN is embedded into a closed-loop control algorithm for CHB converter with variable direct voltage (DC) sources. Simulation results demonstrate that the proposed closed-loop control algorithm is able to quickly stabilize load voltage and minimize the line current's THD (<5%) when subjecting the DC sources disturbance or load disturbance. In real design stage, a switching angle pulse generation scheme is proposed and experiment results verify its correctness.

  11. Real-time analysis of the carbohydrates on cell surfaces using a QCM biosensor: a lectin-based approach.

    PubMed

    Pei, Zhichao; Saint-Guirons, Julien; Käck, Camilla; Ingemarsson, Björn; Aastrup, Teodor

    2012-05-15

    A novel approach to the study of molecular interactions on the surface of mammalian cells using a QCM biosensor was developed. For this study, an epidermoid carcinoma cell line (A-431) and a breast adenocarcinoma cell line (MDA-MB-468) were immobilized onto polystyrene-coated quartz crystals. The binding and dissociation between the lectin Con A and the cells as well as the inhibition of the binding by monosaccharides were monitored in real time and provided an insight into the complex avidic recognition of cell glycoconjugates. The real-time lectin screening of a range of lectins, including Con A, DBA, PNA and UEA-I, enabled the accurate study of the glycosylation changes between cells, such as changes associated with cancer progression and development. Furthermore, the kinetic parameters of the interaction of Con A with MDA-MB-468 cells were studied. This application provides investigators in the field of glycobiology with a novel tool to study cell surface glycosylation and may also have impacts on drug discovery. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. NSTX-U Advances in Real-Time C++11 on Linux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Keith G.

    Programming languages like C and Ada combined with proprietary embedded operating systems have dominated the real-time application space for decades. The new C++11standard includes native, language-level support for concurrency, a required feature for any nontrivial event-oriented real-time software. Threads, Locks, and Atomics now exist to provide the necessary tools to build the structures that make up the foundation of a complex real-time system. The National Spherical Torus Experiment Upgrade (NSTX-U) at the Princeton Plasma Physics Laboratory (PPPL) is breaking new ground with the language as applied to the needs of fusion devices. A new Digital Coil Protection System (DCPS) willmore » serve as the main protection mechanism for the magnetic coils, and it is written entirely in C++11 running on Concurrent Computer Corporation's real-time operating system, RedHawk Linux. It runs over 600 algorithms in a 5 kHz control loop that determine whether or not to shut down operations before physical damage occurs. To accomplish this, NSTX-U engineers developed software tools that do not currently exist elsewhere, including real-time atomic synchronization, real-time containers, and a real-time logging framework. Together with a recent (and carefully configured) version of the GCC compiler, these tools enable data acquisition, processing, and output using a conventional operating system to meet a hard real-time deadline (that is, missing one periodic is a failure) of 200 microseconds.« less

  13. NSTX-U Advances in Real-Time C++11 on Linux

    DOE PAGES

    Erickson, Keith G.

    2015-08-14

    Programming languages like C and Ada combined with proprietary embedded operating systems have dominated the real-time application space for decades. The new C++11standard includes native, language-level support for concurrency, a required feature for any nontrivial event-oriented real-time software. Threads, Locks, and Atomics now exist to provide the necessary tools to build the structures that make up the foundation of a complex real-time system. The National Spherical Torus Experiment Upgrade (NSTX-U) at the Princeton Plasma Physics Laboratory (PPPL) is breaking new ground with the language as applied to the needs of fusion devices. A new Digital Coil Protection System (DCPS) willmore » serve as the main protection mechanism for the magnetic coils, and it is written entirely in C++11 running on Concurrent Computer Corporation's real-time operating system, RedHawk Linux. It runs over 600 algorithms in a 5 kHz control loop that determine whether or not to shut down operations before physical damage occurs. To accomplish this, NSTX-U engineers developed software tools that do not currently exist elsewhere, including real-time atomic synchronization, real-time containers, and a real-time logging framework. Together with a recent (and carefully configured) version of the GCC compiler, these tools enable data acquisition, processing, and output using a conventional operating system to meet a hard real-time deadline (that is, missing one periodic is a failure) of 200 microseconds.« less

  14. NSTX-U Advances in Real-Time C++11 on Linux

    NASA Astrophysics Data System (ADS)

    Erickson, Keith G.

    2015-08-01

    Programming languages like C and Ada combined with proprietary embedded operating systems have dominated the real-time application space for decades. The new C++11 standard includes native, language-level support for concurrency, a required feature for any nontrivial event-oriented real-time software. Threads, Locks, and Atomics now exist to provide the necessary tools to build the structures that make up the foundation of a complex real-time system. The National Spherical Torus Experiment Upgrade (NSTX-U) at the Princeton Plasma Physics Laboratory (PPPL) is breaking new ground with the language as applied to the needs of fusion devices. A new Digital Coil Protection System (DCPS) will serve as the main protection mechanism for the magnetic coils, and it is written entirely in C++11 running on Concurrent Computer Corporation's real-time operating system, RedHawk Linux. It runs over 600 algorithms in a 5 kHz control loop that determine whether or not to shut down operations before physical damage occurs. To accomplish this, NSTX-U engineers developed software tools that do not currently exist elsewhere, including real-time atomic synchronization, real-time containers, and a real-time logging framework. Together with a recent (and carefully configured) version of the GCC compiler, these tools enable data acquisition, processing, and output using a conventional operating system to meet a hard real-time deadline (that is, missing one periodic is a failure) of 200 microseconds.

  15. Effects of Ultrasonic Parameters on the Crystallization Behavior of Virgin Coconut Oil.

    PubMed

    Wu, Linhe; Cao, Jun; Bai, Xinpeng; Chen, Haiming; Zhang, Yuxiang; Wu, Qian

    2016-12-01

    Crystallization behavior of virgin coconut oil (VCO) in the absence and presence of ultrasonic treatment under a temperature gradient field was investigated. The effects of ultrasonic parameters on the crystallization behavior of VCO were studied by differential scanning calorimetry, ultraviolet/visible spectrophotometry and polarized light microscopy. The thermal effect of the ultrasonic treatment was also increased at higher power levels. Therefore, the optimal power level was determined at approximately 36 W. Induction time reduced evidently and the crystallization rate was accelerated under ultrasonic treatment at crystallization temperature (T c ) above 15°C. However, no significant difference in induction time was noted at 13°C. The result of morphological studies showed that the growth mechanism of crystals was significantly changed. Meanwhile, smaller and uniform crystals were produced by the ultrasonic treatment. This study shows a novel technique to accelerate the crystallization rate and alter the growth mechanism of VCO crystals.

  16. Method for Hot Real-Time Sampling of Gasification Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomeroy, Marc D

    The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a highly instrumented half-ton/day pilot scale plant capable of demonstrating industrially relevant thermochemical technologies from lignocellulosic biomass conversion, including gasification. Gasification creates primarily Syngas (a mixture of Hydrogen and Carbon Monoxide) that can be utilized with synthesis catalysts to form transportation fuels and other valuable chemicals. Biomass derived gasification products are a very complex mixture of chemical components that typically contain Sulfur and Nitrogen species that can act as catalysis poisons for tar reforming and synthesis catalysts. Real-time hot online sampling techniques, such as Molecular Beammore » Mass Spectrometry (MBMS), and Gas Chromatographs with Sulfur and Nitrogen specific detectors can provide real-time analysis providing operational indicators for performance. Sampling typically requires coated sampling lines to minimize trace sulfur interactions with steel surfaces. Other materials used inline have also shown conversion of sulfur species into new components and must be minimized. Sample line Residence time within the sampling lines must also be kept to a minimum to reduce further reaction chemistries. Solids from ash and char contribute to plugging and must be filtered at temperature. Experience at NREL has shown several key factors to consider when designing and installing an analytical sampling system for biomass gasification products. They include minimizing sampling distance, effective filtering as close to source as possible, proper line sizing, proper line materials or coatings, even heating of all components, minimizing pressure drops, and additional filtering or traps after pressure drops.« less

  17. Ultrasonic test of resistance spot welds based on wavelet package analysis.

    PubMed

    Liu, Jing; Xu, Guocheng; Gu, Xiaopeng; Zhou, Guanghao

    2015-02-01

    In this paper, ultrasonic test of spot welds for stainless steel sheets has been studied. It is indicated that traditional ultrasonic signal analysis in either time domain or frequency domain remains inadequate to evaluate the nugget diameter of spot welds. However, the method based on wavelet package analysis in time-frequency domain can easily distinguish the nugget from the corona bond by extracting high-frequency signals in different positions of spot welds, thereby quantitatively evaluating the nugget diameter. The results of ultrasonic test fit the actual measured value well. Mean value of normal distribution of error statistics is 0.00187, and the standard deviation is 0.1392. Furthermore, the quality of spot welds was evaluated, and it is showed ultrasonic nondestructive test based on wavelet packet analysis can be used to evaluate the quality of spot welds, and it is more reliable than single tensile destructive test. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. REAL TIME, ON-LINE CHARACTERIZATION OF DIESEL GENERATOR AIR TOXIC EMISSIONS BY RESONANCE ENHANCED MULTI-PHOTON IONIZATION TIME OF FLIGHT MASS SPECTROMETRY

    EPA Science Inventory

    The laser based resonance, enhanced multi-photon ionization time-of-flight mass spectrometry (REMPI-TOFMS) technique has been applied to the exhaust gas stream of a diesel generator to measure, in real time, concentration levels of aromatic air toxics. Volatile organic compounds ...

  19. Satellite clock corrections estimation to accomplish real time ppp: experiments for brazilian real time network

    NASA Astrophysics Data System (ADS)

    Marques, Haroldo; Monico, João; Aquino, Marcio; Melo, Weyller

    2014-05-01

    The real time PPP method requires the availability of real time precise orbits and satellites clocks corrections. Currently, it is possible to apply the solutions of clocks and orbits available by BKG within the context of IGS Pilot project or by using the operational predicted IGU ephemeris. The accuracy of the satellite position available in the IGU is enough for several applications requiring good quality. However, the satellites clocks corrections do not provide enough accuracy (3 ns ~ 0.9 m) to accomplish real time PPP with the same level of accuracy. Therefore, for real time PPP application it is necessary to further research and develop appropriated methodologies for estimating the satellite clock corrections in real time with better accuracy. Currently, it is possible to apply the real time solutions of clocks and orbits available by Federal Agency for Cartography and Geodesy (BKG) within the context of IGS Pilot project. The BKG corrections are disseminated by a new proposed format of the RTCM 3.x and can be applied in the broadcasted orbits and clocks. Some investigations have been proposed for the estimation of the satellite clock corrections using GNSS code and phase observable at the double difference level between satellites and epochs (MERVAT, DOUSA, 2007). Another possibility consists of applying a Kalman Filter in the PPP network mode (HAUSCHILD, 2010) and it is also possible the integration of both methods, using network PPP and observables at double difference level in specific time intervals (ZHANG; LI; GUO, 2010). For this work the methodology adopted consists in the estimation of the satellite clock corrections based on the data adjustment in the PPP mode, but for a network of GNSS stations. The clock solution can be solved by using two types of observables: code smoothed by carrier phase or undifferenced code together with carrier phase. In the former, we estimate receiver clock error; satellite clock correction and troposphere, considering

  20. Characterization of real-time computers

    NASA Technical Reports Server (NTRS)

    Shin, K. G.; Krishna, C. M.

    1984-01-01

    A real-time system consists of a computer controller and controlled processes. Despite the synergistic relationship between these two components, they have been traditionally designed and analyzed independently of and separately from each other; namely, computer controllers by computer scientists/engineers and controlled processes by control scientists. As a remedy for this problem, in this report real-time computers are characterized by performance measures based on computer controller response time that are: (1) congruent to the real-time applications, (2) able to offer an objective comparison of rival computer systems, and (3) experimentally measurable/determinable. These measures, unlike others, provide the real-time computer controller with a natural link to controlled processes. In order to demonstrate their utility and power, these measures are first determined for example controlled processes on the basis of control performance functionals. They are then used for two important real-time multiprocessor design applications - the number-power tradeoff and fault-masking and synchronization.

  1. A method of real-time detection for distant moving obstacles by monocular vision

    NASA Astrophysics Data System (ADS)

    Jia, Bao-zhi; Zhu, Ming

    2013-12-01

    In this paper, we propose an approach for detection of distant moving obstacles like cars and bicycles by a monocular camera to cooperate with ultrasonic sensors in low-cost condition. We are aiming at detecting distant obstacles that move toward our autonomous navigation car in order to give alarm and keep away from them. Method of frame differencing is applied to find obstacles after compensation of camera's ego-motion. Meanwhile, each obstacle is separated from others in an independent area and given a confidence level to indicate whether it is coming closer. The results on an open dataset and our own autonomous navigation car have proved that the method is effective for detection of distant moving obstacles in real-time.

  2. Real Time Conference 2014 Overview

    NASA Astrophysics Data System (ADS)

    Nomachi, Masaharu

    2015-06-01

    This article presents an overview of the 19th Real Time Conference held last May 26-30, 2014, at the Nara Prefectural New Public Hall, Nara, Japan, organized by the Research Center for Nuclear Physics of the Osaka University. The program included many invited talks and oral sessions offering an extensive overview on the following topics: real-time system architectures, intelligent signal processing, fast data transfer links and networks, trigger systems, data acquisition, processing-farms, control, monitoring and test systems, emerging real-time technologies, new standards, real-time safety and security, and some feedback on experiences. In parallel to the oral and poster presentations, industrial exhibits by companies, workshops and short courses also ran through the week.

  3. On Gamma Ray Instrument On-Board Data Processing Real-Time Computational Algorithm for Cosmic Ray Rejection

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Hunter, Stanley D.; Hanu, Andrei R.; Sheets, Teresa B.

    2016-01-01

    Richard O. Duda and Peter E. Hart of Stanford Research Institute in [1] described the recurring problem in computer image processing as the detection of straight lines in digitized images. The problem is to detect the presence of groups of collinear or almost collinear figure points. It is clear that the problem can be solved to any desired degree of accuracy by testing the lines formed by all pairs of points. However, the computation required for n=NxM points image is approximately proportional to n2 or O(n2), becoming prohibitive for large images or when data processing cadence time is in milliseconds. Rosenfeld in [2] described an ingenious method due to Hough [3] for replacing the original problem of finding collinear points by a mathematically equivalent problem of finding concurrent lines. This method involves transforming each of the figure points into a straight line in a parameter space. Hough chose to use the familiar slope-intercept parameters, and thus his parameter space was the two-dimensional slope-intercept plane. A parallel Hough transform running on multi-core processors was elaborated in [4]. There are many other proposed methods of solving a similar problem, such as sampling-up-the-ramp algorithm (SUTR) [5] and algorithms involving artificial swarm intelligence techniques [6]. However, all state-of-the-art algorithms lack in real time performance. Namely, they are slow for large images that require performance cadence of a few dozens of milliseconds (50ms). This problem arises in spaceflight applications such as near real-time analysis of gamma ray measurements contaminated by overwhelming amount of traces of cosmic rays (CR). Future spaceflight instruments such as the Advanced Energetic Pair Telescope instrument (AdEPT) [7-9] for cosmos gamma ray survey employ large detector readout planes registering multitudes of cosmic ray interference events and sparse science gamma ray event traces' projections. The AdEPT science of interest is in the

  4. Real-time simulation of three-dimensional shoulder girdle and arm dynamics.

    PubMed

    Chadwick, Edward K; Blana, Dimitra; Kirsch, Robert F; van den Bogert, Antonie J

    2014-07-01

    Electrical stimulation is a promising technology for the restoration of arm function in paralyzed individuals. Control of the paralyzed arm under electrical stimulation, however, is a challenging problem that requires advanced controllers and command interfaces for the user. A real-time model describing the complex dynamics of the arm would allow user-in-the-loop type experiments where the command interface and controller could be assessed. Real-time models of the arm previously described have not included the ability to model the independently controlled scapula and clavicle, limiting their utility for clinical applications of this nature. The goal of this study therefore was to evaluate the performance and mechanical behavior of a real-time, dynamic model of the arm and shoulder girdle. The model comprises seven segments linked by eleven degrees of freedom and actuated by 138 muscle elements. Polynomials were generated to describe the muscle lines of action to reduce computation time, and an implicit, first-order Rosenbrock formulation of the equations of motion was used to increase simulation step-size. The model simulated flexion of the arm faster than real time, simulation time being 92% of actual movement time on standard desktop hardware. Modeled maximum isometric torque values agreed well with values from the literature, showing that the model simulates the moment-generating behavior of a real human arm. The speed of the model enables experiments where the user controls the virtual arm and receives visual feedback in real time. The ability to optimize potential solutions in simulation greatly reduces the burden on the user during development.

  5. In-flight thrust determination on a real-time basis

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Carpenter, T.; Sandlin, T.

    1984-01-01

    A real time computer program was implemented on a F-15 jet fighter to monitor in-flight engine performance of a Digital Electronic Engine Controlled (DEES) F-100 engine. The application of two gas generator methods to calculate in-flight thrust real time is described. A comparison was made between the actual results and those predicted by an engine model simulation. The percent difference between the two methods was compared to the predicted uncertainty based on instrumentation and model uncertainty and agreed closely with the results found during altitude facility testing. Data was obtained from acceleration runs of various altitudes at maximum power settings with and without afterburner. Real time in-flight thrust measurement was a major advancement to flight test productivity and was accomplished with no loss in accuracy over previous post flight methods.

  6. Out-of-plane ultrasonic velocity measurement

    DOEpatents

    Hall, Maclin S.; Brodeur, Pierre H.; Jackson, Theodore G.

    1998-01-01

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated.

  7. Real-time assessment of critical quality attributes of a continuous granulation process.

    PubMed

    Fonteyne, Margot; Vercruysse, Jurgen; Díaz, Damián Córdoba; Gildemyn, Delphine; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas

    2013-02-01

    There exists the intention to shift pharmaceutical manufacturing of solid dosage forms from traditional batch production towards continuous production. The currently applied conventional quality control systems, based on sampling and time-consuming off-line analyses in analytical laboratories, would annul the advantages of continuous processing. It is clear that real-time quality assessment and control is indispensable for continuous production. This manuscript evaluates strengths and weaknesses of several complementary Process Analytical Technology (PAT) tools implemented in a continuous wet granulation process, which is part of a fully continuous from powder-to-tablet production line. The use of Raman and NIR-spectroscopy and a particle size distribution analyzer is evaluated for the real-time monitoring of critical parameters during the continuous wet agglomeration of an anhydrous theophylline- lactose blend. The solid state characteristics and particle size of the granules were analyzed in real-time and the critical process parameters influencing these granule characteristics were identified. The temperature of the granulator barrel, the amount of granulation liquid added and, to a lesser extent, the powder feed rate were the parameters influencing the solid state of the active pharmaceutical ingredient (API). A higher barrel temperature and a higher powder feed rate, resulted in larger granules.

  8. Acting to gain information: Real-time reasoning meets real-time perception

    NASA Technical Reports Server (NTRS)

    Rosenschein, Stan

    1994-01-01

    Recent advances in intelligent reactive systems suggest new approaches to the problem of deriving task-relevant information from perceptual systems in real time. The author will describe work in progress aimed at coupling intelligent control mechanisms to real-time perception systems, with special emphasis on frame rate visual measurement systems. A model for integrated reasoning and perception will be discussed, and recent progress in applying these ideas to problems of sensor utilization for efficient recognition and tracking will be described.

  9. Adaptive real-time dual-comb spectroscopy.

    PubMed

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W

    2014-02-27

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences.

  10. Adaptive real-time dual-comb spectroscopy

    NASA Astrophysics Data System (ADS)

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W.

    2014-02-01

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences.

  11. Adaptive real-time dual-comb spectroscopy

    PubMed Central

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W.

    2014-01-01

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences. PMID:24572636

  12. Inspection of thick welded joints using laser-ultrasonic SAFT.

    PubMed

    Lévesque, D; Asaumi, Y; Lord, M; Bescond, C; Hatanaka, H; Tagami, M; Monchalin, J-P

    2016-07-01

    The detection of defects in thick butt joints in the early phase of multi-pass arc welding would be very valuable to reduce cost and time in the necessity of reworking. As a non-contact method, the laser-ultrasonic technique (LUT) has the potential for the automated inspection of welds, ultimately online during manufacturing. In this study, testing has been carried out using LUT combined with the synthetic aperture focusing technique (SAFT) on 25 and 50mm thick butt welded joints of steel both completed and partially welded. EDM slits of 2 or 3mm height were inserted at different depths in the multi-pass welding process to simulate a lack of fusion. Line scans transverse to the weld are performed with the generation and detection laser spots superimposed directly on the surface of the weld bead. A CCD line camera is used to simultaneously acquire the surface profile for correction in the SAFT processing. All artificial defects but also real defects are visualized in the investigated thick butt weld specimens, either completed or partially welded after a given number of passes. The results obtained clearly show the potential of using the LUT with SAFT for the automated inspection of arc welds or hybrid laser-arc welds during manufacturing. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  13. Real-Time Multimission Event Notification System for Mars Relay

    NASA Technical Reports Server (NTRS)

    Wallick, Michael N.; Allard, Daniel A.; Gladden, Roy E.; Wang, Paul; Hy, Franklin H.

    2013-01-01

    As the Mars Relay Network is in constant flux (missions and teams going through their daily workflow), it is imperative that users are aware of such state changes. For example, a change by an orbiter team can affect operations on a lander team. This software provides an ambient view of the real-time status of the Mars network. The Mars Relay Operations Service (MaROS) comprises a number of tools to coordinate, plan, and visualize various aspects of the Mars Relay Network. As part of MaROS, a feature set was developed that operates on several levels of the software architecture. These levels include a Web-based user interface, a back-end "ReSTlet" built in Java, and databases that store the data as it is received from the network. The result is a real-time event notification and management system, so mission teams can track and act upon events on a moment-by-moment basis. This software retrieves events from MaROS and displays them to the end user. Updates happen in real time, i.e., messages are pushed to the user while logged into the system, and queued when the user is not online for later viewing. The software does not do away with the email notifications, but augments them with in-line notifications. Further, this software expands the events that can generate a notification, and allows user-generated notifications. Existing software sends a smaller subset of mission-generated notifications via email. A common complaint of users was that the system-generated e-mails often "get lost" with other e-mail that comes in. This software allows for an expanded set (including user-generated) of notifications displayed in-line of the program. By separating notifications, this can improve a user's workflow.

  14. Real-Time and Near Real-Time Data for Space Weather Applications and Services

    NASA Astrophysics Data System (ADS)

    Singer, H. J.; Balch, C. C.; Biesecker, D. A.; Matsuo, T.; Onsager, T. G.

    2015-12-01

    Space weather can be defined as conditions in the vicinity of Earth and in the interplanetary environment that are caused primarily by solar processes and influenced by conditions on Earth and its atmosphere. Examples of space weather are the conditions that result from geomagnetic storms, solar particle events, and bursts of intense solar flare radiation. These conditions can have impacts on modern-day technologies such as GPS or electric power grids and on human activities such as astronauts living on the International Space Station or explorers traveling to the moon or Mars. While the ultimate space weather goal is accurate prediction of future space weather conditions, for many applications and services, we rely on real-time and near-real time observations and model results for the specification of current conditions. In this presentation, we will describe the space weather system and the need for real-time and near-real time data that drive the system, characterize conditions in the space environment, and are used by models for assimilation and validation. Currently available data will be assessed and a vision for future needs will be given. The challenges for establishing real-time data requirements, as well as acquiring, processing, and disseminating the data will be described, including national and international collaborations. In addition to describing how the data are used for official government products, we will also give examples of how these data are used by both the public and private sector for new applications that serve the public.

  15. Ultrasonic Fingerprint Sensor With Transmit Beamforming Based on a PMUT Array Bonded to CMOS Circuitry.

    PubMed

    Jiang, Xiaoyue; Tang, Hao-Yen; Lu, Yipeng; Ng, Eldwin J; Tsai, Julius M; Boser, Bernhard E; Horsley, David A

    2017-09-01

    In this paper, we present a single-chip 65 ×42 element ultrasonic pulse-echo fingerprint sensor with transmit (TX) beamforming based on piezoelectric micromachined ultrasonic transducers directly bonded to a CMOS readout application-specific integrated circuit (ASIC). The readout ASIC was realized in a standard 180-nm CMOS process with a 24-V high-voltage transistor option. Pulse-echo measurements are performed column-by-column in sequence using either one column or five columns to TX the ultrasonic pulse at 20 MHz. TX beamforming is used to focus the ultrasonic beam at the imaging plane where the finger is located, increasing the ultrasonic pressure and narrowing the 3-dB beamwidth to [Formula: see text], a factor of 6.4 narrower than nonbeamformed measurements. The surface of the sensor is coated with a poly-dimethylsiloxane (PDMS) layer to provide good acoustic impedance matching to skin. Scanning laser Doppler vibrometry of the PDMS surface was used to map the ultrasonic pressure field at the imaging surface, demonstrating the expected increase in pressure, and reduction in beamwidth. Imaging experiments were conducted using both PDMS phantoms and real fingerprints. The average image contrast is increased by a factor of 1.5 when beamforming is used.

  16. A Lecture Supporting System Based on Real-Time Learning Analytics

    ERIC Educational Resources Information Center

    Shimada, Atsushi; Konomi, Shin'ichi

    2017-01-01

    A new lecture supporting system based on real-time learning analytics is proposed. Our target is on-site classrooms where teachers give their lectures, and a lot of students listen to teachers' explanation, conduct exercises etc. We utilize not only an e-Learning system, but also an e-Book system to collect real-time learning activities during the…

  17. A real-time architecture for time-aware agents.

    PubMed

    Prouskas, Konstantinos-Vassileios; Pitt, Jeremy V

    2004-06-01

    This paper describes the specification and implementation of a new three-layer time-aware agent architecture. This architecture is designed for applications and environments where societies of humans and agents play equally active roles, but interact and operate in completely different time frames. The architecture consists of three layers: the April real-time run-time (ART) layer, the time aware layer (TAL), and the application agents layer (AAL). The ART layer forms the underlying real-time agent platform. An original online, real-time, dynamic priority-based scheduling algorithm is described for scheduling the computation time of agent processes, and it is shown that the algorithm's O(n) complexity and scalable performance are sufficient for application in real-time domains. The TAL layer forms an abstraction layer through which human and agent interactions are temporally unified, that is, handled in a common way irrespective of their temporal representation and scale. A novel O(n2) interaction scheduling algorithm is described for predicting and guaranteeing interactions' initiation and completion times. The time-aware predicting component of a workflow management system is also presented as an instance of the AAL layer. The described time-aware architecture addresses two key challenges in enabling agents to be effectively configured and applied in environments where humans and agents play equally active roles. It provides flexibility and adaptability in its real-time mechanisms while placing them under direct agent control, and it temporally unifies human and agent interactions.

  18. Dependable Real-Time Systems

    DTIC Science & Technology

    1991-09-30

    0196 or 413 545-0720 PI E-mail Address: krithi@nirvan.cs.umass.edu, stankovic(ocs.umass.edu Grant or Contract Title: Dependable Real - Time Systems Grant...Dependable Real - Time Systems " Grant or Contract Number: N00014-85-k-0398 L " Reporting Period: 1 Oct 87 - 30 Sep 91 , 2. Summary of Accomplishments ’ 2.1 Our...in developing a sound approach to scheduling tasks in complex real - time systems , (2) developed a real-time operating system kernel, a preliminary

  19. In-line and Real-time Monitoring of Resonant Acoustic Mixing by Near-infrared Spectroscopy Combined with Chemometric Technology for Process Analytical Technology Applications in Pharmaceutical Powder Blending Systems.

    PubMed

    Tanaka, Ryoma; Takahashi, Naoyuki; Nakamura, Yasuaki; Hattori, Yusuke; Ashizawa, Kazuhide; Otsuka, Makoto

    2017-01-01

    Resonant acoustic ® mixing (RAM) technology is a system that performs high-speed mixing by vibration through the control of acceleration and frequency. In recent years, real-time process monitoring and prediction has become of increasing interest, and process analytical technology (PAT) systems will be increasingly introduced into actual manufacturing processes. This study examined the application of PAT with the combination of RAM, near-infrared spectroscopy, and chemometric technology as a set of PAT tools for introduction into actual pharmaceutical powder blending processes. Content uniformity was based on a robust partial least squares regression (PLSR) model constructed to manage the RAM configuration parameters and the changing concentration of the components. As a result, real-time monitoring may be possible and could be successfully demonstrated for in-line real-time prediction of active pharmaceutical ingredients and other additives using chemometric technology. This system is expected to be applicable to the RAM method for the risk management of quality.

  20. Real-Time Simulation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Coryphaeus Software, founded in 1989 by former NASA electronic engineer Steve Lakowske, creates real-time 3D software. Designer's Workbench, the company flagship product, is a modeling and simulation tool for the development of both static and dynamic 3D databases. Other products soon followed. Activation, specifically designed for game developers, allows developers to play and test the 3D games before they commit to a target platform. Game publishers can shorten development time and prove the "playability" of the title, maximizing their chances of introducing a smash hit. Another product, EasyT, lets users create massive, realistic representation of Earth terrains that can be viewed and traversed in real time. Finally, EasyScene software control the actions among interactive objects within a virtual world. Coryphaeus products are used on Silican Graphics workstation and supercomputers to simulate real-world performance in synthetic environments. Customers include aerospace, aviation, architectural and engineering firms, game developers, and the entertainment industry.

  1. Note: Ultrasonic gas flowmeter based on optimized time-of-flight algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X. F.; Tang, Z. A.

    2011-04-15

    A new digital signal processor based single path ultrasonic gas flowmeter is designed, constructed, and experimentally tested. To achieve high accuracy measurements, an optimized ultrasound driven method of incorporation of the amplitude modulation and the phase modulation of the transmit-receive technique is used to stimulate the transmitter. Based on the regularities among the received envelope zero-crossings, different received signal's signal-to-noise ratio situations are discriminated and optional time-of-flight algorithms are applied to take flow rate calculations. Experimental results from the dry calibration indicate that the designed flowmeter prototype can meet the zero-flow verification test requirements of the American Gas Association Reportmore » No. 9. Furthermore, the results derived from the flow calibration prove that the proposed flowmeter prototype can measure flow rate accurately in the practical experiments, and the nominal accuracies after FWME adjustment are lower than 0.8% throughout the calibration range.« less

  2. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection.

    PubMed

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat.

  3. Evaluation of Four Endogenous Reference Genes and Their Real-Time PCR Assays for Common Wheat Quantification in GMOs Detection

    PubMed Central

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat. PMID:24098735

  4. Out-of-plane ultrasonic velocity measurement

    DOEpatents

    Hall, M.S.; Brodeur, P.H.; Jackson, T.G.

    1998-07-14

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated. 20 figs.

  5. Terrain modeling for real-time simulation

    NASA Astrophysics Data System (ADS)

    Devarajan, Venkat; McArthur, Donald E.

    1993-10-01

    There are many applications, such as pilot training, mission rehearsal, and hardware-in-the- loop simulation, which require the generation of realistic images of terrain and man-made objects in real-time. One approach to meeting this requirement is to drape photo-texture over a planar polygon model of the terrain. The real time system then computes, for each pixel of the output image, the address in a texture map based on the intersection of the line-of-sight vector with the terrain model. High quality image generation requires that the terrain be modeled with a fine mesh of polygons while hardware costs limit the number of polygons which may be displayed for each scene. The trade-off between these conflicting requirements must be made in real-time because it depends on the changing position and orientation of the pilot's eye point or simulated sensor. The traditional approach is to develop a data base consisting of multiple levels of detail (LOD), and then selecting for display LODs as a function of range. This approach could lead to both anomalies in the displayed scene and inefficient use of resources. An approach has been developed in which the terrain is modeled with a set of nested polygons and organized as a tree with each node corresponding to a polygon. This tree is pruned to select the optimum set of nodes for each eye-point position. As the point of view moves, the visibility of some nodes drops below the limit of perception and may be deleted while new points must be added in regions near the eye point. An analytical model has been developed to determine the number of polygons required for display. This model leads to quantitative performance measures of the triangulation algorithm which is useful for optimizing system performance with a limited display capability.

  6. In vivo real-time cavitation imaging in moving organs

    NASA Astrophysics Data System (ADS)

    Arnal, B.; Baranger, J.; Demene, C.; Tanter, M.; Pernot, M.

    2017-02-01

    The stochastic nature of cavitation implies visualization of the cavitation cloud in real-time and in a discriminative manner for the safe use of focused ultrasound therapy. This visualization is sometimes possible with standard echography, but it strongly depends on the quality of the scanner, and is hindered by difficulty in discriminating from highly reflecting tissue signals in different organs. A specific approach would then permit clear validation of the cavitation position and activity. Detecting signals from a specific source with high sensitivity is a major problem in ultrasound imaging. Based on plane or diverging wave sonications, ultrafast ultrasonic imaging dramatically increases temporal resolution, and the larger amount of acquired data permits increased sensitivity in Doppler imaging. Here, we investigate a spatiotemporal singular value decomposition of ultrafast radiofrequency data to discriminate bubble clouds from tissue based on their different spatiotemporal motion and echogenicity during histotripsy. We introduce an automation to determine the parameters of this filtering. This method clearly outperforms standard temporal filtering techniques with a bubble to tissue contrast of at least 20 dB in vitro in a moving phantom and in vivo in porcine liver.

  7. Real-time 3-D ultrafast ultrasound quasi-static elastography in vivo

    PubMed Central

    Papadacci, Clement; Bunting, Ethan A.; Konofagou, Elisa E.

    2017-01-01

    Ultrasound elastography, a technique used to assess mechanical properties of soft tissue is of major interest in the detection of breast cancer as it is stiffer than the surroundings. Techniques such as ultrasound quasi-static elastography have been developed to assess the strain distribution in soft tissues in two dimensions using a quasi-static compression. However, tumors can exhibit very heterogeneous shape, a three dimensions approach would be then necessary to measure accurately the tumor volume and remove operator dependency. To ensure this issue, several 3-D quasi-static elastographic approaches have been proposed. However, all these approaches suffered from a long acquisition time to acquire 3-D volumes resulting in the impossibility to perform real-time and the creation of artifacts. The long acquisition time comes from both the use of focused ultrasound emissions and the fact that the volume was made from a stack of two dimensions images acquired by mechanically translating an ultrasonic array. Being able to acquire volume at high volume rates is thus crucial to perform real-time with a simple freehand compression and to avoid signal decorrelation coming from hand motions or natural motions such as the respiratory. In this study we developed for the first time, the 3-D ultrafast ultrasound quasi-static elastography method to estimate 3-D axial strain distribution in vivo in real-time. Acquisitions were performed with a 2-D matrix array probe of 256 elements (16-by-16 elements). 100 plane waves were emitted at a volume rate of 100 volumes/sec during a continuous motorized compression. 3-D B-mode volumes and 3-D B-mode cumulative axial strain volumes were estimated on a two-layers gelatin phantom with different stiffness, in a stiff inclusion embedded in a soft gelatin phantoms, in a soft inclusion embedded in a stiff gelatin phantom and in an ex vivo canine liver before and after a high focused ultrasound (HIFU) ablation. In each case, we were able to

  8. HEVC real-time decoding

    NASA Astrophysics Data System (ADS)

    Bross, Benjamin; Alvarez-Mesa, Mauricio; George, Valeri; Chi, Chi Ching; Mayer, Tobias; Juurlink, Ben; Schierl, Thomas

    2013-09-01

    The new High Efficiency Video Coding Standard (HEVC) was finalized in January 2013. Compared to its predecessor H.264 / MPEG4-AVC, this new international standard is able to reduce the bitrate by 50% for the same subjective video quality. This paper investigates decoder optimizations that are needed to achieve HEVC real-time software decoding on a mobile processor. It is shown that HEVC real-time decoding up to high definition video is feasible using instruction extensions of the processor while decoding 4K ultra high definition video in real-time requires additional parallel processing. For parallel processing, a picture-level parallel approach has been chosen because it is generic and does not require bitstreams with special indication.

  9. Real-time PCR in virology.

    PubMed

    Mackay, Ian M; Arden, Katherine E; Nitsche, Andreas

    2002-03-15

    The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of PCR product during real-time PCR. These are the DNA binding fluorophores, the 5' endonuclease, adjacent linear and hairpin oligoprobes and the self-fluorescing amplicons, which are described in detail. We also discuss factors that have restricted the development of multiplex real-time PCR as well as the role of real-time PCR in quantitating nucleic acids. Both amplification hardware and the fluorogenic detection chemistries have evolved rapidly as the understanding of real-time PCR has developed and this review aims to update the scientist on the current state of the art. We describe the background, advantages and limitations of real-time PCR and we review the literature as it applies to virus detection in the routine and research laboratory in order to focus on one of the many areas in which the application of real-time PCR has provided significant methodological benefits and improved patient outcomes. However, the technology discussed has been applied to other areas of microbiology as well as studies of gene expression and genetic disease.

  10. Ultrasonic velocity profiling rheometry based on a widened circular Couette flow

    NASA Astrophysics Data System (ADS)

    Shiratori, Takahisa; Tasaka, Yuji; Oishi, Yoshihiko; Murai, Yuichi

    2015-08-01

    We propose a new rheometry for characterizing the rheological properties of fluids. The technique produces flow curves, which represent the relationship between the fluid shear rate and shear stress. Flow curves are obtained by measuring the circumferential velocity distribution of tested fluids in a circular Couette system, using an ultrasonic velocity profiling technique. By adopting a widened gap of concentric cylinders, a designed range of the shear rate is obtained so that velocity profile measurement along a single line directly acquires flow curves. To reduce the effect of ultrasonic noise on resultant flow curves, several fitting functions and variable transforms are examined to best approximate the velocity profile without introducing a priori rheological models. Silicone oil, polyacrylamide solution, and yogurt were used to evaluate the applicability of this technique. These substances are purposely targeted as examples of Newtonian fluids, shear thinning fluids, and opaque fluids with unknown rheological properties, respectively. We find that fourth-order Chebyshev polynomials provide the most accurate representation of flow curves in the context of model-free rheometry enabled by ultrasonic velocity profiling.

  11. Improved Real-Time Scan Matching Using Corner Features

    NASA Astrophysics Data System (ADS)

    Mohamed, H. A.; Moussa, A. M.; Elhabiby, M. M.; El-Sheimy, N.; Sesay, Abu B.

    2016-06-01

    The automation of unmanned vehicle operation has gained a lot of research attention, in the last few years, because of its numerous applications. The vehicle localization is more challenging in indoor environments where absolute positioning measurements (e.g. GPS) are typically unavailable. Laser range finders are among the most widely used sensors that help the unmanned vehicles to localize themselves in indoor environments. Typically, automatic real-time matching of the successive scans is performed either explicitly or implicitly by any localization approach that utilizes laser range finders. Many accustomed approaches such as Iterative Closest Point (ICP), Iterative Matching Range Point (IMRP), Iterative Dual Correspondence (IDC), and Polar Scan Matching (PSM) handles the scan matching problem in an iterative fashion which significantly affects the time consumption. Furthermore, the solution convergence is not guaranteed especially in cases of sharp maneuvers or fast movement. This paper proposes an automated real-time scan matching algorithm where the matching process is initialized using the detected corners. This initialization step aims to increase the convergence probability and to limit the number of iterations needed to reach convergence. The corner detection is preceded by line extraction from the laser scans. To evaluate the probability of line availability in indoor environments, various data sets, offered by different research groups, have been tested and the mean numbers of extracted lines per scan for these data sets are ranging from 4.10 to 8.86 lines of more than 7 points. The set of all intersections between extracted lines are detected as corners regardless of the physical intersection of these line segments in the scan. To account for the uncertainties of the detected corners, the covariance of the corners is estimated using the extracted lines variances. The detected corners are used to estimate the transformation parameters between the

  12. GNSS global real-time augmentation positioning: Real-time precise satellite clock estimation, prototype system construction and performance analysis

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Zhao, Qile; Hu, Zhigang; Jiang, Xinyuan; Geng, Changjiang; Ge, Maorong; Shi, Chuang

    2018-01-01

    Lots of ambiguities in un-differenced (UD) model lead to lower calculation efficiency, which isn't appropriate for the high-frequency real-time GNSS clock estimation, like 1 Hz. Mixed differenced model fusing UD pseudo-range and epoch-differenced (ED) phase observations has been introduced into real-time clock estimation. In this contribution, we extend the mixed differenced model for realizing multi-GNSS real-time clock high-frequency updating and a rigorous comparison and analysis on same conditions are performed to achieve the best real-time clock estimation performance taking the efficiency, accuracy, consistency and reliability into consideration. Based on the multi-GNSS real-time data streams provided by multi-GNSS Experiment (MGEX) and Wuhan University, GPS + BeiDou + Galileo global real-time augmentation positioning prototype system is designed and constructed, including real-time precise orbit determination, real-time precise clock estimation, real-time Precise Point Positioning (RT-PPP) and real-time Standard Point Positioning (RT-SPP). The statistical analysis of the 6 h-predicted real-time orbits shows that the root mean square (RMS) in radial direction is about 1-5 cm for GPS, Beidou MEO and Galileo satellites and about 10 cm for Beidou GEO and IGSO satellites. Using the mixed differenced estimation model, the prototype system can realize high-efficient real-time satellite absolute clock estimation with no constant clock-bias and can be used for high-frequency augmentation message updating (such as 1 Hz). The real-time augmentation message signal-in-space ranging error (SISRE), a comprehensive accuracy of orbit and clock and effecting the users' actual positioning performance, is introduced to evaluate and analyze the performance of GPS + BeiDou + Galileo global real-time augmentation positioning system. The statistical analysis of real-time augmentation message SISRE is about 4-7 cm for GPS, whlile 10 cm for Beidou IGSO/MEO, Galileo and about 30 cm

  13. Assessment of Spectroscopic, Real-time Ion Thruster Grid Erosion-rate Measurements

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Stevens, Richard E.

    2000-01-01

    The success of the ion thruster on the Deep Space One mission has opened the gate to the use of primary ion propulsion. Many of the projected planetary missions require throughput and specific impulse beyond those qualified to date. Spectroscopic, real-time ion thruster grid erosion-rate measurements are currently in development at the NASA Glenn Research Center. A preliminary investigation of the emission spectra from an NSTAR derivative thruster with titanium grid was conducted. Some titanium lines were observed in the discharge chamber; however, the signals were too weak to estimate the erosion of the screen grid. Nevertheless, this technique appears to be the only non-intrusive real-time means to evaluate screen grid erosion, and improvement of the collection optics is proposed. Direct examination of the erosion species using laser-induced fluorescence (LIF) was determined to be the best method for a real-time accelerator grid erosion diagnostic. An approach for a quantitative LIF diagnostic was presented.

  14. Real-time auto-adaptive margin generation for MLC-tracked radiotherapy

    NASA Astrophysics Data System (ADS)

    Glitzner, M.; Fast, M. F.; de Senneville, B. Denis; Nill, S.; Oelfke, U.; Lagendijk, J. J. W.; Raaymakers, B. W.; Crijns, S. P. M.

    2017-01-01

    In radiotherapy, abdominal and thoracic sites are candidates for performing motion tracking. With real-time control it is possible to adjust the multileaf collimator (MLC) position to the target position. However, positions are not perfectly matched and position errors arise from system delays and complicated response of the electromechanic MLC system. Although, it is possible to compensate parts of these errors by using predictors, residual errors remain and need to be compensated to retain target coverage. This work presents a method to statistically describe tracking errors and to automatically derive a patient-specific, per-segment margin to compensate the arising underdosage on-line, i.e. during plan delivery. The statistics of the geometric error between intended and actual machine position are derived using kernel density estimators. Subsequently a margin is calculated on-line according to a selected coverage parameter, which determines the amount of accepted underdosage. The margin is then applied onto the actual segment to accommodate the positioning errors in the enlarged segment. The proof-of-concept was tested in an on-line tracking experiment and showed the ability to recover underdosages for two test cases, increasing {{V}90 %} in the underdosed area about 47 % and 41 % , respectively. The used dose model was able to predict the loss of dose due to tracking errors and could be used to infer the necessary margins. The implementation had a running time of 23 ms which is compatible with real-time requirements of MLC tracking systems. The auto-adaptivity to machine and patient characteristics makes the technique a generic yet intuitive candidate to avoid underdosages due to MLC tracking errors.

  15. Influence of ultrasonic sound on physico-mechanical characteristics of titanium alloys

    NASA Astrophysics Data System (ADS)

    Akushskaya, O. M.; Papsheva, N. D.

    2018-03-01

    The paper presents data on the influence of ultrasonic vibrations on the main physico-mechanical characteristics in the hardening of titanium alloys. Hardening was carried out during rolling and using free balls in a special working chamber with the imposition of ultrasonic vibrations. The studies have shown that ultrasonic hardening of titanium alloys promotes crushing blocks of mosaic and the formation of a fine-grain structure with a high density of dislocations, changes the phase composition of the surface layer and causes the formation of compressive residual stresses. At the same time, technological heredity is practically not manifested. The endurance range of titanium alloys increases.

  16. Effects of Grain Size on Ultrasonic Attenuation in Type 316L Stainless Steel

    PubMed Central

    Wan, Tao; Wakui, Takashi; Futakawa, Masatoshi; Obayashi, Hironari

    2017-01-01

    A lead bismuth eutectic (LBE) spallation target will be installed in the Target Test Facility (TEF-T) in the Japan Proton Accelerator Research Complex (J-PARC). The spallation target vessel filled with LBE is made of type 316L stainless steel. However, various damages, such as erosion/corrosion damage and liquid metal embrittlement caused by contact with flowing LBE at high temperature, and irradiation hardening caused by protons and neutrons, may be inflicted on the target vessel, which will deteriorate the steel and might break the vessel. To monitor the target vessel for prevention of an accident, an ultrasonic technique has been proposed to establish off-line evaluation for estimating vessel material status during the target maintenance period. Basic R&D must be carried out to clarify the dependency of ultrasonic wave propagation behavior on material microstructures and obtain fundamental knowledge. As a first step, ultrasonic waves scattered by the grains of type 316L stainless steel are investigated using new experimental and numerical approaches in the present study. The results show that the grain size can be evaluated exactly and quantitatively by calculating the attenuation coefficient of the ultrasonic waves scattered by the grains. The results also show that the scattering regimes of ultrasonic waves depend heavily on the ratio of wavelength to average grain size, and are dominated by grains of extraordinarily large size along the wave propagation path. PMID:28773115

  17. System for near real-time crustal deformation monitoring

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F. (Inventor)

    1979-01-01

    A system is described for use in detecting earth crustal deformation using an RF interferometer technique for such purposes as earthquake predictive research and eventual operational predictions. A lunar based RF transmission or transmissions from earth orbiting satellites are received at two locations on Earth, and a precise time dependent phase measurement is made of the RF signal as received at the two locations to determine two or three spatial parameters of the antenna relative positions. The received data are precisely time tagged and land-line routed to a central station for real-time phase comparison and analysis. By monitoring the antenna relative positions over an extended period of months or years, crustal deformation of the Earth can be detected.

  18. Real-time implementation of logo detection on open source BeagleBoard

    NASA Astrophysics Data System (ADS)

    George, M.; Kehtarnavaz, N.; Estevez, L.

    2011-03-01

    This paper presents the real-time implementation of our previously developed logo detection and tracking algorithm on the open source BeagleBoard mobile platform. This platform has an OMAP processor that incorporates an ARM Cortex processor. The algorithm combines Scale Invariant Feature Transform (SIFT) with k-means clustering, online color calibration and moment invariants to robustly detect and track logos in video. Various optimization steps that are carried out to allow the real-time execution of the algorithm on BeagleBoard are discussed. The results obtained are compared to the PC real-time implementation results.

  19. The surface drifter program for real time and off-line validation of ocean forecasts and reanalyses

    NASA Astrophysics Data System (ADS)

    Hernandez, Fabrice; Regnier, Charly; Drévillon, Marie

    2017-04-01

    As part of the Global Ocean Observing System, the Global Drifter Program (GDP) is comprised of an array of about 1250 drifting buoys spread over the global ocean, that provide operational, near-real time surface velocity, sea surface temperature (SST) and sea level pressure observations. This information is used mainly used for numerical weather forecasting, research, and in-situ calibration/verification of satellite observations. Since 2013 the drifting buoy SST measurements are used for near real time assessment of global forecasting systems from Canada, France, UK, USA, Australia in the frame of the GODAE OceanView Intercomparison and Validation Task. For most of these operational systems, these data are not used for assimilation, and offer an independent observation assessment. This approach mimics the validation performed for SST satellite products. More recently, validation procedures have been proposed in order to assess the surface dynamics of Mercator Océan global and regional forecast and reanalyses. Velocities deduced from drifter trajectories are used in two ways. First, the Eulerian approach where buoy and ocean model velocity values are compared at the position of drifters. Then, from discrepancies, statistics are computed and provide an evaluation of the ocean model's surface dynamics reliability. Second, the Lagrangian approach, where drifting trajectories are simulated at each location of the real drifter trajectory using the ocean model velocity fields. Then, on daily basis, real and simulated drifter trajectories are compared by analyzing the spread after one day, two days etc…. The cumulated statistics on specific geographical boxes are evaluated in term of dispersion properties of the "real ocean" as captured by drifters, and those properties in the ocean model. This approach allows to better evaluate forecasting score for surface dispersion applications, like Search and Rescue, oil spill forecast, drift of other objects or contaminant

  20. Effect of Ultrasonic Frequency on Lactic Acid Fermentation Promotion by Ultrasonic Irradiation

    NASA Astrophysics Data System (ADS)

    Shimada, Tadayuki; Ohdaira, Etsuzo; Masuzawa, Nobuyoshi

    2004-05-01

    The authors have been researching the promotion of lactic acid fermentation by ultrasonic irradiation. In the past research, it was proven that ultrasonic irradiation is effective in the process of fermentation, and the production of yoghurt and kefir was promoted. In this study, the effect of the ultrasonic frequency in this fermentation process was examined. In the frequency range of this study, it was found that the action of fermentation promotion was exponentially proportionate to the irradiated ultrasonic frequency.

  1. Real-time frequency-to-time mapping based on spectrally-discrete chromatic dispersion.

    PubMed

    Dai, Yitang; Li, Jilong; Zhang, Ziping; Yin, Feifei; Li, Wangzhe; Xu, Kun

    2017-07-10

    Traditional photonics-assisted real-time Fourier transform (RTFT) usually suffers from limited chromatic dispersion, huge volume, or large time delay and attendant loss. In this paper we propose frequency-to-time mapping (FTM) by spectrally-discrete dispersion to increase frequency sensitivity greatly. The novel media has periodic ON/OFF intensity frequency response while quadratic phase distribution along disconnected channels, which de-chirps matched optical input to repeated Fourier-transform-limited output. Real-time FTM is then obtained within each period. Since only discrete phase retardation rather than continuously-changed true time delay is required, huge equivalent dispersion is then available by compact device. Such FTM is theoretically analyzed, and implementation by cascaded optical ring resonators is proposed. After a numerical example, our theory is demonstrated by a proof-of-concept experiment, where a single loop containing 0.5-meters-long fiber is used. FTM under 400-MHz unambiguous bandwidth and 25-MHz resolution is reported. Highly-sensitive and linear mapping is achieved with 6.25 ps/MHz, equivalent to ~4.6 × 10 4 -km standard single mode fiber. Extended instantaneous bandwidth is expected by ring cascading. Our proposal may provide a promising method for real-time, low-latency Fourier transform.

  2. Real-time electron density measurements from Cotton-Mouton effect in JET machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brombin, M.; Electrical Engineering Department, Padova University, via Gradenigo 6-A, 35131 Padova; Boboc, A.

    Real-time density profile measurements are essential for advanced fusion tokamak operation and interferometry is a proven method for this task. Nevertheless, as a consequence of edge localized modes, pellet injections, fast density increases, or disruptions, the interferometer is subject to fringe jumps, which produce loss of the signal preventing reliable use of the measured density in a real-time feedback controller. An alternative method to measure the density is polarimetry based on the Cotton-Mouton effect, which is proportional to the line-integrated electron density. A new analysis approach has been implemented and tested to verify the reliability of the Cotton-Mouton measurements formore » a wide range of plasma parameters and to compare the density evaluated from polarimetry with that from interferometry. The density measurements based on polarimetry are going to be integrated in the real-time control system of JET since the difference with the interferometry is within one fringe for more than 90% of the cases.« less

  3. New technologies for supporting real-time on-board software development

    NASA Astrophysics Data System (ADS)

    Kerridge, D.

    1995-03-01

    The next generation of on-board data management systems will be significantly more complex than current designs, and will be required to perform more complex and demanding tasks in software. Improved hardware technology, in the form of the MA31750 radiation hard processor, is one key component in addressing the needs of future embedded systems. However, to complement these hardware advances, improved support for the design and implementation of real-time data management software is now needed. This will help to control the cost and risk assoicated with developing data management software development as it becomes an increasingly significant element within embedded systems. One particular problem with developing embedded software is managing the non-functional requirements in a systematic way. This paper identifies how Logica has exploited recent developments in hard real-time theory to address this problem through the use of new hard real-time analysis and design methods which can be supported by specialized tools. The first stage in transferring this technology from the research domain to industrial application has already been completed. The MA37150 Hard Real-Time Embedded Software Support Environment (HESSE) is a loosely integrated set of hardware and software tools which directly support the process of hard real-time analysis for software targeting the MA31750 processor. With further development, this HESSE promises to provide embedded system developers with software tools which can reduce the risks associated with developing complex hard real-time software. Supported in this way by more sophisticated software methods and tools, it is foreseen that MA31750 based embedded systems can meet the processing needs for the next generation of on-board data management systems.

  4. Real-time scalable visual analysis on mobile devices

    NASA Astrophysics Data System (ADS)

    Pattath, Avin; Ebert, David S.; May, Richard A.; Collins, Timothy F.; Pike, William

    2008-02-01

    Interactive visual presentation of information can help an analyst gain faster and better insight from data. When combined with situational or context information, visualization on mobile devices is invaluable to in-field responders and investigators. However, several challenges are posed by the form-factor of mobile devices in developing such systems. In this paper, we classify these challenges into two broad categories - issues in general mobile computing and issues specific to visual analysis on mobile devices. Using NetworkVis and Infostar as example systems, we illustrate some of the techniques that we employed to overcome many of the identified challenges. NetworkVis is an OpenVG-based real-time network monitoring and visualization system developed for Windows Mobile devices. Infostar is a flash-based interactive, real-time visualization application intended to provide attendees access to conference information. Linked time-synchronous visualization, stylus/button-based interactivity, vector graphics, overview-context techniques, details-on-demand and statistical information display are some of the highlights of these applications.

  5. Real-Time Inhibitor Recession Measurements in Two Space Shuttle Reusable Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    McWhorter, B. B.; Ewing, M. E.; Bolton, D. E.; Albrechtsen, K. U.; Earnest, T. E.; Noble, T. C.; Longaker, M.

    2003-01-01

    Real-time internal motor insulation char line recession measurements have been evaluated for two full-scale static tests of the Space Shuttle Reusable Solid Rocket Motor (RSRM). These char line recession measurements were recorded on the forward facing propellant grain inhibitors to better understand the thermal performance of these inhibitors. The RSRM propellant grain inhibitors are designed to erode away during motor operation, thus making it difficult to use post-fire observations to determine inhibitor thermal performance. Therefore, this new internal motor instrumentation is invaluable in establishing an accurate understanding of inhibitor recession versus motor operation time. The data for the first test was presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (AIAA 2001-3280) in July 2001. Since that time, a second full scale static test has delivered additional real-time data on inhibitor thermal performance. The evaluation of this data is presented in this paper. The second static test, in contrast to the first test, used a slightly different arrangement of instrumentation in the inhibitors. This instrumentation has yielded a better understanding of the inhibitor time dependent inboard tip recession. Graphs of inhibitor recession profiles with time are presented. Inhibitor thermal ablation models have been created from theoretical principals. The model predictions compare favorably with data from both tests. This verified modeling effort is important to support new inhibitor designs for a five segment Space Shuttle solid rocket motor. The internal instrumentation project on RSRM static tests is providing unique opportunities for other real-time internal motor measurements that could not otherwise be directly quantified.

  6. Research Directions in Real-Time Systems.

    DTIC Science & Technology

    1996-09-01

    This report summarizes a survey of published research in real time systems . Material is presented that provides an overview of the topic, focusing on...communications protocols and scheduling techniques. It is noted that real - time systems deserve special attention separate from other areas because of...formal tools for design and analysis of real - time systems . The early work on applications as well as notable theoretical advances are summarized

  7. Research in Distributed Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.

    1997-01-01

    This document summarizes the progress we have made on our study of issues concerning the schedulability of real-time systems. Our study has produced several results in the scalability issues of distributed real-time systems. In particular, we have used our techniques to resolve schedulability issues in distributed systems with end-to-end requirements. During the next year (1997-98), we propose to extend the current work to address the modeling and workload characterization issues in distributed real-time systems. In particular, we propose to investigate the effect of different workload models and component models on the design and the subsequent performance of distributed real-time systems.

  8. Ultrasonic wave based pressure measurement in small diameter pipeline.

    PubMed

    Wang, Dan; Song, Zhengxiang; Wu, Yuan; Jiang, Yuan

    2015-12-01

    An effective non-intrusive method of ultrasound-based technique that allows monitoring liquid pressure in small diameter pipeline (less than 10mm) is presented in this paper. Ultrasonic wave could penetrate medium, through the acquisition of representative information from the echoes, properties of medium can be reflected. This pressure measurement is difficult due to that echoes' information is not easy to obtain in small diameter pipeline. The proposed method is a study on pipeline with Kneser liquid and is based on the principle that the transmission speed of ultrasonic wave in pipeline liquid correlates with liquid pressure and transmission speed of ultrasonic wave in pipeline liquid is reflected through ultrasonic propagation time providing that acoustic distance is fixed. Therefore, variation of ultrasonic propagation time can reflect variation of pressure in pipeline. Ultrasonic propagation time is obtained by electric processing approach and is accurately measured to nanosecond through high resolution time measurement module. We used ultrasonic propagation time difference to reflect actual pressure in this paper to reduce the environmental influences. The corresponding pressure values are finally obtained by acquiring the relationship between variation of ultrasonic propagation time difference and pressure with the use of neural network analysis method, the results show that this method is accurate and can be used in practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Development of real-time motion verification system using in-room optical images for respiratory-gated radiotherapy.

    PubMed

    Park, Yang-Kyun; Son, Tae-geun; Kim, Hwiyoung; Lee, Jaegi; Sung, Wonmo; Kim, Il Han; Lee, Kunwoo; Bang, Young-bong; Ye, Sung-Joon

    2013-09-06

    Phase-based respiratory-gated radiotherapy relies on the reproducibility of patient breathing during the treatment. To monitor the positional reproducibility of patient breathing against a 4D CT simulation, we developed a real-time motion verification system (RMVS) using an optical tracking technology. The system in the treatment room was integrated with a real-time position management system. To test the system, an anthropomorphic phantom that was mounted on a motion platform moved on a programmed breathing pattern and then underwent a 4D CT simulation with RPM. The phase-resolved anterior surface lines were extracted from the 4D CT data to constitute 4D reference lines. In the treatment room, three infrared reflective markers were attached on the superior, middle, and inferior parts of the phantom along with the body midline and then RMVS could track those markers using an optical camera system. The real-time phase information extracted from RPM was delivered to RMVS via in-house network software. Thus, the real-time anterior-posterior positions of the markers were simultaneously compared with the 4D reference lines. The technical feasibility of RMVS was evaluated by repeating the above procedure under several scenarios such as ideal case (with identical motion parameters between simulation and treatment), cycle change, baseline shift, displacement change, and breathing type changes (abdominal or chest breathing). The system capability for operating under irregular breathing was also investigated using real patient data. The evaluation results showed that RMVS has a competence to detect phase-matching errors between patient's motion during the treatment and 4D CT simulation. Thus, we concluded that RMVS could be used as an online quality assurance tool for phase-based gating treatments.

  10. Open-circuit respirometry: real-time, laboratory-based systems.

    PubMed

    Ward, Susan A

    2018-05-04

    This review explores the conceptual and technological factors integral to the development of laboratory-based, automated real-time open-circuit mixing-chamber and breath-by-breath (B × B) gas-exchange systems, together with considerations of assumptions and limitations. Advances in sensor technology, signal analysis, and digital computation led to the emergence of these technologies in the mid-20th century, at a time when investigators were beginning to recognise the interpretational advantages of nonsteady-state physiological-system interrogation in understanding the aetiology of exercise (in)tolerance in health, sport, and disease. Key milestones include the 'Auchincloss' description of an off-line system to estimate alveolar O 2 uptake B × B during exercise. This was followed by the first descriptions of real-time automated O 2 uptake and CO 2 output B × B measurement by Beaver and colleagues and by Linnarsson and Lindborg, and mixing-chamber measurement by Wilmore and colleagues. Challenges to both approaches soon emerged: e.g., the influence of mixing-chamber washout kinetics on mixed-expired gas concentration determination, and B × B alignment of gas-concentration signals with respired flow. The challenging algorithmic and technical refinements required for gas-exchange estimation at the alveolar level have also been extensively explored. In conclusion, while the technology (both hardware and software) underpinning real-time automated gas-exchange measurement has progressively advanced, there are still concerns regarding accuracy especially under the challenging conditions of changing metabolic rate.

  11. Study on real-time images compounded using spatial light modulator

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Chen, Zhebo; Ni, Xuxiang; Lu, Zukang

    2007-01-01

    Image compounded technology is often used on film and its facture. In common, image compounded use image processing arithmetic, get useful object, details, background or some other things from the images firstly, then compounding all these information into one image. When using this method, the film system needs a powerful processor, for the process function is very complex, we get the compounded image for a few time delay. In this paper, we introduce a new method of image real-time compounded, use this method, we can do image composite at the same time with movie shot. The whole system is made up of two camera-lens, spatial light modulator array and image sensor. In system, the spatial light modulator could be liquid crystal display (LCD), liquid crystal on silicon (LCoS), thin film transistor liquid crystal display (TFTLCD), Deformable Micro-mirror Device (DMD), and so on. Firstly, one camera-lens images the object on the spatial light modulator's panel, we call this camera-lens as first image lens. Secondly, we output an image to the panel of spatial light modulator. Then, the image of the object and image that output by spatial light modulator will be spatial compounded on the panel of spatial light modulator. Thirdly, the other camera-lens images the compounded image to the image sensor, and we call this camera-lens as second image lens. After these three steps, we will gain the compound images by image sensor. For the spatial light modulator could output the image continuously, then the image will be compounding continuously too, and the compounding procedure is completed in real-time. When using this method to compounding image, if we will put real object into invented background, we can output the invented background scene on the spatial light modulator, and the real object will be imaged by first image lens. Then, we get the compounded images by image sensor in real time. The same way, if we will put real background to an invented object, we can output the

  12. Study of ultrasonic sensor that is effective for all direction using an electromagnetic force

    NASA Astrophysics Data System (ADS)

    Iwaya, Kazuki; Murayama, Riichi; Hirayama, Takahiro

    2015-03-01

    Non-destructive inspection using ultrasonic sensors is widely utilized to guarantee the safety of large structures. However, there is the problem that it will take a very long time to complete. Therefore, it was decided to develop a sensor capable of testing a wide range of structures at a high inspection speed. The ultrasonic wave that the ultrasonic sensor can generate must be equally emitted in any direction and the ultrasonic wave returned from any direction be detected. To attain this objective, an electromagnetic acoustic transducer (EMAT) consisting of a circular-shaped magnet and an electric induction coil (EM) has been developed, because it is impossible to fabricate such a special ultrasonic sensor using a commercial-type ultrasonic sensor with a piezoelectric element, and it is convenient to automatically scan over the surface of the structure. First, the detail specifications of the new ultrasonic sensor have been determined by changing many of the parameters, for example, the impedance and the size of the EM coil, the size of the magnet, etc. The performance of the new sensor was then tested under different conditions. Based on the results of the experimental tests, it was demonstrated that the new sensor could generate ultrasonic waves in any direction and detect them from any direction. However, the performance was not high enough to apply the new sensor to a real structure. The new sensor has been improved to increase the performance by adding a new concept.

  13. Toward the Real-Time Tsunami Parameters Prediction

    NASA Astrophysics Data System (ADS)

    Lavrentyev, Mikhail; Romanenko, Alexey; Marchuk, Andrey

    2013-04-01

    Today, a wide well-developed system of deep ocean tsunami detectors operates over the Pacific. Direct measurements of tsunami-wave time series are available. However, tsunami-warning systems fail to predict basic parameters of tsunami waves on time. Dozens examples could be provided. In our view, the lack of computational power is the main reason of these failures. At the same time, modern computer technologies such as, GPU (graphic processing unit) and FPGA (field programmable gates array), can dramatically improve data processing performance, which may enhance timely tsunami-warning prediction. Thus, it is possible to address the challenge of real-time tsunami forecasting for selected geo regions. We propose to use three new techniques in the existing tsunami warning systems to achieve real-time calculation of tsunami wave parameters. First of all, measurement system (DART buoys location, e.g.) should be optimized (both in terms of wave arriving time and amplitude parameter). The corresponding software application exists today and is ready for use [1]. We consider the example of the coastal line of Japan. Numerical tests show that optimal installation of only 4 DART buoys (accounting the existing sea bed cable) will reduce the tsunami wave detection time to only 10 min after an underwater earthquake. Secondly, as was shown by this paper authors, the use of GPU/FPGA technologies accelerates the execution of the MOST (method of splitting tsunami) code by 100 times [2]. Therefore, tsunami wave propagation over the ocean area 2000*2000 km (wave propagation simulation: time step 10 sec, recording each 4th spatial point and 4th time step) could be calculated at: 3 sec with 4' mesh 50 sec with 1' mesh 5 min with 0.5' mesh The algorithm to switch from coarse mesh to the fine grain one is also available. Finally, we propose the new algorithm for tsunami source parameters determination by real-time processing the time series, obtained at DART. It is possible to approximate

  14. Fiber Bragg grating sensors for real-time monitoring of evacuation process

    NASA Astrophysics Data System (ADS)

    Guru Prasad, A. S.; Hegde, Gopalkrishna M.; Asokan, S.

    2010-03-01

    Fiber bragg grating (FBG) sensors have been widely used for number of sensing applications like temperature, pressure, acousto-ultrasonic, static and dynamic strain, refractive index change measurements and so on. Present work demonstrates the use of FBG sensors in in-situ measurement of vacuum process with simultaneous leak detection capability. Experiments were conducted in a bell jar vacuum chamber facilitated with conventional Pirani gauge for vacuum measurement. Three different experiments have been conducted to validate the performance of FBG sensor in monitoring vacuum creating process and air bleeding. The preliminary results of FBG sensors in vacuum monitoring have been compared with that of commercial Pirani gauge sensor. This novel technique offers a simple alternative to conventional method for real time monitoring of evacuation process. Proposed FBG based vacuum sensor has potential applications in vacuum systems involving hazardous environment such as chemical and gas plants, automobile industries, aeronautical establishments and leak monitoring in process industries, where the electrical or MEMS based sensors are prone to explosion and corrosion.

  15. A novel green analytical procedure for monitoring of azoxystrobin in water samples by a flow injection chemiluminescence method with off-line ultrasonic treatment.

    PubMed

    Yang, Xin-an; Zhang, Wang-bing

    2013-01-01

    A simple and green flow injection chemiluminescence (FI-CL) method for determination of the fungicide azoxystrobin was described for the first time. CL signal was generated when azoxystrobin was injected into a mixed stream of luminol and KMnO4 . The CL signal of azoxystrobin could be greatly improved when an off-line ultrasonic treatment was adopted. Meanwhile, the signal intensity increases with the analyte concentration proportionally. Several variables, such as the ultrasonic parameters, flow rate of reagents, concentrations of sodium hydroxide solution and CL reagents (potassium permanganate, luminol) were investigated, and the optimal CL conditions were obtained. Under optimal conditions, the linear range of 1-100 ng/mL for azoxystrobin was obtained and the detection limit (3σ) was determined as 0.13 ng/mL. The relative standard deviation was 1.5% for 10 consecutive measurements of 20 ng/mL azoxystrobin. The method has been applied to the determination of azoxystrobin residues in water samples. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Real-time global illumination on mobile device

    NASA Astrophysics Data System (ADS)

    Ahn, Minsu; Ha, Inwoo; Lee, Hyong-Euk; Kim, James D. K.

    2014-02-01

    We propose a novel method for real-time global illumination on mobile devices. Our approach is based on instant radiosity, which uses a sequence of virtual point lights in order to represent the e ect of indirect illumination. Our rendering process consists of three stages. With the primary light, the rst stage generates a local illumination with the shadow map on GPU The second stage of the global illumination uses the re ective shadow map on GPU and generates the sequence of virtual point lights on CPU. Finally, we use the splatting method of Dachsbacher et al 1 and add the indirect illumination to the local illumination on GPU. With the limited computing resources in mobile devices, a small number of virtual point lights are allowed for real-time rendering. Our approach uses the multi-resolution sampling method with 3D geometry and attributes simultaneously and reduce the total number of virtual point lights. We also use the hybrid strategy, which collaboratively combines the CPUs and GPUs available in a mobile SoC due to the limited computing resources in mobile devices. Experimental results demonstrate the global illumination performance of the proposed method.

  17. Versatile Software Package For Near Real-Time Analysis of Experimental Data

    NASA Technical Reports Server (NTRS)

    Wieseman, Carol D.; Hoadley, Sherwood T.

    1998-01-01

    This paper provides an overview of a versatile software package developed for time- and frequency-domain analyses of experimental wind-tunnel data. This package, originally developed for analyzing data in the NASA Langley Transonic Dynamics Tunnel (TDT), is applicable for analyzing any time-domain data. A Matlab-based software package, TDT-analyzer, provides a compendium of commonly-required dynamic analysis functions in a user-friendly interactive and batch processing environment. TDT-analyzer has been used extensively to provide on-line near real-time and post-test examination and reduction of measured data acquired during wind tunnel tests of aeroelastically-scaled models of aircraft and rotorcraft as well as a flight test of the NASA High Alpha Research Vehicle (HARV) F-18. The package provides near real-time results in an informative and timely manner far exceeding prior methods of data reduction at the TDT.

  18. A real-time expert system for self-repairing flight control

    NASA Technical Reports Server (NTRS)

    Gaither, S. A.; Agarwal, A. K.; Shah, S. C.; Duke, E. L.

    1989-01-01

    An integrated environment for specifying, prototyping, and implementing a self-repairing flight-control (SRFC) strategy is described. At an interactive workstation, the user can select paradigms such as rule-based expert systems, state-transition diagrams, and signal-flow graphs and hierarchically nest them, assign timing and priority attributes, establish blackboard-type communication, and specify concurrent execution on single or multiple processors. High-fidelity nonlinear simulations of aircraft and SRFC systems can be performed off-line, with the possibility of changing SRFC rules, inference strategies, and other heuristics to correct for control deficiencies. Finally, the off-line-generated SRFC can be transformed into highly optimized application-specific real-time C-language code. An application of this environment to the design of aircraft fault detection, isolation, and accommodation algorithms is presented in detail.

  19. Ultrasonic Stir Welding Development for Ground-Based and In Situ Fabrication and Repair for In-Space Propulsion Systems/Commercial Space Sector

    NASA Technical Reports Server (NTRS)

    Ding, Jeff

    2015-01-01

    The completed Center Innovation Fund (CIF) project used the upgraded Ultrasonic Stir Weld (USW) Prototype System (built in 2013/2014) to begin characterizing the weld process using 2219 aluminum (fig. 1). This work is being done in Bldg. 4755 at NASA Marshall Space Flight Center (MSFC). The capabilities of the USW system provides the means to precisely control and document individual welding parameters. The current upgraded system has the following capabilities: (1) Ability to 'pulse' ultrasonic (US) energy on and off and adjust parameters real-time (travel speed, spindle rpm, US amplitude, X and Z axis positions, and plunge and pin axis force; (2) Means to measure draw force; (3) Ability to record US power versus time; (4) Increasing stiffness of Z axis drive and reduce head deflection using laser technology; (5) Adding linear encoder to better control tool penetration setting; (6) Ultrasonic energy integrated into stir rod and containment plate; (7) Maximum 600 rpm; (8) Maximum Z force 15,000 lb; (9) Real-time data acquisition and logging capabilities at a minimum frequency of 10 Hz; and (10) Two separate transducer power supplies operating at 4.5 kW power.

  20. In and ex-vivo Myocardial Tissue Temperature Monitoring by Combined Infrared and Ultrasonic Thermometries

    NASA Astrophysics Data System (ADS)

    Engrand, C.; Laux, D.; Ferrandis, J.-Y.; Sinquet, J.-C.; Demaria, R.; Le Clézio, E.

    The success of cardiac surgery essentially depends on tissue preservation during intervention. Consequently a hypothermic cardio-plegia is applied in order to avoid ischemia. However, myocardial temperature is not monitored during operation. The aim of this study is then to find a relevant and simple method for myocardial global temperature estimation in real time using both ultrasounds and infra-red thermography. In order to quantify the sensitivity of ultrasonic velocity to temperature, a 2.25 MHz ultrasonic probe was used for ex-vivo tests. Pig myocards (n=25) were placed in a thermostatically-controlled water bath and measurements of the ultrasound velocity were realized from 10 to 30 ˚C. The results of this study indicate that the specificity and sensitivity of the ultrasonic echo delay induced by the modification of temperature can be exploited for in-depth thermometry. In parallel, for TIR experiments, a bolometer was used to detect the myocardium surface thermal evolution during in-vivo pig heart experiments. Hypothermic cardioplegic solutions were injected and infra-red surface imaging was performed during one hour. In the near futur, the correlation of the ultrasound and the infrared measurements should allow the real time estimation of the global temperature of the heart. The final objective being to realize in vivo measurements on human hearts, this information may have a very high importance in terms of per-operation inspection as well as decision making process during medical interventions.

  1. Ultrasonic neuromodulation

    NASA Astrophysics Data System (ADS)

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.

  2. Real-time quantitative fluorescence measurement of microscale cell culture analog systems

    NASA Astrophysics Data System (ADS)

    Oh, Taek-il; Kim, Donghyun; Tatosian, Daniel; Sung, Jong Hwan; Shuler, Michael

    2007-02-01

    A microscale cell culture analog (μCCA) is a cell-based lab-on-a-chip assay that, as an animal surrogate, is applied to pharmacological studies for toxicology tests. A μCCA typically comprises multiple chambers and microfluidics that connect the chambers, which represent animal organs and blood flow to mimic animal metabolism more realistically. A μCCA is expected to provide a tool for high-throughput drug discovery. Previously, a portable fluorescence detection system was investigated for a single μCCA device in real-time. In this study, we present a fluorescence-based imaging system that provides quantitative real-time data of the metabolic interactions in μCCAs with an emphasis on measuring multiple μCCA samples simultaneously for high-throughput screening. The detection system is based on discrete optics components, with a high-power LED and a charge-coupled device (CCD) camera as a light source and a detector, for monitoring cellular status on the chambers of each μCCA sample. Multiple samples are characterized mechanically on a motorized linear stage, which is fully-automated. Each μCCA sample has four chambers, where cell lines MES-SA/DX- 5, and MES-SA (tumor cells of human uterus) have been cultured. All cell-lines have been transfected to express the fusion protein H2B-GFP, which is a human histone protein fused at the amino terminus to EGFP. As a model cytotoxic drug, 10 μM doxorubicin (DOX) was used. Real-time quantitative data of the intensity loss of enhanced green fluorescent protein (EGFP) during cell death of target cells have been collected over several minutes to 40 hours. Design issues and improvements are also discussed.

  3. Improvement in airborne position measurements based on an ultrasonic linear-period-modulated wave by 1-bit signal processing

    NASA Astrophysics Data System (ADS)

    Thong-un, Natee; Hirata, Shinnosuke; Kurosawa, Minoru K.

    2015-07-01

    In this paper, we describe an expansion of the airborne ultrasonic systems for object localization in the three-dimensional spaces of navigation. A system, which revises the microphone arrangement and algorithm, can expand the object-position measurement from +90° in a previous method up to +180° for both the elevation and azimuth angles. The proposed system consists of a sound source and four acoustical receivers. Moreover, the system is designed to utilize low-cost devices, and low-cost computation relying on 1-bit signal processing is used to support the real-time application on a field-programmable gate array (FPGA). An object location is identified using spherical coordinates. A spherical object, which has a curved surface, is considered a target for this system. The transmit pulse to the target is a linear-period-modulated ultrasonic wave with a chirp rate of 50-20 kHz. Statistical evaluation of this work is the experimental investigation under repeatability.

  4. NEAR-REAL-TIME MEASUREMENT OF TRACE VOLATILE ORGANIC COMPOUNDS FROM COMBUSTION PROCESSES USING AN ON-LINE GAS CHROMATOGRAPH

    EPA Science Inventory

    The U.S. EPA's current regulatory approach for combustion and incineration sources emphasizes the use of real-time continuous emission monitors (CEMs) for particulate, Metals, and volatile, semivolatile, and of nonvolatile organic compounds to monitor source emissions. Currently...

  5. Final Technical Report of project: "Contactless Real-Time Monitoring of Paper Mechanical Behavior During Papermaking"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emmanuel Lafond; Paul Ridgway; Ted Jackson

    The early precursors of laser ultrasonics on paper were Prof. Y. Berthelot from the Georgia Institute of Technology/Mechanical Engineering department, and Prof. P. Brodeur from the Institute of Paper Science and Technology, both located in Atlanta, Georgia. The first Ph.D. thesis that shed quite some light on the topic, but also left some questions unanswered, was completed by Mont A. Johnson in 1996. Mont Johnson was Prof. Berthelot's student at Georgia Tech. In 1997 P. Brodeur proposed a project involving himself, Y. Berthelot, Dr. Ken Telschow and Mr. Vance Deason from INL, Honeywell-Measurex and Dr. Rick Russo from LBNL. Themore » first time the proposal was not accepted and P. Brodeur decided to re-propose it without the involvement from LBNL. Rick Russo proposed a separate project on the same topic on his side. Both proposals were finally accepted and work started in the fall of 1997 on the two projects. Early on, the biggest challenge was to find an optical detection method which could detect laser-induced displacements of the web surface that are of the order of .1 micron in the ultrasonic range. This was to be done while the web was having an out-of-plane amplitude of motion in the mm range due to web flutter; while moving at 10 m/s to 30 m/s in the plane of the web, on the paper machine. Both teams grappled with the same problems and tried similar methods in some cases, but came up with two similar but different solutions one year later. The IPST, GT, INL team found that an interferometer made by Lasson Technologies Inc. using the photo-induced electro-motive force in Gallium Arsenide was able to detect ultrasonic waves up to 12-15 m/s. It also developed in house an interferometer using the Two-Wave Mixing effect in photorefractive crystals that showed good promises for on-line applications, and experimented with a scanning mirror to reduce motion-induced texture noise from the web and improve signal to noise ratio. On its side, LBNL had the idea to

  6. Use of the Real Time xCelligence System for Purposes of Medical Microbiology.

    PubMed

    Junka, Adam Feliks; Janczura, Adriana; Smutnicka, Danuta; Mączyńska, Beata; Anna, Secewicz; Nowicka, Joanna; Bartoszewicz, Marzenna; Gościniak, Grażyna

    2012-09-28

    Roche's xCelligence impedance-measuring instrument is one of a few commercially available systems of such type. According to the best knowledge of authors, instrument was tested so far only for eukaryotic cell research. The aim of this work was to estimate xCELLigence suitability for the microbiological tests, including (i) measurement of morphological changes in eukaryotic cells as a result of bacterial toxin activity, (ii) measurement of bacterial biofilm formation and (iii) impact of antiseptics on the biofilm structure. To test the infuence of bacterial LT enterotoxin on eukaryotic cell lines, Chinese Hamster Ovary (CHO) cell line and reference strain Escherichia coli ATTC 35401 were used. To investigate Roche's instrument ability to measure biofilm formation and impact of antiseptics on its development, Staphylococcus aureus ATTC6538 reference strain was used. The data generated during the experiments indicate excellent ability of xCelligence instrument to detect cytopathic effect caused by bacterial LT endotoxin and to detect staphylococcal biofilm formation. However, interpretation of the results obtained during real-time measurement of antiseptic's bactericidal activity against staphylococcal biofilm, caused many difficulties. xCelligence instrument can be used for real-time monitoring of morphological changes in CHO cells treated with bacterial LT enterotoxin and for real-time measurement of staphylococcal biofilm formation in vitro. Further investigation is necessary to confirm suitability of system to analyze antiseptic's antimicrobial activity against biofilm in vitro.

  7. Light-scattering analysis of ultrasonic wave's influence on the RBC agglutination in vitro

    NASA Astrophysics Data System (ADS)

    Doubrovski, Valeri A.; Dvoretski, Costanten N.

    1999-04-01

    Elastic light scattering is one of the most often used optical methods to analyze the cells agglutination reaction - the base of a great number of medical diagnostic test and biomedical investigations. The increase of the resolution of methods and apparatus towards the induced cells aggregation - the foundation of the reaction of agglutination, is quite an actual problem. The solution of this problem increases the reliability of the diagnostic test and gives an opportunity to achieve the diagnostic information in the cases when the traditional approaches do not lead to the diagnostic results. The attempt to increase the resolution of the immune reaction analyzer by means of ultrasonic waves action on the reagent mixture in vitro is taken in this paper. The RBC agglutination reaction which is usually used for the blood group type examination is chosen as an example of an object of the investigation. Different laser optical trains of the devices based on the turbidimetric and nephelometric methods and their combination are analyzed here. The influence of the ultrasonic wave time interval action and of the features of the sample preparation procedure on the resolution towards the agglutination process was investigated in this work. It is shown that the ultrasonic wave action on the reagent mixture leads to a large gain in the resolution of the device towards the RBC agglutination process. The experiments showed that the resolution of the device was enough to register the agglutination process even for the erythrocytes with weak agglutination ability when the reaction was invisible without ultrasonic action. It occurred that the diagnostic test time was more than by an order shortened due to the ultrasonic wave action. The optimal ultrasonic time interval action, the sample preparation technology and experimental technique were defined. The principle of the ultrasonic wave action on the cells agglutination process suggested here can be spread out on the immune

  8. Real-time radiative divertor feedback control development for the NSTX-U tokamak using a vacuum ultraviolet spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soukhanovskii, V. A., E-mail: vlad@llnl.gov; Kaita, R.; Stratton, B.

    2016-11-15

    A radiative divertor technique is planned for the NSTX-U tokamak to prevent excessive erosion and thermal damage of divertor plasma-facing components in H-mode plasma discharges with auxiliary heating up to 12 MW. In the radiative (partially detached) divertor, extrinsically seeded deuterium or impurity gases are used to increase plasma volumetric power and momentum losses. A real-time feedback control of the gas seeding rate is planned for discharges of up to 5 s duration. The outer divertor leg plasma electron temperature T{sub e} estimated spectroscopically in real time will be used as a control parameter. A vacuum ultraviolet spectrometer McPherson Modelmore » 251 with a fast charged-coupled device detector is developed for temperature monitoring between 5 and 30 eV, based on the Δn = 0, 1 line intensity ratios of carbon, nitrogen, or neon ion lines in the spectral range 300–1600 Å. A collisional-radiative model-based line intensity ratio will be used for relative calibration. A real-time T{sub e}-dependent signal within a characteristic divertor detachment equilibration time of ∼10–15 ms is expected.« less

  9. Real-time radiative divertor feedback control development for the NSTX-U tokamak using a vacuum ultraviolet spectrometer

    DOE PAGES

    Soukhanovskii, V. A.; Kaita, R.; Stratton, B.

    2016-08-04

    Here, a radiative divertor technique is planned for the NSTX-U tokamak to prevent excessive erosion and thermal damage of divertor plasma-facing components in H-mode plasma discharges with auxiliary heating up to 12 MW. In the radiative (partially detached) divertor, extrinsically seeded deuterium or impurity gases are used to increase plasma volumetric power and momentum losses. A real-time feedback control of the gas seeding rate is planned for discharges of up to 5 s duration. The outer divertor leg plasma electron temperature T e estimated spectroscopically in real time will be used as a control parameter. A vacuum ultraviolet spectrometer McPhersonmore » Model 251 with a fast charged-coupled device detector is developed for temperature monitoring between 5 and 30 eV, based on the Δn = 0, 1 line intensity ratios of carbon, nitrogen, or neon ion lines in the spectral range 300–1600 Å. A collisional-radiative model-based line intensity ratio will be used for relative calibration. A real-time T e-dependent signal within a characteristic divertor detachment equilibration time of ~10–15 ms is expected.« less

  10. Development and evaluation of an ultrasonic ground water seepage meter.

    PubMed

    Paulsen, R J; Smith, C F; O'Rourke, D; Wong, T F

    2001-01-01

    Submarine ground water discharge can influence significantly the near-shore transport and flux of chemicals into the oceans. Quantification of the sources and rates of such discharge requires a ground water seepage meter that provides continuous measurements at high resolution over an extended period of time. An ultrasonic flowmeter has been adapted for such measurements in the submarine environment. Connected to a steel collection funnel, the meter houses two piezoelectric transducers mounted at opposite ends of a cylindrical flow tube. By monitoring the perturbations of fluid flow on the propagation of sound waves inside the flow tube, the ultrasonic meter can measure both forward and reverse fluid flows in real time. Laboratory and field calibrations show that the ultrasonic meter can resolve ground water discharges on the order of 0.1 microm/sec, and it is sufficiently robust for deployment in the field for several days. Data from West Neck Bay, Shelter Island, New York, elucidate the temporal and spatial heterogeneity of submarine ground water discharge and its interplay with tidal loading. A negative correlation between the discharge and tidal elevation was generally observed. A methodology was also developed whereby data for the sound velocity as a function of temperature can be used to infer the salinity and source of the submarine discharge. Independent measurements of electrical conductance were performed to validate this methodology.

  11. Real-time control of focused ultrasound heating based on rapid MR thermometry.

    PubMed

    Vimeux, F C; De Zwart, J A; Palussiére, J; Fawaz, R; Delalande, C; Canioni, P; Grenier, N; Moonen, C T

    1999-03-01

    Real-time control of the heating procedure is essential for hyperthermia applications of focused ultrasound (FUS). The objective of this study is to demonstrate the feasibility of MRI-controlled FUS. An automatic control system was developed using a dedicated interface between the MR system control computer and the FUS wave generator. Two algorithms were used to regulate FUS power to maintain the focal point temperature at a desired level. Automatic control of FUS power level was demonstrated ex vivo at three target temperature levels (increase of 5 degrees C, 10 degrees C, and 30 degrees C above room temperature) during 30-minute hyperthermic periods. Preliminary in vivo results on rat leg muscle confirm that necrosis estimate, calculated on-line during FUS sonication, allows prediction of tissue damage. CONCLUSIONS. The feasibility of fully automatic FUS control based on MRI thermometry has been demonstrated.

  12. Impact of applied ultrasonic power on the low temperature drying of apple.

    PubMed

    Santacatalina, J V; Contreras, M; Simal, S; Cárcel, J A; Garcia-Perez, J V

    2016-01-01

    Low temperature drying (LTD) allows high-quality dried products to be obtained, preserving the nutritional properties of fresh foods better than conventional drying, but it is a time-consuming operation. Power ultrasound (US) could be used to intensify LTD, but it should be taken into account that process variables, such as the level of applied power, have an influence on the magnitude and extension of the ultrasonic effects. Therefore, the aim of this work was to assess the influence of the level of applied ultrasonic power on the LTD of apple, analyzing the drying kinetics and the quality of the dried product. For that purpose, apple (Malus domestica cv. Granny Smith) cubes (8.8mm side) were dried (2m/s) at two different temperatures (10 and -10°C), without and with (25, 50 and 75 W) US application. In the dried apple, the rehydration kinetics, hardness, total phenolic content, antioxidant capacity and microstructure were analyzed to evaluate the impact of the level of applied ultrasonic power. At both temperatures, 10 and -10°C, the higher the ultrasonic power level, the shorter the drying time; the maximum shortening of the drying time achieved was 80.3% (at -10°C and 75 W). The ultrasonic power level did not significantly (p<0.05) affect the quality parameters analyzed. Therefore, US could be considered a non-thermal method of intensifying the LTD of fruits, like apple, with only a mild impact on the quality of the dried product. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Flexible real-time magnetic resonance imaging framework.

    PubMed

    Santos, Juan M; Wright, Graham A; Pauly, John M

    2004-01-01

    The extension of MR imaging to new applications has demonstrated the limitations of the architecture of current real-time systems. Traditional real-time implementations provide continuous acquisition of data and modification of basic sequence parameters on the fly. We have extended the concept of real-time MRI by designing a system that drives the examinations from a real-time localizer and then gets reconfigured for different imaging modes. Upon operator request or automatic feedback the system can immediately generate a new pulse sequence or change fundamental aspects of the acquisition such as gradient waveforms excitation pulses and scan planes. This framework has been implemented by connecting a data processing and control workstation to a conventional clinical scanner. Key components on the design of this framework are the data communication and control mechanisms, reconstruction algorithms optimized for real-time and adaptability, flexible user interface and extensible user interaction. In this paper we describe the various components that comprise this system. Some of the applications implemented in this framework include real-time catheter tracking embedded in high frame rate real-time imaging and immediate switching between real-time localizer and high-resolution volume imaging for coronary angiography applications.

  14. Real-time CT-video registration for continuous endoscopic guidance

    NASA Astrophysics Data System (ADS)

    Merritt, Scott A.; Rai, Lav; Higgins, William E.

    2006-03-01

    Previous research has shown that CT-image-based guidance could be useful for the bronchoscopic assessment of lung cancer. This research drew upon the registration of bronchoscopic video images to CT-based endoluminal renderings of the airway tree. The proposed methods either were restricted to discrete single-frame registration, which took several seconds to complete, or required non-real-time buffering and processing of video sequences. We have devised a fast 2D/3D image registration method that performs single-frame CT-Video registration in under 1/15th of a second. This allows the method to be used for real-time registration at full video frame rates without significantly altering the physician's behavior. The method achieves its speed through a gradient-based optimization method that allows most of the computation to be performed off-line. During live registration, the optimization iteratively steps toward the locally optimal viewpoint at which a CT-based endoluminal view is most similar to a current bronchoscopic video frame. After an initial registration to begin the process (generally done in the trachea for bronchoscopy), subsequent registrations are performed in real-time on each incoming video frame. As each new bronchoscopic video frame becomes available, the current optimization is initialized using the previous frame's optimization result, allowing continuous guidance to proceed without manual re-initialization. Tests were performed using both synthetic and pre-recorded bronchoscopic video. The results show that the method is robust to initialization errors, that registration accuracy is high, and that continuous registration can proceed on real-time video at >15 frames per sec. with minimal user-intervention.

  15. Pulsed ultrasonic instruments for monitoring the strength of materials

    NASA Astrophysics Data System (ADS)

    Korolev, Mikhail Viktorovich; Starikov, Boris Pavlovich; Karpel'Son, Arkadii Efimovich

    The book is concerned with various aspects of the design of portable instruments for the ultrasonic monitoring of the strength and ductile characteristics of structural materials, including metals, alloys, and ceramics. Particular attention is given to methods for increasing the accuracy of the instruments while reducing their size, which is particularly important in the design of miniature instruments for the real-time monitoring of machines, mechanisms, and structures during operation.

  16. MARTe: A Multiplatform Real-Time Framework

    NASA Astrophysics Data System (ADS)

    Neto, André C.; Sartori, Filippo; Piccolo, Fabio; Vitelli, Riccardo; De Tommasi, Gianmaria; Zabeo, Luca; Barbalace, Antonio; Fernandes, Horacio; Valcarcel, Daniel F.; Batista, Antonio J. N.

    2010-04-01

    Development of real-time applications is usually associated with nonportable code targeted at specific real-time operating systems. The boundary between hardware drivers, system services, and user code is commonly not well defined, making the development in the target host significantly difficult. The Multithreaded Application Real-Time executor (MARTe) is a framework built over a multiplatform library that allows the execution of the same code in different operating systems. The framework provides the high-level interfaces with hardware, external configuration programs, and user interfaces, assuring at the same time hard real-time performances. End-users of the framework are required to define and implement algorithms inside a well-defined block of software, named Generic Application Module (GAM), that is executed by the real-time scheduler. Each GAM is reconfigurable with a set of predefined configuration meta-parameters and interchanges information using a set of data pipes that are provided as inputs and required as output. Using these connections, different GAMs can be chained either in series or parallel. GAMs can be developed and debugged in a non-real-time system and, only once the robustness of the code and correctness of the algorithm are verified, deployed to the real-time system. The software also supplies a large set of utilities that greatly ease the interaction and debugging of a running system. Among the most useful are a highly efficient real-time logger, HTTP introspection of real-time objects, and HTTP remote configuration. MARTe is currently being used to successfully drive the plasma vertical stabilization controller on the largest magnetic confinement fusion device in the world, with a control loop cycle of 50 ?s and a jitter under 1 ?s. In this particular project, MARTe is used with the Real-Time Application Interface (RTAI)/Linux operating system exploiting the new ?86 multicore processors technology.

  17. Real-time Collision Avoidance and Path Optimizer for Semi-autonomous UAVs.

    NASA Astrophysics Data System (ADS)

    Hawary, A. F.; Razak, N. A.

    2018-05-01

    Whilst UAV offers a potentially cheaper and more localized observation platform than current satellite or land-based approaches, it requires an advance path planner to reveal its true potential, particularly in real-time missions. Manual control by human will have limited line-of-sights and prone to errors due to careless and fatigue. A good alternative solution is to equip the UAV with semi-autonomous capabilities that able to navigate via a pre-planned route in real-time fashion. In this paper, we propose an easy-and-practical path optimizer based on the classical Travelling Salesman Problem and adopts a brute force search method to re-optimize the route in the event of collisions using range finder sensor. The former utilizes a Simple Genetic Algorithm and the latter uses Nearest Neighbour algorithm. Both algorithms are combined to optimize the route and avoid collision at once. Although many researchers proposed various path planning algorithms, we find that it is difficult to integrate on a basic UAV model and often lacks of real-time collision detection optimizer. Therefore, we explore a practical benefit from this approach using on-board Arduino and Ardupilot controllers by manually emulating the motion of an actual UAV model prior to test on the flying site. The result showed that the range finder sensor provides a real-time data to the algorithm to find a collision-free path and eventually optimized the route successfully.

  18. Real-time simulation of a Doubly-Fed Induction Generator based wind power system on eMEGASimRTM Real-Time Digital Simulator

    NASA Astrophysics Data System (ADS)

    Boakye-Boateng, Nasir Abdulai

    The growing demand for wind power integration into the generation mix prompts the need to subject these systems to stringent performance requirements. This study sought to identify the required tools and procedures needed to perform real-time simulation studies of Doubly-Fed Induction Generator (DFIG) based wind generation systems as basis for performing more practical tests of reliability and performance for both grid-connected and islanded wind generation systems. The author focused on developing a platform for wind generation studies and in addition, the author tested the performance of two DFIG models on the platform real-time simulation model; an average SimpowerSystemsRTM DFIG wind turbine, and a detailed DFIG based wind turbine using ARTEMiSRTM components. The platform model implemented here consists of a high voltage transmission system with four integrated wind farm models consisting in total of 65 DFIG based wind turbines and it was developed and tested on OPAL-RT's eMEGASimRTM Real-Time Digital Simulator.

  19. Progress in using real-time GPS for seismic monitoring of the Cascadia megathrust

    NASA Astrophysics Data System (ADS)

    Szeliga, W. M.; Melbourne, T. I.; Santillan, V. M.; Scrivner, C.; Webb, F.

    2014-12-01

    We report on progress in our development of a comprehensive real-time GPS-based seismic monitoring system for the Cascadia subduction zone. This system is based on 1 Hz point position estimates computed in the ITRF08 reference frame. Convergence from phase and range observables to point position estimates is accelerated using a Kalman filter based, on-line stream editor. Positions are estimated using a short-arc approach and algorithms from JPL's GIPSY-OASIS software with satellite clock and orbit products from the International GNSS Service (IGS). The resulting positions show typical RMS scatter of 2.5 cm in the horizontal and 5 cm in the vertical with latencies below 2 seconds. To facilitate the use of these point position streams for applications such as seismic monitoring, we broadcast real-time positions and covariances using custom-built streaming software. This software is capable of buffering 24-hour streams for hundreds of stations and providing them through a REST-ful web interface. To demonstrate the power of this approach, we have developed a Java-based front-end that provides a real-time visual display of time-series, vector displacement, and contoured peak ground displacement. We have also implemented continuous estimation of finite fault slip along the Cascadia megathrust using an NIF approach. The resulting continuous slip distributions are combined with pre-computed tsunami Green's functions to generate real-time tsunami run-up estimates for the entire Cascadia coastal margin. This Java-based front-end is available for download through the PANGA website. We currently analyze 80 PBO and PANGA stations along the Cascadia margin and are gearing up to process all 400+ real-time stations operating in the Pacific Northwest, many of which are currently telemetered in real-time to CWU. These will serve as milestones towards our over-arching goal of extending our processing to include all of the available real-time streams from the Pacific rim. In addition

  20. Ultrasonic sensing for noninvasive characterization of oil-water-gas flow in a pipe

    NASA Astrophysics Data System (ADS)

    Chillara, Vamshi Krishna; Sturtevant, Blake T.; Pantea, Cristian; Sinha, Dipen N.

    2017-02-01

    A technique for noninvasive ultrasonic characterization of multiphase crude oil-water-gas flow is discussed. The proposed method relies on determining the sound speed in the mixture. First, important issues associated with making real-time noninvasive measurements are discussed. Then, signal processing approach adopted to determine the sound speed in the multiphase mixture is presented. Finally, results from controlled experiments on crude oil-water mixture in both the presence and absence of gas are presented.

  1. SOFTWARE DESIGN FOR REAL-TIME SYSTEMS.

    DTIC Science & Technology

    Real-time computer systems and real-time computations are defined for the purposes of this report. The design of software for real - time systems is...discussed, employing the concept that all real - time systems belong to one of two types. The types are classified according to the type of control...program used; namely: Pre-assigned Iterative Cycle and Real-time Queueing. The two types of real - time systems are described in general, with supplemental

  2. Real Time Conference 2016 Overview

    NASA Astrophysics Data System (ADS)

    Luchetta, Adriano

    2017-06-01

    This is a special issue of the IEEE Transactions on Nuclear Science containing papers from the invited, oral, and poster presentation of the 20th Real Time Conference (RT2016). The conference was held June 6-10, 2016, at Centro Congressi Padova “A. Luciani,” Padova, Italy, and was organized by Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) and the Istituto Nazionale di Fisica Nucleare. The Real Time Conference is multidisciplinary and focuses on the latest developments in real-time techniques in high-energy physics, nuclear physics, astrophysics and astroparticle physics, nuclear fusion, medical physics, space instrumentation, nuclear power instrumentation, general radiation instrumentation, and real-time security and safety. Taking place every second year, it is sponsored by the Computer Application in Nuclear and Plasma Sciences technical committee of the IEEE Nuclear and Plasma Sciences Society. RT2016 attracted more than 240 registrants, with a large proportion of young researchers and engineers. It had an attendance of 67 students from many countries.

  3. Effect of Streamflow Forecast Uncertainty on Real-Time Reservoir Operation

    NASA Astrophysics Data System (ADS)

    Zhao, T.; Cai, X.; Yang, D.

    2010-12-01

    Various hydrological forecast products have been applied to real-time reservoir operation, including deterministic streamflow forecast (DSF), DSF-based probabilistic streamflow forecast (DPSF), and ensemble streamflow forecast (ESF), which represent forecast uncertainty in the form of deterministic forecast error, deterministic forecast error-based uncertainty distribution, and ensemble forecast errors, respectively. Compared to previous studies that treat these forecast products as ad hoc inputs for reservoir operation models, this paper attempts to model the uncertainties involved in the various forecast products and explores their effect on real-time reservoir operation decisions. In hydrology, there are various indices reflecting the magnitude of streamflow forecast uncertainty; meanwhile, few models illustrate the forecast uncertainty evolution process. This research introduces Martingale Model of Forecast Evolution (MMFE) from supply chain management and justifies its assumptions for quantifying the evolution of uncertainty in streamflow forecast as time progresses. Based on MMFE, this research simulates the evolution of forecast uncertainty in DSF, DPSF, and ESF, and applies the reservoir operation models (dynamic programming, DP; stochastic dynamic programming, SDP; and standard operation policy, SOP) to assess the effect of different forms of forecast uncertainty on real-time reservoir operation. Through a hypothetical single-objective real-time reservoir operation model, the results illustrate that forecast uncertainty exerts significant effects. Reservoir operation efficiency, as measured by a utility function, decreases as the forecast uncertainty increases. Meanwhile, these effects also depend on the type of forecast product being used. In general, the utility of reservoir operation with ESF is nearly as high as the utility obtained with a perfect forecast; the utilities of DSF and DPSF are similar to each other but not as efficient as ESF. Moreover

  4. Real-time line-width measurements: a new feature for reticle inspection systems

    NASA Astrophysics Data System (ADS)

    Eran, Yair; Greenberg, Gad; Joseph, Amnon; Lustig, Cornel; Mizrahi, Eyal

    1997-07-01

    The significance of line width control in mask production has become greater with the lessening of defect size. There are two conventional methods used for controlling line widths dimensions which employed in the manufacturing of masks for sub micron devices. These two methods are the critical dimensions (CD) measurement and the detection of edge defects. Achieving reliable and accurate control of line width errors is one of the most challenging tasks in mask production. Neither of the two methods cited above (namely CD measurement and the detection of edge defects) guarantees the detection of line width errors with good sensitivity over the whole mask area. This stems from the fact that CD measurement provides only statistical data on the mask features whereas applying edge defect detection method checks defects on each edge by itself, and does not supply information on the combined result of error detection on two adjacent edges. For example, a combination of a small edge defect together with a CD non- uniformity which are both within the allowed tolerance, may yield a significant line width error, which will not be detected using the conventional methods (see figure 1). A new approach for the detection of line width errors which overcomes this difficulty is presented. Based on this approach, a new sensitive line width error detector was developed and added to Orbot's RT-8000 die-to-database reticle inspection system. This innovative detector operates continuously during the mask inspection process and scans (inspects) the entire area of the reticle for line width errors. The detection is based on a comparison of measured line width that are taken on both the design database and the scanned image of the reticle. In section 2, the motivation for developing this new detector is presented. The section covers an analysis of various defect types, which are difficult to detect using conventional edge detection methods or, alternatively, CD measurements. In section 3

  5. A tool for modeling concurrent real-time computation

    NASA Technical Reports Server (NTRS)

    Sharma, D. D.; Huang, Shie-Rei; Bhatt, Rahul; Sridharan, N. S.

    1990-01-01

    Real-time computation is a significant area of research in general, and in AI in particular. The complexity of practical real-time problems demands use of knowledge-based problem solving techniques while satisfying real-time performance constraints. Since the demands of a complex real-time problem cannot be predicted (owing to the dynamic nature of the environment) powerful dynamic resource control techniques are needed to monitor and control the performance. A real-time computation model for a real-time tool, an implementation of the QP-Net simulator on a Symbolics machine, and an implementation on a Butterfly multiprocessor machine are briefly described.

  6. Real-time Enhanced Vision System

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Rahman, Zia-Ur; Jobson, Daniel J.; Woodell, Glenn A.; Harrah, Steven D.

    2005-01-01

    Flying in poor visibility conditions, such as rain, snow, fog or haze, is inherently dangerous. However these conditions can occur at nearly any location, so inevitably pilots must successfully navigate through them. At NASA Langley Research Center (LaRC), under support of the Aviation Safety and Security Program Office and the Systems Engineering Directorate, we are developing an Enhanced Vision System (EVS) that combines image enhancement and synthetic vision elements to assist pilots flying through adverse weather conditions. This system uses a combination of forward-looking infrared and visible sensors for data acquisition. A core function of the system is to enhance and fuse the sensor data in order to increase the information content and quality of the captured imagery. These operations must be performed in real-time for the pilot to use while flying. For image enhancement, we are using the LaRC patented Retinex algorithm since it performs exceptionally well for improving low-contrast range imagery typically seen during poor visibility conditions. In general, real-time operation of the Retinex requires specialized hardware. To date, we have successfully implemented a single-sensor real-time version of the Retinex on several different Digital Signal Processor (DSP) platforms. In this paper we give an overview of the EVS and its performance requirements for real-time enhancement and fusion and we discuss our current real-time Retinex implementations on DSPs.

  7. Real-time enhanced vision system

    NASA Astrophysics Data System (ADS)

    Hines, Glenn D.; Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.; Harrah, Steven D.

    2005-05-01

    Flying in poor visibility conditions, such as rain, snow, fog or haze, is inherently dangerous. However these conditions can occur at nearly any location, so inevitably pilots must successfully navigate through them. At NASA Langley Research Center (LaRC), under support of the Aviation Safety and Security Program Office and the Systems Engineering Directorate, we are developing an Enhanced Vision System (EVS) that combines image enhancement and synthetic vision elements to assist pilots flying through adverse weather conditions. This system uses a combination of forward-looking infrared and visible sensors for data acquisition. A core function of the system is to enhance and fuse the sensor data in order to increase the information content and quality of the captured imagery. These operations must be performed in real-time for the pilot to use while flying. For image enhancement, we are using the LaRC patented Retinex algorithm since it performs exceptionally well for improving low-contrast range imagery typically seen during poor visibility poor visibility conditions. In general, real-time operation of the Retinex requires specialized hardware. To date, we have successfully implemented a single-sensor real-time version of the Retinex on several different Digital Signal Processor (DSP) platforms. In this paper we give an overview of the EVS and its performance requirements for real-time enhancement and fusion and we discuss our current real-time Retinex implementations on DSPs.

  8. Forecasting surface water flooding hazard and impact in real-time

    NASA Astrophysics Data System (ADS)

    Cole, Steven J.; Moore, Robert J.; Wells, Steven C.

    2016-04-01

    Across the world, there is increasing demand for more robust and timely forecast and alert information on Surface Water Flooding (SWF). Within a UK context, the government Pitt Review into the Summer 2007 floods provided recommendations and impetus to improve the understanding of SWF risk for both off-line design and real-time forecasting and warning. Ongoing development and trial of an end-to-end real-time SWF system is being progressed through the recently formed Natural Hazards Partnership (NHP) with delivery to the Flood Forecasting Centre (FFC) providing coverage over England & Wales. The NHP is a unique forum that aims to deliver coordinated assessments, research and advice on natural hazards for governments and resilience communities across the UK. Within the NHP, a real-time Hazard Impact Model (HIM) framework has been developed that includes SWF as one of three hazards chosen for initial trialling. The trial SWF HIM system uses dynamic gridded surface-runoff estimates from the Grid-to-Grid (G2G) hydrological model to estimate the SWF hazard. National datasets on population, infrastructure, property and transport are available to assess impact severity for a given rarity of SWF hazard. Whilst the SWF hazard footprint is calculated in real-time using 1, 3 and 6 hour accumulations of G2G surface runoff on a 1 km grid, it has been possible to associate these with the effective rainfall design profiles (at 250m resolution) used as input to a detailed flood inundation model (JFlow+) run offline to produce hazard information resolved to 2m resolution. This information is contained in the updated Flood Map for Surface Water (uFMfSW) held by the Environment Agency. The national impact datasets can then be used with the uFMfSW SWF hazard dataset to assess impacts at this scale and severity levels of potential impact assigned at 1km and for aggregated county areas in real-time. The impact component is being led by the Health and Safety Laboratory (HSL) within the NHP

  9. Using real-time problem solving to eliminate central line infections.

    PubMed

    Shannon, Richard P; Frndak, Diane; Grunden, Naida; Lloyd, Jon C; Herbert, Cheryl; Patel, Bhavin; Cummins, Daniel; Shannon, Alexander H; O'Neill, Paul H; Spear, Steven J

    2006-09-01

    An estimated 200,000 Americans suffer central line-associated bloodstream infections (CLABs) each year, with 15%-20% mortality. Two intensive care units (ICUs) redefined the processes of care through system redesign to deliver reliable outcomes free of the variations that created the breeding ground for infection. The ICUs, comprising 28 beds at Allegheny General Hospital, employed the principles of the Toyota Production System adapted to health care--Perfecting Patient Care--and applied them to central line placement and maintenance. Intensive observations, which revealed multiple variances from established practices, and root cause analyses of all CLABs empowered the workers to implement countermeasures designed to eliminate the defects in the processes of central line placement and maintenance. New processes were implemented within 90 days. Within a year CLABs decreased from 49 to 6 (10.5 to 1.2 infections/1,000 line-days), and mortalities from 19 to 1 (51% to 16%), despite an increase in the use of central lines and number of line-days. These results were sustained during a 34-month period. CLABs are not an inevitable product of complex ICU care but the result of highly variable and therefore unreliable care delivery that predisposes to infection.

  10. Study on Amortization Time and Rationality in Real Estate Investment

    NASA Astrophysics Data System (ADS)

    Li, Yancang; Zhou, Shujing; Suo, Juanjuan

    Amortization time and rationality has been discussed a lot in real estate investment research. As the price of real estate is driven by Geometric Brown Motion (GBM), whether the mortgagors should amortize in advance has become a key issue in amortization time research. This paper presents a new method to solve the problem by using the optimal stopping time theory and option pricing theory models. We discuss the option value in amortizing decision based on this model. A simulation method is used to test this method.

  11. Broad-range real-time PCR assay for the rapid identification of cell-line contaminants and clinically important mollicute species.

    PubMed

    Störmer, Melanie; Vollmer, Tanja; Henrich, Birgit; Kleesiek, Knut; Dreier, Jens

    2009-04-01

    Polymerase chain reaction assays have become widely used methods of confirming the presence of Mollicutes species in clinical samples and cell cultures. We have developed a broad-range real-time PCR assay using the locked nucleic acid technology to detect mollicute species causing human infection and cell line contamination. Primers and probes specifically for the conserved regions of the mycoplasmal tuf gene (encoding elongation factor Tu) were designed. Cell culture supernatants, clinical specimens (vaginal swabs, sputum, cryopreserved heart valve tissues), and reference strains were tested for mollicute contamination as well as to exclude cross-reaction to human nucleic acids and other bacterial species. Nucleic acids were extracted using magnetic separation technology. The coamplification of the human beta2-microglobulin DNA served as an internal control. The PCR assay was highly specific and obtained an analytical sensitivity of one copy per microl sample. The 95% detection limit was calculated to 10 copies per microl sample for Mycoplasma pneumoniae and M. orale. No false-positive results were observed due to cross-reaction of walled bacterial, fungal, and human nucleic acids. To evaluate the PCR, we compared the results to two commercialized test systems. Moreover, in combination with a previously developed broad-range RT-PCR assay for the detection of bacteria in blood products, both mollicute and walled bacterial contamination can be detected simultaneously using multiplex real-time RT-PCR.

  12. Research of real-time communication software

    NASA Astrophysics Data System (ADS)

    Li, Maotang; Guo, Jingbo; Liu, Yuzhong; Li, Jiahong

    2003-11-01

    Real-time communication has been playing an increasingly important role in our work, life and ocean monitor. With the rapid progress of computer and communication technique as well as the miniaturization of communication system, it is needed to develop the adaptable and reliable real-time communication software in the ocean monitor system. This paper involves the real-time communication software research based on the point-to-point satellite intercommunication system. The object-oriented design method is adopted, which can transmit and receive video data and audio data as well as engineering data by satellite channel. In the real-time communication software, some software modules are developed, which can realize the point-to-point satellite intercommunication in the ocean monitor system. There are three advantages for the real-time communication software. One is that the real-time communication software increases the reliability of the point-to-point satellite intercommunication system working. Second is that some optional parameters are intercalated, which greatly increases the flexibility of the system working. Third is that some hardware is substituted by the real-time communication software, which not only decrease the expense of the system and promotes the miniaturization of communication system, but also aggrandizes the agility of the system.

  13. Optical sensor for real-time weld defect detection

    NASA Astrophysics Data System (ADS)

    Ancona, Antonio; Maggipinto, Tommaso; Spagnolo, Vincenzo; Ferrara, Michele; Lugara, Pietro M.

    2002-04-01

    In this work we present an innovative optical sensor for on- line and non-intrusive welding process monitoring. It is based on the spectroscopic analysis of the optical VIS emission of the welding plasma plume generated in the laser- metal interaction zone. Plasma electron temperature has been measured for different chemical species composing the plume. Temperature signal evolution has been recorded and analyzed during several CO2-laser welding processes, under variable operating conditions. We have developed a suitable software able to real time detect a wide range of weld defects like crater formation, lack of fusion, excessive penetration, seam oxidation. The same spectroscopic approach has been applied for electric arc welding process monitoring. We assembled our optical sensor in a torch for manual Gas Tungsten Arc Welding procedures and tested the prototype in a manufacturing industry production line. Even in this case we found a clear correlation between the signal behavior and the welded joint quality.

  14. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery

    PubMed Central

    Qi, Baogui; Zhuang, Yin; Chen, He; Chen, Liang

    2018-01-01

    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited. PMID:29693585

  15. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery.

    PubMed

    Qi, Baogui; Shi, Hao; Zhuang, Yin; Chen, He; Chen, Liang

    2018-04-25

    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited.

  16. Real-time orbit estimation for ATS-6 from redundant attitude sensors

    NASA Technical Reports Server (NTRS)

    Englar, T. S., Jr.

    1975-01-01

    A program installed in the ATSOCC on-line computer operates with attitude sensor data to produce a smoothed real-time orbit estimate. This estimate is obtained from a Kalman filter which enables the estimate to be maintained in the absence of T/M data. The results are described of analytical and numerical investigations into the sensitivity of Control Center output to the position errors resulting from the real-time estimation. The results of the numerical investigation, which used several segments of ATS-6 data gathered during the Sensor Data Acquisition run on August 19, 1974, show that the implemented system can achieve absolute position determination with an error of about 100 km, implying pointing errors of less than 0.2 deg in latitude and longitude. This compares very favorably with ATS-6 specifications of approximately 0.5 deg in latitude-longitude.

  17. Acousto-ultrasonic system for the inspection of composite armored vehicles

    NASA Astrophysics Data System (ADS)

    Godinez, Valery F.; Carlos, Mark F.; Delamere, Michael; Hoch, William; Fotopoulos, Christos; Dai, Weiming; Raju, Basavaraju B.

    2001-04-01

    In this paper the design and implementation of a unique acousto-ultrasonics system for the inspection of composite armored vehicles is discussed. The system includes a multi-sensor probe with a position-tracking device mounted on a computer controlled scanning bridge. The system also includes an arbitrary waveform generator with a multiplexer and a multi-channel acoustic emission board capable of simultaneously collecting and processing up to four acoustic signals in real time. C-scans of an armored vehicle panel with defects are presented.

  18. Hard real-time closed-loop electrophysiology with the Real-Time eXperiment Interface (RTXI)

    PubMed Central

    George, Ansel; Dorval, Alan D.; Christini, David J.

    2017-01-01

    The ability to experimentally perturb biological systems has traditionally been limited to static pre-programmed or operator-controlled protocols. In contrast, real-time control allows dynamic probing of biological systems with perturbations that are computed on-the-fly during experimentation. Real-time control applications for biological research are available; however, these systems are costly and often restrict the flexibility and customization of experimental protocols. The Real-Time eXperiment Interface (RTXI) is an open source software platform for achieving hard real-time data acquisition and closed-loop control in biological experiments while retaining the flexibility needed for experimental settings. RTXI has enabled users to implement complex custom closed-loop protocols in single cell, cell network, animal, and human electrophysiology studies. RTXI is also used as a free and open source, customizable electrophysiology platform in open-loop studies requiring online data acquisition, processing, and visualization. RTXI is easy to install, can be used with an extensive range of external experimentation and data acquisition hardware, and includes standard modules for implementing common electrophysiology protocols. PMID:28557998

  19. Facial Expression Presentation for Real-Time Internet Communication

    NASA Astrophysics Data System (ADS)

    Dugarry, Alexandre; Berrada, Aida; Fu, Shan

    2003-01-01

    Text, voice and video images are the most common forms of media content for instant communication on the Internet. Studies have shown that facial expressions convey much richer information than text and voice during a face-to-face conversation. The currently available real time means of communication (instant text messages, chat programs and videoconferencing), however, have major drawbacks in terms of exchanging facial expression. The first two means do not involve the image transmission, whilst video conferencing requires a large bandwidth that is not always available, and the transmitted image sequence is neither smooth nor without delay. The objective of the work presented here is to develop a technique that overcomes these limitations, by extracting the facial expression of speakers and to realise real-time communication. In order to get the facial expressions, the main characteristics of the image are emphasized. Interpolation is performed on edge points previously detected to create geometric shapes such as arcs, lines, etc. The regional dominant colours of the pictures are also extracted and the combined results are subsequently converted into Scalable Vector Graphics (SVG) format. The application based on the proposed technique aims at being used simultaneously with chat programs and being able to run on any platform.

  20. Real-Time PCR for the Detection of Precise Transgene Copy Number in Wheat.

    PubMed

    Giancaspro, Angelica; Gadaleta, Agata; Blanco, Antonio

    2017-01-01

    Despite the unceasing advances in genetic transformation techniques, the success of common delivery methods still lies on the behavior of the integrated transgenes in the host genome. Stability and expression of the introduced genes are influenced by several factors such as chromosomal location, transgene copy number and interaction with the host genotype. Such factors are traditionally characterized by Southern blot analysis, which can be time-consuming, laborious, and often unable to detect the exact copy number of rearranged transgenes. Recent research in crop field suggests real-time PCR as an effective and reliable tool for the precise quantification and characterization of transgene loci. This technique overcomes most problems linked to phenotypic segregation analysis and can analyze hundreds of samples in a day, making it an efficient method for estimating a gene copy number integrated in a transgenic line. This protocol describes the use of real-time PCR for the detection of transgene copy number in durum wheat transgenic lines by means of two different chemistries (SYBR ® Green I dye and TaqMan ® probes).

  1. Transient imaging for real-time tracking around a corner

    NASA Astrophysics Data System (ADS)

    Klein, Jonathan; Laurenzis, Martin; Hullin, Matthias

    2016-10-01

    Non-line-of-sight imaging is a fascinating emerging area of research and expected to have an impact in numerous application fields including civilian and military sensing. Performance of human perception and situational awareness can be extended by the sensing of shapes and movement around a corner in future scenarios. Rather than seeing through obstacles directly, non-line-of-sight imaging relies on analyzing indirect reflections of light that traveled around the obstacle. In previous work, transient imaging was established as the key mechanic to enable the extraction of useful information from such reflections. So far, a number of different approaches based on transient imaging have been proposed, with back projection being the most prominent one. Different hardware setups were used for the acquisition of the required data, however all of them have severe drawbacks such as limited image quality, long capture time or very high prices. In this paper we propose the analysis of synthetic transient renderings to gain more insights into the transient light transport. With this simulated data, we are no longer bound to the imperfect data of real systems and gain more flexibility and control over the analysis. In a second part, we use the insights of our analysis to formulate a novel reconstruction algorithm. It uses an adapted light simulation to formulate an inverse problem which is solved in an analysis-by-synthesis fashion. Through rigorous optimization of the reconstruction, it then becomes possible to track known objects outside the line of side in real time. Due to the forward formulation of the light transport, the algorithm is easily expandable to more general scenarios or different hardware setups. We therefore expect it to become a viable alternative to the classic back projection approach in the future.

  2. Graphite Microstructural Characterization Using Time-Domain and Correlation-Based Ultrasonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spicer, James

    Among techniques that have been used to determine elastic modulus in nuclear graphites, ultrasonic methods have enjoyed wide use and standards using contacting piezoelectric tranducers have been developed to ensure repeatability of these types of measurements. However, the use of couplants and the pressures used to effectively couple transducers to samples can bias measurements and produce results that are not wholly related to the properties of the graphite itself. In this work, we have investigated the use of laser ultrasonic methods for making elastic modulus measurements in nuclear graphites. These methods use laser-based transmitters and receivers to gather data andmore » do not require use of ultrasonic couplants or mechanical contact with the sample. As a result, information directly related to the elastic responses of graphite can be gathered even if the graphite is porous, brittle and compliant. In particular, we have demonstrated the use of laser ultrasonics for the determination of both Young’s modulus and shear modulus in a range of nuclear graphites including those that are being considered for use in future nuclear reactors. These results have been analyzed to assess the contributions of porosity and microcracking to the elastic responses of these graphites. Laser-based methods have also been used to assess the moduli of NBG-18 and IG-110 where samples of each grade were oxidized to produce specific changes in porosity. These data were used to develop new models for the elastic responses of nuclear graphites and these models have been used to infer specific changes in graphite microstructure that occur during oxidation that affect elastic modulus. Specifically, we show how ultrasonic measurements in oxidized graphites are consistent with nano/microscale oxidation processes where basal plane edges react more readily than basal plane surfaces. We have also shown the use of laser-based methods to perform shear-wave birefringence measurements and have

  3. Satellite on-board real-time SAR processor prototype

    NASA Astrophysics Data System (ADS)

    Bergeron, Alain; Doucet, Michel; Harnisch, Bernd; Suess, Martin; Marchese, Linda; Bourqui, Pascal; Desnoyers, Nicholas; Legros, Mathieu; Guillot, Ludovic; Mercier, Luc; Châteauneuf, François

    2017-11-01

    A Compact Real-Time Optronic SAR Processor has been successfully developed and tested up to a Technology Readiness Level of 4 (TRL4), the breadboard validation in a laboratory environment. SAR, or Synthetic Aperture Radar, is an active system allowing day and night imaging independent of the cloud coverage of the planet. The SAR raw data is a set of complex data for range and azimuth, which cannot be compressed. Specifically, for planetary missions and unmanned aerial vehicle (UAV) systems with limited communication data rates this is a clear disadvantage. SAR images are typically processed electronically applying dedicated Fourier transformations. This, however, can also be performed optically in real-time. Originally the first SAR images were optically processed. The optical Fourier processor architecture provides inherent parallel computing capabilities allowing real-time SAR data processing and thus the ability for compression and strongly reduced communication bandwidth requirements for the satellite. SAR signal return data are in general complex data. Both amplitude and phase must be combined optically in the SAR processor for each range and azimuth pixel. Amplitude and phase are generated by dedicated spatial light modulators and superimposed by an optical relay set-up. The spatial light modulators display the full complex raw data information over a two-dimensional format, one for the azimuth and one for the range. Since the entire signal history is displayed at once, the processor operates in parallel yielding real-time performances, i.e. without resulting bottleneck. Processing of both azimuth and range information is performed in a single pass. This paper focuses on the onboard capabilities of the compact optical SAR processor prototype that allows in-orbit processing of SAR images. Examples of processed ENVISAT ASAR images are presented. Various SAR processor parameters such as processing capabilities, image quality (point target analysis), weight and

  4. Real-time separation of multineuron recordings with a DSP32C signal processor.

    PubMed

    Gädicke, R; Albus, K

    1995-04-01

    We have developed a hardware and software package for real-time discrimination of multiple-unit activities recorded simultaneously from multiple microelectrodes using a VME-Bus system. Compared with other systems cited in literature or commercially available, our system has the following advantages. (1) Each electrode is served by its own preprocessor (DSP32C); (2) On-line spike discrimination is performed independently for each electrode. (3) The VME-bus allows processing of data received from 16 electrodes. The digitized (62.5 kHz) spike form is itself used as the model spike; the algorithm allows for comparing and sorting complete wave forms in real time into 8 different models per electrode.

  5. An ultrasonic pseudorandom signal-correlation system

    NASA Astrophysics Data System (ADS)

    Elias, C. M.

    1980-01-01

    A working ultrasonic pseudorandom signal-correlation system is described which, unlike ultrasonic random signal-correlation systems, does not require an acoustic delay line. Elimination of the delay line allows faster data acquisition and better range resolution. The system uses two identical shift-register type generators to produce pseudonoise bursts which are subsequences of a 65 535-bit complementary m-sequence. One generator produces the transmitted bursts while the other generates identical reference bursts which start at a variable correlation delay time after the transmitted bursts. The reference bursts are cross-correlated with the received echoes to obtain the approximate impulse response of the transducer/specimen system under test. Range sidelobes are reduced by transmitting and correlating many bursts at a given correlation delay before incrementing the delay. Signal-to-sidelobe ratios of greater than 47 dB have been obtained using this method. Limitations of the system due to sampling constraints and the pseudonoise power spectrum are discussed, and the system design and implementation are outlined. Results of experimental characterization of the system show that the pseudorandom signal-correlation system has approximately the same range resolution as a conventional pulse-echo system but can yield a significant increase in signal-to-noise ratio (SNR).

  6. Evaluation of a method estimating real-time individual lysine requirements in two lines of growing-finishing pigs.

    PubMed

    Cloutier, L; Pomar, C; Létourneau Montminy, M P; Bernier, J F; Pomar, J

    2015-04-01

    The implementation of precision feeding in growing-finishing facilities requires accurate estimates of the animals' nutrient requirements. The objectives of the current study was to validate a method for estimating the real-time individual standardized ileal digestible (SID) lysine (Lys) requirements of growing-finishing pigs and the ability of this method to estimate the Lys requirements of pigs with different feed intake and growth patterns. Seventy-five pigs from a terminal cross and 72 pigs from a maternal cross were used in two 28-day experimental phases beginning at 25.8 (±2.5) and 73.3 (±5.2) kg BW, respectively. Treatments were randomly assigned to pigs within each experimental phase according to a 2×4 factorial design in which the two genetic lines and four dietary SID Lys levels (70%, 85%, 100% and 115% of the requirements estimated by the factorial method developed for precision feeding) were the main factors. Individual pigs' Lys requirements were estimated daily using a factorial approach based on their feed intake, BW and weight gain patterns. From 25 to 50 kg BW, this method slightly underestimated the pigs' SID Lys requirements, given that maximum protein deposition and weight gain were achieved at 115% of SID Lys requirements. However, the best gain-to-feed ratio (G : F) was obtained at a level of 85% or more of the estimated Lys requirement. From 70 to 100 kg, the method adequately estimated the pigs' individual requirements, given that maximum performance was achieved at 100% of Lys requirements. Terminal line pigs ate more (P=0.04) during the first experimental phase and tended to eat more (P=0.10) during the second phase than the maternal line pigs but both genetic lines had similar ADG and protein deposition rates during the two phases. The factorial method used in this study to estimate individual daily SID Lys requirements was able to accommodate the small genetic differences in feed intake, and it was concluded that this method can be

  7. Real-time fuzzy inference based robot path planning

    NASA Technical Reports Server (NTRS)

    Pacini, Peter J.; Teichrow, Jon S.

    1990-01-01

    This project addresses the problem of adaptive trajectory generation for a robot arm. Conventional trajectory generation involves computing a path in real time to minimize a performance measure such as expended energy. This method can be computationally intensive, and it may yield poor results if the trajectory is weakly constrained. Typically some implicit constraints are known, but cannot be encoded analytically. The alternative approach used here is to formulate domain-specific knowledge, including implicit and ill-defined constraints, in terms of fuzzy rules. These rules utilize linguistic terms to relate input variables to output variables. Since the fuzzy rulebase is determined off-line, only high-level, computationally light processing is required in real time. Potential applications for adaptive trajectory generation include missile guidance and various sophisticated robot control tasks, such as automotive assembly, high speed electrical parts insertion, stepper alignment, and motion control for high speed parcel transfer systems.

  8. REACT Real-Time Emergency Action Coordination Tool

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Recently the Emergency Management Operations Center (EMOC) of St. Tammany Parish turned to the Technology Development and Transfer Office (TDTO) of NASA's Stennis Space Center (SSC) for help in combating the problems associated with water inundation. Working through a Dual-Use Development Agreement the Technology Development and Transfer Office, EMOC and a small geospatial applications company named Nvision provided the parish with a new front-line defense. REACT, Real-time Emergency Action coordination Tool is a decision support system that integrates disparate information to enable more efficient decision making by emergency management personnel.

  9. OPAD-EDIFIS Real-Time Processing

    NASA Technical Reports Server (NTRS)

    Katsinis, Constantine

    1997-01-01

    The Optical Plume Anomaly Detection (OPAD) detects engine hardware degradation of flight vehicles through identification and quantification of elemental species found in the plume by analyzing the plume emission spectra in a real-time mode. Real-time performance of OPAD relies on extensive software which must report metal amounts in the plume faster than once every 0.5 sec. OPAD software previously written by NASA scientists performed most necessary functions at speeds which were far below what is needed for real-time operation. The research presented in this report improved the execution speed of the software by optimizing the code without changing the algorithms and converting it into a parallelized form which is executed in a shared-memory multiprocessor system. The resulting code was subjected to extensive timing analysis. The report also provides suggestions for further performance improvement by (1) identifying areas of algorithm optimization, (2) recommending commercially available multiprocessor architectures and operating systems to support real-time execution and (3) presenting an initial study of fault-tolerance requirements.

  10. Correction of ultrasonic wave aberration with a time delay and amplitude filter.

    PubMed

    Måsøy, Svein-Erik; Johansen, Tonni F; Angelsen, Bjørn

    2003-04-01

    Two-dimensional simulations with propagation through two different heterogeneous human body wall models have been performed to analyze different correction filters for ultrasonic wave aberration due to forward wave propagation. The different models each produce most of the characteristic aberration effects such as phase aberration, relatively strong amplitude aberration, and waveform deformation. Simulations of wave propagation from a point source in the focus (60 mm) of a 20 mm transducer through the body wall models were performed. Center frequency of the pulse was 2.5 MHz. Corrections of the aberrations introduced by the two body wall models were evaluated with reference to the corrections obtained with the optimal filter: a generalized frequency-dependent phase and amplitude correction filter [Angelsen, Ultrasonic Imaging (Emantec, Norway, 2000), Vol. II]. Two correction filters were applied, a time delay filter, and a time delay and amplitude filter. Results showed that correction with a time delay filter produced substantial reduction of the aberration in both cases. A time delay and amplitude correction filter performed even better in both cases, and gave correction close to the ideal situation (no aberration). The results also indicated that the effect of the correction was very sensitive to the accuracy of the arrival time fluctuations estimate, i.e., the time delay correction filter.

  11. Transmission Line Ampacity Improvements of AltaLink Wind Plant Overhead Tie-Lines Using Weather-Based Dynamic Line Rating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattarai, Bishnu P.; Gentle, Jake P.; Hill, Porter

    Abstract—Overhead transmission lines (TLs) are conventionally given seasonal ratings based on conservative environmental assumptions. Such an approach often results in underutilization of the line ampacity as the worst conditions prevail only for a short period over a year/season. We presents dynamic line rating (DLR) as an enabling smart grid technology that adaptively computes ratings of TLs based on local weather conditions to utilize additional headroom of existing lines. In particular, general line ampacity state solver utilizes measured weather data for computing the real-time thermal rating of the TLs. The performance of the presented method is demonstrated from a field studymore » of DLR technology implementation on four TL segments at AltaLink, Canada. The performance is evaluated and quantified by comparing the existing static and proposed dynamic line ratings, and the potential benefits of DLR for enhanced transmission assets utilization. For the given line segments, the proposed DLR results in real-time ratings above the seasonal static ratings for most of the time; up to 95.1% of the time, with a mean increase of 72% over static rating.« less

  12. High-throughput Analysis of Ultrasonication-forced Amyloid Fibrillation Reveals the Mechanism Underlying the Large Fluctuation in the Lag Time*

    PubMed Central

    Umemoto, Ayaka; Yagi, Hisashi; So, Masatomo; Goto, Yuji

    2014-01-01

    Amyloid fibrils form in supersaturated solutions of precursor proteins by a nucleation and growth mechanism characterized by a lag time. Although the lag time provides a clue to understanding the complexity of nucleation events, its long period and low reproducibility have been obstacles for exact analysis. Ultrasonication is known to effectively break supersaturation and force fibrillation. By constructing a Handai amyloid burst inducer, which combines a water bath-type ultrasonicator and a microplate reader, we examined the ultrasonication-forced fibrillation of several proteins, with a focus on the fluctuation in the lag time. Amyloid fibrillation of hen egg white lysozyme was examined at pH 2.0 in the presence of 1.0–5.0 M guanidine hydrochloride (GdnHCl), in which the dominant species varied from the native to denatured conformations. Although fibrillation occurred at various concentrations of GdnHCl, the lag time varied largely, with a minimum being observed at ∼3.0 m, the concentration at which GdnHCl-dependent denaturation ended. The coefficient of variation of the lag time did not depend significantly on the GdnHCl concentration and was 2-fold larger than that of the ultrasonication-dependent oxidation of iodide, a simple model reaction. These results suggest that the large fluctuation observed in the lag time for amyloid fibrillation originated from a process associated with a common amyloidogenic intermediate, which may have been a relatively compact denatured conformation. We also suggest that the Handai amyloid burst inducer system will be useful for studying the mechanism of crystallization of proteins because proteins form crystals by the same mechanism as amyloid fibrils under supersaturation. PMID:25118286

  13. A real-time ionospheric model based on GNSS Precise Point Positioning

    NASA Astrophysics Data System (ADS)

    Tu, Rui; Zhang, Hongping; Ge, Maorong; Huang, Guanwen

    2013-09-01

    This paper proposes a method of real-time monitoring and modeling the ionospheric Total Electron Content (TEC) by Precise Point Positioning (PPP). Firstly, the ionospheric TEC and receiver’s Differential Code Biases (DCB) are estimated with the undifferenced raw observation in real-time, then the ionospheric TEC model is established based on the Single Layer Model (SLM) assumption and the recovered ionospheric TEC. In this study, phase observations with high precision are directly used instead of phase smoothed code observations. In addition, the DCB estimation is separated from the establishment of the ionospheric model which will limit the impacts of the SLM assumption impacts. The ionospheric model is established at every epoch for real time application. The method is validated with three different GNSS networks on a local, regional, and global basis. The results show that the method is feasible and effective, the real-time ionosphere and DCB results are very consistent with the IGS final products, with a bias of 1-2 TECU and 0.4 ns respectively.

  14. FTA real-time transit information assessment : white paper on literature review of real-time transit information systems.

    DOT National Transportation Integrated Search

    Real-time transit information systems are key technology applications within the transit industry designed to provide better customer service by disseminating timely and accurate information. Riders use this information to make various decisions abou...

  15. Effects of specimen resonances on acoustic-ultrasonic testing

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Kahn, E. B.; Lee, S. S.

    1983-01-01

    The effects of specimen resonances on acoustic ultrasonic (AU) nondestructive testing were investigated. Selected resonant frequencies and the corresponding normal mode nodal patterns of the aluminum block are measured up to 75.64 kHz. Prominent peaks in the pencil lead fracture and sphere impact spectra from the two transducer locations corresponded exactly to resonant frequencies of the block. It is established that the resonant frequencies of the block dominated the spectral content of the output signal. The spectral content of the output signals is further influenced by the transducer location relative to the resonant frequency nodal lines. Implications of the results are discussed in relation to AU parameters and measurements.

  16. VERSE - Virtual Equivalent Real-time Simulation

    NASA Technical Reports Server (NTRS)

    Zheng, Yang; Martin, Bryan J.; Villaume, Nathaniel

    2005-01-01

    Distributed real-time simulations provide important timing validation and hardware in the- loop results for the spacecraft flight software development cycle. Occasionally, the need for higher fidelity modeling and more comprehensive debugging capabilities - combined with a limited amount of computational resources - calls for a non real-time simulation environment that mimics the real-time environment. By creating a non real-time environment that accommodates simulations and flight software designed for a multi-CPU real-time system, we can save development time, cut mission costs, and reduce the likelihood of errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-time Application Interface) into an event driven simulator that runs in virtual real time. Designed to keep the original RTAI architecture as intact as possible, and therefore inheriting RTAI's many capabilities, VERSE was implemented with remarkably little change to the RTAI source code. This small footprint together with use of the same API allows users to easily run the same application in both real-time and virtual time environments. VERSE has been used to build a workstation testbed for NASA's Space Interferometry Mission (SIM PlanetQuest) instrument flight software. With its flexible simulation controls and inexpensive setup and replication costs, VERSE will become an invaluable tool in future mission development.

  17. Real-time dynamic simulation of the Cassini spacecraft using DARTS. Part 2: Parallel/vectorized real-time implementation

    NASA Technical Reports Server (NTRS)

    Fijany, A.; Roberts, J. A.; Jain, A.; Man, G. K.

    1993-01-01

    Part 1 of this paper presented the requirements for the real-time simulation of Cassini spacecraft along with some discussion of the DARTS algorithm. Here, in Part 2 we discuss the development and implementation of parallel/vectorized DARTS algorithm and architecture for real-time simulation. Development of the fast algorithms and architecture for real-time hardware-in-the-loop simulation of spacecraft dynamics is motivated by the fact that it represents a hard real-time problem, in the sense that the correctness of the simulation depends on both the numerical accuracy and the exact timing of the computation. For a given model fidelity, the computation should be computed within a predefined time period. Further reduction in computation time allows increasing the fidelity of the model (i.e., inclusion of more flexible modes) and the integration routine.

  18. Full-field ultrasonic inspection for a composite sandwich plate skin-core debonding detection using laser-based ultrasonics

    NASA Astrophysics Data System (ADS)

    Chong, See Yenn; Victor, Jared J.; Todd, Michael D.

    2017-04-01

    In this paper, a full-field ultrasonic guided wave method is proposed to inspect a composite sandwich specimen made for an aircraft engine nacelle. The back skin/core interface of the specimen is built with two fabricated disbond defects (diameters of 12.7 mm and 25.4 mm) by removing areas of the adhesive used to bond the back skin to the core. A laser ultrasonic interrogation system (LUIS) incorporated with a disbond detection algorithm is developed. The system consists of a 1-kHz laser ultrasonic scanning system and a single fixed ultrasonic sensor to interrogate ultrasonic guided waves in the sandwich specimen. The interest area of 400 mm × 400 mm is scanned at a 0.5 mm scan interval. The corresponding full-field ultrasonic data is obtained and generated in the three-dimensional (3-D) space-time domain. Then, the 3-D full-field ultrasonic data is Fourier transformed and the ultrasonic frequency spectra are analyzed to determine the dominant frequency that is sensitive to the disbond defects. Continuous wavelet transform (CWT) based on fast Fourier transform (FFT) is implemented as a single-frequency bandpass filter to filter the full-field ultrasonic data in the 3-D space-time domain at the selected dominant frequency. The LUIS has shown the ability to detect the disbond with diameters of 11 mm and 23 mm which match to the pre-determined disbond sizes well. For future research, a robust signal processing algorithm and a model-based matched filter will be investigated to make the detection process autonomous and improve detectability

  19. Ultrasonics Equipped Crimp Tool: A New Technology for Aircraft Wiring Safety

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Perey, Daniel F.; Cramer, Elliott

    2006-01-01

    We report on the development of a new measurement technique to quantitatively assess the condition of wire crimp connections. This ultrasonic (UT) method transmits high frequency sound waves through the joint under inspection. The wire-crimp region filters and scatters the ultrasonic energy as it passes through the crimp and wire. The resulting output (both time and frequency domains) provides a quantitative measure of the joint quality that is independent and unaffected by current. Crimps of poor mechanical and electrical quality will result in low temporal output and will distort the spectrum into unique and predictable patterns, depending on crimp "quality". This inexpensive, real-time measurement system can provide certification of crimps as they are made and recertification of existing wire crimps currently in service. The measurements for re-certification do not require that the wire be disconnected from its circuit. No other technology exists to measure in-situ the condition of wire joints (no electrical currents through the crimp are used in this analytical technique). We discuss the signals obtained from this instrument, and correlate these signals with destructive wire pull tests.

  20. Research on Automatic Positioning System of Ultrasonic Testing of Wind Turbine Blade Flaws

    NASA Astrophysics Data System (ADS)

    Liu, Q. X.; Wang, Z. H.; Long, S. G.; Cai, M.; Cai, M.; Wang, X.; Chen, X. Y.; Bu, J. L.

    2017-11-01

    Ultrasonic testing technology has been used essentially in non-destructive testing of wind turbine blades. However, it is fact that the ultrasonic flaw detection method has inefficiently employed in recent years. This is because the testing result will illustrate a small deviation due to the artificial, environmental and technical factors. Therefore, it is an urgent technical demand for engineers to test the various flaws efficiently and quickly. An automatic positioning system has been designed in this paper to record the moving coordinates and the target distance in real time. Simultaneously, it could launch and acquire the sonic wave automatically. The ADNS-3080 optoelectronic chip is manufactured by Agilent Technologies Inc, which is also utilized in the system. With the combination of the chip, the power conversion module and the USB transmission module, the collected data can be transmitted from the upper monitor to the hardware that could process and control the data through software programming. An experiment has been designed to prove the reliability of automotive positioning system. The result has been validated by comparing the result collected form LABVIEW and actual plots on Perspex plane, it concludes that the system possesses high accuracy and magnificent meanings in practical engineering.

  1. Ultrasonic flowmeters offer oil line leak-detection potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hettrich, U.

    1995-04-01

    Ultrasonic flowmeters (USFM) installed on Transalpine Pipeline Co.`s (TAL) crude-oil system have proven to be a cost-effective flow measurement technique and beneficial in batch identification and leak detection. Through close examination, TAL has determined that clamp-on USFMs offer cost-saving advantages in installation, maintenance and operation. USFMs do not disturb pig passage. The technique also provides sound velocity capabilities, which can be used for liquid identification and batch tracking. The instruments have a repeatability of better than 0.25% and achieve an accuracy of better than 1%, depending on the flow profiles predictability. Using USFMs with multiple beams probably will improve accuracymore » further and it should be possible to find leaks even smaller than 1% of flow.« less

  2. Real-Time MENTAT programming language and architecture

    NASA Technical Reports Server (NTRS)

    Grimshaw, Andrew S.; Silberman, Ami; Liu, Jane W. S.

    1989-01-01

    Real-time MENTAT, a programming environment designed to simplify the task of programming real-time applications in distributed and parallel environments, is described. It is based on the same data-driven computation model and object-oriented programming paradigm as MENTAT. It provides an easy-to-use mechanism to exploit parallelism, language constructs for the expression and enforcement of timing constraints, and run-time support for scheduling and exciting real-time programs. The real-time MENTAT programming language is an extended C++. The extensions are added to facilitate automatic detection of data flow and generation of data flow graphs, to express the timing constraints of individual granules of computation, and to provide scheduling directives for the runtime system. A high-level view of the real-time MENTAT system architecture and programming language constructs is provided.

  3. A study on the real-time reliability of on-board equipment of train control system

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Li, Shiwei

    2018-05-01

    Real-time reliability evaluation is conducive to establishing a condition based maintenance system for the purpose of guaranteeing continuous train operation. According to the inherent characteristics of the on-board equipment, the connotation of reliability evaluation of on-board equipment is defined and the evaluation index of real-time reliability is provided in this paper. From the perspective of methodology and practical application, the real-time reliability of the on-board equipment is discussed in detail, and the method of evaluating the realtime reliability of on-board equipment at component level based on Hidden Markov Model (HMM) is proposed. In this method the performance degradation data is used directly to realize the accurate perception of the hidden state transition process of on-board equipment, which can achieve a better description of the real-time reliability of the equipment.

  4. Software-safety and software quality assurance in real-time applications Part 2: Real-time structures and languages

    NASA Astrophysics Data System (ADS)

    Schoitsch, Erwin

    1988-07-01

    Our society is depending more and more on the reliability of embedded (real-time) computer systems even in every-day life. Considering the complexity of the real world, this might become a severe threat. Real-time programming is a discipline important not only in process control and data acquisition systems, but also in fields like communication, office automation, interactive databases, interactive graphics and operating systems development. General concepts of concurrent programming and constructs for process-synchronization are discussed in detail. Tasking and synchronization concepts, methods of process communication, interrupt- and timeout handling in systems based on semaphores, signals, conditional critical regions or on real-time languages like Concurrent PASCAL, MODULA, CHILL and ADA are explained and compared with each other and with respect to their potential to quality and safety.

  5. Real-time Raman spectroscopy for in vivo, online gastric cancer diagnosis during clinical endoscopic examination.

    PubMed

    Duraipandian, Shiyamala; Sylvest Bergholt, Mads; Zheng, Wei; Yu Ho, Khek; Teh, Ming; Guan Yeoh, Khay; Bok Yan So, Jimmy; Shabbir, Asim; Huang, Zhiwei

    2012-08-01

    Optical spectroscopic techniques including reflectance, fluorescence and Raman spectroscopy have shown promising potential for in vivo precancer and cancer diagnostics in a variety of organs. However, data-analysis has mostly been limited to post-processing and off-line algorithm development. In this work, we develop a fully automated on-line Raman spectral diagnostics framework integrated with a multimodal image-guided Raman technique for real-time in vivo cancer detection at endoscopy. A total of 2748 in vivo gastric tissue spectra (2465 normal and 283 cancer) were acquired from 305 patients recruited to construct a spectral database for diagnostic algorithms development. The novel diagnostic scheme developed implements on-line preprocessing, outlier detection based on principal component analysis statistics (i.e., Hotelling's T2 and Q-residuals) for tissue Raman spectra verification as well as for organ specific probabilistic diagnostics using different diagnostic algorithms. Free-running optical diagnosis and processing time of < 0.5 s can be achieved, which is critical to realizing real-time in vivo tissue diagnostics during clinical endoscopic examination. The optimized partial least squares-discriminant analysis (PLS-DA) models based on the randomly resampled training database (80% for learning and 20% for testing) provide the diagnostic accuracy of 85.6% [95% confidence interval (CI): 82.9% to 88.2%] [sensitivity of 80.5% (95% CI: 71.4% to 89.6%) and specificity of 86.2% (95% CI: 83.6% to 88.7%)] for the detection of gastric cancer. The PLS-DA algorithms are further applied prospectively on 10 gastric patients at gastroscopy, achieving the predictive accuracy of 80.0% (60/75) [sensitivity of 90.0% (27/30) and specificity of 73.3% (33/45)] for in vivo diagnosis of gastric cancer. The receiver operating characteristics curves further confirmed the efficacy of Raman endoscopy together with PLS-DA algorithms for in vivo prospective diagnosis of gastric cancer

  6. Real-time Raman spectroscopy for in vivo, online gastric cancer diagnosis during clinical endoscopic examination

    NASA Astrophysics Data System (ADS)

    Duraipandian, Shiyamala; Sylvest Bergholt, Mads; Zheng, Wei; Yu Ho, Khek; Teh, Ming; Guan Yeoh, Khay; Bok Yan So, Jimmy; Shabbir, Asim; Huang, Zhiwei

    2012-08-01

    Optical spectroscopic techniques including reflectance, fluorescence and Raman spectroscopy have shown promising potential for in vivo precancer and cancer diagnostics in a variety of organs. However, data-analysis has mostly been limited to post-processing and off-line algorithm development. In this work, we develop a fully automated on-line Raman spectral diagnostics framework integrated with a multimodal image-guided Raman technique for real-time in vivo cancer detection at endoscopy. A total of 2748 in vivo gastric tissue spectra (2465 normal and 283 cancer) were acquired from 305 patients recruited to construct a spectral database for diagnostic algorithms development. The novel diagnostic scheme developed implements on-line preprocessing, outlier detection based on principal component analysis statistics (i.e., Hotelling's T2 and Q-residuals) for tissue Raman spectra verification as well as for organ specific probabilistic diagnostics using different diagnostic algorithms. Free-running optical diagnosis and processing time of < 0.5 s can be achieved, which is critical to realizing real-time in vivo tissue diagnostics during clinical endoscopic examination. The optimized partial least squares-discriminant analysis (PLS-DA) models based on the randomly resampled training database (80% for learning and 20% for testing) provide the diagnostic accuracy of 85.6% [95% confidence interval (CI): 82.9% to 88.2%] [sensitivity of 80.5% (95% CI: 71.4% to 89.6%) and specificity of 86.2% (95% CI: 83.6% to 88.7%)] for the detection of gastric cancer. The PLS-DA algorithms are further applied prospectively on 10 gastric patients at gastroscopy, achieving the predictive accuracy of 80.0% (60/75) [sensitivity of 90.0% (27/30) and specificity of 73.3% (33/45)] for in vivo diagnosis of gastric cancer. The receiver operating characteristics curves further confirmed the efficacy of Raman endoscopy together with PLS-DA algorithms for in vivo prospective diagnosis of gastric cancer

  7. Design and implementation of a telecommunication interface for the TAATM/TCV real-time experiment

    NASA Technical Reports Server (NTRS)

    Nolan, J. D.

    1981-01-01

    The traffic situation display experiment of the terminal configured vehicle (TCV) research program requires a bidirectional data communications tie line between an computer complex. The tie line is used in a real time environment on the CYBER 175 computer by the terminal area air traffic model (TAATM) simulation program. Aircraft position data are processed by TAATM with the resultant output sent to the facility for the generation of air traffic situation displays which are transmitted to a research aircraft.

  8. Real-time MSE measurements for current profile control on KSTAR.

    PubMed

    De Bock, M F M; Aussems, D; Huijgen, R; Scheffer, M; Chung, J

    2012-10-01

    To step up from current day fusion experiments to power producing fusion reactors, it is necessary to control long pulse, burning plasmas. Stability and confinement properties of tokamak fusion reactors are determined by the current or q profile. In order to control the q profile, it is necessary to measure it in real-time. A real-time motional Stark effect diagnostic is being developed at Korean Superconducting Tokamak for Advanced Research for this purpose. This paper focuses on 3 topics important for real-time measurements: minimize the use of ad hoc parameters, minimize external influences and a robust and fast analysis algorithm. Specifically, we have looked into extracting the retardance of the photo-elastic modulators from the signal itself, minimizing the influence of overlapping beam spectra by optimizing the optical filter design and a multi-channel, multiharmonic phase locking algorithm.

  9. Real-time video quality monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Narvekar, Niranjan; Wang, Beibei; Ding, Ran; Zou, Dekun; Cash, Glenn; Bhagavathy, Sitaram; Bloom, Jeffrey

    2011-12-01

    The ITU-T Recommendation G.1070 is a standardized opinion model for video telephony applications that uses video bitrate, frame rate, and packet-loss rate to measure the video quality. However, this model was original designed as an offline quality planning tool. It cannot be directly used for quality monitoring since the above three input parameters are not readily available within a network or at the decoder. And there is a great room for the performance improvement of this quality metric. In this article, we present a real-time video quality monitoring solution based on this Recommendation. We first propose a scheme to efficiently estimate the three parameters from video bitstreams, so that it can be used as a real-time video quality monitoring tool. Furthermore, an enhanced algorithm based on the G.1070 model that provides more accurate quality prediction is proposed. Finally, to use this metric in real-world applications, we present an example emerging application of real-time quality measurement to the management of transmitted videos, especially those delivered to mobile devices.

  10. Optical Sensor for real-time Monitoring of CO(2) Laser Welding Process.

    PubMed

    Ancona, A; Spagnolo, V; Lugarà, P M; Ferrara, M

    2001-11-20

    An optical sensor for real-time monitoring of laser welding based on a spectroscopic study of the optical emission of plasma plumes has been developed. The welding plasma's electron temperature was contemporarily monitored for three of the chemical species that constitute the plasma plume by use of related emission lines. The evolution of electron temperature was recorded and analyzed during several welding procedures carried out under various operating conditions. A clear correlation between the mean value and the standard deviation of the plasma's electron temperature and the quality of the welded joint has been found. We used this information to find optimal welding parameters and for real-time detection of weld defects such as crater formation, lack of penetration, weld disruptions, and seam oxidation.

  11. Towards a Rhetoric of On-line Tutoring.

    ERIC Educational Resources Information Center

    Coogan, David

    Electronic mail-based tutoring of undergraduate writing students upsets the temporal basis of the face-to-face paradigm for writing tutorials. Taking place in real time in a specified place, the face-to-face tutorial session has a beginning, middle and end. Further, the session must have a tangible point. By contrast, in on-line tutoring, time is…

  12. Signal processor for processing ultrasonic receiver signals

    DOEpatents

    Fasching, George E.

    1980-01-01

    A signal processor is provided which uses an analog integrating circuit in conjunction with a set of digital counters controlled by a precision clock for sampling timing to provide an improved presentation of an ultrasonic transmitter/receiver signal. The signal is sampled relative to the transmitter trigger signal timing at precise times, the selected number of samples are integrated and the integrated samples are transferred and held for recording on a strip chart recorder or converted to digital form for storage. By integrating multiple samples taken at precisely the same time with respect to the trigger for the ultrasonic transmitter, random noise, which is contained in the ultrasonic receiver signal, is reduced relative to the desired useful signal.

  13. Considerations in development of expert systems for real-time space applications

    NASA Technical Reports Server (NTRS)

    Murugesan, S.

    1988-01-01

    Over the years, demand on space systems has increased tremendously and this trend will continue for the near future. Enhanced capabilities of space systems, however, can only be met with increased complexity and sophistication of onboard and ground systems. Artificial Intelligence and expert system techniques have great potential in space applications. Expert systems could facilitate autonomous decision making, improve in-orbit fault diagnosis and repair, enhance performance and reduce reliance on ground support. However, real-time expert systems, unlike conventional off-line consultative systems, have to satisfy certain special stringent requirements before they could be used for onboard space applications. Challenging and interesting new environments are faced while developing expert system space applications. This paper discusses the special characteristics, requirements and typical life cycle issues for onboard expert systems. Further, it also describes considerations in design, development, and implementation which are particularly important to real-time expert systems for space applications.

  14. Real-time Space-time Integration in GIScience and Geography

    PubMed Central

    Richardson, Douglas B.

    2013-01-01

    Space-time integration has long been the topic of study and speculation in geography. However, in recent years an entirely new form of space-time integration has become possible in GIS and GIScience: real-time space-time integration and interaction. While real-time spatiotemporal data is now being generated almost ubiquitously, and its applications in research and commerce are widespread and rapidly accelerating, the ability to continuously create and interact with fused space-time data in geography and GIScience is a recent phenomenon, made possible by the invention and development of real-time interactive (RTI) GPS/GIS technology and functionality in the late 1980s and early 1990s. This innovation has since functioned as a core change agent in geography, cartography, GIScience and many related fields, profoundly realigning traditional relationships and structures, expanding research horizons, and transforming the ways geographic data is now collected, mapped, modeled, and used, both in geography and in science and society more broadly. Real-time space-time interactive functionality remains today the underlying process generating the current explosion of fused spatiotemporal data, new geographic research initiatives, and myriad geospatial applications in governments, businesses, and society. This essay addresses briefly the development of these real-time space-time functions and capabilities; their impact on geography, cartography, and GIScience; and some implications for how discovery and change can occur in geography and GIScience, and how we might foster continued innovation in these fields. PMID:24587490

  15. Real-time Space-time Integration in GIScience and Geography.

    PubMed

    Richardson, Douglas B

    2013-01-01

    Space-time integration has long been the topic of study and speculation in geography. However, in recent years an entirely new form of space-time integration has become possible in GIS and GIScience: real-time space-time integration and interaction. While real-time spatiotemporal data is now being generated almost ubiquitously, and its applications in research and commerce are widespread and rapidly accelerating, the ability to continuously create and interact with fused space-time data in geography and GIScience is a recent phenomenon, made possible by the invention and development of real-time interactive (RTI) GPS/GIS technology and functionality in the late 1980s and early 1990s. This innovation has since functioned as a core change agent in geography, cartography, GIScience and many related fields, profoundly realigning traditional relationships and structures, expanding research horizons, and transforming the ways geographic data is now collected, mapped, modeled, and used, both in geography and in science and society more broadly. Real-time space-time interactive functionality remains today the underlying process generating the current explosion of fused spatiotemporal data, new geographic research initiatives, and myriad geospatial applications in governments, businesses, and society. This essay addresses briefly the development of these real-time space-time functions and capabilities; their impact on geography, cartography, and GIScience; and some implications for how discovery and change can occur in geography and GIScience, and how we might foster continued innovation in these fields.

  16. NDBC - NDBC Real-Time Data

    Science.gov Websites

    Subtropical Storm Alberto. NDBC Real-Time Data NDBC moored buoy, C-MAN, and drifting buoy data are available in real-time through selecting either: NDBC Station locator map: a series of regional maps which show : a tabular list of station identifiers. Real-time data are available for the last 45 days (at least

  17. Real-Time Model and Simulation Architecture for Half- and Full-Bridge Modular Multilevel Converters

    NASA Astrophysics Data System (ADS)

    Ashourloo, Mojtaba

    This work presents an equivalent model and simulation architecture for real-time electromagnetic transient analysis of either half-bridge or full-bridge modular multilevel converter (MMC) with 400 sub-modules (SMs) per arm. The proposed CPU/FPGA-based architecture is optimized for the parallel implementation of the presented MMC model on the FPGA and is beneficiary of a high-throughput floating-point computational engine. The developed real-time simulation architecture is capable of simulating MMCs with 400 SMs per arm at 825 nanoseconds. To address the difficulties of the sorting process implementation, a modified Odd-Even Bubble sorting is presented in this work. The comparison of the results under various test scenarios reveals that the proposed real-time simulator is representing the system responses in the same way of its corresponding off-line counterpart obtained from the PSCAD/EMTDC program.

  18. Real-Time Pattern Recognition - An Industrial Example

    NASA Astrophysics Data System (ADS)

    Fitton, Gary M.

    1981-11-01

    Rapid advancements in cost effective sensors and micro computers are now making practical the on-line implementation of pattern recognition based systems for a variety of industrial applications requiring high processing speeds. One major application area for real time pattern recognition is in the sorting of packaged/cartoned goods at high speed for automated warehousing and return goods cataloging. While there are many OCR and bar code readers available to perform these functions, it is often impractical to use such codes (package too small, adverse esthetics, poor print quality) and an approach which recognizes an item by its graphic content alone is desirable. This paper describes a specific application within the tobacco industry, that of sorting returned cigarette goods by brand and size.

  19. Visualization of Real-Time Data

    NASA Technical Reports Server (NTRS)

    Stansifer, Ryan; Engrand, Peter

    1996-01-01

    In this project we explored various approaches to presenting real-time data from the numerous systems monitored on the space shuttle to computer users. We examined the approach that several projects at the Kennedy Space Center (KSC) used to accomplish this. We undertook to build a prototype system to demonstrate that the Internet and the Java programming language could be used to present the real-time data conveniently. Several Java programs were developed that presented real-time data in different forms including one form that emulated the display screens of the PC GOAL system which is familiar to many at KSC. Also, we developed several communications programs to supply the data continuously. Furthermore, a framework was created using the World Wide Web (WWW) to organize the collection and presentation of the real-time data. We believe our demonstration project shows the great flexibility of the approach. We had no particular use of the data in mind, instead we wanted the most general and the least complex framework possible. People who wish to view data need only know how to use a WWW browser and the address (the URL). People wanting to build WWW documents containing real-time data need only know the values of a few parameters, they do not need to program in Java or any other language. These are stunning advantages over more monolithic systems.

  20. Human sense utilization method on real-time computer graphics

    NASA Astrophysics Data System (ADS)

    Maehara, Hideaki; Ohgashi, Hitoshi; Hirata, Takao

    1997-06-01

    We are developing an adjustment method of real-time computer graphics, to obtain effective ones which give audience various senses intended by producer, utilizing human sensibility technologically. Generally, production of real-time computer graphics needs much adjustment of various parameters, such as 3D object models/their motions/attributes/view angle/parallax etc., in order that the graphics gives audience superior effects as reality of materials, sense of experience and so on. And it is also known it costs much to adjust such various parameters by trial and error. A graphics producer often evaluates his graphics to improve it. For example, it may lack 'sense of speed' or be necessary to be given more 'sense of settle down,' to improve it. On the other hand, we can know how the parameters in computer graphics affect such senses by means of statistically analyzing several samples of computer graphics which provide different senses. We paid attention to these two facts, so that we designed an adjustment method of the parameters by inputting phases of sense into a computer. By the way of using this method, it becomes possible to adjust real-time computer graphics more effectively than by conventional way of trial and error.

  1. Ultrasonic data compression via parameter estimation.

    PubMed

    Cardoso, Guilherme; Saniie, Jafar

    2005-02-01

    Ultrasonic imaging in medical and industrial applications often requires a large amount of data collection. Consequently, it is desirable to use data compression techniques to reduce data and to facilitate the analysis and remote access of ultrasonic information. The precise data representation is paramount to the accurate analysis of the shape, size, and orientation of ultrasonic reflectors, as well as to the determination of the properties of the propagation path. In this study, a successive parameter estimation algorithm based on a modified version of the continuous wavelet transform (CWT) to compress and denoise ultrasonic signals is presented. It has been shown analytically that the CWT (i.e., time x frequency representation) yields an exact solution for the time-of-arrival and a biased solution for the center frequency. Consequently, a modified CWT (MCWT) based on the Gabor-Helstrom transform is introduced as a means to exactly estimate both time-of-arrival and center frequency of ultrasonic echoes. Furthermore, the MCWT also has been used to generate a phase x bandwidth representation of the ultrasonic echo. This representation allows the exact estimation of the phase and the bandwidth. The performance of this algorithm for data compression and signal analysis is studied using simulated and experimental ultrasonic signals. The successive parameter estimation algorithm achieves a data compression ratio of (1-5N/J), where J is the number of samples and N is the number of echoes in the signal. For a signal with 10 echoes and 2048 samples, a compression ratio of 96% is achieved with a signal-to-noise ratio (SNR) improvement above 20 dB. Furthermore, this algorithm performs robustly, yields accurate echo estimation, and results in SNR enhancements ranging from 10 to 60 dB for composite signals having SNR as low as -10 dB.

  2. Investigation of thermal conductivity of metal materials on view of influence of ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Lepeshkin, A. R.; Shcherbakov, P. P.

    2017-11-01

    A devices and methods were developed to determine characteristics of thermal cunductivity in metals materials on view of influence of ultrasonic waves at frequencies of 20 kHz and 2.6 MHz. A thermograph was used for investigation of the nonstationary thermal state of a conical rod and contactless measurements of its surface temperatures. The curves of heating of the tip of the conical rod and the time of heat transfer from the electric heater to the tip of the rod in experiments with an ultrasonic radiator and without it were carried out. According to the results of the research it was obtained that the thermal conductivity of a metal rod is increased by 2 times at a frequency of 20 kHz with an intensity of 50 W. The measure technique and the experimental data on the thermal conductivity of AISI-304 stainless steel in the ultrasonic wave field 2.6 MHz are given. A stationary comparative method for determining the thermal conductivity is used. As a result of the experiments it was established that the thermal conductivity of the rod increases by 2 times in the temperature range 20-100 °C in the field of ultrasonic wave. The obtained results confirm that in the alloys under the influence of ultrasonic waves on electrons and nodes of the crystal structure the contribution of the electron and lattice components of the thermal conductivity increases.

  3. Effects of Real-Time Visual Feedback on Pre-Service Teachers' Singing

    ERIC Educational Resources Information Center

    Leong, S.; Cheng, L.

    2014-01-01

    This pilot study focuses on the use real-time visual feedback technology (VFT) in vocal training. The empirical research has two aims: to ascertain the effectiveness of the real-time visual feedback software "Sing & See" in the vocal training of pre-service music teachers and the teachers' perspective on their experience with…

  4. Soft Real-Time PID Control on a VME Computer

    NASA Technical Reports Server (NTRS)

    Karayan, Vahag; Sander, Stanley; Cageao, Richard

    2007-01-01

    microPID (uPID) is a computer program for real-time proportional + integral + derivative (PID) control of a translation stage in a Fourier-transform ultraviolet spectrometer. microPID implements a PID control loop over a position profile at sampling rate of 8 kHz (sampling period 125microseconds). The software runs in a strippeddown Linux operating system on a VersaModule Eurocard (VME) computer operating in real-time priority queue using an embedded controller, a 16-bit digital-to-analog converter (D/A) board, and a laser-positioning board (LPB). microPID consists of three main parts: (1) VME device-driver routines, (2) software that administers a custom protocol for serial communication with a control computer, and (3) a loop section that obtains the current position from an LPB-driver routine, calculates the ideal position from the profile, and calculates a new voltage command by use of an embedded PID routine all within each sampling period. The voltage command is sent to the D/A board to control the stage. microPID uses special kernel headers to obtain microsecond timing resolution. Inasmuch as microPID implements a single-threaded process and all other processes are disabled, the Linux operating system acts as a soft real-time system.

  5. A real-time spike sorting method based on the embedded GPU.

    PubMed

    Zelan Yang; Kedi Xu; Xiang Tian; Shaomin Zhang; Xiaoxiang Zheng

    2017-07-01

    Microelectrode arrays with hundreds of channels have been widely used to acquire neuron population signals in neuroscience studies. Online spike sorting is becoming one of the most important challenges for high-throughput neural signal acquisition systems. Graphic processing unit (GPU) with high parallel computing capability might provide an alternative solution for increasing real-time computational demands on spike sorting. This study reported a method of real-time spike sorting through computing unified device architecture (CUDA) which was implemented on an embedded GPU (NVIDIA JETSON Tegra K1, TK1). The sorting approach is based on the principal component analysis (PCA) and K-means. By analyzing the parallelism of each process, the method was further optimized in the thread memory model of GPU. Our results showed that the GPU-based classifier on TK1 is 37.92 times faster than the MATLAB-based classifier on PC while their accuracies were the same with each other. The high-performance computing features of embedded GPU demonstrated in our studies suggested that the embedded GPU provide a promising platform for the real-time neural signal processing.

  6. Resisting Temptation: Tracking How Self-Control Conflicts Are Successfully Resolved in Real Time.

    PubMed

    Stillman, Paul E; Medvedev, Danila; Ferguson, Melissa J

    2017-09-01

    Across four studies, we used mouse tracking to identify the dynamic, on-line cognitive processes that underlie successful self-control decisions. First, we showed that individuals display real-time conflict when choosing options consistent with their long-term goal over short-term temptations. Second, we found that individuals who are more successful at self-control-whether measured or manipulated-show significantly less real-time conflict in only self-control-relevant choices. Third, we demonstrated that successful individuals who choose a long-term goal over a short-term temptation display movements that are smooth rather than abrupt, which suggests dynamic rather than stage-based resolution of self-control conflicts. These findings have important implications for contemporary theories of self-control.

  7. [Experimental studies of using real-time fluorescence quantitative PCR and RT-PCR to detect E6 and E7 genes of human papillomavirus type 16 in cervical carcinoma cell lines].

    PubMed

    Chen, Yue-yue; Peng, Zhi-lan; Liu, Shan-ling; He, Bing; Hu, Min

    2007-06-01

    To establish a method of using real-time fluorescence quantitative PCR and RT-PCR to detect the E6 and E7 genes of human papillomavirus type 16 (HPV-16). Plasmids containing HPV-16 E6 or E7 were used to generate absolute standard curves. Three cervical carcinoma cell lines CaSki, SiHa and HeLa were tested by real-time fluorescence quantitative PCR and RT-PCR analyses for the expressions of HPV-16 E6 and E7. The correlation coefficients of standard curves were larger than 0. 99, and the PCR efficiency was more than 90%. The relative levels of HPV-16 E6 and E7 DNA and RNA were CaSki>SiHa>HeLa cell. HPV-16 E6 and E7 quantum by real-time fluorescence quantitative PCR and RT-PCR analyses may serve as a reliable and sensitive tool. This study provides the possibility of further researches on the relationship between HPV-16 E6 or E7 copy number and cervical carcinoma.

  8. Resolution Enhancement In Ultrasonic Imaging By A Time-Varying Filter

    NASA Astrophysics Data System (ADS)

    Ching, N. H.; Rosenfeld, D.; Braun, M.

    1987-09-01

    The study reported here investigates the use of a time-varying filter to compensate for the spreading of ultrasonic pulses due to the frequency dependence of attenuation by tissues. The effect of this pulse spreading is to degrade progressively the axial resolution with increasing depth. The form of compensation required to correct for this effect is impossible to realize exactly. A novel time-varying filter utilizing a bank of bandpass filters is proposed as a realizable approximation of the required compensation. The performance of this filter is evaluated by means of a computer simulation. The limits of its application are discussed. Apart from improving the axial resolution, and hence the accuracy of axial measurements, the compensating filter could be used in implementing tissue characterization algorithms based on attenuation data.

  9. Software design of a remote real-time ECG monitoring system

    NASA Astrophysics Data System (ADS)

    Yu, Chengbo; Tao, Hongyan

    2005-12-01

    Heart disease is one of the main diseases that threaten the health and lives of human beings. At present, the normal remote ECG monitoring system has the disadvantages of a short testing distance and limitation of monitoring lines. Because of accident and paroxysmal disease, ECG monitoring has extended from the hospital to the family. Therefore, remote ECG monitoring through the Internet has the actual value and significance. The principle and design method of software of the remote dynamic ECG monitor was presented and discussed. The monitoring software is programmed with Delphi software based on client-sever interactive mode. The application program of the system, which makes use of multithreading technology, is shown to perform in an excellent manner. The program includes remote link users and ECG processing, i.e. ECG data's receiving, real-time displaying, recording and replaying. The system can connect many clients simultaneously and perform real-time monitoring to patients.

  10. Lessons Learned from Real-Time, Event-Based Internet Science Communications

    NASA Technical Reports Server (NTRS)

    Phillips, T.; Myszka, E.; Gallagher, D. L.; Adams, M. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. The focus of sharing science activities in real-time has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases, broadcasts accommodate active feedback and questions from Internet participants. Through these projects a pattern has emerged in the level of interest or popularity with the public. The pattern differentiates projects that include science from those that do not, All real-time, event-based Internet activities have captured public interest at a level not achieved through science stories or educator resource material exclusively. The worst event-based activity attracted more interest than the best written science story. One truly rewarding lesson learned through these projects is that the public recognizes the importance and excitement of being part of scientific discovery. Flying a camera to 100,000 feet altitude isn't as interesting to the public as searching for viable life-forms at these oxygen-poor altitudes. The details of these real-time, event-based projects and lessons learned will be discussed.

  11. Ultrasonic-assisted dyeing of Nylon-6 nanofibers.

    PubMed

    Jatoi, Abdul Wahab; Ahmed, Farooq; Khatri, Muzamil; Tanwari, Anwaruddin; Khatri, Zeeshan; Lee, Hoik; Kim, Ick Soo

    2017-11-01

    We first time report ultrasonic dyeing of the Nylon 6 nanofibers with two disperse dyes CI Disperse blue 56 and CI Disperse Red 167:1 by utilising ultrasonic energy during dyeing process. The Nylon 6 nanofibers were fabricated via electrospinning and dyed via batchwise method with and without sonication. Results revealed that ultrasonic dyeing produce higher color yield (K/S values) and substantially reduces dyeing time from 60min for conventional dyeing to 30min can be attributed to breakage of dye aggregate, transient cavitation near nanofiber surface and mass transfer within/between nanofibers. Color fastness results exhibited good to very good dye fixation. SEM images exhibit insignificant effect of sonication on morphology of the nanofibers. Our research results demonstrate ultrasonic dyeing as a better dyeing technique for Nylon 6 nanofibers with higher color yield and substantially reduced dyeing time. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Real-time monitoring of a microbial electrolysis cell using an electrical equivalent circuit model.

    PubMed

    Hussain, S A; Perrier, M; Tartakovsky, B

    2018-04-01

    Efforts in developing microbial electrolysis cells (MECs) resulted in several novel approaches for wastewater treatment and bioelectrosynthesis. Practical implementation of these approaches necessitates the development of an adequate system for real-time (on-line) monitoring and diagnostics of MEC performance. This study describes a simple MEC equivalent electrical circuit (EEC) model and a parameter estimation procedure, which enable such real-time monitoring. The proposed approach involves MEC voltage and current measurements during its operation with periodic power supply connection/disconnection (on/off operation) followed by parameter estimation using either numerical or analytical solution of the model. The proposed monitoring approach is demonstrated using a membraneless MEC with flow-through porous electrodes. Laboratory tests showed that changes in the influent carbon source concentration and composition significantly affect MEC total internal resistance and capacitance estimated by the model. Fast response of these EEC model parameters to changes in operating conditions enables the development of a model-based approach for real-time monitoring and fault detection.

  13. ISTAR: Intelligent System for Telemetry Analysis in Real-time

    NASA Technical Reports Server (NTRS)

    Simmons, Charles

    1994-01-01

    The intelligent system for telemetry analysis in real-time (ISTAR) is an advanced vehicle monitoring environment incorporating expert systems, analysis tools, and on-line hypermedia documentation. The system was developed for the Air Force Space and Missile Systems Center (SMC) in Los Angeles, California, in support of the inertial upper stage (IUS) booster vehicle. Over a five year period the system progressed from rapid prototype to operational system. ISTAR has been used to support five IUS missions and countless mission simulations. There were a significant number of lessons learned with respect to integrating an expert system capability into an existing ground system.

  14. High-speed time-reversed ultrasonically encoded (TRUE) optical focusing inside dynamic scattering media at 793 nm

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Lai, Puxiang; Ma, Cheng; Xu, Xiao; Suzuki, Yuta; Grabar, Alexander A.; Wang, Lihong V.

    2014-03-01

    Time-reversed ultrasonically encoded (TRUE) optical focusing is an emerging technique that focuses light deep into scattering media by phase-conjugating ultrasonically encoded diffuse light. In previous work, the speed of TRUE focusing was limited to no faster than 1 Hz by the response time of the photorefractive phase conjugate mirror, or the data acquisition and streaming speed of the digital camera; photorefractive-crystal-based TRUE focusing was also limited to the visible spectral range. These time-consuming schemes prevent this technique from being applied in vivo, since living biological tissue has a speckle decorrelation time on the order of a millisecond. In this work, using a Tedoped Sn2P2S6 photorefractive crystal at a near-infrared wavelength of 793 nm, we achieved TRUE focusing inside dynamic scattering media having a speckle decorrelation time as short as 7.7 ms. As the achieved speed approaches the tissue decorrelation rate, this work is an important step forward toward in vivo applications of TRUE focusing in deep tissue imaging, photodynamic therapy, and optical manipulation.

  15. Meeting the Challenge of Distributed Real-Time & Embedded (DRE) Systems

    DTIC Science & Technology

    2012-05-10

    IP RTOS Middleware Middleware Services DRE Applications Operating Sys & Protocols Hardware & Networks Middleware Middleware Services DRE...Services COTS & standards-based middleware, language, OS , network, & hardware platforms • Real-time CORBA (TAO) middleware • ADAPTIVE Communication...SPLs) F-15 product variant A/V 8-B product variant F/A 18 product variant UCAV product variant Software Produce-Line Hardware (CPU, Memory, I/O) OS

  16. Real time ray tracing based on shader

    NASA Astrophysics Data System (ADS)

    Gui, JiangHeng; Li, Min

    2017-07-01

    Ray tracing is a rendering algorithm for generating an image through tracing lights into an image plane, it can simulate complicate optical phenomenon like refraction, depth of field and motion blur. Compared with rasterization, ray tracing can achieve more realistic rendering result, however with greater computational cost, simple scene rendering can consume tons of time. With the GPU's performance improvement and the advent of programmable rendering pipeline, complicated algorithm can also be implemented directly on shader. So, this paper proposes a new method that implement ray tracing directly on fragment shader, mainly include: surface intersection, importance sampling and progressive rendering. With the help of GPU's powerful throughput capability, it can implement real time rendering of simple scene.

  17. Managing Contention and Timing Constraints in a Real-Time Database System

    DTIC Science & Technology

    1995-01-01

    In order to realize many of these goals, StarBase is constructed on top of RT-Mach, a real - time operating system developed at Carnegie Mellon...University [ll]. StarBase differs from previous RT-DBMS work [l, 2, 31 in that a) it relies on a real - time operating system which provides priority...CPU and resource scheduling pro- vided by tlhe underlying real - time operating system . Issues of data contention are dealt with by use of a priority

  18. Quantitative Ultrasonic Evaluation of Mechanical Properties of Engineering Materials

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1978-01-01

    Progress in the application of ultrasonic techniques to nondestructive measurement of mechanical strength of engineering materials is reviewed. A dormant concept in nondestructive evaluation (NDE) is invoked. The availability of ultrasonic methods that can be applied to actual parts to assess their potential susceptibility to failure under design conditions is discussed. It was shown that ultrasonic methods yield measurements of elastic moduli, microstructure, hardness, fracture toughness, tensile strength, yield strength, and shear strength for a wide range of materials (including many types of metals, ceramics, and fiber composites). It was also indicated that although most of these methods were shown feasible in laboratory studies, more work is needed before they can be used on actual parts in processing, assembly, inspection, and maintenance lines.

  19. Conducting real-time multiplayer experiments on the web.

    PubMed

    Hawkins, Robert X D

    2015-12-01

    Group behavior experiments require potentially large numbers of participants to interact in real time with perfect information about one another. In this paper, we address the methodological challenge of developing and conducting such experiments on the web, thereby broadening access to online labor markets as well as allowing for participation through mobile devices. In particular, we combine a set of recent web development technologies, including Node.js with the Socket.io module, HTML5 canvas, and jQuery, to provide a secure platform for pedagogical demonstrations and scalable, unsupervised experiment administration. Template code is provided for an example real-time behavioral game theory experiment which automatically pairs participants into dyads and places them into a virtual world. In total, this treatment is intended to allow those with a background in non-web-based programming to modify the template, which handles the technical server-client networking details, for their own experiments.

  20. Real-time PCR machine system modeling and a systematic approach for the robust design of a real-time PCR-on-a-chip system.

    PubMed

    Lee, Da-Sheng

    2010-01-01

    Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR) machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design.

  1. Real-time PCR Machine System Modeling and a Systematic Approach for the Robust Design of a Real-time PCR-on-a-Chip System

    PubMed Central

    Lee, Da-Sheng

    2010-01-01

    Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR) machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design. PMID:22315563

  2. Development of real-time motion capture system for 3D on-line games linked with virtual character

    NASA Astrophysics Data System (ADS)

    Kim, Jong Hyeong; Ryu, Young Kee; Cho, Hyung Suck

    2004-10-01

    Motion tracking method is being issued as essential part of the entertainment, medical, sports, education and industry with the development of 3-D virtual reality. Virtual human character in the digital animation and game application has been controlled by interfacing devices; mouse, joysticks, midi-slider, and so on. Those devices could not enable virtual human character to move smoothly and naturally. Furthermore, high-end human motion capture systems in commercial market are expensive and complicated. In this paper, we proposed a practical and fast motion capturing system consisting of optic sensors, and linked the data with 3-D game character with real time. The prototype experiment setup is successfully applied to a boxing game which requires very fast movement of human character.

  3. Hidden corrosion detection in aircraft aluminum structures using laser ultrasonics and wavelet transform signal analysis.

    PubMed

    Silva, M Z; Gouyon, R; Lepoutre, F

    2003-06-01

    Preliminary results of hidden corrosion detection in aircraft aluminum structures using a noncontact laser based ultrasonic technique are presented. A short laser pulse focused to a line spot is used as a broadband source of ultrasonic guided waves in an aluminum 2024 sample cut from an aircraft structure and prepared with artificially corroded circular areas on its back surface. The out of plane surface displacements produced by the propagating ultrasonic waves were detected with a heterodyne Mach-Zehnder interferometer. Time-frequency analysis of the signals using a continuous wavelet transform allowed the identification of the generated Lamb modes by comparison with the calculated dispersion curves. The presence of back surface corrosion was detected by noting the loss of the S(1) mode near its cutoff frequency. This method is applicable to fast scanning inspection techniques and it is particularly suited for early corrosion detection.

  4. StarBase: A Firm Real-Time Database Manager for Time-Critical Applications

    DTIC Science & Technology

    1995-01-01

    Mellon University [IO]. StarBase differs from previous RT-DBMS work [l, 2, 31 in that a) it relies on a real - time operating system which provides...simulation studies, StarBase uses a real - time operating system to provide basic real-time functionality and deals with issues beyond transaction...re- source scheduling provided by the underlying real - time operating system . Issues of data contention are dealt with by use of a priority

  5. Real-time unmanned aircraft systems surveillance video mosaicking using GPU

    NASA Astrophysics Data System (ADS)

    Camargo, Aldo; Anderson, Kyle; Wang, Yi; Schultz, Richard R.; Fevig, Ronald A.

    2010-04-01

    Digital video mosaicking from Unmanned Aircraft Systems (UAS) is being used for many military and civilian applications, including surveillance, target recognition, border protection, forest fire monitoring, traffic control on highways, monitoring of transmission lines, among others. Additionally, NASA is using digital video mosaicking to explore the moon and planets such as Mars. In order to compute a "good" mosaic from video captured by a UAS, the algorithm must deal with motion blur, frame-to-frame jitter associated with an imperfectly stabilized platform, perspective changes as the camera tilts in flight, as well as a number of other factors. The most suitable algorithms use SIFT (Scale-Invariant Feature Transform) to detect the features consistent between video frames. Utilizing these features, the next step is to estimate the homography between two consecutives video frames, perform warping to properly register the image data, and finally blend the video frames resulting in a seamless video mosaick. All this processing takes a great deal of resources of resources from the CPU, so it is almost impossible to compute a real time video mosaic on a single processor. Modern graphics processing units (GPUs) offer computational performance that far exceeds current CPU technology, allowing for real-time operation. This paper presents the development of a GPU-accelerated digital video mosaicking implementation and compares it with CPU performance. Our tests are based on two sets of real video captured by a small UAS aircraft; one video comes from Infrared (IR) and Electro-Optical (EO) cameras. Our results show that we can obtain a speed-up of more than 50 times using GPU technology, so real-time operation at a video capture of 30 frames per second is feasible.

  6. Chemical coloring on stainless steel by ultrasonic irradiation.

    PubMed

    Cheng, Zuohui; Xue, Yongqiang; Ju, Hongbin

    2018-01-01

    To solve the problems of high temperature and non-uniformity of coloring on stainless steel, a new chemical coloring process, applying ultrasonic irradiation to the traditional chemical coloring process, was developed in this paper. The effects of ultrasonic frequency and power density (sound intensity) on chemical coloring on stainless steel were studied. The uniformity of morphology and colors was observed with the help of polarizing microscope and scanning electron microscopy (SEM), and the surface compositions were characterized by X-ray photoelectric spectroscopy (XPS), meanwhile, the wear resistance and the corrosion resistance were investigated, and the effect mechanism of ultrasonic irradiation on chemical coloring was discussed. These results show that in the process of chemical coloring on stainless steel by ultrasonic irradiation, the film composition is the same as the traditional chemical coloring, and this method can significantly enhance the uniformity, the wear and corrosion resistances of the color film and accelerate the coloring rate which makes the coloring temperature reduced to 40°C. The effects of ultrasonic irradiation on the chemical coloring can be attributed to the coloring rate accelerated and the coloring temperature reduced by thermal-effect, the uniformity of coloring film improved by dispersion-effect, and the wear and corrosion resistances of coloring film enhanced by cavitation-effect. Ultrasonic irradiation not only has an extensive application prospect for chemical coloring on stainless steel but also provides an valuable reference for other chemical coloring. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A distributed agent architecture for real-time knowledge-based systems: Real-time expert systems project, phase 1

    NASA Technical Reports Server (NTRS)

    Lee, S. Daniel

    1990-01-01

    We propose a distributed agent architecture (DAA) that can support a variety of paradigms based on both traditional real-time computing and artificial intelligence. DAA consists of distributed agents that are classified into two categories: reactive and cognitive. Reactive agents can be implemented directly in Ada to meet hard real-time requirements and be deployed on on-board embedded processors. A traditional real-time computing methodology under consideration is the rate monotonic theory that can guarantee schedulability based on analytical methods. AI techniques under consideration for reactive agents are approximate or anytime reasoning that can be implemented using Bayesian belief networks as in Guardian. Cognitive agents are traditional expert systems that can be implemented in ART-Ada to meet soft real-time requirements. During the initial design of cognitive agents, it is critical to consider the migration path that would allow initial deployment on ground-based workstations with eventual deployment on on-board processors. ART-Ada technology enables this migration while Lisp-based technologies make it difficult if not impossible. In addition to reactive and cognitive agents, a meta-level agent would be needed to coordinate multiple agents and to provide meta-level control.

  8. A feasiblity study of an ultrasonic test phantom arm

    NASA Astrophysics Data System (ADS)

    Schneider, Philip

    This thesis is a feasibility study for the creation of a test phantom that replicates the physiological features, from an acoustic and mechanical standpoint, of that of a human arm. Physiological feature set includes; Heart, Arteries, Veins, Bone, Muscle, Fat, Skin, and Dermotographic Features (finger prints). Mechanical Aspects include, vascular compression and distention, elasticity of tissue layers, mechanics of human heart. The end goal of which to have a working understanding of each component in order to create a controllable, real time, physiologically accurate, test phantom for a wide range of ultrasonic based applications. These applications can range from devices like wearable technologies to medical training, to biometric "Liveness" detection methods. The proposed phantom would allow for a number of natural bodily functions to be measured including but not limited to vascular mapping, blood pressure, heart rate, subdermal imaging, and general ultrasonic imaging.

  9. Measurement and Modeling of Narrowband Channels for Ultrasonic Underwater Communications

    PubMed Central

    Cañete, Francisco J.; López-Fernández, Jesús; García-Corrales, Celia; Sánchez, Antonio; Robles, Encarnación; Rodrigo, Francisco J.; Paris, José F.

    2016-01-01

    Underwater acoustic sensor networks are a promising technology that allow real-time data collection in seas and oceans for a wide variety of applications. Smaller size and weight sensors can be achieved with working frequencies shifted from audio to the ultrasonic band. At these frequencies, the fading phenomena has a significant presence in the channel behavior, and the design of a reliable communication link between the network sensors will require a precise characterization of it. Fading in underwater channels has been previously measured and modeled in the audio band. However, there have been few attempts to study it at ultrasonic frequencies. In this paper, a campaign of measurements of ultrasonic underwater acoustic channels in Mediterranean shallow waters conducted by the authors is presented. These measurements are used to determine the parameters of the so-called κ-μ shadowed distribution, a fading model with a direct connection to the underlying physical mechanisms. The model is then used to evaluate the capacity of the measured channels with a closed-form expression. PMID:26907281

  10. Real-Time Diffusion of Information on Twitter and the Financial Markets.

    PubMed

    Tafti, Ali; Zotti, Ryan; Jank, Wolfgang

    2016-01-01

    Do spikes in Twitter chatter about a firm precede unusual stock market trading activity for that firm? If so, Twitter activity may provide useful information about impending financial market activity in real-time. We study the real-time relationship between chatter on Twitter and the stock trading volume of 96 firms listed on the Nasdaq 100, during 193 days of trading in the period from May 21, 2012 to September 18, 2013. We identify observations featuring firm-specific spikes in Twitter activity, and randomly assign each observation to a ten-minute increment matching on the firm and a number of repeating time indicators. We examine the extent that unusual levels of chatter on Twitter about a firm portend an oncoming surge of trading of its stock within the hour, over and above what would normally be expected for the stock for that time of day and day of week. We also compare the findings from our explanatory model to the predictive power of Tweets. Although we find a compelling and potentially informative real-time relationship between Twitter activity and trading volume, our forecasting exercise highlights how difficult it can be to make use of this information for monetary gain.

  11. Ultrasonic dyeing of cellulose nanofibers.

    PubMed

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Static Schedulers for Embedded Real-Time Systems

    DTIC Science & Technology

    1989-12-01

    Because of the need for having efficient scheduling algorithms in large scale real time systems , software engineers put a lot of effort on developing...provide static schedulers for he Embedded Real Time Systems with single processor using Ada programming language. The independent nonpreemptable...support the Computer Aided Rapid Prototyping for Embedded Real Time Systems so that we determine whether the system, as designed, meets the required

  13. A Real-Time Linux for Multicore Platforms

    DTIC Science & Technology

    2013-12-20

    under ARO support) to obtain a fully-functional OS for supporting real-time workloads on multicore platforms. This system, called LITMUS -RT...to be specified as plugin components. LITMUS -RT is open-source software (available at The views, opinions and/or findings contained in this report... LITMUS -RT (LInux Testbed for MUltiprocessor Scheduling in Real-Time systems), allows different multiprocessor real-time scheduling and

  14. From the speed of sound to the speed of light: Ultrasonic Cherenkov refractometry

    NASA Astrophysics Data System (ADS)

    Hallewell, G. D.

    2017-12-01

    Despite its success in the SLD CRID at the SLAC Linear Collider, ultrasonic measurement of Cherenkov radiator refractive index has been less fully exploited in more recent Cherenkov detectors employing gaseous radiators. This is surprising, since it is ideally suited to monitoring hydrostatic variations in refractive index as well as its evolution during the replacement of a light radiator passivation gas (e.g. N2, CO2) with a heavier fluorocarbon (e.g. C4F10[CF4]; mol. wt. 188[88]). The technique exploits the dependence of sound velocity on the molar concentrations of the two components at known temperature and pressure. The SLD barrel CRID used an 87%C5F12/13%N2 blend, mixed before injection into the radiator vessel: blend control based on ultrasonic mixture analysis maintained the β=1 Cherenkov ring angle to a long term variation better than ±0.3%, with refractivity monitored ultrasonically at multiple points within the radiator vessel. Recent advances using microcontroller-based electronics have led to ultrasonic instruments capable of simultaneously measuring gas flow and binary mixture composition in the fluorocarbon evaporative cooling systems of the ATLAS Inner Detector. Sound transit times are measured with multi-MHz transit time clocks in opposite directions in flowing gas for simultaneous measurement of flow rate and sound velocity. Gas composition is evaluated in real-time by comparison with a sound velocity/composition database. Such instruments could be incorporated into new and upgraded gas Cherenkov detectors for radiator gas mixture (and corresponding refractive index) measurement to a precision better than 10-3. They have other applications in binary gas analysis - including in Xenon-based anaesthesia. These possibilities are discussed.

  15. Method of noncontacting ultrasonic process monitoring

    DOEpatents

    Garcia, Gabriel V.; Walter, John B.; Telschow, Kenneth L.

    1992-01-01

    A method of monitoring a material during processing comprising the steps of (a) shining a detection light on the surface of a material; (b) generating ultrasonic waves at the surface of the material to cause a change in frequency of the detection light; (c) detecting a change in the frequency of the detection light at the surface of the material; (d) detecting said ultrasonic waves at the surface point of detection of the material; (e) measuring a change in the time elapsed from generating the ultrasonic waves at the surface of the material and return to the surface point of detection of the material, to determine the transit time; and (f) comparing the transit time to predetermined values to determine properties such as, density and the elastic quality of the material.

  16. Real-time diagnostics for a reusable rocket engine

    NASA Technical Reports Server (NTRS)

    Guo, T. H.; Merrill, W.; Duyar, A.

    1992-01-01

    A hierarchical, decentralized diagnostic system is proposed for the Real-Time Diagnostic System component of the Intelligent Control System (ICS) for reusable rocket engines. The proposed diagnostic system has three layers of information processing: condition monitoring, fault mode detection, and expert system diagnostics. The condition monitoring layer is the first level of signal processing. Here, important features of the sensor data are extracted. These processed data are then used by the higher level fault mode detection layer to do preliminary diagnosis on potential faults at the component level. Because of the closely coupled nature of the rocket engine propulsion system components, it is expected that a given engine condition may trigger more than one fault mode detector. Expert knowledge is needed to resolve the conflicting reports from the various failure mode detectors. This is the function of the diagnostic expert layer. Here, the heuristic nature of this decision process makes it desirable to use an expert system approach. Implementation of the real-time diagnostic system described above requires a wide spectrum of information processing capability. Generally, in the condition monitoring layer, fast data processing is often needed for feature extraction and signal conditioning. This is usually followed by some detection logic to determine the selected faults on the component level. Three different techniques are used to attack different fault detection problems in the NASA LeRC ICS testbed simulation. The first technique employed is the neural network application for real-time sensor validation which includes failure detection, isolation, and accommodation. The second approach demonstrated is the model-based fault diagnosis system using on-line parameter identification. Besides these model based diagnostic schemes, there are still many failure modes which need to be diagnosed by the heuristic expert knowledge. The heuristic expert knowledge is

  17. An investigation into the use of surface waves for the real-time inspection of polymer composites during fabrication

    NASA Astrophysics Data System (ADS)

    Linstrom, Elizabeth Jane

    A new approach to the nondestructive evaluation of polymer matrix/graphite fiber composites is presented. This technique permits the determination of the top ply bond strength of a laminate based on the results of ultrasonic testing. This technique is designed to be used for the real-time, nondestructive evaluation of composites during tape laying. By separately bonding the top ply of thermoset and thermoplastic polymer composite laminates, a poor ply bond was achieved solely at the interface of the top ply and the rest of the laminate. Using angled incidence, a 5 MHz, 4 musecond ultrasonic pulse was induced into the composite samples. This created waves traveling along the surface of the composite samples that were picked up by a receiving transducer. The received signal was cross-correlated with an artificially constructed replica of the input signal. The maximum amplitude of the cross-correlated signal was recorded. The cross-correlated signal was then converted to the frequency spectra using a fast Fourier transform. The maximum amplitude of the frequency spectra was then recorded. These measurements were repeated at 18 to 30 different locations on each composite sample. The resulting collection of maximum amplitudes of cross-correlated signals and frequency spectra were fit to two parameter Weibull distributions. The composite samples were destructively evaluated using a flat-wise tensile test. The B-basis values of the ultrasonic data Weibull distributions were compared to the B-basis values of the Weibull distribution of the strength data. A good correlation was found.

  18. A real-time detector system for precise timing of audiovisual stimuli.

    PubMed

    Henelius, Andreas; Jagadeesan, Sharman; Huotilainen, Minna

    2012-01-01

    The successful recording of neurophysiologic signals, such as event-related potentials (ERPs) or event-related magnetic fields (ERFs), relies on precise information of stimulus presentation times. We have developed an accurate and flexible audiovisual sensor solution operating in real-time for on-line use in both auditory and visual ERP and ERF paradigms. The sensor functions independently of the used audio or video stimulus presentation tools or signal acquisition system. The sensor solution consists of two independent sensors; one for sound and one for light. The microcontroller-based audio sensor incorporates a novel approach to the detection of natural sounds such as multipart audio stimuli, using an adjustable dead time. This aids in producing exact markers for complex auditory stimuli and reduces the number of false detections. The analog photosensor circuit detects changes in light intensity on the screen and produces a marker for changes exceeding a threshold. The microcontroller software for the audio sensor is free and open source, allowing other researchers to customise the sensor for use in specific auditory ERP/ERF paradigms. The hardware schematics and software for the audiovisual sensor are freely available from the webpage of the authors' lab.

  19. Improvements in Low-cost Ultrasonic Measurements of Blood Flow in "by-passes" Using Narrow & Broad Band Transit-time Procedures

    NASA Astrophysics Data System (ADS)

    Ramos, A.; Calas, H.; Diez, L.; Moreno, E.; Prohías, J.; Villar, A.; Carrillo, E.; Jiménez, A.; Pereira, W. C. A.; Von Krüger, M. A.

    The cardio-pathology by ischemia is an important cause of death, but the re-vascularization of coronary arteries (by-pass operation) is an useful solution to reduce associated morbidity improving quality of life in patients. During these surgeries, the flow in coronary vessels must be measured, using non-invasive ultrasonic methods, known as transit time flow measurements (TTFM), which are the most accurate option nowadays. TTFM is a common intra-operative tool, in conjunction with classic Doppler velocimetry, to check the quality of these surgery processes for implanting grafts in parallel with the coronary arteries. This work shows important improvements achieved in flow-metering, obtained in our research laboratories (CSIC, ICIMAF, COPPE) and tested under real surgical conditions in Cardiocentro-HHA, for both narrowband NB and broadband BB regimes, by applying results of a CYTED multinational project (Ultrasonic & computational systems for cardiovascular diagnostics). mathematical models and phantoms were created to evaluate accurately flow measurements, in laboratory conditions, before our new electronic designs and low-cost implementations, improving previous ttfm systems, which include analogic detection, acquisition & post-processing, and a portable PC. Both regimes (NB and BB), with complementary performances for different conditions, were considered. Finally, specific software was developed to offer facilities to surgeons in their interventions.

  20. Real-time PCR detection chemistry.

    PubMed

    Navarro, E; Serrano-Heras, G; Castaño, M J; Solera, J

    2015-01-15

    Real-time PCR is the method of choice in many laboratories for diagnostic and food applications. This technology merges the polymerase chain reaction chemistry with the use of fluorescent reporter molecules in order to monitor the production of amplification products during each cycle of the PCR reaction. Thus, the combination of excellent sensitivity and specificity, reproducible data, low contamination risk and reduced hand-on time, which make it a post-PCR analysis unnecessary, has made real-time PCR technology an appealing alternative to conventional PCR. The present paper attempts to provide a rigorous overview of fluorescent-based methods for nucleic acid analysis in real-time PCR described in the literature so far. Herein, different real-time PCR chemistries have been classified into two main groups; the first group comprises double-stranded DNA intercalating molecules, such as SYBR Green I and EvaGreen, whereas the second includes fluorophore-labeled oligonucleotides. The latter, in turn, has been divided into three subgroups according to the type of fluorescent molecules used in the PCR reaction: (i) primer-probes (Scorpions, Amplifluor, LUX, Cyclicons, Angler); (ii) probes; hydrolysis (TaqMan, MGB-TaqMan, Snake assay) and hybridization (Hybprobe or FRET, Molecular Beacons, HyBeacon, MGB-Pleiades, MGB-Eclipse, ResonSense, Yin-Yang or displacing); and (iii) analogues of nucleic acids (PNA, LNA, ZNA, non-natural bases: Plexor primer, Tiny-Molecular Beacon). In addition, structures, mechanisms of action, advantages and applications of such real-time PCR probes and analogues are depicted in this review. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Fast ultrasonic wavelength tuning in X-ray experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blagov, A. E., E-mail: blagov-ae@mail.ru; Pisarevskii, Yu. V.; Koval’chuk, M. V.

    2016-03-15

    A method of tuning (scanning) X-ray beam wavelength based on modulation of the lattice parameter of X-ray optical crystal by an ultrasonic standing wave excited in it has been proposed and experimentally implemented. The double-crystal antiparallel scheme of X-ray diffraction, in which an ultrasonic wave is excited in the second crystal, is used in the experiment. The profile of characteristic line k{sub α1} of an X-ray tube with a molybdenum anode is recorded using both the proposed tuning scheme and conventional mechanical rotation of crystal. The results obtained by both techniques are in good agreement.

  2. Real-time simulation of large-scale floods

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  3. Real-time positioning in logging: Effects of forest stand characteristics, topography, and line-of-sight obstructions on GNSS-RF transponder accuracy and radio signal propagation.

    PubMed

    Zimbelman, Eloise G; Keefe, Robert F

    2018-01-01

    Real-time positioning on mobile devices using global navigation satellite system (GNSS) technology paired with radio frequency (RF) transmission (GNSS-RF) may help to improve safety on logging operations by increasing situational awareness. However, GNSS positional accuracy for ground workers in motion may be reduced by multipath error, satellite signal obstruction, or other factors. Radio propagation of GNSS locations may also be impacted due to line-of-sight (LOS) obstruction in remote, forested areas. The objective of this study was to characterize the effects of forest stand characteristics, topography, and other LOS obstructions on the GNSS accuracy and radio signal propagation quality of multiple Raveon Atlas PT GNSS-RF transponders functioning as a network in a range of forest conditions. Because most previous research with GNSS in forestry has focused on stationary units, we chose to analyze units in motion by evaluating the time-to-signal accuracy of geofence crossings in 21 randomly-selected stands on the University of Idaho Experimental Forest. Specifically, we studied the effects of forest stand characteristics, topography, and LOS obstructions on (1) the odds of missed GNSS-RF signals, (2) the root mean squared error (RMSE) of Atlas PTs, and (3) the time-to-signal accuracy of safety geofence crossings in forested environments. Mixed-effects models used to analyze the data showed that stand characteristics, topography, and obstructions in the LOS affected the odds of missed radio signals while stand variables alone affected RMSE. Both stand characteristics and topography affected the accuracy of geofence alerts.

  4. Real-time positioning in logging: Effects of forest stand characteristics, topography, and line-of-sight obstructions on GNSS-RF transponder accuracy and radio signal propagation

    PubMed Central

    2018-01-01

    Real-time positioning on mobile devices using global navigation satellite system (GNSS) technology paired with radio frequency (RF) transmission (GNSS-RF) may help to improve safety on logging operations by increasing situational awareness. However, GNSS positional accuracy for ground workers in motion may be reduced by multipath error, satellite signal obstruction, or other factors. Radio propagation of GNSS locations may also be impacted due to line-of-sight (LOS) obstruction in remote, forested areas. The objective of this study was to characterize the effects of forest stand characteristics, topography, and other LOS obstructions on the GNSS accuracy and radio signal propagation quality of multiple Raveon Atlas PT GNSS-RF transponders functioning as a network in a range of forest conditions. Because most previous research with GNSS in forestry has focused on stationary units, we chose to analyze units in motion by evaluating the time-to-signal accuracy of geofence crossings in 21 randomly-selected stands on the University of Idaho Experimental Forest. Specifically, we studied the effects of forest stand characteristics, topography, and LOS obstructions on (1) the odds of missed GNSS-RF signals, (2) the root mean squared error (RMSE) of Atlas PTs, and (3) the time-to-signal accuracy of safety geofence crossings in forested environments. Mixed-effects models used to analyze the data showed that stand characteristics, topography, and obstructions in the LOS affected the odds of missed radio signals while stand variables alone affected RMSE. Both stand characteristics and topography affected the accuracy of geofence alerts. PMID:29324794

  5. Real-time flutter identification

    NASA Technical Reports Server (NTRS)

    Roy, R.; Walker, R.

    1985-01-01

    The techniques and a FORTRAN 77 MOdal Parameter IDentification (MOPID) computer program developed for identification of the frequencies and damping ratios of multiple flutter modes in real time are documented. Physically meaningful model parameterization was combined with state of the art recursive identification techniques and applied to the problem of real time flutter mode monitoring. The performance of the algorithm in terms of convergence speed and parameter estimation error is demonstrated for several simulated data cases, and the results of actual flight data analysis from two different vehicles are presented. It is indicated that the algorithm is capable of real time monitoring of aircraft flutter characteristics with a high degree of reliability.

  6. A new ultrasonic real-time scanner featuring a servo-controlled transducer displaying a sector image.

    PubMed

    Skolnick, M L; Matzuk, T

    1978-08-01

    This paper describes a new real-time servo-controlled sector scanner that produces high-resolution images similar to phased-array systems, but possesses the simplicity of design and low cost best achievable in a mechanical sector scanner. Its unique feature is the transducer head which contains a single moving part--the transducer. Frame rates vary from 0 to 30 degrees and the sector angle from 0 to 60 degrees. Abdominal applications include: differentiation of vascular structures, detection of small masses, imaging of diagonally oriented organs. Survey scanning, and demonstration of regions difficult to image with contact scanners. Cardiac uses are also described.

  7. Graphic Server: A real time system for displaying and monitoring telemetry data of several satellites

    NASA Technical Reports Server (NTRS)

    Douard, Stephane

    1994-01-01

    Known as a Graphic Server, the system presented was designed for the control ground segment of the Telecom 2 satellites. It is a tool used to dynamically display telemetry data within graphic pages, also known as views. The views are created off-line through various utilities and then, on the operator's request, displayed and animated in real time as data is received. The system was designed as an independent component, and is installed in different Telecom 2 operational control centers. It enables operators to monitor changes in the platform and satellite payloads in real time. It has been in operation since December 1991.

  8. Identification and quantification of three genetically modified insect resistant cotton lines using conventional and TaqMan real-time polymerase chain reaction methods.

    PubMed

    Yang, Litao; Pan, Aihu; Zhang, Kewei; Guo, Jinchao; Yin, Changsong; Chen, Jianxiu; Huang, Cheng; Zhang, Dabing

    2005-08-10

    As the genetically modified organisms (GMOs) labeling policies are issued in many countries, qualitative and quantitative polymerase chain reaction (PCR) techniques are increasingly used for the detection of genetically modified (GM) crops in foods. Qualitative PCR and TaqMan real-time quantitative PCR methods to detect and identify three varieties of insect resistant cotton, i.e., Mon531 cotton (Monsanto Co.) and GK19 and SGK321 cottons (Chinese Academy of Agricultural Sciences), which were approved for commercialization in China, were developed in this paper. Primer pairs specific to inserted DNAs, such as Cowpea trypsin inhibitor (CpTI) gene of SGK321 cotton and the specific junction DNA sequences containing partial Cry1A(c) gene and NOS terminator of Mon531, GK19, and SGK321 cotton varieties were designed to conduct the identified PCR assays. In conventional specific identified PCR assays, the limit of detection (LOD) was 0.05% for Mon531, GK19, or SGK321 in 100 ng of cotton genomic DNA for one reaction. Also, the multiplex PCR method for screening the three GM cottons was also established, which could save time and cost in practical detection. Furthermore, a real-time quantitative PCR assay based on TaqMan chemistry for detection of insect resistant gene, Cry1A(c), was developed. This assay also featured the use of a standard plasmid as a reference molecule, which contained both a specific region of the transgene Cry1A(c) and an endogenous stearoyl-acyl carrier protein desaturase (Sad1) gene of the cotton. In quantitative PCR assay, the quantification range was from 0.01 to 100% in 100 ng of the genome DNA template, and in the detection of 1.0, 3.0, and 5.0% levels of three insect resistant cotton lines, respectively, all of the relative standard deviations (RSDs) were less than 8.2% except for the GM cotton samples with 1.0% Mon531 or GK19, which meant that our real-time PCR assays involving the use of reference molecule were reliable and practical for GM

  9. Phased-array ultrasonic surface contour mapping system and method for solids hoppers and the like

    DOEpatents

    Fasching, George E.; Smith, Jr., Nelson S.

    1994-01-01

    A real time ultrasonic surface contour mapping system is provided including a digitally controlled phased-array of transmitter/receiver (T/R) elements located in a fixed position above the surface to be mapped. The surface is divided into a predetermined number of pixels which are separately scanned by an arrangement of T/R elements by applying phase delayed signals thereto that produce ultrasonic tone bursts from each T/R that arrive at a point X in phase and at the same time relative to the leading edge of the tone burst pulse so that the acoustic energies from each T/R combine in a reinforcing manner at point X. The signals produced by the reception of the echo signals reflected from point X back to the T/Rs are also delayed appropriately so that they add in phase at the input of a signal combiner. This combined signal is then processed to determine the range to the point X using density-corrected sound velocity values. An autofocusing signal is developed from the computed average range for a complete scan of the surface pixels. A surface contour map is generated in real time form the range signals on a video monitor.

  10. Approaching near real-time biosensing: microfluidic microsphere based biosensor for real-time analyte detection.

    PubMed

    Cohen, Noa; Sabhachandani, Pooja; Golberg, Alexander; Konry, Tania

    2015-04-15

    In this study we describe a simple lab-on-a-chip (LOC) biosensor approach utilizing well mixed microfluidic device and a microsphere-based assay capable of performing near real-time diagnostics of clinically relevant analytes such cytokines and antibodies. We were able to overcome the adsorption kinetics reaction rate-limiting mechanism, which is diffusion-controlled in standard immunoassays, by introducing the microsphere-based assay into well-mixed yet simple microfluidic device with turbulent flow profiles in the reaction regions. The integrated microsphere-based LOC device performs dynamic detection of the analyte in minimal amount of biological specimen by continuously sampling micro-liter volumes of sample per minute to detect dynamic changes in target analyte concentration. Furthermore we developed a mathematical model for the well-mixed reaction to describe the near real time detection mechanism observed in the developed LOC method. To demonstrate the specificity and sensitivity of the developed real time monitoring LOC approach, we applied the device for clinically relevant analytes: Tumor Necrosis Factor (TNF)-α cytokine and its clinically used inhibitor, anti-TNF-α antibody. Based on the reported results herein, the developed LOC device provides continuous sensitive and specific near real-time monitoring method for analytes such as cytokines and antibodies, reduces reagent volumes by nearly three orders of magnitude as well as eliminates the washing steps required by standard immunoassays. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Unparalleled sample treatment throughput for proteomics workflows relying on ultrasonic energy.

    PubMed

    Jorge, Susana; Araújo, J E; Pimentel-Santos, F M; Branco, Jaime C; Santos, Hugo M; Lodeiro, Carlos; Capelo, J L

    2018-02-01

    We report on the new microplate horn ultrasonic device as a powerful tool to speed proteomics workflows with unparalleled throughput. 96 complex proteomes were digested at the same time in 4min. Variables such as ultrasonication time, ultrasonication amplitude, and protein to enzyme ratio were optimized. The "classic" method relying on overnight protein digestion (12h) and the sonoreactor-based method were also employed for comparative purposes. We found the protein digestion efficiency homogeneously distributed in the entire microplate horn surface using the following conditions: 4min sonication time and 25% amplitude. Using this approach, patients with lymphoma and myeloma were classified using principal component analysis and a 2D gel-mass spectrometry based approach. Furthermore, we demonstrate the excellent performance by using MALDI-mass spectrometry based profiling as a fast way to classify patients with rheumatoid arthritis, systemic lupus erythematosus, and ankylosing spondylitis. Finally, the speed and simplicity of this method were demonstrated by clustering 90 patients with knee osteoarthritis disease (30), with a prosthesis (30, control group) and healthy individuals (30) with no history of joint disease. Overall, the new approach allows profiling a disease in just one week while allows to match the minimalism rules as outlined by Halls. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. On-board computational efficiency in real time UAV embedded terrain reconstruction

    NASA Astrophysics Data System (ADS)

    Partsinevelos, Panagiotis; Agadakos, Ioannis; Athanasiou, Vasilis; Papaefstathiou, Ioannis; Mertikas, Stylianos; Kyritsis, Sarantis; Tripolitsiotis, Achilles; Zervos, Panagiotis

    2014-05-01

    In the last few years, there is a surge of applications for object recognition, interpretation and mapping using unmanned aerial vehicles (UAV). Specifications in constructing those UAVs are highly diverse with contradictory characteristics including cost-efficiency, carrying weight, flight time, mapping precision, real time processing capabilities, etc. In this work, a hexacopter UAV is employed for near real time terrain mapping. The main challenge addressed is to retain a low cost flying platform with real time processing capabilities. The UAV weight limitation affecting the overall flight time, makes the selection of the on-board processing components particularly critical. On the other hand, surface reconstruction, as a computational demanding task, calls for a highly demanding processing unit on board. To merge these two contradicting aspects along with customized development, a System on a Chip (SoC) integrated circuit is proposed as a low-power, low-cost processor, which natively supports camera sensors and positioning and navigation systems. Modern SoCs, such as Omap3530 or Zynq, are classified as heterogeneous devices and provide a versatile platform, allowing access to both general purpose processors, such as the ARM11, as well as specialized processors, such as a digital signal processor and floating field-programmable gate array. A UAV equipped with the proposed embedded processors, allows on-board terrain reconstruction using stereo vision in near real time. Furthermore, according to the frame rate required, additional image processing may concurrently take place, such as image rectification andobject detection. Lastly, the onboard positioning and navigation (e.g., GNSS) chip may further improve the quality of the generated map. The resulting terrain maps are compared to ground truth geodetic measurements in order to access the accuracy limitations of the overall process. It is shown that with our proposed novel system,there is much potential in

  13. Real-time support for high performance aircraft operation

    NASA Technical Reports Server (NTRS)

    Vidal, Jacques J.

    1989-01-01

    The feasibility of real-time processing schemes using artificial neural networks (ANNs) is investigated. A rationale for digital neural nets is presented and a general processor architecture for control applications is illustrated. Research results on ANN structures for real-time applications are given. Research results on ANN algorithms for real-time control are also shown.

  14. NEET In-Pile Ultrasonic Sensor Enablement-FY 2012 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JE Daw; JL Rempe; BR Tittmann

    2012-09-01

    Several Department Of Energy-Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development, Advanced Reactor Concepts, Light Water Reactor Sustainability, and Next Generation Nuclear Plant programs, are investigating new fuels and materials for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials when irradiated. The Nuclear Energy Enabling Technology (NEET) Advanced Sensors and Instrumentation (ASI) in-pile instrumentation development activities are focused upon addressing cross-cutting needs for DOE-NE irradiation testing by providing higher fidelity, real-time data, with increased accuracy and resolution from smaller, compact sensors that are lessmore » intrusive. Ultrasonic technologies offer the potential to measure a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes, under harsh irradiation test conditions. There are two primary issues associated with in-pile deployment of ultrasonic sensors. The first is transducer survivability. The ability of ultrasonic transducer materials to maintain their useful properties during an irradiation must be demonstrated. The second issue is signal processing. Ultrasonic testing is typically performed in a lab or field environment, where the sensor and sample are accessible. Due to the harsh nature of in-pile testing, and the range of measurements that are desired, an enhanced signal processing capability is needed to make in-pile ultrasonic sensors viable. This project addresses these technology deployment issues.« less

  15. The design of real time infrared image generation software based on Creator and Vega

    NASA Astrophysics Data System (ADS)

    Wang, Rui-feng; Wu, Wei-dong; Huo, Jun-xiu

    2013-09-01

    Considering the requirement of high reality and real-time quality dynamic infrared image of an infrared image simulation, a method to design real-time infrared image simulation application on the platform of VC++ is proposed. This is based on visual simulation software Creator and Vega. The functions of Creator are introduced simply, and the main features of Vega developing environment are analyzed. The methods of infrared modeling and background are offered, the designing flow chart of the developing process of IR image real-time generation software and the functions of TMM Tool and MAT Tool and sensor module are explained, at the same time, the real-time of software is designed.

  16. Real-time processing of radar return on a parallel computer

    NASA Technical Reports Server (NTRS)

    Aalfs, David D.

    1992-01-01

    NASA is working with the FAA to demonstrate the feasibility of pulse Doppler radar as a candidate airborne sensor to detect low altitude windshears. The need to provide the pilot with timely information about possible hazards has motivated a demand for real-time processing of a radar return. Investigated here is parallel processing as a means of accommodating the high data rates required. A PC based parallel computer, called the transputer, is used to investigate issues in real time concurrent processing of radar signals. A transputer network is made up of an array of single instruction stream processors that can be networked in a variety of ways. They are easily reconfigured and software development is largely independent of the particular network topology. The performance of the transputer is evaluated in light of the computational requirements. A number of algorithms have been implemented on the transputers in OCCAM, a language specially designed for parallel processing. These include signal processing algorithms such as the Fast Fourier Transform (FFT), pulse-pair, and autoregressive modelling, as well as routing software to support concurrency. The most computationally intensive task is estimating the spectrum. Two approaches have been taken on this problem, the first and most conventional of which is to use the FFT. By using table look-ups for the basis function and other optimizing techniques, an algorithm has been developed that is sufficient for real time. The other approach is to model the signal as an autoregressive process and estimate the spectrum based on the model coefficients. This technique is attractive because it does not suffer from the spectral leakage problem inherent in the FFT. Benchmark tests indicate that autoregressive modeling is feasible in real time.

  17. Design Recovery Technology for Real-Time Systems.

    DTIC Science & Technology

    1995-10-01

    RL-TR-95-208 Final Technical Report October 1995 DESIGN RECOVERY TECHNOLOGY FOR REAL TIME SYSTEMS The MITRE Corporation Lester J. Holtzblatt...92 - Jan 95 4. TTTLE AND SUBTITLE DESIGN RECOVERY TECHNOLOGY FOR REAL - TIME SYSTEMS 6. AUTHOR(S) Lester J. Holtzblatt, Richard Piazza, and Susan...behavior of real - time systems in general, our initial efforts have centered on recovering this information from one system in particular, the Modular

  18. Development of a real-time, high-frequency ultrasound digital beamformer for high-frequency linear array transducers.

    PubMed

    Hu, Chang-Hong; Xu, Xiao-Chen; Cannata, Jonathan M; Yen, Jesse T; Shung, K Kirk

    2006-02-01

    A real-time digital beamformer for high-frequency (>20 MHz) linear ultrasonic arrays has been developed. The system can handle up to 64-element linear array transducers and excite 16 channels and receive simultaneously at 100 MHz sampling frequency with 8-bit precision. Radio frequency (RF) signals are digitized, delayed, and summed through a real-time digital beamformer, which is implemented using a field programmable gate array (FPGA). Using fractional delay filters, fine delays as small as 2 ns can be implemented. A frame rate of 30 frames per second is achieved. Wire phantom (20 microm tungsten) images were obtained and -6 dB axial and lateral widths were measured. The results showed that, using a 30 MHz, 48-element array with a pitch of 100 microm produced a -6 dB width of 68 microm in the axial and 370 microm in the lateral direction at 6.4 mm range. Images from an excised rabbit eye sample also were acquired, and fine anatomical structures, such as the cornea and lens, were resolved.

  19. On-line range prediction system, part 2

    NASA Technical Reports Server (NTRS)

    Levan, Nhan

    1988-01-01

    The on-line range prediction system is designed for providing a prediction of the target range in the case of a laser data dropout. It consists of real time implementation of a Kalman filter on an IBM PC/AT equipped with necessary hardware. The system was set up and tested at Crows Landing in the Fall of 1987. The improvements made on the on-line range prediction system during 1988 are examined. Solutions are proposed and discussed to the several problems encountered during system tests. Then, the improvements made on the filter software are explained, namely, accounting for the time lag and providing data continously. Finally, the ideas are mentioned that can be considered in the future.

  20. Quantitative real-time monitoring of dryer effluent using fiber optic near-infrared spectroscopy.

    PubMed

    Harris, S C; Walker, D S

    2000-09-01

    This paper describes a method for real-time quantitation of the solvents evaporating from a dryer. The vapor stream in the vacuum line of a dryer was monitored in real time using a fiber optic-coupled acousto-optic tunable filter near-infrared (AOTF-NIR) spectrometer. A balance was placed in the dryer, and mass readings were recorded for every scan of the AOTF-NIR. A partial least-squares (PLS) calibration was subsequently built based on change in mass over change in time for solvents typically used in a chemical manufacturing plant. Controlling software for the AOTF-NIR was developed. The software collects spectra, builds the PLS calibration model, and continuously fits subsequently collected spectra to the calibration, allowing the operator to follow the mass loss of solvent from the dryer. The results indicate that solvent loss can be monitored and quantitated in real time using NIR for the optimization of drying times. These time-based mass loss values have also been used to calculate "dynamic" vapor density values for the solvents. The values calculated are in agreement with values determined from the ideal gas law and could prove valuable as tools to measure temperature or pressure indirectly.

  1. [Analytical figures of merit of Hildebrand grid and ultrasonic nebulizations in inductively coupled plasma atomic emission].

    PubMed

    Tian, Mei; Han, Xiao-yuan; Zhuo, Shang-jun; Zhang, Rui-rong

    2012-05-01

    Hildebrand grid nebulizer is a kind of improved Babington nebulizer, which can nebulize solutions with high total dissolved solids. And the ultrasonic nebulizer (USN) possesses advantage of high nebulization efficiency and fine droplets. In the present paper, the detection limits, matrix effects, ICP robustness and memory effects of Hildebrand grid and ultrasonic nebulizers for ICP-AES were studied. The results show that the detection limits using USN are improved by a factor of 6-23 in comparison to Hildebrand grid nebulizer for Cu, Pb, Zn, Cr, Cd and Ni. With the USN the matrix effects were heavier, and the degree of intensity enhancement and lowering depends on the element line, the composition and concentrations of matrices. Moreover, matrix effects induced by Ca and Mg are more significant than those caused by Na and Mg, and intensities of ionic lines are affected more easily than those of atomic lines. At the same time, with the USN ICP has less robustness. In addition, memory effect of the USN is also heavier than that of Hildebrand grid nebulizer.

  2. Real-time display of flow-pressure-volume loops.

    PubMed

    Morozoff, P E; Evans, R W

    1992-01-01

    Graphic display of respiratory waveforms can be valuable for monitoring the progress of ventilated patients. A system has been developed that can display flow-pressure-volume loops as derived from a patient's respiratory circuit in real time. It can also display, store, print, and retrieve ventilatory waveforms. Five loops can be displayed at once: current, previous, reference, "ideal," and previously saved. Two components, the data-display device (DDD) and the data-collection device (DCD), comprise the system. An IBM 286/386 computer with a graphics card (VGA) and bidirectional parallel port is used for the DDD; an eight-bit microprocessor card and an A/D convertor card make up the DCD. A real-time multitasking operating system was written to control the DDD, while the DCD operates from in-line assembly code. The DCD samples the pressure and flow sensors at 100 Hz and looks for a complete flow waveform pattern based on flow slope. These waveforms are then passed to the DDD via the mutual parallel port. Within the DDD a process integrates the flow to create a volume signal and performs a multilinear regression on the pressure, flow, and volume data to calculate the elastance, resistance, pressure offset, and coefficient of determination. Elastance, resistance, and offset are used to calculate Pr and Pc where: Pr[k] = P[k]-offset-(elastance.V[k]) and Pc[k] = P[k]-offset-(resistance.F[k]). Volume vs. Pc and flow vs. Pr can be displayed in real time. Patient data from previous clinical tests were loaded into the device to verify the software calculations. An analog waveform generator was used to simulate flow and pressure waveforms that validated the system.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Considerations for ultrasonic testing application for on-orbit NDE

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2015-04-01

    The paper addresses some on-orbit nondestructive evaluation (NDE) needs of NASA for International Space Station (ISS). The presentation gives NDE requirements for inspecting suspect damage due to micro-meteoroids and orbital debris (MMOD) impact on the pressure wall of the ISS. This inspection is meant to be conducted from inside of the ISS module. The metallic wall of the module has a fixed wall thickness but also has integral orthogrid ribs for reinforcement. Typically, a single MMOD hit causes localized damage in a small area causing loss of material similar to pitting corrosion, but cracks may be present too. The impact may cause bulging of the wall. Results of the ultrasonic and eddy current demonstration scans on test samples are provided. The ultrasonic technique uses shear wave scans to interrogate the localized damage area from the surrounding undamaged area. The scanning protocol results in multiple scans, each with multiple "vee" paths. A superimposition and mosaic of the three-dimensional ultrasonic data from individual scans is desired to create C-scan images of the damage. This is a new data reduction process which is not currently implemented in state-of-art ultrasonic instruments. Results of ultrasonic scans on the simulated MMOD damage test plates are provided. The individual C-scans are superimposed manually creating mosaic of the inspection. The resulting image is compared with visibly detected damage boundaries, X-ray images, and localized ultrasonic and eddy current scans for locating crack tips to assess effectiveness of the ultrasonic scanning. The paper also discusses developments needed in improving ergonomics of the ultrasonic testing for on-orbit applications.

  4. Web-building time in a spider: preliminary applications of ultrasonic detection.

    PubMed

    Ramousse, R; Davis, F

    1976-12-01

    Data collection on time and length of building in orb-weaving spiders has suffered from absence of light during construction and inconvenient hours. A simple apparatus is described which permits recording of the spiders' movements as they disturb an ultrasonic field. By varying onset and length of dark periods for two animals at even temperature and by registering the building periods for 127 webs, a definite influence of the light-dark cycle can be identified: there is a strong preference for building webs in the dark; this is superimposed on the circadian rhythm of orb-web construction. One of the spiders always built earlier than the other.

  5. Geographically distributed real-time digital simulations using linear prediction

    DOE PAGES

    Liu, Ren; Mohanpurkar, Manish; Panwar, Mayank; ...

    2016-07-04

    Real time simulation is a powerful tool for analyzing, planning, and operating modern power systems. For analyzing the ever evolving power systems and understanding complex dynamic and transient interactions larger real time computation capabilities are essential. These facilities are interspersed all over the globe and to leverage unique facilities geographically-distributed real-time co-simulation in analyzing the power systems is pursued and presented. However, the communication latency between different simulator locations may lead to inaccuracy in geographically distributed real-time co-simulations. In this paper, the effect of communication latency on geographically distributed real-time co-simulation is introduced and discussed. In order to reduce themore » effect of the communication latency, a real-time data predictor, based on linear curve fitting is developed and integrated into the distributed real-time co-simulation. Two digital real time simulators are used to perform dynamic and transient co-simulations with communication latency and predictor. Results demonstrate the effect of the communication latency and the performance of the real-time data predictor to compensate it.« less

  6. Geographically distributed real-time digital simulations using linear prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ren; Mohanpurkar, Manish; Panwar, Mayank

    Real time simulation is a powerful tool for analyzing, planning, and operating modern power systems. For analyzing the ever evolving power systems and understanding complex dynamic and transient interactions larger real time computation capabilities are essential. These facilities are interspersed all over the globe and to leverage unique facilities geographically-distributed real-time co-simulation in analyzing the power systems is pursued and presented. However, the communication latency between different simulator locations may lead to inaccuracy in geographically distributed real-time co-simulations. In this paper, the effect of communication latency on geographically distributed real-time co-simulation is introduced and discussed. In order to reduce themore » effect of the communication latency, a real-time data predictor, based on linear curve fitting is developed and integrated into the distributed real-time co-simulation. Two digital real time simulators are used to perform dynamic and transient co-simulations with communication latency and predictor. Results demonstrate the effect of the communication latency and the performance of the real-time data predictor to compensate it.« less

  7. Real-Time Precise Point Positioning (RTPPP) with raw observations and its application in real-time regional ionospheric VTEC modeling

    NASA Astrophysics Data System (ADS)

    Liu, Teng; Zhang, Baocheng; Yuan, Yunbin; Li, Min

    2018-01-01

    Precise Point Positioning (PPP) is an absolute positioning technology mainly used in post data processing. With the continuously increasing demand for real-time high-precision applications in positioning, timing, retrieval of atmospheric parameters, etc., Real-Time PPP (RTPPP) and its applications have drawn more and more research attention in recent years. This study focuses on the models, algorithms and ionospheric applications of RTPPP on the basis of raw observations, in which high-precision slant ionospheric delays are estimated among others in real time. For this purpose, a robust processing strategy for multi-station RTPPP with raw observations has been proposed and realized, in which real-time data streams and State-Space-Representative (SSR) satellite orbit and clock corrections are used. With the RTPPP-derived slant ionospheric delays from a regional network, a real-time regional ionospheric Vertical Total Electron Content (VTEC) modeling method is proposed based on Adjusted Spherical Harmonic Functions and a Moving-Window Filter. SSR satellite orbit and clock corrections from different IGS analysis centers are evaluated. Ten globally distributed real-time stations are used to evaluate the positioning performances of the proposed RTPPP algorithms in both static and kinematic modes. RMS values of positioning errors in static/kinematic mode are 5.2/15.5, 4.7/17.4 and 12.8/46.6 mm, for north, east and up components, respectively. Real-time slant ionospheric delays from RTPPP are compared with those from the traditional Carrier-to-Code Leveling (CCL) method, in terms of function model, formal precision and between-receiver differences of short baseline. Results show that slant ionospheric delays from RTPPP are more precise and have a much better convergence performance than those from the CCL method in real-time processing. 30 real-time stations from the Asia-Pacific Reference Frame network are used to model the ionospheric VTECs over Australia in real time

  8. ALMA Correlator Real-Time Data Processor

    NASA Astrophysics Data System (ADS)

    Pisano, J.; Amestica, R.; Perez, J.

    2005-10-01

    The design of a real-time Linux application utilizing Real-Time Application Interface (RTAI) to process real-time data from the radio astronomy correlator for the Atacama Large Millimeter Array (ALMA) is described. The correlator is a custom-built digital signal processor which computes the cross-correlation function of two digitized signal streams. ALMA will have 64 antennas with 2080 signal streams each with a sample rate of 4 giga-samples per second. The correlator's aggregate data output will be 1 gigabyte per second. The software is defined by hard deadlines with high input and processing data rates, while requiring interfaces to non real-time external computers. The designed computer system - the Correlator Data Processor or CDP, consists of a cluster of 17 SMP computers, 16 of which are compute nodes plus a master controller node all running real-time Linux kernels. Each compute node uses an RTAI kernel module to interface to a 32-bit parallel interface which accepts raw data at 64 megabytes per second in 1 megabyte chunks every 16 milliseconds. These data are transferred to tasks running on multiple CPUs in hard real-time using RTAI's LXRT facility to perform quantization corrections, data windowing, FFTs, and phase corrections for a processing rate of approximately 1 GFLOPS. Highly accurate timing signals are distributed to all seventeen computer nodes in order to synchronize them to other time-dependent devices in the observatory array. RTAI kernel tasks interface to the timing signals providing sub-millisecond timing resolution. The CDP interfaces, via the master node, to other computer systems on an external intra-net for command and control, data storage, and further data (image) processing. The master node accesses these external systems utilizing ALMA Common Software (ACS), a CORBA-based client-server software infrastructure providing logging, monitoring, data delivery, and intra-computer function invocation. The software is being developed in tandem

  9. Energy shadowing correction of ultrasonic pulse-echo records by digital signal processing

    NASA Technical Reports Server (NTRS)

    Kishoni, D.; Heyman, J. S.

    1986-01-01

    Attention is given to a numerical algorithm that, via signal processing, enables the dynamic correction of the shadowing effect of reflections on ultrasonic displays. The algorithm was applied to experimental data from graphite-epoxy composite material immersed in a water bath. It is concluded that images of material defects with the shadowing corrections allow for a more quantitative interpretation of the material state. It is noted that the proposed algorithm is fast and simple enough to be adopted for real time applications in industry.

  10. Real-time encoding and compression of neuronal spikes by metal-oxide memristors

    NASA Astrophysics Data System (ADS)

    Gupta, Isha; Serb, Alexantrou; Khiat, Ali; Zeitler, Ralf; Vassanelli, Stefano; Prodromakis, Themistoklis

    2016-09-01

    Advanced brain-chip interfaces with numerous recording sites bear great potential for investigation of neuroprosthetic applications. The bottleneck towards achieving an efficient bio-electronic link is the real-time processing of neuronal signals, which imposes excessive requirements on bandwidth, energy and computation capacity. Here we present a unique concept where the intrinsic properties of memristive devices are exploited to compress information on neural spikes in real-time. We demonstrate that the inherent voltage thresholds of metal-oxide memristors can be used for discriminating recorded spiking events from background activity and without resorting to computationally heavy off-line processing. We prove that information on spike amplitude and frequency can be transduced and stored in single devices as non-volatile resistive state transitions. Finally, we show that a memristive device array allows for efficient data compression of signals recorded by a multi-electrode array, demonstrating the technology's potential for building scalable, yet energy-efficient on-node processors for brain-chip interfaces.

  11. Real-time encoding and compression of neuronal spikes by metal-oxide memristors

    PubMed Central

    Gupta, Isha; Serb, Alexantrou; Khiat, Ali; Zeitler, Ralf; Vassanelli, Stefano; Prodromakis, Themistoklis

    2016-01-01

    Advanced brain-chip interfaces with numerous recording sites bear great potential for investigation of neuroprosthetic applications. The bottleneck towards achieving an efficient bio-electronic link is the real-time processing of neuronal signals, which imposes excessive requirements on bandwidth, energy and computation capacity. Here we present a unique concept where the intrinsic properties of memristive devices are exploited to compress information on neural spikes in real-time. We demonstrate that the inherent voltage thresholds of metal-oxide memristors can be used for discriminating recorded spiking events from background activity and without resorting to computationally heavy off-line processing. We prove that information on spike amplitude and frequency can be transduced and stored in single devices as non-volatile resistive state transitions. Finally, we show that a memristive device array allows for efficient data compression of signals recorded by a multi-electrode array, demonstrating the technology's potential for building scalable, yet energy-efficient on-node processors for brain-chip interfaces. PMID:27666698

  12. 17 CFR 38.157 - Real-time market monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 1 2014-04-01 2014-04-01 false Real-time market monitoring... DESIGNATED CONTRACT MARKETS Compliance With Rules § 38.157 Real-time market monitoring. A designated contract market must conduct real-time market monitoring of all trading activity on its electronic trading...

  13. 17 CFR 38.157 - Real-time market monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DESIGNATED CONTRACT MARKETS Compliance With Rules § 38.157 Real-time market monitoring. A designated contract market must conduct real-time market monitoring of all trading activity on its electronic trading... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false Real-time market monitoring...

  14. Interaction of phosphine with Si(100) from core-level photoemission and real-time scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Deng-Sung; Ku, Tsai-Shuan; Chen, Ru-Ping

    2000-01-01

    In this paper, we investigate the interaction of phosphine (PH3) on the Si(100)-2×1 surface at temperatures between 635 and 900 K. The hydrogen desorption, growth mode, surface morphology, and chemical composition and ordering of the surface layer are examined by synchrotron radiation core-level photoemission and real-time high-temperature scanning tunneling microscopy. The P 2p core-level spectra indicate that decomposition of PHn is complete above ~550 K and the maximum P coverage is strongly influenced by the growth temperature, which governs the coverage of H-terminated sites. The scanning tunneling microscopy (STM) images taken at real time during PH3 exposure indicate that a surface phosphorus atom readily and randomly displaces one Si atom from the substrate. The ejected Si diffuses, nucleates, and incorporates itself into islands or step edges, leading to similar growth behavior as that found in Si chemical vapor deposition. Line defects both perpendicular and parallel to the dimer rows are observed on the nearly P-saturated surface. Perpendicular line defects act as a strain relief mechanism. Parallel line defects result from growth kinetics. STM images also indicate that incorporating a small amount of phosphorus eliminates the line defects in the Si(100)-2×n surface.

  15. Real-Time Diffusion of Information on Twitter and the Financial Markets

    PubMed Central

    Tafti, Ali; Zotti, Ryan; Jank, Wolfgang

    2016-01-01

    Do spikes in Twitter chatter about a firm precede unusual stock market trading activity for that firm? If so, Twitter activity may provide useful information about impending financial market activity in real-time. We study the real-time relationship between chatter on Twitter and the stock trading volume of 96 firms listed on the Nasdaq 100, during 193 days of trading in the period from May 21, 2012 to September 18, 2013. We identify observations featuring firm-specific spikes in Twitter activity, and randomly assign each observation to a ten-minute increment matching on the firm and a number of repeating time indicators. We examine the extent that unusual levels of chatter on Twitter about a firm portend an oncoming surge of trading of its stock within the hour, over and above what would normally be expected for the stock for that time of day and day of week. We also compare the findings from our explanatory model to the predictive power of Tweets. Although we find a compelling and potentially informative real-time relationship between Twitter activity and trading volume, our forecasting exercise highlights how difficult it can be to make use of this information for monetary gain. PMID:27504639

  16. Ultrasonic sensor and method of use

    DOEpatents

    Condreva, Kenneth J.

    2001-01-01

    An ultrasonic sensor system and method of use for measuring transit time though a liquid sample, using one ultrasonic transducer coupled to a precision time interval counter. The timing circuit captures changes in transit time, representing small changes in the velocity of sound transmitted, over necessarily small time intervals (nanoseconds) and uses the transit time changes to identify the presence of non-conforming constituents in the sample.

  17. Ultrasonic filtration of industrial chemical solutions

    NASA Technical Reports Server (NTRS)

    Cosma, T.

    1974-01-01

    The practical results obtained as a result of filtering industrial chemical solutions under continuous flow conditions with the aid of an ultrasonic filter are presented. The main part of the assembly consists of an ultrasonic generator with an output power of about 400 W and the filtration assembly, in which there is a magnetostrictive amplifier constructed for 20.5 kHz. In addition to ensuring a continuous flow of filtered solution, ultrasonic filters can be replaced or cleaned at intervals of time that are 8-10 times greater than in the case of mechanical filters. They yield considerably better results as far as the size of the filtered particles is concerned. The parameters on which filtration quality depends are also presented.

  18. Effect of Ultrasonic Melt Treatment on Microstructure and Mechanical Properties of 35CrMo Steel Casting

    NASA Astrophysics Data System (ADS)

    Shi, Chen; Li, Fan; Liang, Gen; Mao, Daheng

    2018-01-01

    Effects of different power ultrasonic on microstructure and mechanical properties of 35CrMo steel casting were investigated using optical microscopy (OM), scanning electron microscopy (SEM) and hardness testing. A self-developed experiment apparatus was used for the propagation of ultrasonic vibration into the 35CrMo steel melt to carry out ultrasonic treatment. The experimental results showed that compared to the traditional casting, ultrasonic treatment can obviously change the solidification microstructure of 35CrMo steel, which is changed from coarse dendrites to fined dendrites or equiaxed grains. With the increase of ultrasonic power, equiaxed crystal is remarkably refined and its area is broadened. The micro porosity percentage of ingot casting decreases significantly and the porosity defects can be suppressed under ultrasonic treatment. The mechanical properties of 35CrMo steel ingot after heat treatment were enhanced by ultrasonic treatment: the maximum tensile strength is improved by 8.4% and the maximum elongation increased by 1.5 times.

  19. A Neuro-Fuzzy System for Extracting Environment Features Based on Ultrasonic Sensors

    PubMed Central

    Marichal, Graciliano Nicolás; Hernández, Angela; Acosta, Leopoldo; González, Evelio José

    2009-01-01

    In this paper, a method to extract features of the environment based on ultrasonic sensors is presented. A 3D model of a set of sonar systems and a workplace has been developed. The target of this approach is to extract in a short time, while the vehicle is moving, features of the environment. Particularly, the approach shown in this paper has been focused on determining walls and corners, which are very common environment features. In order to prove the viability of the devised approach, a 3D simulated environment has been built. A Neuro-Fuzzy strategy has been used in order to extract environment features from this simulated model. Several trials have been carried out, obtaining satisfactory results in this context. After that, some experimental tests have been conducted using a real vehicle with a set of sonar systems. The obtained results reveal the satisfactory generalization properties of the approach in this case. PMID:22303160

  20. Scheduling Dependent Real-Time Activities

    DTIC Science & Technology

    1990-08-01

    dependency relationships in a way that is suitable for all real - time systems . This thesis provides an algorithm, called DASA, that is effective for...scheduling the class of real - time systems known as supervisory control systems. Simulation experiments that account for the time required to make scheduling