Sample records for real-time pcr-based monitoring

  1. Real-time PCR detection chemistry.

    PubMed

    Navarro, E; Serrano-Heras, G; Castaño, M J; Solera, J

    2015-01-15

    Real-time PCR is the method of choice in many laboratories for diagnostic and food applications. This technology merges the polymerase chain reaction chemistry with the use of fluorescent reporter molecules in order to monitor the production of amplification products during each cycle of the PCR reaction. Thus, the combination of excellent sensitivity and specificity, reproducible data, low contamination risk and reduced hand-on time, which make it a post-PCR analysis unnecessary, has made real-time PCR technology an appealing alternative to conventional PCR. The present paper attempts to provide a rigorous overview of fluorescent-based methods for nucleic acid analysis in real-time PCR described in the literature so far. Herein, different real-time PCR chemistries have been classified into two main groups; the first group comprises double-stranded DNA intercalating molecules, such as SYBR Green I and EvaGreen, whereas the second includes fluorophore-labeled oligonucleotides. The latter, in turn, has been divided into three subgroups according to the type of fluorescent molecules used in the PCR reaction: (i) primer-probes (Scorpions, Amplifluor, LUX, Cyclicons, Angler); (ii) probes; hydrolysis (TaqMan, MGB-TaqMan, Snake assay) and hybridization (Hybprobe or FRET, Molecular Beacons, HyBeacon, MGB-Pleiades, MGB-Eclipse, ResonSense, Yin-Yang or displacing); and (iii) analogues of nucleic acids (PNA, LNA, ZNA, non-natural bases: Plexor primer, Tiny-Molecular Beacon). In addition, structures, mechanisms of action, advantages and applications of such real-time PCR probes and analogues are depicted in this review. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Detection of Histoplasma capsulatum from clinical specimens by cycling probe-based real-time PCR and nested real-time PCR.

    PubMed

    Muraosa, Yasunori; Toyotome, Takahito; Yahiro, Maki; Watanabe, Akira; Shikanai-Yasuda, Maria Aparecida; Kamei, Katsuhiko

    2016-05-01

    We developed new cycling probe-based real-time PCR and nested real-time PCR assays for the detection of Histoplasma capsulatum that were designed to detect the gene encoding N-acetylated α-linked acidic dipeptidase (NAALADase), which we previously identified as an H. capsulatum antigen reacting with sera from patients with histoplasmosis. Both assays specifically detected the DNAs of all H. capsulatum strains but not those of other fungi or human DNA. The limited of detection (LOD) of the real-time PCR assay was 10 DNA copies when using 10-fold serial dilutions of the standard plasmid DNA and 50 DNA copies when using human serum spiked with standard plasmid DNA. The nested real-time PCR improved the LOD to 5 DNA copies when using human serum spiked with standard plasmid DNA, which represents a 10-fold higher than that observed with the real-time PCR assay. To assess the ability of the two assays to diagnose histoplasmosis, we analyzed a small number of clinical specimens collected from five patients with histoplasmosis, such as sera (n = 4), formalin-fixed paraffin-embedded (FFPE) tissue (n = 4), and bronchoalveolar lavage fluid (BALF) (n = 1). Although clinical sensitivity of the real-time PCR assay was insufficiently sensitive (33%), the nested real-time PCR assay increased the clinical sensitivity (77%), suggesting it has a potential to be a useful method for detecting H. capsulatum DNA in clinical specimens. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Multiplex Real-Time PCR for Monitoring Heterobasidion annosum Colonization in Norway Spruce Clones That Differ in Disease Resistance

    PubMed Central

    Hietala, Ari M.; Eikenes, Morten; Kvaalen, Harald; Solheim, Halvor; Fossdal, Carl G.

    2003-01-01

    A multiplex real-time PCR assay was developed to monitor the dynamics of the Picea abies-Heterobasidion annosum pathosystem. Tissue cultures and 32-year-old trees with low or high resistance to this pathogen were used as the host material. Probes and primers were based on a laccase gene for the pathogen and a polyubiquitin gene for the host. The real-time PCR procedure was compared to an ergosterol-based quantification method in a tissue culture experiment, and there was a strong correlation (product moment correlation coefficient, 0.908) between the data sets. The multiplex real-time PCR procedure had higher resolution and sensitivity during the early stages of colonization and also could be used to monitor the host. In the tissue culture experiment, host DNA was degraded more rapidly in the clone with low resistance than in the clone with high resistance. In the field experiment, the lesions elicited were not strictly proportional to the area colonized by the pathogen. Fungal colonization was more restricted and localized in the lesion in the clone with high resistance, whereas in the clone with low resistance, the fungus could be detected until the visible end of the lesion. Thus, the real-time PCR assay gives better resolution than does the traditionally used lesion length measurement when screening host clones for resistance. PMID:12902224

  4. Rapid diagnosis of sepsis with TaqMan-Based multiplex real-time PCR.

    PubMed

    Liu, Chang-Feng; Shi, Xin-Ping; Chen, Yun; Jin, Ye; Zhang, Bing

    2018-02-01

    The survival rate of septic patients mainly depends on a rapid and reliable diagnosis. A rapid, broad range, specific and sensitive quantitative diagnostic test is the urgent need. Thus, we developed a TaqMan-Based Multiplex real-time PCR assays to identify bloodstream pathogens within a few hours. Primers and TaqMan probes were designed to be complementary to conserved regions in the 16S rDNA gene of different kinds of bacteria. To evaluate accurately, sensitively, and specifically, the known bacteria samples (Standard strains, whole blood samples) are determined by TaqMan-Based Multiplex real-time PCR. In addition, 30 blood samples taken from patients with clinical symptoms of sepsis were tested by TaqMan-Based Multiplex real-time PCR and blood culture. The mean frequency of positive for Multiplex real-time PCR was 96% at a concentration of 100 CFU/mL, and it was 100% at a concentration greater than 1000 CFU/mL. All the known blood samples and Standard strains were detected positively by TaqMan-Based Multiplex PCR, no PCR products were detected when DNAs from other bacterium were used in the multiplex assay. Among the 30 patients with clinical symptoms of sepsis, 18 patients were confirmed positive by Multiplex real-time PCR and seven patients were confirmed positive by blood culture. TaqMan-Based Multiplex real-time PCR assay with highly sensitivity, specificity and broad detection range, is a rapid and accurate method in the detection of bacterial pathogens of sepsis and should have a promising usage in the diagnosis of sepsis. © 2017 Wiley Periodicals, Inc.

  5. Statistical tools for transgene copy number estimation based on real-time PCR.

    PubMed

    Yuan, Joshua S; Burris, Jason; Stewart, Nathan R; Mentewab, Ayalew; Stewart, C Neal

    2007-11-01

    As compared with traditional transgene copy number detection technologies such as Southern blot analysis, real-time PCR provides a fast, inexpensive and high-throughput alternative. However, the real-time PCR based transgene copy number estimation tends to be ambiguous and subjective stemming from the lack of proper statistical analysis and data quality control to render a reliable estimation of copy number with a prediction value. Despite the recent progresses in statistical analysis of real-time PCR, few publications have integrated these advancements in real-time PCR based transgene copy number determination. Three experimental designs and four data quality control integrated statistical models are presented. For the first method, external calibration curves are established for the transgene based on serially-diluted templates. The Ct number from a control transgenic event and putative transgenic event are compared to derive the transgene copy number or zygosity estimation. Simple linear regression and two group T-test procedures were combined to model the data from this design. For the second experimental design, standard curves were generated for both an internal reference gene and the transgene, and the copy number of transgene was compared with that of internal reference gene. Multiple regression models and ANOVA models can be employed to analyze the data and perform quality control for this approach. In the third experimental design, transgene copy number is compared with reference gene without a standard curve, but rather, is based directly on fluorescence data. Two different multiple regression models were proposed to analyze the data based on two different approaches of amplification efficiency integration. Our results highlight the importance of proper statistical treatment and quality control integration in real-time PCR-based transgene copy number determination. These statistical methods allow the real-time PCR-based transgene copy number estimation

  6. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    NASA Astrophysics Data System (ADS)

    Huang, Su-Hua; Yang, Tsuey-Ching; Tsai, Ming-Hong; Tsai, I.-Shou; Lu, Huang-Chih; Chuang, Pei-Hsin; Wan, Lei; Lin, Ying-Ju; Lai, Chih-Ho; Lin, Cheng-Wen

    2008-10-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples.

  7. Real-time PCR in virology.

    PubMed

    Mackay, Ian M; Arden, Katherine E; Nitsche, Andreas

    2002-03-15

    The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of PCR product during real-time PCR. These are the DNA binding fluorophores, the 5' endonuclease, adjacent linear and hairpin oligoprobes and the self-fluorescing amplicons, which are described in detail. We also discuss factors that have restricted the development of multiplex real-time PCR as well as the role of real-time PCR in quantitating nucleic acids. Both amplification hardware and the fluorogenic detection chemistries have evolved rapidly as the understanding of real-time PCR has developed and this review aims to update the scientist on the current state of the art. We describe the background, advantages and limitations of real-time PCR and we review the literature as it applies to virus detection in the routine and research laboratory in order to focus on one of the many areas in which the application of real-time PCR has provided significant methodological benefits and improved patient outcomes. However, the technology discussed has been applied to other areas of microbiology as well as studies of gene expression and genetic disease.

  8. Monitoring Metabolite Profiles of Cannabis sativa L. Trichomes during Flowering Period Using 1H NMR-Based Metabolomics and Real-Time PCR.

    PubMed

    Happyana, Nizar; Kayser, Oliver

    2016-08-01

    Cannabis sativa trichomes are glandular structures predominantly responsible for the biosynthesis of cannabinoids, the biologically active compounds unique to this plant. To the best of our knowledge, most metabolomic works on C. sativa that have been reported previously focused their investigations on the flowers and leaves of this plant. In this study, (1)H NMR-based metabolomics and real-time PCR analysis were applied for monitoring the metabolite profiles of C. sativa trichomes, variety Bediol, during the last 4 weeks of the flowering period. Partial least squares discriminant analysis models successfully classified metabolites of the trichomes based on the harvest time. Δ (9)-Tetrahydrocannabinolic acid (1) and cannabidiolic acid (2) constituted the vital differential components of the organic preparations, while asparagine, glutamine, fructose, and glucose proved to be their water-extracted counterparts. According to RT-PCR analysis, gene expression levels of olivetol synthase and olivetolic acid cyclase influenced the accumulation of cannabinoids in the Cannabis trichomes during the monitoring time. Moreover, quantitative (1)H NMR and RT-PCR analysis of the Cannabis trichomes suggested that the gene regulation of cannabinoid biosynthesis in the C. sativa variety Bediol is unique when compared with other C. sativa varieties. Georg Thieme Verlag KG Stuttgart · New York.

  9. Combined use of real-time PCR and nested sequence-based typing in survey of human Legionella infection.

    PubMed

    Qin, T; Zhou, H; Ren, H; Shi, W; Jin, H; Jiang, X; Xu, Y; Zhou, M; Li, J; Wang, J; Shao, Z; Xu, X

    2016-07-01

    Legionnaires' disease (LD) is a globally distributed systemic infectious disease. The burden of LD in many regions is still unclear, especially in Asian countries including China. A survey of Legionella infection using real-time PCR and nested sequence-based typing (SBT) was performed in two hospitals in Shanghai, China. A total of 265 bronchoalveolar lavage fluid (BALF) specimens were collected from hospital A between January 2012 and December 2013, and 359 sputum specimens were collected from hospital B throughout 2012. A total of 71 specimens were positive for Legionella according to real-time PCR focusing on the 5S rRNA gene. Seventy of these specimens were identified as Legionella pneumophila as a result of real-time PCR amplification of the dotA gene. Results of nested SBT revealed high genetic polymorphism in these L. pneumophila and ST1 was the predominant sequence type. These data revealed that the burden of LD in China is much greater than that recognized previously, and real-time PCR may be a suitable monitoring technology for LD in large sample surveys in regions lacking the economic and technical resources to perform other methods, such as urinary antigen tests and culture methods.

  10. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means ofmore » rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.« less

  11. Real-time PCR (qPCR) primer design using free online software.

    PubMed

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most commonly used fluorescent chemistries are SYBR® Green dyes and TaqMan®, Molecular Beacon or Scorpion probes. SYBR® Green is very simple to use and cost efficient. As SYBR® Green dye binds to any double-stranded DNA product, its success depends greatly on proper primer design. Many types of online primer design software are available, which can be used free of charge to design desirable SYBR® Green-based qPCR primers. This laboratory exercise is intended for those who have a fundamental background in PCR. It addresses the basic fluorescent chemistries of real-time PCR, the basic rules and pitfalls of primer design, and provides a step-by-step protocol for designing SYBR® Green-based primers with free, online software. Copyright © 2010 Wiley Periodicals, Inc.

  12. Application of PCR and real-time PCR for monitoring cyanobacteria, Microcystis spp. and Cylindrospermopsis raciborskii in Macau freshwater reservoir

    NASA Astrophysics Data System (ADS)

    Zhang, Weiying; Lou, Inchio; Ung, Wai Kin; Kong, Yijun; Mok, Kai Meng

    2014-06-01

    Freshwater algal blooms have become a growing concern world-wide. They are caused by a high level of cyanobacteria, predominantly Microcystis spp. and Cylindrospermopsis raciborskii, which can produce microcystin and cylindrospermopsin, respectively. Longtime exposure to these cyanotoxins may affect public health, thus reliable detection, quantification, and enumeration of these harmful algae species has become a priority in water quality management. Traditional manual enumeration of algal bloom cells primarily involves microscopic identification which limited by inaccuracy and time-consumption.With the development of molecular techniques and an increasing number of microbial sequences available in the Genbank database, the use of molecular methods can be used for more rapid, reliable, and accurate detection and quantification. In this study, multiplex polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR) techniques were developed and applied for monitoring cyanobacteria Microcystis spp. and C. raciborskii in the Macau Storage Reservoir (MSR). The results showed that the techniques were successful for identifying and quantifying the species in pure cultures and mixed cultures, and proved to be a potential application for water sampling in MSR. When the target species were above 1 million cells/L, similar cell numbers estimated by microscopic enumeration and qPCR were obtained. Further quantification in water samples indicated that the ratio of the estimated number of cell by microscopy and qPCR was 0.4-12.9 for cyanobacteria and 0.2-3.9 for C. raciborskii. However, Microcystis spp. was not observed by manual enumeration, while it was detected at low levels by qPCR, suggesting that qPCR is more sensitive and accurate. Thus the molecular approaches provide an additional reliable monitoring option to traditional microscopic enumeration for the ecosystems monitoring program.

  13. Miniature PCR based portable bioaerosol monitor development.

    PubMed

    Agranovski, I E; Usachev, E V; Agranovski, E; Usacheva, O V

    2017-01-01

    A portable bioaerosol monitor is greatly demanded technology in many areas including air quality control, occupational exposure assessment and health risk evaluation, environmental studies and, especially, in defence and bio-terrorism applications. Our recent groundwork allowed us to formulate the concept of a portable bioaerosol monitor, which needs to be light, user friendly, reliable and capable of detecting airborne pathogens within 1-1·5 h on the spot. Conceptually, the event of a bioaerosol concentration burst is determined by triggers to commence the representative air sampling with sequential real-time polymerase chain reaction (PCR) confirmation of the targeted micro-organism present in the air. To minimize reagent consumption and idle running of the technology, an event of a bioaerosol burst is confirmed by three parameters: aerosol particle size, concentration and composition. Only particle sizes above 200 nm attract interest in the bioaerosol. Only an elevated aerosol concentration above the threshold (background aerosol concentration) is a signal to commence the analytical procedure. The combination of our previously developed personal bioaerosol sampler, aerosol particle counter based trigger and portable real-time PCR device formed the basis of the bioaerosol monitoring technology. The portable real-time PCR device was advanced to provide internally controlled detection, significantly reducing false-positive alarms. The technique is capable of detecting selected airborne micro-organisms on the spot within 30-80 min, depending on the genome organization of the particular strain. Due to recent outbreaks of infectious airborne diseases and the continuing threat of intentionally released bioaerosol attacks, investigations into the possibility of the early and reliable detection of pathogenic micro-organisms in the air is becoming increasingly important. The proposed technology consisting of a bioaerosol sampler, technology trigger and PCR device is

  14. Real-time PCR assays for monitoring anaerobic fungal biomass and population size in the rumen.

    PubMed

    Lwin, Khin Ohnmar; Hayakawa, Mika; Ban-Tokuda, Tomomi; Matsui, Hiroki

    2011-04-01

    The relationship between copy numbers of internal transcribed spacer 1 (ITS1) and biomass or zoospore count of anaerobic fungi was studied to develop a quantitative real-time PCR-based monitoring method for fungal biomass or population in the rumen. Nine fungal strains were used to determine the relationship between ITS1 copy number and fungal biomass. Rumen fluid from three sheep and a cow were used to determine the relationship between ITS1 copy number and fungal population. ITS1 copy number was determined by real-time PCR with a specific primer set for anaerobic fungi. Freeze-dried fungal cells were weighed for fungal biomass. Zoospore counts were determined by the roll-tube method. A positive correlation was observed between both ITS1 copy number and dry weight and ITS1 copy number and zoospore counts, suggesting that the use of ITS1 copy numbers is effective for estimating fungal biomass and population density. On the basis of ITS1 copy numbers, fluctuations in the fungal population in sheep rumen showed that although the values varied among individual animals, the fungal population tended to decrease after feeding. In the present study, a culture-independent method was established that will provide a powerful tool for understanding the ecology of anaerobic fungi in the rumen.

  15. Real-Time PCR in Clinical Microbiology: Applications for Routine Laboratory Testing

    PubMed Central

    Espy, M. J.; Uhl, J. R.; Sloan, L. M.; Buckwalter, S. P.; Jones, M. F.; Vetter, E. A.; Yao, J. D. C.; Wengenack, N. L.; Rosenblatt, J. E.; Cockerill, F. R.; Smith, T. F.

    2006-01-01

    Real-time PCR has revolutionized the way clinical microbiology laboratories diagnose many human microbial infections. This testing method combines PCR chemistry with fluorescent probe detection of amplified product in the same reaction vessel. In general, both PCR and amplified product detection are completed in an hour or less, which is considerably faster than conventional PCR detection methods. Real-time PCR assays provide sensitivity and specificity equivalent to that of conventional PCR combined with Southern blot analysis, and since amplification and detection steps are performed in the same closed vessel, the risk of releasing amplified nucleic acids into the environment is negligible. The combination of excellent sensitivity and specificity, low contamination risk, and speed has made real-time PCR technology an appealing alternative to culture- or immunoassay-based testing methods for diagnosing many infectious diseases. This review focuses on the application of real-time PCR in the clinical microbiology laboratory. PMID:16418529

  16. TaqMan based real time PCR assay targeting EML4-ALK fusion transcripts in NSCLC.

    PubMed

    Robesova, Blanka; Bajerova, Monika; Liskova, Kvetoslava; Skrickova, Jana; Tomiskova, Marcela; Pospisilova, Sarka; Mayer, Jiri; Dvorakova, Dana

    2014-07-01

    Lung cancer with the ALK rearrangement constitutes only a small fraction of patients with non-small cell lung cancer (NSCLC). However, in the era of molecular-targeted therapy, efficient patient selection is crucial for successful treatment. In this context, an effective method for EML4-ALK detection is necessary. We developed a new highly sensitive variant specific TaqMan based real time PCR assay applicable to RNA from formalin-fixed paraffin-embedded tissue (FFPE). This assay was used to analyze the EML4-ALK gene in 96 non-selected NSCLC specimens and compared with two other methods (end-point PCR and break-apart FISH). EML4-ALK was detected in 33/96 (34%) specimens using variant specific real time PCR, whereas in only 23/96 (24%) using end-point PCR. All real time PCR positive samples were confirmed with direct sequencing. A total of 46 specimens were subsequently analyzed by all three detection methods. Using variant specific real time PCR we identified EML4-ALK transcript in 17/46 (37%) specimens, using end-point PCR in 13/46 (28%) specimens and positive ALK rearrangement by FISH was detected in 8/46 (17.4%) specimens. Moreover, using variant specific real time PCR, 5 specimens showed more than one EML4-ALK variant simultaneously (in 2 cases the variants 1+3a+3b, in 2 specimens the variants 1+3a and in 1 specimen the variant 1+3b). In one case of 96 EML4-ALK fusion gene and EGFR mutation were detected. All simultaneous genetic variants were confirmed using end-point PCR and direct sequencing. Our variant specific real time PCR assay is highly sensitive, fast, financially acceptable, applicable to FFPE and seems to be a valuable tool for the rapid prescreening of NSCLC patients in clinical practice, so, that most patients able to benefit from targeted therapy could be identified. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Simplified Pan-species Real-time PCR-based Detection of Plasmodium Spp. in Blood Smear.

    PubMed

    Hassanpour, Gholamreza; Mirhendi, Hossein; Mohebali, Mehdi; Raeisi, Ahmad; Zeraati, Hojjat; Keshavarz, Hossein

    2016-01-01

    We aimed to quicken and simplify the detection of Plasmodium in blood samples by developing and testing a pan- Plasmodium real-time PCR for accurate screening of individuals suspected of malaria. A single primer/probe set for pan-species Plasmodium -specific real time PCR targeting a conserved region of the small subunit 18S ribosomal DNA was designed and evaluated for rapid diagnosis and screening of malaria infections using dried blood smears. FTA cards were used for rapid and simple DNA extraction. The primers and probes showed a positive response with the DNA extracted from bloods infected with P. falciparum and P. vivax but not with DNA extracted from various smears from uninfected blood samples. Seven positive cases positive by both microscopy and nested PCR were found among 280 blood samples taken from in South and Southeast Iran. Five samples were identified as positive for P. vivax and two as positive for P. falciparum . All positive samples were positive by real-time PCR. Furthermore, all 38-blood samples positive by microscopy were positive by real-time PCR. No microscopy-negative samples were positive by real-time PCR. By using a simple FTA card for DNA extraction and by application of the real-time PCR developed in this study, sensitivity similar to nested-PCR and microscopy was achieved. This format simplifies the detection of Plasmodium in large numbers of samples.

  18. Real-time Monitoring of Nanoparticle-based Therapeutics: A Review.

    PubMed

    Han, Qingqing; Niu, Meng; Wu, Qirun; Zhong, Hongshan

    2018-01-01

    With the development of nanomaterials, nanoparticle-based therapeutics have found increasing application in various fields, including clinical and basic medicine. Real-time monitoring of nanoparticle-based therapeutics is considered critical to both pharmacology and pharmacokinetics. In this review, we discuss the different methods of real-time monitoring of nanoparticle-based therapeutics comprising different types of nanoparticle carriers, such as metal nanoparticles, inorganic nonmetallic nanoparticles, biodegradable polymer nanoparticles, and biological nanoparticles. In the light of examples and analyses, we conclude that the methods of analysis of the four types of nanoparticle carriers are commonly used methods and mostly not necessary. Under most circumstances, real-time monitoring differs according to nanoparticle type, drugs, diseases, and surroundings. With technology development and advanced researches, there have been increasing measures to track the real-time changes in nanoparticles, and this has led to great progress in pharmacology and therapeutics. However, future studies are warranted to determine the accuracy, applicability, and practicability of different technologies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. European validation of a real-time PCR-based method for detection of Listeria monocytogenes in soft cheese.

    PubMed

    Gianfranceschi, Monica Virginia; Rodriguez-Lazaro, David; Hernandez, Marta; González-García, Patricia; Comin, Damiano; Gattuso, Antonietta; Delibato, Elisabetta; Sonnessa, Michele; Pasquali, Frederique; Prencipe, Vincenza; Sreter-Lancz, Zuzsanna; Saiz-Abajo, María-José; Pérez-De-Juan, Javier; Butrón, Javier; Kozačinski, Lidija; Tomic, Danijela Horvatek; Zdolec, Nevijo; Johannessen, Gro S; Jakočiūnė, Džiuginta; Olsen, John Elmerdahl; De Santis, Paola; Lovari, Sarah; Bertasi, Barbara; Pavoni, Enrico; Paiusco, Antonella; De Cesare, Alessandra; Manfreda, Gerardo; De Medici, Dario

    2014-08-01

    The classical microbiological method for detection of Listeria monocytogenes requires around 7 days for final confirmation, and due to perishable nature of RTE food products, there is a clear need for an alternative methodology for detection of this pathogen. This study presents an international (at European level) ISO 16140-based validation trial of a non-proprietary real-time PCR-based methodology that can generate final results in the following day of the analysis. This methodology is based on an ISO compatible enrichment coupled to a bacterial DNA extraction and a consolidated real-time PCR assay. Twelve laboratories from six European countries participated in this trial, and soft cheese was selected as food model since it can represent a difficult matrix for the bacterial DNA extraction and real-time PCR amplification. The limit of detection observed was down to 10 CFU per 25 of sample, showing excellent concordance and accordance values between samples and laboratories (>75%). In addition, excellent values were obtained for relative accuracy, specificity and sensitivity (82.75%, 96.70% and 97.62%, respectively) when the results obtained for the real-time PCR-based methods were compared to those of the ISO 11290-1 standard method. An interesting observation was that the L. monocytogenes detection by the real-time PCR method was less affected in the presence of Listeria innocua in the contaminated samples, proving therefore to be more reliable than the reference method. The results of this international trial demonstrate that the evaluated real-time PCR-based method represents an excellent alterative to the ISO standard since it shows a higher performance as well as reduce the extent of the analytical process, and can be easily implemented routinely by the competent authorities and food industry laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Influence of PCR reagents on DNA polymerase extension rates measured on real-time PCR instruments.

    PubMed

    Montgomery, Jesse L; Wittwer, Carl T

    2014-02-01

    Radioactive DNA polymerase activity methods are cumbersome and do not provide initial extension rates. A simple extension rate assay would enable study of basic assumptions about PCR and define the limits of rapid PCR. A continuous assay that monitors DNA polymerase extension using noncovalent DNA dyes on common real-time PCR instruments was developed. Extension rates were measured in nucleotides per second per molecule of polymerase. To initiate the reaction, a nucleotide analog was heat activated at 95 °C for 5 min, the temperature decreased to 75 °C, and fluorescence monitored until substrate exhaustion in 30-90 min. The assay was linear with time for over 40% of the reaction and for polymerase concentrations over a 100-fold range (1-100 pmol/L). Extension rates decreased continuously with increasing monovalent cation concentrations (lithium, sodium, potassium, cesium, and ammonium). Melting-temperature depressors had variable effects. DMSO increased rates up to 33%, whereas glycerol had little effect. Betaine, formamide, and 1,2-propanediol decreased rates with increasing concentrations. Four common noncovalent DNA dyes inhibited polymerase extension. Heat-activated nucleotide analogs were 92% activated after 5 min, and hot start DNA polymerases were 73%-90% activated after 20 min. Simple DNA extension rate assays can be performed on real-time PCR instruments. Activity is decreased by monovalent cations, DNA dyes, and most melting temperature depressors. Rational inclusion of PCR components on the basis of their effects on polymerase extension is likely to be useful in PCR, particularly rapid-cycle or fast PCR.

  1. Multiplex Real-Time PCR Assay for Rapid Detection of Methicillin-Resistant Staphylococci Directly from Positive Blood Cultures

    PubMed Central

    Wang, Hye-young; Kim, Sunghyun; Kim, Jungho; Park, Soon-Deok

    2014-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is the most prevalent cause of bloodstream infections (BSIs) and is recognized as a major nosocomial pathogen. This study aimed to evaluate a newly designed multiplex real-time PCR assay capable of the simultaneous detection of mecA, S. aureus, and coagulase-negative staphylococci (CoNS) in blood culture specimens. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays (M&D, Republic of Korea) use the TaqMan probes 16S rRNA for Staphylococcus spp., the nuc gene for S. aureus, and the mecA gene for methicillin resistance. The detection limit of the multiplex real-time PCR assay was 103 CFU/ml per PCR for each gene target. The multiplex real-time PCR assay was evaluated using 118 clinical isolates from various specimen types and a total of 350 positive blood cultures from a continuous monitoring blood culture system. The results obtained with the multiplex real-time PCR assay for the three targets were in agreement with those of conventional identification and susceptibility testing methods except for one organism. Of 350 positive bottle cultures, the sensitivities of the multiplex real-time PCR kit were 100% (166/166 cultures), 97.2% (35/36 cultures), and 99.2% (117/118 cultures) for the 16S rRNA, nuc, and mecA genes, respectively, and the specificities for all three targets were 100%. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays are very useful for the rapid accurate diagnosis of staphylococcal BSIs. In addition, the Real-MRSA and Real-MRCoNS multiplex real-time PCR assays could have an important impact on the choice of appropriate antimicrobial therapy, based on detection of the mecA gene. PMID:24648566

  2. Web-Based Real-Time Emergency Monitoring

    NASA Technical Reports Server (NTRS)

    Harvey, Craig A.; Lawhead, Joel

    2007-01-01

    The Web-based Real-Time Asset Monitoring (RAM) module for emergency operations and facility management enables emergency personnel in federal agencies and local and state governments to monitor and analyze data in the event of a natural disaster or other crisis that threatens a large number of people and property. The software can manage many disparate sources of data within a facility, city, or county. It was developed on industry-standard Geo- Spatial software and is compliant with open GIS standards. RAM View can function as a standalone system, or as an integrated plugin module to Emergency Operations Center (EOC) software suites such as REACT (Real-time Emergency Action Coordination Tool), thus ensuring the widest possible distribution among potential users. RAM has the ability to monitor various data sources, including streaming data. Many disparate systems are included in the initial suite of supported hardware systems, such as mobile GPS units, ambient measurements of temperature, moisture and chemical agents, flow meters, air quality, asset location, and meteorological conditions. RAM View displays real-time data streams such as gauge heights from the U.S. Geological Survey gauging stations, flood crests from the National Weather Service, and meteorological data from numerous sources. Data points are clearly visible on the map interface, and attributes as specified in the user requirements can be viewed and queried.

  3. Locked Nucleic Acid Probe-Based Real-Time PCR Assay for the Rapid Detection of Rifampin-Resistant Mycobacterium tuberculosis

    PubMed Central

    Sun, Chongyun; Li, Chao; Wang, Xiaochen; Liu, Haican; Zhang, Pingping; Zhao, Xiuqin; Wang, Xinrui; Jiang, Yi; Yang, Ruifu; Wan, Kanglin; Zhou, Lei

    2015-01-01

    Drug-resistant Mycobacterium tuberculosis can be rapidly diagnosed through nucleic acid amplification techniques by analyzing the variations in the associated gene sequences. In the present study, a locked nucleic acid (LNA) probe-based real-time PCR assay was developed to identify the mutations in the rpoB gene associated with rifampin (RFP) resistance in M. tuberculosis. Six LNA probes with the discrimination capability of one-base mismatch were designed to monitor the 23 most frequent rpoB mutations. The target mutations were identified using the probes in a “probe dropout” manner (quantification cycle = 0); thus, the proposed technique exhibited superiority in mutation detection. The LNA probe-based real-time PCR assay was developed in a two-tube format with three LNA probes and one internal amplification control probe in each tube. The assay showed excellent specificity to M. tuberculosis with or without RFP resistance by evaluating 12 strains of common non-tuberculosis mycobacteria. The limit of detection of M. tuberculosis was 10 genomic equivalents (GE)/reaction by further introducing a nested PCR method. In a blind validation of 154 clinical mycobacterium isolates, 142/142 (100%) were correctly detected through the assay. Of these isolates, 88/88 (100%) were determined as RFP susceptible and 52/54 (96.3%) were characterized as RFP resistant. Two unrecognized RFP-resistant strains were sequenced and were found to contain mutations outside the range of the 23 mutation targets. In conclusion, this study established a sensitive, accurate, and low-cost LNA probe-based assay suitable for a four-multiplexing real-time PCR instrument. The proposed method can be used to diagnose RFP-resistant tuberculosis in clinical laboratories. PMID:26599667

  4. A new real-time PCR protocol for detection of avian haemosporidians.

    PubMed

    Bell, Jeffrey A; Weckstein, Jason D; Fecchio, Alan; Tkach, Vasyl V

    2015-07-19

    Birds possess the most diverse assemblage of haemosporidian parasites; including three genera, Plasmodium, Haemoproteus, and Leucocytozoon. Currently there are over 200 morphologically identified avian haemosporidian species, although true species richness is unknown due to great genetic diversity and insufficient sampling in highly diverse regions. Studies aimed at surveying haemosporidian diversity involve collecting and screening samples from hundreds to thousands of individuals. Currently, screening relies on microscopy and/or single or nested standard PCR. Although effective, these methods are time and resource consuming, and in the case of microscopy require substantial expertise. Here we report a newly developed real-time PCR protocol designed to quickly and reliably detect all three genera of avian haemosporidians in a single biochemical reaction. Using available DNA sequences from avian haemosporidians we designed primers R330F and R480RL, which flank a 182 base pair fragment of mitochondrial conserved rDNA. These primers were initially tested using real-time PCR on samples from Malawi, Africa, previously screened for avian haemosporidians using traditional nested PCR. Our real time protocol was further tested on 94 samples from the Cerrado biome of Brazil, previously screened using a single PCR assay for haemosporidian parasites. These samples were also amplified using modified nested PCR protocols, allowing for comparisons between the three different screening methods (single PCR, nested PCR, real-time PCR). The real-time PCR protocol successfully identified all three genera of avian haemosporidians from both single and mixed infections previously detected from Malawi. There was no significant difference between the three different screening protocols used for the 94 samples from the Brazilian Cerrado (χ(2) = 0.3429, df = 2, P = 0.842). After proving effective, the real-time protocol was used to screen 2113 Brazilian samples, identifying 693

  5. Simplified Pan-species Real-time PCR-based Detection of Plasmodium Spp. in Blood Smear

    PubMed Central

    HASSANPOUR, Gholamreza; MIRHENDI, Hossein; MOHEBALI, Mehdi; RAEISI, Ahmad; ZERAATI, Hojjat; KESHAVARZ, Hossein

    2016-01-01

    Background: We aimed to quicken and simplify the detection of Plasmodium in blood samples by developing and testing a pan-Plasmodium real-time PCR for accurate screening of individuals suspected of malaria. Methods: A single primer/probe set for pan-species Plasmodium-specific real time PCR targeting a conserved region of the small subunit 18S ribosomal DNA was designed and evaluated for rapid diagnosis and screening of malaria infections using dried blood smears. FTA cards were used for rapid and simple DNA extraction. Results: The primers and probes showed a positive response with the DNA extracted from bloods infected with P. falciparum and P. vivax but not with DNA extracted from various smears from uninfected blood samples. Seven positive cases positive by both microscopy and nested PCR were found among 280 blood samples taken from in South and Southeast Iran. Five samples were identified as positive for P. vivax and two as positive for P. falciparum. All positive samples were positive by real-time PCR. Furthermore, all 38-blood samples positive by microscopy were positive by real-time PCR. No microscopy-negative samples were positive by real-time PCR. Conclusion: By using a simple FTA card for DNA extraction and by application of the real-time PCR developed in this study, sensitivity similar to nested-PCR and microscopy was achieved. This format simplifies the detection of Plasmodium in large numbers of samples. PMID:28127357

  6. Real-time PCR machine system modeling and a systematic approach for the robust design of a real-time PCR-on-a-chip system.

    PubMed

    Lee, Da-Sheng

    2010-01-01

    Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR) machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design.

  7. Real-time PCR Machine System Modeling and a Systematic Approach for the Robust Design of a Real-time PCR-on-a-Chip System

    PubMed Central

    Lee, Da-Sheng

    2010-01-01

    Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR) machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design. PMID:22315563

  8. Comparative evaluation of laboratory developed real-time PCR assays and RealStar(®) BKV PCR Kit for quantitative detection of BK polyomavirus.

    PubMed

    Hasan, Mohammad R; Tan, Rusung; Al-Rawahi, Ghada; Thomas, Eva; Tilley, Peter

    2016-08-01

    Quantitative, viral load monitoring for BK virus (BKV) by real-time PCR is an important tool in the management of polyomavirus associated nephropathy in renal transplant patients. However, variability in PCR results has been reported because of polymorphisms in viral genes among different subtypes of BKV, and lack of standardization of the PCR assays among different laboratories. In this study we have compared the performance of several laboratory developed PCR assays that target highly conserved regions of BKV genome with a commercially available, RealStar(®) BKV PCR Kit. Three real-time PCR assays (i) VP1 assay: selected from the literature that targets the major capsid protein (VP1) gene (ii) VP1MOD assay: VP1 assay with a modified probe, and (iii) BKLTA assay: newly designed assay that targets the large T antigen gene were assessed in parallel, using controls and clinical specimens that were previously tested using RealStar(®) BKV PCR Kit (Altona Diagnostics GmbH, Hamburg, Germany). Nucleic acid from all samples were extracted using the QIA symphony virus/bacteria kit on an automated DNA extraction platform QIA symphony SP (Qiagen). Primer and probe concentration, and reaction conditions for laboratory developed assays were optimized and the limit of detection of different assays was determined. Positive control for laboratory developed BK assays was prepared through construction of a plasmid carrying respective amplicon sequences. The 95% detection limit of VP1, VP1MOD and BKLTA assays were 1.8×10(2), 3×10(3) and 3.5×10(2) genomic copies/ml, respectively, as determined by Probit regression analysis of data obtained by testing a dilution series of a titered patient specimen, using RealStar(®) BKV PCR Kit. The inter-assay and intra-assay, coefficient of variations of these assays using calibrated, plasmid standards were <1%. All assays, including the RealStar(®) BKV PCR assay, were highly specific when tested against a panel of external proficiency

  9. Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR.

    PubMed

    Sergueev, Kirill V; He, Yunxiu; Borschel, Richard H; Nikolich, Mikeljon P; Filippov, Andrey A

    2010-06-28

    Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics. The objective of this work was to develop an alternative to conventional phage lysis tests--a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR) monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages phiA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. phiA1122-specific qPCR enabled the detection of an initial bacterial concentration of 10(3) CFU/ml (equivalent to as few as one Y. pestis cell per 1-microl sample) in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample) but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, phiA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR. Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.

  10. [Real-time PCR kits for the detection of the African Swine Fever virus].

    PubMed

    Latyshev, O E; Eliseeva, O V; Grebennikova, T V; Verkhovskiĭ, O A; Tsibezov, V V; Chernykh, O Iu; Dzhailidi, G A; Aliper, T I

    2014-01-01

    The results obtained using the diagnostic kit based on real-time polymerase chain reaction to detect the DNA of the African Swine Fever in the pathological material, as well as in the culture fluid, are presented. A high sensitivity and specificity for detection of the DNA in the organs and tissues of animals was shown to be useful for detection in the European Union referentiality reagent kits for DNA detection by real time PCR of ASFV. More rapid and effective method of DNA extraction using columns mini spin Quick gDNA(TM) MiniPrep was suggested and compared to the method of DNA isolation on the inorganic sorbent. High correlation of the results of the DNA detection of ASFV by real-time PCR and antigen detection results ASFV by competitive ELISA obtained with the ELISA SEROTEST/INGEZIM COMRAC PPA was demonstrated. The kit can be used in the veterinary services for effective monitoring of ASFV to contain, eliminate and prevent further spread of the disease.

  11. Real-Time PCR (RT-PCR) Assays for Burkholderia mallei and B. pseudomallei

    DTIC Science & Technology

    2005-10-01

    1 Real-time PCR (RT-PCR) Assays for Burkholderia mallei and B. pseudomallei Vipin K. Rastogi1, Tu-chen Cheng1, Lisa Collins1 and Jennifer Bagley2 1...A 3. DATES COVERED - 4. TITLE AND SUBTITLE Real-time PCR (RT-PCR) Assays for Burkholderia mallei and B.pseudomallei 5a. CONTRACT NUMBER 5b...pseudomallei and B. mallei , respectively are the causative agents of meliodosis and glanders , primarily in animals (both pathogens), and in humans

  12. Analytical Performances of Human Immunodeficiency Virus Type 1 RNA-Based Amplix® Real-Time PCR Platform for HIV-1 RNA Quantification

    PubMed Central

    Mboumba Bouassa, Ralph-Sydney; Jenabian, Mohammad-Ali; Wolyec, Serge Tonen; Robin, Leman; Matta, Mathieu; Longo, Jean de Dieu; Grésenguet, Gérard; Andreoletti, Laurent; Bélec, Laurent

    2016-01-01

    Objectives. We evaluated the performances of Amplix real-time PCR platform developed by Biosynex (Strasbourg, France), combining automated station extraction (Amplix station 16 Dx) and real-time PCR (Amplix NG), for quantifying plasma HIV-1 RNA by lyophilized HIV-1 RNA-based Amplix reagents targeting gag and LTR, using samples from HIV-1-infected adults from Central African Republic. Results. Amplix real-time PCR assay showed low limit of detection (28 copies/mL), across wide dynamic range (1.4–10 log copies/mL), 100% sensitivity and 99% specificity, high reproducibility, and accuracy with mean bias < 5%. The assay showed excellent correlations and concordance of 95.3% with the reference HIV-1 RNA load assay (Roche), with mean absolute bias of +0.097 log copies/mL by Bland-Altman analysis. The assay was able to detect and quantify the most prevalent HIV-1 subtype strains and the majority of non-B subtypes, CRFs of HIV-1 group M, and HIV-1 groups N and O circulating in Central Africa. The Amplix assay showed 100% sensitivity and 99.6% specificity to diagnose virological failure in clinical samples from antiretroviral drug-experienced patients. Conclusions. The HIV-1 RNA-based Amplix real-time PCR platform constitutes sensitive and reliable system for clinical monitoring of HIV-1 RNA load in HIV-1-infected children and adults, particularly adapted to intermediate laboratory facilities in sub-Saharan Africa. PMID:28050283

  13. A GPS-based Real-time Road Traffic Monitoring System

    NASA Astrophysics Data System (ADS)

    Tanti, Kamal Kumar

    In recent years, monitoring systems are astonishingly inclined towards ever more automatic; reliably interconnected, distributed and autonomous operation. Specifically, the measurement, logging, data processing and interpretation activities may be carried out by separate units at different locations in near real-time. The recent evolution of mobile communication devices and communication technologies has fostered a growing interest in the GIS & GPS-based location-aware systems and services. This paper describes a real-time road traffic monitoring system based on integrated mobile field devices (GPS/GSM/IOs) working in tandem with advanced GIS-based application software providing on-the-fly authentications for real-time monitoring and security enhancement. The described system is developed as a fully automated, continuous, real-time monitoring system that employs GPS sensors and Ethernet and/or serial port communication techniques are used to transfer data between GPS receivers at target points and a central processing computer. The data can be processed locally or remotely based on the requirements of client’s satisfaction. Due to the modular architecture of the system, other sensor types may be supported with minimal effort. Data on the distributed network & measurements are transmitted via cellular SIM cards to a Control Unit, which provides for post-processing and network management. The Control Unit may be remotely accessed via an Internet connection. The new system will not only provide more consistent data about the road traffic conditions but also will provide methods for integrating with other Intelligent Transportation Systems (ITS). For communication between the mobile device and central monitoring service GSM technology is used. The resulting system is characterized by autonomy, reliability and a high degree of automation.

  14. [Analytical performances of real-time PCR by Abbott RealTime CMV with m2000 for the detection of cytomegalovirus in urine].

    PubMed

    De Monte, Anne; Cannavo, Isabelle; Caramella, Anne; Ollier, Laurence; Giordanengo, Valérie

    2016-01-01

    Congenital cytomegalovirus (CMV) infection is the leading cause of sensoneurinal disability due to infectious congenital disease. The diagnosis of congenital CMV infection is based on the search of CMV in the urine within the first two weeks of life. Viral culture of urine is the gold standard. However, the PCR is highly sensitive and faster. It is becoming an alternative choice. The objective of this study is the validation of real-time PCR by Abbott RealTime CMV with m2000 for the detection of cytomegalovirus in urine. Repeatability, reproducibility, detection limit and inter-sample contamination were evaluated. Urine samples from patients (n=141) were collected and analyzed simultaneously in culture and PCR in order to assess the correlation of these two methods. The sensitivity and specificity of PCR were also calculated. The Abbott RealTime CMV PCR in urine is an automated and sensitive method (detection limit 200 UI/mL). Fidelity is very good (standard deviation of repeatability: 0.08 to 0.15 LogUI/mL and reproducibility 0.18 LogUI/mL). We can note a good correlation between culture and Abbott RealTime CMV PCR (kappa 96%). When considering rapid culture as reference, real-time PCR was highly sensitive (100%) and specific (98.2%). The real-time PCR by Abbott RealTime CMV with m2000 is optimal for CMV detection in urine.

  15. A Novel Real-Time PCR for Listeria monocytogenes That Monitors Analytical Performance via an Internal Amplification Control

    PubMed Central

    Rodríguez-Lázaro, David; Pla, Maria; Scortti, Mariela; Monzó, Héctor J.; Vázquez-Boland, José A.

    2005-01-01

    We describe a novel quantitative real-time (Q)-PCR assay for Listeria monocytogenes based on the coamplification of a target hly gene fragment and an internal amplification control (IAC). The IAC is a chimeric double-stranded DNA containing a fragment of the rapeseed BnACCg8 gene flanked by the hly-specific target sequences. This IAC is detected using a second TaqMan probe labeled with a different fluorophore, enabling the simultaneous monitoring of the hly and IAC signals. The hly-IAC assay had a specificity and sensitivity of 100%, as assessed using 49 L. monocytogenes isolates of different serotypes and 96 strains of nontarget bacteria, including 51 Listeria isolates. The detection and quantification limits were 8 and 30 genome equivalents, and the coefficients for PCR linearity (R2) and efficiency (E) were 0.997 and 0.80, respectively. We tested the performance of the hly-IAC Q-PCR assay using various broth media and food matrices. Fraser and half-Fraser media, raw pork, and raw or cold-smoked salmon were strongly PCR-inhibitory. This Q-PCR assay for L. monocytogenes, the first incorporating an IAC to be described for quantitative detection of a food-borne pathogen, is a simple and robust tool facilitating the identification of false negatives or underestimations of contamination loads due to PCR failure. PMID:16332910

  16. Real-time PCR: Advanced technologies and applications

    USDA-ARS?s Scientific Manuscript database

    This book brings together contributions from 20 experts in the field of PCR, providing a broad perspective of the applications of quantitative real-time PCR (qPCR). The editors state in the preface that the aim is to provide detailed insight into underlying principles and methods of qPCR to provide ...

  17. Usefulness of real-time PCR as a complementary tool to the monitoring of Legionella spp. and Legionella pneumophila by culture in industrial cooling systems.

    PubMed

    Touron-Bodilis, A; Pougnard, C; Frenkiel-Lebossé, H; Hallier-Soulier, S

    2011-08-01

    This study was designed to evaluate the usefulness of quantification by real-time PCR as a management tool to monitor concentrations of Legionella spp. and Legionella pneumophila in industrial cooling systems and its ability to anticipate culture trends by the French standard method (AFNOR T90-431). Quantifications of Legionella bacteria were achieved by both methods on samples from nine cooling systems with different water qualities. Proportion of positive samples for L. pneumophila quantified by PCR was clearly lower in deionized or river waters submitted to a biocide treatment than in raw river waters, while positive samples for Legionella spp. were quantified for almost all the samples. For some samples containing PCR inhibitors, high quantification limits (up to 4·80 × 10(5) GU l(-1) ) did not allow us to quantify L. pneumophila, when they were quantified by culture. Finally, the monitoring of concentrations of L. pneumophila by both methods showed similar trends for 57-100% of the samples. These results suggest that, if some methodological steps designed to reduce inhibitory problems and thus decrease the quantification limits, could be developed to quantify Legionella in complex waters, the real-time PCR could be a valuable complementary tool to monitor the evolution of L. pneumophila concentrations. This study shows the possibility of using real-time PCR to monitor L. pneumophila proliferations in cooling systems and the importance to adapt nucleic acid extraction and purification protocols to raw waters. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology. No claim to French Government works.

  18. Real-Time PCR (qPCR) Primer Design Using Free Online Software

    ERIC Educational Resources Information Center

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most…

  19. High-throughput real-time quantitative reverse transcription PCR.

    PubMed

    Bookout, Angie L; Cummins, Carolyn L; Mangelsdorf, David J; Pesola, Jean M; Kramer, Martha F

    2006-02-01

    Extensive detail on the application of the real-time quantitative polymerase chain reaction (QPCR) for the analysis of gene expression is provided in this unit. The protocols are designed for high-throughput, 384-well-format instruments, such as the Applied Biosystems 7900HT, but may be modified to suit any real-time PCR instrument. QPCR primer and probe design and validation are discussed, and three relative quantitation methods are described: the standard curve method, the efficiency-corrected DeltaCt method, and the comparative cycle time, or DeltaDeltaCt method. In addition, a method is provided for absolute quantification of RNA in unknown samples. RNA standards are subjected to RT-PCR in the same manner as the experimental samples, thus accounting for the reaction efficiencies of both procedures. This protocol describes the production and quantitation of synthetic RNA molecules for real-time and non-real-time RT-PCR applications.

  20. Using Real-Time PCR as a tool for monitoring the authenticity of commercial coffees.

    PubMed

    Ferreira, Thiago; Farah, Adriana; Oliveira, Tatiane C; Lima, Ivanilda S; Vitório, Felipe; Oliveira, Edna M M

    2016-05-15

    Coffee is one of the main food products commercialized in the world. Its considerable market value among food products makes it susceptible to adulteration, especially with cereals. Therefore, the objective of this study was to develop a method based on Real-Time Polymerase Chain Reaction (PCR) for detection of cereals in commercial ground roast and soluble coffees. After comparison with standard curves obtained by serial dilution of DNA extracted from barley, corn and rice, the method was sensitive and specific to quantify down to 0.6 pg, 14 pg and 16 pg of barley, corn and rice DNA, respectively. To verify the applicability of the method, 30 commercial samples obtained in different countries were evaluated and those classified as gourmets or superior did not present the tested cereals DNA. However, barley was detected in various traditional (cheaper) samples from South America. In addition, corn and rice were also detected in different samples. Real-Time PCR showed to be suitable for detection of food adulterants in commercial ground roast and soluble coffees. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A FRET-Based Real-Time PCR Assay to Identify the Main Causal Agents of New World Tegumentary Leishmaniasis

    PubMed Central

    De Los Santos, Maxy; Soberón, Valeria; Lucas, Carmen M.; Matlashewski, Greg; Llanos-Cuentas, Alejandro; Ore, Marianela; Baldeviano, G. Christian; Edgel, Kimberly A.; Lescano, Andres G.; Graf, Paul C. F.; Bacon, David J.

    2013-01-01

    In South America, various species of Leishmania are endemic and cause New World tegumentary leishmaniasis (NWTL). The correct identification of these species is critical for adequate clinical management and surveillance activities. We developed a real-time polymerase chain reaction (PCR) assay and evaluated its diagnostic performance using 64 archived parasite isolates and 192 prospectively identified samples collected from individuals with suspected leishmaniasis enrolled at two reference clinics in Lima, Peru. The real-time PCR assay was able to detect a single parasite and provided unambiguous melting peaks for five Leishmania species of the Viannia subgenus that are highly prevalent in South America: L. (V.) braziliensis, L. (V.) panamensis, L. (V.) guyanensis, L. (V.) peruviana and L. (V.) lainsoni. Using kinetoplastid DNA-based PCR as a gold standard, the real-time PCR had sensitivity and specificity values of 92% and 77%, respectively, which were significantly higher than those of conventional tests such as microscopy, culture and the leishmanin skin test (LST). In addition, the real-time PCR identified 147 different clinical samples at the species level, providing an overall agreement of 100% when compared to multilocus sequence typing (MLST) data performed on a subset of these samples. Furthermore, the real-time PCR was three times faster and five times less expensive when compared to PCR - MLST for species identification from clinical specimens. In summary, this new assay represents a cost-effective and reliable alternative for the identification of the main species causing NWTL in South America. PMID:23301111

  2. On-Site Molecular Detection of Soil-Borne Phytopathogens Using a Portable Real-Time PCR System

    PubMed Central

    DeShields, Joseph B.; Bomberger, Rachel A.; Woodhall, James W.; Wheeler, David L.; Moroz, Natalia; Johnson, Dennis A.; Tanaka, Kiwamu

    2018-01-01

    On-site diagnosis of plant diseases can be a useful tool for growers for timely decisions enabling the earlier implementation of disease management strategies that reduce the impact of the disease. Presently in many diagnostic laboratories, the polymerase chain reaction (PCR), particularly real-time PCR, is considered the most sensitive and accurate method for plant pathogen detection. However, laboratory-based PCRs typically require expensive laboratory equipment and skilled personnel. In this study, soil-borne pathogens of potato are used to demonstrate the potential for on-site molecular detection. This was achieved using a rapid and simple protocol comprising of magnetic bead-based nucleic acid extraction, portable real-time PCR (fluorogenic probe-based assay). The portable real-time PCR approach compared favorably with a laboratory-based system, detecting as few as 100 copies of DNA from Spongospora subterranea. The portable real-time PCR method developed here can serve as an alternative to laboratory-based approaches and a useful on-site tool for pathogen diagnosis. PMID:29553557

  3. Rectal swab sampling followed by an enrichment culture-based real-time PCR assay to detect Salmonella enterocolitis in children.

    PubMed

    Lin, L-H; Tsai, C-Y; Hung, M-H; Fang, Y-T; Ling, Q-D

    2011-09-01

    Although routine bacterial culture is the traditional reference standard method for the detection of Salmonella infection in children with diarrhoea, it is a time-consuming procedure that usually only gives results after 3-4 days. Some molecular detection methods can improve the turn-around time to within 24 h, but these methods are not applied directly from stool or rectal swab specimens as routine diagnostic methods for the detection of gastrointestinal pathogens. In this study, we tested the feasibility of a bacterial enrichment culture-based real-time PCR assay method for detecting and screening for diarrhoea in children caused by Salmonella. Our results showed that the minimum real-time PCR assay time required to detect enriched bacterial culture from a swab was 3 h. In all children with suspected Salmonella diarrhoea, the enrichment culture-based real-time PCR achieved 85.4% sensitivity and 98.1% specificity, as compared with the 53.7% sensitivity and 100% specificity of detection with the routine bacterial culture method. We suggest that rectal swab sampling followed by enrichment culture-based real-time PCR is suitable as a rapid method for detecting and screening for Salmonella in paediatric patients. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  4. Flow cytometry and real-time quantitative PCR as tools for assessing plasmid persistence.

    PubMed

    Loftie-Eaton, Wesley; Tucker, Allison; Norton, Ann; Top, Eva M

    2014-09-01

    The maintenance of a plasmid in the absence of selection for plasmid-borne genes is not guaranteed. However, plasmid persistence can evolve under selective conditions. Studying the molecular mechanisms behind the evolution of plasmid persistence is key to understanding how plasmids are maintained under nonselective conditions. Given the current crisis of rapid antibiotic resistance spread by multidrug resistance plasmids, this insight is of high medical relevance. The conventional method for monitoring plasmid persistence (i.e., the fraction of plasmid-containing cells in a population over time) is based on cultivation and involves differentiating colonies of plasmid-containing and plasmid-free cells on agar plates. However, this technique is time-consuming and does not easily lend itself to high-throughput applications. Here, we present flow cytometry (FCM) and real-time quantitative PCR (qPCR) as alternative tools for monitoring plasmid persistence. For this, we measured the persistence of a model plasmid, pB10::gfp, in three Pseudomonas hosts and in known mixtures of plasmid-containing and -free cells. We also compared three performance criteria: dynamic range, resolution, and variance. Although not without exceptions, both techniques generated estimates of overall plasmid loss rates that were rather similar to those generated by the conventional plate count (PC) method. They also were able to resolve differences in loss rates between artificial plasmid persistence assays. Finally, we briefly discuss the advantages and disadvantages for each technique and conclude that, overall, both FCM and real-time qPCR are suitable alternatives to cultivation-based methods for routine measurement of plasmid persistence, thereby opening avenues for high-throughput analyses. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. A TaqMan real-time PCR-based assay for the identification of Fasciola spp.

    PubMed

    Alasaad, Samer; Soriguer, Ramón C; Abu-Madi, Marawan; El Behairy, Ahmed; Jowers, Michael J; Baños, Pablo Díez; Píriz, Ana; Fickel, Joerns; Zhu, Xing-Quan

    2011-06-30

    Real time quantitative PCR (qPCR) is one of the key technologies of the post-genome era, with clear advantages compared to normal end-point PCR. In this paper, we report the first qPCR-based assay for the identification of Fasciola spp. Based on sequences of the second internal transcribed spacers (ITS-2) of the ribosomal rRNA gene, we used a set of genus-specific primers for Fasciola ITS-2 amplification, and we designed species-specific internal TaqMan probes to identify F. hepatica and F. gigantica, as well as the hybrid 'intermediate'Fasciola. These primers and probes were used for the highly specific, sensitive, and simple identification of Fasciola species collected from different animal host from China, Spain, Niger and Egypt. The novel qPCR-based technique for the identification of Fasciola spp. may provide a useful tool for the epidemiological investigation of Fasciola infection, including their intermediate snail hosts. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Detection of Mycoplasma pneumoniae by real-time PCR.

    PubMed

    Winchell, Jonas M; Mitchell, Stephanie L

    2013-01-01

    Mycoplasma pneumoniae is a significant cause of respiratory disease, accounting for approximately 20% of cases of community-acquired pneumonia. Although several diagnostic methods exist to detect M. pneumoniae in respiratory specimens, real-time PCR has emerged as a significant improvement for the rapid diagnosis of this pathogen. The method described herein details the procedure for the detection of M. pneumoniae by real-time PCR (qPCR). The qPCR assay described can be performed with three targets specific for M. pneumoniae (Mp181, Mp3, and Mp7) and one marker for the detection of the RNaseP gene found in human nucleic acid as an internal control reaction. Recent studies have demonstrated the ability of this procedure to reliably identify this agent and facilitate the timely recognition of an outbreak.

  7. Tendency for interlaboratory precision in the GMO analysis method based on real-time PCR.

    PubMed

    Kodama, Takashi; Kurosawa, Yasunori; Kitta, Kazumi; Naito, Shigehiro

    2010-01-01

    The Horwitz curve estimates interlaboratory precision as a function only of concentration, and is frequently used as a method performance criterion in food analysis with chemical methods. The quantitative biochemical methods based on real-time PCR require an analogous criterion to progressively promote method validation. We analyzed the tendency of precision using a simplex real-time PCR technique in 53 collaborative studies of seven genetically modified (GM) crops. Reproducibility standard deviation (SR) and repeatability standard deviation (Sr) of the genetically modified organism (GMO) amount (%) was more or less independent of GM crops (i.e., maize, soybean, cotton, oilseed rape, potato, sugar beet, and rice) and evaluation procedure steps. Some studies evaluated whole steps consisting of DNA extraction and PCR quantitation, whereas others focused only on the PCR quantitation step by using DNA extraction solutions. Therefore, SR and Sr for GMO amount (%) are functions only of concentration similar to the Horwitz curve. We proposed S(R) = 0.1971C 0.8685 and S(r) = 0.1478C 0.8424, where C is the GMO amount (%). We also proposed a method performance index in GMO quantitative methods that is analogous to the Horwitz Ratio.

  8. Biosensor-based real-time monitoring of paracetamol photocatalytic degradation.

    PubMed

    Calas-Blanchard, Carole; Istamboulié, Georges; Bontoux, Margot; Plantard, Gaël; Goetz, Vincent; Noguer, Thierry

    2015-07-01

    This paper presents for the first time the integration of a biosensor for the on-line, real-time monitoring of a photocatalytic degradation process. Paracetamol was used as a model molecule due to its wide use and occurrence in environmental waters. The biosensor was developed based on tyrosinase immobilization in a polyvinylalcohol photocrosslinkable polymer. It was inserted in a computer-controlled flow system installed besides a photocatalytic reactor including titanium dioxide (TiO2) as photocatalyst. It was shown that the biosensor was able to accurately monitor the paracetamol degradation with time. Compared with conventional HPLC analysis, the described device provides a real-time information on the reaction advancement, allowing a better control of the photodegradation process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Absolute quantification by droplet digital PCR versus analog real-time PCR

    PubMed Central

    Hindson, Christopher M; Chevillet, John R; Briggs, Hilary A; Gallichotte, Emily N; Ruf, Ingrid K; Hindson, Benjamin J; Vessella, Robert L; Tewari, Muneesh

    2014-01-01

    Nanoliter-sized droplet technology paired with digital PCR (ddPCR) holds promise for highly precise, absolute nucleic acid quantification. Our comparison of microRNA quantification by ddPCR and real-time PCR revealed greater precision (coefficients of variation decreased by 37–86%) and improved day-to-day reproducibility (by a factor of seven) of ddPCR but with comparable sensitivity. When we applied ddPCR to serum microRNA biomarker analysis, this translated to superior diagnostic performance for identifying individuals with cancer. PMID:23995387

  10. Real-Time PCR Analysis of Vibrio vulnificus from Oysters

    PubMed Central

    Campbell, Mark S.; Wright, Anita C.

    2003-01-01

    Vibrio vulnificus is an opportunistic human pathogen commonly found in estuarine environments. Infections are associated with raw oyster consumption and can produce rapidly fatal septicemia in susceptible individuals. Standard enumeration of this organism in shellfish or seawater is laborious and inaccurate; therefore, more efficient assays are needed. An oligonucleotide probe derived from the cytolysin gene, vvhA, was previously used for colony hybridizations to enumerate V. vulnificus. However, this method requires overnight growth, and vibrios may lack culturability under certain conditions. In the present study, we targeted the same locus for development of a TaqMan real-time PCR assay. Probe specificity was confirmed by amplification of 28 V. vulnificus templates and by the lack of a PCR product with 22 non-V. vulnificus strains. Detection of V. vulnificus in pure cultures was observed over a 6-log-unit linear range of concentration (102 to 108 CFU ml−1), with a lower limit of 72 fg of genomic DNA μl of PCR mixture−1 or the equivalent of six cells. Similar sensitivity was observed in DNA extracted from mixtures of V. vulnificus and V. parahaemolyticus cells. Real-time PCR enumeration of artificially inoculated oyster homogenates correlated well with colony hybridization counts (r2 = 0.97). Numbers of indigenous V. vulnificus cells in oysters by real-time PCR showed no significant differences from numbers from plate counts with probe (t test; P = 0.43). Viable but nonculturable cells were also enumerated by real-time PCR and confirmed by the BacLight viability assay. These data indicate that real-time PCR can provide sensitive species-specific detection and enumeration of V. vulnificus in seafood. PMID:14660359

  11. Detection of adulterated murine components in meat products by TaqMan© real-time PCR.

    PubMed

    Fang, Xin; Zhang, Chi

    2016-02-01

    Using murine meat to substitute mutton has been identified as a new type of meat fraud in China, yet no detection method for murine species has been reported. Here, three kinds of rodent were used as target species to establish a murine-specific real-time PCR method of detection. The mitochondrial cytochrome b gene (cytb) of each target was sequenced and a TaqMan probe was designed based on the cytb. Simultaneously, an internal positive control (IPC) plasmid along with its respective probe were designed to monitor the PCR reaction. As a result, the duplex real-time PCR system was verified to be specific. The limit of detection (LOD) was lower than 1 pg of DNA per reaction and 0.1% murine contamination in meat mixtures. Standard curves were generated for a quantitative analysis. Thus, this study provided a new tool to control the quality of meat products for official and third-party laboratories. Copyright © 2015. Published by Elsevier Ltd.

  12. Real-time quantitative PCR of Staphylococcus aureus and application in restaurant meals.

    PubMed

    Berrada, H; Soriano, J M; Mañes, J; Picó, Y

    2006-01-01

    Staphylococcus aureus is considered the second most common pathogen to cause outbreaks of food poisoning, exceeded only by Campylobacter. Consumption of foods containing this microorganism is often identified as the cause of illness. In this study, a rapid, reliable, and sensitive real-time quantitative PCR was developed and compared with conventional culture methods. Real-time quantitative PCR was carried out by purifying DNA extracts of S. aureus with a Staphylococcus sample preparation kit and quantifying it in the LightCycler system with hybridization probes. The assay was linear from a range of 10 to 10(6) S. aureus cells (r2 > 0.997). The PCR reaction presented an efficiency of >85%. Accuracy of the PCR-based assay, expressed as percent bias, was around 13%, and the precision, expressed as a percentage of the coefficient of variation, was 7 to 10%. Intraday and interday variability were studied at 10(2) CFU/g and was 12 and 14%, respectively. The proposed method was applied to the analysis of 77 samples of restaurant meals in Valencia (Spain). In 11.6% of samples S. aureus was detected by real-time quantitative PCR, as well as by the conventional microbiological method. An excellent correspondence between real-time quantitative PCR and microbiological numbers (CFU/g) was observed with deviations of < 28%.

  13. Real-time video quality monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Narvekar, Niranjan; Wang, Beibei; Ding, Ran; Zou, Dekun; Cash, Glenn; Bhagavathy, Sitaram; Bloom, Jeffrey

    2011-12-01

    The ITU-T Recommendation G.1070 is a standardized opinion model for video telephony applications that uses video bitrate, frame rate, and packet-loss rate to measure the video quality. However, this model was original designed as an offline quality planning tool. It cannot be directly used for quality monitoring since the above three input parameters are not readily available within a network or at the decoder. And there is a great room for the performance improvement of this quality metric. In this article, we present a real-time video quality monitoring solution based on this Recommendation. We first propose a scheme to efficiently estimate the three parameters from video bitstreams, so that it can be used as a real-time video quality monitoring tool. Furthermore, an enhanced algorithm based on the G.1070 model that provides more accurate quality prediction is proposed. Finally, to use this metric in real-world applications, we present an example emerging application of real-time quality measurement to the management of transmitted videos, especially those delivered to mobile devices.

  14. A novel, multiplex, real-time PCR-based approach for the detection of the commonly occurring pathogenic fungi and bacteria.

    PubMed

    Horváth, Ádám; Pető, Zoltán; Urbán, Edit; Vágvölgyi, Csaba; Somogyvári, Ferenc

    2013-12-23

    Polymerase chain reaction (PCR)-based techniques are widely used to identify fungal and bacterial infections. There have been numerous reports of different, new, real-time PCR-based pathogen identification methods although the clinical practicability of such techniques is not yet fully clarified.The present study focuses on a novel, multiplex, real-time PCR-based pathogen identification system developed for rapid differentiation of the commonly occurring bacterial and fungal causative pathogens of bloodstream infections. A multiplex, real-time PCR approach is introduced for the detection and differentiation of fungi, Gram-positive (G+) and Gram-negative (G-) bacteria. The Gram classification is performed with the specific fluorescence resonance energy transfer (FRET) probes recommended for LightCycler capillary real-time PCR. The novelty of our system is the use of a non-specific SYBR Green dye instead of labelled anchor probes or primers, to excite the acceptor dyes on the FRET probes. In conjunction with this, the use of an intercalating dye allows the detection of fungal amplicons.With the novel pathogen detection system, fungi, G + and G- bacteria in the same reaction tube can be differentiated within an hour after the DNA preparation via the melting temperatures of the amplicons and probes in the same tube. This modified FRET technique is specific and more rapid than the gold-standard culture-based methods. The fact that fungi, G + and G- bacteria were successfully identified in the same tube within an hour after the DNA preparation permits rapid and early evidence-based management of bloodstream infections in clinical practice.

  15. Genotype identification of Math1/LacZ knockout mice based on real-time PCR with SYBR Green I dye.

    PubMed

    Krizhanovsky, Valery; Golenser, Esther; Ben-Arie, Nissim

    2004-07-30

    Knockout mice are widely used in all fields of biomedical research. Determining the genotype of every newborn mouse is a tedious task, usually performed by Southern blot hybridization or Polymerase Chain Reaction (PCR). We describe here a quick and simple genotype identification assay based on real-time PCR and SYBR Green I dye, without using fluorescent primers. The discrimination between the wild type and targeted alleles is based on a PCR design that leads to a different melting temperature for each product. The identification of the genotype is obvious immediately after amplification, and no post-PCR manipulations are needed, reducing cost and time. Therefore, while the real-time PCR amplification increases the sensitivity, the fact that the reactions tubes are never opened after amplification, reduces the risk of contamination and eliminates errors, which are common during the repeated handling of dozens of samples from the same mouse line. The protocol we provide was tested on Math1 knockout mice, but is general, and may be utilized for any knockout line and real-time thermocycler, without any further modification, accessories or special reagents. Copyright 2004 Elsevier B.V.

  16. FPGA Based "Intelligent Tap" Device for Real-Time Ethernet Network Monitoring

    NASA Astrophysics Data System (ADS)

    Cupek, Rafał; Piękoś, Piotr; Poczobutt, Marcin; Ziębiński, Adam

    This paper describes an "Intelligent Tap" - hardware device dedicated to support real-time Ethernet networks monitoring. Presented solution was created as a student project realized in Institute of Informatics, Silesian University of Technology with support from Softing A.G company. Authors provide description of realized FPGA based "Intelligent Tap" architecture dedicated for Real-Time Ethernet network monitoring systems. The practical device realization and feasibility study conclusions are presented also.

  17. Monitoring the Single-Cell Stress Response of the Diatom Thalassiosira pseudonana by Quantitative Real-Time Reverse Transcription-PCR

    PubMed Central

    Shi, Xu; Gao, Weimin; Chao, Shih-hui

    2013-01-01

    Directly monitoring the stress response of microbes to their environments could be one way to inspect the health of microorganisms themselves, as well as the environments in which the microorganisms live. The ultimate resolution for such an endeavor could be down to a single-cell level. In this study, using the diatom Thalassiosira pseudonana as a model species, we aimed to measure gene expression responses of this organism to various stresses at a single-cell level. We developed a single-cell quantitative real-time reverse transcription-PCR (RT-qPCR) protocol and applied it to determine the expression levels of multiple selected genes under nitrogen, phosphate, and iron depletion stress conditions. The results, for the first time, provided a quantitative measurement of gene expression at single-cell levels in T. pseudonana and demonstrated that significant gene expression heterogeneity was present within the cell population. In addition, different expression patterns between single-cell- and bulk-cell-based analyses were also observed for all genes assayed in this study, suggesting that cell response heterogeneity needs to be taken into consideration in order to obtain accurate information that indicates the environmental stress condition. PMID:23315741

  18. Monitoring the single-cell stress response of the diatom Thalassiosira pseudonana by quantitative real-time reverse transcription-PCR.

    PubMed

    Shi, Xu; Gao, Weimin; Chao, Shih-hui; Zhang, Weiwen; Meldrum, Deirdre R

    2013-03-01

    Directly monitoring the stress response of microbes to their environments could be one way to inspect the health of microorganisms themselves, as well as the environments in which the microorganisms live. The ultimate resolution for such an endeavor could be down to a single-cell level. In this study, using the diatom Thalassiosira pseudonana as a model species, we aimed to measure gene expression responses of this organism to various stresses at a single-cell level. We developed a single-cell quantitative real-time reverse transcription-PCR (RT-qPCR) protocol and applied it to determine the expression levels of multiple selected genes under nitrogen, phosphate, and iron depletion stress conditions. The results, for the first time, provided a quantitative measurement of gene expression at single-cell levels in T. pseudonana and demonstrated that significant gene expression heterogeneity was present within the cell population. In addition, different expression patterns between single-cell- and bulk-cell-based analyses were also observed for all genes assayed in this study, suggesting that cell response heterogeneity needs to be taken into consideration in order to obtain accurate information that indicates the environmental stress condition.

  19. Real-time PCR detection of Plasmodium directly from whole blood and filter paper samples

    PubMed Central

    2011-01-01

    Background Real-time PCR is a sensitive and specific method for the analysis of Plasmodium DNA. However, prior purification of genomic DNA from blood is necessary since PCR inhibitors and quenching of fluorophores from blood prevent efficient amplification and detection of PCR products. Methods Reagents designed to specifically overcome PCR inhibition and quenching of fluorescence were evaluated for real-time PCR amplification of Plasmodium DNA directly from blood. Whole blood from clinical samples and dried blood spots collected in the field in Colombia were tested. Results Amplification and fluorescence detection by real-time PCR were optimal with 40× SYBR® Green dye and 5% blood volume in the PCR reaction. Plasmodium DNA was detected directly from both whole blood and dried blood spots from clinical samples. The sensitivity and specificity ranged from 93-100% compared with PCR performed on purified Plasmodium DNA. Conclusions The methodology described facilitates high-throughput testing of blood samples collected in the field by fluorescence-based real-time PCR. This method can be applied to a broad range of clinical studies with the advantages of immediate sample testing, lower experimental costs and time-savings. PMID:21851640

  20. Comparison of real-time SYBR green dengue assay with real-time taqman RT-PCR dengue assay and the conventional nested PCR for diagnosis of primary and secondary dengue infection

    PubMed Central

    Paudel, Damodar; Jarman, Richard; Limkittikul, Kriengsak; Klungthong, Chonticha; Chamnanchanunt, Supat; Nisalak, Ananda; Gibbons, Robert; Chokejindachai, Watcharee

    2011-01-01

    Background: Dengue fever and dengue hemorrhagic fever are caused by dengue virus. Dengue infection remains a burning problem of many countries. To diagnose acute dengue in the early phase we improve the low cost, rapid SYBR green real time assay and compared the sensitivity and specificity with real time Taqman® assay and conventional nested PCR assay. Aims: To develop low cost, rapid and reliable real time SYBR green diagnostic dengue assay and compare with Taqman real-time assay and conventional nested PCR (modified Lanciotti). Materials and Methods: Eight cultured virus strains were diluted in tenth dilution down to undetectable level by the PCR to optimize the primer, temperature (annealing, and extension and to detect the limit of detection of the assay. Hundred and ninety three ELISA and PCR proved dengue clinical samples were tested with real time SYBR® Green assay, real time Taqman® assay to compare the sensitivity and specificity. Results: Sensitivity and specificity of real time SYBR® green dengue assay (84% and 66%, respectively) was almost comparable to those (81% and 74%) of Taqman real time PCR dengue assay. Real time SYBR® green RT-PCR was equally sensitive in primary and secondary infection while real time Taqman was less sensitive in the secondary infection. Sensitivity of real time Taqman on DENV3 (87%) was equal to SYBR green real time PCR dengue assay. Conclusion: We developed low cost rapid diagnostic SYBR green dengue assay. Further study is needed to make duplex primer assay for the serotyping of dengue virus. PMID:22363089

  1. A Quantitative Real-Time PCR-Based Strategy for Molecular Evaluation of Nicotine Conversion in Burley Tobacco.

    PubMed

    Sun, Bo; Xue, Sheng-Ling; Zhang, Fen; Luo, Zhao-Peng; Wu, Ming-Zhu; Chen, Qing; Tang, Hao-Ru; Lin, Fu-Cheng; Yang, Jun

    2015-11-17

    Nornicotine production in Nicotiana tabacum is undesirable because it is the precursor of the carcinogen N'-nitrosonornicotine. In some individual burley tobacco plants, a large proportion of the nicotine can be converted to nornicotine, and this process of nicotine conversion is mediated primarily by enzymatic N-demethylation of nicotine which is controlled mainly by CYP82E4. Here we report a novel strategy based on quantitative real-time polymerase chain reaction (qPCR) method, which analyzed the ratio of nicotine conversion through examining the transcript level of CYP82E4 in burley leaves and do not need ethylene induction before detected. The assay was linear in a range from 1 × 10¹ to 1 × 10⁵ copies/mL of serially diluted standards, and also showed high specificity and reproducibility (93%-99%). To assess its applicability, 55 plants of burley cultivar Ky8959 at leaf maturing stage were analyzed, and the results were in accordance with those from gas chromatograph-mass spectrometry (GC-MS) method. Moreover, a linear correlation existed between conversion level and CYP82E4 transcript abundance. Taken together, the quantitative real-time PCR assay is standardized, rapid and reproducible for estimation of nicotine conversion level in vivo, which is expected to shed new light on monitoring of burley tobacco converter.

  2. Real-time PCR for the early detection and quantification of Coxiella burnetii as an alternative to the murine bioassay.

    PubMed

    Howe, Gerald B; Loveless, Bonnie M; Norwood, David; Craw, Philip; Waag, David; England, Marilyn; Lowe, John R; Courtney, Bernard C; Pitt, M Louise; Kulesh, David A

    2009-01-01

    Real-time PCR was used to analyze archived blood from non-human primates (NHP) and fluid samples originating from a well-controlled Q fever vaccine efficacy trial. The PCR targets were the IS1111 element and the com1 gene of Coxiella burnetii. Data from that previous study were used to evaluate real-time PCR as an alternative to the use of sero-conversion by mouse bioassay for both quantification and early detection of C. burnetii bacteria. Real-time PCR and the mouse bioassay exhibited no statistical difference in quantifying the number of microorganisms delivered in the aerosol challenge dose. The presence of C. burnetii in peripheral blood of non-human primates was detected by real-time PCR as early after exposure as the mouse bioassay with results available within hours instead of weeks. This study demonstrates that real-time PCR has the ability to replace the mouse bioassay to measure dosage and monitor infection of C. burnetii in a non-human primate model.

  3. Multiplex real-time PCR assay for Legionella species.

    PubMed

    Kim, Seung Min; Jeong, Yoojung; Sohn, Jang Wook; Kim, Min Ja

    2015-12-01

    Legionella pneumophila serogroup 1 (sg1) accounts for the majority of infections in humans, but other Legionella species are also associated with human disease. In this study, a new SYBR Green I-based multiplex real-time PCR assay in a single reaction was developed to allow the rapid detection and differentiation of Legionella species by targeting specific gene sequences. Candidate target genes were selected, and primer sets were designed by referring to comparative genomic hybridization data of Legionella species. The Legionella species-specific groES primer set successfully detected all 30 Legionella strains tested. The xcpX and rfbA primers specifically detected L. pneumophila sg1-15 and L. pneumophila sg1, respectively. In addition, this assay was validated by testing clinical samples and isolates. In conclusion, this novel multiplex real-time PCR assay might be a useful diagnostic tool for the rapid detection and differentiation of Legionella species in both clinical and epidemiological studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. SMA Diagnosis: Detection of SMN1 Deletion with Real-Time mCOP-PCR System Using Fresh Blood DNA.

    PubMed

    Niba, Emma Tabe Eko; Ar Rochmah, Mawaddah; Harahap, Nur Imma Fatimah; Awano, Hiroyuki; Morioka, Ichiro; Iijima, Kazumoto; Saito, Toshio; Saito, Kayoko; Takeuchi, Atsuko; Lai, Poh San; Bouike, Yoshihiro; Nishio, Hisahide; Shinohara, Masakazu

    2017-12-18

    Spinal muscular atrophy (SMA) is one of the most common autosomal recessive disorders. The symptoms are caused by defects of lower motor neurons in the spinal cord. More than 95% of SMA patients are homozygous for survival motor neuron 1 (SMN1) deletion. We previously developed a screening system for SMN1 deletion based on a modified competitive oligonucleotide priming-PCR (mCOP-PCR) technique using dried blood spot (DBS) on filter paper. This system is convenient for mass screening in the large population and/or first-tier diagnostic method of the patients in the remote areas. However, this system was still time-consuming and effort-taking, because it required pre-amplification procedure to avoid non-specific amplification and gel-electrophoresis to detect the presence or absence of SMN1 deletion. When the fresh blood samples are used instead of DBS, or when the gel-electrophoresis is replaced by real-time PCR, we may have a simpler and more rapid diagnostic method for SMA. To establish a simpler and more rapid diagnostic method of SMN1 deletion using fresh blood DNA. DNA samples extracted from fresh blood and stored at 4 ℃ for 1 month. The samples were assayed using a real-time mCOP-PCR system without pre-amplification procedures. DNA samples had already been genotyped by PCR-restriction fragment length polymorphism (PCR-RFLP), showing the presence or absence of SMN1 exon 7. The DNA samples were directly subjected to the mCOP-PCR step. The amplification of mCOP-PCR was monitored in a real-time PCR apparatus. The genotyping results of the real-time mCOP-PCR system using fresh blood DNA were completely matched with those of PCR-RFLP. In this real-time mCOP-PCR system using fresh blood-DNA, it took only four hours from extraction of DNA to detection of the presence or absence of SMN1 deletion, while it took more than 12 hours in PCR-RFLP. Our real-time mCOP-PCR system using fresh blood DNA was rapid and accurate, suggesting it may be useful for the first

  5. A real-time PCR diagnostic method for detection of Naegleria fowleri.

    PubMed

    Madarová, Lucia; Trnková, Katarína; Feiková, Sona; Klement, Cyril; Obernauerová, Margita

    2010-09-01

    Naegleria fowleri is a free-living amoeba that can cause primary amoebic meningoencephalitis (PAM). While, traditional methods for diagnosing PAM still rely on culture, more current laboratory diagnoses exist based on conventional PCR methods; however, only a few real-time PCR processes have been described as yet. Here, we describe a real-time PCR-based diagnostic method using hybridization fluorescent labelled probes, with a LightCycler instrument and accompanying software (Roche), targeting the Naegleria fowleriMp2Cl5 gene sequence. Using this method, no cross reactivity with other tested epidemiologically relevant prokaryotic and eukaryotic organisms was found. The reaction detection limit was 1 copy of the Mp2Cl5 DNA sequence. This assay could become useful in the rapid laboratory diagnostic assessment of the presence or absence of Naegleria fowleri. Copyright 2009 Elsevier Inc. All rights reserved.

  6. A new diagnostic real-time PCR method for huanglongbing detection in citrus root tissue

    USDA-ARS?s Scientific Manuscript database

    Citrus fibrous root tissue was evaluated as an alternative source material for Huanglongbing (HLB) diagnosis by real-time PCR using primer-probe set TXCChlb, developed in the present study based on 16S rDNA of “Candidatus Liberibacter asiaticus” (CLas). Real-time PCR data obtained with DNA samples p...

  7. Diagnosis of Cetacean morbillivirus: A sensitive one step real time RT fast-PCR method based on SYBR(®) Green.

    PubMed

    Sacristán, Carlos; Carballo, Matilde; Muñoz, María Jesús; Bellière, Edwige Nina; Neves, Elena; Nogal, Verónica; Esperón, Fernando

    2015-12-15

    Cetacean morbillivirus (CeMV) (family Paramyxoviridae, genus Morbillivirus) is considered the most pathogenic virus of cetaceans. It was first implicated in the bottlenose dolphin (Tursiops truncatus) mass stranding episode along the Northwestern Atlantic coast in the late 1980s, and in several more recent worldwide epizootics in different Odontoceti species. This study describes a new one step real-time reverse transcription fast polymerase chain reaction (real-time RT-fast PCR) method based on SYBR(®) Green to detect a fragment of the CeMV fusion protein gene. This primer set also works for conventional RT-PCR diagnosis. This method detected and identified all three well-characterized strains of CeMV: porpoise morbillivirus (PMV), dolphin morbillivirus (DMV) and pilot whale morbillivirus (PWMV). Relative sensitivity was measured by comparing the results obtained from 10-fold dilution series of PMV and DMV positive controls and a PWMV field sample, to those obtained by the previously described conventional phosphoprotein gene based RT-PCR method. Both the conventional and real-time RT-PCR methods involving the fusion protein gene were 100- to 1000-fold more sensitive than the previously described conventional RT-PCR method. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Development and validation of a real-time PCR assay for the detection of anguillid herpesvirus 1.

    PubMed

    van Beurden, S J; Voorbergen-Laarman, M A; Roozenburg, I; van Tellingen, J; Haenen, O L M; Engelsma, M Y

    2016-01-01

    Anguillid herpesvirus 1 (AngHV1) causes a haemorrhagic disease with increased mortality in wild and farmed European eel, Anguilla anguilla (L.) and Japanese eel Anguilla japonica, Temminck & Schlegel). Detection of AngHV1 is currently based on virus isolation in cell culture, antibody-based typing assays or conventional PCR. We developed, optimized and concisely validated a diagnostic TaqMan probe based real-time PCR assay for the detection of AngHV1. The primers and probe target AngHV1 open reading frame 57, encoding the capsid protease and scaffold protein. Compared to conventional PCR, the developed real-time PCR is faster, less labour-intensive and has a reduced risk of cross-contamination. The real-time PCR assay was shown to be analytically sensitive and specific and has a high repeatability, efficiency and r(2) -value. The diagnostic performance of the assay was determined by testing 10% w/v organ suspensions and virus cultures from wild and farmed European eels from the Netherlands by conventional and real-time PCR. The developed real-time PCR assay is a useful tool for the rapid and sensitive detection of AngHV1 in 10% w/v organ suspensions from wild and farmed European eels. © 2015 John Wiley & Sons Ltd.

  9. Comparison of droplet digital PCR with quantitative real-time PCR for determination of zygosity in transgenic maize.

    PubMed

    Xu, Xiaoli; Peng, Cheng; Wang, Xiaofu; Chen, Xiaoyun; Wang, Qiang; Xu, Junfeng

    2016-12-01

    This study evaluated the applicability of droplet digital PCR (ddPCR) as a tool for maize zygosity determination using quantitative real-time PCR (qPCR) as a reference technology. Quantitative real-time PCR is commonly used to determine transgene copy number or GMO zygosity characterization. However, its effectiveness is based on identical reaction efficiencies for the transgene and the endogenous reference gene. Additionally, a calibrator sample should be utilized for accuracy. Droplet digital PCR is a DNA molecule counting technique that directly counts the absolute number of target and reference DNA molecules in a sample, independent of assay efficiency or external calibrators. The zygosity of the transgene can be easily determined using the ratio of the quantity of the target gene to the reference single copy endogenous gene. In this study, both the qPCR and ddPCR methods were used to determine insect-resistant transgenic maize IE034 zygosity. Both methods performed well, but the ddPCR method was more convenient because of its absolute quantification property.

  10. Simultaneous detection of ricin and abrin DNA by real-time PCR (qPCR).

    PubMed

    Felder, Eva; Mossbrugger, Ilona; Lange, Mirko; Wölfel, Roman

    2012-09-01

    Ricin and abrin are two of the most potent plant toxins known and may be easily obtained in high yield from the seeds using rather simple technology. As a result, both toxins are potent and available toxins for criminal or terrorist acts. However, as the production of highly purified ricin or abrin requires sophisticated equipment and knowledge, it may be more likely that crude extracts would be used by non-governmental perpetrators. Remaining plant-specific nucleic acids in these extracts allow the application of a real-time PCR (qPCR) assay for the detection and identification of abrin or ricin genomic material. Therefore, we have developed a duplex real-time PCR assays for simultaneous detection of ricin and abrin DNA based on the OmniMix HS bead PCR reagent mixture. Novel primers and hybridization probes were designed for detection on a SmartCycler instrument by using 5'-nuclease technology. The assay was thoroughly optimized and validated in terms of analytical sensitivity. Evaluation of the assay sensitivity by probit analysis demonstrated a 95% probability of detection at 3 genomes per reaction for ricin DNA and 1.2 genomes per reaction for abrin DNA. The suitability of the assays was exemplified by detection of ricin and abrin contaminations in a food matrix.

  11. Development of a high-speed real-time PCR system for rapid and precise nucleotide recognition

    NASA Astrophysics Data System (ADS)

    Terazono, Hideyuki; Takei, Hiroyuki; Hattori, Akihiro; Yasuda, Kenji

    2010-04-01

    Polymerase chain reaction (PCR) is a common method used to create copies of a specific target region of a DNA sequence and to produce large quantities of DNA. A few DNA molecules, which act as templates, are rapidly amplified by PCR into many billions of copies. PCR is a key technology in genome-based biological analysis, revolutionizing many life science fields such as medical diagnostics, food safety monitoring, and countermeasures against bioterrorism. Thus, many applications have been developed with the thermal cycling. For these PCR applications, one of the most important key factors is reduction in the data acquisition time. To reduce the acquisition time, it is necessary to decrease the temperature transition time between the high and low ends as much as possible. We have developed a novel rapid real-time PCR system based on rapid exchange of media maintained at different temperatures. This system consists of two thermal reservoirs and a reaction chamber for PCR observation. The temperature transition was achieved within 0.3 sec, and good thermal stability was achieved during thermal cycling with rapid exchange of circulating media. This system allows rigorous optimization of the temperatures required for each stage of the PCR processes. Resulting amplicons were confirmed by electrophoresis. Using the system, rapid DNA amplification was accomplished within 3.5 min, including initial heating and complete 50 PCR cycles. It clearly shows that the device could allow us faster temperature switching than the conventional conduction-based heating systems based on Peltier heating/cooling.

  12. Assessment of SCAR markers to design real-time PCR primers for rhizosphere quantification of Azospirillum brasilense phytostimulatory inoculants of maize.

    PubMed

    Couillerot, O; Poirier, M-A; Prigent-Combaret, C; Mavingui, P; Caballero-Mellado, J; Moënne-Loccoz, Y

    2010-08-01

    To assess the applicability of sequence characterized amplified region (SCAR) markers obtained from BOX, ERIC and RAPD fragments to design primers for real-time PCR quantification of the phytostimulatory maize inoculants Azospirillum brasilense UAP-154 and CFN-535 in the rhizosphere. Primers were designed based on strain-specific SCAR markers and were screened for successful amplification of target strain and absence of cross-reaction with other Azospirillum strains. The specificity of primers thus selected was verified under real-time PCR conditions using genomic DNA from strain collection and DNA from rhizosphere samples. The detection limit was 60 fg DNA with pure cultures and 4 x 10(3) (for UAP-154) and 4 x 10(4) CFU g(-1) (for CFN-535) in the maize rhizosphere. Inoculant quantification was effective from 10(4) to 10(8) CFU g(-1) soil. BOX-based SCAR markers were useful to find primers for strain-specific real-time PCR quantification of each A. brasilense inoculant in the maize rhizosphere. Effective root colonization is a prerequisite for successful Azospirillum phytostimulation, but cultivation-independent monitoring methods were lacking. The real-time PCR methods developed here will help understand the effect of environmental conditions on root colonization and phytostimulation by A. brasilense UAP-154 and CFN-535.

  13. Comprehensive GMO detection using real-time PCR array: single-laboratory validation.

    PubMed

    Mano, Junichi; Harada, Mioko; Takabatake, Reona; Furui, Satoshi; Kitta, Kazumi; Nakamura, Kosuke; Akiyama, Hiroshi; Teshima, Reiko; Noritake, Hiromichi; Hatano, Shuko; Futo, Satoshi; Minegishi, Yasutaka; Iizuka, Tayoshi

    2012-01-01

    We have developed a real-time PCR array method to comprehensively detect genetically modified (GM) organisms. In the method, genomic DNA extracted from an agricultural product is analyzed using various qualitative real-time PCR assays on a 96-well PCR plate, targeting for individual GM events, recombinant DNA (r-DNA) segments, taxon-specific DNAs, and donor organisms of the respective r-DNAs. In this article, we report the single-laboratory validation of both DNA extraction methods and component PCR assays constituting the real-time PCR array. We selected some DNA extraction methods for specified plant matrixes, i.e., maize flour, soybean flour, and ground canola seeds, then evaluated the DNA quantity, DNA fragmentation, and PCR inhibition of the resultant DNA extracts. For the component PCR assays, we evaluated the specificity and LOD. All DNA extraction methods and component PCR assays satisfied the criteria set on the basis of previous reports.

  14. [Mission oriented diagnostic real-time PCR].

    PubMed

    Tomaso, Herbert; Scholz, Holger C; Al Dahouk, Sascha; Splettstoesser, Wolf D; Neubauer, Heinrich; Pfeffer, Martin; Straube, Eberhard

    2007-01-01

    In out of area military missions soldiers are potentially exposed to bacteria that are endemic in tropical areas and can be used as biological agents. It can be difficult to culture these bacteria due to sample contamination, low number of bacteria or pretreatment with antibiotics. Commercial biochemical identification systems are not optimized for these agents which can result in misidentification. Immunological assays are often not commercially available or not specific. Real-time PCR assays are very specific and sensitive and can shorten the time required to establish a diagnosis markedly. Therefore, real-time PCRs for the identification of Bacillus anthracis, Brucella spp., Burkholderia mallei und Burkholderia pseudomallei, Francisella tularensis und Yersinia pestis have been developed. PCR results can be false negative due to inadequate clinical samples, low number of bacteria in samples, DNA degradation, inhibitory substances and inappropriate DNA preparation. Hence, it is crucial to cultivate the organisms as a prerequisite for adequate antibiotic therapy and typing of the agent. In a bioterrorist scenario samples have to be treated according to rules applied in forensic medicine and documentation has to be flawless.

  15. Development of a highly sensitive one-tube nested real-time PCR for detecting Mycobacterium tuberculosis.

    PubMed

    Choi, Yeonim; Jeon, Bo-Young; Shim, Tae Sun; Jin, Hyunwoo; Cho, Sang-Nae; Lee, Hyeyoung

    2014-12-01

    Rapid, accurate detection of Mycobacterium tuberculosis is crucial in the diagnosis of tuberculosis (TB), but conventional diagnostic methods have limited sensitivity and specificity or are time consuming. A new highly sensitive nucleic acid amplification test, combined nested and real-time polymerase chain reaction (PCR) in a single tube (one-tube nested real-time PCR), was developed for detecting M. tuberculosis, which takes advantage of two PCR techniques, i.e., nested PCR and real-time PCR. One-tube nested real-time PCR was designed to have two sequential reactions with two sets of primers and dual probes for the insertion sequence (IS) 6110 sequence of M. tuberculosis in a single closed tube. The minimum limits of detection of IS6110 real-time PCR and IS6110 one-tube nested real-time PCR were 100 fg/μL and 1 fg/μL of M. tuberculosis DNA, respectively. AdvanSure TB/non-tuberculous mycobacteria (NTM) real-time PCR, IS6110 real-time PCR, and two-tube nested real-time PCR showed 100% sensitivity and 100% specificity for clinical M. tuberculosis isolates and NTM isolates. In comparison, the sensitivities of AdvanSure TB/NTM real-time PCR, single IS6110 real-time PCR, and one-tube nested real-time PCR were 91% (152/167), 94.6% (158/167), and 100% (167/167) for sputum specimens, respectively. In conclusion, IS6110 one-tube nested real-time PCR is useful for detecting M. tuberculosis due to its high sensitivity and simple manipulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Molecular Analysis of Spinal Muscular Atrophy: A genotyping protocol based on TaqMan(®) real-time PCR.

    PubMed

    de Souza Godinho, Fernanda Marques; Bock, Hugo; Gheno, Tailise Conte; Saraiva-Pereira, Maria Luiza

    2012-12-01

    Spinal muscular atrophy (SMA) is an autosomal recessive inherited disorder caused by alterations in the survival motor neuron I (SMN1) gene. SMA patients are classified as type I-IV based on severity of symptoms and age of onset. About 95% of SMA cases are caused by the homozygous absence of SMN1 due to gene deletion or conversion into SMN2. PCR-based methods have been widely used in genetic testing for SMA. In this work, we introduce a new approach based on TaqMan(®)real-time PCR for research and diagnostic settings. DNA samples from 100 individuals with clinical signs and symptoms suggestive of SMA were analyzed. Mutant DNA samples as well as controls were confirmed by DNA sequencing. We detected 58 SMA cases (58.0%) by showing deletion of SMN1 exon 7. Considering clinical information available from 56 of them, the patient distribution was 26 (46.4%) SMA type I, 16 (28.6%) SMA type II and 14 (25.0%) SMA type III. Results generated by the new method was confirmed by PCR-RFLP and by DNA sequencing when required. In conclusion, a protocol based on real-time PCR was shown to be effective and specific for molecular analysis of SMA patients.

  17. Detection of Food Allergens by Taqman Real-Time PCR Methodology.

    PubMed

    García, Aina; Madrid, Raquel; García, Teresa; Martín, Rosario; González, Isabel

    2017-01-01

    Real-time PCR (polymerase chain reaction) has shown to be a very effective technology for the detection of food allergens. The protocol described herein consists on a real-time PCR assay targeting the plant ITS (Internal Transcribed Spacer) region, using species-specific primers and hydrolysis probes (Taqman) dual labeled with a reporter fluorophore at the 5' end (6-carboxyfluorescein, FAM) and a quencher fluorophore at the 3' end (Blackberry, BBQ). The species-specific real-time PCR systems (primers/probe) described in this work allowed the detection of different nuts (peanut, hazelnut, pistachio, almond, cashew, macadamia, walnut and pecan), common allergens present in commercial food products, with a detection limit of 0.1 mg/kg.

  18. Continuous flow real-time PCR device using multi-channel fluorescence excitation and detection.

    PubMed

    Hatch, Andrew C; Ray, Tathagata; Lintecum, Kelly; Youngbull, Cody

    2014-02-07

    High throughput automation is greatly enhanced using techniques that employ conveyor belt strategies with un-interrupted streams of flow. We have developed a 'conveyor belt' analog for high throughput real-time quantitative Polymerase Chain Reaction (qPCR) using droplet emulsion technology. We developed a low power, portable device that employs LED and fiber optic fluorescence excitation in conjunction with a continuous flow thermal cycler to achieve multi-channel fluorescence detection for real-time fluorescence measurements. Continuously streaming fluid plugs or droplets pass through tubing wrapped around a two-temperature zone thermal block with each wrap of tubing fluorescently coupled to a 64-channel multi-anode PMT. This work demonstrates real-time qPCR of 0.1-10 μL droplets or fluid plugs over a range of 7 orders of magnitude concentration from 1 × 10(1) to 1 × 10(7). The real-time qPCR analysis allows dynamic range quantification as high as 1 × 10(7) copies per 10 μL reaction, with PCR efficiencies within the range of 90-110% based on serial dilution assays and a limit of detection of 10 copies per rxn. The combined functionality of continuous flow, low power thermal cycling, high throughput sample processing, and real-time qPCR improves the rates at which biological or environmental samples can be continuously sampled and analyzed.

  19. Development and validation of a real-time PCR assay for the detection of Toxoplasma gondii DNA in animal and meat samples.

    PubMed

    Marino, Anna Maria Fausta; Percipalle, Maurizio; Giunta, Renato Paolo; Salvaggio, Antonio; Caracappa, Giulia; Alfonzetti, Tiziana; Aparo, Alessandra; Reale, Stefano

    2017-03-01

    We report a rapid and reliable method for the detection of Toxoplasma gondii in meat and animal tissues based on real-time polymerase chain reaction (PCR). Samples were collected from cattle, small ruminants, horses, and pigs raised or imported into Sicily, Italy. All DNA preparations were assayed by real-time PCR tests targeted to a 98-bp long fragment in the AF 529-bp repeat element and to the B1 gene using specific primers. Diagnostic sensitivity (100%), diagnostic specificity (100%), limit of detection (0.01 pg), efficiency (92-109%), and precision (mean coefficient of variation = 0.60%), repeatability (100%), reproducibility (100%), and robustness were evaluated using 240 DNA extracted samples (120 positives and 120 negative as per the OIE nested PCR method) from different matrices. Positive results were confirmed by the repetition of both real-time and nested PCR assays. Our study demonstrates the viability of a reliable, rapid, and specific real-time PCR on a large scale to monitor contamination with Toxoplasma cysts in meat and animal specimens. This validated method can be used for postmortem detection in domestic and wild animals and for food safety purposes.

  20. High-Density Real-Time PCR-Based in Vivo Toxicogenomic Screen to Predict Organ-Specific Toxicity

    PubMed Central

    Fabian, Gabriella; Farago, Nora; Feher, Liliana Z.; Nagy, Lajos I.; Kulin, Sandor; Kitajka, Klara; Bito, Tamas; Tubak, Vilmos; Katona, Robert L.; Tiszlavicz, Laszlo; Puskas, Laszlo G.

    2011-01-01

    Toxicogenomics, based on the temporal effects of drugs on gene expression, is able to predict toxic effects earlier than traditional technologies by analyzing changes in genomic biomarkers that could precede subsequent protein translation and initiation of histological organ damage. In the present study our objective was to extend in vivo toxicogenomic screening from analyzing one or a few tissues to multiple organs, including heart, kidney, brain, liver and spleen. Nanocapillary quantitative real-time PCR (QRT-PCR) was used in the study, due to its higher throughput, sensitivity and reproducibility, and larger dynamic range compared to DNA microarray technologies. Based on previous data, 56 gene markers were selected coding for proteins with different functions, such as proteins for acute phase response, inflammation, oxidative stress, metabolic processes, heat-shock response, cell cycle/apoptosis regulation and enzymes which are involved in detoxification. Some of the marker genes are specific to certain organs, and some of them are general indicators of toxicity in multiple organs. Utility of the nanocapillary QRT-PCR platform was demonstrated by screening different references, as well as discovery of drug-like compounds for their gene expression profiles in different organs of treated mice in an acute experiment. For each compound, 896 QRT-PCR were done: four organs were used from each of the treated four animals to monitor the relative expression of 56 genes. Based on expression data of the discovery gene set of toxicology biomarkers the cardio- and nephrotoxicity of doxorubicin and sulfasalazin, the hepato- and nephrotoxicity of rotenone, dihydrocoumarin and aniline, and the liver toxicity of 2,4-diaminotoluene could be confirmed. The acute heart and kidney toxicity of the active metabolite SN-38 from its less toxic prodrug, irinotecan could be differentiated, and two novel gene markers for hormone replacement therapy were identified, namely fabp4 and pparg

  1. The Power of Real-Time PCR

    ERIC Educational Resources Information Center

    Valasek, Mark A.; Repa, Joyce J.

    2005-01-01

    In recent years, real-time polymerase chain reaction (PCR) has emerged as a robust and widely used methodology for biological investigation because it can detect and quantify very small amounts of specific nucleic acid sequences. As a research tool, a major application of this technology is the rapid and accurate assessment of changes in gene…

  2. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen.

    PubMed

    Denman, Stuart E; McSweeney, Christopher S

    2006-12-01

    Traditional methods for enumerating and identifying microbial populations within the rumen can be time consuming and cumbersome. Methods that involve culturing and microscopy can also be inconclusive, particularly when studying anaerobic rumen fungi. A real-time PCR SYBR Green assay, using PCR primers to target total rumen fungi and the cellulolytic bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes, is described, including design and validation. The DNA and crude protein contents with respect to the fungal biomass of both polycentric and monocentric fungal isolates were investigated across the fungal growth stages to aid in standard curve generation. The primer sets used were found to be target specific with no detectable cross-reactivity. Subsequently, the real-time PCR assay was employed in a study to detect these populations within cattle rumen. The anaerobic fungal target was observed to increase 3.6-fold from 0 to 12 h after feeding. The results also indicated a 5.4-fold increase in F. succinogenes target between 0 and 12 h after feeding, whereas R. flavefaciens was observed to maintain more or less consistent levels. This is the first report of a real-time PCR assay to estimate the rumen anaerobic fungal population.

  3. "Internet of Things" Real-Time Free Flap Monitoring.

    PubMed

    Kim, Sang Hun; Shin, Ho Seong; Lee, Sang Hwan

    2018-01-01

    Free flaps are a common treatment option for head and neck reconstruction in plastic reconstructive surgery, and monitoring of the free flap is the most important factor for flap survival. In this study, the authors performed real-time free flap monitoring based on an implanted Doppler system and "internet of things" (IoT)/wireless Wi-Fi, which is a convenient, accurate, and efficient approach for surgeons to monitor a free flap. Implanted Doppler signals were checked continuously until the patient was discharged by the surgeon and residents using their own cellular phone or personal computer. If the surgeon decided that a revision procedure or exploration was required, the authors checked the consumed time (positive signal-to-operating room time) from the first notification when the flap's status was questioned to the determination for revision surgery according to a chart review. To compare the efficacy of real-time monitoring, the authors paired the same number of free flaps performed by the same surgeon and monitored the flaps using conventional methods such as a physical examination. The total survival rate was greater in the real-time monitoring group (94.7% versus 89.5%). The average time for the real-time monitoring group was shorter than that for the conventional group (65 minutes versus 86 minutes). Based on this study, real-time free flap monitoring using IoT technology is a method that surgeon and reconstruction team can monitor simultaneously at any time in any situation.

  4. Droplet digital polymerase chain reaction (PCR) outperforms real-time PCR in the detection of environmental DNA from an invasive fish species.

    PubMed

    Doi, Hideyuki; Takahara, Teruhiko; Minamoto, Toshifumi; Matsuhashi, Saeko; Uchii, Kimiko; Yamanaka, Hiroki

    2015-05-05

    Environmental DNA (eDNA) has been used to investigate species distributions in aquatic ecosystems. Most of these studies use real-time polymerase chain reaction (PCR) to detect eDNA in water; however, PCR amplification is often inhibited by the presence of organic and inorganic matter. In droplet digital PCR (ddPCR), the sample is partitioned into thousands of nanoliter droplets, and PCR inhibition may be reduced by the detection of the end-point of PCR amplification in each droplet, independent of the amplification efficiency. In addition, real-time PCR reagents can affect PCR amplification and consequently alter detection rates. We compared the effectiveness of ddPCR and real-time PCR using two different PCR reagents for the detection of the eDNA from invasive bluegill sunfish, Lepomis macrochirus, in ponds. We found that ddPCR had higher detection rates of bluegill eDNA in pond water than real-time PCR with either of the PCR reagents, especially at low DNA concentrations. Limits of DNA detection, which were tested by spiking the bluegill DNA to DNA extracts from the ponds containing natural inhibitors, found that ddPCR had higher detection rate than real-time PCR. Our results suggest that ddPCR is more resistant to the presence of PCR inhibitors in field samples than real-time PCR. Thus, ddPCR outperforms real-time PCR methods for detecting eDNA to document species distributions in natural habitats, especially in habitats with high concentrations of PCR inhibitors.

  5. Detection of airborne genetically modified maize pollen by real-time PCR.

    PubMed

    Folloni, Silvia; Kagkli, Dafni-Maria; Rajcevic, Bojan; Guimarães, Nilson C C; Van Droogenbroeck, Bart; Valicente, Fernando H; Van den Eede, Guy; Van den Bulcke, Marc

    2012-09-01

    The cultivation of genetically modified (GM) crops has raised numerous concerns in the European Union and other parts of the world about their environmental and economic impact. Especially outcrossing of genetically modified organisms (GMO) was from the beginning a critical issue as airborne pollen has been considered an important way of GMO dispersal. Here, we investigate the use of airborne pollen sampling combined with microscopic analysis and molecular PCR analysis as an approach to monitor GM maize cultivations in a specific area. Field trial experiments in the European Union and South America demonstrated the applicability of the approach under different climate conditions, in rural and semi-urban environment, even at very low levels of airborne pollen. The study documents in detail the sampling of GM pollen, sample DNA extraction and real-time PCR analysis. Our results suggest that this 'GM pollen monitoring by bioaerosol sampling and PCR screening' approach might represent an useful aid in the surveillance of GM-free areas, centres of origin and natural reserves. © 2012 Blackwell Publishing Ltd.

  6. Development of a sensitive and quantitative diagnostic assay for fish nervous necrosis virus based on two-target real-time PCR.

    PubMed

    Dalla Valle, L; Toffolo, V; Lamprecht, M; Maltese, C; Bovo, G; Belvedere, P; Colombo, L

    2005-10-31

    The aim of the present work was to develop two new independent SYBR Green I-based real-time PCR assays for both detection and quantification of betanodavirus, an RNA virus that infects several species of marine teleost fish causing massive mortalities in larvae and juveniles. The assays utilized two pairs of primers targeting highly conserved regions of both the RNA molecules forming the betanodavirus genome: RNA1 encoding the RNA-dependent RNA polymerase (RdRP) and RNA2 encoding the coat protein (CP). The specificity of amplifications was monitored by the melting analysis and agarose gel electrophoresis of the amplified products. The applicability of these assays was confirmed with 21 betanodavirus strains, covering all the four main clades. In addition, a BLAST (NCBI) search with the primer sequences showed no genomic cross-reactivity with other viruses. The new assays were able to quantify concentrations of betanodavirus genes ranging from 10(1) to 10(8) copies per reaction. The intra-assay coefficients of variation (CV) of threshold cycle (Ct) values of the assays were 1.5% and 1.4% for CP and RdRP RNAs, respectively. The inter-assay CVs of Ct values were 2.3% and 2.4% for CP and RdRP RNAs, respectively. Moreover, regression analysis showed a significant correlation (R2>0.97) between genome number, as determined by real-time PCR assays and the corresponding virus titer expressed as TCID50/ml of two different betanodavirus strains propagated in cell culture. The two assays were compared with a previously established one-step RT-PCR assay and with the classical virus isolation test and found to be more sensitive. In conclusion, the developed real-time RT-PCR assays are a reliable, specific and sensitive tool for the quantitative diagnosis of betanodavirus.

  7. Diagnosis of invasive fungal infections using real-time PCR assay in paediatric acute leukaemia induction.

    PubMed

    Mandhaniya, Sushil; Iqbal, Sobuhi; Sharawat, Surender Kumar; Xess, Immaculata; Bakhshi, Sameer

    2012-07-01

    Invasive fungal infections (IFI) lead to morbidity and mortality in neutropenic patients and in allogenic stem cell transplantation. Serum-based fungal detection assays have limitation of specificity or sensitivity. Studies on fungal DNA detection using real-time PCR in childhood leukaemia are lacking. The aim of this study was to develop sensitive and specific diagnostic tools for IFI in paediatric acute leukaemia patients using real-time PCR. Of 100 randomised paediatric acute leukaemia patients receiving antifungal prophylaxis with voriconazole/amphotericin B, single peripheral whole blood sample in EDTA was used for Pan-AC real-time PCR assay (detects nine Candida and six Aspergillus species) in patients who failed prophylaxis due to proven, probable, possible or suspected fungal infections. PCR results were retrospectively correlated with clinical profile. Real-time PCR test was positive in 18/29 (62%) patients who failed prophylaxis. The only patient with proven IFI (mucormycosis), real-time PCR assay was negative. Real-time PCR was positive in 2/4 (50%) patients with possible and 16/24 (66.6%) suspected IFI and 5/10 (50%) patients with pneumonia. By applying method A/B, sensitivity and positive predictive value could not be commented due to unproven Aspergillus or Candida infections; specificity and negative predictive values (NPV) were 41% and 100% respectively; by method C (included episodes of possible IFI as true positive), sensitivity, specificity, PPV and NPV were 50%, 36%, 11% and 81% respectively. In those with suspected IFI, 8/24 (33.3%) were PCR negative and unnecessarily received empirical antifungal therapy (EAFT). Real-time PCR is a practical, rapid, non-invasive screening test for excluding IFI in paediatric leukaemia. The high NPV makes real-time PCR a promising tool to use this prior to initiating EAFT in antibiotic-resistant febrile neutropenic patients; this would avoid toxicity, cost and hospitalisation for EAFT (Clinical

  8. Real-time PCR-based method for rapid detection of Aspergillus niger and Aspergillus welwitschiae isolated from coffee.

    PubMed

    von Hertwig, Aline Morgan; Sant'Ana, Anderson S; Sartori, Daniele; da Silva, Josué José; Nascimento, Maristela S; Iamanaka, Beatriz Thie; Pelegrinelli Fungaro, Maria Helena; Taniwaki, Marta Hiromi

    2018-05-01

    Some species from Aspergillus section Nigri are morphologically very similar and altogether have been called A. niger aggregate. Although the species included in this group are morphologically very similar, they differ in their ability to produce mycotoxins and other metabolites and their taxonomical status has evolved continuously. Among them, A. niger and A. welwitschiae are ochratoxin A and fumonisin B 2 producers and their detection and/or identification is of crucial importance for food safety. The aim of this study was the development of a real-time PCR-based method for simultaneous discrimination of A. niger and A. welwitschiae from other species of the A. niger aggregate isolated from coffee beans. One primer pair and a hybridization probe specific for detection of A. niger and A. welwitschiae strains were designed based on the BenA gene sequences, and used in a Real-time PCR assay for the rapid discrimination between both these species from all others of the A. niger aggregate. The Real-time PCR assay was shown to be 100% efficient in discriminating the 73 isolates of A. niger/A. welwitschiae from the other A. niger aggregate species analyzed as a negative control. This result testifies to the use of this technique as a good tool in the rapid detection of these important toxigenic species. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Development of duplex SYBR Green I-based real-time quantitative reverse-transcription PCR for detection and discrimination of grapevine viruses

    USDA-ARS?s Scientific Manuscript database

    A SYBR® Green-based real-time quantitative reverse transcription PCR (qRT-PCR) assay in combination with melt curve analysis (MCA) was developed for the detection of nine grapevine viruses. The detection limits for singleplex qRT-PCR for all nine grapevine viruses were determined to be in the range ...

  10. Development and comparison of a real-time PCR assay for detection of Dichelobacter nodosus with culturing and conventional PCR: harmonisation between three laboratories

    PubMed Central

    2012-01-01

    Background Ovine footrot is a contagious disease with worldwide occurrence in sheep. The main causative agent is the fastidious bacterium Dichelobacter nodosus. In Scandinavia, footrot was first diagnosed in Sweden in 2004 and later also in Norway and Denmark. Clinical examination of sheep feet is fundamental to diagnosis of footrot, but D. nodosus should also be detected to confirm the diagnosis. PCR-based detection using conventional PCR has been used at our institutes, but the method was laborious and there was a need for a faster, easier-to-interpret method. The aim of this study was to develop a TaqMan-based real-time PCR assay for detection of D. nodosus and to compare its performance with culturing and conventional PCR. Methods A D. nodosus-specific TaqMan based real-time PCR assay targeting the 16S rRNA gene was designed. The inclusivity and exclusivity (specificity) of the assay was tested using 55 bacterial and two fungal strains. To evaluate the sensitivity and harmonisation of results between different laboratories, aliquots of a single DNA preparation were analysed at three Scandinavian laboratories. The developed real-time PCR assay was compared to culturing by analysing 126 samples, and to a conventional PCR method by analysing 224 samples. A selection of PCR-products was cloned and sequenced in order to verify that they had been identified correctly. Results The developed assay had a detection limit of 3.9 fg of D. nodosus genomic DNA. This result was obtained at all three laboratories and corresponds to approximately three copies of the D. nodosus genome per reaction. The assay showed 100% inclusivity and 100% exclusivity for the strains tested. The real-time PCR assay found 54.8% more positive samples than by culturing and 8% more than conventional PCR. Conclusions The developed real-time PCR assay has good specificity and sensitivity for detection of D. nodosus, and the results are easy to interpret. The method is less time-consuming than either

  11. Calibration-free assays on standard real-time PCR devices

    PubMed Central

    Debski, Pawel R.; Gewartowski, Kamil; Bajer, Seweryn; Garstecki, Piotr

    2017-01-01

    Quantitative Polymerase Chain Reaction (qPCR) is one of central techniques in molecular biology and important tool in medical diagnostics. While being a golden standard qPCR techniques depend on reference measurements and are susceptible to large errors caused by even small changes of reaction efficiency or conditions that are typically not marked by decreased precision. Digital PCR (dPCR) technologies should alleviate the need for calibration by providing absolute quantitation using binary (yes/no) signals from partitions provided that the basic assumption of amplification a single target molecule into a positive signal is met. Still, the access to digital techniques is limited because they require new instruments. We show an analog-digital method that can be executed on standard (real-time) qPCR devices. It benefits from real-time readout, providing calibration-free assessment. The method combines advantages of qPCR and dPCR and bypasses their drawbacks. The protocols provide for small simplified partitioning that can be fitted within standard well plate format. We demonstrate that with the use of synergistic assay design standard qPCR devices are capable of absolute quantitation when normal qPCR protocols fail to provide accurate estimates. We list practical recipes how to design assays for required parameters, and how to analyze signals to estimate concentration. PMID:28327545

  12. Calibration-free assays on standard real-time PCR devices

    NASA Astrophysics Data System (ADS)

    Debski, Pawel R.; Gewartowski, Kamil; Bajer, Seweryn; Garstecki, Piotr

    2017-03-01

    Quantitative Polymerase Chain Reaction (qPCR) is one of central techniques in molecular biology and important tool in medical diagnostics. While being a golden standard qPCR techniques depend on reference measurements and are susceptible to large errors caused by even small changes of reaction efficiency or conditions that are typically not marked by decreased precision. Digital PCR (dPCR) technologies should alleviate the need for calibration by providing absolute quantitation using binary (yes/no) signals from partitions provided that the basic assumption of amplification a single target molecule into a positive signal is met. Still, the access to digital techniques is limited because they require new instruments. We show an analog-digital method that can be executed on standard (real-time) qPCR devices. It benefits from real-time readout, providing calibration-free assessment. The method combines advantages of qPCR and dPCR and bypasses their drawbacks. The protocols provide for small simplified partitioning that can be fitted within standard well plate format. We demonstrate that with the use of synergistic assay design standard qPCR devices are capable of absolute quantitation when normal qPCR protocols fail to provide accurate estimates. We list practical recipes how to design assays for required parameters, and how to analyze signals to estimate concentration.

  13. Human fecal source identification with real-time quantitative PCR

    EPA Science Inventory

    Waterborne diseases represent a significant public health risk worldwide, and can originate from contact with water contaminated with human fecal material. We describe a real-time quantitative PCR (qPCR) method that targets a Bacteroides dori human-associated genetic marker for...

  14. Real-time PCR detection of Listeria monocytogenes in infant formula and lettuce following macrophage-based isolation and enrichment.

    PubMed

    Day, J B; Basavanna, U

    2015-01-01

    To develop a rapid detection procedure for Listeria monocytogenes in infant formula and lettuce using a macrophage-based enrichment protocol and real-time PCR. A macrophage cell culture system was employed for the isolation and enrichment of L. monocytogenes from infant formula and lettuce for subsequent identification using real-time PCR. Macrophage monolayers were exposed to infant formula and lettuce contaminated with a serial dilution series of L. monocytogenes. As few as approx. 10 CFU ml(-1) or g(-1) of L. monocytogenes were detected in infant formula and lettuce after 16 h postinfection by real-time PCR. Internal positive PCR controls were utilized to eliminate the possibility of false-negative results. Co-inoculation with Listeria innocua did not reduce the L. monocytogenes detection sensitivity. Intracellular L. monocytogenes could also be isolated on Listeria selective media from infected macrophage lysates for subsequent confirmation. The detection method is highly sensitive and specific for L. monocytogenes in infant formula and lettuce and establishes a rapid identification time of 20 and 48 h for presumptive and confirmatory identification, respectively. The method is a promising alternative to many currently used q-PCR detection methods which employ traditional selective media for enrichment of contaminated food samples. Macrophage enrichment of L. monocytogenes eliminates PCR inhibitory food elements and contaminating food microflora which produce cleaner samples that increase the rapidity and sensitivity of detection. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  15. Development of Conventional and Real-Time Quantitative PCR Assays for Diagnosis and Monitoring of Scabies

    PubMed Central

    Wong, Samson S. Y.; Poon, Rosana W. S.; Chau, Sandy; Wong, Sally C. Y.; To, Kelvin K. W.; Cheng, Vincent C. C.; Fung, Kitty S. C.

    2015-01-01

    Scabies remains the most prevalent, endemic, and neglected ectoparasitic infestation globally and can cause institutional outbreaks. The sensitivity of routine microscopy for demonstration of Sarcoptes scabiei mites or eggs in skin scrapings is only about 50%. Except for three studies using conventional or two-tube nested PCR on a small number of cases, no systematic study has been performed to improve the laboratory diagnosis of this important infection. We developed a conventional and a real-time quantitative PCR (qPCR) assay based on the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of S. scabiei. The cox1 gene is relatively well conserved, with its sequence having no high levels of similarity to the sequences of other human skin mites, pathogenic zoonotic mites, or common house dust mite species. This mitochondrial gene is also present in large quantities in arthropod cells, potentially improving the sensitivity of a PCR-based assay. In our study, both assays were specific and were more sensitive than microscopy in diagnosing scabies, with positive and negative predictive values of 100%. The S. scabiei DNA copy number in the microscopy-positive specimens was significantly higher than that in the microscopy-negative specimens (median S. scabiei DNA copy number, 3.604 versus 2.457 log10 copies per reaction; P = 0.0213). In the patient with crusted scabies, the qPCR assay performed on lesional skin swabs instead of scrapings revealed that the parasite DNA load took about 2 weeks to become negative after treatment. The utility of using lesional skin swabs as an alternative sample for diagnosis of scabies by PCR should be further evaluated. PMID:25903566

  16. Development of Conventional and Real-Time Quantitative PCR Assays for Diagnosis and Monitoring of Scabies.

    PubMed

    Wong, Samson S Y; Poon, Rosana W S; Chau, Sandy; Wong, Sally C Y; To, Kelvin K W; Cheng, Vincent C C; Fung, Kitty S C; Yuen, K Y

    2015-07-01

    Scabies remains the most prevalent, endemic, and neglected ectoparasitic infestation globally and can cause institutional outbreaks. The sensitivity of routine microscopy for demonstration of Sarcoptes scabiei mites or eggs in skin scrapings is only about 50%. Except for three studies using conventional or two-tube nested PCR on a small number of cases, no systematic study has been performed to improve the laboratory diagnosis of this important infection. We developed a conventional and a real-time quantitative PCR (qPCR) assay based on the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of S. scabiei. The cox1 gene is relatively well conserved, with its sequence having no high levels of similarity to the sequences of other human skin mites, pathogenic zoonotic mites, or common house dust mite species. This mitochondrial gene is also present in large quantities in arthropod cells, potentially improving the sensitivity of a PCR-based assay. In our study, both assays were specific and were more sensitive than microscopy in diagnosing scabies, with positive and negative predictive values of 100%. The S. scabiei DNA copy number in the microscopy-positive specimens was significantly higher than that in the microscopy-negative specimens (median S. scabiei DNA copy number, 3.604 versus 2.457 log10 copies per reaction; P = 0.0213). In the patient with crusted scabies, the qPCR assay performed on lesional skin swabs instead of scrapings revealed that the parasite DNA load took about 2 weeks to become negative after treatment. The utility of using lesional skin swabs as an alternative sample for diagnosis of scabies by PCR should be further evaluated. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Shell-vial culture and real-time PCR applied to Rickettsia typhi and Rickettsia felis detection.

    PubMed

    Segura, Ferran; Pons, Immaculada; Pla, Júlia; Nogueras, María-Mercedes

    2015-11-01

    Murine typhus is a zoonosis transmitted by fleas, whose etiological agent is Rickettsia typhi. Rickettsia felis infection can produces similar symptoms. Both are intracellular microorganisms. Therefore, their diagnosis is difficult and their infections can be misdiagnosed. Early diagnosis prevents severity and inappropriate treatment regimens. Serology can't be applied during the early stages of infection because it requires seroconversion. Shell-vial (SV) culture assay is a powerful tool to detect Rickettsia. The aim of the study was to optimize SV using a real-time PCR as monitoring method. Moreover, the study analyzes which antibiotics are useful to isolate these microorganisms from fleas avoiding contamination by other bacteria. For the first purpose, SVs were inoculated with each microorganism. They were incubated at different temperatures and monitored by real-time PCR and classical methods (Gimenez staining and indirect immunofluorescence assay). R. typhi grew at all temperatures. R. felis grew at 28 and 32 °C. Real-time PCR was more sensitive than classical methods and it detected microorganisms much earlier. Besides, the assay sensitivity was improved by increasing the number of SV. For the second purpose, microorganisms and fleas were incubated and monitored in different concentrations of antibiotics. Gentamicin, sufamethoxazole, trimethoprim were useful for R. typhi isolation. Gentamicin, streptomycin, penicillin, and amphotericin B were useful for R. felis isolation. Finally, the optimized conditions were used to isolate R. felis from fleas collected at a veterinary clinic. R. felis was isolated at 28 and 32 °C. However, successful establishment of cultures were not possible probably due to sub-optimal conditions of samples.

  18. Clinical evaluation of β-tubulin real-time PCR for rapid diagnosis of dermatophytosis, a comparison with mycological methods.

    PubMed

    Motamedi, Marjan; Mirhendi, Hossein; Zomorodian, Kamiar; Khodadadi, Hossein; Kharazi, Mahboobeh; Ghasemi, Zeinab; Shidfar, Mohammad Reza; Makimura, Koichi

    2017-10-01

    Following our previous report on evaluation of the beta tubulin real-time PCR for detection of dermatophytosis, this study aimed to compare the real-time PCR assay with conventional methods for the clinical assessment of its diagnostic performance. Samples from a total of 853 patients with suspected dermatophyte lesions were subjected to direct examination (all samples), culture (499 samples) and real-time PCR (all samples). Fungal DNA was extracted directly from clinical samples using a conical steel bullet, followed by purification with a commercial kit and subjected to the Taq-Man probe-based real-time PCR. The study showed that among the 499 specimens for which all three methods were used, 156 (31.2%), 128 (25.6%) and 205 (41.0%) were found to be positive by direct microscopy, culture and real-time PCR respectively. Real-time PCR significantly increased the detection rate of dermatophytes compared with microscopy (288 vs 229) with 87% concordance between the two methods. The sensitivity, specificity, positive predictive value, and negative predictive value of the real-time PCR was 87.5%, 85%, 66.5% and 95.2% respectively. Although real-time PCR performed better on skin than on nail samples, it should not yet fully replace conventional diagnosis. © 2017 Blackwell Verlag GmbH.

  19. Real-time PCR for detection and quantification of the biocontrol agent Trichoderma atroviride strain SC1 in soil.

    PubMed

    Savazzini, Federica; Longa, Claudia Maria Oliveira; Pertot, Ilaria; Gessler, Cesare

    2008-05-01

    Trichoderma (Hypocreales, Ascomycota) is a widespread genus in nature and several Trichoderma species are used in industrial processes and as biocontrol agents against crop diseases. It is very important that the persistence and spread of microorganisms released on purpose into the environment are accurately monitored. Real-time PCR methods for genus/species/strain identification of microorganisms are currently being developed to overcome the difficulties of classical microbiological and enzymatic methods for monitoring these populations. The aim of the present study was to develop and validate a specific real-time PCR-based method for detecting Trichoderma atroviride SC1 in soil. We developed a primer and TaqMan probe set constructed on base mutations in an endochitinase gene. This tool is highly specific for the detection and quantification of the SC1 strain. The limits of detection and quantification calculated from the relative standard deviation were 6000 and 20,000 haploid genome copies per gram of soil. Together with the low throughput time associated with this procedure, which allows the evaluation of many soil samples within a short time period, these results suggest that this method could be successfully used to trace the fate of T. atroviride SC1 applied as an open-field biocontrol agent.

  20. Ultrafast, sensitive and large-volume on-chip real-time PCR for the molecular diagnosis of bacterial and viral infections.

    PubMed

    Houssin, Timothée; Cramer, Jérémy; Grojsman, Rébecca; Bellahsene, Lyes; Colas, Guillaume; Moulet, Hélène; Minnella, Walter; Pannetier, Christophe; Leberre, Maël; Plecis, Adrien; Chen, Yong

    2016-04-21

    To control future infectious disease outbreaks, like the 2014 Ebola epidemic, it is necessary to develop ultrafast molecular assays enabling rapid and sensitive diagnoses. To that end, several ultrafast real-time PCR systems have been previously developed, but they present issues that hinder their wide adoption, notably regarding their sensitivity and detection volume. An ultrafast, sensitive and large-volume real-time PCR system based on microfluidic thermalization is presented herein. The method is based on the circulation of pre-heated liquids in a microfluidic chip that thermalize the PCR chamber by diffusion and ultrafast flow switches. The system can achieve up to 30 real-time PCR cycles in around 2 minutes, which makes it the fastest PCR thermalization system for regular sample volume to the best of our knowledge. After biochemical optimization, anthrax and Ebola simulating agents could be respectively detected by a real-time PCR in 7 minutes and a reverse transcription real-time PCR in 7.5 minutes. These detections are respectively 6.4 and 7.2 times faster than with an off-the-shelf apparatus, while conserving real-time PCR sample volume, efficiency, selectivity and sensitivity. The high-speed thermalization also enabled us to perform sharp melting curve analyses in only 20 s and to discriminate amplicons of different lengths by rapid real-time PCR. This real-time PCR microfluidic thermalization system is cost-effective, versatile and can be then further developed for point-of-care, multiplexed, ultrafast and highly sensitive molecular diagnoses of bacterial and viral diseases.

  1. Real-time PCR-based method for the rapid detection of extended RAS mutations using bridged nucleic acids in colorectal cancer.

    PubMed

    Iida, Takao; Mizuno, Yukie; Kaizaki, Yasuharu

    2017-10-27

    Mutations in RAS and BRAF are predictors of the efficacy of anti-epidermal growth factor receptor (EGFR) therapy in patients with metastatic colorectal cancer (mCRC). Therefore, simple, rapid, cost-effective methods to detect these mutations in the clinical setting are greatly needed. In the present study, we evaluated BNA Real-time PCR Mutation Detection Kit Extended RAS (BNA Real-time PCR), a real-time PCR method that uses bridged nucleic acid clamping technology to rapidly detect mutations in RAS exons 2-4 and BRAF exon 15. Genomic DNA was extracted from 54 formalin-fixed paraffin-embedded (FFPE) tissue samples obtained from mCRC patients. Among the 54 FFPE samples, BNA Real-time PCR detected 21 RAS mutations (38.9%) and 5 BRAF mutations (9.3%), and the reference assay (KRAS Mutation Detection Kit and MEBGEN™ RASKET KIT) detected 22 RAS mutations (40.7%). The concordance rate of detected RAS mutations between the BNA Real-time PCR assay and the reference assays was 98.2% (53/54). The BNA Real-time PCR assay proved to be a more simple, rapid, and cost-effective method for detecting KRAS and RAS mutations compared with existing assays. These findings suggest that BNA Real-time PCR is a valuable tool for predicting the efficacy of early anti-EGFR therapy in mCRC patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Development of duplex real-time RT-PCR based on Taqman technology for detecting simultaneously the genome of pan-enterovirus and enterovirus 71.

    PubMed

    Hwang, Seoyeon; Kang, Byunghak; Hong, Jiyoung; Kim, Ahyoun; Kim, Hyejin; Kim, Kisang; Cheon, Doo-Sung

    2013-07-01

    Human enterovirus (EV) 71 is the main etiological agent of hand, foot, and mouth disease (HFMD). It is associated with neurological complications, and caused fatalities during recent outbreaks in the Asia-Pacific region. Infections caused by EV71 could lead to many complications, ranging from brainstem encephalitis to pulmonary oedema, resulting in high mortality. In this study, a duplex real-time RT-PCR assay was developed in order to simultaneously detect pan-EV and EV71. EV71-specific primers and probes were designed based on the highly conserved VP1 region of EV71. Five EV71 strains were detected as positive, and no positive fluorescence signal was observed in the duplex real-time RT-PCR for other viral RNA, which showed 100% specificity for the selected panel, and no cross-reactions were observed in this duplex real-time RT-PCR. The EV71-specific duplex real-time RT-PCR was more sensitive than conventional RT-PCR, and detected viral titers that were 10-fold lower than those measured by the latter. Of the 381 HFMD clinical specimens, 196 (51.4%) cases were pan-EV-positive, of which 170 (86.7%) were EV71-positive when tested by pan-EV and EV71-specific duplex real-time RT-PCR. EV71-specific duplex real-time RT-PCR offers a rapid and sensitive method to detect EV71 from clinical specimens, and will allow quarantine measures to be taken more effectively during outbreaks. Copyright © 2013 Wiley Periodicals, Inc.

  3. Whole blood Nested PCR and Real-time PCR amplification of Talaromyces marneffei specific DNA for diagnosis.

    PubMed

    Lu, Sha; Li, Xiqing; Calderone, Richard; Zhang, Jing; Ma, Jianchi; Cai, Wenying; Xi, Liyan

    2016-02-01

    Talaromyces marneffei is a dimorphic pathogenic fungus, which is a life-threatening invasive mycosis in the immunocompromised host. Prompt diagnosis of T. marneffei infection remains difficult although there has been progress in attempts to expedite the diagnosis of this infection. We previously demonstrated the value of nested polymerase chain reaction (PCR) to detect T. marneffei in paraffin embedded tissue samples with high sensitivity and specificity. In this study, this assay was used to detect the DNA of T. marneffei in whole blood samples. Real-time PCR assay was also evaluated to identify T. marneffei in the same samples. Twenty out of 30 whole blood samples (67%) collected from 23 patients were found positive by using the nested PCR assay, while 23/30 (77%) samples were found positive by using the real-time PCR assay. In order to express accurately the fungal loads, we used a normalized linearized plasmid as an internal control for real-time PCR. The assay results were correlated as the initial quantity (copies/μl) with fungal burden. These data indicate that combination of nested PCR and real-time PCR assay provides an attractive alternative for identification of T. marneffei DNA in whole blood samples of HIV-infected patients. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Multiplex real-time PCR assay for detection of pathogenic Vibrio parahaemolyticus strains.

    PubMed

    He, Peiyan; Chen, Zhongwen; Luo, Jianyong; Wang, Henghui; Yan, Yong; Chen, Lixia; Gao, Wenjie

    2014-01-01

    Foodborne disease caused by pathogenic Vibrio parahaemolyticus has become a serious public health problem in many countries. Rapid diagnosis and the identification of pathogenic V. parahaemolyticus are very important in the context of public health. In this study, an EvaGreen-based multiplex real-time PCR assay was established for the detection of pathogenic V. parahaemolyticus. This assay targeted three genetic markers of V. parahaemolyticus (species-specific gene toxR and virulence genes tdh and trh). The assay could unambiguously identify pathogenic V. parahaemolyticus with a minimum detection limit of 1.4 pg genomic DNA per reaction (concentration giving a positive multiplex real-time PCR result in 95% of samples). The specificity of the assay was evaluated using 72 strains of V. parahaemolyticus and other bacteria. A validation of the assay with clinical samples confirmed its sensitivity and specificity. Our data suggest the newly established multiplex real-time PCR assay is practical, cost-effective, specific, sensitive and capable of high-throughput detection of pathogenic V. parahaemolyticus. Copyright © 2014. Published by Elsevier Ltd.

  5. A simple approach to the generation of heterologous competitive internal controls for real-time PCR assays on the LightCycler.

    PubMed

    Stöcher, Markus; Leb, Victoria; Hölzl, Gabriele; Berg, Jörg

    2002-12-01

    The real-time PCR technology allows convenient detection and quantification of virus derived DNA. This approach is used in many PCR based assays in clinical laboratories. Detection and quantification of virus derived DNA is usually performed against external controls or external standards. Thus, adequacy within a clinical sample is not monitored for. This can be achieved using internal controls that are co-amplified with the specific target within the same reaction vessel. We describe a convenient way to prepare heterologous internal controls as competitors for real-time PCR based assays. The internal controls were devised as competitors in real-time PCR, e.g. LightCycler-PCR. The bacterial neomycin phosphotransferase gene (neo) was used as source for heterologous DNA. Within the neo gene a box was chosen containing sequences for four differently spaced forward primers, one reverse primer, and a pair of neo specific hybridization probes. Pairs of primers were constructed to compose of virus-specific primer sequences and neo box specific primer sequences. Using those composite primers in conventional preparative PCR four types of internal controls were amplified from the neo box and subsequently cloned. A panel of the four differently sized internal controls was generated and tested by LightCycler PCR using their virus-specific primers. All four different PCR products were detected with the single pair of neo specific FRET-hybridization probes. The presented approach to generate competitive internal controls for use in LightCycler PCR assays proved convenient und rapid. The obtained internal controls match most PCR product sizes used in clinical routine molecular assays and will assist to discriminate true from false negative results.

  6. Development and comparison of TaqMan-based real-time PCR assays for detection and differentiation of Ralstonia solanacearum strains

    USDA-ARS?s Scientific Manuscript database

    Bacterial wilt caused by Ralstonia solanacearum is destructive to many plant species worldwide. The race 3 biovar 2 (r3b2) strains of R. solanacearum infect potatoes in temperature climates and are listed as select agents by the U.S. government. TaqMan-based real-time quantitative PCR (qPCR) is comm...

  7. Real-time PCR to supplement gold-standard culture-based detection of Legionella in environmental samples.

    PubMed

    Collins, S; Jorgensen, F; Willis, C; Walker, J

    2015-10-01

    Culture remains the gold-standard for the enumeration of environmental Legionella. However, it has several drawbacks including long incubation and poor sensitivity, causing delays in response times to outbreaks of Legionnaires' disease. This study aimed to validate real-time PCR assays to quantify Legionella species (ssrA gene), Legionella pneumophila (mip gene) and Leg. pneumophila serogroup-1 (wzm gene) to support culture-based detection in a frontline public health laboratory. Each qPCR assay had 100% specificity, excellent sensitivity (5 GU/reaction) and reproducibility. Comparison of the assays to culture-based enumeration of Legionella from 200 environmental samples showed that they had a negative predictive value of 100%. Thirty eight samples were positive for Legionella species by culture and qPCR. One hundred samples were negative by both methods, whereas 62 samples were negative by culture but positive by qPCR. The average log10 increase between culture and qPCR for Legionella spp. and Leg. pneumophila was 0·72 (P = 0·0002) and 0·51 (P = 0·006), respectively. The qPCR assays can be conducted on the same 1 l water sample as culture thus can be used as a supplementary technique to screen out negative samples and allow more rapid indication of positive samples. The assay could prove informative in public health investigations to identify or rule out sources of Legionella as well as to specifically identify Leg. pneumophila serogroup 1 in a timely manner not possible with culture. © 2015 The Society for Applied Microbiology.

  8. Real-Time PCR Identification of Six Malassezia Species.

    PubMed

    Ilahi, Amin; Hadrich, Inès; Neji, Sourour; Trabelsi, Houaida; Makni, Fattouma; Ayadi, Ali

    2017-06-01

    Lipophilic yeast Malassezia species is widely found on the skin surface of humans and other animals. This fungus can cause pityriasis versicolor, Malassezia folliculitis, and seborrheic dermatitis. Still now, there is a problem with species identification of Malassezia with conventional methods. We developed a real-time polymerase chain reaction (PCR) assay with multiple hybridization probes for detecting M. globosa, M. furfur, M. restricta, M. sympodialis, M. slooffiae, and M. pachydermatis. The amplification curves and specific melting peaks of the probes hybridized with real-time PCR product were used for species identifications. The assay was further evaluated on 120 samples which were performed by swabbing from 60 domestic animals (23 goats, 10 dogs, 15 cows, 3 cats, 8 rabbits, and 1 donkey) and in 70 human samples (28 patients with pityriasis versicolor, 17 breeders, and 25 control group). Fifteen M. pachydermatis were identified from animals. From human, 61 isolates were identified as M. globosa (28), M. furfur (15), M. restricta (6), M. sympodialis (8), M. slooffiae (2), and M. pachydermatis (2). Eight cases of co-detection from 6 patients and 2 breeders were revealed. Our findings show that the assay was highly effective in identifying Malassezia species. The application of multiplex real-time PCR provides a sensitive and rapid identification system for Malassezia species, which may be applied in further epidemiological surveys from clinical samples.

  9. Soft fruit traceability in food matrices using real-time PCR.

    PubMed

    Palmieri, Luisa; Bozza, Elisa; Giongo, Lara

    2009-02-01

    Food product authentication provides a means of monitoring and identifying products for consumer protection and regulatory compliance. There is a scarcity of analytical methods for confirming the identity of fruit pulp in products containing Soft Fruit. In the present work we have developed a very sensible qualitative and quantitative method to determine the presence of berry DNAs in different food matrices. To our knowledge, this is the first study that shows the applicability, to Soft Fruit traceability, of melting curve analysis and multiplexed fluorescent probes, in a Real-Time PCR platform. This methodology aims to protect the consumer from label misrepresentation.

  10. Soft Fruit Traceability in Food Matrices using Real-Time PCR

    PubMed Central

    Palmieri, Luisa; Bozza, Elisa; Giongo, Lara

    2009-01-01

    Food product authentication provides a means of monitoring and identifying products for consumer protection and regulatory compliance. There is a scarcity of analytical methods for confirming the identity of fruit pulp in products containing Soft Fruit. In the present work we have developed a very sensible qualitative and quantitative method to determine the presence of berry DNAs in different food matrices. To our knowledge, this is the first study that shows the applicability, to Soft Fruit traceability, of melting curve analysis and multiplexed fluorescent probes, in a Real-Time PCR platform. This methodology aims to protect the consumer from label misrepresentation. PMID:22253987

  11. Development and clinical validation of a multiplex real-time PCR assay for herpes simplex and varicella zoster virus.

    PubMed

    Tan, Thean Yen; Zou, Hao; Ong, Danny Chee Tiong; Ker, Khor Jia; Chio, Martin Tze Wei; Teo, Rachael Yu Lin; Koh, Mark Jean Aan

    2013-12-01

    Herpes simplex virus (HSV) and varicella zoster virus (VZV) are related members of the Herpesviridae family and are well-documented human pathogens causing a spectrum of diseases, from mucocutaneous disease to infections of the central nervous system. This study was carried out to evaluate and validate the performance of a multiplex real-time polymerase chain reaction (PCR) assay in detecting and differentiating HSV1, HSV2, and VZV from clinical samples. Consensus PCR primers for HSV were designed from the UL30 component of the DNA polymerase gene of HSV, with 2 separate hydrolysis probes designed to differentiate HSV1 and HSV2. Separate primers and a probe were also designed against the DNA polymerase gene of VZV. A total of 104 clinical samples were available for testing by real-time PCR, conventional PCR, and viral culture. The sensitivity and specificity of the real-time assay was calculated by comparing the multiplex PCR result with that of a combined standard of virus culture and conventional PCR. The sensitivity of the real-time assay was 100%, with specificity ranging from 98% to 100% depending on the target gene. Both PCR methods detected more positive samples for HSV or VZV, compared with conventional virus culture. This multiplex PCR assay provides accurate and rapid diagnostic capabilities for the diagnosis and differentiation of HSV1, HSV2, and VZV infections, with the presence of an internal control to monitor for inhibition of the PCR reaction.

  12. Development of quantitative real-time PCR for detection and enumeration of Enterobacteriaceae.

    PubMed

    Takahashi, Hajime; Saito, Rumi; Miya, Satoko; Tanaka, Yuichiro; Miyamura, Natsumi; Kuda, Takashi; Kimura, Bon

    2017-04-04

    The family Enterobacteriaceae, members of which are widely distributed in the environment, includes many important human pathogens. In this study, a rapid real-time PCR method targeting rplP, coding for L16 protein, a component of the ribosome large subunit, was developed for enumerating Enterobacteriaceae strains, and its efficiency was evaluated using naturally contaminated food products. The rplP-targeted real-time PCR amplified Enterobacteriaceae species with Ct values of 14.0-22.8, whereas the Ct values for non-Enterobacteriaceae species were >30, indicating the specificity of this method for the Enterobacteriaceae. Using a calibration curve of Ct=-3.025 (log CFU/g)+37.35, which was calculated from individual plots of the cell numbers in different concentrations of 5 Enterobacteriaceae species, the rplP-targeted real-time PCR was applied to 51 food samples. A <1log difference between the real-time PCR and culture methods was obtained in a majority of the food samples (81.8%), with good correlation (r 2 =0.8285). This study demonstrated that the rplP-targeted real-time PCR method could detect and enumerate Enterobacteriaceae species in foods rapidly and accurately, and therefore, it can be used for the microbiological risk analysis of foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Monitoring bacterial population dynamics using real-time PCR during the bioremediation of crude-oil-contaminated soil.

    PubMed

    Baek, Kyung-Hwa; Yoon, Byung-Dae; Cho, Dae-Hyun; Kim, Byung-Hyuk; Oh, Hee-Mock; Kim, Hee-Sik

    2009-04-01

    We evaluated the activity and abundance of the crude oil- degrading bacterium Nocardia sp. H17-1 during bioremediation of oil-contaminated soil, using real-time PCR. The total petroleum hydrocarbon (TPH) degradation rate constants (k) of the soils treated with and without H17-1 were 0.103 d-1 and 0.028 d-1, respectively. The degradation rate constant was 3.6 times higher in the soil with H17-1 than in the soil without H17-1. In order to detect and quantify the Nocardia sp. H17-1 in soil samples, we quantified the genes encoding 16S ribosomal RNA (16S rRNA), alkane monooxygenase (alkB4), and catechol 2,3-dioxygenase (23CAT) with real-time PCR using SYBR green. The amounts of H17-1 16S rRNA and alkB4 detected increased rapidly up to 1,000-folds for the first 10 days, and then continued to increase only slightly or leveled off. However, the abundance of the 23CAT gene detected in H17-1-treated soil, where H17-1 had neither the 23CAT gene for the degradation of aromatic hydrocarbons nor the catechol 2,3-dioxygenase activity, did not differ significantly from that of the untreated soil (alpha=0.05, p>0.22). These results indicated that H17-1 is a potential candidate for the bioaugmentation of alkane-contaminated soil. Overall, we evaluated the abundance and metabolic activity of the bioremediation strain H17-1 using real-time PCR, independent of cultivation.

  14. European validation of Real-Time PCR method for detection of Salmonella spp. in pork meat.

    PubMed

    Delibato, Elisabetta; Rodriguez-Lazaro, David; Gianfranceschi, Monica; De Cesare, Alessandra; Comin, Damiano; Gattuso, Antonietta; Hernandez, Marta; Sonnessa, Michele; Pasquali, Frédérique; Sreter-Lancz, Zuzsanna; Saiz-Abajo, María-José; Pérez-De-Juan, Javier; Butrón, Javier; Prukner-Radovcic, Estella; Horvatek Tomic, Danijela; Johannessen, Gro S; Jakočiūnė, Džiuginta; Olsen, John E; Chemaly, Marianne; Le Gall, Francoise; González-García, Patricia; Lettini, Antonia Anna; Lukac, Maja; Quesne, Segolénè; Zampieron, Claudia; De Santis, Paola; Lovari, Sarah; Bertasi, Barbara; Pavoni, Enrico; Proroga, Yolande T R; Capuano, Federico; Manfreda, Gerardo; De Medici, Dario

    2014-08-01

    The classical microbiological method for detection of Salmonella spp. requires more than five days for final confirmation, and consequently there is a need for an alternative methodology for detection of this pathogen particularly in those food categories with a short shelf-life. This study presents an international (at European level) ISO 16140-based validation study of a non-proprietary Real-Time PCR-based method that can generate final results the day following sample analysis. It is based on an ISO compatible enrichment coupled to an easy and inexpensive DNA extraction and a consolidated Real-Time PCR assay. Thirteen laboratories from seven European Countries participated to this trial, and pork meat was selected as food model. The limit of detection observed was down to 10 CFU per 25 g of sample, showing excellent concordance and accordance values between samples and laboratories (100%). In addition, excellent values were obtained for relative accuracy, specificity and sensitivity (100%) when the results obtained for the Real-Time PCR-based methods were compared to those of the ISO 6579:2002 standard method. The results of this international trial demonstrate that the evaluated Real-Time PCR-based method represents an excellent alternative to the ISO standard. In fact, it shows an equal and solid performance as well as it reduces dramatically the extent of the analytical process, and can be easily implemented routinely by the Competent Authorities and Food Industry laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Evaluation of a real-time PCR assay based on the single-copy SAG1 gene for the detection of Toxoplasma gondii.

    PubMed

    Yu, Haijie; Huang, Bin; Zhuo, Xunhui; Chen, Xueqiu; Du, Aifang

    2013-11-08

    Real-time PCR-based detection of Toxoplasma gondii is very sensitive and convenient for diagnosing toxoplasmosis. However, the performance of the PCR assays could be influenced by the target gene chosen. Here we evaluate a real-time PCR assay using double-stranded DNA dyes (SYBR(®) Green I assay) with a new set of primers targeting the SAG1 gene for the fast and specific detection of T. gondii. The assay showed higher sensitivity than conventional PCR protocols using T. gondii DNA as template. The detection limit of the developed real-time PCR assay was in the order of 1 tachyzoite. The assay was also assessed by experimentally infected mice and showed positive results for blood (25%), spleen (50%) and lung (50%) as early as 1 dpi. The specificity of the assay was confirmed by using DNA from Neospora caninum, Escherichia coli, Babesia bovis, Trypanosoma brucei, Cryptosporidium parvum, and Toxocara canis. Assay applicability was successfully tested in blood samples collected from slaughtered pigs. These results indicate that, based on SYBR(®) green I, the quantitative SAG1 assay may also be useful in the study of the pathogenicity, immunoprophylaxis, and treatment of T. gondii. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Identification of phlebotomine sand fly blood meals by real-time PCR.

    PubMed

    Sales, Kamila Gaudêncio da Silva; Costa, Pietra Lemos; de Morais, Rayana Carla Silva; Otranto, Domenico; Brandão-Filho, Sinval Pinto; Cavalcanti, Milena de Paiva; Dantas-Torres, Filipe

    2015-04-16

    Phlebotomine sand flies are blood-feeding insects of great medical and veterinary significance acting as vectors of Leishmania parasites. Studying the blood-feeding pattern of these insects may help in the understanding of their interactions with potential reservoir hosts of Leishmania parasites. In this study, we developed real time PCR assays for the identification of sand fly blood meal. Six pairs of primers were designed based on cytochrome b gene sequences available in GenBank of the following potential hosts: dog, cat, horse, chicken, black rat, and human. Firstly, SYBR Green-based real time PCR assays were conducted using a standard curve with eight different concentrations (i.e., 10 ng, 1 ng, 100 pg, 10 pg, 1 pg, 100 fg, 10 fg and 1 fg per 2 μl) of DNA samples extracted from EDTA blood samples from each target animal. Then, DNA samples extracted from field-collected engorged female sand flies belonging to three species (i.e., Lutzomyia longipalpis, L. migonei and L. lenti) were tested by the protocols standardized herein. Additionally, female sand flies were experimentally fed on a black rat (Rattus rattus) and used for evaluating the time course of the detection of the protocol targeting this species. The protocols performed well with detection limits of 10 pg to 100 fg. Field-collected female sand flies were fed on blood from humans (73%), chickens (23%), dogs (22%), horses (15%), black rats (11%) and cats (2%). Interestingly, 76.1% of the L. longipalpis females were positive for human blood. In total, 48% of the tested females were fed on single sources, 31% on two and 12% on three. The analysis of the time course showed that the real time PCR protocol targeting the black rat DNA was able to detect small amounts of the host DNA up to 5 days after the blood meal. The real time PCR assays standardized herein successfully detected small amounts of host DNA in female sand flies fed on different vertebrate species and, specifically for the black

  17. Development of a real-time microchip PCR system for portable plant disease diagnosis.

    PubMed

    Koo, Chiwan; Malapi-Wight, Martha; Kim, Hyun Soo; Cifci, Osman S; Vaughn-Diaz, Vanessa L; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25 × 16 × 8 cm(3) in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample.

  18. Development of a Real-Time Microchip PCR System for Portable Plant Disease Diagnosis

    PubMed Central

    Kim, Hyun Soo; Cifci, Osman S.; Vaughn-Diaz, Vanessa L.; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C.; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25×16×8 cm3 in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample. PMID:24349341

  19. Detection of tumor markers in prostate cancer and comparison of sensitivity between real time and nested PCR.

    PubMed

    Matsuoka, Takayuki; Shigemura, Katsumi; Yamamichi, Fukashi; Fujisawa, Masato; Kawabata, Masato; Shirakawa, Toshiro

    2012-06-27

    The objective of this study is to investigate and compare the sensitivity in conventional PCR, quantitative real time PCR, nested PCR and western blots for detection of prostate cancer tumor markers using prostate cancer (PCa) cells. We performed conventional PCR, quantitative real time PCR, nested PCR, and western blots using 5 kinds of PCa cells. Prostate specific antigen (PSA), prostate specific membrane antigen (PSMA), and androgen receptor (AR) were compared for their detection sensitivity by real time PCR and nested PCR. In real time PCR, there was a significant correlation between cell number and the RNA concentration obtained (R(2)=0.9944) for PSA, PSMA, and AR. We found it possible to detect these markers from a single LNCaP cell in both real time and nested PCR. By comparison, nested PCR reached a linear curve in fewer PCR cycles than real time PCR, suggesting that nested PCR may offer PCR results more quickly than real time PCR. In conclusion, nested PCR may offer tumor maker detection in PCa cells more quickly (with fewer PCR cycles) with the same high sensitivity as real time PCR. Further study is necessary to establish and evaluate the best tool for PCa tumor marker detection.

  20. Real-time performance monitoring and management system

    DOEpatents

    Budhraja, Vikram S [Los Angeles, CA; Dyer, James D [La Mirada, CA; Martinez Morales, Carlos A [Upland, CA

    2007-06-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  1. Livers provide a reliable matrix for real-time PCR confirmation of avian botulism.

    PubMed

    Le Maréchal, Caroline; Ballan, Valentine; Rouxel, Sandra; Bayon-Auboyer, Marie-Hélène; Baudouard, Marie-Agnès; Morvan, Hervé; Houard, Emmanuelle; Poëzevara, Typhaine; Souillard, Rozenn; Woudstra, Cédric; Le Bouquin, Sophie; Fach, Patrick; Chemaly, Marianne

    2016-04-01

    Diagnosis of avian botulism is based on clinical symptoms, which are indicative but not specific. Laboratory investigations are therefore required to confirm clinical suspicions and establish a definitive diagnosis. Real-time PCR methods have recently been developed for the detection of Clostridium botulinum group III producing type C, D, C/D or D/C toxins. However, no study has been conducted to determine which types of matrices should be analyzed for laboratory confirmation using this approach. This study reports on the comparison of different matrices (pooled intestinal contents, livers, spleens and cloacal swabs) for PCR detection of C. botulinum. Between 2013 and 2015, 63 avian botulism suspicions were tested and 37 were confirmed as botulism. Analysis of livers using real-time PCR after enrichment led to the confirmation of 97% of the botulism outbreaks. Using the same method, spleens led to the confirmation of 90% of botulism outbreaks, cloacal swabs of 93% and pooled intestinal contents of 46%. Liver appears to be the most reliable type of matrix for laboratory confirmation using real-time PCR analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Avian influenza virus detection and quantitation by real-time RT-PCR

    USDA-ARS?s Scientific Manuscript database

    Real-time RT-PCR (rRT-PCR) has been used for avian influenza virus (AIV) detection since the early 2000’s for routine surveillance, during outbreaks and for research. Some of the advantages of rRT-PCR are: high sensitivity, high specificity, rapid time-to-result, scalability, cost, and its inherentl...

  3. Quantification of the biocontrol agent Trichoderma harzianum with real-time TaqMan PCR and its potential extrapolation to the hyphal biomass.

    PubMed

    López-Mondéjar, Rubén; Antón, Anabel; Raidl, Stefan; Ros, Margarita; Pascual, José Antonio

    2010-04-01

    The species of the genus Trichoderma are used successfully as biocontrol agents against a wide range of phytopathogenic fungi. Among them, Trichoderma harzianum is especially effective. However, to develop more effective fungal biocontrol strategies in organic substrates and soil, tools for monitoring the control agents are required. Real-time PCR is potentially an effective tool for the quantification of fungi in environmental samples. The aim of this study consisted of the development and application of a real-time PCR-based method to the quantification of T. harzianum, and the extrapolation of these data to fungal biomass values. A set of primers and a TaqMan probe for the ITS region of the fungal genome were designed and tested, and amplification was correlated to biomass measurements obtained with optical microscopy and image analysis, of the hyphal length of the mycelium of the colony. A correlation of 0.76 between ITS copies and biomass was obtained. The extrapolation of the quantity of ITS copies, calculated based on real-time PCR data, into quantities of fungal biomass provides potentially a more accurate value of the quantity of soil fungi. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Introducing Undergraduate Students to Real-Time PCR

    ERIC Educational Resources Information Center

    Hancock, Dale; Funnell, Alister; Jack, Briony; Johnston, Jill

    2010-01-01

    An experiment is conducted, which in four 3 h laboratory sessions, introduces third year undergraduate Biochemistry students to the technique of real-time PCR in a biological context. The model used is a murine erythroleukemia cell line (MEL cells). These continuously cycling, immature red blood cells, arrested at an early stage in erythropoiesis,…

  5. Culture and Real-Time PCR Based Maternal Screening and Antibiotic Susceptibility for Group B Streptococcus: An Iranian Experience.

    PubMed

    Goudarzi, Gholamreza; Ghafarzadeh, Masoumeh; Shakib, Pegah; Anbari, Khatereh

    2015-04-19

    Vertical Transmission of group B streptococcus (GBS) from a vagina colonized mother to her infant upon rupture of membranes (ROM) or after the onset of labor can cause life-threatening infections in newborn. Although intrapartum antibiotic prophylaxis (IAP) can significantly decrease neonatal GBS diseases, this issue has potentiated the emergence of antibiotic resistance strains. Our study examined the colonization rate of GBS using real-time PCR and culture methods, and trends in antibiotic resistance of GBS isolates obtained from pregnant women in Khorramabad, Iran. In this cross-sectional study, two vaginal-rectal swabs were collected and analyzed separately from 100 pregnant women at 35-37 weeks of gestation by convenience sampling method. The specimens were subjected to GBS detection using real-time PCR assay and standard culture. Susceptibility pattern of the GBS isolates was examined using the disk diffusion method. GBS carriage rate was 17% and 19% using culture and real-time PCR, respectively. In six samples, the culture was positive and the real-time PCR was negative. Sensitivity and specificity for real-time PCR were 72.7% and 96.1%, respectively using culture as the gold standard. Amongst twenty-two isolates examined, 100% resistance to erythromycin and clindamycin was observed. One isolate (4%) exhibited resistance to penicillin. Considering the relatively high GBS carriage rate in Khorramabad, routine antepartum screening for GBS is recommended. Penicillin can remain the antibiotic of choice for IAP; however, in penicillin-allergic mothers, vancomycin can be an alternative antibiotic.

  6. Species Identification of Fox-, Mink-, Dog-, and Rabbit-Derived Ingredients by Multiplex PCR and Real-Time PCR Assay.

    PubMed

    Wu, Qingqing; Xiang, Shengnan; Wang, Wenjun; Zhao, Jinyan; Xia, Jinhua; Zhen, Yueran; Liu, Bang

    2018-05-01

    Various detection methods have been developed to date for identification of animal species. New techniques based on PCR approach have raised the hope of developing better identification methods, which can overcome the limitations of the existing methods. PCR-based methods used the mitochondrial DNA (mtDNA) as well as nuclear DNA sequences. In this study, by targeting nuclear DNA, multiplex PCR and real-time PCR methods were developed to assist with qualitative and quantitative analysis. The multiplex PCR was found to simultaneously and effectively distinguish four species (fox, dog, mink, and rabbit) ingredients by the different sizes of electrophoretic bands: 480, 317, 220, and 209 bp. Real-time fluorescent PCR's amplification profiles and standard curves showed good quantitative measurement responses and linearity, as indicated by good repeatability and coefficient of determination R 2  > 0.99. The quantitative results of quaternary DNA mixtures including mink, fox, dog, and rabbit DNA are in line with our expectations: R.D. (relative deviation) varied between 1.98 and 12.23% and R.S.D. (relative standard deviation) varied between 3.06 and 11.51%, both of which are well within the acceptance criterion of ≤ 25%. Combining the two methods is suitable for the rapid identification and accurate quantification of fox-, dog-, mink-, and rabbit-derived ingredients in the animal products.

  7. Evaluation of a new single-tube multiprobe real-time PCR for diagnosis of Entamoeba histolytica and Entamoeba dispar.

    PubMed

    Liang, Shih-Yu; Hsia, Kan-Tai; Chan, Yun-Hsien; Fan, Chia-Kwung; Jiang, Donald Dah-Shyong; Landt, Olfert; Ji, Dar-Der

    2010-08-01

    A single-tube multiprobe real-time PCR assay for simultaneous detection of Entamoeba histolytica and Entamoeba dispar was developed. One primer pair with 2 species-specific probes was designed based on new SSU RNA regions of the ribosomal DNA-containing episome. The sensitivity is 1 parasite per milliliter of feces and thus superior to the conventional nested PCR and comparable to other published real-time PCR protocols. The applicability for clinical diagnosis was validated with 218 stool specimens from patients. A total of 51 E. histolytica and 39 E. dispar positive samples was detected by the multiprobe real-time PCR compared to 39 and 22 by routine nested PCR diagnosis. The detection rate of Entamoeba species for the multiprobe real-time PCR assays was significantly higher than the nested PCR (40.8% vs. 28.0%, P < 0.01). The test did not show cross reactivity with DNA from Entamoeba moshkovskii, Giardia lamblia , Cryptosporidium sp., Escherichia coli , or other nonpathogenic enteric parasites. The multiprobe real-time PCR assay is simple and rapid and has high specificity and sensitivity. The assay could streamline the laboratory diagnosis procedure and facilitate epidemiological investigation.

  8. Real-Time Aircraft Engine-Life Monitoring

    NASA Technical Reports Server (NTRS)

    Klein, Richard

    2014-01-01

    This project developed an inservice life-monitoring system capable of predicting the remaining component and system life of aircraft engines. The embedded system provides real-time, inflight monitoring of the engine's thrust, exhaust gas temperature, efficiency, and the speed and time of operation. Based upon this data, the life-estimation algorithm calculates the remaining life of the engine components and uses this data to predict the remaining life of the engine. The calculations are based on the statistical life distribution of the engine components and their relationship to load, speed, temperature, and time.

  9. A knowledge-based flight status monitor for real-time application in digital avionics systems

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Disbrow, J. D.; Butler, G. F.

    1989-01-01

    The Dryden Flight Research Facility of the National Aeronautics and Space Administration (NASA) Ames Research Center (Ames-Dryden) is the principal NASA facility for the flight testing and evaluation of new and complex avionics systems. To aid in the interpretation of system health and status data, a knowledge-based flight status monitor was designed. The monitor was designed to use fault indicators from the onboard system which are telemetered to the ground and processed by a rule-based model of the aircraft failure management system to give timely advice and recommendations in the mission control room. One of the important constraints on the flight status monitor is the need to operate in real time, and to pursue this aspect, a joint research activity between NASA Ames-Dryden and the Royal Aerospace Establishment (RAE) on real-time knowledge-based systems was established. Under this agreement, the original LISP knowledge base for the flight status monitor was reimplemented using the intelligent knowledge-based system toolkit, MUSE, which was developed under RAE sponsorship. Details of the flight status monitor and the MUSE implementation are presented.

  10. A PCR Based Microbial Monitoring Alternative Method of Detection and Identification of Microbes Aboard ISS

    NASA Technical Reports Server (NTRS)

    Khodadad, Christina; Oubre, Cherie; Castro, Victoria; Flint, Stephanie; Ott, Mark; Roman, Monserrate; Wheeler, Ray; Melendez, Orlando

    2017-01-01

    Previous research has shown that microorganisms and potential human pathogens have been detected on the International Space Station (ISS) with additional introduction of new microflora occurring with every exchange of crew or addition of equipment and supplies. These microbes are readily transferred between crew and subsystems (i.e. ECLSS, environmental control and life support systems). As this can be detrimental to astronaut health and optimal performance of ISS systems, monitoring of systems such as ECLSS to include identification of microbial contaminants could prevent adverse effects on human health and life support systems. Current monitoring on ISS is laborious and utilizes culture based methods followed by sample return to Earth for complete analysis. Future, long-distance spaceflight missions will require real-time monitoring capabilities that enable efficient and rapid assessments of the microbial environment allowing for expedited decisions and more targeted response to cope with anomalies. Polymerase chain reaction (PCR), a molecular microbial monitoring method was chosen and numerous PCR instruments investigated for their potential to perform in microgravity conditions. Using ISS as a test bed for PCR verification in microgravity will enable NASA to assess whether molecular based microbiological sensors may be components of reliable, closed-loop life support and habitation systems in spacecraft, enhancing infrastructure capabilities through increased efficiency, reliability, and time savings by enabling sample analysis on orbit. NASA selected the Water Monitoring Suite as one of the rapid spaceflight hardware demonstration activities utilizing a streamlined process to minimize the time required to fly experimental flight hardware. The RAZOR EX (BioFire Defense, Salt Lake City, UT) system was part of the water monitoring suite and is a commercial off-the-shelf (COTS) real-time PCR instrument designed for field work. The RAZOR EX was originally designed

  11. Utility of Real-Time PCR for Detection of Exserohilum rostratum in Body and Tissue Fluids during the Multistate Outbreak of Fungal Meningitis and Other Infections

    PubMed Central

    Gade, Lalitha; Grgurich, Dale E.; Kerkering, Thomas M.; Brandt, Mary E.

    2014-01-01

    Exserohilum rostratum was the major cause of the multistate outbreak of fungal meningitis linked to contaminated injections of methylprednisolone acetate produced by the New England Compounding Center. Previously, we developed a fungal DNA extraction procedure and broad-range and E. rostratum-specific PCR assays and confirmed the presence of fungal DNA in 28% of the case patients. Here, we report the development and validation of a TaqMan real-time PCR assay for the detection of E. rostratum in body fluids, which we used to confirm infections in 57 additional case patients, bringing the total number of case patients with PCR results positive for E. rostratum to 171 (37% of the 461 case patients with available specimens). Compared to fungal culture and the previous PCR assays, this real-time PCR assay was more sensitive. Of the 139 identical specimens from case patients tested by all three methods, 19 (14%) were positive by culture, 41 (29%) were positive by the conventional PCR assay, and 65 (47%) were positive by the real-time PCR assay. We also compared the utility of the real-time PCR assay with that of the previously described beta-d-glucan (BDG) detection assay for monitoring response to treatment in case patients with serially collected CSF. Only the incident CSF specimens from most of the case patients were positive by real-time PCR, while most of the subsequently collected specimens were negative, confirming our previous observations that the BDG assay was more appropriate than the real-time PCR assay for monitoring the response to treatment. Our results also demonstrate that the real-time PCR assay is extremely susceptible to contamination and its results should be used only in conjunction with clinical and epidemiological data. PMID:25520443

  12. Analytical Performance of Four Polymerase Chain Reaction (PCR) and Real Time PCR (qPCR) Assays for the Detection of Six Leishmania Species DNA in Colombia.

    PubMed

    León, Cielo M; Muñoz, Marina; Hernández, Carolina; Ayala, Martha S; Flórez, Carolina; Teherán, Aníbal; Cubides, Juan R; Ramírez, Juan D

    2017-01-01

    Leishmaniasis comprises a spectrum of parasitic diseases caused by protozoans of the genus Leishmania . Molecular tools have been widely employed for the detection of Leishmania due to its high sensitivity and specificity. However, the analytical performance of molecular platforms as PCR and real time PCR (qPCR) including a wide variety of molecular markers has never been evaluated. Herein, the aim was to evaluate the analytical performance of 4 PCR-based assays (designed on four different targets) and applied on conventional and real-time PCR platforms. We evaluated the analytical performance of conventional PCR and real time PCR, determining exclusivity and inclusivity, Anticipated Reportable Range (ARR), limit of detection (LoD) and accuracy using primers directed to kDNA, HSP70, 18S and ITS-1 targets. We observed that the kDNA was the most sensitive but does not meet the criterion of exclusivity. The HSP70 presented a higher LoD in conventional PCR and qPCR in comparison with the other markers (1 × 10 1 and 1 × 10 -1 equivalent parasites/mL respectively) and had a higher coefficient of variation in qPCR. No statistically significant differences were found between the days of the test with the four molecular markers. The present study revealed that the 18S marker presented the best performance in terms of analytical sensitivity and specificity for the qPCR in the species tested (species circulating in Colombia). Therefore, we recommend to explore the analytical and diagnostic performance in future studies using a broader number of species across America.

  13. Analytical Performance of Four Polymerase Chain Reaction (PCR) and Real Time PCR (qPCR) Assays for the Detection of Six Leishmania Species DNA in Colombia

    PubMed Central

    León, Cielo M.; Muñoz, Marina; Hernández, Carolina; Ayala, Martha S.; Flórez, Carolina; Teherán, Aníbal; Cubides, Juan R.; Ramírez, Juan D.

    2017-01-01

    Leishmaniasis comprises a spectrum of parasitic diseases caused by protozoans of the genus Leishmania. Molecular tools have been widely employed for the detection of Leishmania due to its high sensitivity and specificity. However, the analytical performance of molecular platforms as PCR and real time PCR (qPCR) including a wide variety of molecular markers has never been evaluated. Herein, the aim was to evaluate the analytical performance of 4 PCR-based assays (designed on four different targets) and applied on conventional and real-time PCR platforms. We evaluated the analytical performance of conventional PCR and real time PCR, determining exclusivity and inclusivity, Anticipated Reportable Range (ARR), limit of detection (LoD) and accuracy using primers directed to kDNA, HSP70, 18S and ITS-1 targets. We observed that the kDNA was the most sensitive but does not meet the criterion of exclusivity. The HSP70 presented a higher LoD in conventional PCR and qPCR in comparison with the other markers (1 × 101 and 1 × 10-1 equivalent parasites/mL respectively) and had a higher coefficient of variation in qPCR. No statistically significant differences were found between the days of the test with the four molecular markers. The present study revealed that the 18S marker presented the best performance in terms of analytical sensitivity and specificity for the qPCR in the species tested (species circulating in Colombia). Therefore, we recommend to explore the analytical and diagnostic performance in future studies using a broader number of species across America. PMID:29046670

  14. The Applicability of TaqMan-Based Quantitative Real-Time PCR Assays for Detecting and Enumerating Cryptosporidium spp. Oocysts in the Environment

    PubMed Central

    Staggs, Sarah E.; Beckman, Erin M.; Keely, Scott P.; Mackwan, Reena; Ware, Michael W.; Moyer, Alan P.; Ferretti, James A.; Sayed, Abu; Xiao, Lihua; Villegas, Eric N.

    2013-01-01

    Quantitative real-time polymerase chain reaction (qPCR) assays to detect Cryptosporidium oocysts in clinical samples are increasingly being used to diagnose human cryptosporidiosis, but a parallel approach for detecting and identifying Cryptosporidium oocyst contamination in surface water sources has yet to be established for current drinking water quality monitoring practices. It has been proposed that Cryptosporidium qPCR-based assays could be used as viable alternatives to current microscopic-based detection methods to quantify levels of oocysts in drinking water sources; however, data on specificity, analytical sensitivity, and the ability to accurately quantify low levels of oocysts are limited. The purpose of this study was to provide a comprehensive evaluation of TaqMan-based qPCR assays, which were developed for either clinical or environmental investigations, for detecting Cryptosporidium oocyst contamination in water. Ten different qPCR assays, six previously published and four developed in this study were analyzed for specificity and analytical sensitivity. Specificity varied between all ten assays, and in one particular assay, which targeted the Cryptosporidium 18S rRNA gene, successfully detected all Cryptosporidium spp. tested, but also cross-amplified T. gondii, fungi, algae, and dinoflagellates. When evaluating the analytical sensitivity of these qPCR assays, results showed that eight of the assays could reliably detect ten flow-sorted oocysts in reagent water or environmental matrix. This study revealed that while a qPCR-based detection assay can be useful for detecting and differentiating different Cryptosporidium species in environmental samples, it cannot accurately measure low levels of oocysts that are typically found in drinking water sources. PMID:23805235

  15. An Alu-based, MGB Eclipse real-time PCR method for quantitation of human DNA in forensic samples.

    PubMed

    Nicklas, Janice A; Buel, Eric

    2005-09-01

    The forensic community needs quick, reliable methods to quantitate human DNA in crime scene samples to replace the laborious and imprecise slot blot method. A real-time PCR based method has the possibility of allowing development of a faster and more quantitative assay. Alu sequences are primate-specific and are found in many copies in the human genome, making these sequences an excellent target or marker for human DNA. This paper describes the development of a real-time Alu sequence-based assay using MGB Eclipse primers and probes. The advantages of this assay are simplicity, speed, less hands-on-time and automated quantitation, as well as a large dynamic range (128 ng/microL to 0.5 pg/microL).

  16. A sensitive immunosorbent bio-barcode assay based on real-time immuno-PCR for detecting 3,4,3',4'-tetrachlorobiphenyl.

    PubMed

    Yang, Guang-Xin; Zhuang, Hui-Sheng; Chen, Han-Yu; Ping, Xian-Yin; Bu, Dan

    2014-02-01

    A functionalized gold-nanoparticle bio-barcode assay, based on real-time immuno-PCR (IPCR), was designed for the determination of 3,4,3',4'-tetrachlorobiphenyl (PCB77). 15 nm gold nanoparticles were synthesized, and modified with thiol-capped DNA and goat anti-rabbit IgG. The nanoparticle probes were used to replace antibody-DNA conjugate in the IPCR, and were fixed on the PCR tube wall via the immune reaction. Real-time PCR was performed to quantify the DNA signal directly. Under optimized conditions, the new method was used to detect PCB77 with a linearity range from 5 pg L(-1) to 10 ng L(-1), and the limit of detection (LOD) was 1.72 pg L(-1). Real samples of Larimichthys polyactis, collected from the East China Sea, were analyzed. Recovery was from 82 % to 112 %, and the coefficient of variation (CV) was acceptable. The results were compared with GC-ECD, revealing that the method would be acceptable for providing rapid, semi-quantitative, and reliable test results for making environmental decisions.

  17. Improved detection of canine Angiostrongylus vasorum infection using real-time PCR and indirect ELISA.

    PubMed

    Jefferies, Ryan; Morgan, Eric R; Helm, Jenny; Robinson, Matthew; Shaw, Susan E

    2011-12-01

    This study reports the development of a real-time PCR assay and an indirect ELISA to improve on current detection of canine Angiostrongylus vasorum infection. A highly specific fluorescent probe-based, real-time PCR assay was developed to target the A. vasorum second internal transcribed spacer region and detected DNA in EDTA blood, lung tissue, broncho-alveolar larvage fluid, endotracheal mucus, pharyngeal swabs and faecal samples. PCR was fast (∼1 h), highly efficient when using EDTA blood samples, consistently detected a single molecule of parasite DNA and did not amplify DNA from other parasitic nematodes or definitive host species. An indirect ELISA was also developed using the soluble protein fraction from adult A. vasorum worms. Some cross-reactive antigen recognition was observed when tested against sera from dogs infected with Crenosoma vulpis (n = 8), Toxocara canis (n = 5) and Dirofilaria immitis (n = 5). This was largely overcome by setting the cut-off for a positive result at an appropriately high level. Field evaluation of the real-time PCR and ELISA was conducted by testing sera and EDTA blood from dogs with suspected A. vasorum infection (n = 148) and compared with the Baermann's larval migration test in faeces. Thirty-one dogs were positive by at least one test. Of these, 20 (65%) were detected by the Baermann method, 18 (58%) by blood PCR, 24 (77%) by ELISA and 28 (90%) by blood PCR and ELISA together. Combined testing using real-time PCR and ELISA therefore improved the detection rate of A. vasorum infection and holds promise for improved clinical diagnosis and epidemiological investigation.

  18. Real-time PCR quantification of Vibrio parahaemolyticus in oysters using an alternative matrix.

    PubMed

    Kaufman, G E; Blackstone, G M; Vickery, M C L; Bej, A K; Bowers, J; Bowen, Michael D; Meyer, Richard F; DePaola, A

    2004-11-01

    This study examined the relationship between levels of total Vibrio parahaemolyticus found in oyster tissues and mantle fluid with the goal of using mantle fluid as a template matrix in a new quantitative real-time PCR assay targeting the thermolabile hemolysin (tlh) gene for the enumeration of total V. parahaemolyticus in oysters. Oysters were collected near Mobile Bay, Ala., in June, July, and September and tested immediately after collection and storage at 26 degrees C for 24 h. Initial experiments using DNA colony hybridization targeting tlh demonstrated that natural V. parahaemolyticus levels in the mantle fluid of individual oysters were strongly correlated (r = 0.85, P < 0.05) with the levels found in their tissues. When known quantities of cultured V. parahaemolyticus cells were added to real-time PCR reactions that contained mantle fluid and oyster tissue matrices separately pooled from multiple oysters, a strong linear correlation was observed between the real-time PCR cycle threshold and the log concentration of cells inoculated into each PCR reaction (mantle fluid: r = 0.98, P < 0.05; and oyster: r = 0.99, P < 0.05). However, the mantle fluid exhibited less inhibition of the PCR amplification than the homogenized oyster tissue. Analysis of natural V. parahaemolyticus populations in mantle fluids using both colony hybridization and real-time PCR demonstrated a significant (P < 0.05) but reduced correlation (r = -0.48) between the two methods. Reductions in the efficiency of the real-time PCR that resulted from low population densities of V. parahaemolyticus and PCR inhibitors present in the mantle fluid of some oysters (with significant oyster-to-oyster variation) contributed to the reduction in correlation between the methods that was observed when testing natural V. parahaemolyticus populations. The V. parahaemolyticus-specific real-time PCR assay used for this study could estimate elevated V. parahaemolyticus levels in oyster mantle fluid within 1 h

  19. Microbial Monitoring of Pathogens by Comparing Multiple Real-Time PCR Platforms for Potential Space Applications

    NASA Technical Reports Server (NTRS)

    Birmele, Michele

    2012-01-01

    The International Space Station (ISS) is a closed environment wih rotations of crew and equipment each introducing their own microbial flora making it necessary to monitor the air, surfaces, and water for microbial contamination. Current microbial monitoring includes labor and time intensive methods to enumerate total bacterial and fungal cells with limited characterization during in-flight testing. Although this culture-based method has been sufficient for monitoring the ISS, future long duration missions will need to perform more comprehensive characterization in-flight, since sample return and ground characterization may not be available. A workshop was held in 2011 at the Johnson Space Center to discuss alternative methodologies and technologies suitable for microbial monitoring for these longterm exploration missions where molecular-based methodologies, such as polymerase chain reaction (PCR), were recommended. In response, a multi-center (Marshall Space Flight Center, Johnson Space Center, Jet Propulsion Laboratory, and Kennedy Space Center) collaborative research effort was initiated to explore novel commercial-off-the-shelf hardware options for spaceflight environmental monitoring. The goal was to evaluate quantitative/semi-quantitative PCR approaches to space applications for low cost in-flight rapid identification of microorganisms affecting crew safety. The initial phase of this project identified commercially available platforms that could be minimally modified to perform nominally in microgravity followed by proof-of-concept testing on the highest qualifying candidates with a universally available test organism, Salmonella enterica. The platforms evaluated during proof-of-concept testing included the iCubate 2.0(TradeMark) (iCubate, Huntsville, AL), RAZOR EX (BioFire Diagnostics; Salt Lake City, Utah) and SmartCycler(TradeMark) (Cepheid; Sunnyvale, CA). The analysis identified two potential technologies (iCubate 2.0 and RAZOR EX) that were able to

  20. Novel and highly sensitive sybr® green real-time pcr for poxvirus detection in odontocete cetaceans.

    PubMed

    Sacristán, Carlos; Luiz Catão-Dias, José; Ewbank, Ana Carolina; Machado, Eduardo Ferreira; Neves, Elena; Santos-Neto, Elitieri Batista; Azevedo, Alexandre; Laison-Brito, José; De Castilho, Pedro Volkmer; Daura-Jorge, Fábio Gonçalves; Simões-Lopes, Paulo César; Carballo, Matilde; García-Párraga, Daniel; Manuel Sánchez-Vizcaíno, José; Esperón, Fernando

    2018-06-08

    Poxviruses are emerging pathogens in cetaceans, temporarily named 'Cetaceanpoxvirus' (CePV, family Poxviridae), classified into two main lineages: CePV-1 in odontocetes and CePV-2 in mysticetes. Only a few studies performed the molecular detection of CePVs, based on DNA-polymerase gene and/or DNA-topoisomerase I gene amplification. Herein we describe a new real-time PCR assay based on SYBR ® Green and a new primer set to detect a 150 bp fragment of CePV DNA-polymerase gene, also effective for conventional PCR detection. The novel real-time PCR was able to detect 5 up to 5 × 10 6 copies per reaction of a cloned positive control. Both novel PCR methods were 1000 to 100,000-fold more sensitive than those previously described in the literature. Samples of characteristic poxvirus skin lesions ('tattoo') from one Risso's dolphin (Grampus griseus), two striped dolphins (Stenella coeruleoalba) and two Guiana dolphins (Sotalia guianensis) were all positive to both our novel real time- and conventional PCR methods, even though three of these animals (a Risso's dolphin, a striped dolphin, and a Guiana dolphin) were previously negative to the conventional PCRs previously available. To our knowledge, this is the first real-time PCR detection method for Cetaceanpoxvirus, a much more sensitive tool for the detection of CePV-1 infections. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Evaluation of non-extracted genital swabs for real-time HSV PCR.

    PubMed

    Miari, Victoria F; Wall, Gavin R; Clark, Duncan A

    2015-01-01

    Nucleic acid extraction of clinical samples is accepted as a key requirement in molecular diagnostics. At Barts Health NHS Trust, swabs taken from patients with clinical suspicion of HSV infection were routinely extracted on the Qiagen MDx BioRobot prior to testing with a real-time triplex PCR for HSV1, HSV2, and VZV. The aim of this study was to adapt an existing HSV1/HSV2/VZV real-time PCR by replacing VZV with phocine herpesvirus 1 (PhHV) as an internal control (IC) and evaluate whether this adapted assay required the nucleic acid extraction step for predominantly genital swabs. First 313 non-extracted and extracted swabs were tested in parallel with the existing triplex HSV1/HSV2/VZV real-time PCR. The second stage involved testing 176 non-extracted swabs using a triplex real-time PCR for HSV1, HSV2, and PhHV and comparing the results with the samples extracted and tested by the original triplex assay. The results correlated well when the existing assay was used, with only three non-extracted samples that would have been reported as negative compared to the extracted sample result (Cq s 33, 39, 35-two samples HSV1, one sample HSV2). In the evaluation using the adapted assay containing the IC, two of 176 samples were discordant, where a HSV negative non-extracted sample result would have been reported differently to the extracted sample result (Cq s 32, 33-both HSV1). This study demonstrated that it is feasible to test non-extracted swabs for HSV in a real-time PCR that includes an IC. J. Med. Virol. 87: 125-129, 2015. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  2. Real-time ECG monitoring and arrhythmia detection using Android-based mobile devices.

    PubMed

    Gradl, Stefan; Kugler, Patrick; Lohmuller, Clemens; Eskofier, Bjoern

    2012-01-01

    We developed an application for Android™-based mobile devices that allows real-time electrocardiogram (ECG) monitoring and automated arrhythmia detection by analyzing ECG parameters. ECG data provided by pre-recorded files or acquired live by accessing a Shimmer™ sensor node via Bluetooth™ can be processed and evaluated. The application is based on the Pan-Tompkins algorithm for QRS-detection and contains further algorithm blocks to detect abnormal heartbeats. The algorithm was validated using the MIT-BIH Arrhythmia and MIT-BIH Supraventricular Arrhythmia databases. More than 99% of all QRS complexes were detected correctly by the algorithm. Overall sensitivity for abnormal beat detection was 89.5% with a specificity of 80.6%. The application is available for download and may be used for real-time ECG-monitoring on mobile devices.

  3. Development and Validation of a Real-Time PCR Assay for Rapid Detection of Candida auris from Surveillance Samples

    PubMed Central

    Leach, L.; Zhu, Y.

    2017-01-01

    ABSTRACT Candida auris is an emerging multidrug-resistant yeast causing invasive health care-associated infection with high mortality worldwide. Rapid identification of C. auris is of primary importance for the implementation of public health measures to control the spread of infection. To achieve these goals, we developed and validated a TaqMan-based real-time PCR assay targeting the internal transcribed spacer 2 (ITS2) region of the ribosomal gene. The assay was highly specific, reproducible, and sensitive, with the detection limit of 1 C. auris CFU/PCR. The performance of the C. auris real-time PCR assay was evaluated by using 623 surveillance samples, including 365 patient swabs and 258 environmental sponges. Real-time PCR yielded positive results from 49 swab and 58 sponge samples, with 89% and 100% clinical sensitivity with regard to their respective culture-positive results. The real-time PCR also detected C. auris DNA from 1% and 12% of swab and sponge samples with culture-negative results, indicating the presence of dead or culture-impaired C. auris. The real-time PCR yielded results within 4 h of sample processing, compared to 4 to 14 days for culture, reducing turnaround time significantly. The new real-time PCR assay allows for accurate and rapid screening of C. auris and can increase effective control and prevention of this emerging multidrug-resistant fungal pathogen in health care facilities. PMID:29187562

  4. Diagnosis of aerobic vaginitis by quantitative real-time PCR.

    PubMed

    Rumyantseva, T A; Bellen, G; Savochkina, Y A; Guschin, A E; Donders, G G G

    2016-07-01

    To evaluate a real-time PCR-based technique to quantify bacteria associated with aerobic vaginitis (AV) as a potential test. Vaginal samples from 100 women were tested by wet-mount microscopy, gram stain and quantitative real-time PCR targeting Enterobacteriacea, Staphylococcus spp., Streptococcus spp., Enterococcus spp., Escherichia coli, Streptococcus agalactiae, S. aureus; Lactobacillus spp. AV diagnosis obtained by wet-mount microscopy was used as reference. Some level of AV was diagnosed in 23 (23.7 %) cases. Various concentrations of Enterobacteriacea, Staphylococcus spp., Streptococcus spp. were detected an all patients. Enterococcus spp. were detected in 76 (78.3 %) cases. Summarized concentrations of aerobes were tenfold higher in AV-positive compared to AV-negative cases [7.30lg vs 6.06lg (p = 0.02)]. Concentrations of aerobes in severe, moderate and light AV cases did not vary significantly (p = 0.14). Concentration of lactobacilli was 1000-fold lower in AV-positive cases compared to normal cases (5.3lg vs 8.3lg, p < 0.0001). Streptococcus spp. dominated in the majority of AV-positive cases [19/22 (86.4 %) samples]. The relation of high loads of aerobes to the low numbers of Lactobacilli are a reliable marker for the presence of AV and could substitute microscopy as a test. PCR may be a good standardized substitution for AV diagnosis in settings where well-trained microscopists are lacking.

  5. Genotyping of polyomavirus BK by Real Time PCR for VP1 gene.

    PubMed

    Gambarino, Stefano; Costa, Cristina; Astegiano, Sara; Piasentin, Elsa Alessio; Segoloni, Giuseppe P; Cavallo, Rossana; Bergallo, Massimiliano

    2011-10-01

    Polyomavirus BK latently persist in different sites, including the renourinary tract, and may reactivate causing nephropathy in renal transplant recipients or hemorrhagic cystitis in bone marrow recipients. Based on the sequence of the VP1 gene, four genotypes have been described, corresponding to the four serologically differentiated subtypes I-IV, with different prevalence and geographic distribution. In this study, the development and clinical validation of four different Real-Time PCR assays for the detection and discrimination of BKV genotypes as a substitute of DNA sequencing are described. 379 BK VP1 sequences, belonging to the main four genotypes, were aligned and "hot spots" of mutation specific for all the strains or isolates were identified. Specific primers and probes for the detection and discrimination of each genotype by four Real-Time PCR assays were designed and technically validated. Subsequently, the four Real-Time PCR assays were used to test 20 BK-positive urine specimens from renal transplant patients, and evidenced a prevalence of BK genotype I, as previously reported in Europe. Results were confirmed by sequencing. The availability of a rapid and simple genotyping method could be useful for the evaluation of BK genotypes prevalence and studies on the impact of the infecting genotype on viral biological behavior, pathogenic role, and immune evasion strategies.

  6. Rapid detection of Salmonella in pet food: design and evaluation of integrated methods based on real-time PCR detection.

    PubMed

    Balachandran, Priya; Friberg, Maria; Vanlandingham, V; Kozak, K; Manolis, Amanda; Brevnov, Maxim; Crowley, Erin; Bird, Patrick; Goins, David; Furtado, Manohar R; Petrauskene, Olga V; Tebbs, Robert S; Charbonneau, Duane

    2012-02-01

    Reducing the risk of Salmonella contamination in pet food is critical for both companion animals and humans, and its importance is reflected by the substantial increase in the demand for pathogen testing. Accurate and rapid detection of foodborne pathogens improves food safety, protects the public health, and benefits food producers by assuring product quality while facilitating product release in a timely manner. Traditional culture-based methods for Salmonella screening are laborious and can take 5 to 7 days to obtain definitive results. In this study, we developed two methods for the detection of low levels of Salmonella in pet food using real-time PCR: (i) detection of Salmonella in 25 g of dried pet food in less than 14 h with an automated magnetic bead-based nucleic acid extraction method and (ii) detection of Salmonella in 375 g of composite dry pet food matrix in less than 24 h with a manual centrifugation-based nucleic acid preparation method. Both methods included a preclarification step using a novel protocol that removes food matrix-associated debris and PCR inhibitors and improves the sensitivity of detection. Validation studies revealed no significant differences between the two real-time PCR methods and the standard U.S. Food and Drug Administration Bacteriological Analytical Manual (chapter 5) culture confirmation method.

  7. Real-Time Monitoring of Scada Based Control System for Filling Process

    NASA Astrophysics Data System (ADS)

    Soe, Aung Kyaw; Myint, Aung Naing; Latt, Maung Maung; Theingi

    2008-10-01

    This paper is a design of real-time monitoring for filling system using Supervisory Control and Data Acquisition (SCADA). The monitoring of production process is described in real-time using Visual Basic.Net programming under Visual Studio 2005 software without SCADA software. The software integrators are programmed to get the required information for the configuration screens. Simulation of components is expressed on the computer screen using parallel port between computers and filling devices. The programs of real-time simulation for the filling process from the pure drinking water industry are provided.

  8. Development, application, and results of routine monitoring of Marek's disease virus in broiler house dust using real-time quantitative PCR.

    PubMed

    Walkden-Brown, Stephen W; Islam, A F Aminul; Groves, Peter J; Rubite, Ambrosio; Sharpe, Sue M; Burgess, Susan K

    2013-06-01

    Results are presented from four studies between 2002 and 2011 into the feasibility of routinely monitoring Marek's disease virus serotype 1 (MDV-1) in broiler house dust using real-time quantitative PCR (qPCR) measurement. Study 1 on two farms showed that detection of MDV-1 occurred earlier on average in dust samples tested using qPCR than standard PCR and in spleen samples from five birds per shed assayed for MDV-1 by qPCR or standard PCR. DNA quality following extraction from dust had no effect on detection of MDV-1. Study 2 demonstrated that herpesvirus of turkeys (HVT) and MDV serotype 2 (MDV-2) in addition to MDV-1 could be readily amplified from commercial farm dust samples, often in mixtures. MDV-2 was detected in 11 of 20 samples despite the absence of vaccination with this serotype. Study 3 investigated the reproducibility and sensitivity of the qPCR test and the presence of inhibitors in the samples. Samples extracted and amplified in triplicate showed a high level of reproducibility except at very low levels of virus near the limit of detection. Mixing of samples prior to extraction provided results consistent with the proportions in the mixture. Tests for inhibition showed that if the template contained DNA in the range 0.5-20 ng/microl no inhibition of the reaction was detectable. The sensitivity of the tests in terms of viral copy number (VCN) per milligram of dust was calculated to be in the range 24-600 VCN/mg for MDV-1, 48-1200 VCN/mg for MDV-2, and 182-4560 VCN/mg for HVT. In study 4 the results of 1976 commercial tests carried out for one company were analyzed. Overall 23.1% of samples were positive for MDV-1, 26.1% in unvaccinated and 16.4% in vaccinated chickens. There was marked regional and temporal variation in the proportion of positive samples and the MDV-1 load. The tests were useful in formulating Marek's disease vaccination strategies. The number of samples submitted has increased recently, as has the incidence of positive samples

  9. Application of real-time PCR (qPCR) for characterization of microbial populations and type of milk in dairy food products.

    PubMed

    Agrimonti, Caterina; Bottari, Benedetta; Sardaro, Maria Luisa Savo; Marmiroli, Nelson

    2017-09-08

    Dairy foods represent an important sector of the food market for their nutritional qualities and their organoleptic characteristics, which are often linked to tradition and to region. These products are typically protected by labels such as PDO (Protected Designation of Origin) and PGI (Protected Geographical Indication). Real-time PCR (qPCR) is a fundamental tool in "Food Genomics;" a discipline concerned with the residual DNA in food, which, alongside traditional physical and chemical methods, is frequently used to determine product safety, quality and authenticity. Compared to conventional or "end-point" PCR, qPCR incorporates continuous monitoring of reaction progress, thereby enabling quantification of target DNA. This review describes qPCR applications to the analysis of microbiota, and to the identification of the animal species source of milk from which dairy products have been made. These are important aspects for ensuring safety and authenticity. The various applications of qPCR are discussed, as well as advantages and disadvantages in comparison with other analytical methods.

  10. A novel photoinduced electron transfer (PET) primer technique for rapid real-time PCR detection of Cryptosporidium spp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jothikumar, N., E-mail: jin2@cdc.gov; Hill, Vincent R.

    Highlights: •Uses a single-labeled fluorescent primer for real-time PCR. •The detection sensitivity of PET PCR was comparable to TaqMan PCR. •Melt curve analysis can be performed to confirm target amplicon production. •Conventional PCR primers can be converted to PET PCR primers. -- Abstract: We report the development of a fluorescently labeled oligonucleotide primer that can be used to monitor real-time PCR. The primer has two parts, the 3′-end of the primer is complimentary to the target and a universal 17-mer stem loop at the 5′-end forms a hairpin structure. A fluorescent dye is attached to 5′-end of either the forwardmore » or reverse primer. The presence of guanosine residues at the first and second position of the 3′ dangling end effectively quenches the fluorescence due to the photo electron transfer (PET) mechanism. During the synthesis of nucleic acid, the hairpin structure is linearized and the fluorescence of the incorporated primer increases several-fold due to release of the fluorescently labeled tail and the absence of guanosine quenching. As amplicons are synthesized during nucleic acid amplification, the fluorescence increase in the reaction mixture can be measured with commercially available real-time PCR instruments. In addition, a melting procedure can be performed to denature the double-stranded amplicons, thereby generating fluorescence peaks that can differentiate primer dimers and other non-specific amplicons if formed during the reaction. We demonstrated the application of PET-PCR for the rapid detection and quantification of Cryptosporidium parvum DNA. Comparison with a previously published TaqMan® assay demonstrated that the two real-time PCR assays exhibited similar sensitivity for a dynamic range of detection of 6000–0.6 oocysts per reaction. PET PCR primers are simple to design and less-expensive than dual-labeled probe PCR methods, and should be of interest for use by laboratories operating in resource

  11. Development of real-time PCR for detection and quantitation of Streptococcus parauberis.

    PubMed

    Nguyen, T L; Lim, Y J; Kim, D-H; Austin, B

    2016-01-01

    Streptococcus parauberis is an increasing threat to aquaculture of olive flounder, Paralichthys olivaceus Temminck & Schlegel, in South Korea. We developed a real-time polymerase chain reaction (PCR) method using the TaqMan probe assay to detect and quantify S. parauberis by targeting the gyrB gene sequences, which are effective for molecular analysis of the genus Streptococcus. Our real-time PCR assay is capable of detecting 10 fg of genomic DNA per reaction. The intra- and interassay coefficient of variation (CV) values ranged from 0.42-1.95%, demonstrating that the assay has good reproducibility. There was not any cross-reactivity to Streptococcus iniae or to other streptococcal/lactococcal fish pathogens, such as S. agalactiae and Lactococcus garvieae, indicating that the assay is highly specific to S. parauberis. The results of the real-time PCR assay corresponded well to those of conventional culture assays for S. parauberis from inoculated tissue homogenates (r = 0.957; P < 0.05). Hence, this sensitive and specific real-time PCR is a valuable tool for diagnostic quantitation of S. parauberis in clinical samples. © 2014 John Wiley & Sons Ltd.

  12. Detection and Differentiation of Leishmania spp. in Clinical Specimens by Use of a SYBR Green-Based Real-Time PCR Assay.

    PubMed

    de Almeida, Marcos E; Koru, Ozgur; Steurer, Francis; Herwaldt, Barbara L; da Silva, Alexandre J

    2017-01-01

    Leishmaniasis in humans is caused by Leishmania spp. in the subgenera Leishmania and Viannia Species identification often has clinical relevance. Until recently, our laboratory relied on conventional PCR amplification of the internal transcribed spacer 2 (ITS2) region (ITS2-PCR) followed by sequencing analysis of the PCR product to differentiate Leishmania spp. Here we describe a novel real-time quantitative PCR (qPCR) approach based on the SYBR green technology (LSG-qPCR), which uses genus-specific primers that target the ITS1 region and amplify DNA from at least 10 Leishmania spp., followed by analysis of the melting temperature (T m ) of the amplicons on qPCR platforms (the Mx3000P qPCR system [Stratagene-Agilent] and the 7500 real-time PCR system [ABI Life Technologies]). We initially evaluated the assay by testing reference Leishmania isolates and comparing the results with those from the conventional ITS2-PCR approach. Then we compared the results from the real-time and conventional molecular approaches for clinical specimens from 1,051 patients submitted to the reference laboratory of the Centers for Disease Control and Prevention for Leishmania diagnostic testing. Specimens from 477 patients tested positive for Leishmania spp. with the LSG-qPCR assay, specimens from 465 of these 477 patients also tested positive with the conventional ITS2-PCR approach, and specimens from 10 of these 465 patients had positive results because of retesting prompted by LSG-qPCR positivity. On the basis of the T m values of the LSG-qPCR amplicons from reference and clinical specimens, we were able to differentiate four groups of Leishmania parasites: the Viannia subgenus in aggregate; the Leishmania (Leishmania) donovani complex in aggregate; the species L (L) tropica; and the species L (L) mexicana, L (L) amazonensis, L (L) major, and L (L) aethiopica in aggregate. Copyright © 2016 American Society for Microbiology.

  13. Development of Real-Time PCR to Monitor Groundwater Contaminated by Fecal Sources and Leachate from the Carcass

    NASA Astrophysics Data System (ADS)

    Park, S.; Kim, H.; Kim, M.; Lee, Y.; Han, J.

    2011-12-01

    The 2010 outbreak of foot and mouth disease (FMD) in South Korea caused about 4,054 carcass burial sites to dispose the carcasses. Potential environmental impacts by leachate of carcass on groundwater have been issued and it still needs to be studied. Therefore, we tried to develop robust and sensitive tool to immediately determine a groundwater contamination by the leachate from carcass burial. For tracking both an agricultural fecal contamination source and the leachate in groundwater, competitive real-time PCR and PCR method were developed using various PCR primer sets designed to detect E. Coli uidA gene and mtDNA(cytochrome B, cytB) of the animal species such as ovine, porcine, caprine, and bovine. The designed methods were applied to tract the animal species in livestock wastewater and leachate of carcass under appropriate PCR or real-time PCR condition. In the result, mtDNA primer sets for individual (Cow or Pig) and multiple (Cow and Pig) amplification, and E. Coli uidA primers for fecal source amplification were specific and sensitive to target genes. To determine contamination source, concentration of amplified mtDNA and uidA was competitively quantified in Livestock wastewater, leachate of carcass, and groundwater. The highest concentration of mtDNA and uidA showed in leachate of carcass and livestock wastewater, respectively. Groundwater samples possibly contaminated by leachate of carcass were analyzed by this assay and it was able to prove contamination source.

  14. Real-time volcano monitoring using GNSS single-frequency receivers

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Woo; Yun, Sung-Hyo; Kim, Do Hyeong; Lee, Dukkee; Lee, Young J.; Schutz, Bob E.

    2015-12-01

    We present a real-time volcano monitoring strategy that uses the Global Navigation Satellite System (GNSS), and we examine the performance of the strategy by processing simulated and real data and comparing the results with published solutions. The cost of implementing the strategy is reduced greatly by using single-frequency GNSS receivers except for one dual-frequency receiver that serves as a base receiver. Positions of the single-frequency receivers are computed relative to the base receiver on an epoch-by-epoch basis using the high-rate double-difference (DD) GNSS technique, while the position of the base station is fixed to the values obtained with a deferred-time precise point positioning technique and updated on a regular basis. Since the performance of the single-frequency high-rate DD technique depends on the conditions of the ionosphere over the monitoring area, the ionospheric total electron content is monitored using the dual-frequency data from the base receiver. The surface deformation obtained with the high-rate DD technique is eventually processed by a real-time inversion filter based on the Mogi point source model. The performance of the real-time volcano monitoring strategy is assessed through a set of tests and case studies, in which the data recorded during the 2007 eruption of Kilauea and the 2005 eruption of Augustine are processed in a simulated real-time mode. The case studies show that the displacement time series obtained with the strategy seem to agree with those obtained with deferred-time, dual-frequency approaches at the level of 10-15 mm. Differences in the estimated volume change of the Mogi source between the real-time inversion filter and previously reported works were in the range of 11 to 13% of the maximum volume changes of the cases examined.

  15. Development and Validation of a Real-Time PCR Assay for Rapid Detection of Candida auris from Surveillance Samples.

    PubMed

    Leach, L; Zhu, Y; Chaturvedi, S

    2018-02-01

    Candida auris is an emerging multidrug-resistant yeast causing invasive health care-associated infection with high mortality worldwide. Rapid identification of C. auris is of primary importance for the implementation of public health measures to control the spread of infection. To achieve these goals, we developed and validated a TaqMan-based real-time PCR assay targeting the internal transcribed spacer 2 ( ITS 2) region of the ribosomal gene. The assay was highly specific, reproducible, and sensitive, with the detection limit of 1 C. auris CFU/PCR. The performance of the C. auris real-time PCR assay was evaluated by using 623 surveillance samples, including 365 patient swabs and 258 environmental sponges. Real-time PCR yielded positive results from 49 swab and 58 sponge samples, with 89% and 100% clinical sensitivity with regard to their respective culture-positive results. The real-time PCR also detected C. auris DNA from 1% and 12% of swab and sponge samples with culture-negative results, indicating the presence of dead or culture-impaired C. auris The real-time PCR yielded results within 4 h of sample processing, compared to 4 to 14 days for culture, reducing turnaround time significantly. The new real-time PCR assay allows for accurate and rapid screening of C. auris and can increase effective control and prevention of this emerging multidrug-resistant fungal pathogen in health care facilities. Copyright © 2018 Leach et al.

  16. A first near real-time seismology-based landquake monitoring system.

    PubMed

    Chao, Wei-An; Wu, Yih-Min; Zhao, Li; Chen, Hongey; Chen, Yue-Gau; Chang, Jui-Ming; Lin, Che-Min

    2017-03-02

    Hazards from gravity-driven instabilities on hillslope (termed 'landquake' in this study) are an important problem facing us today. Rapid detection of landquake events is crucial for hazard mitigation and emergency response. Based on the real-time broadband data in Taiwan, we have developed a near real-time landquake monitoring system, which is a fully automatic process based on waveform inversion that yields source information (e.g., location and mechanism) and identifies the landquake source by examining waveform fitness for different types of source mechanisms. This system has been successfully tested offline using seismic records during the passage of the 2009 Typhoon Morakot in Taiwan and has been in online operation during the typhoon season in 2015. In practice, certain levels of station coverage (station gap < 180°), signal-to-noise ratio (SNR ≥ 5.0), and a threshold of event size (volume >10 6  m 3 and area > 0.20 km 2 ) are required to ensure good performance (fitness > 0.6 for successful source identification) of the system, which can be readily implemented in other places in the world with real-time seismic networks and high landquake activities.

  17. A first near real-time seismology-based landquake monitoring system

    PubMed Central

    Chao, Wei-An; Wu, Yih-Min; Zhao, Li; Chen, Hongey; Chen, Yue-Gau; Chang, Jui-Ming; Lin, Che-Min

    2017-01-01

    Hazards from gravity-driven instabilities on hillslope (termed ‘landquake’ in this study) are an important problem facing us today. Rapid detection of landquake events is crucial for hazard mitigation and emergency response. Based on the real-time broadband data in Taiwan, we have developed a near real-time landquake monitoring system, which is a fully automatic process based on waveform inversion that yields source information (e.g., location and mechanism) and identifies the landquake source by examining waveform fitness for different types of source mechanisms. This system has been successfully tested offline using seismic records during the passage of the 2009 Typhoon Morakot in Taiwan and has been in online operation during the typhoon season in 2015. In practice, certain levels of station coverage (station gap < 180°), signal-to-noise ratio (SNR ≥ 5.0), and a threshold of event size (volume >106 m3 and area > 0.20 km2) are required to ensure good performance (fitness > 0.6 for successful source identification) of the system, which can be readily implemented in other places in the world with real-time seismic networks and high landquake activities. PMID:28252039

  18. Microbial Monitoring of Common Opportunistic Pathogens by Comparing Multiple Real-Time PCR Platforms for Potential Space Applications

    NASA Technical Reports Server (NTRS)

    Oubre, Cherie M.; Birmele, Michele N.; Castro, Victoria A.; Venkateswaran, Kasthuri J.; Vaishampayan, Parag A.; Jones, Kathy U.; Singhal, Adesh; Johnston, Angela S.; Roman, Monserrate C.; Ozbolt, Tamra A.; hide

    2013-01-01

    Because the International Space Station is a closed environment with rotations of astronauts and equipment that each introduce their own microbial flora, it is necessary to monitor the air, surfaces, and water for microbial contamination. Current microbial monitoring includes labor- and time-intensive methods to enumerate total bacterial and fungal cells, with limited characterization, during in-flight testing. Although this culture-based method is sufficient for monitoring the International Space Station, on future long-duration missions more detailed characterization will need to be performed during flight, as sample return and ground characterization may not be available. At a workshop held in 2011 at NASA's Johnson Space Center to discuss alternative methodologies and technologies suitable for microbial monitoring for these long-term exploration missions, molecular-based methodologies such as polymerase chain reaction (PCR) were recommended. In response, a multi-center (Marshall Space Flight Center, Johnson Space Center, Jet Propulsion Laboratory, and Kennedy Space Center) collaborative research effort was initiated to explore novel commercial-off-the-shelf hardware options for space flight environmental monitoring. The goal was to evaluate quantitative or semi-quantitative PCR approaches for low-cost in-flight rapid identification of microorganisms that could affect crew safety. The initial phase of this project identified commercially available platforms that could be minimally modified to perform nominally in microgravity. This phase was followed by proof-of-concept testing of the highest qualifying candidates with a universally available challenge organism, Salmonella enterica. The analysis identified two technologies that were able to perform sample-to-answer testing with initial cell sample concentrations between 50 and 400 cells. In addition, the commercial systems were evaluated for initial flight safety and readiness.

  19. New multiplex real-time PCR approach to detect gene mutations for spinal muscular atrophy.

    PubMed

    Liu, Zhidai; Zhang, Penghui; He, Xiaoyan; Liu, Shan; Tang, Shi; Zhang, Rong; Wang, Xinbin; Tan, Junjie; Peng, Bin; Jiang, Li; Hong, Siqi; Zou, Lin

    2016-08-17

    Spinal muscular atrophy (SMA) is the most common autosomal recessive disease in children, and the diagnosis is complicated and difficult, especially at early stage. Early diagnosis of SMA is able to improve the outcome of SMA patients. In our study, Real-time PCR was developed to measure the gene mutation or deletion of key genes for SMA and to further analyse genotype-phenotype correlation. The multiple real-time PCR for detecting the mutations of survival of motor neuron (SMN), apoptosis inhibitory protein (NAIP) and general transcription factor IIH, polypeptide 2 gene (GTF2H2) was established and confirmed by DNA sequencing and multiplex ligation-dependent probe amplification (MLPA). The diagnosis and prognosis of 141 hospitalized children, 100 normal children and further 2000 cases of dry blood spot (DBS) samples were analysed by this multiple real-time PCR. The multiple real-time PCR was established and the accuracy of it to detect the mutations of SMN, NAIP and GTF2H2 was at least 98.8 % comparing with DNA sequencing and MLPA. Among 141 limb movement disorders children, 75 cases were SMA. 71 cases of SMA (94.67 %) were with SMN c.840 mutation, 9 cases (12 %) with NAIP deletion and 3 cases (4 %) with GTF2H2 deletion. The multiple real-time PCR was able to diagnose and predict the prognosis of SMA patients. Simultaneously, the real-time PCR was applied to detect trace DNA from DBS and able to make an early diagnosis of SMA. The clinical and molecular characteristics of SMA in Southwest of China were presented. Our work provides a novel way for detecting SMA in children by using real-time PCR and the potential usage in newborn screening for early diagnosis of SMA.

  20. Wide-area, real-time monitoring and visualization system

    DOEpatents

    Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

    2013-03-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  1. Wide-area, real-time monitoring and visualization system

    DOEpatents

    Budhraja, Vikram S [Los Angeles, CA; Dyer, James D [La Mirada, CA; Martinez Morales, Carlos A [Upland, CA

    2011-11-15

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  2. A cost effective real-time PCR for the detection of adenovirus from viral swabs

    PubMed Central

    2013-01-01

    Compared to traditional testing strategies, nucleic acid amplification tests such as real-time PCR offer many advantages for the detection of human adenoviruses. However, commercial assays are expensive and cost prohibitive for many clinical laboratories. To overcome fiscal challenges, a cost effective strategy was developed using a combination of homogenization and heat treatment with an “in-house” real-time PCR. In 196 swabs submitted for adenovirus detection, this crude extraction method showed performance characteristics equivalent to viral DNA obtained from a commercial nucleic acid extraction. In addition, the in-house real-time PCR outperformed traditional testing strategies using virus culture, with sensitivities of 100% and 69.2%, respectively. Overall, the combination of homogenization and heat treatment with a sensitive in-house real-time PCR provides accurate results at a cost comparable to viral culture. PMID:23758993

  3. Quantitative Real-Time PCR using the Thermo Scientific Solaris qPCR Assay

    PubMed Central

    Ogrean, Christy; Jackson, Ben; Covino, James

    2010-01-01

    The Solaris qPCR Gene Expression Assay is a novel type of primer/probe set, designed to simplify the qPCR process while maintaining the sensitivity and accuracy of the assay. These primer/probe sets are pre-designed to >98% of the human and mouse genomes and feature significant improvements from previously available technologies. These improvements were made possible by virtue of a novel design algorithm, developed by Thermo Scientific bioinformatics experts. Several convenient features have been incorporated into the Solaris qPCR Assay to streamline the process of performing quantitative real-time PCR. First, the protocol is similar to commonly employed alternatives, so the methods used during qPCR are likely to be familiar. Second, the master mix is blue, which makes setting the qPCR reactions easier to track. Third, the thermal cycling conditions are the same for all assays (genes), making it possible to run many samples at a time and reducing the potential for error. Finally, the probe and primer sequence information are provided, simplifying the publication process. Here, we demonstrate how to obtain the appropriate Solaris reagents using the GENEius product search feature found on the ordering web site (www.thermo.com/solaris) and how to use the Solaris reagents for performing qPCR using the standard curve method. PMID:20567213

  4. High resolution TaqMan real-time PCR approach to detect hazelnut DNA encoding for ITS rDNA in foods.

    PubMed

    López-Calleja, Inés María; de la Cruz, Silvia; Pegels, Nicolette; González, Isabel; García, Teresa; Martín, Rosario

    2013-12-01

    A broad range of foods have been described as causing allergies, but the majority of allergic reactions can be ascribed to a limited number of food components. Recent extensive surveys showed how tree nuts, particularly hazelnut (Corylus avellana L.) seeds, rank amongst the most important sources of food allergy. In order to protect the allergic consumer, efficient and reliable methods are required for the detection of allergenic ingredients. For this purpose, we have developed a real-time polymerase chain reaction (PCR) for detection of hazelnut in commercial food products. In this way a specific hazelnut primer pair based on the ITS marker (70 bp) and a nuclease (TaqMan) probe labelled with FAM and BHQ were designed. Sensibility of real-time PCR was determined by analysis of raw and heat treated hazelnut-wheat flour mixtures with a range of detection of 0.1-100,000 ppm. Practical applicability of the real-time PCR assay developed for determining hazelnut in different food matrices was investigated by analyzing 179 commercial foodstuffs comprising snacks, biscuits, chocolates, bonbons, creams, nut bars, ice creams, precooked meals, breads, beverages, yogurts, cereals, meat products, rice cake and nougat. From the total of samples analyzed, 40 commercial food products that didn't declare hazelnut nor traces on the label were found to contain hazelnut. The real-time PCR method proposed herein due to its high sensitivity facilitates the detection of hazelnut traces in commercial food products and can also be useful for monitoring the effectiveness of cleaning processes and as consequence, can help to prevent the food allergic consumer from unintentional ingestion of hidden allergens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Next day Salmonella spp. detection method based on real-time PCR for meat, dairy and vegetable food products.

    PubMed

    Rodriguez-Lazaro, David; Gonzalez-García, Patricia; Delibato, Elisabetta; De Medici, Dario; García-Gimeno, Rosa Maria; Valero, Antonio; Hernandez, Marta

    2014-08-01

    The microbiological standard for detection of Salmonella relies on several cultural steps and requires more than 5 days for final confirmation, and as consequence there is a need for an alternative rapid methodology for its detection. The aim of this study was to compare different detection strategies based on real-time PCR for a rapid and sensitive detection in an ample range of food products: raw pork and poultry meat, ready to eat lettuce salad and raw sheep milk cured cheese. Three main parameters were evaluated to reduce the time and cost for final results: the initial sample size (25 and 50 g), the incubation times (6, 10 and 18 h) and the bacterial DNA extraction (simple boiling of the culture after washing the bacterial pellet, the use of the Chelex resin, and a commercial silica column). The results obtained demonstrate that a combination of an incubation in buffered peptone water for 18 h of a 25 g-sample coupled to a DNA extraction by boiling and a real-time PCR assay detected down to 2-4 Salmonella spp.CFU per sample in less than 21 h in different types of food products. This RTi-PCR-based method is fully compatible with the ISO standard, providing results more rapidly and cost-effectively. The results were confirmed in a large number of naturally contaminated food samples with at least the same analytical performance as the reference method. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Protein Analysis Using Real-Time PCR Instrumentation: Incorporation in an Integrated, Inquiry-Based Project

    ERIC Educational Resources Information Center

    Southard, Jonathan N.

    2014-01-01

    Instrumentation for real-time PCR is used primarily for amplification and quantitation of nucleic acids. The capability to measure fluorescence while controlling temperature in multiple samples can also be applied to the analysis of proteins. Conformational stability and changes in stability due to ligand binding are easily assessed. Protein…

  7. Real-Time PCR with an Internal Control for Detection of All Known Human Adenovirus Serotypes▿

    PubMed Central

    Damen, Marjolein; Minnaar, René; Glasius, Patricia; van der Ham, Alwin; Koen, Gerrit; Wertheim, Pauline; Beld, Marcel

    2008-01-01

    The “gold standard” for the diagnosis of adenovirus (AV) infection is virus culture, which is rather time-consuming. Especially for immunocompromised patients, in whom severe infections with AV have been described, rapid diagnosis is important. Therefore, an internally controlled AV real-time PCR assay detecting all known human AV serotypes was developed. Primers were chosen from the hexon region, which is the most conserved region, and in order to cover all known serotypes, degenerate primers were used. The internal control (IC) DNA contained the same primer binding sites as the AV DNA control but had a shuffled probe region compared to the conserved 24-nucleotide consensus AV hexon probe region (the target). The IC DNA was added to the clinical sample in order to monitor extraction and PCR efficiency. The sensitivity and the linearity of the AV PCR were determined. For testing the specificity of this PCR assay for human AVs, a selection of 51 AV prototype strains and 66 patient samples positive for other DNA viruses were tested. Moreover, a comparison of the AV PCR method described herein with culture and antigen (Ag) detection was performed with a selection of 151 clinical samples. All 51 AV serotypes were detected in the selection of AV prototype strains. Concordant results from culture or Ag detection and PCR were found for 139 (92.1%) of 151 samples. In 12 cases (7.9%), PCR was positive while the culture was negative. In conclusion, a sensitive, internally controlled nonnested AV real-time PCR assay which is able to detect all known AV serotypes with higher sensitivity than a culture or Ag detection method was developed. PMID:18923006

  8. Enhanced analysis of real-time PCR data by using a variable efficiency model: FPK-PCR

    PubMed Central

    Lievens, Antoon; Van Aelst, S.; Van den Bulcke, M.; Goetghebeur, E.

    2012-01-01

    Current methodology in real-time Polymerase chain reaction (PCR) analysis performs well provided PCR efficiency remains constant over reactions. Yet, small changes in efficiency can lead to large quantification errors. Particularly in biological samples, the possible presence of inhibitors forms a challenge. We present a new approach to single reaction efficiency calculation, called Full Process Kinetics-PCR (FPK-PCR). It combines a kinetically more realistic model with flexible adaptation to the full range of data. By reconstructing the entire chain of cycle efficiencies, rather than restricting the focus on a ‘window of application’, one extracts additional information and loses a level of arbitrariness. The maximal efficiency estimates returned by the model are comparable in accuracy and precision to both the golden standard of serial dilution and other single reaction efficiency methods. The cycle-to-cycle changes in efficiency, as described by the FPK-PCR procedure, stay considerably closer to the data than those from other S-shaped models. The assessment of individual cycle efficiencies returns more information than other single efficiency methods. It allows in-depth interpretation of real-time PCR data and reconstruction of the fluorescence data, providing quality control. Finally, by implementing a global efficiency model, reproducibility is improved as the selection of a window of application is avoided. PMID:22102586

  9. Application of real-time PCR and melting curve analysis in rapid Diego blood group genotyping.

    PubMed

    Novaretti, M C Z; Ruiz, A S; Dorlhiac-Llacer, P E; Chamone, D A F

    2010-01-01

    The paucity of appropriate reagents for serologic typing of the Diego blood group antigens has prompted the development of a real-time PCR and melting curve analysis for Diego blood group genotyping. In this study, we phenotyped 4326 donor blood samples for Di(a) using semiautomated equipment. All 157 Di(a+) samples were then genotyped by PCR using sequence-specific primers (PCR-SSP) for DI*02 because of anti-Di(b) scarcity. Of the 4326 samples, we simultaneously tested 160 samples for Di(a) and Di(b) serology, and DI*01 and DI*02 by PCR-SSP and by real-time PCR. We used the same primers for Diego genotyping by real-time PCR and PCR-SSP. Melting curve profiles obtained using the dissociation software of the real-time PCR apparatus enabled the discrimination of Diego alleles. Of the total samples tested, 4169 blood donors, 96.4 percent (95% confidence interval [CI], 95.8-96.9%), were homozygous for DI*02 and 157, 3.6 percent (95% CI, 3.1%-4.2%), were heterozygous DI*01/02. No blood donor was found to be homozygous for DI*01 in this study. The calculated DI*01 and DI*02 allele frequencies were 0.0181 (95% CI, 0.0173-0.0189) and 0.9819 (95% CI, 0.9791-0.9847), respectively, showing a good fit for the Hardy-Weinberg equilibrium. There was full concordance among Diego phenotype results by PCR-SSP and real-time PCR. DI*01 and DI*02 allele determination with SYBR Green I and thermal cycler technology are useful methods for Diego determination. The real-time PCR with SYBR Green I melting temperature protocol can be used as a rapid screening tool for DI*01 and DI*02 blood group genotyping.

  10. Rapid Quantitative Detection of Lactobacillus sakei in Meat and Fermented Sausages by Real-Time PCR

    PubMed Central

    Martín, Belén; Jofré, Anna; Garriga, Margarita; Pla, Maria; Aymerich, Teresa

    2006-01-01

    A quick and simple method for quantitative detection of Lactobacillus sakei in fermented sausages was successfully developed. It is based on Chelex-100-based DNA purification and real-time PCR enumeration using a TaqMan fluorescence probe. Primers and probes were designed in the L. sakei 16S-23S rRNA intergenic transcribed spacer region, and the assay was evaluated using L. sakei genomic DNA and an artificially inoculated sausage model. The detection limit of this technique was approximately 3 cells per reaction mixture using both purified DNA and the inoculated sausage model. The quantification limit was established at 30 cells per reaction mixture in both models. The assay was then applied to enumerate L. sakei in real samples, and the results were compared to the MRS agar count method followed by confirmation of the percentage of L. sakei colonies. The results obtained by real-time PCR were not statistically significantly different than those obtained by plate count on MRS agar (P > 0.05), showing a satisfactory agreement between both methods. Therefore, the real-time PCR assay developed can be considered a promising rapid alternative method for the quantification of L. sakei and evaluation of the implantation of starter strains of L. sakei in fermented sausages. PMID:16957227

  11. Rapid quantitative detection of Lactobacillus sakei in meat and fermented sausages by real-time PCR.

    PubMed

    Martín, Belén; Jofré, Anna; Garriga, Margarita; Pla, Maria; Aymerich, Teresa

    2006-09-01

    A quick and simple method for quantitative detection of Lactobacillus sakei in fermented sausages was successfully developed. It is based on Chelex-100-based DNA purification and real-time PCR enumeration using a TaqMan fluorescence probe. Primers and probes were designed in the L. sakei 16S-23S rRNA intergenic transcribed spacer region, and the assay was evaluated using L. sakei genomic DNA and an artificially inoculated sausage model. The detection limit of this technique was approximately 3 cells per reaction mixture using both purified DNA and the inoculated sausage model. The quantification limit was established at 30 cells per reaction mixture in both models. The assay was then applied to enumerate L. sakei in real samples, and the results were compared to the MRS agar count method followed by confirmation of the percentage of L. sakei colonies. The results obtained by real-time PCR were not statistically significantly different than those obtained by plate count on MRS agar (P > 0.05), showing a satisfactory agreement between both methods. Therefore, the real-time PCR assay developed can be considered a promising rapid alternative method for the quantification of L. sakei and evaluation of the implantation of starter strains of L. sakei in fermented sausages.

  12. [Multiplex real-time PCR method for rapid detection of Marburg virus and Ebola virus].

    PubMed

    Yang, Yu; Bai, Lin; Hu, Kong-Xin; Yang, Zhi-Hong; Hu, Jian-Ping; Wang, Jing

    2012-08-01

    Marburg virus and Ebola virus are acute infections with high case fatality rates. A rapid, sensitive detection method was established to detect Marburg virus and Ebola virus by multiplex real-time fluorescence quantitative PCR. Designing primers and Taqman probes from highly conserved sequences of Marburg virus and Ebola virus through whole genome sequences alignment, Taqman probes labeled by FAM and Texas Red, the sensitivity of the multiplex real-time quantitative PCR assay was optimized by evaluating the different concentrations of primers and Probes. We have developed a real-time PCR method with the sensitivity of 30.5 copies/microl for Marburg virus positive plasmid and 28.6 copies/microl for Ebola virus positive plasmids, Japanese encephalitis virus, Yellow fever virus, Dengue virus were using to examine the specificity. The Multiplex real-time PCR assays provide a sensitive, reliable and efficient method to detect Marburg virus and Ebola virus simultaneously.

  13. Multiplex PCR method for use in real-time PCR for identification of fish fillets from grouper (Epinephelus and Mycteroperca species) and common substitute species.

    PubMed

    Trotta, Michele; Schönhuth, Susana; Pepe, Tiziana; Cortesi, M Luisa; Puyet, Antonio; Bautista, José M

    2005-03-23

    Mitochondrial 16S rRNA sequences from morphological validated grouper (Epinephelus aeneus, E. caninus, E. costae, and E. marginatus; Mycteroperca fusca and M. rubra), Nile perch (Lates niloticus), and wreck fish (Polyprion americanus) were used to develop an analytical system for group diagnosis based on two alternative Polymerase Chain Reaction (PCR) approaches. The first includes conventional multiplex PCR in which electrophoretic migration of different sizes of bands allowed identification of the fish species. The second approach, involving real-time PCR, produced a single amplicon from each species that showed different Tm values allowing the fish groups to be directly identified. Real-time PCR allows the quick differential diagnosis of the three groups of species and high-throughput screening of multiple samples. Neither PCR system cross-reacted with DNA samples from 41 common marketed fish species, thus conforming to standards for species validation. The use of these two PCR-based methods makes it now possible to discriminate grouper from substitute fish species.

  14. Real-time PCR probe optimization using design of experiments approach.

    PubMed

    Wadle, S; Lehnert, M; Rubenwolf, S; Zengerle, R; von Stetten, F

    2016-03-01

    Primer and probe sequence designs are among the most critical input factors in real-time polymerase chain reaction (PCR) assay optimization. In this study, we present the use of statistical design of experiments (DOE) approach as a general guideline for probe optimization and more specifically focus on design optimization of label-free hydrolysis probes that are designated as mediator probes (MPs), which are used in reverse transcription MP PCR (RT-MP PCR). The effect of three input factors on assay performance was investigated: distance between primer and mediator probe cleavage site; dimer stability of MP and target sequence (influenza B virus); and dimer stability of the mediator and universal reporter (UR). The results indicated that the latter dimer stability had the greatest influence on assay performance, with RT-MP PCR efficiency increased by up to 10% with changes to this input factor. With an optimal design configuration, a detection limit of 3-14 target copies/10 μl reaction could be achieved. This improved detection limit was confirmed for another UR design and for a second target sequence, human metapneumovirus, with 7-11 copies/10 μl reaction detected in an optimum case. The DOE approach for improving oligonucleotide designs for real-time PCR not only produces excellent results but may also reduce the number of experiments that need to be performed, thus reducing costs and experimental times.

  15. Real-time PCR in detection and quantitation of Leishmania donovani for the diagnosis of Visceral Leishmaniasis patients and the monitoring of their response to treatment

    PubMed Central

    Ghosh, Prakash; Khan, Md. Anik Ashfaq; Duthie, Malcolm S.; Vallur, Aarthy C.; Picone, Alessandro; Howard, Randall F.; Reed, Steven G.

    2017-01-01

    Sustained elimination of Visceral Leishmaniasis (VL) requires the reduction and control of parasite reservoirs to minimize the transmission of Leishmania donovani infection. A simple, reproducible and definitive diagnostic procedure is therefore indispensable for the early and accurate detection of parasites in VL, Relapsed VL (RVL) and Post Kala-azar Dermal Leishmaniasis (PKDL) patients, all of whom are potential reservoirs of Leishmania parasites. To overcome the limitations of current diagnostic approaches, a novel quantitative real-time polymerase chain reaction (qPCR) method based on Taqman chemistry was devised for the detection and quantification of L. donovani in blood and skin. The diagnostic efficacy was evaluated using archived peripheral blood buffy coat DNA from 40 VL, 40 PKDL, 10 RVL, 20 cured VL, and 40 cured PKDL along with 10 tuberculosis (TB) cases and 80 healthy endemic controls. Results were compared to those obtained using a Leishmania-specific nested PCR (Ln-PCR). The real time PCR assay was 100% (95% CI, 91.19–100%) sensitive in detecting parasite genomes in VL and RVL samples and 85.0% (95% CI, 70.16–94.29%) sensitive for PKDL samples. In contrast, the sensitivity of Ln-PCR was 77.5% (95% CI, 61.55–89.16%) for VL samples, 100% (95%CI, 69.15–100%) for RVL samples, and 52.5% (95% CI, 36.13–68.49%) for PKDL samples. There was significant discordance between the two methods with the overall sensitivity of the qPCR assay being considerably higher than Ln-PCR. None of the assay detected L. donovani DNA in buffy coats from cured VL cases, and reduced infectious burdens were demonstrated in cured PKDL cases who remained positive in 7.5% (3/40) and 2.5% (1/40) cases by real-time PCR and Ln-PCR, respectively. Both assays were 100% (95% CI, 95.98–100) specific with no positive signals in either endemic healthy control or TB samples. The real time PCR assay we developed offers a molecular tool for accurate detection of circulating L

  16. Sequence Optimized Real-Time RT-PCR Assay for Detection of Crimean-Congo Hemorrhagic Fever Virus

    DTIC Science & Technology

    2017-03-21

    19-23]. Real-56 time reverse-transcription PCR remains the gold standard for quantitative , sensitive, and specific 57 detection of CCHFV; however...five-fold in two different series , and samples were run by real- time RT-PCR 116 in triplicate. The preliminary LOD was the lowest RNA dilution where...1 Sequence optimized real- time RT-PCR assay for detection of Crimean-Congo hemorrhagic fever 1 virus 2 3 JW Koehler1, KL Delp1, AT Hall1, SP

  17. Identification of six Listeria species by real-time PCR assay.

    PubMed

    Hage, E; Mpamugo, O; Ohai, C; Sapkota, S; Swift, C; Wooldridge, D; Amar, C F L

    2014-06-01

    The Listeria genus comprises 10 recognized species. Listeria monocytogenes causes listeriosis in humans and other animals primarily via contaminated food or animal feed. Listeria ivanovii causes listeriosis in animals and on rare occasions in humans. The identification of nonpathogenic species of Listeria in foods indicates that conditions exist that support the growth of pathogenic strains and is used to facilitate the implementation of control and prevention measures. This study shows the development and evaluation of a 5'exonuclease real-time PCR assay for the rapid identification of Listeria seeligeri, Listeria welshimeri, L. monocytogenes, L. ivanovii, Listeria grayi and Listeria innocua. The assay consists of two triplexes that were evaluated using 53 cultures of Gram-positive bacteria, including 49 Listeria spp. from human, animal, food or food-processing environments. The assay was rapid, specific and reproducible and could identify each of the six species from a mixture of strains. The developed assay proved to be a powerful means of rapidly identifying Listeria species and could be usefully implemented in busy specialist reference laboratories. The identification of species of Listeria from foods is important to monitor pathogenic strains and facilitates the implementation of control measures. This study shows the development and evaluation of a 5'exonuclease real-time PCR assay for the rapid identification of L. seeligeri, L. welshimeri, L. monocytogenes and L. ivanovii, L. grayi, L. innocua. The developed assay proved to be specific, rapid and reproducible and therefore could be implemented in busy specialist reference laboratories. © 2014 The Society for Applied Microbiology.

  18. Attention focussing and anomaly detection in real-time systems monitoring

    NASA Technical Reports Server (NTRS)

    Doyle, Richard J.; Chien, Steve A.; Fayyad, Usama M.; Porta, Harry J.

    1993-01-01

    In real-time monitoring situations, more information is not necessarily better. When faced with complex emergency situations, operators can experience information overload and a compromising of their ability to react quickly and correctly. We describe an approach to focusing operator attention in real-time systems monitoring based on a set of empirical and model-based measures for determining the relative importance of sensor data.

  19. 17 CFR 38.157 - Real-time market monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 1 2014-04-01 2014-04-01 false Real-time market monitoring... DESIGNATED CONTRACT MARKETS Compliance With Rules § 38.157 Real-time market monitoring. A designated contract market must conduct real-time market monitoring of all trading activity on its electronic trading...

  20. 17 CFR 38.157 - Real-time market monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DESIGNATED CONTRACT MARKETS Compliance With Rules § 38.157 Real-time market monitoring. A designated contract market must conduct real-time market monitoring of all trading activity on its electronic trading... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false Real-time market monitoring...

  1. Comparison of nested competitive RT-PCR and real-time RT-PCR for the detection and quantification of AML1/MTG8 fusion transcripts in t(8;21) positive acute myelogenous leukemia.

    PubMed

    Wattjes, M P; Krauter, J; Nagel, S; Heidenreich, O; Ganser, A; Heil, G

    2000-02-01

    The chromosomal translocation t(8;21)(q22;q22) is one of the most frequent karyotypic aberrations in acute myeloid leukemia (AML) and results in a chimeric fusion transcript AML1/MTG8. Since AML1/MTG8 fusion transcripts remain detectable by RT-PCR in t(8;21) AML patients in long-term hematological remission, quantitative assessment of AML1/MTG8 transcripts is necessary for the monitoring of minimal residual disease (MRD) in these patients. Competitive RT-PCR and recently real-time RT-PCR are increasingly used for detection and quantification of leukemia specific fusion transcripts. For the direct comparison of both methods we cloned a 42 bp DNA fragment into the original AML1/MTG8 sequence. The resulting molecule was used as an internal competitor for our novel competitive nested RT-PCR for AML1/MTG8 and as an external standard for the generation of AML1/MTG8 standard curves in a real-time PCR assay. Using this standard molecule for both PCR techniques, we compared their sensitivity, linearity and reproducibility. Both methods were comparable with regard to all parameters tested irrespective of analyzing serial dilutions of plasmids, cell lines or samples from t(8;21) positive AML patients at different stages of the disease. Therefore, both techniques can be recommended for the monitoring of MRD in these particular AML patients. However, the automatization of the real-time PCR technique offers some technical advantages.

  2. miRNome analysis using real-time PCR.

    PubMed

    Pontrelli, Paola; Accetturo, Matteo; Gesualdo, Loreto

    2014-01-01

    MicroRNAs (miRNAs) are short RNA molecules that regulate gene expression in eukaryotic organisms, thus influencing physiological mechanisms such as development, cell proliferation, cell death, and cell differentiation. The importance of the gene regulatory system operated by miRNAs is emerging as a central topic in the setting of several diseases included infectious disease and cancer. The different techniques used for the study of the entire "miRNome" give the opportunity to go better inside these novel mechanisms of gene expression regulation. In the following method we describe a protocol based on quantitative real-time PCR (qRT-PCR) with SYBR(®) green technology, to specifically analyze the expression levels of only those miRNAs that target genes involved in CTLs biogenesis and functions. Through an in silico approach, we designed a custom microRNA qPCR panel focused on those miRNAs relevant in regulation of CTLs-specific pathways. The panel we created was customized by EXIQON, since this company proposed a method based on the use of LNA enhanced primers, which guarantee increased affinity and specificity for each microRNA. The advantage of this protocol with respect to a whole miRNome analysis consists in the possibility to evidence weaker signals that otherwise would be secreted and remove the noise itself generated by other miRNAs not directly involved in the regulation of CTLs-specific pathways. This panel can be applicable in the study of CTLs behavior in pathological conditions such as infectious disease and cancer or can be used to characterize changes in patients' immune responsiveness after therapeutic intervention in order to understand the molecular mechanisms underlying these effects.

  3. A Java program for LRE-based real-time qPCR that enables large-scale absolute quantification.

    PubMed

    Rutledge, Robert G

    2011-03-02

    Linear regression of efficiency (LRE) introduced a new paradigm for real-time qPCR that enables large-scale absolute quantification by eliminating the need for standard curves. Developed through the application of sigmoidal mathematics to SYBR Green I-based assays, target quantity is derived directly from fluorescence readings within the central region of an amplification profile. However, a major challenge of implementing LRE quantification is the labor intensive nature of the analysis. Utilizing the extensive resources that are available for developing Java-based software, the LRE Analyzer was written using the NetBeans IDE, and is built on top of the modular architecture and windowing system provided by the NetBeans Platform. This fully featured desktop application determines the number of target molecules within a sample with little or no intervention by the user, in addition to providing extensive database capabilities. MS Excel is used to import data, allowing LRE quantification to be conducted with any real-time PCR instrument that provides access to the raw fluorescence readings. An extensive help set also provides an in-depth introduction to LRE, in addition to guidelines on how to implement LRE quantification. The LRE Analyzer provides the automated analysis and data storage capabilities required by large-scale qPCR projects wanting to exploit the many advantages of absolute quantification. Foremost is the universal perspective afforded by absolute quantification, which among other attributes, provides the ability to directly compare quantitative data produced by different assays and/or instruments. Furthermore, absolute quantification has important implications for gene expression profiling in that it provides the foundation for comparing transcript quantities produced by any gene with any other gene, within and between samples.

  4. Agreement Rate of Rapid Urease Test, Conventional PCR, and Scorpion Real-Time PCR in Detecting Helicobacter Pylori from Tonsillar Samples of Patients with Chronic Tonsillitis

    PubMed Central

    Najafipour, Reza; Farivar, Taghi Naserpour; Pahlevan, Ali Akbar; Johari, Pouran; Safdarian, Farshid; Asefzadeh, Mina

    2012-01-01

    Background: Helicobacter pylori is capable of inducing systemic inflammatory reactions through immunological processes. There are several methods to identify the presence of H. pylori in clinical samples including rapid urease test (RUT), conventional polymerase chain reaction (PCR), and the Scorpion real-time PCR. Aim: The aim of the present study is to compare the agreement rate of these tests in identifying H. pylori in tonsillar biopsy specimens collected from patients with chronic tonsillitis. Materials and Methods: A total of 103 tonsil biopsy samples from patients with clinical signs of chronic tonsillitis were examined with RUT, PCR, and Scorpion real-time PCR. The degree of agreement between the three tests was later calculated. Results: There was a poor degree of agreement between RUT and PCR and also RUT and Scorpion real-time PCR (Kappa=0.269 and 0.249, respectively). In contrast with RUT, there was a strong degree of agreement between PCR and Scorpion real-time PCR (Kappa=0.970). Conclusion: The presence of a strong agreement between the Scorpion real-time PCR and PCR as well as its technical advantage over the conventional PCR assay, made the Scorpion real-time PCR an appropriate laboratory test to investigate the presence of H. pylori in tonsillar biopsy specimens in patients suffering from chronic tonsillitis. PMID:22754245

  5. Protocol for the use of light upon extension real-time PCR for the determination of viral load in HBV infection.

    PubMed

    Li, Guimin; Li, Wangfeng; Liu, Lixia

    2012-01-01

    Real-time PCR has engendered wide acceptance for quantitation of hepatitis B virus (HBV) DNA in the blood due to its improved rapidity, sensitivity, reproducibility, and reduced contamination. Here we describe a cost-effective and highly sensitive HBV real-time quantitative assay based on the light upon extension real-time PCR platform and a simple and reliable HBV DNA preparation method using silica-coated magnetic beads.

  6. Rapid and accurate identification by real-time PCR of biotoxin-producing dinoflagellates from the family gymnodiniaceae.

    PubMed

    Smith, Kirsty F; de Salas, Miguel; Adamson, Janet; Rhodes, Lesley L

    2014-03-07

    The identification of toxin-producing dinoflagellates for monitoring programmes and bio-compound discovery requires considerable taxonomic expertise. It can also be difficult to morphologically differentiate toxic and non-toxic species or strains. Various molecular methods have been used for dinoflagellate identification and detection, and this study describes the development of eight real-time polymerase chain reaction (PCR) assays targeting the large subunit ribosomal RNA (LSU rRNA) gene of species from the genera Gymnodinium, Karenia, Karlodinium, and Takayama. Assays proved to be highly specific and sensitive, and the assay for G. catenatum was further developed for quantification in response to a bloom in Manukau Harbour, New Zealand. The assay estimated cell densities from environmental samples as low as 0.07 cells per PCR reaction, which equated to three cells per litre. This assay not only enabled conclusive species identification but also detected the presence of cells below the limit of detection for light microscopy. This study demonstrates the usefulness of real-time PCR as a sensitive and rapid molecular technique for the detection and quantification of micro-algae from environmental samples.

  7. Dual-probe real-time PCR assay for detection of variola or other orthopoxviruses with dried reagents.

    PubMed

    Aitichou, Mohamed; Saleh, Sharron; Kyusung, Park; Huggins, John; O'Guinn, Monica; Jahrling, Peter; Ibrahim, Sofi

    2008-11-01

    A real-time, multiplexed polymerase chain reaction (PCR) assay based on dried PCR reagents was developed. Only variola virus could be specifically detected by a FAM (6-carboxyfluorescein)-labeled probe while camelpox, cowpox, monkeypox and vaccinia viruses could be detected by a TET (6-carboxytetramethylrhodamine)-labeled probe in a single PCR reaction. Approximately 25 copies of cloned variola virus DNA and 50 copies of genomic orthopoxviruses DNA could be detected with high reproducibility. The assay exhibited a dynamic range of seven orders of magnitude with a correlation coefficient value greater than 0.97. The sensitivity and specificity of the assay, as determined from 100 samples that contained nucleic acids from a multitude of bacterial and viral species were 96% and 98%, respectively. The limit of detection, sensitivity and specificity of the assay were comparable to standard real-time PCR assays with wet reagents. Employing a multiplexed format in this assay allows simultaneous discrimination of the variola virus from other closely related orthopoxviruses. Furthermore, the implementation of dried reagents in real-time PCR assays is an important step towards simplifying such assays and allowing their use in areas where cold storage is not easily accessible.

  8. An Affordable and Portable Thermocycler for Real-Time PCR Made of 3D-Printed Parts and Off-the-Shelf Electronics.

    PubMed

    Mendoza-Gallegos, Roberto A; Rios, Amelia; Garcia-Cordero, Jose L

    2018-05-01

    The polymerase chain reaction (PCR) is a sought-after nucleic acid amplification technique used in the detection of several diseases. However, one of the main limitations of this and other nucleic acid amplification assays is the complexity, size, maintenance, and cost of their operational instrumentation. This limits the use of PCR applications in settings that cannot afford the instruments but that may have access to basic electrical, electronic, and optical components and the expertise to build them. To provide a more accessible platform, we developed a low-cost, palm-size, and portable instrument to perform real-time PCR (qPCR). The thermocycler leverages a copper-sheathed power resistor and a computer fan, in tandem with basic electronic components controlled from a single-board computer. The instrument incorporates a 3D-printed chassis and a custom-made fluorescence optical setup based on a CMOS camera and a blue LED. Results are displayed in real-time on a tablet. We also fabricated simple acrylic microdevices consisting of four wells (2 μL in volume each) where PCR reactions take place. To test our instrument, we performed qPCR on a series of cDNA dilutions spanning 4 orders of magnitude, achieving similar limits of detection as those achieved by a benchtop thermocycler. We envision our instrument being utilized to enable routine monitoring and diagnosis of certain diseases in low-resource areas.

  9. Real Time Fire Reconnaissance Satellite Monitoring System Failure Model

    NASA Astrophysics Data System (ADS)

    Nino Prieto, Omar Ariosto; Colmenares Guillen, Luis Enrique

    2013-09-01

    In this paper the Real Time Fire Reconnaissance Satellite Monitoring System is presented. This architecture is a legacy of the Detection System for Real-Time Physical Variables which is undergoing a patent process in Mexico. The methodologies for this design are the Structured Analysis for Real Time (SA- RT) [8], and the software is carried out by LACATRE (Langage d'aide à la Conception d'Application multitâche Temps Réel) [9,10] Real Time formal language. The system failures model is analyzed and the proposal is based on the formal language for the design of critical systems and Risk Assessment; AltaRica. This formal architecture uses satellites as input sensors and it was adapted from the original model which is a design pattern for physical variation detection in Real Time. The original design, whose task is to monitor events such as natural disasters and health related applications, or actual sickness monitoring and prevention, as the Real Time Diabetes Monitoring System, among others. Some related work has been presented on the Mexican Space Agency (AEM) Creation and Consultation Forums (2010-2011), and throughout the International Mexican Aerospace Science and Technology Society (SOMECYTA) international congress held in San Luis Potosí, México (2012). This Architecture will allow a Real Time Fire Satellite Monitoring, which will reduce the damage and danger caused by fires which consumes the forests and tropical forests of Mexico. This new proposal, permits having a new system that impacts on disaster prevention, by combining national and international technologies and cooperation for the benefit of humankind.

  10. Real-time water quality monitoring at a Great Lakes National Park

    USGS Publications Warehouse

    Byappanahalli, Muruleedhara; Nevers, Meredith; Shively, Dawn; Spoljaric, Ashley; Otto, Christopher

    2018-01-01

    Quantitative polymerase chain reaction (qPCR) was used by the USEPA to establish new recreational water quality criteria in 2012 using the indicator bacteria enterococci. The application of this method has been limited, but resource managers are interested in more timely monitoring results. In this study, we evaluated the efficacy of qPCR as a rapid, alternative method to the time-consuming membrane filtration (MF) method for monitoring water at select beaches and rivers of Sleeping Bear Dunes National Lakeshore in Empire, MI. Water samples were collected from four locations (Esch Road Beach, Otter Creek, Platte Point Bay, and Platte River outlet) in 2014 and analyzed for culture-based (MF) and non-culture-based (i.e., qPCR) endpoints using Escherichia coli and enterococci bacteria. The MF and qPCR enterococci results were significantly, positively correlated overall (r = 0.686, p < 0.0001, n = 98) and at individual locations as well, except at the Platte River outlet location: Esch Road Beach (r = 0.441, p = 0.031, n = 24), Otter Creek (r = 0.592, p = 0.002, n = 24), and Platte Point Bay (r = 0.571, p = 0.004, n = 24). Similarly, E. coli MF and qPCR results were significantly, positively correlated (r = 0.469, p < 0.0001, n = 95), overall but not at individual locations. Water quality standard exceedances based on enterococci levels by qPCR were lower than by MF method: 3 and 16, respectively. Based on our findings, we conclude that qPCR may be a viable alternative to the culture-based method for monitoring water quality on public lands. Rapid, same-day results are achievable by the qPCR method, which greatly improves protection of the public from water-related illnesses.

  11. Development of SYBR Green I Based Real-Time RT-PCR Assay for Specific Detection of Watermelon silver mottle Virus.

    PubMed

    Rao, Xueqin; Sun, Jie

    2015-09-01

    Watermelon silver mottle virus (WSMoV), which belongs to the genus Tospovirus , causes significant loss in Cucurbitaceae plants. Development of a highly sensitive and reliable detection method for WSMoV. Recombinant plasmids for targeting the sequence of nucleocapsid protein gene of WSMoV were constructed. SYBR Green I real-time PCR was established and evaluated with standard recombinant plasmids and 27 watermelon samples showing WSMoV infection symptoms. The recombinant plasmid was used as template for SYBR Green I real-time PCR to generate standard and melting curves. Melting curve analysis indicated no primer-dimers and non-specific products in the assay. No cross-reaction was observed with Capsicum chlorosis virus (genus Tospovirus ) and Cucumber mosaic virus (genus Cucumovirus). Repeatability tests indicated that inter-assay variability of the Ct values was 1.6%. A highly sensitive, reliable and rapid detection method of SYBR Green I real-time PCR for timely detection of WSMoV plants and vector thrips was established, which will facilitate disease forecast and control.

  12. A multiprocessing architecture for real-time monitoring

    NASA Technical Reports Server (NTRS)

    Schmidt, James L.; Kao, Simon M.; Read, Jackson Y.; Weitzenkamp, Scott M.; Laffey, Thomas J.

    1988-01-01

    A multitasking architecture for performing real-time monitoring and analysis using knowledge-based problem solving techniques is described. To handle asynchronous inputs and perform in real time, the system consists of three or more distributed processes which run concurrently and communicate via a message passing scheme. The Data Management Process acquires, compresses, and routes the incoming sensor data to other processes. The Inference Process consists of a high performance inference engine that performs a real-time analysis on the state and health of the physical system. The I/O Process receives sensor data from the Data Management Process and status messages and recommendations from the Inference Process, updates its graphical displays in real time, and acts as the interface to the console operator. The distributed architecture has been interfaced to an actual spacecraft (NASA's Hubble Space Telescope) and is able to process the incoming telemetry in real-time (i.e., several hundred data changes per second). The system is being used in two locations for different purposes: (1) in Sunnyville, California at the Space Telescope Test Control Center it is used in the preflight testing of the vehicle; and (2) in Greenbelt, Maryland at NASA/Goddard it is being used on an experimental basis in flight operations for health and safety monitoring.

  13. The Real-Time Monitoring Service Platform for Land Supervision Based on Cloud Integration

    NASA Astrophysics Data System (ADS)

    Sun, J.; Mao, M.; Xiang, H.; Wang, G.; Liang, Y.

    2018-04-01

    Remote sensing monitoring has become the important means for land and resources departments to strengthen supervision. Aiming at the problems of low monitoring frequency and poor data currency in current remote sensing monitoring, this paper researched and developed the cloud-integrated real-time monitoring service platform for land supervision which enhanced the monitoring frequency by acquiring the domestic satellite image data overall and accelerated the remote sensing image data processing efficiency by exploiting the intelligent dynamic processing technology of multi-source images. Through the pilot application in Jinan Bureau of State Land Supervision, it has been proved that the real-time monitoring technical method for land supervision is feasible. In addition, the functions of real-time monitoring and early warning are carried out on illegal land use, permanent basic farmland protection and boundary breakthrough in urban development. The application has achieved remarkable results.

  14. Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection.

    PubMed

    Buh Gasparic, Meti; Tengs, Torstein; La Paz, Jose Luis; Holst-Jensen, Arne; Pla, Maria; Esteve, Teresa; Zel, Jana; Gruden, Kristina

    2010-03-01

    Several techniques have been developed for detection and quantification of genetically modified organisms, but quantitative real-time PCR is by far the most popular approach. Among the most commonly used real-time PCR chemistries are TaqMan probes and SYBR green, but many other detection chemistries have also been developed. Because their performance has never been compared systematically, here we present an extensive evaluation of some promising chemistries: sequence-unspecific DNA labeling dyes (SYBR green), primer-based technologies (AmpliFluor, Plexor, Lux primers), and techniques involving double-labeled probes, comprising hybridization (molecular beacon) and hydrolysis (TaqMan, CPT, LNA, and MGB) probes, based on recently published experimental data. For each of the detection chemistries assays were included targeting selected loci. Real-time PCR chemistries were subsequently compared for their efficiency in PCR amplification and limits of detection and quantification. The overall applicability of the chemistries was evaluated, adding practicability and cost issues to the performance characteristics. None of the chemistries seemed to be significantly better than any other, but certain features favor LNA and MGB technology as good alternatives to TaqMan in quantification assays. SYBR green and molecular beacon assays can perform equally well but may need more optimization prior to use.

  15. Use of Multiplex Real-Time PCR To Diagnose Scrub Typhus.

    PubMed

    Tantibhedhyangkul, Wiwit; Wongsawat, Ekkarat; Silpasakorn, Saowaluk; Waywa, Duangdao; Saenyasiri, Nuttawut; Suesuay, Jintapa; Thipmontree, Wilawan; Suputtamongkol, Yupin

    2017-05-01

    Scrub typhus, caused by Orientia tsutsugamushi , is a common cause of acute undifferentiated febrile illness in the Asia-Pacific region. However, its nonspecific clinical manifestation often prevents early diagnosis. We propose the use of PCR and serologic tests as diagnostic tools. Here, we developed a multiplex real-time PCR assay using hydrolysis (TaqMan) probes targeting O. tsutsugamushi 47-kDa, groEL , and human interferon beta (IFN-β gene) genes to improve early diagnosis of scrub typhus. The amplification efficiency was higher than 94%, and the lower detection limit was 10 copies per reaction. We used a human gene as an internal DNA quality and quantity control. To determine the sensitivity of this PCR assay, we selected patients with confirmed scrub typhus who exhibited a clear 4-fold increase in the level of IgG and/or IgM. The PCR assay result was positive in 45 of 52 patients, indicating a sensitivity of 86.5% (95% confidence interval [CI]: 74.2 to 94.4). The PCR assessment was negative for all 136 non-scrub typhus patients, indicating a specificity of 100% (95% CI: 97.3 to 100). In addition, this test helped diagnose patients with inconclusive immunofluorescence assay (IFA) results and using single blood samples. In conclusion, the real-time PCR assay proposed here is sensitive and specific in diagnosing scrub typhus. Combining PCR and serologic tests will improve the diagnosis of scrub typhus among patients presenting with acute febrile illness. Copyright © 2017 American Society for Microbiology.

  16. [Design and implementation of real-time continuous glucose monitoring instrument].

    PubMed

    Huang, Yonghong; Liu, Hongying; Tian, Senfu; Jia, Ziru; Wang, Zi; Pi, Xitian

    2017-12-01

    Real-time continuous glucose monitoring can help diabetics to control blood sugar levels within the normal range. However, in the process of practical monitoring, the output of real-time continuous glucose monitoring system is susceptible to glucose sensor and environment noise, which will influence the measurement accuracy of the system. Aiming at this problem, a dual-calibration algorithm for the moving-window double-layer filtering algorithm combined with real-time self-compensation calibration algorithm is proposed in this paper, which can realize the signal drift compensation for current data. And a real-time continuous glucose monitoring instrument based on this study was designed. This real-time continuous glucose monitoring instrument consisted of an adjustable excitation voltage module, a current-voltage converter module, a microprocessor and a wireless transceiver module. For portability, the size of the device was only 40 mm × 30 mm × 5 mm and its weight was only 30 g. In addition, a communication command code algorithm was designed to ensure the security and integrity of data transmission in this study. Results of experiments in vitro showed that current detection of the device worked effectively. A 5-hour monitoring of blood glucose level in vivo showed that the device could continuously monitor blood glucose in real time. The relative error of monitoring results of the designed device ranged from 2.22% to 7.17% when comparing to a portable blood meter.

  17. EQUAL-quant: an international external quality assessment scheme for real-time PCR.

    PubMed

    Ramsden, Simon C; Daly, Sarah; Geilenkeuser, Wolf-Jochen; Duncan, Graeme; Hermitte, Fabienne; Marubini, Ettore; Neumaier, Michael; Orlando, Claudio; Palicka, Vladimir; Paradiso, Angelo; Pazzagli, Mario; Pizzamiglio, Sara; Verderio, Paolo

    2006-08-01

    Quantitative gene expression analysis by real-time PCR is important in several diagnostic areas, such as the detection of minimum residual disease in leukemia and the prognostic assessment of cancer patients. To address quality assurance in this technically challenging area, the European Union (EU) has funded the EQUAL project to develop methodologic external quality assessment (EQA) relevant to diagnostic and research laboratories among the EU member states. We report here the results of the EQUAL-quant program, which assesses standards in the use of TaqMan probes, one of the most widely used assays in the implementation of real-time PCR. The EQUAL-quant reagent set was developed to assess the technical execution of a standard TaqMan assay, including RNA extraction, reverse transcription, and real-time PCR quantification of target DNA copy number. The multidisciplinary EQA scheme included 137 participating laboratories from 29 countries. We demonstrated significant differences in performance among laboratories, with 20% of laboratories reporting at least one result lacking in precision and/or accuracy according to the statistical procedures described. No differences in performance were observed for the >10 different testing platforms used by the study participants. This EQA scheme demonstrated both the requirement and demand for external assessment of technical standards in real-time PCR. The reagent design and the statistical tools developed within this project will provide a benchmark for defining acceptable working standards in this emerging technology.

  18. DETECTION OF FECAL ENTEROCOCCI USING A REAL TIME PCR METHOD

    EPA Science Inventory

    In spite of their importance in public health, the detection of fecal enterococci is performed via culturing methods that are time consuming and that are subject to inaccuracies that relate to their culturable status. In order to address these problems, a real time PCR (TaqMan) ...

  19. Comparison of droplet digital PCR and quantitative real-time PCR for examining population dynamics of bacteria in soil.

    PubMed

    Kim, Tae Gwan; Jeong, So-Yeon; Cho, Kyung-Suk

    2014-07-01

    The newly developed droplet digital PCR (DD-PCR) has shown promise as a DNA quantification technology in medical diagnostic fields. This study evaluated the applicability of DD-PCR as a quantitative tool for soil DNA using quantitative real-time PCR (qRT-PCR) as a reference technology. Cupriavidus sp. MBT14 and Sphingopyxis sp. MD2 were used, and a primer/TaqMan probe set was designed for each (CupMBT and SphMD2, respectively). Standard curve analyses on tenfold dilution series showed that both qRT-PCR and DD-PCR exhibited excellent linearity (R (2) = 1.00) and PCR efficiency (≥92 %) across their detectable ranges. However, DD-PCR showed a tenfold greater sensitivity than qRT-PCR. MBT14 and MD2 were added to non-sterile soil at 0 ~ 5 × 10(8) and 0 ~ 5 × 10(7) cells per gram of soil, respectively (n = 5). This bacterial load test indicated that DD-PCR was more sensitive and discriminating than qRT-PCR. For instance, DD-PCR showed a gradual DNA increase from 14 to 141,160 MBT14 rDNA copies μL DNA extract(-1) as the bacterial load increased, while qRT-PCR could quantify the DNA (6,432 copies μL DNA(-1)) at ≥5 × 10(5) MBT14 per gram of soil. When temporal DNA changes were monitored for 3 weeks in the amended soils, the two technologies exhibited nearly identical changes over time. Linearity tests (y = a · x) revealed excellent quantitative agreement between the two technologies (a = 0.98, R (2) = 0.97 in the CupMBT set and a = 0.90, R (2) = 0.94 in the SphMD2 set). These results suggest that DD-PCR is a promising tool to examine temporal dynamics of microorganisms in complex environments.

  20. Water quality real-time monitoring system via biological detection based on video analysis

    NASA Astrophysics Data System (ADS)

    Xin, Chen; Fei, Yuan

    2017-11-01

    With the development of society, water pollution has become the most serious problem in China. Therefore, real-time water quality monitoring is an important part of human activities and water pollution prevention. In this paper, the behavior of zebrafish was monitored by computer vision. Firstly, the moving target was extracted by the method of saliency detection, and tracked by fitting the ellipse model. Then the motion parameters were extracted by optical flow method, and the data were monitored in real time by means of Hinkley warning and threshold warning. We achieved classification warning through a number of dimensions by comprehensive toxicity index. The experimental results show that the system can achieve more accurate real-time monitoring.

  1. The diagnosis of microorganism involved in infective endocarditis (IE) by polymerase chain reaction (PCR) and real-time PCR: A systematic review.

    PubMed

    Faraji, Reza; Behjati-Ardakani, Mostafa; Moshtaghioun, Seyed Mohammad; Kalantar, Seyed Mehdi; Namayandeh, Seyedeh Mahdieh; Soltani, Mohammadhossien; Emami, Mahmood; Zandi, Hengameh; Firoozabadi, Ali Dehghani; Kazeminasab, Mahmood; Ahmadi, Nastaran; Sarebanhassanabadi, Mohammadtaghi

    2018-02-01

    Broad-range bacterial rDNA polymerase chain reaction (PCR) followed by sequencing may be identified as the etiology of infective endocarditis (IE) from surgically removed valve tissue; therefore, we reviewed the value of molecular testing in identifying organisms' DNA in the studies conducted until 2016. We searched Google Scholar, Scopus, ScienceDirect, Cochrane, PubMed, and Medline electronic databases without any time limitations up to December 2016 for English studies reporting microorganisms involved in infective endocarditis microbiology using PCR and real-time PCR. Most studies were prospective. Eleven out of 12 studies used valve tissue samples and blood cultures while only 1 study used whole blood. Also, 10 studies used the molecular method of PCR while 2 studies used real-time PCR. Most studies used 16S rDNA gene as the target gene. The bacteria were identified as the most common microorganisms involved in infective endocarditis. Streptococcus spp. and Staphylococcus spp. were, by far, the most predominant bacteria detected. In all studies, PCR and real-time PCR identified more pathogens than blood and tissue cultures; moreover, the sensitivity and specificity of PCR and real-time PCR were more than cultures in most of the studies. The highest sensitivity and specificity were 96% and 100%, respectively. The gram positive bacteria were the most frequent cause of infective endocarditis. The molecular methods enjoy a greater sensitivity compared to the conventional blood culture methods; yet, they are applicable only to the valve tissue of the patients undergoing cardiac valve surgery. Copyright © 2017. Published by Elsevier Taiwan.

  2. [Research and implementation of a real-time monitoring system for running status of medical monitors based on the internet of things].

    PubMed

    Li, Yiming; Qian, Mingli; Li, Long; Li, Bin

    2014-07-01

    This paper proposed a real-time monitoring system for running status of medical monitors based on the internet of things. In the aspect of hardware, a solution of ZigBee networks plus 470 MHz networks is proposed. In the aspect of software, graphical display of monitoring interface and real-time equipment failure alarm is implemented. The system has the function of remote equipment failure detection and wireless localization, which provides a practical and effective method for medical equipment management.

  3. Real-Time PCR Quantification Using A Variable Reaction Efficiency Model

    PubMed Central

    Platts, Adrian E.; Johnson, Graham D.; Linnemann, Amelia K.; Krawetz, Stephen A.

    2008-01-01

    Quantitative real-time PCR remains a cornerstone technique in gene expression analysis and sequence characterization. Despite the importance of the approach to experimental biology the confident assignment of reaction efficiency to the early cycles of real-time PCR reactions remains problematic. Considerable noise may be generated where few cycles in the amplification are available to estimate peak efficiency. An alternate approach that uses data from beyond the log-linear amplification phase is explored with the aim of reducing noise and adding confidence to efficiency estimates. PCR reaction efficiency is regressed to estimate the per-cycle profile of an asymptotically departed peak efficiency, even when this is not closely approximated in the measurable cycles. The process can be repeated over replicates to develop a robust estimate of peak reaction efficiency. This leads to an estimate of the maximum reaction efficiency that may be considered primer-design specific. Using a series of biological scenarios we demonstrate that this approach can provide an accurate estimate of initial template concentration. PMID:18570886

  4. A real-time posture monitoring method for rail vehicle bodies based on machine vision

    NASA Astrophysics Data System (ADS)

    Liu, Dongrun; Lu, Zhaijun; Cao, Tianpei; Li, Tian

    2017-06-01

    Monitoring vehicle operation conditions has become significantly important in modern high-speed railway systems. However, the operational impact of monitoring the roll angle of vehicle bodies has principally been limited to tilting trains, while few studies have focused on monitoring the running posture of vehicle bodies during operation. We propose a real-time posture monitoring method to fulfil real-time monitoring requirements, by taking rail surfaces and centrelines as detection references. In realising the proposed method, we built a mathematical computational model based on space coordinate transformations to calculate attitude angles of vehicles in operation and vertical and lateral vibration displacements of single measuring points. Moreover, comparison and verification of reliability between system and field results were conducted. Results show that monitoring of the roll angles of car bodies obtained through the system exhibit variation trends similar to those converted from the dynamic deflection of bogie secondary air springs. The monitoring results of two identical conditions were basically the same, highlighting repeatability and good monitoring accuracy. Therefore, our monitoring results were reliable in reflecting posture changes in running railway vehicles.

  5. A novel universal real-time PCR system using the attached universal duplex probes for quantitative analysis of nucleic acids.

    PubMed

    Yang, Litao; Liang, Wanqi; Jiang, Lingxi; Li, Wenquan; Cao, Wei; Wilson, Zoe A; Zhang, Dabing

    2008-06-04

    Real-time PCR techniques are being widely used for nucleic acids analysis, but one limitation of current frequently employed real-time PCR is the high cost of the labeled probe for each target molecule. We describe a real-time PCR technique employing attached universal duplex probes (AUDP), which has the advantage of generating fluorescence by probe hydrolysis and strand displacement over current real-time PCR methods. AUDP involves one set of universal duplex probes in which the 5' end of the fluorescent probe (FP) and a complementary quenching probe (QP) lie in close proximity so that fluorescence can be quenched. The PCR primer pair with attached universal template (UT) and the FP are identical to the UT sequence. We have shown that the AUDP technique can be used for detecting multiple target DNA sequences in both simplex and duplex real-time PCR assays for gene expression analysis, genotype identification, and genetically modified organism (GMO) quantification with comparable sensitivity, reproducibility, and repeatability with other real-time PCR methods. The results from GMO quantification, gene expression analysis, genotype identification, and GMO quantification using AUDP real-time PCR assays indicate that the AUDP real-time PCR technique has been successfully applied in nucleic acids analysis, and the developed AUDP real-time PCR technique will offer an alternative way for nucleic acid analysis with high efficiency, reliability, and flexibility at low cost.

  6. A Java Program for LRE-Based Real-Time qPCR that Enables Large-Scale Absolute Quantification

    PubMed Central

    Rutledge, Robert G.

    2011-01-01

    Background Linear regression of efficiency (LRE) introduced a new paradigm for real-time qPCR that enables large-scale absolute quantification by eliminating the need for standard curves. Developed through the application of sigmoidal mathematics to SYBR Green I-based assays, target quantity is derived directly from fluorescence readings within the central region of an amplification profile. However, a major challenge of implementing LRE quantification is the labor intensive nature of the analysis. Findings Utilizing the extensive resources that are available for developing Java-based software, the LRE Analyzer was written using the NetBeans IDE, and is built on top of the modular architecture and windowing system provided by the NetBeans Platform. This fully featured desktop application determines the number of target molecules within a sample with little or no intervention by the user, in addition to providing extensive database capabilities. MS Excel is used to import data, allowing LRE quantification to be conducted with any real-time PCR instrument that provides access to the raw fluorescence readings. An extensive help set also provides an in-depth introduction to LRE, in addition to guidelines on how to implement LRE quantification. Conclusions The LRE Analyzer provides the automated analysis and data storage capabilities required by large-scale qPCR projects wanting to exploit the many advantages of absolute quantification. Foremost is the universal perspective afforded by absolute quantification, which among other attributes, provides the ability to directly compare quantitative data produced by different assays and/or instruments. Furthermore, absolute quantification has important implications for gene expression profiling in that it provides the foundation for comparing transcript quantities produced by any gene with any other gene, within and between samples. PMID:21407812

  7. Evaluation of propidium monoazide real-time PCR for enumeration of probiotic lactobacilli microencapsulated in calcium alginate beads.

    PubMed

    Oketič, K; Matijašić, B Bogovič; Obermajer, T; Radulović, Z; Lević, S; Mirković, N; Nedović, V

    2015-01-01

    The aim of the study was to evaluate real-time PCR coupled with propidium monoazide (PMA) treatment for enumeration of microencapsulated probiotic lactobacilli microencapsulated in calcium alginate beads. Lactobacillus gasseri K7 (CCM 7710) and Lactobacillus delbrueckii subsp. bulgaricus (CCM 7712) were analysed by plate counting and PMA real-time PCR during storage at 4 °C for 90 days. PMA was effective in preventing PCR amplification of the target sequences of DNA released from heat-compromised bacteria. The values obtained by real-time PCR of non-treated samples were in general higher than those obtained by real-time PCR of PMA-treated samples or by plate counting, indicating the presence of sub-lethally injured cells. This study shows that plate count could not be completely replaced by culture independent method PMA real-time PCR for enumeration of probiotics, but may rather complement the well-established plate counting, providing useful information about the ratio of compromised bacteria in the samples.

  8. Evaluation of quantification methods for real-time PCR minor groove binding hybridization probe assays.

    PubMed

    Durtschi, Jacob D; Stevenson, Jeffery; Hymas, Weston; Voelkerding, Karl V

    2007-02-01

    Real-time PCR data analysis for quantification has been the subject of many studies aimed at the identification of new and improved quantification methods. Several analysis methods have been proposed as superior alternatives to the common variations of the threshold crossing method. Notably, sigmoidal and exponential curve fit methods have been proposed. However, these studies have primarily analyzed real-time PCR with intercalating dyes such as SYBR Green. Clinical real-time PCR assays, in contrast, often employ fluorescent probes whose real-time amplification fluorescence curves differ from those of intercalating dyes. In the current study, we compared four analysis methods related to recent literature: two versions of the threshold crossing method, a second derivative maximum method, and a sigmoidal curve fit method. These methods were applied to a clinically relevant real-time human herpes virus type 6 (HHV6) PCR assay that used a minor groove binding (MGB) Eclipse hybridization probe as well as an Epstein-Barr virus (EBV) PCR assay that used an MGB Pleiades hybridization probe. We found that the crossing threshold method yielded more precise results when analyzing the HHV6 assay, which was characterized by lower signal/noise and less developed amplification curve plateaus. In contrast, the EBV assay, characterized by greater signal/noise and amplification curves with plateau regions similar to those observed with intercalating dyes, gave results with statistically similar precision by all four analysis methods.

  9. Evaluation of two real time PCR assays for the detection of bacterial DNA in amniotic fluid.

    PubMed

    Girón de Velasco-Sada, Patricia; Falces-Romero, Iker; Quiles-Melero, Inmaculada; García-Perea, Adela; Mingorance, Jesús

    2018-01-01

    The aim of this study was to evaluate two non-commercial Real-Time PCR assays for the detection of microorganisms in amniotic fluid followed by identification by pyrosequencing. We collected 126 amniotic fluids from 2010 to 2015 for the evaluation of two Real-Time PCR assays for detection of bacterial DNA in amniotic fluid (16S Universal PCR and Ureaplasma spp. specific PCR). The method was developed in the Department of Microbiology of the University Hospital La Paz. Thirty-seven samples (29.3%) were positive by PCR/pyrosequencing and/or culture, 4 of them were mixed cultures with Ureaplasma urealyticum. The Universal 16S Real-Time PCR was compared with the standard culture (81.8% sensitivity, 97.4% specificity, 75% positive predictive value, 98% negative predictive value). The Ureaplasma spp. specific Real-Time PCR was compared with the Ureaplasma/Mycoplasma specific culture (92.3% sensitivity, 89.4% specificity, 50% positive predictive value, 99% negative predictive value) with statistically significant difference (p=0.005). Ureaplasma spp. PCR shows a rapid response time (5h from DNA extraction until pyrosequencing) when comparing with culture (48h). So, the response time of bacteriological diagnosis in suspected chorioamnionitis is reduced. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. [Detection of Plasmodium falciparum by using magnetic nanoparticles separation-based quantitative real-time PCR assay].

    PubMed

    Wang, Fei; Tian, Yin; Yang, Jing; Sun, Fu-Jun; Sun, Ning; Liu, Bi-Yong; Tian, Rui; Ge, Guang-Lu; Zou, Ming-qiang; Deng, Cong-liang; Liu, Yi

    2014-10-01

    To establish a magnetic nanoparticles separation-based quantitative real-time PCR (RT-PCR) assay for fast and accurate detection of Plasmodium falciparum and providing a technical support for improving the control and prevention of imported malaria. According to the conserved sequences of the P. falciparum genome 18SrRNA, the species-specific primers and probe were designed and synthetized. The RT-PCR was established by constructing the plasmid standard, fitting the standard curve and using magnetic nanoparticles separation. The sensitivity and specificity of the assay were evaluated. The relationship between the threshold cycle (Ct) and logarithm of initial templates copies was linear over a range of 2.5 x 10(1) to 2.5 x 10(8) copies/μl (R2 = 0.999). Among 13 subjects of entry frontier, a P. falciparum carrier with low load was detected by using the assay and none was detected with the conventional examinations (microscopic examinations and rapid tests). This assay shows a high sensitivity in detection of P. falciparum, with rapid and accurate characteristics, and is especially useful in diagnosis of P. falciparum infectors with low parasitaemia at entry-exit frontier ports.

  11. A novel universal real-time PCR system using the attached universal duplex probes for quantitative analysis of nucleic acids

    PubMed Central

    Yang, Litao; Liang, Wanqi; Jiang, Lingxi; Li, Wenquan; Cao, Wei; Wilson, Zoe A; Zhang, Dabing

    2008-01-01

    Background Real-time PCR techniques are being widely used for nucleic acids analysis, but one limitation of current frequently employed real-time PCR is the high cost of the labeled probe for each target molecule. Results We describe a real-time PCR technique employing attached universal duplex probes (AUDP), which has the advantage of generating fluorescence by probe hydrolysis and strand displacement over current real-time PCR methods. AUDP involves one set of universal duplex probes in which the 5' end of the fluorescent probe (FP) and a complementary quenching probe (QP) lie in close proximity so that fluorescence can be quenched. The PCR primer pair with attached universal template (UT) and the FP are identical to the UT sequence. We have shown that the AUDP technique can be used for detecting multiple target DNA sequences in both simplex and duplex real-time PCR assays for gene expression analysis, genotype identification, and genetically modified organism (GMO) quantification with comparable sensitivity, reproducibility, and repeatability with other real-time PCR methods. Conclusion The results from GMO quantification, gene expression analysis, genotype identification, and GMO quantification using AUDP real-time PCR assays indicate that the AUDP real-time PCR technique has been successfully applied in nucleic acids analysis, and the developed AUDP real-time PCR technique will offer an alternative way for nucleic acid analysis with high efficiency, reliability, and flexibility at low cost. PMID:18522756

  12. Comparison of nested-multiplex, Taqman & SYBR Green real-time PCR in diagnosis of amoebic liver abscess in a tertiary health care institute in India

    PubMed Central

    Dinoop, K.P.; Parija, Subhash Chandra; Mandal, Jharna; Swaminathan, R.P.; Narayanan, P.

    2016-01-01

    Background & objectives: Amoebiasis is a common parasitic infection caused by Entamoeba histolytica and amoebic liver abscess (ALA) is the most common extraintestinal manifestation of amoebiasis. The aim of this study was to standardise real-time PCR assays (Taqman and SYBR Green) to detect E. histolytica from liver abscess pus and stool samples and compare its results with nested-multiplex PCR. Methods: Liver abscess pus specimens were subjected to DNA extraction. The extracted DNA samples were subjected to amplification by nested-multiplex PCR, Taqman (18S rRNA) and SYBR Green real-time PCR (16S-like rRNA assays to detect E. histolytica/E. dispar/E. moshkovskii). The amplification products were further confirmed by DNA sequence analysis. Receiver operator characteristic (ROC) curve analysis was done for nested-multiplex and SYBR Green real-time PCR and the area under the curve was calculated for evaluating the accuracy of the tests to dignose ALA. Results: In all, 17, 19 and 25 liver abscess samples were positive for E. histolytica by nested-multiplex PCR, SYBR Green and Taqman real-time PCR assays, respectively. Significant differences in detection of E. histolytica were noted in the real-time PCR assays evaluated (P<0.0001). The nested-multiplex PCR, SYBR Green real-time PCR and Taqman real-time PCR evaluated showed a positivity rate of 34, 38 and 50 per cent, respectively. Based on ROC curve analysis (considering Taqman real-time PCR as the gold standard), it was observed that SYBR Green real-time PCR was better than conventional nested-multiplex PCR for the diagnosis of ALA. Interpretation & conclusions: Taqman real-time PCR targeting the 18S rRNA had the highest positivity rate evaluated in this study. Both nested multiplex and SYBR Green real-time PCR assays utilized were evaluated to give accurate results. Real-time PCR assays can be used as the gold standard in rapid and reliable diagnosis, and appropriate management of amoebiasis, replacing the

  13. Comparison of nested-multiplex, Taqman & SYBR Green real-time PCR in diagnosis of amoebic liver abscess in a tertiary health care institute in India.

    PubMed

    Dinoop, K P; Parija, Subhash Chandra; Mandal, Jharna; Swaminathan, R P; Narayanan, P

    2016-01-01

    Amoebiasis is a common parasitic infection caused by Entamoeba histolytica and amoebic liver abscess (ALA) is the most common extraintestinal manifestation of amoebiasis. The aim of this study was to standardise real-time PCR assays (Taqman and SYBR Green) to detect E. histolytica from liver abscess pus and stool samples and compare its results with nested-multiplex PCR. Liver abscess pus specimens were subjected to DNA extraction. The extracted DNA samples were subjected to amplification by nested-multiplex PCR, Taqman (18S rRNA) and SYBR Green real-time PCR (16S-like rRNA assays to detect E. histolytica/E. dispar/E. moshkovskii). The amplification products were further confirmed by DNA sequence analysis. Receiver operator characteristic (ROC) curve analysis was done for nested-multiplex and SYBR Green real-time PCR and the area under the curve was calculated for evaluating the accuracy of the tests to dignose ALA. In all, 17, 19 and 25 liver abscess samples were positive for E. histolytica by nested-multiplex PCR, SYBR Green and Taqman real-time PCR assays, respectively. Significant differences in detection of E. histolytica were noted in the real-time PCR assays evaluated ( P<0.0001). The nested-multiplex PCR, SYBR Green real-time PCR and Taqman real-time PCR evaluated showed a positivity rate of 34, 38 and 50 per cent, respectively. Based on ROC curve analysis (considering Taqman real-time PCR as the gold standard), it was observed that SYBR Green real-time PCR was better than conventional nested-multiplex PCR for the diagnosis of ALA. Taqman real-time PCR targeting the 18S rRNA had the highest positivity rate evaluated in this study. Both nested multiplex and SYBR Green real-time PCR assays utilized were evaluated to give accurate results. Real-time PCR assays can be used as the gold standard in rapid and reliable diagnosis, and appropriate management of amoebiasis, replacing the conventional molecular methods.

  14. Development of a pan-Simbu real-time reverse transcriptase PCR for the detection of Simbu serogroup viruses and comparison with SBV diagnostic PCR systems.

    PubMed

    Fischer, Melina; Schirrmeier, Horst; Wernike, Kerstin; Wegelt, Anne; Beer, Martin; Hoffmann, Bernd

    2013-11-05

    Schmallenberg virus (SBV), a novel orthobunyavirus of the Simbu serogroup, was first identified in October 2011 in dairy cattle in Germany, where it caused fever, diarrhea and a drop in milk yield. Since then, SBV additionally has been detected in adult sheep and goats. Although symptoms of acute infection were not observed, infection during a vulnerable phase of pregnancy caused congenital malformations and stillbirths. In view of the current situation and the possible emergence of further Simbu serogroup members, a pan-Simbu real-time reverse transcriptase (RT) PCR system for the reliable detection of Simbu serogroup viruses should be developed. In this study a pan-Simbu real-time RT-PCR system was established and compared to several SBV real-time RT-PCR assays. All PCR-systems were tested using a panel of different Simbu serogroup viruses as well as several field samples from diseased cattle, sheep and goats originating from all over Germany. Several pan-Simbu real-time RT-PCR products were sequenced via Sanger sequencing. Furthermore, in silico analyses were performed to investigate suitability for the detection of further orthobunyaviruses. All tested members of the Simbu serogroup (n = 14) as well as most of the field samples were successfully detected by the pan-Simbu real-time RT-PCR system. The comparison of this intercalating dye assay with different TaqMan probe-based assays developed for SBV diagnostics confirmed the functionality of the pan-Simbu assay for screening purposes. However, the SBV-TaqMan-assay SBV-S3 delivered the highest analytical sensitivity of less than ten copies per reaction for duplex systems including an internal control. In addition, for confirmation of SBV-genome detection the highly specific SBV-M1 assay was established. The pan-Simbu real-time RT-PCR system was able to detect all tested members of the Simbu serogroup, most of the SBV field samples as well as three tested Bunyamwera serogroup viruses with a suitable

  15. Comparative evaluation of a laboratory developed real-time PCR assay and the RealStar® HHV-6 PCR Kit for quantitative detection of human herpesvirus 6.

    PubMed

    Yip, Cyril C Y; Sridhar, Siddharth; Cheng, Andrew K W; Fung, Ami M Y; Cheng, Vincent C C; Chan, Kwok-Hung; Yuen, Kwok-Yung

    2017-08-01

    HHV-6 reactivation in immunocompromised patients is common and may be associated with serious morbidity and mortality; therefore, early detection and initiation of therapy might be of benefit. Real-time PCR assays allow for early identification of HHV-6 reactivation to assist in providing a timely response. Thus, we compared the performance of an in-house developed HHV-6 quantitative PCR assay with a commercially available kit, the RealStar ® HHV-6 PCR Kit. The analytical sensitivity, analytical specificity, linearity, precision and accuracy of the in-house developed HHV-6 qPCR assay were evaluated. The diagnostic performance of the in-house HHV-6 qPCR assay was compared with the RealStar ® HHV-6 PCR Kit, using 72 clinical specimens and 17 proficiency testing samples. Linear regression analysis of the quantitative results showed a dynamic range from 2 to 10 log 10 copies/ml and a coefficient of determination (R 2 ) of 0.999 for the in-house assay. A dilution series demonstrated a limit of detection and a limit of quantification of 1.7 log 10 and 2 log 10 copies/ml, respectively. The precision of the assay was highly reproducible among runs with coefficients of variance (CV) ranging from 0.27% to 4.37%. A comparison of 27 matched samples showed an excellent correlation between the quantitative viral loads measured by the in-house HHV-6 qPCR assay and the RealStar ® HHV-6 PCR Kit (R 2 =0.926; P<0.0001), with an average bias of -0.24 log 10 copies/ml. The in-house developed HHV-6 qPCR method is a sensitive and reliable assay with lower cost for the detection and quantification of HHV-6 DNA when compared to the RealStar ® HHV-6 PCR Kit. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Development and comparative evaluation of SYBR Green I-based one-step real-time RT-PCR assay for detection and quantification of West Nile virus in human patients.

    PubMed

    Kumar, Jyoti S; Saxena, Divyasha; Parida, Manmohan

    2014-01-01

    The recent outbreaks of West Nile Virus (WNV) in the Northeastern American continents and other regions of the world have made it essential to develop an efficient protocol for surveillance of WN virus. Nucleic acid based techniques like, RT-PCR have the advantage of sensitivity, specificity and rapidity. A one step single tube Env gene specific real-time RT-PCR was developed for early and reliable clinical diagnosis of WNV infection in clinical samples. The applicability of this assay for clinical diagnosis was validated with 105 suspected acute-phase serum and plasma samples from the recent epidemic of mysterious fever in Tamil Nadu, India in 2009-10. The comparative evaluation revealed the higher sensitivity of real-time RT-PCR assay by picking up 4 additional samples with low copy number of template in comparison to conventional RT-PCR. All the real-time positive samples further confirmed by CDC reported TaqMan real-time RT-PCR and quantitative real-time RT-PCR assays for the simultaneous detection of WNV lineage 1 and 2 strains. The quantitation of the viral load samples was done using a standard curve. These findings demonstrated that the assay has the potential usefulness for clinical diagnosis due to detection and quantification of WNV in acute-phase patient serum samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Hybrid monitoring scheme for end-to-end performance enhancement of multicast-based real-time media

    NASA Astrophysics Data System (ADS)

    Park, Ju-Won; Kim, JongWon

    2004-10-01

    As real-time media applications based on IP multicast networks spread widely, end-to-end QoS (quality of service) provisioning for these applications have become very important. To guarantee the end-to-end QoS of multi-party media applications, it is essential to monitor the time-varying status of both network metrics (i.e., delay, jitter and loss) and system metrics (i.e., CPU and memory utilization). In this paper, targeting the multicast-enabled AG (Access Grid) a next-generation group collaboration tool based on multi-party media services, the applicability of hybrid monitoring scheme that combines active and passive monitoring is investigated. The active monitoring measures network-layer metrics (i.e., network condition) with probe packets while the passive monitoring checks both application-layer metrics (i.e., user traffic condition by analyzing RTCP packets) and system metrics. By comparing these hybrid results, we attempt to pinpoint the causes of performance degradation and explore corresponding reactions to improve the end-to-end performance. The experimental results show that the proposed hybrid monitoring can provide useful information to coordinate the performance improvement of multi-party real-time media applications.

  18. A noninvasive, direct real-time PCR method for sex determination in multiple avian species

    USGS Publications Warehouse

    Brubaker, Jessica L.; Karouna-Renier, Natalie K.; Chen, Yu; Jenko, Kathryn; Sprague, Daniel T.; Henry, Paula F.P.

    2011-01-01

    Polymerase chain reaction (PCR)-based methods to determine the sex of birds are well established and have seen few modifications since they were first introduced in the 1990s. Although these methods allowed for sex determination in species that were previously difficult to analyse, they were not conducive to high-throughput analysis because of the laboriousness of DNA extraction and gel electrophoresis. We developed a high-throughput real-time PCR-based method for analysis of sex in birds, which uses noninvasive sample collection and avoids DNA extraction and gel electrophoresis.

  19. Detection and enumeration of Salmonella enteritidis in homemade ice cream associated with an outbreak: comparison of conventional and real-time PCR methods.

    PubMed

    Seo, K H; Valentin-Bon, I E; Brackett, R E

    2006-03-01

    Salmonellosis caused by Salmonella Enteritidis (SE) is a significant cause of foodborne illnesses in the United States. Consumption of undercooked eggs and egg-containing products has been the primary risk factor for the disease. The importance of the bacterial enumeration technique has been enormously stressed because of the quantitative risk analysis of SE in shell eggs. Traditional enumeration methods mainly depend on slow and tedious most-probable-number (MPN) methods. Therefore, specific, sensitive, and rapid methods for SE quantitation are needed to collect sufficient data for risk assessment and food safety policy development. We previously developed a real-time quantitative PCR assay for the direct detection and enumeration of SE and, in this study, applied it to naturally contaminated ice cream samples with and without enrichment. The detection limit of the real-time PCR assay was determined with artificially inoculated ice cream. When applied to the direct detection and quantification of SE in ice cream, the real-time PCR assay was as sensitive as the conventional plate count method in frequency of detection. However, populations of SE derived from real-time quantitative PCR were approximately 1 log higher than provided by MPN and CFU values obtained by conventional culture methods. The detection and enumeration of SE in naturally contaminated ice cream can be completed in 3 h by this real-time PCR method, whereas the cultural enrichment method requires 5 to 7 days. A commercial immunoassay for the specific detection of SE was also included in the study. The real-time PCR assay proved to be a valuable tool that may be useful to the food industry in monitoring its processes to improve product quality and safety.

  20. Using real-time PCR to specifically detect Burkholderia mallei.

    PubMed

    Ulrich, Melanie P; Norwood, David A; Christensen, Deanna R; Ulrich, Ricky L

    2006-05-01

    Burkholderia mallei is the causative agent of human and animal glanders and is a category B biothreat agent. Rapid diagnosis of B. mallei and immediate prophylactic treatment are essential for patient survival. The majority of current bacteriological and immunological techniques for identifying B. mallei from clinical samples are time-consuming, and cross-reactivity with closely related organisms (i.e. Burkholderia pseudomallei) is a problem. In this investigation, two B. mallei-specific real-time PCR assays targeting the B. mallei bimA(ma) gene (Burkholderia intracellular motility A; BMAA0749), which encodes a protein involved in actin polymerization, were developed. The PCR primer and probe sets were tested for specificity against a collection of B. mallei and B. pseudomallei isolates obtained from numerous clinical and environmental (B. pseudomallei only) sources. The assays were also tested for cross-reactivity using template DNA from 14 closely related Burkholderia species. The relative limit of detection for the assays was found to be 1 pg or 424 genome equivalents. The authors also analysed the applicability of assays to detect B. mallei within infected BALB/c mouse tissues. Beginning 1 h post aerosol exposure, B. mallei was successfully identified within the lungs, and starting at 24 h post exposure, in the spleen and liver. Surprisingly, B. mallei was not detected in the blood of acutely infected animals. This investigation provides two real-time PCR assays for the rapid and specific identification of B. mallei.

  1. Rule Based Expert System for Monitoring Real Time Drug Supply in Hospital Using Radio Frequency Identification Technology

    NASA Astrophysics Data System (ADS)

    Driandanu, Galih; Surarso, Bayu; Suryono

    2018-02-01

    A radio frequency identification (RFID) has obtained increasing attention with the emergence of various applications. This study aims to examine the implementation of rule based expert system supported by RFID technology into a monitoring information system of drug supply in a hospital. This research facilitates in monitoring the real time drug supply by using data sample from the hospital pharmacy. This system able to identify and count the number of drug and provide warning and report in real time. the conclusion is the rule based expert system and RFID technology can facilitate the performance in monitoring the drug supply quickly and precisely.

  2. Development and application of two independent real-time PCR assays to detect clinically relevant Mucorales species.

    PubMed

    Springer, Jan; Goldenberger, Daniel; Schmidt, Friderike; Weisser, Maja; Wehrle-Wieland, Elisabeth; Einsele, Hermann; Frei, Reno; Löffler, Jürgen

    2016-03-01

    PCR-based detection of Mucorales species could improve diagnosis of suspected invasive fungal infection, leading to a better patient outcome. This study describes two independent probe-based real-time PCR tests for detection of clinically relevant Mucorales, targeting specific fragments of the 18S and the 28S rRNA genes. Both assays have a short turnaround time, allow fast, specific and very sensitive detection of clinically relevant Mucorales and have the potential to be used as quantitative tests. They were validated on various clinical samples (fresh and formalin-fixed paraffin-embedded specimens, mainly biopsies, n = 17). The assays should be used as add-on tools to complement standard techniques; a combined approach of both real-time PCR assays has 100 % sensitivity. Genus identification by subsequent sequencing is possible for amplicons of the 18S PCR assay. In conclusion, combination of the two independent Mucorales assays described in this study, 18S and 28S, detected all clinical samples associated with proven Mucorales infection (n = 10). Reliable and specific identification of Mucorales is a prerequisite for successful antifungal therapy as these fungi show intrinsic resistance to voriconazole and caspofungin.

  3. Quantification of measles, mumps and rubella viruses using real-time quantitative TaqMan-based RT-PCR assay.

    PubMed

    Ammour, Y; Faizuloev, E; Borisova, T; Nikonova, A; Dmitriev, G; Lobodanov, S; Zverev, V

    2013-01-01

    In this study, a rapid quantitative method using TaqMan-based real-time reverse transcription-polymerase chain reaction (qPCR-RT) has been developed for estimating the titers of measles, mumps and rubella (MMR) viruses in infected cell culture supernatants. The qPCR-RT assay was demonstrated to be a specific, sensitive, efficient and reproducible method. For MMR viral samples obtained during MMR viral propagations in Vero cells at a different multiplicity of infection, titers determined by the qPCR-RT assay have been compared with estimates of infectious virus obtained by a traditional commonly used method for MMR viruses - 50% cell culture infective dose (CCID(50)) assay, in paired samples. Pearson analysis evidenced a significant correlation between both methods for a certain period after viral inoculation. Furthermore, the established qPCR-RT assay was faster and less-laborious. The developed method could be used as an alternative method or a supplementary tool for the routine titer estimation during MMR vaccine production. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Real-time RT-PCR, a necessary tool to support the diagnosis and surveillance of rotavirus in Mexico.

    PubMed

    De La Cruz Hernández, Sergio Isaac; Anaya Molina, Yazmin; Gómez Santiago, Fabián; Terán Vega, Heidi Lizbeth; Monroy Leyva, Elda; Méndez Pérez, Héctor; García Lozano, Herlinda

    2018-04-01

    Rotavirus produces diarrhea in children under 5 years old. Most of those conventional methods such as polyacrylamide gel electrophoresis (PAGE) and reverse transcription-polymerase chain reaction (RT-PCR) have been used for rotavirus detection. However, these techniques need a multi-step process to get the results. In comparison with conventional methods, the real-time RT-PCR is a highly sensitive method, which allows getting the results in only one day. In this study a real-time RT-PCR assay was tested using a panel of 440 samples from patients with acute gastroenteritis, and characterized by PAGE and RT-PCR. The results show that the real-time RT-PCR detected rotavirus from 73% of rotavirus-negative samples analyzed by PAGE and RT-PCR; thus, the percentage of rotavirus-positive samples increased to 81%. The results indicate that this real-time RT-PCR should be part of a routine analysis, and as a support of the diagnosis of rotavirus in Mexico. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Detection of selected intestinal helminths and protozoa at Hospital Universiti Sains Malaysia using multiplex real-time PCR.

    PubMed

    Basuni, M; Mohamed, Z; Ahmad, M; Zakaria, N Z; Noordin, R

    2012-09-01

    Intestinal parasites are the causative agents of a number of important human infections in developing countries. The objective of this study was to determine the prevalence of selected helminths and protozoan infections among patients admitted with gastrointestinal disorders at Hospital Universiti Sains Malaysia, Kelantan, Malaysia using multiplex real-time PCR. In addition microscopic examination was also performed following direct smear, zinc sulphate concentration and Kato-Katz thick smear techniques; and the presence of protozoan parasites was confirmed using trichrome and acid-fast stains. Of the 225 faecal samples analysed, 26.2% were positive for intestinal parasites by the multiplex real-time PCR, while 5.3% were positive by microscopy. As compared to microscopy, the multiplex real-time PCR detected 5.8 and 4.5 times more positives for the selected helminth and protozoan infections respectively. Among the selected helminths detected in this study, hookworm was the most prevalent by real-time PCR, while Ascaris lumbricoides was detected the most by microscopy. Meanwhile, among the selected protozoa detected in this study, Entamoeba histolytica was the most prevalent by real-time PCR, however microscopy detected equal number of cases with E. histolytica and Giardia lamblia. This study showed that real-time PCR can be used to obtain a more accurate prevalence data on intestinal helminths and protozoa.

  6. MO-FG-202-08: Real-Time Monte Carlo-Based Treatment Dose Reconstruction and Monitoring for Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Z; Shi, F; Gu, X

    2016-06-15

    Purpose: This proof-of-concept study is to develop a real-time Monte Carlo (MC) based treatment-dose reconstruction and monitoring system for radiotherapy, especially for the treatments with complicated delivery, to catch treatment delivery errors at the earliest possible opportunity and interrupt the treatment only when an unacceptable dosimetric deviation from our expectation occurs. Methods: First an offline scheme is launched to pre-calculate the expected dose from the treatment plan, used as ground truth for real-time monitoring later. Then an online scheme with three concurrent threads is launched while treatment delivering, to reconstruct and monitor the patient dose in a temporally resolved fashionmore » in real-time. Thread T1 acquires machine status every 20 ms to calculate and accumulate fluence map (FM). Once our accumulation threshold is reached, T1 transfers the FM to T2 for dose reconstruction ad starts to accumulate a new FM. A GPU-based MC dose calculation is performed on T2 when MC dose engine is ready and a new FM is available. The reconstructed instantaneous dose is directed to T3 for dose accumulation and real-time visualization. Multiple dose metrics (e.g. maximum and mean dose for targets and organs) are calculated from the current accumulated dose and compared with the pre-calculated expected values. Once the discrepancies go beyond our tolerance, an error message will be send to interrupt the treatment delivery. Results: A VMAT Head-and-neck patient case was used to test the performance of our system. Real-time machine status acquisition was simulated here. The differences between the actual dose metrics and the expected ones were 0.06%–0.36%, indicating an accurate delivery. ∼10Hz frequency of dose reconstruction and monitoring was achieved, with 287.94s online computation time compared to 287.84s treatment delivery time. Conclusion: Our study has demonstrated the feasibility of computing a dose distribution in a temporally resolved

  7. A TaqMan-based real-time PCR assay for porcine parvovirus 4 detection and quantification in reproductive tissues of sows

    USDA-ARS?s Scientific Manuscript database

    Porcine parvovirus 4 (PPV4) is a DNA virus, and a member of the Parvoviridae family within the Bocavirus genera. It was recently detected in swine, but its epidemiology and pathology remain unclear. A TaqMan-based real-time polymerase chain reaction (qPCR) assay targeting a conserved region of the O...

  8. Development of a duplex real-time RT-PCR for the simultaneous detection and differentiation of Theiler's murine encephalomyelitis virus and rat theilovirus.

    PubMed

    Yuan, Wen; Wang, Jing; Xu, Fengjiao; Huang, Bihong; Lian, Yuexiao; Rao, Dan; Yin, Xueqin; Wu, Miaoli; Zhu, Yujun; Zhang, Yu; Huang, Ren; Guo, Pengju

    2016-10-01

    Theiler's murine encephalomyelitis virus (TMEV) and rat theilovirus (RTV), the member of the genus Cardiovirus, are widespread in laboratory mice and rats, and are potential contaminants of biological materials. Cardioviruses infection may cause serious complications in biomedical research. To improve the efficiency of routine screening for Cardioviruses infection, a duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay was developed for simultaneous detection and differentiation of TMEV and RTV. The duplex assay was specific for reference strains of TMEV and RTV, and no cross-reaction was found with seven other rodent viruses. The limits of detection of both TMEV and RTV were 4×10(1) copies RNA/reaction. Reproducibility was estimated using standard dilutions, with coefficients of variation <3.1%. 439 clinical samples were evaluated by both duplex real-time RT-PCR and conventional RT-PCR. For 439 clinical samples,95 samples were positive for TMEV and 72 samples were positive for RTV using duplex real-time RT-PCR approach, whereas only 77 samples were positive for TMEV and 66 samples were positive for RTV when conventional RT-PCR was applied. Mixed infections were found in 20 samples when analyzed by conventional RT-PCR whereas 30 samples were found to be mixed infection when duplex real-time RT-PCR was applied. This duplex assay provides a useful tool for routine health monitoring and screening of contaminated biological materials of these two viruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Development of a multiplex real-time PCR assay for phylogenetic analysis of Uropathogenic Escherichia coli.

    PubMed

    Hasanpour, Mojtaba; Najafi, Akram

    2017-06-01

    Uropathogenic Escherichia coli (UPEC) is among major pathogens causing 80-90% of all episodes of urinary tract infections (UTIs). Recently, E. coli strains are divided into eight main phylogenetic groups including A, B1, B2, C, D, E, F, and clade I. This study was aimed to develop a rapid, sensitive, and specific multiplex real time PCR method capable of detecting phylogenetic groups of E. coli strains. This study was carried out on E. coli strains (isolated from the patient with UTI) in which the presence of all seven target genes had been confirmed in our previous phylogenetic study. An EvaGreen-based singleplex and multiplex real-time PCR with melting curve analysis was designed for simultaneous detection and differentiation of these genes. The primers were selected mainly based on the production of amplicons with melting temperatures (T m ) ranging from 82°C to 93°C and temperature difference of more than 1.5°C between each peak.The multiplex real-time PCR assays that have been developed in the present study were successful in detecting the eight main phylogenetic groups. Seven distinct melting peaks were discriminated, with Tm value of 93±0.8 for arpA, 89.2±0.1for chuA, 86.5±0.1 for yjaA, 82.3±0.2 for TspE4C2, 87.8±0.1for trpAgpC, 85.4±0.6 for arpAgpE genes, and 91±0.5 for the internal control. To our knowledge, this study is the first melting curve-based real-time PCR assay developed for simultaneous and discrete detection of these seven target genes. Our findings showed that this assay has the potential to be a rapid, reliable and cost-effective alternative for routine phylotyping of E. coli strains. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Simultaneous detection of papaya ringspot virus, papaya leaf distortion mosaic virus, and papaya mosaic virus by multiplex real-time reverse transcription PCR.

    PubMed

    Huo, P; Shen, W T; Yan, P; Tuo, D C; Li, X Y; Zhou, P

    2015-12-01

    Both the single infection of papaya ringspot virus (PRSV), papaya leaf distortion mosaic virus (PLDMV) or papaya mosaic virus (PapMV) and double infection of PRSV and PLDMV or PapMV which cause indistinguishable symptoms, threaten the papaya industry in Hainan Island, China. In this study, a multiplex real-time reverse transcription PCR (RT-PCR) was developed to detect simultaneously the three viruses based on their distinctive melting temperatures (Tms): 81.0±0.8°C for PRSV, 84.7±0.6°C for PLDMV, and 88.7±0.4°C for PapMV. The multiplex real-time RT-PCR method was specific and sensitive in detecting the three viruses, with a detection limit of 1.0×10(1), 1.0×10(2), and 1.0×10(2) copies for PRSV, PLDMV, and PapMV, respectively. Indeed, the reaction was 100 times more sensitive than the multiplex RT-PCR for PRSV, and 10 times more sensitive than multiplex RT-PCR for PLDMV. Field application of the multiplex real-time RT-PCR demonstrated that some non-symptomatic samples were positive for PLDMV by multiplex real-time RT-PCR but negative by multiplex RT-PCR, whereas some samples were positive for both PRSV and PLDMV by multiplex real-time RT-PCR assay but only positive for PLDMV by multiplex RT-PCR. Therefore, this multiplex real-time RT-PCR assay provides a more rapid, sensitive and reliable method for simultaneous detection of PRSV, PLDMV, PapMV and their mixed infections in papaya.

  11. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection.

    PubMed

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat.

  12. Evaluation of Four Endogenous Reference Genes and Their Real-Time PCR Assays for Common Wheat Quantification in GMOs Detection

    PubMed Central

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat. PMID:24098735

  13. Quantification Bias Caused by Plasmid DNA Conformation in Quantitative Real-Time PCR Assay

    PubMed Central

    Lin, Chih-Hui; Chen, Yu-Chieh; Pan, Tzu-Ming

    2011-01-01

    Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification. PMID:22194997

  14. Detection of Yersinia Enterocolitica Species in Pig Tonsils and Raw Pork Meat by the Real-Time Pcr and Culture Methods.

    PubMed

    Stachelska, M A

    2017-09-26

    The aim of the present study was to establish a rapid and accurate real-time PCR method to detect pathogenic Yersinia enterocolitica in pork. Yersinia enterocolitica is considered to be a crucial zoonosis, which can provoke diseases both in humans and animals. The classical culture methods designated to detect Y. enterocolitica species in food matrices are often very time-consuming. The chromosomal locus _tag CH49_3099 gene, that appears in pathogenic Y. enterocolitica strains, was applied as DNA target for the 5' nuclease PCR protocol. The probe was labelled at the 5' end with the fluorescent reporter dye (FAM) and at the 3' end with the quencher dye (TAMRA). The real-time PCR cycling parameters included 41 cycles. A Ct value which reached a value higher than 40 constituted a negative result. The developed for the needs of this study qualitative real-time PCR method appeared to give very specific and reliable results. The detection rate of locus _tag CH49_3099 - positive Y. enterocolitica in 150 pig tonsils was 85 % and 32 % with PCR and culture methods, respectively. Both the Real-time PCR results and culture method results were obtained from material that was enriched during overnight incubation. The subject of the study were also raw pork meat samples. Among 80 samples examined, 7 ones were positive when real-time PCR was applied, and 6 ones were positive when classical culture method was applied. The application of molecular techniques based on the analysis of DNA sequences such as the Real-time PCR enables to detect this pathogenic bacteria very rapidly and with higher specificity, sensitivity and reliability in comparison to classical culture methods.

  15. Prospective European-wide multicentre study on a blood based real-time PCR for the diagnosis of acute schistosomiasis.

    PubMed

    Wichmann, Dominic; Poppert, Sven; Von Thien, Heidrun; Clerinx, Joannes; Dieckmann, Sebastian; Jensenius, Mogens; Parola, Philippe; Richter, Joachim; Schunk, Mirjam; Stich, August; Zanger, Philipp; Burchard, Gerd D; Tannich, Egbert

    2013-01-30

    Acute schistosomiasis constitutes a rare but serious condition in individuals experiencing their first prepatent Schistosoma infection. To circumvent costly and time-consuming diagnostics, an early and rapid diagnosis is required. So far, classic diagnostic tools such as parasite microscopy or serology lack considerable sensitivity at this early stage of Schistosoma infection. To validate the use of a blood based real-time polymerase chain reaction (PCR) test for the detection of Schistosoma DNA in patients with acute schistosomiasis who acquired their infection in various endemic regions we conducted a European-wide prospective study in 11 centres specialized in travel medicine and tropical medicine. Patients with a history of recent travelling to schistosomiasis endemic regions and freshwater contacts, an episode of fever (body temperature ≥38.5°C) and an absolute or relative eosinophil count of ≥700/μl or 10%, were eligible for participation. PCR testing with DNA extracted from serum was compared with results from serology and microscopy. Of the 38 patients with acute schistosomiasis included into the study, PCR detected Schistosoma DNA in 35 patients at initial presentation (sensitivity 92%). In contrast, sensitivity of serology (enzyme immunoassay and/or immunofluorescence assay) or parasite microscopy was only 70% and 24%, respectively. For the early diagnosis of acute schistosomiasis, real-time PCR for the detection of schistosoma DNA in serum is more sensitive than classic diagnostic tools such as serology or microscopy, irrespective of the region of infection. Generalization of the results to all Schistosoma species may be difficult as in the study presented here only eggs of S. mansoni were detected by microscopy. A minimum amount of two millilitre of serum is required for sufficient diagnostic accuracy.

  16. Multiplex real-time PCR for identification of canine parvovirus antigenic types.

    PubMed

    Kaur, Gurpreet; Chandra, Mudit; Dwivedi, P N; Narang, Deepti

    2016-07-01

    Canine parvovirus (CPV) is an important disease causing gastroenteritis and/or haemorrhagic gastroenteritis in dogs. There are four antigenic types of CPV reported worldwide viz. CPV 2, CPV 2a, CPV 2b and CPV 2c. The diagnosis of CPV with the identification of the antigen type responsible remains problematic. In the present study, identification as well as antigenic typing of CPV was done using a de novo multiplex real time PCR to combat the problem of antigenic type identification. From the study it could be concluded that the here developed multiplex real time PCR assay could be used for rapid detection of CPV as well as typing of its three antigenic types. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Real-Time PCR Typing of Escherichia coli Based on Multiple Single Nucleotide Polymorphisms--a Convenient and Rapid Method.

    PubMed

    Lager, Malin; Mernelius, Sara; Löfgren, Sture; Söderman, Jan

    2016-01-01

    Healthcare-associated infections caused by Escherichia coli and antibiotic resistance due to extended-spectrum beta-lactamase (ESBL) production constitute a threat against patient safety. To identify, track, and control outbreaks and to detect emerging virulent clones, typing tools of sufficient discriminatory power that generate reproducible and unambiguous data are needed. A probe based real-time PCR method targeting multiple single nucleotide polymorphisms (SNP) was developed. The method was based on the multi locus sequence typing scheme of Institute Pasteur and by adaptation of previously described typing assays. An 8 SNP-panel that reached a Simpson's diversity index of 0.95 was established, based on analysis of sporadic E. coli cases (ESBL n = 27 and non-ESBL n = 53). This multi-SNP assay was used to identify the sequence type 131 (ST131) complex according to the Achtman's multi locus sequence typing scheme. However, it did not fully discriminate within the complex but provided a diagnostic signature that outperformed a previously described detection assay. Pulsed-field gel electrophoresis typing of isolates from a presumed outbreak (n = 22) identified two outbreaks (ST127 and ST131) and three different non-outbreak-related isolates. Multi-SNP typing generated congruent data except for one non-outbreak-related ST131 isolate. We consider multi-SNP real-time PCR typing an accessible primary generic E. coli typing tool for rapid and uniform type identification.

  18. [Real-time PCR in rapid diagnosis of Aeromonas hydrophila necrotizing soft tissue infections].

    PubMed

    Kohayagawa, Yoshitaka; Izumi, Yoko; Ushita, Misuzu; Niinou, Norio; Koshizaki, Masayuki; Yamamori, Yuji; Kaneko, Sakae; Fukushima, Hiroshi

    2009-11-01

    We report a case of rapidly progressive necrotizing soft tissue infection and sepsis followed by a patient's death. We suspected Vibrio vulnificus infection because the patient's underlying disease was cirrhosis and the course extremely rapid. No microbe had been detected at death. We extracted DNA from a blood culture bottle. SYBR green I real-time PCR was conducted but could not detect V. vulnificus vvh in the DNA sample. Aeromonas hydrophila was cultured and identified in blood and necrotized tissue samples. Real-time PCR was conducted to detect A. hydrophila ahh1, AHCYTOEN and aerA in the DNA sample extracted from the blood culture bottle and an isolated necrotized tissue strain, but only ahh1 was positive. High-mortality in necrotizing soft tissue infections makes it is crucial to quickly detect V. vulnificus and A. hydrophila. We found real-time PCR for vvh, ahh1, AHCYTOEN, and aerA useful in detecting V. vulnificus and A. hydrophila in necrotizing soft tissue infections.

  19. Detection and identification of genetically modified EE-1 brinjal (Solanum melongena) by single, multiplex and SYBR® real-time PCR.

    PubMed

    Ballari, Rajashekhar V; Martin, Asha; Gowda, Lalitha R

    2013-01-01

    Brinjal is an important vegetable crop. Major crop loss of brinjal is due to insect attack. Insect-resistant EE-1 brinjal has been developed and is awaiting approval for commercial release. Consumer health concerns and implementation of international labelling legislation demand reliable analytical detection methods for genetically modified (GM) varieties. End-point and real-time polymerase chain reaction (PCR) methods were used to detect EE-1 brinjal. In end-point PCR, primer pairs specific to 35S CaMV promoter, NOS terminator and nptII gene common to other GM crops were used. Based on the revealed 3' transgene integration sequence, primers specific for the event EE-1 brinjal were designed. These primers were used for end-point single, multiplex and SYBR-based real-time PCR. End-point single PCR showed that the designed primers were highly specific to event EE-1 with a sensitivity of 20 pg of genomic DNA, corresponding to 20 copies of haploid EE-1 brinjal genomic DNA. The limits of detection and quantification for SYBR-based real-time PCR assay were 10 and 100 copies respectively. The prior development of detection methods for this important vegetable crop will facilitate compliance with any forthcoming labelling regulations. Copyright © 2012 Society of Chemical Industry.

  20. The applicability of real-time PCR in the diagnostic of cutaneous leishmaniasis and parasite quantification for clinical management: Current status and perspectives.

    PubMed

    Moreira, Otacilio C; Yadon, Zaida E; Cupolillo, Elisa

    2017-09-29

    Cutaneous leishmaniasis (CL) is spread worldwide and is the most common manifestation of leishmaniasis. Diagnosis is performed by combining clinical and epidemiological features, and through the detection of Leishmania parasites (or DNA) in tissue specimens or trough parasite isolation in culture medium. Diagnosis of CL is challenging, reflecting the pleomorphic clinical manifestations of this disease. Skin lesions vary in severity, clinical appearance, and duration, and in some cases, they can be indistinguishable from lesions related to other diseases. Over the past few decades, PCR-based methods, including real-time PCR assays, have been developed for Leishmania detection, quantification and species identification, improving the molecular diagnosis of CL. This review provides an overview of many real-time PCR methods reported for the diagnostic evaluation of CL and some recommendations for the application of these methods for quantification purposes for clinical management and epidemiological studies. Furthermore, the use of real-time PCR for Leishmania species identification is also presented. The advantages of real-time PCR protocols are numerous, including increased sensitivity and specificity and simpler standardization of diagnostic procedures. However, despite the numerous assays described, there is still no consensus regarding the methods employed. Furthermore, the analytical and clinical validation of CL molecular diagnosis has not followed international guidelines so far. A consensus methodology comprising a DNA extraction protocol with an exogenous quality control and an internal reference to normalize parasite load is still needed. In addition, the analytical and clinical performance of any consensus methodology must be accurately assessed. This review shows that a standardization initiative is essential to guide researchers and clinical laboratories towards the achievement of a robust and reproducible methodology, which will permit further evaluation

  1. Multiplex Real-Time PCR Method for Simultaneous Identification and Toxigenic Type Characterization of Clostridium difficile From Stool Samples

    PubMed Central

    Alam, Mohammad J.; Tisdel, Naradah L.; Shah, Dhara N.; Yapar, Mehmet; Lasco, Todd M.; Garey, Kevin W.

    2015-01-01

    Background The aim of this study was to develop and validate a multiplex real-time PCR assay for simultaneous identification and toxigenic type characterization of Clostridium difficile. Methods The multiplex real-time PCR assay targeted and simultaneously detected triose phosphate isomerase (tpi) and binary toxin (cdtA) genes, and toxin A (tcdA) and B (tcdB) genes in the first and sec tubes, respectively. The results of multiplex real-time PCR were compared to those of the BD GeneOhm Cdiff assay, targeting the tcdB gene alone. The toxigenic culture was used as the reference, where toxin genes were detected by multiplex real-time PCR. Results A total of 351 stool samples from consecutive patients were included in the study. Fifty-five stool samples (15.6%) were determined to be positive for the presence of C. difficile by using multiplex real-time PCR. Of these, 48 (87.2%) were toxigenic (46 tcdA and tcdB-positive, two positive for only tcdB) and 11 (22.9%) were cdtA-positive. The sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of the multiplex real-time PCR compared with the toxigenic culture were 95.6%, 98.6%, 91.6%, and 99.3%, respectively. The analytical sensitivity of the multiplex real-time PCR assay was determined to be 103colonyforming unit (CFU)/g spiked stool sample and 0.0625 pg genomic DNA from culture. Analytical specificity determined by using 15 enteric and non-clostridial reference strains was 100%. Conclusions The multiplex real-time PCR assay accurately detected C. difficile isolates from diarrheal stool samples and characterized its toxin genes in a single PCR run. PMID:25932438

  2. Optimization of the Divergent method for genotyping single nucleotide variations using SYBR Green-based single-tube real-time PCR.

    PubMed

    Gentilini, Fabio; Turba, Maria E

    2014-01-01

    A novel technique, called Divergent, for single-tube real-time PCR genotyping of point mutations without the use of fluorescently labeled probes has recently been reported. This novel PCR technique utilizes a set of four primers and a particular denaturation temperature for simultaneously amplifying two different amplicons which extend in opposite directions from the point mutation. The two amplicons can readily be detected using the melt curve analysis downstream to a closed-tube real-time PCR. In the present study, some critical aspects of the original method were specifically addressed to further implement the technique for genotyping the DNM1 c.G767T mutation responsible for exercise-induced collapse in Labrador retriever dogs. The improved Divergent assay was easily set up using a standard two-step real-time PCR protocol. The melting temperature difference between the mutated and the wild-type amplicons was approximately 5°C which could be promptly detected by all the thermal cyclers. The upgraded assay yielded accurate results with 157pg of genomic DNA per reaction. This optimized technique represents a flexible and inexpensive alternative to the minor grove binder fluorescently labeled method and to high resolution melt analysis for high-throughput, robust and cheap genotyping of single nucleotide variations. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Digital Image Support in the ROADNet Real-time Monitoring Platform

    NASA Astrophysics Data System (ADS)

    Lindquist, K. G.; Hansen, T. S.; Newman, R. L.; Vernon, F. L.; Nayak, A.; Foley, S.; Fricke, T.; Orcutt, J.; Rajasekar, A.

    2004-12-01

    The ROADNet real-time monitoring infrastructure has allowed researchers to integrate geophysical monitoring data from a wide variety of signal domains. Antelope-based data transport, relational-database buffering and archiving, backup/replication/archiving through the Storage Resource Broker, and a variety of web-based distribution tools create a powerful monitoring platform. In this work we discuss our use of the ROADNet system for the collection and processing of digital image data. Remote cameras have been deployed at approximately 32 locations as of September 2004, including the SDSU Santa Margarita Ecological Reserve, the Imperial Beach pier, and the Pinon Flats geophysical observatory. Fire monitoring imagery has been obtained through a connection to the HPWREN project. Near-real-time images obtained from the R/V Roger Revelle include records of seafloor operations by the JASON submersible, as part of a maintenance mission for the H2O underwater seismic observatory. We discuss acquisition mechanisms and the packet architecture for image transport via Antelope orbservers, including multi-packet support for arbitrarily large images. Relational database storage supports archiving of timestamped images, image-processing operations, grouping of related images and cameras, support for motion-detect triggers, thumbnail images, pre-computed video frames, support for time-lapse movie generation and storage of time-lapse movies. Available ROADNet monitoring tools include both orbserver-based display of incoming real-time images and web-accessible searching and distribution of images and movies driven by the relational database (http://mercali.ucsd.edu/rtapps/rtimbank.php). An extension to the Kepler Scientific Workflow System also allows real-time image display via the Ptolemy project. Custom time-lapse movies may be made from the ROADNet web pages.

  4. Terrestrial Real-Time Volcano Monitoring

    NASA Astrophysics Data System (ADS)

    Franke, M.

    2013-12-01

    As volcano monitoring involves more and different sensors from seismic to GPS receivers, from video and thermal cameras to multi-parameter probes measuring temperature, ph values and humidity in the ground and the air, it becomes important to design real-time networks that integrate and leverage the multitude of available parameters. In order to do so some simple principles need to be observed: a) a common time base for all measurements, b) a packetized general data communication protocol for acquisition and distribution, c) an open and well documented interface to the data permitting standard and emerging innovative processing, and d) an intuitive visualization platform for scientists and civil defense personnel. Although mentioned as simple principles, the list above does not necessarily lead to obvious solutions or integrated systems, which is, however, required to take advantage of the available data. Only once the different data streams are put into context to each other in terms of time and location can a broader view be obtained and additional information extracted. The presentation is a summary of currently available technologies and how they can achieve the goal of an integrated real-time volcano monitoring system. A common time base are standard for seismic and GPS networks. In different projects we extended this to video feeds and time-lapse photography. Other probes have been integrated with vault interface enclosures (VIE) as used in the Transportable Array (TA) of the USArray. The VIE can accommodate the sensors employed in volcano monitoring. The TA has shown that Antelope is a versatile and robust middleware. It provides the required packetized general communication protocol that is independent from the actual physical communication link leaving the network design to adopt appropriate and possible hybrid solutions. This applies for the data acquisition and the data/information dissemination providing both a much needed collaboration platform, as

  5. A molecular approach for the rapid, selective and sensitive detection of Exophiala jeanselmei in environmental samples: development and performance assessment of a real-time PCR assay.

    PubMed

    Libert, X; Chasseur, C; Packeu, A; Bureau, F; Roosens, N H; De Keersmaecker, S J C

    2016-02-01

    Exophiala jeanselmei is an opportunistic pathogenic black yeast growing in humid environments such as water reservoirs of air-conditioning systems. Because this fungal contaminant could be vaporized into the air and subsequently cause health problems, its monitoring is recommended. Currently, this monitoring is based on culture and microscopic identification which are complex, sometimes ambiguous and time-demanding, i.e., up to 21 days. Therefore, molecular, culture-independent methods could be more advantageous for the monitoring of E. jeanselmei. In this study, we developed a SYBR®green real-time PCR assay based on the internal transcribed spacer 2 from the 18S ribosomal DNA complex for the specific detection of E. jeanselmei. The selectivity (100 %), PCR efficiency (95.5 %), dynamic range and repeatability of this qPCR assay were subsequently evaluated. The limit of detection for this qPCR assay was determined to be 1 copy of genomic DNA of E. jeanselmei. Finally, water samples collected from cooling reservoirs were analyzed using this qPCR assay to deliver a proof of concept for the molecular detection of E. jeanselmei in environmental samples. The results obtained by molecular analysis were compared with those of classical methods (i.e., culture and microscopic identification) used in routine analysis and were 100 % matching. This comparison demonstrated that this SYBR®green qPCR assay can be used as a molecular alternative for monitoring and routine investigation of samples contaminated by E. jeanselmei, while eliminating the need for culturing and thereby considerably decreasing the required analysis time to 2 days.

  6. Dynamics of vaginal bacterial communities in women developing bacterial vaginosis, candidiasis, or no infection, analyzed by PCR-denaturing gradient gel electrophoresis and real-time PCR.

    PubMed

    Vitali, Beatrice; Pugliese, Ciro; Biagi, Elena; Candela, Marco; Turroni, Silvia; Bellen, Gert; Donders, Gilbert G G; Brigidi, Patrizia

    2007-09-01

    The microbial flora of the vagina plays a major role in preventing genital infections, including bacterial vaginosis (BV) and candidiasis (CA). An integrated approach based on PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR was used to study the structure and dynamics of bacterial communities in vaginal fluids of healthy women and patients developing BV and CA. Universal eubacterial primers and Lactobacillus genus-specific primers, both targeted at 16S rRNA genes, were used in DGGE and real-time PCR analysis, respectively. The DGGE profiles revealed that the vaginal flora was dominated by Lactobacillus species under healthy conditions, whereas several potentially pathogenic bacteria were present in the flora of women with BV. Lactobacilli were the predominant bacterial population in the vagina for patients affected by CA, but changes in the composition of Lactobacillus species were observed. Real-time PCR analysis allowed the quantitative estimation of variations in lactobacilli associated with BV and CA diseases. A statistically significant decrease in the relative abundance of lactobacilli was found in vaginal fluids of patients with BV compared to the relative abundance of lactobacilli in the vaginal fluids of healthy women and patients with CA.

  7. Single tube multiplex real-time PCR for the rapid detection of herpesvirus infections of the central nervous system.

    PubMed

    Sankuntaw, Nipaporn; Sukprasert, Saovaluk; Engchanil, Chulapan; Kaewkes, Wanlop; Chantratita, Wasun; Pairoj, Vantanit; Lulitanond, Viraphong

    2011-01-01

    Human herpesvirus infection of immunocompromised hosts may lead to central nervous system (CNS) infection and diseases. In this study, a single tube multiplex real-time PCR was developed for the detection of five herpesviruses (HSV-1, HSV-2, VZV, EBV and CMV) in clinical cerebrospinal fluid (CSF) specimens. Two primer pairs specific for the herpesvirus polymerase gene and five hybridization probe pairs for the specific identification of the herpesvirus types were used in a LightCycler multiplex real-time PCR. A singleplex real-time PCR was first optimized and then applied to the multiplex real-time PCR. The singleplex and multiplex real-time PCRs showed no cross-reactivity. The sensitivity of the singleplex real-time PCR was 1 copy per reaction for each herpesvirus, while that of the multiplex real-time PCR was 1 copy per reaction for HSV-1 and VZV and 10 copies per reaction for HSV-2, EBV and CMV. Intra and inter-assay variations of the single tube multiplex assay were in the range of 0.02%-3.67% and 0.79%-4.35%, respectively. The assay was evaluated by testing 62 clinical CSF samples and was found to have equivalent sensitivity, specificity and agreement as the routine real-time PCR, but reducing time, cost and amount of used sample. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Real-time PCR evaluation of Strongylus vulgaris in horses on farms in Denmark and Central Kentucky.

    PubMed

    Nielsen, M K; Olsen, S N; Lyons, E T; Monrad, J; Thamsborg, S M

    2012-12-21

    Strongyle parasites are ubiquitous in grazing horses, and the large strongyle Strongylus vulgaris is considered the most pathogenic helminth parasite of horses. Recent investigations have suggested an association between occurrence of this parasite and usage of selective therapy based on regular fecal egg counts. The established diagnostic method for S. vulgaris involves larval culture and subsequent morphological identification of third stage larvae under the microscope. Recently, a real-time PCR assay was developed and validated for the detection and semi-quantification of S. vulgaris eggs in equine fecal samples. The purposes of the present study were (a) to determine the presence of S. vulgaris by real-time PCR in Danish and American horses on farms using vastly different anthelmintic treatment regimens and (b) to evaluate the association between larval culture results and the PCR. A total of 991 horses representing 53 different horse farms in Denmark and Central Kentucky were studied. Fresh fecal samples were collected from all horses, and strongyle eggs retrieved for DNA extraction and subsequent real-time PCR analysis. Individual larval cultures were performed on the Danish part of the data set (663 horses on 42 farms). On the Danish farms, the S. vulgaris PCR prevalence was found to be 9.2% on farms not basing parasite control on fecal egg counts, and 14.1% on farms using selective therapy. No horses were PCR positive in the American part of the study (328 horses on 11 farms). Kappa-values indicated a moderate agreement between PCR and larval culture results, while McNemar tests revealed no statistical difference between the paired proportions. Significant associations were found between PCR cycle of threshold (Ct) value groups and larval culture counts. Results indicate that both diagnostic methods can be useful for determining the occurrence of S. vulgaris on horse farms, but that they both are affected by potential sources of error. The PCR results

  9. Comparison of array comparative genomic hybridization and quantitative real-time PCR-based aneuploidy screening of blastocyst biopsies.

    PubMed

    Capalbo, Antonio; Treff, Nathan R; Cimadomo, Danilo; Tao, Xin; Upham, Kathleen; Ubaldi, Filippo Maria; Rienzi, Laura; Scott, Richard T

    2015-07-01

    Comprehensive chromosome screening (CCS) methods are being extensively used to select chromosomally normal embryos in human assisted reproduction. Some concerns related to the stage of analysis and which aneuploidy screening method to use still remain. In this study, the reliability of blastocyst-stage aneuploidy screening and the diagnostic performance of the two mostly used CCS methods (quantitative real-time PCR (qPCR) and array comparative genome hybridization (aCGH)) has been assessed. aCGH aneuploid blastocysts were rebiopsied, blinded, and evaluated by qPCR. Discordant cases were subsequently rebiopsied, blinded, and evaluated by single-nucleotide polymorphism (SNP) array-based CCS. Although 81.7% of embryos showed the same diagnosis when comparing aCGH and qPCR-based CCS, 18.3% (22/120) of embryos gave a discordant result for at least one chromosome. SNP array reanalysis showed that a discordance was reported in ten blastocysts for aCGH, mostly due to false positives, and in four cases for qPCR. The discordant aneuploidy call rate per chromosome was significantly higher for aCGH (5.7%) compared with qPCR (0.6%; P<0.01). To corroborate these findings, 39 embryos were simultaneously biopsied for aCGH and qPCR during blastocyst-stage aneuploidy screening cycles. 35 matched including all 21 euploid embryos. Blinded SNP analysis on rebiopsies of the four embryos matched qPCR. These findings demonstrate the high reliability of diagnosis performed at the blastocyst stage with the use of different CCS methods. However, the application of aCGH can be expected to result in a higher aneuploidy rate than other contemporary methods of CCS.

  10. Use of Occult Blood Detection Cards for Real-Time PCR-Based Diagnosis of Schistosoma Mansoni Infection

    PubMed Central

    Schunk, Mirjam; Kebede Mekonnen, Seleshi; Wondafrash, Beyene; Mengele, Carolin; Fleischmann, Erna; Herbinger, Karl-Heinz; Verweij, Jaco J.; Geldmacher, Christof; Bretzel, Gisela; Löscher, Thomas; Zeynudin, Ahmed

    2015-01-01

    Background In Schistosoma mansoni infection, diagnosis and control after treatment mainly rely on parasitological stool investigations which are laborious and have limited sensitivity. PCR methods have shown equal or superior sensitivity but preservation and storage methods limit their use in the field. Therefore, the use of occult blood detection cards (fecal cards) for easy sampling and storage of fecal samples for further PCR testing was evaluated in a pilot study. Methodology Stool specimens were collected in a highly endemic area for S. mansoni in Ethiopia and submitted in an investigator-blinded fashion to microscopic examination by Kato-Katz thick smear as well as to real-time PCR using either fresh frozen stool samples or stool smears on fecal cards which have been stored at ambient temperature for up to ten months. Principal Findings Out of 55 stool samples, 35 were positive by microscopy, 33 and 32 were positive by PCR of frozen samples and of fecal card samples, respectively. When microscopy was used as diagnostic “gold standard”, the sensitivity of PCR on fresh stool was 94.3% (95%-CI: 86.6; 100) and on fecal cards 91.4% (95%-CI: 82.2; 100). Conclusions The use of fecal cards proved to be a simple and useful method for stool collection and prolonged storage prior to PCR based diagnosis of S. mansoni infection. This technique may be a valuable approach for large scale surveillance and post treatment assessments PMID:26360049

  11. Use of Occult Blood Detection Cards for Real-Time PCR-Based Diagnosis of Schistosoma Mansoni Infection.

    PubMed

    Schunk, Mirjam; Kebede Mekonnen, Seleshi; Wondafrash, Beyene; Mengele, Carolin; Fleischmann, Erna; Herbinger, Karl-Heinz; Verweij, Jaco J; Geldmacher, Christof; Bretzel, Gisela; Löscher, Thomas; Zeynudin, Ahmed

    2015-01-01

    In Schistosoma mansoni infection, diagnosis and control after treatment mainly rely on parasitological stool investigations which are laborious and have limited sensitivity. PCR methods have shown equal or superior sensitivity but preservation and storage methods limit their use in the field. Therefore, the use of occult blood detection cards (fecal cards) for easy sampling and storage of fecal samples for further PCR testing was evaluated in a pilot study. Stool specimens were collected in a highly endemic area for S. mansoni in Ethiopia and submitted in an investigator-blinded fashion to microscopic examination by Kato-Katz thick smear as well as to real-time PCR using either fresh frozen stool samples or stool smears on fecal cards which have been stored at ambient temperature for up to ten months. Out of 55 stool samples, 35 were positive by microscopy, 33 and 32 were positive by PCR of frozen samples and of fecal card samples, respectively. When microscopy was used as diagnostic "gold standard", the sensitivity of PCR on fresh stool was 94.3% (95%-CI: 86.6; 100) and on fecal cards 91.4% (95%-CI: 82.2; 100). The use of fecal cards proved to be a simple and useful method for stool collection and prolonged storage prior to PCR based diagnosis of S. mansoni infection. This technique may be a valuable approach for large scale surveillance and post treatment assessments.

  12. Rotavirus genotype shifts among Swedish children and adults-Application of a real-time PCR genotyping.

    PubMed

    Andersson, Maria; Lindh, Magnus

    2017-11-01

    It is well known that human rotavirus group A is the most important cause of severe diarrhoea in infants and young children. Less is known about rotavirus infections in other age groups, and about how rotavirus genotypes change over time in different age groups. Develop a real-time PCR to easily genotype rotavirus strains in order to monitor the pattern of circulating genotypes. In this study, rotavirus strains in clinical samples from children and adults in Western Sweden during 2010-2014 were retrospectively genotyped by using specific amplification of VP 4 and VP 7 genes with a new developed real-rime PCR. A genotype was identified in 97% of 775 rotavirus strains. G1P[8] was the most common genotype representing 34.9%, followed by G2P[4] (28.3%), G9P[8] (11.5%), G3P[8] (8.1%), and G4P[8] (7.9%) The genotype distribution changed over time, from predominance of G1P[8] in 2010-2012 to predominance of G2P[4] in 2013-2014. There were also age-related differences, with G1P[8] being the most common genotype in children under 2 years (47.6%), and G2P[4] the most common in those over 70 years of age (46.1%.). The shift to G2P[4] in 2013-2014 was associated with a change in the age distribution, with a greater number of rotavirus positive cases in elderly than in children. By using a new real-time PCR method for genotyping we found that genotype distribution was age related and changed over time with a decreasing proportion of G1P[8]. Copyright © 2017. Published by Elsevier B.V.

  13. A Simultaneous Analytical Method for Duplex Identification of Porcine and Horse in the Meat Products by EvaGreen based Real-time PCR.

    PubMed

    Sakalar, Ergün; Ergün, Seyma Özçirak; Akar, Emine

    2015-01-01

    A duplex real-time polymerase chain reaction (PCR) based assay for the detection of porcine and horse meat in sausages was designed by using EvaGreen fluorescent dye. Primers were selected from mitochondrial 12S rRNA and 16S rRNA genes which are powerful regions for identification of horse and porcine meat. DNA from reference samples and industrial products was successfully extracted using the GIDAGEN® Multi-Fast DNA Isolation Kit. Genomes were identified based on their specific melting peaks (Mp) which are 82.5℃ and 78℃ for horse and porcine, respectively. The assay used in this study allowed the detection of as little as 0.0001% level of horse meat and 0.001% level of porcine meat in the experimental admixtures. These findings indicate that EvaGreen based duplex real-time PCR is a potentially sensitive, reliable, rapid and accurate assay for the detection of meat species adulterated with porcine and horse meats.

  14. Evaluation of an Improved U.S. Food and Drug Administration Method for the Detection of Cyclospora cayetanensis in Produce Using Real-Time PCR.

    PubMed

    Murphy, Helen R; Lee, Seulgi; da Silva, Alexandre J

    2017-07-01

    Cyclospora cayetanensis is a protozoan parasite that causes human diarrheal disease associated with the consumption of fresh produce or water contaminated with C. cayetanensis oocysts. In the United States, foodborne outbreaks of cyclosporiasis have been linked to various types of imported fresh produce, including cilantro and raspberries. An improved method was developed for identification of C. cayetanensis in produce at the U.S. Food and Drug Administration. The method relies on a 0.1% Alconox produce wash solution for efficient recovery of oocysts, a commercial kit for DNA template preparation, and an optimized TaqMan real-time PCR assay with an internal amplification control for molecular detection of the parasite. A single laboratory validation study was performed to assess the method's performance and compare the optimized TaqMan real-time PCR assay and a reference nested PCR assay by examining 128 samples. The samples consisted of 25 g of cilantro or 50 g of raspberries seeded with 0, 5, 10, or 200 C. cayetanensis oocysts. Detection rates for cilantro seeded with 5 and 10 oocysts were 50.0 and 87.5%, respectively, with the real-time PCR assay and 43.7 and 94.8%, respectively, with the nested PCR assay. Detection rates for raspberries seeded with 5 and 10 oocysts were 25.0 and 75.0%, respectively, with the real-time PCR assay and 18.8 and 68.8%, respectively, with the nested PCR assay. All unseeded samples were negative, and all samples seeded with 200 oocysts were positive. Detection rates using the two PCR methods were statistically similar, but the real-time PCR assay is less laborious and less prone to amplicon contamination and allows monitoring of amplification and analysis of results, making it more attractive to diagnostic testing laboratories. The improved sample preparation steps and the TaqMan real-time PCR assay provide a robust, streamlined, and rapid analytical procedure for surveillance, outbreak response, and regulatory testing of foods for

  15. Developments in real-time monitoring for geologic hazard warnings (Invited)

    NASA Astrophysics Data System (ADS)

    Leith, W. S.; Mandeville, C. W.; Earle, P. S.

    2013-12-01

    Real-time data from global, national and local sensor networks enable prompt alerts and warnings of earthquakes, tsunami, volcanic eruptions, geomagnetic storms , broad-scale crustal deformation and landslides. State-of-the-art seismic systems can locate and evaluate earthquake sources in seconds, enabling 'earthquake early warnings' to be broadcast ahead of the damaging surface waves so that protective actions can be taken. Strong motion monitoring systems in buildings now support near-real-time structural damage detection systems, and in quiet times can be used for state-of-health monitoring. High-rate GPS data are being integrated with seismic strong motion data, allowing accurate determination of earthquake displacements in near-real time. GPS data, combined with rainfall, groundwater and geophone data, are now used for near-real-time landslide monitoring and warnings. Real-time sea-floor water pressure data are key for assessing tsunami generation by large earthquakes. For monitoring remote volcanoes that lack local ground-based instrumentation, the USGS uses new technologies such as infrasound arrays and the worldwide lightning detection array to detect eruptions in progress. A new real-time UV-camera system for measuring the two dimensional SO2 flux from volcanic plumes will allow correlations with other volcano monitoring data streams to yield fundamental data on changes in gas flux as an eruption precursor, and how magmas de-gas prior to and during eruptions. Precision magnetic field data support the generation of real-time indices of geomagnetic disturbances (Dst, K and others), and can be used to model electrical currents in the crust and bulk power system. Ground-induced electrical current monitors are used to track those currents so that power grids can be effectively managed during geomagnetic storms. Beyond geophysical sensor data, USGS is using social media to rapidly detect possible earthquakes and to collect firsthand accounts of the impacts of

  16. Methods for Real-Time PCR-Based Diagnosis of Chlamydia pneumoniae, Chlamydia psittaci, and Chlamydia abortus Infections in an Opened Molecular Diagnostic Platform.

    PubMed

    Opota, Onya; Brouillet, René; Greub, Gilbert; Jaton, Katia

    2017-01-01

    The advances in molecular biology of the last decades have dramatically improved the field of diagnostic bacteriology. In particular, PCR-based technologies have impacted the diagnosis of infections caused by obligate intracellular bacteria such as pathogens from the Chlamydiacae family. Here, we describe a real-time PCR-based method using the Taqman technology for the diagnosis of Chlamydia pneumoniae, Chlamydia psittaci, and Chlamydia abortus infection. The method presented here can be applied to various clinical samples and can be adapted on opened molecular diagnostic platforms.

  17. Real-time PCR method applied to seafood products for authentication of European sole (Solea solea) and differentiation of common substitute species.

    PubMed

    Herrero, Beatriz; Lago, Fátima C; Vieites, Juan M; Espiñeira, Montserrat

    2012-01-01

    Judged by quality and taste, the European sole (Solea solea) is considered one of the finest flatfish and is, thus, of considerable commercial value. In the present work, a specific fast real-time PCR was developed for the authentication of S. solea, i.e. to distinguish it from other related species and avoid substitution of this species, either deliberately or unintentionally. The method is based on a species-specific set of primers and MGB Taqman probe which amplifies a 116-bp fragment of the internal transcribed spacer 1 (ITS 1) ribosomal DNA region. This assay combines the high specificity and sensitivity of real-time PCR with the rapidity of the fast mode, allowing the detection of S. solea in a short period of time. The present methodology was validated for application to all types of manufactured products for the presence of S. solea, with successful results. Subsequently, the method was applied to 40 commercial samples to determine whether correct labeling had been employed in the market. It was demonstrated that the assay is a useful tool in monitoring and verifying food labeling regulations.

  18. Rapid detection of Enterovirus and Coxsackievirus A10 by a TaqMan based duplex one-step real time RT-PCR assay.

    PubMed

    Chen, Jingfang; Zhang, Rusheng; Ou, Xinhua; Yao, Dong; Huang, Zheng; Li, Linzhi; Sun, Biancheng

    2017-06-01

    A TaqMan based duplex one-step real time RT-PCR (rRT-PCR) assay was developed for the rapid detection of Coxsackievirus A10 (CV-A10) and other enterovirus (EVs) in clinical samples. The assay was fully evaluated and found to be specific and sensitive. When applied in 115 clinical samples, a 100% diagnostic sensitivity in CV-A10 detection and 97.4% diagnostic sensitivity in other EVs were found. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Introducing automation to the molecular diagnosis of Trypanosoma cruzi infection: A comparative study of sample treatments, DNA extraction methods and real-time PCR assays.

    PubMed

    Abras, Alba; Ballart, Cristina; Llovet, Teresa; Roig, Carme; Gutiérrez, Cristina; Tebar, Silvia; Berenguer, Pere; Pinazo, María-Jesús; Posada, Elizabeth; Gascón, Joaquim; Schijman, Alejandro G; Gállego, Montserrat; Muñoz, Carmen

    2018-01-01

    Polymerase chain reaction (PCR) has become a useful tool for the diagnosis of Trypanosoma cruzi infection. The development of automated DNA extraction methodologies and PCR systems is an important step toward the standardization of protocols in routine diagnosis. To date, there are only two commercially available Real-Time PCR assays for the routine laboratory detection of T. cruzi DNA in clinical samples: TCRUZIDNA.CE (Diagnostic Bioprobes Srl) and RealCycler CHAG (Progenie Molecular). Our aim was to evaluate the RealCycler CHAG assay taking into account the whole process. We assessed the usefulness of an automated DNA extraction system based on magnetic particles (EZ1 Virus Mini Kit v2.0, Qiagen) combined with a commercially available Real-Time PCR assay targeting satellite DNA (SatDNA) of T. cruzi (RealCycler CHAG), a methodology used for routine diagnosis in our hospital. It was compared with a well-known strategy combining a commercial DNA isolation kit based on silica columns (High Pure PCR Template Preparation Kit, Roche Diagnostics) with an in-house Real-Time PCR targeting SatDNA. The results of the two methodologies were in almost perfect agreement, indicating they can be used interchangeably. However, when variations in protocol factors were applied (sample treatment, extraction method and Real-Time PCR), the results were less convincing. A comprehensive fine-tuning of the whole procedure is the key to successful results. Guanidine EDTA-blood (GEB) samples are not suitable for DNA extraction based on magnetic particles due to inhibition, at least when samples are not processed immediately. This is the first study to evaluate the RealCycler CHAG assay taking into account the overall process, including three variables (sample treatment, extraction method and Real-Time PCR). Our findings may contribute to the harmonization of protocols between laboratories and to a wider application of Real-Time PCR in molecular diagnostic laboratories associated with health

  20. A novel method of multiple nucleic acid detection: Real-time RT-PCR coupled with probe-melting curve analysis.

    PubMed

    Han, Yang; Hou, Shao-Yang; Ji, Shang-Zhi; Cheng, Juan; Zhang, Meng-Yue; He, Li-Juan; Ye, Xiang-Zhong; Li, Yi-Min; Zhang, Yi-Xuan

    2017-11-15

    A novel method, real-time reverse transcription PCR (real-time RT-PCR) coupled with probe-melting curve analysis, has been established to detect two kinds of samples within one fluorescence channel. Besides a conventional TaqMan probe, this method employs another specially designed melting-probe with a 5' terminus modification which meets the same label with the same fluorescent group. By using an asymmetric PCR method, the melting-probe is able to detect an extra sample in the melting stage effectively while it almost has little influence on the amplification detection. Thus, this method allows the availability of united employment of both amplification stage and melting stage for detecting samples in one reaction. The further demonstration by simultaneous detection of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) in one channel as a model system is presented in this essay. The sensitivity of detection by real-time RT-PCR coupled with probe-melting analysis was proved to be equal to that detected by conventional real-time RT-PCR. Because real-time RT-PCR coupled with probe-melting analysis can double the detection throughputs within one fluorescence channel, it is expected to be a good solution for the problem of low-throughput in current real-time PCR. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Probe-based real-time PCR method for multilocus melt typing of Xylella fastidiosa strains.

    PubMed

    Brady, Jeff A; Faske, Jennifer B; Ator, Rebecca A; Castañeda-Gill, Jessica M; Mitchell, Forrest L

    2012-04-01

    Epidemiological studies of Pierce's disease (PD) can be confounded by a lack of taxonomic detail on the bacterial causative agent, Xylella fastidiosa (Xf). PD in grape is caused by strains of Xylella fastidiosa subsp. fastidiosa, but is not caused by other subspecies of Xf that typically colonize plants other than grape. Detection assays using ELISA and qPCR are effective at detecting and quantifying Xf presence or absence, but offer no information on Xf subspecies or strain identity. Surveying insects or host plants for Xf by current ELISA or qPCR methods provides only presence/absence and quantity information for any and all Xf subspecies, potentially leading to false assessments of disease threat. This study uses a series of adjacent-hybridizing DNA melt analysis probes that are capable of efficiently discriminating Xf subspecies and strain relationships in rapid real-time PCR reactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Capability of a Mobile Monitoring System to Provide Real-Time Data Broadcasting and Near Real-Time Source Attribution

    NASA Astrophysics Data System (ADS)

    Erickson, M.; Olaguer, J.; Wijesinghe, A.; Colvin, J.; Neish, B.; Williams, J.

    2014-12-01

    It is becoming increasingly important to understand the emissions and health effects of industrial facilities. Many areas have no or limited sustained monitoring capabilities, making it difficult to quantify the major pollution sources affecting human health, especially in fence line communities. Developments in real-time monitoring and micro-scale modeling offer unique ways to tackle these complex issues. This presentation will demonstrate the capability of coupling real-time observations with micro-scale modeling to provide real-time information and near real-time source attribution. The Houston Advanced Research Center constructed the Mobile Acquisition of Real-time Concentrations (MARC) laboratory. MARC consists of a Ford E-350 passenger van outfitted with a Proton Transfer Reaction Mass Spectrometer (PTR-MS) and meteorological equipment. This allows for the fast measurement of various VOCs important to air quality. The data recorded from the van is uploaded to an off-site database and the information is broadcast to a website in real-time. This provides for off-site monitoring of MARC's observations, which allows off-site personnel to provide immediate input to the MARC operators on how to best achieve project objectives. The information stored in the database can also be used to provide near real-time source attribution. An inverse model has been used to ascertain the amount, location, and timing of emissions based on MARC measurements in the vicinity of industrial sites. The inverse model is based on a 3D micro-scale Eulerian forward and adjoint air quality model known as the HARC model. The HARC model uses output from the Quick Urban and Industrial Complex (QUIC) wind model and requires a 3D digital model of the monitored facility based on lidar or industrial permit data. MARC is one of the instrument platforms deployed during the 2014 Benzene and other Toxics Exposure Study (BEE-TEX) in Houston, TX. The main goal of the study is to quantify and explain the

  3. Clinical Validation of Multiplex Real-Time PCR Assays for Detection of Bacterial Meningitis Pathogens

    PubMed Central

    Theodore, M. Jordan; Mair, Raydel; Trujillo-Lopez, Elizabeth; du Plessis, Mignon; Wolter, Nicole; Baughman, Andrew L.; Hatcher, Cynthia; Vuong, Jeni; Lott, Lisa; von Gottberg, Anne; Sacchi, Claudio; McDonald, J. Matthew; Messonnier, Nancy E.; Mayer, Leonard W.

    2012-01-01

    Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae are important causes of meningitis and other infections, and rapid, sensitive, and specific laboratory assays are critical for effective public health interventions. Singleplex real-time PCR assays have been developed to detect N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA and serogroup-specific genes in the cap locus for N. meningitidis serogroups A, B, C, W135, X, and Y. However, the assay sensitivity for serogroups B, W135, and Y is low. We aimed to improve assay sensitivity and develop multiplex assays to reduce time and cost. New singleplex real-time PCR assays for serogroup B synD, W135 synG, and Y synF showed 100% specificity for detecting N. meningitidis species, with high sensitivity (serogroup B synD, 99% [75/76]; W135 synG, 97% [38/39]; and Y synF, 100% [66/66]). The lower limits of detection (LLD) were 9, 43, and 10 copies/reaction for serogroup B synD, W135 synG, and Y synF assays, respectively, a significant improvement compared to results for the previous singleplex assays. We developed three multiplex real-time PCR assays for detection of (i) N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA (NHS assay); (ii) N. meningitidis serogroups A, W135, and X (AWX assay); and (iii) N. meningitidis serogroups B, C, and Y (BCY assay). Each multiplex assay was 100% specific for detecting its target organisms or serogroups, and the LLD was similar to that for the singleplex assay. Pairwise comparison of real-time PCR between multiplex and singleplex assays showed that cycle threshold values of the multiplex assay were similar to those for the singleplex assay. There were no substantial differences in sensitivity and specificity between these multiplex and singleplex real-time PCR assays. PMID:22170919

  4. Clinical validation of multiplex real-time PCR assays for detection of bacterial meningitis pathogens.

    PubMed

    Wang, Xin; Theodore, M Jordan; Mair, Raydel; Trujillo-Lopez, Elizabeth; du Plessis, Mignon; Wolter, Nicole; Baughman, Andrew L; Hatcher, Cynthia; Vuong, Jeni; Lott, Lisa; von Gottberg, Anne; Sacchi, Claudio; McDonald, J Matthew; Messonnier, Nancy E; Mayer, Leonard W

    2012-03-01

    Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae are important causes of meningitis and other infections, and rapid, sensitive, and specific laboratory assays are critical for effective public health interventions. Singleplex real-time PCR assays have been developed to detect N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA and serogroup-specific genes in the cap locus for N. meningitidis serogroups A, B, C, W135, X, and Y. However, the assay sensitivity for serogroups B, W135, and Y is low. We aimed to improve assay sensitivity and develop multiplex assays to reduce time and cost. New singleplex real-time PCR assays for serogroup B synD, W135 synG, and Y synF showed 100% specificity for detecting N. meningitidis species, with high sensitivity (serogroup B synD, 99% [75/76]; W135 synG, 97% [38/39]; and Y synF, 100% [66/66]). The lower limits of detection (LLD) were 9, 43, and 10 copies/reaction for serogroup B synD, W135 synG, and Y synF assays, respectively, a significant improvement compared to results for the previous singleplex assays. We developed three multiplex real-time PCR assays for detection of (i) N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA (NHS assay); (ii) N. meningitidis serogroups A, W135, and X (AWX assay); and (iii) N. meningitidis serogroups B, C, and Y (BCY assay). Each multiplex assay was 100% specific for detecting its target organisms or serogroups, and the LLD was similar to that for the singleplex assay. Pairwise comparison of real-time PCR between multiplex and singleplex assays showed that cycle threshold values of the multiplex assay were similar to those for the singleplex assay. There were no substantial differences in sensitivity and specificity between these multiplex and singleplex real-time PCR assays.

  5. Effect of Sequence Polymorphisms on Performance of Two Real-Time PCR Assays for Detection of Herpes Simplex Virus

    PubMed Central

    Stevenson, Jeffery; Hymas, Weston; Hillyard, David

    2005-01-01

    Herpes simplex virus (HSV) is the most common cause of acquired, sporadic encephalitis in the United States. PCR identification of HSV in spinal fluid has become the diagnostic gold standard due to its sensitivity and potential for speed, replacing other methods such as culture. We developed a real-time PCR assay to detect HSV, using a new type of hybridization probe, the Eclipse probe. In this study, we ran 323 samples (171 positives and 152 negatives) with the Eclipse real-time PCR assay and compared these results with another PCR assay using gel detection. The real-time assay agreed with our reference method for 319 out of the 323 samples tested (99%). Using two different real-time PCR platforms, we discovered that SNPs within the amplicon's probe binding region that are used to distinguish HSV-1 from HSV-2 can decrease assay sensitivity. This problem is potentially a general one for assays using fluorescent probes to detect target amplification in a real-time format. While real-time PCR can be a powerful tool in the field of infectious disease, careful sequence evaluation and clinical validation are essential in creating an effective assay. PMID:15872272

  6. Colonization dynamic of various crop residues by Fusarium graminearum monitored through real-time PCR measurements.

    PubMed

    Leplat, J; Heraud, C; Gautheron, E; Mangin, P; Falchetto, L; Steinberg, C

    2016-11-01

    To evaluate the effect of the type of crop residues on the colonization dynamic of Fusarium graminearum in soil. The ability of F. graminearum to survive in the presence of various crop residues was assessed on Petri dishes and in microcosms. These microcosms comprised soil that had or had not been previously disinfested with or without amendment with various crop residues. The colonization dynamic of F. graminearum was monitored through real-time PCR. Fusarium graminearum development was higher in disinfested soil than in non-disinfested one. The fungal growth was enhanced to various extents according to the type of crop residues, except for mustard residues which inhibited it. The biochemical and physical properties of the residues were likely to account for the differences in the survival of F. graminearum. Fusarium graminearum is a poor competitor in soil but it can use maize, wheat, and rape residues to ensure its survival. Conversely alfalfa, which is assimilated by micro-organisms very easily, avoids long-lasting survival of the fungus. And finally, mustard producing glucosinolates could be used as an intermediate crop to reduce the inoculum amount. This study is contributing to the knowledge about F. graminearum saprotophic abilities and proposes interesting paths to limit its survival in soil. © 2016 The Society for Applied Microbiology.

  7. Label-free thioflavin T/G-quadruplex-based real-time strand displacement amplification for biosensing applications.

    PubMed

    Du, Yi-Chen; Zhu, Li-Na; Kong, De-Ming

    2016-12-15

    To promote application of strand-displacement amplification (SDA) techniques in biosensing, a label-free, real-time monitoring strategy for isothermal nucleic acid amplification reactions was designed. G-quadruplex structures were introduced into SDA products using specific recognition of G-quadruplexes by the fluorogenic dye thioflavin T. Performance was good for real-time monitoring of traditional SDA by a linear-amplification mechanism and for exponential cross-triggered SDA amplification. The strategy worked on a commercial real-time PCR instrument, making it suitable for biosensing platforms. As examples, two highly sensitive and specific biosensors were designed for analysis of the activity of uracil-DNA glycosylase (UDG) and the restriction endonuclease EcoRI. Detection limits were 6×10(-5)U/mL for UDG and 0.016U/mL for EcoRI. Detection of corresponding targets in complex matrices such as cell lysates or human serum was also demonstrated. Compared to traditional end-point detection methods, real-time SDA-based approaches have the advantages of simple, fast operation; high sensitivity; low risk of carryover contamination; and very high throughput. The introduction of real-time monitoring strategies may promote application of SDA reactions in biosensor design. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Validation and Application of a PCR Primer Set to Quantify Fungal Communities in the Soil Environment by Real-Time Quantitative PCR

    PubMed Central

    Chemidlin Prévost-Bouré, Nicolas; Christen, Richard; Dequiedt, Samuel; Mougel, Christophe; Lelièvre, Mélanie; Jolivet, Claudy; Shahbazkia, Hamid Reza; Guillou, Laure; Arrouays, Dominique; Ranjard, Lionel

    2011-01-01

    Fungi constitute an important group in soil biological diversity and functioning. However, characterization and knowledge of fungal communities is hampered because few primer sets are available to quantify fungal abundance by real-time quantitative PCR (real-time Q-PCR). The aim in this study was to quantify fungal abundance in soils by incorporating, into a real-time Q-PCR using the SYBRGreen® method, a primer set already used to study the genetic structure of soil fungal communities. To satisfy the real-time Q-PCR requirements to enhance the accuracy and reproducibility of the detection technique, this study focused on the 18S rRNA gene conserved regions. These regions are little affected by length polymorphism and may provide sufficiently small targets, a crucial criterion for enhancing accuracy and reproducibility of the detection technique. An in silico analysis of 33 primer sets targeting the 18S rRNA gene was performed to select the primer set with the best potential for real-time Q-PCR: short amplicon length; good fungal specificity and coverage. The best consensus between specificity, coverage and amplicon length among the 33 sets tested was the primer set FR1 / FF390. This in silico analysis of the specificity of FR1 / FF390 also provided additional information to the previously published analysis on this primer set. The specificity of the primer set FR1 / FF390 for Fungi was validated in vitro by cloning - sequencing the amplicons obtained from a real time Q-PCR assay performed on five independent soil samples. This assay was also used to evaluate the sensitivity and reproducibility of the method. Finally, fungal abundance in samples from 24 soils with contrasting physico-chemical and environmental characteristics was examined and ranked to determine the importance of soil texture, organic carbon content, C∶N ratio and land use in determining fungal abundance in soils. PMID:21931659

  9. Real-time PCR for quantification of viable Renibacterium salmoninarum in chum salmon Oncorhynchus keta.

    PubMed

    Suzuki, Kunio; Sakai, D K

    2007-03-13

    Quantification of msa gene mRNA of Renibacterium salmoninarum, the causative agent of bacterial kidney disease (BKD), was investigated using reverse transcription followed by real-time PCR assay on R. salmoninarum in culture, and in experimentally challenged chum salmon Oncorhynchus keta fry kidney tissues (total of 70 samples) after intraperitoneal (i.p.) injection and bath infection. Correlations of msa gene mRNA concentrations with culturable cell concentrations (as colony forming units [CFU]), determined by drop-plate culture method on selective kidney disease medium (SKDM) agar through a 12 wk incubation time, and msa gene DNA concentrations by real-time PCR assay were examined. Furthermore, ovarian fluid samples from wild chum salmon adults with no clinical signs of disease were collected from 8 rivers and from clinically infected kokanee 0. nerka and masu salmon O. masou that were reared in 1 and 2 hatcheries, respectively (total of 414 samples). All samples were examined by nested PCR assay. Then, positive samples were examined by real-time PCR assays for mRNA and DNA; mRNA was detectable at 8 log units (5.0 x 101 to 5.0 x 10(9) copies p11(-1)) with high correlation (R2 = 0.999). The mRNA concentration correlated with CFU in kidney tissue from fish infected by i.p. injection (R2 = 0.924), by bath infection (R2 = 0.502) and in culture (R2 = 0.888). R. salmoninarum was detected and quantified by real-time PCR assay for mRNA in ovarian fluid samples in both subclinically infected chum salmon adults and clinically infected kokanee and masu salmon adults; detection rates ranged from 0 to 44.4% and concentrations ranged from 9.7 x 10(2) to 5.6 x 10(5) copies pl(-1). These results indicate that real-time PCR assay for the mRNA is a rapid, sensitive and reliable method to detect and quantify the viability of R. salmoninarum in kidney and ovarian fluid samples of salmonid fishes with both clinical and subclinical infection of the pathogen.

  10. Detection of Alicyclobacillus spp. in Fruit Juice by Combination of Immunomagnetic Separation and a SYBR Green I Real-Time PCR Assay

    PubMed Central

    Yuan, Yahong; Liu, Bin; Wang, Ling; Yue, Tianli

    2015-01-01

    An approach based on immunomagnetic separation (IMS) and SYBR Green I real-time PCR (real-time PCR) with species-specific primers and melting curve analysis was proposed as a rapid and effective method for detecting Alicyclobacillus spp. in fruit juices. Specific primers targeting the 16S rDNA sequences of Alicyclobacillus spp. were designed and then confirmed by the amplification of DNA extracted from standard strains and isolates. Spiked samples containing known amounts of target bacteria were used to obtain standard curves; the correlation coefficient was greater than 0.986 and the real-time PCR amplification efficiencies were 98.9%- 101.8%. The detection limit of the testing system was 2.8×101 CFU/mL. The coefficient of variation for intra-assay and inter-assay variability were all within the acceptable limit of 5%. Besides, the performance of the IMS-real-time PCR assay was further investigated by detecting naturally contaminated kiwi fruit juice; the sensitivity, specificity and accuracy were 91.7%, 95.9% and 95.3%, respectively. The established IMS-real-time PCR procedure provides a new method for identification and quantitative detection of Alicyclobacillus spp. in fruit juice. PMID:26488469

  11. A Short Interspersed Nuclear Element (SINE)-Based Real-Time PCR Approach to Detect and Quantify Porcine Component in Meat Products.

    PubMed

    Zhang, Chi; Fang, Xin; Qiu, Haopu; Li, Ning

    2015-01-01

    Real-time PCR amplification of mitochondria gene could not be used for DNA quantification, and that of single copy DNA did not allow an ideal sensitivity. Moreover, cross-reactions among similar species were commonly observed in the published methods amplifying repetitive sequence, which hindered their further application. The purpose of this study was to establish a short interspersed nuclear element (SINE)-based real-time PCR approach having high specificity for species detection that could be used in DNA quantification. After massive screening of candidate Sus scrofa SINEs, one optimal combination of primers and probe was selected, which had no cross-reaction with other common meat species. LOD of the method was 44 fg DNA/reaction. Further, quantification tests showed this approach was practical in DNA estimation without tissue variance. Thus, this study provided a new tool for qualitative detection of porcine component, which could be promising in the QC of meat products.

  12. Real-time PCR and its application to mumps rapid diagnosis.

    PubMed

    Jin, L; Feng, Y; Parry, R; Cui, A; Lu, Y

    2007-11-01

    A real-time polymerase chain reaction assay was initially developed in China to detect mumps genome. The primers and TaqMan-MGB probe were selected from regions of the hemagglutinin gene of mumps virus. The primers and probe for the real-time PCR were evaluated by both laboratories in China and in the UK using three different pieces of equipment, LightCycler (Roche), MJ DNA Engine Option 2 (BIO-RAD) and TaqMan (ABI Prism) on different samples. The reaction was performed with either a one-step (China) or two-step (UK) process. The sensitivity (10 copies) was estimated using a serial dilution of constructed mumps-plasmid DNA and a linear standard curve was obtained between 10 and 10(7) DNA copies/reaction, which can be used to quantify viral loads. The detection limit on cell culture-grown virus was approximately 2 pfu/ml with a two-step assay on TaqMan, which was equivalent to the sensitivity of the nested PCR routinely used in the UK. The specificity was proved by testing a range of respiratory viruses and several genotypes of mumps strains. The concentration of primers and probe is 22 pmol and 6.25 or 7 pmol respectively for a 25 microl reaction. The assay took 3 hr from viral RNA extraction to complete the detection using any of the three pieces of equipment. Three hundred forty-one (35 in China and 306 in the UK) clinical specimens were tested, the results showing that this real-time PCR assay is suitable for rapid and accurate detection of mumps virus RNA in various types of clinical specimens. (c) 2007 Wiley-Liss, Inc.

  13. Development of a real-time RT-PCR assay for a novel influenza A (H1N1) virus.

    PubMed

    Jiang, Tao; Kang, Xiaoping; Deng, Yongqiang; Zhao, Hui; Li, Xiaofeng; Yu, Xuedong; Yu, Man; Qin, Ede; Zhu, Qingyu; Yang, Yinhui; Qin, Chengfeng

    2010-02-01

    A pandemic caused by a novel influenza A virus (H1N1) poses a serious public health threat. In this study, a real-time reverse transcriptase PCR (RT-PCR) assay based on the hemagglutinin gene was developed that discriminates the novel H1N1 from swine influenza virus, seasonal H1N1/H3N2 virus and the highly pathogenic H5N1 avian influenza virus. The sensitivity of this assay was 0.2 50% tissue culture infective dose of virus and 200 copies of in vitro-transcribed target RNA. Three hundred and forty-eight clinical specimens from suspected H1N1 patients were tested using this assay, and forty-two (12.07%) were found to be positive. Tests using the real-time PCR assay recommended by WHO and virus isolation gave identical results. This sensitive and specific real-time RT-PCR assay will contribute to the early diagnosis and control of the emerging H1N1 influenza pandemic. 2009 Elsevier B.V. All rights reserved.

  14. A TaqMan real-time PCR method based on alternative oxidase genes for detection of plant species in animal feed samples.

    PubMed

    Campos, Maria Doroteia; Valadas, Vera; Campos, Catarina; Morello, Laura; Braglia, Luca; Breviario, Diego; Cardoso, Hélia G

    2018-01-01

    Traceability of processed food and feed products has been gaining importance due to the impact that those products can have on human/animal health and to the associated economic and legal concerns, often related to adulterations and frauds as it can be the case for meat and milk. Despite mandatory traceability requirements for the analysis of feed composition, few reliable and accurate methods are presently available to enforce the legislative frame and allow the authentication of animal feeds. In this study, nine sensitive and species-specific real-time PCR TaqMan MGB assays are described for plant species detection in animal feed samples. The method is based on selective real-time qPCR (RT-qPCR) amplification of target genes belonging to the alternative oxidase (AOX) gene family. The plant species selected for detection in feed samples were wheat, maize, barley, soybean, rice and sunflower as common components of feeds, and cotton, flax and peanut as possible undesirable contaminants. The obtained results were compared with end-point PCR methodology. The applicability of the AOX TaqMan assays was evaluated through the screening of commercial feed samples, and by the analysis of plant mixtures with known composition. The RT-qPCR methodology allowed the detection of the most abundant species in feeds but also the identification of contaminant species present in lower amounts, down to 1% w/w. AOX-based methodology provides a suitable molecular marker approach to ascertain plant species composition of animal feed samples, thus supporting feed control and enforcement of the feed sector and animal production.

  15. Accuracy of real-time PCR, Gram stain and culture for Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae meningitis diagnosis.

    PubMed

    Wu, Henry M; Cordeiro, Soraia M; Harcourt, Brian H; Carvalho, Mariadaglorias; Azevedo, Jailton; Oliveira, Tainara Q; Leite, Mariela C; Salgado, Katia; Reis, Mitermayer G; Plikaytis, Brian D; Clark, Thomas A; Mayer, Leonard W; Ko, Albert I; Martin, Stacey W; Reis, Joice N

    2013-01-22

    Although cerebrospinal fluid (CSF) culture is the diagnostic reference standard for bacterial meningitis, its sensitivity is limited, particularly when antibiotics were previously administered. CSF Gram staining and real-time PCR are theoretically less affected by antibiotics; however, it is difficult to evaluate these tests with an imperfect reference standard. CSF from patients with suspected meningitis from Salvador, Brazil were tested with culture, Gram stain, and real-time PCR using S. pneumoniae, N. meningitidis, and H. influenzae specific primers and probes. An antibiotic detection disk bioassay was used to test for the presence of antibiotic activity in CSF. The diagnostic accuracy of tests were evaluated using multiple methods, including direct evaluation of Gram stain and real-time PCR against CSF culture, evaluation of real-time PCR against a composite reference standard, and latent class analysis modeling to evaluate all three tests simultaneously. Among 451 CSF specimens, 80 (17.7%) had culture isolation of one of the three pathogens (40 S. pneumoniae, 36 N. meningitidis, and 4 H. influenzae), and 113 (25.1%) were real-time PCR positive (51 S. pneumoniae, 57 N. meningitidis, and 5 H. influenzae). Compared to culture, real-time PCR sensitivity and specificity were 95.0% and 90.0%, respectively. In a latent class analysis model, the sensitivity and specificity estimates were: culture, 81.3% and 99.7%; Gram stain, 98.2% and 98.7%; and real-time PCR, 95.7% and 94.3%, respectively. Gram stain and real-time PCR sensitivity did not change significantly when there was antibiotic activity in the CSF. Real-time PCR and Gram stain were highly accurate in diagnosing meningitis caused by S. pneumoniae, N. meningitidis, and H. influenzae, though there were few cases of H. influenzae. Furthermore, real-time PCR and Gram staining were less affected by antibiotic presence and might be useful when antibiotics were previously administered. Gram staining, which is

  16. Network-based real-time radiation monitoring system in Synchrotron Radiation Research Center.

    PubMed

    Sheu, R J; Wang, J P; Chen, C R; Liu, J; Chang, F D; Jiang, S H

    2003-10-01

    The real-time radiation monitoring system (RMS) in the Synchrotron Radiation Research Center (SRRC) has been upgraded significantly during the past years. The new framework of the RMS is built on the popular network technology, including Ethernet hardware connections and Web-based software interfaces. It features virtually no distance limitations, flexible and scalable equipment connections, faster response time, remote diagnosis, easy maintenance, as well as many graphic user interface software tools. This paper briefly describes the radiation environment in SRRC and presents the system configuration, basic functions, and some operational results of this real-time RMS. Besides the control of radiation exposures, it has been demonstrated that a variety of valuable information or correlations could be extracted from the measured radiation levels delivered by the RMS, including the changes of operating conditions, beam loss pattern, radiation skyshine, and so on. The real-time RMS can be conveniently accessed either using the dedicated client program or World Wide Web interface. The address of the Web site is http:// www-rms.srrc.gov.tw.

  17. HybProbes-based real-time PCR assay for specific identification of Streptomyces scabies and Streptomyces europaeiscabiei, the potato common scab pathogens.

    PubMed

    Xu, R; Falardeau, J; Avis, T J; Tambong, J T

    2016-02-01

    The aim of this study was to develop and validate a HybProbes-based real-time PCR assay targeting the trpB gene for specific identification of Streptomyces scabies and Streptomyces europaeiscabiei. Four primer pairs and a fluorescent probe were designed and evaluated for specificity in identifying S. scabies and Streptomyces europaeiscabiei, the potato common scab pathogens. The specificity of the HybProbes-based real-time PCR assay was evaluated using 46 bacterial strains, 23 Streptomyces strains and 23 non-Streptomyces bacterial species. Specific and strong fluorescence signals were detected from all nine strains of S. scabies and Streptomyces europaeiscabiei. No fluorescence signal was detected from 14 strains of other Streptomyces species and all non-Streptomyces strains. The identification was corroborated by the melting curve analysis that was performed immediately after the amplification step. Eight of the nine S. scabies and S. europaeiscabiei strains exhibited a unique melting peak, at Tm of 69·1°C while one strain, Warba-6, had a melt peak at Tm of 65·4°C. This difference in Tm peaks could be attributed to a guanine to cytosine mutation in strain Warba-6 at the region spanning the donor HybProbe. The reported HybProbes assay provides a more specific tool for accurate identification of S. scabies and S. europaeiscabiei strains. This study reports a novel assay based on HybProbes chemistry for rapid and accurate identification of the potato common scab pathogens. Since the HybProbes chemistry requires two probes for positive identification, the assay is considered to be more specific than conventional PCR or TaqMan real-time PCR. The developed assay would be a useful tool with great potential in early diagnosis and detection of common scab pathogens of potatoes in infected plants or for surveillance of potatoes grown in soil environment. © 2015 Her Majesty the Queen in Right of Canada © 2015 The Society for Applied Microbiology.

  18. Improved Real-Time Monitoring Using Multiple Expert Systems

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Angelino, Robert; Quan, Alan G.; Veregge, John; Childs, Cynthia

    1993-01-01

    Monitor/Analyzer of Real-Time Voyager Engineering Link (MARVEL) computer program implements combination of techniques of both conventional automation and artificial intelligence to improve monitoring of complicated engineering system. Designed to support ground-based operations of Voyager spacecraft, also adapted to other systems. Enables more-accurate monitoring and analysis of telemetry, enhances productivity of monitoring personnel, reduces required number of such personnel by performing routine monitoring tasks, and helps ensure consistency in face of turnover of personnel. Programmed in C language and includes commercial expert-system software shell also written in C.

  19. Rapid and specific detection of Salmonella in water samples using real-time PCR and High Resolution Melt (HRM) curve analysis.

    PubMed

    van Blerk, G N; Leibach, L; Mabunda, A; Chapman, A; Louw, D

    2011-01-01

    A real-time PCR assay combined with a pre-enrichment step for the specific and rapid detection of Salmonella in water samples is described. Following amplification of the invA gene target, High Resolution Melt (HRM) curve analysis was used to discriminate between products formed and to positively identify invA amplification. The real-time PCR assay was evaluated for specificity and sensitivity. The assay displayed 100% specificity for Salmonella and combined with a 16-18 h non-selective pre-enrichment step, the assay proved to be highly sensitive with a detection limit of 1.0 CFU/ml for surface water samples. The detection assay also demonstrated a high intra-run and inter-run repeatability with very little variation in invA amplicon melting temperature. When applied to water samples received routinely by the laboratory, the assay showed the presence of Salmonella in particularly surface water and treated effluent samples. Using the HRM based assay, the time required for Salmonella detection was drastically shortened to less than 24 h compared to several days when using standard culturing methods. This assay provides a useful tool for routine water quality monitoring as well as for quick screening during disease outbreaks.

  20. Detection of the free living amoeba Naegleria fowleri by using conventional and real-time PCR based on a single copy DNA sequence.

    PubMed

    Régoudis, Estelle; Pélandakis, Michel

    2016-02-01

    The amoeba-flagellate Naegleria fowleri is a causative agent of primary amoebic meningoencephalitis (PAM). This thermophilic species occurs worldwide and tends to proliferate in warm aquatic environment. The PAM cases remain rare but this infection is mostly fatal. Here, we describe a single copy region which has been cloned and sequenced, and was used for both conventional and real-time PCR. Targeting a single-copy DNA sequence allows to directly quantify the N. fowleri cells. The real-time PCR results give a detection limit of 1 copy per reaction with high reproducibility without the need of a Taqman probe. This procedure is of interest as compared to other procedures which are mostly based on the detection of multi-copy DNA associated with a Taqman probe. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Bluetongue virus RNA detection by real-time rt-PCR in post-vaccination samples from cattle.

    PubMed

    De Leeuw, I; Garigliany, M; Bertels, G; Willems, T; Desmecht, D; De Clercq, K

    2015-04-01

    Bluetongue virus serotype 8 (BTV-8) was responsible for a large outbreak among European ruminant populations in 2006-2009. In spring 2008, a massive vaccination campaign was undertaken, leading to the progressive disappearance of the virus. During surveillance programmes in Western Europe in 2010-2011, a low but significant number of animals were found weakly positive using BTV-specific real-time RT-PCR, raising questions about a possible low level of virus circulation. An interference of the BTV-8 inactivated vaccine on the result of the real-time RT-PCR was also hypothesized. Several studies specifically addressed the potential association between a recent vaccination and BTV-8 RNA detection in the blood of sheep. Results were contradictory and cattles were not investigated. To enlighten this point, a large study was performed to determine the risks of detection of bluetongue vaccine-associated RNA in the blood and spleen of cattle using real-time RT-PCR. Overall, the results presented clearly demonstrate that vaccine viral RNA can reach the blood circulation in sufficient amounts to be detected by real-time RT-PCR in cattle. This BTV-8 vaccine RNA carriage appears as short lasting. © 2013 Blackwell Verlag GmbH.

  2. REAL-TIME ENVIRONMENTAL MONITORING: APPLICATIONS FOR HOMELAND SECURITY

    EPA Science Inventory

    Real-time monitoring technology developed as part of the EMPACT program has a variety of potential applications. These tools can measure a variety of potential contaminants in the air, water, in buildings, or in the soil. Real-time monitoring technology allows these detection sys...

  3. Diagnosis and identification of Leishmania spp. from Giemsa-stained slides, by real-time PCR and melting curve analysis in south-west of Iran.

    PubMed

    Khademvatan, S; Neisi, N; Maraghi, S; Saki, J

    2011-12-01

    The aim of present study was describing a real-time PCR assay for the diagnosis and direct identification of Leishmania species on Giemsa-stained slides in south-west of Iran. Altogether, 102 Giemsa-stained slides were collected from different part of south-west of Iran between 2008 and 2011. All the Giemsa-stained slides were examined under light microscope. After DNA extraction, real-time PCR amplification and detection were conducted with fluorescent SYBR Green I. For identification, PCR products were analysed with melting curve analysis. One hundred and two archived slides from suspected lesion examined by microscopy and real-time PCR. The sensitivity of the real-time PCR on Giemsa-stained slid was 98% (96/102). The melting curve analysis (T(m)) were 88·3±0·2°C for L. tropica (MHOM/IR/02/Mash10), 86·5±0·2°C for L. major (MHOM/IR/75/ER) and 89·4±0·3°C for L. infantum (MCAN/IR/97/LON 49), respectively. This study is first report in use of real-time PCR for diagnosis and identification of Leishmania spp. in Iran. Up to now, in Iran, the majority of identification of Leishmania species is restriction fragment length polymorphism (PCR-RFLP) of ITS1 and kinetoplast DNA. Our data showed that Giemsa-stained slides that were stored more than 3 years, can be use for Leishmania DNA extraction and amplification by real-time PCR. Compared to conventional PCR-based methods, the real-time PCR is extremely rapid with results and more samples can be processed at one time.

  4. [Construction and analysis of a monitoring system with remote real-time multiple physiological parameters based on cloud computing].

    PubMed

    Zhu, Lingyun; Li, Lianjie; Meng, Chunyan

    2014-12-01

    There have been problems in the existing multiple physiological parameter real-time monitoring system, such as insufficient server capacity for physiological data storage and analysis so that data consistency can not be guaranteed, poor performance in real-time, and other issues caused by the growing scale of data. We therefore pro posed a new solution which was with multiple physiological parameters and could calculate clustered background data storage and processing based on cloud computing. Through our studies, a batch processing for longitudinal analysis of patients' historical data was introduced. The process included the resource virtualization of IaaS layer for cloud platform, the construction of real-time computing platform of PaaS layer, the reception and analysis of data stream of SaaS layer, and the bottleneck problem of multi-parameter data transmission, etc. The results were to achieve in real-time physiological information transmission, storage and analysis of a large amount of data. The simulation test results showed that the remote multiple physiological parameter monitoring system based on cloud platform had obvious advantages in processing time and load balancing over the traditional server model. This architecture solved the problems including long turnaround time, poor performance of real-time analysis, lack of extensibility and other issues, which exist in the traditional remote medical services. Technical support was provided in order to facilitate a "wearable wireless sensor plus mobile wireless transmission plus cloud computing service" mode moving towards home health monitoring for multiple physiological parameter wireless monitoring.

  5. Air-Flow-Driven Triboelectric Nanogenerators for Self-Powered Real-Time Respiratory Monitoring.

    PubMed

    Wang, Meng; Zhang, Jiahao; Tang, Yingjie; Li, Jun; Zhang, Baosen; Liang, Erjun; Mao, Yanchao; Wang, Xudong

    2018-06-04

    Respiration is one of the most important vital signs of humans, and respiratory monitoring plays an important role in physical health management. A low-cost and convenient real-time respiratory monitoring system is extremely desirable. In this work, we demonstrated an air-flow-driven triboelectric nanogenerator (TENG) for self-powered real-time respiratory monitoring by converting mechanical energy of human respiration into electric output signals. The operation of the TENG was based on the air-flow-driven vibration of a flexible nanostructured polytetrafluoroethylene (n-PTFE) thin film in an acrylic tube. This TENG can generate distinct real-time electric signals when exposed to the air flow from different breath behaviors. It was also found that the accumulative charge transferred in breath sensing corresponds well to the total volume of air exchanged during the respiration process. Based on this TENG device, an intelligent wireless respiratory monitoring and alert system was further developed, which used the TENG signal to directly trigger a wireless alarm or dial a cell phone to provide timely alerts in response to breath behavior changes. This research offers a promising solution for developing self-powered real-time respiratory monitoring devices.

  6. Free circulating nucleic acids in plasma and serum as a novel approach to the use of internal controls in real time PCR based detection.

    PubMed

    Karataylı, Ersin; Altunoğlu, Yasemin Çelik; Karataylı, Senem Ceren; Yurdaydın, Cihan; Bozdayı, A Mithat

    2014-10-01

    Internal controls (ICs), are the main components of any real-time PCR based amplification methods, which are co-purified and co-amplified with the actual target. The existence of free circulating nucleic acids in plasma and serum (CNAPS) has been known for many years. The aim of this study was to verify whether CNAPS can be used as ICs in real-time PCR based detection and quantification of DNA or RNA targets in plasma and serum samples. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a housekeeping gene, was chosen at random as CNAPS to serve as an intrinsic internal control in two different real-time PCR based quantification models in plasma and serum. Viral loads of hepatitis B virus (HBV) DNA and hepatitis delta virus (HDV) RNA were quantified as actual targets in parallel to GAPDH as IC in a total of 519 serum or plasma samples including 21 healthy controls, 202 positive chronic hepatitis delta patients, 37 chronic hepatitis C patients, 168 chronic hepatitis B patients, 52 patients with hepatocellular carcinoma, and 39 patients with non-alcoholic steatohepatitis/non-alcoholic fatty liver disease. GAPDH levels did not show significant variance in different patient groups and yielded positive signals in all 519 patients with persistent cycle threshold (CT) values 27.85±1.57 (mean±standard deviation (SD)). Reproducibility of the GAPDH amplification in HDV RNA and HBV DNA quantifications was shown with a SD value of CT ranging from 0.42 to 2.14 (mean SD; 1.18) and 0.24 to 1.75 (mean SD; 1.03), respectively. In conclusion, the freely circulating nucleic acids can clearly be used as internal controls for real-time PCR based detection and quantification of any RNA and mainly DNA targets (pathogens) in serum or plasma and this simply excludes the compulsory external addition of any IC molecules into the reaction. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Relative sensitivity of conventional and real-time PCR assays for detection of SFG Rickettsia in blood and tissue samples from laboratory animals.

    PubMed

    Zemtsova, Galina E; Montgomery, Merrill; Levin, Michael L

    2015-01-01

    Studies on the natural transmission cycles of zoonotic pathogens and the reservoir competence of vertebrate hosts require methods for reliable diagnosis of infection in wild and laboratory animals. Several PCR-based applications have been developed for detection of infections caused by Spotted Fever group Rickettsia spp. in a variety of animal tissues. These assays are being widely used by researchers, but they differ in their sensitivity and reliability. We compared the sensitivity of five previously published conventional PCR assays and one SYBR green-based real-time PCR assay for the detection of rickettsial DNA in blood and tissue samples from Rickettsia- infected laboratory animals (n = 87). The real-time PCR, which detected rickettsial DNA in 37.9% of samples, was the most sensitive. The next best were the semi-nested ompA assay and rpoB conventional PCR, which detected as positive 18.4% and 14.9% samples respectively. Conventional assays targeting ompB, gltA and hrtA genes have been the least sensitive. Therefore, we recommend the SYBR green-based real-time PCR as a tool for the detection of rickettsial DNA in animal samples due to its higher sensitivity when compared to more traditional assays.

  8. Real-time amyloid aggregation monitoring with a photonic crystal-based approach.

    PubMed

    Santi, Sara; Musi, Valeria; Descrovi, Emiliano; Paeder, Vincent; Di Francesco, Joab; Hvozdara, Lubos; van der Wal, Peter; Lashuel, Hilal A; Pastore, Annalisa; Neier, Reinhard; Herzig, Hans Peter

    2013-10-21

    We propose the application of a new label-free optical technique based on photonic nanostructures to real-time monitor the amyloid-beta 1-42 (Aβ(1-42)) fibrillization, including the early stages of the aggregation process, which are related to the onset of the Alzheimer's Disease (AD). The aggregation of Aβ peptides into amyloid fibrils has commonly been associated with neuronal death, which culminates in the clinical features of the incurable degenerative AD. Recent studies revealed that cell toxicity is determined by the formation of soluble oligomeric forms of Aβ peptides in the early stages of aggregation. At this phase, classical amyloid detection techniques lack in sensitivity. Upon a chemical passivation of the sensing surface by means of polyethylene glycol, the proposed approach allows an accurate, real-time monitoring of the refractive index variation of the solution, wherein Aβ(1-42) peptides are aggregating. This measurement is directly related to the aggregation state of the peptide throughout oligomerization and subsequent fibrillization. Our findings open new perspectives in the understanding of the dynamics of amyloid formation, and validate this approach as a new and powerful method to screen aggregation at early stages. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Substrate-Coated Illumination Droplet Spray Ionization: Real-Time Monitoring of Photocatalytic Reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Li, Na; Zhao, Dandan; Jiang, Jie; You, Hong

    2017-09-01

    Real-time monitoring of photocatalytic reactions facilitates the elucidation of the mechanisms of the reactions. However, suitable tools for real-time monitoring are lacking. Herein, a novel method based on droplet spray ionization named substrate-coated illumination droplet spray ionization (SCI-DSI) for direct analysis of photocatalytic reaction solution is reported. SCI-DSI addresses many of the analytical limitations of electrospray ionization (ESI) for analysis of photocatalytic-reaction intermediates, and has potential for both in situ analysis and real-time monitoring of photocatalytic reactions. In SCI-DSI-mass spectrometry (MS), a photocatalytic reaction occurs by loading sample solutions onto the substrate-coated cover slip and by applying UV light above the modified slip; one corner of this slip adjacent to the inlet of a mass spectrometer is the high-electric-field location for launching a charged-droplet spray. After both testing and optimizing the performance of SCI-DSI, the value of this method for in situ analysis and real-time monitoring of photocatalytic reactions was demonstrated by the removal of cyclophosphamide (CP) in TiO2/UV. Reaction times ranged from seconds to minutes, and the proposed reaction intermediates were captured and identified by tandem mass spectrometry. Moreover, the free hydroxyl radical (·OH) was identified as the main radicals for CP removal. These results show that SCI-DSI is suitable for in situ analysis and real-time monitoring of CP removal under TiO2-based photocatalytic reactions. SCI-DSI is also a potential tool for in situ analysis and real-time assessment of the roles of radicals during CP removal under TiO2-based photocatalytic reactions. Graphical Abstract[Figure not available: see fulltext.

  10. Monitoring in Situ Anaerobic Alkylbenzene Biodegradation Based on Mass Spectrometric Detection of Unique Metabolites or Real-Time PCR Detection of a Catabolic Gene

    NASA Astrophysics Data System (ADS)

    Beller, H. R.; Kane, S. R.

    2002-12-01

    Monitored natural attenuation (MNA) can be a cost-effective and viable approach for remediation of hydrocarbon-contaminated groundwater. However, regulatory acceptance of the approach is often contingent on monitoring that can convincingly demonstrate the role of microbial degradation. Recent advances in anaerobic hydrocarbon biochemistry, analytical chemistry, and molecular biology have fostered the development of powerful new techniques that can be applied to MNA of BTEX (benzene, toluene, ethylbenzene, and xylenes). Here we report two independent methods that have been developed to monitor in situ, anaerobic biodegradation of toluene and xylenes. A method has been developed for rapid, sensitive, and highly selective detection of distinctive indicators of anaerobic alkylbenzene metabolism. The target metabolites, benzylsuccinic acid (BS) and methylbenzylsuccinic acid (MeBS) isomers, have no known sources other than anaerobic toluene or xylene degradation; thus, their mere presence in groundwater provides definitive evidence of in situ metabolism. The method, which involves small sample size (<1 mL) and no extraction/concentration steps, relies on isotope dilution liquid chromatography/tandem mass spectrometry (LC/MS/MS) with selected reaction monitoring. Detection limits for benzylsuccinates were determined to be ca. 0.3 μg/L and accuracy and precision were favorable in a groundwater matrix. The LC/MS/MS method was used to characterize geographic and temporal distributions of benzylsuccinates in an anaerobic, hydrocarbon-contaminated aquifer. BS was never detected and MeBS isomers were detected in the three wells with the highest concentrations of BTEX; MeBS concentrations ranged from <0.3 to 205 μg/L. A strong linear correlation was found between concentrations of total MeBS isomers and their parent compounds, xylenes. A monitoring method based on real-time Polymerase Chain Reaction (PCR) analysis has been developed to specifically quantify populations of

  11. Detection of Leishmania infantum by real-time PCR in a canine blood bank.

    PubMed

    Tabar, M D; Roura, X; Francino, O; Altet, L; Ruiz de Gopegui, R

    2008-07-01

    Risk for transmission of Leishmania infantum from blood products has been largely demonstrated in human and veterinary literature. Appropriate screening of canine blood donors is important especially in an endemic area such as Barcelona (Spain). The purpose of this study was to evaluate the presence of L infantum DNA parasites by real-time quantitative PCR in our canine blood bank. Samples from blood products obtained from 92 canine blood donors were assayed for L infantum by means of real-time PCR amplification and quantification. The prevalence of quantitative PCR-positive blood samples among healthy seronegative blood donors was 19.6 per cent. The results of this study show that L infantum infection is common in canine blood donors and their blood products in an endemic area, despite a negative commercial serological screening for infectious diseases. Therefore, screening by PCR should be included in an integrated approach to evaluate L infantum infection among potential blood donors.

  12. Assessment of real-time PCR based methods for quantification of pollen-mediated gene flow from GM to conventional maize in a field study.

    PubMed

    Pla, Maria; La Paz, José-Luis; Peñas, Gisela; García, Nora; Palaudelmàs, Montserrat; Esteve, Teresa; Messeguer, Joaquima; Melé, Enric

    2006-04-01

    Maize is one of the main crops worldwide and an increasing number of genetically modified (GM) maize varieties are cultivated and commercialized in many countries in parallel to conventional crops. Given the labeling rules established e.g. in the European Union and the necessary coexistence between GM and non-GM crops, it is important to determine the extent of pollen dissemination from transgenic maize to other cultivars under field conditions. The most widely used methods for quantitative detection of GMO are based on real-time PCR, which implies the results are expressed in genome percentages (in contrast to seed or grain percentages). Our objective was to assess the accuracy of real-time PCR based assays to accurately quantify the contents of transgenic grains in non-GM fields in comparison with the real cross-fertilization rate as determined by phenotypical analysis. We performed this study in a region where both GM and conventional maize are normally cultivated and used the predominant transgenic maize Mon810 in combination with a conventional maize variety which displays the characteristic of white grains (therefore allowing cross-pollination quantification as percentage of yellow grains). Our results indicated an excellent correlation between real-time PCR results and number of cross-fertilized grains at Mon810 levels of 0.1-10%. In contrast, Mon810 percentage estimated by weight of grains produced less accurate results. Finally, we present and discuss the pattern of pollen-mediated gene flow from GM to conventional maize in an example case under field conditions.

  13. Schistosoma real-time PCR as diagnostic tool for international travellers and migrants.

    PubMed

    Cnops, Lieselotte; Tannich, Egbert; Polman, Katja; Clerinx, Jan; Van Esbroeck, Marjan

    2012-10-01

    To evaluate the use of a genus-specific PCR that combines high sensitivity with the detection of different Schistosoma species for diagnosis in international travellers and migrants in comparison to standard microscopy. The genus-specific real-time PCR was developed to target the 28S ribosomal RNA gene of the major human Schistosoma species. It was validated for analytical specificity and reproducibility and demonstrated an analytical sensitivity of 0.2 eggs per gram of faeces. Its diagnostic performance was further evaluated on 152 faecal, 32 urine and 38 serum samples from patients presenting at the outpatient clinic of the Institute of Tropical Medicine in Antwerp (Belgium). We detected Schistosoma DNA in 76 faecal (50.0%) and five urine (15.6%) samples of which, respectively, nine and one were not detected by standard microscopy. Only two of the 38 serum samples of patients with confirmed schistosomiasis were positive with the presently developed PCR. Sequence analysis on positive faecal samples allowed identification of the Schistosoma species complex. The real-time PCR is highly sensitive and may offer added value in diagnosing imported schistosomiasis. The genus-specific PCR can detect all schistosome species that are infectious to humans and performs very well with faeces and urine, but not in serum. © 2012 Blackwell Publishing Ltd.

  14. Recent sequence variation in probe binding site affected detection of respiratory syncytial virus group B by real-time RT-PCR.

    PubMed

    Kamau, Everlyn; Agoti, Charles N; Lewa, Clement S; Oketch, John; Owor, Betty E; Otieno, Grieven P; Bett, Anne; Cane, Patricia A; Nokes, D James

    2017-03-01

    Direct immuno-fluorescence test (IFAT) and multiplex real-time RT-PCR have been central to RSV diagnosis in Kilifi, Kenya. Recently, these two methods showed discrepancies with an increasing number of PCR undetectable RSV-B viruses. Establish if mismatches in the primer and probe binding sites could have reduced real-time RT-PCR sensitivity. Nucleoprotein (N) and glycoprotein (G) genes were sequenced for real-time RT-PCR positive and negative samples. Primer and probe binding regions in N gene were checked for mismatches and phylogenetic analyses done to determine molecular epidemiology of these viruses. New primers and probe were designed and tested on the previously real-time RT-PCR negative samples. N gene sequences revealed 3 different mismatches in the probe target site of PCR negative, IFAT positive viruses. The primers target sites had no mismatches. Phylogenetic analysis of N and G genes showed that real-time RT-PCR positive and negative samples fell into distinct clades. Newly designed primers-probe pair improved detection and recovered previous PCR undetectable viruses. An emerging RSV-B variant is undetectable by a quite widely used real-time RT-PCR assay due to polymorphisms that influence probe hybridization affecting PCR accuracy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Detection of Human Cytomegalovirus DNA by Real-Time Quantitative PCR

    PubMed Central

    Nitsche, Andreas; Steuer, Nina; Schmidt, Christian Andreas; Landt, Olfert; Ellerbrok, Heinz; Pauli, Georg; Siegert, Wolfgang

    2000-01-01

    A real-time PCR assay was developed to quantify human cytomegalovirus (CMV) DNA. This assay was used to demonstrate a higher CMV DNA load in plasma of bone marrow transplant patients than in that of blood donors. The CMV load was higher in CMV antigen-positive patients than in antigen-negative patients. PMID:10878073

  16. Real-time PCR Detection of Brucella Abortus: A Comparative Study of SYBR Green I, 5'-exonuclease, and Hybridization Probe Assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newby, Deborah Trishelle; Hadfield, Ted; Roberto, Francisco Figueroa

    Real-time PCR provides a means of detecting and quantifying DNA targets by monitoring PCR product accumulation during cycling as indicated by increased fluorescence. A number of different approaches can be used to generate the fluorescence signal. Three approaches—SYBR Green I (a double-stranded DNA intercalating dye), 5'-exonuclease (enzymatically released fluors), and hybridization probes (fluorescence resonance energy transfer)—were evaluated for use in a real-time PCR assay to detect Brucella abortus. The three assays utilized the same amplification primers to produce an identical amplicon. This amplicon spans a region of the B. abortus genome that includes portions of the alkB gene and themore » IS711 insertion element. All three assays were of comparable sensitivity, providing a linear assay over 7 orders of magnitude (from 7.5 ng down to 7.5 fg). However, the greatest specificity was achieved with the hybridization probe assay.« less

  17. Early warning by near-real time disturbance monitoring (Invited)

    NASA Astrophysics Data System (ADS)

    Verbesselt, J.; Zeileis, A.; Herold, M.

    2013-12-01

    Near real-time monitoring of ecosystem disturbances is critical for rapidly assessing and addressing impacts on carbon dynamics, biodiversity, and socio-ecological processes. Satellite remote sensing enables cost-effective and accurate monitoring at frequent time steps over large areas. Yet, generic methods to detect disturbances within newly captured satellite images are lacking. We propose a multi-purpose time-series-based disturbance detection approach that identifies and models stable historical variation to enable change detection within newly acquired data. Satellite image time series of vegetation greenness provide a global record of terrestrial vegetation productivity over the past decades. Here, we assess and demonstrate the method by applying it to (1) real-world satellite greenness image time series between February 2000 and July 2011 covering Somalia to detect drought-related vegetation disturbances (2) landsat image time series to detect forest disturbances. First, results illustrate that disturbances are successfully detected in near real-time while being robust to seasonality and noise. Second, major drought-related disturbance corresponding with most drought-stressed regions in Somalia are detected from mid-2010 onwards. Third, the method can be applied to landsat image time series having a lower temporal data density. Furthermore the method can analyze in-situ or satellite data time series of biophysical indicators from local to global scale since it is fast, does not depend on thresholds and does not require time series gap filling. While the data and methods used are appropriate for proof-of-concept development of global scale disturbance monitoring, specific applications (e.g., drought or deforestation monitoring) mandates integration within an operational monitoring framework. Furthermore, the real-time monitoring method is implemented in open-source environment and is freely available in the BFAST package for R software. Information

  18. One step screening of retroviral producer clones by real time quantitative PCR.

    PubMed

    Towers, G J; Stockholm, D; Labrousse-Najburg, V; Carlier, F; Danos, O; Pagès, J C

    1999-01-01

    Recombinant retroviruses are obtained from either stably or transiently transfected retrovirus producer cells. In the case of stably producing lines, a large number of clones must be screened in order to select the one with the highest titre. The multi-step selection of high titre producing clones is time consuming and expensive. We have taken advantage of retroviral endogenous reverse transcription to develop a quantitative PCR assay on crude supernatant from producing clones. We used Taqman PCR technology, which, by using fluorescence measurement at each cycle of amplification, allows PCR product quantification. Fluorescence results from specific degradation of a probe oligonucleotide by the Taq polymerase 3'-5' exonuclease activity. Primers and probe sequences were chosen to anneal to the viral strong stop species, which is the first DNA molecule synthesised during reverse transcription. The protocol consists of a single real time PCR, using as template filtered viral supernatant without any other pre-treatment. We show that the primers and probe described allow quantitation of serially diluted plasmid to as few as 15 plasmid molecules. We then test 200 GFP-expressing retroviral-producing clones either by FACS analysis of infected cells or by using the quantitative PCR. We confirm that the Taqman protocol allows the detection of virus in supernatant and selection of high titre clones. Furthermore, we can determine infectious titre by quantitative PCR on genomic DNA from infected cells, using an additional set of primers and probe to albumin to normalise for the genomic copy number. We demonstrate that real time quantitative PCR can be used as a powerful and reliable single step, high throughput screen for high titre retroviral producer clones.

  19. Cloned plasmid DNA fragments as calibrators for controlling GMOs: different real-time duplex quantitative PCR methods.

    PubMed

    Taverniers, Isabel; Van Bockstaele, Erik; De Loose, Marc

    2004-03-01

    Analytical real-time PCR technology is a powerful tool for implementation of the GMO labeling regulations enforced in the EU. The quality of analytical measurement data obtained by quantitative real-time PCR depends on the correct use of calibrator and reference materials (RMs). For GMO methods of analysis, the choice of appropriate RMs is currently under debate. So far, genomic DNA solutions from certified reference materials (CRMs) are most often used as calibrators for GMO quantification by means of real-time PCR. However, due to some intrinsic features of these CRMs, errors may be expected in the estimations of DNA sequence quantities. In this paper, two new real-time PCR methods are presented for Roundup Ready soybean, in which two types of plasmid DNA fragments are used as calibrators. Single-target plasmids (STPs) diluted in a background of genomic DNA were used in the first method. Multiple-target plasmids (MTPs) containing both sequences in one molecule were used as calibrators for the second method. Both methods simultaneously detect a promoter 35S sequence as GMO-specific target and a lectin gene sequence as endogenous reference target in a duplex PCR. For the estimation of relative GMO percentages both "delta C(T)" and "standard curve" approaches are tested. Delta C(T) methods are based on direct comparison of measured C(T) values of both the GMO-specific target and the endogenous target. Standard curve methods measure absolute amounts of target copies or haploid genome equivalents. A duplex delta C(T) method with STP calibrators performed at least as well as a similar method with genomic DNA calibrators from commercial CRMs. Besides this, high quality results were obtained with a standard curve method using MTP calibrators. This paper demonstrates that plasmid DNA molecules containing either one or multiple target sequences form perfect alternative calibrators for GMO quantification and are especially suitable for duplex PCR reactions.

  20. Development and validation of a real-time quantitative PCR assay to detect Xanthomonas axonopodis pv. allii from onion seed.

    PubMed

    Robène, Isabelle; Perret, Marion; Jouen, Emmanuel; Escalon, Aline; Maillot, Marie-Véronique; Chabirand, Aude; Moreau, Aurélie; Laurent, Annie; Chiroleu, Frédéric; Pruvost, Olivier

    2015-07-01

    Bacterial blight of onion is an emerging disease threatening world onion production. The causal agent Xanthomonas axonopodis pv. allii is seed transmitted and a reliable and sensitive tool is needed to monitor seed exchanges. A triplex quantitative real-time PCR assay was developed targeting two X. axonopodis pv. allii-specific markers and an internal control chosen in 5.8S rRNA gene from Alliaceae. Amplification of at least one marker indicates the presence of the bacterium in seed extracts. This real-time PCR assay detected all the 79 X. axonopodis pv. allii strains tested and excluded 85.2% of the 135 non-target strains and particularly all 39 saprophytic and pathogenic bacteria associated with onion. Cross-reactions were mainly obtained for strains assigned to nine phylogenetically related X. axonopodis pathovars. The cycle cut-off was estimated statistically at 36.3 considering a risk of false positive of 1%. The limit of detection obtained in at least 95% of the time (LOD 95%) was 5×10(3) CFU/g (colony forming unit/g). The sensitivity threshold was found to be 1 infected seed in 32,790 seeds. This real-time PCR assay should be useful for preventing the long-distance spread of X. axonopodis pv. allii via contaminated seed lots and determining the epidemiology of the bacterium. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Expert systems for real-time monitoring and fault diagnosis

    NASA Technical Reports Server (NTRS)

    Edwards, S. J.; Caglayan, A. K.

    1989-01-01

    Methods for building real-time onboard expert systems were investigated, and the use of expert systems technology was demonstrated in improving the performance of current real-time onboard monitoring and fault diagnosis applications. The potential applications of the proposed research include an expert system environment allowing the integration of expert systems into conventional time-critical application solutions, a grammar for describing the discrete event behavior of monitoring and fault diagnosis systems, and their applications to new real-time hardware fault diagnosis and monitoring systems for aircraft.

  2. Interlaboratory study of DNA extraction from multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for individual kernel detection system of genetically modified maize.

    PubMed

    Akiyama, Hiroshi; Sakata, Kozue; Makiyma, Daiki; Nakamura, Kosuke; Teshima, Reiko; Nakashima, Akie; Ogawa, Asako; Yamagishi, Toru; Futo, Satoshi; Oguchi, Taichi; Mano, Junichi; Kitta, Kazumi

    2011-01-01

    In many countries, the labeling of grains, feed, and foodstuff is mandatory if the genetically modified (GM) organism content exceeds a certain level of approved GM varieties. We previously developed an individual kernel detection system consisting of grinding individual kernels, DNA extraction from the individually ground kernels, GM detection using multiplex real-time PCR, and GM event detection using multiplex qualitative PCR to analyze the precise commingling level and varieties of GM maize in real sample grains. We performed the interlaboratory study of the DNA extraction with multiple ground samples, multiplex real-time PCR detection, and multiplex qualitative PCR detection to evaluate its applicability, practicality, and ruggedness for the individual kernel detection system of GM maize. DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR were evaluated by five laboratories in Japan, and all results from these laboratories were consistent with the expected results in terms of the commingling level and event analysis. Thus, the DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for the individual kernel detection system is applicable and practicable in a laboratory to regulate the commingling level of GM maize grain for GM samples, including stacked GM maize.

  3. Quantitative phenotyping of X-disease resistance in chokecherry using real-time PCR.

    PubMed

    Huang, Danqiong; Walla, James A; Dai, Wenhao

    2014-03-01

    A quantitative real-time SYBR Green PCR (qPCR) assay has been developed to detect and quantify X-disease phytoplasmas in chokecherry. An X-disease phytoplasma-specific and high sensitivity primer pair was designed based on the 16S rRNA gene sequence of X-disease phytoplasmas. This primer pair was specific to the 16SrIII group (X-disease) phytoplasmas. The qPCR method can quantify phytoplasmas from a DNA mix (a mix of both chokecherry and X-disease phytoplasma DNA) at as low as 0.001 ng, 10-fold lower than conventional PCR using the same primer pair. A significant correlation between the copy number of phytoplasmas and visual phenotypic rating scores of X-disease resistance in chokecherry plants was observed. Disease resistant chokecherries had a significantly lower titer of X-disease phytoplasmas than susceptible plants. This suggests that the qPCR assay provides a more objective tool to phenotype phytoplasma disease severity, particularly for early evaluation of host resistance; therefore, this method will facilitate quantitative phenotyping of disease resistance and has great potential in enhancing plant breeding. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Real-time supernova neutrino burst monitor at Super-Kamiokande

    NASA Astrophysics Data System (ADS)

    Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakano, Y.; Nakayama, S.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Tanaka, H.; Tomura, T.; Ueno, K.; Wendell, R. A.; Yokozawa, T.; Irvine, T.; Kajita, T.; Kametani, I.; Kaneyuki, K.; Lee, K. P.; McLachlan, T.; Nishimura, Y.; Richard, E.; Okumura, K.; Labarga, L.; Fernandez, P.; Berkman, S.; Tanaka, H. A.; Tobayama, S.; Gustafson, J.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Goldhaber, M.; Carminati, G.; Kropp, W. R.; Mine, S.; Weatherly, P.; Renshaw, A.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Ganezer, K. S.; Hartfiel, B. L.; Hill, J.; Keig, W. E.; Hong, N.; Kim, J. Y.; Lim, I. T.; Akiri, T.; Himmel, A.; Scholberg, K.; Walter, C. W.; Wongjirad, T.; Ishizuka, T.; Tasaka, S.; Jang, J. S.; Learned, J. G.; Matsuno, S.; Smith, S. N.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Suzuki, A. T.; Takeuchi, Y.; Bronner, C.; Hirota, S.; Huang, K.; Ieki, K.; Kikawa, T.; Minamino, A.; Murakami, A.; Nakaya, T.; Suzuki, K.; Takahashi, S.; Tateishi, K.; Fukuda, Y.; Choi, K.; Itow, Y.; Mitsuka, G.; Mijakowski, P.; Hignight, J.; Imber, J.; Jung, C. K.; Yanagisawa, C.; Wilking, M. J.; Ishino, H.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Yamaguchi, R.; Yano, T.; Kuno, Y.; Tacik, R.; Kim, S. B.; Okazawa, H.; Choi, Y.; Nishijima, K.; Koshiba, M.; Suda, Y.; Totsuka, Y.; Yokoyama, M.; Martens, K.; Marti, Ll.; Vagins, M. R.; Martin, J. F.; de Perio, P.; Konaka, A.; Chen, S.; Zhang, Y.; Connolly, K.; Wilkes, R. J.

    2016-08-01

    We present a real-time supernova neutrino burst monitor at Super-Kamiokande (SK). Detecting supernova explosions by neutrinos in real time is crucial for giving a clear picture of the explosion mechanism. Since the neutrinos are expected to come earlier than light, a fast broadcasting of the detection may give astronomers a chance to make electromagnetic radiation observations of the explosions right at the onset. The role of the monitor includes a fast announcement of the neutrino burst detection to the world and a determination of the supernova direction. We present the online neutrino burst detection system and studies of the direction determination accuracy based on simulations at SK.

  5. Real Time Radiation Monitoring Using Nanotechnology

    NASA Technical Reports Server (NTRS)

    Li, Jing (Inventor); Hanratty, James J. (Inventor); Wilkins, Richard T. (Inventor); Lu, Yijiang (Inventor)

    2016-01-01

    System and method for monitoring receipt and estimating flux value, in real time, of incident radiation, using two or more nanostructures (NSs) and associated terminals to provide closed electrical paths and to measure one or more electrical property change values .DELTA.EPV, associated with irradiated NSs, during a sequence of irradiation time intervals. Effects of irradiation, without healing and with healing, of the NSs, are separately modeled for first order and second order healing. Change values.DELTA.EPV are related to flux, to cumulative dose received by NSs, and to radiation and healing effectivity parameters and/or.mu., associated with the NS material and to the flux. Flux and/or dose are estimated in real time, based on EPV change values, using measured .DELTA.EPV values. Threshold dose for specified changes of biological origin (usually undesired) can be estimated. Effects of time-dependent radiation flux are analyzed in pre-healing and healing regimes.

  6. Detection of Yersinia pestis using real-time PCR in patients with suspected bubonic plague.

    PubMed

    Riehm, Julia M; Rahalison, Lila; Scholz, Holger C; Thoma, Bryan; Pfeffer, Martin; Razanakoto, Léa Mamiharisoa; Al Dahouk, Sascha; Neubauer, Heinrich; Tomaso, Herbert

    2011-02-01

    Yersinia (Y.) pestis, the causative agent of plague, is endemic in natural foci of Asia, Africa, and America. Real-time PCR assays have been described as rapid diagnostic tools, but so far none has been validated for its clinical use. In a retrospective clinical study we evaluated three real-time PCR assays in two different assay formats, 5'-nuclease and hybridization probes assays. Lymph node aspirates from 149 patients from Madagascar with the clinical diagnosis of bubonic plague were investigated for the detection of Y. pestis DNA. Results of real-time PCR assays targeting the virulence plasmids pPCP1 (pla gene), and pMT1 (caf1, Ymt genes) were compared with an F1-antigen immunochromatographic test (ICT) and cultivation of the organism. Out of the 149 samples an infection with Y. pestis was confirmed by culture in 47 patients while ICT was positive in 88 including all culture proven cases. The best real-time PCR assay was the 5'-nuclease assay targeting pla which was positive in 120 cases. In conclusion, the 5'-nuclease assay targeting pla can be recommended as diagnostic tool for establishing a presumptive diagnosis when bubonic plague is clinically suspected. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Real-time PCR assay for the detection and quantification of Legionella pneumophila in environmental water samples: utility for daily practice.

    PubMed

    Morio, Florent; Corvec, Stéphane; Caroff, Nathalie; Le Gallou, Florence; Drugeon, Henri; Reynaud, Alain

    2008-07-01

    We developed a quantitative real-time PCR assay targeting the mip gene of Legionella pneumophila for a prospective study from September 2004 to April 2005. It was compared with a standard culture method (French guideline AFNOR T90-431), analysing 120 water samples collected to monitor the risk related to Legionellae at Nantes hospital and to investigate a case of legionellosis acquired from hospital environment. Samples from six distinct water distribution systems were analysed by DNA extraction, amplification and detection with specific primers and FRET probes. The detection limit was 100 genomic units of L. pneumophila per liter (GU/l), the positivity threshold about 600 GU/l and the quantification limit 800 GU/l. PCR results were divided into three groups: negative (n=63), positive but non-quantifiable (n=22) or positive (n=35). PCR showed higher sensitivity than culture, whereas four culture-positive samples appeared negative by PCR (PCR inhibitor detected for two of them). Although no correlation was observed between both methods and real-time PCR cannot substitute for the reference method, it represents an interesting complement. Its sensitivity, reproducibility and rapidity appear particularly interesting in epidemic contexts in order to identify the source of contamination or to evaluate critical points of contamination in water distribution systems.

  8. Real-time long term measurement using integrated framework for ubiquitous smart monitoring

    NASA Astrophysics Data System (ADS)

    Heo, Gwanghee; Lee, Giu; Lee, Woosang; Jeon, Joonryong; Kim, Pil-Joong

    2007-04-01

    Ubiquitous monitoring combining internet technologies and wireless communication is one of the most promising technologies of infrastructure health monitoring against the natural of man-made hazards. In this paper, an integrated framework of the ubiquitous monitoring is developed for real-time long term measurement in internet environment. This framework develops a wireless sensor system based on Bluetooth technology and sends measured acceleration data to the host computer through TCP/IP protocol. And it is also designed to respond to the request of web user on real time basis. In order to verify this system, real time monitoring tests are carried out on a prototype self-anchored suspension bridge. Also, wireless measurement system is analyzed to estimate its sensing capacity and evaluate its performance for monitoring purpose. Based on the evaluation, this paper proposes the effective strategies for integrated framework in order to detect structural deficiencies and to design an early warning system.

  9. Combining real-time monitoring and knowledge-based analysis in MARVEL

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Quan, A. G.; Angelino, R.; Veregge, J. R.

    1993-01-01

    Real-time artificial intelligence is gaining increasing attention for applications in which conventional software methods are unable to meet technology needs. One such application area is the monitoring and analysis of complex systems. MARVEL, a distributed monitoring and analysis tool with multiple expert systems, was developed and successfully applied to the automation of interplanetary spacecraft operations at NASA's Jet Propulsion Laboratory. MARVEL implementation and verification approaches, the MARVEL architecture, and the specific benefits that were realized by using MARVEL in operations are described.

  10. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA

    PubMed Central

    Jahan, Munira; Lutful Moben, Ahmed; Tabassum, Shahina

    2014-01-01

    ABSTRACT Background Both real-time-polymerase chain reaction (PCR) and hybrid capture 2 (HC2) assay can detect and quantify hepatitis B virus (HBV) DNA. However, real-time-PCR can detect a wide range of HBV DNA, while HC2 assay could not detect lower levels of viremia. The present study was designed to detect and quantify HBV DNA by real-time-PCR and HC2 assay and compare the quantitative data of these two assays. Materials and methods A cross-sectional study was conducted in between July 2010 and June 2011. A total of 66 serologically diagnosed chronic hepatitis B (CHB) patients were selected for the study. Real-time-PCR and HC2 assay was done to detect HBV DNA. Data were analyzed by statistical Package for the social sciences (SPSS). Results Among 66 serologically diagnosed chronic hepatitis B patients 40 (60.61%) patients had detectable and 26 (39.39%) had undetectable HBV DNA by HC2 assay. Concordant results were obtained for 40 (60.61%) out of these 66 patients by real-time-PCR and HC2 assay with mean viral load of 7.06 ± 1.13 log10 copies/ml and 6.95 ± 1.08 log10 copies/ml, respectively. In the remaining 26 patients, HBV DNA was detectable by real-time-PCR in 20 patients (mean HBV DNA level was 3.67 ± 0.72 log10 copies/ml. However, HBV DNA could not be detectable in six cases by the both assays. The study showed strong correlation (r = 0.915) between real-time-PCR and HC2 assay for the detection and quantification of HBV DNA. Conclusion HC2 assay may be used as an alternative to real-time-PCR for CHB patients. How to cite this article: Majid F, Jahan M, Moben AL, Tabassum S. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA. Euroasian J Hepato-Gastroenterol 2014;4(1):31-35. PMID:29264316

  11. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA.

    PubMed

    Majid, Farjana; Jahan, Munira; Lutful Moben, Ahmed; Tabassum, Shahina

    2014-01-01

    Both real-time-polymerase chain reaction (PCR) and hybrid capture 2 (HC2) assay can detect and quantify hepatitis B virus (HBV) DNA. However, real-time-PCR can detect a wide range of HBV DNA, while HC2 assay could not detect lower levels of viremia. The present study was designed to detect and quantify HBV DNA by real-time-PCR and HC2 assay and compare the quantitative data of these two assays. A cross-sectional study was conducted in between July 2010 and June 2011. A total of 66 serologically diagnosed chronic hepatitis B (CHB) patients were selected for the study. Real-time-PCR and HC2 assay was done to detect HBV DNA. Data were analyzed by statistical Package for the social sciences (SPSS). Among 66 serologically diagnosed chronic hepatitis B patients 40 (60.61%) patients had detectable and 26 (39.39%) had undetectable HBV DNA by HC2 assay. Concordant results were obtained for 40 (60.61%) out of these 66 patients by real-time-PCR and HC2 assay with mean viral load of 7.06 ± 1.13 log 10 copies/ml and 6.95 ± 1.08 log 10 copies/ml, respectively. In the remaining 26 patients, HBV DNA was detectable by real-time-PCR in 20 patients (mean HBV DNA level was 3.67 ± 0.72 log 10 copies/ml. However, HBV DNA could not be detectable in six cases by the both assays. The study showed strong correlation (r = 0.915) between real-time-PCR and HC2 assay for the detection and quantification of HBV DNA. HC2 assay may be used as an alternative to real-time-PCR for CHB patients. How to cite this article: Majid F, Jahan M, Moben AL, Tabassum S. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA. Euroasian J Hepato-Gastroenterol 2014;4(1):31-35.

  12. Use of quantitative real-time RT-PCR to investigate the correlation between viremia and viral shedding of canine distemper virus, and infection outcomes in experimentally infected dogs.

    PubMed

    Sehata, Go; Sato, Hiroaki; Ito, Toshihiro; Imaizumi, Yoshitaka; Noro, Taichi; Oishi, Eiji

    2015-07-01

    We used real-time RT-PCR and virus titration to examine canine distemper virus (CDV) kinetics in peripheral blood and rectal and nasal secretions from 12 experimentally infected dogs. Real-time RT-PCR proved extremely sensitive, and the correlation between the two methods for rectal and nasal (r=0.78, 0.80) samples on the peak day of viral RNA was good. Although the dogs showed diverse symptoms, viral RNA kinetics were similar; the peak of viral RNA in the symptomatic dogs was consistent with the onset of symptoms. These results indicate that real-time RT-PCR is sufficiently sensitive to monitor CDV replication in experimentally infected dogs regardless of the degree of clinical manifestation and suggest that the peak of viral RNA reflects active CDV replication.

  13. Use of real-time quantitative PCR to detect Chlamydophila felis infection.

    PubMed

    Helps, C; Reeves, N; Tasker, S; Harbour, D

    2001-07-01

    A real-time PCR assay was developed to detect and quantify Chlamydophila felis infection of cats. The assay uses a molecular beacon to specifically identify the major outer membrane protein gene, is highly reproducible, and is able to detect fewer than 10 genomic copies.

  14. Intelligent data management for real-time spacecraft monitoring

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Gasser, Les; Abramson, Bruce

    1992-01-01

    Real-time AI systems have begun to address the challenge of restructuring problem solving to meet real-time constraints by making key trade-offs that pursue less than optimal strategies with minimal impact on system goals. Several approaches for adapting to dynamic changes in system operating conditions are known. However, simultaneously adapting system decision criteria in a principled way has been difficult. Towards this end, a general technique for dynamically making such trade-offs using a combination of decision theory and domain knowledge has been developed. Multi-attribute utility theory (MAUT), a decision theoretic approach for making one-time decisions is discussed and dynamic trade-off evaluation is described as a knowledge-based extension of MAUT that is suitable for highly dynamic real-time environments, and provides an example of dynamic trade-off evaluation applied to a specific data management trade-off in a real-world spacecraft monitoring application.

  15. The use of comparative duplex PCR in monitoring of patients with non-Hodgkin's lymphoma and chronic lymphocytic leukaemia.

    PubMed

    Slavícková, A; Forsterová, K; Ivánek, R; Cerný, J; Klener, P

    2005-01-01

    Various quantitative PCR approaches have been utilized during the last years to provide information about the treatment efficacy and the risk of recurrent disease in haematological malignancies. Apart from the frequently used real-time PCR, cost-saving modified standard PCR methods may be applied as well. This report evaluates the utility of the end-point comparative duplex PCR. We have used this method for monitoring of 35 patients with either NHL or CLL and observed a good correlation between quantitative molecular results and clinical outcome. There was also an agreement between comparative duplex PCR and real-time PCR in patients who were monitored by both methods. We therefore believe that use of this technique should be strongly considered instead of simple qualitative detection in monitoring of therapeutic outcome in NHL or CLL patients.

  16. Comparison of Real-Time PCR, Reverse Transcriptase Real-Time PCR, Loop-Mediated Isothermal Amplification, and the FDA Conventional Microbiological Method for the Detection of Salmonella spp. in Produce ▿ †

    PubMed Central

    Zhang, Guodong; Brown, Eric W.; González-Escalona, Narjol

    2011-01-01

    Contamination of foods, especially produce, with Salmonella spp. is a major concern for public health. Several methods are available for the detection of Salmonella in produce, but their relative efficiency for detecting Salmonella in commonly consumed vegetables, often associated with outbreaks of food poisoning, needs to be confirmed. In this study, the effectiveness of three molecular methods for detection of Salmonella in six produce matrices was evaluated and compared to the FDA microbiological detection method. Samples of cilantro (coriander leaves), lettuce, parsley, spinach, tomato, and jalapeno pepper were inoculated with Salmonella serovars at two different levels (105 and <101 CFU/25 g of produce). The inoculated produce was assayed by the FDA Salmonella culture method (Bacteriological Analytical Manual) and by three molecular methods: quantitative real-time PCR (qPCR), quantitative reverse transcriptase real-time PCR (RT-qPCR), and loop-mediated isothermal amplification (LAMP). Comparable results were obtained by these four methods, which all detected as little as 2 CFU of Salmonella cells/25 g of produce. All control samples (not inoculated) were negative by the four methods. RT-qPCR detects only live Salmonella cells, obviating the danger of false-positive results from nonviable cells. False negatives (inhibition of either qPCR or RT-qPCR) were avoided by the use of either a DNA or an RNA amplification internal control (IAC). Compared to the conventional culture method, the qPCR, RT-qPCR, and LAMP assays allowed faster and equally accurate detection of Salmonella spp. in six high-risk produce commodities. PMID:21803916

  17. Towards real-time regional earthquake simulation I: real-time moment tensor monitoring (RMT) for regional events in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Shiann-Jong; Liang, Wen-Tzong; Cheng, Hui-Wen; Tu, Feng-Shan; Ma, Kuo-Fong; Tsuruoka, Hiroshi; Kawakatsu, Hitoshi; Huang, Bor-Shouh; Liu, Chun-Chi

    2014-01-01

    We have developed a real-time moment tensor monitoring system (RMT) which takes advantage of a grid-based moment tensor inversion technique and real-time broad-band seismic recordings to automatically monitor earthquake activities in the vicinity of Taiwan. The centroid moment tensor (CMT) inversion technique and a grid search scheme are applied to obtain the information of earthquake source parameters, including the event origin time, hypocentral location, moment magnitude and focal mechanism. All of these source parameters can be determined simultaneously within 117 s after the occurrence of an earthquake. The monitoring area involves the entire Taiwan Island and the offshore region, which covers the area of 119.3°E to 123.0°E and 21.0°N to 26.0°N, with a depth from 6 to 136 km. A 3-D grid system is implemented in the monitoring area with a uniform horizontal interval of 0.1° and a vertical interval of 10 km. The inversion procedure is based on a 1-D Green's function database calculated by the frequency-wavenumber (fk) method. We compare our results with the Central Weather Bureau (CWB) catalogue data for earthquakes occurred between 2010 and 2012. The average differences between event origin time and hypocentral location are less than 2 s and 10 km, respectively. The focal mechanisms determined by RMT are also comparable with the Broadband Array in Taiwan for Seismology (BATS) CMT solutions. These results indicate that the RMT system is realizable and efficient to monitor local seismic activities. In addition, the time needed to obtain all the point source parameters is reduced substantially compared to routine earthquake reports. By connecting RMT with a real-time online earthquake simulation (ROS) system, all the source parameters will be forwarded to the ROS to make the real-time earthquake simulation feasible. The RMT has operated offline (2010-2011) and online (since January 2012 to present) at the Institute of Earth Sciences (IES), Academia Sinica

  18. Species identification of Cannabis sativa using real-time quantitative PCR (qPCR).

    PubMed

    Johnson, Christopher E; Premasuthan, Amritha; Satkoski Trask, Jessica; Kanthaswamy, Sree

    2013-03-01

    Most narcotics-related cases in the United States involve Cannabis sativa. Material is typically identified based on the cystolithic hairs on the leaves and with chemical tests to identify of the presence of cannabinoids. Suspect seeds are germinated into a viable plant so that morphological and chemical tests can be conducted. Seed germination, however, causes undue analytical delays. DNA analyses that involve the chloroplast and nuclear genomes have been developed for identification of C. sativa materials, but they require several nanograms of template DNA. Using the trnL 3' exon-trnF intragenic spacer regions within the C. sativa chloroplast, we have developed a real-time quantitative PCR assay that is capable of identifying picogram amounts of chloroplast DNA for species determination of suspected C. sativa material. This assay provides forensic science laboratories with a quick and reliable method to identify an unknown sample as C. sativa. © 2013 American Academy of Forensic Sciences.

  19. Diagnosis of ocular toxoplasmosis by two polymerase chain reaction (PCR) examinations: qualitative multiplex and quantitative real-time.

    PubMed

    Sugita, Sunao; Ogawa, Manabu; Inoue, Shizu; Shimizu, Norio; Mochizuki, Manabu

    2011-09-01

    To establish a two-step polymerase chain reaction (PCR) diagnostic system for ocular toxoplasmosis. A total of 13 ocular fluid samples (11 aqueous humor and 2 vitreous fluid) were collected from 13 patients with clinically suspected ocular toxoplasmosis. Ten ocular samples from other uveitis patients and 20 samples from subjects without ocular inflammation were used as controls. Two polymerase chain reaction (PCR) methods, i.e., qualitative multiplex PCR and quantitative real-time PCR, were used to measure the toxoplasma genome (T. gondii B1 gene). Qualitative multiplex PCR detected T. gondii B1 gene in the ocular fluids of 11 out of 13 patients with clinically suspected ocular toxoplasmosis. In real-time PCR, we detected high copy numbers of T. gondii DNA (5.1 × 10(2)-2.1 × 10(6) copies/mL) in a total of 10 patients (10/13, 77%). Only ocular toxoplasmosis scar lesions were observed in the three real-time PCR-negative patients. PCR assay results for the samples from the two control groups were all negative. The two-step PCR examination to detect toxoplasma DNA is a useful tool for diagnosing ocular toxoplasmosis.

  20. Development of real-time PCR technique for the estimation of population density of Pythium intermedium in forest soils.

    PubMed

    Li, Mingzhu; Senda, Masako; Komatsu, Tsutomu; Suga, Haruhisa; Kageyama, Koji

    2010-10-20

    Pythium intermedium is known to play an important role in the carbon cycling of cool-temperate forest soils. In this study, a fast, precise and effective real-time PCR technique for estimating the population densities of P. intermedium from soils was developed using species-specific primers. Specificity was confirmed both with conventional PCR and real-time PCR. The detection limit (sensitivity) was determined and amplification standard curves were generated using SYBR Green II fluorescent dye. A rapid and accurate assay for quantification of P. intermedium in Takayama forest soils of Japan was developed using a combination of a new DNA extraction method and PCR primers were developed for real-time PCR. And the distribution of P. intermedium in forest soil was investigated with both soil plating method and the developed real-time PCR technique. This new technique will be a useful tool and can be applied to practical use for studying the role of Pythium species in forest and agricultural ecosystems. Copyright © 2009 Elsevier GmbH. All rights reserved.

  1. Relative Sensitivity of Conventional and Real-Time PCR Assays for Detection of SFG Rickettsia in Blood and Tissue Samples from Laboratory Animals

    PubMed Central

    Zemtsova, Galina E.; Montgomery, Merrill; Levin, Michael L.

    2015-01-01

    Studies on the natural transmission cycles of zoonotic pathogens and the reservoir competence of vertebrate hosts require methods for reliable diagnosis of infection in wild and laboratory animals. Several PCR-based applications have been developed for detection of infections caused by Spotted Fever group Rickettsia spp. in a variety of animal tissues. These assays are being widely used by researchers, but they differ in their sensitivity and reliability. We compared the sensitivity of five previously published conventional PCR assays and one SYBR green-based real-time PCR assay for the detection of rickettsial DNA in blood and tissue samples from Rickettsia- infected laboratory animals (n = 87). The real-time PCR, which detected rickettsial DNA in 37.9% of samples, was the most sensitive. The next best were the semi-nested ompA assay and rpoB conventional PCR, which detected as positive 18.4% and 14.9% samples respectively. Conventional assays targeting ompB, gltA and hrtA genes have been the least sensitive. Therefore, we recommend the SYBR green-based real-time PCR as a tool for the detection of rickettsial DNA in animal samples due to its higher sensitivity when compared to more traditional assays. PMID:25607846

  2. Experimental demonstration of the real-time online fault monitoring technique for chaos-based passive optical networks

    NASA Astrophysics Data System (ADS)

    Dou, Xinyu; Yin, Hongxi; Yue, Hehe; Jin, Yu; Shen, Jing; Li, Lin

    2015-09-01

    In this paper, a real-time online fault monitoring technique for chaos-based passive optical networks (PONs) is proposed and experimentally demonstrated. The fault monitoring is performed by the chaotic communication signal. The proof-of-concept experiments are demonstrated for two PON structures, i.e., wavelength-division-multiplexing (WDM) PON and Ethernet PON (EPON), respectively. For WDM PON, two monitoring approaches are investigated, one deploying a chaotic optical time domain reflectometry (OTDR) for each transmitter, and the other using only one tunable chaotic OTDR. The experimental results show that the faults at beyond 20 km from the OLT can be detected and located. The spatial resolution of the tunable chaotic OTDR is an order of magnitude of centimeter. Meanwhile, the monitoring process can operate in parallel with the chaotic optical secure communications. The proposed technique has benefits of real-time, online, precise fault location, and simple realization, which will significantly reduce the cost of operation, administration and maintenance (OAM) of PON.

  3. Application of real-time PCR to postharvest physiology – DNA isolation

    USDA-ARS?s Scientific Manuscript database

    Real-time PCR technology has been widely used in the postharvest plant physiology research. One of the difficulties to isolate DNA from plant martial and pathogen cells is the presence of rigid polysaccharide cell walls and capsules, which physically protect DNA from cell lysis. Many materials requi...

  4. REAL TIME PCR ANALYSIS OF INDOOR MOLDS: PRINCIPLES, PROCEDURES AND APPLICATIONS

    EPA Science Inventory

    This presentation will endeavor to present an overview of the real time polymerase chain reaction method developed for indoor mold detection and quantification by the EPA. It will begin with a brief discussion of the PCR technology that provides the basis for this method and how ...

  5. Development of a real-time PCR for detection of Mycoplasma bovis in bovine milk and lung samples.

    PubMed

    Cai, Hugh Y; Bell-Rogers, Patricia; Parker, Lois; Prescott, John F

    2005-11-01

    A real-time polymerase chain reaction (PCR) assay using hybridization probes on a LightCycler platform was developed for detection of Mycoplasma bovis from individual bovine mastitis milk and pneumonic lung tissues. The detection limit was 550 colony forming units (cfu)/ml of milk and 650 cfu/25 mg of lung tissue. A panel of bovine Mycoplasma and of other bovine-origin bacteria were tested; only M. bovis strains were positive, with a melting peak of 66.6 degrees C. Mycoplasma agalactiae PG2 was also positive and could be distinguished because it had a melting peak of 63.1 degrees C. In validation testing of clinical samples, the relative sensitivity and specificity were 100% and 99.3% for individual milks and 96.6% and 100% for the lung tissue. Using M. bovis real-time PCR, the M. bovis culture-positive milk samples were estimated to contain between 5 x 10(4) and 7.7 x 10(8) cfu/ml and the M. bovis culture-positive lungs between 1 x 10(3) and 1 x 10(9) cfu/25 mg. Isolation, confirmed with the real-time PCR and colony fluorescent antibody test, showed that at the herd level, the proportion of samples positive for M. bovis isolation in mastitis milk samples submitted to the Mastitis Laboratory, Animal Health Laboratory, University of Guelph, Ontario, Canada, was 2.4% (5/201). We conclude that this probe-based real-time PCR assay is a sensitive, specific, and rapid method to identify M. bovis infection in bovine milk and pneumonic lungs.

  6. DNA microsatellite region for a reliable quantification of soft wheat adulteration in durum wheat-based foodstuffs by real-time PCR.

    PubMed

    Sonnante, Gabriella; Montemurro, Cinzia; Morgese, Anita; Sabetta, Wilma; Blanco, Antonio; Pasqualone, Antonella

    2009-11-11

    Italian industrial pasta and durum wheat typical breads must be prepared using exclusively durum wheat semolina. Previously, a microsatellite sequence specific of the wheat D-genome had been chosen for traceability of soft wheat in semolina and bread samples, using qualitative and quantitative Sybr green-based real-time experiments. In this work, we describe an improved method based on the same soft wheat genomic region by means of a quantitative real-time PCR using a dual-labeled probe. Standard curves based on dilutions of 100% soft wheat flour, pasta, or bread were constructed. Durum wheat semolina, pasta, and bread samples were prepared with increasing amounts of soft wheat to verify the accuracy of the method. Results show that reliable quantifications were obtained especially for the samples containing a lower amount of soft wheat DNA, fulfilling the need to verify labeling of pasta and typical durum wheat breads.

  7. Validation of endogenous internal real-time PCR controls in renal tissues.

    PubMed

    Cui, Xiangqin; Zhou, Juling; Qiu, Jing; Johnson, Martin R; Mrug, Michal

    2009-01-01

    Endogenous internal controls ('reference' or 'housekeeping' genes) are widely used in real-time PCR (RT-PCR) analyses. Their use relies on the premise of consistently stable expression across studied experimental conditions. Unfortunately, none of these controls fulfills this premise across a wide range of experimental conditions; consequently, none of them can be recommended for universal use. To determine which endogenous RT-PCR controls are suitable for analyses of renal tissues altered by kidney disease, we studied the expression of 16 commonly used 'reference genes' in 7 mildly and 7 severely affected whole kidney tissues from a well-characterized cystic kidney disease model. Expression levels of these 16 genes, determined by TaqMan RT-PCR analyses and Affymetrix GeneChip arrays, were normalized and tested for overall variance and equivalence of the means. Both statistical approaches and both TaqMan- and GeneChip-based methods converged on 3 out of the 4 top-ranked genes (Ppia, Gapdh and Pgk1) that had the most constant expression levels across the studied phenotypes. A combination of the top-ranked genes will provide a suitable endogenous internal control for similar studies of kidney tissues across a wide range of disease severity. Copyright 2009 S. Karger AG, Basel.

  8. Validation of Endogenous Internal Real-Time PCR Controls in Renal Tissues

    PubMed Central

    Cui, Xiangqin; Zhou, Juling; Qiu, Jing; Johnson, Martin R.; Mrug, Michal

    2009-01-01

    Background Endogenous internal controls (‘reference’ or ‘housekeeping’ genes) are widely used in real-time PCR (RT-PCR) analyses. Their use relies on the premise of consistently stable expression across studied experimental conditions. Unfortunately, none of these controls fulfills this premise across a wide range of experimental conditions; consequently, none of them can be recommended for universal use. Methods To determine which endogenous RT-PCR controls are suitable for analyses of renal tissues altered by kidney disease, we studied the expression of 16 commonly used ‘reference genes’ in 7 mildly and 7 severely affected whole kidney tissues from a well-characterized cystic kidney disease model. Expression levels of these 16 genes, determined by TaqMan® RT-PCR analyses and Affymetrix GeneChip® arrays, were normalized and tested for overall variance and equivalence of the means. Results Both statistical approaches and both TaqMan- and GeneChip-based methods converged on 3 out of the 4 top-ranked genes (Ppia, Gapdh and Pgk1) that had the most constant expression levels across the studied phenotypes. Conclusion A combination of the top-ranked genes will provide a suitable endogenous internal control for similar studies of kidney tissues across a wide range of disease severity. PMID:19729889

  9. Quantitation of hepatitis B virus DNA in plasma using a sensitive cost-effective "in-house" real-time PCR assay.

    PubMed

    Daniel, Hubert Darius J; Fletcher, John G; Chandy, George M; Abraham, Priya

    2009-01-01

    Sensitive nucleic acid testing for the detection and accurate quantitation of hepatitis B virus (HBV) is necessary to reduce transmission through blood and blood products and for monitoring patients on antiviral therapy. The aim of this study is to standardize an "in-house" real-time HBV polymerase chain reaction (PCR) for accurate quantitation and screening of HBV. The "in-house" real-time assay was compared with a commercial assay using 30 chronically infected individuals and 70 blood donors who are negative for hepatitis B surface antigen, hepatitis C virus (HCV) antibody and human immunodeficiency virus (HIV) antibody. Further, 30 HBV-genotyped samples were tested to evaluate the "in-house" assay's capacity to detect genotypes prevalent among individuals attending this tertiary care hospital. The lower limit of detection of this "in-house" HBV real-time PCR was assessed against the WHO international standard and found to be 50 IU/mL. The interassay and intra-assay coefficient of variation (CV) of this "in-house" assay ranged from 1.4% to 9.4% and 0.0% to 2.3%, respectively. Virus loads as estimated with this "in-house" HBV real-time assay correlated well with the commercial artus HBV RG PCR assay ( r = 0.95, P < 0.0001). This assay can be used for the detection and accurate quantitation of HBV viral loads in plasma samples. This assay can be employed for the screening of blood donations and can potentially be adapted to a multiplex format for simultaneous detection of HBV, HIV and HCV to reduce the cost of testing in blood banks.

  10. Duplex Real-Time PCR Method for the Differentiation of Cronobacter sakazakii and Cronobacter malonaticus.

    PubMed

    Li, Xiaofang; Cui, Jinghua; Du, Xiaoli; Cui, Zhigang; Huang, Yibing; Kan, Biao

    2017-01-01

    Cronobacter sakazakii and Cronobacter malonaticus are the most common species of Cronobacter , so it is necessary to detect the two species as soon as possible in surveillance programs. We developed a real-time PCR method for identifying C. sakazakii and C. malonaticus from the genus Cronobacter . In this study, the two pairs of primers and probes were designed, targeting 16S rRNA and fusA, respectively. The specificity of the real-time PCR assay was validated with 112 strains of Cronobacter , including 56 C. sakazakii , 32 C. malonaticus , 16 Cronobacter dublinensis , 6 Cronobacter turicensis , and 2 Cronobacter muytjensii . The results showed that C. sakazakii and C. malonaticus were all correctly identified, consistent with the results of another method by analyzing the clustering of the fusA sequence. The detection limit for pure culture was 10 2 CFU/ml and 10 3 CFU/g for artificially contaminated rehydrated powdered infant formula. Therefore, the developed real-time PCR was a rapid, sensitive, and reliable method for the identification of C. sakazakii and C. malonaticus .

  11. Development of a panel of seven duplex real-time PCR assays for detecting 13 streptococcal superantigens.

    PubMed

    Yang, Peng; Peng, Xiaomin; Cui, Shujuan; Shao, Junbin; Zhu, Xuping; Zhang, Daitao; Liang, Huijie; Wang, Quanyi

    2013-07-30

    Streptococcal superantigens (SAgs) are the major virulence factors of infection in humans for group A Streptococcus (GAS) bacteria. A panel consisting of seven duplex real-time PCR assays was developed to simultaneously detect 13 streptococcal SAgs and one internal control which may be important in the control of GAS-mediated diseases. Primer and probe sequences were selected based on the highly conserved region from an alignment of nucleotide sequences of the 13 streptococcal SAgs. The reaction conditions of the duplex real-time PCR were optimized and the specificity of the duplex assays was evaluated using SAg positive strains. The limit of detection of the duplex assays was determined by using 10-fold serial dilutions of the DNA of 13 streptococcal SAgs and compared to a conventional polymerase chain reaction (PCR) method for evaluating the duplex assays sensitivity. Using the duplex assays, we were able to differentiate between 13 SAgs from Streptococcus strains and other non-Streptococcus bacteria without cross-reaction. On the other hand, the limit of detection of the duplex assays was at least one or two log dilutions lower than that of the conventional PCR. The panel was highly specific (100%) and the limit of detection of these duplex groups was at least ten times lower than that obtained by using a conventional PCR method.

  12. Evaluation of a real-time PCR assay for malaria diagnosis in patients from Vietnam and in returned travellers.

    PubMed

    Vo, Thi Kim Duy; Bigot, Patricia; Gazin, Pierre; Sinou, Veronique; De Pina, Jean Jacques; Huynh, Dinh Chien; Fumoux, Francis; Parzy, Daniel

    2007-05-01

    Real-time PCR diagnosis of malaria has advantages over traditional microscopic methods, especially when parasitaemia is low and when dealing with mixed infections. We have developed a new real-time PCR with specific genes in each Plasmodium species present only in one copy to identify the four pathogenic Plasmodium spp. for humans. The sensitivity was less than 25 parasites/microl. No cross-hybridisation was observed with human DNA or among the four Plasmodium spp. Using LightCycler PCR and conventional microscopy, we compared the diagnosis of malaria in patients from Vietnam and in returned European travellers with suspicion of malaria. In patients from Vietnam with suspicion of malaria, one mixed infection was observed by PCR only; the remaining data (54 of 55 patients) correlated with microscopy. In 79 patients without symptoms, low parasitaemia was detected in 7 samples by microscopy and in 16 samples by PCR. In returned travellers, PCR results were correlated with microscopy for all four species in 48 of 56 samples. The eight discrepant results were resolved in favour of real-time PCR diagnosis. This new real-time PCR is a rapid, accurate and efficient method for malaria diagnosis in returned travellers as well as for epidemiological studies or antimalarial efficiency trials in the field.

  13. Identification of Histoplasma capsulatum from culture extracts by real-time PCR.

    PubMed

    Martagon-Villamil, Jose; Shrestha, Nabin; Sholtis, Mary; Isada, Carlos M; Hall, Gerri S; Bryne, Terry; Lodge, Barbara A; Reller, L Barth; Procop, Gary W

    2003-03-01

    We designed and tested a real-time LightCycler PCR assay for Histoplasma capsulatum that correctly identified the 34 H. capsulatum isolates in a battery of 107 fungal isolates tested and also detected H. capsulatum in clinical specimens from three patients that were culture positive for this organism.

  14. A broadly reactive one-step real-time RT-PCR assay for rapid and sensitive detection of hepatitis E virus.

    PubMed

    Jothikumar, Narayanan; Cromeans, Theresa L; Robertson, Betty H; Meng, X J; Hill, Vincent R

    2006-01-01

    Hepatitis E virus (HEV) is transmitted by the fecal-oral route and causes sporadic and epidemic forms of acute hepatitis. Large waterborne HEV epidemics have been documented exclusively in developing countries. At least four major genotypes of HEV have been reported worldwide: genotype 1 (found primarily in Asian countries), genotype 2 (isolated from a single outbreak in Mexico), genotype 3 (identified in swine and humans in the United States and many other countries), and genotype 4 (identified in humans, swine and other animals in Asia). To better detect and quantitate different HEV strains that may be present in clinical and environmental samples, we developed a rapid and sensitive real-time RT-PCR assay for the detection of HEV RNA. Primers and probes for the real-time RT-PCR were selected based on the multiple sequence alignments of 27 sequences of the ORF3 region. Thirteen HEV isolates representing genotypes 1-4 were used to standardize the real-time RT-PCR assay. The TaqMan assay detected as few as four genome equivalent (GE) copies of HEV plasmid DNA and detected as low as 0.12 50% pig infectious dose (PID50) of swine HEV. Different concentrations of swine HEV (120-1.2PID50) spiked into a surface water concentrate were detected in the real-time RT-PCR assay. This is the first reporting of a broadly reactive TaqMan RT-PCR assay for the detection of HEV in clinical and environmental samples.

  15. Performance Evaluation of the Real-Q Cytomegalovirus (CMV) Quantification Kit Using Two Real-Time PCR Systems for Quantifying CMV DNA in Whole Blood.

    PubMed

    Park, Jong Eun; Kim, Ji Youn; Yun, Sun Ae; Lee, Myoung Keun; Huh, Hee Jae; Kim, Jong Won; Ki, Chang Seok

    2016-11-01

    Standardized cytomegalovirus (CMV) DNA quantification is important for managing CMV disease. We evaluated the performance of the Real-Q CMV Quantification Kit (Real-Q assay; BioSewoom, Korea) using whole blood (WB), with nucleic acid extraction using MagNA Pure 96 (Roche Diagnostics, Germany). Real-time PCR was performed on two platforms: the 7500 Fast real-time PCR (7500 Fast; Applied Biosystems, USA) and CFX96 real-time PCR detection (CFX96; Bio-Rad, USA) systems. The WHO international standard, diluted with CMV-negative WB, was used to validate the analytical performance. We used 90 WB clinical samples for comparison with the artus CMV RG PCR kit (artus assay; Qiagen, Germany). Limits of detections (LODs) in 7500 Fast and CFX96 were 367 and 479 IU/mL, respectively. The assay was linear from the LOD to 10⁶ IU/mL (R² ≥0.9886). The conversion factors from copies to IU in 7500 Fast and CFX96 were 0.95 and 1.06, respectively. Compared with the artus assay, for values <1,000 copies/mL, 100% of the samples had a variation <0.7 log₁₀ copies/mL; >1,000 copies/mL, 73.3% and 80.6% of samples in 7500 Fast and CFX96, respectively, had <0.5 log₁₀ copies/mL. The Real-Q assay is useful for quantifying CMV in WB with the two real-time PCR platforms.

  16. Incidence of pulmonary aspergillosis and correlation of conventional diagnostic methods with nested PCR and real-time PCR assay using BAL fluid in intensive care unit patients.

    PubMed

    Zarrinfar, Hossein; Makimura, Koichi; Satoh, Kazuo; Khodadadi, Hossein; Mirhendi, Hossein

    2013-05-01

    Although the incidence of invasive aspergillosis in the intensive care unit (ICU) is scarce, it has emerged as major problems in critically ill patients. In this study, the incidence of pulmonary aspergillosis (PA) in ICU patients has evaluated and direct microscopy and culture has compared with nested polymerase chain reaction (PCR) and real-time PCR for detection of Aspergillus fumigatus and A. flavus in bronchoalveolar lavage (BAL) samples of the patients. Thirty BAL samples obtained from ICU patients during a 16-month period were subjected to direct examinations on 20% potassium hydroxide (KOH) and culture on two culture media. Nested PCR targeting internal transcribed spacer ribosomal DNA and TaqMan real-time PCR assay targeting β-tubulin gene were used for the detection of A. fumigatus and A. flavus. Of 30 patients, 60% were men and 40% were women. The diagnosis of invasive PA was probable in 1 (3%), possible in 11 (37%), and not IPA in 18 (60%). Nine samples were positive in nested PCR including seven samples by A. flavus and two by A. fumigatus specific primers. The lowest amount of DNA that TaqMan real-time PCR could detect was ≥40 copy numbers. Only one of the samples had a positive result of A. flavus real-time PCR with Ct value of 37.5. Although a significant number of specimens were positive in nested PCR, results of this study showed that establishment of a correlation between the conventional methods with nested PCR and real-time PCR needs more data confirmed by a prospective study with a larger sample group. © 2013 Wiley Periodicals, Inc.

  17. Interlaboratory Comparison of Real-time PCR Protocols for Quantification of General Fecal Indicator Bacteria

    EPA Science Inventory

    The application of quantitative real-time PCR (qPCR) technologies for the rapid identification of fecal bacteria in environmental waters is being considered for use as a national water quality metric in the United States. The transition from research tool to a standardized proto...

  18. Real-time PCR systems targeting giant viruses of amoebae and their virophages.

    PubMed

    Ngounga, Tatsiana; Pagnier, Isabelle; Reteno, Dorine-Gaelle Ikanga; Raoult, Didier; La Scola, Bernard; Colson, Philippe

    2013-01-01

    Giant viruses that infect amoebae, including mimiviruses and marseilleviruses, were first described in 2003. Virophages were subsequently described that infect mimiviruses. Culture isolation with Acanthamoeba spp. and metagenomic studies have shown that these giant viruses are common inhabitants of our biosphere and have enabled the recent detection of these viruses in human samples. However, the genomes of these viruses display substantial genetic diversity, making it a challenge to examine their presence in environmental and clinical samples using conventional and real-time PCR. We designed and evaluated the performance of PCR systems capable of detecting all currently isolated mimiviruses, marseilleviruses and virophages to assess their prevalence in various samples. Our real-time PCR assays accurately detected all or most of the members of the currently delineated lineages of giant viruses infecting acanthamoebae as well as the mimivirus virophages, and enabled accurate classification of the mimiviruses of amoebae in lineages A, B or C. We were able to detect four new mimiviruses directly from environmental samples and correctly classified these viruses within mimivirus lineage C. This was subsequently confirmed by culture on amoebae followed by partial Sanger sequencing. PCR systems such as those implemented here may contribute to an improved understanding of the prevalence of mimiviruses, their virophages and marseilleviruses in humans.

  19. Use of quantitative real-time RT-PCR to investigate the correlation between viremia and viral shedding of canine distemper virus, and infection outcomes in experimentally infected dogs

    PubMed Central

    SEHATA, Go; SATO, Hiroaki; ITO, Toshihiro; IMAIZUMI, Yoshitaka; NORO, Taichi; OISHI, Eiji

    2015-01-01

    We used real-time RT-PCR and virus titration to examine canine distemper virus (CDV) kinetics in peripheral blood and rectal and nasal secretions from 12 experimentally infected dogs. Real-time RT-PCR proved extremely sensitive, and the correlation between the two methods for rectal and nasal (r=0.78, 0.80) samples on the peak day of viral RNA was good. Although the dogs showed diverse symptoms, viral RNA kinetics were similar; the peak of viral RNA in the symptomatic dogs was consistent with the onset of symptoms. These results indicate that real-time RT-PCR is sufficiently sensitive to monitor CDV replication in experimentally infected dogs regardless of the degree of clinical manifestation and suggest that the peak of viral RNA reflects active CDV replication. PMID:25728411

  20. [Quantitative real-time PCR--usefulness in detection and monitoring of CMV infection after hematopeietic stem cells transplant].

    PubMed

    Grabarczyk, Piotr; Brojer, Ewa; Nasiłowska, Barbara; Mariańska, Bozena

    2006-09-01

    It is recommended that all patients after allogeneic hematopoietic stem cell transplantation (alloHSCT) should be monitored for CMV infection markers. The aim of the study was to check the usefulness of quantitative DNA CMV monitoring after alloHSCT. DNA CMV was tested by real-time PCR in sera and blood samples twice a week until 30th day after alloHSCT thereafter, once a week until 100th day and then, once every 2-3 weeks. 832 samples from 16 patients were tested. All patients were anti-CMV positive or/and received stem cells from seropositive donors. Introduction of antiviral treatment was based on initial viral load and its rate of increase. DNA CMV was detected in 13/16 patients; in 3 before 30h day after allo HSCT (group I) and in 10 (group II) after 30th day. In all patients from group I clinical symptoms were observed and DNA CMV was detected in sera and blood samples. Peak viral load was 2490-34 620 geq/ml. Although antiviral treatment was applied, reinfection was observed and infection lasted from 28 to 91 days. In 6 group II patients, clinical symptoms were observed and DNA CMV in sera and blood was detected for 16-56 days, DNA CMV peak load was 100-8950 geq/ml. In the remaining 4 patients, no clinical symptoms were observed--DNA CMV was detected in blood only for 7 to 14 days. In one patient with peak viral load 10,540 geq/ml, antiviral treatment was applied. In 3 with viral load of 400-2000 geq/ml, treatment was not introduced. The quantitative DNA CMV results were taken into account before the change of antiviral drugs for more effective drugs and the decrease of drug dose due to side effects. Application of quantititative DNA CMV testing allowed to optimise antiviral drug administration in immunosupressed patients after alloHSCT

  1. Nested-PCR real time as alternative molecular tool for detection of Borrelia burgdorferi compared to the classical serological diagnosis of the blood.

    PubMed

    Sroka-Oleksiak, Agnieszka; Ufir, Krzysztof; Salamon, Dominika; Bulanda, Malgorzata; Gosiewski, Tomasz

    Lyme disease, caused by Borrelia burgdorferi, is a multisystem disease that often makes difficulties to recognize caused by their genetic heterogenity. Currently, the gold standard for the detection of Lyme disease (LD) is serologic diagnostics based mainly on tests: ELISA and Western blot (WB). These methods, however, are subject to consider- able defect, especially in the initial phase of infection due to the occurrence of so-called serological window period and low specificity. For this reason, they might be replaced by molecular methods, for example polymerase chain reaction (PCR), which should be more sensitivity and specificity. In the present study we attempt to optimize the PCR reaction conditions and enhance existing test sensitivity by applying the equivalent of real time PCR - nested PCR for detection B. burgdorferi DNA in the patient's blood. The study involved 94 blood samples of patients with suspected LD. From each sample, 1.5 ml of blood was used for the isolation of bacterial DNA and PCR real time am- plification and its equivalent, in nested version. The remaining part earmarked for serologi- cal testing. Optimization of the reaction conditions made experimentally, using gradient of the temperature and gradient of the magnesium ions concentration for reaction real time in nested-PCR and PCR version. The results show that the nested-PCR real time, has a much higher sensitivity 45 (47.8%) of positive results for the detection of B. burgdorferi compared to the single- variety, without a preceding pre-amplification 2 (2.1%). Serological methods allowed the detection of infection in 41 (43.6%) samples. These results support of the nested PCR method as a better molecular tool for the detection of B. burgdorferi infection than classical PCR real time reaction. The nested-PCR real time method may be considered as a complement to ELISA and WB mainly in the early stages of infection, when in the blood circulating B. burgdorferi cells. By contrast, the

  2. Software design of a remote real-time ECG monitoring system

    NASA Astrophysics Data System (ADS)

    Yu, Chengbo; Tao, Hongyan

    2005-12-01

    Heart disease is one of the main diseases that threaten the health and lives of human beings. At present, the normal remote ECG monitoring system has the disadvantages of a short testing distance and limitation of monitoring lines. Because of accident and paroxysmal disease, ECG monitoring has extended from the hospital to the family. Therefore, remote ECG monitoring through the Internet has the actual value and significance. The principle and design method of software of the remote dynamic ECG monitor was presented and discussed. The monitoring software is programmed with Delphi software based on client-sever interactive mode. The application program of the system, which makes use of multithreading technology, is shown to perform in an excellent manner. The program includes remote link users and ECG processing, i.e. ECG data's receiving, real-time displaying, recording and replaying. The system can connect many clients simultaneously and perform real-time monitoring to patients.

  3. [The establishment of a novel method of nano-immunomagnetic separation and Real-time PCR for detecting Vibrio cholerae from seafood].

    PubMed

    Cheng, Jinxia; Zeng, Jing; Liu, Li; Wei, Haiyan; Zhao, Xiaojuan; Zhang, Ximeng; Zhang, Lei; Zhang, Haiyu

    2014-02-01

    A novel method of Nano-Immunomagnetic Separation (Nano-IMS) plus Real-time PCR was established for detecting Vibrio cholerae. The Nano-Immunomagnetic Beads were created by using the monoclonal antibody of Vibrio cholerae, which was named Nano-IMB-Vc. Nano-IMB-Vc has specific adsorption of Vibrio cholerae, combined with Real-time PCR technology, a method for rapid detection of Vibrio cholerae was established. The capture specificity of Nano-IMB-Vc was tested by using 15 bacteria strains. The specificity of Real-time PCR method was tested by using 102 targets and 101 non-targets bacteria strains. The sensitivity of Nano-IMS plus Real-time PCR were tested in pure culture and in artificial samples and compared with NMKL No.156. The capture ratio of Nano-IMB-Vc was reached 70.2% at the level of 10(3) CFU/ml. In pure culture, the sensitivity of Nano-IMS plus Real-time PCR was reached at 5.4×10(2) CFU/ml. The specific of Real-time PCR method was tested by using 102 targets and 101 non-targets bacteria. The results showed that 102 strains of Vibrio cholerae test results were all positive, and the rest of the 101 strains of non-target bacteria test results were negative. No cross-reaction was founded. Add 1 CFU vibrio cholerae per 25 g sample, it could be detect with Nano-IMS plus Real-time PCR method after 8 hours enrichment. The Nano-IMS plus Real-time PCR method of Vibrio cholerae established in this study has good specificity and sensitivity, which could be applied to the rapid detection of Vibrio cholerae.

  4. Development of real-time PCR tests for the detection of Tenebrio molitor in food and feed.

    PubMed

    Debode, Frédéric; Marien, Aline; Gérard, Amaury; Francis, Frédéric; Fumière, Olivier; Berben, Gilbert

    2017-08-01

    Insects are rich in proteins and could be an alternative source of proteins to feed animals and humans. Numerous companies have started the production of insects for feed purposes. In Europe, these processed animal proteins are not yet authorised by legislation as many questions still need to be answered concerning this 'novel food'. Authorisations will be possible when methods of authentication of the products are available. In this study we propose real-time PCR methods for the specific detection of the mealworm (Tenebriomolitor), one of the most widely used insects for food and feed production. Two PCR assays are proposed: the first based on the wingless gene and the second based on the cadherin gene. The PCR tests amplify fragments of 87 bp. These qualitative methods were tested according to several performance criteria. The specificity was tested on 34 insect species' DNA, but also on non-insect species including crustacean, mammals, birds and plants. The limit of detection was determined and was below 20 copies for the two PCR tests. The applicability of the tests was demonstrated by the analysis of real-life processed samples containing T. molitor.

  5. Real-time PCR assay in differentiating Entamoeba histolytica, Entamoeba dispar, and Entamoeba moshkovskii infections in Orang Asli settlements in Malaysia.

    PubMed

    Lau, Yee Ling; Anthony, Claudia; Fakhrurrazi, Siti Aminah; Ibrahim, Jamaiah; Ithoi, Init; Mahmud, Rohela

    2013-08-28

    Amebiasis caused by Entamoeba histolytica is the third leading cause of death worldwide. This pathogenic amoeba is morphologically indistinguishable from E. dispar and E. moshkovskii, the non-pathogenic species. Polymerase chain reaction is the current method of choice approved by World Health Organization. Real-time PCR is another attractive molecular method for diagnosis of infectious diseases as post-PCR analyses are eliminated and turnaround times are shorter. The present work aimed to compare the results of Entamoeba species identification using the real-time assay against the established nested PCR method. In this study, a total of 334 human faecal samples were collected from different Orang Asli settlements. Faecal samples were processed by direct wet smear and formalin ethyl acetate concentration methods followed by iodine staining and was microscopically examined for Entamoeba species and other intestinal parasites. Microscopically positive samples were then subject to nested PCR and real-time PCR. The overall prevalence of Entamoeba infection was 19.5% (65/334). SK Posh Piah recorded highest Entamoeba prevalence (63.3%) while Kampung Kemensah had the lowest prevalence (3.7%) of Entamoeba. Microscopically positive samples were then tested by real-time PCR and nested PCR for the presence of Entamoeba histolytica, Entamoeba dispar, and Entamoeba moshkovskii infection. Real-time PCR showed higher Entamoeba detection (86.2%) compared to nested PCR (80%), although the McNemar test value showed no significant difference between the two methods (p = 0.221). This study is the first in Malaysia to report the use of real-time PCR in identifying and differentiating the three Entamoeba infections. It is also proven to be more effective compared to the conventional nested PCR molecular method.

  6. Comparison of culture, single and multiplex real-time PCR for detection of Sabin poliovirus shedding in recently vaccinated Indian children.

    PubMed

    Giri, Sidhartha; Rajan, Anand K; Kumar, Nirmal; Dhanapal, Pavithra; Venkatesan, Jayalakshmi; Iturriza-Gomara, Miren; Taniuchi, Mami; John, Jacob; Abraham, Asha Mary; Kang, Gagandeep

    2017-08-01

    Although, culture is considered the gold standard for poliovirus detection from stool samples, real-time PCR has emerged as a faster and more sensitive alternative. Detection of poliovirus from the stool of recently vaccinated children by culture, single and multiplex real-time PCR was compared. Of the 80 samples tested, 55 (68.75%) were positive by culture compared to 61 (76.25%) and 60 (75%) samples by the single and one step multiplex real-time PCR assays respectively. Real-time PCR (singleplex and multiplex) is more sensitive than culture for poliovirus detection in stool, although the difference was not statistically significant. © 2017 Wiley Periodicals, Inc.

  7. Approaching near real-time biosensing: microfluidic microsphere based biosensor for real-time analyte detection.

    PubMed

    Cohen, Noa; Sabhachandani, Pooja; Golberg, Alexander; Konry, Tania

    2015-04-15

    In this study we describe a simple lab-on-a-chip (LOC) biosensor approach utilizing well mixed microfluidic device and a microsphere-based assay capable of performing near real-time diagnostics of clinically relevant analytes such cytokines and antibodies. We were able to overcome the adsorption kinetics reaction rate-limiting mechanism, which is diffusion-controlled in standard immunoassays, by introducing the microsphere-based assay into well-mixed yet simple microfluidic device with turbulent flow profiles in the reaction regions. The integrated microsphere-based LOC device performs dynamic detection of the analyte in minimal amount of biological specimen by continuously sampling micro-liter volumes of sample per minute to detect dynamic changes in target analyte concentration. Furthermore we developed a mathematical model for the well-mixed reaction to describe the near real time detection mechanism observed in the developed LOC method. To demonstrate the specificity and sensitivity of the developed real time monitoring LOC approach, we applied the device for clinically relevant analytes: Tumor Necrosis Factor (TNF)-α cytokine and its clinically used inhibitor, anti-TNF-α antibody. Based on the reported results herein, the developed LOC device provides continuous sensitive and specific near real-time monitoring method for analytes such as cytokines and antibodies, reduces reagent volumes by nearly three orders of magnitude as well as eliminates the washing steps required by standard immunoassays. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Lab-on-a-chip enabled HLA diagnostic: combined sample preparation and real time PCR for HLA-B57 diagnosis

    NASA Astrophysics Data System (ADS)

    Gärtner, Claudia; Becker, Holger; Hlawatsch, Nadine; Klemm, Richard; Moche, Christian; Schattschneider, Sebastian; Frank, Rainer; Willems, Andreas

    2015-05-01

    The diverse human HLA (human leukocyte antigen) system is responsible for antigen presentation and recognition. It is essential for the immune system to maintain a stable defense line, but also is also involved in autoimmunity as well as metabolic disease. HLA-haplotype (HLA-B27), for instance, is associated with inflammatory diseases such as Bechterew's disease. The administration of the HIV drug Abacavir in combination with another HLA-haplotype (HLAB57) is associated with severe hypersensitivity reactions. Accordingly, the HLA status has to be monitored for diagnosis or prior to start of therapy. Along this line, a miniaturized microfluidic platform has been developed allowing performing the complete analytical process from "sample-in" to "answer-out" in a point-of-care environment. The main steps of the analytical cascade inside the integrated system are blood cell lysis and DNA isolation, DNA purification, real-time PCR and quantitative monitoring of the rise of a fluorescent signal appearing during the PCR based sequence amplification. All bio-analytical steps were intended to be performed inside one chip and will be actuated, controlled and monitored by a matching device. This report will show that all required processes are established and tested and all device components work well and interact with the functional modules on the chips in a harmonized fashion.

  9. Development of a TaqMan based real-time PCR assay for detection of Clonorchis sinensis DNA in human stool samples and fishes.

    PubMed

    Cai, Xian-Quan; Yu, Hai-Qiong; Bai, Jian-Shan; Tang, Jian-Dong; Hu, Xu-Chu; Chen, Ding-Hu; Zhang, Ren-Li; Chen, Mu-Xin; Ai, Lin; Zhu, Xing-Quan

    2012-03-01

    Clonorchiasis caused by the oriental liver fluke Clonorchis sinensis is a fish-borne zoonosis endemic in a number of countries. This article describes the development of a TaqMan based real-time PCR assay for detection of C. sinensis DNA in human feces and in fishes. Primers targeting the first internal transcribed spacer (ITS-1) sequence of the fluke were highly specific for C. sinensis, as evidenced by the negative amplification of closely related trematodes in the test with the exception of Opisthorchis viverrini. The detection limit of the assay was 1pg of purified genomic DNA, 5EPG (eggs per gram feces) or one metacercaria per gram fish filet. The assay was evaluated by testing 22 human fecal samples and 37 fish tissues microscopically determined beforehand, and the PCR results were highly in agreement with the microscopic results. This real-time PCR assay provides a useful tool for the sensitive detection of C. sinensis DNA in human stool and aquatic samples in China and other endemic countries where O. viverrini and Opisthorchis felineus are absent. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Interlaboratory comparison of real-time pcr protocols for quantification of general fecal indicator bacteria

    USGS Publications Warehouse

    Shanks, O.C.; Sivaganesan, M.; Peed, L.; Kelty, C.A.; Blackwood, A.D.; Greene, M.R.; Noble, R.T.; Bushon, R.N.; Stelzer, E.A.; Kinzelman, J.; Anan'Eva, T.; Sinigalliano, C.; Wanless, D.; Griffith, J.; Cao, Y.; Weisberg, S.; Harwood, V.J.; Staley, C.; Oshima, K.H.; Varma, M.; Haugland, R.A.

    2012-01-01

    The application of quantitative real-time PCR (qPCR) technologies for the rapid identification of fecal bacteria in environmental waters is being considered for use as a national water quality metric in the United States. The transition from research tool to a standardized protocol requires information on the reproducibility and sources of variation associated with qPCR methodology across laboratories. This study examines interlaboratory variability in the measurement of enterococci and Bacteroidales concentrations from standardized, spiked, and environmental sources of DNA using the Entero1a and GenBac3 qPCR methods, respectively. Comparisons are based on data generated from eight different research facilities. Special attention was placed on the influence of the DNA isolation step and effect of simplex and multiplex amplification approaches on interlaboratory variability. Results suggest that a crude lysate is sufficient for DNA isolation unless environmental samples contain substances that can inhibit qPCR amplification. No appreciable difference was observed between simplex and multiplex amplification approaches. Overall, interlaboratory variability levels remained low (<10% coefficient of variation) regardless of qPCR protocol. ?? 2011 American Chemical Society.

  11. The physiologic state of Escherichia coli O157:H7 does not affect its detection in two commercial real-time PCR-based tests

    USDA-ARS?s Scientific Manuscript database

    Multiplex real-time PCR detection of Escherichia coli O157:H7 is an efficient molecular tool with high sensitivity and specificity for meat safety and quality assurance in the beef industry. The Biocontrol GDS and the DuPont Qualicon BAX®-RT rapid detection systems are two commercial tests based on...

  12. Real-time RT-PCR high-resolution melting curve analysis and multiplex RT-PCR to detect and differentiate grapevine leafroll-associated virus 3 variant groups I, II, III and VI.

    PubMed

    Bester, Rachelle; Jooste, Anna E C; Maree, Hans J; Burger, Johan T

    2012-09-27

    Grapevine leafroll-associated virus 3 (GLRaV-3) is the main contributing agent of leafroll disease worldwide. Four of the six GLRaV-3 variant groups known have been found in South Africa, but their individual contribution to leafroll disease is unknown. In order to study the pathogenesis of leafroll disease, a sensitive and accurate diagnostic assay is required that can detect different variant groups of GLRaV-3. In this study, a one-step real-time RT-PCR, followed by high-resolution melting (HRM) curve analysis for the simultaneous detection and identification of GLRaV-3 variants of groups I, II, III and VI, was developed. A melting point confidence interval for each variant group was calculated to include at least 90% of all melting points observed. A multiplex RT-PCR protocol was developed to these four variant groups in order to assess the efficacy of the real-time RT-PCR HRM assay. A universal primer set for GLRaV-3 targeting the heat shock protein 70 homologue (Hsp70h) gene of GLRaV-3 was designed that is able to detect GLRaV-3 variant groups I, II, III and VI and differentiate between them with high-resolution melting curve analysis. The real-time RT-PCR HRM and the multiplex RT-PCR were optimized using 121 GLRaV-3 positive samples. Due to a considerable variation in melting profile observed within each GLRaV-3 group, a confidence interval of above 90% was calculated for each variant group, based on the range and distribution of melting points. The intervals of groups I and II could not be distinguished and a 95% joint confidence interval was calculated for simultaneous detection of group I and II variants. An additional primer pair targeting GLRaV-3 ORF1a was developed that can be used in a subsequent real-time RT-PCR HRM to differentiate between variants of groups I and II. Additionally, the multiplex RT-PCR successfully validated 94.64% of the infections detected with the real-time RT-PCR HRM. The real-time RT-PCR HRM provides a sensitive, automated and

  13. Complementary techniques: validation of gene expression data by quantitative real time PCR.

    PubMed

    Provenzano, Maurizio; Mocellin, Simone

    2007-01-01

    Microarray technology can be considered the most powerful tool for screening gene expression profiles of biological samples. After data mining, results need to be validated with highly reliable biotechniques allowing for precise quantitation of transcriptional abundance of identified genes. Quantitative real time PCR (qrt-PCR) technology has recently reached a level of sensitivity, accuracy and practical ease that support its use as a routine bioinstrumentation for gene level measurement. Currently, qrt-PCR is considered by most experts the most appropriate method to confirm or confute microarray-generated data. The knowledge of the biochemical principles underlying qrt-PCR as well as some related technical issues must be beard in mind when using this biotechnology.

  14. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process

    PubMed Central

    Expósito-Rodríguez, Marino; Borges, Andrés A; Borges-Pérez, Andrés; Pérez, José A

    2008-01-01

    Background The elucidation of gene expression patterns leads to a better understanding of biological processes. Real-time quantitative RT-PCR has become the standard method for in-depth studies of gene expression. A biologically meaningful reporting of target mRNA quantities requires accurate and reliable normalization in order to identify real gene-specific variation. The purpose of normalization is to control several variables such as different amounts and quality of starting material, variable enzymatic efficiencies of retrotranscription from RNA to cDNA, or differences between tissues or cells in overall transcriptional activity. The validity of a housekeeping gene as endogenous control relies on the stability of its expression level across the sample panel being analysed. In the present report we describe the first systematic evaluation of potential internal controls during tomato development process to identify which are the most reliable for transcript quantification by real-time RT-PCR. Results In this study, we assess the expression stability of 7 traditional and 4 novel housekeeping genes in a set of 27 samples representing different tissues and organs of tomato plants at different developmental stages. First, we designed, tested and optimized amplification primers for real-time RT-PCR. Then, expression data from each candidate gene were evaluated with three complementary approaches based on different statistical procedures. Our analysis suggests that SGN-U314153 (CAC), SGN-U321250 (TIP41), SGN-U346908 ("Expressed") and SGN-U316474 (SAND) genes provide superior transcript normalization in tomato development studies. We recommend different combinations of these exceptionally stable housekeeping genes for suited normalization of different developmental series, including the complete tomato development process. Conclusion This work constitutes the first effort for the selection of optimal endogenous controls for quantitative real-time RT-PCR studies of gene

  15. Identification of lactic acid bacteria isolated from wine using real-time PCR.

    PubMed

    Kántor, Attila; Kluz, Maciej; Puchalski, Czeslaw; Terentjeva, Margarita; Kačániová, Miroslava

    2016-01-01

    Different lactic acid bacteria strains have been shown to cause wine spoilage, including the generation of substances undesirable for the health of wine consumers. The aim of this study was to investigate the occurrence of selected species of heterofermentative lactobacilli, specifically Lactobacillus brevis, Lactobacillus hilgardii, and Lactobacillus plantarum in six different Slovak red wines following the fermentation process. In order to identify the dominant Lactobacillus strain using quantitative (real time) polymerized chain reaction (qPCR) method, pure lyophilized bacterial cultures from the Czech Collection of Microorganisms were used. Six different red wine samples following malolactic fermentation were obtained from selected wineries. After collection, the samples were subjected to a classic plate dilution method for enumeration of lactobacilli cells. Real-time PCR was performed after DNA extraction from pure bacterial strains and wine samples. We used SYBR® Green master mix reagents for measuring the fluorescence in qPCR. The number of lactobacilli ranged from 3.60 to 5.02 log CFU mL(-1). Specific lactobacilli strains were confirmed by qPCR in all wine samples. The number of lactobacilli ranged from 10(3) to 10(6) CFU mL(-1). A melting curve with different melting temperatures (T(m)) of DNA amplicons was obtained after PCR for the comparison of T(m) of control and experimental portions, revealing that the most common species in wine samples was Lactobacillus plantarum with a T(m) of 84.64°C.

  16. Shell-vial culture, coupled with real-time PCR, applied to Rickettsia conorii and Rickettsia massiliae-Bar29 detection, improving the diagnosis of the Mediterranean spotted fever.

    PubMed

    Segura, Ferran; Pons, Immaculada; Sanfeliu, Isabel; Nogueras, María-Mercedes

    2016-04-01

    Rickettsia conorii and Rickettsia massiliae-Bar29 are related to Mediterranean spotted fever (MSF). They are intracellular microorganisms. The Shell-vial culture assay (SV) improved Rickettsia culture but it still has some limitations: blood usually contains low amount of microorganisms and the samples that contain the highest amount of them are non-sterile. The objectives of this study were to optimize SV culture conditions and monitoring methods and to establish antibiotic concentrations useful for non-sterile samples. 12 SVs were inoculated with each microorganism, incubated at different temperatures and monitored by classical methods and real-time PCR. R. conorii was detected by all methods at all temperatures since 7th day of incubation. R. massiliae-Bar29 was firstly observed at 28°C. Real-time PCR allowed to detected it 2-7 days earlier (depend on temperature) than classical methods. Antibiotics concentration needed for the isolation of these Rickettsia species from non-sterile samples was determined inoculating SV with R. conorii, R. massiliae-Bar29, biopsy or tick, incubating them with different dilutions of antibiotics and monitoring them weekly. To sum up, if a MSF diagnosis is suspected, SV should be incubated at both 28°C and 32°C for 1-3 weeks and monitored by a sensitive real-time PCR. If the sample is non-sterile the panel of antibiotics tested can be added. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Development of a test for bovine tuberculosis in cattle based on measurement of gamma interferon mRNA by real-time PCR.

    PubMed

    Gan, W; Zhou, X; Yang, H; Chen, H; Qiao, J; Khan, S H; Yang, L; Yin, X; Zhao, D

    2013-08-03

    The infection status of cattle for bovine tuberculosis (bTB) was determined by real-time PCR, comparing the levels of IFN-γ mRNA in blood cultures stimulated with either bovine or avian tuberculin with non-stimulated control (phosphate buffer saline, PBS) blood culture. Totally, 137 cattle were tested to validate the assay, in which 54 were IFN-γ real-time quantitative PCR (RT-qPCR) positive, while the remaining 83 were found negative. Meanwhile, the IFN-γ ELISA test was carried out using the Bovigam IFN-γ detection ELISA kit and these results were used as a standard. The results of the single intradermal tuberculin tests (SIDT) and IFN-γ RT-qPCR tests were compared and revealed that the RT-qPCR correlated better with the ELISA and its accuracy was higher than SIDT. This indicates the RT-qPCR is a useful diagnostic method for bTB in cattle. However, several limitations remain for our approach, such as lack of a TB lesions or postmortem test results as a gold standard. Further improvements should be made in the future to increase accuracy of diagnosis of bTB in cattle.

  18. Real-time PCR detection of Brucella spp. DNA in lesions and viscera of bovine carcasses.

    PubMed

    Sola, Marília Cristina; da Veiga Jardim, Eurione A G; de Freitas, Marcius Ribeiro; de Mesquita, Albenones José

    2014-09-01

    This study reports a real-time PCR assay for the detection of Brucella spp. associated with the FTA® Elute method in lesions observed during sanitary inspections in beef slaughter. Of the total 276 samples, 78 (28.3%) tested positive and 198 (71.7%) negative for Brucella spp. The real-time PCR technique associated with the FTA® Elute method proved to be an important tool for the diagnosis, judgment about and disposal of carcasses and viscera of slaughtered animals. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Real-time water quality monitoring and providing water quality ...

    EPA Pesticide Factsheets

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Bay. The Village Blue demonstration project complements work that a number of state and local organizations are doing to make Baltimore Harbor “swimmable and fishable” 2 by 2020. Village Blue is designed to build upon EPA’s “Village Green” project which provides real-time air quality information to communities in six locations across the country. The presentation, “Real-time water quality monitoring and providing water quality information to the Baltimore Community”, summarizes the Village Blue real-time water quality monitoring project being developed for the Baltimore Harbor.

  20. Validation and application of a quantitative real-time PCR assay to detect common wheat adulteration of durum wheat for pasta production.

    PubMed

    Carloni, Elisa; Amagliani, Giulia; Omiccioli, Enrica; Ceppetelli, Veronica; Del Mastro, Michele; Rotundo, Luca; Brandi, Giorgio; Magnani, Mauro

    2017-06-01

    Pasta is the Italian product par excellence and it is now popular worldwide. Pasta of a superior quality is made with pure durum wheat. In Italy, addition of Triticum aestivum (common wheat) during manufacturing is not allowed and, without adequate labeling, its presence is considered an adulteration. PCR-related techniques can be employed for the detection of common wheat contaminations. In this work, we demonstrated that a previously published method for the detection of T. aestivum, based on the gliadin gene, is inadequate. Moreover, a new molecular method, based on DNA extraction from semolina and real-time PCR determination of T. aestivum in Triticum spp., was validated. This multiplex real-time PCR, based on the dual-labeled probe strategy, guarantees target detection specificity and sensitivity in a short period of time. Moreover, the molecular analysis of common wheat contamination in commercial wheat and flours is described for the first time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Detection of rabbit and hare processed material in compound feeds by TaqMan real-time PCR.

    PubMed

    Pegels, N; López-Calleja, I; García, T; Martín, R; González, I

    2013-01-01

    Food and feed traceability has become a priority for governments due to consumer demand for comprehensive and integrated safety policies. In the present work, a TaqMan real-time PCR assay targeting the mitochondrial 12S rRNA gene was developed for specific detection of rabbit and hare material in animal feeds and pet foods. The technique is based on the use of three species-specific primer/probe detection systems targeting three 12S rRNA gene fragments: one from rabbit species, another one from hare species and a third fragment common to rabbit and hare (62, 102 and 75 bp length, respectively). A nuclear 18S rRNA PCR system, detecting a 77-bp amplicon, was used as positive amplification control. Assay performance and sensitivity were assessed through the analysis of a batch of laboratory-scale feeds treated at 133°C at 3 bar for 20 min to reproduce feed processing conditions dictated by European regulations. Successful detection of highly degraded rabbit and hare material was achieved at the lowest target concentration assayed (0.1%). Furthermore, the method was applied to 96 processed commercial pet food products to determine whether correct labelling had been used at the market level. The reported real-time PCR technique detected the presence of rabbit tissues in 80 of the 96 samples analysed (83.3%), indicating a possible labelling fraud in some pet foods. The real-time PCR method reported may be a useful tool for traceability purposes within the framework of feed control.

  2. Comparing real-time and conventional PCR to culture-based methods for detecting and quantifying Escherichia coli O157 in cattle feces.

    PubMed

    Jacob, M E; Bai, J; Renter, D G; Rogers, A T; Shi, X; Nagaraja, T G

    2014-02-01

    Detection of Escherichia coli O157 in cattle feces has traditionally used culture-based methods; PCR-based methods have been suggested as an alternative. We aimed to determine if multiplex real-time (mq) or conventional PCR methods could reliably detect cattle naturally shedding high (≥10(4) CFU/g of feces) and low (∼10(2) CFU/g of feces) concentrations of E. coli O157. Feces were collected from pens of feedlot cattle and evaluated for E. coli O157 by culture methods. Samples were categorized as (i) high shedders, (ii) immunomagnetic separation (IMS) positive after enrichment, or (iii) culture negative. DNA was extracted pre- and postenrichment from 100 fecal samples from each category (high shedder, IMS positive, culture negative) and subjected to mqPCR and conventional PCR assays based on detecting three genes, rfbE, stx1, and stx2. In feces from cattle determined to be E. coli O157 high shedders by culture, 37% were positive by mqPCR prior to enrichment; 85% of samples were positive after enrichment. In IMS-positive samples, 4% were positive by mqPCR prior to enrichment, while 43% were positive after enrichment. In culture-negative feces, 7% were positive by mqPCR prior to enrichment, and 40% were positive after enrichment. The proportion of high shedder-positive and culture-positive (high shedder and IMS) samples were significantly different from mqPCR-positive samples before and after enrichment (P < 0.01). Similar results were observed for conventional PCR. Our data suggest that mqPCR and conventional PCR are most useful in identifying high shedder animals and may not be an appropriate substitute to culture-based methods for detection of E. coli O157 in cattle feces.

  3. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods.

    PubMed

    Edagawa, Akiko; Kimura, Akio; Kawabuchi-Kurata, Takako; Adachi, Shinichi; Furuhata, Katsunori; Miyamoto, Hiroshi

    2015-10-19

    We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR), and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%). Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%). In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8%) compared with real-time qPCR alone (46/68, 67.6%). Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1%) compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%). Legionella was not detected in the remaining six samples (6/68, 8.8%), irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples.

  4. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods

    PubMed Central

    Edagawa, Akiko; Kimura, Akio; Kawabuchi-Kurata, Takako; Adachi, Shinichi; Furuhata, Katsunori; Miyamoto, Hiroshi

    2015-01-01

    We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR), and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%). Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%). In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8%) compared with real-time qPCR alone (46/68, 67.6%). Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1%) compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%). Legionella was not detected in the remaining six samples (6/68, 8.8%), irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples. PMID:26492259

  5. Identification and genotyping of molluscum contagiosum virus from genital swab samples by real-time PCR and Pyrosequencing.

    PubMed

    Trama, Jason P; Adelson, Martin E; Mordechai, Eli

    2007-12-01

    Laboratory diagnosis of molluscum contagiosum virus (MCV) is important as lesions can be confused with those caused by Cryptococcus neoformans, herpes simplex virus, human papillomavirus, and varicella-zoster virus. To develop a rapid method for identifying patients infected with MCV via swab sampling. Two dual-labeled probe real-time PCR assays, one homologous to the p43K gene and one to the MC080R gene, were designed. The p43K PCR was designed to be used in conjunction with Pyrosequencing for confirmation of PCR products and discrimination between MCV1 and MCV2. Both PCR assays were optimized with respect to reaction components, thermocycling parameters, and primer and probe concentrations. The specificities of both PCR assays were confirmed by non-amplification of 38 known human pathogens. Sensitivity assays demonstrated detection of as few as 10 copies per reaction. Testing 703 swabs, concordance between the two real-time PCR assays was 99.9%. Under the developed conditions, Pyrosequencing of the p43K PCR product was capable of providing enough nucleotide sequence to definitively differentiate MCV1 and MCV2. These real-time PCR assays can be used for the rapid, sensitive, and specific detection of MCV and, when combined with Pyrosequencing, can further discriminate between MCV1 and MCV2.

  6. Real-time PCR assay in differentiating Entamoeba histolytica, Entamoeba dispar, and Entamoeba moshkovskii infections in Orang Asli settlements in Malaysia

    PubMed Central

    2013-01-01

    Background Amebiasis caused by Entamoeba histolytica is the third leading cause of death worldwide. This pathogenic amoeba is morphologically indistinguishable from E. dispar and E. moshkovskii, the non-pathogenic species. Polymerase chain reaction is the current method of choice approved by World Health Organization. Real-time PCR is another attractive molecular method for diagnosis of infectious diseases as post-PCR analyses are eliminated and turnaround times are shorter. The present work aimed to compare the results of Entamoeba species identification using the real-time assay against the established nested PCR method. Methods In this study, a total of 334 human faecal samples were collected from different Orang Asli settlements. Faecal samples were processed by direct wet smear and formalin ethyl acetate concentration methods followed by iodine staining and was microscopically examined for Entamoeba species and other intestinal parasites. Microscopically positive samples were then subject to nested PCR and real-time PCR. Results The overall prevalence of Entamoeba infection was 19.5% (65/334). SK Posh Piah recorded highest Entamoeba prevalence (63.3%) while Kampung Kemensah had the lowest prevalence (3.7%) of Entamoeba. Microscopically positive samples were then tested by real-time PCR and nested PCR for the presence of Entamoeba histolytica, Entamoeba dispar, and Entamoeba moshkovskii infection. Real-time PCR showed higher Entamoeba detection (86.2%) compared to nested PCR (80%), although the McNemar test value showed no significant difference between the two methods (p = 0.221). Conclusions This study is the first in Malaysia to report the use of real-time PCR in identifying and differentiating the three Entamoeba infections. It is also proven to be more effective compared to the conventional nested PCR molecular method. PMID:23985047

  7. Analytical Performance of a Multiplex Real-Time PCR Assay Using TaqMan Probes for Quantification of Trypanosoma cruzi Satellite DNA in Blood Samples

    PubMed Central

    Abate, Teresa; Cayo, Nelly M.; Parrado, Rudy; Bello, Zoraida Diaz; Velazquez, Elsa; Muñoz-Calderon, Arturo; Juiz, Natalia A.; Basile, Joaquín; Garcia, Lineth; Riarte, Adelina; Nasser, Julio R.; Ocampo, Susana B.; Yadon, Zaida E.; Torrico, Faustino; de Noya, Belkisyole Alarcón; Ribeiro, Isabela; Schijman, Alejandro G.

    2013-01-01

    Background The analytical validation of sensitive, accurate and standardized Real-Time PCR methods for Trypanosoma cruzi quantification is crucial to provide a reliable laboratory tool for diagnosis of recent infections as well as for monitoring treatment efficacy. Methods/Principal Findings We have standardized and validated a multiplex Real-Time quantitative PCR assay (qPCR) based on TaqMan technology, aiming to quantify T. cruzi satellite DNA as well as an internal amplification control (IAC) in a single-tube reaction. IAC amplification allows rule out false negative PCR results due to inhibitory substances or loss of DNA during sample processing. The assay has a limit of detection (LOD) of 0.70 parasite equivalents/mL and a limit of quantification (LOQ) of 1.53 parasite equivalents/mL starting from non-boiled Guanidine EDTA blood spiked with T. cruzi CL-Brener stock. The method was evaluated with blood samples collected from Chagas disease patients experiencing different clinical stages and epidemiological scenarios: 1- Sixteen Venezuelan patients from an outbreak of oral transmission, 2- Sixty three Bolivian patients suffering chronic Chagas disease, 3- Thirty four Argentinean cases with chronic Chagas disease, 4- Twenty seven newborns to seropositive mothers, 5- A seronegative receptor who got infected after transplantation with a cadaveric kidney explanted from an infected subject. Conclusions/Significance The performing parameters of this assay encourage its application to early assessment of T. cruzi infection in cases in which serological methods are not informative, such as recent infections by oral contamination or congenital transmission or after transplantation with organs from seropositive donors, as well as for monitoring Chagas disease patients under etiological treatment. PMID:23350002

  8. Evaluation of a real-time quantitative PCR method with propidium monazide treatment for analyses of viable fecal indicator bacteria in wastewater samples

    EPA Science Inventory

    The U.S. EPA is currently evaluating rapid, real-time quantitative PCR (qPCR) methods for determining recreational water quality based on measurements of fecal indicator bacteria DNA sequences. In order to potentially use qPCR for other Clean Water Act needs, such as updating cri...

  9. A Real-Time Monitoring System of Industry Carbon Monoxide Based on Wireless Sensor Networks.

    PubMed

    Yang, Jiachen; Zhou, Jianxiong; Lv, Zhihan; Wei, Wei; Song, Houbing

    2015-11-20

    Carbon monoxide (CO) burns or explodes at over-standard concentration. Hence, in this paper, a Wifi-based, real-time monitoring of a CO system is proposed for application in the construction industry, in which a sensor measuring node is designed by low-frequency modulation method to acquire CO concentration reliably, and a digital filtering method is adopted for noise filtering. According to the triangulation, the Wifi network is constructed to transmit information and determine the position of nodes. The measured data are displayed on a computer or smart phone by a graphical interface. The experiment shows that the monitoring system obtains excellent accuracy and stability in long-term continuous monitoring.

  10. Quantitative Real-Time PCR Analysis of Total Propidium Monazide -Resistant Fecal Indicator Bacteria in Wastewater

    EPA Science Inventory

    A real-time quantitative PCR (qPCR) method and a modification of this method incorporating pretreatment of samples with propidium monoazide (PMA) were evaluated for respective analyses of total and presumptively viable Enterococcus and Bacteroidales fecal indicator bacteria. Thes...

  11. Rapid and Sensitive Detection of Yersinia pestis Using Amplification of Plague Diagnostic Bacteriophages Monitored by Real-Time PCR

    DTIC Science & Technology

    2010-06-01

    validation of real-time PCR assays for the identification of Yersinia pestis. Clin Chem Lab Med 46: 1239–1244. 25. Matero P, Pasanen T , Laukkanen R ...research was supported by the Defense Threat Reduction Agency, Joint Science and Technology Office, Medical S& T Division. The funders had no role in study...QA1122-F 59-CCAAATGGAAGCACTGCCCTGTAG-39 24 61.8 54.2 105 QA1122- R 59-ATGCGGTGAGAGCCTCAGGATTC-39 23 62.1 56.5 L-413C-F 59-ACGTGGTCATGTCCGTCACAATC-39 23

  12. Usefulness of Multiplex Real-Time PCR for Simultaneous Pathogen Detection and Resistance Profiling of Staphylococcal Bacteremia

    PubMed Central

    Chung, Yousun; Kim, Taek Soo; Min, Young Gi; Hong, Yun Ji; Park, Jeong Su; Hwang, Sang Mee; Song, Kyoung-Ho; Kim, Eu Suk; Kim, Hong Bin; Song, Junghan; Kim, Eui-Chong

    2016-01-01

    Staphylococci are the leading cause of nosocomial blood stream infections. Fast and accurate identification of staphylococci and confirmation of their methicillin resistance are crucial for immediate treatment with effective antibiotics. A multiplex real-time PCR assay that targets mecA, femA specific for S. aureus, femA specific for S. epidermidis, 16S rRNA for universal bacteria, and 16S rRNA specific for staphylococci was developed and evaluated with 290 clinical blood culture samples containing Gram-positive cocci in clusters (GPCC). For the 262 blood cultures identified to the species level with the MicroScan WalkAway system (Siemens Healthcare Diagnostics, USA), the direct real-time PCR assay of positive blood cultures showed very good agreement for the categorization of staphylococci into methicillin-resistant S. aureus (MRSA), methicillin-susceptible S. aureus (MSSA), methicillin-resistant S. epidermidis (MRSE), methicillin-susceptible S. epidermidis (MSSE), methicillin-resistant non-S. epidermidis CoNS (MRCoNS), and methicillin-susceptible non-S. epidermidis CoNS (MSCoNS) (κ = 0.9313). The direct multiplex real-time PCR assay of positive blood cultures containing GPCC can provide essential information at the critical point of infection with a turnaround time of no more than 4 h. Further studies should evaluate the clinical outcome of using this rapid real-time PCR assay in glycopeptide antibiotic therapy in clinical settings. PMID:27403436

  13. Real-time PCR assay for the diagnosis of pleural tuberculosis

    PubMed Central

    Cárdenas Bernal, Ana María; Giraldo-Cadavid, Luis Fernando; Prieto Diago, Enrique; Santander, Sandra Paola

    2017-01-01

    Abstract Introduction: The diagnosis of pleural tuberculosis requires an invasive and time-consuming reference method. Polymerase chain reaction (PCR) is rapid, but validation in pleural tuberculosis is still weak. Objective: To establish the operating characteristics of real-time polymerase chain reaction (RT-PCR) hybridization probes for the diagnosis of pleural tuberculosis. Methods: The validity of the RT-PCR hybridization probes was evaluated compared to a composite reference method by a cross-sectional study at the Hospital Universitario de la Samaritana. 40 adults with lymphocytic pleural effusion were included. Pleural tuberculosis was confirmed (in 9 patients) if the patient had at least one of three tests using the positive reference method: Ziehl-Neelsen or Mycobacterium tuberculosis culture in fluid or pleural tissue, or pleural biopsy with granulomas. Pleural tuberculosis was ruled out (in 31 patients) if all three tests were negative. The operating characteristics of the RT-PCR, using the Mid-P Exact Test, were determined using the OpenEpi 2.3 Software (2009). Results: The RT-PCR hybridization probes showed a sensitivity of 66.7% (95% CI: 33.2%-90.7%) and a specificity of 93.5% (95% CI: 80.3%-98.9%). The PPV was 75.0% (95% CI: 38.8%-95.6%) and a NPV of 90.6% (95% CI: 76.6%-97.6%). Two false positives were found for the test, one with pleural mesothelioma and the other with chronic pleuritis with mesothelial hyperplasia. Conclusions: The RT-PCR hybridization probes had good specificity and acceptable sensitivity, but a negative value cannot rule out pleural tuberculosis. PMID:29021638

  14. Real-time ground motions monitoring system developed by Raspberry Pi 3

    NASA Astrophysics Data System (ADS)

    Chen, P.; Jang, J. P.; Chang, H.; Lin, C. R.; Lin, P. P.; Wang, C. C.

    2016-12-01

    Ground-motions seismic stations are usually installed in the special geological area, like high possibility landslide area, active volcanoes, or nearby faults, to real-time monitor the possible geo-hazards. Base on the demands, three main issues needs to be considered: size, low-power consumption and real-time data transmission. Raspberry Pi 3 has the suitable characteristics to fit our requests. Thus, we develop a real-time ground motions monitoring system by Raspberry Pi 3. The Raspberry Pi has the credit-card-sized with single-board computers. The operating system is based on the programmable Linux system.The volume is only 85.6 by 53.98 by 17 mm with USB and Ethernet interfaces. The power supply is only needed 5 Volts and 2.1 A. It is easy to get power by using solar power and transmit the real-time data through Ethernet or by the mobile signal through USB adapter. As Raspberry Pi still a kind of small computer, the service, software or GUI can be very flexibly developed, such as the basic web server, ftp server, SSH connection, and real-time visualization interface tool etc. Until now, we have developed ten instruments with on-line/ real-time data transmission and have installed in the Taiping Mountain in Taiwan to motor the geohazard like mudslide.

  15. SYBR Green Real-Time PCR for the Detection of All Enterovirus-A71 Genogroups

    PubMed Central

    Dubot-Pérès, Audrey; Tan, Charlene Y. Q.; de Chesse, Reine; Sibounheuang, Bountoy; Vongsouvath, Manivanh; Phommasone, Koukeo; Bessaud, Maël; Gazin, Céline; Thirion, Laurence; Phetsouvanh, Rattanaphone; Newton, Paul N.; de Lamballerie, Xavier

    2014-01-01

    Enterovirus A71 (EV-A71) has recently become an important public health threat, especially in South-East Asia, where it has caused massive outbreaks of Hand, Foot and Mouth disease every year, resulting in significant mortality. Rapid detection of EV-A71 early in outbreaks would facilitate implementation of prevention and control measures to limit spread. Real-time RT-PCR is the technique of choice for the rapid diagnosis of EV-A71 infection and several systems have been developed to detect circulating strains. Although eight genogroups have been described globally, none of these PCR techniques detect all eight. We describe, for the first time, a SYBR Green real-time RT-PCR system validated to detect all 8 EV-A71 genogroups. This tool could permit the early detection and shift in genogroup circulation and the standardization of HFMD virological diagnosis, facilitating networking of laboratories working on EV-A71 in different regions. PMID:24651608

  16. Real-time earthquake monitoring: Early warning and rapid response

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A panel was established to investigate the subject of real-time earthquake monitoring (RTEM) and suggest recommendations on the feasibility of using a real-time earthquake warning system to mitigate earthquake damage in regions of the United States. The findings of the investigation and the related recommendations are described in this report. A brief review of existing real-time seismic systems is presented with particular emphasis given to the current California seismic networks. Specific applications of a real-time monitoring system are discussed along with issues related to system deployment and technical feasibility. In addition, several non-technical considerations are addressed including cost-benefit analysis, public perceptions, safety, and liability.

  17. The applicability of TaqMan-based quantitative real-time PCR assays for detecting and enumeratIng Cryptosporidium spp. oocysts in the environment

    EPA Science Inventory

    Molecular detection methods such as PCR have been extensively used to type Cryptosporidium oocysts detected in the environment. More recently, studies have developed quantitative real-time PCR assays for detection and quantification of microbial contaminants in water as well as ...

  18. Real-Time Management of Multimodal Streaming Data for Monitoring of Epileptic Patients.

    PubMed

    Triantafyllopoulos, Dimitrios; Korvesis, Panagiotis; Mporas, Iosif; Megalooikonomou, Vasileios

    2016-03-01

    New generation of healthcare is represented by wearable health monitoring systems, which provide real-time monitoring of patient's physiological parameters. It is expected that continuous ambulatory monitoring of vital signals will improve treatment of patients and enable proactive personal health management. In this paper, we present the implementation of a multimodal real-time system for epilepsy management. The proposed methodology is based on a data streaming architecture and efficient management of a big flow of physiological parameters. The performance of this architecture is examined for varying spatial resolution of the recorded data.

  19. Design of primers and probes for quantitative real-time PCR methods.

    PubMed

    Rodríguez, Alicia; Rodríguez, Mar; Córdoba, Juan J; Andrade, María J

    2015-01-01

    Design of primers and probes is one of the most crucial factors affecting the success and quality of quantitative real-time PCR (qPCR) analyses, since an accurate and reliable quantification depends on using efficient primers and probes. Design of primers and probes should meet several criteria to find potential primers and probes for specific qPCR assays. The formation of primer-dimers and other non-specific products should be avoided or reduced. This factor is especially important when designing primers for SYBR(®) Green protocols but also in designing probes to ensure specificity of the developed qPCR protocol. To design primers and probes for qPCR, multiple software programs and websites are available being numerous of them free. These tools often consider the default requirements for primers and probes, although new research advances in primer and probe design should be progressively added to different algorithm programs. After a proper design, a precise validation of the primers and probes is necessary. Specific consideration should be taken into account when designing primers and probes for multiplex qPCR and reverse transcription qPCR (RT-qPCR). This chapter provides guidelines for the design of suitable primers and probes and their subsequent validation through the development of singlex qPCR, multiplex qPCR, and RT-qPCR protocols.

  20. Touch-down reverse transcriptase-PCR detection of IgV(H) rearrangement and Sybr-Green-based real-time RT-PCR quantitation of minimal residual disease in patients with chronic lymphocytic leukemia.

    PubMed

    Peková, Sona; Marková, Jana; Pajer, Petr; Dvorák, Michal; Cetkovský, Petr; Schwarz, Jirí

    2005-01-01

    Patients with chronic lymphocytic leukemia (CLL) can relapse even after aggressive therapy and autografts. It is commonly assumed that to prevent relapse the level of minimal residual disease (MRD) should be as low as possible. To evaluate MRD, highly sensitive quantitative assays are needed. The aim of the study was to develop a robust and sensitive method for detection of the clonal immunoglobulin heavy-chain variable (IgV(H)) rearrangement in CLL and to introduce a highly sensitive and specific methodology for MRD monitoring in patients with CLL who undergo intensive treatment. As a prerequisite for MRD detection, touch-down reverse transcriptase (RT)-PCR using degenerate primers were used for the diagnostic identification of (H) gene rearrangement(s). For quantitative MRD detection in 18 patients, we employed a real-time RT-PCR assay (RQ-PCR) making use of patient-specific primers and the cost-saving Sybr-Green reporter dye (SG). For precise calibration of RQ-PCR, patient-specific IgV(H) sequences were cloned. Touch-down RT-PCR with degenerate primers allowed the successful detection of IgV(H) clonal rearrangement(s) in 252 of 257 (98.1%) diagnostic samples. Biallelic rearrangements were found in 27 of 252 (10.7%) cases. Degenerate primers used for the identification of clonal expansion at diagnosis were not sensitive enough for MRD detection. In contrast, our RQ-PCR assay using patient-specific primers and SG reached the sensitivity of 10(-)(6). We demonstrated MRD in each patient tested, including four of four patients in complete remission following autologous hematopoietic stem cell transplantation (HSCT) and three of three following allogeneic 'mini'-HSCT. Increments in MRD might herald relapse; aggressive chemotherapy could induce molecular remission. Our touch-down RT-PCR has higher efficiency to detect clonal IgV(H) rearrangements including the biallelic ones. MRD quantitation of IgV(H) expression using SG-based RQ-PCR represents a highly specific

  1. Real-time seismic monitoring and functionality assessment of a building

    USGS Publications Warehouse

    Celebi, M.; ,

    2005-01-01

    This paper presents recent developments and approaches (using GPS technology and real-time double-integration) to obtain displacements and, in turn, drift ratios, in real-time or near real-time to meet the needs of the engineering and user community in seismic monitoring and assessing the functionality and damage condition of structures. Drift ratios computed in near real-time allow technical assessment of the damage condition of a building. Relevant parameters, such as the type of connections and story structural characteristics (including geometry) are used in computing drifts corresponding to several pre-selected threshold stages of damage. Thus, drift ratios determined from real-time monitoring can be compared to pre-computed threshold drift ratios. The approaches described herein can be used for performance evaluation of structures and can be considered as building health-monitoring applications.

  2. Identification by real-time PCR with SYBR Green of Leishmania spp. and Serratia marcescens in canine 'sterile' cutaneous nodular lesions.

    PubMed

    Cornegliani, Luisa; Corona, Antonio; Vercelli, Antonella; Roccabianca, Paola

    2015-06-01

    Noninfectious, non-neoplastic, nodular to diffuse, so-called 'sterile' granulomatous/pyogranulomatous skin lesions (SGPSLs) are infrequently identified in dogs and may represent a diagnostic challenge. Their correct identification is based on history, histopathology and absence of intralesional foreign bodies and micro-organisms. The aim of this study was to investigate the presence of Leishmania spp., Mycobacterium spp., Serratia marcescens and Nocardia spp. by real-time PCR in canine nodular skin lesions histologically diagnosed as putatively sterile. Formalin-fixed skin biopsies were collected from 40 dogs. All samples were associated with an SGPSL diagnosis characterized by multifocal, nodular to diffuse, periadnexal and perifollicular pyogranulomas/granulomas. Neither micro-organisms nor foreign bodies were detected with haematoxylin and eosin staining, under polarized light. Further analyses included periodic acid Schiff, Ziehl-Neelsen, Fite Faraco, Giemsa and Gram histochemical stains; anti-Bacillus Calmette-Guérin (BCG) and Leishmania spp. immunohistochemistry; and real-time PCR analysis for Leishmania spp., Mycobacterium spp., S. marcescens and Nocardia spp. Special stains and BCG/immunohistochemistry were negative in all samples. Real-time PCR was positive for Leishmania spp. in four of 40 biopsies and for S. marcescens in two of 40 samples. Real-time PCR for Mycobacterium spp. and Nocardia spp. was negative. No correlation between real-time PCR positivity and a specific histological pattern was identified. Leishmania spp. have been previously identified as possible agents of certain SGPSLs, while the involvement of S. marcescens has not been investigated previously. According to our findings, Serratia spp. should be included in the list of agents possibly associated with a subgroup of granulomatous/pyogranulomatous skin lesions in dogs. © 2015 ESVD and ACVD.

  3. Legionella confirmation in cooling tower water. Comparison of culture, real-time PCR and next generation sequencing.

    PubMed

    Farhat, Maha; Shaheed, Raja A; Al-Ali, Haider H; Al-Ghamdi, Abdullah S; Al-Hamaqi, Ghadeer M; Maan, Hawraa S; Al-Mahfoodh, Zainab A; Al-Seba, Hussain Z

    2018-02-01

    To investigate the presence of Legionella spp in cooling tower water. Legionella proliferation in cooling tower water has serious public health implications as it can be transmitted to humans via aerosols and cause Legionnaires' disease. Samples of cooling tower water were collected from King Fahd Hospital of the University (KFHU) (Imam Abdulrahman Bin Faisal University, 2015/2016). The water samples were analyzed by a standard Legionella culture method, real-time polymerase chain reaction (RT-PCR), and 16S rRNA next-generation sequencing. In addition, the bacterial community composition was evaluated. All samples were negative by conventional Legionella culture. In contrast, all water samples yielded positive results by real-time PCR (105 to 106 GU/L). The results of 16S rRNA next generation sequencing showed high similarity and reproducibility among the water samples. The majority of sequences were Alpha-, Beta-, and Gamma-proteobacteria, and Legionella was the predominant genus. The hydrogen-oxidizing gram-negative bacterium Hydrogenophaga was present at high abundance, indicating high metabolic activity. Sphingopyxis, which is known for its resistance to antimicrobials and as a pioneer in biofilm formation, was also detected. Our findings indicate that monitoring of Legionella in cooling tower water would be enhanced by use of both conventional culturing and molecular methods.

  4. Evaluation of FRET real-time PCR assay for rapid detection and differentiation of Plasmodium species in returning travellers and migrants

    PubMed Central

    Safeukui, Innocent; Millet, Pascal; Boucher, Sébastien; Melinard, Laurence; Fregeville, Frédéric; Receveur, Marie-Catherine; Pistone, Thierry; Fialon, Pierre; Vincendeau, Philippe; Fleury, Hervé; Malvy, Denis

    2008-01-01

    Background A simple real-time PCR assay using one set of primer and probe for rapid, sensitive and quantitative detection of Plasmodium species, with simultaneous differentiation of Plasmodium falciparum from the three other Plasmodium species (Plasmodium vivax, Plasmodium ovale and Plasmodium malariae) in febrile returning travellers and migrants was developed and evaluated. Methods Consensus primers were used to amplify a species-specific region of the multicopy 18S rRNA gene, and fluorescence resonance energy transfer hybridization probes were used for detection in a LightCycler platform (Roche). The anchor probe sequence was designed to be perfect matches to the 18S rRNA gene of the fourth Plasmodium species, while the acceptor probe sequence was designed for P. falciparum over a region containing one mismatched, which allowed differentiation of the three other Plasmodium species. The performance characteristics of the real-time PCR assay were compared with those of conventional PCR and microscopy-based diagnosis from 119 individuals with a suspected clinical diagnostic of imported malaria. Results Blood samples with parasite densities less than 0.01% were all detected, and analytical sensitivity was 0.5 parasite per PCR reaction. The melt curve means Tms (standard deviation) in clinical isolates were 60.5°C (0.6°C) for P. falciparum infection and 64.6°C (1.8°C) for non-P. falciparum species. These Tms values of the P. falciparum or non-P. falciparum species did not vary with the geographic origin of the parasite. The real-time PCR results correlated with conventional PCR using both genus-specific (Kappa coefficient: 0.95, 95% confidence interval: 0.9 – 1) or P. falciparum-specific (0.91, 0.8 – 1) primers, or with the microscopy results (0.70, 0.6 – 0.8). The real-time assay was 100% sensitive and specific for differentiation of P. falciparum to non-P. falciparum species, compared with conventional PCR or microscopy. The real-time PCR assay can also

  5. Detection of mixed infection level of Plasmodium falciparum and Plasmodium vivax by SYBR Green I-based real-time PCR in North Gondar, north-west Ethiopia.

    PubMed

    Tajebe, Addimas; Magoma, Gabriel; Aemero, Mulugeta; Kimani, Francis

    2014-10-18

    Malaria is caused by five Plasmodium species and transmitted by anopheline mosquitoes. It occurs in single and mixed infections. Mixed infection easily leads to misdiagnosis. Accurate detection of malaria species is vital. Therefore, the study was conducted to determine the level of mixed infection and misdiagnosis of malaria species in the study area using SYBR Green I-based real time PCR. The study was conducted in seven health centres from North Gondar, north-west Ethiopia. The data of all febrile patients, who attended the outpatient department for malaria diagnosis, from October to December 2013, was recorded. Dried blood spots were prepared from 168 positive samples for molecular re-evaluation. Parasite DNA was extracted using a commercial kit and Plasmodium species were re-evaluated with SYBR Green I-based real time PCR to detect mixed infections and misdiagnosed mono-infections. Among 7343 patients who were diagnosed for malaria in six study sites within the second quarter of the Ethiopian fiscal year (2013) 1802 (24.54%) were positive for malaria parasite. Out of this, 1,216 (67.48%) Plasmodium falciparum, 553 (30.68%) Plasmodium vivax and 33 (1.8%) mixed infections of both species were recorded. The result showed high prevalence of P. falciparum and P. vivax, but very low prevalence of mixed infections. Among 168 samples collected on dried blood spot 7 (4.17%) were P. vivax, 158 (94.05%) were P. falciparum and 3 (1.80%) were mixed infections of both species. After re-evaluation 10 (5.95%) P. vivax, 112 (66.67%) P. falciparum, 21 (12.50%) P. falciparum + P. vivax mixed infection, and 17 (10.12%) Plasmodium ovale positive rate was recorded. The re-evaluation showed high level of mixed infection, and misdiagnosis of P. ovale and P. vivax. The result shows that P. falciparum prevalence is higher than P. vivax in the study area. The results, obtained from SYBR Green I-based real time PCR, indicated that the diagnosis efficiency of microscopy is very low for

  6. Design and Implementation of an Interactive Web-Based Near Real-Time Forest Monitoring System

    PubMed Central

    Pratihast, Arun Kumar; DeVries, Ben; Avitabile, Valerio; de Bruin, Sytze; Herold, Martin; Bergsma, Aldo

    2016-01-01

    This paper describes an interactive web-based near real-time (NRT) forest monitoring system using four levels of geographic information services: 1) the acquisition of continuous data streams from satellite and community-based monitoring using mobile devices, 2) NRT forest disturbance detection based on satellite time-series, 3) presentation of forest disturbance data through a web-based application and social media and 4) interaction of the satellite based disturbance alerts with the end-user communities to enhance the collection of ground data. The system is developed using open source technologies and has been implemented together with local experts in the UNESCO Kafa Biosphere Reserve, Ethiopia. The results show that the system is able to provide easy access to information on forest change and considerably improves the collection and storage of ground observation by local experts. Social media leads to higher levels of user interaction and noticeably improves communication among stakeholders. Finally, an evaluation of the system confirms the usability of the system in Ethiopia. The implemented system can provide a foundation for an operational forest monitoring system at the national level for REDD+ MRV applications. PMID:27031694

  7. Design and Implementation of an Interactive Web-Based Near Real-Time Forest Monitoring System.

    PubMed

    Pratihast, Arun Kumar; DeVries, Ben; Avitabile, Valerio; de Bruin, Sytze; Herold, Martin; Bergsma, Aldo

    2016-01-01

    This paper describes an interactive web-based near real-time (NRT) forest monitoring system using four levels of geographic information services: 1) the acquisition of continuous data streams from satellite and community-based monitoring using mobile devices, 2) NRT forest disturbance detection based on satellite time-series, 3) presentation of forest disturbance data through a web-based application and social media and 4) interaction of the satellite based disturbance alerts with the end-user communities to enhance the collection of ground data. The system is developed using open source technologies and has been implemented together with local experts in the UNESCO Kafa Biosphere Reserve, Ethiopia. The results show that the system is able to provide easy access to information on forest change and considerably improves the collection and storage of ground observation by local experts. Social media leads to higher levels of user interaction and noticeably improves communication among stakeholders. Finally, an evaluation of the system confirms the usability of the system in Ethiopia. The implemented system can provide a foundation for an operational forest monitoring system at the national level for REDD+ MRV applications.

  8. BCR-ABL PCR testing in chronic myelogenous leukemia: molecular diagnosis for targeted cancer therapy and monitoring.

    PubMed

    Luu, Martin H; Press, Richard D

    2013-09-01

    The use of tyrosine kinase inhibitors (TKIs) to treat chronic myeloid leukemia (CML) represents the paradigm for modern targeted cancer therapy. Importantly, molecular monitoring using BCR-ABL real-time quantitative reverse transcription polymerase chain reaction (RQ-PCR) for assessing treatment efficacy and quantitating minimal residual disease is a major determinate of practical therapeutic decision-making in the long-term management of this now chronic disease. Herein, we present an overview of CML and the use of TKIs for targeted CML therapy, with an emphasis on the role, application and future aspects of PCR-based molecular monitoring.

  9. A real time sorbent based air monitoring system for determining low level airborne exposure levels to Lewisite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lattin, F.G.; Paul, D.G.; Jakubowski, E.M.

    1994-12-31

    The Real Time Analytical Platform (RTAP) is designed to provide mobile, real-time monitoring support to ensure protection of worker safety in areas where military unique compounds are used and stored, and at disposal sites. Quantitative analysis of low-level vapor concentrations in air is accomplished through sorbent-based collection with subsequent thermal desorption into a gas chromatograph (GC) equipped with a variety of detectors. The monitoring system is characterized by its sensitivity (ability to measure at low concentrations), selectivity (ability to filter out interferences), dynamic range and linearity, real time mode (versus methods requiring extensive sample preparation procedures), and ability to interfacemore » with complimentary GC detectors. This presentation describes an RTAP analytical method for analyzing lewisite, an arsenical compound, that consists of a GC screening technique with an Electron Capture Detector (ECD), and a confirmation technique using an Atomic Emission Detector (AED). Included in the presentation is a description of quality assurance objectives in the monitoring system, and an assessment of method accuracy, precision and detection levels.« less

  10. Fully automated, internally controlled quantification of hepatitis B Virus DNA by real-time PCR by use of the MagNA Pure LC and LightCycler instruments.

    PubMed

    Leb, Victoria; Stöcher, Markus; Valentine-Thon, Elizabeth; Hölzl, Gabriele; Kessler, Harald; Stekel, Herbert; Berg, Jörg

    2004-02-01

    We report on the development of a fully automated real-time PCR assay for the quantitative detection of hepatitis B virus (HBV) DNA in plasma with EDTA (EDTA plasma). The MagNA Pure LC instrument was used for automated DNA purification and automated preparation of PCR mixtures. Real-time PCR was performed on the LightCycler instrument. An internal amplification control was devised as a PCR competitor and was introduced into the assay at the stage of DNA purification to permit monitoring for sample adequacy. The detection limit of the assay was found to be 200 HBV DNA copies/ml, with a linear dynamic range of 8 orders of magnitude. When samples from the European Union Quality Control Concerted Action HBV Proficiency Panel 1999 were examined, the results were found to be in acceptable agreement with the HBV DNA concentrations of the panel members. In a clinical laboratory evaluation of 123 EDTA plasma samples, a significant correlation was found with the results obtained by the Roche HBV Monitor test on the Cobas Amplicor analyzer within the dynamic range of that system. In conclusion, the newly developed assay has a markedly reduced hands-on time, permits monitoring for sample adequacy, and is suitable for the quantitative detection of HBV DNA in plasma in a routine clinical laboratory.

  11. Graphene Nanoprobes for Real-Time Monitoring of Isothermal Nucleic Acid Amplification.

    PubMed

    Li, Fan; Liu, Xiaoguo; Zhao, Bin; Yan, Juan; Li, Qian; Aldalbahi, Ali; Shi, Jiye; Song, Shiping; Fan, Chunhai; Wang, Lihua

    2017-05-10

    Isothermal amplification is an efficient way to amplify DNA with high accuracy; however, the real-time monitoring for quantification analysis mostly relied on expensive and precisely designed probes. In the present study, a graphene oxide (GO)-based nanoprobe was used to real-time monitor the isothermal amplification process. The interaction between GO and different DNA structures was systematically investigated, including single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), DNA 3-helix, and long rolling circle amplification (RCA) and hybridization chain reaction (HCR) products, which existed in one-, two-, and three-dimensional structures. It was found that the high rigid structures exhibited much lower affinity with GO than soft ssDNA, and generally the rigidity was dependent on the length of targets and the hybridization position with probe DNA. On the basis of these results, we successfully monitored HCR amplification process, RCA process, and the enzyme restriction of RCA products with GO nanoprobe; other applications including the detection of the assembly/disassembly of DNA 3-helix structures were also performed. Compared to the widely used end-point detection methods, the GO-based sensing platform is simple, sensitive, cost-effective, and especially in a real-time monitoring mode. We believe such studies can provide comprehensive understandings and evocation on design of GO-based biosensors for broad application in various fields.

  12. Comparison of viable plate count, turbidity measurement and real-time PCR for quantification of Porphyromonas gingivalis.

    PubMed

    Clais, S; Boulet, G; Van Kerckhoven, M; Lanckacker, E; Delputte, P; Maes, L; Cos, P

    2015-01-01

    The viable plate count (VPC) is considered as the reference method for bacterial enumeration in periodontal microbiology but shows some important limitations for anaerobic bacteria. As anaerobes such as Porphyromonas gingivalis are difficult to culture, VPC becomes time-consuming and less sensitive. Hence, efficient normalization of experimental data to bacterial cell count requires alternative rapid and reliable quantification methods. This study compared the performance of VPC with that of turbidity measurement and real-time PCR (qPCR) in an experimental context using highly concentrated bacterial suspensions. Our TaqMan-based qPCR assay for P. gingivalis 16S rRNA proved to be sensitive and specific. Turbidity measurements offer a fast method to assess P. gingivalis growth, but suffer from high variability and a limited dynamic range. VPC was very time-consuming and less repeatable than qPCR. Our study concludes that qPCR provides the most rapid and precise approach for P. gingivalis quantification. Although our data were gathered in a specific research context, we believe that our conclusions on the inferior performance of VPC and turbidity measurements in comparison to qPCR can be extended to other research and clinical settings and even to other difficult-to-culture micro-organisms. Various clinical and research settings require fast and reliable quantification of bacterial suspensions. The viable plate count method (VPC) is generally seen as 'the gold standard' for bacterial enumeration. However, VPC-based quantification of anaerobes such as Porphyromonas gingivalis is time-consuming due to their stringent growth requirements and shows poor repeatability. Comparison of VPC, turbidity measurement and TaqMan-based qPCR demonstrated that qPCR possesses important advantages regarding speed, accuracy and repeatability. © 2014 The Society for Applied Microbiology.

  13. Data Acceptance Criteria for Standardized Human-Associated Fecal Source Identification Quantitative Real-Time PCR Methods

    EPA Science Inventory

    There is a growing interest in the application of human-associated fecal sourceidentification quantitative real-time PCR (qPCR) technologies for water quality management. The transition from a research tool to a standardized protocol requires a high degree of confidence in data q...

  14. Single Laboratory Comparison of Quantitative Real-time PCR Assays for the Detection of Fecal Pollution

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) assays available to detect and enumerate fecal pollution in ambient waters. Each assay employs distinct primers and probes that target different rRNA genes and microorganisms leading to potential variations in concentration es...

  15. Application of the Modular Approach to an In-House Validation Study of Real-Time PCR Methods for the Detection and Serogroup Determination of Verocytotoxigenic Escherichia coli ▿ †

    PubMed Central

    Kagkli, Dafni-Maria; Weber, Thomas P.; Van den Bulcke, Marc; Folloni, Silvia; Tozzoli, Rosangela; Morabito, Stefano; Ermolli, Monica; Gribaldo, Laura; Van den Eede, Guy

    2011-01-01

    European Commission regulation 2073/2005 on the microbiological criteria for food requires that Escherichia coli is monitored as an indicator of hygienic conditions. Since verocytotoxigenic E. coli (VTEC) strains often cause food-borne infections by the consumption of raw food, the Biological Hazards (BIOHAZ) panel of the European Food Safety Authority (EFSA) recommended their monitoring in food as well. In particular, VTEC strains belonging to serogroups such as O26, O103, O111, O145, and O157 are known causative agents of several human outbreaks. Eight real-time PCR methods for the detection of E. coli toxin genes and their variants (stx1, stx2), the intimin gene (eae), and five serogroup-specific genes have been proposed by the European Reference Laboratory for VTEC (EURL-VTEC) as a technical specification to the European Normalization Committee (CEN TC275/WG6). Here we applied a “modular approach” to the in-house validation of these PCR methods. The modular approach subdivides an analytical process into separate parts called “modules,” which are independently validated based on method performance criteria for a limited set of critical parameters. For the VTEC real-time PCR module, the following parameters are being assessed: specificity, dynamic range, PCR efficiency, and limit of detection (LOD). This study describes the modular approach for the validation of PCR methods to be used in food microbiology, using single-target plasmids as positive controls and showing their applicability with food matrices. PMID:21856838

  16. Quantitative detection method of Enterocytozoon hepatopenaei using TaqMan probe real-time PCR.

    PubMed

    Liu, Ya-Mei; Qiu, Liang; Sheng, An-Zhi; Wan, Xiao-Yuan; Cheng, Dong-Yuan; Huang, Jie

    2018-01-01

    A TaqMan probe and a pair of specific primers were selected from the small subunit ribosomal DNA (SSU rDNA) sequence of Enterocytozoon hepatopenaei (EHP); this real-time PCR assay was developed and optimized. It showed a good linearity in detecting standards of EHP SSU rDNA fragments from 4 × 10 2 to 4 × 10 8 copies/reaction using the established method. The detection limit of the qPCR method was as low as 4 × 10 1 copies per reaction, which was higher than the conventional PCR and SYBR Green I-based EHP qPCR reported. Using the qPCR assay, EHP was detected in four batches of slow-growing Penaeus vannamei specimens collected from Tianjin and Zhejiang Province in China was detected using qPCR. The results showed that all the hepatopancreas from the slow-growing P. vannamei specimens were detected as EHP-positive. EHP copies of hepatopancreas in some batches had a negative correlation with the body mass index (BMI) of shrimps; however, not all batches of specimens had this negative correlation between EHP copies of hepatopancreas and BMI. This qPCR technique is sensitive, specific and easy to perform (96 tests in <3 h), which provides technical support for the detection and prevention of EHP. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Use of the Genomic Subtractive Hybridization Technique To Develop a Real-Time PCR Assay for Quantitative Detection of Prevotella spp. in Oral Biofilm Samples

    PubMed Central

    Nagashima, Shiori; Yoshida, Akihiro; Suzuki, Nao; Ansai, Toshihiro; Takehara, Tadamichi

    2005-01-01

    Genomic subtractive hybridization was used to design Prevotella nigrescens-specific primers and TaqMan probes. Based on this technique, a TaqMan real-time PCR assay was developed for quantifying four oral black-pigmented Prevotella species. The combination of real-time PCR and genomic subtractive hybridization is useful for preparing species-specific primer-probe sets for closely related species. PMID:15956428

  18. Molecular beacon-based real-time PCR method for detection of porcine DNA in gelatin and gelatin capsules.

    PubMed

    Mohamad, Nurhidayatul Asma; Mustafa, Shuhaimi; Khairil Mokhtar, Nur Fadhilah; El Sheikha, Aly Farag

    2018-03-05

    The pharmaceutical industry has boosted gelatin consumption worldwide. This is supported by the availability of cost-effective gelatin production from porcine by-products. However, cross-contamination of gelatin materials, where porcine gelatin was unintentionally included in the other animal sources of gelatin, has caused significant concerns about halal authenticity. The real-time polymerase chain reaction (PCR) has enabled a highly specific and sensitive animal species detection method in various food products. Hence, such a technique was employed in the present study to detect and quantify porcine DNA in gelatin using a molecular beacon probe, with differences in performance between mitochondrial (cytochrome b gene) and chromosomal DNA-(MPRE42 repetitive element) based porcine-specific PCR assays being compared. A higher sensitivity was observed in chromosomal DNA (MPRE-PCR assay), where this assay allows the detection of gelatin DNA at amounts as as low as 1 pg, whereas mitochondrial DNA (CBH-PCR assay) can only detect at levels down to 10 pg of gelatin DNA. When an analysis with commercial gelatin and gelatin capsule samples was conducted, the same result was observed, with a significantly more sensitive detection being provided by the repetitive element of chromosomal DNA. The present study has established highly sensitive DNA-based porcine detection systems derived from chromosomal DNA that are feasible for highly processed products such as gelatin and gelatin capsules containing a minute amount of DNA. This sensitive detection method can also be implemented to assist the halal authentication process of various food products available on the market. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  19. Real-Time PCR-Based Quantitation Method for the Genetically Modified Soybean Line GTS 40-3-2.

    PubMed

    Kitta, Kazumi; Takabatake, Reona; Mano, Junichi

    2016-01-01

    This chapter describes a real-time PCR-based method for quantitation of the relative amount of genetically modified (GM) soybean line GTS 40-3-2 [Roundup Ready(®) soybean (RRS)] contained in a batch. The method targets a taxon-specific soybean gene (lectin gene, Le1) and the specific DNA construct junction region between the Petunia hybrida chloroplast transit peptide sequence and the Agrobacterium 5-enolpyruvylshikimate-3-phosphate synthase gene (epsps) sequence present in GTS 40-3-2. The method employs plasmid pMulSL2 as a reference material in order to quantify the relative amount of GTS 40-3-2 in soybean samples using a conversion factor (Cf) equal to the ratio of the RRS-specific DNA to the taxon-specific DNA in representative genuine GTS 40-3-2 seeds.

  20. Detection of bacteria and fungi in blood of patients with febrile neutropenia by real-time PCR with universal primers and probes.

    PubMed

    Teranishi, Hideto; Ohzono, Nanae; Inamura, Norikazu; Kato, Atsushi; Wakabayashi, Tokio; Akaike, Hiroto; Terada, Kihei; Ouchi, Kazunobu

    2015-03-01

    Febrile neutropenia is the main treatment-related cause of mortality in cancer patients. During June 2012 to April 2014, 97 blood culture samples were collected from patients receiving chemotherapy for hematological malignancy and cancer with febrile neutropenia episodes (FNEs). The samples were examined for the presence of bacteria and fungi using real-time PCR amplification and sequencing of 16S and 18S rRNA genes. Bacteria were identified in 20 of 97 samples (20.6%) by the real-time PCR assay and in 10 of 97 (10.3%) samples by blood culture. In 6 blood culture-positive samples, the real-time PCR assay detected the same type of bacteria. No fungi were detected by the real-time PCR assay or blood culture. During antibiotic therapy, all samples were negative by blood culture, but the real-time PCR assay yielded a positive result in 2 cases of 2 (100%). The bacterial DNA copy number was not well correlated with the serum C-reactive protein titer of patients with FNEs. We conclude that a real-time PCR assay could provide better detection of causative microbes' in a shorter time, and with a smaller blood sample than blood culture. Using a real-time PCR assay in combination with blood culture could improve microbiological documentation of FNEs. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  1. SensiScreen® KRAS exon 2-sensitive simplex and multiplex real-time PCR-based assays for detection of KRAS exon 2 mutations

    PubMed Central

    Guldmann-Christensen, Mariann; Hauge Kyneb, Majbritt; Voogd, Kirsten; Andersen, Christina; Epistolio, Samantha; Merlo, Elisabetta; Yding Wolff, Tine; Hamilton-Dutoit, Stephen; Lorenzen, Jan; Christensen, Ulf Bech

    2017-01-01

    Activating mutations in codon 12 and codon 13 of the KRAS (Kirsten rat sarcoma viral oncogene homolog) gene are implicated in the development of several human cancer types and influence their clinical evaluation, treatment and prognosis. Numerous different methods for KRAS genotyping are currently available displaying a wide range of sensitivities, time to answer and requirements for laboratory equipment and user skills. Here we present SensiScreen® KRAS exon 2 simplex and multiplex CE IVD assays, that use a novel real-time PCR-based method for KRAS mutation detection based on PentaBase’s proprietary DNA analogue technology and designed to work on standard real-time PCR instruments. By means of the included BaseBlocker™ technology, we show that SensiScreen® specifically amplifies the mutated alleles of interest with no or highly subdued amplification of the wild type allele. Furthermore, serial dilutions of mutant DNA in a wild type background demonstrate that all SensiScreen® assays display a limit of detection that falls within the range of 0.25–1%. Finally, in three different colorectal cancer patient populations, SensiScreen® assays confirmed the KRAS genotype previously determined by commonly used methods for KRAS mutation testing, and notably, in two of the populations, SensiScreen® identified additional mutant positive cases not detected by common methods. PMID:28636636

  2. Long-term real-time structural health monitoring using wireless smart sensor

    NASA Astrophysics Data System (ADS)

    Jang, Shinae; Mensah-Bonsu, Priscilla O.; Li, Jingcheng; Dahal, Sushil

    2013-04-01

    Improving the safety and security of civil infrastructure has become a critical issue for decades since it plays a central role in the economics and politics of a modern society. Structural health monitoring of civil infrastructure using wireless smart sensor network has emerged as a promising solution recently to increase structural reliability, enhance inspection quality, and reduce maintenance costs. Though hardware and software framework are well prepared for wireless smart sensors, the long-term real-time health monitoring strategy are still not available due to the lack of systematic interface. In this paper, the Imote2 smart sensor platform is employed, and a graphical user interface for the long-term real-time structural health monitoring has been developed based on Matlab for the Imote2 platform. This computer-aided engineering platform enables the control, visualization of measured data as well as safety alarm feature based on modal property fluctuation. A new decision making strategy to check the safety is also developed and integrated in this software. Laboratory validation of the computer aided engineering platform for the Imote2 on a truss bridge and a building structure has shown the potential of the interface for long-term real-time structural health monitoring.

  3. A Real-Time Interference Monitoring Technique for GNSS Based on a Twin Support Vector Machine Method.

    PubMed

    Li, Wutao; Huang, Zhigang; Lang, Rongling; Qin, Honglei; Zhou, Kai; Cao, Yongbin

    2016-03-04

    Interferences can severely degrade the performance of Global Navigation Satellite System (GNSS) receivers. As the first step of GNSS any anti-interference measures, interference monitoring for GNSS is extremely essential and necessary. Since interference monitoring can be considered as a classification problem, a real-time interference monitoring technique based on Twin Support Vector Machine (TWSVM) is proposed in this paper. A TWSVM model is established, and TWSVM is solved by the Least Squares Twin Support Vector Machine (LSTWSVM) algorithm. The interference monitoring indicators are analyzed to extract features from the interfered GNSS signals. The experimental results show that the chosen observations can be used as the interference monitoring indicators. The interference monitoring performance of the proposed method is verified by using GPS L1 C/A code signal and being compared with that of standard SVM. The experimental results indicate that the TWSVM-based interference monitoring is much faster than the conventional SVM. Furthermore, the training time of TWSVM is on millisecond (ms) level and the monitoring time is on microsecond (μs) level, which make the proposed approach usable in practical interference monitoring applications.

  4. A Real-Time Interference Monitoring Technique for GNSS Based on a Twin Support Vector Machine Method

    PubMed Central

    Li, Wutao; Huang, Zhigang; Lang, Rongling; Qin, Honglei; Zhou, Kai; Cao, Yongbin

    2016-01-01

    Interferences can severely degrade the performance of Global Navigation Satellite System (GNSS) receivers. As the first step of GNSS any anti-interference measures, interference monitoring for GNSS is extremely essential and necessary. Since interference monitoring can be considered as a classification problem, a real-time interference monitoring technique based on Twin Support Vector Machine (TWSVM) is proposed in this paper. A TWSVM model is established, and TWSVM is solved by the Least Squares Twin Support Vector Machine (LSTWSVM) algorithm. The interference monitoring indicators are analyzed to extract features from the interfered GNSS signals. The experimental results show that the chosen observations can be used as the interference monitoring indicators. The interference monitoring performance of the proposed method is verified by using GPS L1 C/A code signal and being compared with that of standard SVM. The experimental results indicate that the TWSVM-based interference monitoring is much faster than the conventional SVM. Furthermore, the training time of TWSVM is on millisecond (ms) level and the monitoring time is on microsecond (μs) level, which make the proposed approach usable in practical interference monitoring applications. PMID:26959020

  5. Sensitive detection of porcine DNA in processed animal proteins using a TaqMan real-time PCR assay.

    PubMed

    Pegels, N; González, I; Fernández, S; García, T; Martín, R

    2012-01-01

    A TaqMan real-time PCR method was developed for specific detection of porcine-prohibited material in industrial feeds. The assay combines the use of a porcine-specific primer pair, which amplifies a 79 bp fragment of the mitochondrial (mt) 12 S rRNA gene, and a locked nucleic acid (LNA) TaqMan probe complementary to a target sequence lying between the porcine-specific primers. The nuclear 18 S rRNA gene system, yielding a 77 bp amplicon, was employed as a positive amplification control to monitor the total content of amplifiable DNA in the samples. The specificity of the porcine primers-probe system was verified against different animal and plant species, including mammals, birds and fish. The applicability of the real-time PCR protocol to detect the presence of porcine mt DNA in feeds was determined through the analysis of 190 industrial feeds (19 known reference and 171 blind samples) subjected to stringent processing treatments. The performance of the method allows qualitative and highly sensitive detection of short fragments from porcine DNA in all the industrial feeds declared to contain porcine material. Although the method has quantitative potential, the real quantitative capability of the assay is limited by the existing variability in terms of composition and processing conditions of the feeds, which affect the amount and quality of amplifiable DNA.

  6. New design, development, and optimization of an in-house quantitative TaqMan Real-time PCR assay for HIV-1 viral load measurement.

    PubMed

    Noorbazargan, Hassan; Nadji, Seyed Alireza; Samiee, Siamak Mirab; Paryan, Mahdi; Mohammadi-Yeganeh, Samira

    2018-04-01

    Background Viral load measurement is commonly applicable to monitor HIV infection in patients to determine the number of HIV-RNA in serum samples of individuals. The aim of the present study was to set up a highly specific, sensitive, and reproducible home-brewed Real-time PCR assay based on TaqMan chemistry to quantify HIV-1 RNA genome. Methods In this study, three sets of primer pairs and a TaqMan probe were designed for HIV subtypes conserved sequences. An internal control was included in this assay to evaluate the presence of inhibition. Standard curve and threshold cycle values were determined using in vitro transcribed RNA from int region of HIV-1. A serial dilution of RNA standards was generated by in vitro transcription, from 10 to 10 9 copies/ml to find the sensitivity and the limit of detection (LOD) of the assay and to evaluate its performance in a quantitative RT-PCR assay. Results The assay has a low LOD equivalent to 33.13 copies/ml of HIV-1 RNA and a linear range of detection from 10 to 10 9 copies/ml. The coefficient of variation (CV) for Inter and Intra-assay precision of this in-house HIV Real-time RT-PCR ranged from 0.28 to 2.49% and 0.72 to 4.47%, respectively. The analytical and clinical specificity was 100%. Conclusions The results indicate that the developed method has a suitable specificity and sensitivity and is highly reproducible and cost-benefit. Therefore, it will be useful to monitor HIV infection in plasma samples of individuals.

  7. Molecular analysis of Leptospira spp. isolated from humans by restriction fragment length polymorphism, real-time PCR and pulsed-field gel electrophoresis.

    PubMed

    Turk, Nenad; Milas, Zoran; Mojcec, Vesna; Ruzic-Sabljic, Eva; Staresina, Vilim; Stritof, Zrinka; Habus, Josipa; Postic, Daniele

    2009-11-01

    A total of 17 Leptospira clinical strains isolated from humans in Croatia were serologically and genetically analysed. For serovar identification, the microscopic agglutination test (MAT) and pulsed-field gel electrophoresis (PFGE) were used. To identify isolates on genomic species level, PCR-based restriction fragment length polymorphism (RFLP) and real-time PCR were performed. MAT revealed the following serogroup affinities: Grippotyphosa (seven isolates), Icterohaemorrhagiae (eight isolates) and Javanica (two isolates). RFLP of PCR products from a 331-bp-long fragment of rrs (16S rRNA gene) digested with endonucleases MnlI and DdeI and real-time PCR revealed three Leptospira genomic species. Grippotyphosa isolates belonged to Leptospira kirschneri, Icterohaemorrhagiae isolates to Leptospira interrogans and Javanica isolates to Leptospira borgpetersenii. Genomic DNA from 17 leptospiral isolates was digested with NotI and SgrAI restriction enzymes and analysed by PFGE. Results showed that seven isolates have the same binding pattern to serovar Grippotyphosa, eight isolates to serovar Icterohaemorrhagiae and two isolates to serovar Poi. Results demonstrate the diversity of leptospires circulating in Croatia. We point out the usefulness of a combination of PFGE, RFLP and real-time PCR as appropriate molecular methods in molecular analysis of leptospires.

  8. Inter-laboratory Comparison of Real-time PCR Methods for Quantification of General Fecal Indicator Bacteria

    EPA Science Inventory

    The application of quantitative real-time PCR (qPCR) technologies for the rapid identification of fecal bacteria in environmental waters is being considered for use as a national water quality metric in the United States. The transition from research tool to a standardized prot...

  9. Quantification of Campylobacter spp. in pig feces by direct real-time PCR with an internal control of extraction and amplification.

    PubMed

    Leblanc-Maridor, Mily; Garénaux, Amélie; Beaudeau, François; Chidaine, Bérangère; Seegers, Henri; Denis, Martine; Belloc, Catherine

    2011-04-01

    The rapid and direct quantification of Campylobacter spp. in complex substrates like feces or environmental samples is crucial to facilitate epidemiological studies on Campylobacter in pig production systems. We developed a real-time PCR assay for detecting and quantifying Campylobacter spp. directly in pig feces with the use of an internal control. Campylobacter spp. and Yersinia ruckeri primers-probes sets were designed and checked for specificity with diverse Campylobacter, related organisms, and other bacterial pathogens before being used in field samples. The quantification of Campylobacter spp. by the real-time PCR then was realized on 531 fecal samples obtained from experimentally and naturally infected pigs; the numeration of Campylobacter on Karmali plate was done in parallel. Yersinia ruckeri, used as bacterial internal control, was added to the samples before DNA extraction to control DNA-extraction and PCR-amplification. The sensitivity of the PCR assay was 10 genome copies. The established Campylobacter real-time PCR assay showed a 7-log-wide linear dynamic range of quantification (R²=0.99) with a detection limit of 200 Colony Forming Units of Campylobacter per gram of feces. A high correlation was found between the results obtained by real-time PCR and those by culture at both qualitative and quantitative levels. Moreover, DNA extraction followed by real-time PCR reduced the time needed for analysis to a few hours (within a working day). In conclusion, the real-time PCR developed in this study provides new tools for further epidemiological surveys to investigate the carriage and excretion of Campylobacter by pigs. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Real-Time Deposition Monitor for Ultrathin Conductive Films

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline

    2011-01-01

    A device has been developed that can be used for the real-time monitoring of ultrathin (2 or more) conductive films. The device responds in less than two microseconds, and can be used to monitor film depositions up to about 60 thick. Actual thickness monitoring capability will vary based on properties of the film being deposited. This is a single-use device, which, due to the very low device cost, can be disposable. Conventional quartz/crystal microbalance devices have proven inadequate to monitor the thickness of Pd films during deposition of ultrathin films for hydrogen sensor devices. When the deposited film is less than 100 , the QCM measurements are inadequate to allow monitoring of the ultrathin films being developed. Thus, an improved, high-sensitivity, real-time deposition monitor was needed to continue Pd film deposition development. The new deposition monitor utilizes a surface acoustic wave (SAW) device in a differential delay-line configuration to produce both a reference response and a response for the portion of the device on which the film is being deposited. Both responses are monitored simultaneously during deposition. The reference response remains unchanged, while the attenuation of the sensing path (where the film is being deposited) varies as the film thickness increases. This device utilizes the fact that on high-coupling piezoelectric substrates, the attenuation of an SAW undergoes a transition from low to very high, and back to low as the conductivity of a film on the device surface goes from nonconductive to highly conductive. Thus, the sensing path response starts with a low insertion loss, and as a conductive film is deposited, the film conductivity increases, causing the device insertion loss to increase dramatically (by up to 80 dB or more), and then with continued film thickness increases (and the corresponding conductivity increases), the device insertion loss goes back down to the low level at which it started. This provides a

  11. Development of a multiplex real time PCR to detect thermophilic lactic acid bacteria in natural whey starters.

    PubMed

    Bottari, Benedetta; Agrimonti, Caterina; Gatti, Monica; Neviani, Erasmo; Marmiroli, Nelson

    2013-01-01

    A multiplex real time PCR (mRealT-PCR) useful to rapidly screen microbial composition of thermophilic starter cultures for hard cooked cheeses and to compare samples with potentially different technological properties was developed. Novel primers directed toward pheS gene were designed and optimized for multiple detection of Lactobacillus helveticus, Lactobacillus delbrueckii, Streptococcus thermophilus and Lactobacillus fermentum. The assay was based on SYBR Green chemistry followed by melting curves analysis. The method was then evaluated for applications in the specific detection of the 4 lactic acid bacteria (LAB) in 29 different natural whey starters for Parmigiano Reggiano cheese production. The results obtained by mRealT-PCR were also compared with those obtained on the same samples by Fluorescence in Situ Hybridization (FISH) and Length-Heterogeneity PCR (LH-PCR). The mRealT-PCR developed in this study, was found to be effective for analyzing species present in the samples with an average sensitivity down to less than 600 copies of DNA and therefore sensitive enough to detect even minor LAB community members of thermophilic starter cultures. The assay was able to describe the microbial population of all the different natural whey starter samples analyzed, despite their natural variability. A higher number of whey starter samples with S. thermophilus and L. fermentum present in their microbial community were revealed, suggesting that these species could be more frequent in Parmigiano Reggiano natural whey starter samples than previously shown. The method was more effective than LH-PCR and FISH and, considering that these two techniques have to be used in combination to detect the less abundant species, the mRealT-PCR was also faster. Providing a single step sensitive detection of L. helveticus, L. delbrueckii, S. thermophilus and L. fermentum, the developed mRealT-PCR could be used for screening thermophilic starter cultures and to follow the presence of

  12. Low-Cost HIV-1 Diagnosis and Quantification in Dried Blood Spots by Real Time PCR

    PubMed Central

    Mehta, Nishaki; Trzmielina, Sonia; Nonyane, Bareng A. S.; Eliot, Melissa N.; Lin, Rongheng; Foulkes, Andrea S.; McNeal, Kristina; Ammann, Arthur; Eulalievyolo, Vindu; Sullivan, John L.; Luzuriaga, Katherine; Somasundaran, Mohan

    2009-01-01

    Background Rapid and cost-effective methods for HIV-1 diagnosis and viral load monitoring would greatly enhance the clinical management of HIV-1 infected adults and children in limited-resource settings. Recent recommendations to treat perinatally infected infants within the first year of life are feasible only if early diagnosis is routinely available. Dried blood spots (DBS) on filter paper are an easy and convenient way to collect and transport blood samples. A rapid and cost effective method to diagnose and quantify HIV-1 from DBS is urgently needed to facilitate early diagnosis of HIV-1 infection and monitoring of antiretroviral therapy. Methods and Findings We have developed a real-time LightCycler (rtLC) PCR assay to detect and quantify HIV-1 from DBS. HIV-1 RNA extracted from DBS was amplified in a one-step, single-tube system using primers specific for long-terminal repeat sequences that are conserved across all HIV-1 clades. SYBR Green dye was used to quantify PCR amplicons and HIV-1 RNA copy numbers were determined from a standard curve generated using serially diluted known copies of HIV-1 RNA. This assay detected samples across clades, has a dynamic range of 5 log10, and %CV <8% up to 4 log10 dilution. Plasma HIV-1 RNA copy numbers obtained using this method correlated well with the Roche Ultrasensitive (r = 0.91) and branched DNA (r = 0.89) assays. The lower limit of detection (95%) was estimated to be 136 copies. The rtLC DBS assay was 2.5 fold rapid as well as 40-fold cheaper when compared to commercial assays. Adaptation of the assay into other real-time systems demonstrated similar performance. Conclusions The accuracy, reliability, genotype inclusivity and affordability, along with the small volumes of blood required for the assay suggest that the rtLC DBS assay will be useful for early diagnosis and monitoring of pediatric HIV-1 infection in resource-limited settings. PMID:19503790

  13. Low-cost HIV-1 diagnosis and quantification in dried blood spots by real time PCR.

    PubMed

    Mehta, Nishaki; Trzmielina, Sonia; Nonyane, Bareng A S; Eliot, Melissa N; Lin, Rongheng; Foulkes, Andrea S; McNeal, Kristina; Ammann, Arthur; Eulalievyolo, Vindu; Sullivan, John L; Luzuriaga, Katherine; Somasundaran, Mohan

    2009-06-05

    Rapid and cost-effective methods for HIV-1 diagnosis and viral load monitoring would greatly enhance the clinical management of HIV-1 infected adults and children in limited-resource settings. Recent recommendations to treat perinatally infected infants within the first year of life are feasible only if early diagnosis is routinely available. Dried blood spots (DBS) on filter paper are an easy and convenient way to collect and transport blood samples. A rapid and cost effective method to diagnose and quantify HIV-1 from DBS is urgently needed to facilitate early diagnosis of HIV-1 infection and monitoring of antiretroviral therapy. We have developed a real-time LightCycler (rtLC) PCR assay to detect and quantify HIV-1 from DBS. HIV-1 RNA extracted from DBS was amplified in a one-step, single-tube system using primers specific for long-terminal repeat sequences that are conserved across all HIV-1 clades. SYBR Green dye was used to quantify PCR amplicons and HIV-1 RNA copy numbers were determined from a standard curve generated using serially diluted known copies of HIV-1 RNA. This assay detected samples across clades, has a dynamic range of 5 log(10), and %CV <8% up to 4 log(10) dilution. Plasma HIV-1 RNA copy numbers obtained using this method correlated well with the Roche Ultrasensitive (r = 0.91) and branched DNA (r = 0.89) assays. The lower limit of detection (95%) was estimated to be 136 copies. The rtLC DBS assay was 2.5 fold rapid as well as 40-fold cheaper when compared to commercial assays. Adaptation of the assay into other real-time systems demonstrated similar performance. The accuracy, reliability, genotype inclusivity and affordability, along with the small volumes of blood required for the assay suggest that the rtLC DBS assay will be useful for early diagnosis and monitoring of pediatric HIV-1 infection in resource-limited settings.

  14. Avian-specific real-time PCR assay for authenticity control in farm animal feeds and pet foods.

    PubMed

    Pegels, Nicolette; González, Isabel; García, Teresa; Martín, Rosario

    2014-01-01

    A highly sensitive TaqMan real-time PCR assay targeting the mitochondrial 12S rRNA gene was developed for detection of an avian-specific DNA fragment (68bp) in farm animal and pet feeds. The specificity of the assay was verified against a wide representation of animal and plant species. Applicability assessment of the avian real-time PCR was conducted through representative analysis of two types of compound feeds: industrial farm animal feeds (n=60) subjected to extreme temperatures, and commercial dog and cat feeds (n=210). Results obtained demonstrated the suitability of the real-time PCR assay to detect the presence of low percentages of highly processed avian material in the feed samples analysed. Although quantification results were well reproducible under the experimental conditions tested, an accurate estimation of the target content in feeds is impossible in practice. Nevertheless, the method may be useful as an alternative tool for traceability purposes within the framework of feed control. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Pre-Clinical Testing of Real-Time PCR Assays for Diarrheal Disease Agents of Genera Escherichia and Shigella

    DTIC Science & Technology

    2014-05-16

    FOR DIARRHEAL DISEASE AGENTS OF GENERA ESCHERICHIA AND SHIGELLA May 16, 2014 Reporting Period: October 1, 2010 to September 30, 2013...10-2010 - 30-09-2013 PRE-CLINICAL TESTING OF REAL-TIME PCR ASSAYS FOR DIARRHEAL DISEASE AGENTS OF GENERA ESCHERICHIA AND SHIGELLA ...Texas (MOA 2007 - 2013. Agreement No.: DODI 4000.19; AFI 25-201). Pre-clinical test results qualify ETEC and Shigella real-time PCR assays as lead

  16. Revealing the microbiota of marketed edible insects through PCR-DGGE, metagenomic sequencing and real-time PCR.

    PubMed

    Osimani, Andrea; Milanović, Vesna; Garofalo, Cristiana; Cardinali, Federica; Roncolini, Andrea; Sabbatini, Riccardo; De Filippis, Francesca; Ercolini, Danilo; Gabucci, Claudia; Petruzzelli, Annalisa; Tonucci, Franco; Clementi, Francesca; Aquilanti, Lucia

    2018-07-02

    The present study aimed to identify the microbiota present in six species of processed edible insects produced in Thailand and marketed worldwide via the internet, namely, giant water bugs (Belostoma lutarium), black ants (Polyrhachis), winged termites (alates, Termitoidae), rhino beetles (Hyboschema contractum), mole crickets (Gryllotalpidae), and silkworm pupae (Bombyx mori). For each species, two samples of boiled, dried and salted insects were purchased. The microbial DNA was extracted from the insect samples and subjected to polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), high-throughput sequencing and qualitative real-time PCR assays. The microbiota of the analyzed samples were widely characterized by the presence of spore-forming bacteria mainly represented by the genera Bacillus and Clostridium. Moreover, the genera Anaerobacillus, Paenibacillus, Geobacillus, Pseudomonas, Stenotrophomonas, Massilia, Delftia, Lactobacillus, Staphylococcus, Streptococcus, Vagococcus, and Vibrio were also detected. Real-time PCR allowed for ascertainment of the absence of Coxiella burnetii, Shiga toxin-producing E. coli (STEC), and Pseudomonas aeruginosa in all samples. The results of this study confirm the importance of combining different molecular techniques to characterize the biodiversity of complex ecosystems such as edible insects. The presence of potential human pathogens suggests the need for a careful application of good manufacturing practices during insect processing. This study provides further data that will be useful in risk analyses of edible insects as a novel food source. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Quantitative Detection of Streptococcus pneumoniae in Nasopharyngeal Secretions by Real-Time PCR

    PubMed Central

    Greiner, Oliver; Day, Philip J. R.; Bosshard, Philipp P.; Imeri, Fatime; Altwegg, Martin; Nadal, David

    2001-01-01

    Streptococcus pneumoniae is an important cause of community-acquired pneumonia. However, in this setting the diagnostic sensitivity of blood cultures is below 30%. Since during such infections changes in the amounts of S. pneumoniae may also occur in the upper respiratory tract, quantification of these bacteria in nasopharnygeal secretions (NPSs) may offer a suitable diagnostic approach. Real-time PCR offers a sensitive, efficient, and routinely reproducible approach to quantification. Using primers and a fluorescent probe specific for the pneumolysin gene, we were able to detect DNA from serial dilutions of S. pneumoniae cells in which the quantities of DNA ranged from the amounts extracted from 1 to 106 cells. No difference was noted when the same DNA was mixed with DNA extracted from NPSs shown to be deficient of S. pneumoniae following culture, suggesting that this bacterium can be detected and accurately quantitated in clinical samples. DNAs from Haemophilus influenzae, Moraxella catarrhalis, or alpha-hemolytic streptococci other than S. pneumoniae were not amplified or were only weakly amplified when there were ≥106 cells per reaction mixture. When the assay was applied to NPSs from patients with respiratory tract infections, the assay performed with a sensitivity of 100% and a specificity of up to 96% compared to the culture results. The numbers of S. pneumoniae organisms detected by real-time PCR correlated with the numbers detected by semiquantitative cultures. A real-time PCR that targeted the pneumolysin gene provided a sensitive and reliable means for routine rapid detection and quantification of S. pneumoniae present in NPSs. This assay may serve as a tool to study changes in the amounts of S. pneumoniae during lower respiratory tract infections. PMID:11526140

  18. Differential Diagnosis of Malaria on Truelab Uno®, a Portable, Real-Time, MicroPCR Device for Point-Of-Care Applications.

    PubMed

    Nair, Chandrasekhar Bhaskaran; Manjula, Jagannath; Subramani, Pradeep Annamalai; Nagendrappa, Prakash B; Manoj, Mulakkapurath Narayanan; Malpani, Sukriti; Pullela, Phani Kumar; Subbarao, Pillarisetti Venkata; Ramamoorthy, Siva; Ghosh, Susanta K

    2016-01-01

    Sensitive and specific detection of malarial parasites is crucial in controlling the significant malaria burden in the developing world. Also important is being able to identify life threatening Plasmodium falciparum malaria quickly and accurately to reduce malaria related mortality. Existing methods such as microscopy and rapid diagnostic tests (RDTs) have major shortcomings. Here, we describe a new real-time PCR-based diagnostic test device at point-of-care service for resource-limited settings. Truenat® Malaria, a chip-based microPCR test, was developed by bigtec Labs, Bangalore, India, for differential identification of Plasmodium falciparum and Plasmodium vivax parasites. The Truenat Malaria tests runs on bigtec's Truelab Uno® microPCR device, a handheld, battery operated, and easy-to-use real-time microPCR device. The performance of Truenat® Malaria was evaluated versus the WHO nested PCR protocol. The Truenat® Malaria was further evaluated in a triple-blinded study design using a sample panel of 281 specimens created from the clinical samples characterized by expert microscopy and a rapid diagnostic test kit by the National Institute of Malaria Research (NIMR). A comparative evaluation was done on the Truelab Uno® and a commercial real-time PCR system. The limit of detection of the Truenat Malaria assay was found to be <5 parasites/μl for both P. falciparum and P. vivax. The Truenat® Malaria test was found to have sensitivity and specificity of 100% each, compared to the WHO nested PCR protocol based on the evaluation of 100 samples. The sensitivity using expert microscopy as the reference standard was determined to be around 99.3% (95% CI: 95.5-99.9) at the species level. Mixed infections were identified more accurately by Truenat Malaria (32 samples identified as mixed) versus expert microscopy and RDTs which detected 4 and 5 mixed samples, respectively. The Truenat® Malaria microPCR test is a valuable diagnostic tool and implementation should be

  19. Differential Diagnosis of Malaria on Truelab Uno®, a Portable, Real-Time, MicroPCR Device for Point-Of-Care Applications

    PubMed Central

    Nair, Chandrasekhar Bhaskaran; Manjula, Jagannath; Subramani, Pradeep Annamalai; Nagendrappa, Prakash B.; Manoj, Mulakkapurath Narayanan; Malpani, Sukriti; Pullela, Phani Kumar; Subbarao, Pillarisetti Venkata; Ramamoorthy, Siva; Ghosh, Susanta K.

    2016-01-01

    Background Sensitive and specific detection of malarial parasites is crucial in controlling the significant malaria burden in the developing world. Also important is being able to identify life threatening Plasmodium falciparum malaria quickly and accurately to reduce malaria related mortality. Existing methods such as microscopy and rapid diagnostic tests (RDTs) have major shortcomings. Here, we describe a new real-time PCR-based diagnostic test device at point-of-care service for resource-limited settings. Methods Truenat® Malaria, a chip-based microPCR test, was developed by bigtec Labs, Bangalore, India, for differential identification of Plasmodium falciparum and Plasmodium vivax parasites. The Truenat Malaria tests runs on bigtec’s Truelab Uno® microPCR device, a handheld, battery operated, and easy-to-use real-time microPCR device. The performance of Truenat® Malaria was evaluated versus the WHO nested PCR protocol. The Truenat® Malaria was further evaluated in a triple-blinded study design using a sample panel of 281 specimens created from the clinical samples characterized by expert microscopy and a rapid diagnostic test kit by the National Institute of Malaria Research (NIMR). A comparative evaluation was done on the Truelab Uno® and a commercial real-time PCR system. Results The limit of detection of the Truenat Malaria assay was found to be <5 parasites/μl for both P. falciparum and P. vivax. The Truenat® Malaria test was found to have sensitivity and specificity of 100% each, compared to the WHO nested PCR protocol based on the evaluation of 100 samples. The sensitivity using expert microscopy as the reference standard was determined to be around 99.3% (95% CI: 95.5–99.9) at the species level. Mixed infections were identified more accurately by Truenat Malaria (32 samples identified as mixed) versus expert microscopy and RDTs which detected 4 and 5 mixed samples, respectively. Conclusion The Truenat® Malaria microPCR test is a valuable

  20. Rapid and accurate identification of Mycobacterium tuberculosis complex and common non-tuberculous mycobacteria by multiplex real-time PCR targeting different housekeeping genes.

    PubMed

    Nasr Esfahani, Bahram; Rezaei Yazdi, Hadi; Moghim, Sharareh; Ghasemian Safaei, Hajieh; Zarkesh Esfahani, Hamid

    2012-11-01

    Rapid and accurate identification of mycobacteria isolates from primary culture is important due to timely and appropriate antibiotic therapy. Conventional methods for identification of Mycobacterium species based on biochemical tests needs several weeks and may remain inconclusive. In this study, a novel multiplex real-time PCR was developed for rapid identification of Mycobacterium genus, Mycobacterium tuberculosis complex (MTC) and the most common non-tuberculosis mycobacteria species including M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and the M. gordonae in three reaction tubes but under same PCR condition. Genetic targets for primer designing included the 16S rDNA gene, the dnaJ gene, the gyrB gene and internal transcribed spacer (ITS). Multiplex real-time PCR was setup with reference Mycobacterium strains and was subsequently tested with 66 clinical isolates. Results of multiplex real-time PCR were analyzed with melting curves and melting temperature (T (m)) of Mycobacterium genus, MTC, and each of non-tuberculosis Mycobacterium species were determined. Multiplex real-time PCR results were compared with amplification and sequencing of 16S-23S rDNA ITS for identification of Mycobacterium species. Sensitivity and specificity of designed primers were each 100 % for MTC, M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and M. gordonae. Sensitivity and specificity of designed primer for genus Mycobacterium was 96 and 100 %, respectively. According to the obtained results, we conclude that this multiplex real-time PCR with melting curve analysis and these novel primers can be used for rapid and accurate identification of genus Mycobacterium, MTC, and the most common non-tuberculosis Mycobacterium species.

  1. Real time sound analysis for medical remote monitoring.

    PubMed

    Istrate, Dan; Binet, Morgan; Cheng, Sreng

    2008-01-01

    The increase of aging population in Europe involves more people living alone at home with an increased risk of home accidents or falls. In order to prevent or detect a distress situation in the case of an elderly people living alone, a remote monitoring system based on the sound environment analysis can be used. We have already proposed a system which monitors the sound environment, identifies everyday life sounds and distress expressions in order to participate to an alarm decision. This first system uses a classical sound card on a PC or embedded PC allowing only one channel monitor. In this paper, we propose a new architecture of the remote monitoring system, which relies on a real time multichannel implementation based on an USB acquisition card. This structure allows monitoring eight channels in order to cover all the rooms of an apartment. More than that, the SNR estimation leads currently to the adaptation of the recognition models to environment.

  2. A novel quantitative real-time polymerase chain reaction method for detecting toxigenic Pasteurella multocida in nasal swabs from swine.

    PubMed

    Scherrer, Simone; Frei, Daniel; Wittenbrink, Max Michael

    2016-12-01

    Progressive atrophic rhinitis (PAR) in pigs is caused by toxigenic Pasteurella multocida. In Switzerland, PAR is monitored by selective culture of nasal swabs and subsequent polymerase chain reaction (PCR) screening of bacterial colonies for the P. multocida toxA gene. A panel of 203 nasal swabs from a recent PAR outbreak were used to evaluate a novel quantitative real-time PCR for toxigenic P. multocida in porcine nasal swabs. In comparison to the conventional PCR with a limit of detection of 100 genome equivalents per PCR reaction, the real-time PCR had a limit of detection of 10 genome equivalents. The real-time PCR detected toxA-positive P. multocida in 101 samples (49.8%), whereas the conventional PCR was less sensitive with 90 toxA-positive samples (44.3%). In comparison to the real-time PCR, 5.4% of the toxA-positive samples revealed unevaluable results by conventional PCR. The approach of culture-coupled toxA PCR for the monitoring of PAR in pigs is substantially improved by a novel quantitative real-time PCR.

  3. Real-time PCR assay is superior to other methods for the detection of mycoplasma contamination in the cell lines of the National Cell Bank of Iran.

    PubMed

    Molla Kazemiha, Vahid; Bonakdar, Shahin; Amanzadeh, Amir; Azari, Shahram; Memarnejadian, Arash; Shahbazi, Shirin; Shokrgozar, Mohammad Ali; Mahdian, Reza

    2016-08-01

    Mycoplasmas are the most important contaminants of cell cultures throughout the world. They are considered as a major problem in biological studies and biopharmaceutical economic issues. In this study, our aim was to find the best standard technique as a rapid method with high sensitivity, specificity and accuracy for the detection of mycoplasma contamination in the cell lines of the National Cell Bank of Iran. Thirty cell lines suspected to mycoplasma contamination were evaluated by five different techniques including microbial culture, indirect DNA DAPI staining, enzymatic mycoalert(®) assay, conventional PCR and real-time PCR. Five mycoplasma-contaminated cell lines were assigned as positive controls and five mycoplasma-free cell lines as negative controls. The enzymatic method was performed using the mycoalert(®) mycoplasma detection kit. Real-time PCR technique was conducted by PromoKine diagnostic kits. In the conventional PCR method, mycoplasma genus-specific primers were designed to analyze the sequences based on a fixed and common region on 16S ribosomal RNA with PCR product size of 425 bp. Mycoplasma contamination was observed in 60, 56.66, 53.33, 46.66 and 33.33 % of 30 different cell cultures by real-time PCR, PCR, enzymatic mycoalert(®), indirect DNA DAPI staining and microbial culture methods, respectively. The analysis of the results of the different methods showed that the real-time PCR assay was superior the other methods with the sensitivity, specificity, accuracy, predictive value of positive and negative results of 100 %. These values were 94.44, 100, 96.77, 100 and 92.85 % for the conventional PCR method, respectively. Therefore, this study showed that real-time PCR and PCR assays based on the common sequences in the 16S ribosomal RNA are reliable methods with high sensitivity, specificity and accuracy for detection of mycoplasma contamination in cell cultures and other biological products.

  4. Real-time PCR demonstrates high prevalence of Schistosoma japonicum in the Philippines: implications for surveillance and control.

    PubMed

    Gordon, Catherine A; Acosta, Luz P; Gobert, Geoffrey N; Olveda, Remigio M; Ross, Allen G; Williams, Gail M; Gray, Darren J; Harn, Donald; Li, Yuesheng; McManus, Donald P

    2015-01-01

    The Philippines has a population of approximately 103 million people, of which 6.7 million live in schistosomiasis-endemic areas with 1.8 million people being at risk of infection with Schistosoma japonicum. Although the country-wide prevalence of schistosomiasis japonica in the Philippines is relatively low, the prevalence of schistosomiasis can be high, approaching 65% in some endemic areas. Of the currently available microscopy-based diagnostic techniques for detecting schistosome infections in the Philippines and elsewhere, most exhibit varying diagnostic performances, with the Kato-Katz (KK) method having particularly poor sensitivity for detecting low intensity infections. This suggests that the actual prevalence of schistosomiasis japonica may be much higher than previous reports have indicated. Six barangay (villages) were selected to determine the prevalence of S. japonicum in humans in the municipality of Palapag, Northern Samar. Fecal samples were collected from 560 humans and examined by the KK method and a validated real-time PCR (qPCR) assay. A high S. japonicum prevalence (90.2%) was revealed using qPCR whereas the KK method indicated a lower prevalence (22.9%). The geometric mean eggs per gram (GMEPG) determined by the qPCR was 36.5 and 11.5 by the KK. These results, particularly those obtained by the qPCR, indicate that the prevalence of schistosomiasis in this region of the Philippines is much higher than historically reported. Despite being more expensive, qPCR can complement the KK procedure, particularly for surveillance and monitoring of areas where extensive schistosomiasis control has led to low prevalence and intensity infections and where schistosomiasis elimination is on the horizon, as for example in southern China.

  5. [Selection of reference genes of Siraitia grosvenorii by real-time PCR].

    PubMed

    Tu, Dong-ping; Mo, Chang-ming; Ma, Xiao-jun; Zhao, Huan; Tang, Qi; Huang, Jie; Pan, Li-mei; Wei, Rong-chang

    2015-01-01

    Siraitia grosvenorii is a traditional Chinese medicine also as edible food. This study selected six candidate reference genes by real-time quantitative PCR, the expression stability of the candidate reference genes in the different samples was analyzed by using the software and methods of geNorm, NormFinder, BestKeeper, Delta CT method and RefFinder, reference genes for S. grosvenorii were selected for the first time. The results showed that 18SrRNA expressed most stable in all samples, was the best reference gene in the genetic analysis. The study has a guiding role for the analysis of gene expression using qRT-PCR methods, providing a suitable reference genes to ensure the results in the study on differential expressed gene in synthesis and biological pathways, also other genes of S. grosvenorii.

  6. SYBR Green Real-Time PCR Method To Detect Clostridium botulinum Type A▿

    PubMed Central

    Fenicia, Lucia; Anniballi, Fabrizio; De Medici, Dario; Delibato, Elisabetta; Aureli, Paolo

    2007-01-01

    Botulinum toxins (BoNTs) are classically produced by Clostridium botulinum but rarely also from neurotoxigenic strains of Clostridium baratii and Clostridium butyricum. BoNT type A (BoNT/A), BoNT/B, BoNT/E, and very rarely BoNT/F are mainly responsible for human botulism. Standard microbiological methods take into consideration only the detection of C. botulinum. The presumptive identification of the toxigenic strains together with the typing of BoNT has to be performed by mouse bioassay. The development of PCR-based methods for the detection and typing of BoNT-producing clostridia would be an ideal alternative to the mouse bioassay. The objective of this study was to develop a rapid and robust real-time PCR method for detecting C. botulinum type A. Four different techniques for the extraction and purification of DNA from cultured samples were initially compared. Of the techniques used, Chelex 100, DNeasy tissue kit, InstaGene matrix DNA, and boiling, the boiling technique was significantly less efficient than the other three. These did not give statistically different results, and Chelex 100 was chosen because it was less expensive than the others. In order to eliminate any false-negative results, an internal amplification control was synthesized and included in the amplification mixture according to ISO 22174. The specificity of the method was tested against 75 strains of C. botulinum type A, 4 strains of C. botulinum type Ab, and 101 nontarget strains. The detection limit of the reaction was less than 6 × 101 copies of C. botulinum type A DNA. The robustness of the method was confirmed using naturally contaminated stool specimens to evaluate the tolerance of inhibitor substances. SYBR green real-time PCR showed very high specificity for the detection of C. botulinum types A and Ab (inclusivity and exclusivity, 100%). PMID:17369349

  7. Improved Strategies and Optimization of Calibration Models for Real-time PCR Absolute Quantification

    EPA Science Inventory

    Real-time PCR absolute quantification applications rely on the use of standard curves to make estimates of DNA target concentrations in unknown samples. Traditional absolute quantification approaches dictate that a standard curve must accompany each experimental run. However, t...

  8. Establishment of a multiplex real-time RT-PCR assay for rapid identification of H6 subtype avian influenza viruses.

    PubMed

    Yang, Fan; Wu, Haibo; Liu, Fumin; Lu, Xiangyun; Peng, Xiuming; Wu, Nanping

    2018-06-01

    The H6 subtype avian influenza viruses (AIVs) possess the capacity for zoonotic transmission from avian species to humans. Establishment of a specific, rapid and sensitive method to screen H6 AIVs is necessary. Based on the conserved domain of the matrix and H6 AIV hemagglutinin genes, two TaqMan minor-groove-binder probes and multiplex real-time RT-PCR primers were designed in this study. The multiplex real-time RT-PCR assay developed in this study had high specificity and repeatability and a detection limit of 30 copies per reaction. This rapid diagnostic method will be useful for clinical detection and surveillance of H6 AIVs in China.

  9. Development and Interlaboratory Validation of a Simple Screening Method for Genetically Modified Maize Using a ΔΔC(q)-Based Multiplex Real-Time PCR Assay.

    PubMed

    Noguchi, Akio; Nakamura, Kosuke; Sakata, Kozue; Sato-Fukuda, Nozomi; Ishigaki, Takumi; Mano, Junichi; Takabatake, Reona; Kitta, Kazumi; Teshima, Reiko; Kondo, Kazunari; Nishimaki-Mogami, Tomoko

    2016-04-19

    A number of genetically modified (GM) maize events have been developed and approved worldwide for commercial cultivation. A screening method is needed to monitor GM maize approved for commercialization in countries that mandate the labeling of foods containing a specified threshold level of GM crops. In Japan, a screening method has been implemented to monitor approved GM maize since 2001. However, the screening method currently used in Japan is time-consuming and requires generation of a calibration curve and experimental conversion factor (C(f)) value. We developed a simple screening method that avoids the need for a calibration curve and C(f) value. In this method, ΔC(q) values between the target sequences and the endogenous gene are calculated using multiplex real-time PCR, and the ΔΔC(q) value between the analytical and control samples is used as the criterion for determining analytical samples in which the GM organism content is below the threshold level for labeling of GM crops. An interlaboratory study indicated that the method is applicable independently with at least two models of PCR instruments used in this study.

  10. Monitoring Distributed Real-Time Systems: A Survey and Future Directions

    NASA Technical Reports Server (NTRS)

    Goodloe, Alwyn E.; Pike, Lee

    2010-01-01

    Runtime monitors have been proposed as a means to increase the reliability of safety-critical systems. In particular, this report addresses runtime monitors for distributed hard real-time systems. This class of systems has had little attention from the monitoring community. The need for monitors is shown by discussing examples of avionic systems failure. We survey related work in the field of runtime monitoring. Several potential monitoring architectures for distributed real-time systems are presented along with a discussion of how they might be used to monitor properties of interest.

  11. Blending DNA binding dyes to improve detection in real-time PCR.

    PubMed

    Jansson, Linda; Koliana, Marianne; Sidstedt, Maja; Hedman, Johannes

    2017-03-01

    The success of real-time PCR (qPCR) analysis is partly limited by the presence of inhibitory compounds in the nucleic acid samples. For example, humic acid (HA) from soil and aqueous sediment interferes with amplification and also quenches the fluorescence of double-stranded (ds) DNA binding dyes, thus hindering amplicon detection. We aimed to counteract the HA fluorescence quenching effect by blending complementary dsDNA binding dyes, thereby elevating the dye saturation levels and increasing the fluorescence signals. A blend of the four dyes EvaGreen, ResoLight, SYBR Green and SYTO9 gave significantly higher fluorescence intensities in the presence and absence of HA, compared with the dyes applied separately and two-dye blends. We propose blending of dyes as a generally applicable means for elevating qPCR fluorescence signals and thus enabling detection in the presence of quenching substances.

  12. Development of an Internal Positive Control for Rapid Diagnosis of Avian Influenza Virus Infections by Real-Time Reverse Transcription-PCR with Lyophilized Reagents

    PubMed Central

    Das, Amaresh; Spackman, Erica; Senne, Dennis; Pedersen, Jan; Suarez, David L.

    2006-01-01

    We developed an internal positive control (IPC) RNA to help ensure the accuracy of the detection of avian influenza virus (AIV) RNA by reverse transcription (RT)-PCR and real-time RT-PCR (RRT-PCR). The IPC was designed to have the same binding sites for the forward and reverse primers of the AIV matrix gene as the target amplicon, but it had a unique internal sequence used for the probe site. The amplification of the viral RNA and the IPC by RRT-PCR were monitored with two different fluorescent probes in a multiplex format, one specific for the AIV matrix gene and the other for the IPC. The RRT-PCR test was further simplified with the use of lyophilized bead reagents for the detection of AIV RNA. The RRT-PCR with the bead reagents was more sensitive than the conventional wet reagents for the detection of AIV RNA. The IPC-based RRT-PCR detected inhibitors in blood, kidney, lungs, spleen, intestine, and cloacal swabs, but not allantoic fluid, serum, or tracheal swabs The accuracy of RRT-PCR test results with the lyophilized beads was tested on cloacal and tracheal swabs from experimental birds inoculated with AIV and compared with virus isolation (VI) on embryonating chicken eggs. There was 97 to 100% agreement of the RRT-PCR test results with VI for tracheal swabs and 81% agreement with VI for cloacal swabs, indicating a high level of accuracy of the RRT-PCR assay. The same IPC in the form of armored RNA was also used to monitor the extraction of viral RNA and subsequent detection by RRT-PCR. PMID:16954228

  13. A real-time monitoring system for the facial nerve.

    PubMed

    Prell, Julian; Rachinger, Jens; Scheller, Christian; Alfieri, Alex; Strauss, Christian; Rampp, Stefan

    2010-06-01

    Damage to the facial nerve during surgery in the cerebellopontine angle is indicated by A-trains, a specific electromyogram pattern. These A-trains can be quantified by the parameter "traintime," which is reliably correlated with postoperative functional outcome. The system presented was designed to monitor traintime in real-time. A dedicated hardware and software platform for automated continuous analysis of the intraoperative facial nerve electromyogram was specifically designed. The automatic detection of A-trains is performed by a software algorithm for real-time analysis of nonstationary biosignals. The system was evaluated in a series of 30 patients operated on for vestibular schwannoma. A-trains can be detected and measured automatically by the described method for real-time analysis. Traintime is monitored continuously via a graphic display and is shown as an absolute numeric value during the operation. It is an expression of overall, cumulated length of A-trains in a given channel; a high correlation between traintime as measured by real-time analysis and functional outcome immediately after the operation (Spearman correlation coefficient [rho] = 0.664, P < .001) and in long-term outcome (rho = 0.631, P < .001) was observed. Automated real-time analysis of the intraoperative facial nerve electromyogram is the first technique capable of reliable continuous real-time monitoring. It can critically contribute to the estimation of functional outcome during the course of the operative procedure.

  14. Evaluation of 793/B-like and Mass-like vaccine strain kinetics in experimental and field conditions by real-time RT-PCR quantification.

    PubMed

    Tucciarone, C M; Franzo, G; Berto, G; Drigo, M; Ramon, G; Koutoulis, K C; Catelli, E; Cecchinato, M

    2018-01-01

    Infectious bronchitis virus (IBV) is a great economic burden both for productive losses and costs of the control strategies. Many different vaccination protocols are applied in the same region and even in consecutive cycles on the same farm in order to find the perfect balance between costs and benefits. In Northern Italy, the usual second vaccination is more and more often moved up to the chick's first d of life. The second strain administration together with the common Mass priming by spray at the hatchery allows saving money and time and reducing animal stress. The present work compared the different vaccine strains (Mass-like or B48, and 1/96) kinetics both in field conditions and in a 21-day-long experimental trial in broilers, monitoring the viral replication by upper respiratory tract swabbing and vaccine specific real time reverse transcription PCR (RT-PCR) quantification. In both field and experimental conditions, titers for all the vaccines showed an increasing trend in the first 2 wk and then a decrease, though still remaining detectable during the whole monitored period. IBV field strain and avian Metapneumovirus (aMPV) presence also was also investigated by RT-PCR and sequencing, and by multiplex real-time RT-PCR, respectively, revealing a consistency in the pathogen introduction timing at around 30 d, in correspondence with the vaccine titer's main decrease. These findings suggest the need for an accurate knowledge of live vaccine kinetics, whose replication can compete with the other pathogen one, providing additional protection to be added to what is conferred by the adaptive immune response. © 2017 Poultry Science Association Inc.

  15. Direct identification of Streptococcus agalactiae and capsular type by real-time PCR in vaginal swabs from pregnant women.

    PubMed

    Morozumi, Miyuki; Chiba, Naoko; Igarashi, Yuko; Mitsuhashi, Naoki; Wajima, Takeaki; Iwata, Satoshi; Ubukata, Kimiko

    2015-01-01

    Most group B streptococcus (GBS) infections in newborns are with capsular type Ia, Ib, or III. To prevent these infections more effectively, we developed a real-time PCR method to simultaneously detect GBS species and identify these 3 capsular types in vaginal swab samples from women at 36-39 weeks of gestation. DNA to be detected included those of the dltS gene (encoding a histidine kinase specific to GBS) and cps genes encoding capsular types. PCR sensitivity was 10 CFU/well for a 33-35 threshold cycle. Results were obtained within 2 h. Direct PCR results were compared with results obtained from cultures. Samples numbering 1226 underwent PCR between September 2008 and August 2012. GBS positivity rates by direct PCR and after routine culture were 15.7% (n = 192) and 12.6% (n = 154), respectively. Sensitivity and specificity of direct PCR relative to culture were 96.1% and 95.9%. Of GBS positive samples identified by PCR, capsular types determined directly by real-time PCR were Ia (n = 24), Ib (n = 32), and III (n = 26). Real-time PCR using our designed cycling probe is a practical, highly sensitive method for identification of GBS in pregnant carriers, allowing use of prophylactic intrapartum antibiotics in time to cover the possibility of unexpected premature birth. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  16. Real-time PCR quantification of six periodontal pathogens in saliva samples from healthy young adults.

    PubMed

    Zhou, Xiaodong; Liu, Xiaoli; Li, Jing; Aprecio, Raydolfo M; Zhang, Wu; Li, Yiming

    2015-05-01

    The use of saliva as a diagnostic fluid for the evaluation of periodontal health has gained attention recently. Most published real-time PCR assays focused on quantification of bacteria in subgingival plaque, not in saliva. The aims of this study were to develop a real-time PCR assay for quantification of six periodontal pathogens in saliva and to establish a relationship between the amount of DNA (fg) and colony-forming unit (CFU). TaqMan primers/probe sets were used for the detection of Aggregatibacter actinomycetemcomitans (Aa), Eikenella corrodens (Ec), Fusobacterium nucleatum (Fn), Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Tannerella forsythia (Tf), and total bacteria. Six periodontal pathogens and total bacteria in saliva from 24 periodontally healthy individuals were determined. The relationship between the amount of DNA (fg) and CFU was established by measuring the concentrations of extracted bacterial DNA and CFU per milliliter of bacteria on agar plates. Fn, Ec, and Pi were detected in all saliva samples, while 58.5, 45.8, and 33.3% were detected for Tf, Pg, and Aa, respectively. Numbers of Ec and Fn in saliva were highly correlated (R(2) = 0.93, P < 0.01). The values of DNA (fg) per CFU ranged from 64 for Ec to 121 for Pg. The real-time PCR assay in combination with the relationship between DNA (fg) and CFU can be used to quantitate periodontal pathogens in saliva and estimate the number of live bacteria (CFU). This real-time PCR assay in combination with the relationship between DNA (fg) and CFU has the potential to be an adjunct in evaluation of periodontal health status.

  17. Application of real-time PCR for total airborne bacterial assessment: Comparison with epifluorescence microscopy and culture-dependent methods

    NASA Astrophysics Data System (ADS)

    Rinsoz, Thomas; Duquenne, Philippe; Greff-Mirguet, Guylaine; Oppliger, Anne

    Traditional culture-dependent methods to quantify and identify airborne microorganisms are limited by factors such as short-duration sampling times and inability to count non-culturable or non-viable bacteria. Consequently, the quantitative assessment of bioaerosols is often underestimated. Use of the real-time quantitative polymerase chain reaction (Q-PCR) to quantify bacteria in environmental samples presents an alternative method, which should overcome this problem. The aim of this study was to evaluate the performance of a real-time Q-PCR assay as a simple and reliable way to quantify the airborne bacterial load within poultry houses and sewage treatment plants, in comparison with epifluorescence microscopy and culture-dependent methods. The estimates of bacterial load that we obtained from real-time PCR and epifluorescence methods, are comparable, however, our analysis of sewage treatment plants indicate these methods give values 270-290 fold greater than those obtained by the "impaction on nutrient agar" method. The culture-dependent method of air impaction on nutrient agar was also inadequate in poultry houses, as was the impinger-culture method, which gave a bacterial load estimate 32-fold lower than obtained by Q-PCR. Real-time quantitative PCR thus proves to be a reliable, discerning, and simple method that could be used to estimate airborne bacterial load in a broad variety of other environments expected to carry high numbers of airborne bacteria.

  18. IDLN-MSP: Idiolocal normalization of real-time methylation-specific PCR for genetic imbalanced DNA specimens.

    PubMed

    Santourlidis, Simeon; Ghanjati, Foued; Beermann, Agnes; Hermanns, Thomas; Poyet, Cédric

    2016-02-01

    Sensitive, accurate, and reliable measurements of tumor cell-specific DNA methylation changes are of fundamental importance in cancer diagnosis, prognosis, and monitoring. Real-time methylation-specific PCR (MSP) using intercalating dyes is an established method of choice for this purpose. Here we present a simple but crucial adaptation of this widely applied method that overcomes a major obstacle: genetic abnormalities in the DNA samples, such as aneuploidy or copy number variations, that could result in inaccurate results due to improper normalization if the copy numbers of the target and reference sequences are not the same. In our idiolocal normalization (IDLN) method, the locus for the normalizing, methylation-independent reference amplification is chosen close to the locus of the methylation-dependent target amplification. This ensures that the copy numbers of both the target and reference sequences will be identical in most cases if they are close enough to each other, resulting in accurate normalization and reliable comparative measurements of DNA methylation in clinical samples when using real-time MSP.

  19. Sample pooling for real-time PCR detection and virulence determination of the footrot pathogen Dichelobacter nodosus.

    PubMed

    Frosth, Sara; König, Ulrika; Nyman, Ann-Kristin; Aspán, Anna

    2017-09-01

    Dichelobacter nodosus is the principal cause of ovine footrot and strain virulence is an important factor in disease severity. Therefore, detection and virulence determination of D. nodosus is important for proper diagnosis of the disease. Today this is possible by real-time PCR analysis. Analysis of large numbers of samples is costly and laborious; therefore, pooling of individual samples is common in surveillance programs. However, pooling can reduce the sensitivity of the method. The aim of this study was to develop a pooling method for real-time PCR analysis that would allow sensitive detection and simultaneous virulence determination of D. nodosus. A total of 225 sheep from 17 flocks were sampled using ESwabs within the Swedish Footrot Control Program in 2014. Samples were first analysed individually and then in pools of five by real-time PCR assays targeting the 16S rRNA and aprV2/B2 genes of D. nodosus. Each pool consisted of four negative and one positive D. nodosus samples with varying amounts of the bacterium. In the individual analysis, 61 (27.1%) samples were positive in the 16S rRNA and the aprV2/B2 PCR assays and 164 (72.9%) samples were negative. All samples positive in the aprV2/B2 PCR-assay were of aprB2 variant. The pooled analysis showed that all 41 pools were also positive for D. nodosus 16S rRNA and the aprB2 variant. The diagnostic sensitivity for pooled and individual samples was therefore similar. Our method includes concentration of the bacteria before DNA-extraction. This may account for the maintenance of diagnostic sensitivity. Diagnostic sensitivity in the real-time PCR assays of the pooled samples were comparable to the sensitivity obtained for individually analysed samples. Even sub-clinical infections were able to be detected in the pooled PCR samples which is important for control of the disease. This method may therefore be implemented in footrot control programs where it can replace analysis of individual samples.

  20. Self-Organizing Peer-To-Peer Middleware for Healthcare Monitoring in Real-Time

    PubMed Central

    Kim, Hyun Ho; Jo, Hyeong Gon

    2017-01-01

    As the number of elderly persons with chronic illnesses increases, a new public infrastructure for their care is becoming increasingly necessary. In particular, technologies that can monitoring bio-signals in real-time have been receiving significant attention. Currently, most healthcare monitoring services are implemented by wireless carrier through centralized servers. These services are vulnerable to data concentration because all data are sent to a remote server. To solve these problems, we propose self-organizing P2P middleware for healthcare monitoring that enables a real-time multi bio-signal streaming without any central server by connecting the caregiver and care recipient. To verify the performance of the proposed middleware, we evaluated the monitoring service matching time based on a monitoring request. We also confirmed that it is possible to provide an effective monitoring service by evaluating the connectivity between Peer-to-Peer and average jitter. PMID:29149045

  1. Self-Organizing Peer-To-Peer Middleware for Healthcare Monitoring in Real-Time.

    PubMed

    Kim, Hyun Ho; Jo, Hyeong Gon; Kang, Soon Ju

    2017-11-17

    As the number of elderly persons with chronic illnesses increases, a new public infrastructure for their care is becoming increasingly necessary. In particular, technologies that can monitoring bio-signals in real-time have been receiving significant attention. Currently, most healthcare monitoring services are implemented by wireless carrier through centralized servers. These services are vulnerable to data concentration because all data are sent to a remote server. To solve these problems, we propose self-organizing P2P middleware for healthcare monitoring that enables a real-time multi bio-signal streaming without any central server by connecting the caregiver and care recipient. To verify the performance of the proposed middleware, we evaluated the monitoring service matching time based on a monitoring request. We also confirmed that it is possible to provide an effective monitoring service by evaluating the connectivity between Peer-to-Peer and average jitter.

  2. The Next-Generation PCR-Based Quantification Method for Ambient Waters: Digital PCR.

    PubMed

    Cao, Yiping; Griffith, John F; Weisberg, Stephen B

    2016-01-01

    Real-time quantitative PCR (qPCR) is increasingly being used for ambient water monitoring, but development of digital polymerase chain reaction (digital PCR) has the potential to further advance the use of molecular techniques in such applications. Digital PCR refines qPCR by partitioning the sample into thousands to millions of miniature reactions that are examined individually for binary endpoint results, with DNA density calculated from the fraction of positives using Poisson statistics. This direct quantification removes the need for standard curves, eliminating the labor and materials associated with creating and running standards with each batch, and removing biases associated with standard variability and mismatching amplification efficiency between standards and samples. Confining reactions and binary endpoint measurements to small partitions also leads to other performance advantages, including reduced susceptibility to inhibition, increased repeatability and reproducibility, and increased capacity to measure multiple targets in one analysis. As such, digital PCR is well suited for ambient water monitoring applications and is particularly advantageous as molecular methods move toward autonomous field application.

  3. Real-Time Monitoring of Psychotherapeutic Processes: Concept and Compliance

    PubMed Central

    Schiepek, Günter; Aichhorn, Wolfgang; Gruber, Martin; Strunk, Guido; Bachler, Egon; Aas, Benjamin

    2016-01-01

    Objective: The feasibility of a high-frequency real-time monitoring approach to psychotherapy is outlined and tested for patients' compliance to evaluate its integration to everyday practice. Criteria concern the ecological momentary assessment, the assessment of therapy-related cognitions and emotions, equidistant time sampling, real-time nonlinear time series analysis, continuous participative process control by client and therapist, and the application of idiographic (person-specific) surveys. Methods: The process-outcome monitoring is technically realized by an internet-based device for data collection and data analysis, the Synergetic Navigation System. Its feasibility is documented by a compliance study on 151 clients treated in an inpatient and a day-treatment clinic. Results: We found high compliance rates (mean: 78.3%, median: 89.4%) amongst the respondents, independent of the severity of symptoms or the degree of impairment. Compared to other diagnoses, the compliance rate was lower in the group diagnosed with personality disorders. Conclusion: The results support the feasibility of high-frequency monitoring in routine psychotherapy settings. Daily collection of psychological surveys allows for the assessment of highly resolved, equidistant time series data which gives insight into the nonlinear qualities of therapeutic change processes (e.g., pattern transitions, critical instabilities). PMID:27199837

  4. EVALUATION OF RAPID, QUANTITATIVE REAL-TIME PCR METHOD FOR ENUMERATION OF PATHOGENIC CANDIDA CELLS IN WATER

    EPA Science Inventory

    Quantitative Real-Time PCR (QRT-PCR) technology, incorporating fluorigenic 5' nuclease (TaqMan (trademark)) chemistry, was developed for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glab...

  5. Computation offloading for real-time health-monitoring devices.

    PubMed

    Kalantarian, Haik; Sideris, Costas; Tuan Le; Hosseini, Anahita; Sarrafzadeh, Majid

    2016-08-01

    Among the major challenges in the development of real-time wearable health monitoring systems is to optimize battery life. One of the major techniques with which this objective can be achieved is computation offloading, in which portions of computation can be partitioned between the device and other resources such as a server or cloud. In this paper, we describe a novel dynamic computation offloading scheme for real-time wearable health monitoring devices that adjusts the partitioning of data between the wearable device and mobile application as a function of desired classification accuracy.

  6. Quantification of mixed chimerism by real time PCR on whole blood-impregnated FTA cards.

    PubMed

    Pezzoli, N; Silvy, M; Woronko, A; Le Treut, T; Lévy-Mozziconacci, A; Reviron, D; Gabert, J; Picard, C

    2007-09-01

    This study has investigated quantification of chimerism in sex-mismatched transplantations by quantitative real time PCR (RQ-PCR) using FTA paper for blood sampling. First, we demonstrate that the quantification of DNA from EDTA-blood which has been deposit on FTA card is accurate and reproducible. Secondly, we show that fraction of recipient cells detected by RQ-PCR was concordant between the FTA and salting-out method, reference DNA extraction method. Furthermore, the sensitivity of detection of recipient cells is relatively similar with the two methods. Our results show that this innovative method can be used for MC assessment by RQ-PCR.

  7. Diet-Dependent Shifts in the Bacterial Population of the Rumen Revealed with Real-Time PCR

    PubMed Central

    Tajima, K.; Aminov, R. I.; Nagamine, T.; Matsui, H.; Nakamura, M.; Benno, Y.

    2001-01-01

    A set of PCR primers was designed and validated for specific detection and quantification of Prevotella ruminicola, Prevotella albensis, Prevotella bryantii, Fibrobacter succinogenes, Selenomonas ruminantium-Mitsuokella multiacida, Streptococcus bovis, Ruminococcus flavefaciens, Ruminobacter amylophilus, Eubacterium ruminantium, Treponema bryantii, Succinivibrio dextrinosolvens, and Anaerovibrio lipolytica. By using these primers and the real-time PCR technique, the corresponding species in the rumens of cows for which the diet was switched from hay to grain were quantitatively monitored. The dynamics of two fibrolytic bacteria, F. succinogenes and R. flavefaciens, were in agreement with those of earlier, culture-based experiments. The quantity of F. succinogenes DNA, predominant in animals on the hay diet, fell 20-fold on the third day of the switch to a grain diet and further declined on day 28, with a 57-fold reduction in DNA. The R. flavefaciens DNA concentration on day 3 declined to approximately 10% of its initial value in animals on the hay diet and remained at this level on day 28. During the transition period (day 3), the quantities of two ruminal prevotella DNAs increased considerably: that of P. ruminicola increased 7-fold and that of P. bryantii increased 263-fold. On day 28, the quantity of P. ruminicola DNA decreased 3-fold, while P. bryantii DNA was still elevated 10-fold in comparison with the level found in animals on the initial hay diet. The DNA specific for another xylanolytic bacterium, E. ruminantium, dropped 14-fold during the diet switch and was maintained at this level on day 28. The concentration of a rumen spirochete, T. bryantii, decreased less profoundly and stabilized with a sevenfold decline by day 28. The variations in A. lipolytica DNA were not statistically significant. After an initial slight increase in S. dextrinosolvens DNA on day 3, this DNA was not detected at the end of the experiment. S. bovis DNA displayed a 67-fold

  8. Simple Real-Time PCR and Amplicon Sequencing Method for Identification of Plasmodium Species in Human Whole Blood.

    PubMed

    Lefterova, Martina I; Budvytiene, Indre; Sandlund, Johanna; Färnert, Anna; Banaei, Niaz

    2015-07-01

    Malaria is the leading identifiable cause of fever in returning travelers. Accurate Plasmodium species identification has therapy implications for P. vivax and P. ovale, which have dormant liver stages requiring primaquine. Compared to microscopy, nucleic acid tests have improved specificity for species identification and higher sensitivity for mixed infections. Here, we describe a SYBR green-based real-time PCR assay for Plasmodium species identification from whole blood, which uses a panel of reactions to detect species-specific non-18S rRNA gene targets. A pan-Plasmodium 18S rRNA target is also amplified to allow species identification or confirmation by sequencing if necessary. An evaluation of assay accuracy, performed on 76 clinical samples (56 positives using thin smear microscopy as the reference method and 20 negatives), demonstrated clinical sensitivities of 95.2% for P. falciparum (20/21 positives detected) and 100% for the Plasmodium genus (52/52), P. vivax (20/20), P. ovale (9/9), and P. malariae (6/6). The sensitivity of the P. knowlesi-specific PCR was evaluated using spiked whole blood samples (100% [10/10 detected]). The specificities of the real-time PCR primers were 94.2% for P. vivax (49/52) and 100% for P. falciparum (51/51), P. ovale (62/62), P. malariae (69/69), and P. knowlesi (52/52). Thirty-three specimens were used to test species identification by sequencing the pan-Plasmodium 18S rRNA PCR product, with correct identification in all cases. The real-time PCR assay also identified two samples with mixed P. falciparum and P. ovale infection, which was confirmed by sequencing. The assay described here can be integrated into a malaria testing algorithm in low-prevalence areas, allowing definitive Plasmodium species identification shortly after malaria diagnosis by microscopy. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Generic Raman-based calibration models enabling real-time monitoring of cell culture bioreactors.

    PubMed

    Mehdizadeh, Hamidreza; Lauri, David; Karry, Krizia M; Moshgbar, Mojgan; Procopio-Melino, Renee; Drapeau, Denis

    2015-01-01

    Raman-based multivariate calibration models have been developed for real-time in situ monitoring of multiple process parameters within cell culture bioreactors. Developed models are generic, in the sense that they are applicable to various products, media, and cell lines based on Chinese Hamster Ovarian (CHO) host cells, and are scalable to large pilot and manufacturing scales. Several batches using different CHO-based cell lines and corresponding proprietary media and process conditions have been used to generate calibration datasets, and models have been validated using independent datasets from separate batch runs. All models have been validated to be generic and capable of predicting process parameters with acceptable accuracy. The developed models allow monitoring multiple key bioprocess metabolic variables, and hence can be utilized as an important enabling tool for Quality by Design approaches which are strongly supported by the U.S. Food and Drug Administration. © 2015 American Institute of Chemical Engineers.

  10. Duplex detection of the Mycobacterium tuberculosis complex and medically important non-tuberculosis mycobacteria by real-time PCR based on the rnpB gene.

    PubMed

    Abdeldaim, Guma; Svensson, Erik; Blomberg, Jonas; Herrmann, Björn

    2016-11-01

    A duplex real-time PCR based on the rnpB gene was developed for Mycobacterium spp. The assay was specific for the Mycobacterium tuberculosis complex (MTB) and also detected all 19 tested species of non-tuberculous mycobacteria (NTM). The assay was evaluated on 404 clinical samples: 290 respiratory samples and 114 from tissue and other non-respiratory body sites. M. tuberculosis was detected by culture in 40 samples and in 30 samples by the assay. The MTB assay showed a sensitivity similar to Roche Cobas Amplicor MTB-PCR (Roche Molecular Systems, Pleasanton, CA, USA). There were only nine samples with non-tuberculous mycobacteria detected by culture. Six of them were detected by the PCR assay. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  11. Successful Validation of RNA Purification and Quantitative Real-Time PCR Analysis of Gene Expression on the International Space Station

    NASA Technical Reports Server (NTRS)

    Tran, L.; Parra, Macarena P.; Jung, J.; Boone, T.; Schonfeld, Julie; Almeida, Eduardo

    2017-01-01

    The NASA Ames WetLab-2 system was developed to offer new on-orbit gene expression analysis capabilities to ISS researchers and can be used to conduct on-orbit RNA isolation and quantitative real time PCR (RT-qPCR) analysis of gene expression from a wide range of biological samples ranging from microbes to mammalian tissues. On orbit validation included three quantitative PCR (qPCR) runs using an E. coli genomic DNA template pre-loaded at three different concentrations. The flight Ct values for the DNA standards showed no statistically significant differences relative to ground controls although there was increased noise in Ct curves, likely due to microgravity-related bubble retention in the optical windows. RNA was successfully purified from both E. coli and mouse liver samples and successfully generated singleplex, duplex and triplex data although with higher standard deviations than ground controls, also likely due to bubbles. Using volunteer science activities, a potential bubble reduction strategy was tested and resulted in smooth amplification curves and tighter Cts between replicates. The WetLab-2 validation experiment demonstrates a novel molecular biology workbench on ISS which allows scientists to purify and stabilize RNA, and to conduct RT-qPCR analyses on-orbit with rapid results. This novel ability is an important step towards utilizing ISS as a National Laboratory facility with the capability to conduct and adjust science experiments in real time without sample return, and opens new possibilities for rapid medical diagnostics and biological environmental monitoring on ISS.

  12. Real-time beam monitoring in scanned proton therapy

    NASA Astrophysics Data System (ADS)

    Klimpki, G.; Eichin, M.; Bula, C.; Rechsteiner, U.; Psoroulas, S.; Weber, D. C.; Lomax, A.; Meer, D.

    2018-05-01

    When treating cancerous tissues with protons beams, many centers make use of a step-and-shoot irradiation technique, in which the beam is steered to discrete grid points in the tumor volume. For safety reasons, the irradiation is supervised by an independent monitoring system validating cyclically that the correct amount of protons has been delivered to the correct position in the patient. Whenever unacceptable inaccuracies are detected, the irradiation can be interrupted to reinforce a high degree of radiation protection. At the Paul Scherrer Institute, we plan to irradiate tumors continuously. By giving up the idea of discrete grid points, we aim to be faster and more flexible in the irradiation. But the increase in speed and dynamics necessitates a highly responsive monitoring system to guarantee the same level of patient safety as for conventional step-and-shoot irradiations. Hence, we developed and implemented real-time monitoring of the proton beam current and position. As such, we read out diagnostic devices with 100 kHz and compare their signals against safety tolerances in an FPGA. In this paper, we report on necessary software and firmware enhancements of our control system and test their functionality based on three exemplary error scenarios. We demonstrate successful implementation of real-time beam monitoring and, consequently, compliance with international patient safety regulations.

  13. A TaqMan-based real time PCR assay for specific detection and quantification of Xylella fastidiosa strains causing bacterial leaf scorch in oleander.

    PubMed

    Guan, Wei; Shao, Jonathan; Singh, Raghuwinder; Davis, Robert E; Zhao, Tingchang; Huang, Qi

    2013-02-15

    A TaqMan-based real-time PCR assay was developed for specific detection of strains of X. fastidiosa causing oleander leaf scorch. The assay uses primers WG-OLS-F1 and WG-OLS-R1 and the fluorescent probe WG-OLS-P1, designed based on unique sequences found only in the genome of oleander strain Ann1. The assay is specific, allowing detection of only oleander-infecting strains, not other strains of X. fastidiosa nor other plant-associated bacteria tested. The assay is also sensitive, with a detection limit of 10.4fg DNA of X. fastidiosa per reaction in vitro and in planta. The assay can also be applied to detect low numbers of X. fastidiosa in insect samples, or further developed into a multiplex real-time PCR assay to simultaneously detect and distinguish diverse strains of X. fastidiosa that may occupy the same hosts or insect vectors. Specific and sensitive detection and quantification of oleander strains of X. fastidiosa should be useful for disease diagnosis, epidemiological studies, management of oleander leaf scorch disease, and resistance screening for oleander shrubs. Published by Elsevier B.V.

  14. Quantitative detection of Moraxella catarrhalis in nasopharyngeal secretions by real-time PCR.

    PubMed

    Greiner, Oliver; Day, Philip J R; Altwegg, Martin; Nadal, David

    2003-04-01

    The recognition of Moraxella catarrhalis as an important cause of respiratory tract infections has been protracted, mainly because it is a frequent commensal organism of the upper respiratory tract and the diagnostic sensitivity of blood or pleural fluid culture is low. Given that the amount of M. catarrhalis bacteria in the upper respiratory tract may change during infection, quantification of these bacteria in nasopharyngeal secretions (NPSs) by real-time PCR may offer a suitable diagnostic approach. Using primers and a fluorescent probe specific for the copB outer membrane protein gene, we detected DNA from serial dilutions of M. catarrhalis cells corresponding to 1 to 10(6) cells. Importantly, there was no difference in the amplification efficiency when the same DNA was mixed with DNA from NPSs devoid of M. catarrhalis. The specificity of the reaction was further confirmed by the lack of amplification of DNAs from other Moraxella species, nontypeable Haemophilus influenzae, H. influenzae type b, Streptococcus pneumoniae, Streptococcus oralis, Streptococcus pyogenes, Bordetella pertussis, Corynebacterium diphtheriae, and various Neisseria species. The assay applied to NPSs from 184 patients with respiratory tract infections performed with a sensitivity of 100% and a specificity of up to 98% compared to the culture results. The numbers of M. catarrhalis organisms detected by real-time PCR correlated with the numbers detected by semiquantitative culture. This real-time PCR assay targeting the copB outer membrane protein gene provided a sensitive and reliable means for the rapid detection and quantification of M. catarrhalis in NPSs; may serve as a tool to study changes in the amounts of M. catarrhalis during lower respiratory tract infections or following vaccination against S. pneumoniae, H. influenzae, or N. meningitidis; and may be applied to other clinical samples.

  15. Quantitative Detection of Moraxella catarrhalis in Nasopharyngeal Secretions by Real-Time PCR

    PubMed Central

    Greiner, Oliver; Day, Philip J. R.; Altwegg, Martin; Nadal, David

    2003-01-01

    The recognition of Moraxella catarrhalis as an important cause of respiratory tract infections has been protracted, mainly because it is a frequent commensal organism of the upper respiratory tract and the diagnostic sensitivity of blood or pleural fluid culture is low. Given that the amount of M. catarrhalis bacteria in the upper respiratory tract may change during infection, quantification of these bacteria in nasopharyngeal secretions (NPSs) by real-time PCR may offer a suitable diagnostic approach. Using primers and a fluorescent probe specific for the copB outer membrane protein gene, we detected DNA from serial dilutions of M. catarrhalis cells corresponding to 1 to 106 cells. Importantly, there was no difference in the amplification efficiency when the same DNA was mixed with DNA from NPSs devoid of M. catarrhalis. The specificity of the reaction was further confirmed by the lack of amplification of DNAs from other Moraxella species, nontypeable Haemophilus influenzae, H. influenzae type b, Streptococcus pneumoniae, Streptococcus oralis, Streptococcus pyogenes, Bordetella pertussis, Corynebacterium diphtheriae, and various Neisseria species. The assay applied to NPSs from 184 patients with respiratory tract infections performed with a sensitivity of 100% and a specificity of up to 98% compared to the culture results. The numbers of M. catarrhalis organisms detected by real-time PCR correlated with the numbers detected by semiquantitative culture. This real-time PCR assay targeting the copB outer membrane protein gene provided a sensitive and reliable means for the rapid detection and quantification of M. catarrhalis in NPSs; may serve as a tool to study changes in the amounts of M. catarrhalis during lower respiratory tract infections or following vaccination against S. pneumoniae, H. influenzae, or N. meningitidis; and may be applied to other clinical samples. PMID:12682118

  16. Real-time PCR for simultaneous detection and genotyping of bovine viral diarrhea virus.

    PubMed

    Letellier, C; Kerkhofs, P

    2003-12-01

    Since two genotypes of bovine viral diarrhea viruses (BVDV) occur in Belgian herds, their differentiation is important for disease surveillance. A quantitative real-time PCR assay was developed to detect and classify bovine viral diarrhea viruses in genotype I and II. A pair of primers specific for highly conserved regions of the 5'UTR and two TaqMan probes were designed. The FAM and VIC-labeled probe sequences differed by three nucleotides, allowing the differentiation between genotype I and II. The assay detectability of genotype I and II real-time PCR assay was 1000 and 100 copies, respectively. Highly reproducible data were obtained as the coefficients of variation of threshold cycle values in inter-runs were less than 2.2%. The correct classification of genotype I and II viruses was assessed by using reference strains and characterized field isolates of both genotypes. The application to clinical diagnosis was evaluated on pooled blood samples by post run measurement of the FAM- and VIC-associated fluorescence. The 100% agreement with the conventional RT-PCR method confirmed that this new technique could be used for routine detection of persistently infected immunotolerant animals.

  17. Detection of Legionella pneumophila by real-time PCR for the mip gene.

    PubMed

    Wilson, Deborah A; Yen-Lieberman, Belinda; Reischl, Udo; Gordon, Steve M; Procop, Gary W

    2003-07-01

    A real-time PCR assay for the mip gene of Legionella pneumophila was tested with 27 isolates of L. pneumophila, 20 isolates of 14 other Legionella species, and 103 non-Legionella bacteria. Eight culture-positive and 40 culture-negative clinical specimens were tested. This assay was 100% sensitive and 100% specific for L. pneumophila.

  18. Comparison of PCR and quantitative real-time PCR methods for the characterization of ruminant and cattle fecal pollution sources.

    PubMed

    Raith, Meredith R; Kelty, Catherine A; Griffith, John F; Schriewer, Alexander; Wuertz, Stefan; Mieszkin, Sophie; Gourmelon, Michele; Reischer, Georg H; Farnleitner, Andreas H; Ervin, Jared S; Holden, Patricia A; Ebentier, Darcy L; Jay, Jennifer A; Wang, Dan; Boehm, Alexandria B; Aw, Tiong Gim; Rose, Joan B; Balleste, E; Meijer, W G; Sivaganesan, Mano; Shanks, Orin C

    2013-11-15

    The State of California has mandated the preparation of a guidance document on the application of fecal source identification methods for recreational water quality management. California contains the fifth highest population of cattle in the United States, making the inclusion of cow-associated methods a logical choice. Because the performance of these methods has been shown to change based on geography and/or local animal feeding practices, laboratory comparisons are needed to determine which assays are best suited for implementation. We describe the performance characterization of two end-point PCR assays (CF128 and CF193) and five real-time quantitative PCR (qPCR) assays (Rum2Bac, BacR, BacCow, CowM2, and CowM3) reported to be associated with either ruminant or cattle feces. Each assay was tested against a blinded set of 38 reference challenge filters (19 duplicate samples) containing fecal pollution from 12 different sources suspected to impact water quality. The abundance of each host-associated genetic marker was measured for qPCR-based assays in both target and non-target animals and compared to quantities of total DNA mass, wet mass of fecal material, as well as Bacteroidales, and enterococci determined by 16S rRNA qPCR and culture-based approaches (enterococci only). Ruminant- and cow-associated genetic markers were detected in all filters containing a cattle fecal source. However, some assays cross-reacted with non-target pollution sources. A large amount of variability was evident across laboratories when protocols were not fixed suggesting that protocol standardization will be necessary for widespread implementation. Finally, performance metrics indicate that the cattle-associated CowM2 qPCR method combined with either the BacR or Rum2Bac ruminant-associated methods are most suitable for implementation. Published by Elsevier Ltd.

  19. DNA barcoding and real-time PCR detection of Bactrocera xanthodes (Tephritidae: Diptera) complex.

    PubMed

    Li, D; Waite, D W; Gunawardana, D N; McCarthy, B; Anderson, D; Flynn, A; George, S

    2018-05-06

    Immature fruit fly stages of the family Tephritidae are commonly intercepted on breadfruit from Pacific countries at the New Zealand border but are unable to be identified to the species level using morphological characters. Subsequent molecular identification showed that they belong to Bactrocera xanthodes, which is part of a species complex that includes Bactrocera paraxanthodes, Bactrocera neoxanthodes and an undescribed species. To establish a more reliable molecular identification system for B. xanthodes, a reference database of DNA barcode sequences for the 5'-fragment of COI gene region was constructed for B. xanthodes from Fiji, Samoa and Tonga. To better understand the species complex, B. neoxanthodes from Vanuatu and B. paraxanthodes from New Caledonia were also barcoded. Using the results of this analysis, real-time TaqMan polymerase chain reaction (PCR) assays for the detection of B. xanthodes complex and for the three individual species of the complex were developed and validated. The assay showed high specificity for the target species, with no cross-reaction observed for closely related organisms. Each of the real-time PCR assays is sensitive, detecting the target sequences at concentrations as low as ten copies µl-1 and can be used as either singleplex or multiplex formats. This real-time PCR assay for B. xanthodes has been successfully applied at the borders in New Zealand, leading to the rapid identification of intercepted Tephritidae eggs and larvae. The developed assays will be useful biosecurity tools for rapid detection of species in the B. xanthodes complex worldwide.

  20. Single Laboratory Comparison of Quantitative Real-Time PCR Assays for the Detection of Human Fecal Pollution

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) methods available to detect and enumerate human fecal pollution in ambient waters. Each assay employs distinct primers and/or probes and many target different genes and microorganisms leading to potential variations in method ...

  1. Effects of DNA extraction and purification methods on real-time quantitative PCR analysis of Roundup Ready soybean.

    PubMed

    Demeke, Tigst; Ratnayaka, Indira; Phan, Anh

    2009-01-01

    The quality of DNA affects the accuracy and repeatability of quantitative PCR results. Different DNA extraction and purification methods were compared for quantification of Roundup Ready (RR) soybean (event 40-3-2) by real-time PCR. DNA was extracted using cetylmethylammonium bromide (CTAB), DNeasy Plant Mini Kit, and Wizard Magnetic DNA purification system for food. CTAB-extracted DNA was also purified using the Zymo (DNA Clean & Concentrator 25 kit), Qtip 100 (Qiagen Genomic-Tip 100/G), and QIAEX II Gel Extraction Kit. The CTAB extraction method provided the largest amount of DNA, and the Zymo purification kit resulted in the highest percentage of DNA recovery. The Abs260/280 and Abs260/230 ratios were less than the expected values for some of the DNA extraction and purification methods used, indicating the presence of substances that could inhibit PCR reactions. Real-time quantitative PCR results were affected by the DNA extraction and purification methods used. Further purification or dilution of the CTAB DNA was required for successful quantification of RR soybean. Less variability of quantitative PCR results was observed among experiments and replications for DNA extracted and/or purified by CTAB, CTAB+Zymo, CTAB+Qtip 100, and DNeasy methods. Correct and repeatable results for real-time PCR quantification of RR soybean were achieved using CTAB DNA purified with Zymo and Qtip 100 methods.

  2. Lyme Borreliosis--the Utility of Improved Real-Time PCR Assay in the Detection of Borrelia burgdorferi Infections.

    PubMed

    Bil-Lula, Iwona; Matuszek, Patryk; Pfeiffer, Thomas; Woźniak, Mieczysław

    2015-01-01

    Infections of Borrelia burgdorferi sensu lato reveal clinical manifestations affecting numerous organs and tissues. The standard diagnostic procedure of these infections is quite simple if a positive history of tick exposure or typical erythema migrans appears. Lack of unequivocal clinical symptoms creates the necessity for further evaluation with laboratory tests. This study discusses the utility of a novel, improved, well-optimized, sensitive and highly specific quantitative real-time PCR assay for the diagnostics of infections caused by Borrelia burgdorferi sensu lato. We designed an improved, specific, highly sensitive real-time quantitative polymerase chain reaction (RQ-PCR) assay for the detection and quantification of all Borrelia burgdorferi genotypes. A wide validation effort was undertaken to ensure confidence in the highly sensitive and specific detection of B. burgdorferi. Due to high sensitivity and great specificity, as low as 1.6×10² copies of Borrelia per mL of whole blood could be detected. As much as 12 (3%) negative ELISA IgM results, 14 (2.8%) negative results of Line blot IgM, 11 (3.1%) and 7 (2.7%) of negative ELISA IgG and Line blot IgG results, respectively, were positive in real-time PCR. The data in this study confirms the high positive predictive value of real-time PCR test in the detection of Borrelia infections.

  3. [Quantitative fluorogenic real-time PCR assay for respiratory syncytial virus detection].

    PubMed

    Zhang, Qi-wei; You, Shang-you; Sun, Ji-min; Wu, Qi; Yu, Chun-hua; Zhang, Chu-yu

    2005-07-01

    To Establish a rapid and objective quantitative fluorogenic real-time PCR assay for early detection of human respiratory syncytial virus (hRSV). Two pairs of primers and one TaqMan Fluorogenic probe that are specific for the recognition of the most conservative N gene of hRSV for virus detection with LighCycler PCR in 93 nasopharyngeal secretion specimens collected from infants and young children. The assay was compared with virus isolation, routine PCR, nested PCR, and enzyme-linked immunosorbent assay (ELISA). This TaqMan assay had a sensitivity of 1 x 10(2) cDNA copies/microl with a dynamic range between 1 x 10(2) and 1 x 10(7) cDNA copies/microl, which was the same as that of nested PCR, but 10 times more sensitive than routine PCR. The specificity of the assay was evaluated by comparing hRSV with polivirus type 1, coxsackie virus type 2, influenza A, influenza B and adenovirus type 7. A PCR product of the expected size (195 bp) was produced and fluorescence signal detected for hRSV, but not for any of the other viruses. The results in LightCycler and Rotor-Gene instrument were consistent. Forty-four specimens (43.9%) were hRSV-positive with this assay and 4 (4/93,4.3%) were hRSV-positive with ELISA, showing rather low correlation between the two methods. No visible relation was found between the concentration of hRSV RNA and severity of the disease. This assay is rapid, sensitive, specific and quantitative, and has the potential of wide application for early diagnosis of hRSV infection and evaluation of the therapeutic effect.

  4. Real-time PCR based on SYBR-Green I fluorescence: an alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions.

    PubMed

    Ponchel, Frederique; Toomes, Carmel; Bransfield, Kieran; Leong, Fong T; Douglas, Susan H; Field, Sarah L; Bell, Sandra M; Combaret, Valerie; Puisieux, Alain; Mighell, Alan J; Robinson, Philip A; Inglehearn, Chris F; Isaacs, John D; Markham, Alex F

    2003-10-13

    Real-time PCR is increasingly being adopted for RNA quantification and genetic analysis. At present the most popular real-time PCR assay is based on the hybridisation of a dual-labelled probe to the PCR product, and the development of a signal by loss of fluorescence quenching as PCR degrades the probe. Though this so-called 'TaqMan' approach has proved easy to optimise in practice, the dual-labelled probes are relatively expensive. We have designed a new assay based on SYBR-Green I binding that is quick, reliable, easily optimised and compares well with the published assay. Here we demonstrate its general applicability by measuring copy number in three different genetic contexts; the quantification of a gene rearrangement (T-cell receptor excision circles (TREC) in peripheral blood mononuclear cells); the detection and quantification of GLI, MYC-C and MYC-N gene amplification in cell lines and cancer biopsies; and detection of deletions in the OPA1 gene in dominant optic atrophy. Our assay has important clinical applications, providing accurate diagnostic results in less time, from less biopsy material and at less cost than assays currently employed such as FISH or Southern blotting.

  5. A Distributed Web-based Solution for Ionospheric Model Real-time Management, Monitoring, and Short-term Prediction

    NASA Astrophysics Data System (ADS)

    Kulchitsky, A.; Maurits, S.; Watkins, B.

    2006-12-01

    With the widespread availability of the Internet today, many people can monitor various scientific research activities. It is important to accommodate this interest providing on-line access to dynamic and illustrative Web-resources, which could demonstrate different aspects of ongoing research. It is especially important to explain and these research activities for high school and undergraduate students, thereby providing more information for making decisions concerning their future studies. Such Web resources are also important to clarify scientific research for the general public, in order to achieve better awareness of research progress in various fields. Particularly rewarding is dissemination of information about ongoing projects within Universities and research centers to their local communities. The benefits of this type of scientific outreach are mutual, since development of Web-based automatic systems is prerequisite for many research projects targeting real-time monitoring and/or modeling of natural conditions. Continuous operation of such systems provide ongoing research opportunities for the statistically massive validation of the models, as well. We have developed a Web-based system to run the University of Alaska Fairbanks Polar Ionospheric Model in real-time. This model makes use of networking and computational resources at the Arctic Region Supercomputing Center. This system was designed to be portable among various operating systems and computational resources. Its components can be installed across different computers, separating Web servers and computational engines. The core of the system is a Real-Time Management module (RMM) written Python, which facilitates interactions of remote input data transfers, the ionospheric model runs, MySQL database filling, and PHP scripts for the Web-page preparations. The RMM downloads current geophysical inputs as soon as they become available at different on-line depositories. This information is processed to

  6. Expert Systems for Real-Time Volcano Monitoring

    NASA Astrophysics Data System (ADS)

    Cassisi, C.; Cannavo, F.; Montalto, P.; Motta, P.; Schembra, G.; Aliotta, M. A.; Cannata, A.; Patanè, D.; Prestifilippo, M.

    2014-12-01

    In the last decade, the capability to monitor and quickly respond to remote detection of volcanic activity has been greatly improved through use of advanced techniques and semi-automatic software applications installed in most of the 24h control rooms devoted to volcanic surveillance. Ability to monitor volcanoes is being advanced by new technology, such as broad-band seismology, microphone networks mainly recording in the infrasonic frequency band, satellite observations of ground deformation, high quality video surveillance systems, also in infrared band, improved sensors for volcanic gas measurements, and advances in computer power and speed, leading to improvements in data transmission, data analysis and modeling techniques. One of the most critical point in the real-time monitoring chain is the evaluation of the volcano state from all the measurements. At the present, most of this task is delegated to one or more human experts in volcanology. Unfortunately, the volcano state assessment becomes harder if we observe that, due to the coupling of highly non-linear and complex volcanic dynamic processes, the measurable effects can show a rich range of different behaviors. Moreover, due to intrinsic uncertainties and possible failures in some recorded data, precise state assessment is usually not achievable. Hence, the volcano state needs to be expressed in probabilistic terms that take account of uncertainties. In the framework of the project PON SIGMA (Integrated Cloud-Sensor System for Advanced Multirisk Management) work, we have developed an expert system approach to estimate the ongoing volcano state from all the available measurements and with minimal human interaction. The approach is based on hidden markov model and deals with uncertainties and probabilities. We tested the proposed approach on data coming from the Mt. Etna (Italy) continuous monitoring networks for the period 2011-2013. Results show that this approach can be a valuable tool to aid the

  7. Evaluation of loop-mediated isothermal amplification method (LAMP) for pathogenic Leptospira spp. detection with leptospires isolation and real-time PCR.

    PubMed

    Suwancharoen, Duangjai; Sittiwicheanwong, Busara; Wiratsudakul, Anuwat

    2016-09-01

    Leptospirosis has been one of the worldwide zoonotic diseases caused by pathogenic Leptospira spp. Many molecular techniques have consecutively been developed to detect such pathogen including loop-mediated isothermal amplification method (LAMP). The objectives of this study were to evaluate the diagnostic accuracy of LAMP assay and real-time PCR using bacterial culture as the gold standard and to assess the agreement among these three tests using Cohen's kappa statistics. In total, 533 urine samples were collected from 266 beef and 267 dairy cattle reared in central region of Thailand. Sensitivity and specificity of LAMP were 96.8% (95% CI 81.5-99.8) and 97.0% (95% CI 94.9-98.2), respectively. The accuracy of LAMP (97.0%) was significantly higher than that of real-time PCR (91.9%) at 95% CI. With Cohen's kappa statistics, culture method and LAMP were substantially agreed with each other (77.4%), whereas real-time PCR only moderately agreed with culture (47.7%) and LAMP (45.3%), respectively. Consequently, LAMP was more effective than real-time PCR in detecting Leptospira spp. in the urine of cattle. Besides, LAMP had less cost and was simpler than real-time PCR. Thus, LAMP was an excellent alternative for routine surveillance of leptospirosis in cattle.

  8. Panel of 23S rRNA Gene-Based Real-Time PCR Assays for Improved Universal and Group-Specific Detection of Phytoplasmas▿ †

    PubMed Central

    Hodgetts, Jennifer; Boonham, Neil; Mumford, Rick; Dickinson, Matthew

    2009-01-01

    Primers and probes based on the 23S rRNA gene have been utilized to design a range of real-time PCR assays for routine phytoplasma diagnostics. These assays have been authenticated as phytoplasma specific and shown to be at least as sensitive as nested PCR. A universal assay to detect all phytoplasmas has been developed, along with a multiplex assay to discriminate 16SrI group phytoplasmas from members of all of the other 16Sr groups. Assays for the 16SrII, 16SrIV, and 16SrXII groups have also been developed to confirm that the 23S rRNA gene can be used to design group-specific assays. PMID:19270148

  9. Development of a non invasion real-time PCR assay for the quantitation of chicken parvovirus in fecal swabs

    USDA-ARS?s Scientific Manuscript database

    The present study describes the development of a real time Taqman polymerase chain reaction (PCR) assay using a fluorescent labeled probe for the detection and quantitation of chicken parvovirus (ChPV) in feces. The primers and probes were designed based on the nucleotide sequence of the non struct...

  10. Optimized Pan-species and Speciation Duplex Real-time PCR Assays for Plasmodium Parasites Detection in Malaria Vectors

    PubMed Central

    Sandeu, Maurice Marcel; Moussiliou, Azizath; Moiroux, Nicolas; Padonou, Gilles G.; Massougbodji, Achille; Corbel, Vincent; Tuikue Ndam, Nicaise

    2012-01-01

    Background An accurate method for detecting malaria parasites in the mosquito’s vector remains an essential component in the vector control. The Enzyme linked immunosorbent assay specific for circumsporozoite protein (ELISA-CSP) is the gold standard method for the detection of malaria parasites in the vector even if it presents some limitations. Here, we optimized multiplex real-time PCR assays to accurately detect minor populations in mixed infection with multiple Plasmodium species in the African malaria vectors Anopheles gambiae and Anopheles funestus. Methods Complementary TaqMan-based real-time PCR assays that detect Plasmodium species using specific primers and probes were first evaluated on artificial mixtures of different targets inserted in plasmid constructs. The assays were further validated in comparison with the ELISA-CSP on 200 field caught Anopheles gambiae and Anopheles funestus mosquitoes collected in two localities in southern Benin. Results The validation of the duplex real-time PCR assays on the plasmid mixtures demonstrated robust specificity and sensitivity for detecting distinct targets. Using a panel of mosquito specimen, the real-time PCR showed a relatively high sensitivity (88.6%) and specificity (98%), compared to ELISA-CSP as the referent standard. The agreement between both methods was “excellent” (κ = 0.8, P<0.05). The relative quantification of Plasmodium DNA between the two Anopheles species analyzed showed no significant difference (P = 0, 2). All infected mosquito samples contained Plasmodium falciparum DNA and mixed infections with P. malariae and/or P. ovale were observed in 18.6% and 13.6% of An. gambiae and An. funestus respectively. Plasmodium vivax was found in none of the mosquito samples analyzed. Conclusion This study presents an optimized method for detecting the four Plasmodium species in the African malaria vectors. The study highlights substantial discordance with traditional ELISA-CSP pointing out the

  11. Rapid DNA extraction protocol for detection of alpha-1 antitrypsin deficiency from dried blood spots by real-time PCR.

    PubMed

    Struniawski, R; Szpechcinski, A; Poplawska, B; Skronski, M; Chorostowska-Wynimko, J

    2013-01-01

    The dried blood spot (DBS) specimens have been successfully employed for the large-scale diagnostics of α1-antitrypsin (AAT) deficiency as an easy to collect and transport alternative to plasma/serum. In the present study we propose a fast, efficient, and cost effective protocol of DNA extraction from dried blood spot (DBS) samples that provides sufficient quantity and quality of DNA and effectively eliminates any natural PCR inhibitors, allowing for successful AAT genotyping by real-time PCR and direct sequencing. DNA extracted from 84 DBS samples from chronic obstructive pulmonary disease patients was genotyped for AAT deficiency variants by real-time PCR. The results of DBS AAT genotyping were validated by serum IEF phenotyping and AAT concentration measurement. The proposed protocol allowed successful DNA extraction from all analyzed DBS samples. Both quantity and quality of DNA were sufficient for further real-time PCR and, if necessary, for genetic sequence analysis. A 100% concordance between AAT DBS genotypes and serum phenotypes in positive detection of two major deficiency S- and Z- alleles was achieved. Both assays, DBS AAT genotyping by real-time PCR and serum AAT phenotyping by IEF, positively identified PI*S and PI*Z allele in 8 out of the 84 (9.5%) and 16 out of 84 (19.0%) patients, respectively. In conclusion, the proposed protocol noticeably reduces the costs and the hand-on-time of DBS samples preparation providing genomic DNA of sufficient quantity and quality for further real-time PCR or genetic sequence analysis. Consequently, it is ideally suited for large-scale AAT deficiency screening programs and should be method of choice.

  12. Detection of diarrheagenic Escherichia coli by use of melting-curve analysis and real-time multiplex PCR.

    PubMed

    Guion, Chase E; Ochoa, Theresa J; Walker, Christopher M; Barletta, Francesca; Cleary, Thomas G

    2008-05-01

    Diarrheagenic Escherichia coli strains are important causes of diarrhea in children from the developing world and are now being recognized as emerging enteropathogens in the developed world. Current methods of detection are too expensive and labor-intensive for routine detection of these organisms to be practical. We developed a real-time fluorescence-based multiplex PCR for the detection of all six of the currently recognized classes of diarrheagenic E. coli. The primers were designed to specifically amplify eight different virulence genes in the same reaction: aggR for enteroaggregative E. coli, stIa/stIb and lt for enterotoxigenic E. coli, eaeA for enteropathogenic E. coli and Shiga toxin-producing E. coli (STEC), stx(1) and stx(2) for STEC, ipaH for enteroinvasive E. coli, and daaD for diffusely adherent E. coli (DAEC). Eighty-nine of ninety diarrheagenic E. coli and 36/36 nonpathogenic E. coli strains were correctly identified using this approach (specificity, 1.00; sensitivity, 0.99). The single false negative was a DAEC strain. The total time between preparation of DNA from E. coli colonies on agar plates and completion of PCR and melting-curve analysis was less than 90 min. The cost of materials was low. Melting-point analysis of real-time multiplex PCR is a rapid, sensitive, specific, and inexpensive method for detection of diarrheagenic E. coli.

  13. New Highly Sensitive Real-Time PCR Assay for HIV-2 Group A and Group B DNA Quantification.

    PubMed

    Bertine, Mélanie; Gueudin, Marie; Mélard, Adeline; Damond, Florence; Descamps, Diane; Matheron, Sophie; Collin, Fidéline; Rouzioux, Christine; Plantier, Jean-Christophe; Avettand-Fenoel, Véronique

    2017-09-01

    HIV-2 infection is characterized by a very low replication rate in most cases and low progression. This necessitates an approach to patient monitoring that differs from that for HIV-1 infection. Here, a new highly specific and sensitive method for HIV-2 DNA quantification was developed. The new test is based on quantitative real-time PCR targeting the long terminal repeat (LTR) and gag regions and using an internal control. Analytical performance was determined in three laboratories, and clinical performance was determined on blood samples from 63 patients infected with HIV-2 group A ( n = 35) or group B ( n = 28). The specificity was 100%. The 95% limit of detection was three copies/PCR and the limit of quantification was six copies/PCR. The within-run coefficients of variation were between 1.03% at 3.78 log 10 copies/PCR and 27.02% at 0.78 log 10 copies/PCR. The between-run coefficient of variation was 5.10%. Both manual and automated nucleic acid extraction methods were validated. HIV-2 DNA loads were detectable in blood cells from all 63 patients. When HIV-2 DNA was quantifiable, median loads were significantly higher in antiretroviral-treated than in naive patients and were similar for groups A and B. HIV-2 DNA load was correlated with HIV-2 RNA load ( r = 0.68; 95% confidence interval [CI], 0.4 to 0.8; P < 0.0001). Our data show that this new assay is highly sensitive and quantifies the two main HIV-2 groups, making it useful for the diagnosis of HIV-2 infection and for pathogenesis studies on HIV-2 reservoirs. Copyright © 2017 American Society for Microbiology.

  14. High-resolution near real-time drought monitoring in South Asia

    NASA Astrophysics Data System (ADS)

    Aadhar, Saran; Mishra, Vimal

    2017-10-01

    Drought in South Asia affect food and water security and pose challenges for millions of people. For policy-making, planning, and management of water resources at sub-basin or administrative levels, high-resolution datasets of precipitation and air temperature are required in near-real time. We develop a high-resolution (0.05°) bias-corrected precipitation and temperature data that can be used to monitor near real-time drought conditions over South Asia. Moreover, the dataset can be used to monitor climatic extremes (heat and cold waves, dry and wet anomalies) in South Asia. A distribution mapping method was applied to correct bias in precipitation and air temperature, which performed well compared to the other bias correction method based on linear scaling. Bias-corrected precipitation and temperature data were used to estimate Standardized precipitation index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) to assess the historical and current drought conditions in South Asia. We evaluated drought severity and extent against the satellite-based Normalized Difference Vegetation Index (NDVI) anomalies and satellite-driven Drought Severity Index (DSI) at 0.05°. The bias-corrected high-resolution data can effectively capture observed drought conditions as shown by the satellite-based drought estimates. High resolution near real-time dataset can provide valuable information for decision-making at district and sub-basin levels.

  15. High-Resolution Near Real-Time Drought Monitoring in South Asia

    NASA Astrophysics Data System (ADS)

    Aadhar, S.; Mishra, V.

    2017-12-01

    Drought in South Asia affect food and water security and pose challenges for millions of people. For policy-making, planning and management of water resources at the sub-basin or administrative levels, high-resolution datasets of precipitation and air temperature are required in near-real time. Here we develop a high resolution (0.05 degree) bias-corrected precipitation and temperature data that can be used to monitor near real-time drought conditions over South Asia. Moreover, the dataset can be used to monitor climatic extremes (heat waves, cold waves, dry and wet anomalies) in South Asia. A distribution mapping method was applied to correct bias in precipitation and air temperature (maximum and minimum), which performed well compared to the other bias correction method based on linear scaling. Bias-corrected precipitation and temperature data were used to estimate Standardized precipitation index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) to assess the historical and current drought conditions in South Asia. We evaluated drought severity and extent against the satellite-based Normalized Difference Vegetation Index (NDVI) anomalies and satellite-driven Drought Severity Index (DSI) at 0.05˚. We find that the bias-corrected high-resolution data can effectively capture observed drought conditions as shown by the satellite-based drought estimates. High resolution near real-time dataset can provide valuable information for decision-making at district and sub- basin levels.

  16. Performance of a real-time PCR assay in routine bovine mastitis diagnostics compared with in-depth conventional culture.

    PubMed

    Hiitiö, Heidi; Riva, Rauna; Autio, Tiina; Pohjanvirta, Tarja; Holopainen, Jani; Pyörälä, Satu; Pelkonen, Sinikka

    2015-05-01

    Reliable identification of the aetiological agent is crucial in mastitis diagnostics. Real-time PCR is a fast, automated tool for detecting the most common udder pathogens directly from milk. In this study aseptically taken quarter milk samples were analysed with a real-time PCR assay (Thermo Scientific PathoProof Mastitis Complete-12 Kit, Thermo Fisher Scientific Ltd.) and by semi-quantitative, in-depth bacteriological culture (BC). The aim of the study was to evaluate the diagnostic performance of the real-time PCR assay in routine use. A total of 294 quarter milk samples from routine mastitis cases were cultured in the national reference laboratory of Finland and examined with real-time PCR. With BC, 251 out of 294 (85.7%) of the milk samples had at least one colony on the plate and 38 samples were considered contaminated. In the PCR mastitis assay, DNA of target species was amplified in 244 samples out of 294 (83.0%). The most common bacterial species detected in the samples, irrespective of the diagnostic method, was the coagulase negative staphylococci (CNS) group (later referred as Staphylococcus spp.) followed by Staphylococcus aureus. Sensitivity (Se) and specificity (Sp) for the PCR assay to provide a positive Staph. aureus result was 97.0 and 95.8% compared with BC. For Staphylococcus spp., the corresponding figures were 86.7 and 75.4%. Our results imply that PCR performed well as a diagnostic tool to detect Staph. aureus but may be too nonspecific for Staphylococcus spp. in routine use with the current cut-off Ct value (37.0). Using PCR as the only microbiological method for mastitis diagnostics, clinical relevance of the results should be carefully considered before further decisions, for instance antimicrobial treatment, especially when minor pathogens with low amount of DNA have been detected. Introducing the concept of contaminated samples should also be considered.

  17. A rapid single-tube protocol for HAV detection by nested real-time PCR.

    PubMed

    Hu, Yuan; Arsov, Ivica

    2014-09-01

    Infections by food-borne viruses such as hepatitis A virus (HAV) and norovirus are significant public health concerns worldwide. Since food-borne viruses are rarely confirmed through direct isolation from contaminated samples, highly sensitive molecular techniques remain the methods of choice for the detection of viral genetic material. Our group has previously developed a specific nested real-time PCR (NRT-PCR) assay for HAV detection that improved overall sensitivity. Furthermore in this study, we have developed a single-tube NRT-PCR approach for HAV detection in food samples that reduces the likelihood of cross contamination between tubes during sample manipulation. HAV RNA was isolated from HAV-spiked food samples and HAV-infected cell cultures. All reactions following HAV RNA isolation, including conventional reverse transcriptase PCR, nested-PCR, and RT-PCR were performed in a single tube. Our results demonstrated that all the samples tested positive by RT-PCR and nested-PCR were also positive by a single-tube NRT-PCR. The detection limits observed for HAV-infected cell cultures and HAV-spiked green onions were 0.1 and 1 PFU, respectively. This novel method retained the specificity and robustness of the original NRT-PCR method, while greatly reducing sample manipulation, turnaround time, and the risk of carry-over contamination. Single-tube NRT-PCR thus represents a promising new tool that can potentially facilitate the detection of HAV in foods thereby improving food safety and public health.

  18. Detection of Giardia intestinalis in water samples collected from natural water reservoirs and wells in northern and north-eastern Poland using LAMP, real-time PCR and nested PCR.

    PubMed

    Lass, Anna; Szostakowska, Beata; Korzeniewski, Krzysztof; Karanis, Panagiotis

    2017-10-01

    Giardia intestinalis is a protozoan parasite, transmitted to humans and animals by the faecal-oral route, mainly through contaminated water and food. Knowledge about the distribution of this parasite in surface water in Poland is fragmentary and incomplete. Accordingly, 36 environmental water samples taken from surface water reservoirs and wells were collected in Pomerania and Warmia-Masuria provinces, Poland. The 50 L samples were filtered and subsequently analysed with three molecular detection methods: loop-mediated isothermal amplification (LAMP), real-time polymerase chain reaction (real-time PCR) and nested PCR. Of the samples examined, Giardia DNA was found in 15 (42%) samples with the use of LAMP; in 12 (33%) of these samples, Giardia DNA from this parasite was also detected using real-time PCR; and in 9 (25%) using nested PCR. Sequencing of selected positive samples confirmed that the PCR products were fragments of the Giardia intestinalis small subunit rRNA gene. Genotyping using multiplex real-time PCR indicated the presence of assemblages A and B, with the latter predominating. The results indicate that surface water in Poland, as well as water taken from surface wells, may be a source of Giardia strains which are potentially pathogenic for humans. It was also demonstrated that LAMP assay is more sensitive than the other two molecular assays.

  19. Establishment a real-time reverse transcription PCR based on host biomarkers for the detection of the subclinical cases of Mycobacterium avium subsp. paratuberculosis.

    PubMed

    Park, Hyun-Eui; Park, Hong-Tae; Jung, Young Hoon; Yoo, Han Sang

    2017-01-01

    Bovine paratuberculosis (PTB) is a chronic enteric inflammatory disease of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP) that causes large economic losses in the dairy industry. Spread of PTB is mainly provoked by a long subclinical stage during which MAP is shed into the environment with feces; accordingly, detection of subclinical animals is very important to its control. However, current diagnostic methods are not suitable for detection of subclinical animals. Therefore, the current study was conducted to develop a diagnostic method for analysis of the expression of genes of prognostic potential biomarker candidates in the whole blood of cattle naturally infected with MAP. Real-time PCR with nine potential biomarker candidates was developed for the diagnosis of MAP subclinical infection. Animals were divided into four groups based on fecal MAP PCR and serum ELISA. Eight genes (Timp1, Hp, Serpine1, Tfrc, Mmp9, Defb1, Defb10, and S100a8) were up-regulated in MAP-infected cattle (p <0.05). Moreover, ROC analysis revealed that eight genes (Timp1, Hp, Serpine1, Tfrc, Mmp9, Defb1, Defb10, and S100a8) showed fair diagnostic performance (AUC≥0.8). Four biomarkers (Timp1, S100a8, Defb1, and Defb10) showed the highest diagnostic accuracy in the PCR positive and ELISA negative group (PN group) and three biomarkers (Tfrc, Hp, and Serpine1) showed the highest diagnostic accuracy in the PCR negative and ELISA positive group (NP group). Moreover, three biomarkers (S100a8, Hp, and Defb10) were considered the most reliable for the PCR positive and ELISA positive group (PP group). Taken together, our data suggest that real-time PCR based on eight biomarkers (Timp1, Hp, Serpine1, Tfrc, Mmp9, Defb1, Defb10, and S100a8) might be useful for diagnosis of JD, including subclinical stage cases.

  20. Establishment a real-time reverse transcription PCR based on host biomarkers for the detection of the subclinical cases of Mycobacterium avium subsp. paratuberculosis

    PubMed Central

    Park, Hyun-Eui; Park, Hong-Tae; Jung, Young Hoon

    2017-01-01

    Bovine paratuberculosis (PTB) is a chronic enteric inflammatory disease of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP) that causes large economic losses in the dairy industry. Spread of PTB is mainly provoked by a long subclinical stage during which MAP is shed into the environment with feces; accordingly, detection of subclinical animals is very important to its control. However, current diagnostic methods are not suitable for detection of subclinical animals. Therefore, the current study was conducted to develop a diagnostic method for analysis of the expression of genes of prognostic potential biomarker candidates in the whole blood of cattle naturally infected with MAP. Real-time PCR with nine potential biomarker candidates was developed for the diagnosis of MAP subclinical infection. Animals were divided into four groups based on fecal MAP PCR and serum ELISA. Eight genes (Timp1, Hp, Serpine1, Tfrc, Mmp9, Defb1, Defb10, and S100a8) were up-regulated in MAP-infected cattle (p <0.05). Moreover, ROC analysis revealed that eight genes (Timp1, Hp, Serpine1, Tfrc, Mmp9, Defb1, Defb10, and S100a8) showed fair diagnostic performance (AUC≥0.8). Four biomarkers (Timp1, S100a8, Defb1, and Defb10) showed the highest diagnostic accuracy in the PCR positive and ELISA negative group (PN group) and three biomarkers (Tfrc, Hp, and Serpine1) showed the highest diagnostic accuracy in the PCR negative and ELISA positive group (NP group). Moreover, three biomarkers (S100a8, Hp, and Defb10) were considered the most reliable for the PCR positive and ELISA positive group (PP group). Taken together, our data suggest that real-time PCR based on eight biomarkers (Timp1, Hp, Serpine1, Tfrc, Mmp9, Defb1, Defb10, and S100a8) might be useful for diagnosis of JD, including subclinical stage cases. PMID:28542507

  1. Differential Detection of Enterovirus and Herpes Simplex Virus in Cerebrospinal Fluid by Real-Time RT-PCR.

    PubMed

    Sarquiz-Martínez, Brenda; González-Bonilla, César R; Santacruz-Tinoco, Clara Esperanza; Muñoz-Medina, José E; Pardavé-Alejandre, Héctor D; Barbosa-Cabrera, Elizabeth; Ramírez-González, José Ernesto; Díaz-Quiñonez, José Alberto

    2017-01-01

    Enterovirus (EV) and herpes simplex virus 1 and 2 (HSV1 and HSV2) are the main etiologic agents of central nervous system infections. Early laboratory confirmation of these infections is performed by viral culture of the cerebrospinal fluid (CSF), or the detection of specific antibodies in serum (e.g., HSV). The sensitivity of viral culture ranges from 65 to 75%, with a recovery time varying from 3 to 10 days. Serological tests are faster and easy to carry out, but they exhibit cross-reactivity between HSV1 and HSV2. Although molecular techniques are more sensitive (sensitivity >95%), they are more expensive and highly susceptible to cross-contamination. A real-time RT-PCR for the detection of EV, HSV1, and HSV2 was compared with end-point nested PCR. We tested 87 CSF samples of patients with a clinical diagnosis of viral meningitis or encephalitis. Fourteen samples were found to be positive by RT-PCR, but only 8 were positive by end-point PCR. The RT-PCR showed a specificity range of 94-100%, the negative predictive value was 100%, and the positive predictive value was 62, 100, and 28% for HSV1, HSV2, and EV, respectively. Real-time RT-PCR detected EV, HSV1, and HSV2 with a higher sensitivity and specificity than end-point nested RT-PCR. © 2017 S. Karger AG, Basel.

  2. Introduction of Drought Monitoring and Forecasting System based on Real-time Water Information Using ICT

    NASA Astrophysics Data System (ADS)

    Lee, Y., II; Kim, H. S.; Chun, G.

    2016-12-01

    There were severe damages such as restriction on water supply caused by continuous drought from 2014 to 2015 in South Korea. Through this drought event, government of South Korea decided to establish National Drought Information Analysis Center in K-water(Korea Water Resources Corporation) and introduce a national drought monitoring and early warning system to mitigate those damages. Drought index such as SPI(Standard Precipitation Index), PDSI(Palmer Drought Severity Index) and SMI(Soil Moisture Index) etc. have been developed and are widely used to provide drought information in many countries. However, drought indexes are not appropriate for drought monitoring and early warning in civilized countries with high population density such as South Korea because it could not consider complicated water supply network. For the national drought monitoring and forecasting of South Korea, `Drought Information Analysis System' (D.I.A.S) which is based on the real time data(storage, flowrate, waterlevel etc.) was developed. Based on its advanced methodology, `DIAS' is changing the paradigm of drought monitoring and early warning systems. Because `D.I.A.S' contains the information of water supply network from water sources to the people across the nation and provides drought information considering the real-time hydrological conditions of each and every water source. For instance, in case the water level of a specific dam declines to predetermined level of caution, `D.I.A.S' will notify people who uses the dam as a source of residential or industrial water. It is expected to provide credible drought monitoring and forecasting information with a strong relationship between drought information and the feelings of people rely on water users by `D.I.A.S'.

  3. Ring trial 2016 for Bluetongue virus detection by real-time RT-PCR in France.

    PubMed

    Sailleau, Corinne; Viarouge, Cyril; Breard, Emmanuel; Vitour, Damien; Zientara, Stephan

    2017-05-01

    Since the unexpected emergence of BTV-8 in Northern Europe and the incursion of BTV-8 and 1 in France in 2006-2007, molecular diagnosis has considerably evolved. Several real-time RT-PCR (rtRT-PCR) methods have been developed and published, and are currently being used in many countries across Europe for BTV detection and typing. In France, the national reference laboratory (NRL) for orbiviruses develops and validates 'ready-to-use' kits with private companies for viral RNA detection. The regional laboratories network that was set up to deal with a heavy demand for analyses has used these available kits. From 2007, ring tests were organized to monitor the performance of the French laboratories. This study presents the results of 63 regional laboratories in the ring trial organized in 2016. Blood samples were sent to the laboratories. Participants were asked to use the rtRT-PCR methods in place in their laboratory, for detection of all BTV serotypes and specifically BTV-8. The French regional laboratories are able to detect and genotype BTV in affected animals. Despite the use of several methods (i.e. RNA extraction and different commercial rtRT-PCRs), the network is homogeneous. The ring trial demonstrated that the French regional veterinary laboratories have reliable and robust BTV diagnostic tools for BTV genome detection.

  4. Protocol for the use of a rapid real-time PCR method for the detection of HIV-1 proviral DNA using double-stranded primer.

    PubMed

    Pau, Chou-Pong; Wells, Susan K; Granade, Timothy C

    2012-01-01

    This chapter describes a real-time PCR method for the detection of HIV-1 proviral DNA in whole blood samples using a novel double-stranded primer system. The assay utilizes a simple commercially available DNA extraction method and a rapid and easy-to-perform real-time PCR protocol to consistently detect a minimum of four copies of HIV-1 group M proviral DNA in as little as 90 min after sample (whole blood) collection. Co-amplification of the human RNase P gene serves as an internal control to monitor the efficiency of both the DNA extraction and amplification. Once the assay is validated properly, it may be suitable as an alternative confirmation test for HIV-1 infections in a variety of HIV testing venues including the mother-to-child transmission testing sites, clinics, and diagnostic testing centers.

  5. Quantification of genetically modified soybeans using a combination of a capillary-type real-time PCR system and a plasmid reference standard.

    PubMed

    Toyota, Akie; Akiyama, Hiroshi; Sugimura, Mitsunori; Watanabe, Takahiro; Kikuchi, Hiroyuki; Kanamori, Hisayuki; Hino, Akihiro; Esaka, Muneharu; Maitani, Tamio

    2006-04-01

    Because the labeling of grains and feed- and foodstuffs is mandatory if the genetically modified organism (GMO) content exceeds a certain level of approved genetically modified varieties in many countries, there is a need for a rapid and useful method of GMO quantification in food samples. In this study, a rapid detection system was developed for Roundup Ready Soybean (RRS) quantification using a combination of a capillary-type real-time PCR system, a LightCycler real-time PCR system, and plasmid DNA as the reference standard. In addition, we showed for the first time that the plasmid and genomic DNA should be similar in the established detection system because the PCR efficiencies of using plasmid DNA and using genomic DNA were not significantly different. The conversion factor (Cf) to calculate RRS content (%) was further determined from the average value analyzed in three laboratories. The accuracy and reproducibility of this system for RRS quantification at a level of 5.0% were within a range from 4.46 to 5.07% for RRS content and within a range from 2.0% to 7.0% for the relative standard deviation (RSD) value, respectively. This system rapidly monitored the labeling system and had allowable levels of accuracy and precision.

  6. Standardization of a TaqMan-based real-time PCR for the detection of Mycobacterium tuberculosis-complex in human sputum.

    PubMed

    Barletta, Francesca; Vandelannoote, Koen; Collantes, Jimena; Evans, Carlton A; Arévalo, Jorge; Rigouts, Leen

    2014-10-01

    Real-time polymerase chain reaction (qPCR) was optimized for detecting Mycobacterium tuberculosis in sputum. Sputum was collected from patients (N = 112) with suspected pulmonary tuberculosis, tested by smear microscopy, decontaminated, and split into equal aliquots that were cultured in Löwenstein-Jensen medium and tested by qPCR for the small mobile genetic element IS6110. The human ERV3 sequence was used as an internal control. 3 of 112 (3%) qPCR failed. For the remaining 109 samples, qPCR diagnosed tuberculosis in 79 of 84 patients with culture-proven tuberculosis, and sensitivity was greater than microscopy (94% versus 76%, respectively, P < 0.05). The qPCR sensitivity was similar (P = 0.9) for smear-positive (94%, 60 of 64) and smear-negative (95%, 19 of 20) samples. The qPCR was negative for 24 of 25 of the sputa with negative microscopy and culture (diagnostic specificity 96%). The qPCR had 99.5% sensitivity and specificity for 211 quality control samples including 84 non-tuberculosis mycobacteria. The qPCR cost ∼5US$ per sample and provided same-day results compared with 2-6 weeks for culture. © The American Society of Tropical Medicine and Hygiene.

  7. Comparative diagnostic evaluation of OMP31 gene based TaqMan® real-time PCR assay with visual LAMP assay and indirect ELISA for caprine brucellosis.

    PubMed

    Saini, Suman; Gupta, V K; Gururaj, K; Singh, D D; Pawaiya, R V S; Gangwar, N K; Mishra, A K; Dwivedi, Deepak; Andani, Dimple; Kumar, Ashok; Goswami, T K

    2017-08-01

    Brucellosis is one of the leading causes of abortion in domestic animals that imposes costs on both economy and society. The disease is highly zoonotic and poses risk to animal handlers due to its zoonotic nature. It causes stillbirth, loss of kids and abortion in last term of pregnancy. Reproductive damage includes infertility in does and orchitis and epididymitis in breeding bucks, which result in high financial losses to farmers and the agriculture industry as a whole. It requires highly sensitive and specific assays to diagnose the disease at field level. In the current study, a visual loop-mediated isothermal amplification (LAMP) assay and the TaqMan® real-time PCR were developed with high sensitivity and specificity. For the TaqMan® probe, real-time PCR primers were developed using Omp31 gene as target and primers were designed using discontiguous conserved sequences of Omp31 gene. The Omp31 probes were designed by attaching 6-FAM reporter dye at the 5' end and BHQ-1 quencher at the 3' end. Published primers were used for visual LAMP assay targeting the Omp25 gene. Sensitivity of the standardized visual LAMP assay and TaqMan® real-time PCR assay was determined by serial dilution of positive Brucella melitensis DNA (10 2 to 10 -4  ng) obtained from standard culture. The TaqMan® probe real-time assay can detect as low as 100 fg of B. melitensis DNA, whereas culture from vaginal swab washings has a limit of detection (LOD) of only 1 cfu/ml. Similarly, the visual LAMP assay can detect as low as 10 fg of B. melitensis DNA as compared to an LOD of 30 cfu/ml from culture of vaginal swab washings. Both assays were compared with serological tests (serum tube agglutination test (STAT) and indirect enzyme-linked immunosorbent assay (iELISA)) for diagnostic sensitivity and specificity. Diagnostic sensitivities and specificities for TaqMan® real-time PCR vs. LAMP assays were 98 and 100% vs. 100 and 97.8%, respectively. Results of visual LAMP assay indicated that

  8. Real-time PCR using SYBR Green for the detection of Shigella spp. in food and stool samples.

    PubMed

    Mokhtari, W; Nsaibia, S; Gharbi, A; Aouni, M

    2013-02-01

    Shigella spp are exquisitely fastidious Gram negative organisms that frequently get missed in the detection by traditional culture methods. For this reason, this work has adapted a classical PCR for detection of Shigella in food and stool specimens to real-time PCR using the SYBR Green format. This method follows a melting curve analysis to be more rapid and provide both qualitative and quantitative data about the targeted pathogen. A total of 117 stool samples with diarrhea and 102 food samples were analyzed in Public Health Regional Laboratory of Nabeul by traditional culture methods and real-time PCR. To validate the real-time PCR assay, an experiment was conducted with both spiked and naturally contaminated stool samples. All Shigella strains tested were ipaH positive and all non-Shigella strains yielded no amplification products. The melting temperature (T(m) = 81.5 ± 0.5 °C) was consistently specific for the amplicon. Correlation coefficients of standard curves constructed using the quantification cycle (C(q)) versus copy numbers of Shigella showed good linearity (R² = 0.995; slope = 2.952) and the minimum level of detection was 1.5 × 10³ CFU/g feces. All food samples analyzed were negative for Shigella by standard culture methods, whereas ipaH was detected in 8.8% culture negative food products. Moreover, the ipaH specific PCR system increased the detection rate over that by culture alone from 1.7% to 11.1% among patients with diarrhea. The data presented here shows that the SYBR Green I was suitable for use in the real-time PCR assay, which provided a specific, sensitive and efficient method for the detection and quantification of Shigella spp in food and stool samples. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Stretchable and Photocatalytically Renewable Electrochemical Sensor Based on Sandwich Nanonetworks for Real-Time Monitoring of Cells.

    PubMed

    Wang, Ya-Wen; Liu, Yan-Ling; Xu, Jia-Quan; Qin, Yu; Huang, Wei-Hua

    2018-05-15

    Stretchable electrochemical (EC) sensors have broad prospects in real-time monitoring of living cells and tissues owing to their excellent elasticity and deformability. However, the redox reaction products and cell secretions are easily adsorbed on the electrode, resulting in sensor fouling and passivation. Herein, we developed a stretchable and photocatalytically renewable EC sensor based on Au nanotubes (NTs) and TiO 2 nanowires (NWs) sandwich nanonetworks. The external Au NTs are used for EC sensing, and internal TiO 2 NWs provide photocatalytic performance to degrade contaminants, which endows the sensor with excellent EC performance, high photocatalytic activity, and favorable mechanical tensile property. This allows highly sensitive recycling monitoring of NO released from endothelial cells and 5-HT released from mast cells under their stretching states in real time, therefore providing a promising tool to unravel elastic and mechanically sensitive cells, tissues, and organs.

  10. Real-Time PCR for the Detection of Precise Transgene Copy Number in Wheat.

    PubMed

    Giancaspro, Angelica; Gadaleta, Agata; Blanco, Antonio

    2017-01-01

    Despite the unceasing advances in genetic transformation techniques, the success of common delivery methods still lies on the behavior of the integrated transgenes in the host genome. Stability and expression of the introduced genes are influenced by several factors such as chromosomal location, transgene copy number and interaction with the host genotype. Such factors are traditionally characterized by Southern blot analysis, which can be time-consuming, laborious, and often unable to detect the exact copy number of rearranged transgenes. Recent research in crop field suggests real-time PCR as an effective and reliable tool for the precise quantification and characterization of transgene loci. This technique overcomes most problems linked to phenotypic segregation analysis and can analyze hundreds of samples in a day, making it an efficient method for estimating a gene copy number integrated in a transgenic line. This protocol describes the use of real-time PCR for the detection of transgene copy number in durum wheat transgenic lines by means of two different chemistries (SYBR ® Green I dye and TaqMan ® probes).

  11. Development of a versatile tool for the simultaneous differential detection of Pseudomonas savastanoi pathovars by End Point and Real-Time PCR

    PubMed Central

    2010-01-01

    Background Pseudomonas savastanoi pv. savastanoi is the causal agent of olive knot disease. The strains isolated from oleander and ash belong to the pathovars nerii and fraxini, respectively. When artificially inoculated, pv. savastanoi causes disease also on ash, and pv. nerii attacks also olive and ash. Surprisingly nothing is known yet about their distribution in nature on these hosts and if spontaneous cross-infections occur. On the other hand sanitary certification programs for olive plants, also including P. savastanoi, were launched in many countries. The aim of this work was to develop several PCR-based tools for the rapid, simultaneous, differential and quantitative detection of these P. savastanoi pathovars, in multiplex and in planta. Results Specific PCR primers and probes for the pathovars savastanoi, nerii and fraxini of P. savastanoi were designed to be used in End Point and Real-Time PCR, both with SYBR® Green or TaqMan® chemistries. The specificity of all these assays was 100%, as assessed by testing forty-four P. savastanoi strains, belonging to the three pathovars and having different geographical origins. For comparison strains from the pathovars phaseolicola and glycinea of P. savastanoi and bacterial epiphytes from P. savastanoi host plants were also assayed, and all of them tested always negative. The analytical detection limits were about 5 - 0.5 pg of pure genomic DNA and about 102 genome equivalents per reaction. Similar analytical thresholds were achieved in Multiplex Real-Time PCR experiments, even on artificially inoculated olive plants. Conclusions Here for the first time a complex of PCR-based assays were developed for the simultaneous discrimination and detection of P. savastanoi pv. savastanoi, pv. nerii and pv. fraxini. These tests were shown to be highly reliable, pathovar-specific, sensitive, rapid and able to quantify these pathogens, both in multiplex reactions and in vivo. Compared with the other methods already available

  12. Monitoring and Identifying in Real time Critical Patients Events.

    PubMed

    Chavez Mora, Emma

    2014-01-01

    Nowadays pervasive health care monitoring environments, as well as business activity monitoring environments, gather information from a variety of data sources. However it includes new challenges because of the use of body and wireless sensors, nontraditional operational and transactional sources. This makes the health data more difficult to monitor. Decision making in this environment is typically complex and unstructured as clinical work is essentially interpretative, multitasking, collaborative, distributed and reactive. Thus, the health care arena requires real time data management in areas such as patient monitoring, detection of adverse events and adaptive responses to operational failures. This research presents a new architecture that enables real time patient data management through the use of intelligent data sources.

  13. Rapid identification and quantification of Campylobacter coli and Campylobacter jejuni by real-time PCR in pure cultures and in complex samples

    PubMed Central

    2011-01-01

    Background Campylobacter spp., especially Campylobacter jejuni (C. jejuni) and Campylobacter coli (C. coli), are recognized as the leading human foodborne pathogens in developed countries. Livestock animals carrying Campylobacter pose an important risk for human contamination. Pigs are known to be frequently colonized with Campylobacter, especially C. coli, and to excrete high numbers of this pathogen in their faeces. Molecular tools, notably real-time PCR, provide an effective, rapid, and sensitive alternative to culture-based methods for the detection of C. coli and C. jejuni in various substrates. In order to serve as a diagnostic tool supporting Campylobacter epidemiology, we developed a quantitative real-time PCR method for species-specific detection and quantification of C. coli and C. jejuni directly in faecal, feed, and environmental samples. Results With a sensitivity of 10 genome copies and a linear range of seven to eight orders of magnitude, the C. coli and C. jejuni real-time PCR assays allowed a precise quantification of purified DNA from C. coli and C. jejuni. The assays were highly specific and showed a 6-log-linear dynamic range of quantification with a quantitative detection limit of approximately 2.5 × 102 CFU/g of faeces, 1.3 × 102 CFU/g of feed, and 1.0 × 103 CFU/m2 for the environmental samples. Compared to the results obtained by culture, both C. coli and C. jejuni real-time PCR assays exhibited a specificity of 96.2% with a kappa of 0.94 and 0.89 respectively. For faecal samples of experimentally infected pigs, the coefficients of correlation between the C. coli or C. jejuni real-time PCR assay and culture enumeration were R2 = 0.90 and R2 = 0.93 respectively. Conclusion The C. coli and C. jejuni real-time quantitative PCR assays developed in this study provide a method capable of directly detecting and quantifying C. coli and C. jejuni in faeces, feed, and environmental samples. These assays represent a new diagnostic tool for studying

  14. Detection of Orthopoxvirus DNA by Real-Time PCR and Identification of Variola Virus DNA by Melting Analysis

    PubMed Central

    Nitsche, Andreas; Ellerbrok, Heinz; Pauli, Georg

    2004-01-01

    Although variola virus was eradicated by the World Health Organization vaccination program in the 1970s, the diagnosis of smallpox infection has attracted great interest in the context of a possible deliberate release of variola virus in bioterrorist attacks. Obviously, fast and reliable diagnostic tools are required to detect variola virus and to distinguish it from orthopoxviruses that have identical morphological characteristics, including vaccinia virus. The advent of real-time PCR for the clinical diagnosis of viral infections has facilitated the detection of minute amounts of viral nucleic acids in a fast, safe, and precise manner, including the option to quantify and to genotype the target reliably. In this study a complete set of four hybridization probe-based real-time PCR assays for the specific detection of orthopoxvirus DNA is presented. Melting analysis following PCR enables the identification of variola virus by the PCR product's characteristic melting temperature, permitting the discrimination of variola virus from other orthopoxviruses. In addition, an assay for the specific amplification of variola virus DNA is presented. All assays can be performed simultaneously in the same cycler, and results of a PCR run are obtained in less than 1 h. The application of more than one assay for the same organism significantly contributes to the diagnostic reliability, reducing the risk of false-negative results due to unknown sequence variations. In conclusion, the assays presented will improve the speed and reliability of orthopoxvirus diagnostics and variola virus identification. PMID:15004077

  15. Progress in using real-time GPS for seismic monitoring of the Cascadia megathrust

    NASA Astrophysics Data System (ADS)

    Szeliga, W. M.; Melbourne, T. I.; Santillan, V. M.; Scrivner, C.; Webb, F.

    2014-12-01

    We report on progress in our development of a comprehensive real-time GPS-based seismic monitoring system for the Cascadia subduction zone. This system is based on 1 Hz point position estimates computed in the ITRF08 reference frame. Convergence from phase and range observables to point position estimates is accelerated using a Kalman filter based, on-line stream editor. Positions are estimated using a short-arc approach and algorithms from JPL's GIPSY-OASIS software with satellite clock and orbit products from the International GNSS Service (IGS). The resulting positions show typical RMS scatter of 2.5 cm in the horizontal and 5 cm in the vertical with latencies below 2 seconds. To facilitate the use of these point position streams for applications such as seismic monitoring, we broadcast real-time positions and covariances using custom-built streaming software. This software is capable of buffering 24-hour streams for hundreds of stations and providing them through a REST-ful web interface. To demonstrate the power of this approach, we have developed a Java-based front-end that provides a real-time visual display of time-series, vector displacement, and contoured peak ground displacement. We have also implemented continuous estimation of finite fault slip along the Cascadia megathrust using an NIF approach. The resulting continuous slip distributions are combined with pre-computed tsunami Green's functions to generate real-time tsunami run-up estimates for the entire Cascadia coastal margin. This Java-based front-end is available for download through the PANGA website. We currently analyze 80 PBO and PANGA stations along the Cascadia margin and are gearing up to process all 400+ real-time stations operating in the Pacific Northwest, many of which are currently telemetered in real-time to CWU. These will serve as milestones towards our over-arching goal of extending our processing to include all of the available real-time streams from the Pacific rim. In addition

  16. RISMA: A Rule-based Interval State Machine Algorithm for Alerts Generation, Performance Analysis and Monitoring Real-Time Data Processing

    NASA Astrophysics Data System (ADS)

    Laban, Shaban; El-Desouky, Aly

    2013-04-01

    The monitoring of real-time systems is a challenging and complicated process. So, there is a continuous need to improve the monitoring process through the use of new intelligent techniques and algorithms for detecting exceptions, anomalous behaviours and generating the necessary alerts during the workflow monitoring of such systems. The interval-based or period-based theorems have been discussed, analysed, and used by many researches in Artificial Intelligence (AI), philosophy, and linguistics. As explained by Allen, there are 13 relations between any two intervals. Also, there have also been many studies of interval-based temporal reasoning and logics over the past decades. Interval-based theorems can be used for monitoring real-time interval-based data processing. However, increasing the number of processed intervals makes the implementation of such theorems a complex and time consuming process as the relationships between such intervals are increasing exponentially. To overcome the previous problem, this paper presents a Rule-based Interval State Machine Algorithm (RISMA) for processing, monitoring, and analysing the behaviour of interval-based data, received from real-time sensors. The proposed intelligent algorithm uses the Interval State Machine (ISM) approach to model any number of interval-based data into well-defined states as well as inferring them. An interval-based state transition model and methodology are presented to identify the relationships between the different states of the proposed algorithm. By using such model, the unlimited number of relationships between similar large numbers of intervals can be reduced to only 18 direct relationships using the proposed well-defined states. For testing the proposed algorithm, necessary inference rules and code have been designed and applied to the continuous data received in near real-time from the stations of International Monitoring System (IMS) by the International Data Centre (IDC) of the Preparatory

  17. Diagnosis of bacteremia in pediatric oncologic patients by in-house real-time PCR.

    PubMed

    Quiles, Milene Gonçalves; Menezes, Liana Carballo; Bauab, Karen de Castro; Gumpl, Elke Kreuscher; Rocchetti, Talita Trevizani; Palomo, Flavia Silva; Carlesse, Fabianne; Pignatari, Antonio Carlos Campos

    2015-07-23

    Infections are the major cause of morbidity and mortality in children with cancer. Gaining a favorable prognosis for these patients depends on selecting the appropriate therapy, which in turn depends on rapid and accurate microbiological diagnosis. This study employed real-time PCR (qPCR) to identify the main pathogens causing bloodstream infection (BSI) in patients treated at the Pediatric Oncology Institute IOP-GRAACC-UNIFESP-Brazil. Antimicrobial resistance genes were also investigated using this methodology. A total of 248 samples from BACTEC® blood culture bottles and 99 whole-blood samples collected in tubes containing EDTA K2 Gel were isolated from 137 patients. All samples were screened by specific Gram probes for multiplex qPCR. Seventeen sequences were evaluated using gender-specific TaqMan probes and the resistance genes bla SHV, bla TEM, bla CTX, bla KPC, bla IMP, bla SPM, bla VIM, vanA, vanB and mecA were detected using the SYBR Green method. Positive qPCR results were obtained in 112 of the blood culture bottles (112/124), and 90 % agreement was observed between phenotypic and molecular microbial detection methods. For bacterial and fungal identification, the performance test showed: sensitivity 87 %; specificity 91 %; NPV 90 %; PPV 89 % and accuracy of 89 % when compared with the phenotypic method. The mecA gene was detected in 37 samples, extended-spectrum β-lactamases were detected in six samples and metallo-β-lactamase coding genes in four samples, with 60 % concordance between the two methods. The qPCR on whole blood detected eight samples possessing the mecA gene and one sample harboring the vanB gene. The bla KPC, bla VIM, bla IMP and bla SHV genes were not detected in this study. Real-time PCR is a useful tool in the early identification of pathogens and antimicrobial resistance genes from bloodstream infections of pediatric oncologic patients.

  18. Comparison of the Idaho Technology FilmArray System to Real-Time PCR for Detection of Respiratory Pathogens in Children

    PubMed Central

    Pierce, Virginia M.; Elkan, Michael; Leet, Marilyn; McGowan, Karin L.

    2012-01-01

    The FilmArray Respiratory Panel (RP) multiplexed nucleic acid amplification test (Idaho Technology, Inc., Salt Lake City, UT) was compared to laboratory-developed real-time PCR assays for the detection of various respiratory viruses and certain bacterial pathogens. A total of 215 frozen archived pediatric respiratory specimens previously characterized as either negative or positive for one or more pathogens by real-time PCR were examined using the FilmArray RP system. Overall agreement between the FilmArray RP and corresponding real-time PCR assays for shared analytes was 98.6% (kappa = 0.92 [95% confidence interval (CI), 0.89 to 0.94]). The combined positive percent agreement was 89.4% (95% CI, 85.4 to 92.6); the negative percent agreement was 99.6% (95% CI, 99.2 to 99.8). The mean real-time PCR threshold cycle (CT) value for specimens with discordant results was 36.46 ± 4.54. Detection of coinfections and correct identification of influenza A virus subtypes were comparable to those of real-time PCR when using the FilmArray RP. The greatest comparative difference in sensitivity was observed for adenovirus; only 11 of 24 (45.8%; 95% CI, 27.9 to 64.9) clinical specimens positive for adenovirus by real-time PCR were also positive by the FilmArray RP. In addition, upon testing 20 characterized adenovirus serotypes prepared at high and low viral loads, the FilmArray RP did not detect serotypes 6 and 41 at either level and failed to detect serotypes 2, 20, 35, and 37 when viral loads were low. The FilmArray RP system is rapid and extremely user-friendly, with results available in just over 1 h with almost no labor involved. Its low throughput is a significant drawback for laboratories receiving large numbers of specimens, as only a single sample can be processed at a time with one instrument. PMID:22116144

  19. Evaluation of a duplex reverse-transcription real-time PCR assay for the detection of encephalomyocarditis virus.

    PubMed

    Qin, Shaomin; Underwood, Darren; Driver, Luke; Kistler, Carol; Diallo, Ibrahim; Kirkland, Peter D

    2018-06-01

    We evaluated a fluorogenic probe-based assay for the detection of encephalomyocarditis virus (EMCV) by comparing a set of published primers and probe to a new set of primers and probe. The published reagents failed to amplify a range of Australian isolates and an Italian reference strain of EMCV. In contrast, an assay based on 2 new sets of primers and probes that were run in a duplex reverse-transcription real-time PCR (RT-rtPCR) worked well, with high amplification efficiency. The analytical sensitivity was ~100-fold higher than virus isolation in cell culture. The intra-assay variation was 0.21-4.90%. No cross-reactivity was observed with a range of other porcine viruses. One hundred and twenty-two clinical specimens were tested simultaneously by RT-rtPCR and virus isolation in cell culture; 72 specimens gave positive results by RT-rtPCR, and 63 of these were also positive by virus isolation. Of 245 archived cell culture isolates of EMCV that were tested in the RT-rtPCR, 242 samples were positive. The new duplex RT-rtPCR assay is a reliable tool for the detection of EMCV in clinical specimens and for use in epidemiologic investigations.

  20. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay.

    PubMed

    Boyle, D G; Boyle, D B; Olsen, V; Morgan, J A T; Hyatt, A D

    2004-08-09

    Batrachochytrium dendrobatidis is a major pathogen of frogs worldwide, associated with declines in amphibian populations. Diagnosis of chytridiomycosis to date has largely relied upon histological and immunohistochemical examination of toe clips. This technique is invasive and insensitive particularly at early stages of infection when treatment may be possible. We have developed a real-time PCR Taqman assay that can accurately detect and quantify one zoospore in a diagnostic sample. This assay will assist the early detection of B. dendrobatidis in both captive and wild populations, with a high degree of sensitivity and specificity, thus facilitating treatment and protection of endangered populations, monitoring of pristine environments and preventing further global spread via amphibian trade.