Science.gov

Sample records for real-time pcr-based monitoring

  1. High-throughput real-time PCR-based genotyping without DNA purification

    PubMed Central

    2012-01-01

    Background While improvements in genotyping technology have allowed for increased throughput and reduced time and expense, protocols remain hindered by the slow upstream steps of isolating, purifying, and normalizing DNA. Various methods exist for genotyping samples directly through blood, without having to purify the DNA first. These procedures were designed to be used on smaller throughput systems, however, and have not yet been tested for use on current high-throughput real-time (q)PCR based genotyping platforms. In this paper, a method of quantitative qPCR-based genotyping on blood without DNA purification was developed using a high-throughput qPCR platform. Findings The performances of either DNA purified from blood or the same blood samples without DNA purification were evaluated through qPCR-based genotyping. First, 60 different mutations prevalent in the Ashkenazi Jewish population were genotyped in 12 Ashkenazi Jewish individuals using the QuantStudio™12K Flex Real-Time PCR System. Genotyping directly from blood gave a call rate of 99.21%, and an accuracy of 100%, while the purified DNA gave a call rate of 92.49%, and an accuracy of 99.74%. Although no statistical difference was found for these parameters, an F test comparing the standard deviations of the wild type clusters for the two different methods indicated significantly less variation when genotyping directly from blood instead of after DNA purification. To further establish the ability to perform high-throughput qPCR based genotyping directly from blood, 96 individuals of Ashkenazi Jewish decent were genotyped for the same 60 mutations (5,760 genotypes in 5 hours) and resulted in a call rate of 98.38% and a diagnostic accuracy of 99.77%. Conclusion This study shows that accurate qPCR-based high-throughput genotyping can be performed without DNA purification. The direct use of blood may further expedite the entire genotyping process, reduce costs, and avoid tracking errors which can occur during

  2. Real-time PCR based analysis of metal resistance genes in metal resistant Pseudomonas aeruginosa strain J007.

    PubMed

    Choudhary, Sangeeta; Sar, Pinaki

    2016-07-01

    A uranium (U)-resistant and -accumulating Pseudomonas aeruginosa strain was characterized to assess the response of toxic metals toward its growth and expression of metal resistance determinants. The bacterium showed MIC (minimum inhibitory concentration) values of 6, 3, and 2 mM for Zn, Cu, and Cd, respectively; with resistance phenotype conferred by periplasmic Cu sequestering copA and RND type heavy metal efflux czcA genes. Real-time PCR-based expression analysis revealed significant upregulation of both these genes upon exposure to low concentrations of metals for short duration, whereas the global stress response gene sodA encoding superoxide dismutase enzyme was upregulated only at higher metal concentrations or longer exposure time. It could also be inferred that copA and czcA are involved in providing resistance only at low metal concentrations, whereas involvement of "global stress response" phenomenon (expression of sodA) at higher metal concentration or increased exposure was evident. This study provides significant understanding of the adaptive response of bacteria surviving in metal and radionuclide contaminated environments along with the development of real-time PCR-based quantification method of using metal resistance genes as biomarker for monitoring relevant bacteria in such habitats. PMID:26662317

  3. Real-Time Monitoring of Active Landslides

    USGS Publications Warehouse

    Reid, Mark E.; LaHusen, Richard G.; Ellis, William L.

    1999-01-01

    Landslides threaten lives and property in every State in the Nation. To reduce the risk from active landslides, the U.S. Geological Survey (USGS) develops and uses real-time landslide monitoring systems. Monitoring can detect early indications of rapid, catastrophic movement. Up-to-the-minute or real-time monitoring provides immediate notification of landslide activity, potentially saving lives and property. Continuous information from real-time monitoring also provides a better understanding of landslide behavior, enabling engineers to create more effective designs for halting landslide movement.

  4. Real-time monitoring of landslides

    USGS Publications Warehouse

    Reid, Mark E.; LaHusen, Richard G.; Baum, Rex L.; Kean, Jason W.; Schulz, William H.; Highland, Lynn M.

    2012-01-01

    Landslides cause fatalities and property damage throughout the Nation. To reduce the impact from hazardous landslides, the U.S. Geological Survey develops and uses real-time and near-real-time landslide monitoring systems. Monitoring can detect when hillslopes are primed for sliding and can provide early indications of rapid, catastrophic movement. Continuous information from up-to-the-minute or real-time monitoring provides prompt notification of landslide activity, advances our understanding of landslide behavior, and enables more effective engineering and planning efforts.

  5. European validation of a real-time PCR-based method for detection of Listeria monocytogenes in soft cheese.

    PubMed

    Gianfranceschi, Monica Virginia; Rodriguez-Lazaro, David; Hernandez, Marta; González-García, Patricia; Comin, Damiano; Gattuso, Antonietta; Delibato, Elisabetta; Sonnessa, Michele; Pasquali, Frederique; Prencipe, Vincenza; Sreter-Lancz, Zuzsanna; Saiz-Abajo, María-José; Pérez-De-Juan, Javier; Butrón, Javier; Kozačinski, Lidija; Tomic, Danijela Horvatek; Zdolec, Nevijo; Johannessen, Gro S; Jakočiūnė, Džiuginta; Olsen, John Elmerdahl; De Santis, Paola; Lovari, Sarah; Bertasi, Barbara; Pavoni, Enrico; Paiusco, Antonella; De Cesare, Alessandra; Manfreda, Gerardo; De Medici, Dario

    2014-08-01

    The classical microbiological method for detection of Listeria monocytogenes requires around 7 days for final confirmation, and due to perishable nature of RTE food products, there is a clear need for an alternative methodology for detection of this pathogen. This study presents an international (at European level) ISO 16140-based validation trial of a non-proprietary real-time PCR-based methodology that can generate final results in the following day of the analysis. This methodology is based on an ISO compatible enrichment coupled to a bacterial DNA extraction and a consolidated real-time PCR assay. Twelve laboratories from six European countries participated in this trial, and soft cheese was selected as food model since it can represent a difficult matrix for the bacterial DNA extraction and real-time PCR amplification. The limit of detection observed was down to 10 CFU per 25 of sample, showing excellent concordance and accordance values between samples and laboratories (>75%). In addition, excellent values were obtained for relative accuracy, specificity and sensitivity (82.75%, 96.70% and 97.62%, respectively) when the results obtained for the real-time PCR-based methods were compared to those of the ISO 11290-1 standard method. An interesting observation was that the L. monocytogenes detection by the real-time PCR method was less affected in the presence of Listeria innocua in the contaminated samples, proving therefore to be more reliable than the reference method. The results of this international trial demonstrate that the evaluated real-time PCR-based method represents an excellent alterative to the ISO standard since it shows a higher performance as well as reduce the extent of the analytical process, and can be easily implemented routinely by the competent authorities and food industry laboratories. PMID:24468028

  6. Differential diagnosis of Brucella abortus by real-time PCR based on a single-nucleotide polymorphisms

    PubMed Central

    KIM, Ji-Yeon; KANG, Sung-Il; LEE, Jin Ju; LEE, Kichan; SUNG, So-Ra; ERDENEBAATAAR, Janchivdorj; VANAABAATAR, Batbaatar; JUNG, Suk Chan; PARK, Yong Ho; YOO, Han-Sang; HER, Moon

    2015-01-01

    To diagnose brucellosis effectively, many genus- and species-specific detection methods based on PCR have been developed. With conventional PCR assays, real-time PCR techniques have been developed as rapid diagnostic tools. Among them, real-time PCR using hybridization probe (hybprobe) has been recommended for bacteria with high DNA homology among species, with which it is possible to make an accurate diagnosis by means of an amplification curve and melting peak analysis. A hybprobe for B. abortus was designed from a specific single-nucleotide polymorphism (SNP) on the fbaA gene. This probe only showed specific amplification of B. abortus from approximately the 14th cycle, given a melting peak at 69°C. The sensitivity of real-time PCR was revealed to be 20 fg/µl by 10-fold DNA dilution, and the detection limit was 4 CFU in clinical samples. This real-time PCR showed greater sensitivity than that of conventional PCR and previous real-time PCR based on Taqman probe. Therefore, this new real-time PCR assay could be helpful for differentiating B. abortus infection with rapidity and accuracy. PMID:26666176

  7. Differential diagnosis of Brucella abortus by real-time PCR based on a single-nucleotide polymorphisms.

    PubMed

    Kim, Ji-Yeon; Kang, Sung-Il; Lee, Jin Ju; Lee, Kichan; Sung, So-Ra; Erdenebaataar, Janchivdorj; Vanaabaatar, Batbaatar; Jung, Suk Chan; Park, Yong Ho; Yoo, Han-Sang; Her, Moon

    2016-05-01

    To diagnose brucellosis effectively, many genus- and species-specific detection methods based on PCR have been developed. With conventional PCR assays, real-time PCR techniques have been developed as rapid diagnostic tools. Among them, real-time PCR using hybridization probe (hybprobe) has been recommended for bacteria with high DNA homology among species, with which it is possible to make an accurate diagnosis by means of an amplification curve and melting peak analysis. A hybprobe for B. abortus was designed from a specific single-nucleotide polymorphism (SNP) on the fbaA gene. This probe only showed specific amplification of B. abortus from approximately the 14th cycle, given a melting peak at 69°C. The sensitivity of real-time PCR was revealed to be 20 fg/µl by 10-fold DNA dilution, and the detection limit was 4 CFU in clinical samples. This real-time PCR showed greater sensitivity than that of conventional PCR and previous real-time PCR based on Taqman probe. Therefore, this new real-time PCR assay could be helpful for differentiating B. abortus infection with rapidity and accuracy. PMID:26666176

  8. Real-time optoacoustic monitoring during thermotherapy

    NASA Astrophysics Data System (ADS)

    Esenaliev, Rinat O.; Larina, Irina V.; Larin, Kirill V.; Motamedi, Massoud

    2000-05-01

    Optoacoustic monitoring of tissue optical properties and speed of sound in real time can provide fast and accurate feedback information during thermotherapy performed with various heating or cooling agents. Amplitude and temporal characteristics of optoacoustic pressure waves are dependent on tissue properties. Detection and measurement of the optoacoustic waves may be used to monitor the extent of tissue hyperthermia, coagulation, or freezing with high resolution and contrast. We studied real-time optoacoustic monitoring of thermal coagulation induced by conductive heating and laser radiation and cryoablation with liquid nitrogen. Q-switched Nd:YAG laser pulses were used as probing radiation to induce optoacoustic waves in tissues. Dramatic changes in optoacoustic signal parameters were detected during tissue freezing and coagulation due to sharp changes in tissue properties. The dimensions of thermally- induced lesions were measured in real time with the optoacoustic technique. Our studies demonstrated that the laser optoacoustic technique is capable of real-time monitoring of tissue coagulation and freezing front with submillimeter spatial resolution. This may allow accurate thermal ablation or cryotherapy of malignant and benign lesions with minimal damage to normal tissues.

  9. Detection of salmonella using a real-time PCR based on molecular beacons

    NASA Astrophysics Data System (ADS)

    Chen, Wilfred; Martinez, Grisselle; Mulchandani, Ashok

    2000-03-01

    Molecular beacons are oligonucleotide probes that become fluorescent upon hybridization. We developed a new approach to detect the presence of Salmonella species using these fluorogenic reporter molecules and demonstrated their ability to discriminate between similar E. coli species in real-time PCR assays. A detection limit of 1 CFU per PCR reaction was obtained. The assays were carried out entirely in sealed PCR tubes, enabling fast and direct detection in a semiautomated format.

  10. Integrated sorting, concentration and real time PCR based detection system for sensitive detection of microorganisms

    PubMed Central

    Nayak, Monalisha; Singh, Deepak; Singh, Himanshu; Kant, Rishi; Gupta, Ankur; Pandey, Shashank Shekhar; Mandal, Swarnasri; Ramanathan, Gurunath; Bhattacharya, Shantanu

    2013-01-01

    The extremely low limit of detection (LOD) posed by global food and water safety standards necessitates the need to perform a rapid process of integrated detection with high specificity, sensitivity and repeatability. The work reported in this article shows a microchip platform which carries out an ensemble of protocols which are otherwise carried in a molecular biology laboratory to achieve the global safety standards. The various steps in the microchip include pre-concentration of specific microorganisms from samples and a highly specific real time molecular identification utilizing a q-PCR process. The microchip process utilizes a high sensitivity antibody based recognition and an electric field mediated capture enabling an overall low LOD. The whole process of counting, sorting and molecular identification is performed in less than 4 hours for highly dilute samples. PMID:24253282

  11. Integrated sorting, concentration and real time PCR based detection system for sensitive detection of microorganisms

    NASA Astrophysics Data System (ADS)

    Nayak, Monalisha; Singh, Deepak; Singh, Himanshu; Kant, Rishi; Gupta, Ankur; Pandey, Shashank Shekhar; Mandal, Swarnasri; Ramanathan, Gurunath; Bhattacharya, Shantanu

    2013-11-01

    The extremely low limit of detection (LOD) posed by global food and water safety standards necessitates the need to perform a rapid process of integrated detection with high specificity, sensitivity and repeatability. The work reported in this article shows a microchip platform which carries out an ensemble of protocols which are otherwise carried in a molecular biology laboratory to achieve the global safety standards. The various steps in the microchip include pre-concentration of specific microorganisms from samples and a highly specific real time molecular identification utilizing a q-PCR process. The microchip process utilizes a high sensitivity antibody based recognition and an electric field mediated capture enabling an overall low LOD. The whole process of counting, sorting and molecular identification is performed in less than 4 hours for highly dilute samples.

  12. Real Time Radiation Monitoring Using Nanotechnology

    NASA Technical Reports Server (NTRS)

    Li, Jing (Inventor); Wilkins, Richard T. (Inventor); Hanratty, James J. (Inventor); Lu, Yijiang (Inventor)

    2016-01-01

    System and method for monitoring receipt and estimating flux value, in real time, of incident radiation, using two or more nanostructures (NSs) and associated terminals to provide closed electrical paths and to measure one or more electrical property change values .DELTA.EPV, associated with irradiated NSs, during a sequence of irradiation time intervals. Effects of irradiation, without healing and with healing, of the NSs, are separately modeled for first order and second order healing. Change values.DELTA.EPV are related to flux, to cumulative dose received by NSs, and to radiation and healing effectivity parameters and/or.mu., associated with the NS material and to the flux. Flux and/or dose are estimated in real time, based on EPV change values, using measured .DELTA.EPV values. Threshold dose for specified changes of biological origin (usually undesired) can be estimated. Effects of time-dependent radiation flux are analyzed in pre-healing and healing regimes.

  13. Real-time monitoring system for microfluidics

    NASA Astrophysics Data System (ADS)

    Sapuppo, F.; Cantelli, G.; Fortuna, L.; Arena, P.; Bucolo, M.

    2007-05-01

    A new non-invasive real-time system for the monitoring and control of microfluidodynamic phenomena is proposed. The general purpose design of such system is suitable for in vitro and in vivo experimental setup and therefore for microfluidic application in the biomedical field such as lab-on-chip and for research studies in the field of microcirculation. The system consists of an ad hoc optical setup for image magnification providing images suitable for image acquisition and processing. The optic system was designed and developed using discrete opto-mechanic components mounted on a breadboard in order to provide an optic path accessible at any point where the information needs to be acquired. The optic sensing, acquisition, and processing were performed using an integrated vision system based on the Cellular Nonlinear Networks (CNNs) analogic technology called Focal Plane Processor (FPP, Eye-RIS, Anafocus) and inserted in the optic path. Ad hoc algorithms were implemented for the real-time analysis and extraction of fluido-dynamic parameters in micro-channels. They were tested on images recorded during in vivo microcirculation experiments on hamsters and then they were applied on images optically acquired and processed in real-time during in vitro experiments on a continuous microfluidic device (serpentine mixer, ThinXXS) with a two-phase fluid.

  14. Real-Time PCR-Based Quantitation Method for the Genetically Modified Soybean Line GTS 40-3-2.

    PubMed

    Kitta, Kazumi; Takabatake, Reona; Mano, Junichi

    2016-01-01

    This chapter describes a real-time PCR-based method for quantitation of the relative amount of genetically modified (GM) soybean line GTS 40-3-2 [Roundup Ready(®) soybean (RRS)] contained in a batch. The method targets a taxon-specific soybean gene (lectin gene, Le1) and the specific DNA construct junction region between the Petunia hybrida chloroplast transit peptide sequence and the Agrobacterium 5-enolpyruvylshikimate-3-phosphate synthase gene (epsps) sequence present in GTS 40-3-2. The method employs plasmid pMulSL2 as a reference material in order to quantify the relative amount of GTS 40-3-2 in soybean samples using a conversion factor (Cf) equal to the ratio of the RRS-specific DNA to the taxon-specific DNA in representative genuine GTS 40-3-2 seeds. PMID:26614294

  15. In-line real time air monitor

    DOEpatents

    Wise, M.B.; Thompson, C.V.

    1998-07-14

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds. 3 figs.

  16. In-line real time air monitor

    DOEpatents

    Wise, Marcus B.; Thompson, Cyril V.

    1998-01-01

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds.

  17. Terrestrial Real-Time Volcano Monitoring

    NASA Astrophysics Data System (ADS)

    Franke, M.

    2013-12-01

    As volcano monitoring involves more and different sensors from seismic to GPS receivers, from video and thermal cameras to multi-parameter probes measuring temperature, ph values and humidity in the ground and the air, it becomes important to design real-time networks that integrate and leverage the multitude of available parameters. In order to do so some simple principles need to be observed: a) a common time base for all measurements, b) a packetized general data communication protocol for acquisition and distribution, c) an open and well documented interface to the data permitting standard and emerging innovative processing, and d) an intuitive visualization platform for scientists and civil defense personnel. Although mentioned as simple principles, the list above does not necessarily lead to obvious solutions or integrated systems, which is, however, required to take advantage of the available data. Only once the different data streams are put into context to each other in terms of time and location can a broader view be obtained and additional information extracted. The presentation is a summary of currently available technologies and how they can achieve the goal of an integrated real-time volcano monitoring system. A common time base are standard for seismic and GPS networks. In different projects we extended this to video feeds and time-lapse photography. Other probes have been integrated with vault interface enclosures (VIE) as used in the Transportable Array (TA) of the USArray. The VIE can accommodate the sensors employed in volcano monitoring. The TA has shown that Antelope is a versatile and robust middleware. It provides the required packetized general communication protocol that is independent from the actual physical communication link leaving the network design to adopt appropriate and possible hybrid solutions. This applies for the data acquisition and the data/information dissemination providing both a much needed collaboration platform, as

  18. Cerebral Autoregulation Real-Time Monitoring

    PubMed Central

    Tsalach, Adi; Ratner, Eliahu; Lokshin, Stas; Silman, Zmira; Breskin, Ilan; Budin, Nahum; Kamar, Moshe

    2016-01-01

    Cerebral autoregulation is a mechanism which maintains constant cerebral blood flow (CBF) despite changes in mean arterial pressure (MAP). Assessing whether this mechanism is intact or impaired and determining its boundaries is important in many clinical settings, where primary or secondary injuries to the brain may occur. Herein we describe the development of a new ultrasound tagged near infra red light monitor which tracks CBF trends, in parallel, it continuously measures blood pressure and correlates them to produce a real time autoregulation index. Its performance is validated in both in-vitro experiment and a pre-clinical case study. Results suggest that using such a tool, autoregulation boundaries as well as its impairment or functioning can be identified and assessed. It may therefore assist in individualized MAP management to ensure adequate organ perfusion and reduce the risk of postoperative complications, and might play an important role in patient care. PMID:27571474

  19. High sensitivity real-time NVR monitor

    NASA Technical Reports Server (NTRS)

    Bowers, William D. (Inventor); Chuan, Raymond L. (Inventor)

    1997-01-01

    A real time non-volatile residue (NVR) monitor, which utilizes surface acoustic wave (SAW) resonators to detect molecular contamination in a given environment. The SAW resonators operate at a resonant frequency of approximately 200 MHz-2,000 MHz which enables the NVR monitor to detect molecular contamination on the order of 10.sup.-11 g-cm.sup.-2 to 10.sup.-13 g-cm.sup.2. The NVR monitor utilizes active temperature control of (SAW) resonators to achieve a stable resonant frequency. The temperature control system of the NVR monitor is able to directly heat and cool the SAW resonators utilizing a thermoelectric element to maintain the resonators at a present temperature independent of the environmental conditions. In order to enable the direct heating and cooling of the SAW resonators, the SAW resonators are operatively mounted to a heat sink. In one embodiment, the heat sink is located in between the SAW resonators and an electronic circuit board which contains at least a portion of the SAW control electronics. The electrical leads of the SAW resonators are connected through the heat sink to the circuit board via an electronic path which prevents inaccurate frequency measurement.

  20. Passive Global, Real-Time TEC Monitoring

    NASA Astrophysics Data System (ADS)

    Pongratz, M. B.

    2002-12-01

    Sensors are being developed to provide a satellite-based VHF global lightning monitor (e.g. Suszcynsky, et al., "VHF Global Lightning and Severe Storm Monitoring from Space: Storm-level Characterization of VHF Lightning Emissions," EOS Trans. AGU 2001 Fall Mt. Prog. And Abstr. 82, No. 47, F143, 2001). Dispersive effects of propagation of the lightning electromagnetic wave through the ionospheric and plasmaspheric plasmas cause the higher frequency components to arrive at the satellite before lower frequency components. From the time-of-arrival at several frequencies we can derive the TEC between the satellite and the lightning. Using multi-satellite techniques we can geolocate the lightning and the ionospheric penetration point quite accurately. A single ground station could provide essentially real-time regional TEC coverage. Four ground stations could provide global, real-time TEC measurements to supplement existing ground-based systems, especially over broad ocean areas. We expect several lightning detections per satellite per minute. Temporal resolution will be limited only by ground segment processing. Spatial coverage and resolution will be limited by lightning occurrence, but many commercial sector TEC requirements are also correlated to lightning occurrence. With our FORTE (Fast On-orbit Recording of Transient Events) satellite we sense lightning over most of the globe including the oceans. We expect to determine TEC spatial gradients with tens of km resolution. This capability should be especially useful in severe convective weather to aircraft using GPS-based navigation, e.g. the FAA's Wide Area Augmentation System (WAAS).

  1. Real Time Monitor of Grid job executions

    NASA Astrophysics Data System (ADS)

    Colling, D. J.; Martyniak, J.; McGough, A. S.; Křenek, A.; Sitera, J.; Mulač, M.; Dvořák, F.

    2010-04-01

    In this paper we describe the architecture and operation of the Real Time Monitor (RTM), developed by the Grid team in the HEP group at Imperial College London. This is arguably the most popular dissemination tool within the EGEE [1] Grid. Having been used, on many occasions including GridFest and LHC inauguration events held at CERN in October 2008. The RTM gathers information from EGEE sites hosting Logging and Bookkeeping (LB) services. Information is cached locally at a dedicated server at Imperial College London and made available for clients to use in near real time. The system consists of three main components: the RTM server, enquirer and an apache Web Server which is queried by clients. The RTM server queries the LB servers at fixed time intervals, collecting job related information and storing this in a local database. Job related data includes not only job state (i.e. Scheduled, Waiting, Running or Done) along with timing information but also other attributes such as Virtual Organization and Computing Element (CE) queue - if known. The job data stored in the RTM database is read by the enquirer every minute and converted to an XML format which is stored on a Web Server. This decouples the RTM server database from the client removing the bottleneck problem caused by many clients simultaneously accessing the database. This information can be visualized through either a 2D or 3D Java based client with live job data either being overlaid on to a 2 dimensional map of the world or rendered in 3 dimensions over a globe map using OpenGL.

  2. 17 CFR 38.157 - Real-time market monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false Real-time market monitoring... DESIGNATED CONTRACT MARKETS Compliance With Rules § 38.157 Real-time market monitoring. A designated contract market must conduct real-time market monitoring of all trading activity on its electronic...

  3. 17 CFR 38.157 - Real-time market monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 1 2014-04-01 2014-04-01 false Real-time market monitoring... DESIGNATED CONTRACT MARKETS Compliance With Rules § 38.157 Real-time market monitoring. A designated contract market must conduct real-time market monitoring of all trading activity on its electronic...

  4. Real-time optoacoustic monitoring of stroke

    NASA Astrophysics Data System (ADS)

    Kneipp, Moritz; Turner, Jake; Hambauer, Sebastian; Krieg, Sandro M.; Lehmberg, Jens; Lindauer, Ute; Razansky, Daniel

    2014-03-01

    Characterizing disease progression and identifying possible therapeutic interventions in stroke is greatly aided by the use of longitudinal function imaging studies. In this study, we investigate the applicability of real-time multispectral optoacoustic tomography (MSOT) as a tool for non-invasive monitoring of the progression of stroke in the whole brain. The middle cerebral artery occlusion (MCAO) method was used to induce stroke. Mice were imaged under isoflurane anesthesia preoperatively and at several time points during and after the 60-minute occlusion. The animals were sacrificed after 24 hours and their excised brains frozen at -80°C for sectioning. The cryosection were stained using H&E staining to identify the ischemic lesion. Major vessels are readily identifiable in the whole mouse head in the in vivo optoacoustic scans. During ischemia, a reduction in cerebral blood volume is detectable in the cortex. Post ischemia, spectral unmixing of the optoacoustic signals shows an asymmetry of the deoxygenated hemoglobin in the hemisphere affected by MCAO. This hypoxic area was mainly located around the boundary of the ischemic lesion and was therefore identified as the ischemic penumbra. Non-invasive functional MSOT imaging is able to visualize the hypoxic penumbra in brains affected by stroke. Stopping the spread of the infarct area and revitalizing the penumbra is central in stroke research, this new imaging technique may therefore prove to be a valuable tool in the monitoring and developing new treatments.

  5. Real time monitoring of electroless nickel plating

    NASA Astrophysics Data System (ADS)

    Rains, Aaron E.; Kline, Ronald A.

    2013-01-01

    This work deals with the design and manufacturing of the heat and chemical resistant transducer case required for on-line immersion testing, experimental design, data acquisition and signal processing. Results are presented for several depositions with an accuracy of two ten-thousandths of an inch in coating thickness obtained. Monitoring the deposition rate of Electroless Nickel (EN) plating in-situ will provide measurement of the accurate dimensions of the component being plated, in real time. EN is used as for corrosion and wear protection for automotive an - Electroless Nickel (EN) plating is commonly used for corrosion and wear protection for automotive and aerospace components. It plates evenly and symmetrically, theoretically allowing the part to be plated to its final dimension. Currently the standard approach to monitoring the thickness of the deposited nickel is to remove the component from the plating bath and physically measure the part. This can lead to plating problems such as pitting, non-adhesion of the deposit and contamination of the plating solution. The goal of this research effort is to demonstrate that plating thickness can be rapidly and accurately measured using ultrasonic testing. Here a special housing is designed to allow immersion of the ultrasonic transducers directly into the plating bath. An FFT based signal processing algorithm was developed to resolve closely spaced echoes for precise thickness determination. The technique in this research effort was found to be capable of measuring plating thicknesses to within 0.0002 inches. It is expected that this approach will lead to cost savings in many EN plating operations.

  6. Real-time GPS monitoring throughout Cascadia

    NASA Astrophysics Data System (ADS)

    Melbourne, T. I.; Santillan, V. M.; Scrivner, C. W.; Szeliga, W. M.; Webb, F.; Abundiz, S.

    2012-12-01

    Over 400 GPS receivers of the combined PANGA and PBO networks currently operate along the Cascadia subduction zone, all of which are high-rate and telemetered in real-time. These receivers span the M9 megathrust, M7 crustal faults beneath population centers, several active Cascades volcanoes, and a host of other hazard sources, and together enable a host of new approaches towards hazards mitigation. Data from the majority of the stations is received in real time at CWU and processed into one-second position estimates using 1) relative positioning within several reference frames constrained by 2) absolute point positioning using streamed satellite orbit and clock corrections. While the former produces lower-noise time series, for earthquakes greater than ~M7 and ground displacements exceeding ~20 cm, point positioning alone is shown to provide very rapid and robust estimates of the location and amplitude of both dynamic strong ground motion and permanent deformation. Raw phase and range observables from stations throughout Cascadia are being processed in real time at JPL and CWU into station positions, which in turn are analyzed also in real-time for earthquake processes at CWU. Our efforts can be broken down into three distinct areas: 1) Real-time point-positioning methodologies, 2) a data aggregator that captures real-time position streams from a variety of processing centers and methodologies (JPL RTGipsy, CWU rtPP, Trimble VRS) and re-streams the data as configurable streams to application clients out anywhere on the web, and 3) a suite of analysis tools that operate on the real-time position streams, including plotting, vectors, peak ground deformation contouring, and finite-fault inversions. This suite is currently bundled within a single client written in JAVA, called 'GPS Cockpit.'

  7. Instrumentation development for real time brainwave monitoring.

    SciTech Connect

    Anderson, Lawrence Frederick; Clough, Benjamin W.

    2005-12-01

    The human brain functions through a chemically-induced biological process which operates in a manner similar to electrical systems. The signal resulting from this biochemical process can actually be monitored and read using tools and having patterns similar to those found in electrical and electronics engineering. The primary signature of this electrical activity is the ''brain wave'', which looks remarkably similar to the output of many electrical systems. Likewise, the device currently used in medical arenas to read brain electrical activity is the electroencephalogram (EEG) which is synonymous with a multi-channel oscilloscope reading. Brain wave readings and recordings for medical purposes are traditionally taken in clinical settings such as hospitals, laboratories or diagnostic clinics. The signal is captured via externally applied scalp electrodes using semi-viscous gel to reduce impedance. The signal will be in the 10 to 100 microvolt range. In other instances, where surgeons are attempting to isolate particular types of minute brain signals, the electrodes may actually be temporarily implanted in the brain during a preliminary procedure. The current configurations of equipment required for EEGs involve large recording instruments, many electrodes, wires, and large amounts of hard disk space devoted to storing large files of brain wave data which are then eventually analyzed for patterns of concern. Advances in sensors, signal processing, data storage and microelectronics over the last decade would seem to have paved the way for the realization of devices capable of ''real time'' external monitoring, and possible assessment, of brain activity. A myriad of applications for such a capability are likewise presenting themselves, including the ability to assess brain functioning, level of functioning and malfunctioning. Our plan is to develop the sensors, signal processing, and portable instrumentation package which could capture, analyze, and communicate

  8. A Quantitative Real-Time PCR-Based Strategy for Molecular Evaluation of Nicotine Conversion in Burley Tobacco

    PubMed Central

    Sun, Bo; Xue, Sheng-Ling; Zhang, Fen; Luo, Zhao-Peng; Wu, Ming-Zhu; Chen, Qing; Tang, Hao-Ru; Lin, Fu-Cheng; Yang, Jun

    2015-01-01

    Nornicotine production in Nicotiana tabacum is undesirable because it is the precursor of the carcinogen N′-nitrosonornicotine. In some individual burley tobacco plants, a large proportion of the nicotine can be converted to nornicotine, and this process of nicotine conversion is mediated primarily by enzymatic N-demethylation of nicotine which is controlled mainly by CYP82E4. Here we report a novel strategy based on quantitative real-time polymerase chain reaction (qPCR) method, which analyzed the ratio of nicotine conversion through examining the transcript level of CYP82E4 in burley leaves and do not need ethylene induction before detected. The assay was linear in a range from 1 × 101 to 1 × 105 copies/mL of serially diluted standards, and also showed high specificity and reproducibility (93%–99%). To assess its applicability, 55 plants of burley cultivar Ky8959 at leaf maturing stage were analyzed, and the results were in accordance with those from gas chromatograph-mass spectrometry (GC-MS) method. Moreover, a linear correlation existed between conversion level and CYP82E4 transcript abundance. Taken together, the quantitative real-time PCR assay is standardized, rapid and reproducible for estimation of nicotine conversion level in vivo, which is expected to shed new light on monitoring of burley tobacco converter. PMID:26593897

  9. Real-Time Flight Envelope Monitoring System

    NASA Technical Reports Server (NTRS)

    Kerho, Michael; Bragg, Michael B.; Ansell, Phillip J.

    2012-01-01

    The objective of this effort was to show that real-time aircraft control-surface hinge-moment information could be used to provide a robust and reliable prediction of vehicle performance and control authority degradation. For a given airfoil section with a control surface -- be it a wing with an aileron, rudder, or elevator -- the control-surface hinge moment is sensitive to the aerodynamic characteristics of the section. As a result, changes in the aerodynamics of the section due to angle-of-attack or environmental effects such as icing, heavy rain, surface contaminants, bird strikes, or battle damage will affect the control surface hinge moment. These changes include both the magnitude of the hinge moment and its sign in a time-averaged sense, and the variation of the hinge moment with time. The current program attempts to take the real-time hinge moment information from the aircraft control surfaces and develop a system to predict aircraft envelope boundaries across a range of conditions, alerting the flight crew to reductions in aircraft controllability and flight boundaries.

  10. REAL-TIME ENVIRONMENTAL MONITORING: APPLICATIONS FOR HOMELAND SECURITY

    EPA Science Inventory

    Real-time monitoring technology developed as part of the EMPACT program has a variety of potential applications. These tools can measure a variety of potential contaminants in the air, water, in buildings, or in the soil. Real-time monitoring technology allows these detection sys...

  11. Development of a high-throughput real time PCR based on a hot-start alternative for Pfu mediated by quantum dots

    NASA Astrophysics Data System (ADS)

    Sang, Fuming; Yang, Yang; Yuan, Lin; Ren, Jicun; Zhang, Zhizhou

    2015-09-01

    Hot start (HS) PCR is an excellent alternative for high-throughput real time PCR due to its ability to prevent nonspecific amplification at low temperature. Development of a cost-effective and simple HS PCR technique to guarantee high-throughput PCR specificity and consistency still remains a great challenge. In this study, we systematically investigated the HS characteristics of QDs triggered in real time PCR with EvaGreen and SYBR Green I dyes by the analysis of amplification curves, standard curves and melting curves. Two different kinds of DNA polymerases, Pfu and Taq, were employed. Here we showed that high specificity and efficiency of real time PCR were obtained in a plasmid DNA and an error-prone two-round PCR assay using QD-based HS PCR, even after an hour preincubation at 50 °C before real time PCR. Moreover, the results obtained by QD-based HS PCR were comparable to a commercial Taq antibody DNA polymerase. However, no obvious HS effect of QDs was found in real time PCR using Taq DNA polymerase. The findings of this study demonstrated that a cost-effective high-throughput real time PCR based on QD triggered HS PCR could be established with high consistency, sensitivity and accuracy.Hot start (HS) PCR is an excellent alternative for high-throughput real time PCR due to its ability to prevent nonspecific amplification at low temperature. Development of a cost-effective and simple HS PCR technique to guarantee high-throughput PCR specificity and consistency still remains a great challenge. In this study, we systematically investigated the HS characteristics of QDs triggered in real time PCR with EvaGreen and SYBR Green I dyes by the analysis of amplification curves, standard curves and melting curves. Two different kinds of DNA polymerases, Pfu and Taq, were employed. Here we showed that high specificity and efficiency of real time PCR were obtained in a plasmid DNA and an error-prone two-round PCR assay using QD-based HS PCR, even after an hour

  12. Real-time sewer effluent monitoring system

    SciTech Connect

    Koopman, S.; Yamauchi, R.K.

    1990-12-01

    Lawrence Livermore National Laboratory has upgraded its early sewer monitoring system from the 1970's. LLNL must insure that its waste water is of a consistent and acceptable nature for the City of Livermore's community sewer system. The Sewer Monitor UpGrade system (SMUG) is now monitoring the Lab's sewer effluent. SMUG monitors the effluent for pH, flow rate, metals, and alpha, beta and gamma emitting isotopes. It turns on the appropriate alarms if present alarm levels are exceeded. The hardware consists of DEC Micro VAX II/GPX that has been repackaged by Nuclear Data Company as the Genie 9900 Data Acquisition and Display System. The gamma detector, three XRFAs, pH meter, and flow rate meter are commercially available. The metals sample cells are custom built at the Lab. The operating system is the VMS version 5.4. The application software is written in DEC's Fortran-77 and MACRO, and Nuclear Data software library. 3 refs., 3 figs.

  13. Expert systems for real-time monitoring and fault diagnosis

    NASA Technical Reports Server (NTRS)

    Edwards, S. J.; Caglayan, A. K.

    1989-01-01

    Methods for building real-time onboard expert systems were investigated, and the use of expert systems technology was demonstrated in improving the performance of current real-time onboard monitoring and fault diagnosis applications. The potential applications of the proposed research include an expert system environment allowing the integration of expert systems into conventional time-critical application solutions, a grammar for describing the discrete event behavior of monitoring and fault diagnosis systems, and their applications to new real-time hardware fault diagnosis and monitoring systems for aircraft.

  14. Integrated Real Time Contamination Monitor IRTCM

    NASA Technical Reports Server (NTRS)

    Luttges, W. E.

    1976-01-01

    Engineering and design work was performed on a monitoring device for particulate and gas contamination to be used in the space shuttle cargo area during launch at altitudes up to 50 km and during return phases of the flight. The gas sampling device consists of ampules filled with specific absorber materials which are opened and/or sealed at preprogrammed intervals. The design eliminates the use of valves which, according to experiments, are never sealing properly at hard vacuum. Methods of analysis including in-flight measuring possibilities are discussed.

  15. Real-time alkali monitoring system

    DOEpatents

    Goff, David R.; Romanosky, Robert R.; Hensel, Peter

    1990-01-01

    A fiber optics based optical emission line monitoring system is provided in which selected spectral emission lines, such as the sodium emission line, may be detected in the presence of interfering background radiation. A combustion flame is fed by a diverted portion of a process stream and the common end of a bifurcated or quadfurcated fiber optic light guide is adapted to collect light from the flame. The light is guided through the branches of the fiber optic cable to bandpass filters, one of which is adapted to each of the branches of the fiber optic light guide. The bandpass filters are centered at wavelengths corresponding to the emission lines to be detected and two separate filters are required for each species being detected. The first filter has a bandwidth of about 3 nms and the second filter has a bandwidth of about 10 nms. Light detectors are located to view the light passing through the bandpass filters and amplifiers are connected to receive signals from the light detectors. The amplifier corresponding to the bandpass filter having the narrower bandwidth is preset to scale the signal by a factor equal to the ratio of the wide and narrow bandwidths of the bandpass filters. This scaling produces a scaled signal from which the difference between the scaled signal on the other signal can be calculated to produce a signal having an amplitude directly proportional to the concentration of the species of interest and independent of background radiation.

  16. Optimization of a Real Time PCR based method for the detection of Listeria monocytogenes in pork meat.

    PubMed

    Gattuso, Antonietta; Gianfranceschi, Monica Virginia; Sonnessa, Michele; Delibato, Elisabetta; Marchesan, Massimo; Hernandez, Marta; De Medici, Dario; Rodriguez-Lazaro, David

    2014-08-01

    The aim of this study was to optimize a Real-Time PCR protocol for a rapid detection of Listeria monocytogenes in pork meat, using reduced volumes of primary selective enrichment broth and times of incubation to decrease the cost and time for analysis. Forty-five samples of pork meat were artificially contaminated with two different levels of L. monocytogenes (1-10 CFU per sample and 10-100 CFU per sample), homogenized in three different volumes of Half Fraser Broth (1:3; 1:5 and 1:10) and incubated at 30°C ± 1°C for 5h, 8h and 24h. The detection was conducted in parallel by Real-Time PCR and the ISO standard 11290-1 methods. L. monocytogenes was detected in all the samples after 24h by Real-Time PCR method, also using reduced volumes of Half Fraser Broth. This represents a clear advantage as the time to final detection and the inherent costs were significantly reduced compared to the ISO reference method. All samples artificially contaminated were correctly detected also after 8 of incubation at 30°C ± 1°C in Half Fraser Broth and 24h in Fraser Broth at 37°C ± 1°C using cultural method. PMID:24835318

  17. Real-time earthquake monitoring: Early warning and rapid response

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A panel was established to investigate the subject of real-time earthquake monitoring (RTEM) and suggest recommendations on the feasibility of using a real-time earthquake warning system to mitigate earthquake damage in regions of the United States. The findings of the investigation and the related recommendations are described in this report. A brief review of existing real-time seismic systems is presented with particular emphasis given to the current California seismic networks. Specific applications of a real-time monitoring system are discussed along with issues related to system deployment and technical feasibility. In addition, several non-technical considerations are addressed including cost-benefit analysis, public perceptions, safety, and liability.

  18. Wide-area, real-time monitoring and visualization system

    DOEpatents

    Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

    2011-11-15

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  19. Wide-area, real-time monitoring and visualization system

    DOEpatents

    Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

    2013-03-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  20. Real-time performance monitoring and management system

    DOEpatents

    Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

    2007-06-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  1. Quantitative real-time PCR (qPCR)--based tool for detection and quantification of Cordyceps militaris in soil.

    PubMed

    Saragih, Syaiful Amri; Takemoto, S; Hisamoto, Y; Fujii, M; Sato, H; Kamata, N

    2015-01-01

    A quantitative real-time PCR using a primer pair CM2946F/CM3160R was developed for specific detection and quantification of Cordyceps militaris from soil. Standard curves were obtained for genomic DNA and DNA extracts from autoclaved soil with a certain dose of C. militaris suspension. C. militaris was detected from two forest soil samples out of ten that were collected when fruit bodies of C. militaris were found. This method seemed effective in detection of C. militaris in the soil and useful for rapid and reliable quantification of C. militaris in different ecosystems. PMID:25446034

  2. Real-time monitoring for low-level pollution

    SciTech Connect

    Kishkovich, O.P.; Joffe, M.A.

    1997-11-01

    Real-time monitors provide a valuable addition to the arsenal of air-sampling methods used for IAQ applications. They are accurate, dependable, flexible, and provide IAQ professionals with more detailed quantitative information. RTM improves efficiency of many IAQ sampling applications and, in some cases, cannot be matched by other sampling techniques. Adequate instrumentation for demanding IAQ applications is available today. Future needs are expanding the range of pollutants that can be monitored with real-time instruments, improving reliability and portability of monitoring instrumentation, and devising cost-effective multiplexing schemes for multi-point RTM sampling.

  3. Detection of Bacillus cereus with enteropathogenic potential by multiplex real-time PCR based on SYBR Green I.

    PubMed

    Wehrle, Esther; Didier, Andrea; Moravek, Maximilian; Dietrich, Richard; Märtlbauer, Erwin

    2010-06-01

    In order to meet the growing demand for fast and reliable detection of potentially toxinogenic Bacillus cereus, we developed a multiplex real-time PCR assay based on SYBR Green I with subsequent melting curve analysis. We designed and selected primers specific for genes of toxins responsible for diarrhoea (nheA, hblD and cytK1) and emesis (ces). A panel of 337 Bacillus strains was applied to the novel method on Light Cycler 2.0 with average melting temperature (T(m)) values of 73.85 degrees C (nheA), 87.01 degrees C (hblD), 78.66 degrees C (ces) and 82.19 degrees C (cytK1). An adapted version of the assay was also successfully run on Light Cycler 480 using one third (113 strains) of the total test panel. Verification of PCR results by conventional PCR as well as immunoassays and cytotoxicity tests gave an overall excellent correlation. Distinct melting peaks were only observed in B. cereus and B. cereus group strains but not in other Bacilli and Gram-positive or Gram-negative bacteria. Artificial contamination of three different food matrices with distinct bacterial counts revealed a detection limit of 10(1) CFU/g B. cereus cells after overnight enrichment. Thus, the novel multiplex real-time PCR turned out to be a reliable method for identification of B. cereus with enteropathogenic potential. PMID:19944752

  4. A multiprocessing architecture for real-time monitoring

    NASA Technical Reports Server (NTRS)

    Laffey, Thomas J.; Schmidt, James L.; Read, Jackson Y.; Kao, Simon M.

    1987-01-01

    A multiprocessing architecture for performing real time monitoring and analysis using knowledge-based problem solving techniques is discussed. To handle asynchronous inputs and perform in real time, the system consists of three or more separate processes which run concurrently on one or more processors and communicate via a message passing scheme. The Data Management Process gathers, compresses, scales and sends the incoming telemetry data to other tasks. The Inference Process consists of a proprietary high performance inference engine that runs at 1000 rules per second using telemetry data to perform real time analysis on the state and health of the Space Telescope. The multiprocessing architecture has been interfaced to a simulator and is able to process the incoming telemetry in real time.

  5. Infrared Signature Analysis: Real Time Monitoring Of Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Bangs, Edmund R.

    1988-01-01

    The ability to monitor manufacturing processes in an adaptive control mode and perform an inspection in real time is of interest to fabricators in the pressure vessel, aerospace, automotive, nuclear and shipbuilding industries. Results of a series of experiments using infrared thermography as the principal sensing mode are presented to show how artificial intelligence contained in infrared isotherm, contains vast critical process variables. Image processing computer software development has demonstrated in a spot welding application how the process can be monitored and controlled in real time. The IR vision sensor program is now under way. Research thus far has focused on fusion welding, resistance spot welding and metal removal.

  6. Photoacoustic monitoring of real time blood and hemolymph sedimentation

    NASA Astrophysics Data System (ADS)

    Landa, A.; Alvarado-Gil, J. J.; Gutíerrez-Juárez, G.; Vargas-Luna, M.

    2003-01-01

    The dynamics of blood and hemolymph sedimentation is studied in real time using the photoacoustic technique. A modified configuration of a conventional photoacoustic cell is used, where the advantage of this methodology is that the sample is not illuminated directly and that the process can be monitored through the measurement of the thermal contact between a reference material and the blood. It is demonstrated that during the process the thermal effusivity decreases at the region of contact between the sample and the reference materials. The usefulness of these results in real time monitoring using photothermal techniques is discussed.

  7. Real-time PCR-based assay for quantitative detection of Hematodinium sp. in the blue crab Callinectes sapidus.

    PubMed

    Nagle, L; Place, A R; Schott, E J; Jagus, R; Messick, G; Pitula, J S

    2009-03-01

    Hematodinium sp. is a parasitic dinoflagellate infecting the blue crab Callinectes sapidus and other crustaceans. PCR-based assays are currently being used to identify infections in crabs that would have been undetectable by traditional microscopic examination. We therefore sought to define the limits of quantitative PCR (qPCR) detection within the context of field collection protocols. We present a qPCR assay based on the Hematodinium sp. 18S rRNA gene that can detect 10 copies of the gene per reaction. Analysis of a cell dilution series vs. defined numbers of a cloned Hematodinium sp. 18S rRNA gene suggests a copy number of 10,000 per parasite and predicts a sensitivity of 0.001 cell equivalents. In practice, the assays are based on analysis of 1% of the DNA extracted from 200 microl of serum, yielding a theoretical detection limit of 5 cells ml(-1) hemolymph, assuming that 1 cell is present per sample. When applied to a limited field survey of blue crabs collected in Maryland coastal bays from May to August 2005, 24 of 128 crabs (18.8%) were identified as positive for Hematodinium sp. infection using qPCR. In comparison, only 6 of 128 crabs (4.7%) were identified as positive using traditional hemolymph microscopic examination. The qPCR method also detected the parasite in gill, muscle, heart and hepatopancreas tissues, with 17.2% of the crabs showing infection in at least one of these tissues. Importantly, it is now possible to enumerate parasites within defined quantities of crab tissue, which permits collection of more detailed information on the epizootiology of the pathogen. PMID:19419009

  8. Rapid Detection of Isoniazid Resistance in Mycobacterium tuberculosis Isolates by Use of Real-Time-PCR-Based Melting Curve Analysis

    PubMed Central

    Hu, Siyu; Li, Guoli; Li, Hui; Liu, Xiaoli; Niu, Jianjun; Quan, Shengmao; Wang, Feng; Wen, Huixin

    2014-01-01

    The MeltPro TB/INH assay, recently approved by the Chinese Food and Drug Administration, is a closed-tube, dual-color, melting curve analysis-based, real-time PCR test specially designed to detect 30 isoniazid (INH) resistance mutations in katG position 315 (katG 315), the inhA promoter (positions −17 to −8), inhA position 94, and the ahpC promoter (positions −44 to −30 and −15 to 3) of Mycobacterium tuberculosis. Here we evaluated both the analytical performance and clinical performance of this assay. Analytical studies with corresponding panels demonstrated that the accuracy for detection of different mutation types (10 wild-type samples and 12 mutant type samples), the limit of detection (2 × 103 to 2 × 104 bacilli/ml), reproducibility (standard deviation [SD], <0.4°C), and the lowest heteroresistance level (40%) all met the parameters preset by the kit. The assay could be run on five types of real-time PCR machines, with the shortest running time (105 min) obtained with the LightCycler 480 II. Clinical studies enrolled 1,096 clinical isolates collected from three geographically different tuberculosis centers, including 437 INH-resistant isolates and 659 INH-susceptible isolates characterized by traditional drug susceptibility testing on Löwenstein-Jensen solid medium. The clinical sensitivity and specificity of the MeltPro TB/INH assay were 90.8% and 96.4%, respectively. DNA sequencing analysis showed that, except for the 5 mutants outside the detection range of the MeltPro assay, a concordance rate between the two methods of 99.1% (457/461) was obtained. Among the 26 mutation types detected, katG S315T (AGC→ACC), inhA −15C→T, katG S315N (AGC→AAC), and ahpC promoter −10C→T accounted for more than 90%. Overall, the MeltPro TB/INH assay represents a reliable and rapid tool for the detection of INH resistance in clinical isolates. PMID:24599986

  9. Rapid detection of isoniazid resistance in Mycobacterium tuberculosis isolates by use of real-time-PCR-based melting curve analysis.

    PubMed

    Hu, Siyu; Li, Guoli; Li, Hui; Liu, Xiaoli; Niu, Jianjun; Quan, Shengmao; Wang, Feng; Wen, Huixin; Xu, Ye; Li, Qingge

    2014-05-01

    The MeltPro TB/INH assay, recently approved by the Chinese Food and Drug Administration, is a closed-tube, dual-color, melting curve analysis-based, real-time PCR test specially designed to detect 30 isoniazid (INH) resistance mutations in katG position 315 (katG 315), the inhA promoter (positions -17 to -8), inhA position 94, and the ahpC promoter (positions -44 to -30 and -15 to 3) of Mycobacterium tuberculosis. Here we evaluated both the analytical performance and clinical performance of this assay. Analytical studies with corresponding panels demonstrated that the accuracy for detection of different mutation types (10 wild-type samples and 12 mutant type samples), the limit of detection (2×10(3) to 2×10(4) bacilli/ml), reproducibility (standard deviation [SD], <0.4°C), and the lowest heteroresistance level (40%) all met the parameters preset by the kit. The assay could be run on five types of real-time PCR machines, with the shortest running time (105 min) obtained with the LightCycler 480 II. Clinical studies enrolled 1,096 clinical isolates collected from three geographically different tuberculosis centers, including 437 INH-resistant isolates and 659 INH-susceptible isolates characterized by traditional drug susceptibility testing on Löwenstein-Jensen solid medium. The clinical sensitivity and specificity of the MeltPro TB/INH assay were 90.8% and 96.4%, respectively. DNA sequencing analysis showed that, except for the 5 mutants outside the detection range of the MeltPro assay, a concordance rate between the two methods of 99.1% (457/461) was obtained. Among the 26 mutation types detected, katG S315T (AGC→ACC), inhA -15C→T, katG S315N (AGC→AAC), and ahpC promoter -10C→T accounted for more than 90%. Overall, the MeltPro TB/INH assay represents a reliable and rapid tool for the detection of INH resistance in clinical isolates. PMID:24599986

  10. Real-time seismic monitoring of instrumented hospital buildings

    USGS Publications Warehouse

    Kalkan, Erol; Fletcher, Jon Peter B.; Leith, William S.; McCarthy, William S.; Banga, Krishna

    2012-01-01

    In collaboration with the Department of Veterans Affairs (VA), the U.S. Geological Survey's National Strong Motion Project has recently installed sophisticated seismic monitoring systems to monitor the structural health of two hospital buildings at the Memphis VA Medical Center in Tennessee. The monitoring systems in the Bed Tower and Spinal Cord Injury buildings combine sensing technologies with an on-site computer to capture and analyze seismic performance of buildings in near-real time.

  11. A multiprocessing architecture for real-time monitoring

    NASA Technical Reports Server (NTRS)

    Schmidt, James L.; Kao, Simon M.; Read, Jackson Y.; Weitzenkamp, Scott M.; Laffey, Thomas J.

    1988-01-01

    A multitasking architecture for performing real-time monitoring and analysis using knowledge-based problem solving techniques is described. To handle asynchronous inputs and perform in real time, the system consists of three or more distributed processes which run concurrently and communicate via a message passing scheme. The Data Management Process acquires, compresses, and routes the incoming sensor data to other processes. The Inference Process consists of a high performance inference engine that performs a real-time analysis on the state and health of the physical system. The I/O Process receives sensor data from the Data Management Process and status messages and recommendations from the Inference Process, updates its graphical displays in real time, and acts as the interface to the console operator. The distributed architecture has been interfaced to an actual spacecraft (NASA's Hubble Space Telescope) and is able to process the incoming telemetry in real-time (i.e., several hundred data changes per second). The system is being used in two locations for different purposes: (1) in Sunnyville, California at the Space Telescope Test Control Center it is used in the preflight testing of the vehicle; and (2) in Greenbelt, Maryland at NASA/Goddard it is being used on an experimental basis in flight operations for health and safety monitoring.

  12. REAL-TIME REMOTE MONITORING OF DRINKING WATER QUALITY

    EPA Science Inventory

    Over the past eight years, the U.S. Environmental Protection Agency's (EPA) Office of Research and Development (ORD) has funded the testing and evaluation of various online "real-time" technologies for monitoring drinking water quality. The events of 9/11 and subsequent threats t...

  13. Simultaneous real-time monitoring of multiple cortical systems

    NASA Astrophysics Data System (ADS)

    Gupta, Disha; Hill, N. Jeremy; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L.; Schalk, Gerwin

    2014-10-01

    Objective. Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance. Approach. We study these questions using electrocorticographic signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (six for offline parameter optimization, six for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main results. Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelopes. These decoders were trained separately and executed simultaneously in real time. Significance. This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple

  14. A Real-Time Nonvolatile Residue (NVR) Monitor

    NASA Technical Reports Server (NTRS)

    Bowers, William D.; Chuan, Raymond L.

    1995-01-01

    New development and application of device described in "Surface-Acoustic-Wave Piezoelectric Microbalance," (LAR-14476). Active sensing element of Real-Time NVR Monitor comprises pair of piezoelectric surface-acoustic-wave resonators resonating at frequency of 200 MHz. Bare, uncoated resonator exposed to atmosphere and directly in contact with airborne volatile and nonvolatile materials leaving residues on surface. Resonant frequency of exposed resonator decreases with increasing mass of adsorbed residue; resulting beat frequency between two resonators increases with mass and serves as sensitive real-time indication of airborne contaminants or non-volatile residue.

  15. Improved Real-Time Monitoring Using Multiple Expert Systems

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Angelino, Robert; Quan, Alan G.; Veregge, John; Childs, Cynthia

    1993-01-01

    Monitor/Analyzer of Real-Time Voyager Engineering Link (MARVEL) computer program implements combination of techniques of both conventional automation and artificial intelligence to improve monitoring of complicated engineering system. Designed to support ground-based operations of Voyager spacecraft, also adapted to other systems. Enables more-accurate monitoring and analysis of telemetry, enhances productivity of monitoring personnel, reduces required number of such personnel by performing routine monitoring tasks, and helps ensure consistency in face of turnover of personnel. Programmed in C language and includes commercial expert-system software shell also written in C.

  16. Rapid identification of Brucella isolates to the species level by real time PCR based single nucleotide polymorphism (SNP) analysis

    PubMed Central

    Gopaul, Krishna K; Koylass, Mark S; Smith, Catherine J; Whatmore, Adrian M

    2008-01-01

    Background Brucellosis, caused by members of the genus Brucella, remains one of the world's major zoonotic diseases. Six species have classically been recognised within the family Brucella largely based on a combination of classical microbiology and host specificity, although more recently additional isolations of novel Brucella have been reported from various marine mammals and voles. Classical identification to species level is based on a biotyping approach that is lengthy, requires extensive and hazardous culturing and can be difficult to interpret. Here we describe a simple and rapid approach to identification of Brucella isolates to the species level based on real-time PCR analysis of species-specific single nucleotide polymorphisms (SNPs) that were identified following a robust and extensive phylogenetic analysis of the genus. Results Seven pairs of short sequence Minor Groove Binding (MGB) probes were designed corresponding to SNPs shown to possess an allele specific for each of the six classical Brucella spp and the marine mammal Brucella. Assays were optimised to identical reaction parameters in order to give a multiple outcome assay that can differentiate all the classical species and Brucella isolated from marine mammals. The scope of the assay was confirmed by testing of over 300 isolates of Brucella, all of which typed as predicted when compared to other phenotypic and genotypic approaches. The assay is sensitive being capable of detecting and differentiating down to 15 genome equivalents. We further describe the design and testing of assays based on three additional SNPs located within the 16S rRNA gene that ensure positive discrimination of Brucella from close phylogenetic relatives on the same platform. Conclusion The multiple-outcome assay described represents a new tool for the rapid, simple and unambiguous characterisation of Brucella to the species level. Furthermore, being based on a robust phylogenetic framework, the assay provides a platform

  17. Real-Time Dynamics Monitoring System with Synchronized Phasor Measurements

    Energy Science and Technology Software Center (ESTSC)

    2005-01-01

    The Real-Time Dynamics Monitoring System is designed to monitor the dynamics within the power grid and assess the system behavior during normal and disturbance conditions. The RTDMS application was built on the Grid-3P technology platform and takes real-time information collected by Synchronized Phasor Measurement Units (PMU5) or other collection devices and transmitted to a central Phasor Data Concentrator (PDC) for monitoring grid dynamics. The data is sampled 30 times per second and is time-synchronized. Thismore » data is processed to create graphical and geographical displays to provide visualization for frequency/frequency response, voltage magnitudes and angles, voltage angle differences across critical paths as well as real and reactive power-flows on a sub-second and second basis. Software allows for monitoring, tracking, historical data archiving and electric system troubleshooting for reliability management.« less

  18. Intelligent data management for real-time spacecraft monitoring

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Gasser, Les; Abramson, Bruce

    1992-01-01

    Real-time AI systems have begun to address the challenge of restructuring problem solving to meet real-time constraints by making key trade-offs that pursue less than optimal strategies with minimal impact on system goals. Several approaches for adapting to dynamic changes in system operating conditions are known. However, simultaneously adapting system decision criteria in a principled way has been difficult. Towards this end, a general technique for dynamically making such trade-offs using a combination of decision theory and domain knowledge has been developed. Multi-attribute utility theory (MAUT), a decision theoretic approach for making one-time decisions is discussed and dynamic trade-off evaluation is described as a knowledge-based extension of MAUT that is suitable for highly dynamic real-time environments, and provides an example of dynamic trade-off evaluation applied to a specific data management trade-off in a real-world spacecraft monitoring application.

  19. Geologic hazard monitoring with real-time GPS (Invited)

    NASA Astrophysics Data System (ADS)

    Lisowski, M.; Langbein, J. O.; Murray-Moraleda, J. R.; Poland, M. P.; Hudnut, K. W.; Cervelli, P. F.; King, N. E.

    2009-12-01

    The USGS Earthquake and Volcano Hazards Science Centers are developing a high-rate (1-s epoch), real-time ground deformation monitoring system using data streamed from continuously recording GPS stations. We began by evaluating the ability of GPS data reduction software to recover offsets in a displacement test data set generated by offsetting a GPS antenna by measured amounts. We found that offsets as large as several meters and as small as 1 cm could be reliably resolved. Our methods and initial results were summarized in USGS Open File Report 1235 (http://pubs.usgs.gov/of/2006/1235/of2006-1235.pdf). Further evaluation of GPS software using raw data from the report and real-time GPS data were conducted after publication of the report. Based upon these results, we selected software that could produce both double difference (baseline) and single difference (point positioning) solutions. Using this software, we are now running real-time, 1-s, fixed-ambiguity, double-difference solutions for USGS deformation monitoring networks in Southern California, the San Francisco Bay Area, Long Valley, and at several Cascades volcanoes. GPS data are streamed over the Internet to processing centers in Pasadena, CA, and Vancouver, WA. Solutions are generally reliable, but we note solution gaps caused by the breakdown in the GPS data streams and intervals when baseline ambiguities are not resolved in some of the longer (>50 km) baselines. We have not yet attempted real-time point-position solutions because we lack accurate real-time satellite clock corrections. We plan to implement this technique in the future by either calculating satellite clock corrections using a network of stations or by applying corrections produced by JPL. We currently generate alarms for data gaps in the real-time GPS solutions and plan to automate displacement anomaly detection using an algorithm that removes common-mode and multi-path noise.

  20. Real-time human collaboration monitoring and intervention

    DOEpatents

    Merkle, Peter B.; Johnson, Curtis M.; Jones, Wendell B.; Yonas, Gerold; Doser, Adele B.; Warner, David J.

    2010-07-13

    A method of and apparatus for monitoring and intervening in, in real time, a collaboration between a plurality of subjects comprising measuring indicia of physiological and cognitive states of each of the plurality of subjects, communicating the indicia to a monitoring computer system, with the monitoring computer system, comparing the indicia with one or more models of previous collaborative performance of one or more of the plurality of subjects, and with the monitoring computer system, employing the results of the comparison to communicate commands or suggestions to one or more of the plurality of subjects.

  1. Real-time monitoring of HIFU treatment using pulse inversion

    NASA Astrophysics Data System (ADS)

    Song, Jae Hee; Yoo, Yangmo; Song, Tai-Kyong; Chang, Jin Ho

    2013-08-01

    Ultrasound (US) imaging is widely used for the real-time guidance of high-intensity focused ultrasound (HIFU) treatment at a relatively low cost. However, ultrasound image guided HIFU (USgHIFU) is limited in the real-time monitoring of HIFU treatment due to the large amplitude HIFU signals received by the US imaging transducer. The amplitude of the HIFU scattered signal is generally much higher than the amplitude of the pulse-echo signal received by the imaging transducer. This creates an interference pattern obscuring the image of the tissue. As such, it is difficult to monitor lesion location. This paper proposes a real-time monitoring method to be performed concurrently with the HIFU insonation, but without HIFU interference, which allows for the improvement of treatment accuracy and safety in USgHIFU. The proposed method utilizes the physical properties of pulse inversion which is capable of removing the fundamental and odd harmonic components of the HIFU interference. Therefore, it is possible to secure the desired spectral bandwidth used to construct US images for HIFU treatment monitoring. The performance of the proposed method was evaluated through experiments with both a bovine serum albumin phantom and a chicken breast. The results demonstrated that the proposed method is capable of providing interference-free US images, thus successfully allowing for US imaging during HIFU treatment.

  2. Real-time trend monitoring of gas compressor stations

    SciTech Connect

    Van Hardeveld, T. )

    1991-02-01

    The authors' company has developed a machinery health monitoring system (MHealth) for short-term and long-term historical trending and analysis of data from its 40 gas compressor stations. The author discusses the benefits of real-time trending in troubleshooting operations, in preventative maintenance scheduling and cites specific applications in the startup operations of several new gas compressor/centrifugal compressor units.

  3. Fluorescent real-time monitoring of HIFU cardiac focal ablation

    NASA Astrophysics Data System (ADS)

    Qu, Fujian; Nikolski, Vladimir; Efimov, Igor; Deng, Cheri

    2001-05-01

    To study HIFU cardiac ablation, florescent imaging was used to monitor in real time the electrophysiology changes of cardiac tissues during focal HIFU ablation. We applied HIFU ablation of AV nodal and ventricular preparations of Langendorff-perfused rabbit heart while monitoring electrical activity in real-time. HIFU energy was applied to ablate the AV node and ventricular tissue of Langendorff-perfused rabbit hearts while monitoring electrical activity in real-time with fluorescent voltage-sensitive dye imaging and surface electrodes. HIFU was generated using a spherical piezoelectric ceramics transducer (diameter 42 mm, F-number 1.2) at 4.23 MHz. When HIFU was applied to ventricular epicardium fluorescent imaging it revealed gradual reduction of the plateau phase and amplitude of the action potential. Subsequently conduction block and cell death were observed at the site of ablation. In our study HIFU produced focal lesions of 0.2-0.8 mm for 10-60-s applications. When HIFU was applied to the AV node, fluorescent imaging and electrograms revealed the development of the AV block.

  4. Real-time monitoring of phase maps of digital shearography

    NASA Astrophysics Data System (ADS)

    Zhu, Lianqing; Wang, Yonghong; Xu, Nan; Wu, Sijin; Dong, Mingli; Yang, Lianxiang

    2013-10-01

    Digital shearography has demonstrated great potential in direct strain measurement and, thus, has become an industrial tool for nondestructive testing (NDT), especially for NDT of delaminations and detection of impact damage in composite materials such as carbon fiber reinforced plastics and honeycomb structures. The increasing demand for high measurement sensitivity has led to the need for real-time monitoring of a digital shearographic phase map. Phase maps can be generated by applying a temporal, or spatial, phase shift technique. The temporal phase shift technique is simpler and more reliable for industry applications and, thus, has widely been utilized in practical shearographic inspection systems. This paper presents a review of the temporal phase shift digital shearography method with different algorithms and the possibility for real-time monitoring of phase maps for NDT. Quantitative and real-time monitoring of full-field strain information, using different algorithms, is presented. The potentials and limitations for each algorithm are discussed and demonstrated through examples of shearographic testing.

  5. Web-Based Real-Time Emergency Monitoring

    NASA Technical Reports Server (NTRS)

    Harvey, Craig A.; Lawhead, Joel

    2007-01-01

    The Web-based Real-Time Asset Monitoring (RAM) module for emergency operations and facility management enables emergency personnel in federal agencies and local and state governments to monitor and analyze data in the event of a natural disaster or other crisis that threatens a large number of people and property. The software can manage many disparate sources of data within a facility, city, or county. It was developed on industry-standard Geo- Spatial software and is compliant with open GIS standards. RAM View can function as a standalone system, or as an integrated plugin module to Emergency Operations Center (EOC) software suites such as REACT (Real-time Emergency Action Coordination Tool), thus ensuring the widest possible distribution among potential users. RAM has the ability to monitor various data sources, including streaming data. Many disparate systems are included in the initial suite of supported hardware systems, such as mobile GPS units, ambient measurements of temperature, moisture and chemical agents, flow meters, air quality, asset location, and meteorological conditions. RAM View displays real-time data streams such as gauge heights from the U.S. Geological Survey gauging stations, flood crests from the National Weather Service, and meteorological data from numerous sources. Data points are clearly visible on the map interface, and attributes as specified in the user requirements can be viewed and queried.

  6. Real-time seismic monitoring of Veterans Affairs hospital buildings

    NASA Astrophysics Data System (ADS)

    Ulusoy, Hasan S.; Kalkan, Erol; Banga, Krishna

    2013-04-01

    This paper describes recent collaborative efforts made by the United States Geological Survey and Department of Veterans Affairs (VA) in real-time seismic monitoring of VA hospital buildings located in seismically active regions. The instrumentation in each building encompasses accelerometers deployed on all floors, a multi-channel recorder, and a server to analyze and archive the building's dynamic response in real-time. The server runs advanced structural health monitoring software, which consists of several data processing and analysis modules. Four different algorithms are implemented in four separate modules to compute shear-wave travel time, modal parameters, base shear force, and inter-story drift ratio from the measured vibration data from the instrumented building. The performance level and damage state of the building are estimated from the inter-story drift ratio and base-shear; the change in modal parameters and wave travel time is also used to detect and locate any possible damage zone(s) in the building. These algorithms are validated and verified using data from full-scale shake table tests. The information obtained from the real-time seismic monitoring system can be used to support timely decisions regarding the structural integrity of the VA hospital buildings immediately after an earthquake, and to help with inspections and necessary repairs and replacements.

  7. Real-time GNSS volcano deformation monitoring (Invited)

    NASA Astrophysics Data System (ADS)

    Lisowski, M.; Langbein, J. O.; Hudnut, K. W.

    2013-12-01

    We present comparisons of the precision obtained from several alternative real-time GNSS processing methods, and show how offsets caused by snow and ice on an antenna can be automatically identified in real time using signal-to-noise ratio (SNR) data. We monitor ground deformation using continuous GNSS stations installed on several volcanoes in the Cascade Range and elsewhere, and many of these stations transmit high-rate (1s) data in real-time. We examine real-time, high-rate station position solutions obtained with two implementations of centralized RTNet (GPS Solutions, Inc.) processing, and find that the precision is roughly the same for ambiguity-fixed network solutions and for ambiguity-fixed precise point position solutions (PPPAR). The PPPAR method uses satellite clock corrections provided by GPS Solutions from a network of Plate Boundary Observatory (PBO) stations in western Oregon. The precision of network solutions that include GPS and GLONASS data is similar to the GPS-only solutions, except at stations with a relatively poor view of the sky. An alternative method of processing the real-time GPS data uses clock corrections transmitted directly to the receiver, which then autonomously calculates and transmits positions. We will compare our RTNet results with autonomous point position solutions calculated using Trimble's CenterPoint RTX corrections. RTX performance in repeated, controlled, large antenna-motion tests by USGS and UNAVCO indicates that it meets requirements of USGS volcano-monitoring applications; more thorough testing and performance checks on an ongoing basis would be desirable. GNSS antennas on volcanoes often become temporarily coated with ice or buried by snow in the winter. In these situations, signal delays introduce an apparent offset in the monitoring station's position. We address this problem by implementing in real time a technique developed by Kristine Larson that uses changes in the signal-to-noise ratio (SNR) of GNSS signals

  8. Simultaneous Real-Time Monitoring of Multiple Cortical Systems

    PubMed Central

    Gupta, Disha; Hill, N. Jeremy; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L.; Schalk, Gerwin

    2014-01-01

    Objective Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor, or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance. Approach We study these questions using electrocorticographic (ECoG) signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (6 for offline parameter optimization, 6 for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main results Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelope. These decoders were trained separately and executed simultaneously in real time. Significance This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple

  9. Assessment of real-time PCR based methods for quantification of pollen-mediated gene flow from GM to conventional maize in a field study.

    PubMed

    Pla, Maria; La Paz, José-Luis; Peñas, Gisela; García, Nora; Palaudelmàs, Montserrat; Esteve, Teresa; Messeguer, Joaquima; Melé, Enric

    2006-04-01

    Maize is one of the main crops worldwide and an increasing number of genetically modified (GM) maize varieties are cultivated and commercialized in many countries in parallel to conventional crops. Given the labeling rules established e.g. in the European Union and the necessary coexistence between GM and non-GM crops, it is important to determine the extent of pollen dissemination from transgenic maize to other cultivars under field conditions. The most widely used methods for quantitative detection of GMO are based on real-time PCR, which implies the results are expressed in genome percentages (in contrast to seed or grain percentages). Our objective was to assess the accuracy of real-time PCR based assays to accurately quantify the contents of transgenic grains in non-GM fields in comparison with the real cross-fertilization rate as determined by phenotypical analysis. We performed this study in a region where both GM and conventional maize are normally cultivated and used the predominant transgenic maize Mon810 in combination with a conventional maize variety which displays the characteristic of white grains (therefore allowing cross-pollination quantification as percentage of yellow grains). Our results indicated an excellent correlation between real-time PCR results and number of cross-fertilized grains at Mon810 levels of 0.1-10%. In contrast, Mon810 percentage estimated by weight of grains produced less accurate results. Finally, we present and discuss the pattern of pollen-mediated gene flow from GM to conventional maize in an example case under field conditions. PMID:16604462

  10. A global, real-time flood monitoring model

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2014-07-01

    Floods kill thousands of people and cause billions of dollars in damage each year, and many floods occur in areas of the world that lack resources for flood monitoring and forecasting systems. Wu et al. report on an experimental real-time global flood monitoring system that employs a widely used land surface model coupled with a hierarchical dominant river tracing-based runoff routing model and satellite-based precipitation data to provide streamflow and flood detection/estimation information over most of the globe every 3 hours.

  11. Real-Time Aircraft Engine-Life Monitoring

    NASA Technical Reports Server (NTRS)

    Klein, Richard

    2014-01-01

    This project developed an inservice life-monitoring system capable of predicting the remaining component and system life of aircraft engines. The embedded system provides real-time, inflight monitoring of the engine's thrust, exhaust gas temperature, efficiency, and the speed and time of operation. Based upon this data, the life-estimation algorithm calculates the remaining life of the engine components and uses this data to predict the remaining life of the engine. The calculations are based on the statistical life distribution of the engine components and their relationship to load, speed, temperature, and time.

  12. Task 1. Monitoring real time materials degradation. NRC extended In-situ and real-time Monitoring

    SciTech Connect

    Bakhtiari, Sasan

    2012-03-01

    The overall objective of this project was to perform a scoping study to identify, in concert with the nuclear industry, those sensors and techniques that have the most promising commercial viability and fill a critical inspection or monitoring need. Candidates to be considered include sensors to monitor real-time material degradation, characterize residual stress, monitor and inspect component fabrication, assess radionuclide and associated chemical species concentrations in ground water and soil, characterize fuel properties, and monitor severe accident conditions. Under Task 1—Monitoring Real-Time Materials Degradation—scoping studies were conducted to assess the feasibility of potential inspection and monitoring technologies (i.e., a combination of sensors, advanced signal processing techniques, and data analysis methods) that could be utilized in LWR and/or advanced reactor applications for continuous monitoring of degradation in-situ. The goal was to identify those techniques that appear to be the most promising, i.e., those that are closest to being both technically and commercially viable and that the nuclear industry is most likely to pursue. Current limitations and associated issues that must be overcome before commercial application of certain techniques have also been addressed.

  13. Real-time calibrated microwave plasma mulitmetals emissions monitor

    NASA Astrophysics Data System (ADS)

    Woskov, Paul P.; Hadidi, Kamal; Thomas, Paul; Green, Karyn; Flores, Guadalupe

    1999-02-01

    Real-time calibrated atomic emission spectroscopy in stack exhaust using a continuously sustained microwave plasma is under development for trace metals monitoring. The plasma, in a shorted waveguide attached to the stack by a short sample line, is powered at 1.5 kW, 2.45 GHz. An undiluted stack slipstream is isokinetically directed into the plasma at a nominal flow of 14 liters per minute. A pneumatic nebulizer attached to the sample line can momentarily, on command, inject a known concentration of metals solution providing a real-time calibration. Recent testing has been performed on the exhaust stack of an incinerator at the Environmental Protection Agency (EPA) National Risk Management Laboratory in Research Triangle Park. Three hazardous metals were monitored, lead, chromium, and beryllium. These measurements were referenced to EPA Method-29. A total of twenty spiked stack exhaust tests were carried out. Ten one-hour tests at high concentration (40 - 60 (mu) g/actual m3) and ten one and half-hour tests at low concentration (10 - 15 (mu) g/actual m3). The microwave plasma monitor achieved measurement accuracies of approximately 20% for lead and beryllium and 40% for chromium with a threshold detection capability of less than 3 (mu) g/actual m3 for a time response of approximately 1-minute. Laboratory work is continuing to add mercury, arsenic, and cadmium to the monitored metals.

  14. Real-Time Deposition Monitor for Ultrathin Conductive Films

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline

    2011-01-01

    A device has been developed that can be used for the real-time monitoring of ultrathin (2 or more) conductive films. The device responds in less than two microseconds, and can be used to monitor film depositions up to about 60 thick. Actual thickness monitoring capability will vary based on properties of the film being deposited. This is a single-use device, which, due to the very low device cost, can be disposable. Conventional quartz/crystal microbalance devices have proven inadequate to monitor the thickness of Pd films during deposition of ultrathin films for hydrogen sensor devices. When the deposited film is less than 100 , the QCM measurements are inadequate to allow monitoring of the ultrathin films being developed. Thus, an improved, high-sensitivity, real-time deposition monitor was needed to continue Pd film deposition development. The new deposition monitor utilizes a surface acoustic wave (SAW) device in a differential delay-line configuration to produce both a reference response and a response for the portion of the device on which the film is being deposited. Both responses are monitored simultaneously during deposition. The reference response remains unchanged, while the attenuation of the sensing path (where the film is being deposited) varies as the film thickness increases. This device utilizes the fact that on high-coupling piezoelectric substrates, the attenuation of an SAW undergoes a transition from low to very high, and back to low as the conductivity of a film on the device surface goes from nonconductive to highly conductive. Thus, the sensing path response starts with a low insertion loss, and as a conductive film is deposited, the film conductivity increases, causing the device insertion loss to increase dramatically (by up to 80 dB or more), and then with continued film thickness increases (and the corresponding conductivity increases), the device insertion loss goes back down to the low level at which it started. This provides a

  15. Real-Time GPS Network Monitors Bayou Corne Sinkhole Event

    NASA Astrophysics Data System (ADS)

    Kent, Joshua D.; Dunaway, Larry

    2013-10-01

    In August 2012 a sinkhole developed in the swampy marshland near the rural community of Bayou Corne in Assumption Parish (i.e., county), Louisiana. The area was evacuated, and some residents have still not been able to return. The sinkhole—which now measures about 450 meters wide and is continuing to grow—is being monitored by multiple systems, including four rapid-response GPS continuously operating reference stations (CORS) called CORS911. The real-time data provided by this system are used by scientists and decision makers to help ensure public safety.

  16. Real-Time Coil Position Monitoring System for Biomagnetic Measurements

    NASA Astrophysics Data System (ADS)

    Oyama, Daisuke; Adachi, Yoshiaki; Higuchi, Masanori; Kawai, Jun; Kobayashi, Koichiro; Uehara, Gen

    In this paper, we propose a new method for monitoring the position of marker coils. The marker coil is used for indicating spatial relationship between subject's body and magnetic sensor arrays in biomagnetic measurements, such as magnetoencephalography (MEG) and magnetocardiography (MCG). We developed a real-time marker coil position monitoring system combined with a conventional MEG system. In order to achieve simultaneous measurement of MEG signals and marker signals, we separated their frequency bands. The frequency bands of flux-locked loop (FLL) circuits were separated into three parts by three integrators; low-band, mid-band, and high-band. The second and third bands were assigned for MEG signals and marker signals, respectively. This method can avoid the crosstalk of the marker signals to MEG signals. Marker signals were generated from five marker coils driven by five independent sinusoidal current generators. These signals were continuously measured by the high-band of FLL, and then the coils were localized by FFT processing and solving inverse problem. We succeeded in displaying the localized coil position on a PC monitor once per second in real-time.

  17. Real-Time Monitoring of Psychotherapeutic Processes: Concept and Compliance

    PubMed Central

    Schiepek, Günter; Aichhorn, Wolfgang; Gruber, Martin; Strunk, Guido; Bachler, Egon; Aas, Benjamin

    2016-01-01

    Objective: The feasibility of a high-frequency real-time monitoring approach to psychotherapy is outlined and tested for patients' compliance to evaluate its integration to everyday practice. Criteria concern the ecological momentary assessment, the assessment of therapy-related cognitions and emotions, equidistant time sampling, real-time nonlinear time series analysis, continuous participative process control by client and therapist, and the application of idiographic (person-specific) surveys. Methods: The process-outcome monitoring is technically realized by an internet-based device for data collection and data analysis, the Synergetic Navigation System. Its feasibility is documented by a compliance study on 151 clients treated in an inpatient and a day-treatment clinic. Results: We found high compliance rates (mean: 78.3%, median: 89.4%) amongst the respondents, independent of the severity of symptoms or the degree of impairment. Compared to other diagnoses, the compliance rate was lower in the group diagnosed with personality disorders. Conclusion: The results support the feasibility of high-frequency monitoring in routine psychotherapy settings. Daily collection of psychological surveys allows for the assessment of highly resolved, equidistant time series data which gives insight into the nonlinear qualities of therapeutic change processes (e.g., pattern transitions, critical instabilities). PMID:27199837

  18. Bacterial diversity and real-time PCR based assessment of linA and linB gene distribution at hexachlorocyclohexane contaminated sites.

    PubMed

    Lal, Devi; Jindal, Swati; Kumari, Hansi; Jit, Simran; Nigam, Aeshna; Sharma, Pooja; Kumari, Kirti; Lal, Rup

    2015-03-01

    The disposal of hexachlorocyclohexane (HCH) muck has created large number of HCH dumpsites all over the world from where the harmful HCH isomers are leaking into the environment. Bacteria have evolved at such contaminated sites that have the ability to degrade HCH. Degradation of various HCH isomers in bacterial strains is mediated primarily by two genes: linA and linB which encode dehydrochlorinase and haloalkane dehalogenase respectively. In this study we explored one such highly contaminated HCH dumpsite located in Lucknow, Uttar Pradesh, India. To assess the biostimulation potential of the contaminated site, microbial diversity study and real-time PCR based quantification of lin genes was carried out. The soil samples from dumpsite and surrounding areas were found to be highly contaminated with HCH residue levels as high as 1.8 × 10(5)  mg kg(-1). The residues were detected in areas upto 13 km from the dumpsite. Sphingomonads, Chromohalobacter, and Marinobacter were the dominant genera present at the dump-site. Role of Sphingomonads in HCH degradation has been well documented. The highest copy numbers of linA and linB genes as determined using real-time PCR were 6.2 × 10(4) and 5.3 × 10(5), respectively, were found in sample from the dump site. The presence of Sphingomonads, linA, and linB genes from HCH contaminated soil indicates the presence of indigenous bacterial communities capable of HCH degradation. PMID:24002962

  19. Early warning by near-real time disturbance monitoring (Invited)

    NASA Astrophysics Data System (ADS)

    Verbesselt, J.; Zeileis, A.; Herold, M.

    2013-12-01

    Near real-time monitoring of ecosystem disturbances is critical for rapidly assessing and addressing impacts on carbon dynamics, biodiversity, and socio-ecological processes. Satellite remote sensing enables cost-effective and accurate monitoring at frequent time steps over large areas. Yet, generic methods to detect disturbances within newly captured satellite images are lacking. We propose a multi-purpose time-series-based disturbance detection approach that identifies and models stable historical variation to enable change detection within newly acquired data. Satellite image time series of vegetation greenness provide a global record of terrestrial vegetation productivity over the past decades. Here, we assess and demonstrate the method by applying it to (1) real-world satellite greenness image time series between February 2000 and July 2011 covering Somalia to detect drought-related vegetation disturbances (2) landsat image time series to detect forest disturbances. First, results illustrate that disturbances are successfully detected in near real-time while being robust to seasonality and noise. Second, major drought-related disturbance corresponding with most drought-stressed regions in Somalia are detected from mid-2010 onwards. Third, the method can be applied to landsat image time series having a lower temporal data density. Furthermore the method can analyze in-situ or satellite data time series of biophysical indicators from local to global scale since it is fast, does not depend on thresholds and does not require time series gap filling. While the data and methods used are appropriate for proof-of-concept development of global scale disturbance monitoring, specific applications (e.g., drought or deforestation monitoring) mandates integration within an operational monitoring framework. Furthermore, the real-time monitoring method is implemented in open-source environment and is freely available in the BFAST package for R software. Information

  20. Collaborative trial validation studies of real-time PCR-based GMO screening methods for detection of the bar gene and the ctp2-cp4epsps construct.

    PubMed

    Grohmann, Lutz; Brünen-Nieweler, Claudia; Nemeth, Anne; Waiblinger, Hans-Ulrich

    2009-10-14

    Polymerase Chain Reaction (PCR)-based screening methods targeting genetic elements commonly used in genetically modified (GM) plants are important tools for the detection of GM materials in food, feed, and seed samples. To expand and harmonize the screening capability of enforcement laboratories, the German Federal Office of Consumer Protection and Food Safety conducted collaborative trials for interlaboratory validation of real-time PCR methods for detection of the phosphinothricin acetyltransferase (bar) gene from Streptomyces hygroscopicus and a construct containing the 5-enolpyruvylshikimate-3-phosphate synthase gene from Agrobacterium tumefaciens sp. strain CP4 (ctp2-cp4epsps), respectively. To assess the limit of detection, precision, and accuracy of the methods, laboratories had to analyze two sets of 18 coded genomic DNA samples of events LLRice62 and MS8 with the bar method and NK603 and GT73 with the ctp2-cp4epsps method at analyte levels of 0, 0.02, and 0.1% GM content, respectively. In addition, standard DNAs were provided to the laboratories to generate calibration curves for copy number quantification of the bar and ctp2-cp4epsps target sequences present in the test samples. The study design and the results obtained are discussed with respect to the difficult issue of developing general guidelines and concepts for the collaborative trial validation of qualitative PCR screening methods. PMID:19807158

  1. Expert Systems for Real-Time Volcano Monitoring

    NASA Astrophysics Data System (ADS)

    Cassisi, C.; Cannavo, F.; Montalto, P.; Motta, P.; Schembra, G.; Aliotta, M. A.; Cannata, A.; Patanè, D.; Prestifilippo, M.

    2014-12-01

    In the last decade, the capability to monitor and quickly respond to remote detection of volcanic activity has been greatly improved through use of advanced techniques and semi-automatic software applications installed in most of the 24h control rooms devoted to volcanic surveillance. Ability to monitor volcanoes is being advanced by new technology, such as broad-band seismology, microphone networks mainly recording in the infrasonic frequency band, satellite observations of ground deformation, high quality video surveillance systems, also in infrared band, improved sensors for volcanic gas measurements, and advances in computer power and speed, leading to improvements in data transmission, data analysis and modeling techniques. One of the most critical point in the real-time monitoring chain is the evaluation of the volcano state from all the measurements. At the present, most of this task is delegated to one or more human experts in volcanology. Unfortunately, the volcano state assessment becomes harder if we observe that, due to the coupling of highly non-linear and complex volcanic dynamic processes, the measurable effects can show a rich range of different behaviors. Moreover, due to intrinsic uncertainties and possible failures in some recorded data, precise state assessment is usually not achievable. Hence, the volcano state needs to be expressed in probabilistic terms that take account of uncertainties. In the framework of the project PON SIGMA (Integrated Cloud-Sensor System for Advanced Multirisk Management) work, we have developed an expert system approach to estimate the ongoing volcano state from all the available measurements and with minimal human interaction. The approach is based on hidden markov model and deals with uncertainties and probabilities. We tested the proposed approach on data coming from the Mt. Etna (Italy) continuous monitoring networks for the period 2011-2013. Results show that this approach can be a valuable tool to aid the

  2. Improvements in atrial fibrillation detection for real-time monitoring.

    PubMed

    Babaeizadeh, Saeed; Gregg, Richard E; Helfenbein, Eric D; Lindauer, James M; Zhou, Sophia H

    2009-01-01

    Electrocardiographic (ECG) monitoring plays an important role in the management of patients with atrial fibrillation (AF). Automated real-time AF detection algorithm is an integral part of ECG monitoring during AF therapy. Before and after antiarrhythmic drug therapy and surgical procedures require ECG monitoring to ensure the success of AF therapy. This article reports our experience in developing a real-time AF monitoring algorithm and techniques to eliminate false-positive AF alarms. We start by designing an algorithm based on R-R intervals. This algorithm uses a Markov modeling approach to calculate an R-R Markov score. This score reflects the relative likelihood of observing a sequence of R-R intervals in AF episodes versus making the same observation outside AF episodes. Enhancement of the AF algorithm is achieved by adding atrial activity analysis. P-R interval variability and a P wave morphology similarity measure are used in addition to R-R Markov score in classification. A hysteresis counter is applied to eliminate short AF segments to reduce false AF alarms for better suitability in a monitoring environment. A large ambulatory Holter database (n = 633) was used for algorithm development and the publicly available MIT-BIH AF database (n = 23) was used for algorithm validation. This validation database allowed us to compare our algorithm performance with previously published algorithms. Although R-R irregularity is the main characteristic and strongest discriminator of AF rhythm, by adding atrial activity analysis and techniques to eliminate very short AF episodes, we have achieved 92% sensitivity and 97% positive predictive value in detecting AF episodes, and 93% sensitivity and 98% positive predictive value in quantifying AF segment duration. PMID:19608194

  3. Real-time fluorescence microscopy monitoring of porphyrin biodistribution

    NASA Astrophysics Data System (ADS)

    Kimel, Sol; Gottfried, Varda; Kunzi-Rapp, Karin; Akguen, Nermin; Schneckenburger, Herbert

    1996-01-01

    In vivo uptake of the natural porphyrins, uroporphyrin III (UP), coproporphyrin III (CP) and protoporphyrin IX (PP), was monitored by fluorescence microscopy. Experiments were performed using the chick chorioallantoic membrane (CAM) model, which allowed video documentation of fluorescence both in real time and after integration over a chosen time interval (usually 2 s). Sensitizers at a concentration of 50 (mu) M (100 (mu) L) were injected into a medium-sized vein (diameter approximately 40 micrometer) using an ultra-fine 10 micrometer diameter needle. Fluorescence images were quantitated by subtracting the fluorescence intensity of surrounding CAM tissue (Fmatrix) from the intravascular fluorescence intensity (Fintravascular), after transformation of the video frames into digital form. The differential fluorescence intensity, Fintravascular - Fmatrix, is a measure of the biodistribution. Real time measurements clearly showed that CP and UP fluorescence is associated with moving erythrocytes and not with endothelial cells of the vessel wall. Fluorescence intensity was monitored, up to 60 minutes after injection, by averaging the fluorescence over time intervals of 2 s and recording the integrated images. The fluorescence intensity reached its maximum in about 20 - 30 min after injection, presumably after monomerization inside erythrocyte membranes. The results are interpreted in terms of physical-chemical characteristics (e.g. hydrophilicity) and correlated with the photodynamically induced hemostasis in CAM blood vessels.

  4. Monitoring external beam radiotherapy using real-time beam visualization

    SciTech Connect

    Jenkins, Cesare H.; Naczynski, Dominik J.; Yu, Shu-Jung S.; Xing, Lei

    2015-01-15

    Purpose: To characterize the performance of a novel radiation therapy monitoring technique that utilizes a flexible scintillating film, common optical detectors, and image processing algorithms for real-time beam visualization (RT-BV). Methods: Scintillating films were formed by mixing Gd{sub 2}O{sub 2}S:Tb (GOS) with silicone and casting the mixture at room temperature. The films were placed in the path of therapeutic beams generated by medical linear accelerators (LINAC). The emitted light was subsequently captured using a CMOS digital camera. Image processing algorithms were used to extract the intensity, shape, and location of the radiation field at various beam energies, dose rates, and collimator locations. The measurement results were compared with known collimator settings to validate the performance of the imaging system. Results: The RT-BV system achieved a sufficient contrast-to-noise ratio to enable real-time monitoring of the LINAC beam at 20 fps with normal ambient lighting in the LINAC room. The RT-BV system successfully identified collimator movements with sub-millimeter resolution. Conclusions: The RT-BV system is capable of localizing radiation therapy beams with sub-millimeter precision and tracking beam movement at video-rate exposure.

  5. Monitoring external beam radiotherapy using real-time beam visualization

    PubMed Central

    Jenkins, Cesare H.; Naczynski, Dominik J.; Yu, Shu-Jung S.; Xing, Lei

    2015-01-01

    Purpose: To characterize the performance of a novel radiation therapy monitoring technique that utilizes a flexible scintillating film, common optical detectors, and image processing algorithms for real-time beam visualization (RT-BV). Methods: Scintillating films were formed by mixing Gd2O2S:Tb (GOS) with silicone and casting the mixture at room temperature. The films were placed in the path of therapeutic beams generated by medical linear accelerators (LINAC). The emitted light was subsequently captured using a CMOS digital camera. Image processing algorithms were used to extract the intensity, shape, and location of the radiation field at various beam energies, dose rates, and collimator locations. The measurement results were compared with known collimator settings to validate the performance of the imaging system. Results: The RT-BV system achieved a sufficient contrast-to-noise ratio to enable real-time monitoring of the LINAC beam at 20 fps with normal ambient lighting in the LINAC room. The RT-BV system successfully identified collimator movements with sub-millimeter resolution. Conclusions: The RT-BV system is capable of localizing radiation therapy beams with sub-millimeter precision and tracking beam movement at video-rate exposure. PMID:25563243

  6. Advanced clinical monitoring: considerations for real-time hemodynamic diagnostics.

    PubMed Central

    Goldman, J. M.; Cordova, M. J.

    1994-01-01

    In an effort to ease staffing burdens and potentially improve patient outcome in an intensive care unit (ICU) environment, we are developing a real-time system to accurately and efficiently diagnose cardiopulmonary emergencies. The system is being designed to utilize all relevant routinely-monitored physiological data in order to automatically diagnose potentially fatal events. The initial stage of this project involved formulating the overall system design and appropriate methods for real-time data acquisition, data storage, data trending, waveform analysis, and implementing diagnostic rules. Initially, we defined a conceptual analysis of the minimum physiologic data set, and the monitoring time-frames (trends) which would be required to diagnose cardiopulmonary emergencies. Following that analysis, we used a fuzzy logic diagnostic engine to analyze physiological data during a simulated arrhythmic cardiac arrest (ACA) in order to assess the validity of our diagnostic methodology. We used rate, trend, and morphologic data extracted from the following signals: expired CO2 time-concentration curve (capnogram), electrocardiogram, and arterial blood pressure. The system performed well: The fuzzy logic engine effectively diagnosed the likelihood of ACA from the subtle hemodynamic trends which preceded the complete arrest. As the clinical picture worsened, the fuzzy logic-based system accurately indicated the change in patient condition. Termination of the simulated arrest was rapidly detected by the diagnostic engine. In view of the effectiveness of this fuzzy logic implementation, we plan to develop additional fuzzy logic modules to diagnose other cardiopulmonary emergencies. PMID:7950025

  7. Real-time aqueous tritium monitor using liquid scintillation counting

    SciTech Connect

    Sigg, R.A.; McCarty, J.E.; Livingston, R.R.; Sanders, M.A.

    1994-07-01

    An ability to continuously monitor low-level tritium releases in aqueous effluents is of particular interest to heavy water facilities such as those at the Savannah River Site (SRS) and Canadian CANDU reactors. SRS developed a real-time monitoring system based on flow-through liquid scintillation (LS) counting. Sensitivities of 16 pCi/mL and 1 pCi/mL result from five minute and daily averages of counting data respectively. This sensitivity is about 200 times better than similar methods using solid scintillants. The LS system features uncomplicated sample pretreatment, precise of the cocktail and sample water, system features uncomplicated sample pretreatment, precise proportioning of the cocktail and sample water, on-line quench corrections, cocktail consumption as low as 0.15 mL/min, and response to changes in environmental tritium is less than 30 minutes. Field tests demonstrate that conditions necessary for stable analytical results are achieved.

  8. Method and apparatus for real time weld monitoring

    DOEpatents

    Leong, Keng H.; Hunter, Boyd V.

    1997-01-01

    An improved method and apparatus are provided for real time weld monitoring. An infrared signature emitted by a hot weld surface during welding is detected and this signature is compared with an infrared signature emitted by the weld surface during steady state conditions. The result is correlated with weld penetration. The signal processing is simpler than for either UV or acoustic techniques. Changes in the weld process, such as changes in the transmitted laser beam power, quality or positioning of the laser beam, change the resulting weld surface features and temperature of the weld surface, thereby resulting in a change in the direction and amount of infrared emissions. This change in emissions is monitored by an IR sensitive detecting apparatus that is sensitive to the appropriate wavelength region for the hot weld surface.

  9. Real-time monitoring for human clinical trials

    SciTech Connect

    Harker, Y.D.

    1995-11-01

    On August 3-4, 1994, an INEL team made measurements related to a real-time monitoring system for use on the epithermal beam facility at the BMRR. BNL has installed two fission chambers in front of the beam collimator, which are to monitor the beam coming from the reactor. These two monitors are located with one just above the 16-cm dia. front aperture and the other is just below. The fission chambers contain depleted uranium, but because of the small amount of U-235 present, they respond to thermal and near thermal neutrons rather than fast neutrons. This feature combined with their relatively small size (0.6 cm dia x 4 cm long) makes them very good monitors in the BMRR epithermal neutron beam. The INEL team worked with H.B. Lui (BNL) in performing initial tests of these monitors and established the settings to achieve stable operation. The main purpose of the measurement studies was to establish a basis for a monitoring method that tracks the dose the patient is receiving rather than the neutron fluence being delivered down the beam line.

  10. A high sensitivity real-time NVR monitor. [Nonvolatile Residue

    NASA Technical Reports Server (NTRS)

    Bowers, William D.; Chuan, R. L.

    1992-01-01

    The use of a temperature-controlled 200-MHz SAW resonator piezoelectric mass microbalance to monitor the mass of nonvolatile residue (NVR) deposited on its surface in real time is reported. The fundamental frequency of this device is mainly dependent on the configuration of the transducers and not on the thickness of the substrate. Therefore, higher operating frequencies can be achieved without reducing the thickness of the crystal. The real-time instrument was integrated onto a conventional stainless steel NVR plate and operated flawlessly over a 14-d period at Kennedy Space Center and successfully measured less than 1 ng/sq cm d NVR contamination. Contamination episodes detected by the instrument were correlated with scheduled activities on the test stand. Under the assumption of a baseline noise level of +/- 2 Hz, the absolute mass lower limit of detection would be 0.065 ng/sq cm. This would enable the detection of a daily NVR deposition rate of less than 0.1 ng/sq cm d.

  11. REAL TIME ULTRASONIC ALUMINUM SPOT WELD MONITORING SYSTEM

    SciTech Connect

    Regalado, W. Perez; Chertov, A. M.; Maev, R. Gr.

    2010-02-22

    Aluminum alloys pose several properties that make them one of the most popular engineering materials: they have excellent corrosion resistance, and high weight-to-strength ratio. Resistance spot welding of aluminum alloys is widely used today but oxide film and aluminum thermal and electrical properties make spot welding a difficult task. Electrode degradation due to pitting, alloying and mushrooming decreases the weld quality and adjustment of parameters like current and force is required. To realize these adjustments and ensure weld quality, a tool to measure weld quality in real time is required. In this paper, a real time ultrasonic non-destructive evaluation system for aluminum spot welds is presented. The system is able to monitor nugget growth while the spot weld is being made. This is achieved by interpreting the echoes of an ultrasound transducer located in one of the welding electrodes. The transducer receives and transmits an ultrasound signal at different times during the welding cycle. Valuable information of the weld quality is embedded in this signal. The system is able to determine the weld nugget diameter by measuring the delays of the ultrasound signals received during the complete welding cycle. The article presents the system performance on aluminum alloy AA6022.

  12. Real-Time System Log Monitoring/Analytics Framework

    SciTech Connect

    Oral, H Sarp; Dillow, David A; Park, Byung H; Shipman, Galen M; Geist, Al; Gunasekaran, Raghul

    2011-01-01

    Analyzing system logs provides useful insights for identifying system/application anomalies and helps in better usage of system resources. Nevertheless, it is simply not practical to scan through the raw log messages on a regular basis for large-scale systems. First, the sheer volume of unstructured log messages affects the readability, and secondly correlating the log messages to system events is a daunting task. These factors limit large-scale system logs primarily for generating alerts on known system events, and post-mortem diagnosis for identifying previously unknown system events that impacted the systems performance. In this paper, we describe a log monitoring framework that enables prompt analysis of system events in real-time. Our web-based framework provides a summarized view of console, netwatch, consumer, and apsched logs in real- time. The logs are parsed and processed to generate views of applications, message types, individual/group of compute nodes, and in sections of the compute platform. Also from past application runs we build a statistical profile of user/application characteristics with respect to known system events, recoverable/non-recoverable error messages and resources utilized. The web-based tool is being developed for Jaguar XT5 at the Oak Ridge Leadership Computing facility.

  13. Near-Real Time Monitoring of Global Lakes and Reservoirs

    NASA Astrophysics Data System (ADS)

    Beckley, B. D.; Birkett, C. M.; Doorn, B.; Reynolds, C.; Baldwin, B.

    2004-12-01

    Satellite radar altimetry has the ability to monitor variations in surface water height (stage) for large lakes and reservoirs. A clear advantage is the provision of data where traditional gauges are lacking or where there is restricted access to ground-based measurements. As part of a new USDA-funded program, near-real time altimetric monitoring of the largest lakes and reservoirs in the world is taking place. Data ingestion and manipulation, to some degree, follows the concepts of the NASA Ocean Altimeter Pathfinder although extra provisions have to be made regarding these smaller targets. Archived data from the TOPEX/POSEIDON (T/P) mission are utilized to provide a historical time series of height variations from 1992-2002. Near-real time stage measurements with respect to the T/P historical mean reference are derived from incoming data from the Jason-1 mission. The project utilizes the IGDR Jason-1 data with its <5 cm orbit accuracy and delivery time of <4 days after satellite overpass. A USDA maintained web site (http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir) provides free access to new measurements to the public about a week to ten days after the satellite passes over. Currently there are stage levels from 70 lakes/reservoirs worldwide being made available. As the project progresses, other data from the ERS and ENVISAT missions will also be included. The Foreign Agricultural Service's, Precipitation Estimation and Crop Assessment Division utilize these observations to note potential flood/drought conditions, and to estimate reservoir volume and irrigation potential. In this presentation we demonstrate the current capabilities and limitations of ocean radar altimetry for inland water level monitoring.

  14. A real-time monitoring system for night glare protection

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Ni, Xuxiang

    2010-11-01

    When capturing a dark scene with a high bright object, the monitoring camera will be saturated in some regions and the details will be lost in and near these saturated regions because of the glare vision. This work aims at developing a real-time night monitoring system. The system can decrease the influence of the glare vision and gain more details from the ordinary camera when exposing a high-contrast scene like a car with its headlight on during night. The system is made up of spatial light modulator (The liquid crystal on silicon: LCoS), image sensor (CCD), imaging lens and DSP. LCoS, a reflective liquid crystal, can modular the intensity of reflective light at every pixel as a digital device. Through modulation function of LCoS, CCD is exposed with sub-region. With the control of DSP, the light intensity is decreased to minimum in the glare regions, and the light intensity is negative feedback modulated based on PID theory in other regions. So that more details of the object will be imaging on CCD and the glare protection of monitoring system is achieved. In experiments, the feedback is controlled by the embedded system based on TI DM642. Experiments shows: this feedback modulation method not only reduces the glare vision to improve image quality, but also enhances the dynamic range of image. The high-quality and high dynamic range image is real-time captured at 30hz. The modulation depth of LCoS determines how strong the glare can be removed.

  15. NASDA technician test real-time radiation monitoring device

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A technician from the National Space Development Agency of Japan (NASDA) tests the real-time radiation monitoring device on SPACEHAB at Kennedy Space Center in preparation for the STS-89 mission, slated to be the first Shuttle launch of 1998. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine-day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven-member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A.

  16. Miniaturized real-time monitor for fuel cell leak applications

    NASA Astrophysics Data System (ADS)

    Beshay, Manal; Chandra Sekhar, Jai Ganesh; Delgado Alonso, Jesús; Boehr, Christopher; Lieberman, Robert A.

    2011-06-01

    The intrinsically safe detection of hydrogen leaks in fuel cell vehicles (FCV) is critical for ensuring system operational safety. An early indication of a leak will not only trigger an alarm in unsafe situations, but will also dramatically reduce the risk and cost associated with fuel cell malfunction. This paper discusses the development of hydrogen leak detection technology that is suitable for onboard, real-time, and intrinsically safe monitoring of fuel cells. This technique offers FCV onboard sensing requirements with a sensitivity of 0.05% (500 ppm) in air, a response time of 3-5 seconds, operation at 5-90%RH and 0-55°C, and power consumption <=0.5 watts.

  17. System for near real-time crustal deformation monitoring

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F. (Inventor)

    1979-01-01

    A system is described for use in detecting earth crustal deformation using an RF interferometer technique for such purposes as earthquake predictive research and eventual operational predictions. A lunar based RF transmission or transmissions from earth orbiting satellites are received at two locations on Earth, and a precise time dependent phase measurement is made of the RF signal as received at the two locations to determine two or three spatial parameters of the antenna relative positions. The received data are precisely time tagged and land-line routed to a central station for real-time phase comparison and analysis. By monitoring the antenna relative positions over an extended period of months or years, crustal deformation of the Earth can be detected.

  18. Remote, real-time monitoring of cyclones with microseisms

    NASA Astrophysics Data System (ADS)

    Jo, B. G.; Lee, W. D.; Schwab, F. A.

    2014-12-01

    Giving proper care to selecting microseisms from well isolated cyclones, these great oceanic storms can be monitored in real time by seismic recordings at stations 1200-4100 km distant from the cyclone's center. We treat ocean depths of 3.4-5.5 km. For the theoretically-computed microseism, which our procedure compares with the experimental data, we use a Green's-function approach in the frequency domain. Relating recorded displacement F and theoretical Green's function G, We have F(ω,r)=S(ω)G(ω,r) in which our only unknown is the generalized source function S(ω) and r is the distance to the center at any specific time. The basic result of this report is that the form of this function is A SN(ω), where A is a real constant increasing with the strength of the cyclone and SN(ω), is a positive real function of frequency, independent of cyclone-receiver separation and of cyclone strength. That is, for a given ocean basin, and a given receiver-region geology, at our current level of accuracy SN(ω) is the same for all cyclone strengths and cyclone-receiver separations. Using the multimode approach, we've developed the numerical method for computing the Green's function for multilayered oceanic structures. For each of the 4 selected cyclones, the source functions for all locations along the path show a consistency which demonstrates that the recorded microseisms are radiated from the cyclone. The extracted source function exhibits spectra that are characteristic of ocean waves generated by cyclonic winds. With knowledge of distance between the source and receiver, cyclone A is therefore trivial to monitor in real time from remote recordings. At the current time, the cyclone's strength—generalized source function—must be related empirically to the cyclone's maximum wind speed, areal extent, and lateral velocity.

  19. Constructing a Real-Time Prescription Drug Monitoring System

    PubMed Central

    Lee, Youn Tae; Jo, Emmanuel C.

    2016-01-01

    Objectives The objective of this investigation was to demonstrate the possibility of the construction of a real-time prescription drug monitoring system (PDMOS) using data from the nationwide Drug Utilization Review (DUR) system in Korea. Methods The DUR system collects information on drug prescriptions issued by healthcare practitioners and on drugs dispensed by pharmacies. PDMOS was constructed using this data. The screen of PDMOS is designed to exhibit the number of drug prescriptions, the number of prescriptions dispensed by pharmacies, and the dispensed prescription drug costs on a daily and weekly basis. Data was sourced from the DUR system between June 1, 2016 and July 18, 2016. The TOGA solution developed by the EYEQMC Co. Ltd. of Seoul, Korea was used to produce the screen shots. Results Prescription numbers by medical facilities were more numerous than the number of prescriptions dispensed by pharmacies, as expected. The number of prescriptions per day was between 2 to 3 million. The prescriptions issued by primary care clinics were most numerous, at 75% of the total number of prescriptions. Daily prescription drug costs were found to be approximately US $50 million. The prescription drug costs were highest on Mondays and were reduced towards the end of the week. Prescriptions and dispensed prescriptions numbered approximately 1,200 and 1,000 million, respectively. Conclusions The construction of a real-time PDMOS has been successful to provide daily and weekly information. There was a lag time of only one day at the national level in terms of information extraction, and scarcely any time was required to load the data. Therefore, this study highlights the potential of constructing a PDMOS to monitor the estimate the number of prescriptions and the resulting expenditures from prescriptions. PMID:27525159

  20. Real-time bioacoustics monitoring and automated species identification

    PubMed Central

    Corrada-Bravo, Carlos; Campos-Cerqueira, Marconi; Milan, Carlos; Vega, Giovany; Alvarez, Rafael

    2013-01-01

    Traditionally, animal species diversity and abundance is assessed using a variety of methods that are generally costly, limited in space and time, and most importantly, they rarely include a permanent record. Given the urgency of climate change and the loss of habitat, it is vital that we use new technologies to improve and expand global biodiversity monitoring to thousands of sites around the world. In this article, we describe the acoustical component of the Automated Remote Biodiversity Monitoring Network (ARBIMON), a novel combination of hardware and software for automating data acquisition, data management, and species identification based on audio recordings. The major components of the cyberinfrastructure include: a solar powered remote monitoring station that sends 1-min recordings every 10 min to a base station, which relays the recordings in real-time to the project server, where the recordings are processed and uploaded to the project website (arbimon.net). Along with a module for viewing, listening, and annotating recordings, the website includes a species identification interface to help users create machine learning algorithms to automate species identification. To demonstrate the system we present data on the vocal activity patterns of birds, frogs, insects, and mammals from Puerto Rico and Costa Rica. PMID:23882441

  1. Real-time satellite monitoring of volcanic hot spots

    NASA Astrophysics Data System (ADS)

    Harris, Andrew J. L.; Flynn, Luke P.; Dean, Ken; Pilger, Eric; Wooster, Martin; Okubo, Chris; Mouginis-Mark, Peter; Garbeil, Harold; Thornber, Carl; De la Cruz-Reyna, Servando; Rothery, Dave; Wright, Robert

    Direct satellite data reception at high temporal frequencies and automated processing enable near-real-time, near-continuous thermal monitoring of volcanoes. We review what has been achieved in terms of turning this capability into real-time tools of use to volcano monitoring agencies. Current capabilities focus on 2 instruments: the advanced very high resolution radiometer (AVHRR) and the Geostationary Operational Environmental Satellite (GOES) imager. Collection of lO AVHRR images per day covering Alaska, the Aleutians, and Kamchatka allows routine, on-reception analysis of volcanic hot spots across this region. Data collected between 1996 and 1998 detected 302 hot spots due to lava flows, lava domes, pyroclastic flows, fumaroles, and geothermally heated lakes at 12 different volcanoes. Information was used for hazard mitigation by the Alaskan Volcano Observatory. GOES provides data for North and South American volcanoes every 15-30 minutes. Automated processing allows eruption information and alerts to be posted on the Internet within 15-60 minutes of reception. We use June 1998 to demonstrate the frequency of data acquisition. During this month 2879 GOES images were collected from which 14,832 sub-images of 6 active volcanoes were processed. Although 82% (12,200) of these sub-images were cloud covered, hot spots were still evident on 11% (1634) of the sub-images. Analysis of GOES data for 1998 identified hot spots due to (1) lava flows at Kilauea and Cerro Azul, (2) dome extrusion and explosive activity at Lascar, Popocatepetl, Colima and Pacaya, and (3) dome cooling and collapse at Soufriere Hills. We were also able to suggest that reports of lava flow activity at Cerro Negro were false. This information was supplied to, and used by, various agencies whose task it is to monitor these volcanoes. Global thermal monitoring will become a reality with the launch of the Earth Observing System's moderate resolution imaging spectrometer (MODIS). An automated thermal

  2. Enhancements and Evolution of the Real Time Mission Monitor

    NASA Technical Reports Server (NTRS)

    Goodman, Michael; Blakeslee, Richard; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn

    2008-01-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM has proven extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, mission scientists, instrument scientists and program managers alike appreciate the contributions that RTMM makes to their flight projects. We have received numerous plaudits from a wide variety of scientists who used RTMM during recent field campaigns including the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) missions, the 2007-2008 NOAA-NASA Aerosonde Hurricane flights and the 2008 Soil Moisture Active-Passive Validation Experiment (SMAP-VEX). Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated for altitude, latitude, longitude, flight leg distance, cumulative distance, flight leg time, cumulative time, and

  3. The 2nd Generation Real Time Mission Monitor (RTMM) Development

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard; Goodman, Michael; Meyer, Paul; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn; Conover, Helen; Smith, Tammy; Lu, Jessica; Garrett, Michelle

    2009-01-01

    The NASA Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decisionmaking for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery and orbit data, radar and other surface observations (e.g., lightning location network data), airborne navigation and instrument data sets, model output parameters, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. In order to improve the usefulness and efficiency of the RTMM system, capabilities are being developed to allow the end-user to easily configure RTMM applications based on their mission-specific requirements and objectives. This second generation RTMM is being redesigned to take advantage of the Google plug-in capabilities to run multiple applications in a web browser rather than the original single application Google Earth approach. Currently RTMM employs a limited Service Oriented Architecture approach to enable discovery of mission specific resources. We are expanding the RTMM architecture such that it will more effectively utilize the Open Geospatial Consortium Sensor Web Enablement services and other new technology software tools and components. These modifications and extensions will result in a robust, versatile RTMM system that will greatly increase flexibility of the user to choose which science data sets and support applications to view and/or use. The improvements brought about by RTMM 2nd generation system will provide mission planners and airborne scientists with enhanced decision-making tools and capabilities to more

  4. Near-Real Time Monitoring of African Lakes and Reservoirs

    NASA Astrophysics Data System (ADS)

    Birkett, C.; Beckley, B.; Brenner, A.; Koblinsky, C.

    2003-04-01

    Satellite radar altimetry has the ability to monitor variations in surface water height (stage) for large lakes and reservoirs. A clear advantage is the provision of data where traditional gauges are lacking or where there is restricted access to ground-based measurements. As part of a new USDA-funded program, near-real time altimetric monitoring of the largest lakes and reservoirs in Africa will begin in October,2002. Data ingestion and manipulation will closely follow the path of the NASA Ocean Altimeter Pathfinder Project and will concentrate in the first phase on incoming data from the Jason-1 mission. As the project progresses, other data from the TOPEX/POSEIDON and ENVISAT missions will also be included, and the target selection will expand to observe other reservoirs in Turkey, Afghanistan, Pakistan, India, Kyrgyzstan, Iran and Iraq. The project will begin by utilizing the IGDR data with its expected <10cm orbit accuracy and delivery time of <4days after satellite overpass. The team aims to produce graphic and text products, revealing the variation in lake height, within 24hrs of data availability. These will be delivered to the Foreign Agricultural Service's, Precipitation Estimation and Crop Assessment Division for observation of flood/drought conditions, and for analysis of reservoir volume and irrigation potential.

  5. Real-time video monitoring of ingot casting

    SciTech Connect

    Richter, R.T.; Adomaitis, P.R.; Hildeman, G.J.

    1996-10-01

    During start-up and steady-state casting of ingots, a number of effects related to ingot casting variables can be observed on the surface of the ingot. For example, the amount of curl at the bottom of the ingot, surface laps, liquation, cracks, and folds, as well as extreme events such as bleed-outs when molten metal melts through the shell of the ingot crater, are significant events which could be viewed. Unfortunately, observation of these surface effects is difficult since the as-cast surface is hidden below the casting table and direct visual observations of ingot surfaces are limited due to the proximity of the molds, cooling water sprays, and the ability of the casting operators to safely view ingot surface details at close range. The purpose of this paper is to describe a unique video monitoring capability which is being used as Alcoa`s Advanced Vertical Casting facility, to observe in real-time, surface effects of an ingot during casting. A description of the development of the video monitoring system, including camera, lighting, and video recording capability will be presented. Examples of various surface conditions on direct chill (DC) and electromagnetic cast (EMC) ingots will also be discussed.

  6. Capability of a Mobile Monitoring System to Provide Real-Time Data Broadcasting and Near Real-Time Source Attribution

    NASA Astrophysics Data System (ADS)

    Erickson, M.; Olaguer, J.; Wijesinghe, A.; Colvin, J.; Neish, B.; Williams, J.

    2014-12-01

    It is becoming increasingly important to understand the emissions and health effects of industrial facilities. Many areas have no or limited sustained monitoring capabilities, making it difficult to quantify the major pollution sources affecting human health, especially in fence line communities. Developments in real-time monitoring and micro-scale modeling offer unique ways to tackle these complex issues. This presentation will demonstrate the capability of coupling real-time observations with micro-scale modeling to provide real-time information and near real-time source attribution. The Houston Advanced Research Center constructed the Mobile Acquisition of Real-time Concentrations (MARC) laboratory. MARC consists of a Ford E-350 passenger van outfitted with a Proton Transfer Reaction Mass Spectrometer (PTR-MS) and meteorological equipment. This allows for the fast measurement of various VOCs important to air quality. The data recorded from the van is uploaded to an off-site database and the information is broadcast to a website in real-time. This provides for off-site monitoring of MARC's observations, which allows off-site personnel to provide immediate input to the MARC operators on how to best achieve project objectives. The information stored in the database can also be used to provide near real-time source attribution. An inverse model has been used to ascertain the amount, location, and timing of emissions based on MARC measurements in the vicinity of industrial sites. The inverse model is based on a 3D micro-scale Eulerian forward and adjoint air quality model known as the HARC model. The HARC model uses output from the Quick Urban and Industrial Complex (QUIC) wind model and requires a 3D digital model of the monitored facility based on lidar or industrial permit data. MARC is one of the instrument platforms deployed during the 2014 Benzene and other Toxics Exposure Study (BEE-TEX) in Houston, TX. The main goal of the study is to quantify and explain the

  7. COMPUTER-CONTROLLED, REAL-TIME AUTOMOBILE EMISSIONS MONITORING SYSTEM

    EPA Science Inventory

    A minicomputer controlled automotive emissions sampling and analysis system (the Real-Time System) was developed to determine vehicular modal emissions over various test cycles. This data acquisition system can sample real-time emissions at a rate of 10 samples/s. A buffer utiliz...

  8. Real-time monitoring of the human alertness level

    NASA Astrophysics Data System (ADS)

    Alvarez, Robin; del Pozo, Francisco; Hernando, Elena; Gomez, Eduardo; Jimenez, Antonio

    2003-04-01

    Many accidents are associated with a driver or machine operator's alertness level. Drowsiness often develops as a result of repetitive or monotonous tasks, uninterrupted by external stimuli. In order to enhance safety levels, it would be most desirable to monitor the individual's level of attention. In this work, changes in the power spectrum of the electroencephalographic signal (EEG) are associated with the subject's level of attention. This study reports on the initial research carried out in order to answer the following important questions: (i) Does a trend exist in the shape of the power spectrum, which will indicate the state of a subject's alertness state (drowsy, relaxed or alert)? (ii) What points on the cortex are most suitable to detect drowsiness and/or high alertness? (iii) What parameters in the power spectrum are most suitable to establish a workable alertness classification in human subjects? In this work, we answer these questions and combine power spectrum estimation and artificial neural network techniques to create a non-invasive and real - time system able to classify EEG into three levels of attention: High, Relaxed and Drowsiness. The classification is made every 10 seconds o more, a suitable time span for giving an alarm signal if the individual is with insufficient level of alertness. This time span is set by the user. The system was tested on twenty subjects. High and relaxed attention levels were measured in randomise hours of the day and drowsiness attention level was measured in the morning after one night of sleep deprivation.

  9. Real Time Monitoring of Flooding from Microwave Satellite Observations

    NASA Technical Reports Server (NTRS)

    Galantowicz, John F.; Frey, Herb (Technical Monitor)

    2002-01-01

    We have developed a new method for making high-resolution flood extent maps (e.g., at the 30-100 m scale of digital elevation models) in real-time from low-resolution (20-70 km) passive microwave observations. The method builds a "flood-potential" database from elevations and historic flood imagery and uses it to create a flood-extent map consistent with the observed open water fraction. Microwave radiometric measurements are useful for flood monitoring because they sense surface water in clear-or-cloudy conditions and can provide more timely data (e.g., compared to radars) from relatively wide swath widths and an increasing number of available platforms (DMSP, ADEOS-II, Terra, NPOESS, GPM). The chief disadvantages for flood mapping are the radiometers' low resolution and the need for local calibration of the relationship between radiances and open-water fraction. We present our method for transforming microwave sensor-scale open water fraction estimates into high-resolution flood extent maps and describe 30-day flood map sequences generated during a retrospective study of the 1993 Great Midwest Flood. We discuss the method's potential improvement through as yet unimplemented algorithm enhancements and expected advancements in microwave radiometry (e.g., improved resolution and atmospheric correction).

  10. The 2nd Generation Real Time Mission Monitor (RTMM) Development

    NASA Astrophysics Data System (ADS)

    Blakeslee, R. J.; Goodman, M.; Hardin, D. M.; Hall, J.; Yubin He, M.; Regner, K.; Conover, H.; Smith, T.; Meyer, P.; Lu, J.; Garrett, M.

    2009-12-01

    The NASA Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery and orbit data, radar and other surface observations (e.g., lightning location network data), airborne navigation and instrument data sets, model output parameters, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. In order to improve the usefulness and efficiency of the RTMM system, capabilities are being developed to allow the end-user to easily configure RTMM applications based on their mission-specific requirements and objectives. This second generation RTMM is being redesigned to take advantage of the Google plug-in capabilities to run multiple applications in a web browser rather than the original single application Google Earth approach. Currently RTMM employs a limited Service Oriented Architecture approach to enable discovery of mission specific resources. We are expanding the RTMM architecture such that it will more effectively utilize the Open Geospatial Consortium Sensor Web Enablement services and other new technology software tools and components. These modifications and extensions will result in a robust, versatile RTMM system that will greatly increase flexibility of the user to choose which science data sets and support applications to view and/or use. The improvements brought about by RTMM 2nd generation system will provide mission planners and airborne scientists with enhanced decision-making tools and capabilities to more

  11. Towards real-time regional earthquake simulation I: real-time moment tensor monitoring (RMT) for regional events in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Shiann-Jong; Liang, Wen-Tzong; Cheng, Hui-Wen; Tu, Feng-Shan; Ma, Kuo-Fong; Tsuruoka, Hiroshi; Kawakatsu, Hitoshi; Huang, Bor-Shouh; Liu, Chun-Chi

    2014-01-01

    We have developed a real-time moment tensor monitoring system (RMT) which takes advantage of a grid-based moment tensor inversion technique and real-time broad-band seismic recordings to automatically monitor earthquake activities in the vicinity of Taiwan. The centroid moment tensor (CMT) inversion technique and a grid search scheme are applied to obtain the information of earthquake source parameters, including the event origin time, hypocentral location, moment magnitude and focal mechanism. All of these source parameters can be determined simultaneously within 117 s after the occurrence of an earthquake. The monitoring area involves the entire Taiwan Island and the offshore region, which covers the area of 119.3°E to 123.0°E and 21.0°N to 26.0°N, with a depth from 6 to 136 km. A 3-D grid system is implemented in the monitoring area with a uniform horizontal interval of 0.1° and a vertical interval of 10 km. The inversion procedure is based on a 1-D Green's function database calculated by the frequency-wavenumber (fk) method. We compare our results with the Central Weather Bureau (CWB) catalogue data for earthquakes occurred between 2010 and 2012. The average differences between event origin time and hypocentral location are less than 2 s and 10 km, respectively. The focal mechanisms determined by RMT are also comparable with the Broadband Array in Taiwan for Seismology (BATS) CMT solutions. These results indicate that the RMT system is realizable and efficient to monitor local seismic activities. In addition, the time needed to obtain all the point source parameters is reduced substantially compared to routine earthquake reports. By connecting RMT with a real-time online earthquake simulation (ROS) system, all the source parameters will be forwarded to the ROS to make the real-time earthquake simulation feasible. The RMT has operated offline (2010-2011) and online (since January 2012 to present) at the Institute of Earth Sciences (IES), Academia Sinica

  12. REAL TIME FLAME MONITORING OF GASIFIER BURNER AND INJECTORS

    SciTech Connect

    James Servaites; Serguei Zelepouga; David Rue

    2003-10-01

    This report is submitted to the United States Department of Energy in partial fulfillment of the contractual requirements for Phase I of the project titled, ''Real Time Flame Monitoring of Gasifier Burner and Injectors'', under co-operative agreement number DE-FS26-02NT41585. The project is composed of three one-year budget periods. The work in each year is divided into separate Tasks to facilitate project management, orderly completion of all project objectives, budget control, and critical path application of personnel and equipment. This Topical Report presents results of the Task 1 and 2 work. The 2 D optical sensor was developed to monitor selected UV and visible wavelengths to collect accurate flame characterization information regarding mixing, flame shape, and flame rich/lean characteristic. Flame richness, for example, was determined using OH and CH intensity peaks in the 300 to 500 nanometer range of the UV and visible spectrum. The laboratory burner was operated over a wide range of air to fuel ratio conditions from fuel rich to fuel lean. The sooty oxygen enriched air flames were established to test the sensor ability to characterize flame structures with substantial presence of hot solid particles emitting strong ''black body radiation''. The knowledge gained in these experiments will be very important when the sensor is used for gasifier flame analyses. It is expected that the sensor when installed on the Global Energy gasifier will be exposed to complex radiation patterns. The measured energy will be a combination of spectra emitted by the combusting gases, hot solid particulates, and hot walls of the gasifier chamber. The ability to separate flame emissions from the ''black body emissions'' will allow the sensor to accurately determine flame location relative to the gasifier walls and the injectors, as well as to analyze the flame's structure and condition. Ultimately, this information should enable the gasification processes to be monitored and

  13. Multisensor Instrument for Real-Time Biological Monitoring

    NASA Technical Reports Server (NTRS)

    Zhang, Sean (Zhanxiang); Xu, Guoda; Qiu, Wei; Lin, Freddie

    2004-01-01

    The figure schematically depicts an instrumentation system, called a fiber optic-based integration system (FOBIS), that is undergoing development to enable real-time monitoring of fluid cell cultures, bioprocess flows, and the like. The FOBIS design combines a micro flow cytometer (MFC), a microphotometer (MP), and a fluorescence-spectrum- or binding-force-measuring micro-sensor (MS) in a single instrument that is capable of measuring multiple biological parameters simultaneously or sequentially. The fiber-optic-based integration system is so named because the MFC, the MP, and the MS are integrated into a single optical system that is coupled to light sources and photometric equipment via optical fibers. The optical coupling components also include a wavelength-division multiplexer and diffractive optical elements. The FOBIS includes a laserdiode- and fiber-optic-based optical trapping subsystem (optical tweezers ) with microphotometric and micro-sensing capabilities for noninvasive confinement and optical measurement of relevant parameters of a single cell or other particle. Some of the measurement techniques implemented together by the FOBIS have long been used separately to obtain basic understanding of the optical properties of individual cells and other organisms, the optical properties of populations of organisms, and the interrelationships among these properties, physiology of the organisms, and physical processes that govern the media that surround the organisms. For example, flow cytometry yields information on numerical concentrations, cross-sectional areas, and types of cells or other particles. Micro-sensing can be used to measure pH and concentrations of oxygen, carbon dioxide, glucose, metabolites, calcium, and antigens in a cell-culture fluid, thereby providing feedback that can be helpful in improving control over a bioprocess. Microphotometry (including measurements of scattering and fluorescence) can yield further information about optically

  14. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    SciTech Connect

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim; Gilbert, Bob; Lake, Larry W.; Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett; Thomas, Sunil G.; Rightley, Michael J.; Rodriguez, Adolfo; Klie, Hector; Banchs, Rafael; Nunez, Emilio J.; Jablonowski, Chris

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging

  15. Real-time diesel particulate monitor for underground mines

    PubMed Central

    Janisko, Samuel; Mischler, Steven E.

    2015-01-01

    The standard method for determining diesel particulate matter (DPM) exposures in underground metal/ nonmetal mines provides the average exposure concentration for an entire working shift, and several weeks might pass before results are obtained. The main problem with this approach is that it only indicates that an overexposure has occurred rather than providing the ability to prevent an overexposure or detect its cause. Conversely, real-time measurement would provide miners with timely information to allow engineering controls to be deployed immediately and to identify the major factors contributing to any overexposures. Toward this purpose, the National Institute for Occupational Safety and Health (NIOSH) developed a laser extinction method to measure real-time elemental carbon (EC) concentrations (EC is a DPM surrogate). To employ this method, NIOSH developed a person-wearable instrument that was commercialized in 2011. This paper evaluates this commercial instrument, including the calibration curve, limit of detection, accuracy, and potential interferences. The instrument was found to meet the NIOSH accuracy criteria and to be capable of measuring DPM concentrations at levels observed in underground mines. In addition, it was found that a submicron size selector was necessary to avoid interference from mine dust and that cigarette smoke can be an interference when sampling in enclosed cabs. PMID:26180555

  16. Monitoring and Acquisition Real-time System (MARS)

    NASA Technical Reports Server (NTRS)

    Holland, Corbin

    2013-01-01

    MARS is a graphical user interface (GUI) written in MATLAB and Java, allowing the user to configure and control the Scalable Parallel Architecture for Real-Time Acquisition and Analysis (SPARTAA) data acquisition system. SPARTAA not only acquires data, but also allows for complex algorithms to be applied to the acquired data in real time. The MARS client allows the user to set up and configure all settings regarding the data channels attached to the system, as well as have complete control over starting and stopping data acquisition. It provides a unique "Test" programming environment, allowing the user to create tests consisting of a series of alarms, each of which contains any number of data channels. Each alarm is configured with a particular algorithm, determining the type of processing that will be applied on each data channel and tested against a defined threshold. Tests can be uploaded to SPARTAA, thereby teaching it how to process the data. The uniqueness of MARS is in its capability to be adaptable easily to many test configurations. MARS sends and receives protocols via TCP/IP, which allows for quick integration into almost any test environment. The use of MATLAB and Java as the programming languages allows for developers to integrate the software across multiple operating platforms.

  17. The physiologic state of Escherichia coli O157:H7 does not affect its detection in two commercial real-time PCR-based tests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiplex real-time PCR detection of Escherichia coli O157:H7 is an efficient molecular tool with high sensitivity and specificity for meat safety and quality assurance in the beef industry. The Biocontrol GDS and the DuPont Qualicon BAX®-RT rapid detection systems are two commercial tests based on...

  18. Development of Real-Time Coal Monitoring Instrument

    SciTech Connect

    Rajan Gurjar, Ph.D.

    2010-06-17

    Relying on coal for energy requires optimizing the extraction of heat content from various blends of coal fuel and reducing harmful constituents and byproducts. Having a real-time measurement instrument provides relevant information about toxic constituents released in the atmosphere from burning coal and optimizes the performance of a power plant. A few commercial instruments exist and have been in operation for more than a decade. However, most of these instruments are based on radioactive sources and are bulky, expensive and time-consuming. The proposed instrument is based on the Laser Induced Breakdown Spectroscopy (LIBS). The advantage of LIBS is that it is a standoff instrument, does not require sample preparation and provides precise information about sample constituents.

  19. Cloud-ECG for real time ECG monitoring and analysis.

    PubMed

    Xia, Henian; Asif, Irfan; Zhao, Xiaopeng

    2013-06-01

    Recent advances in mobile technology and cloud computing have inspired numerous designs of cloud-based health care services and devices. Within the cloud system, medical data can be collected and transmitted automatically to medical professionals from anywhere and feedback can be returned to patients through the network. In this article, we developed a cloud-based system for clients with mobile devices or web browsers. Specially, we aim to address the issues regarding the usefulness of the ECG data collected from patients themselves. Algorithms for ECG enhancement, ECG quality evaluation and ECG parameters extraction were implemented in the system. The system was demonstrated by a use case, in which ECG data was uploaded to the web server from a mobile phone at a certain frequency and analysis was performed in real time using the server. The system has been proven to be functional, accurate and efficient. PMID:23261079

  20. Cotranslational protein folding on the ribosome monitored in real time.

    PubMed

    Holtkamp, Wolf; Kokic, Goran; Jäger, Marcus; Mittelstaet, Joerg; Komar, Anton A; Rodnina, Marina V

    2015-11-27

    Protein domains can fold into stable tertiary structures while they are synthesized on the ribosome. We used a high-performance, reconstituted in vitro translation system to investigate the folding of a small five-helix protein domain-the N-terminal domain of Escherichia coli N5-glutamine methyltransferase HemK-in real time. Our observations show that cotranslational folding of the protein, which folds autonomously and rapidly in solution, proceeds through a compact, non-native conformation that forms within the peptide tunnel of the ribosome. The compact state rearranges into a native-like structure immediately after the full domain sequence has emerged from the ribosome. Both folding transitions are rate-limited by translation, allowing for quasi-equilibrium sampling of the conformational space restricted by the ribosome. Cotranslational folding may be typical of small, intrinsically rapidly folding protein domains. PMID:26612953

  1. Local feature saliency classifier for real-time intrusion monitoring

    NASA Astrophysics Data System (ADS)

    Buch, Norbert; Velastin, Sergio A.

    2014-07-01

    We propose a texture saliency classifier to detect people in a video frame by identifying salient texture regions. The image is classified into foreground and background in real time. No temporal image information is used during the classification. The system is used for the task of detecting people entering a sterile zone, which is a common scenario for visual surveillance. Testing is performed on the Imagery Library for Intelligent Detection Systems sterile zone benchmark dataset of the United Kingdom's Home Office. The basic classifier is extended by fusing its output with simple motion information, which significantly outperforms standard motion tracking. A lower detection time can be achieved by combining texture classification with Kalman filtering. The fusion approach running at 10 fps gives the highest result of F1=0.92 for the 24-h test dataset. The paper concludes with a detailed analysis of the computation time required for the different parts of the algorithm.

  2. A Real-Time Phase Vector Display for EEG Monitoring

    NASA Technical Reports Server (NTRS)

    Finger, Herbert J.; Anliker, James E.; Rimmer, Tamara

    1973-01-01

    A real-time, computer-based, phase vector display system has been developed which will output a vector whose phase is equal to the delay between a trigger and the peak of a function which is quasi-coherent with respect to the trigger. The system also contains a sliding averager which enables the operator to average successive trials before calculating the phase vector. Data collection, averaging and display generation are performed on a LINC-8 computer. Output displays appear on several X-Y CRT display units and on a kymograph camera/oscilloscope unit which is used to generate photographs of time-varying phase vectors or contourograms of time-varying averages of input functions.

  3. Optical, real-time monitoring of the glomerular filtration rate

    NASA Astrophysics Data System (ADS)

    Rabito, Carlos A.; Chen, Yang; Schomacker, Kevin T.; Modell, Mark D.

    2005-10-01

    An easy and accurate assessment of the renal function is a critical requirement for detecting the initial functional decline of the kidney induced by acute or chronic renal disease. A method for measuring the glomerular filtration rate is developed with the accuracy of clearance techniques and the convenience of plasma creatinine. The renal function is measured in rats as the rate of clearance determined from time-resolved transcutaneous fluorescence measurements of a new fluorescent glomerular filtration agent. The agent has a large dose-safety coefficient and the same space distribution and clearance characteristics as iothalamate. This new approach is a convenient and accurate way to perform real-time measurements of the glomerular filtration rate to detect early kidney disease before the renal function becomes severely and irreversibly compromised.

  4. Detection of the free living amoeba Naegleria fowleri by using conventional and real-time PCR based on a single copy DNA sequence.

    PubMed

    Régoudis, Estelle; Pélandakis, Michel

    2016-02-01

    The amoeba-flagellate Naegleria fowleri is a causative agent of primary amoebic meningoencephalitis (PAM). This thermophilic species occurs worldwide and tends to proliferate in warm aquatic environment. The PAM cases remain rare but this infection is mostly fatal. Here, we describe a single copy region which has been cloned and sequenced, and was used for both conventional and real-time PCR. Targeting a single-copy DNA sequence allows to directly quantify the N. fowleri cells. The real-time PCR results give a detection limit of 1 copy per reaction with high reproducibility without the need of a Taqman probe. This procedure is of interest as compared to other procedures which are mostly based on the detection of multi-copy DNA associated with a Taqman probe. PMID:26688582

  5. MODVOLC: near-real-time thermal monitoring of global volcanism

    NASA Astrophysics Data System (ADS)

    Wright, Robert; Flynn, Luke P.; Garbeil, Harold; Harris, Andrew J. L.; Pilger, Eric

    2004-07-01

    MODVOLC is a non-interactive algorithm developed at the Hawaii Institute of Geophysics and Planetology (HIGP) that uses low spatial resolution (1-km pixel-size) infrared satellite data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) to map the global distribution of volcanic thermal anomalies in near-real-time. MODVOLC scans the Level-1B MODIS data stream, on a pixel-by-pixel basis, for evidence of pixel and sub-pixel-sized high-temperature radiators. Once a hot spot has been identified its details (location, emitted spectral radiance, time, satellite observation geometry) are written to ASCII text files and transferred via FTP to HIGP, from where the results are disseminated via the internet http://modis.higp.hawaii.edu). In this paper, we review the underlying principles upon which the algorithm is based before presenting some of the results and data that have been obtained since its inception. We show how MODVOLC reliably detects thermal anomalies at a large number of persistently and sporadically active volcanoes that encompass the full range of common eruptive styles including Erebus (Antarctica), Colima (México), Karymsky (Kamchatka), Popocatépetl (México), Etna (Italy), and Nyiragongo (Democratic Republic of Congo), amongst others. We also present a few cautionary notes regarding the limitations of the algorithm and interpretation of the data it provides.

  6. The Real Time Mission Monitor: A Platform for Real Time Environmental Data Integration and Display during NASA Field Campaigns

    NASA Astrophysics Data System (ADS)

    He, M.; Hardin, D. M.; Goodman, M.; Blakeslee, R.

    2008-05-01

    The Real Time Mission Monitor (RTMM) is an interactive visualization application based on Google Earth, that provides situational awareness and field asset management during NASA field campaigns. The RTMM can integrate data and imagery from numerous sources including GOES-12, GOES-10, and TRMM satellites. Simultaneously, it can display data and imagery from surface observations including Nexrad, NPOL and SMART- R radars. In addition to all these it can display output from models and real-time flight tracks of all aircraft involved in the experiment. In some instances the RTMM can also display measurements from scientific instruments as they are being flown. All data are recorded and archived in an on-line system enabling playback and review of all sorties. This is invaluable in preparing for future deployments and in exercising case studies. The RTMM facilitates pre-flight planning, in-flight monitoring, development of adaptive flight strategies and post- flight data analyses and assessments. Since the RTMM is available via the internet - during the actual experiment - project managers, scientists and mission planners can collaborate no matter where they are located as long as they have a viable internet connection. In addition, the system is open so that the general public can also view the experiment, in-progress, with Google Earth. Predecessors of RTMM were originally deployed in 2002 as part of the Altus Cumulus Electrification Study (ACES) to monitor uninhabited aerial vehicles near thunderstorms. In 2005 an interactive Java-based web prototype supported the airborne Lightning Instrument Package (LIP) during the Tropical Cloud Systems and Processes (TCSP) experiment. In 2006 the technology was adapted to the 3D Google Earth virtual globe and in 2007 its capabilities were extended to support multiple NASA aircraft (ER-2, WB-57, DC-8) during Tropical Composition, Clouds and Climate Coupling (TC4) experiment and 2007 Summer Aerosonde field study. In April 2008

  7. Real-Time Remote Monitoring with Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Faizal Zainal Abidin, Ahmad; Huzaimy Jusoh, Mohammad; James, Elster; Junid, Syed Abdul Mutalib Al; Mohd Yassin, Ahmad Ihsan

    2015-11-01

    The purpose of this system is to provide monitoring system for an electrical device and enable remote monitoring via web based application. This monitoring system allow the user to monitor the device condition from anywhere as the information will be synchronised to the website. The current and voltage reading of the monitored equipment, ambient temperature and humidity level are monitored and recorded. These parameters will be updated on the web page. All these sensor are connected to the microcontroller and the data will saved in micro secure digital (SD) card and send all the gathered information to a web page using the GPRS service connection synchronously. The collected data will be displayed on the website and the user enable to download the data directly from the website. The system will help user to monitor the devices condition and ambient changes with ease. The system is successfully developed, tested and has been installed at residential area in Taman Cahaya Alam, Section U12, Shah Alam, Selangor, Malaysia.

  8. The physiologic state of Escherichia coli O157:H7 does not affect its detection in two commercial real-time PCR-based tests.

    PubMed

    Wang, Rong; Schmidt, John W; Arthur, Terrance M; Bosilevac, Joseph M

    2013-04-01

    Multiplex real-time PCR detection of Escherichia coli O157:H7 is an efficient molecular tool with high sensitivity and specificity for meat safety assurance. The Biocontrol GDS(®) and DuPont Qualicon BAX(®)-RT rapid detection systems are two commercial tests based on real-time PCR amplification with potential applications for quantification of specific E. coli O157:H7 gene targets in enriched meat samples. However, there are arguments surrounding the use of these tests to predict pre-enrichment concentrations of E. coli O157:H7, as well as arguments pertaining to the influence of non-viable cells causing false positive results. The present study attempts to illustrate the effects of different bacterial physiologic states and the presence of non-viable cells on the ability of these systems to accurately measure contamination levels of E. coli O157:H7 in ground beef. While the PCR threshold cycle (C(T)) values of these assays showed a direct correlation with the number of bacteria present in pure cultures, this was not the case for ground beef samples spiked with various levels of injured or healthy cells. Furthermore, comparison of post-enrichment cell densities of bacteria did not correlate with injured or healthy cell numbers inoculated before enrichment process. Ground beef samples spiked with injured or healthy cells at different doses could not be distinguished by C(T) values from either assay. In addition, the contribution of nonviable cells in generating positive real-time PCR signals was investigated using both assays on pre-enriched and post-enriched beef samples, but only if inoculated at levels of 10(6) cells/sample or higher, which are levels not typically seen in ground beef. PMID:23200653

  9. Development of a novel real-time PCR-based strategy for simple and rapid molecular pathotyping of Newcastle disease virus.

    PubMed

    Yacoub, Alia; Leijon, Mikael; McMenamy, Michael J; Ullman, Karin; McKillen, John; Allan, Gordon; Belák, Sándor

    2012-05-01

    A novel real-time PCR strategy was applied to simultaneously detect and to discriminate low-pathogenic lentogenic and virulent meso/velogenic Newcastle disease virus (NDV). The pathotyping is achieved by a three-step semi-nested PCR. A pre-amplification of the cleavage site (CS) region of the F gene is followed by a two-level duplex real-time PCR directly targeting the CS, combining detection and pathotyping in a single tube. A wide range of NDV isolates spanning all genotypes were successfully detected and pathotyped. Clinical samples from outbreaks in Sweden in 2010 that were positive by the novel PCR method were also successfully pathotyped. The method is time-saving, reduces labour and costs and provides opportunities for rapid diagnosis at remote locations and in the field. Since the same strategy was also recently applied to avian influenza virus pathotyping, it shows promise of finding broad utility in diagnostics of infectious diseases caused by different RNA viruses in various hosts. PMID:22302287

  10. Real-time seismic monitoring and functionality assessment of a building

    USGS Publications Warehouse

    Celebi, M.

    2005-01-01

    This paper presents recent developments and approaches (using GPS technology and real-time double-integration) to obtain displacements and, in turn, drift ratios, in real-time or near real-time to meet the needs of the engineering and user community in seismic monitoring and assessing the functionality and damage condition of structures. Drift ratios computed in near real-time allow technical assessment of the damage condition of a building. Relevant parameters, such as the type of connections and story structural characteristics (including geometry) are used in computing drifts corresponding to several pre-selected threshold stages of damage. Thus, drift ratios determined from real-time monitoring can be compared to pre-computed threshold drift ratios. The approaches described herein can be used for performance evaluation of structures and can be considered as building health-monitoring applications.

  11. Real Time Quantitative Radiological Monitoring Equipment for Environmental Assessment

    SciTech Connect

    John R. Giles; Lyle G. Roybal; Michael V. Carpenter

    2006-03-01

    and measures. These analyses are combined to provide real-time areal activity and coverage maps that are displayed to the operator as the survey progresses. The flexible functionality of the INL systems are well suited to multiple roles supporting homeland security needs.

  12. Remote Real-Time Monitoring of Subsurface Landfill Gas Migration

    PubMed Central

    Fay, Cormac; Doherty, Aiden R.; Beirne, Stephen; Collins, Fiachra; Foley, Colum; Healy, John; Kiernan, Breda M.; Lee, Hyowon; Maher, Damien; Orpen, Dylan; Phelan, Thomas; Qiu, Zhengwei; Zhang, Kirk; Gurrin, Cathal; Corcoran, Brian; O’Connor, Noel E.; Smeaton, Alan F.; Diamond, Dermot

    2011-01-01

    The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months. PMID:22163975

  13. Remote real-time monitoring of subsurface landfill gas migration.

    PubMed

    Fay, Cormac; Doherty, Aiden R; Beirne, Stephen; Collins, Fiachra; Foley, Colum; Healy, John; Kiernan, Breda M; Lee, Hyowon; Maher, Damien; Orpen, Dylan; Phelan, Thomas; Qiu, Zhengwei; Zhang, Kirk; Gurrin, Cathal; Corcoran, Brian; O'Connor, Noel E; Smeaton, Alan F; Diamond, Dermot

    2011-01-01

    The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months. PMID:22163975

  14. Instrumented Shoes for Real-Time Activity Monitoring Applications.

    PubMed

    Moufawad El Achkar, Christopher; Lenoble-Hoskovec, Constanze; Major, Kristof; Paraschiv-Ionescu, Anisoara; Büla, Christophe; Aminian, Kamiar

    2016-01-01

    Activity monitoring in daily life is gaining momentum as a health assessment tool, especially in older adults and at-risk populations. Several research-based and commercial systems have been proposed with varying performances in classification accuracy. Configurations with many sensors are generally accurate but cumbersome, whereas single sensors tend to have lower accuracies. To this end, we propose an instrumented shoes system capable of accurate activity classification and gait analysis that contains sensors located entirely at the level of the shoes. One challenge in daily activity monitoring is providing punctual and subject-tailored feedback to improve mobility. Therefore, the instrumented shoe system was equipped with a Bluetooth® module to transmit data to a smartphone and perform detailed activity profiling of the monitored subjects. The potential applications of such a system are numerous in mobility and fall risk-assessment as well as in fall prevention. PMID:27332298

  15. Real-time optical monitoring of the wastewater treatment process.

    PubMed

    Tomperi, Jani; Koivuranta, Elisa; Kuokkanen, Anna; Juuso, Esko; Leiviskä, Kauko

    2016-01-01

    One activated sludge process line was optically monitored in situ by a novel image analysis equipment. The results of the image analysis were studied to find out dependencies to the process variables of the wastewater treatment plant (WWTP) and to the quality of the treated wastewater. The quality parameter of the treated wastewater, suspended solids, was modelled using the image analysis results. The model can be used for evaluating the performance of the WWTP and for the better control for stable effluent quality. It was shown that the results of the online optical monitoring reveal useful information from the process and can be used in forecasting the quality of biologically treated wastewater. The optical monitoring method together with process measurements has an important role in keeping the process in stable operating conditions and avoiding environmental risks. PMID:26238162

  16. Structural analysis in real time using continuous monitoring

    NASA Astrophysics Data System (ADS)

    Braunstein, Juergen; Viano, Charles; Hodac, Bernard

    2005-05-01

    OSMOS developed a completely automatic monitoring-system, which is ideal for the determination and monitoring of the structural state of civil engineering structures. Static and dynamic data are recorded as needed and are available via internet for further analysis. In case of bridges, automatic calculation of the axle load of the flowing traffic is implemented, a weigh in motion system (WIMS). When configurable thresholds are exceeded alarms are sent by SMS, e-mail, SNMP-trap for facility-management-systems or by fax.

  17. RadMonitor: radiology operations data mining in real time.

    PubMed

    Chen, Richard; Mongkolwat, Pattanasak; Channin, David S

    2008-09-01

    This paper describes the web-based visualization interface of RadMonitor, a platform-independent web application designed to help manage the complexity of information flow within a health care enterprise. The system eavesdrops on Health Layer 7 traffic and parses statistical operational information into a database. The information is then presented to the user as a treemap--a graphical visualization scheme that simplifies the display of hierarchical information. While RadMonitor has been implemented for the purpose of analyzing radiology operations, its XML backend allows it to be reused for virtually any other hierarchical data set. PMID:17534683

  18. Real Time Distributed Embedded Oscillator Operating Frequency Monitoring

    NASA Technical Reports Server (NTRS)

    Pollock, Julie (Inventor); Oliver, Brett D. (Inventor); Brickner, Christopher (Inventor)

    2013-01-01

    A method for clock monitoring in a network is provided. The method comprises receiving a first network clock signal at a network device and comparing the first network clock signal to a local clock signal from a primary oscillator coupled to the network device.

  19. Wireless lysimeters for real-time online soil water monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of nitrate-nitrogen (NO3-N) in drainage water allows accessing the effectiveness of water quality management. A passive capillary wick-type lysimeter (PCAPs) was used to monitor water flux and NO3-N leached below the root zone under an irrigated cropping system. Wireless lysimeters we...

  20. Fiber Optics Deliver Real-Time Structural Monitoring

    NASA Technical Reports Server (NTRS)

    2013-01-01

    To alter the shape of aircraft wings during flight, researchers at Dryden Flight Research Center worked on a fiber optic sensor system with Austin-based 4DSP LLC. The company has since commercialized a new fiber optic system for monitoring applications in health and medicine, oil and gas, and transportation, increasing company revenues by 60 percent.

  1. Monitoring Items in Real Time to Enhance CAT Security

    ERIC Educational Resources Information Center

    Zhang, Jinming; Li, Jie

    2016-01-01

    An IRT-based sequential procedure is developed to monitor items for enhancing test security. The procedure uses a series of statistical hypothesis tests to examine whether the statistical characteristics of each item under inspection have changed significantly during CAT administration. This procedure is compared with a previously developed…

  2. Monitoring real-time aerosol distribution in the breathing zone.

    PubMed

    Martinelli, C A; Harley, N H; Lippmann, M; Cohen, B S

    1983-04-01

    A prototype air sampling, data recording, and data retrieval system was developed for monitoring aerosol concentrations in a worker's breathing zone. Three continuous-reading, light-scattering aerosol monitors and a tape recorder were incorporated into a specially designed and fabricated backpack for detailed field monitoring of both temporal and spatial variability in aerosol concentrations within the breathing zone. The backpack was worn by workers in a beryllium refinery. The aerosol which passed through each monitor was collected on a back-up filter for later chemical analysis for Be and Cu. The aerosol concentrations were recorded on magnetic tape as a function of time. The recorded signals were subsequently transcribed onto a strip chart recorder, then evaluated using a microcomputer with graphics capability. Field measurements made of the aerosol concentration at the forehead, nose, and lapel of operators during the melting and casting of beryllium-copper alloy demonstrated that there is considerable variability in concentration at different locations within the breathing zone. They also showed that operations resulting in worker exposure can be identified, and the precise time and duration of exposure can be determined. PMID:6858855

  3. Novel application of the magnetostrictive delay lines for real-time monitoring of the ceramic components

    NASA Astrophysics Data System (ADS)

    Szewczyk, Roman; Salach, Jacek; Bieńkowski, Adam; Olszyna, Andrzej; Kostecki, Marek

    This paper presents results of the experimental investigation on the tensile stress dependence of signal transmission of the magnetostrictive delay line based on amorphous ribbon. These results create possibility of novel application of the magnetostrictive delay lines for real-time monitoring of ceramic components. Such ceramic components are commonly used in machine industry, where real-time tool monitoring is required from the practical point of view. Experimental results presented in the paper indicate that the magnetoelastic wave amplitude decreases with the value of stresses in the rod. This creates possibility of application of the developed methodology for the real-time monitoring of ceramic components in machine industry.

  4. Real-Time Distributed Embedded Oscillator Operating Frequency Monitoring

    NASA Technical Reports Server (NTRS)

    Pollock, Julie; Oliver, Brett; Brickner, Christopher

    2012-01-01

    A document discusses the utilization of embedded clocks inside of operating network data links as an auxiliary clock source to satisfy local oscillator monitoring requirements. Modem network interfaces, typically serial network links, often contain embedded clocking information of very tight precision to recover data from the link. This embedded clocking data can be utilized by the receiving device to monitor the local oscillator for tolerance to required specifications, often important in high-integrity fault-tolerant applications. A device can utilize a received embedded clock to determine if the local or the remote device is out of tolerance by using a single link. The local device can determine if it is failing, assuming a single fault model, with two or more active links. Network fabric components, containing many operational links, can potentially determine faulty remote or local devices in the presence of multiple faults. Two methods of implementation are described. In one method, a recovered clock can be directly used to monitor the local clock as a direct replacement of an external local oscillator. This scheme is consistent with a general clock monitoring function whereby clock sources are clocking two counters and compared over a fixed interval of time. In another method, overflow/underflow conditions can be used to detect clock relationships for monitoring. These network interfaces often provide clock compensation circuitry to allow data to be transferred from the received (network) clock domain to the internal clock domain. This circuit could be modified to detect overflow/underflow conditions of the buffering required and report a fast or slow receive clock, respectively.

  5. Monitoring Distributed Real-Time Systems: A Survey and Future Directions

    NASA Technical Reports Server (NTRS)

    Goodloe, Alwyn E.; Pike, Lee

    2010-01-01

    Runtime monitors have been proposed as a means to increase the reliability of safety-critical systems. In particular, this report addresses runtime monitors for distributed hard real-time systems. This class of systems has had little attention from the monitoring community. The need for monitors is shown by discussing examples of avionic systems failure. We survey related work in the field of runtime monitoring. Several potential monitoring architectures for distributed real-time systems are presented along with a discussion of how they might be used to monitor properties of interest.

  6. Multiplex, construct-specific, and real-time PCR-based analytical methods for Bt rice with cry1Ac gene.

    PubMed

    Randhawa, Gurinder Jit; Singh, Monika

    2012-01-01

    Qualitative and quantitative analytical methods based on PCR for Bacillus thuringiensis (Bt) rice hybrid, namely, MRP 5401 Bt expressing a modified version of the Bt cry1Ac gene, are reported here. Multiplex PCR assays were developed to target the cry1Ac transgene, Cauliflower mosaic virus (CaMV) 35S promoter, Agrobacterium tumefaciens nopaline synthase (nos) terminator, the neomycin phosphotransferase II (nptLL) marker gene, and an endogenous a-tubulin (TubA) gene in Bt rice. The 3.178 kb region of inserted gene construct comprising the region of the CaMV 35S promoter and cry1Ac gene was amplified, and the construct integrity was confirmed by the nested PCR. The LOD for cry1Ac gene-specific simplex PCR was 0.01%, as established using Bt rice DNA dilutions with 100, 10, 1.0, 0.1, 0.05, 0.01, and 0.001% genetically modified trait. A real-time PCR assay was also developed to quantify the cry1Ac gene. The method performance of the reported real-time PCR assay was in line with the acceptance criteria of Codex Alimentarius Commission ALINORM 10/33/23, with LOD and LOQ values of 0.05%. The reliable PCR assays prior to commercial release of Bt rice would facilitate efficient regulatory compliance for identification of genetic trait, labeling requirements, and effective risk assessment and management. They could also address consumers' concerns and legal disputes that may arise. PMID:22468358

  7. A Real-time Monitoring System for the Pipeline Network of Coalmine

    NASA Astrophysics Data System (ADS)

    Zhao, H. L.; Wang, J. K.; Jiang, X.

    2012-05-01

    The pipeline network of coalmine has the characteristics of widespread distribution and complex structure. It is difficult to detect abnormalities in time by manual when the faults occurred, which often lead to reduction in production. In this paper, a monitoring system is developed to monitor the operating conditions of the pipeline network in real-time. The system has abilities to dynamic monitoring, real-time display, and failure alarm and leakage location. Therefore, the faults detection and maintenance can be implemented timely to ensure the safety of coalmine production due to the real-time condition monitoring of the pipeline network. Moreover, the resources allocation, production efficiency and management level can also be improved obviously. In addition, this real-time monitoring system has shown significant performance in applying it in Dongtan Coal Mine, Yanzhou Coal Mining Co., Ltd and Wennan Coal Mine, Shandong Energy Xinwen Mining Group Co., Ltd, China.

  8. Mass spectrometer for real-time metabolism monitoring during anesthesia

    NASA Astrophysics Data System (ADS)

    Elizarov, A. Yu.; Levshankov, A. I.

    2012-06-01

    Mass-spectrometric monitoring of metabolism (CO2/O2) in the inspiration-expiration regime is used to estimate the anesthetic protection of the patient against surgical stimulation during combined anesthesia. A correlation between the anesthetic protection of the patient and the metabolic rate is demonstrated, and the periodic variation of the metabolic rate with time is found. The sevoflurane metabolism products and intravenous analgesic fentanyl are found in the blowing air of the patient during anesthesia.

  9. Integrated active sensor system for real time vibration monitoring

    NASA Astrophysics Data System (ADS)

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-01

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  10. Integrated active sensor system for real time vibration monitoring

    PubMed Central

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-01-01

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0–60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems. PMID:26538293

  11. Integrated active sensor system for real time vibration monitoring.

    PubMed

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-01-01

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems. PMID:26538293

  12. Real-Time Monitoring of the Dayside Geosynchronous Magnetopause Location

    NASA Astrophysics Data System (ADS)

    Redmon, R. J.; Lotoaniu, T. M.; Berguson, M.; Codrescu, S. M.; Shue, J. H.; Singer, H. J.; Rowland, W. F.; Denig, W. F.

    2014-12-01

    The magnetopause is a boundary separating the geospace magnetic environment from interplanetary space. Its location provides an important demarcation for satellite operators, the interpretation of plasma observations and a measure of the expected level of space weather activity. Substantial increases in the solar wind dynamic pressure and southward interplanetary magnetic field can result in a magnetopause compressed inward of geostationary orbit. In support of the needs of space weather forecasters, we have transitioned a version of the upcoming Geosynchronous Operational Environmental Satellite (GOES)-R (launch ~ early 2016) magnetopause monitoring and crossing product into operations. The current version is based on GOES-13, -14 and -15 magnetic measurements and the Shue et al. (1998) model of the magnetopause, while the future version will take advantage of GOES-R's expanded range of particle energies and derived moments to better define the magnetopause location. This paper will present lessons learned from the research to operations (R2O) process, a statistical validation of product performance, comparisons to other similar products, and a brief summary of a few geosynchronous crossings. Our statistical validation uses GOES and Los Alamos National Laboratory (LANL) satellite observations to calculate the detection performance characteristics of dayside crossings predicted by commonly used models of the magnetopause boundary including Chao et al. (2001), Petrinec and Russell (1996) and Shue et al. (1998). In our summary of important geosynchronous crossings, we briefly describe monitoring of the magnetopause during the February 2014 event, which resulted in a geosynchronous crossing and degradation of a high-latitude aircraft navigation system. The home of the Magnetopause Location and Geosynchronous Crossings monitoring and forecast product is: http://www.ngdc.noaa.gov/stp/mag_pause/

  13. Validation according to ISO 16140:2003 of a commercial real-time PCR-based method for detecting Campylobacter jejuni, C. coli, and C. lari in foods.

    PubMed

    Vencia, W; Nogarol, C; Bianchi, D M; Gallina, S; Zuccon, F; Adriano, D; Gramaglia, M; Decastelli, L

    2014-05-01

    Campylobacteriosis was the most frequently reported zoonosis in the European Union (EU) in 2010, with Campylobacter jejuni, Campylobacter coli, and Campylobacter lari as the most frequently reported species in foodborne outbreaks (FBOs). Relatively sensitive to environmental factors, these species may be present in low numbers. In line with EU policy for food control and FBO detection and in view of the need to reduce response time, we validated an alternative molecular method according to ISO 16140:2003 which establishes the general principle and technical protocol for the validation of alternative methods in the microbiological analysis of food. We used a qualitative real-time PCR commercial kit for the detection of C. jejuni, C. coli, and C. lari in two food categories "fruit and vegetable-based products" and "dairy products". The validation protocol comprises two phases: the first is a method comparison study of the alternative method against the reference method, and the second is an interlaboratory study of each of the two methods. In the first step, ISO 16140:2003 validation examines the following parameters: limit of detection (LOD); relative accuracy, relative specificity and sensitivity; relative detection level (RDL); and inclusivity and exclusivity. Except for LOD, inclusivity and exclusivity, the other steps were performed against the reference method (ISO 10272:2006). The LOD of the real-time PCR method was set at 4CFU/25g or mL for both food categories. Relative accuracy (98.33%), specificity (96.77%), and sensitivity (100%) were recorded for the food category "fruit and vegetable-based products" and 93.3%, 88.24%, 100%, respectively, for "dairy products". The RDL according to Fisher's exact test was p=1 for both food categories, for each level, and each food/strain combination. The interlaboratory study results showed correct identification of all 24 blind samples with both methods by all the participating laboratories. The results show that this

  14. Real Time Flame Monitoring of Gasifier and Injectors

    SciTech Connect

    Zelepouga, Serguei; Saveliev, Alexei

    2011-12-31

    This project is a multistage effort with the final goal to develop a practical and reliable nonintrusive gasifier injector monitor to assess burner wear and need for replacement. The project team included the National Energy Technology Laboratory (NETL), Gas Technology Institute (GTI), North Carolina State University, and ConocoPhillips. This report presents the results of the sensor development and testing initially at GTI combustion laboratory with natural gas flames, then at the Canada Energy Technology Center (CANMET), Canada in the atmospheric coal combustor as well as in the pilot scale pressurized entrained flow gasifier, and finally the sensor capabilities were demonstrated at the Pratt and Whitney Rocketdyne (PWR) Gasifier and the Wabash River Repowering plant located in West Terre Haute, IN. The initial tests demonstrated that GTI gasifier sensor technology was capable of detecting shape and rich/lean properties of natural gas air/oxygen enriched air flames. The following testing at the Vertical Combustor Research Facility (VCRF) was a logical transition step from the atmospheric natural gas flames to pressurized coal gasification environment. The results of testing with atmospheric coal flames showed that light emitted by excited OH* and CH* radicals in coal/air flames can be detected and quantified. The maximum emission intensities of OH*, CH*, and black body (char combustion) occur at different axial positions along the flame length. Therefore, the excitation rates of CH* and OH* are distinct at different stages of coal combustion and can be utilized to identify and characterize processes which occur during coal combustion such as devolatilization, char heating and burning. To accomplish the goals set for Tasks 4 and 5, GTI utilized the CANMET Pressurized Entrained Flow Gasifier (PEFG). The testing parameters of the PEFG were selected to simulate optimum gasifier operation as well as gasifier conditions normally resulting from improper operation or

  15. REAL-TIME WATER QUALITY MONITORING AND MODELING FOR EQUITABLE RECREATION ON THE MYSTIC RIVER

    EPA Science Inventory

    City of Somerville, Massachusetts, in collaboration with Tufts University and the Mystic River Watershed Association, proposes this project that combines advanced technology for real-time water quality and meteorological monitoring with sampling of bacterial levels...

  16. A quantitative Real Time PCR based method for the detection of Phytophthora infestans causing Late blight of potato, in infested soil

    PubMed Central

    Hussain, Touseef; Singh, Bir Pal; Anwar, Firoz

    2013-01-01

    A fast and simple polymerase chain reaction method has been developed for detection of Phytophthora infestans oospores, the causal agent of Late blight of Potato in soil. The method involves the disruption of oospores by grinding dry soil, using abrasive properties, in the presence of glass powder and skimmed milk powder within a short time. The latter prevents loss of DNA by adsorption to soil particles or by degradation and reduces the co-extraction of PCR inhibitors with the DNA. After phenol/chloroform extraction; the DNA is suitable for direct PCR amplification without a precipitation step. This amplification leads to detection of pathogen in infested soils before planting of crop. The real-time PCR assay we describe is highly sensitive and specific, and has several advantages over conventional PCR assays used for P. infestans detection to confirm positive inoculum level in potato seeds and elsewhere. With increasing amounts of standard DNA templates, the respective threshold cycle (Ct) values were determined and a linear relationship was established between these Ct values and the logarithm of initial template amounts. The method is rapid, cost efficient, and when combined with suitable internal controls can be applied to the detection and quantification of P. infestans oospores on a large-scale basis. PMID:25183949

  17. Rapid detection of Cronobacter sakazakii by real-time PCR based on the cgcA gene and TaqMan probe with internal amplification control.

    PubMed

    Hu, Shuangfang; Yu, Yigang; Li, Rong; Wu, Xinwei; Xiao, Xinglong; Wu, Hui

    2016-03-01

    Cronobacter sakazakii is a severe virulent strain that is frequently detected in powdered infant formula (PIF). Therefore, it is necessary to develop a fast and specific detection method. The specificity of our newly developed quantitative real-time PCR (qRT-PCR) was validated with DNA from 46 strains. Among them, 12 C. sakazakii strains were correctly amplified, whereas no positive florescent signal was observed from 34 nontarget controls. The detection limit of C. sakazakii was about 110 CFU/mL in broth and 1100 CFU/g in PIF. After enrichment in buffered peptone water for 6 h, our developed qRT-PCR assay could reliably detect C. sakazakii when the inoculation level was as low as 2 CFU/25 g (0.08 CFU/g) in PIF. The growth of C. sakazakii could be inhibited by the presence of Lactobacillus pentosus and Bacillus cereus, which used a longer enrichment period before the isolation was accomplished. However, at 5 and 50 CFU/25 g inoculation levels of C. sakazakii in the presence of 4 × 10(6) CFU L. pentosus/25 g or of 2 × 10(4) CFU B. cereus/25 g, the qRT-PCR assay could detect the presence of Cronobacter even though these artificially spiked samples were negative in culture. Therefore, our results indicated that the qRT-PCR assay could detect samples containing inhibitors and could avoid false negatives by using an internal amplification control. PMID:26751178

  18. Development of one-step real-time reverse transcriptase-PCR-based assays for the rapid and simultaneous detection of four viruses causing porcine diarrhea.

    PubMed

    Masuda, Tsuneyuki; Tsuchiaka, Shinobu; Ashiba, Tomoko; Yamasato, Hiroshi; Fukunari, Kazuhiro; Omatsu, Tsutomu; Furuya, Tetsuya; Shirai, Junsuke; Mizutani, Tetsuya; Nagai, Makoto

    2016-02-01

    Porcine diarrhea caused by viruses is a major problem of the pig farming industry and can result in substantial losses of revenue. Thus, diagnosing the infectious agents is important to prevent and control diseases in pigs. We developed novel one-step real-time quantitative RT-PCR (qPCR) assays that can detect four porcine diarrheal viruses simultaneously: porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and porcine group A rotavirus (PRVA). The qPCR analysis takes only 75 minutes to detect the presence of the four viruses. The limits of detection of our new assays for PEDV, TGEV, PDCoV, and PRVA were 100, 10, 10 and 10 copies per reaction, respectively. The sensitivity of qPCR was 1-1000 times higher than that of published gel-based RT-PCR. We used our qPCR method to successfully diagnose clinical samples from infected pigs, and no false positive results were obtained. In conclusion, qPCR can drastically reduce the diagnostic time to detect viruses compared to currently employed methods. We predict that the qPCR assays will become a useful tool for detecting viral infections that cause diarrhea and other complications in pigs. PMID:27348884

  19. Performance of Droplet Digital PCR in Non-Invasive Fetal RHD Genotyping - Comparison with a Routine Real-Time PCR Based Approach

    PubMed Central

    Hořínek, Aleš; Novotná, Michaela; Calda, Pavel; Korabečná, Marie

    2015-01-01

    Detection and characterization of circulating cell-free fetal DNA (cffDNA) from maternal circulation requires an extremely sensitive and precise method due to very low cffDNA concentration. In our study, droplet digital PCR (ddPCR) was implemented for fetal RHD genotyping from maternal plasma to compare this new quantification alternative with real-time PCR (qPCR) as a golden standard for quantitative analysis of cffDNA. In the first stage of study, a DNA quantification standard was used. Clinical samples, including 10 non-pregnant and 35 pregnant women, were analyzed as a next step. Both methods’ performance parameters—standard curve linearity, detection limit and measurement precision—were evaluated. ddPCR in comparison with qPCR has demonstrated sufficient sensitivity for analysing of cffDNA and determination of fetal RhD status from maternal circulation, results of both methods strongly correlated. Despite the more demanding workflow, ddPCR was found to be slightly more precise technology, as evaluated using quantitative standard. Regarding the clinical samples, the precision of both methods equalized with decreasing concentrations of tested DNA samples. In case of cffDNA with very low concentrations, variance parameters of both techniques were comparable. Detected levels of fetal cfDNA in maternal plasma were slightly higher than expected and correlated significantly with gestational age as measured by both methods (ddPCR r = 0.459; qPCR r = 0.438). PMID:26562517

  20. A simple real-time polymerase chain reaction (PCR)-based assay for authentication of the Chinese Panax ginseng cultivar Damaya from a local ginseng population.

    PubMed

    Wang, H; Wang, J; Li, G

    2016-01-01

    Panax ginseng is one of the most important medicinal plants in the Orient. Owing to its increasing demand in the world market, cultivated ginseng has become the main source of medicinal material. Among the Chinese ginseng cultivars, Damaya commands higher prices and is grown in significant proportions among the local ginseng population. Due to the lack of rapid and accurate authentication methods, Damaya is distributed among different cultivars in the local ginseng population in China. Here, we identified a unique, Damaya-specific single nucleotide polymorphism (SNP) site present in the second intron of mitochondrial cytochrome c oxidase subunit 2 (cox2). Based on this SNP, a Damaya cultivar-specific primer was designed and an allele-specific polymerase chain reaction (PCR) was optimized for the effective molecular authentication of Damaya. We designed a method by combining a simple DNA isolation method with real-time allele-specific PCR using SYBR Green I fluorescent dye, and proved its efficacy in clearly discriminated Damaya cultivar from other Chinese ginseng cultivars according to the allelic discrimination analysis. Hence, this study provides a simple and rapid assay for the differentiation and conservation of Damaya from the local Chinese ginseng population. PMID:27420983

  1. Real-Time Monitoring of Scada Based Control System for Filling Process

    NASA Astrophysics Data System (ADS)

    Soe, Aung Kyaw; Myint, Aung Naing; Latt, Maung Maung; Theingi

    2008-10-01

    This paper is a design of real-time monitoring for filling system using Supervisory Control and Data Acquisition (SCADA). The monitoring of production process is described in real-time using Visual Basic.Net programming under Visual Studio 2005 software without SCADA software. The software integrators are programmed to get the required information for the configuration screens. Simulation of components is expressed on the computer screen using parallel port between computers and filling devices. The programs of real-time simulation for the filling process from the pure drinking water industry are provided.

  2. Real-time atomic absorption mercury continuous emission monitor

    NASA Astrophysics Data System (ADS)

    Zamzow, Daniel S.; Bajic, Stanley J.; Eckels, David E.; Baldwin, David P.; Winterrowd, Chris; Keeney, Robert

    2003-08-01

    A continuous emission monitor (CEM) for mercury (Hg) in combustor flue gas streams has been designed and tested for the detection of Hg by optical absorption. A sampling system that allows continuous introduction of stack gas is incorporated into the CEM, for the sequential analysis of elemental and total Hg. A heated pyrolysis tube is used in the system to convert oxidized Hg compounds to elemental Hg for analysis of total Hg; the pyrolysis tube is bypassed to determine the elemental Hg concentration in the gas stream. A key component of the CEM is a laboratory-designed and -assembled echelle spectrometer that provides simultaneous detection of all of the emission lines from a Hg pen lamp, which is used as the light source for the optical absorption measurement. This feature allows for on-line spectroscopic correction for interferent gases such as sulfur dioxide and nitrogen dioxide, typically present in combustion stack gas streams, that also absorb at the Hg detection wavelength (253.65 nm). This article provides a detailed description of the CEM system, the characteristics and performance of the CEM, and the results of field tests performed at the Environmental Protection Agency-Rotary Kiln at Research Triangle Park, NC.

  3. Attention focussing and anomaly detection in real-time systems monitoring

    NASA Technical Reports Server (NTRS)

    Doyle, Richard J.; Chien, Steve A.; Fayyad, Usama M.; Porta, Harry J.

    1993-01-01

    In real-time monitoring situations, more information is not necessarily better. When faced with complex emergency situations, operators can experience information overload and a compromising of their ability to react quickly and correctly. We describe an approach to focusing operator attention in real-time systems monitoring based on a set of empirical and model-based measures for determining the relative importance of sensor data.

  4. A real-time intercepting beam-profile monitor for a medical cyclotron

    SciTech Connect

    Hendriks, C.; Uittenbosch, T.; Cameron, D.; Kellogg, S.; Gray, D.; Buckley, K.; Schaffer, P.; Verzilov, V.; Hoehr, C.

    2013-11-15

    There is a lack of real-time continuous beam-diagnostic tools for medical cyclotrons due to high power deposition during proton irradiation. To overcome this limitation, we have developed a profile monitor that is capable of providing continuous feedback about beam shape and current in real time while it is inserted in the beam path. This enables users to optimize the beam profile and observe fluctuations in the beam over time with periodic insertion of the monitor.

  5. Real-time continuous nitrate monitoring in Illinois in 2013

    USGS Publications Warehouse

    Warner, Kelly L.; Terrio, Paul J.; Straub, Timothy D.; Roseboom, Donald; Johnson, Gary P.

    2013-01-01

    Many sources contribute to the nitrogen found in surface water in Illinois. Illinois is located in the most productive agricultural area in the country, and nitrogen fertilizer is commonly used to maximize corn production in this area. Additionally, septic/wastewater systems, industrial emissions, and lawn fertilizer are common sources of nitrogen in urban areas of Illinois. In agricultural areas, the use of fertilizer has increased grain production to meet the needs of a growing population, but also has resulted in increases in nitrogen concentrations in many streams and aquifers (Dubrovsky and others, 2010). The urban sources can increase nitrogen concentrations, too. The Federal limit for nitrate nitrogen in water that is safe to drink is 10 milligrams per liter (mg/L) (http://water.epa.gov/drink/contaminants/basicinformation/nitrate.cfm, accessed on May 24, 2013). In addition to the concern with nitrate nitrogen in drinking water, nitrogen, along with phosphorus, is an aquatic concern because it feeds the intensive growth of algae that are responsible for the hypoxic zone in the Gulf of Mexico. The largest nitrogen flux to the waters feeding the Gulf of Mexico is from Illinois (Alexander and others, 2008). Most studies of nitrogen in surface water and groundwater include samples for nitrate nitrogen collected weekly or monthly, but nitrate concentrations can change rapidly and these discrete samples may not capture rapid changes in nitrate concentrations that can affect human and aquatic health. Continuous monitoring for nitrate could inform scientists and water-resource managers of these changes and provide information on the transport of nitrate in surface water and groundwater.

  6. Development of an in-House TaqMan Real-Time PCR-Based Method to Detect Residual Host Cell DNA in HBV Vaccine.

    PubMed

    Paryan, Mahdi; Khodayar, Mana; Kia, Vahid; Mohammadi-Yeganeh, Samira; Kaghazian, Hooman

    2016-06-01

    Biological therapeutic products such as recombinant hepatitis B virus (HBV) vaccine, produced by microbial fermentation in complex media, should be evaluated for host cell DNA contamination in purification steps. Eliminating these contaminations increases the efficacy of the vaccine and decreases its side effects. The objective of the present study is to trace the residual host cell DNA (HCD) in recombinant HBV vaccine by developing a TaqMan Real-Time PCR method which is more sensitive, specific, and reproducible than traditional methods such as Picogreen analysis and Threshold DNA assay. Primers and a probe were designed for the most highly conserved regions of Pichia pastoris genome. To determine the specificity of the assay, in addition to performing a BLAST for the primers and the probe in NCBI nucleotide database, 20 different human genomes and 8 bacterial and viral genomes were used. Moreover, serial dilutions of plasmids, from 10(2) to 10(7) copies/μL (from 0.00064 to 6.4 pg/μL), were prepared to find the sensitivity and the limit of detection (LOD) of the assay. Using 28 different genome samples, the specificity of the assay was determined to be 100 %. In addition, the sensitivity and LOD of the method was 0.39 × 10(-5) pg/μL. Moreover, the reproducibility of the assay based on intra- and inter-assay was 1.03 and 1.06 %, respectively. Considering the suitable specificity and sensitivity, ease of use, relatively low cost, and rapidity of the assay, it can be a reproducible and sensitive method to examine recombinant vaccines for P. pastoris residual DNA. PMID:26861732

  7. A new real time PCR-based assay for diagnosing Renibacterium salmoninarum in rainbow trout (Oncorhynchus mykiss) and comparison with other techniques.

    PubMed

    Halaihel, Nabil; Vendrell, Daniel; Ruiz-Zarzuela, Imanol; de Blas, Ignacio; Alonso, José Luis; Gironés, Olivia; Pérez, Tania; Muzquiz, José Luis

    2009-01-01

    Bacterial Kidney Disease of salmonid is caused by a slow-growing gram-positive bacterium, Renibacterium salmoninarum. This bacterium lives both extra-cellular and intra-cellular in the host. Serological and molecular diagnostic methods to detect the bacterium major surface protein antigen p57 have been developed. In the present work, a newly developed quantitative Reverse Transcriptase-PCR (RT-QPCR), using self-quenched fluorescent primer (Lux), a nested PCR (NPCR), a commercial ELISA and recently commercially available Immune-chromatographic strip test(IC-Strip) were compared for their ability to detect BKD in kidney tissue samples obtained from experimentally infected fish. ELISA test resulted to be rapid, simple and indicative for the bacterial load. The IC-Strip test had similar characteristics for bacterial detection. Both tests are a good option for rapid and relatively inexpensive screening studies, despite the one and two log decrease in bacterial detection limits compared to NPCR and RT-QPCR, respectively. The use of Lux primers in the newly developed RT-QPCR revealed to be a cost-effective alternative to other fluorescence-based PCR techniques. The option of generating a melting temperature curve with the real time PCR instrument confirmed the specificity of the PCR product. The RT-QPCR technique had the advantage of detecting low numbers of viable bacterial mRNA which implied a higher capacity of detecting chronically infected animals. For instance, some fish in the group infected by cohabitation had very low bacterial load and were only detected by this technique. PMID:18938198

  8. Monitoring Satellite-derived Surface Solar Radiation with Near Real Time Reference Data

    NASA Astrophysics Data System (ADS)

    Kim, H. Y.; Laszlo, I.; Liu, H.

    2015-12-01

    Geostationary satellite observations of the Earth are increasingly made more frequent. For example, Himawari-8 of Japanese Meteorological Agency takes images of the planet every 10 minutes in multiple bands. Similarly, the GOES-R satellite of the US National Oceanic and Atmospheric Administration (NOAA) will make observations every 5 to 15 minutes. Products, like shortwave (solar) radiation budget at the surface, derived from these observations have or will have similar rapid refresh rates. Routine, near-real time assessment of the quality of these products ideally requires the availability of near-real time reference data. Such near-real time data has recently become available from the NOAA Surface Radiation Budget Network (SURFRAD). These data are disseminated every 15 minutes. However, in contrast to non-real-time data with fully quality control, which have a latency of 24 hours or more, the near-real time data have less quality control applied to them in order to achieve low latency. To assess applicability of this near-real time SURFRAD data for the evaluation satellite products we are using them experimentally to evaluate the quality of Downward Shortwave Radiation at the surface (DSR) retrieved operationally every hour from GOES and made available in the Geostationary Surface and Insolation Product (GSIP) . Metrics (accuracy and precision) are computed to characterize the level of agreement between satellite retrievals and the near-real time reference data. These metrics are then compared with metrics from the evaluation with the non-real time, fully quality controlled reference. The comparison shows that monitoring of DSR with near-real time data is not very different from monitoring it with non-real time data and so DSR retrievals can be evaluated hourly or shorter times depending on reference data availability.

  9. Applications and usage of the real-time neutron monitor database for solar particle events monitoring

    NASA Astrophysics Data System (ADS)

    Papaioannou, Athanasios

    A high-time resolution Neutron Monitor Database (NMDB) has started to be realized in the frame of the Seventh Framework Programme of the European Commission. This database will include cosmic ray data from at least eighteen Neutron Monitors distributed around the world and operated in real time. The implementation of the NMDB will provide the opportunity for several research applications most of which will be implemented in real-time. The first and most important one will be the establishment of an Alert signal when dangerous solar particle events are heading to the Earth, resulting into Ground Level Enhancements effects registered by Neutron Monitors. On top of which, the mapping of all ground level enhancement features in near real-time mode will provide an over all picture of these phenomena and will be used as an input for the calculation of the ionization of the atmosphere. The latter will be useful for radiation dose calculations within the atmosphere at several altitudes and will reveal the absorbed doses during flights. Moreover, special algorithms for anisotropy and pitch angle distribution of cosmic rays, which have been developed over the years, will also be set online offering the advantage of an extensive analysis of the interplanetary space. All of the applications will serve the needs of the modern world which relies at space environment and will turn the extensive network of Neutron Monitors into a multi directional spectrographic detector. A part of the NMDB project is also dedicated to the creation of a public outreach website with the scope to inform about cosmic rays and their possible effects on humans, technological systems and space-terrestrial environment. Therefore, NMDB will also stand as an informative gate on space research through neutron monitor's data usage.

  10. Real-time in-flight engine performance and health monitoring techniques for flight research application

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.; Hicks, John W.; Wichman, Keith D.

    1991-01-01

    Procedures for real time evaluation of the inflight health and performance of gas turbine engines and related systems were developed to enhance flight test safety and productivity. These techniques include the monitoring of the engine, the engine control system, thrust vectoring control system health, and the detection of engine stalls. Real time performance techniques were developed for the determination and display of inflight thrust and for aeroperformance drag polars. These new methods were successfully shown on various research aircraft at NASA-Dryden. The capability of NASA's Western Aeronautical Test Range and the advanced data acquisition systems were key factors for implementation and real time display of these methods.

  11. Novel opportunities for wildlife conservation and research with real-time monitoring.

    PubMed

    Wall, Jake; Wittemyer, George; Klinkenberg, Brian; Douglas-Hamilton, Iain

    2014-06-01

    The expansion of global communication networks and advances in animal-tracking technology make possible the real-time telemetry of positional data as recorded by animal-attached tracking units. When combined with continuous, algorithm-based analytical capability, unique opportunities emerge for applied ecological monitoring and wildlife conservation. We present here four broad approaches for algorithmic wildlife monitoring in real time--proximity, geofencing, movement rate, and immobility--designed to examine aspects of wildlife spatial activity and behavior not possible with conventional tracking systems. Application of these four routines to the real-time monitoring of 94 African elephants was made. We also provide details of our cloud-based monitoring system including infrastructure, data collection, and customized software for continuous tracking data analysis. We also highlight future directions of real-time collection and analysis of biological, physiological, and environmental information from wildlife to encourage further development of needed algorithms and monitoring technology. Real-time processing of remotely collected, animal biospatial data promises to open novel directions in ecological research, applied species monitoring, conservation programs, and public outreach and education. PMID:24988762

  12. Real-Time Management of Multimodal Streaming Data for Monitoring of Epileptic Patients.

    PubMed

    Triantafyllopoulos, Dimitrios; Korvesis, Panagiotis; Mporas, Iosif; Megalooikonomou, Vasileios

    2016-03-01

    New generation of healthcare is represented by wearable health monitoring systems, which provide real-time monitoring of patient's physiological parameters. It is expected that continuous ambulatory monitoring of vital signals will improve treatment of patients and enable proactive personal health management. In this paper, we present the implementation of a multimodal real-time system for epilepsy management. The proposed methodology is based on a data streaming architecture and efficient management of a big flow of physiological parameters. The performance of this architecture is examined for varying spatial resolution of the recorded data. PMID:26643075

  13. OZONE MONITORING, MAPPING, AND PUBLIC OUTREACH: DELIVERING REAL-TIME OZONE INFORMATION TO YOUR COMMUNITY

    EPA Science Inventory

    The U.S. EPA had developed a handbook to help state and local government officials implement ozone monitoring, mapping, and outreach programs. The handbook, called Ozone Monitoring, Mapping, and Public Outreach: Delivering Real-Time Ozone Information to Your Community, provides ...

  14. TYPES, USES, AND LOCATIONS OF REAL-TIME BIOLOGICAL MONITORING IN EUROPE AND THE US

    EPA Science Inventory

    Many dffferent types of real-time biological monitoring (fish behavior and current, daphnid dynamic and toximeter, clam monitors, algae, and luminescent bacteria) have been used in several countries (Germany, Netherlands, France, England( and many locations in Europe. Only a few ...

  15. Developments in real-time monitoring for geologic hazard warnings (Invited)

    NASA Astrophysics Data System (ADS)

    Leith, W. S.; Mandeville, C. W.; Earle, P. S.

    2013-12-01

    Real-time data from global, national and local sensor networks enable prompt alerts and warnings of earthquakes, tsunami, volcanic eruptions, geomagnetic storms , broad-scale crustal deformation and landslides. State-of-the-art seismic systems can locate and evaluate earthquake sources in seconds, enabling 'earthquake early warnings' to be broadcast ahead of the damaging surface waves so that protective actions can be taken. Strong motion monitoring systems in buildings now support near-real-time structural damage detection systems, and in quiet times can be used for state-of-health monitoring. High-rate GPS data are being integrated with seismic strong motion data, allowing accurate determination of earthquake displacements in near-real time. GPS data, combined with rainfall, groundwater and geophone data, are now used for near-real-time landslide monitoring and warnings. Real-time sea-floor water pressure data are key for assessing tsunami generation by large earthquakes. For monitoring remote volcanoes that lack local ground-based instrumentation, the USGS uses new technologies such as infrasound arrays and the worldwide lightning detection array to detect eruptions in progress. A new real-time UV-camera system for measuring the two dimensional SO2 flux from volcanic plumes will allow correlations with other volcano monitoring data streams to yield fundamental data on changes in gas flux as an eruption precursor, and how magmas de-gas prior to and during eruptions. Precision magnetic field data support the generation of real-time indices of geomagnetic disturbances (Dst, K and others), and can be used to model electrical currents in the crust and bulk power system. Ground-induced electrical current monitors are used to track those currents so that power grids can be effectively managed during geomagnetic storms. Beyond geophysical sensor data, USGS is using social media to rapidly detect possible earthquakes and to collect firsthand accounts of the impacts of

  16. MS-BWME: a wireless real-time monitoring system for brine well mining equipment.

    PubMed

    Xiao, Xinqing; Zhu, Tianyu; Qi, Lin; Moga, Liliana Mihaela; Zhang, Xiaoshuan

    2014-01-01

    This paper describes a wireless real-time monitoring system (MS-BWME) to monitor the running state of pumps equipment in brine well mining and prevent potential failures that may produce unexpected interruptions with severe consequences. MS-BWME consists of two units: the ZigBee Wireless Sensors Network (WSN) unit and the real-time remote monitoring unit. MS-BWME was implemented and tested in sampled brine wells mining in Qinghai Province and four kinds of indicators were selected to evaluate the performance of the MS-BWME, i.e., sensor calibration, the system's real-time data reception, Received Signal Strength Indicator (RSSI) and sensor node lifetime. The results show that MS-BWME can accurately judge the running state of the pump equipment by acquiring and transmitting the real-time voltage and electric current data of the equipment from the spot and provide real-time decision support aid to help workers overhaul the equipment in a timely manner and resolve failures that might produce unexpected production down-time. The MS-BWME can also be extended to a wide range of equipment monitoring applications. PMID:25340455

  17. MS-BWME: A Wireless Real-Time Monitoring System for Brine Well Mining Equipment

    PubMed Central

    Xiao, Xinqing; Zhu, Tianyu; Qi, Lin; Moga, Liliana Mihaela; Zhang, Xiaoshuan

    2014-01-01

    This paper describes a wireless real-time monitoring system (MS-BWME) to monitor the running state of pumps equipment in brine well mining and prevent potential failures that may produce unexpected interruptions with severe consequences. MS-BWME consists of two units: the ZigBee Wireless Sensors Network (WSN) unit and the real-time remote monitoring unit. MS-BWME was implemented and tested in sampled brine wells mining in Qinghai Province and four kinds of indicators were selected to evaluate the performance of the MS-BWME, i.e., sensor calibration, the system's real-time data reception, Received Signal Strength Indicator (RSSI) and sensor node lifetime. The results show that MS-BWME can accurately judge the running state of the pump equipment by acquiring and transmitting the real-time voltage and electric current data of the equipment from the spot and provide real-time decision support aid to help workers overhaul the equipment in a timely manner and resolve failures that might produce unexpected production down-time. The MS-BWME can also be extended to a wide range of equipment monitoring applications. PMID:25340455

  18. The quantitative real-time PCR applications in the monitoring of marine harmful algal bloom (HAB) species.

    PubMed

    Penna, Antonella; Antonella, Penna; Galluzzi, Luca; Luca, Galluzzi

    2013-10-01

    In the last decade, various molecular methods (e.g., fluorescent hybridization assay, sandwich hybridization assay, automatized biosensor detection, real-time PCR assay) have been developed and implemented for accurate and specific identification and estimation of marine toxic microalgal species. This review focuses on the recent quantitative real-time PCR (qrt-PCR) technology developed for the control and monitoring of the most important taxonomic phytoplankton groups producing biotoxins with relevant negative impact on human health, the marine environment, and related economic activities. The high specificity and sensitivity of the qrt-PCR methods determined by the adequate choice of the genomic target gene, nucleic acid purification protocol, quantification through the standard curve, and type of chemical detection method make them highly efficient and therefore applicable to harmful algal bloom phenomena. Recent development of qrt-PCR-based assays using the target gene of toxins, such as saxitoxin compounds, has allowed more precise quantification of toxigenic species (i.e., Alexandrium catenella) abundance. These studies focus only on toxin-producing species in the marine environment. Therefore, qrt-PCR technology seems to offer the advantages of understanding the ecology of harmful algal bloom species and facilitating the management of their outbreaks. PMID:23247526

  19. Real Time Monitoring of an Injection Test for an Enhanced Geothermal Reservoir, Paralana, South Australia

    NASA Astrophysics Data System (ADS)

    Peacock, J.; Thiel, S.; Heinson, G. S.; Reid, P.

    2011-12-01

    Real-time monitoring of changes in subsurface material properties proves valuable in many geophysical aplications where fluids are present, including ground water, geothermal, CO2 sequestration, unconventional gas, and more. Reservoir stimulation typically includes pumping high pressure fluids into tight lithology with the intention of creating or extending the reservior. Unfortunately, the fracturing process and reservoir extension is not always predictable. Therefore, real time monitoring needs to be employed to better understand the system. Electromagnetic methods can exploit the large dynamic range of electrical conductivity from the surface, specifically the magnetotelluric (MT) can measure conductivity contrasts as a function of depth and time. Presented is an example of real-time monitoring of an enhanced geothermal system injection test at around 4~km depth using 11 MT stations with a remote reference. Its found that changes in the MT response are small, on the order of a few percent, but correlate with earthquake clusters measured by a micro-seismic array.

  20. Real time monitoring of superoxide dynamics in vivo through fluorescent proteins using a sensitive fiber probe

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Chung; Ken, Chuian-Fu; Hsu, Che-Wei; Liu, Ya-Ging

    2014-03-01

    Superoxide anion is the primary oxygen free radical generated in mitochondria that causes intracellular oxidative stress. The lack of a method to directly monitor superoxide concentration in vivo in real time has severely hindered our understanding on its pathophysiology. We made transgenic zebrafish to specifically express fluorescent proteins, which are recently developed as reversible superoxide-specific indicators, in the liver. A fiber-optic fluorescent probe was used to noninvasively monitor superoxide generation in the liver in real time. The fish were placed in microfluidic channels for manipulation and reagents administration. Several superoxide-inducing and scavenging reagents were administrated onto the fish to investigate their effects on superoxide anion balancing. The biochemical dynamics of superoxide due to the application reagents were revealed in the transient behaviors of fluorescence time courses. With the ability to monitor superoxide dynamics in vivo in real time, this method can be used as an in vivo pharmaceutical screening platform.

  1. [Study on real-time wearable monitoring system for human heat and cold stresses].

    PubMed

    Shen, Yuhong; Wang, Tianhao; Li, Chenming

    2013-02-01

    In order to study the way of evaluating human performance under heat and cold stresses, we developed a wearable physiological monitoring system-intelligent belt system, capable of providing real-time, continuous and dynamic monitoring of multiple physiological parameters. The system has following features: multiuser communication, high integration, strong environment adaptability, dynamic features and real time physiological monitoring ability. The system uses sensing belts and elastic belts to acquire physiological parameters, uses WIFI to build wireless network monitoring for multiuser, and uses Delphi to develop data processing software capable of real-time viewing, storagng, processing, and alerting. With four different intensity-activity trials on six subjects and compared with standard laboratory human physiological acquisition instruments, the system was proved to be able to acquire accu-rate physiological parameters such as ECG, respiration, multi-point body temperatures, and body movement. The system worked steadily and reliably. This wearable real-time monitoring system for human heat and cold stresses can solve the problem facing our country that human heat stress and cold stress monitoring technology is insufficient, provide new methods and new ways for monitoring and evaluation of human heat and cold stresses under real task or stress environment, and provide technical platform for the study on human ergonomics. PMID:23488143

  2. The real-time monitoring surface figure of optical elements in continuous polishing

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Xu, Xueke; Wei, Chaoyang; Gu, Jianxun; Dun, Aihuan; Shao, Jianda

    2014-08-01

    Continuous ring polishing is the key process in large aperture optical elements. The surface figure of polishing pad is inferred by the offline testing surface figure of workpiece. The defects, low processing efficiency and uncertainty processing time in traditional continuous polishing, the real-time monitoring method of polishing is proposed. The realtime monitoring system is set up based on the computer, the dynamic interferometer, a beam expanding system and a beam reflecting system. There are a workpiece and a glass monitoring plate placing in same ring. The surface figure of workpiece, monitored by the monitoring plate, synchronize with the surface of glass monitoring plate in Peak-Valley (PV) and POWER. The new method with simple structure is fast measuring and judgmental directly to the changes of surface figures. The results of real-time monitoring and surface figure converging on the workpiece are valid for continuous polishing through experimental validation.

  3. Software design of a remote real-time ECG monitoring system

    NASA Astrophysics Data System (ADS)

    Yu, Chengbo; Tao, Hongyan

    2005-12-01

    Heart disease is one of the main diseases that threaten the health and lives of human beings. At present, the normal remote ECG monitoring system has the disadvantages of a short testing distance and limitation of monitoring lines. Because of accident and paroxysmal disease, ECG monitoring has extended from the hospital to the family. Therefore, remote ECG monitoring through the Internet has the actual value and significance. The principle and design method of software of the remote dynamic ECG monitor was presented and discussed. The monitoring software is programmed with Delphi software based on client-sever interactive mode. The application program of the system, which makes use of multithreading technology, is shown to perform in an excellent manner. The program includes remote link users and ECG processing, i.e. ECG data's receiving, real-time displaying, recording and replaying. The system can connect many clients simultaneously and perform real-time monitoring to patients.

  4. Progress in using real-time GPS for seismic monitoring of the Cascadia megathrust

    NASA Astrophysics Data System (ADS)

    Szeliga, W. M.; Melbourne, T. I.; Santillan, V. M.; Scrivner, C.; Webb, F.

    2014-12-01

    We report on progress in our development of a comprehensive real-time GPS-based seismic monitoring system for the Cascadia subduction zone. This system is based on 1 Hz point position estimates computed in the ITRF08 reference frame. Convergence from phase and range observables to point position estimates is accelerated using a Kalman filter based, on-line stream editor. Positions are estimated using a short-arc approach and algorithms from JPL's GIPSY-OASIS software with satellite clock and orbit products from the International GNSS Service (IGS). The resulting positions show typical RMS scatter of 2.5 cm in the horizontal and 5 cm in the vertical with latencies below 2 seconds. To facilitate the use of these point position streams for applications such as seismic monitoring, we broadcast real-time positions and covariances using custom-built streaming software. This software is capable of buffering 24-hour streams for hundreds of stations and providing them through a REST-ful web interface. To demonstrate the power of this approach, we have developed a Java-based front-end that provides a real-time visual display of time-series, vector displacement, and contoured peak ground displacement. We have also implemented continuous estimation of finite fault slip along the Cascadia megathrust using an NIF approach. The resulting continuous slip distributions are combined with pre-computed tsunami Green's functions to generate real-time tsunami run-up estimates for the entire Cascadia coastal margin. This Java-based front-end is available for download through the PANGA website. We currently analyze 80 PBO and PANGA stations along the Cascadia margin and are gearing up to process all 400+ real-time stations operating in the Pacific Northwest, many of which are currently telemetered in real-time to CWU. These will serve as milestones towards our over-arching goal of extending our processing to include all of the available real-time streams from the Pacific rim. In addition

  5. [Development of an embedded mobile terminal for real-time remote monitoring of out-of-hospital cardiac patients].

    PubMed

    Xu, Zhi-min; Fang, Zu-Xiang; Lai, Da-Kun; Song, Hai-Lang

    2007-05-01

    A kind of real-time remote monitoring embedded terminal which is combined with mobile communication technology and GPS localization technology, has been developed. The results of preliminary experiments show that the terminal can transmit ECG signals and localization information in real time and continuously, supply a real-time monitoring of out-of-hospital cardiac patients and trace the patients. PMID:17672363

  6. Real-time supernova neutrino burst monitor at Super-Kamiokande

    NASA Astrophysics Data System (ADS)

    Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakano, Y.; Nakayama, S.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Tanaka, H.; Tomura, T.; Ueno, K.; Wendell, R. A.; Yokozawa, T.; Irvine, T.; Kajita, T.; Kametani, I.; Kaneyuki, K.; Lee, K. P.; McLachlan, T.; Nishimura, Y.; Richard, E.; Okumura, K.; Labarga, L.; Fernandez, P.; Berkman, S.; Tanaka, H. A.; Tobayama, S.; Gustafson, J.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Goldhaber, M.; Carminati, G.; Kropp, W. R.; Mine, S.; Weatherly, P.; Renshaw, A.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Ganezer, K. S.; Hartfiel, B. L.; Hill, J.; Keig, W. E.; Hong, N.; Kim, J. Y.; Lim, I. T.; Akiri, T.; Himmel, A.; Scholberg, K.; Walter, C. W.; Wongjirad, T.; Ishizuka, T.; Tasaka, S.; Jang, J. S.; Learned, J. G.; Matsuno, S.; Smith, S. N.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Suzuki, A. T.; Takeuchi, Y.; Bronner, C.; Hirota, S.; Huang, K.; Ieki, K.; Kikawa, T.; Minamino, A.; Murakami, A.; Nakaya, T.; Suzuki, K.; Takahashi, S.; Tateishi, K.; Fukuda, Y.; Choi, K.; Itow, Y.; Mitsuka, G.; Mijakowski, P.; Hignight, J.; Imber, J.; Jung, C. K.; Yanagisawa, C.; Wilking, M. J.; Ishino, H.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Yamaguchi, R.; Yano, T.; Kuno, Y.; Tacik, R.; Kim, S. B.; Okazawa, H.; Choi, Y.; Nishijima, K.; Koshiba, M.; Suda, Y.; Totsuka, Y.; Yokoyama, M.; Martens, K.; Marti, Ll.; Vagins, M. R.; Martin, J. F.; de Perio, P.; Konaka, A.; Chen, S.; Zhang, Y.; Connolly, K.; Wilkes, R. J.

    2016-08-01

    We present a real-time supernova neutrino burst monitor at Super-Kamiokande (SK). Detecting supernova explosions by neutrinos in real time is crucial for giving a clear picture of the explosion mechanism. Since the neutrinos are expected to come earlier than light, a fast broadcasting of the detection may give astronomers a chance to make electromagnetic radiation observations of the explosions right at the onset. The role of the monitor includes a fast announcement of the neutrino burst detection to the world and a determination of the supernova direction. We present the online neutrino burst detection system and studies of the direction determination accuracy based on simulations at SK.

  7. Autonomous global sky monitoring with real-time robotic follow-up

    SciTech Connect

    Vestrand, W Thomas; Davis, H; Wren, J; Wozniak, P; Norman, B; White, R; Bloch, J; Fenimore, E; Hodge, Barry; Jah, Moriba; Rast, Richard

    2008-01-01

    We discuss the development of prototypes for a global grid of advanced 'thinking' sky sentinels and robotic follow-up telescopes that observe the full night sky to provide real-time monitoring of the night sky by autonomously recognizing anomalous behavior, selecting targets for detailed investigation, and making real-time anomaly detection to enable rapid recognition and a swift response to transients as they emerge. This T3 global EO grid avoids the limitations imposed by geography and weather to provide persistent monitoring of the night sky.

  8. [Real-time forecasting model for monitoring pollutant with differential optical absorption spectroscopy].

    PubMed

    Li, Su-Wen; Liu, Wen-Qing; Xie, Pin-Hua; Wang, Feng-Sui; Yang, Yi-Jun

    2009-11-01

    For real-time and on-line monitoring DOAS (differential optical absorption spectroscopy) system, a model based on an improved Elman network for monitoring pollutant concentrations was proposed. In order to reduce the systematical complexity, the forecasting factors have been obtained based on the step-wise regression method. The forecasting factors were current concentrations, temperature and relative humidity, and wind speed and wind direction. The dynamic back propagation (BP) algorithm was used for creating training set. The experiment results show that the predicted value follows the real well. So the modified Elman network can meet the demand of DOAS system's real time forecasting. PMID:20101985

  9. Design of an irradiation facility with a real-time radiation effects monitoring capability

    NASA Astrophysics Data System (ADS)

    Braisted, J.; Schneider, E.; O'Kelly, S.; van der Hoeven, C.

    2011-12-01

    An in-core irradiation facility for radiation effects testing with a real-time monitoring capability has been designed for the 1.1 MW TRIGA Mark II research reactor at The University of Texas at Austin. The facility is larger than any currently available non-central location in a TRIGA, supporting testing of larger electronic components as well as other in-core irradiation applications requiring significant volume such as isotope production or neutron transmutation doping of silicon. This article presents the layout and characterization of the large in-core irradiation facility and the real-time electronics performance monitoring capability it is designed to support. To demonstrate this capability, an experimental campaign was conducted where the real-time current transfer ratio for 4N25 general-purpose optocouplers was obtained from in-situ voltage measurements. The resultant radiation effects data - current transfer ratio as a function of neutron and gamma dose - was seen to be repeatable and exceptionally finely resolved. Therefore, the real-time capability at UT TRIGA appears competitive with other effects characterization facilities in terms of number and size of testable samples while additionally offering a novel real-time, in-core monitoring capability.

  10. Development of a real time streamflow monitoring system for the Indian sub-continental basins

    NASA Astrophysics Data System (ADS)

    Shah, H. L.; Mishra, V.

    2015-12-01

    Real-time streamflow monitoring is essential in the Indian sub-continental river basins as a large population is affected by floods. Moreover, streamflow monitoring may help in managing the water resources in the agriculture dominated region. In the Indian sub-continental basins, it is challenging to obtain the real time information of streamflow, which is valuable for reservoir operations, water management, and flood forecasts. We setup the Variable Infiltration Capacity (VIC) hydrological model at daily temporal resolution and 0.25◦ spatial resolution using the bias corrected satellite precipitation product from the Tropical rainfall Measurement Mission Real Time (TRMM-3B42RTV7) and bias corrected temperature product from the Global Ensemble Forecast System (GEFS), version 2. Near-real-time precipitation and temperatures are bias corrected using the historic precipitation and temperature data from the India Meteorological Department (IMD). Moreover, we evaluated data assimilation approaches to improve the real-time monitoring of streamflow in the sub-continental basins.

  11. Real-time alpha monitoring of a radioactive liquid waste stream at Los Alamos National Laboratory

    SciTech Connect

    Johnson, J.D.; Whitley, C.R.; Rawool-Sullivan, M.

    1995-12-31

    This poster display concerns the development, installation, and testing of a real-time radioactive liquid waste monitor at Los Alamos National Laboratory (LANL). The detector system was designed for the LANL Radioactive Liquid Waste Treatment Facility so that influent to the plant could be monitored in real time. By knowing the activity of the influent, plant operators can better monitor treatment, better segregate waste (potentially), and monitor the regulatory compliance of users of the LANL Radioactive Liquid Waste Collection System. The detector system uses long-range alpha detection technology, which is a nonintrusive method of characterization that determines alpha activity on the liquid surface by measuring the ionization of ambient air. Extensive testing has been performed to ensure long-term use with a minimal amount of maintenance. The final design was a simple cost-effective alpha monitor that could be modified for monitoring influent waste streams at various points in the LANL Radioactive Liquid Waste Collection System.

  12. Ubiquitous health monitoring and real-time cardiac arrhythmias detection: a case study.

    PubMed

    Li, Jian; Zhou, Haiying; Zuo, Decheng; Hou, Kun-Mean; De Vaulx, Christophe

    2014-01-01

    As the symptoms and signs of heart diseases that cause sudden cardiac death, cardiac arrhythmia has attracted great attention. Due to limitations in time and space, traditional approaches to cardiac arrhythmias detection fail to provide a real-time continuous monitoring and testing service applicable in different environmental conditions. Integrated with the latest technologies in ECG (electrocardiograph) analysis and medical care, the pervasive computing technology makes possible the ubiquitous cardiac care services, and thus brings about new technical challenges, especially in the formation of cardiac care architecture and realization of the real-time automatic ECG detection algorithm dedicated to care devices. In this paper, a ubiquitous cardiac care prototype system is presented with its architecture framework well elaborated. This prototype system has been tested and evaluated in all the clinical-/home-/outdoor-care modes with a satisfactory performance in providing real-time continuous cardiac arrhythmias monitoring service unlimitedly adaptable in time and space. PMID:24211993

  13. Exclusive real-time monitoring during recurrent laryngeal nerve dissection in conventional monitored thyroidectomy.

    PubMed

    Liu, Xiao-Li; Wu, Che-Wei; Zhao, Yi-Shen; Wang, Tie; Chen, Peng; Xin, Jing-Wei; Li, Shi-Jie; Zhang, Da-Qi; Zhang, Guang; Fu, Yan-Tao; Zhao, Li-Na; Zhou, Le; Dionigi, Gianlorenzo; Chiang, Feng-Yu; Sun, Hui

    2016-03-01

    During conventional intermittent intraoperative neuromonitoring (IONM) in thyroidectomy, recurrent laryngeal nerve (RLN) injury is detected by an electromyographic (EMG) loss of signal (LOS) after the nerve dissection. Exclusive continuous monitoring during the phase of RLN dissection may be helpful in detecting adverse EMG changes earlier. A total of 208 RLNs at risk were enrolled in this study. Standardized IONM procedures were followed. We continuously stimulated the RLN at the lower exposed end with a stimulator to exclusively monitor the real-time quantitative EMG change during RLN dissection. Once the amplitude decreased by more than 50% of the initial signal, the surgical maneuver was paused and the RLN was retested every minute for 10 minutes to determine amplitude recovery before restarting the dissection. The procedure was feasible in all patients. No LOS was encountered in this study. Nineteen RLNs had an amplitude reduction of more than 50%. Eighteen nerves showed gradual amplitude recovery (16 nerves had a traction injury and two nerves had a compression injury). After 10 minutes, the recovery was complete (i.e., >90%) in eight nerves, 70-90% in seven nerves, and 50-70% in three nerves. Among these 18 nerves, only one nerve developed temporary vocal palsy because it was exposed to unavoidable repeated nerve traction after restarting the dissection. Another nerve showed no gradual recovery from thermal injury, and developed temporary vocal palsy. The temporary and permanent palsy rates were 1% and 0%, respectively. During intermittent IONM, exclusive real-time monitoring of the RLN during dissection is an effective procedure to detect an adverse EMG change, and prevent severe RLN injuries that cause LOS. PMID:27106003

  14. Real-time noninvasive optoacoustic monitoring of nanoparticle-mediated photothermal therapy of tumors

    NASA Astrophysics Data System (ADS)

    Esenaliev, R. O.; Petrov, Y. Y.; Cicenaite, I.; Chumakova, O. V.; Petrova, I. Y.; Patrikeev, I.; Liopo, A.

    2007-02-01

    We proposed and have been developing real-time, noninvasive monitoring of blood oxygenation, total hemoglobin concentration, and thermotherapy including hyperthermia, coagulation, and cryotherapy. In this paper we propose to use the optoacoustic technique for monitoring of nanoparticle-mediated photothermal therapy (NPT) of tumors. NPT is based on heating exogenous strongly-absorbing nanoparticles selectively delivered in tumors. Real-time monitoring of NPT is necessary for precise tumor therapy with minimal damage to normal tissues. In this study we injected PEGylated and non-PEGylated carbon nanoparticles in nude mice bearing human tumors (5-15 mm) and irradiated the tumors for 10 minutes with nanosecond Nd:YAG laser pulses which produced both thermal damage to the tumors and optoacoustic signals for monitoring NPT in real time. Irradiation of tumors was performed during or after (3 or 24 hours) nanoparticle injection. Amplitude and temporal parameters of optoacoustic signals (measured with a custom-made wide-band optoacoustic probe) correlated well with nanoparticle injection, temperature rise in tumors, and tumor coagulation. Substantial thermal damage in large areas of the tumors was produced when optimal irradiation parameters were used. Monte Carlo modeling of light distribution in tumors and optoacoustic theory were applied to study kinetics of nanoparticle concentration in the tumors. Our results demonstrated that the optoacoustic technique can be used for real-time monitoring of NTP and provide precise tumor therapy with minimal damage to normal tissues.

  15. New and Emerging Technologies for Real-Time Air and Surface Beryllium Monitoring

    SciTech Connect

    Phifer, B.E. Jr.; Churnetski, E.L.; Cooke, L.E.; Reed, J.J.; Howell, M.L.; Smith, V.D.

    2001-09-01

    In this study, five emerging technologies were identified for real-time monitoring of airborne beryllium: Microwave-Induced Plasma Spectroscopy (MIPS), Aerosol Beam-Focused Laser-Induced Plasma Spectroscopy (ABFLIPS), Laser-Induced Breakdown Spectroscopy (LIBS), Surfaced-Enhanced Raman Scattering (SERS) Spectroscopy, and Micro-Calorimetric Spectroscopy (CalSpec). Desired features of real-time air beryllium monitoring instrumentation were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies as well as their unique demonstrated capability to provide real-time monitoring of similar materials. However, best available technologies were considered, regardless of their ability to comply with the desired features. None of the five technologies have the capability to measure the particle size of airborne beryllium. Although reducing the total concentration of airborne beryllium is important, current literature suggests that reducing or eliminating the concentration of respirable beryllium is critical for worker health protection. Eight emerging technologies were identified for surface monitoring of beryllium. CalSpec, MIPS, SERS, LIBS, Laser Ablation, Absorptive Stripping Voltametry (ASV), Modified Inductively Coupled Plasma (ICP) Spectroscopy, and Gamma BeAST. Desired features of real-time surface beryllium monitoring were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies. However, the best available technologies were considered regardless of their ability to comply with the desired features.

  16. Performance Evaluation of a Low-Cost, Real-Time Community Air Monitoring Station

    EPA Science Inventory

    The US EPA’s Village Green Project (VGP) is an example of using innovative technology to enable community-level low-cost real-time air pollution measurements. The VGP is an air monitoring system configured as a park bench located outside of a public library in Durham, NC. ...

  17. Setpoints for Potato Irrigation using Real-time Continuous Monitoring of Soil Water Content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adequate availability of water during the potato growing season is critical for production of high yields of premium processing quality tubers. Real-time, continuous monitoring of soil water content in the soil profile can be used to develop irrigation setpoints to ensure adequate availability of w...

  18. PERFORMANCE RESULTS OF JET-REMPI AS A REAL-TIME PCDD/F EMISSION MONITOR

    EPA Science Inventory

    The Jet REMPI monitor was recently tested on a hazardous-waste firing boiler for its ability to determine real time concentrations of polychlorinated dibenzodioxins and dibenzofurans (PCDDs/Fs). Jet REMPI consists of a laser system coupled with a time of flight mass spectrometer ...

  19. EVALUATION OF REAL-TIME INNOVATIVE BIOLOGICAL AND CHEMICAL MONITORING SYSTEMS TO PROTECT SOURCE WATERS

    EPA Science Inventory

    Evaluation of Real-Time Innovative Biological and Chemical Monitoring Systems
    To Protect Source Waters

    Drinking water supplies have in recent years come under increasing pressure from regulatory concerns regarding TMDL designations and restoration strategies as well ...

  20. In-Situ Real Time Monitoring and Control of Mold Making and Filling Processes

    SciTech Connect

    2004-11-01

    This factsheet describes a research effort to develop an innovative approach to introduce technologies for real-time characterization of sand molds, lost foam patterns, and monitoring of the mold filling process. This will reduce scrap, improve product quality, and save energy.

  1. Surface Plasmon Resonance Label-Free Monitoring of Antibody Antigen Interactions in Real Time

    ERIC Educational Resources Information Center

    Kausaite, Asta; van Dijk, Martijn; Castrop, Jan; Ramanaviciene, Almira; Baltrus, John P.; Acaite, Juzefa; Ramanavicius, Arunas

    2007-01-01

    Detection of biologically active compounds is one of the most important topics in molecular biology and biochemistry. One of the most promising detection methods is based on the application of surface plasmon resonance for label-free detection of biologically active compounds. This method allows one to monitor binding events in real time without…

  2. Graphic Server: A real time system for displaying and monitoring telemetry data of several satellites

    NASA Technical Reports Server (NTRS)

    Douard, Stephane

    1994-01-01

    Known as a Graphic Server, the system presented was designed for the control ground segment of the Telecom 2 satellites. It is a tool used to dynamically display telemetry data within graphic pages, also known as views. The views are created off-line through various utilities and then, on the operator's request, displayed and animated in real time as data is received. The system was designed as an independent component, and is installed in different Telecom 2 operational control centers. It enables operators to monitor changes in the platform and satellite payloads in real time. It has been in operation since December 1991.

  3. Real-time non-destructive microwave sensor for nutrient monitoring in wastewater treatment

    NASA Astrophysics Data System (ADS)

    Al-Dasoqi, N.; Mason, A.; Alkhaddar, R.; Shaw, A.; Al-Shamma'a, A.

    2011-08-01

    A real-time non intrusive microwave sensor system able to monitor the nutrients found in wastewater has been designed, simulated and implemented. These liquids are continuously flowing through a PTFE pipe and the properties of these liquids gradually degraded in time. Microwaves have the ability to give real-time changes in any material permittivity by means of changing the velocity of the signal, attenuating or reflecting it. The primarily measurements show promising results for future sensor developments which lead to a novel system that can be used in wastewater treatment plants.

  4. Fiber Bragg grating sensors for steel wire monitoring in real-time

    NASA Astrophysics Data System (ADS)

    Koch, Jan; Angelmahr, Martin; Schade, Wolfgang

    2014-05-01

    Steel wires are widely applied in industrial applications - in most cases as critical components fulfilling high safety requirements in harsh environments (e.g. dockside cranes). In this paper a technique for real-time monitoring of steel ropes applying optical strain sensors based on fiber Bragg gratings is presented. The optical sensors are integrated within the wire strand and replace the core. The strain transmission from the outer wires to the sensors is assured by the mechanical coupling between the optical fiber and the strand. The actual strain load and rope vibrations in the kilohertz range can be determined in real-time.

  5. A WBAN-based real-time electroencephalogram monitoring system: design and implementation.

    PubMed

    Chen, Haifeng; Wu, Wanqing; Lee, Jungtae

    2010-06-01

    In this study, a flexible wireless body area network (WBAN) node platform has been designed and implemented based on the Zigbee technology. In order to provide wide range WBAN for health monitoring, a Zigbee/Internet Gateway (ZiGW) has also been developed rather than using a PDA or a host PC to connect different WBANs by using the Internet as the communication infrastructure. The proposed body sensor node platform promises a cost-effective, flexible platform for developing physical sensor node in real-time health monitoring. The ZiGW can provide an effective method to connect WBAN with the Internet. In this work, we present the implementation of an Electroencephalogram (EEG) monitoring system using the proposed methods. In this proposed system, real-time EEG signals can be remotely monitored by physicians via Internet, and the collected EEG data is stored in the online EEG database which can be shared with physicians or researchers for further analysis. PMID:20503615

  6. Development of a Real-Time Beryllium Air Monitor Utilizing Microwave Induced Plasma Spectroscopy (MIPAES)

    SciTech Connect

    Abeln, S.; Duan, Y.-a.; Olivares, J.A.; Koby, M.; Scopsick, R.C.

    1999-07-16

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) Program Development project at the Los Alamos National laboratory (LANL). The focus of this development has been an innovative beryllium air monitor for on-site' real-time continuous monitoring which overcomes limitations of the previous techniques for beryllium monitoring. A bench-top instrument has been set up and the performance of the instrument has been tested based on a solution aerosol. The sensitivity obtained with the instrument is sufficient to ensure workers can respond at airborne levels well below current exposure regulations. With this versatile, real-time monitor, worker exposure can be greatly reduced.

  7. Real-time monitoring and control of the plasma hearth process

    SciTech Connect

    Power, M.A.; Carney, K.P.; Peters, G.G.

    1996-05-01

    A distributed monitoring and control system is proposed for a plasma hearth, which will be used to decompose hazardous organic materials, encapsulate actinide waste in an obsidian-like slag, and reduce storage volume of actinide waste. The plasma hearth will be installed at ANL-West with the assistance of SAIC. Real-time monitoring of the off-gas system is accomplished using a Sun Workstation and embedded PCs. LabWindows/CVI software serves as the graphical user interface.

  8. Monitoring Natural Events Globally in Near Real-Time Using NASA's Open Web Services and Tools

    NASA Technical Reports Server (NTRS)

    Boller, Ryan A.; Ward, Kevin Alan; Murphy, Kevin J.

    2015-01-01

    Since 1960, NASA has been making global measurements of the Earth from a multitude of space-based missions, many of which can be useful for monitoring natural events. In recent years, these measurements have been made available in near real-time, making it possible to use them to also aid in managing the response to natural events. We present the challenges and ongoing solutions to using NASA satellite data for monitoring and managing these events.

  9. Environmental radiation real-time monitoring system permanently installed near Qinshan Nuclear Power Plant.

    PubMed

    Ding, M; Sheng, P; Zhi, Z

    1996-03-01

    An environmental radiation real-time monitoring system with high pressure ionization chamber was developed. It has been installed permanently in the vicinity of Qinshan Nuclear Power Plant, the first built in mainland China. The system consists of four basic components: environmental radiation monitors; data communication network; a data processing center; and a remote terminal computer situated in Hangzhou. It has provided five million readings of environmental radiation levels as of January 1993. PMID:8609035

  10. Improvements to Web Toolkits for Antelope-based Real-time Monitoring Systems

    NASA Astrophysics Data System (ADS)

    Lindquist, K. G.; Newman, R. L.; Vernon, F. L.; Hansen, T. S.; Orcutt, J.

    2005-12-01

    The Antelope Environmental Monitoring System (http://www.brtt.com) is a robust middleware architecture for near-real-time data collection, analysis, archiving and distribution. Antelope has an extensive toolkit allowing users to interact directly with their datasets. A rudimentary interface was developed in previous work between Antelope and the web-scripting language PHP (The PHP language is described in more detail at http://www.php.net). This interface allowed basic application development for remote access to and interaction with near-real-time data through a World Wide Web interface. We have added over 70 new functions for the Antelope interface to PHP, providing a solid base for web-scripting of near-real-time Antelope database applications. In addition, we have designed a new structure for web sites to be created from the Antelope platform, including PHP applications and Perl CGI scripts as well as static pages. Finally we have constructed the first version of the dbwebproject program, designed to dynamically create and maintain web-sites from specified recipes. These tools have already proven valuable for the creation of web tools for the dissemination of and interaction with near-real-time data streams from multi-signal-domain real-time sensor networks. We discuss current and future directions of this work in the context of the ROADNet project. Examples and applications of these core tools are elaborated in a companion presentation in this session (Newman et al., AGU 2005, session IN06).

  11. Real time monitoring of slope condition for transmission tower safety in Kenyir, Malaysia

    NASA Astrophysics Data System (ADS)

    Omar, R. C.; Ismail, A.; Khalid, N. H. N.; Din, N. M.; Hussain, H.; Jamaludin, M. Z.; Abdullah, F.; Arazad, A. Z.; Yusop, H.

    2013-06-01

    The Malaysia national electricity grid traverses throughout the nation over urban and rural areas including mountainous terrain. A major number of the transmission towers have been in existence for over 40 years and some traversed through very remote and high altitude areas like the Titiwangsa range that forms the backbone of the Malay Peninsula. This paper describes the instrumentation and real time monitoring in a transmission tower site in Kenyir, a hilly terrain in the East Coast of Malaysia. The site itself which is between 300-500m above sea level is deep in the rainforest area of Kenyir. The site and surrounding areas has been identified with signs of slope failure. A design concern is the real time slope monitoring sensors reliability and data integrity from the remote area with potential interference to the electronics equipment from the power line. The monitoring system comprised of an automated system for collecting and reporting field monitoring data. The instruments collect readings and transmit real time through GSM to the monitoring office over designated intervals. This initiative is a part of a project on developing an early warning system for monitoring landslide hazards at selected transmission towers. This paper reviews the various instrumentation used and challenges faced and the output received for slope movement warnings.

  12. Application of rule-based data mining techniques to real time ATLAS Grid job monitoring data

    NASA Astrophysics Data System (ADS)

    Ahrens, R.; Harenberg, T.; Kalinin, S.; Mättig, P.; Sandhoff, M.; dos Santos, T.; Volkmer, F.

    2012-12-01

    The Job Execution Monitor (JEM) is a job-centric grid job monitoring software developed at the University of Wuppertal and integrated into the pilot-based PanDA job brokerage system leveraging physics analysis and Monte Carlo event production for the ATLAS experiment on the Worldwide LHC Computing Grid (WLCG). With JEM, job progress and grid worker node health can be supervised in real time by users, site admins and shift personnel. Imminent error conditions can be detected early and countermeasures can be initiated by the Job's owner immedeatly. Grid site admins can access aggregated data of all monitored jobs to infer the site status and to detect job and Grid worker node misbehavior. Shifters can use the same aggregated data to quickly react to site error conditions and broken production tasks. In this work, the application of novel data-centric rule based methods and data-mining techniques to the real time monitoring data is discussed. The usage of such automatic inference techniques on monitoring data to provide job and site health summary information to users and admins is presented. Finally, the provision of a secure real-time control and steering channel to the job as extension of the presented monitoring software is considered and a possible model of such the control method is presented.

  13. Real-time volcano monitoring using GNSS single-frequency receivers

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Woo; Yun, Sung-Hyo; Kim, Do Hyeong; Lee, Dukkee; Lee, Young J.; Schutz, Bob E.

    2015-12-01

    We present a real-time volcano monitoring strategy that uses the Global Navigation Satellite System (GNSS), and we examine the performance of the strategy by processing simulated and real data and comparing the results with published solutions. The cost of implementing the strategy is reduced greatly by using single-frequency GNSS receivers except for one dual-frequency receiver that serves as a base receiver. Positions of the single-frequency receivers are computed relative to the base receiver on an epoch-by-epoch basis using the high-rate double-difference (DD) GNSS technique, while the position of the base station is fixed to the values obtained with a deferred-time precise point positioning technique and updated on a regular basis. Since the performance of the single-frequency high-rate DD technique depends on the conditions of the ionosphere over the monitoring area, the ionospheric total electron content is monitored using the dual-frequency data from the base receiver. The surface deformation obtained with the high-rate DD technique is eventually processed by a real-time inversion filter based on the Mogi point source model. The performance of the real-time volcano monitoring strategy is assessed through a set of tests and case studies, in which the data recorded during the 2007 eruption of Kilauea and the 2005 eruption of Augustine are processed in a simulated real-time mode. The case studies show that the displacement time series obtained with the strategy seem to agree with those obtained with deferred-time, dual-frequency approaches at the level of 10-15 mm. Differences in the estimated volume change of the Mogi source between the real-time inversion filter and previously reported works were in the range of 11 to 13% of the maximum volume changes of the cases examined.

  14. Real-time monitoring of 3D cell culture using a 3D capacitance biosensor.

    PubMed

    Lee, Sun-Mi; Han, Nalae; Lee, Rimi; Choi, In-Hong; Park, Yong-Beom; Shin, Jeon-Soo; Yoo, Kyung-Hwa

    2016-03-15

    Three-dimensional (3D) cell cultures have recently received attention because they represent a more physiologically relevant environment compared to conventional two-dimensional (2D) cell cultures. However, 2D-based imaging techniques or cell sensors are insufficient for real-time monitoring of cellular behavior in 3D cell culture. Here, we report investigations conducted with a 3D capacitance cell sensor consisting of vertically aligned pairs of electrodes. When GFP-expressing human breast cancer cells (GFP-MCF-7) encapsulated in alginate hydrogel were cultured in a 3D cell culture system, cellular activities, such as cell proliferation and apoptosis at different heights, could be monitored non-invasively and in real-time by measuring the change in capacitance with the 3D capacitance sensor. Moreover, we were able to monitor cell migration of human mesenchymal stem cells (hMSCs) with our 3D capacitance sensor. PMID:26386332

  15. Real Time Corrosion Monitoring in Lead and Lead-Bismuth Systems

    SciTech Connect

    James F. Stubbins; Alan Bolind; Ziang Chen

    2010-02-25

    The objective of this research program is to develop a real-time, in situ corrosion monitoring technique for flowing liquid Pb and eutectic PbBi (LBE) systems in a temperature range of 400 to 650 C. These conditions are relevant to future liquid metal cooled fast reactor operating parameters. THis program was aligned with the Gen IV Reactor initiative to develp technologies to support the design and opertion of a Pb or LBE-cooled fast reactor. The ability to monitor corrosion for protection of structural components is a high priority issue for the safe and prolonged operation of advanced liquid metal fast reactor systems. In those systems, protective oxide layers are intentionally formed and maintained to limit corrosion rates during operation. This program developed a real time, in situ corrosion monitoring tecnique using impedance spectroscopy (IS) technology.

  16. A real time monitoring system of ringer's solution residual amount for automatic nursing in hopsitals

    NASA Astrophysics Data System (ADS)

    Kwon, Jong-Won; Ha, Kwan-Yong; Nam, Chul; Ayurzana, Odgelral; Kim, Hie-Sik

    2005-12-01

    A real-time embedded system was developed for remote monitoring and checking the residual quantity and changing of Ringer's solution. It is monitored nurses' room. A Load Cell was applied as a sensor to check the residual quantity of Ringer's solution. This Load Cell detects the physical changes of Ringer's solution and transfers electronic signal to the amplifier. Amplified analog signal is converted into digital signal by A/D converter. Developed Embedded system, which computes these data with microprocess (8052) then makes it possible to monitor the residual quantity of Ringer's solution real-time on a server computer. A Checking system on Residual Quantity of Ringer's Solution Using Load cell cut costs using a simple design for a circuit.

  17. Photometric sensor system for a non-invasive real-time hemoglobin monitoring

    NASA Astrophysics Data System (ADS)

    Timm, Ulrich; Kraitl, Jens; Schnurstein, Kirstin; Ewald, Hartmut

    2013-03-01

    Hemoglobin (Hb) is an important component of red blood cells. The primary function of Hb is the transport of oxygen from the lungs to the tissue and carbon dioxide back to the lungs. The Hb concentration in human blood is an important parameter in evaluating the physiological status of an individual and an essential parameter in every blood count. Invasive methods are used to measure the Hb concentration, whereby blood is taken from the patient and subsequently analyzed. Apart from the discomfort of drawing blood samples, an added disadvantage of this method is the delay between the blood collection and its analysis, which does not allow real time patient monitoring in critical situations. A non-invasive method allows pain free continuous on-line patient monitoring with minimum risk of infection and facilitates real time data monitoring allowing immediate clinical reaction to the measured data.

  18. A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring.

    PubMed

    Imani, Somayeh; Bandodkar, Amay J; Mohan, A M Vinu; Kumar, Rajan; Yu, Shengfei; Wang, Joseph; Mercier, Patrick P

    2016-01-01

    Flexible, wearable sensing devices can yield important information about the underlying physiology of a human subject for applications in real-time health and fitness monitoring. Despite significant progress in the fabrication of flexible biosensors that naturally comply with the epidermis, most designs measure only a small number of physical or electrophysiological parameters, and neglect the rich chemical information available from biomarkers. Here, we introduce a skin-worn wearable hybrid sensing system that offers simultaneous real-time monitoring of a biochemical (lactate) and an electrophysiological signal (electrocardiogram), for more comprehensive fitness monitoring than from physical or electrophysiological sensors alone. The two sensing modalities, comprising a three-electrode amperometric lactate biosensor and a bipolar electrocardiogram sensor, are co-fabricated on a flexible substrate and mounted on the skin. Human experiments reveal that physiochemistry and electrophysiology can be measured simultaneously with negligible cross-talk, enabling a new class of hybrid sensing devices. PMID:27212140

  19. A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring

    PubMed Central

    Imani, Somayeh; Bandodkar, Amay J.; Mohan, A. M. Vinu; Kumar, Rajan; Yu, Shengfei; Wang, Joseph; Mercier, Patrick P.

    2016-01-01

    Flexible, wearable sensing devices can yield important information about the underlying physiology of a human subject for applications in real-time health and fitness monitoring. Despite significant progress in the fabrication of flexible biosensors that naturally comply with the epidermis, most designs measure only a small number of physical or electrophysiological parameters, and neglect the rich chemical information available from biomarkers. Here, we introduce a skin-worn wearable hybrid sensing system that offers simultaneous real-time monitoring of a biochemical (lactate) and an electrophysiological signal (electrocardiogram), for more comprehensive fitness monitoring than from physical or electrophysiological sensors alone. The two sensing modalities, comprising a three-electrode amperometric lactate biosensor and a bipolar electrocardiogram sensor, are co-fabricated on a flexible substrate and mounted on the skin. Human experiments reveal that physiochemistry and electrophysiology can be measured simultaneously with negligible cross-talk, enabling a new class of hybrid sensing devices. PMID:27212140

  20. Real-time seismic monitoring needs of a building owner - And the solution: A cooperative effort

    USGS Publications Warehouse

    Celebi, M.; Sanli, A.; Sinclair, M.; Gallant, S.; Radulescu, D.

    2004-01-01

    A recently implemented advanced seismic monitoring system for a 24-story building facilitates recording of accelerations and computing displacements and drift ratios in near-real time to measure the earthquake performance of the building. The drift ratio is related to the damage condition of the specific building. This system meets the owner's needs for rapid quantitative input to assessments and decisions on post-earthquake occupancy. The system is now successfully working and, in absence of strong shaking to date, is producing low-amplitude data in real time for routine analyses and assessment. Studies of such data to date indicate that the configured monitoring system with its building specific software can be a useful tool in rapid assessment of buildings and other structures following an earthquake. Such systems can be used for health monitoring of a building, for assessing performance-based design and analyses procedures, for long-term assessment of structural characteristics, and for long-term damage detection.

  1. Application of two real-time toxicity tests to monitor Rocky Flats Plant water quality

    SciTech Connect

    Wolaver, H.; Spence, S.; Paton, I.

    1993-01-01

    Rocky Flats Plant (RFP) is part of the Department of Energy (DOE) nuclear weapons complex and fabricated weapon components for the DOE from 1952 to 1989. Like other industrial facilities, RFP is subject to Clean Water Act (CWA) regulations that require surface water discharge monitoring. Unlike most industrial facilities, RFP is also regulated under a Federal Facility Compliance Agreement (FFCA) that requires development of water quality monitoring on a real-time basis. A surface water toxicity monitoring program was initiated in May 1991 to address requirements concerning prevention of toxic effluent discharges. The goal of the program is to determine which methods will provide real-time monitoring, thereby enhancing water management and protection of the aquatic environment downstream. In addition to the traditional whole effluent toxicity (WET) testing required by the FFCA, two other biological instrumentation techniques that may be applicable to real-time monitoring are being implemented. These are the Microtox[trademark] (Microtox[trademark] is a registered trademark of Microbics Corporation, hereinafter referred to as Microtox'') and automated respirometry. Both methods provide frequent sampling compared to WET testing and allow for more timely and frequent water quality measurement.

  2. Application of two real-time toxicity tests to monitor Rocky Flats Plant water quality

    SciTech Connect

    Wolaver, H.; Spence, S.; Paton, I.

    1993-05-01

    Rocky Flats Plant (RFP) is part of the Department of Energy (DOE) nuclear weapons complex and fabricated weapon components for the DOE from 1952 to 1989. Like other industrial facilities, RFP is subject to Clean Water Act (CWA) regulations that require surface water discharge monitoring. Unlike most industrial facilities, RFP is also regulated under a Federal Facility Compliance Agreement (FFCA) that requires development of water quality monitoring on a real-time basis. A surface water toxicity monitoring program was initiated in May 1991 to address requirements concerning prevention of toxic effluent discharges. The goal of the program is to determine which methods will provide real-time monitoring, thereby enhancing water management and protection of the aquatic environment downstream. In addition to the traditional whole effluent toxicity (WET) testing required by the FFCA, two other biological instrumentation techniques that may be applicable to real-time monitoring are being implemented. These are the Microtox{trademark} (Microtox{trademark} is a registered trademark of Microbics Corporation, hereinafter referred to as ``Microtox``) and automated respirometry. Both methods provide frequent sampling compared to WET testing and allow for more timely and frequent water quality measurement.

  3. Real-time measurement of dust in the workplace using video exposure monitoring: Farming to pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Walsh, P. T.; Forth, A. R.; Clark, R. D. R.; Dowker, K. P.; Thorpe, A.

    2009-02-01

    Real-time, photometric, portable dust monitors have been employed for video exposure monitoring (VEM) to measure and highlight dust levels generated by work activities, illustrate dust control techniques, and demonstrate good practice. Two workplaces, presenting different challenges for measurement, were used to illustrate the capabilities of VEM: (a) poultry farming activities and (b) powder transfer operations in a pharmaceutical company. For the poultry farm work, the real-time monitors were calibrated with respect to the respirable and inhalable dust concentrations using cyclone and IOM reference samplers respectively. Different rankings of exposure for typical activities were found on the small farm studied here compared to previous exposure measurements at larger poultry farms: these were mainly attributed to the different scales of operation. Large variations in the ratios of respirable, inhalable and real-time monitor TWA concentrations of poultry farm dust for various activities were found. This has implications for the calibration of light-scattering dust monitors with respect to inhalable dust concentration. In the pharmaceutical application, the effectiveness of a curtain barrier for dust control when dispensing powder in a downflow booth was rapidly demonstrated.

  4. Design of a complex terrain meteorological monitoring program for real-time air quality modeling analysis

    SciTech Connect

    Militana, L.M.; Karpovich, R.; Cimorelli, A.; Scire, J.S.

    1998-12-31

    A multi-station meteorological monitoring program has been designed and developed for a complex terrain air quality modeling study. The purpose of the program is to collect representative on site data as input to complex terrain air quality models and to predict in real-time the potential air quality impact of a rotary kiln incinerator The program is a state-of the science design using the best science air quality dispersion models (CALMET/CALPUFF) and meteorological monitoring equipment (RASS/SODAR Systems monostatic and phased array and multiple towers). The real-time meteorological monitoring program consisted of two monitoring stations using meteorological towers and Doppler SODAR and phased array RASS systems to determine the temperature and wind profile of the atmospheric boundary layer. The primary station were located adjacent to the site and consisted of a 150 ft meteorological tower and RASS/SODAR system. The secondary station was located approximately 1,600 meters northeast of the site and consisted of a 10 meter tower and a SODAR system. These monitoring stations provided 15-minute values of wind speed, wind direction, ambient temperature, and thermal and mechanical turbulence measurements for use in a complex terrain air quality modeling study and a real-time modeling system.

  5. Use of real-time data in environmental monitoring: current practices.

    PubMed

    Gunatilak, A; Dreher, J

    2003-01-01

    Water quality monitoring in Europe, especially in transboundary water courses has made steady progress during the last decades through establishment of international commissions. The main activities of these commissions include protection and management of the catchment, sustainable use of the river and establishment of Accident Emergency Warning Systems (AEWS). The latter could be effectively accomplished only through real-time monitoring. Concurrently real-time data have been found important for the monitoring of potable water intake points, wastewater treatment plants, estuaries and in aquaculture. With the recognition of the diversified demand, there are a number of questions to be answered such as: (1) are we satisfied with the existing monitoring systems? (2) is standardisation of the measuring instruments a necessity? (3) do we have foolproof systems for data capture and transmission? (4) are there adequate procedures to analyse vast amount of data generated? We have to answer these questions urgently as the demand for real-time monitoring has been drastically increased. PMID:12636062

  6. Real-time fracture monitoring in Engineered Geothermal Systems with seismic waves

    SciTech Connect

    Jose A. Rial; Jonathan Lees

    2009-03-31

    As proposed, the main effort in this project is the development of software capable of performing real-time monitoring of micro-seismic activity recorded by an array of sensors deployed around an EGS. The main milestones are defined by the development of software to perform the following tasks: • Real-time micro-earthquake detection and location • Real-time detection of shear-wave splitting • Delayed-time inversion of shear-wave splitting These algorithms, which are discussed in detail in this report, make possible the automatic and real-time monitoring of subsurface fracture systems in geothermal fields from data collected by an array of seismic sensors. Shear wave splitting (SWS) is parameterized in terms of the polarization of the fast shear wave and the time delay between the fast and slow shear waves, which are automatically measured and stored. The measured parameters are then combined with previously measured SWS parameters at the same station and used to invert for the orientation (strike and dip) and intensity of cracks under that station. In addition, this grant allowed the collection of seismic data from several geothermal regions in the US (Coso) and Iceland (Hengill) to use in the development and testing of the software.

  7. Atlas-based multichannel monitoring of functional MRI signals in real-time: automated approach.

    PubMed

    Lee, Jong-Hwan; O'Leary, Heather M; Park, Hyunwook; Jolesz, Ferenc A; Yoo, Seung-Schik

    2008-02-01

    We report an automated method to simultaneously monitor blood-oxygenation-level-dependent (BOLD) MR signals from multiple cortical areas in real-time. Individual brain anatomy was normalized and registered to a pre-segmented atlas in standardized anatomical space. Subsequently, using real-time fMRI (rtfMRI) data acquisition, localized BOLD signals were measured and displayed from user-selected areas labeled with anatomical and Brodmann's Area (BA) nomenclature. The method was tested on healthy volunteers during the performance of hand motor and internal speech generation tasks employing a trial-based design. Our data normalization and registration algorithm, along with image reconstruction, movement correction and a data display routine were executed with enough processing and communication bandwidth necessary for real-time operation. Task-specific BOLD signals were observed from the hand motor and language areas. One of the study participants was allowed to freely engage in hand clenching tasks, and associated brain activities were detected from the motor-related neural substrates without prior knowledge of the task onset time. The proposed method may be applied to various applications such as neurofeedback, brain-computer-interface, and functional mapping for surgical planning where real-time monitoring of region-specific brain activity is needed. PMID:17370340

  8. Online monitoring of alpine slope instabilities with L1 GPS Real Time Kinematic Positions

    NASA Astrophysics Data System (ADS)

    Su, Zhenzhong; Geiger, Alain; Limpach, Philippe; Beutel, Jan; Gsell, Tonio; Buchli, Bernhard; Gruber, Stephan; Wirz, Vanessa; Sutton, Felix

    2014-05-01

    Real time (RT) monitoring the kinematic displacement of moving landforms is of great interest to geologists and geomorphologists. Differential GPS carrier phase processing is able to compute real time kinematic (RTK) positions with an accuracy of several centimeters. The accurate kinematic position means better temporal resolution compare to static daily solution. Cost-effective L1 GPS units make deployment of higher density network affordable, which means better spatial resolution. Moreover, the real time capability is critical in the context of early warning scenarios. In this work, we present an online system for monitoring of alpine slope instabilities developed in the framework of the X-Sense project. First, a short introduction about the system will be given, from RT data transfer to RT GPS data processing and the online visualization of results. Second, we demonstrate the real time solutions and we show that GPS signal delay induced by None-Line-of-Sight (NLOS) propagation (like diffraction and reflection delays) is the major error source degrading the accuracy of computed RTK positions in short baseline process. For static stations, we model the error based on the solutions of previous days, and use the model to correct present and future solutions. For stations in motion, we propose to make use of carrier-to-noise ratio (C/N0) to appropriate dilute or correct NLOS error. By doing so, the standard deviation and especially the maximum deviation of computed RTK positions are significantly reduced.

  9. Real-time electronic adherence monitoring is feasible, comparable to unannounced pill counts, and acceptable

    PubMed Central

    Haberer, Jessica E.; Robbins, Gregory K.; Ybarra, Michele; Monk, Alexandra; Ragland, Kathleen; Weiser, Sheri D.; Johnson, Mallory O.; Bangsberg, David R.

    2011-01-01

    Second generation electronic medication adherence monitors provide real-time data on pill bottle opening behavior. Feasibility, validity, and acceptability, however, have not been established. Med-eMonitor is a multi-compartment adherence device with reminder and education capacity that transmits data through a telephone connection. Monthly adherence levels were measured for 52 participants over approximately three months using the Med-eMonitor (unadjusted and adjusted for participant confirmed dosing) and unannounced pill counts. HIV RNA was assessed before and after the three-month period. Acceptability of Med-eMonitor was determined. Over 92% of Med-eMonitor data was transmitted daily. Unannounced pill counts significantly correlated with adjusted Med-eMonitor adherence (r=0.29, p=0.04). HIV RNA significantly correlated with unannounced pill counts (r=−0.34, p=0.02), and trended toward a significant correlation with unadjusted Med-eMonitor adherence (r=−0.26; p=0.07). Most, but not all, participants liked using the Med-eMonitor. Med-eMonitor allows for real-time adherence monitoring and potentially intervention, which may be critical for prolonging treatment success. PMID:21448728

  10. Real-time estimation of plasma insulin concentration from continuous glucose monitor measurements.

    PubMed

    de Pereda, Diego; Romero-Vivo, Sergio; Ricarte, Beatriz; Rossetti, Paolo; Ampudia-Blasco, Francisco Javier; Bondia, Jorge

    2016-01-01

    Continuous glucose monitors can measure interstitial glucose concentration in real time for closed-loop glucose control systems, known as artificial pancreas. These control systems use an insulin feedback to maintain plasma glucose concentration within a narrow and safe range, and thus to avoid health complications. As it is not possible to measure plasma insulin concentration in real time, insulin models have been used in literature to estimate them. Nevertheless, the significant inter- and intra-patient variability of insulin absorption jeopardizes the accuracy of these estimations. In order to reduce these limitations, our objective is to perform a real-time estimation of plasma insulin concentration from continuous glucose monitoring (CGM). Hovorka's glucose-insulin model has been incorporated in an extended Kalman filter in which different selected time-variant model parameters have been considered as extended states. The observability of the original Hovorka's model and of several extended models has been evaluated by their Lie derivatives. We have evaluated this methodology with an in-silico study with 100 patients with Type 1 diabetes during 25 h. Furthermore, it has been also validated using clinical data from 12 insulin pump patients with Type 1 diabetes who underwent four mixed meal studies. Real-time insulin estimations have been compared to plasma insulin measurements to assess performance showing the validity of the methodology here used in comparison with that formerly used for insulin models. Hence, real-time estimations for plasma insulin concentration based on subcutaneous glucose monitoring can be beneficial for increasing the efficiency of control algorithms for the artificial pancreas. PMID:26343364

  11. Digital Image Support in the ROADNet Real-time Monitoring Platform

    NASA Astrophysics Data System (ADS)

    Lindquist, K. G.; Hansen, T. S.; Newman, R. L.; Vernon, F. L.; Nayak, A.; Foley, S.; Fricke, T.; Orcutt, J.; Rajasekar, A.

    2004-12-01

    The ROADNet real-time monitoring infrastructure has allowed researchers to integrate geophysical monitoring data from a wide variety of signal domains. Antelope-based data transport, relational-database buffering and archiving, backup/replication/archiving through the Storage Resource Broker, and a variety of web-based distribution tools create a powerful monitoring platform. In this work we discuss our use of the ROADNet system for the collection and processing of digital image data. Remote cameras have been deployed at approximately 32 locations as of September 2004, including the SDSU Santa Margarita Ecological Reserve, the Imperial Beach pier, and the Pinon Flats geophysical observatory. Fire monitoring imagery has been obtained through a connection to the HPWREN project. Near-real-time images obtained from the R/V Roger Revelle include records of seafloor operations by the JASON submersible, as part of a maintenance mission for the H2O underwater seismic observatory. We discuss acquisition mechanisms and the packet architecture for image transport via Antelope orbservers, including multi-packet support for arbitrarily large images. Relational database storage supports archiving of timestamped images, image-processing operations, grouping of related images and cameras, support for motion-detect triggers, thumbnail images, pre-computed video frames, support for time-lapse movie generation and storage of time-lapse movies. Available ROADNet monitoring tools include both orbserver-based display of incoming real-time images and web-accessible searching and distribution of images and movies driven by the relational database (http://mercali.ucsd.edu/rtapps/rtimbank.php). An extension to the Kepler Scientific Workflow System also allows real-time image display via the Ptolemy project. Custom time-lapse movies may be made from the ROADNet web pages.

  12. A GPS-based Real-time Road Traffic Monitoring System

    NASA Astrophysics Data System (ADS)

    Tanti, Kamal Kumar

    In recent years, monitoring systems are astonishingly inclined towards ever more automatic; reliably interconnected, distributed and autonomous operation. Specifically, the measurement, logging, data processing and interpretation activities may be carried out by separate units at different locations in near real-time. The recent evolution of mobile communication devices and communication technologies has fostered a growing interest in the GIS & GPS-based location-aware systems and services. This paper describes a real-time road traffic monitoring system based on integrated mobile field devices (GPS/GSM/IOs) working in tandem with advanced GIS-based application software providing on-the-fly authentications for real-time monitoring and security enhancement. The described system is developed as a fully automated, continuous, real-time monitoring system that employs GPS sensors and Ethernet and/or serial port communication techniques are used to transfer data between GPS receivers at target points and a central processing computer. The data can be processed locally or remotely based on the requirements of client’s satisfaction. Due to the modular architecture of the system, other sensor types may be supported with minimal effort. Data on the distributed network & measurements are transmitted via cellular SIM cards to a Control Unit, which provides for post-processing and network management. The Control Unit may be remotely accessed via an Internet connection. The new system will not only provide more consistent data about the road traffic conditions but also will provide methods for integrating with other Intelligent Transportation Systems (ITS). For communication between the mobile device and central monitoring service GSM technology is used. The resulting system is characterized by autonomy, reliability and a high degree of automation.

  13. Potentiometric Sensor for Real-Time Monitoring of Multivalent Ion Concentrations in Molten Salt

    SciTech Connect

    Peter A. Zink; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson; Ben F. Cowan; Steven D. Herrmann; Shelly X. Li

    2010-07-01

    Electrorefining of spent metallic nuclear fuel in high temperature molten salt systems is a core technology in pyroprocessing, which in turn plays a critical role in the development of advanced fuel cycle technologies. In electrorefining, spent nuclear fuel is treated electrochemically in order to effect separations between uranium, noble metals, and active metals, which include the transuranics. The accumulation of active metals in a lithium chloride-potassium chloride (LiCl-KCl) eutectic molten salt electrolyte occurs at the expense of the UCl3-oxidant concentration in the electrolyte, which must be periodically replenished. Our interests lie with the accumulation of active metals in the molten salt electrolyte. The real-time monitoring of actinide concentrations in the molten salt electrolyte is highly desirable for controlling electrochemical operations and assuring materials control and accountancy. However, real-time monitoring is not possible with current methods for sampling and chemical analysis. A new solid-state electrochemical sensor is being developed for real-time monitoring of actinide ion concentrations in a molten salt electrorefiner. The ultimate function of the sensor is to monitor plutonium concentrations during electrorefining operations, but in this work gadolinium was employed as a surrogate material for plutonium. In a parametric study, polycrystalline sodium beta double-prime alumina (Na-ß?-alumina) discs and tubes were subject to vapor-phase exchange with gadolinium ions (Gd3+) using a gadolinium chloride salt (GdCl3) as a precursor to produce gadolinium beta double-prime alumina (Gd-ß?-alumina) samples. Electrochemical impedance spectroscopy and microstructural analysis were performed on the ion-exchanged discs to determine the relationship between ion exchange and Gd3+ ion conductivity. The ion-exchanged tubes were configured as potentiometric sensors in order to monitor real-time Gd3+ ion concentrations in mixtures of gadolinium

  14. A NEAR REAL-TIME BERYLLIUM MONITOR WITH CAM AND WIPE ANALYSIS CAPABILITIES

    SciTech Connect

    D.T. Kendrick; Steven Saggese

    2002-12-01

    Science & Engineering Associates, Inc. (SEA), under contract No. DE-AC26-00NT40768, was tasked by the US Department of Energy--National Energy Technology Laboratory to develop and test a near real-time beryllium monitor for airborne and surface measurements. Recent public awareness of the health risks associated with exposure to beryllium has underscored the need for better, faster beryllium monitoring capabilities within the DOE. A near real-time beryllium monitor will offer significant improvements over the baseline monitoring technology currently in use. Whereas the baseline technology relies upon collecting an air sample on a filter and the subsequent analysis of the filter by an analytical laboratory, this effort developed a monitor that offers near real-time measurement results while work is in progress. Since the baseline typically only offers after-the-fact documentation of exposure levels, the near real-time capability provides a significant increase in worker protection. The beryllium monitor developed utilizes laser induced breakdown spectroscopy, or LIBS as the fundamental measurement technology. LIBS has been used in a variety of laboratory and field based instrumentation to provide real-time, and near-real-time elemental analysis capabilities. LIBS is an analytical technique where a pulsed high energy laser beam is focused to a point on the sample to be interrogated. The high energy density produces a small high temperature plasma plume, sometimes called a spark. The conditions within this plasma plume result in the constituent atoms becoming excited and emitting their characteristic optical emissions. The emission light is collected and routed to an optical spectrometer for quantitative spectral analysis. Each element has optical emissions, or lines, of a specific wavelength that can be used to uniquely identify that element. In this application, the intensity of the beryllium emission is used to provide a quantitative measure of the abundance of the

  15. Design of a real-time tax-data monitoring intelligent card system

    NASA Astrophysics Data System (ADS)

    Gu, Yajun; Bi, Guotang; Chen, Liwei; Wang, Zhiyuan

    2009-07-01

    To solve the current problem of low efficiency of domestic Oil Station's information management, Oil Station's realtime tax data monitoring system has been developed to automatically access tax data of Oil pumping machines, realizing Oil-pumping machines' real-time automatic data collection, displaying and saving. The monitoring system uses the noncontact intelligent card or network to directly collect data which can not be artificially modified and so seals the loopholes and improves the tax collection's automatic level. It can perform real-time collection and management of the Oil Station information, and find the problem promptly, achieves the automatic management for the entire process covering Oil sales accounting and reporting. It can also perform remote query to the Oil Station's operation data. This system has broad application future and economic value.

  16. Real-Time Volumetric Phase Monitoring: Advancing Chemical Analysis by Countercurrent Separation.

    PubMed

    Pauli, Guido F; Pro, Samuel M; Chadwick, Lucas R; Burdick, Thomas; Pro, Luke; Friedl, Warren; Novak, Nick; Maltby, John; Qiu, Feng; Friesen, J Brent

    2015-07-21

    Countercurrent separation (CCS) utilizes the differential partitioning behavior of analytes between two immiscible liquid phases. We introduce the first platform ("CherryOne") capable of real-time monitoring, metering, and control of the dynamic liquid-liquid CCS process. Automated phase monitoring and volumetrics are made possible with an array of sensors, including the new permittivity-based phase metering apparatus (PMA). Volumetric data for each liquid phase are converted into a dynamic real-time display of stationary phase retention (Sf) and eluent partition coefficients (K), which represent critical parameters of CCS reproducibility. When coupled with the elution-extrusion operational mode (EECCC), automated Sf and K determination empowers untargeted and targeted applications ranging from metabolomic analysis to preparative purifications. PMID:26152934

  17. Biosensor-based real-time monitoring of paracetamol photocatalytic degradation.

    PubMed

    Calas-Blanchard, Carole; Istamboulié, Georges; Bontoux, Margot; Plantard, Gaël; Goetz, Vincent; Noguer, Thierry

    2015-07-01

    This paper presents for the first time the integration of a biosensor for the on-line, real-time monitoring of a photocatalytic degradation process. Paracetamol was used as a model molecule due to its wide use and occurrence in environmental waters. The biosensor was developed based on tyrosinase immobilization in a polyvinylalcohol photocrosslinkable polymer. It was inserted in a computer-controlled flow system installed besides a photocatalytic reactor including titanium dioxide (TiO2) as photocatalyst. It was shown that the biosensor was able to accurately monitor the paracetamol degradation with time. Compared with conventional HPLC analysis, the described device provides a real-time information on the reaction advancement, allowing a better control of the photodegradation process. PMID:25828801

  18. An interference monitor with real-time FFT spectral analysis for a radio observatory

    NASA Astrophysics Data System (ADS)

    Romalo, David N.; Dewdney, Peter E.; Landecker, Thomas L.; Ito, Mabo R.

    1989-08-01

    A system is described which uses a real-time FFT spectrum analyzer to monitor radio interference near 408 MHz occurring at a radio observatory. Direction of arrival, frequency, intensity, and time of occurrence are recorded under the control of a microcomputer. A sensitive receiver can be connected to any one of eight directional antennas to establish direction of arrival. The receiver output is digitized to 8 bits and analyzed by the FFT spectrum analyzer which has a real-time bandwidth of 0.5 MHz. A total bandwidth of 20 MHz is analyzed in segments of 0.4 MHz. The analyzer uses the modified periodogram method developed by Welch (1967), and a Kaiser-Bessel windowing function is applied to ensure low sidelobes. Dynamic range is 40 dB, and the interference monitor obtains high sensitivity to very weak interfering signals by time averaging.

  19. Industrial use of the real time monitor for quality assurance in electron processing

    NASA Astrophysics Data System (ADS)

    Kneeland, D. R.; Nablo, S. V.; Weiss, D. E.; Sinz, T. E.

    1999-07-01

    The performance of a three channel real time radiation monitor, installed on a 250 kV×0.3 m electron sterilizer used for controlled depth of sterilization of medical devices, is reported. The bremsstrahlung generated at the window plane is monitored with good spatial resolution at three locations across the beam, and provides information on the electron current density (dose rate) and the electron energy. Software has been developed for analysis and display of these data in real time so that the dose received by the product, and the energy at which it was treated can be displayed and recorded. The several geometries used for bremsstrahlung detection are discussed, and some calculated low energy distributions are shown. Typical data are presented from an eleven channel unit mounted on a 250 kV×1.6 m processor illustrating its use for process quality assurance. The use of Monitorad® for overall closed-loop processor control is reviewed.

  20. Infrared Plasmonic Biosensor for Real-Time and Label-Free Monitoring of Lipid Membranes.

    PubMed

    Limaj, Odeta; Etezadi, Dordaneh; Wittenberg, Nathan J; Rodrigo, Daniel; Yoo, Daehan; Oh, Sang-Hyun; Altug, Hatice

    2016-02-10

    In this work, we present an infrared plasmonic biosensor for chemical-specific detection and monitoring of biomimetic lipid membranes in a label-free and real-time fashion. Lipid membranes constitute the primary biological interface mediating cell signaling and interaction with drugs and pathogens. By exploiting the plasmonic field enhancement in the vicinity of engineered and surface-modified nanoantennas, the proposed biosensor is able to capture the vibrational fingerprints of lipid molecules and monitor in real time the formation kinetics of planar biomimetic membranes in aqueous environments. Furthermore, we show that this plasmonic biosensor features high-field enhancement extending over tens of nanometers away from the surface, matching the size of typical bioassays while preserving high sensitivity. PMID:26761392

  1. Expert system and process optimization techniques for real-time monitoring and control of plasma processes

    NASA Astrophysics Data System (ADS)

    Cheng, Jie; Qian, Zhaogang; Irani, Keki B.; Etemad, Hossein; Elta, Michael E.

    1991-03-01

    To meet the ever-increasing demand of the rapidly-growing semiconductor manufacturing industry it is critical to have a comprehensive methodology integrating techniques for process optimization real-time monitoring and adaptive process control. To this end we have accomplished an integrated knowledge-based approach combining latest expert system technology machine learning method and traditional statistical process control (SPC) techniques. This knowledge-based approach is advantageous in that it makes it possible for the task of process optimization and adaptive control to be performed consistently and predictably. Furthermore this approach can be used to construct high-level and qualitative description of processes and thus make the process behavior easy to monitor predict and control. Two software packages RIST (Rule Induction and Statistical Testing) and KARSM (Knowledge Acquisition from Response Surface Methodology) have been developed and incorporated with two commercially available packages G2 (real-time expert system) and ULTRAMAX (a tool for sequential process optimization).

  2. Real-time PM10 concentration monitoring on Penang Bridge by using traffic monitoring CCTV

    NASA Astrophysics Data System (ADS)

    Low, K. L.; Lim, H. S.; MatJafri, M. Z.; Abdullah, K.; Wong, C. J.

    2007-04-01

    For this study, an algorithm was developed to determine concentration of particles less than 10μm (PM10) from still images captured by a CCTV camera on the Penang Bridge. The objective of this study is to remotely monitor the PM10 concentrations on the Penang Bridge through the internet. So, an algorithm was developed based on the relationship between the atmospheric reflectance and the corresponding air quality. By doing this, the still images were separated into three bands namely red, green and blue and their digital number values were determined. A special transformation was then performed to the data. Ground PM10 measurements were taken by using DustTrak TM meter. The algorithm was calibrated using a regression analysis. The proposed algorithm produced a high correlation coefficient (R) and low root-mean-square error (RMS) between the measured and produced PM10. Later, a program was written by using Microsoft Visual Basic 6.0 to download still images from the camera over the internet and implement the newly developed algorithm. Meanwhile, the program is running in real time and the public will know the air pollution index from time to time. This indicates that the technique using the CCTV camera images can provide a useful tool for air quality studies.

  3. Real-time respiratory monitoring workstation--software and hardware engineering aspects.

    PubMed

    Govindarajan, N; Meiyappan, S; Prakash, O

    1992-10-01

    We have applied advanced real-time techniques in software, that are intensively used in critical areas like space research and defence applications, to realise an Integrated Real-Time Respiratory Monitoring System at the Thorax Anesthesiology, Academic Hospital Rotterdam. The system is called the 'SERVO WINDOW'--a window to the servo ventilator. The heart of the system is a real-time kernel that uses preemptive scheduling to achieve multitasking on a IBM PC compatible hardware platform. To the clinician this means that he gets all relevant information from one source i.e. the Respiratory Workstation. The waveforms of the airway pressure, airway flow and the expired CO2 curve are displayed continuously on the screen. The Vector Loops like Pressure Volume, Flow Pressure and Flow Volume loops are also available in addition to the lung mechanics parameters like Expiratory and Inspiratory Resistances, Compliances, Peak Pressure, PEEP, etc. The Single Breath Diagram i.e. expired CO2 concentration versus volume and dead space ventilation is also calculated. The blood gas analysis data is plotted in convenient diagrams like the O2-CO2 diagram, Oxygen Chart, etc. The trend of all these parameters are available with a granularity of one minute. An industry standard laser printer is used for report generation to produce reports of the real-time waveforms, parameter values and the trends. User interface is through easy menus with the traditional keyboard, touchscreen including keyboard on screen for data entry and the mouse. PMID:1447536

  4. Real-time oil-saturation monitoring in rock cores with low-field NMR.

    PubMed

    Mitchell, J; Howe, A M; Clarke, A

    2015-07-01

    Nuclear magnetic resonance (NMR) provides a powerful suite of tools for studying oil in reservoir core plugs at the laboratory scale. Low-field magnets are preferred for well-log calibration and to minimize magnetic-susceptibility-induced internal gradients in the porous medium. We demonstrate that careful data processing, combined with prior knowledge of the sample properties, enables real-time acquisition and interpretation of saturation state (relative amount of oil and water in the pores of a rock). Robust discrimination of oil and brine is achieved with diffusion weighting. We use this real-time analysis to monitor the forced displacement of oil from porous materials (sintered glass beads and sandstones) and to generate capillary desaturation curves. The real-time output enables in situ modification of the flood protocol and accurate control of the saturation state prior to the acquisition of standard NMR core analysis data, such as diffusion-relaxation correlations. Although applications to oil recovery and core analysis are demonstrated, the implementation highlights the general practicality of low-field NMR as an inline sensor for real-time industrial process control. PMID:25996514

  5. Real time monitoring of superparamagnetic nanoparticle self-assembly on surfaces of magnetic recording media

    SciTech Connect

    Ye, L.; Pearson, T.; Crawford, T. M.; Qi, B.; Cordeau, Y.; Mefford, O. T.

    2014-05-07

    Nanoparticle self-assembly dynamics are monitored in real-time by detecting optical diffraction from an all-nanoparticle grating as it self-assembles on a grating pattern recorded on a magnetic medium. The diffraction efficiency strongly depends on concentration, pH, and colloidal stability of nanoparticle suspensions, demonstrating the nanoparticle self-assembly process is highly tunable. This metrology could provide an alternative for detecting nanoparticle properties such as colloidal stability.

  6. Development of a real-time model based safety monitoring algorithm for the SSME

    NASA Astrophysics Data System (ADS)

    Norman, A. M.; Maram, J.; Coleman, P.; D'Valentine, M.; Steffens, A.

    1992-07-01

    A safety monitoring system for the SSME incorporating a real time model of the engine has been developed for LeRC as a task of the LeRC Life Prediction for Rocket Engines contract, NAS3-25884. This paper describes the development of the algorithm and model to date, their capabilities and limitations, results of simulation tests, lessons learned, and the plans for implementation and test of the system.

  7. Method and apparatus for real time imaging and monitoring of radiotherapy beams

    DOEpatents

    Majewski, Stanislaw; Proffitt, James; Macey, Daniel J.; Weisenberger, Andrew G.

    2011-11-01

    A method and apparatus for real time imaging and monitoring of radiation therapy beams is designed to preferentially distinguish and image low energy radiation from high energy secondary radiation emitted from a target as the result of therapeutic beam deposition. A detector having low sensitivity to high energy photons combined with a collimator designed to dynamically image in the region of the therapeutic beam target is used.

  8. Real-time capability of GEONET system and its application to crust monitoring

    NASA Astrophysics Data System (ADS)

    Yamagiwa, Atsushi; Hatanaka, Yuki; Yutsudo, Toru; Miyahara, Basara

    2006-03-01

    The GPS Earth Observation Network system (GEONET) has been playing an important role in monitoring the crustal deformation of Japan. Since its start of operation, the requirements for accuracy and timeliness have become higher and higher. On the other hand, recent broadband communication infrastructure has had capability to realize real-time crust monitoring and to aid the development of a location-based service. In early 2003, the Geographical Survey Institute (GSI) upgraded the GEONET system to meet new requirements. The number of stations became 1200 in total by March, 2003. The antennas were unified to the choke ring antennas of Dorne Margolin T-type and the receivers were replaced with new ones that are capable of real-time observation and data transfer. The new system uses IP-connection through IP-VPN (Internet Protocol Virtual Private Network) for data transfer, which is provided by communication companies. The Data Processing System, which manages the observation data and analyses in GEONET, has 7 units. GEONET carries out three kinds of routine analyses and an analysis of RTK-type for emergencies. The new system has shown its capability for real-time crust monitoring, for example, the precise and rapid detection of coseismic (and post-seismic) motion caused by 2003 Tokachi-Oki earthquake.

  9. Developing a Real Time Sensing System to Monitor Bacteria in Wound Dressings

    PubMed Central

    Farrow, Malcolm J.; Hunter, Iain S.; Connolly, Patricia

    2012-01-01

    Infection control is a key aspect of wound management strategies. Infection results in chemical imbalances and inflammation in the wound and may lead to prolonged healing times and degradation of the wound surface. Frequent changing of wound dressings may result in damage to healing tissues and an increased risk of infection. This paper presents the first results from a monitoring system that is being developed to detect presence and growth of bacteria in real time. It is based on impedance sensors that could be placed at the wound-dressing interface and potentially monitor bacterial growth in real time. As wounds can produce large volumes of exudate, the initial system reported here was developed to test for the presence of bacteria in suspension. Impedance was measured using disposable silver-silver chloride electrodes. The bacteria Staphylococcus aureus were chosen for the study as a species commonly isolated from wounds. The growth of bacteria was confirmed by plate counting methods and the impedance data were analysed for discernible differences in the impedance profiles to distinguish the absence and/or presence of bacteria. The main findings were that the impedance profiles obtained by silver-silver chloride sensors in bacterial suspensions could detect the presence of high cell densities. However, the presence of the silver-silver chloride electrodes tended to inhibit the growth of bacteria. These results indicate that there is potential to create a real time infection monitor for wounds based upon impedance sensing. PMID:25585709

  10. Air-dropped sensor network for real-time high-fidelity volcano monitoring

    USGS Publications Warehouse

    Song, W.-Z.; Huang, R.; Xu, M.; Ma, A.; Shirazi, B.; LaHusen, R.

    2009-01-01

    This paper presents the design and deployment experience of an air-dropped wireless sensor network for volcano hazard monitoring. The deployment of five stations into the rugged crater of Mount St. Helens only took one hour with a helicopter. The stations communicate with each other through an amplified 802.15.4 radio and establish a self-forming and self-healing multi-hop wireless network. The distance between stations is up to 2 km. Each sensor station collects and delivers real-time continuous seismic, infrasonic, lightning, GPS raw data to a gateway. The main contribution of this paper is the design and evaluation of a robust sensor network to replace data loggers and provide real-time long-term volcano monitoring. The system supports UTC-time synchronized data acquisition with 1ms accuracy, and is online configurable. It has been tested in the lab environment, the outdoor campus and the volcano crater. Despite the heavy rain, snow, and ice as well as gusts exceeding 120 miles per hour, the sensor network has achieved a remarkable packet delivery ratio above 99% with an overall system uptime of about 93.8% over the 1.5 months evaluation period after deployment. Our initial deployment experiences with the system have alleviated the doubts of domain scientists and prove to them that a low-cost sensor network system can support real-time monitoring in extremely harsh environments. Copyright 2009 ACM.

  11. Optoacoustic monitoring of real-time lesion formation during radiofrequency catheter ablation

    NASA Astrophysics Data System (ADS)

    Pang, Genny A.; Bay, Erwin; Deán-Ben, Xosé L.; Razansky, Daniel

    2015-03-01

    Current radiofrequency cardiac ablation procedures lack real-time lesion monitoring guidance, limiting the reliability and efficacy of the treatment. The objective of this work is to demonstrate that optoacoustic imaging can be applied to develop a diagnostic technique applicable to radiofrequency ablation for cardiac arrhythmia treatment with the capabilities of real-time monitoring of ablated lesion size and geometry. We demonstrate an optoacoustic imaging method using a 256-detector optoacoustic imaging probe and pulsed-laser illumination in the infrared wavelength range that is applied during radiofrequency ablation in excised porcine myocardial tissue samples. This technique results in images with high contrast between the lesion volume and unablated tissue, and is also capable of capturing time-resolved image sequences that provide information on the lesion development process. The size and geometry of the imaged lesion were shown to be in excellent agreement with the histological examinations. This study demonstrates the first deep-lesion real-time monitoring for radiofrequency ablation generated lesions, and the technique presented here has the potential for providing critical feedback that can significantly impact the outcome of clinical radiofrequency ablation procedures.

  12. Raman Based Process Monitor For Continuous Real-Time Analysis Of High Level Radioactive Waste Components

    SciTech Connect

    Bryan, Samuel A.; Levitskaia, Tatiana G.; Schlahta, Stephan N.

    2008-05-27

    ABSTRACT A new monitoring system was developed at Pacific Northwest National Laboratory (PNNL) to quickly generate real-time data/analysis to facilitate a timely response to the dynamic characteristics of a radioactive high level waste stream. The developed process monitor features Raman and Coriolis/conductivity instrumentation configured for the remote monitoring, MatLab-based chemometric data processing, and comprehensive software for data acquisition/storage/archiving/display. The monitoring system is capable of simultaneously and continuously quantifying the levels of all the chemically significant anions within the waste stream including nitrate, nitrite, phosphate, carbonate, chromate, hydroxide, sulfate, and aluminate. The total sodium ion concentration was also determined independently by modeling inputs from on-line conductivity and density meters. In addition to the chemical information, this monitoring system provides immediate real-time data on the flow parameters, such as flow rate and temperature, and cumulative mass/volume of the retrieved waste stream. The components and analytical tools of the new process monitor can be tailored for a variety of complex mixtures in chemically harsh environments, such as pulp and paper processing liquids, electroplating solutions, and radioactive tank wastes. The developed monitoring system was tested for acceptability before it was deployed for use in Hanford Tank S-109 retrieval activities. The acceptance tests included performance inspection of hardware, software, and chemometric data analysis to determine the expected measurement accuracy for the different chemical species that are encountered during S-109 retrieval.

  13. Raman Based Process Monitor for Continuous Real-Time Analysis Of High Level Radioactive Waste Components

    SciTech Connect

    Bryan, S.; Levitskaia, T.; Schlahta, St.

    2008-07-01

    A new monitoring system was developed at Pacific Northwest National Laboratory (PNNL) to quickly generate real-time data/analysis to facilitate a timely response to the dynamic characteristics of a radioactive high level waste stream. The developed process monitor features Raman and Coriolis/conductivity instrumentation configured for the remote monitoring, MatLab-based chemometric data processing, and comprehensive software for data acquisition/storage/archiving/display. The monitoring system is capable of simultaneously and continuously quantifying the levels of all the chemically significant anions within the waste stream including nitrate, nitrite, phosphate, carbonate, chromate, hydroxide, sulfate, and aluminate. The total sodium ion concentration was also determined independently by modeling inputs from on-line conductivity and density meters. In addition to the chemical information, this monitoring system provides immediate real-time data on the flow parameters, such as flow rate and temperature, and cumulative mass/volume of the retrieved waste stream. The components and analytical tools of the new process monitor can be tailored for a variety of complex mixtures in chemically harsh environments, such as pulp and paper processing liquids, electroplating solutions, and radioactive tank wastes. The developed monitoring system was tested for acceptability before it was deployed for use in Hanford Tank S-109 retrieval activities. The acceptance tests included performance inspection of hardware, software, and chemometric data analysis to determine the expected measurement accuracy for the different chemical species that are encountered during S-109 retrieval. (authors)

  14. Real time observation system for monitoring environmental impact on marine ecosystems from oil drilling operations.

    PubMed

    Godø, Olav Rune; Klungsøyr, Jarle; Meier, Sonnich; Tenningen, Eirik; Purser, Autun; Thomsen, Laurenz

    2014-07-15

    Environmental awareness and technological advances has spurred development of new monitoring solutions for the petroleum industry. This paper presents experience from a monitoring program off Norway. To maintain operation within the limits of the government regulations Statoil tested a new monitoring concept. Multisensory data were cabled to surface buoys and transmitted to land via wireless communication. The system collected information about distribution of the drilling wastes and the welfare of the corals in relation to threshold values. The project experienced a series of failures, but the backup monitoring provided information to fulfil the requirements of the permit. The experience demonstrated the need for real time monitoring and how such systems enhance understanding of impacts on marine organisms. Also, drilling operations may improve by taking environmental information into account. The paper proposes to standardize and streamline monitoring protocols to maintain comparability during all phases of the operation and between drill sites. PMID:24908516

  15. Real-time monitoring of a salt solution mining cavern: view from microseismic and levelling monitoring

    NASA Astrophysics Data System (ADS)

    Contrucci, Isabelle; Cao, Ngoc-Tuyen; Klein, Emmanuelle; Daupley, Xavier; Bigarre, Pascal

    2010-05-01

    In 2004, in order to better understand processes involved in large-scale mine collapse, an instrumentation was settled in the surrounding of a salt cavern located at a depth of 180 m in NE France. The cavern was mined by solution mining until the large-scale ground failure occurred. A high resolution multi-parameter monitoring system was deployed in the framework of the GISOS (Scientific Interest Group on the Impact and Safety of Underground Structures formed by INERIS, BRGM, INPL and ENSG). Instrumentation, installed by INERIS, consisted of a microseismic network, coupled to automatic-measurement system for levelling (Tacheometer and RTK GPS). Quasi real time transmission of the data to INERIS, at Nancy, enabled rock mass activity of the site to be monitored on a few hours basis. Also, the various recorded observations, in the beginning of spring 2008, led the operator to cause the collapse in February 2009. This was done by intensive extraction of the brine contained in the cavern, which was considered to be at limit equilibrium. On the second day of pumping sudden increase in microseismic activity indicated the start of collapse, followed by manifestation of a surface crater about 35 hours later. All the data and information collected during this experiment are now being processed and back-analysed aimed at ensuring high quality of interpretation. In particular, the space-time distribution of the failures and the evolution of the waveforms enlighten the changing conditions in the geological overburden. When correlated with the measurements of the movement and the known geology, the microseismic data enable a precise description of the failure mechanism(s), and especially of the complex and major role of the overlying bedrock. Similarly, feedback from this experience should lead to practical recommendations concerning collapse phenomena monitoring in such a mining context. While the preliminary results already indicate the exceptional quality of this data set

  16. Design and characterization of an irradiation facility with real-time monitoring

    NASA Astrophysics Data System (ADS)

    Braisted, Jonathan David

    Radiation causes performance degradation in electronics by inducing atomic displacements and ionizations. While radiation hardened components are available, non-radiation hardened electronics can be preferable because they are generally more compact, require less power, and less expensive than radiation tolerant equivalents. It is therefore important to characterize the performance of electronics, both hardened and non-hardened, to prevent costly system or mission failures. Radiation effects tests for electronics generally involve a handful of step irradiations, leading to poorly-resolved data. Step irradiations also introduce uncertainties in electrical measurements due to temperature annealing effects. This effect may be intensified if the time between exposure and measurement is significant. Induced activity in test samples also complicates data collection of step irradiated test samples. The University of Texas at Austin operates a 1.1 MW Mark II TRIGA research reactor. An in-core irradiation facility for radiation effects testing with a real-time monitoring capability has been designed for the UT TRIGA reactor. The facility is larger than any currently available non-central location in a TRIGA, supporting testing of larger electronic components as well as other in-core irradiation applications requiring significant volume such as isotope production or neutron transmutation doping of silicon. This dissertation describes the design and testing of the large in-core irradiation facility and the experimental campaign developed to test the real-time monitoring capability. This irradiation campaign was performed to test the real-time monitoring capability at various reactor power levels. The device chosen for characterization was the 4N25 general-purpose optocoupler. The current transfer ratio, which is an important electrical parameter for optocouplers, was calculated as a function of neutron fluence and gamma dose from the real-time voltage measurements. The

  17. Performance results of cooperating expert systems in a distributed real-time monitoring system

    NASA Technical Reports Server (NTRS)

    Schwuttke, U. M.; Veregge, J. R.; Quan, A. G.

    1994-01-01

    There are numerous definitions for real-time systems, the most stringent of which involve guaranteeing correct system response within a domain-dependent or situationally defined period of time. For applications such as diagnosis, in which the time required to produce a solution can be non-deterministic, this requirement poses a unique set of challenges in dynamic modification of solution strategy that conforms with maximum possible latencies. However, another definition of real time is relevant in the case of monitoring systems where failure to supply a response in the proper (and often infinitesimal) amount of time allowed does not make the solution less useful (or, in the extreme example of a monitoring system responsible for detecting and deflecting enemy missiles, completely irrelevant). This more casual definition involves responding to data at the same rate at which it is produced, and is more appropriate for monitoring applications with softer real-time constraints, such as interplanetary exploration, which results in massive quantities of data transmitted at the speed of light for a number of hours before it even reaches the monitoring system. The latter definition of real time has been applied to the MARVEL system for automated monitoring and diagnosis of spacecraft telemetry. An early version of this system has been in continuous operational use since it was first deployed in 1989 for the Voyager encounter with Neptune. This system remained under incremental development until 1991 and has been under routine maintenance in operations since then, while continuing to serve as an artificial intelligence (AI) testbed in the laboratory. The system architecture has been designed to facilitate concurrent and cooperative processing by multiple diagnostic expert systems in a hierarchical organization. The diagnostic modules adhere to concepts of data-driven reasoning, constrained but complete nonoverlapping domains, metaknowledge of global consequences of anomalous

  18. Centralized remote structural monitoring and management of real-time data

    NASA Astrophysics Data System (ADS)

    Han, Liting; Newhook, John P.; Mufti, Aftab A.

    2004-07-01

    Structural health monitoring (SHM) activities in civil engineering are increasing at a rapid pace in both research and field applications. This paper addresses the specific issue of incorporating internet technology into a structural health monitoring program. The issue of data volume versus communication speed is discussed along with a practical solution employed by ISIS Canada. The approach is illustrated through reference to several current case studies which include two bridges and a statue. It is seen that although the specifics of the projects and monitoring needs are different, the manner in which on-line monitoring can be conducted is very similar and easily allows for centralized monitoring. A general framework for website construction integrating sensing data and web camera options are presented. Issues related to simple real-time performance indices versus more comprehensive complex data analysis are discussed. Examples of on-line websites which allow visualization of new and historic data are presented. The paper also discusses future activities and research needs related to centralized remote structural monitoring and management of real-time data.

  19. Remote humidity and temperature real time monitoring system for studying seed biology

    NASA Astrophysics Data System (ADS)

    Balachandran, Thiruparan

    This thesis discusses the design, prototyping, and testing of a remote monitoring system that is used to study the biology of seeds under various controlled conditions. Seed scientists use air-tight boxes to maintain relative humidity, which influences seed longevity and seed dormancy break. The common practice is the use of super-saturated solutions either with different chemicals or different concentrations of LiCl to create various relative humidity. Theretofore, no known system has been developed to remotely monitor the environmental conditions inside these boxes in real time. This thesis discusses the development of a remote monitoring system that can be used to accurately monitor and measure the relative humidity and temperature inside sealed boxes for the study of seed biology. The system allows the remote and real-time monitoring of these two parameters in five boxes with different conditions. It functions as a client that is connected to the internet using Wireless Fidelity (Wi-Fi) technology while Google spreadsheet is used as the server for uploading and plotting the data. This system directly gets connected to the Google sever through Wi-Fi and uploads the sensors' values in a Google spread sheet. Application-specific software is created and the user can monitor the data in real time and/or download the data into Excel for further analyses. Using Google drive app the data can be viewed using a smart phone or a tablet. Furthermore, an electronic mail (e-mail) alert is also integrated into the system. Whenever measured values go beyond the threshold values, the user will receive an e-mail alert.

  20. Real-time robot deliberation by compilation and monitoring of anytime algorithms

    NASA Technical Reports Server (NTRS)

    Zilberstein, Shlomo

    1994-01-01

    Anytime algorithms are algorithms whose quality of results improves gradually as computation time increases. Certainty, accuracy, and specificity are metrics useful in anytime algorighm construction. It is widely accepted that a successful robotic system must trade off between decision quality and the computational resources used to produce it. Anytime algorithms were designed to offer such a trade off. A model of compilation and monitoring mechanisms needed to build robots that can efficiently control their deliberation time is presented. This approach simplifies the design and implementation of complex intelligent robots, mechanizes the composition and monitoring processes, and provides independent real time robotic systems that automatically adjust resource allocation to yield optimum performance.

  1. A real-time beam-profile monitor for a PET cyclotron

    NASA Astrophysics Data System (ADS)

    Hoehr, C.; Uittenbosch, T.; Verzilov, V.; English, W.; Buckley, K.; Gray, D.; Kellog, S.; Cameron, D.; Schaffer, P.

    2012-12-01

    Beam profiles in medical cyclotrons are traditionally measured using techniques that do not provide any information about short-term fluctuations of the beam shape or beam intensity. To overcome this, we have developed a real-time harp beam profile monitor which can withstand beam power in excess of 300 W. The monitor and electronics were constructed and applied toward a 13 MeV proton beam with current of up to 25 μA. Herein are reported preliminary beam-profile measurement results.

  2. A real-time beam-profile monitor for a PET cyclotron

    SciTech Connect

    Hoehr, C.; Uittenbosch, T.; Verzilov, V.; English, W.; Buckley, K.; Gray, D.; Kellog, S.; Cameron, D.; Schaffer, P.

    2012-12-19

    Beam profiles in medical cyclotrons are traditionally measured using techniques that do not provide any information about short-term fluctuations of the beam shape or beam intensity. To overcome this, we have developed a real-time harp beam profile monitor which can withstand beam power in excess of 300 W. The monitor and electronics were constructed and applied toward a 13 MeV proton beam with current of up to 25 {mu}A. Herein are reported preliminary beam-profile measurement results.

  3. Real-time expert system diagnostics and monitoring for the High Resolution Microwave Survey Targeted Search

    NASA Technical Reports Server (NTRS)

    Macalou, A.; Glass, B. J.

    1993-01-01

    An automated monitoring and diagnostics system (MDS) using virtual real-time software was developed for NASA's High Resolution Microwave Survey (HRMS) Targeted Search System (TSS). The four main tasks required of the MDS were monitoring and recording system health, alerting operators of problems, diagnosing poor system performance, and performing an emergency system shutdown. The MDS was implemented using commercial expert system software tools in addition to interface hardware and software developed on site. The expert system used objects, rules, and schematics in its TSS knowledge representation. The MDS was successfully integrated into the HRMS computer environment, and its performance met or exceeded its requirements.

  4. Fieldservers and Sensor Service Grid as Real-time Monitoring Infrastructure for Ubiquitous Sensor Networks

    PubMed Central

    Honda, Kiyoshi; Shrestha, Aadit; Witayangkurn, Apichon; Chinnachodteeranun, Rassarin; Shimamura, Hiroshi

    2009-01-01

    The fieldserver is an Internet based observation robot that can provide an outdoor solution for monitoring environmental parameters in real-time. The data from its sensors can be collected to a central server infrastructure and published on the Internet. The information from the sensor network will contribute to monitoring and modeling on various environmental issues in Asia, including agriculture, food, pollution, disaster, climate change etc. An initiative called Sensor Asia is developing an infrastructure called Sensor Service Grid (SSG), which integrates fieldservers and Web GIS to realize easy and low cost installation and operation of ubiquitous field sensor networks. PMID:22574018

  5. Combining real-time monitoring and knowledge-based analysis in MARVEL

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Quan, A. G.; Angelino, R.; Veregge, J. R.

    1993-01-01

    Real-time artificial intelligence is gaining increasing attention for applications in which conventional software methods are unable to meet technology needs. One such application area is the monitoring and analysis of complex systems. MARVEL, a distributed monitoring and analysis tool with multiple expert systems, was developed and successfully applied to the automation of interplanetary spacecraft operations at NASA's Jet Propulsion Laboratory. MARVEL implementation and verification approaches, the MARVEL architecture, and the specific benefits that were realized by using MARVEL in operations are described.

  6. Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network

    NASA Astrophysics Data System (ADS)

    Hiemstra, Paul H.; Pebesma, Edzer J.; Twenhöfel, Chris J. W.; Heuvelink, Gerard B. M.

    2009-08-01

    Detection of radiological accidents and monitoring the spread of the contamination is of great importance. Following the Chernobyl accident many European countries have installed monitoring networks to perform this task. Real-time availability of automatically interpolated maps showing the spread of radioactivity during and after an accident would improve the capability of decision makers to accurately respond to a radiological accident. The objective of this paper is to present a real-time automatic interpolation system suited for natural background radioactivity. Interpolating natural background radiation allows us to better understand the natural variability, thus improving our ability to detect accidents. A real-time automatic interpolation system suited for natural background radioactivity presents a first step towards a system that can deal with radiological accidents. The interpolated maps are produced using a combination of universal kriging and an automatic variogram fitting procedure. The system provides a map of (1) the kriging prediction, (2) the kriging standard error and (3) the position of approximate prediction intervals relative to a threshold. The maps are presented through a Web Map Service (WMS) to ensure interoperability with existing Geographic Information Systems (GIS).

  7. Intelligent Janus nanoparticles for intracellular real-time monitoring of dual drug release.

    PubMed

    Cao, Han; Yang, Yuhong; Chen, Xin; Shao, Zhengzhong

    2016-03-28

    Stimuli-responsive nanomaterials have been receiving much attention as drug delivery carriers, however understanding of multi-drug release from the carriers for efficient therapeutics is highly challenging. Here, we report a novel nanosystem, Janus particle Dox-CMR-MS/Au-6MP (Dox: doxorubicin, CMR: 7-hydroxycoumarin-3-carboxylate, MS: mesoporous silica, Au: gold, 6MP: 6-mercaptopurine) with opposing MS and Au faces, which can monitor intracellular dual-drug (Dox and 6MP) controlled release in real time based on fluorescence resonance energy transfer (FRET) and surface-enhanced Raman scattering (SERS). The FRET acceptor Dox is attached to CMR (as a FRET donor) conjugated MS with a pH-responsive linker hydrazone, and 6MP is conjugated to the Au surface through the gold-thiol interaction. As the Janus nanoparticle enters into tumor cells, the breakage of the hydrazone bond in an acidic environment and the substitution of glutathione (GSH) overexpressed in cancer cells give rise to the release of Dox and 6MP, respectively. Thus, the change of the CMR fluorescence signal and the SERS decrease of 6MP can be used to monitor the dual-drug release within living cells in real time. In addition, this work demonstrates the enhanced anticancer effect of the designed dual-drug loaded nanosystem. Therefore, the current study may provide new perspectives for the real-time study of intelligent multi-drug delivery and release, as well as cellular responses to drug treatment. PMID:26952741

  8. Real-time monitoring of endogenous lipid peroxidation by exhaled ethylene in patients undergoing cardiac surgery.

    PubMed

    Cristescu, Simona M; Kiss, Rudolf; Hekkert, Sacco te Lintel; Dalby, Miles; Harren, Frans J M; Risby, Terence H; Marczin, Nandor

    2014-10-01

    Pulmonary and systemic organ injury produced by oxidative stress including lipid peroxidation is a fundamental tenet of ischemia-reperfusion injury, inflammatory response to cardiac surgery, and cardiopulmonary bypass (CPB) but is not routinely measured in a surgically relevant time frame. To initiate a paradigm shift toward noninvasive and real-time monitoring of endogenous lipid peroxidation, we have explored pulmonary excretion and dynamism of exhaled breath ethylene during cardiac surgery to test the hypothesis that surgical technique and ischemia-reperfusion triggers lipid peroxidation. We have employed laser photoacoustic spectroscopy to measure real-time trace concentrations of ethylene from the patient breath and from the CPB machine. Patients undergoing aortic or mitral valve surgery-requiring CPB (n = 15) or off-pump coronary artery bypass surgery (OPCAB) (n = 7) were studied. Skin and tissue incision by diathermy caused striking (> 30-fold) increases in exhaled ethylene resulting in elevated levels until CPB. Gaseous ethylene in the CPB circuit was raised upon the establishment of CPB (> 10-fold) and decreased over time. Reperfusion of myocardium and lungs did not appear to enhance ethylene levels significantly. During OPCAB surgery, we have observed increased ethylene in 16 of 30 documented reperfusion events associated with coronary and aortic anastomoses. Therefore, novel real-time monitoring of endogenous lipid peroxidation in the intraoperative setting provides unparalleled detail of endogenous and surgery-triggered production of ethylene. Diathermy and unprotected regional myocardial ischemia and reperfusion are the most significant contributors to increased ethylene. PMID:25128523

  9. Rainfall estimation for real time flood monitoring using geostationary meteorological satellite data

    NASA Astrophysics Data System (ADS)

    Veerakachen, Watcharee; Raksapatcharawong, Mongkol

    2015-09-01

    Rainfall estimation by geostationary meteorological satellite data provides good spatial and temporal resolutions. This is advantageous for real time flood monitoring and warning systems. However, a rainfall estimation algorithm developed in one region needs to be adjusted for another climatic region. This work proposes computationally-efficient rainfall estimation algorithms based on an Infrared Threshold Rainfall (ITR) method calibrated with regional ground truth. Hourly rain gauge data collected from 70 stations around the Chao-Phraya river basin were used for calibration and validation of the algorithms. The algorithm inputs were derived from FY-2E satellite observations consisting of infrared and water vapor imagery. The results were compared with the Global Satellite Mapping of Precipitation (GSMaP) near real time product (GSMaP_NRT) using the probability of detection (POD), root mean square error (RMSE) and linear correlation coefficient (CC) as performance indices. Comparison with the GSMaP_NRT product for real time monitoring purpose shows that hourly rain estimates from the proposed algorithm with the error adjustment technique (ITR_EA) offers higher POD and approximately the same RMSE and CC with less data latency.

  10. Real-time monitoring of endogenous lipid peroxidation by exhaled ethylene in patients undergoing cardiac surgery

    PubMed Central

    Cristescu, Simona M.; Kiss, Rudolf; te Lintel Hekkert, Sacco; Dalby, Miles; Harren, Frans J. M.; Risby, Terence H.

    2014-01-01

    Pulmonary and systemic organ injury produced by oxidative stress including lipid peroxidation is a fundamental tenet of ischemia-reperfusion injury, inflammatory response to cardiac surgery, and cardiopulmonary bypass (CPB) but is not routinely measured in a surgically relevant time frame. To initiate a paradigm shift toward noninvasive and real-time monitoring of endogenous lipid peroxidation, we have explored pulmonary excretion and dynamism of exhaled breath ethylene during cardiac surgery to test the hypothesis that surgical technique and ischemia-reperfusion triggers lipid peroxidation. We have employed laser photoacoustic spectroscopy to measure real-time trace concentrations of ethylene from the patient breath and from the CPB machine. Patients undergoing aortic or mitral valve surgery-requiring CPB (n = 15) or off-pump coronary artery bypass surgery (OPCAB) (n = 7) were studied. Skin and tissue incision by diathermy caused striking (>30-fold) increases in exhaled ethylene resulting in elevated levels until CPB. Gaseous ethylene in the CPB circuit was raised upon the establishment of CPB (>10-fold) and decreased over time. Reperfusion of myocardium and lungs did not appear to enhance ethylene levels significantly. During OPCAB surgery, we have observed increased ethylene in 16 of 30 documented reperfusion events associated with coronary and aortic anastomoses. Therefore, novel real-time monitoring of endogenous lipid peroxidation in the intraoperative setting provides unparalleled detail of endogenous and surgery-triggered production of ethylene. Diathermy and unprotected regional myocardial ischemia and reperfusion are the most significant contributors to increased ethylene. PMID:25128523

  11. Advanced Engine Health Management Applications of the SSME Real-Time Vibration Monitoring System

    NASA Technical Reports Server (NTRS)

    Fiorucci, Tony R.; Lakin, David R., II; Reynolds, Tracy D.; Turner, James E. (Technical Monitor)

    2000-01-01

    The Real Time Vibration Monitoring System (RTVMS) is a 32-channel high speed vibration data acquisition and processing system developed at Marshall Space Flight Center (MSFC). It Delivers sample rates as high as 51,200 samples/second per channel and performs Fast Fourier Transform (FFT) processing via on-board digital signal processing (DSP) chips in a real-time format. Advanced engine health assessment is achieved by utilizing the vibration spectra to provide accurate sensor validation and enhanced engine vibration redlines. Discrete spectral signatures (such as synchronous) that are indicators of imminent failure can be assessed and utilized to mitigate catastrophic engine failures- a first in rocket engine health assessment. This paper is presented in viewgraph form.

  12. System Developed for Real-Time Blade-Flutter Monitoring in the Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.; Dhadwal, Harbans S.; Radzikowski, mark; Strukov, Dmitri

    2005-01-01

    A real-time system has been developed to monitor flutter vibrations in turbomachinery. The system is designed for continuous processing of blade tip timing data at a rate of 10 MB/sec. A USB 2.0 interface provides uninterrupted real-time processing of the data, and the blade-tip arrival times are measured with a 50-MHz oscillator and a 24-bit pipelined architecture counter. The input stage includes a glitch catcher, which reduces the probability of detecting a ghost blade to negligible levels. A graphical user interface provides online interrogation of any blade tip from any light probe sensor. Alternatively, data from all blades and all sensors can be superimposed into a single composite scatter plot displaying the vibration amplitude of each blade.

  13. A real-time navigation monitoring expert system for the Space Shuttle Mission Control Center

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Fletcher, Malise

    1993-01-01

    The ONAV (Onboard Navigation) Expert System has been developed as a real time console assistant for use by ONAV flight controllers in the Mission Control Center at the Johnson Space Center. This expert knowledge based system is used to monitor the Space Shuttle onboard navigation system, detect faults, and advise flight operations personnel. This application is the first knowledge-based system to use both telemetry and trajectory data from the Mission Operations Computer (MOC). To arrive at this stage, from a prototype to real world application, the ONAV project has had to deal with not only AI issues but operating environment issues. The AI issues included the maturity of AI languages and the debugging tools, verification, and availability, stability and size of the expert pool. The environmental issues included real time data acquisition, hardware suitability, and how to achieve acceptance by users and management.

  14. A real-time navigation monitoring expert system for the Space Shuttle Mission Control Center

    NASA Astrophysics Data System (ADS)

    Wang, Lui; Fletcher, Malise

    1993-03-01

    The ONAV (Onboard Navigation) Expert System has been developed as a real time console assistant for use by ONAV flight controllers in the Mission Control Center at the Johnson Space Center. This expert knowledge based system is used to monitor the Space Shuttle onboard navigation system, detect faults, and advise flight operations personnel. This application is the first knowledge-based system to use both telemetry and trajectory data from the Mission Operations Computer (MOC). To arrive at this stage, from a prototype to real world application, the ONAV project has had to deal with not only AI issues but operating environment issues. The AI issues included the maturity of AI languages and the debugging tools, verification, and availability, stability and size of the expert pool. The environmental issues included real time data acquisition, hardware suitability, and how to achieve acceptance by users and management.

  15. Real-time transverse-emittance and phase-space monitor

    NASA Astrophysics Data System (ADS)

    Song, J.; Piot, P.; Legg, R.; Kehne, D.; Li, R.; Feldl, E.; Jordan, K.; Denard, J.-C.; Krafft, G. A.; Neil, G. R.; Bohn, C. L.

    1998-02-01

    A real-time multislit [1]transverse-emittance monitor has been developed for diagnosing the space-charge-dominated beam in the 10 MeV injection line of the FEL at Thomas Jefferson National Accelerator Facility (formerly CEBAF). It gives emittance, Twiss parameters, and phase-space contours (without any symmetry assumptions) at the update rate of 1 Hz. It reduces measurement noise in real-time, and incorporates a special algorithm for constructing the phase-space matrix, which yields more accurate results by sweeping the beam across the slits. In this paper we will discuss issues relevant to the software design and implementation. Experimental results obtained from a 250 keV photocathode gun will also be presented and compared with other methods and with PARMELA simulations.

  16. Real-time monitoring of charge accumulation during pulse-time-modulated plasma

    SciTech Connect

    Ohtake, Hiroto; Jinnai, Butsurin; Suzuki, Yuya; Soda, Shinnosuke; Shimmura, Tadashi; Samukawa, Seiji

    2006-11-15

    The authors investigated real-time monitoring of charge accumulation during pulse-time-modulated plasma processes by using their developed on-wafer monitoring chip. The charge accumulation potential between the top surface and the bottom in a SiO{sub 2} contact structure was measured during pulse-time-modulated plasma exposure with an on-wafer monitoring device. In conventional plasma with rf bias, the electron shading effect could be clearly observed as the potential difference between the wafer surface and the contact-hole bottom. Conversely, the accumulated charge in the pulse-time-modulated operation was drastically decreased. Time-resolved electron and ion flows to the SiO{sub 2} contact hole were clarified by the on-wafer monitoring. Accordingly, it was confirmed that the on-wafer monitoring is a very effective tool for investigating the local charge accumulation in actual device structures.

  17. NMDB: real-time database for high resolution neutron monitor measurements

    NASA Astrophysics Data System (ADS)

    Steigies, Christian

    The worldwide network of standardized neutron monitors is, after 50 years, still the stateof-the-art instrumentation to measure variations of the primary cosmic rays in the energy range 500 MeV-60 GeV. These measurements are an ideal complement to space based cosmic ray measurements. Unlike data from satellite experiments, neutron monitor data has never been available in high time resolution from many neutron monitor stations in real-time. The data is often available only from the individual station's website, in varying formats, and not in real-time. To overcome this deficit, the European Commission is supporting the Neutron Monitor database (NMDB) since January 2008 as an e-Infrastructures project in the Seventh Framework Programme in the Capacities section. Neutron Monitor stations that do not yet have 1-minute resolution will be supported by software and the development of an affordable standard registration system to submit the measurements to the database via internet in realtime. This resolves the problem of different data formats and for the first time allows use of realtime cosmic ray measurements for space weather applications. Besides creating a database and developing applications that use this data, a part of the project is dedicated to create a public outreach website to inform about cosmic rays and possible effects on humans, technological systems, and the environment.

  18. A knowledge-based flight status monitor for real-time application in digital avionics systems

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Disbrow, J. D.; Butler, G. F.

    1989-01-01

    The Dryden Flight Research Facility of the National Aeronautics and Space Administration (NASA) Ames Research Center (Ames-Dryden) is the principal NASA facility for the flight testing and evaluation of new and complex avionics systems. To aid in the interpretation of system health and status data, a knowledge-based flight status monitor was designed. The monitor was designed to use fault indicators from the onboard system which are telemetered to the ground and processed by a rule-based model of the aircraft failure management system to give timely advice and recommendations in the mission control room. One of the important constraints on the flight status monitor is the need to operate in real time, and to pursue this aspect, a joint research activity between NASA Ames-Dryden and the Royal Aerospace Establishment (RAE) on real-time knowledge-based systems was established. Under this agreement, the original LISP knowledge base for the flight status monitor was reimplemented using the intelligent knowledge-based system toolkit, MUSE, which was developed under RAE sponsorship. Details of the flight status monitor and the MUSE implementation are presented.

  19. Comprehensive seismic monitoring of the Cascadia megathrust with real-time GPS

    NASA Astrophysics Data System (ADS)

    Melbourne, T. I.; Szeliga, W. M.; Santillan, V. M.; Scrivner, C. W.; Webb, F.

    2013-12-01

    We have developed a comprehensive real-time GPS-based seismic monitoring system for the Cascadia subduction zone based on 1- and 5-second point position estimates computed within the ITRF08 reference frame. A Kalman filter stream editor that uses a geometry-free combination of phase and range observables to speed convergence while also producing independent estimation of carrier phase biases and ionosphere delay pre-cleans raw satellite measurements. These are then analyzed with GIPSY-OASIS using satellite clock and orbit corrections streamed continuously from the International GNSS Service (IGS) and the German Aerospace Center (DLR). The resulting RMS position scatter is less than 3 cm, and typical latencies are under 2 seconds. Currently 31 coastal Washington, Oregon, and northern California stations from the combined PANGA and PBO networks are analyzed. We are now ramping up to include all of the remaining 400+ stations currently operating throughout the Cascadia subduction zone, all of which are high-rate and telemetered in real-time to CWU. These receivers span the M9 megathrust, M7 crustal faults beneath population centers, several active Cascades volcanoes, and a host of other hazard sources. To use the point position streams for seismic monitoring, we have developed an inter-process client communication package that captures, buffers and re-broadcasts real-time positions and covariances to a variety of seismic estimation routines running on distributed hardware. An aggregator ingests, re-streams and can rebroadcast up to 24 hours of point-positions and resultant seismic estimates derived from the point positions to application clients distributed across web. A suite of seismic monitoring applications has also been written, which includes position time series analysis, instantaneous displacement vectors, and peak ground displacement contouring and mapping. We have also implemented a continuous estimation of finite-fault slip along the Cascadia megathrust

  20. LESSONS-LEARNED AND SUCCESS STORIES FROM EPA'S REAL-TIME ENVIRONMENTAL MONITORING, DATA DELIVERY, AND PUBLIC OUTREACH PROGRAM

    EPA Science Inventory

    TTSD has completed a series of technology transfer and risk communication handbooks, case studies, and summary reports for community-based environmental monitoring projects under EPA's Real-Time Environmental Monitoring, Data Delivery, and Public Outreach Program. The Program tak...

  1. A Low-Cost, Real-Time Network for Radiological Monitoring Around Nuclear Facilities

    SciTech Connect

    Bertoldo, N A

    2004-08-13

    A low-cost, real-time radiological sensor network for emergency response has been developed and deployed at the Lawrence Livermore National Laboratory (LLNL). The Real-Time Radiological Area Monitoring (RTRAM) network is comprised of 16 Geiger-Mueller (GM) sensors positioned on the site perimeter to continuously monitor radiological conditions as part of LLNL's comprehensive environment/safety/health protection program. The RTRAM network sensor locations coincide with wind sector directions to provide thorough coverage of the one square mile site. These low-power sensors transmit measurement data back to a central command center (CCC) computer through the LLNL telecommunications infrastructure. Alarm conditions are identified by comparing current data to predetermined threshold parameters and are validated by comparison with plausible dispersion modeling scenarios and prevailing meteorological conditions. Emergency response personnel are notified of alarm conditions by automatic radio- and computer- based notifications. A secure intranet provides emergency response personnel with current condition assessment data that enable them to direct field response efforts remotely. This system provides a low-cost real-time radiation monitoring solution that is easily converted to incorporate both a hard-wired interior perimeter with strategically positioned wireless secondary and tertiary concentric remote locations. These wireless stations would be configured with solar voltaic panels that provide current to recharge batteries and power the sensors and radio transceivers. These platforms would supply data transmission at a range of up to 95 km from a single transceiver location. As necessary, using radio transceivers in repeater mode can extend the transmission range. The RTRAM network as it is presently configured at LLNL has proven to be a reliable system since initial deployment in August 2001 and maintains stability during inclement weather conditions. With the proposed

  2. FRET microscopy for real-time monitoring of signaling events in live cells using unimolecular biosensors.

    PubMed

    Sprenger, Julia U; Perera, Ruwan K; Götz, Konrad R; Nikolaev, Viacheslav O

    2012-01-01

    Förster resonance energy transfer (FRET) microscopy continues to gain increasing interest as a technique for real-time monitoring of biochemical and signaling events in live cells and tissues. Compared to classical biochemical methods, this novel technology is characterized by high temporal and spatial resolution. FRET experiments use various genetically-encoded biosensors which can be expressed and imaged over time in situ or in vivo. Typical biosensors can either report protein-protein interactions by measuring FRET between a fluorophore-tagged pair of proteins or conformational changes in a single protein which harbors donor and acceptor fluorophores interconnected with a binding moiety for a molecule of interest. Bimolecular biosensors for protein-protein interactions include, for example, constructs designed to monitor G-protein activation in cells, while the unimolecular sensors measuring conformational changes are widely used to image second messengers such as calcium, cAMP, inositol phosphates and cGMP. Here we describe how to build a customized epifluorescence FRET imaging system from single commercially available components and how to control the whole setup using the Micro-Manager freeware. This simple but powerful instrument is designed for routine or more sophisticated FRET measurements in live cells. Acquired images are processed using self-written plug-ins to visualize changes in FRET ratio in real-time during any experiments before being stored in a graphics format compatible with the build-in ImageJ freeware used for subsequent data analysis. This low-cost system is characterized by high flexibility and can be successfully used to monitor various biochemical events and signaling molecules by a plethora of available FRET biosensors in live cells and tissues. As an example, we demonstrate how to use this imaging system to perform real-time monitoring of cAMP in live 293A cells upon stimulation with a β-adrenergic receptor agonist and blocker. PMID

  3. Versatile FRET-Based Mesoporous Silica Nanoparticles for Real-Time Monitoring of Drug Release

    PubMed Central

    Lai, Jinping; Shah, Birju P.; Garfunkel, Eric; Lee, Ki-Bum

    2013-01-01

    We describe the development of a versatile fluorescence resonance energy transfer (FRET)-based real-time monitoring system, consisting of (a) coumarin-labeled-cysteine tethered mesoporous silica nanoparticles (MSNs) as the drug carrier, (b) a fluorescein isothiocyanate-β-cyclodextrin (FITC-β-CD) as redox-responsive molecular valve blocking the pores, and (c) a FRET donor-acceptor pair of coumarin and FITC integrated within the pore-unlocking event, thereby allowing for monitoring the release of drugs from the pores in real-time. Under non-reducing conditions, when the disulfide bond is intact, the close proximity between coumarin and FITC on the surface of MSNs results in FRET from coumarin to FITC. However, in the presence of the redox stimuli like glutathione (GSH), the disulfide bond is cleaved which leads to the removal of molecular valve (FITC-β-CD), thus triggering drug release and eliminating FRET. By engineering such a FRET-active donor-acceptor structure within the redox-responsive molecular valve, we can monitor the release of the drugs entrapped within the pores of the MSN nanocarrier, following the change in the FRET signal. We have demonstrated that, any exogenous or endogenous change in the GSH concentration will result in a change in the extent of drug release as well as a concurrent change in the FRET signal, allowing us to extend the applications of our FRET-based MSNs for monitoring the release of any type of drug molecule in real-time. PMID:23445171

  4. A real-time applicator position monitoring system for gynecologic intracavitary brachytherapy

    SciTech Connect

    Xia, Junyi Waldron, Timothy; Kim, Yusung

    2014-01-15

    Purpose: To develop a real-time applicator position monitoring system (RAPS) for intracavitary brachytherapy using an infrared camera and reflective markers. Methods: 3D image-guided brachytherapy requires high accuracy of applicator localization; however, applicator displacement can happen during patient transfer for imaging and treatment delivery. No continuous applicator position monitoring system is currently available. The RAPS system was developed for real-time applicator position monitoring without additional radiation dose to patients. It includes an infrared camera, reflective markers, an infrared illuminator, and image processing software. After reflective markers are firmly attached to the applicator and the patient body, applicator displacement can be measured by computing the relative change in distance between the markers. The reflective markers are magnetic resonance imaging (MRI) compatible, which is suitable for MRI-guided HDR brachytherapy paradigm. In our prototype, a Microsoft Kinect sensor with a resolution of 640 by 480 pixels is used as an infrared camera. A phantom study was carried out to compare RAPS' measurements with known displacements ranging from −15 to +15 mm. A reproducibility test was also conducted. Results: The RAPS can achieve 4 frames/s using a laptop with Intel{sup ®} Core™2 Duo processor. When the pixel size is 0.95 mm, the difference between RAPS' measurements and known shift values varied from 0 to 0.8 mm with the mean value of 0.1 mm and a standard deviation of 0.44 mm. The system reproducibility was within 0.6 mm after ten reposition trials. Conclusions: This work demonstrates the feasibility of a real-time infrared camera based gynecologic intracavitary brachytherapy applicator monitoring system. Less than 1 mm accuracy is achieved when using an off-the-shelf infrared camera.

  5. REAL-TIME TRACER MONITORING OF RESERVOIR STIMULATION PROCEDURES VIA ELECTRONIC WIRELINE AND TELEMETRY DATA TRANSMISSION

    SciTech Connect

    George L. Scott III

    2005-01-01

    Finalized Phase 2-3 project work has field-proven two separate real-time reservoir processes that were co-developed via funding by the National Energy Technology Laboratory (NETL). Both technologies are presently patented in the United States and select foreign markets; a downhole-commingled reservoir stimulation procedure and a real-time tracer-logged fracturing diagnostic system. Phase 2 and early Phase 3 project work included the research, development and well testing of a U.S. patented gamma tracer fracturing diagnostic system. This stimulation logging process was successfully field-demonstrated; real-time tracer measurement of fracture height while fracturing was accomplished and proven technically possible. However, after the initial well tests, there were several licensing issues that developed between service providers that restricted and minimized Realtimezone's (RTZ) ability to field-test the real-time gamma diagnostic system as was originally outlined for this project. Said restrictions were encountered after when one major provider agreed to license their gamma logging tools to another. Both of these companies previously promised contributory support toward Realtimezone's DE-FC26-99FT40129 project work, however, actual support was less than desired when newly-licensed wireline gamma logging tools from one company were converted by the other from electric wireline into slickline, batter-powered ''memory'' tools for post-stimulation logging purposes. Unfortunately, the converted post-fracture measurement memory tools have no applications in experimentally monitoring real-time movement of tracers in the reservoir concurrent with the fracturing treatment. RTZ subsequently worked with other tracer gamma-logging tool companies for basic gamma logging services, but with lessened results due to lack of multiple-isotope detection capability. In addition to real-time logging system development and well testing, final Phase 2 and Phase 3 project work included the

  6. Real-time monitoring of CO2 storage sites: Application to Illinois Basin-Decatur Project

    USGS Publications Warehouse

    Picard, G.; Berard, T.; Chabora, E.; Marsteller, S.; Greenberg, S.; Finley, R.J.; Rinck, U.; Greenaway, R.; Champagnon, C.; Davard, J.

    2011-01-01

    Optimization of carbon dioxide (CO2) storage operations for efficiency and safety requires use of monitoring techniques and implementation of control protocols. The monitoring techniques consist of permanent sensors and tools deployed for measurement campaigns. Large amounts of data are thus generated. These data must be managed and integrated for interpretation at different time scales. A fast interpretation loop involves combining continuous measurements from permanent sensors as they are collected to enable a rapid response to detected events; a slower loop requires combining large datasets gathered over longer operational periods from all techniques. The purpose of this paper is twofold. First, it presents an analysis of the monitoring objectives to be performed in the slow and fast interpretation loops. Second, it describes the implementation of the fast interpretation loop with a real-time monitoring system at the Illinois Basin-Decatur Project (IBDP) in Illinois, USA. ?? 2011 Published by Elsevier Ltd.

  7. Real time remote monitoring and pre-warning system for Highway landslide in mountain area.

    PubMed

    Zhang, Yonghui; Li, Hongxu; Sheng, Qian; Wu, Kai; Chen, Guoliang

    2011-06-01

    The wire-pulling trigger displacement meter with precision of 1 mm and the grid pluviometer with precision of 0.1 mm are used to monitor the surface displacement and rainfall for Highway slope, and the measured data are transferred to the remote computer in real time by general packet radio service (GPRS) net of China telecom. The wire-pulling trigger displacement meter, grid pluviometer, data acquisition and transmission unit, and solar power supply device are integrated to form a comprehensive monitoring hardware system for Highway landslide in mountain area, which proven to be economical, energy-saving, automatic and high efficient. Meantime, based on the map and geographic information system (MAPGIS) platform, the software system is also developed for three dimensional (3D) geology modeling and visualization, data inquiring and drawing, stability calculation, displacement forecasting, and real time pre-warning. Moreover, the pre-warning methods based on monitoring displacement and rainfall are discussed. The monitoring and forecasting system for Highway landslide has been successfully applied in engineering practice to provide security for Highway transportation and construction and reduce environment disruption. PMID:25084567

  8. Real Time Monitoring of Containerless Microreactions in Acoustically Levitated Droplets via Ambient Ionization Mass Spectrometry.

    PubMed

    Crawford, Elizabeth A; Esen, Cemal; Volmer, Dietrich A

    2016-09-01

    Direct in-droplet (in stillo) microreaction monitoring using acoustically levitated micro droplets has been achieved by combining acoustic (ultrasonic) levitation for the first time with real time ambient tandem mass spectrometry (MS/MS). The acoustic levitation and inherent mixing of microliter volumes of reactants (3 μL droplets), yielding total reaction volumes of 6 μL, supported monitoring the acid-catalyzed degradation reaction of erythromycin A. This reaction was chosen to demonstrate the proof-of-principle of directly monitoring in stillo microreactions via hyphenated acoustic levitation and ambient ionization mass spectrometry. The microreactions took place completely in stillo over 30, 60, and 120 s within the containerless stable central pressure node of an acoustic levitator, thus readily promoting reaction miniaturization. For the evaluation of the miniaturized in stillo reactions, the degradation reactions were also carried out in vials (in vitro) with a total reaction volume of 400 μL. The reacted in vitro mixtures (6 μL total) were similarly introduced into the acoustic levitator prior to ambient ionization MS/MS analysis. The in stillo miniaturized reactions provided immediate real-time snap-shots of the degradation process for more accurate reaction monitoring and used a fraction of the reactants, while the larger scale in vitro reactions only yielded general reaction information. PMID:27505037

  9. New Products for Near Real-Time Enhanced Landslide Identification and Precipitation Monitoring

    NASA Astrophysics Data System (ADS)

    Roberts-Pierel, J.; Ahamed, A.; Fayne, J.; Rumsey, A.

    2015-12-01

    Nepal and the Himalayan region are hotspots for landslide activity due to mountainous topography, complex terrain, and monsoon rains. Current research in landslide modeling and detection generally requires high resolution imagery with software aided classification or manual digitization by analysts. These methods are plagued by low spatial and temporal accuracy. Addressing issues in conventional measurement, this study combined optical data from Landsat 8, a Digital Elevation Model (DEM) generated from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and precipitation data from the Global Precipitation Measurement Mission (GPM) to create two products. The Sudden Landslide Identification Product (SLIP) uses Landsat 8 and the ASTER DEM to identify landslides in near real-time, and provides damage assessments by mapping landslides triggered by precipitation. Detecting Real-time Increased Precipitation (DRIP) monitors precipitation levels extracted from the GPM-IMERG 30-minute product to create alerts in near real-time when current rainfall levels exceed regional threshold values. After a landslide detection is made by SLIP, historical rainfall data from DRIP is analyzed to estimate a date for the detected landslide. Together, DRIP and SLIP will be used by local and regional organizations in Nepal such as the International Centre for Integrated Mountain Development (ICIMOD), as well as the international scientific community to protect lives, preserve infrastructure, and manage local ecosystems.

  10. Real-Time Monitoring System Using Unmanned Aerial Vehicle Integrated with Sensor Observation Service

    NASA Astrophysics Data System (ADS)

    Witayangkurn, A.; Nagai, M.; Honda, K.; Dailey, M.; Shibasaki, R.

    2011-09-01

    The Unmanned Aerial Vehicle (UAV) is an emerging technology being adapted for a wide range of applications. Real-time monitoring is essential to enhance the effectiveness of UAV applications. Sensor networks are networks constructed from various sensor nodes. International standard such as OGC's SOS (Sensor Observation Service) makes it possible to share sensor data with other systems as well as to provide accessibility to globally distributed users. In this paper, we propose a system combining UAV technology and sensor network technology to use an UAV as a mobile node of sensor network so that the sensor data from UAV is published and shared real-time. A UAV can extend the observation range of a sensor network to remote areas where it is usually difficult to access such as disaster area. We constructed a UAV system using remote-controlled helicopter and various sensors such as GPS, gyrocompass, laser range finder, Digital camera and Thermometer. Furthermore, we extended the Sensor Observation Service (SOS) and Sensor Service Grid (SSG) to support mobile sensor nodes. Then, we conducted experiments of flying the helicopter over an area of the interest. During the flight, the system measured environmental data using its sensors and captured images of the ground. The data was sent to a SOS node as the ground station via Wi-Fi which was published using SSG to give real- time access to globally distributed users.

  11. High-throughput real-time electrochemical monitoring of LAMP for pathogenic bacteria detection.

    PubMed

    Safavieh, Mohammadali; Ahmed, Minhaz Uddin; Ng, Andy; Zourob, Mohammed

    2014-08-15

    One of the significant challenges in healthcare is the development of point-of-care (POC) diagnostics. POC diagnostics require low-cost devices that offer portability, simplicity in operation and the ability for high-throughput and quantitative analysis. Here, we present a novel roll-to-roll ribbon fluid-handling device for electrochemical real-time monitoring of nucleic acid (NA) amplification and bacteria detection. The device rendered loop-mediated isothermal amplification (LAMP) and real-time electrochemical detection based on the interaction between LAMP amplicon and the redox-reactive osmium complex. We have shown the detection of 30CFU/ml of Escherichia coli (in the range between 30 and 3×10(7)CFU/ml) and 200CFU/ml of Staphylococcus aureus (in the range of 200-2×10(5)CFU/ml) cultured samples in both real-time and end point detection. This device can be used for the detection of various Gram-negative and a number of Gram-positive bacterial pathogens with high sensitivity and specificity in a high-throughput format. Using a roll-to-roll cassette approach, we could detect 12 samples in one assay. Since the LAMP and electrochemical analysis are implemented within sealed flexible biochips, time-consuming processing steps are not required and the risk of contamination is significantly reduced. PMID:24632135

  12. The NASA Real Time Mission Monitor - A Situational Awareness Tool for Conducting Tropical Cyclone Field Experiments

    NASA Technical Reports Server (NTRS)

    Goodman, Michael; Blakeslee, Richard; Hall, John; Parker, Philip; He, Yubin

    2008-01-01

    The NASA Real Time Mission Monitor (RTMM) is a situational awareness tool that integrates satellite, aircraft state information, airborne and surface instruments, and weather state data in to a single visualization package for real time field experiment management. RTMM optimizes science and logistic decision-making during field experiments by presenting timely data and graphics to the users to improve real time situational awareness of the experiment's assets. The RTMM is proven in the field as it supported program managers, scientists, and aircraft personnel during the NASA African Monsoon Multidisciplinary Analyses (investigated African easterly waves and Tropical Storm Debby and Helene) during August-September 2006 in Cape Verde, the Tropical Composition, Cloud and Climate Coupling experiment during July-August 2007 in Costa Rica, and the Hurricane Aerosonde mission into Hurricane Noel in 2-3 November 2007. The integration and delivery of this information is made possible through data acquisition systems, network communication links, and network server resources built and managed by collaborators at NASA Marshall Space Flight Center (MSFC) and Dryden Flight Research Center (DFRC). RTMM is evolving towards a more flexible and dynamic combination of sensor ingest, network computing, and decision-making activities through the use of a service oriented architecture based on community standards and protocols. Each field experiment presents unique challenges and opportunities for advancing the functionality of RTMM. A description of RTMM, the missions it has supported, and its new features that are under development will be presented.

  13. Pipeline Implementation of Real Time Event Cross Correlation for Nuclear Treaty Monitoring

    NASA Astrophysics Data System (ADS)

    Junek, W. N.; Wehlen, J. A., III

    2014-12-01

    The United States National Data Center (US NDC) is responsible for monitoring international compliance to nuclear test ban treaties. This mission is performed through real time acquisition, processing, and evaluation of data acquired by a global network of seismic, hydroacoustic, and infrasonic sensors. Automatic and human reviewed event solutions are stored in a data warehouse which contains over 15 years of alphanumeric information and waveform data. A significant effort is underway to employ the data warehouse in real time processing to improve the quality of automatic event solutions, reduce analyst burden, and supply decision makers with information regarding relevant historic events. To this end, the US NDC processing pipeline has been modified to automatically recognize events built in the past. Event similarity information and the most relevant historic solution are passed to the human analyst to assist their evaluation of automatically formed events. This is achieved through real time cross correlation of selected seismograms from automatically formed events against those stored in the data warehouse. Historic events used in correlation analysis are selected based on a set of user defined parameters, which are tuned to maintain pipeline timeliness requirements. Software architecture and database infrastructure were modified using a multithreaded design for increased processing speed, database connection pools for parallel queries, and Oracle spatial indexing to enhance query efficiency. This functionality allows the human analyst to spend more time studying anomalous events and less time rebuilding routine events.

  14. Real Time Monitoring of the Vadose Zone - Key to Groundwater Protection

    NASA Astrophysics Data System (ADS)

    Dahan, Ofer

    2015-04-01

    Minimization subsurface pollution is much dependent on reliable and effective monitoring tools. Such monitoring tools should be capable to provide real-time information on the chemical and hydrological state of the percolating water, from land surface to the groundwater. Today, most monitoring programs are based on observation wells that enable collection of hydrological and chemical information from the saturated part of the subsurface. As a result, identification of pollution in well water is clear evidence that the contaminants already crossed the entire vadose-zone and accumulated in the aquifer. Unfortunately, only little can be done to fully remediate contaminated aquifers. Accordingly, effective monitoring program must include monitoring means that provide real-time information on the hydrological and chemical properties of the percolating in the unsaturated zone, long before contaminates reach the water-table and accumulate in the aquifers. Such monitoring programs may provide "early warning" for potential pollution processes that may risk groundwater quality. A vadose-zone monitoring system (VMS), which was developed recently, allows continuous monitoring of the hydrological and chemical properties of percolating water in the deep vadose zone. Data which is collected by the system allows direct measurements of the water percolation fluxes and detect the chemical evolution of the percolating water across the entire unsaturated domain. The VMS is designed for long term continuous operation in a time scale of years to decades. Up-to-date the system has been successfully implemented in several studies on water flow and contaminant transport in various hydrological and geological setups. These include research projects on: (a) floodwater infiltration and groundwater recharge from stream channels and reservoirs, (b) impact of various agricultural regimes on quality and quantity of groundwater recharge, (c) subsurface pollution of dairy farms, (d) chemical

  15. Long-term and real-time monitoring system of the East/Japan sea

    NASA Astrophysics Data System (ADS)

    Kim, Kuh; Kim, Yun Bae; Park, Jong Jin; Nam, Sunghyun; Park, Kyung-Ae; Chang, Kyung-Il

    2005-03-01

    Long-term, continuous, and real-time ocean monitoring has been undertaken in order to evaluate various oceanographic phenomena and processes in the East/Japan Sea. Recent technical advances combined with our concerted efforts have allowed us to establish a real-time monitoring system and to accumulate considerable knowledge on what has been taking place in water properties, current systems, and circulation in the East Sea. We have obtained information on volume transport across the Korea Strait through cable voltage measurements and continuous temperature and salinity profile data from ARGO floats placed throughout entire East Sea since 1997. These ARGO float data have been utilized to estimate deep current, inertial kinetic energy, and changes in water mass, especially in the northern East Sea. We have also developed the East Sea Real-time Ocean Buoy (ESROB) in coastal regions and made continual improvements till it has evolved into the most up-to-date and effective monitoring system as a result of remarkable technical progress in data communication systems. Atmospheric and oceanic measurements by ESROB have contributed to the recognition of coastal wind variability, current fluctuations, and internal waves near and off the eastern coast of Korea. Long-term current meter moorings have been in operation since 1996 between Ulleungdo and Dokdo to monitor the interbasin deep water exchanges between the Japanese and Ulleung Basins. In addition, remotely sensed satellite data could facilitate the investigation of atmospheric and oceanic surface conditions such as sea surface temperature (SST), sea surface height, near-surface winds, oceanic color, surface roughness, and so on. These satellite data revealed surface frontal structures with a fairly good spatial resolution, seasonal cycle of SST, atmospheric wind forcing, geostrophic current anomalies, and biogeochemical processes associated with physical forcing and processes. Since the East Sea has been recognized as a

  16. Soil Monitor: an open source web application for real-time soil sealing monitoring and assessment

    NASA Astrophysics Data System (ADS)

    Langella, Giuliano; Basile, Angelo; Giannecchini, Simone; Iamarino, Michela; Munafò, Michele; Terribile, Fabio

    2016-04-01

    Soil sealing is one of the most important causes of land degradation and desertification. In Europe, soil covered by impermeable materials has increased by about 80% from the Second World War till nowadays, while population has only grown by one third. There is an increasing concern at the high political levels about the need to attenuate imperviousness itself and its effects on soil functions. European Commission promulgated a roadmap (COM(2011) 571) by which the net land take would be zero by 2050. Furthermore, European Commission also published a report in 2011 providing best practices and guidelines for limiting soil sealing and imperviousness. In this scenario, we developed an open source and an open source based Soil Sealing Geospatial Cyber Infrastructure (SS-GCI) named as "Soil Monitor". This tool merges a webGIS with parallel geospatial computation in a fast and dynamic fashion in order to provide real-time assessments of soil sealing at high spatial resolution (20 meters and below) over the whole Italy. Common open source webGIS packages are used to implement both the data management and visualization infrastructures, such as GeoServer and MapStore. The high-speed geospatial computation is ensured by a GPU parallelism using the CUDA (Computing Unified Device Architecture) framework by NVIDIA®. This kind of parallelism required the writing - from scratch - all codes needed to fulfil the geospatial computation built behind the soil sealing toolbox. The combination of GPU computing with webGIS infrastructures is relatively novel and required particular attention at the Java-CUDA programming interface. As a result, Soil Monitor is smart because it can perform very high time-consuming calculations (querying for instance an Italian administrative region as area of interest) in less than one minute. The web application is embedded in a web browser and nothing must be installed before using it. Potentially everybody can use it, but the main targets are the

  17. Near-Real-Time Acoustic Monitoring of Beaked Whales and Other Cetaceans Using a Seaglider™

    PubMed Central

    Klinck, Holger; Mellinger, David K.; Klinck, Karolin; Bogue, Neil M.; Luby, James C.; Jump, William A.; Shilling, Geoffrey B.; Litchendorf, Trina; Wood, Angela S.; Schorr, Gregory S.; Baird, Robin W.

    2012-01-01

    In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle – a glider – equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The glider was tested extensively off the west coast of the Island of Hawai'i, USA. The instrument covered approximately 390 km during three weeks at sea and collected a total of 194 h of acoustic data. Detections of beaked whales were successfully reported to shore in near-real time. Manual analysis of the recorded data revealed a high number of vocalizations of delphinids and sperm whales. Furthermore, the glider collected vocalizations of unknown origin very similar to those made by known species of beaked whales. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical habitats for many

  18. Near-real-time acoustic monitoring of beaked whales and other cetaceans using a Seaglider™.

    PubMed

    Klinck, Holger; Mellinger, David K; Klinck, Karolin; Bogue, Neil M; Luby, James C; Jump, William A; Shilling, Geoffrey B; Litchendorf, Trina; Wood, Angela S; Schorr, Gregory S; Baird, Robin W

    2012-01-01

    In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle--a glider--equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The glider was tested extensively off the west coast of the Island of Hawai'i, USA. The instrument covered approximately 390 km during three weeks at sea and collected a total of 194 h of acoustic data. Detections of beaked whales were successfully reported to shore in near-real time. Manual analysis of the recorded data revealed a high number of vocalizations of delphinids and sperm whales. Furthermore, the glider collected vocalizations of unknown origin very similar to those made by known species of beaked whales. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical habitats for many

  19. Interoperable Access to Near Real Time Ocean Observations with the Observing System Monitoring Center

    NASA Astrophysics Data System (ADS)

    O'Brien, K.; Hankin, S.; Mendelssohn, R.; Simons, R.; Smith, B.; Kern, K. J.

    2013-12-01

    The Observing System Monitoring Center (OSMC), a project funded by the National Oceanic and Atmospheric Administration's Climate Observations Division (COD), exists to join the discrete 'networks' of In Situ ocean observing platforms -- ships, surface floats, profiling floats, tide gauges, etc. - into a single, integrated system. The OSMC is addressing this goal through capabilities in three areas focusing on the needs of specific user groups: 1) it provides real time monitoring of the integrated observing system assets to assist management in optimizing the cost-effectiveness of the system for the assessment of climate variables; 2) it makes the stream of real time data coming from the observing system available to scientific end users into an easy-to-use form; and 3) in the future, it will unify the delayed-mode data from platform-focused data assembly centers into a standards- based distributed system that is readily accessible to interested users from the science and education communities. In this presentation, we will be focusing on the efforts of the OSMC to provide interoperable access to the near real time data stream that is available via the Global Telecommunications System (GTS). This is a very rich data source, and includes data from nearly all of the oceanographic platforms that are actively observing. We will discuss how the data is being served out using a number of widely used 'web services' (including OPeNDAP and SOS) and downloadable file formats (KML, csv, xls, netCDF), so that it can be accessed in web browsers and popular desktop analysis tools. We will also be discussing our use of the Environmental Research Division's Data Access Program (ERDDAP), available from NOAA/NMFS, which has allowed us to achieve our goals of serving the near real time data. From an interoperability perspective, it's important to note that access to the this stream of data is not just for humans, but also for machine-to-machine requests. We'll also delve into how we

  20. The RAPTOR experiment: a system for monitoring the optical sky in real time

    NASA Astrophysics Data System (ADS)

    Vestrand, W. T.; Borozdin, Konstantin N.; Brumby, Steven P.; Casperson, Donald E.; Fenimore, Edward E.; Galassi, Mark C.; McGowan, Katherine; Perkins, Simon J.; Priedhorsky, William C.; Starr, Daniel; White, Robert; Wozniak, Przemek; Wren, James A.

    2002-11-01

    The Rapid Telescopes for Optical Response (RAPTOR) experiment is a spatially distributed system of autonomous robotic telescopes that is designed to monitor the sky for optical transients. The core of the ystem is composed of two telescope arrays, separated by 38 kilometers, that stereoscopically view the same 1500 square-degree field with a wide-field imaging array and a central 4 square-degree field with a more sensitive narrow-field ``fovea" imager. Coupled to each telescope array is a real-time data analysis pipeline that is designed to identify interesting transients on timescales of seconds and, when a celestial transient is identified, to command the rapidly slewing robotic mounts to point the narrow-field ``fovea'' imagers at the transient. The two narrow-field telescopes then image the transient with higher spatial resolution and at a faster cadence to gather light curve information. Each ``fovea" camera also images the transient through a different filter to provide color information. This stereoscopic monitoring array is supplemented by a rapidly slewing telescope with a low resolution spectrograph for follow-up observations of transients and a sky patrol telescope that nightly monitors about 10,000 square-degrees for variations, with timescales of a day or longer, to a depth about 100 times fainter. In addition to searching for fast transients, we will use the data stream from RAPTOR as a real-time sentinel for recognizing important variations in known sources. All of the data will be publically released through a virtual observatory called SkyDOT (Sky Database for Objects in the Time Domain) that we are developing for studying variability of the optical sky. Altogether, the RAPTOR project aims to construct a new type of system for discovery in optical astronomy---one that explores the time domain by "mining the sky in real time".

  1. Real time acousto-ultrasonic NDE technique for monitoring damage in ceramic composites under dynamic loads

    NASA Technical Reports Server (NTRS)

    Tiwari, Anil

    1995-01-01

    Research effort was directed towards developing a near real-time, acousto-ultrasonic (AU), nondestructive evaluation (NDE) tool to study the failure mechanisms of ceramic composites. Progression of damage is monitored in real-time by observing the changes in the received AU signal during the actual test. During the real-time AU test, the AU signals are generated and received by the AU transducers attached to the specimen while it is being subjected to increasing quasi-static loads or cyclic loads (10 Hz, R = 1.0). The received AU signals for 64 successive pulses were gated in the time domain (T = 40.96 micro sec) and then averaged every second over ten load cycles and stored in a computer file during fatigue tests. These averaged gated signals are representative of the damage state of the specimen at that point of its fatigue life. This is also the first major attempt in the development and application of real-time AU for continuously monitoring damage accumulation during fatigue without interrupting the test. The present work has verified the capability of the AU technique to assess the damage state in silicon carbide/calcium aluminosilicate (SiC/CAS) and silicon carbide/ magnesium aluminosilicate (SiC/MAS) ceramic composites. Continuous monitoring of damage initiation and progression under quasi-static ramp loading in tension to failure of unidirectional and cross-ply SiC/CAS and quasi-isotropic SiC/MAS ceramic composite specimens at room temperature was accomplished using near real-time AU parameters. The AU technique was shown to be able to detect the stress levels for the onset and saturation of matrix cracks, respectively. The critical cracking stress level is used as a design stress for brittle matrix composites operating at elevated temperatures. The AU technique has found that the critical cracking stress level is 10-15% below the level presently obtained for design purposes from analytical models. An acousto-ultrasonic stress-strain response (AUSSR) model

  2. The physiologic cipher at altitude: telemedicine and real-time monitoring of climbers on Mount Everest.

    PubMed

    Satava, R; Angood, P B; Harnett, B; Macedonia, C; Merrell, R

    2000-01-01

    Advanced wearable biosensors for vital-signs monitoring (physiologic cipher) are available to improve quality of healthcare in hospital, nursing home, and remote environments. The objective of this study was to determine reliability of vital-signs monitoring systems in extreme environments. Three climbers were monitored 24 hours while climbing through Khumbu Icefall. Data were transmitted to Everest Base Camp (elevation 17,800 feet) and retransmitted to Yale University via telemedicine. Main outcome measures (location, heart rate, skin temperature, core body temperature, and activity level) all correlated through time-stamped identification. Two of three location devices functioned 100% of the time, and one device failed after initial acquisition of location 75% of the time. Vital-signs monitors functioned from 95%-100% of the time, with the exception of one climber whose heart-rate monitor functioned 78% of the time. Due to architecture of automatic polling and data acquisition of biosensors, no climber was ever without a full set of data for more than 25 minutes. Climbers were monitored continuously in real-time from Mount Everest to Yale University for more than 45 minutes. Heart rate varied from 76 to 164 beats per minute, skin temperature varied from 5 to 10 degrees C, and core body temperature varied only 1-3 degrees C. No direct correlation was observed among heart rate, activity level, and body temperature, though numerous periods suggested intense and arduous activity. Field testing in the extreme environment of Mount Everest demonstrated an ability to track in real time both vital signs and position of climbers. However, these systems must be more reliable and robust. As technology transitions to commercial products, benefits of remote monitoring will become available for routine healthcare purposes. PMID:11110634

  3. In Vivo and Real-time Monitoring of Secondary Metabolites of Living Organisms by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Wang, Lei; Ye, Wen-Cai; Yao, Zhong-Ping

    2013-07-01

    Secondary metabolites are compounds that are important for the survival and propagation of animals and plants. Our current understanding on the roles and secretion mechanism of secondary metabolites is limited by the existing techniques that typically cannot provide transient and dynamic information about the metabolic processes. In this manuscript, by detecting venoms secreted by living scorpion and toad upon attack and variation of alkaloids in living Catharanthus roseus upon stimulation, which represent three different sampling methods for living organisms, we demonstrated that in vivo and real-time monitoring of secondary metabolites released from living animals and plants could be readily achieved by using field-induced direct ionization mass spectrometry.

  4. Real-time In-Flight Strain and Deflection Monitoring with Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    This viewgraph presentation reviews Dryden's efforts to develop in-flight monitoring based on Fiber Optics. One of the motivating factors for this development was the breakup of the Helios aircraft. On Ikhana the use of fiber optics for wing shape sensing is being developed. They are being used to flight validate fiber optic sensor measurements and real-time wing shape sensing predictions on NASA's Ikhana vehicle; validate fiber optic mathematical models and design tools; Assess technical viability and, if applicable, develop methodology and approach to incorporate wing shape measurements within the vehicle flight control system, and develop and flight validate advanced approaches to perform active wing shape control.

  5. A Real-Time Spectroscopic Sensor for Monitoring Laser Welding Processes

    PubMed Central

    Sibillano, Teresa; Ancona, Antonio; Berardi, Vincenzo; Lugarà, Pietro Mario

    2009-01-01

    In this paper we report on the development of a sensor for real time monitoring of laser welding processes based on spectroscopic techniques. The system is based on the acquisition of the optical spectra emitted from the laser generated plasma plume and their use to implement an on-line algorithm for both the calculation of the plasma electron temperature and the analysis of the correlations between selected spectral lines. The sensor has been patented and it is currently available on the market. PMID:22412317

  6. Real-Time Monitoring of Alpha Emissions. Final report, FY 1994

    SciTech Connect

    Gritzo, R.; Fowler, M.; Wouters, J.

    1994-12-31

    A technology is being developed for on-line, real-time monitoring of mixed and low-level incinerator stacks for levels of airborne alpha activity. The Large-Volume Flow Thru Detector System uses a detector composed of multiple parallel plates of scintillating material fabricated so that the entire stack gas stream flows directly through the inter-plate volume. This report is largely a compilation of 3 reports on background reduction, once-through flow tests, and the aeronautical/mechanical engineering work. The full text of each report is included as an appendix.

  7. In-Situ Real Time Monitoring and Control of Mold Making and Filling Processes: Final Report

    SciTech Connect

    Mohamed Abdelrahman; Kenneth Currie

    2010-12-22

    This project presents a model for addressing several objectives envisioned by the metal casting industries through the integration of research and educational components. It provides an innovative approach to introduce technologies for real time characterization of sand molds, lost foam patterns and monitoring of the mold filling process. The technology developed will enable better control over the casting process. It is expected to reduce scrap and variance in the casting quality. A strong educational component is integrated into the research plan to utilize increased awareness of the industry professional, the potential benefits of the developed technology, and the potential benefits of cross cutting technologies.

  8. Biomedical real-time monitoring in restricted and safety-critical environments

    PubMed Central

    Astaras, A; Bamidis, P D; Kourtidou-Papadeli, C; Maglaveras, N

    2008-01-01

    Biomedical signal monitoring can counteract the risk of human operator error due to inattention or fatigue in safetycritical and restrictive environments, such as in aviation, space, automobile and heavy industrial machinery operation. Real-time biomedical data acquisition is changing through advances in microelectronics fabrication, bio-MEMS and power micro-generators. Such data acquisition and processing systems are becoming increasingly miniaturised, flexible and pervasive, while data is being collected from inside the human body as well as around it. In this paper we review two related research projects exploiting this technological convergence, discuss its implications and suggest future innovation prospects through further similar cross-disciplinary synergies. PMID:19048087

  9. Development of on package indicator sensor for real-time monitoring of meat quality

    PubMed Central

    Shukla, Vivek; Kandeepan, G.; Vishnuraj, M. R.

    2015-01-01

    Aim: The aim was to develop an indicator sensor for real-time monitoring of meat quality and to compare the response of indicator sensor with meat quality parameters at ambient temperature. Materials and Methods: Indicator sensor was prepared using bromophenol blue (1% w/v) as indicator solution and filter paper as indicator carrier. Indicator sensor was fabricated by coating indicator solution onto carrier by centrifugation. To observe the response of indicator sensor buffalo meat was packed in polystyrene foam trays covered with PVC film and indicator sensor was attached to the inner side of packaging film. The pattern of color change in indicator sensor was monitored and compared with meat quality parameters viz. total volatile basic nitrogen, D-glucose, standard plate count and tyrosine value to correlate ability of indicator sensor for its suitability to predict the meat quality and storage life. Results: The indicator sensor changed its color from yellow to blue starting from margins during the storage period of 24 h at ambient temperature and this correlated well with changes in meat quality parameters. Conclusions: The indicator sensor can be used for real-time monitoring of meat quality as the color of indicator sensor changed from yellow to blue starting from margins when meat deteriorates with advancement of the storage period. Thus by observing the color of indicator sensor quality of meat and shelf life can be predicted. PMID:27047103

  10. Real-time reaction monitoring by ultrafast 2D NMR on a benchtop spectrometer.

    PubMed

    Gouilleux, Boris; Charrier, Benoît; Danieli, Ernesto; Dumez, Jean-Nicolas; Akoka, Serge; Felpin, François-Xavier; Rodriguez-Zubiri, Mireia; Giraudeau, Patrick

    2015-12-01

    Reaction monitoring is widely used to follow chemical processes in a broad range of application fields. Recently, the development of robust benchtop NMR spectrometers has brought NMR under the fume hood, making it possible to monitor chemical reactions in a safe and accessible environment. However, these low-field NMR approaches suffer from limited resolution leading to strong peak overlaps, which can limit their application range. Here, we propose an approach capable of recording ultrafast 2D NMR spectra on a compact spectrometer and of following in real time reactions in the synthetic chemistry laboratory. This approach--whose potential is shown here on a Heck-Matsuda reaction--is highly versatile; the duration of the measurement can be optimized to follow reactions whose time scale ranges from between a few tens of seconds to a few hours. It makes it possible to monitor complex reactions in non-deuterated solvents, and to confirm in real time the molecular structure of the compounds involved in the reaction while giving access to relevant kinetic parameters. PMID:26501887

  11. Study of weld quality real-time monitoring system for auto-body assembly

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Li, Yong-Bing; Chen, Guan-Long

    2005-12-01

    Resistance spot welding (RSW) is widely used for the auto-body assembly in automotive industry. But RSW suffers from a major problem of inconsistent quality from weld to weld. The major problem is the complexity of the basic process that may involve material coatings, electrode force, electrode wear, fit up, etc. Therefore weld quality assurance is still a big challenge and goal. Electrode displacement has proved to be a particularly useful signal which correlates well with weld quality. This paper introduces a novel auto-body spot weld quality monitoring system which uses electrode displacement as the quality parameter. This system chooses the latest laser displacement sensor with high resolution to measure the real-time electrode displacement. It solves the interference problem of sensor mounting by designing special fixture, and can be successfully applied on the portable welding machine. It is capable of evaluating weld quality and making diagnosis of process variations such as surface asperities, shunting, worn electrode and weld expansion with real-time electrode displacement. As proved by application in the workshop, the monitoring system has good stability and reliability, and is qualified for monitoring weld quality in process.

  12. Real-time Implementation of the Waveloc Technique for Monitoring Earthquake Swarms

    NASA Astrophysics Data System (ADS)

    Maggi, A.; Langet, N.; Michelini, A.

    2013-12-01

    Monitoring regions with high swarm-type seismicity (e.g. volcanoes, certain tectonic regions) is a challenge for the traditional pick-associate-locate type algorithms that form the basis of most seismicity monitoring software. Over the past few years, new approaches that avoid the association phase by direct migration of some characteristic function of the recorded seismograms have started to be implemented, and have shown great promise (see related abstract on the Waveloc method applied to Piton de la Fournaise volcano). Implementing such methods in real-time is an essential step in proving their usefulness and robustness in swarm-monitoring situations. Here we describe the work in progress on adapting the Waveloc migration technique to real-time operation. The resulting software package, RT-Waveloc, is currently in the prototype stage, and we hope to have a version that can be distributed to the scientific community for beta-testing within a year. The development of RT-Waveloc is financed by the EU NERA project.

  13. Real-time monitoring of matrix acidizing including the effects of diverting agents

    SciTech Connect

    Hill, A.D.; Zhu, D.

    1996-05-01

    Real-time monitoring of the injection rate and pressure during matrix acidizing provides operators with a way to determine the changing skin factor as stimulation proceeds. Current methods are based either on the assumption of steady-state flow in the region around the wellbore affected by acid injection or on computer solution of the transient flow equations describing the unsteady reservoir flow process occurring during acidizing. In this paper, a new method for real-time monitoring of matrix acidizing, the inverse injectivity vs. superposition time function plot, is presented. This new method can be applied with a spreadsheet computer program or a programmable calculator and accounts for the transient flow effects occurring during matrix acidizing at multiple rates and injection pressures. The evolving skin factor during a matrix treatment is readily obtained from the diagnostic plot. Hypothetical examples show how the inverse injectivity plot can be used to assess the efficiency of stimulation and diversion. Comparisons with previously presented field cases show the new method to be a simple and accurate means of monitoring the evolving skin factor during matrix acidizing.

  14. A Real-Time Measurement System for Long-Life Flood Monitoring and Warning Applications

    PubMed Central

    Marin-Perez, Rafael; García-Pintado, Javier; Gómez, Antonio Skarmeta

    2012-01-01

    A flood warning system incorporates telemetered rainfall and flow/water level data measured at various locations in the catchment area. Real-time accurate data collection is required for this use, and sensor networks improve the system capabilities. However, existing sensor nodes struggle to satisfy the hydrological requirements in terms of autonomy, sensor hardware compatibility, reliability and long-range communication. We describe the design and development of a real-time measurement system for flood monitoring, and its deployment in a flash-flood prone 650 km2 semiarid watershed in Southern Spain. A developed low-power and long-range communication device, so-called DatalogV1, provides automatic data gathering and reliable transmission. DatalogV1 incorporates self-monitoring for adapting measurement schedules for consumption management and to capture events of interest. Two tests are used to assess the success of the development. The results show an autonomous and robust monitoring system for long-term collection of water level data in many sparse locations during flood events. PMID:22666028

  15. Intelligent Classification of Heartbeats for Automated Real-Time ECG Monitoring

    PubMed Central

    Park, Juyoung

    2014-01-01

    Abstract Background: The automatic interpretation of electrocardiography (ECG) data can provide continuous analysis of heart activity, allowing the effective use of wireless devices such as the Holter monitor. Materials and Methods: We propose an intelligent heartbeat monitoring system to detect the possibility of arrhythmia in real time. We detected heartbeats and extracted features such as the QRS complex and P wave from ECG signals using the Pan–Tompkins algorithm, and the heartbeats were then classified into 16 types using a decision tree. Results: We tested the sensitivity, specificity, and accuracy of our system against data from the MIT-BIH Arrhythmia Database. Our system achieved an average accuracy of 97% in heartbeat detection and an average heartbeat classification accuracy of above 96%, which is comparable with the best competing schemes. Conclusions: This work provides a guide to the systematic design of an intelligent classification system for decision support in Holter ECG monitoring. PMID:25010717

  16. Monitoring real-time navigation processes using the automated reasoning tool (ART)

    NASA Technical Reports Server (NTRS)

    Maletz, M. C.; Culbert, C. J.

    1985-01-01

    An expert system is described for monitoring and controlling navigation processes in real-time. The ART-based system features data-driven computation, accommodation of synchronous and asynchronous data, temporal modeling for individual time intervals and chains of time intervals, and hypothetical reasoning capabilities that consider alternative interpretations of the state of navigation processes. The concept is illustrated in terms of the NAVEX system for monitoring and controlling the high speed ground navigation console for Mission Control at Johnson Space Center. The reasoning processes are outlined, including techniques used to consider alternative data interpretations. Installation of the system has permitted using a single operator, instead of three, to monitor the ascent and entry phases of a Shuttle mission.

  17. Polarization-dependent differential reflectance spectroscopy for real-time monitoring of organic thin film growth.

    PubMed

    Navarro-Quezada, A; Aiglinger, M; Ghanbari, E; Wagner, Th; Zeppenfeld, P

    2015-11-01

    By monitoring the reflectance of a sample surface during deposition of a thin organic film, one can obtain information with submonolayer resolution in real-time. A special kind of optical spectroscopy is Differential Reflectance Spectroscopy (DRS), which compares the reflectance before and during deposition of a thin film or any other change of the surface optical properties. In this work, we present an extended DRS setup that allows monitoring simultaneously both linear polarization states (s and p) of the reflected light. We implement polarization-dependent DRS to monitor the growth of perflouropentacene thin films on a Ag(110) single crystal. The setup allows us to deduce the optical anisotropy of the sample and, in particular, the preferred orientation of the molecules on the surface. PMID:26628122

  18. A Real-Time Monitoring System of Industry Carbon Monoxide Based on Wireless Sensor Networks

    PubMed Central

    Yang, Jiachen; Zhou, Jianxiong; Lv, Zhihan; Wei, Wei; Song, Houbing

    2015-01-01

    Carbon monoxide (CO) burns or explodes at over-standard concentration. Hence, in this paper, a Wifi-based, real-time monitoring of a CO system is proposed for application in the construction industry, in which a sensor measuring node is designed by low-frequency modulation method to acquire CO concentration reliably, and a digital filtering method is adopted for noise filtering. According to the triangulation, the Wifi network is constructed to transmit information and determine the position of nodes. The measured data are displayed on a computer or smart phone by a graphical interface. The experiment shows that the monitoring system obtains excellent accuracy and stability in long-term continuous monitoring. PMID:26610511

  19. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    SciTech Connect

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means of rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.

  20. Impedimetric microbial sensor for real-time monitoring of phage infection of Escherichia coli.

    PubMed

    Cheng, Ming Soon; Ho, Jia Shin; Lau, Suk Hiang; Chow, Vincent T K; Toh, Chee-Seng

    2013-09-15

    We describe an impedimetric microbial sensor for real-time monitoring of the non-lytic M13 bacteriophage infection of Escherichia coli cells using a gold electrode covalently grafted with a monolayer of lipopolysaccharide specific antibody. After infection, damage to the lipopolysaccharide layer on the outer membrane of E. coli causes changes to its surface charge and morphology, resulting in the aggregation of redox probe, Fe(CN)6(3-/4-) at the electrode surface and thereby increases its electron-transfer rate. This consequent decrease of electron-transfer resistance in the presence of bacteriophage can be easily monitored using Faradaic impedance spectroscopy. Non-lytic bacterium-phage interaction which is hardly observable using conventional microscopic methods is detected within 3h using this impedimetric microbial sensor which demonstrates its excellent performance in terms of analysis time, ease and reduced reliance on labeling steps during in-situ monitoring of the phage infection process. PMID:23603131

  1. Real-time Data Access Monitoring in Distributed, Multi-petabyte Systems

    SciTech Connect

    Azemoon, Tofigh; Becla, Jacek, a=Hanushevsky, Andrew; Turri, Massimiliano; /SLAC

    2008-04-22

    Petascale systems are in existence today and will become common in the next few years. Such systems are inevitably very complex, highly distributed and heterogeneous. Monitoring a petascale system in real-time and understanding its status at any given moment without impacting its performance is a highly intricate task. Common approaches and off-the-shelf tools are either unusable, do not scale, or severely impact the performance of the monitored servers. This paper describes unobtrusive monitoring software developed at Stanford Linear Accelerator Center (SLAC) for a highly distributed petascale production data set. The paper describes the employed solutions, the lessons learned, the problems still to be addressed, and explains how the system can be reused elsewhere.

  2. A Real-Time Monitoring System of Industry Carbon Monoxide Based on Wireless Sensor Networks.

    PubMed

    Yang, Jiachen; Zhou, Jianxiong; Lv, Zhihan; Wei, Wei; Song, Houbing

    2015-01-01

    Carbon monoxide (CO) burns or explodes at over-standard concentration. Hence, in this paper, a Wifi-based, real-time monitoring of a CO system is proposed for application in the construction industry, in which a sensor measuring node is designed by low-frequency modulation method to acquire CO concentration reliably, and a digital filtering method is adopted for noise filtering. According to the triangulation, the Wifi network is constructed to transmit information and determine the position of nodes. The measured data are displayed on a computer or smart phone by a graphical interface. The experiment shows that the monitoring system obtains excellent accuracy and stability in long-term continuous monitoring. PMID:26610511

  3. Real-time monitoring of plutonium content in uranium-plutonium alloys

    SciTech Connect

    Li, Shelly Xiaowei; Westphal, Brian Robert; Herrmann, Steven Douglas

    2015-09-01

    A method and device for the real-time, in-situ monitoring of Plutonium content in U--Pu Alloys comprising providing a crucible. The crucible has an interior non-reactive to a metallic U--Pu alloy within said interior of said crucible. The U--Pu alloy comprises metallic uranium and plutonium. The U--Pu alloy is heated to a liquid in an inert or reducing atmosphere. The heated U--Pu alloy is then cooled to a solid in an inert or reducing atmosphere. As the U--Pu alloy is cooled, the temperature of the U--Pu alloy is monitored. A solidification temperature signature is determined from the monitored temperature of the U--Pu alloy during the step of cooling. The amount of Uranium and the amount of Plutonium in the U--Pu alloy is then determined from the determined solidification temperature signature.

  4. Intelligent Janus nanoparticles for intracellular real-time monitoring of dual drug release

    NASA Astrophysics Data System (ADS)

    Cao, Han; Yang, Yuhong; Chen, Xin; Shao, Zhengzhong

    2016-03-01

    Stimuli-responsive nanomaterials have been receiving much attention as drug delivery carriers, however understanding of multi-drug release from the carriers for efficient therapeutics is highly challenging. Here, we report a novel nanosystem, Janus particle Dox-CMR-MS/Au-6MP (Dox: doxorubicin, CMR: 7-hydroxycoumarin-3-carboxylate, MS: mesoporous silica, Au: gold, 6MP: 6-mercaptopurine) with opposing MS and Au faces, which can monitor intracellular dual-drug (Dox and 6MP) controlled release in real time based on fluorescence resonance energy transfer (FRET) and surface-enhanced Raman scattering (SERS). The FRET acceptor Dox is attached to CMR (as a FRET donor) conjugated MS with a pH-responsive linker hydrazone, and 6MP is conjugated to the Au surface through the gold-thiol interaction. As the Janus nanoparticle enters into tumor cells, the breakage of the hydrazone bond in an acidic environment and the substitution of glutathione (GSH) overexpressed in cancer cells give rise to the release of Dox and 6MP, respectively. Thus, the change of the CMR fluorescence signal and the SERS decrease of 6MP can be used to monitor the dual-drug release within living cells in real time. In addition, this work demonstrates the enhanced anticancer effect of the designed dual-drug loaded nanosystem. Therefore, the current study may provide new perspectives for the real-time study of intelligent multi-drug delivery and release, as well as cellular responses to drug treatment.Stimuli-responsive nanomaterials have been receiving much attention as drug delivery carriers, however understanding of multi-drug release from the carriers for efficient therapeutics is highly challenging. Here, we report a novel nanosystem, Janus particle Dox-CMR-MS/Au-6MP (Dox: doxorubicin, CMR: 7-hydroxycoumarin-3-carboxylate, MS: mesoporous silica, Au: gold, 6MP: 6-mercaptopurine) with opposing MS and Au faces, which can monitor intracellular dual-drug (Dox and 6MP) controlled release in real time based on

  5. Development of Conventional and Real-Time Quantitative PCR Assays for Diagnosis and Monitoring of Scabies.

    PubMed

    Wong, Samson S Y; Poon, Rosana W S; Chau, Sandy; Wong, Sally C Y; To, Kelvin K W; Cheng, Vincent C C; Fung, Kitty S C; Yuen, K Y

    2015-07-01

    Scabies remains the most prevalent, endemic, and neglected ectoparasitic infestation globally and can cause institutional outbreaks. The sensitivity of routine microscopy for demonstration of Sarcoptes scabiei mites or eggs in skin scrapings is only about 50%. Except for three studies using conventional or two-tube nested PCR on a small number of cases, no systematic study has been performed to improve the laboratory diagnosis of this important infection. We developed a conventional and a real-time quantitative PCR (qPCR) assay based on the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of S. scabiei. The cox1 gene is relatively well conserved, with its sequence having no high levels of similarity to the sequences of other human skin mites, pathogenic zoonotic mites, or common house dust mite species. This mitochondrial gene is also present in large quantities in arthropod cells, potentially improving the sensitivity of a PCR-based assay. In our study, both assays were specific and were more sensitive than microscopy in diagnosing scabies, with positive and negative predictive values of 100%. The S. scabiei DNA copy number in the microscopy-positive specimens was significantly higher than that in the microscopy-negative specimens (median S. scabiei DNA copy number, 3.604 versus 2.457 log10 copies per reaction; P = 0.0213). In the patient with crusted scabies, the qPCR assay performed on lesional skin swabs instead of scrapings revealed that the parasite DNA load took about 2 weeks to become negative after treatment. The utility of using lesional skin swabs as an alternative sample for diagnosis of scabies by PCR should be further evaluated. PMID:25903566

  6. Development of Conventional and Real-Time Quantitative PCR Assays for Diagnosis and Monitoring of Scabies

    PubMed Central

    Wong, Samson S. Y.; Poon, Rosana W. S.; Chau, Sandy; Wong, Sally C. Y.; To, Kelvin K. W.; Cheng, Vincent C. C.; Fung, Kitty S. C.

    2015-01-01

    Scabies remains the most prevalent, endemic, and neglected ectoparasitic infestation globally and can cause institutional outbreaks. The sensitivity of routine microscopy for demonstration of Sarcoptes scabiei mites or eggs in skin scrapings is only about 50%. Except for three studies using conventional or two-tube nested PCR on a small number of cases, no systematic study has been performed to improve the laboratory diagnosis of this important infection. We developed a conventional and a real-time quantitative PCR (qPCR) assay based on the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of S. scabiei. The cox1 gene is relatively well conserved, with its sequence having no high levels of similarity to the sequences of other human skin mites, pathogenic zoonotic mites, or common house dust mite species. This mitochondrial gene is also present in large quantities in arthropod cells, potentially improving the sensitivity of a PCR-based assay. In our study, both assays were specific and were more sensitive than microscopy in diagnosing scabies, with positive and negative predictive values of 100%. The S. scabiei DNA copy number in the microscopy-positive specimens was significantly higher than that in the microscopy-negative specimens (median S. scabiei DNA copy number, 3.604 versus 2.457 log10 copies per reaction; P = 0.0213). In the patient with crusted scabies, the qPCR assay performed on lesional skin swabs instead of scrapings revealed that the parasite DNA load took about 2 weeks to become negative after treatment. The utility of using lesional skin swabs as an alternative sample for diagnosis of scabies by PCR should be further evaluated. PMID:25903566

  7. Real-time Environmental Monitoring from a Wind Farm Platform in the Texas Hypoxic Zone

    NASA Astrophysics Data System (ADS)

    Mullins, R. L.; Dimarco, S. F.; Walpert, J. N.; Guinasso, N. L.; Howard, M. K.

    2009-12-01

    Ocean observing systems (OOS) provide coastal managers with data for informed decision-making. OOS are designed to monitor oceanographic and atmospheric conditions from a variety of offshore platforms. In the summer of 2009, a multi-disciplinary system, the Galveston Instrument Garden for Environmental Monitoring (GIGEM), was deployed off the coast of Galveston, Texas (Location: 29o 08’ 29.654’’N, 94o 44’ 51.339’’W) to monitor coastal waters and provide real-time observations for investigating processes responsible for coastal Texas hypoxia. Hypoxia occurs in the Gulf of Mexico over the continental shelf and refers to low dissolved oxygen concentrations in the bottom waters caused by a combination of environmental and physical parameters. Events form rapidly, last for a few days to weeks, and commonly occur along the Louisiana and Texas coasts; however, little research has been conducted to investigate the processes responsible for Texas hypoxia formation. GIGEM was designed to study this problem by contributing real-time measurements to compare with historical coastal data series. Unlike most coastal OOS, GIGEM is installed on an experimental wind farm platform operated by Wind Energy System Technologies Inc. This platform is the first executed offshore wind energy lease in the United States. GIGEM is comprised of two components, the subsurface mooring and a nearby bottom package. The data telemetry system includes a unique design of underwater and surface inductive modems. GIGEM is the only coastal OOS currently collecting real-time environmental water quality measurements on the Texas shelf. The work presented describes: the obstacles and challenges associated with deploying GIGEM, the flow of information from the water column to the user, and how this type of OOS fulfills the societal goals for protecting coastal ecosystems and improving coastal weather and ocean predictions envisioned by the Integrated Ocean Observing System (IOOS). Data and

  8. Diffusion-sensitive optical coherence tomography for real-time monitoring of mucus thinning treatments

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Kreda, Silvia M.; Sears, Patrick R.; Ostrowski, Lawrence E.; Hill, David B.; Chapman, Brian S.; Tracy, Joseph B.; Oldenburg, Amy L.

    2016-03-01

    Mucus hydration (wt%) has become an increasingly useful metric in real-time assessment of respiratory health in diseases like cystic fibrosis and COPD, with higher wt% indicative of diseased states. However, available in vivo rheological techniques are lacking. Gold nanorods (GNRs) are attractive biological probes whose diffusion through tissue is sensitive to the correlation length of comprising biopolymers. Through employment of dynamic light scattering theory on OCT signals from GNRs, we find that weakly-constrained GNR diffusion predictably decreases with increasing wt% (more disease-like) mucus. Previously, we determined this method is robust against mucus transport on human bronchial epithelial (hBE) air-liquid interface cultures (R2=0.976). Here we introduce diffusion-sensitive OCT (DS-OCT), where we collect M-mode image ensembles, from which we derive depth- and temporally-resolved GNR diffusion rates. DS-OCT allows for real-time monitoring of changing GNR diffusion as a result of topically applied mucus-thinning agents, enabling monitoring of the dynamics of mucus hydration never before seen. Cultured human airway epithelial cells (Calu-3 cell) with a layer of endogenous mucus were doped with topically deposited GNRs (80x22nm), and subsequently treated with hypertonic saline (HS) or isotonic saline (IS). DS-OCT provided imaging of the mucus thinning response up to a depth of 600μm with 4.65μm resolution, over a total of 8 minutes in increments of >=3 seconds. For both IS and HS conditions, DS-OCT captured changes in the pattern of mucus hydration over time. DS-OCT opens a new window into understanding mechanisms of mucus thinning during treatment, enabling real-time efficacy feedback needed to optimize and tailor treatments for individual patients.

  9. Ultrasonic Real-Time Quality Monitoring Of Aluminum Spot Weld Process

    NASA Astrophysics Data System (ADS)

    Perez Regalado, Waldo Josue

    The real-time ultrasonic spot weld monitoring system, introduced by our research group, has been designed for the unsupervised quality characterization of the spot welding process. It comprises the ultrasonic transducer (probe) built into one of the welding electrodes and an electronics hardware unit which gathers information from the transducer, performs real-time weld quality characterization and communicates with the robot programmable logic controller (PLC). The system has been fully developed for the inspection of spot welds manufactured in steel alloys, and has been mainly applied in the automotive industry. In recent years, a variety of materials have been introduced to the automotive industry. These include high strength steels, magnesium alloys, and aluminum alloys. Aluminum alloys have been of particular interest due to their high strength-to-weight ratio. Resistance spot welding requirements for aluminum vary greatly from those of steel. Additionally, the oxide film formed on the aluminum surface increases the heat generation between the copper electrodes and the aluminum plates leading to accelerated electrode deterioration. Preliminary studies showed that the real-time quality inspection system was not able to monitor spot welds manufactured with aluminum. The extensive experimental research, finite element modelling of the aluminum welding process and finite difference modeling of the acoustic wave propagation through the aluminum spot welds presented in this dissertation, revealed that the thermodynamics and hence the acoustic wave propagation through an aluminum and a steel spot weld differ significantly. For this reason, the hardware requirements and the algorithms developed to determine the welds quality from the ultrasonic data used on steel, no longer apply on aluminum spot welds. After updating the system and designing the required algorithms, parameters such as liquid nugget penetration and nugget diameter were available in the ultrasonic data

  10. A real time dose monitoring and dose reconstruction tool for patient specific VMAT QA and delivery

    SciTech Connect

    Tyagi, Neelam; Yang Kai; Gersten, David; Yan Di

    2012-12-15

    Purpose: To develop a real time dose monitoring and dose reconstruction tool to identify and quantify sources of errors during patient specific volumetric modulated arc therapy (VMAT) delivery and quality assurance. Methods: The authors develop a VMAT delivery monitor tool called linac data monitor that connects to the linac in clinical mode and records, displays, and compares real time machine parameters with the planned parameters. A new measure, called integral error, keeps a running total of leaf overshoot and undershoot errors in each leaf pair, multiplied by leaf width, and the amount of time during which the error exists in monitor unit delivery. Another tool reconstructs Pinnacle{sup 3} Trade-Mark-Sign format delivered plan based on the saved machine logfile and recalculates actual delivered dose in patient anatomy. Delivery characteristics of various standard fractionation and stereotactic body radiation therapy (SBRT) VMAT plans delivered on Elekta Axesse and Synergy linacs were quantified. Results: The MLC and gantry errors for all the treatment sites were 0.00 {+-} 0.59 mm and 0.05 {+-} 0.31 Degree-Sign , indicating a good MLC gain calibration. Standard fractionation plans had a larger gantry error than SBRT plans due to frequent dose rate changes. On average, the MLC errors were negligible but larger errors of up to 6 mm and 2.5 Degree-Sign were seen when dose rate varied frequently. Large gantry errors occurred during the acceleration and deceleration process, and correlated well with MLC errors (r= 0.858, p= 0.0004). PTV mean, minimum, and maximum dose discrepancies were 0.87 {+-} 0.21%, 0.99 {+-} 0.59%, and 1.18 {+-} 0.52%, respectively. The organs at risk (OAR) doses were within 2.5%, except some OARs that showed up to 5.6% discrepancy in maximum dose. Real time displayed normalized total positive integral error (normalized to the total monitor units) correlated linearly with MLC (r= 0.9279, p < 0.001) and gantry errors (r= 0.742, p= 0.005). There

  11. Multi-level Simulation of a Real Time Vibration Monitoring System Component

    NASA Technical Reports Server (NTRS)

    Roberston, Bryan; Wilkerson, DeLisa

    2004-01-01

    This paper describes the development of a custom built Digital Signal Processing (DSP) printed circuit board designed to implement the Advanced Real Time Vibration Monitoring Subsystem proposed by MSFC Transportation Directorate in 2000 for the Space Shuttle Main Engine Advanced Health Management System (AHMS). This Real Time Vibration Monitoring System (RTVMS) is being developed for ground use as part of the AHMS Health Management Computer-Integrated Rack Assembly (HMC-IRA). The HMC-IRA RTVMS design contains five DSPs which are highly interconnected through individual communication ports, shared memory, and a unique communication router that allows all the DSPs to receive digitized data from two multi-channel analog boards simultaneously. This paper will briefly cover the overall board design but will focus primarily on the state-of-the-art simulation environment within which this board was developed. This 16-layer board with over 1800 components and an additional mezzanine card has been an extremely challenging design. Utilization of a Mentor Graphics simulation environment provided the unique board and system level simulation capability to ascertain any timing or functional concerns before production. By combining VHDL, Synopsys Software and Hardware Models, and the Mentor Design Capture Environment, multiple simulations were developed to verify the RTVMS design. This multi-level simulation allowed the designers to achieve complete operability without error the first time the RTVMS printed circuit board was powered. The HMCIRA design has completed all engineering unit testing and the deliverable unit is currently under development.

  12. Toward real-time continuous brain glucose and oxygen monitoring with a smart catheter.

    PubMed

    Li, Chunyan; Ahn, Chong H; Shutter, Lori A; Narayan, Raj K

    2009-09-15

    Oxygen and glucose biosensors have been designed, fabricated, characterized and optimized for real-time continuous monitoring on a new smart catheter for use in patients with traumatic brain injury (TBI). Oxygen sensors with three-electrode configuration were designed to achieve zero net oxygen consumption. Glucose sensors were based on the use of platinum nanoparticle-enhanced electrodes that were modified with polycation and glucose oxidase immobilized by chitosan matrix. An iridium oxide electrode was developed to work as a biocompatible reference electrode with enhanced durability and stability in the biological solutions. A study of the effect of temperature on oxygen sensor performance, and both temperature and oxygen effects on glucose sensor performance were accomplished to enhance their operative stability and provide useful information for in vivo applications. A new methodology for automatic correction of the temperature and oxygen dependence of biosensor outputs is demonstrated through programmed LabView software. In vitro experiments in both physiological and pathophysiological ranges (oxygen: 0-60 mmHg; glucose: 0.1-10 mM; temperature: 25-40 degrees C) with clinical samples of cerebrospinal fluid obtained from TBI patients have demonstrated stable measurements with enhanced accuracy, indicating the feasibility of the sensors for a real-time continuous in vivo monitoring. PMID:19625179

  13. Coordinator Traffic Diffusion for Data-Intensive Zigbee Transmission in Real-time Electrocardiography Monitoring.

    PubMed

    Tseng, Chinyang Henry

    2013-12-01

    Zigbee is expected to have an explosive growth in wireless medical monitoring systems because it possesses the advantages of low cost, safe power strength, and easy deployment. However, limited work focuses on solving the bottleneck issue at the Zigbee coordinator in a data-intensive system to guarantee transmission reliability of life-critical data. This paper proposes coordinator traffic diffusion (CTD) method to redirect excessive traffic from coordinator to the sink in electrocardiography (ECG) medical application. CTD router, which implements CTD design, automatically redirects ECG data traffic to the sink node without involving the coordinator, and thus reliable real-time ECG monitoring service can be delivered precisely. CTD design is tested in both TI CC2530 Zigbee platform and NS2 simulation. Experimental result demonstrates that a CTD design can assist routers in successfully delivering real-time ECG data samples reliably with the best transmission rate, 24 kb/s. This performance cannot be achieved by the original Zigbee design. PMID:23744664

  14. Real-time amyloid aggregation monitoring with a photonic crystal-based approach.

    PubMed

    Santi, Sara; Musi, Valeria; Descrovi, Emiliano; Paeder, Vincent; Di Francesco, Joab; Hvozdara, Lubos; van der Wal, Peter; Lashuel, Hilal A; Pastore, Annalisa; Neier, Reinhard; Herzig, Hans Peter

    2013-10-21

    We propose the application of a new label-free optical technique based on photonic nanostructures to real-time monitor the amyloid-beta 1-42 (Aβ(1-42)) fibrillization, including the early stages of the aggregation process, which are related to the onset of the Alzheimer's Disease (AD). The aggregation of Aβ peptides into amyloid fibrils has commonly been associated with neuronal death, which culminates in the clinical features of the incurable degenerative AD. Recent studies revealed that cell toxicity is determined by the formation of soluble oligomeric forms of Aβ peptides in the early stages of aggregation. At this phase, classical amyloid detection techniques lack in sensitivity. Upon a chemical passivation of the sensing surface by means of polyethylene glycol, the proposed approach allows an accurate, real-time monitoring of the refractive index variation of the solution, wherein Aβ(1-42) peptides are aggregating. This measurement is directly related to the aggregation state of the peptide throughout oligomerization and subsequent fibrillization. Our findings open new perspectives in the understanding of the dynamics of amyloid formation, and validate this approach as a new and powerful method to screen aggregation at early stages. PMID:24105966

  15. Patient-Specific Learning in Real Time for Adaptive Monitoring in Critical Care

    PubMed Central

    Szolovits, Peter

    2011-01-01

    Intensive care monitoring systems are typically developed from population data, but do not take into account the variability among individual patients’ characteristics. This study develops patient-specific alarm algorithms in real time. Classification tree and neural network learning were carried out in batch mode on individual patients’ vital sign numerics in successive intervals of incremental duration to generate binary classifiers of patient state and thus to determine when to issue an alarm. Results suggest that the performance of these classifiers follows the course of a learning curve. After eight hours of patient-specific training during each of ten monitoring sessions, our neural networks reached average sensitivity, specificity, positive predictive value, and accuracy of 0.96, 0.99, 0.79, and 0.99 respectively. The classification trees achieved 0.84, 0.98, 0.72, and 0.98 respectively. Thus, patient-specific modeling in real time is not only feasible but also effective in generating alerts at the bedside. PMID:18463000

  16. A web-based modular framework for real-time monitoring of large scale sensor networks

    NASA Astrophysics Data System (ADS)

    Newman, R. L.; Lindquist, K. G.; Vernon, F. L.

    2007-12-01

    The Antelope Real Time System (ARTS) is an integrated combination of protocols, acquisition systems and applications designed for real-time data collection and analysis from an array of deployed field sensors. Historically these were seismic sensors, however the open architecture of the ARTS facilitated development of acquisition protocols for a diverse group of sensors, including data streams from hf radar, meteorological instrumentation and cameras. In parallel with the expansion of data-type ingestion, a web-based interface to the ARTS was developed in PHP, a popular HTML embedded scripting language. The application-driven development of web-based software to Antelope-stored data has risen exponentially over the last four years, from simple database interactions to web-based AJAX applications similar in look and feel to desktop software. As the web-based applications have grown in complexity, the architecture around their development has matured into an extensible framework with "plug'n'play" capabilities. Their modular design has allowed multiple institutions to deploy the same web-based applications, tailored for their specific requirements. Examples include the NSF Earthscope USArray Transportable Array, ROADNet's Realtime Imagebank, the broadband seismic network monitoring of the University of Nevada Reno and University of California San Diego, and monitoring of the downhole arrays maintained by the University of California Santa Barbara. The success of these deployments suggest that such a framework could be applicable to other large scale sensor networks, including the developing Ocean Observatories project.

  17. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant.

    PubMed

    Moreno-Garcia, Isabel M; Palacios-Garcia, Emilio J; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J; Varo-Martinez, Marta; Real-Calvo, Rafael J

    2016-01-01

    There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant's components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid. PMID:27240365

  18. A real-time monitoring/emergency response modeling workstation for a tritium facility

    SciTech Connect

    Lawver, B.S.; Sims, J.M.; Baskett, R.L.

    1993-07-01

    At Lawrence Livermore National Laboratory (LLNL) we developed a real-time system to monitor two stacks on our tritium handling facility. The monitors transmit the stack data to a workstation which computes a 3D numerical model of atmospheric dispersion. The workstation also collects surface and upper air data from meteorological towers and a sodar. The complex meteorological and terrain setting in the Livermore Valley demands more sophisticated resolution of the three-dimensional structure of the atmosphere to reliably calculate plume dispersion than afforded by Gaussian models. We experience both mountain valley and sea breeze flows. To address these complexities, we have implemented the three-dimensional diagnostic MATHEW mass-adjusted wind field and ADPIC particle-in-cell dispersion models on the workstation for use in real-time emergency response modeling. Both MATHEW and ADPIC have shown their utility in a variety of complex settings over the last 15 years within the Department of Energy`s Atmospheric Release Advisory Capability (ARAC[1,2]) project.

  19. Real time in-line monitoring of large scale Bacillus fermentations with near-infrared spectroscopy.

    PubMed

    Alves-Rausch, José; Bienert, Roland; Grimm, Christian; Bergmaier, Dirk

    2014-11-10

    NIR spectroscopy was used to monitor Bacillus fermentations in 50 m(3) reactors under harsh industrial conditions. The BioPAT(®) Spectro NIR sensor was attached directly to the bioreactor and provided fast, sensitive, non-destructive and robust measurements without interfering with the microorganism metabolism. Multivariate data analysis techniques related the spectra collected in real time during the fermentation with reference analyte concentrations. Analyte concentrations of future batches can be determined in real time with these models. The SugarSUM parameter was modeled with a SEP of 1.33 g/L in a range of 0-35 g/L. The models for AnalyteSUM (SEP = 0.81 g/L in 0.5-43 g/L range), OD(600) (SEP = 2.88 OD in 3.5-50 OD range), dry mass (SEP = 0.09 in 0.4-1.7% range) and Acetoin (SEP = 0.94 g/L in 0-11 g/L range) also show a great prediction performance in the complex media matrix. Sophisticated process control strategies such as a feeding control of the sugar source can be implemented in the future, potentially increasing spore yield due to a reduction of carbon overflow mechanisms. Media classification with PCA identified media formulation errors. Batch evolution models, built with spectra data only, monitored the evolution of new batches by comparing it with a "golden batch" trajectory. PMID:25234572

  20. Multi-level Simulation of a Real Time Vibration Monitoring System Component

    NASA Technical Reports Server (NTRS)

    Robertson, Bryan A.; Wilkerson, Delisa

    2005-01-01

    This paper describes the development of a custom built Digital Signal Processing (DSP) printed circuit board designed to implement the Advanced Real Time Vibration Monitoring Subsystem proposed by Marshall Space Flight Center (MSFC) Transportation Directorate in 2000 for the Space Shuttle Main Engine Advanced Health Management System (AHMS). This Real Time Vibration Monitoring System (RTVMS) is being developed for ground use as part of the AHMS Health Management Computer-Integrated Rack Assembly (HMC-IRA). The HMC-IRA RTVMS design contains five DSPs which are highly interconnected through individual communication ports, shared memory, and a unique communication router that allows all the DSPs to receive digitized data fiom two multi-channel analog boards simultaneously. This paper will briefly cover the overall board design but will focus primarily on the state-of-the-art simulation environment within which this board was developed. This 16-layer board with over 1800 components and an additional mezzanine card has been an extremely challenging design. Utilization of a Mentor Graphics simulation environment provided the unique board and system level simulation capability to ascertain any timing or functional concerns before production. By combining VHDL, Synopsys Software and Hardware Models, and the Mentor Design Capture Environment, multiple simulations were developed to verify the RTVMS design. This multi-level simulation allowed the designers to achieve complete operability without error the first time the RTVMS printed circuit board was powered. The HMC-IRA design has completed all engineering and deliverable unit testing. P

  1. Publicly Available Online Tool Facilitates Real-Time Monitoring Of Vaccine Conversations And Sentiments.

    PubMed

    Bahk, Chi Y; Cumming, Melissa; Paushter, Louisa; Madoff, Lawrence C; Thomson, Angus; Brownstein, John S

    2016-02-01

    Real-time monitoring of mainstream and social media can inform public health practitioners and policy makers about vaccine sentiment and hesitancy. We describe a publicly available platform for monitoring vaccination-related content, called the Vaccine Sentimeter. With automated data collection from 100,000 mainstream media sources and Twitter, natural-language processing for automated filtering, and manual curation to ensure accuracy, the Vaccine Sentimeter offers a global real-time view of vaccination conversations online. To assess the system's utility, we followed two events: polio vaccination in Pakistan after a news story about a Central Intelligence Agency vaccination ruse and subsequent attacks on health care workers, and a controversial episode in a television program about adverse events following human papillomavirus vaccination. For both events, increased online activity was detected and characterized. For the first event, Twitter response to the attacks on health care workers decreased drastically after the first attack, in contrast to mainstream media coverage. For the second event, the mainstream and social media response was largely positive about the HPV vaccine, but antivaccine conversations persisted longer than the provaccine reaction. Using the Vaccine Sentimeter could enable public health professionals to detect increased online activity or sudden shifts in sentiment that could affect vaccination uptake. PMID:26858390

  2. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant

    PubMed Central

    Moreno-Garcia, Isabel M.; Palacios-Garcia, Emilio J.; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J.; Varo-Martinez, Marta; Real-Calvo, Rafael J.

    2016-01-01

    There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant’s components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid. PMID:27240365

  3. Image Corruption Detection in Diffusion Tensor Imaging for Post-Processing and Real-Time Monitoring

    PubMed Central

    Li, Yue; Shea, Steven M.; Lorenz, Christine H.; Jiang, Hangyi; Chou, Ming-Chung; Mori, Susumu

    2013-01-01

    Due to the high sensitivity of diffusion tensor imaging (DTI) to physiological motion, clinical DTI scans often suffer a significant amount of artifacts. Tensor-fitting-based, post-processing outlier rejection is often used to reduce the influence of motion artifacts. Although it is an effective approach, when there are multiple corrupted data, this method may no longer correctly identify and reject the corrupted data. In this paper, we introduce a new criterion called “corrected Inter-Slice Intensity Discontinuity” (cISID) to detect motion-induced artifacts. We compared the performance of algorithms using cISID and other existing methods with regard to artifact detection. The experimental results show that the integration of cISID into fitting-based methods significantly improves the retrospective detection performance at post-processing analysis. The performance of the cISID criterion, if used alone, was inferior to the fitting-based methods, but cISID could effectively identify severely corrupted images with a rapid calculation time. In the second part of this paper, an outlier rejection scheme was implemented on a scanner for real-time monitoring of image quality and reacquisition of the corrupted data. The real-time monitoring, based on cISID and followed by post-processing, fitting-based outlier rejection, could provide a robust environment for routine DTI studies. PMID:24204551

  4. Real-time sensing and monitoring in robotic gas metal arc welding

    NASA Astrophysics Data System (ADS)

    Wu, C. S.; Gao, J. Q.; Hu, J. K.

    2007-01-01

    A real-time monitoring system is developed for detecting abnormal conditions in robotic gas metal arc welding. The butt-joint test pieces with simulated large gaps are used to intentionally introduce step disturbance of welding conditions. During the welding process, the welding voltage and current signals are sampled and processed on-line to extract the characteristic information reflecting the process quality. After the first statistical processing, it is found that seven statistical parameters (the mean, standard deviation, coefficient of variance and kurtosis of welding voltage; the mean, coefficient of variance and kurtosis of welding current) show variations during the step disturbance. Through the second statistical processing of the means of the welding voltage for subgroups of continuous measurement, the statistical control chart is obtained, and an SPC (statistical process control)-based on-line identifying method is developed. Ten robotic welding experiments are conducted to verify the real-time monitoring system. It is found that the correct identification rates for normal and abnormal welding conditions are 100% and 95%, respectively.

  5. Real-time monitoring of distillations by near-infrared spectroscopy.

    PubMed

    Pasquini, Celio; Scafi, Sérgio H F

    2003-05-15

    A simple device is described to couple a fast-scanning acoustooptic tunable filter-based NIR spectrophotometer to a distillation apparatus for monitoring the condensed vapor in real time. The device consists of a small funnel whose glass neck (2-mm diameter) is bent into an "U" format to produce a flow cell of approximately 150-microL inner volume. A pair of optical fibers is used to deliver the monochromatic light and to collect the fraction passing through the glass tube. The end of the condenser of the distillation head touches the wall of the small funnel. The condensed liquid flows uncoupled from pressure changes in the interior of the distillation head. Absorbance spectra were obtained, during the distillation, as averages of 50 scans (4 s) every 5 s in the spectral range 950-1800 nm with nominal resolution of 2.0 nm. In the first experiments, the distillations were performed at constant power supplied to the sample (25 mL) in a microdistillation apparatus working without any type of reflux column. The usefulness of the real-time monitoring of distillation is demonstrated using some prepared binary mixtures and by comparing the distillation behavior of adulterated and regular gasoline samples. Data analysis and interpretation are facilitated by employing principal component analysis. The system accesses the composition of the condensate, which can separate and concentrate one or more compounds present in the original sample. PMID:12918966

  6. Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring

    NASA Astrophysics Data System (ADS)

    Malik, Bilal H.; Coté, Gerard L.

    2010-01-01

    The development of a real-time, dual-wavelength optical polarimetric system to ultimately probe the aqueous humor glucose concentrations as a means of noninvasive diabetic glucose monitoring is the long-term goal of this research. The key impact of the work is the development of an approach for the reduction of the time-variant corneal birefringence due to motion artifact, which is still a limiting factor preventing the realization of such a device. Our dual-wavelength approach utilizes real-time, closed-loop feedback that employs a classical three-term feedback controller and efficiently reduces the effect of motion artifact that appears as a common noise source for both wavelengths. In vitro results are shown for the open-loop system, and although the dual-wavelength system helps to reduce the noise, it is shown that closed-loop control is necessary to bring the noise down to a sufficient level for physiological monitoring. Specifically, in vitro measurement results with the closed-loop dual-wavelength approach demonstrate a sensitivity of 12.8 mg/dl across the physiologic glucose range in the presence of time-variant test cell birefringence. Overall, it is shown that this polarimetric system has the potential to be used as a noninvasive measure of glucose for diabetes.

  7. Real-time health monitoring of civil infrastructure systems in Colombia

    NASA Astrophysics Data System (ADS)

    Thomson, Peter; Marulanda Casas, Johannio; Marulanda Arbelaez, Johannio; Caicedo, Juan

    2001-08-01

    Colombia's topography, climatic conditions, intense seismic activity and acute social problems place high demands on the nations deteriorating civil infrastructure. Resources that are available for maintenance of the road and railway networks are often misdirected and actual inspection methods are limited to a visual examination. New techniques for inspection and evaluation of safety and serviceability of civil infrastructure, especially bridges, must be developed. Two cases of civil structures with health monitoring systems in Colombia are presented in this paper. Construction of the Pereria-Dos Quebradas Viaduct was completed in 1997 with a total cost of 58 million dollars, including 1.5 million dollars in health monitoring instrumentation provided and installed by foreign companies. This health monitoring system is not yet fully operational due to the lack of training of national personnel in system operation and extremely limited technical documentation. In contrast to the Pereria-Dos Quebradas Viaduct monitoring system, the authors have proposed a relatively low cost health monitoring system via telemetry. This system has been implemented for real-time monitoring of accelerations of El Hormiguero Bridge spanning the Cauca River using the Colombian Southwest Earthquake Observatory telemetry systems. This two span metallic bridge, located along a critical road between the cities of Puerto Tejada and Cali in the Cauca Valley, was constructed approximately 50 years ago. Experiences with this system demonstrate how effective low cost systems can be used to remotely monitor the structural integrity of deteriorating structures that are continuously subject to high loading conditions.

  8. 4D Near Real-Time Environmental Monitoring Using Highly Temporal LiDAR

    NASA Astrophysics Data System (ADS)

    Höfle, Bernhard; Canli, Ekrem; Schmitz, Evelyn; Crommelinck, Sophie; Hoffmeister, Dirk; Glade, Thomas

    2016-04-01

    The last decade has witnessed extensive applications of 3D environmental monitoring with the LiDAR technology, also referred to as laser scanning. Although several automatic methods were developed to extract environmental parameters from LiDAR point clouds, only little research has focused on highly multitemporal near real-time LiDAR (4D-LiDAR) for environmental monitoring. Large potential of applying 4D-LiDAR is given for landscape objects with high and varying rates of change (e.g. plant growth) and also for phenomena with sudden unpredictable changes (e.g. geomorphological processes). In this presentation we will report on the most recent findings of the research projects 4DEMON (http://uni-heidelberg.de/4demon) and NoeSLIDE (https://geomorph.univie.ac.at/forschung/projekte/aktuell/noeslide/). The method development in both projects is based on two real-world use cases: i) Surface parameter derivation of agricultural crops (e.g. crop height) and ii) change detection of landslides. Both projects exploit the "full history" contained in the LiDAR point cloud time series. One crucial initial step of 4D-LiDAR analysis is the co-registration over time, 3D-georeferencing and time-dependent quality assessment of the LiDAR point cloud time series. Due to the high amount of datasets (e.g. one full LiDAR scan per day), the procedure needs to be performed fully automatically. Furthermore, the online near real-time 4D monitoring system requires to set triggers that can detect removal or moving of tie reflectors (used for co-registration) or the scanner itself. This guarantees long-term data acquisition with high quality. We will present results from a georeferencing experiment for 4D-LiDAR monitoring, which performs benchmarking of co-registration, 3D-georeferencing and also fully automatic detection of events (e.g. removal/moving of reflectors or scanner). Secondly, we will show our empirical findings of an ongoing permanent LiDAR observation of a landslide (Gresten

  9. Demonstration of real-time monitoring of a photolithographic exposure process using chemical ionization mass spectrometry

    SciTech Connect

    Mowry, C.D.

    1998-02-01

    Silicon wafers are coated with photoresist and exposed to ultraviolet (UV) light in a laboratory to simulate typical conditions expected in an actual semiconductor manufacturing process tool. Air is drawn through the exposure chamber and analyzed using chemical ionization mass spectrometry (CI/MS). Species that evaporate or outgas from the wafer are thus detected. The purpose of such analyses is to determine the potential of CI/MS as a real-time process monitoring tool. Results demonstrate that CI/MS can remotely detect the products evolved before, during, and after wafer UV exposure; and that the quantity and type of products vary with the photoresist coated on the wafer. Such monitoring could provide semiconductor manufacturers benefits in quality control and process analysis. Tool and photoresist manufacturers could also realize benefits from this measurement technique with respect to new tool, method, or photoresist development. The benefits realized can lead to improved device yields and reduced product and development costs.

  10. Sensitive Real-Time Monitoring of Refractive Indexes Using a Novel Graphene-Based Optical Sensor

    PubMed Central

    Xing, Fei; Liu, Zhi-Bo; Deng, Zhi-Chao; Kong, Xiang-Tian; Yan, Xiao-Qing; Chen, Xu-Dong; Ye, Qing; Zhang, Chun-Ping; Chen, Yong-Sheng; Tian, Jian-Guo

    2012-01-01

    Based on the polarization-sensitive absorption of graphene under conditions of total internal reflection, a novel optical sensor combining graphene and a microfluidic structure was constructed to achieve the sensitive real-time monitoring of refractive indexes. The atomic thickness and strong broadband absorption of graphene cause it to exhibit very different reflectivity for transverse electric and transverse magnetic modes in the context of a total internal reflection structure, which is sensitive to the media in contact with the graphene. A graphene refractive index sensor can quickly and sensitively monitor changes in the local refractive index with a fast response time and broad dynamic range. These results indicate that graphene, used in a simple and efficient total internal reflection structure and combined with microfluidic techniques, is an ideal material for fabricating refractive index sensors and biosensor devices, which are in high demand. PMID:23205270

  11. Real-time biomass-concentration monitoring in animal-cell cultures.

    PubMed

    Konstantinov, K; Chuppa, S; Sajan, E; Tsai, Y; Yoon, S; Golini, F

    1994-08-01

    The accurate, on-line measurement of cell concentration in animal-cell cultures is an on-going problem in bioprocess engineering, and the development of new monitoring techniques is an area of intensive and fruitful research. This article summarizes the recent advances, trends and problems in this field and focuses, in particular, on optical sensors, including the latest laser and infrared probes. Alternative methods, such as multiple-extinction fluorimetry, real-time imaging and particle-size analysis, are also discussed. Although many of these techniques are still at an experimental stage, we believe that some of them have been developed sufficiently that we advocate their routine use in bioprocess monitoring and control. PMID:7765262

  12. Real-time data acquisition system for monitoring patients in an intensive care unit (ICU)

    NASA Astrophysics Data System (ADS)

    Mahmoud, Mohamed

    2003-04-01

    In Intensive Care Unit (ICU) patient"s physiological variables such as heart rate, blood pressure, temperature, ventilation and brain activity are constantly monitored on-line, and medicine doses are given to ensure that these variables remain within desired limits. Such data are vital not only for on-line but also for off-line analyses and for medical staff training. Furthermore, in cases of deceased patients it is very important to retrieve these data in order to investigate the causes of deaths. This paper is introducing a design of a Real-Time Data Acquisition System for monitoring patients in Intensive Care Unit (ICU). The proposed design is implemented on a standard personal computer (PC) and operating system without using any sophisticated hardware or interface devices.

  13. Real-time monitoring of railway infrastructures using fibre Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Roveri, N.; Carcaterra, A.; Sestieri, A.

    2015-08-01

    In this work we present the results of a field trial with a FBG sensor array system for the real time monitoring of railway traffic and for the structural health monitoring of both the railway track and train wheels. The test campaign is performed on the 2nd line of Milan metropolitan underground, employing more than 50 FBG sensors along 1.5 km of the rail track, where the trains are tested during daily passenger rail transport, with a roughly maximum speeds of 90 km/h. The measurements were continuatively performed for over 6 months, with a sampling frequency of about 400 Hz. The large amount of data/sensors allows a rather accurate statistical treatment of the measurement data and permits, with dedicated algorithms, the estimation of rail and wheel wear, key traffic parameters such as the number of axles, the train speed and load, and, in the next future, the detection of localized imperfections.

  14. [Methods Used for Monitoring Cure Reactions in Real-time in an Autoclave

    NASA Technical Reports Server (NTRS)

    Cooper, John B.; Wise, Kent L.; Jensen, Brian J. (Technical Monitor)

    2000-01-01

    The goal of the research was to investigate methods for monitoring cure reactions in real-time in an autoclave. This is of particular importance to NASA Langley Research Center because polyimides were proposed for use in the High Speed Civil Transport (HSCT) program. Understanding the cure chemistry behind the polyimides would allow for intelligent processing of the composites made from their use. This work has led to two publications in peer-reviewed journals and a patent. The journal articles are listed as Appendix A which is on the instrument design of the research and Appendix B which is on the cure chemistry. Also, a patent has been awarded for the instrumental design developed under this grant which is given as Appendix C. There has been a significant amount of research directed at developing methods for monitoring cure reactions in real-time within the autoclave. The various research efforts can be categorized as methods providing either direct chemical bonding information or methods that provide indirect chemical bonding information. Methods falling into the latter category are fluorescence, dielectric loss, ultrasonic and similar type methods. Correlation of such measurements with the underlying chemistry is often quite difficult since these techniques do not allow monitoring of the curing chemistry which is ultimately responsible for material properties. Direct methods such as vibrational spectroscopy, however, can often be easily correlated with the underlying chemistry of a reaction. Such methods include Raman spectroscopy, mid-IR absorbance, and near-IR absorbance. With the recent advances in fiber-optics, these spectroscopic techniques can be applied to remote on-line monitoring.

  15. Integrating and Visualizing Tropical Cyclone Data Using the Real Time Mission Monitor

    NASA Technical Reports Server (NTRS)

    Goodman, H. Michael; Blakeslee, Richard; Conover, Helen; Hall, John; He, Yubin; Regner, Kathryn

    2009-01-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the NASA Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM is extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, scientists, and managers appreciate the contributions that RTMM makes to their flight projects. A broad spectrum of interdisciplinary scientists used RTMM during field campaigns including the hurricane-focused 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 NOAA-NASA Aerosonde Hurricane Noel flight, 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), plus a soil moisture (SMAP-VEX) and two arctic research experiments (ARCTAS) in 2008. Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated "on the fly". The resultant flight plan is then immediately posted to the Google Earth-based RTMM for interested scientists to view the planned flight track and subsequently compare it to the actual real time flight progress. We are planning additional capabilities to RTMM including collaborations with the Jet Propulsion

  16. Monitoring and simulating real-time electric power system operation with phasor measurements

    SciTech Connect

    Phadke, A.G.; Thorp, J.S.

    1995-01-01

    In this research project, two important results have been achieved. The concept of generator axis load flow has been developed more fully, and has been tested through simulations on the 39-bus system (with 10 generators). Generator axis load flow is a load flow calculation which views the entire network from a few retained buses such as the internal nodes of the generators. As these nodes can be indirectly monitored in real time through phasor measurements of generator terminal quantities, it becomes possible to track and predict the behavior of the entire network from these few observation points. This is extremely valuable in the task of predicting network instability in real time. The task of instability prediction of a multi-machine power system is one of the most difficult analytical exercises. We investigated two of the most promising approaches: the extended equal area method, and the transient energy function method. Although both of these methods work well in many instances, we have shown that in other cases, the predictions made by the two methods are incorrect. The failure of the methods can be traced to their inability to deal with the behavior of the system after the first turning point of the motor swing curves. Instead of using these methods, we propose the direct integration of the machine swing equations following the start of a disturbance. Coupled with the generator aids load flow developed above, and using the high speed computers available now, we show that for systems of significant size (39 bus system), accurate predictions through direct computation are possible. The report also includes results on computational efficiency of the method of faster-than-real-time integration using machine equations and the generator aids load flow. It is anticipated that this technique will be useful in most practical applications in power system control centers of the future.

  17. Pilot study of real-time groundwater monitoring coupled to USGS streamgaging stations

    NASA Astrophysics Data System (ADS)

    Constantz, J. E.; Eddy-Miller, C.; Caldwell, R.; Wheeler, J.; Barlow, J.

    2010-12-01

    Many USGS streamgages transmit real-time, 15-minute frequency, stage-derived streamflow, as well as stream temperature (plus other natural tracers/water-quality parameters as needed) via bi-hourly upload to the Web. Existing hardware/software have capacity to upload numerous additional parameters, affording opportunities to simultaneously report real-time near-stream groundwater (GW) levels and temperature (plus natural GW tracers/water-quality parameters as desired). A pilot study at 6 river reaches in Montana, Wyoming, and Mississippi is based on locating shallow piezometers (aka observations wells) near established USGS streamgaging stations to create real-time GW/streamgaging stations. All provisional data are immediately available as stream-stage elevation, streamflow, stream temperature, GW depth, GW elevation, and GW-temperature for all 6 study sites (URL below). The data are being used to evaluate the scientific value and cost impacts of maintaining coupled groundwater elevation and temperature data along with surface-water stage and temperature data continuously generated at the gaging station. Initial results are highly promising with respect to GW-infrastructure installation, continuous operating cost, and scientific value from insight of hydrologic processes at sites. Initial scientific insight ranges from: 1) contribution of decreased GW-discharge to winter ice jams at road crossings (WY), 2) variations in near-stream hydraulic gradients caused by local flood irrigation (MT), and 3) potential impacts of stream/GW exchanges on the fate and transport of nitrate (MS). Additional data collected as add-on to the pilot study include vertical GW temperature gradients, providing opportunities for future continuous streambed heat-tracer estimated water fluxes to monitor seasonal GW discharge/recharge trends.

  18. Efficient near-real-time monitoring of 3D surface displacements in complex landslide scenarios

    NASA Astrophysics Data System (ADS)

    Allasia, Paolo; Manconi, Andrea; Giordan, Daniele; Baldo, Marco; Lollino, Giorgio

    2013-04-01

    Ground deformation measurements play a key role in monitoring activities of landslides. A wide spectrum of instruments and methods is nowadays available, going from in-situ to remote sensing approaches. In emergency scenarios, monitoring is often based on automated instruments capable to achieve accurate measurements, possibly with a very high temporal resolution, in order to achieve the best information about the evolution of the landslide in near-real-time, aiming at early warning purposes. However, the available tools for a rapid and efficient exploitation, understanding and interpretation of the retrieved measurements is still a challenge. This issue is particularly relevant in contexts where monitoring is fundamental to support early warning systems aimed at ensuring safety to people and/or infrastructures. Furthermore, in many cases the results obtained might be of difficult reading and divulgation, especially when people of different backgrounds are involved (e.g. scientists, authorities, civil protection operators, decision makers, etc.). In this work, we extend the concept of automatic and near real time from the acquisition of measurements to the data processing and divulgation, in order to achieve an efficient monitoring of surface displacements in landslide scenarios. We developed an algorithm that allows to go automatically and in near-real-time from the acquisition of 3D displacements on a landslide area to the efficient divulgation of the monitoring results via WEB. This set of straightforward procedures is called ADVICE (ADVanced dIsplaCement monitoring system for Early warning), and has been already successfully applied in several emergency scenarios. The algorithm includes: (i) data acquisition and transfer protocols; (ii) data collection, filtering, and validation; (iii) data analysis and restitution through a set of dedicated software, such as ©3DA [1]; (iv) recognition of displacement/velocity threshold and early warning (v) short term

  19. Real-time monitoring of cisplatin cytotoxicity on three-dimensional spheroid tumor cells

    PubMed Central

    Baek, NamHuk; Seo, Ok Won; Lee, Jaehwa; Hulme, John; An, Seong Soo A

    2016-01-01

    Three-dimensional (3D) cell cultivation is a powerful technique for monitoring and understanding diverse cellular mechanisms in developmental cancer and neuronal biology, tissue engineering, and drug development. 3D systems could relate better to in vivo models than two-dimensional (2D) cultures. Several factors, such as cell type, survival rate, proliferation rate, and gene and protein expression patterns, determine whether a particular cell line can be adapted to a 3D system. The 3D system may overcome some of the limitations of 2D cultures in terms of cell–cell communication and cell networks, which are essential for understanding differentiation, structural organization, shape, and extended connections with other cells or organs. Here, the effect of the anticancer drug cisplatin, also known as cis-diamminedichloroplatinum (II) or CDDP, on adenosine triphosphate (ATP) generation was investigated using 3D spheroid-forming cells and real-time monitoring for 7 days. First, 12 cell lines were screened for their ability to form 3D spheroids: prostate (DU145), testis (F9), embryonic fibroblast (NIH-3T3), muscle (C2C12), embryonic kidney (293T), neuroblastoma (SH-SY5Y), adenocarcinomic alveolar basal epithelial cell (A549), cervical cancer (HeLa), HeLa contaminant (HEp2), pituitary epithelial-like cell (GH3), embryonic cell (PA317), and osteosarcoma (U-2OS) cells. Of these, eight cell lines were selected: NIH-3T3, C2C12, 293T, SH-SY5Y, A549, HeLa, PA317, and U-2OS; and five underwent real-time monitoring of CDDP cytotoxicity: HeLa, A549, 293T, SH-SY5Y, and U-2OS. ATP generation was blocked 1 day after addition of 50 μM CDDP, but cytotoxicity in HeLa, A549, SH-SY5Y, and U-2OS cells could be visualized only 4 days after treatment. In 293T cells, CDDP failed to kill entirely the culture and ATP generation was only partially blocked after 1 day. This suggests potential CDDP resistance of 293T cells or metabolic clearance of the drug. Real-time monitoring and ATP

  20. Near-Real-Time Sismo-acoustic Submarine Station for offshore monitoring

    NASA Astrophysics Data System (ADS)

    D'Anna, Giuseppe; D'Alessandro, Antonino; Fertitta, Gioacchino; Fraticelli, Nicola; Calore, Daniele

    2016-04-01

    From the early 1980's, Italian seismicity is monitored by the National Seismic Network (NSN). The network has been considerably enhanced by INGV since 2005 by 24-bit digital stations equipped with broad-band sensors. The NSN is nowadays constituted by about 300 on-land seismic station able to detect and locate also small magnitude earthquake in the whole Italian peninsula. However, the lack of offshore seismic stations does not allow the accurate estimation of hypocentral and focal parameters of small magnitude earthquakes occurring in offshore areas. As in the Mediterranean area there is an intense offshore seismic activity, an extension of the seismic monitoring to the sea would be beneficial. There are two types of stations that could be used to extend the network towards the sea: the first type is connected to the coast though a cable, the second type is isolated (or stand alone) and works autonomously. Both solutions have serious limitations: the first one, for several technical and economic problems, linked to the indispensable transmission/alimentation cable, cannot be installed far from the coast; the second one, allows access to the recorded data, only after they are recovered from the seabed. It is clear that these technical solutions are not suitable for the real time monitoring of the offshore seismicity or for the realization of a tsunami warning system. For this reason, in early 2010, the OBSLab of Gibilmanna begins the design of a submarine station able to overcome the limitations of the two systems above. The station isbuilt under the project EMSO-MedIT. The two stations built have already been tested in dock and ready for installation. One of this station will be installed, in few time, in the southern Tyrrhenian Sea, near the epicentre of the Palermo 2002 main shock. The sea bottom station will be equipped with 2 very broadband 3C seismometers, a broad band hydrophone, a differential and an absolute pressure gauge. The station includes a submarine

  1. Real-Time GPS Monitoring for Earthquake Rapid Assessment in the San Francisco Bay Area

    NASA Astrophysics Data System (ADS)

    Guillemot, C.; Langbein, J. O.; Murray, J. R.

    2012-12-01

    The U.S. Geological Survey Earthquake Science Center has deployed a network of eight real-time Global Positioning System (GPS) stations in the San Francisco Bay area and is implementing software applications to continuously evaluate the status of the deformation within the network. Real-time monitoring of the station positions is expected to provide valuable information for rapidly estimating source parameters should a large earthquake occur in the San Francisco Bay area. Because earthquake response applications require robust data access, as a first step we have developed a suite of web-based applications which are now routinely used to monitor the network's operational status and data streaming performance. The web tools provide continuously updated displays of important telemetry parameters such as data latency and receive rates, as well as source voltage and temperature information within each instrument enclosure. Automated software on the backend uses the streaming performance data to mitigate the impact of outages, radio interference and bandwidth congestion on deformation monitoring operations. A separate set of software applications manages the recovery of lost data due to faulty communication links. Displacement estimates are computed in real-time for various combinations of USGS, Plate Boundary Observatory (PBO) and Bay Area Regional Deformation (BARD) network stations. We are currently comparing results from two software packages (one commercial and one open-source) used to process 1-Hz data on the fly and produce estimates of differential positions. The continuous monitoring of telemetry makes it possible to tune the network to minimize the impact of transient interruptions of the data flow, from one or more stations, on the estimated positions. Ongoing work is focused on using data streaming performance history to optimize the quality of the position, reduce drift and outliers by switching to the best set of stations within the network, and

  2. Applications and usage of the real-time Neutron Monitor Database

    NASA Astrophysics Data System (ADS)

    Mavromichalaki, H.; Papaioannou, A.; Plainaki, C.; Sarlanis, C.; Souvatzoglou, G.; Gerontidou, M.; Papailiou, M.; Eroshenko, E.; Belov, A.; Yanke, V.; Flückiger, E. O.; Bütikofer, R.; Parisi, M.; Storini, M.; Klein, K.-L.; Fuller, N.; Steigies, C. T.; Rother, O. M.; Heber, B.; Wimmer-Schweingruber, R. F.; Kudela, K.; Strharsky, I.; Langer, R.; Usoskin, I.; Ibragimov, A.; Chilingaryan, A.; Hovsepyan, G.; Reymers, A.; Yeghikyan, A.; Kryakunova, O.; Dryn, E.; Nikolayevskiy, N.; Dorman, L.; Pustil'Nik, L.

    2011-06-01

    A high-time resolution Neutron Monitor Database (NMDB) has started to be realized in the frame of the Seventh Framework Programme of the European Commission. This database will include cosmic ray data from at least 18 neutron monitors distributed around the world and operated in real-time. The implementation of the NMDB will provide the opportunity for several research applications most of which will be realized in real-time mode. An important one will be the establishment of an Alert signal when dangerous solar cosmic ray particles are heading to the Earth, resulting into ground level enhancements effects registered by neutron monitors. Furthermore, on the basis of these events analysis, the mapping of all ground level enhancement features in near real-time mode will provide an overall picture of these phenomena and will be used as an input for the calculation of the ionization of the atmosphere. The latter will be useful together with other contributions to radiation dose calculations within the atmosphere at several altitudes and will reveal the absorbed doses during flights. Moreover, special algorithms for anisotropy and pitch angle distribution of solar cosmic rays, which have been developed over the years, will also be set online offering the advantage to give information about the conditions of the interplanetary space. All of the applications will serve the needs of the modern world which relies at space environment and will use the extensive network of neutron monitors as a multi-directional spectrographic detector. On top of which, the decreases of the cosmic ray intensity - known as Forbush decreases - will also be analyzed and a number of important parameters such as galactic cosmic ray anisotropy will be made available to the users of NMDB. A part of the NMDB project is also dedicated to the creation of a public outreach website with the scope to inform about cosmic rays and their possible effects on humans, technological systems and space

  3. Real-time monitoring of cisplatin cytotoxicity on three-dimensional spheroid tumor cells.

    PubMed

    Baek, NamHuk; Seo, Ok Won; Lee, Jaehwa; Hulme, John; An, Seong Soo A

    2016-01-01

    Three-dimensional (3D) cell cultivation is a powerful technique for monitoring and understanding diverse cellular mechanisms in developmental cancer and neuronal biology, tissue engineering, and drug development. 3D systems could relate better to in vivo models than two-dimensional (2D) cultures. Several factors, such as cell type, survival rate, proliferation rate, and gene and protein expression patterns, determine whether a particular cell line can be adapted to a 3D system. The 3D system may overcome some of the limitations of 2D cultures in terms of cell-cell communication and cell networks, which are essential for understanding differentiation, structural organization, shape, and extended connections with other cells or organs. Here, the effect of the anticancer drug cisplatin, also known as cis-diamminedichloroplatinum (II) or CDDP, on adenosine triphosphate (ATP) generation was investigated using 3D spheroid-forming cells and real-time monitoring for 7 days. First, 12 cell lines were screened for their ability to form 3D spheroids: prostate (DU145), testis (F9), embryonic fibroblast (NIH-3T3), muscle (C2C12), embryonic kidney (293T), neuroblastoma (SH-SY5Y), adenocarcinomic alveolar basal epithelial cell (A549), cervical cancer (HeLa), HeLa contaminant (HEp2), pituitary epithelial-like cell (GH3), embryonic cell (PA317), and osteosarcoma (U-2OS) cells. Of these, eight cell lines were selected: NIH-3T3, C2C12, 293T, SH-SY5Y, A549, HeLa, PA317, and U-2OS; and five underwent real-time monitoring of CDDP cytotoxicity: HeLa, A549, 293T, SH-SY5Y, and U-2OS. ATP generation was blocked 1 day after addition of 50 μM CDDP, but cytotoxicity in HeLa, A549, SH-SY5Y, and U-2OS cells could be visualized only 4 days after treatment. In 293T cells, CDDP failed to kill entirely the culture and ATP generation was only partially blocked after 1 day. This suggests potential CDDP resistance of 293T cells or metabolic clearance of the drug. Real-time monitoring and ATP

  4. Managing landslide monitoring networks with near real time Geo-browsers

    NASA Astrophysics Data System (ADS)

    Giordan, Daniele; Dell'Anese, Federico; Manconi, Andrea; Allasia, Paolo

    2015-04-01

    Monitoring applications are an extremely important task for the analysis and understanding geo-hazards, as well as for promptly recognizing and eventually warn about their potential paroxysmal evolution. Nowadays, a wide range of monitoring strategies and instruments can be applied in operative monitoring scenarios, and the technological evolution of last decades has considerably increased the possibility of managing complex multi-parametric networks. The effectiveness of a monitoring network in geo-hazard scenarios is usually directly associated to the type of instruments considered, the suitability and completeness of the monitoring network, and the frequency of acquisition of measurements (revisit time). However, especially during emergency scenarios, another fundamental parameter to consider is the possibility to achieve an easy and clear access to all the available information. The Geohazard Monitoring Group of CNR IRPI exploited the Google Earth® plugin to organize and present the information obtained d from a monitoring network installed on a landslide scenario in a straightforward fashion. The system restitutes all the available information on the monitored area as different layers, which are superimposed to the base map and digital elevation models provided by Google. The layers include data as raster (ortophotos, shaded relieves, etc.) and point information (position of instruments, monitored targets, etc.), as well as the most recent results obtained from the monitoring network in near real time. The resulting geo-browser is hosted on a dedicated website, where authorized end-users can select between several thematic visualizations. The system has been developed and tested in the Mont de La Saxe landslide scenario, a large instable slope located in the northwestern Italian. This new data exploitation modality has demonstrated to be an efficient tool to support the decision makers in particular during emergency phases.

  5. The first clinical treatment with kilovoltage intrafraction monitoring (KIM): A real-time image guidance method

    SciTech Connect

    Keall, Paul J. O’Brien, Ricky; Huang, Chen-Yu; Aun Ng, Jin; Colvill, Emma; Rugaard Poulsen, Per; Fledelius, Walther; Juneja, Prabhjot; Booth, Jeremy T.; Simpson, Emma; Bell, Linda; Alfieri, Florencia; Eade, Thomas; Kneebone, Andrew

    2015-01-15

    Purpose: Kilovoltage intrafraction monitoring (KIM) is a real-time image guidance method that uses widely available radiotherapy technology, i.e., a gantry-mounted x-ray imager. The authors report on the geometric and dosimetric results of the first patient treatment using KIM which occurred on September 16, 2014. Methods: KIM uses current and prior 2D x-ray images to estimate the 3D target position during cancer radiotherapy treatment delivery. KIM software was written to process kilovoltage (kV) images streamed from a standard C-arm linear accelerator with a gantry-mounted kV x-ray imaging system. A 120° pretreatment kV imaging arc was acquired to build the patient-specific 2D to 3D motion correlation. The kV imager was activated during the megavoltage (MV) treatment, a dual arc VMAT prostate treatment, to estimate the 3D prostate position in real-time. All necessary ethics, legal, and regulatory requirements were met for this clinical study. The quality assurance processes were completed and peer reviewed. Results: During treatment, a prostate position offset of nearly 3 mm in the posterior direction was observed with KIM. This position offset did not trigger a gating event. After the treatment, the prostate motion was independently measured using kV/MV triangulation, resulting in a mean difference of less than 0.6 mm and standard deviation of less than 0.6 mm in each direction. The accuracy of the marker segmentation was visually assessed during and after treatment and found to be performing well. During treatment, there were no interruptions due to performance of the KIM software. Conclusions: For the first time, KIM has been used for real-time image guidance during cancer radiotherapy. The measured accuracy and precision were both submillimeter for the first treatment fraction. This clinical translational research milestone paves the way for the broad implementation of real-time image guidance to facilitate the detection and correction of geometric and

  6. Apnea MedAssist: real-time sleep apnea monitor using single-lead ECG.

    PubMed

    Bsoul, Majdi; Minn, Hlaing; Tamil, Lakshman

    2011-05-01

    We have developed a low-cost, real-time sleep apnea monitoring system ''Apnea MedAssist" for recognizing obstructive sleep apnea episodes with a high degree of accuracy for both home and clinical care applications. The fully automated system uses patient's single channel nocturnal ECG to extract feature sets, and uses the support vector classifier (SVC) to detect apnea episodes. "Apnea MedAssist" is implemented on Android operating system (OS) based smartphones, uses either the general adult subject-independent SVC model or subject-dependent SVC model, and achieves a classification F-measure of 90% and a sensitivity of 96% for the subject-independent SVC. The real-time capability comes from the use of 1-min segments of ECG epochs for feature extraction and classification. The reduced complexity of "Apnea MedAssist" comes from efficient optimization of the ECG processing, and use of techniques to reduce SVC model complexity by reducing the dimension of feature set from ECG and ECG-derived respiration signals and by reducing the number of support vectors. PMID:20952340

  7. Real-Time Personalized Monitoring to Estimate Occupational Heat Stress in Ambient Assisted Working.

    PubMed

    Pancardo, Pablo; Acosta, Francisco D; Hernández-Nolasco, José Adán; Wister, Miguel A; López-de-Ipiña, Diego

    2015-01-01

    Ambient Assisted Working (AAW) is a discipline aiming to provide comfort and safety in the workplace through customization and technology. Workers' comfort may be compromised in many labor situations, including those depending on environmental conditions, like extremely hot weather conduces to heat stress. Occupational heat stress (OHS) happens when a worker is in an uninterrupted physical activity and in a hot environment. OHS can produce strain on the body, which leads to discomfort and eventually to heat illness and even death. Related ISO standards contain methods to estimate OHS and to ensure the safety and health of workers, but they are subjective, impersonal, performed a posteriori and even invasive. This paper focuses on the design and development of real-time personalized monitoring for a more effective and objective estimation of OHS, taking into account the individual user profile, fusing data from environmental and unobtrusive body sensors. Formulas employed in this work were taken from different domains and joined in the method that we propose. It is based on calculations that enable continuous surveillance of physical activity performance in a comfortable and healthy manner. In this proposal, we found that OHS can be estimated by satisfying the following criteria: objective, personalized, in situ, in real time, just in time and in an unobtrusive way. This enables timely notice for workers to make decisions based on objective information to control OHS. PMID:26184218

  8. Real-Time Monitoring of Cellular Bioenergetics with a Multi-Analyte Screen-Printed Electrode

    PubMed Central

    McKenzie, Jennifer R.; Cognata, Andrew C.; Davis, Anna N.; Wikswo, John P.; Cliffel, David E.

    2016-01-01

    Real-time monitoring of changes to cellular bioenergetics can provide new insights into mechanisms of action for disease and toxicity. This work describes the development of a multi-analyte screen-printed electrode for the detection of analytes central to cellular bioenergetics: glucose, lactate, oxygen, and pH. Platinum screen-printed electrodes were designed in-house and printed by Pine Research Instrumentation. Electrochemical plating techniques were used to form quasi-reference and pH electrodes. A Dimatix materials inkjet printer was used to deposit enzyme and polymer films to form sensors for glucose, lactate, and oxygen. These sensors were evaluated in bulk solution and microfluidic environments, and found to behave reproducibly and possess a lifetime of up to six weeks. Linear ranges and limits of detection for enzyme-based sensors were found to have an inverse relationship with enzyme loading, and iridium oxide pH sensors were found to have super-Nernstian responses. Preliminary measurements where the sensor was enclosed within a microfluidic channel with RAW 264.7 macrophages were performed to demonstrate the sensors’ capabilities for performing real-time microphysiometry measurements. PMID:26125545

  9. The Real Time Mission Monitor: A Situational Awareness Tool For Managing Experiment Assets

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard; Hall, John; Goodman, Michael; Parker, Philip; Freudinger, Larry; He, Matt

    2007-01-01

    The NASA Real Time Mission Monitor (RTMM) is a situational awareness tool that integrates satellite, airborne and surface data sets; weather information; model and forecast outputs; and vehicle state data (e.g., aircraft navigation, satellite tracks and instrument field-of-views) for field experiment management RTMM optimizes science and logistic decision-making during field experiments by presenting timely data and graphics to the users to improve real time situational awareness of the experiment's assets. The RTMM is proven in the field as it supported program managers, scientists, and aircraft personnel during the NASA African Monsoon Multidisciplinary Analyses experiment during summer 2006 in Cape Verde, Africa. The integration and delivery of this information is made possible through data acquisition systems, network communication links and network server resources built and managed by collaborators at NASA Dryden Flight Research Center (DFRC) and Marshall Space Flight Center (MSFC). RTMM is evolving towards a more flexible and dynamic combination of sensor ingest, network computing, and decision-making activities through the use of a service oriented architecture based on community standards and protocols.

  10. Real-time Monitoring and Simulating of Urban Flood, a Case Study in Guangzhou

    NASA Astrophysics Data System (ADS)

    Huang, H.; Wang, X.; Zhang, S.; Liu, Y.

    2014-12-01

    In recent years urban flood frequently occurred and seriously impacted city's normal operation, particular on transportation. The increase of urban flood could be attributed to many factors, such as the increase of impervious land surface and extreme precipitation, the decrease of surface storage capacity, poor maintenance of drainage utilities, and so on. In order to provide accurate and leading prediction on urban flooding, this study acquires precise urban topographic data via air-borne Lidar system, collects detailed underground drainage pipes, and installs in-situ monitoring networks on precipitation, water level, video record and traffic speed in the downtown area of Panyu District, Guangzhou, China. Based on the above data acquired, a urban flood model with EPA SWMM5 is established to simulate the flooding and inundation processes in the study area of 20 km2. The model is driven by the real-time precipitation data and calibrated by the water level data, which are converted to flooding volume with precise topographic data. After calibration, the model could be employed to conduct sensitivity analysis for investigating primary factors of urban flooding, and to simulate the flooding processes in different scenarios, which are beneficial to assessment of flooding risk and drainage capacity. This model is expected to provide real-time forecasting in emergency management.

  11. Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes.

    PubMed

    Morgan, Bruce; Van Laer, Koen; Owusu, Theresa N E; Ezeriņa, Daria; Pastor-Flores, Daniel; Amponsah, Prince Saforo; Tursch, Anja; Dick, Tobias P

    2016-06-01

    Genetically encoded probes based on the H2O2-sensing proteins OxyR and Orp1 have greatly increased the ability to detect elevated H2O2 levels in stimulated or stressed cells. However, these proteins are not sensitive enough to monitor metabolic H2O2 baseline levels. Using yeast as a platform for probe development, we developed two peroxiredoxin-based H2O2 probes, roGFP2-Tsa2ΔCR and roGFP2-Tsa2ΔCPΔCR, that afford such sensitivity. These probes are ∼50% oxidized under 'normal' unstressed conditions and are equally responsive to increases and decreases in H2O2. Hence, they permit fully dynamic, real-time measurement of basal H2O2 levels, with subcellular resolution, in living cells. We demonstrate that expression of these probes does not alter endogenous H2O2 homeostasis. The roGFP2-Tsa2ΔCR probe revealed real-time interplay between basal H2O2 levels and partial oxygen pressure. Furthermore, it exposed asymmetry in H2O2 trafficking between the cytosol and mitochondrial matrix and a strong correlation between matrix H2O2 levels and cellular growth rate. PMID:27089028

  12. Real time charge efficiency monitoring for nickel electrodes in NICD and NIH2 cells

    NASA Technical Reports Server (NTRS)

    Zimmerman, A. H.

    1987-01-01

    The charge efficiency of nickel-cadmium and nickel-hydrogen battery cells is critical in spacecraft applications for determining the amount of time required for a battery to reach a full state of charge. As the nickel-cadmium or nickel-hydrogen batteries approach about 90 percent state of charge, the charge efficiency begins to drop towards zero, making estimation of the total amount of stored charge uncertain. Charge efficiency estimates are typically based on prior history of available capacity following standardized conditions for charge and discharge. These methods work well as long as performance does not change significantly. A relatively simple method for determining charge efficiencies during real time operation for these battery cells would be a tremendous advantage. Such a method was explored and appears to be quite well suited for application to nickel-cadmium and nickel-hydrogen battery cells. The charge efficiency is monitored in real time, using only voltage measurements as inputs. With further evaluation such a method may provide a means to better manage charge control of batteries, particularly in systems where a high degree of autonomy or system intelligence is required.

  13. Real-time QCM-D monitoring of cellular responses to different cytomorphic agents.

    PubMed

    Fatisson, Julien; Azari, Fereshteh; Tufenkji, Nathalie

    2011-03-15

    Quartz crystal microbalance with dissipation monitoring (QCM-D) is used for real-time in situ detection of cytoskeletal changes in live primary endothelial cells in response to different cytomorphic agents; namely, the surfactant Triton-X 100 (TX-100) and bacterial lipopolysaccharide (LPS). Reproducible dissipation versus frequency (Df) plots provide unique signatures of the interactions between endothelial cells and cytomorphic agents. While the QCM-D response for TX-100 can be described in two steps (changes in the osmotic pressure of the medium prior to observing the expected cell lysis), LPS results in a different single-phase signal. A complementary analysis is carried out to evaluate the possible competitive effects of TX-100 and LPS through the QCM-D response to BAEC stress by analyzing the Df plots obtained. Experiments with non-toxic components (fibronectin or serum) produce a different QCM-D response than that observed for the toxic chemicals, suggesting the use of Df plot signatures for the possible differentiation between cytotoxic or non-cytotoxic effects. Observations obtained by QCM-D signals are confirmed by conducting fluorescence microscopy at the same time. Our results show that a fast (few minutes) sensing response can be obtained in situ and in real-time. The conclusions from this study suggest that QCM-D can potentially be used in biodetection for applications in drug screening tests and diagnosis. PMID:21237634

  14. Real-time spectroscopic monitoring of photocatalytic activity promoted by graphene in a microfluidic reactor.

    PubMed

    Li, Yifan; Lin, Beichen; Ge, Likai; Guo, Hongchen; Chen, Xinyi; Lu, Miao

    2016-01-01

    Photocatalytic microreactors have been utilized as rapid, versatile platforms for the characterization of photocatalysts. In this work, a photocatalytic microreactor integrated with absorption spectroscopy was proposed for the real-time monitoring of photocatalytic activity using different catalysts. The validity of this method was investigated by the rapid screening on the photocatalytic performance of a titanium oxide (TiO2)-decorated graphene oxide (GO) sheet for the degradation of methylene blue under monochromatic visible irradiation. The sampling interval time could be minimized to 10 s for achieving real-time detection. The best photocatalytic activity was observed for an optimized TiO2/GO weight mixing ratio of 7:11, with a reaction rate constant up to 0.067 min(-1). The addition of GO into TiO2 enhances photocatalytic activity and adsorption of MB molecules. The synthetic reaction rate constant was up to approximately 0.11 min(-1), which was also the highest among the catalysts. The microreactor exhibited good sensitivity and reproducibility without weakening the performance of the photocatalysts. Consequently, the photocatalytic microreactor is promising as a simple, portable, and rapid screening tool for new photocatalysts. PMID:27346555

  15. Real-time Microwave Imaging of Differential Temperature for Thermal Therapy Monitoring

    PubMed Central

    Haynes, Mark; Stang, John; Moghaddam, Mahta

    2014-01-01

    A microwave imaging system for real-time 3D imaging of differential temperature has been developed for the monitoring and feedback of thermal therapy systems. Design parameters are constrained by features of a prototype focused microwave thermal therapy system for the breast, operating at 915 MHz. Real-time imaging is accomplished with a precomputed linear inverse scattering solution combined with continuous Vector Network Analyzer (VNA) measurements of a 36-antenna, HFSS modeled, cylindrical cavity. Volumetric images of differential change of dielectric constant due to temperature are formed with a refresh rate as fast as 1 frame per second and 1°C resolution. Procedures for data segmentation and post-processed S-parameter error-correction are developed. Antenna pair VNA calibration is accelerated by using the cavity as the unknown thru standard. The device is tested on water targets and a simple breast phantom. Differentially heated targets are successfully imaged in cluttered environments. The rate of change of scattering contrast magnitude correlates 1:1 with target temperature. PMID:24845289

  16. Modern Methods of Real-Time Gamma Radiation Monitoring for General Personal Protection

    NASA Astrophysics Data System (ADS)

    Korostynska, O.; Arshak, K.; Arshak, A.; Vaseashta, Ashok

    Real-time radiation detectors become an essential part of emergency personnel who may have to respond to unknown accidents, incidents or terrorist attacks, which could involve radioactive material. More and more ordinary citizens are interested in personal radiation protection as well. Reasons include lost sources, nuclear industrial accidents, nuclear or radiological terrorism and the possibility of nuclear weapons being used in a war. People want to have the ability to measure it for themselves and they want to be notified when the radiation levels are increased. To meet this demand, considerable research into new sensors is underway, including efforts to enhance the sensor performance through both the material properties and manufacturing technologies. Deep understanding of physical properties of the materials under the influence of radiation exposure is vital for the effective design of dosimeter devices. Detection of radiation is based on the fact that both the electrical and the optical properties of the materials undergo changes upon the exposure to ionizing radiation. It is believed that radiation causes structural defects. The influence of radiation depends on both the dose and the parameters of the films including their thickness: the degradation is more severe for the higher dose and the thinner films. This paper presents overview of modern methods of real-time gamma radiation monitoring for personal protection of radiation workers and general public and suggests further developments in this area.

  17. Real-Time Personalized Monitoring to Estimate Occupational Heat Stress in Ambient Assisted Working

    PubMed Central

    Pancardo, Pablo; Acosta, Francisco D.; Hernández-Nolasco, José Adán; Wister, Miguel A.; López-de-Ipiña, Diego

    2015-01-01

    Ambient Assisted Working (AAW) is a discipline aiming to provide comfort and safety in the workplace through customization and technology. Workers' comfort may be compromised in many labor situations, including those depending on environmental conditions, like extremely hot weather conduces to heat stress. Occupational heat stress (OHS) happens when a worker is in an uninterrupted physical activity and in a hot environment. OHS can produce strain on the body, which leads to discomfort and eventually to heat illness and even death. Related ISO standards contain methods to estimate OHS and to ensure the safety and health of workers, but they are subjective, impersonal, performed a posteriori and even invasive. This paper focuses on the design and development of real-time personalized monitoring for a more effective and objective estimation of OHS, taking into account the individual user profile, fusing data from environmental and unobtrusive body sensors. Formulas employed in this work were taken from different domains and joined in the method that we propose. It is based on calculations that enable continuous surveillance of physical activity performance in a comfortable and healthy manner. In this proposal, we found that OHS can be estimated by satisfying the following criteria: objective, personalized, in situ, in real time, just in time and in an unobtrusive way. This enables timely notice for workers to make decisions based on objective information to control OHS. PMID:26184218

  18. Real-time spectroscopic monitoring of photocatalytic activity promoted by graphene in a microfluidic reactor

    PubMed Central

    Li, Yifan; Lin, Beichen; Ge, Likai; Guo, Hongchen; Chen, Xinyi; Lu, Miao

    2016-01-01

    Photocatalytic microreactors have been utilized as rapid, versatile platforms for the characterization of photocatalysts. In this work, a photocatalytic microreactor integrated with absorption spectroscopy was proposed for the real-time monitoring of photocatalytic activity using different catalysts. The validity of this method was investigated by the rapid screening on the photocatalytic performance of a titanium oxide (TiO2)-decorated graphene oxide (GO) sheet for the degradation of methylene blue under monochromatic visible irradiation. The sampling interval time could be minimized to 10 s for achieving real-time detection. The best photocatalytic activity was observed for an optimized TiO2/GO weight mixing ratio of 7:11, with a reaction rate constant up to 0.067 min−1. The addition of GO into TiO2 enhances photocatalytic activity and adsorption of MB molecules. The synthetic reaction rate constant was up to approximately 0.11 min−1, which was also the highest among the catalysts. The microreactor exhibited good sensitivity and reproducibility without weakening the performance of the photocatalysts. Consequently, the photocatalytic microreactor is promising as a simple, portable, and rapid screening tool for new photocatalysts. PMID:27346555

  19. Real-time spectroscopic monitoring of photocatalytic activity promoted by graphene in a microfluidic reactor

    NASA Astrophysics Data System (ADS)

    Li, Yifan; Lin, Beichen; Ge, Likai; Guo, Hongchen; Chen, Xinyi; Lu, Miao

    2016-06-01

    Photocatalytic microreactors have been utilized as rapid, versatile platforms for the characterization of photocatalysts. In this work, a photocatalytic microreactor integrated with absorption spectroscopy was proposed for the real-time monitoring of photocatalytic activity using different catalysts. The validity of this method was investigated by the rapid screening on the photocatalytic performance of a titanium oxide (TiO2)-decorated graphene oxide (GO) sheet for the degradation of methylene blue under monochromatic visible irradiation. The sampling interval time could be minimized to 10 s for achieving real-time detection. The best photocatalytic activity was observed for an optimized TiO2/GO weight mixing ratio of 7:11, with a reaction rate constant up to 0.067 min‑1. The addition of GO into TiO2 enhances photocatalytic activity and adsorption of MB molecules. The synthetic reaction rate constant was up to approximately 0.11 min‑1, which was also the highest among the catalysts. The microreactor exhibited good sensitivity and reproducibility without weakening the performance of the photocatalysts. Consequently, the photocatalytic microreactor is promising as a simple, portable, and rapid screening tool for new photocatalysts.

  20. Real-time depth monitoring and control of laser machining through scanning beam delivery system

    NASA Astrophysics Data System (ADS)

    Ji, Yang; Grindal, Alexander W.; Webster, Paul J. L.; Fraser, James M.

    2015-04-01

    Scanning optics enable many laser applications in manufacturing because their low inertia allows rapid movement of the process beam across the sample. We describe our method of inline coherent imaging for real-time (up to 230 kHz) micron-scale (7-8 µm axial resolution) tracking and control of laser machining depth through a scanning galvo-telecentric beam delivery system. For 1 cm trench etching in stainless steel, we collect high speed intrapulse and interpulse morphology which is useful for further understanding underlying mechanisms or comparison with numerical models. We also collect overall sweep-to-sweep depth penetration which can be used for feedback depth control. For trench etching in silicon, we show the relationship of etch rate with average power and scan speed by computer processing of depth information without destructive sample post-processing. We also achieve three-dimensional infrared continuous wave (modulated) laser machining of a 3.96 × 3.96 × 0.5 mm3 (length × width × maximum depth) pattern on steel with depth feedback. To the best of our knowledge, this is the first successful demonstration of direct real-time depth monitoring and control of laser machining with scanning optics.

  1. Real-time monitoring of carbonarius DNA structured biochip by surface plasmon resonance imaging

    NASA Astrophysics Data System (ADS)

    Manera, M. G.; Rella, R.; Spadavecchia, J.; Moreau, J.; Canva, M.

    2008-06-01

    Surface plasmon resonance imaging (SPRI) studies, performed on a specially designed system exploiting the Kretschmann configuration, have been carried out to develop a DNA sensor for the detection of gene mutations accounting for the analysis of a fungin species which can proliferate especially in cereals, producing toxic compounds such as mycotoxins. The SPRI system has been used in order to study the hybridization process of ssDNA carbonarius probes immobilized onto a bio-functionalized Au surface in order to detect in real time the mutations in a DNA fragment. The SPRI system is a good choice for real-time monitoring of hybridization dynamics on an array of immobilized oligonucleotide probes because of the high sensitivity in characterization of ultra-thin films adsorbed onto gold or other noble metal surfaces. Using this technique, local changes in the reflectivity of a thin metal film describe the hybridization process between the molecules tethered to the surface and those sent in solution in the test chamber. The increase in the greyscale levels of the images (representing the functionalized gold traps) during the hybridization process demonstrated the occurrence of the binding event. The process has been proven to be reversible and specific for the investigated probes, since no signal has been detected in the presence of a negative control which is a non-complementary target.

  2. The Utility of the Real-Time NASA Land Information System Data for Drought Monitoring Applications

    NASA Technical Reports Server (NTRS)

    White, Kristopher D.; Case, Jonathan L.

    2013-01-01

    Measurements of soil moisture are a crucial component for the proper monitoring of drought conditions. The large spatial variability of soil moisture complicates the problem. Unfortunately, in situ soil moisture observing networks typically consist of sparse point observations, and conventional numerical model analyses of soil moisture used to diagnose drought are of coarse spatial resolution. Decision support systems such as the U.S. Drought Monitor contain drought impact resolution on sub-county scales, which may not be supported by the existing soil moisture networks or analyses. The NASA Land Information System, which is run with 3 km grid spacing over the eastern United States, has demonstrated utility for monitoring soil moisture. Some of the more useful output fields from the Land Information System are volumetric soil moisture in the 0-10 cm and 40-100 cm layers, column-integrated relative soil moisture, and the real-time green vegetation fraction derived from MODIS (Moderate Resolution Imaging Spectroradiometer) swath data that are run within the Land Information System in place of the monthly climatological vegetation fraction. While these and other variables have primarily been used in local weather models and other operational forecasting applications at National Weather Service offices, the use of the Land Information System for drought monitoring has demonstrated utility for feedback to the Drought Monitor. Output from the Land Information System is currently being used at NWS Huntsville to assess soil moisture, and to provide input to the Drought Monitor. Since feedback to the Drought Monitor takes place on a weekly basis, weekly difference plots of column-integrated relative soil moisture are being produced by the NASA Short-term Prediction Research and Transition Center and analyzed to facilitate the process. In addition to the Drought Monitor, these data are used to assess drought conditions for monthly feedback to the Alabama Drought Monitoring

  3. The Piston Compressor: The Methodology of the Real-Time Condition Monitoring

    NASA Astrophysics Data System (ADS)

    Naumenko, A. P.; Kostyukov, V. N.

    2012-05-01

    The methodology of a diagnostic signal processing, a function chart of the monitoring system are considered in the article. The methodology of monitoring and diagnosing is based on measurement of indirect processes' parameters (vibroacoustic oscillations) therefore no more than five sensors is established on the cylinder, measurement of direct structural and thermodynamic parameters is envisioned as well. The structure and principle of expert system's functioning of decision-making is given. Algorithm of automatic expert system includes the calculation diagnostic attributes values based on their normative values, formation sets of diagnostic attributes that correspond to individual classes to malfunction, formation of expert system messages. The scheme of a real-time condition monitoring system for piston compressors is considered. The system have consistently-parallel structure of information-measuring equipment, which allows to measure the vibroacoustic signal for condition monitoring of reciprocating compressors and modes of its work. Besides, the system allows to measure parameters of other physical processes, for example, system can measure and use for monitoring and statements of the diagnosis the pressure in decreasing spaces (the indicator diagram), the inlet pressure and flowing pressure of each cylinder, inlet and delivery temperature of gas, valves temperature, position of a rod, leakage through compression packing and others.

  4. Real time health monitoring and control system methodology for flexible space structures

    NASA Astrophysics Data System (ADS)

    Jayaram, Sanjay

    This dissertation is concerned with the Near Real-time Autonomous Health Monitoring of Flexible Space Structures. The dynamics of multi-body flexible systems is uncertain due to factors such as high non-linearity, consideration of higher modal frequencies, high dimensionality, multiple inputs and outputs, operational constraints, as well as unexpected failures of sensors and/or actuators. Hence a systematic framework of developing a high fidelity, dynamic model of a flexible structural system needs to be understood. The fault detection mechanism that will be an integrated part of an autonomous health monitoring system comprises the detection of abnormalities in the sensors and/or actuators and correcting these detected faults (if possible). Applying the robust control law and the robust measures that are capable of detecting and recovering/replacing the actuators rectifies the actuator faults. The fault tolerant concept applied to the sensors will be in the form of an Extended Kalman Filter (EKF). The EKF is going to weigh the information coming from multiple sensors (redundant sensors used to measure the same information) and automatically identify the faulty sensors and weigh the best estimate from the remaining sensors. The mechanization is comprised of instrumenting flexible deployable panels (solar array) with multiple angular position and rate sensors connected to the data acquisition system. The sensors will give position and rate information of the solar panel in all three axes (i.e. roll, pitch and yaw). The position data corresponds to the steady state response and the rate data will give better insight on the transient response of the system. This is a critical factor for real-time autonomous health monitoring. MATLAB (and/or C++) software will be used for high fidelity modeling and fault tolerant mechanism.

  5. Best Practice for Rainfall Measurement, Torrential Flood Monitoring and Real Time Alerting System in Serbia

    NASA Astrophysics Data System (ADS)

    Stefanovic, Milutin; Milojevic, Mileta; Zlatanovic, Nikola

    2014-05-01

    Serbia occupies 88.000 km2 and its confined zone menaced with torrent flood occupies 50.000km2. Floods on large rivers and torrents are the most frequent natural disasters in Serbia. This is the result of a geographic position and relief of Serbia. Therefore, defense from these natural disasters has been institutionalized since the 19th century. Through its specialized bodies and public companies, the State organized defense from floods on large rivers and protection of international and other main roads. The Topčiderska River is one of a number of rivers in Serbia that is a threat to both urban and rural environments. In this text, general characteristics of this river will be illustrated, as well as the historical natural hazards that have occurred in the part of Belgrade near Topčiderska River. Belgrade is the capital of Serbia, its political, administrative and financial center, which means that there are significant financial capacities and human resources for investments in all sectors, and specially in the water resources sector. Along the Topčiderska catchment there are many industrial, traffic and residential structures that are in danger of floods and flood protection is more difficult with rapid high flows. The goal is to use monitoring on the Topčiderska River basin to set up a modern system for monitoring in real time and forecast of torrential floods. This paper represents a system of remote detection and monitoring of torrential floods and rain measurements in real time on Topciderka river and ready for a quick response.

  6. Monitoring beryllium during site cleanup and closure using a real-time analyzer

    SciTech Connect

    Schlager, R.J.; Sappey, A.D.; French, P.D.

    1998-12-31

    Beryllium metal has a number of unique properties that have been exploited for use in commercial and government applications. Airborne beryllium particles can represent a significant human health hazard if deposited in the lungs. These particles can cause immunologically-mediated chronic granulomatous lung disease (chronic beryllium disease). Traditional methods of monitoring airborne beryllium involve collecting samples of air within the work area using a filter. The filter then undergoes chemical analysis to determine the amount of beryllium collected during the sampling period. These methods are time-consuming and results are known only after a potential exposure has occurred. The need for monitoring exposures in real time has prompted government and commercial companies to develop instrumentation that will allow for the real time assessment of short-term exposures so that adequate protection for workers in contaminated environments can be provided. Such an analyzer provides a tool that will allow government and commercial sites to be cleaned up in a more safe and effective manner since exposure assessments can be made instantaneously. This paper describes the development and initial testing of an analyzer for monitoring airborne beryllium using a technique known as Laser-Induced Breakdown Spectroscopy (LIBS). Energy from a focused, pulsed laser is used to vaporize a sample and create an intense plasma. The light emitted from the plasma is analyzed to determine the quantity of beryllium in the sampled air. A commercial prototype analyzer has been fabricated and tested in a program conducted by Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Lovelace Respiratory Research Institute, and ADA Technologies, Inc. Design features of the analyzer and preliminary test results are presented.

  7. Multichannel lens-free CMOS sensors for real-time monitoring of cell growth.

    PubMed

    Chang, Ko-Tung; Chang, Yu-Jen; Chen, Chia-Ling; Wang, Yao-Nan

    2015-02-01

    A low-cost platform is proposed for the growth and real-time monitoring of biological cells. The main components of the platform include a PMMA cell culture microchip and a multichannel lens-free CMOS (complementary metal-oxide-semiconductor) / LED imaging system. The PMMA microchip comprises a three-layer structure and is fabricated using a low-cost CO2 laser ablation technique. The CMOS / LED monitoring system is controlled using a self-written LabVIEW program. The platform has overall dimensions of just 130 × 104 × 115 mm(3) and can therefore be placed within a commercial incubator. The feasibility of the proposed system is demonstrated using HepG2 cancer cell samples with concentrations of 5000, 10 000, 20 000, and 40 000 cells/mL. In addition, cell cytotoxicity tests are performed using 8, 16, and 32 mM cyclophosphamide. For all of the experiments, the cell growth is observed over a period of 48 h. The cell growth rate is found to vary in the range of 44∼52% under normal conditions and from 17.4∼34.5% under cyclophosphamide-treated conditions. In general, the results confirm the long-term cell growth and real-time monitoring ability of the proposed system. Moreover, the magnification provided by the lens-free CMOS / LED observation system is around 40× that provided by a traditional microscope. Consequently, the proposed system has significant potential for long-term cell proliferation and cytotoxicity evaluation investigations. PMID:25224658

  8. Establishing and Using the Real-Time Neutron Monitor Database (NMDB)

    NASA Astrophysics Data System (ADS)

    Mavromichalaki, H.; Papaioannou, A.; Sarlanis, C.; Souvatzoglou, G.; Gerontidou, M.; Plainaki, C.; Papailiou, M.; Mariatos, G.; Nmdb Team

    2010-07-01

    The European Commission is supporting the Neutron Monitor database as an e-Infrastructures project in the Seventh Framework Programme in the Capacities section. The prospective goal of the network is to make possible the receiving of all data (either with 1 min resolution or with 1 hour resolution) in real time from all servers around Europe. This system has been designed with the capability to support a large number of stations and therefore the upgrade of the system is rather flexible. It is important to outline that the designed collection system has the ability to provide reliable data, based on the issue that all participating stations have been standardized at a common recording format. At this point, the database has been fulfilled together with user tools and applications. The most important application was the establishment of an Alert signal when dangerous Solar Particle Events are heading to the Earth, resulting into a Ground Level Enhancement (GLE) registered by neutron monitors. As a sequence, the mapping of all GLE features in near real-time mode which provides an over all picture of this phenomenon and is being used as an input for the calculation of the ionization of the atmosphere, was made possible. The latter calculations are useful for radiation dose calculations within the atmosphere at several altitudes and will reveal the absorbed doses during flights. The Athens Cosmic Ray Group was responsible for the upgrade and standardization of all participating stations, as well as for the design and implementation of a novel affordable registration system. Moreover, the software of GLE Alert and the Neutron Monitor Basic Anisotropic Ground Level Enhancement (NM-BANGLE) one, originating from the Athens Group, was customized into NMDB necessities. In this work, a description of the project, its goals and achievements together with its usefulness for potential users, studying the Sun and Interplanetary Medium is presented.

  9. Real-Time Detection Methods to Monitor TRU Compositions in UREX+Process Streams

    SciTech Connect

    McDeavitt, Sean; Charlton, William; Indacochea, J Ernesto; taleyarkhan, Rusi; Pereira, Candido

    2013-03-01

    The U.S. Department of Energy has developed advanced methods for reprocessing spent nuclear fuel. The majority of this development was accomplished under the Advanced Fuel Cycle Initiative (AFCI), building on the strong legacy of process development R&D over the past 50 years. The most prominent processing method under development is named UREX+. The name refers to a family of processing methods that begin with the Uranium Extraction (UREX) process and incorporate a variety of other methods to separate uranium, selected fission products, and the transuranic (TRU) isotopes from dissolved spent nuclear fuel. It is important to consider issues such as safeguards strategies and materials control and accountability methods. Monitoring of higher actinides during aqueous separations is a critical research area. By providing on-line materials accountability for the processes, covert diversion of the materials streams becomes much more difficult. The importance of the nuclear fuel cycle continues to rise on national and international agendas. The U.S. Department of Energy is evaluating and developing advanced methods for safeguarding nuclear materials along with instrumentation in various stages of the fuel cycle, especially in material balance areas (MBAs) and during reprocessing of used nuclear fuel. One of the challenges related to the implementation of any type of MBA and/or reprocessing technology (e.g., PUREX or UREX) is the real-time quantification and control of the transuranic (TRU) isotopes as they move through the process. Monitoring of higher actinides from their neutron emission (including multiplicity) and alpha signatures during transit in MBAs and in aqueous separations is a critical research area. By providing on-line real-time materials accountability, diversion of the materials becomes much more difficult. The objective of this consortium was to develop real time detection methods to monitor the efficacy of the UREX+ process and to safeguard the separated

  10. A real time status monitor for transistor bank driver power limit resistor in boost injection kicker power supply

    SciTech Connect

    Mi, J.; Tan, Y.; Zhang, W.

    2011-03-28

    For years suffering of Booster Injection Kicker transistor bank driver regulator troubleshooting, a new real time monitor system has been developed. A simple and floating circuit has been designed and tested. This circuit monitor system can monitor the driver regulator power limit resistor status in real time and warn machine operator if the power limit resistor changes values. This paper will mainly introduce the power supply and the new designed monitoring system. This real time resistor monitor circuit shows a useful method to monitor some critical parts in the booster pulse power supply. After two years accelerator operation, it shows that this monitor works well. Previously, we spent a lot of time in booster machine trouble shooting. We will reinstall all 4 PCB into Euro Card Standard Chassis when the power supply system will be updated.

  11. Real-time monitoring of enzyme-free strand displacement cascades by colorimetric assays.

    PubMed

    Duan, Ruixue; Wang, Boya; Hong, Fan; Zhang, Tianchi; Jia, Yongmei; Huang, Jiayu; Hakeem, Abdul; Liu, Nannan; Lou, Xiaoding; Xia, Fan

    2015-03-19

    The enzyme-free toehold-mediated strand displacement reaction has shown potential for building programmable DNA circuits, biosensors, molecular machines and chemical reaction networks. Here we report a simple colorimetric method using gold nanoparticles as signal generators for the real-time detection of the product of the strand displacement cascade. During the process the assembled gold nanoparticles can be separated, resulting in a color change of the solution. This assay can also be applied in complex mixtures, fetal bovine serum, and to detect single-base mismatches. These results suggest that this method could be of general utility to monitor more complex enzyme-free strand displacement reaction-based programmable systems or for further low-cost diagnostic applications. PMID:25744386

  12. Real-time dielectric-film thickness measurement system for plasma processing chamber wall monitoring

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Yong; Chung, Chin-Wook

    2015-12-01

    An in-situ real-time processing chamber wall monitoring system was developed. In order to measure the thickness of the dielectric film, two frequencies of small sinusoidal voltage (˜1 V) signals were applied to an electrically floated planar type probe, which is positioned at chamber wall surface, and the amplitudes of the currents and the phase differences between the voltage and current were measured. By using an equivalent sheath circuit model including a sheath capacitance, the dielectric thickness can be obtained. Experiments were performed in various plasma condition, and reliable dielectric film thickness was obtained regardless of the plasma properties. In addition, availability in commercial chamber for plasma enhanced chemical vapor deposition was verified. This study is expected to contribute to the control of etching and deposition processes and optimization of periodic maintenance in semiconductor manufacturing process.

  13. Real-time monitoring of amyloid growth in a rigid gel matrix.

    PubMed

    Dalpadado, Roshan C; Maat, Hendrik; Carver, John A; Hall, Damien

    2016-10-15

    We demonstrate the real-time monitoring of the growth of amyloid-protein aggregates in a semi-rigid gel environment constructed from a 5% w/v gelatin solution. The kinetics of amyloid fibril growth from reduced and carboxy-methylated κ-casein occurring in the gel medium was contrasted against that obtained in a regular solution assay. Aggregation kinetics were recorded using Thioflavin T fluorescence. Transmission electron microscopy was used to confirm the aggregates' existence and morphology. The current demonstration of controlled amyloid growth in a gel environment represents the first step towards development of an experimental model for investigating the role of spatial and medium factors in the kinetics of aggregation-based proteopathies. PMID:27477869

  14. Real-time monitoring of laser hot-wire cladding of Inconel 625

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Liu, Wei; Harooni, Masoud; Ma, Junjie; Kovacevic, Radovan

    2014-10-01

    Laser hot-wire cladding (LHWC), characterized by resistance heating of the wire, largely increases the productivity and saves the laser energy. However, the main issue of applying this method is the occurrence of arcing which causes spatters and affects the stability of the process. In this study, an optical spectrometer was used for real-time monitoring of the LHWC process. The corresponding plasma intensity was analyzed under various operating conditions. The electron temperature of the plasma was calculated for elements of nickel and chromium that mainly comprised the plasma plume. There was a correlation between the electron temperature and the stability of the process. The characteristics of the resulted clad were also investigated by measuring the dilution, hardness and microstructure.

  15. Stretchable Electrochemical Sensor for Real-Time Monitoring of Cells and Tissues.

    PubMed

    Liu, Yan-Ling; Jin, Zi-He; Liu, Yan-Hong; Hu, Xue-Bo; Qin, Yu; Xu, Jia-Quan; Fan, Cui-Fang; Huang, Wei-Hua

    2016-03-24

    Stretchable electrochemical sensors are conceivably a powerful technique that provides important chemical information to unravel elastic and curvilinear living body. However, no breakthrough was made in stretchable electrochemical device for biological detection. Herein, we synthesized Au nanotubes (NTs) with large aspect ratio to construct an effective stretchable electrochemical sensor. Interlacing network of Au NTs endows the sensor with desirable stability against mechanical deformation, and Au nanostructure provides excellent electrochemical performance and biocompatibility. This allows for the first time, real-time electrochemical monitoring of mechanically sensitive cells on the sensor both in their stretching-free and stretching states as well as sensing of the inner lining of blood vessels. The results demonstrate the great potential of this sensor in electrochemical detection of living body, opening a new window for stretchable electrochemical sensor in biological exploration. PMID:26929123

  16. Development of a real-time bioprocess monitoring method for docosahexaenoic acid production by Schizochytrium sp.

    PubMed

    Guo, Dong-Sheng; Ji, Xiao-Jun; Ren, Lu-Jing; Li, Gan-Lu; Yin, Feng-Wei; Huang, He

    2016-09-01

    Oxygen uptake rate (OUR) and respiratory quotient (RQ) are key respiratory parameters for docosahexaenoic acid (DHA) production by Schizochytrium sp. HX-308 under dissolved oxygen limited conditions. To investigate the relationship of OUR and RQ with culture status, three independent cultures with different aeration rates were performed in a 50L bioreactor. OUR was found to be positively correlated with the aeration rate, which reflected the oxygen supply level in each culture. The highest biomass, reaching 124.5g/L, was achieved under the highest OUR. DHA content was found to be highly correlated with the RQ value, and the highest DHA content (44.85% in total fatty acids, w/w) was achieved in the highest RQ level, which implies that the polyketide synthase pathway was more active. OUR and RQ, which reflect the physiological state of microorganisms, are suggested as synergistic real-time bioprocess monitoring parameters for DHA fermentation. PMID:27262097

  17. Ingestible Biosensors for Real-Time Medical Adherence Monitoring: MyTMed

    PubMed Central

    Chai, Peter R.; Rosen, Rochelle K.; Boyer, Edward W.

    2016-01-01

    Medication nonadherence complicates the management and treatment of chronic disease. Nonadherence to medications is associated with significant mortality, accelerated disease progression, and increased health care costs. My/Treatment/Medication (MyTMed) is a novel adherence monitoring system that obtains direct measures of medication adherence/nonadherence. MyTMed consists of 1) a “digital pill” with a radiofrequency emitter that activates on contact with gastric pH; 2) a relay Hub that captures the radiofrequency signal and transmits it to 3) a cloud based server that connects patient and physicians via a bidirectional interface. In our increasingly mobile world, MyTMed is able to provide medication ingestion data and deliver interventions in real time that support adherence. We describe the patient-centered design of MyTMed as well as the behavioral theory supporting the interface architecture. PMID:27182206

  18. Real-Time Payload Control and Monitoring on the World Wide Web

    NASA Technical Reports Server (NTRS)

    Sun, Charles; Windrem, May; Givens, John J. (Technical Monitor)

    1998-01-01

    World Wide Web (W3) technologies such as the Hypertext Transfer Protocol (HTTP) and the Java object-oriented programming environment offer a powerful, yet relatively inexpensive, framework for distributed application software development. This paper describes the design of a real-time payload control and monitoring system that was developed with W3 technologies at NASA Ames Research Center. Based on Java Development Toolkit (JDK) 1.1, the system uses an event-driven "publish and subscribe" approach to inter-process communication and graphical user-interface construction. A C Language Integrated Production System (CLIPS) compatible inference engine provides the back-end intelligent data processing capability, while Oracle Relational Database Management System (RDBMS) provides the data management function. Preliminary evaluation shows acceptable performance for some classes of payloads, with Java's portability and multimedia support identified as the most significant benefit.

  19. Integrated Real-Time PCR for Detection and Monitoring of Legionella pneumophila in Water Systems▿

    PubMed Central

    Yaradou, Diaraf Farba; Hallier-Soulier, Sylvie; Moreau, Sophie; Poty, Florence; Hillion, Yves; Reyrolle, Monique; André, Janine; Festoc, Gabriel; Delabre, Karine; Vandenesch, François; Etienne, Jerome; Jarraud, Sophie

    2007-01-01

    We evaluated a ready-to-use real-time quantitative Legionella pneumophila PCR assay system by testing 136 hot-water-system samples collected from 55 sites as well as 49 cooling tower samples collected from 20 different sites, in parallel with the standard culture method. The PCR assay was reproducible and suitable for routine quantification of L. pneumophila. An acceptable correlation between PCR and culture results was obtained for sanitary hot-water samples but not for cooling tower samples. We also monitored the same L. pneumophila-contaminated cooling tower for 13 months by analyzing 104 serial samples. The culture and PCR results were extremely variable over time, but the curves were similar. The differences between the PCR and culture results did not change over time and were not affected by regular biocide treatment. This ready-to-use PCR assay for L. pneumophila quantification could permit more timely disinfection of cooling towers. PMID:17194840

  20. Novel Algorithms Enabling Rapid, Real-Time Earthquake Monitoring and Tsunami Early Warning Worldwide

    NASA Astrophysics Data System (ADS)

    Lomax, A.; Michelini, A.

    2012-12-01

    We have introduced recently new methods to determine rapidly the tsunami potential and magnitude of large earthquakes (e.g., Lomax and Michelini, 2009ab, 2011, 2012). To validate these methods we have implemented them along with other new algorithms within the Early-est earthquake monitor at INGV-Rome (http://early-est.rm.ingv.it, http://early-est.alomax.net). Early-est is a lightweight software package for real-time earthquake monitoring (including phase picking, phase association and event detection, location, magnitude determination, first-motion mechanism determination, ...), and for tsunami early warning based on discriminants for earthquake tsunami potential. In a simulation using archived broadband seismograms for the devastating M9, 2011 Tohoku earthquake and tsunami, Early-est determines: the epicenter within 3 min after the event origin time, discriminants showing very high tsunami potential within 5-7 min, and magnitude Mwpd(RT) 9.0-9.2 and a correct shallow-thrusting mechanism within 8 min. Real-time monitoring with Early-est givess similar results for most large earthquakes using currently available, real-time seismogram data. Here we summarize some of the key algorithms within Early-est that enable rapid, real-time earthquake monitoring and tsunami early warning worldwide: >>> FilterPicker - a general purpose, broad-band, phase detector and picker (http://alomax.net/FilterPicker); >>> Robust, simultaneous association and location using a probabilistic, global-search; >>> Period-duration discriminants TdT0 and TdT50Ex for tsunami potential available within 5 min; >>> Mwpd(RT) magnitude for very large earthquakes available within 10 min; >>> Waveform P polarities determined on broad-band displacement traces, focal mechanisms obtained with the HASH program (Hardebeck and Shearer, 2002); >>> SeisGramWeb - a portable-device ready seismogram viewer using web-services in a browser (http://alomax.net/webtools/sgweb/info.html). References (see also: http

  1. Low-cost system for real-time monitoring of luciferase gene expression.

    PubMed

    Gailey, P C; Miller, E J; Griffin, G D

    1997-03-01

    In some mammalian cells transfected with luciferase reporter genes, the luciferase/luciferin reaction in a cell monolayer produces a very small light flux. While the low light levels are often measurable with single-photon counting cameras, these devices are expensive and may require long averaging times to acquire an image. We describe an approach for real-time monitoring of light produced by luciferase gene expression in intact, cultured cells using readily available and relatively inexpensive components. The system uses a single-photon counting photomultiplier tube with built-in high voltage supply and photon counting circuitry to rapidly measure average light output from growing cells in a 35 mm culture dish. The fast, accurate and highly sensitive response of the system makes it useful for studying the dynamics of gene expression over time periods ranging from minutes to days. PMID:9067033

  2. Real-time concentration monitoring in microfluidic system via plasmonic nanocrescent arrays.

    PubMed

    Zhou, Bingpu; Xiao, Xiao; Liu, Ting; Gao, Yibo; Huang, Yingzhou; Wen, Weijia

    2016-03-15

    In this work, on-chip bio/chemical sensor was reported based on localized surface plasmon resonance of nanocrescent patterns fabricated via electron beam lithography. The nanocrescent arrays with different dimensional features exhibited controllable plasmonic properties in accordance with the simulation results based on the finite-difference time-domain model. The highest refractive index sensitivity of the fabricated samples was achieved to be ~699.2 nm/RIU with a figure of merit of ~3.1 when the two opposite crescents own a gap of ~43.3 nm. Such obtained plasmonic sensor was further integrated into the microfluidic system which can simply control the specific analyte concentrations via tuning the flow rate ratios between two injecting microstreams. Our method has successfully demonstrated the capability of the nanocrescent patterns as on-chip plasmonic bio/chemical sensor for real-time monitoring of dynamic concentrations in the microchannel. PMID:26436326

  3. Exploring infrared sensoring for real time welding defects monitoring in GTAW.

    PubMed

    Alfaro, Sadek C A; Franco, Fernand Díaz

    2010-01-01

    This paper presents an evaluation of an infrared sensor for monitoring the welding pool temperature in a Gas Tungsten Arc Welding (GTAW) process. The purpose of the study is to develop a real time system control. It is known that the arc welding pool temperature is related to the weld penetration depth; therefore, by monitoring the temperature, the arc pool temperature and penetration depth are also monitored. Various experiments were performed; in some of them the current was varied and the temperature changes were registered, in others, defects were induced throughout the path of the weld bead for a fixed current. These simulated defects resulted in abrupt changes in the average temperature values, thus providing an indication of the presence of a defect. The data has been registered with an acquisition card. To identify defects in the samples under infrared emissions, the timing series were analyzed through graphics and statistic methods. The selection of this technique demonstrates the potential for infrared emission as a welding monitoring parameter sensor. PMID:22219697

  4. Exploring Infrared Sensoring for Real Time Welding Defects Monitoring in GTAW

    PubMed Central

    Alfaro, Sadek C. A.; Franco, Fernand Díaz

    2010-01-01

    This paper presents an evaluation of an infrared sensor for monitoring the welding pool temperature in a Gas Tungsten Arc Welding (GTAW) process. The purpose of the study is to develop a real time system control. It is known that the arc welding pool temperature is related to the weld penetration depth; therefore, by monitoring the temperature, the arc pool temperature and penetration depth are also monitored. Various experiments were performed; in some of them the current was varied and the temperature changes were registered, in others, defects were induced throughout the path of the weld bead for a fixed current. These simulated defects resulted in abrupt changes in the average temperature values, thus providing an indication of the presence of a defect. The data has been registered with an acquisition card. To identify defects in the samples under infrared emissions, the timing series were analyzed through graphics and statistic methods. The selection of this technique demonstrates the potential for infrared emission as a welding monitoring parameter sensor. PMID:22219697

  5. Real-time Web GIS to monitor marine water quality using wave glider

    NASA Astrophysics Data System (ADS)

    Maneesa Amiruddin, Siti

    2016-06-01

    In the past decade, Malaysia has experienced unprecedented economic development and associated socioeconomic changes. As environmentalists anticipate these changes could have negative impacts on the marine and coastal environment, a comprehensive, continuous and long term marine water quality monitoring programme needs to be strengthened to reflect the government's aggressive mind-set of enhancing its authority in protection, preservation, management and enrichment of vast resources of the ocean. Wave Glider, an autonomous, unmanned marine vehicle provides continuous ocean monitoring at all times and is durable in any weather condition. Geographic Information System (GIS) technology is ideally suited as a tool for the presentation of data derived from continuous monitoring of locations, and used to support and deliver information to environmental managers and the public. Combined with GeoEvent Processor, an extension from ArcGIS for Server, it extends the Web GIS capabilities in providing real-time data from the monitoring activities. Therefore, there is a growing need of Web GIS for easy and fast dissemination, sharing, displaying and processing of spatial information which in turn helps in decision making for various natural resources based applications.

  6. Research of a real-time overload monitoring and response system of bridges and roads

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Shi, Yan; Zhao, Xuefeng; Ou, Jinping

    2012-04-01

    Due to the general overloading of vehicles, premature failure of bridges and roads are more and more obvious. Structural behaviors of engineering structures need real-time monitoring and diagnosis, timely detection of structural damage, evaluation of their safety, and necessary precautions, in order to prevent major accident such as the collapse of bridges and roads. But the existing monitoring system, which is very expensive, does not apply to the low budget structures. Therefore, a potable, low-cost, low-power structural monitoring system, which consists of electric resistance strain gauge, collection and execution unit, graph collection system and analysis software, is designed in this paper. The system can collect the critical data about the force of pavement to take the certain judge algorithm. The alarm will be given and the overburden data will be transmitted to IDC to make the further analysis when the pavement is overburden. At the same time, the plates of overweight vehicles can be collected and sent to the relevant departments. The system has the features of simple structure, easy realization, and low cost, which fills the application gaps in structural health monitoring of low-budget project.

  7. Real-time in-die compaction monitoring of dry-coated tablets.

    PubMed

    Liu, Jingfei; Stephens, James D; Kowalczyk, Brian R; Cetinkaya, Cetin

    2011-07-29

    The practicability of a pulse-echo ultrasonic approach developed for the real-time quality monitoring of dry-coated tablets in the tablet press during compaction is evaluated. The punch-tablet interface (i.e., steel-tablet) is the boundary condition that dictates the viability of acoustic in-die compaction monitoring. The current study utilizes compacted tablets with a simulated punch-tablet interface to achieve the required waveform detectability levels needed for in-die compaction monitoring. The geometric and mechanical properties of a dry-coated tablet are crucial to its structural functions and therapeutic effectiveness, therefore they are monitored especially when the control of dissolution rates of their active ingredients are critically important. Acquired pulse-echo ultrasonic waveforms in the tablet could provide the time-of-flight information needed to determine the thickness, elasticity and/or integrity of the relevant layer, and bonding quality between layers depending on the given parameters. Since the amplitudes of the reflected waves are extremely low due to the high acoustic impedance mismatches of tablet materials and die/punch materials, signal processing techniques are required to extract the wave arrival times. In current study, it is demonstrated that the reflection of an ultrasonic pulse generated by a transducer embedded in a die or a punch from the coat-core interface can be acquired by the same transducer. PMID:21605647

  8. On-line near-infrared spectrometer to monitor urea removal in real time during hemodialysis.

    PubMed

    Cho, David S; Olesberg, Jonathon T; Flanigan, Michael J; Arnold, Mark A

    2008-08-01

    The ex vivo removal of urea during hemodialysis treatments is monitored in real time with a noninvasive near-infrared spectrometer. The spectrometer uses a temperature-controlled acousto optical tunable filter (AOFT) in conjunction with a thermoelectrically cooled extended wavelength InGaAs detector to provide spectra with a 20 cm(-1) resolution over the combination region (4000-5000 cm(-1)) of the near-infrared spectrum. Spectra are signal averaged over 15 seconds to provide root mean square noise levels of 24 micro-absorbance units for 100% lines generated over the 4600-4500 cm(-1) spectral range. Combination spectra of the spent dialysate stream are collected in real-time as a portion of this stream passes through a sample holder constructed from a 1.1 mm inner diameter tube of Teflon. Real-time spectra are collected during 17 individual dialysis sessions over a period of 10 days. Reference samples were extracted periodically during each session to generate 87 unique samples with corresponding reference concentrations for urea, glucose, lactate, and creatinine. A series of calibration models are generated for urea by using the partial least squares (PLS) algorithm and each model is optimized in terms of number of factors and spectral range. The best calibration model gives a standard error of prediction (SEP) of 0.30 mM based on a random splitting of spectra generated from all 87 reference samples collected across the 17 dialysis sessions. PLS models were also developed by using spectra collected in early sessions to predict urea concentrations from spectra collected in subsequent sessions. SEP values for these prospective models range from 0.37 mM to 0.52 mM. Although higher than when spectra are pooled from all 17 sessions, these prospective SEP values are acceptable for monitoring the hemodialysis process. Selectivity for urea is demonstrated and the selectivity properties of the PLS calibration models are characterized with a pure component selectivity

  9. Real Time, On Line Crop Monitoring and Analysis with Near Global Landsat-class Mosaics

    NASA Astrophysics Data System (ADS)

    Varlyguin, D.; Hulina, S.; Crutchfield, J.; Reynolds, C. A.; Frantz, R.

    2015-12-01

    The presentation will discuss the current status of GDA technology for operational, automated generation of 10-30 meter near global mosaics of Landsat-class data for visualization, monitoring, and analysis. Current version of the mosaic combines Landsat 8 and Landsat 7. Sentinel-2A imagery will be added once it is operationally available. The mosaics are surface reflectance calibrated and are analysis ready. They offer full spatial resolution and all multi-spectral bands of the source imagery. Each mosaic covers all major agricultural regions of the world and 16 day time window. 2014-most current dates are supported. The mosaics are updated in real-time, as soon as GDA downloads Landsat imagery, calibrates it to the surface reflectances, and generates data gap masks (all typically under 10 minutes for a Landsat scene). The technology eliminates the complex, multi-step, hands-on process of data preparation and provides imagery ready for repetitive, field-to-country analysis of crop conditions, progress, acreages, yield, and production. The mosaics can be used for real-time, on-line interactive mapping and time series drilling via GeoSynergy webGIS platform. The imagery is of great value for improved, persistent monitoring of global croplands and for the operational in-season analysis and mapping of crops across the globe in USDA FAS purview as mandated by the US government. The presentation will overview operational processing of Landsat-class mosaics in support of USDA FAS efforts and will look into 2015 and beyond.

  10. Laser based method for real-time three-dimensional monitoring of chest wall movement

    NASA Astrophysics Data System (ADS)

    Jezeršek, Matija; Povšič, Klemen; Topole, Eva; Fležar, Matjaž; Možina, Janez

    2010-05-01

    Novel method for monitoring the entire three-dimensional shape of the chest wall in real time is presented. The system is based on the multiple-line laser triangulation principle. The laser projector generates a light pattern of 33 equally inclined light planes directed toward the measured surface. The camera records the illuminated surface from a different viewpoint, and consequently, the light pattern is distorted by the shape of the surface. The acquired images are transferred in the personal computer, where contour detection, three-dimensional surface reconstruction, shape analysis, and displaying are performed in real time. Surface displacements are calculated by subtraction of the current measured surface from the reference one. Differences are displayed with color palette, where the blue represent the inward (negative) and the red represent the outward (positive) movement. The accuracy of the calibrated apparatus is +/-0.5 mm, which is calculated as a standard deviation between points of the measured and nominal reference surface. The measuring range is approximately 400×600×500 mm in width, height and depth. The intention of this study was to evaluate the system by means of its ability to distinguish between different breathing patterns and to verify the accuracy of measuring chest wall deformation volumes during breathing. The results demonstrate that the presented 3-d measuring system has a great potential as a diagnostic and training tool in case of monitoring the breathing pattern. We believe that exact graphical communication with the patient is much more simple and easy to understand than verbal and/or numerical.

  11. Integrity monitoring in real-time precise point positioning in the presence of ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Wezka, K.; Galas, R.

    2013-12-01

    Ionospheric disturbances are characterized as fast and random variability in the ionosphere. Those phenomena are difficult to predict, detect and model. Occurrence of some strong ionospheric disturbances can cause, inter alia degradation and interruption of GNSS signals. Therefore they are especially harmful for real-time applications, as for example Precise Point Positioning (PPP) in real time, where one of the most important requirements is to ensure the high level of reliability. In such applications verification and confirmation of a high trust degree towards the estimated coordinates is a very critical issue. In one of the previous papers (K. Wezka, 2012 -Identification of system performance parameters and their usability) two sets of parameters have been proposed for enhance reliability of the PPP. The first one for data quality control (QC) of the raw GNSS observations and the second one for examination of the quality, robustness and performance of various processing approaches (strategies). To the second group the following parameters has been proposed: accuracy, precision, availability, integrity and convergence time. In consideration of perturbation of GNSS signal resulting from sudden ionospheric disturbances, one of the most important demands is effective autonomous integrity monitoring. The poster presents first preliminary results of the applicability of the proposed parameters in order to ensure the high level of reliability/integrity of GNSS observations and positioning results under the presence of strong ionospheric anomalies. The data-set from continuously operated GNSS station located at high latitude, where ionospheric disturbances occur more frequently, were used for the analysis. Various selected Receiver Autonomous Integrity Monitoring (RAIM) approaches for quality control of the GNSS observables are applied to the data sets recorded under different (low/quite and high) ionospheric activities. Based on those analyses the usability of the

  12. Real-time monitoring of enzyme-free strand displacement cascades by colorimetric assays

    NASA Astrophysics Data System (ADS)

    Duan, Ruixue; Wang, Boya; Hong, Fan; Zhang, Tianchi; Jia, Yongmei; Huang, Jiayu; Hakeem, Abdul; Liu, Nannan; Lou, Xiaoding; Xia, Fan

    2015-03-01

    The enzyme-free toehold-mediated strand displacement reaction has shown potential for building programmable DNA circuits, biosensors, molecular machines and chemical reaction networks. Here we report a simple colorimetric method using gold nanoparticles as signal generators for the real-time detection of the product of the strand displacement cascade. During the process the assembled gold nanoparticles can be separated, resulting in a color change of the solution. This assay can also be applied in complex mixtures, fetal bovine serum, and to detect single-base mismatches. These results suggest that this method could be of general utility to monitor more complex enzyme-free strand displacement reaction-based programmable systems or for further low-cost diagnostic applications.The enzyme-free toehold-mediated strand displacement reaction has shown potential for building programmable DNA circuits, biosensors, molecular machines and chemical reaction networks. Here we report a simple colorimetric method using gold nanoparticles as signal generators for the real-time detection of the product of the strand displacement cascade. During the process the assembled gold nanoparticles can be separated, resulting in a color change of the solution. This assay can also be applied in complex mixtures, fetal bovine serum, and to detect single-base mismatches. These results suggest that this method could be of general utility to monitor more complex enzyme-free strand displacement reaction-based programmable systems or for further low-cost diagnostic applications. Electronic supplementary information (ESI) available: Experimental procedures and analytical data are provided. See DOI: 10.1039/c5nr00697j

  13. Real-time nutrient monitoring in rivers: adaptive sampling strategies, technological challenges and future directions

    NASA Astrophysics Data System (ADS)

    Blaen, Phillip; Khamis, Kieran; Lloyd, Charlotte; Bradley, Chris

    2016-04-01

    Excessive nutrient concentrations in river waters threaten aquatic ecosystem functioning and can pose substantial risks to human health. Robust monitoring strategies are therefore required to generate reliable estimates of river nutrient loads and to improve understanding of the catchment processes that drive spatiotemporal patterns in nutrient fluxes. Furthermore, these data are vital for prediction of future trends under changing environmental conditions and thus the development of appropriate mitigation measures. In recent years, technological developments have led to an increase in the use of continuous in-situ nutrient analysers, which enable measurements at far higher temporal resolutions than can be achieved with discrete sampling and subsequent laboratory analysis. However, such instruments can be costly to run and difficult to maintain (e.g. due to high power consumption and memory requirements), leading to trade-offs between temporal and spatial monitoring resolutions. Here, we highlight how adaptive monitoring strategies, comprising a mixture of temporal sample frequencies controlled by one or more 'trigger variables' (e.g. river stage, turbidity, or nutrient concentration), can advance our understanding of catchment nutrient dynamics while simultaneously overcoming many of the practical and economic challenges encountered in typical in-situ river nutrient monitoring applications. We present examples of short-term variability in river nutrient dynamics, driven by complex catchment behaviour, which support our case for the development of monitoring systems that can adapt in real-time to rapid environmental changes. In addition, we discuss the advantages and disadvantages of current nutrient monitoring techniques, and suggest new research directions based on emerging technologies and highlight how these might improve: 1) monitoring strategies, and 2) understanding of linkages between catchment processes and river nutrient fluxes.

  14. Development of real-time voltage stability monitoring tool for power system transmission network using Synchrophasor data

    NASA Astrophysics Data System (ADS)

    Pulok, Md Kamrul Hasan

    Intelligent and effective monitoring of power system stability in control centers is one of the key issues in smart grid technology to prevent unwanted power system blackouts. Voltage stability analysis is one of the most important requirements for control center operation in smart grid era. With the advent of Phasor Measurement Unit (PMU) or Synchrophasor technology, real time monitoring of voltage stability of power system is now a reality. This work utilizes real-time PMU data to derive a voltage stability index to monitor the voltage stability related contingency situation in power systems. The developed tool uses PMU data to calculate voltage stability index that indicates relative closeness of the instability by producing numerical indices. The IEEE 39 bus, New England power system was modeled and run on a Real-time Digital Simulator that stream PMU data over the Internet using IEEE C37.118 protocol. A Phasor data concentrator (PDC) is setup that receives streaming PMU data and stores them in Microsoft SQL database server. Then the developed voltage stability monitoring (VSM) tool retrieves phasor measurement data from SQL server, performs real-time state estimation of the whole network, calculate voltage stability index, perform real-time ranking of most vulnerable transmission lines, and finally shows all the results in a graphical user interface. All these actions are done in near real-time. Control centers can easily monitor the systems condition by using this tool and can take precautionary actions if needed.

  15. Towards a Near Real-Time Satellite-Based Flux Monitoring System for the MENA Region

    NASA Astrophysics Data System (ADS)

    Ershadi, A.; Houborg, R.; McCabe, M. F.; Anderson, M. C.; Hain, C.

    2013-12-01

    Satellite remote sensing has the potential to offer spatially and temporally distributed information on land surface characteristics, which may be used as inputs and constraints for estimating land surface fluxes of carbon, water and energy. Enhanced satellite-based monitoring systems for aiding local water resource assessments and agricultural management activities are particularly needed for the Middle East and North Africa (MENA) region. The MENA region is an area characterized by limited fresh water resources, an often inefficient use of these, and relatively poor in-situ monitoring as a result of sparse meteorological observations. To address these issues, an integrated modeling approach for near real-time monitoring of land surface states and fluxes at fine spatio-temporal scales over the MENA region is presented. This approach is based on synergistic application of multiple sensors and wavebands in the visible to shortwave infrared and thermal infrared (TIR) domain. The multi-scale flux mapping and monitoring system uses the Atmosphere-Land Exchange Inverse (ALEXI) model and associated flux disaggregation scheme (DisALEXI), and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) in conjunction with model reanalysis data and multi-sensor remotely sensed data from polar orbiting (e.g. Landsat and MODerate resolution Imaging Spectroradiometer (MODIS)) and geostationary (MSG; Meteosat Second Generation) satellite platforms to facilitate time-continuous (i.e. daily) estimates of field-scale water, energy and carbon fluxes. Within this modeling system, TIR satellite data provide information about the sub-surface moisture status and plant stress, obviating the need for precipitation input and a detailed soil surface characterization (i.e. for prognostic modeling of soil transport processes). The STARFM fusion methodology blends aspects of high frequency (spatially coarse) and spatially fine resolution sensors and is applied directly to flux output

  16. PCR Based Microbial Monitor for Analysis of Recycled Water Aboard the ISSA: Issues and Prospects

    NASA Technical Reports Server (NTRS)

    Cassell, Gail H.; Lefkowitz, Elliot J.; Glass, John I.

    1995-01-01

    The monitoring of spacecraft life support systems for the presence of health threatening microorganisms is paramount for crew well being and successful completion of missions. Development of technology to monitor spacecraft recycled water based on detection and identification of the genetic material of contaminating microorganisms and viruses would be a substantial improvement over current NASA plans to monitor recycled water samples that call for the use of conventional microbiology techniques which are slow, insensitive, and labor intensive. The union of the molecular biology techniques of DNA probe hybridization and polymerase chain reaction (PCR) offers a powerful method for the detection, identification, and quantification of microorganisms and viruses. This technology is theoretically capable of assaying samples in as little as two hours with specificity and sensitivity unmatched by any other method. A major advance in probe-hybridization/PCR has come about in a technology called TaqMan(TM), which was invented by Perkin Elmer. Instrumentation using TaqMan concepts is evolving towards devices that could meet NASA's needs of size, low power use, and simplicity of operation. The chemistry and molecular biology needed to utilize these probe-hybridization/PCR instruments must evolve in parallel with the hardware. The following issues of chemistry and biology must be addressed in developing a monitor: Early in the development of a PCR-based microbial monitor it will be necessary to decide how many and which organisms does the system need the capacity to detect. We propose a set of 17 different tests that would detect groups of bacteria and fungus, as well as specific eukaryotic parasites and viruses; In order to use the great sensitivity of PCR it will be necessary to concentrate water samples using filtration. If a lower limit of detection of 1 microorganism per 100 ml is required then the microbes in a 100 ml sample must be concentrated into a volume that can be

  17. Wireless Biosensor System for Real-Time l-Lactic Acid Monitoring in Fish

    PubMed Central

    Hibi, Kyoko; Hatanaka, Kengo; Takase, Mai; Ren, Huifeng; Endo, Hideaki

    2012-01-01

    We have developed a wireless biosensor system to continuously monitor l-lactic acid concentrations in fish. The blood l-lactic acid level of fish is a barometer of stress. The biosensor comprised Pt-Ir wire (φ0.178 mm) as the working electrode and Ag/AgCl paste as the reference electrode. Lactate oxidase was immobilized on the working electrode using glutaraldehyde. The sensor calibration was linear and good correlated with l-lactic acid levels (R = 0.9959) in the range of 0.04 to 6.0 mg·dL−1. We used the eyeball interstitial sclera fluid (EISF) as the site of sensor implantation. The blood l-lactic acid levels correlated closely with the EISF l-lactic acid levels in the range of 3 to 13 mg·dL−1 (R = 0.8173, n = 26). Wireless monitoring of l-lactic acid was performed using the sensor system in free-swimming fish in an aquarium. The sensor response was stable for over 60 h. Thus, our biosensor provided a rapid and convenient method for real-time monitoring of l-lactic acid levels in fish. PMID:22778641

  18. Real-time monitoring of redox changes in the mammalian endoplasmic reticulum

    PubMed Central

    van Lith, Marcel; Tiwari, Shweta; Pediani, John; Milligan, Graeme; Bulleid, Neil J.

    2011-01-01

    Redox-sensitive GFPs with engineered disulphide bonds have been used previously to monitor redox status in the cytosol and mitochondria of living cells. The usefulness of these redox probes depends on the reduction potential of the disulphide, with low values suiting the cytosol and mitochondrion, and higher values suiting the more oxidising environment of the endoplasmic reticulum (ER). Here, we targeted a modified redox-sensitive GFP (roGFP1-iL), with a relatively high reduction potential, to the ER of mammalian cells. We showed that the disulphide is partially oxidised, allowing roGFP1-iL to monitor changes in ER redox status. When cells were treated with puromycin, the redox balance became more reducing, suggesting that the release of nascent chains from ribosomes alters the ER redox balance. In addition, downregulating Ero1α prevented normal rapid recovery from dithiothreitol (DTT), whereas downregulating peroxiredoxin IV had no such effect. This result illustrates the contribution of the Ero1α oxidative pathway to ER redox balance. This first report of the use of roGFP to study the ER of mammalian cells demonstrates that roGFP1-iL can be used to monitor real-time changes to the redox status in individual living cells. PMID:21693587

  19. [Sensing characteristics of a real-time monitor using a photoionization detector on organic solvent vapors].

    PubMed

    Hori, Hajime; Ishematsu, Sumiyo; Fueta, Yukiko; Hinoue, Mitsuo; Ishidao, Toru

    2012-12-01

    Measurements of organic solvents in the work environment are carried out by either direct sampling using plastic bags/gas chromatography, solid sorbent adsorption using charcoal tubes/gas chromatography, or by a direct reading method using detector tubes. However, these methods cannot always measure the work environment accurately because the concentration of hazardous materials changes from time to time, and from space to space. In this study, the sensor characteristics of a real time monitor using a photoionization detector that can monitor vapor concentration continuously were investigated for 52 organic solvent vapors that are required to be measured in the work environment by the Ordinance of Organic Solvent Poisoning Prevention in Japan. The sensitivity of the monitor was high for the solvents with low ionization potential. However, the sensitivity for the solvents with high ionization potential was low, and the sensor could not detected 7 solvents. Calibration of the sensor using a standard gas was desirable before being used for measurement because the sensitivity of the sensor was variable. PMID:23270260

  20. Real-time air quality monitoring by using internet video surveillance camera

    NASA Astrophysics Data System (ADS)

    Wong, C. J.; Lim, H. S.; MatJafri, M. Z.; Abdullah, K.; Low, K. L.

    2007-04-01

    Nowadays internet video surveillance cameras are widely use in security monitoring. The quantities of installations of these cameras also become more and more. This paper reports that the internet video surveillance cameras can be applied as a remote sensor for monitoring the concentrations of particulate matter less than 10 micron (PM10), so that real time air quality can be monitored at multi location simultaneously. An algorithm was developed based on the regression analysis of relationship between the measured reflectance components from a surface material and the atmosphere. This algorithm converts multispectral image pixel values acquired from these cameras into quantitative values of the concentrations of PM10. These computed PM10 values were compared to other standard values measured by a DustTrak TM meter. The correlation results showed that the newly develop algorithm produced a high degree of accuracy as indicated by high correlation coefficient (R2) and low root-mean-square-error (RMS) values. The preliminary results showed that the accuracy produced by this internet video surveillance camera is slightly better than that from the internet protocol (IP) camera. Basically the spatial resolution of images acquired by the IP camera was poorer compared to the internet video surveillance camera. This is because the images acquired by IP camera had been compressed and there was no compression for the images from the internet video surveillance camera.

  1. High-Performance Bioinstrumentation for Real-Time Neuroelectrochemical Traumatic Brain Injury Monitoring

    PubMed Central

    Papadimitriou, Konstantinos I.; Wang, Chu; Rogers, Michelle L.; Gowers, Sally A. N.; Leong, Chi L.; Boutelle, Martyn G.; Drakakis, Emmanuel M.

    2016-01-01

    Traumatic brain injury (TBI) has been identified as an important cause of death and severe disability in all age groups and particularly in children and young adults. Central to TBIs devastation is a delayed secondary injury that occurs in 30–40% of TBI patients each year, while they are in the hospital Intensive Care Unit (ICU). Secondary injuries reduce survival rate after TBI and usually occur within 7 days post-injury. State-of-art monitoring of secondary brain injuries benefits from the acquisition of high-quality and time-aligned electrical data i.e., ElectroCorticoGraphy (ECoG) recorded by means of strip electrodes placed on the brains surface, and neurochemical data obtained via rapid sampling microdialysis and microfluidics-based biosensors measuring brain tissue levels of glucose, lactate and potassium. This article progresses the field of multi-modal monitoring of the injured human brain by presenting the design and realization of a new, compact, medical-grade amperometry, potentiometry and ECoG recording bioinstrumentation. Our combined TBI instrument enables the high-precision, real-time neuroelectrochemical monitoring of TBI patients, who have undergone craniotomy neurosurgery and are treated sedated in the ICU. Electrical and neurochemical test measurements are presented, confirming the high-performance of the reported TBI bioinstrumentation. PMID:27242477

  2. Real-time monitoring of volatile organic compounds using chemical ionization mass spectroscopy: Final report

    SciTech Connect

    Thornberg, S.M.; Mowry, C.D.; Keenan, M.R.; Bender, S.F.A.; Owen, T.

    1997-04-01

    Volatile organic compound (VOC) emission to the atmosphere is of great concern to semiconductor manufacturing industries, research laboratories, the public, and regulatory agencies. Some industries are seeking ways to reduce emissions by reducing VOCs at the point of use (or generation). This paper discusses the requirements, design, calibration, and use of a sampling inlet/quadrupole mass spectrometer system for monitoring VOCs in a semiconductor manufacturing production line. The system uses chemical ionization to monitor compounds typically found in the lithography processes used to manufacture semiconductor devices (e.g., acetone, photoresist). The system was designed to be transportable from tool to tool in the production line and to give the operator real-time feedback so the process(es) can be adjusted to minimize VOC emissions. Detection limits ranging from the high ppb range for acetone to the low ppm range fore other lithography chemicals were achieved using chemical ionization mass spectroscopy at a data acquisition rate of approximately 1 mass spectral scan (30 to 200 daltons) per second. A demonstration of exhaust VOC monitoring was performed at a working semiconductor fabrication facility during actual wafer processing.

  3. Design and Implementation of an Interactive Web-Based Near Real-Time Forest Monitoring System

    PubMed Central

    Pratihast, Arun Kumar; DeVries, Ben; Avitabile, Valerio; de Bruin, Sytze; Herold, Martin; Bergsma, Aldo

    2016-01-01

    This paper describes an interactive web-based near real-time (NRT) forest monitoring system using four levels of geographic information services: 1) the acquisition of continuous data streams from satellite and community-based monitoring using mobile devices, 2) NRT forest disturbance detection based on satellite time-series, 3) presentation of forest disturbance data through a web-based application and social media and 4) interaction of the satellite based disturbance alerts with the end-user communities to enhance the collection of ground data. The system is developed using open source technologies and has been implemented together with local experts in the UNESCO Kafa Biosphere Reserve, Ethiopia. The results show that the system is able to provide easy access to information on forest change and considerably improves the collection and storage of ground observation by local experts. Social media leads to higher levels of user interaction and noticeably improves communication among stakeholders. Finally, an evaluation of the system confirms the usability of the system in Ethiopia. The implemented system can provide a foundation for an operational forest monitoring system at the national level for REDD+ MRV applications. PMID:27031694

  4. Design and Implementation of an Interactive Web-Based Near Real-Time Forest Monitoring System.

    PubMed

    Pratihast, Arun Kumar; DeVries, Ben; Avitabile, Valerio; de Bruin, Sytze; Herold, Martin; Bergsma, Aldo

    2016-01-01

    This paper describes an interactive web-based near real-time (NRT) forest monitoring system using four levels of geographic information services: 1) the acquisition of continuous data streams from satellite and community-based monitoring using mobile devices, 2) NRT forest disturbance detection based on satellite time-series, 3) presentation of forest disturbance data through a web-based application and social media and 4) interaction of the satellite based disturbance alerts with the end-user communities to enhance the collection of ground data. The system is developed using open source technologies and has been implemented together with local experts in the UNESCO Kafa Biosphere Reserve, Ethiopia. The results show that the system is able to provide easy access to information on forest change and considerably improves the collection and storage of ground observation by local experts. Social media leads to higher levels of user interaction and noticeably improves communication among stakeholders. Finally, an evaluation of the system confirms the usability of the system in Ethiopia. The implemented system can provide a foundation for an operational forest monitoring system at the national level for REDD+ MRV applications. PMID:27031694

  5. A Real-Time Health Monitoring System for Remote Cardiac Patients Using Smartphone and Wearable Sensors

    PubMed Central

    Kakria, Priyanka; Tripathi, N. K.; Kitipawang, Peerapong

    2015-01-01

    Online telemedicine systems are useful due to the possibility of timely and efficient healthcare services. These systems are based on advanced wireless and wearable sensor technologies. The rapid growth in technology has remarkably enhanced the scope of remote health monitoring systems. In this paper, a real-time heart monitoring system is developed considering the cost, ease of application, accuracy, and data security. The system is conceptualized to provide an interface between the doctor and the patients for two-way communication. The main purpose of this study is to facilitate the remote cardiac patients in getting latest healthcare services which might not be possible otherwise due to low doctor-to-patient ratio. The developed monitoring system is then evaluated for 40 individuals (aged between 18 and 66 years) using wearable sensors while holding an Android device (i.e., smartphone under supervision of the experts). The performance analysis shows that the proposed system is reliable and helpful due to high speed. The analyses showed that the proposed system is convenient and reliable and ensures data security at low cost. In addition, the developed system is equipped to generate warning messages to the doctor and patient under critical circumstances. PMID:26788055

  6. A Real-Time Health Monitoring System for Remote Cardiac Patients Using Smartphone and Wearable Sensors.

    PubMed

    Kakria, Priyanka; Tripathi, N K; Kitipawang, Peerapong

    2015-01-01

    Online telemedicine systems are useful due to the possibility of timely and efficient healthcare services. These systems are based on advanced wireless and wearable sensor technologies. The rapid growth in technology has remarkably enhanced the scope of remote health monitoring systems. In this paper, a real-time heart monitoring system is developed considering the cost, ease of application, accuracy, and data security. The system is conceptualized to provide an interface between the doctor and the patients for two-way communication. The main purpose of this study is to facilitate the remote cardiac patients in getting latest healthcare services which might not be possible otherwise due to low doctor-to-patient ratio. The developed monitoring system is then evaluated for 40 individuals (aged between 18 and 66 years) using wearable sensors while holding an Android device (i.e., smartphone under supervision of the experts). The performance analysis shows that the proposed system is reliable and helpful due to high speed. The analyses showed that the proposed system is convenient and reliable and ensures data security at low cost. In addition, the developed system is equipped to generate warning messages to the doctor and patient under critical circumstances. PMID:26788055

  7. Active ultrasonic joint integrity adjudication for real-time structural health monitoring

    NASA Astrophysics Data System (ADS)

    Clayton, Erik H.; Kennel, Matthew B.; Fasel, Timothy R.; Todd, Michael D.; Stabb, Mark C.; Arritt, Brandon J.

    2008-03-01

    The Operationally Responsive Space (ORS) strategy hinges, in part, on realizing technologies which can facilitate the rapid deployment of satellites. Presently, preflight qualification testing and vehicle integration processes are time consumptive and pose as two significant hurdles which must be overcome to effectively enhance US space asset deployment responsiveness. There is a growing demand for innovative embedded Structural Health Monitoring (SHM) technologies which can be seamlessly incorporated onto payload hardware and function in parallel with satellite construction to mitigate lengthy preflight checkout procedures. In this effort our work is focused on the development of a joint connectivity monitoring algorithm which can detect, locate, and assess preload in bolted joint assemblies. Our technology leverages inexpensive, lightweight, flexible thin-film macro-fiber composite (MFC) sensor/actuators with a novel online, data-driven signal processing algorithm. This algorithm inherently relies upon Chaotic Guided Ultrasonic Waves (CGUW) and a novel cross-prediction error classification technique. The efficacy of the monitoring algorithm is evaluated through a series of numerical simulations and experimentally in two test configurations. We conclude with a discussion surrounding further development of this approach into a commercial product as a real-time flight readiness indicator.

  8. High-Performance Bioinstrumentation for Real-Time Neuroelectrochemical Traumatic Brain Injury Monitoring.

    PubMed

    Papadimitriou, Konstantinos I; Wang, Chu; Rogers, Michelle L; Gowers, Sally A N; Leong, Chi L; Boutelle, Martyn G; Drakakis, Emmanuel M

    2016-01-01

    Traumatic brain injury (TBI) has been identified as an important cause of death and severe disability in all age groups and particularly in children and young adults. Central to TBIs devastation is a delayed secondary injury that occurs in 30-40% of TBI patients each year, while they are in the hospital Intensive Care Unit (ICU). Secondary injuries reduce survival rate after TBI and usually occur within 7 days post-injury. State-of-art monitoring of secondary brain injuries benefits from the acquisition of high-quality and time-aligned electrical data i.e., ElectroCorticoGraphy (ECoG) recorded by means of strip electrodes placed on the brains surface, and neurochemical data obtained via rapid sampling microdialysis and microfluidics-based biosensors measuring brain tissue levels of glucose, lactate and potassium. This article progresses the field of multi-modal monitoring of the injured human brain by presenting the design and realization of a new, compact, medical-grade amperometry, potentiometry and ECoG recording bioinstrumentation. Our combined TBI instrument enables the high-precision, real-time neuroelectrochemical monitoring of TBI patients, who have undergone craniotomy neurosurgery and are treated sedated in the ICU. Electrical and neurochemical test measurements are presented, confirming the high-performance of the reported TBI bioinstrumentation. PMID:27242477

  9. Real time monitoring of urban surface water quality using a submersible, tryptophan-like fluorescence sensor

    NASA Astrophysics Data System (ADS)

    Khamis, Kieran; Bradley, Chris; Hannah, David; Stevens, Rob

    2014-05-01

    Due to the recent development of field-deployable optical sensor technology, continuous quantification and characterization of surface water dissolved organic matter (DOM) is possible now. Tryptophan-like (T1) fluorescence has the potential to be a particularly useful indicator of human influence on water quality as T1 peaks are associated with the input of labial organic carbon (e.g. sewage or farm waste) and its microbial breakdown. Hence, real-time recording of T1 fluorescence could be particular useful for monitoring waste water infrastructure, treatment efficiency and the identification of contamination events at higher temporal resolution than available hitherto. However, an understanding of sensor measurement repeatability/transferability and interaction with environmental parameters (e.g. turbidity) is required. Here, to address this practical knowledge gap, we present results from a rigorous test of a commercially available submersible tryptophan fluorometer (λex 285, λem 350). Sensor performance was first examined in the laboratory by incrementally increasing turbidity under controlled conditions. Further to this the sensor was integrated into a multi-parameter sonde and field tests were undertaken involving: (i) a spatial sampling campaign across a range of surface water sites in the West Midlands, UK; and (ii) collection of high resolution (sub-hourly) samples from an urban stream (Bournbrook, Birmingham, U.K). To determine the ability of the sensor to capture spatiotemporal dynamics of urban waters DOM was characterized for each site or discrete time step using Excitation Emission Matrix spectroscopy and PARAFAC. In both field and laboratory settings fluorescence intensity was attenuated at high turbidity due to suspended particles increasing absorption and light scattering. For the spatial survey, instrument readings were compared to those obtained by a laboratory grade fluorometer (Varian Cary Eclipse) and a strong, linear relationship was apparent

  10. Real-time water and wastewater quality monitoring using LED-based fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Bridgeman, John; Zakharova, Yulia

    2016-04-01

    In recent years there have been a number of attempts to design and introduce into water management tools that are capable of measuring organic and microbial matter in real time and in situ. This is important, as the delivery of safe water to customers, and the discharge of good quality effluent to rivers are primary concerns to water undertakers. A novel, LED-based portable fluorimeter 'Duo Fluor' has been designed and constructed at the University of Birmingham to monitor the quality of (waste)water continuously and in real time, and its performance has been assessed in a range of environments. To be of use across a range of environments, special attention must be paid to two crucially important characteristics of such instruments, i.e. their sensitivity and robustness. Thus, the objectives of this study were: 1. To compare the performance (in terms of their sensitivity and robustness) of the Duo Fluor and two other commercial fluorescence devices in laboratory conditions. 2. To assess the performance of the Duo Fluor in situ, in real time at a 450,000PE WwTW. Initially, the impact of quinine sulphate (QS), a highly fluorescent alkaloid with high quantum fluorescence yield, on peak T fluorescence in environmental waters was examined for the Duo Fluor and two commercially available, chamber-based fluorimeters, (F1) and (F2). The instruments' responses to three scenarios were assessed: 1. Deionised water (DW) spiked with QS (from 0.05 to 0.4 mg/L); 2. Environmental water (pond water, PW) spiked with QS (from 0.05 to 0.4 mg/L); 3. Different water samples from various environmental source. The results show that the facility to amend gain settings and the suitable choice of gain are crucial to obtaining reliable data on both peaks T and C in a wide range of water types. The Duo Fluor offers both of these advantages whilst commercially available instruments currently do not. The Duo Fluor was subsequently fixed at the final effluent (FE) discharge point of a WwTW and FE

  11. Preliminary Results from Real-Time GPS Monitoring in the San Francisco Bay Area

    NASA Astrophysics Data System (ADS)

    Langbein, J. O.; Guillemot, C.

    2013-12-01

    A web-based monitoring system has been implemented to display displacement estimates in real-time for various combinations of USGS, Plate Boundary Observatory (PBO) and Bay Area Regional Deformation (BARD) network stations in the San Francisco Bay area. Tools and utilities developed in-house are used to visually analyze the quality of estimated positions and gain a better understanding of the challenges involved in integrating displacement data into earthquake early warning (EEW) algorithms. Comparisons of results between differential and precise position estimates obtained from a variety of software packages have led to a closer examination of the epoch-per-epoch latencies, or delays with which those estimates are generated. For example, although position estimates from precise point positioning, with ambiguity resolution, (PPP-AR) computed in real-time are reasonably stable over short-time scales, latencies of 50 seconds or more currently preclude their useful incorporation into EEW algorithms. On the other hand, the latencies for differential position range between less than a second to 10 seconds. The large latencies for PPP-AR are partly due to the fact that displacement estimates obtained from GPS cannot yet be generated at the source but must rely on centralized processing that incorporates instantaneous clock corrections which, in turn must be obtained from external agencies. The latencies, however, are not as critical for the study of post-seismic deformation that occurs minutes to hours following an earthquake. Computation of the power spectra of time series provides a quantitative means to compare the precision of estimated positions that are obtained from various software that process the data in real-time. To first order, the current set of processing algorithms, including those using differential position and PPP-AR, provides nearly equal performance in terms of temporal correlations which is represented by their power spectra. At the shortest periods

  12. Real-time earthquake monitoring for tsunami warning in the Indian Ocean and beyond

    NASA Astrophysics Data System (ADS)

    Hanka, W.; Saul, J.; Weber, B.; Becker, J.; Harjadi, P.; Fauzi; Gitews Seismology Group

    2010-12-01

    The Mw = 9.3 Sumatra earthquake of 26 December 2004 generated a tsunami that affected the entire Indian Ocean region and caused approximately 230 000 fatalities. In the response to this tragedy the German government funded the German Indonesian Tsunami Early Warning System (GITEWS) Project. The task of the GEOFON group of GFZ Potsdam was to develop and implement the seismological component. In this paper we describe the concept of the GITEWS earthquake monitoring system and report on its present status. The major challenge for earthquake monitoring within a tsunami warning system is to deliver rapid information about location, depth, size and possibly other source parameters. This is particularly true for coast lines adjacent to the potential source areas such as the Sunda trench where these parameters are required within a few minutes after the event in order to be able to warn the population before the potential tsunami hits the neighbouring coastal areas. Therefore, the key for a seismic monitoring system with short warning times adequate for Indonesia is a dense real-time seismic network across Indonesia with densifications close to the Sunda trench. A substantial number of supplementary stations in other Indian Ocean rim countries are added to strengthen the teleseismic monitoring capabilities. The installation of the new GITEWS seismic network - consisting of 31 combined broadband and strong motion stations - out of these 21 stations in Indonesia - is almost completed. The real-time data collection is using a private VSAT communication system with hubs in Jakarta and Vienna. In addition, all available seismic real-time data from the other seismic networks in Indonesia and other Indian Ocean rim countries are acquired also directly by VSAT or by Internet at the Indonesian Tsunami Warning Centre in Jakarta and the resulting "virtual" network of more than 230 stations can jointly be used for seismic data processing. The seismological processing software as part

  13. A HyperSpectral Imaging (HSI) approach for bio-digestate real time monitoring

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Fabbri, Andrea; Serranti, Silvia

    2014-05-01

    One of the key issues in developing Good Agricultural Practices (GAP) is represented by the optimal utilisation of fertilisers and herbicidal to reduce the impact of Nitrates in soils and the environment. In traditional agriculture practises, these substances were provided to the soils through the use of chemical products (inorganic/organic fertilizers, soil improvers/conditioners, etc.), usually associated to several major environmental problems, such as: water pollution and contamination, fertilizer dependency, soil acidification, trace mineral depletion, over-fertilization, high energy consumption, contribution to climate change, impacts on mycorrhizas, lack of long-term sustainability, etc. For this reason, the agricultural market is more and more interested in the utilisation of organic fertilisers and soil improvers. Among organic fertilizers, there is an emerging interest for the digestate, a sub-product resulting from anaerobic digestion (AD) processes. Several studies confirm the high properties of digestate if used as organic fertilizer and soil improver/conditioner. Digestate, in fact, is somehow similar to compost: AD converts a major part of organic nitrogen to ammonia, which is then directly available to plants as nitrogen. In this paper, new analytical tools, based on HyperSpectral Imaging (HSI) sensing devices, and related detection architectures, is presented and discussed in order to define and apply simple to use, reliable, robust and low cost strategies finalised to define and implement innovative smart detection engines for digestate characterization and monitoring. This approach is finalized to utilize this "waste product" as a valuable organic fertilizer and soil conditioner, in a reduced impact and an "ad hoc" soil fertilisation perspective. Furthermore, the possibility to contemporary utilize the HSI approach to realize a real time physicalchemical characterisation of agricultural soils (i.e. nitrogen, phosphorus, etc., detection) could

  14. Advantages of real-time PCR assay for diagnosis and monitoring of canine leishmaniosis.

    PubMed

    Francino, O; Altet, L; Sánchez-Robert, E; Rodriguez, A; Solano-Gallego, L; Alberola, J; Ferrer, L; Sánchez, A; Roura, X

    2006-04-30

    The aim of the present study is to highlight the advantages of real-time quantitative PCR intended to aid in the diagnosis and monitoring of canine leishmaniosis. Diagnosis of canine leishmaniosis is extremely challenging, especially in endemic areas, due to the diverse and non-specific clinical manifestations, and due to the high seroprevalence rate in sub-clinical dogs. Veterinarian clinicians are usually confronted with cases that are compatible with the disease, and with several diagnostic tests, sometimes with contradictory results. We have developed a new TaqMan assay, targeting the kinetoplast, applied to 44 samples of bone marrow aspirate or peripheral blood. The dynamic range of detection of Leishmania DNA was established in 7 logs and the limit of detection is 0.001 parasites in the PCR reaction. At the time of diagnosis parasitemia ranges from less than 1 to 10(7)parasites/ml. The ability to quantify the parasite burden allowed: (i) to elucidate the status of positive dogs by conventional PCR, although larger studies are necessary to clarify the dividing line between infection and disease, (ii) to estimate the kinetics of the parasite load and the different response to the treatment in a follow-up and (iii) to validate blood as less invasive sample for qPCR. The continuous data provided by real-time qPCR could solve the dilemma for the clinician managing cases of canine leishmaniosis by differentiating between Leishmania-infected dogs or dogs with active disease of leishmaniosis. PMID:16473467

  15. Real-time cell analysis for monitoring cholera toxin-induced human intestinal epithelial cell response.

    PubMed

    Ye, Julian; Luo, Yun; Fang, Weijia; Pan, Junhang; Zhang, Zheng; Zhang, Yanjun; Chen, Zhiping; Jin, Dazhi

    2015-04-01

    The pathogenic mechanism of Vibrio cholerae manifests as diarrhea and causes life-threatening dehydration. Here, we observe the human intestinal epithelial cells (HIEC) response to Cholera toxin (CT) by a real-time cell analysis (RTCA) platform, and disclose the difference from CT-induced cytotoxicity and others in HIEC. An HIEC cell of 1.0 × 10(5) cells/mL was characterized as the suitable concentration for each well. For experimentation, the assay requires an inoculation of CT dissolved in Dulbecco's phosphate-buffered saline with 0.1 % gelatin for a period of 18-25 h. The dimensionless impedance cell index curve presented characteristic dose- and time-dependent drop responses at the first stage, and the CT-induced cytotoxicity was the most remarkable following exposure for 18-25 h (P = 0.0002). Following the obvious cytotoxic reaction, the CI curve gradually increased over time until the original CI value, indicating that self-recovery occurred. The CT-induced CI curve for HIEC was different from that induced by other toxins, including diphtheria and Clostridium difficile toxin. Collectively, these results suggest that the CT-induced cytotoxicity in HIEC was absolutely different from that induced by C. difficile and other toxins because of the different pathogeneses that were correlated with the specific CI curve generated by the RTCA system. In summary, our data show that the assay described here is a convenient and rapid high-throughput tool for real-time monitoring of host cellular responses to CT on the basis of the characteristic CI curve. PMID:25510171

  16. Near real-time GRACE gravity field solutions for hydrological monitoring applications

    NASA Astrophysics Data System (ADS)

    Kvas, Andreas; Gouweleeuw, Ben; Mayer-Gürr, Torsten; Güntner, Andreas

    2016-04-01

    Within the EGSIEM (European Gravity Service for Improved Emergency Management) project, a demonstrator for a near real-time (NRT) gravity field service which provides daily GRACE gravity field solutions will be established. Compared to the official GRACE gravity products, these NRT solutions will increase the temporal resolution from one month to one day and reduce the latency from currently two months to five days. This fast availability allows the monitoring of total water storage variations and of hydrological extreme events as they occur, in contrast to a 'confirmation after occurrence' as is the situation today. The service will be jointly run by GFZ (German Research Centre for Geosciences) and Graz University of Technology, with each analysis center providing an independent solution. A Kalman filter framework, in which GRACE data is combined with prior information, serves as basis for the gravity field recovery in order to increase the redundancy of the gravity field estimates. The on-line nature of the NRT service necessitates a tailored smoothing algorithm as opposed to post-processing applications, where forward-backward smoothing can be applied. This contribution gives an overview on the near real-time processing chain and highlights differences between the computed NRT solutions and the standard GRACE products. We discuss the special characteristics of the Kalman filtered gravity field models as well as derived products and give an estimate of the expected error levels. Additionally, we show the added value of the NRT solutions through comparison of the first results of the pre-operational phase with in-situ data and monthly GRACE gravity field models.

  17. Real-time optical monitoring of permanent lesion progression in radiofrequency ablated cardiac tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singh-Moon, Rajinder P.; Hendon, Christine P.

    2016-02-01

    Despite considerable advances in guidance of radiofrequency ablation (RFA) therapies for atrial fibrillation, success rates have been hampered by an inability to intraoperatively characterize the extent of permanent injury. Insufficient lesions can elusively create transient conduction blockages that eventually reconduct. Prior studies suggest significantly greater met-myoglobin (Mmb) concentrations in the lesion core than those in the healthy myocardium and may serve as a marker for irreversible tissue damage. In this work, we present real-time monitoring of permanent injury through spectroscopic assessment of Mmb concentrations at the catheter tip. Atrial wedges (n=6) were excised from four fresh swine hearts and submerged under pulsatile flow of warm (37oC) phosphate buffered saline. A commercial RFA catheter inserted into a fiber optic sheath allowed for simultaneous measurement of tissue diffuse reflectance (DR) spectra (500-650nm) during application of RF energy. Optical measurements were continuously acquired before, during, and post-ablation, in addition to healthy neighboring tissue. Met-myoglobin, oxy-myoglobin, and deoxy-myoglobin concentrations were extracted from each spectrum using an inverse Monte Carlo method. Tissue injury was validated with Masson's trichrome and hematoxylin and eosin staining. Time courses revealed a rapid increase in tissue Mmb concentrations at the onset of RFA treatment and a gradual plateauing thereafter. Extracted Mmb concentrations were significantly greater post-ablation (p<0.0001) as compared to healthy tissue and correlated well with histological assessment of severe thermal tissue destruction. On going studies are aimed at integrating these findings with prior work on near infrared spectroscopic lesion depth assessment. These results support the use of spectroscopy-facilitated guidance of RFA therapies for real-time permanent injury estimation.

  18. Wearable real-time direct reading naphthalene and VOC personal exposure monitor

    NASA Astrophysics Data System (ADS)

    Hug, W. F.; Bhartia, R.; Reid, R. D.; Reid, M. R.; Oswal, P.; Lane, A. L.; Sijapati, K.; Sullivan, K.; Hulla, J. E.; Snawder, J.; Proctor, S. P.

    2012-06-01

    Naphthalene has been identified by the National Research Council as a serious health hazard for personnel working with jet fuels and oil-based sealants containing naphthalene. We are developing a family of miniature, self-contained, direct reading personal exposure monitors (PEMs) to detect, differentiate, quantify, and log naphthalene and other volatile organic compounds (VOCs) in the breathing zone of the wearer or in the hands of an industrial hygienist with limits of detection in the low parts per billion (ppb) range. The VOC Dosimeter (VOCDos) described here is a PEM that provides real-time detection and data logging of exposure as well as accumulated dose, with alarms addressing long term and immediate exposure limits. We will describe the sensor, which employs optical methods with a unique excitation source and rapidly refreshable vapor concentrator. This paper addresses the rapidly increasing awareness of the health risks of inhaling jet fuel vapors by Department of Defense (DOD) personnel engaged in or around jet fueling operations. Naphthalene is a one to three percent component of the 5 billion gallons of jet fuels used annually by DOD. Naphthalene is also a component of many other petroleum products such as asphalt and other oil-based sealants. The DOD is the single largest user of petroleum fuels in the United States (20% of all petroleum fuel used). The VOCDos wearable sensor provides real-time detection and data logging of exposure as well as accumulated dose. We will describe the sensor, which employs endogenous fluorescence from VOCs accumulated on a unique, rapidly refreshable, patent-pending concentrator, excited by a unique deep ultraviolet excitation source.

  19. Latest Development of Real-Time Strong-Motion Monitoring System in Taiwan

    NASA Astrophysics Data System (ADS)

    Hsiao, N.; Wu, Y.; Shin, T.; Teng, T.

    2003-12-01

    Based on the experience of the 1999 Chi-Chi Earthquake, the Central Weather Bureau (CWB) has made substantial improvements to the earthquake rapid report system. Besides the current use of digital lease phone line and internet transmission, the satellite link for station to center is setup for backup. The station is also equipped with UPS to prevent the failure of electricity power. This backup link system is designed as automatically switching in case of ground link interrupted. On the other hand, two real-time seismic sub-network are deployed stand alone at Hualein (East coast of Taiwan) and Tainan (south Taiwan) stations separately. The sub-network only manipulates real-time seismic data of nearby stations to shorten the procession time. The configuration and function of sub-network can be monitored and changed by Taipei center through computer link. Results from sub-network can be sent to Taipei center simultaneously. The collective use of these redundant systems significantly improves the capability and reliability of seismic emergency response. It will provide more robust foundation to develop earthquake early warning system. To safeguard train transportation from a disaster earthquake, the CWB assists Taiwan Railway Administration (TRA) to establish a seismic alert system including 44 3-component accelerographs along the track of the round-the-island Taiwan railway system. The configuration of the system is similar to the use of sub-network of CWB. It becomes the third backup of earthquake report system. In addition, ground vibration of a TRA instrument exceeds 180 gals, the power of the railway will be automatically cut-off to slow down the nearby train.

  20. All-optical quality-of-signal monitoring in real time

    NASA Astrophysics Data System (ADS)

    Anderson, Betty Lise; Abou-Galala, Feras; Rabb, David; Durresi, Arjan

    2003-08-01

    An new optical correlator containing a tapped delay line with thousands of taps is described. This enables ultra-high resolution correlation. We apply this to monitoring quality-of-signal by correlating the received, degraded bits with and un-degraded signal. The strength of the correlation signal, which is all optical, is proportional to the quality. Dispersion and attenuation can be evaluated in less than 100 ps at 40Gb/s, and jitter and noise in less than 100 ns. This is a significant improvement over minutes or even hours for bit-error-rate measurements. Simulations show good correspondence to eye-diagram measurements, the conventional (but slow) way to measure signal quality. If a network node can know the quality of all its links in real-time, it can re-route signals around poor links, and provide restoration and protection as well. The key to all this is an optical correlator with a very large number of taps in its internal tapped delay line. Our device uses a White cell and a fixed micro-mirror array. In a White cell, light bounces back and forth between three spherical mirrors. Multiple beams circulate in the same cell without interfering and are each refocused to a unique pattern of spots. We make the spots land on the micro-mirror array to switch between cells of slightly different lengths. Our current design provides 6550 possible delays for thousands of light beams, using only ten mirrors, a lens, and the micro-mirror array. We have developed two routing and protection protocols to exploit having this real-time information available to the network.

  1. Statistical analysis of real-time, enviromental radon monitoring results at the Fernald Enviromental Management Project

    SciTech Connect

    Liu, Ning; Spitz, H.B.; Tomezak, L.

    1996-02-01

    A comprehensive real-time, environmental radon monitoring program is being conducted at the Fernald Environmental Management Project, where a large quantity of radium-bearing residues have been stored in two covered earth-bermed silos. Statistical analyses was conducted to determine what impact radon emitted by the radium bearing materials contained in the silos has on the ambient radon concentration at the Fernald Environmental Management Project site. The distribution that best describes the outdoor radon monitoring data was determined before statistical analyses were conducted. Random effects associated with the selection of radon monitoring locations were accommodated by using nested and nested factorial classification models. The Project site was divided into four general areas according to their characteristics and functions: (1) the silo area, where the radium-bearing waste is stored; (2) the production/administration area; (3) the perimeter area, or fence-line, of the Fernald Environmental Management Project site; and (4) a background area, located approximately 13 km from the Fernald Environmental Management Project site, representing the naturally-occurring radon concentration. A total of 15 continuous, hourly readout radon monitors were installed to measure the outdoor radon concentration. Measurement results from each individual monitor were found to be log-normally distributed. A series of contrast tests, which take random effects into account, were performed to compare the radon concentration between different areas of the site. These comparisons demonstrate that the radon concentrations in the production/administration area and the perimeter area are statistically equal to the natural background, whereas the silo area is significantly higher than background. The study also showed that the radon concentration in the silo area was significantly reduced after a sealant barrier was applied to the contents of the silos. 10 refs., 6 figs., 8 tabs.

  2. Statistical analysis of real-time, environmental radon monitoring results at the Fernald Environmental Management Project.

    PubMed

    Liu, N; Spitz, H B; Tomczak, L

    1996-02-01

    A comprehensive real-time, environmental radon monitoring program is being conducted at the Fernald Environmental Management Project, where a large quantity of radium-bearing residues have been stored in two covered earth-bermed silos. Statistical analyses of radon measurement results were conducted to determine what impact, if any, radon emitted by the radium bearing materials contained in the silos has on the ambient radon concentration at the Fernald Environmental Management Project site. The distribution that best describes the outdoor radon monitoring data was determined before statistical analyses were conducted. Random effects associated with the selection of radon monitoring locations were accommodated by using nested and nested factorial classification models. The Fernald Environmental Management Project site was divided into four general areas according to their characteristics and functions: 1) the silo area, where the radium-bearing waste is stored; 2) the production/administration area; 3) the perimeter area, or fence-line, of the Fernald Environmental Management Project site; and 4) a background area, located approximately 13 km from the Fernald Environmental Management Project site, representing the naturally-occurring radon concentration. A total of 15 continuous, hourly readout radon monitors were installed in these 4 areas to measure the outdoor radon concentration. Measurement results from each individual monitor were found to be log-normally distributed. A series of contrast tests, which take random effects into account, were performed to compare the radon concentration between different areas of the site. These comparisons demonstrate that the radon concentrations in the production/administration area and the perimeter area are statistically equal to the natural background, whereas the silo area is significantly higher than background. The study also showed that the radon concentration in the silo area was significantly reduced after a sealant

  3. Interagency Collaborators Develop and Implement ForWarn, a National, Near Real Time Forest Monitoring Tool

    NASA Technical Reports Server (NTRS)

    Underwood, Lauren

    2013-01-01

    ForWarn is a satellite-based forest monitoring tool that is being used to detect and monitor disturbances to forest conditions and forest health. It has been developed through the synergistic efforts, capabilities and contributions of four federal agencies, including the US Forest Service Eastern Forest and Western Wildland Environmental Threat Assessment Centers, NASA Stennis Space Center (SSC), Department of Energy's (DOE) Oak Ridge National Laboratory (ORNL) and US Geological Survey Earth (USGS) Earth Research Observation System (EROS), as well as university partners, including the University of North Carolina Asheville's National Environmental Modeling and Analysis Center (NEMAC). This multi-organizational partnership is key in producing a unique, path finding near real-time forest monitoring system that is now used by many federal, state and local government end-users. Such a system could not have been produced so effectively by any of these groups on their own. The forests of the United States provide many societal values and benefits, ranging from ecological, economic, cultural, to recreational. Therefore, providing a reliable and dependable forest and other wildland monitoring system is important to ensure the continued health, productivity, sustainability and prudent use of our Nation's forests and forest resources. ForWarn does this by producing current health indicator maps of our nation's forests based on satellite data from NASA's MODIS (Moderate Resolution Imaging Spectroradiometer) sensors. Such a capability can provide noteworthy value, cost savings and significant impact at state and local government levels because at those levels of government, once disturbances are evident and cause negative impacts, a response must be carried out. The observations that a monitoring system like ForWarn provide, can also contribute to a much broader-scale understanding of vegetation disturbances.

  4. Real-Time In Situ Monitoring of Coupled Dynamics in Ponds

    NASA Astrophysics Data System (ADS)

    Branco, B.; Torgersen, T.; Bean, J.

    2002-05-01

    Shallow (< 2 m) ponds represent an important water quality component of the landscape. The bio- and chemodynamics are coupled to physical processes through diel cycles of thermal stratification and destratification as well as aperiodic precipitation events. Thus, a pond's coupled biological, physical and chemical dynamics and it's time scales of reaction and transport are of the order of minutes to days and requires hourly sampling at a minimum. The MyPond project has developed equipment and techniques to examine these dynamics in real-time through an Internet-based monitoring system that delivers streaming data for use in research and education. The MyPond system is currently being used to monitor the coupled dynamics of Mirror Lake (mean depth ~ 1.2 m) at the Storrs campus of the University of Connecticut. The diel stratification/destratification cycle is monitored using a thermistor array extending from the top of the water column to 10 cm into the sediments. An in-house designed pump profiler system allows high frequency (one sample every 5 minutes) automatic sampling of 6 to 8 sequential depths (one profile every ~ 30 minutes). A programmable microprocessor controls the timing and sequence of the sampling. Pond water is measured in a flow cell with a single YSI multi-parameter sonde for temperature, dissolved oxygen, pH, ORP, ammonium, turbidity, fluorescence and specific conductivity for each depth interval The datalogger is remotely queried via UCONN's data network. Graphical displays of the data are created automatically and served as images to the MyPond website. Pond water level and weather data are also provided in real-time. Thermal gradients as high as 0.14 deg C/cm are seen during daylight in summer months with daily `turnover' just before dawn. Strong diurnal patterns and top to bottom differences in e.g. photosynthetic oxygen production and carbon dioxide consumption as well as an ammonium flux from the sediment are clearly visible. It is commonly

  5. A system for advanced real-time visualization and monitoring of MR-guided thermal ablations

    NASA Astrophysics Data System (ADS)

    Rothgang, Eva; Gilson, Wesley D.; Hornegger, Joachim; Lorenz, Christine H.

    2010-02-01

    In modern oncology, thermal ablations are increasingly used as a regional treatment option to supplement systemic treatment strategies such as chemotherapy and immunotherapy. The goal of all thermal ablation procedures is to cause cell death of disease tissue while sparing adjacent healthy tissue. Real-time assessment of thermal damage is the key to therapeutic efficiency and safety of such procedures. Magnetic resonance thermometry is capable of monitoring the spatial distribution and temporal evolution of temperature changes during thermal ablations. In this work, we present an advanced monitoring system for MR-guided thermal ablations that includes multiplanar visualization, specialized overlay visualization methods, and additional methods for correcting errors resulting from magnetic field shifts and motion. To ensure the reliability of the displayed thermal data, systematic quality control of thermal maps is carried out on-line. The primary purpose of this work is to provide clinicians with an intuitive tool for accurately visualizing the progress of thermal treatment at the time of the procedure. Importantly, the system is designed to be independent of the heating source. The presented system is expected to be of great value not only to guide thermal procedures but also to further explore the relationship between temperature-time exposure and tissue damage. The software application was implemented within the eXtensible Imaging Platform (XIP) and has been validated with clinical data.

  6. Real-time, Noninvasive Monitoring of Ion Energy at Insulating Electrodes

    NASA Astrophysics Data System (ADS)

    Sobolewski, Mark

    2006-10-01

    The dc self bias voltage is often monitored during plasma processing to provide a rough estimate of ion bombardment energies. However, many plasma reactors use electrostatic chucks, which have a large dc impedance that makes dc bias measurements impossible. A chuck may also have a large rf impedance that produces a significant rf voltage drop across the chuck. In this study chuck impedance effects were investigated in an inductively coupled plasma reactor by incorporating insulating structures into the rf-biased lower electrode. Measurements were made to characterize the capacitive impedance of the insulating electrode itself and the combined impedance of the electrode plus the wafer. This impedance was included in a numerical model of the plasma and its sheaths and the combined model was used to analyze measured rf bias current and voltage waveforms. This approach allows a real-time, noninvasive monitoring technique developed for bare metallic electrodes to be extended to insulating electrodes, including electrostatic chucks. The technique not only determines the dc self bias voltage but also the total ion current and ion energy distributions at the wafer or chuck surface.

  7. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    SciTech Connect

    Dennis H. LeMieux

    2004-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land -based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems; a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization.

  8. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    SciTech Connect

    Dennis H. LeMieux

    2005-04-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  9. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    SciTech Connect

    Dennis H. LeMieux

    2005-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Power Generation, Inc proposed a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Power Generation, Inc. has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  10. ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION

    SciTech Connect

    Dennis H. LeMieux

    2002-04-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  11. ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION

    SciTech Connect

    Dennis H. LeMieux

    2003-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability, availability, and maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can, therefore, accelerate the degradation of substrate component materials and eventually lead to a premature failure of critical components and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  12. ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION

    SciTech Connect

    Dennis H. LeMieux

    2003-07-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability, availability, and maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can, therefore, accelerate the degradation of substrate component materials and eventually lead to a premature failure of critical components and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  13. Real time bridge scour monitoring with magneto-inductive field coupling

    NASA Astrophysics Data System (ADS)

    Radchenko, Andriy; Pommerenke, David; Chen, Genda; Maheshwari, Pratik; Shinde, Satyajeet; Pilla, Viswa; Zheng, Yahong R.

    2013-04-01

    Scour was responsible for most of the U.S. bridges that collapsed during the past 40 years. The maximum scour depth is the most critical parameter in bridge design and maintenance. Due to scouring and refilling of river-bed deposits, existing technologies face a challenge in measuring the maximum scour depth during a strong flood. In this study, a new methodology is proposed for real time scour monitoring of bridges. Smart Rocks with embedded electronics are deployed around the foundation of a bridge as field agents. With wireless communications, these sensors can send their position change information to a nearby mobile station. This paper is focused on the design, characterization, and performance validation of active sensors. The active sensors use 3-axis accelerometers/ magnetometers with a magneto-inductive communication system. In addition, each sensor includes an ID, a timer, and a battery level indicator. A Smart Rock system enables the monitoring of the most critical scour condition and time by logging and analyzing sliding, rolling, tilting, and heading of the spatially distributed sensors.

  14. Real Time Intraoperative Monitoring of Blood Loss with a Novel Tablet Application

    PubMed Central

    Sharareh, Behnam; Woolwine, Spencer; Satish, Siddarth; Abraham, Peter; Schwarzkopf, Ran

    2015-01-01

    Introduction : Real-time monitoring of blood loss is critical in fluid management. Visual estimation remains the standard of care in estimating blood loss, yet is demonstrably inaccurate. Photometric analysis, which is the referenced “gold-standard” for measuring blood loss, is both time-consuming and costly. The purpose of this study was to evaluate the efficacy of a novel tablet-monitoring device for measurement of Hb loss during orthopaedic procedures. Methods : This is a prospective study of 50 patients in a consecutive series of joint arthroplasty cases. The novel System with Feature Extraction Technology was used to measure the amount of Hb contained within surgical sponges intra-operatively. The system’s measures were then compared with those obtained via gravimetric method and photometric analysis. Accuracy was evaluated using linear regression and Bland-Altman analysis. Results : Our results showed a significant positive correlation between Triton tablet system and photometric analysis with respect to intra-operative hemoglobin and blood loss at 0.92 and 0.91, respectively. Discussion : This novel system can accurately determine Hb loss contained within surgical sponges. We believe that this user-friendly software can be used for measurement of total intraoperative blood loss and thus aid in a more accurate fluid management protocols during orthopaedic surgical procedures. PMID:26401167

  15. Adaptive neuro-fuzzy inference system for real-time monitoring of integrated-constructed wetlands.

    PubMed

    Dzakpasu, Mawuli; Scholz, Miklas; McCarthy, Valerie; Jordan, Siobhán; Sani, Abdulkadir

    2015-01-01

    Monitoring large-scale treatment wetlands is costly and time-consuming, but required by regulators. Some analytical results are available only after 5 days or even longer. Thus, adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the effluent concentrations of 5-day biochemical oxygen demand (BOD5) and NH4-N from a full-scale integrated constructed wetland (ICW) treating domestic wastewater. The ANFIS models were developed and validated with a 4-year data set from the ICW system. Cost-effective, quicker and easier to measure variables were selected as the possible predictors based on their goodness of correlation with the outputs. A self-organizing neural network was applied to extract the most relevant input variables from all the possible input variables. Fuzzy subtractive clustering was used to identify the architecture of the ANFIS models and to optimize fuzzy rules, overall, improving the network performance. According to the findings, ANFIS could predict the effluent quality variation quite strongly. Effluent BOD5 and NH4-N concentrations were predicted relatively accurately by other effluent water quality parameters, which can be measured within a few hours. The simulated effluent BOD5 and NH4-N concentrations well fitted the measured concentrations, which was also supported by relatively low mean squared error. Thus, ANFIS can be useful for real-time monitoring and control of ICW systems. PMID:25607665

  16. Reusable Floating-Electrode Sensor for Real-Time Electrophysiological Monitoring of Nonadherent Cells

    NASA Astrophysics Data System (ADS)

    Pham Ba, Viet Anh; Ta, Van-Thao; Park, Juhun; Park, Eun Jin; Hong, Seunghun

    2015-03-01

    We herein report the development of a reusable floating-electrode sensor (FES) based on aligned single-walled carbon nanotubes, which allowed quantitatively monitoring the electrophysiological responses from nonadherent cells. The FES was used to measure the real-time responses of normal lung cells and small-cell lung cancer (SCLC) cells to the addition of nicotine. The SCLC cells exhibited rather large electrophysiological responses to nicotine compared to normal cells, which was attributed to the overexpressed nicotinic acetylcholine receptors (nAChRs) in the SCLC cells. Importantly, using only a single device could measure repeatedly the responses of multiple individual cells to various drugs, enabling statistically meaningful measurements without errors from the device-to-device variations of the sensor characteristics. As results, that the treatment with drugs such as genistin or daidzein reduced Ca2+ influx in SCLC cells was found. Moreover, tamoxifen, has been known as an anti-estrogen compound, was found to only partly block the binding of daidzein to nAChRs. Our FES can be a promising tool for various biomedical applications such as drug screening and therapy monitoring.

  17. Fluorescence Correlation Spectroscopy to Monitor Kai Protein-based Circadian Oscillations in Real Time*

    PubMed Central

    Goda, Kazuhito; Ito, Hiroshi; Kondo, Takao; Oyama, Tokitaka

    2012-01-01

    Dynamic protein-protein interactions play an essential role in cellular regulatory systems. The cyanobacterial circadian clock is an oscillatory system that can be reconstituted in vitro by mixing ATP and three clock proteins: KaiA, KaiB, and KaiC. Association and dissociation of KaiB from KaiC-containing complexes are critical to circadian phosphorylation and dephosphorylation of KaiC. We developed an automated and noninvasive method to monitor dynamic complex formation in real time using confocal fluorescence correlation spectroscopy (FCS) and uniformly labeled KaiB as a probe. A nanomolar concentration of the labeled KaiB for FCS measurement did not interfere with the oscillatory system but behaved similarly to the wild-type one during the measurement period (>5 days). The fluorescent probe was stable against repeated laser exposure. As an application, we show that this detection system allowed analysis of the dynamics of both long term circadian oscillations and short term responses to temperature changes (∼10 min) in the same sample. This suggested that a phase shift of the clock with a high temperature pulse occurred just after the stimulus through dissociation of KaiB from the KaiC complex. This monitoring method should improve our understanding of the mechanisms underlying this cellular circadian oscillator and provide a means to assess dynamic protein interactions in biological systems characterized by rates similar to those observed with the Kai proteins. PMID:22157012

  18. Monitoring Enzymatic Reactions in Real Time Using Venturi Easy Ambient Sonic-Spray Ionization Mass Spectrometry

    PubMed Central

    2016-01-01

    We developed a technique to monitor spatially confined surface reactions with mass spectrometry under ambient conditions, without the need for voltage or organic solvents. Fused-silica capillaries immersed in an aqueous solution, positioned in close proximity to each other and the functionalized surface, created a laminar flow junction with a resulting reaction volume of ∼5 pL. The setup was operated with a syringe pump, delivering reagents to the surface through a fused-silica capillary. The other fused-silica capillary was connected to a Venturi easy ambient sonic-spray ionization source, sampling the resulting analytes at a slightly higher flow rate compared to the feeding capillary. The combined effects of the inflow and outflow maintains a chemical microenvironment, where the rate of advective transport overcomes diffusion. We show proof-of-concept where acetylcholinesterase was immobilized on an organosiloxane polymer through electrostatic interactions. The hydrolysis of acetylcholine by acetylcholinesterase into choline was monitored in real-time for a range of acetylcholine concentrations, fused-silica capillary geometries, and operating flow rates. Higher reaction rates and conversion yields were observed with increasing acetylcholine concentrations, as would be expected. PMID:27249533

  19. Real-time Focused Ultrasound Surgery (FUS) Monitoring Using Harmonic Motion Imaging (HMI)

    SciTech Connect

    Maleke, Caroline; Konofagou, Elisa E.

    2009-04-14

    Monitoring changes in tissue mechanical properties to optimally control thermal exposure is important in thermal therapies. The amplitude-modulated (AM) harmonic motion imaging (HMI) for focused ultrasound (HMIFU) technique is a radiation force technique, which has the capability of tracking tissue stiffness during application of an oscillatory force. The feasibility of HMIFU for assessing mechanical tissue properties has been previously demonstrated. In this paper, a confocal transducer, combining a 4.5 MHz FUS transducer and a 3.3 MHz phased array imaging transducer, was used. The FUS transducer was driven by AM wave at 15 Hz with an acoustic intensity (I{sub spta}) was equal to 1050 W/cm{sup 2}. A lowpass digital filter was used to remove the spectrum of the higher power beam prior to displacement estimation. The resulting axial tissue displacement was estimated using 1D cross-correlation with a correlation window of 2 mm and a 92.5% overlap. A thermocouple was also used to measure the temperature near the ablated region. 2D HMI-images from six-bovine-liver specimens indicated the onset of coagulation necrosis through changes in amplitude displacement after coagulation due to its simultaneous probing and heating capability. The HMI technique can thus be used to monitor temperature-related stiffness changes of tissues during thermal therapies in real-time, i.e., without interrupting or modifying the treatment protocol.

  20. A multichannel, real-time MRI RF power monitor for independent SAR determination

    PubMed Central

    El-Sharkawy, AbdEl-Monem M.; Qian, Di; Bottomley, Paul A.; Edelstein, William A.

    2012-01-01

    Purpose: Accurate measurements of the RF power delivered during clinical MRI are essential for safety and regulatory compliance, avoiding inappropriate restrictions on clinical MRI sequences, and for testing the MRI safety of peripheral and interventional devices at known RF exposure levels. The goal is to make independent RF power measurements to test the accuracy of scanner-reported specific absorption rate (SAR) over the extraordinary range of operating conditions routinely encountered in MRI. Methods: A six channel, high dynamic range, real-time power profiling system was designed and built for monitoring power delivery during MRI up to 440 MHz. The system was calibrated and used in two 3 T scanners to measure power applied to human subjects during MRI scans. The results were compared with the scanner-reported SAR. Results: The new power measurement system has highly linear performance over a 90 dB dynamic range and a wide range of MRI duty cycles. It has about 0.1 dB insertion loss that does not interfere with scanner operation. The measurements of whole-body SAR in volunteers showed that scanner-reported SAR was significantly overestimated by up to about 2.2 fold. Conclusions: The new power monitor system can accurately and independently measure RF power deposition over the wide range of conditions routinely encountered during MRI. Scanner-reported SAR values are not appropriate for setting exposure limits during device or pulse sequence testing. PMID:22559603

  1. Approach towards sensor placement, selection and fusion for real-time condition monitoring of precision machines

    NASA Astrophysics Data System (ADS)

    Er, Poi Voon; Teo, Chek Sing; Tan, Kok Kiong

    2016-02-01

    Moving mechanical parts in a machine will inevitably generate vibration profiles reflecting its operating conditions. Vibration profile analysis is a useful tool for real-time condition monitoring to avoid loss of performance and unwanted machine downtime. In this paper, we propose and validate an approach for sensor placement, selection and fusion for continuous machine condition monitoring. The main idea is to use a minimal series of sensors mounted at key locations of a machine to measure and infer the actual vibration spectrum at a critical point where it is not suitable to mount a sensor. The locations for sensors' mountings which are subsequently used for vibration inference are identified based on sensitivity calibration at these locations moderated with normalized Fisher Information (NFI) associated with the measurement quality of the sensor at that location. Each of the identified sensor placement location is associated with one or more sensitive frequencies for which it ranks top in terms of the moderated sensitivities calibrated. A set of Radial Basis Function (RBF), each of them associated with a range of sensitive frequencies, is used to infer the vibration at the critical point for that frequency. The overall vibration spectrum of the critical point is then fused from these components. A comprehensive set of experimental results for validation of the proposed approach is provided in the paper.

  2. Real-time damage monitoring scheme in PSC girder bridge using output-only acceleration data

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Tae; Park, Jae-Hyung; Do, Han-Sung; Lee, Jung-Mi

    2007-04-01

    Artificial neural networks (ANNs) have been increasingly utilized for structural health monitoring (SHM) due to the advantage that it needs only a few training data to detect damage in structures. In this study, a new damage monitoring method using a set of parallel ANNs and acceleration signals is developed for alarming locations of damage in PSC girder bridges. First, theoretical backgrounds are described. The problem addressed in this paper is defined as the stochastic process. In addition, a parallel ANN-algorithm using output-only acceleration responses is newly designed for damage detection in real time. The cross-covariance of two acceleration-signals measured at two different locations is selected as the feature representing the structural condition. Neural networks are trained for potential loading patterns and damage scenarios of the target structure for which its actual loadings are unknown. The feasibility of the proposed method is evaluated from numerical model tests on PSC beams for which accelerations were acquired before and after several damage cases.

  3. A multichannel, real-time MRI RF power monitor for independent SAR determination

    SciTech Connect

    El-Sharkawy, AbdEl-Monem M.; Qian Di; Bottomley, Paul A.; Edelstein, William A.

    2012-05-15

    Purpose: Accurate measurements of the RF power delivered during clinical MRI are essential for safety and regulatory compliance, avoiding inappropriate restrictions on clinical MRI sequences, and for testing the MRI safety of peripheral and interventional devices at known RF exposure levels. The goal is to make independent RF power measurements to test the accuracy of scanner-reported specific absorption rate (SAR) over the extraordinary range of operating conditions routinely encountered in MRI. Methods: A six channel, high dynamic range, real-time power profiling system was designed and built for monitoring power delivery during MRI up to 440 MHz. The system was calibrated and used in two 3 T scanners to measure power applied to human subjects during MRI scans. The results were compared with the scanner-reported SAR. Results: The new power measurement system has highly linear performance over a 90 dB dynamic range and a wide range of MRI duty cycles. It has about 0.1 dB insertion loss that does not interfere with scanner operation. The measurements of whole-body SAR in volunteers showed that scanner-reported SAR was significantly overestimated by up to about 2.2 fold. Conclusions: The new power monitor system can accurately and independently measure RF power deposition over the wide range of conditions routinely encountered during MRI. Scanner-reported SAR values are not appropriate for setting exposure limits during device or pulse sequence testing.

  4. Monitoring Enzymatic Reactions in Real Time Using Venturi Easy Ambient Sonic-Spray Ionization Mass Spectrometry.

    PubMed

    Jansson, Erik T; Dulay, Maria T; Zare, Richard N

    2016-06-21

    We developed a technique to monitor spatially confined surface reactions with mass spectrometry under ambient conditions, without the need for voltage or organic solvents. Fused-silica capillaries immersed in an aqueous solution, positioned in close proximity to each other and the functionalized surface, created a laminar flow junction with a resulting reaction volume of ∼5 pL. The setup was operated with a syringe pump, delivering reagents to the surface through a fused-silica capillary. The other fused-silica capillary was connected to a Venturi easy ambient sonic-spray ionization source, sampling the resulting analytes at a slightly higher flow rate compared to the feeding capillary. The combined effects of the inflow and outflow maintains a chemical microenvironment, where the rate of advective transport overcomes diffusion. We show proof-of-concept where acetylcholinesterase was immobilized on an organosiloxane polymer through electrostatic interactions. The hydrolysis of acetylcholine by acetylcholinesterase into choline was monitored in real-time for a range of acetylcholine concentrations, fused-silica capillary geometries, and operating flow rates. Higher reaction rates and conversion yields were observed with increasing acetylcholine concentrations, as would be expected. PMID:27249533

  5. Real-Time Plasmonic Monitoring of Single Gold Amalgam Nanoalloy Electrochemical Formation and Stripping.

    PubMed

    Wang, Jun-Gang; Fossey, John S; Li, Meng; Xie, Tao; Long, Yi-Tao

    2016-03-01

    Direct electrodeposition of mercury onto gold nanorods on an ITO substrate, without reducing agents, is reported. The growth of single gold amalgam nanoalloy particles and subsequent stripping was monitored in real-time monitoring by plasmonic effects and single-nanoparticle dark-field spectroelectrochemistry techniques. Time-dependent scattering spectral information conferred insight into the growth and stripping mechanism of a single nanoalloy particle. Four critical stages were observed: First, rapid deposition of Hg atoms onto Au nanorods; second, slow diffusion of Hg atoms into Au nanorods; third, prompt stripping of Hg atoms from Au nanorods; fourth, moderate diffusion from the inner core of Au nanorods. Under high Hg(2+) concentrations, homogeneous spherical gold amalgam nanoalloys were obtained. These results demonstrate that the morphology and composition of individual gold amalgam nanoalloys can be precisely regulated electrochemically. Moreover, gold amalgam nanoalloys with intriguing optical properties, such as modulated plasmonic lifetimes and quality factor Q, could be obtained. This may offer opportunities to extend applications in photovoltaic energy conversion and chemical sensing. PMID:26942394

  6. Real-time seismic monitoring of the integrated cape girardeau bridge array and recorded earthquake response

    USGS Publications Warehouse

    Celebi, M.

    2006-01-01

    This paper introduces the state of the art, real-time and broad-band seismic monitoring network implemented for the 1206 m [3956 ft] long, cable-stayed Bill Emerson Memorial Bridge in Cape Girardeau (MO), a new Mississippi River crossing, approximately 80 km from the epicentral region of the 1811-1812 New Madrid earthquakes. The bridge was designed for a strong earthquake (magnitude 7.5 or greater) during the design life of the bridge. The monitoring network comprises a total of 84 channels of accelerometers deployed on the superstructure, pier foundations and at surface and downhole free-field arrays of the bridge. The paper also presents the high quality response data obtained from the network. Such data is aimed to be used by the owner, researchers and engineers to assess the performance of the bridge, to check design parameters, including the comparison of dynamic characteristics with actual response, and to better design future similar bridges. Preliminary analyses of ambient and low amplitude small earthquake data reveal specific response characteristics of the bridge and the free-field. There is evidence of coherent tower, cable, deck interaction that sometimes results in amplified ambient motions. Motions at the lowest tri-axial downhole accelerometers on both MO and IL sides are practically free from any feedback from the bridge. Motions at the mid-level and surface downhole accelerometers are influenced significantly by feedback due to amplified ambient motions of the bridge. Copyright ASCE 2006.

  7. Real-time monitoring of enzymatic DNA hydrolysis by electrospray ionization mass spectrometry.

    PubMed

    van den Heuvel, Robert H H; Gato, Sara; Versluis, Cees; Gerbaux, Pascal; Kleanthous, Colin; Heck, Albert J R

    2005-01-01

    A fast and direct method for the monitoring of enzymatic DNA hydrolysis was developed using electrospray ionization mass spectrometry. We incorporated the use of a robotic chip-based electrospray ionization source for increased reproducibility and throughput. The mass spectrometry method allows the detection of DNA fragments and intact non-covalent protein-DNA complexes in a single experiment. We used the method to monitor in real-time single-stranded (ss) DNA hydrolysis by colicin E9 DNase and to characterize transient non-covalent E9 DNase-DNA complexes present during the hydrolysis reaction. The mass spectra showed that E9 DNase interacts with ssDNA in the absence of a divalent metal ion, but is strictly dependent on Ni2+ or Co2+ for ssDNA hydrolysis. We demonstrated that the sequence selectivity of E9 DNase is dependent on the ratio protein:ssDNA or the ssDNA concentration and that only 3'-hydroxy and 5'-phosphate termini are produced. It was also shown that the homologous E7 DNase is reactive with Zn2+ as transition metal ion and that this DNase displays a different sequence selectivity. The method described is of general use to analyze the reactivity and specificity of nucleases. PMID:15956101

  8. All-IP wireless sensor networks for real-time patient monitoring.

    PubMed

    Wang, Xiaonan; Le, Deguang; Cheng, Hongbin; Xie, Conghua

    2014-12-01

    This paper proposes the all-IP WSNs (wireless sensor networks) for real-time patient monitoring. In this paper, the all-IP WSN architecture based on gateway trees is proposed and the hierarchical address structure is presented. Based on this architecture, the all-IP WSN can perform routing without route discovery. Moreover, a mobile node is always identified by a home address and it does not need to be configured with a care-of address during the mobility process, so the communication disruption caused by the address change is avoided. Through the proposed scheme, a physician can monitor the vital signs of a patient at any time and at any places, and according to the IPv6 address he can also obtain the location information of the patient in order to perform effective and timely treatment. Finally, the proposed scheme is evaluated based on the simulation, and the simulation data indicate that the proposed scheme might effectively reduce the communication delay and control cost, and lower the packet loss rate. PMID:25153310

  9. Real-Time Monitoring of TP Load in a Mississippi Delta Stream Using a Dynamic Data Driven Application System

    NASA Astrophysics Data System (ADS)

    Ouyang, Y.; Leininger, T.; Hatten, J. A.

    2012-12-01

    Elevated phosphorus (P) in surface waters can cause eutrophication of aquatic ecosystems and can impair water for drinking, industry, agriculture, and recreation. Currently, little effort has been devoted to monitoring real-time variation and load of total P (TP) in surface waters due to the lack of suitable and/or cost-effective wireless sensors. However, when considering human health, drinking water supply, and rapidly developing events such as algal blooms, the availability of timely P information is very critical. In this study, we developed a new approach in the form of a dynamic data driven application system (DDDAS) for monitoring the real-time variation and load of TP in surface water. This DDDAS consisted of the following three major components: (1) a User Control that interacts with Schedule Run to implement the DDDAS with starting and ending times; (2) a Schedule Run that activates the Hydstra model; and (3) a Hydstra model that downloads the real-time data from a US Geological Survey (USGS) website that is updated every 15 minutes with data from USGS monitoring stations, predicts real-time variation and load of TP, graphs the variables in real-time on a computer screen, and sends email alerts when the TP exceeds a certain value. The DDDAS was applied to monitor real-time variation and load of TP for 30 days in Deer Creek, a stream located east of Leland, Mississippi, USA. Results showed that the TP contents in the stream ranged from 0.24 to 0.48 mg L-1 with an average of 0.30 mg L-1 for a 30-day monitoring period, whereas the cumulative load of TP from the stream was about 2.8kg for the same monitoring period. Our study suggests that the DDDAS developed in this study was useful for estimating the real-time variation and load of TP in surface water ecosystems.

  10. A system for Real time monitoring of buildings with cultural heritage importance using wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Hloupis, G.; Vallianatos, F.

    2009-04-01

    Simultaneously real time monitoring of buildings usually requires several different sensors. Even if the number of monitoring items is small the cost of monitoring devices plus the telemetry needed could increased in excessive values. For this reason the use of autonomous sensors is indicated. These devices are self contained embedded computers capable of hosting several sensors and communication boards and providing local computing processing. The acquisition of high resolution physical quantities using low power wireless sensor nodes consist a Wireless Sensor Network (WSN). By using these systems it is easy to collect different data from different clusters of sensors using low cost sensor nodes. The main concern for these approaches is the optimization of data acquisition regarding the management of energy capacity and available radio bandwidth. In this study we propose an optimized management scheme for monitoring historical buildings at the city of Chania using sensor nodes connected to high resolution uniaxial and triaxial embedded accelerometers. A number of sensor nodes are placed in every building. Since an event is not a linear process regarding its time occurrence and the produced results in each sensor node (due to sensor temporary malfunction or existence of noise) we followed a non linear approach. The proposed management scheme focus on the optimum self configuration of the network in a hybrid star topology. It is based on public available TinyOS and produces hierarchical rules in order to have at least one central node (the one that sends all the data to the remote data centre). Example policies that demonstrated is thresholding, noise removal, triggering and event correlation which are implemented using wavelet transform techniques. Acknowledgements This work is partially supported by SE-RISK Project (INTERREG III, STRAND B ARCHIMED/Axis: Integrated and Sustainable Management of Cultural and Natural Resources and of Landscape and Risk Management)

  11. Wavelength-dependent backscattering measurements for quantitative real-time monitoring of apoptosis in living cells

    NASA Astrophysics Data System (ADS)

    Mulvey, Christine S.; Sherwood, Carly A.; Bigio, Irving J.

    2009-11-01

    Apoptosis-programmed cell death-is a cellular process exhibiting distinct biochemical and morphological changes. An understanding of the early morphological changes that a cell undergoes during apoptosis can provide the opportunity to monitor apoptosis in tissue, yielding diagnostic and prognostic information. There is avid interest regarding the involvement of apoptosis in cancer. The initial response of a tumor to successful cancer treatment is often massive apoptosis. Current apoptosis detection methods require cell culture disruption. Our aim is to develop a nondisruptive optical method to monitor apoptosis in living cells and tissues. This would allow for real-time evaluation of apoptotic progression of the same cell culture over time without alteration. Elastic scattering spectroscopy (ESS) is used to monitor changes in light-scattering properties of cells in vitro due to apoptotic morphology changes. We develop a simple instrument capable of wavelength-resolved ESS measurements from cell cultures in the backward direction. Using Mie theory, we also develop an algorithm that extracts the size distribution of scatterers in the sample. The instrument and algorithm are validated with microsphere suspensions. For cell studies, Chinese hamster ovary (CHO) cells are cultured to confluence on plates and are rendered apoptotic with staurosporine. Backscattering measurements are performed on pairs of treated and control samples at a sequence of times up to 6-h post-treatment. Initial results indicate that ESS is capable of discriminating between treated and control samples as early as 10- to 15-min post-treatment, much earlier than is sensed by standard assays for apoptosis. Extracted size distributions from treated and control samples show a decrease in Rayleigh and 150-nm scatterers, relative to control samples, with a corresponding increase in 200-nm particles. Work continues to correlate these size distributions with underlying morphology. To our knowledge, this

  12. Real-time monitoring of the metabolic activity of periodontopathic bacteria.

    PubMed

    Ishiguro, Kazuko; Washio, Jumpei; Sasaki, Keiichi; Takahashi, Nobuhiro

    2015-08-01

    Bacterial metabolic activity is associated with the onset and progression mechanisms of oral biofilm-mediated disease; however, at present no method to monitor bacterial metabolism exists, especially for periodontopathic bacteria. Therefore, we aimed to establish a novel method for monitoring the metabolic activity of periodontopathic bacteria, Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi) and Fusobacterium nucleatum (Fn), as well as Streptococcus mutans (Sm) for comparison. The method is based on the dye resazurin, which is converted to the fluorescent molecule resorufin by reducing molecules derived from bacterial metabolism. Additionally, the effects of antimicrobial substances on bacterial metabolic activity were evaluated using this method. When bacterial suspensions were incubated with tryptone, glutamate, aspartate or glucose in the presence of resazurin, the fluorescence intensity increased over time by these bacterial metabolic reactions, indicating that this method can be used to monitor the metabolic activity of periodontopathic bacteria. Chlorhexidine showed the 50% inhibitory concentration (IC50) of 15-49 μg/ml for tryptone metabolism by Pg, Pi, and Fn, and 7.1-18 μg/ml for glucose metabolism by Pi and Sm. The IC50s for cetylpyridinium chloride and sodium dodecyl sulfate were 0.8-2.1 and 28-44 μg/ml, respectively for all bacteria examined. Fluoride had no effect except the IC50 of 640 μg/ml for Sm, while minocycline hydrochloride had no effect on any of the bacteria. The present study established the method for real-time monitoring of the metabolic activity of periodontopathic bacteria, and the method might be useful for evaluating the effects of antimicrobial substances on the bacterial metabolic activity. PMID:25986950

  13. Real-time satellite monitoring of Nornahraun lava flow NE Iceland

    NASA Astrophysics Data System (ADS)

    Jónsdóttir, Ingibjörg; Þórðarson, Þorvaldur; Höskuldsson, Ármann; Davis, Ashley; Schneider, David; Wright, Robert; Kestay, Laszlo; Hamilton, Christopher; Harris, Andrew; Coppola, Diego; Tumi Guðmundsson, Magnús; Durig, Tobias; Pedersen, Gro; Drouin, Vincent; Höskuldsson, Friðrik; Símonarson, Hreggviður; Örn Arnarson, Gunnar; Örn Einarsson, Magnús; Riishuus, Morten

    2015-04-01

    An effusive eruption started in Holuhraun, NE Iceland, on 31 August 2014, producing the Nornahraun lava flow field which had, by the beginning of 2015, covered over 83 km2. Throughout this event, various satellite images have been analyzed to monitor the development, active areas and map the lava extent in close collaboration with the field group, which involved regular exchange of direct observations and satellite based data for ground truthing and suggesting possible sites for lava sampling. From the beginning, satellite images in low geometric but high temporal resolution (NOAA AVHRR, MODIS) were used to monitor main regions of activity and position new vents to within 1km accuracy. As they became available, multispectral images in higher resolution (LANDSAT 8, LANDSAT 7, ASTER, EO-1 ALI) were used to map the lava channels, study lava structures and classify regions of varying activity. Hyper spectral sensors (EO-1 HYPERION), though with limited area coverage, have given a good indication of vent and lava temperature and effusion rates. All available radar imagery (SENTINEL-1, RADARSAT, COSMO SKYMED, TERRASAR X) have been used for studying lava extent, landscape and roughness. The Icelandic Coast Guard has, on a number of occasions, provided high resolution radar and thermal images from reconnaissance flights. These data sources compliment each other well and have improved analysis of events. Whilst classical TIR channels were utilized to map the temperature history of the lava, SWIR and NIR channels caught regions of highest temperature, allowing an estimate of the most active lava channels and even indicating potential changes in channel structure. Combining thermal images and radar images took this prediction a step further, improving interpretation of both image types and studying the difference between open and closed lava channels. Efforts are underway of comparing different methods of estimating magma discharge and improving the process for use in real

  14. Real-time Seismic Amplitude Measurement (RSAM): a volcano monitoring and prediction tool

    USGS Publications Warehouse

    Endo, E.T.; Murray, T.

    1991-01-01

    Seismicity is one of the most commonly monitored phenomena used to determine the state of a volcano and for the prediction of volcanic eruptions. Although several real-time earthquake-detection and data acquisition systems exist, few continuously measure seismic amplitude in circumstances where individual events are difficult to recognize or where volcanic tremor is prevalent. Analog seismic records provide a quick visual overview of activity; however, continuous rapid quantitative analysis to define the intensity of seismic activity for the purpose of predicing volcanic eruptions is not always possible because of clipping that results from the limited dynamic range of analog recorders. At the Cascades Volcano Observatory, an inexpensive 8-bit analog-to-digital system controlled by a laptop computer is used to provide 1-min average-amplitude information from eight telemetered seismic stations. The absolute voltage level for each station is digitized, averaged, and appended in near real-time to a data file on a multiuser computer system. Raw realtime seismic amplitude measurement (RSAM) data or transformed RSAM data are then plotted on a common time base with other available volcano-monitoring information such as tilt. Changes in earthquake activity associated with dome-building episodes, weather, and instrumental difficulties are recognized as distinct patterns in the RSAM data set. RSAM data for domebuilding episodes gradually develop into exponential increases that terminate just before the time of magma extrusion. Mount St. Helens crater earthquakes show up as isolated spikes on amplitude plots for crater seismic stations but seldom for more distant stations. Weather-related noise shows up as low-level, long-term disturbances on all seismic stations, regardless of distance from the volcano. Implemented in mid-1985, the RSAM system has proved valuable in providing up-to-date information on seismic activity for three Mount St. Helens eruptive episodes from 1985 to

  15. Real-time monitoring of genetically modified Chlamydomonas reinhardtii during the Foton M3 space mission

    NASA Astrophysics Data System (ADS)

    Lambreva, M.; Rea, G.; Antonacci, A.; Serafini, A.; Damasso, M.; Pastorelli, S.; Margonelli, A.; Johanningmeier, U.; Bertalan, I.; Pezzotti, G.; Giardi, M. T.

    2008-09-01

    Long-term space exploration, colonization or habitation requires biological life support systems capable to cope with the deleterious space environment. The use of oxygenic photosynthetic microrganisms is an intriguing possibility mainly for food, O2 and nutraceutical compounds production. The critical points of utilizing plants- or algae-based life support systems are the microgravity and the ionizing radiation, which can influence the performance of these organisms. The aim of the present study was to assess the effects of space environment on the photosynthetic activity of various microrganisms and to select space stresstolerant strains. Photosystem II D1 protein sitedirected and random mutants of the unicellular green alga Chlamydomonas reinhardtii [1] were used as a model system to test and select the amino acid substitutions capable to account for space stress tolerance. We focussed our studies also on the accumulation of the Photosystem II photoprotective carotenoids (the xantophylls violaxanthin, anteraxanthin and zeaxanthin), powerful antioxidants that epidemiological studies demonstrated to be human vision protectors. For this purpose some mutants modified at the level of enzymes involved in the biosynthesis of xanthophylls were included in the study [2]. To identify the consequences of the space environment on the photosynthetic apparatus the changes in the Photosystem II efficiency were monitored in real time during the ESA-Russian Foton- M3 mission in September 2007. For the space flight a high-tech, multicell fluorescence detector, Photo-II, was designed and built by the Centre for Advanced Research in Space Optics in collaboration with Kayser-Italy, Biosensor and DAS. Photo-II is an automatic device developed to measure the chlorophyll fluorescence and to provide a living conditions for several different algae strains (Fig.1). Twelve different C. reinhardti strains were analytically selected and two replications for each strain were brought to space

  16. REAL-TIME MONITORING OF A SALT SOLUTION MINING CAVERN: FROM PRECURSORY SIGNS TO GENERAL COLLAPSE

    NASA Astrophysics Data System (ADS)

    Klein, E.; Contrucci, I.; Cao, N.; Bigarré, P.

    2009-12-01

    In order to improve our understanding in brutal large scale ground failure phenomenon, a salt solution mining cavern was instrumented in 2004 previously to its expected collapse as part of its mining scheme. A permanent early warning system was set up, including a high resolution microseismic monitoring network linked to a surface field displacement measurement system. The important amount of data collected during this 5 years experiment offered real-time insight of the evolution of the geological system. The complete data set recorded during the experiment made it possible to track with precision the main stages in the evolution of the cavern. The early signs of failure were detected by high resolution microseismic monitoring during spring 2008: a shift in microseismic background regime as well as recurrent microseismic episodes were undoubtedly associated to a general process of rock failure due to the salt cavern extending up to a critical size. This was accompanied by a few episodes of massive roof falls while the upper part of the overburden remained elastic, with no ground surface movement detected. During a second and last stage of evolution, on-line processing and analysis of a sudden intense microseismic activity allowed the interpretation of the rapid, energetic failure of a thin and very stiff bed rock underlying 120 meters deep. After this failure, the ground surface measurements indicated an irreversible acceleration of the subsidence up to the general collapse 24 hours later. As it will be shown, the in-depth analysis of the whole data set enables to characterize the dynamic process of rupture and its associated precursory signs. It provides also essential knowledge and feedback experience for operational monitoring of underground operations carried out on other sensitive mining sites.

  17. A microelectrochemical biosensor for real-time in vivo monitoring of brain extracellular choline.

    PubMed

    Baker, Keeley L; Bolger, Fiachra B; Lowry, John P

    2015-06-01

    A first generation Pt-based polymer enzyme composite biosensor developed for real-time neurochemical monitoring was characterised in vivo for sensitive and selective detection of choline. Confirmation that the sensor responds to changes in extracellular choline was achieved using local perfusion of choline which resulted in an increase in current, and the acetylcholinesterase inhibitor neostigmine which produced a decrease. Interference by electroactive species was tested using systemic administration of sodium ascorbate which produced a rapid increase in extracellular levels before gradually returning towards baseline over several hours. There was no overall change in the response of the biosensor during the same period of monitoring. Oxygen interference was examined using pharmacological agents known to change tissue oxygenation. Chloral hydrate produced an immediate increase in O2 before gradually returning to baseline levels over 3 h. The biosensor signal displayed an initial brief decrease before increasing to a maximum after 1 h and returning to baseline within 2 h. L-NAME caused a decrease in O2 before returning to baseline levels after ca. 1.5 h. In contrast, the biosensor current increased over the same time period before slowly returning to baseline levels over several hours. Such differences in time course and direction suggest that changes in tissue O2 levels do not affect the ability of the sensor to monitor choline reliably. Although it was found to rapidly respond to behavioural activation, examination of baseline in vivo data suggests a stable viable signal for at least 14 days after implantation. Using in vitro calibration data the basal extracellular concentration of choline was estimated to be 6.3 μM. PMID:25519498

  18. Unattended monitoring system at a static storage area with real-time event notification.

    SciTech Connect

    West, J. D.; Betts, S. E.; Michel, K. D.; Schanfein, M. J.; Ricketts, T. E.

    2005-01-01

    Domestic Safeguards at Los Alamos National Laboratory (LANL) and throughout the Department of Energy (DOE)/National Nuclear Security Administration (NNSA) complex has historically relied on administrative and non-integrated approaches to implement nuclear safeguards at its facilities. Besides the heavy cost born by the facility and the compliance oversight organization, the safeguards assurance is only periodic, potentially allowing an adversary a longer time before detection. Even after detection, the lack of situational awareness makes it difficult to assess events. By leveraging unattended monitoring systems (UMS) used by the International Atomic Energy Agency (IAEA), we have designed a baseline system that has high reliability through fault tolerant designs for both hardware and software. Applying IAEA design goals to assure no loss of data and using a dual containment strategy, this system is a first step in implementing modern safeguards monitoring systems at LANL and, hopefully, applications at other DOE/NNSA sites. This paper will review the design requirements and how they will be met, to provide a real-time event notification for a static storage location. The notification system triggers communications to pagers and email addresses for a fast response by facility personnel to the violation of a defined safeguards exclusion zone. Since the system has to be installed in an existing facility, the challenges to the designers will be presented. Aside from the initial baseline system that relies on surveillance cameras and seals, other optional upgrades will be detailed, showing both the power and the promise of unattended systems for domestic safeguards. We will also include a short discussion of the business obstacles to modernizing safeguards and how a UMS system may be applied to dynamic activities at a nuclear facility. Ultimately, the current lack of such modern monitoring systems reflects the many business obstacles internal to DOE/NNSA to the use of

  19. Profiling Real-Time Electricity Consumption Data for Process Monitoring and Control

    SciTech Connect

    Omitaomu, Olufemi A

    2013-01-01

    Today, smart meters serve as key assets to utilities and their customers because they are capable of recording and communicating real-time energy usage data; thus, enabling better understanding of energy usage patterns. Other potential benefits of smart meters data include the ability to improve customer experience, grid reliability, outage management, and operational efficiency. Despite these tangible benefits, many utilities are inundated by data and remain uncertain about how to extract additional value from these deployed assets outside of billing operations. One way to overcome this challenge is the development of new metrics for classifying utility customers. Traditionally, utilities classified their customers based on their business nature (residential, commercial, and industrial) and/or their total annual consumption. While this classification is useful for some operational functions, it is too limited for designing effective monitoring and control strategies. In this paper, a data mining methodology is proposed for clustering and profiling smart meters data in order to form unique classes of customers exhibiting similar usage patterns. The developed clusters could help utilities in identifying opportunities for achieving some of the benefits of smart meters data.

  20. Real-time radon monitoring at Stromboli volcano: influence of environmental parameters on 222Rn degassing

    NASA Astrophysics Data System (ADS)

    Cigolini, C.; Ripepe, M.; Poggi, P.; Laiolo, M.

    2008-12-01

    Two real-time stations for radon monitoring are currently operative at Stromboli volcano. The 222Rn electronic dosimeters are interfaced with an electronic board connected to a radiomodem for wireless data transfer (through a directional antenna) to a receiving station at the volcano observatory (COA). Radon activity data and enviromental parameters (soil temperature and atmospheric pressure) are sampled every 15 minutes and are instantaneously elaborated and transferred via web so that they can be checked in remote. Collected time series show that there is an overall inverse correlation between radon emissions and seasonal temperature variations. Signal processing analysis show that radon emissions in sectors of diffuse degassing are modulated by tidal forces as well. In addition, radon activities recorded at the summit station, located along the summit fracture zone where the gas flux is concentrated, are positively correlated with changes in atmospheric pressure and confirm the occurrence of the 'atmospheric stack effect'. It is not excluded that this process may play an active role in modulating Stromboli explosivity.

  1. Real-Time Safety Monitoring and Prediction for the National Airspace System

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Indranil

    2016-01-01

    As new operational paradigms and additional aircraft are being introduced into the National Airspace System (NAS), maintaining safety in such a rapidly growing environment becomes more challenging. It is therefore desirable to have both an overview of the current safety of the airspace at different levels of granularity, as well an understanding of how the state of the safety will evolve into the future given the anticipated flight plans, weather forecasts, predicted health of assets in the airspace, and so on. To this end, we have developed a Real-Time Safety Monitoring (RTSM) that first, estimates the state of the NAS using the dynamic models. Then, given the state estimate and a probability distribution of future inputs to the NAS, the framework predicts the evolution of the NAS, i.e., the future state, and analyzes these future states to predict the occurrence of unsafe events. The entire probability distribution of airspace safety metrics is computed, not just point estimates, without significant assumptions regarding the distribution type and or parameters. We demonstrate our overall approach by predicting the occurrence of some unsafe events and show how these predictions evolve in time as flight operations progress.

  2. Real-time monitoring of molecular dynamics of ethylene glycol dimethacrylate glass former.

    PubMed

    Viciosa, M T; Correia, N T; Salmerón Sanchez, M; Carvalho, A L; Romão, M J; Gómez Ribelles, J L; Dionísio, M

    2009-10-29

    The isothermal cold-crystallization of the glass-former low-molecular-weight compound, ethylene glycol dimethacrylate (EGDMA), was monitored by real-time dielectric relaxation spectroscopy (DRS) and differential scanning calorimetry (DSC). The alpha-relaxation associated with the dynamic glass transition as detected by DRS was followed at different crystallization temperatures, T(cr), nearly above the glass transition temperature, 176 K (1.06 < or = T(cr)/T(g) < or = 1.12). It was found that the alpha-process depletes upon cold-crystallization with no significant changes in either shape or location. At advanced crystallization states, a new relaxation, alpha'-process, evolves that was assigned to the mobility of molecules lying adjacent to crystalline surfaces. From the time evolution of the normalized permittivity, it was possible to get kinetic information that was complemented with the calorimetric data. From DSC measurements that were also carried out under melt-crystallization, an enlarged temperature range was covered (up to T(cr)/T(g) = 1.24), allowing us to draw a diagram of time-temperature crystallization for this system. Dielectric relaxation spectroscopy proved to be a sensitive tool to probe the mobility in the remaining amorphous regions even at high crystallinities. PMID:19803485

  3. Evaluation of heart rate variability indices using a real-time handheld remote ECG monitor.

    PubMed

    Singh, Swaroop S; Carlson, Barbara W; Hsiao, Henry S

    2007-12-01

    Studies on retrospective electrocardiogram (ECG) recordings of patients during cardiac arrest have shown significant changes in heart rate variability (HRV) indices prior to the onset of cardiac arrhythmia. The early detection of these changes in HRV indices increases the chances for a successful medical intervention by increasing the response time window. A portable, handheld remote ECG monitor designed in this research detects the QRS complex and calculates short-term HRV indices in real-time. The QRS detection of the ECG recordings of subjects from the MIT-Arrhythmia database yielded a mean sensitivity of 99.34% and a specificity of 99.31%. ECG recordings from normal subjects and subjects with congestive heart failure were used to identify the differences in HRV indices. An increase in heart rate, high-frequency spectral power (HFP), total spectral power, the ratio of HFP to low-frequency spectral power (LFP), and a decrease in root mean square sum of RR differences were observed. No difference was found on comparison of the standard deviation of normal to normal interval between adjacent R-waves, LFP, and very-low-frequency spectral power. Based on these, additional analytical calculations could be made to provide early warnings of impending cardiac conditions. PMID:18047419

  4. Microbiological monitoring of acid mine drainage treatment systems and aquatic surroundings using real-time PCR.

    PubMed

    Han, J S; Kim, C G

    2009-01-01

    In general, acid mine drainage (AMD) causes low pH and high metal concentrations in mining areas and surroundings. The aim of this research was to achieve microbiological monitoring for AMD and to assess whether mine water outflows have any ecological effects on the aqueous ecosystem receiving effluents from different types of treatment system. The water quality of aquatic sample was analyzed and the molecular biological diversity of the samples was assessed using 16S rRNA methods, which were implemented to determine which bacteria existed throughout various unit processes for different AMD treatment systems and their receiving water environments. Acidiphilium cryptum, a heterotrophic acidophile, was found at the AMD sites, and Rhodoferax ferrireducens, which can reduce iron using insoluble Fe(III) as an electron acceptor, was detected at many AMD treatment facilities and downstream of the treatment processes. Subsequently, quantitative real-time PCR was conducted on specific genes of selected bacteria. Surprisingly, obvious trends were observed in the relative abundance of the various bacteria that corresponded to the water quality analytical results. The copy number of Desulfosporosinus orientus, a sulfate reducing bacteria, was also observed to decrease in response to decreases in metals according to the downstream flow of the AMD treatment system. PMID:19494446

  5. A dual s